1 /* 2 * raid1.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat 5 * 6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman 7 * 8 * RAID-1 management functions. 9 * 10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 11 * 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk> 13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> 14 * 15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support 16 * bitmapped intelligence in resync: 17 * 18 * - bitmap marked during normal i/o 19 * - bitmap used to skip nondirty blocks during sync 20 * 21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology: 22 * - persistent bitmap code 23 * 24 * This program is free software; you can redistribute it and/or modify 25 * it under the terms of the GNU General Public License as published by 26 * the Free Software Foundation; either version 2, or (at your option) 27 * any later version. 28 * 29 * You should have received a copy of the GNU General Public License 30 * (for example /usr/src/linux/COPYING); if not, write to the Free 31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 32 */ 33 34 #include <linux/slab.h> 35 #include <linux/delay.h> 36 #include <linux/blkdev.h> 37 #include <linux/seq_file.h> 38 #include "md.h" 39 #include "raid1.h" 40 #include "bitmap.h" 41 42 #define DEBUG 0 43 #if DEBUG 44 #define PRINTK(x...) printk(x) 45 #else 46 #define PRINTK(x...) 47 #endif 48 49 /* 50 * Number of guaranteed r1bios in case of extreme VM load: 51 */ 52 #define NR_RAID1_BIOS 256 53 54 55 static void unplug_slaves(mddev_t *mddev); 56 57 static void allow_barrier(conf_t *conf); 58 static void lower_barrier(conf_t *conf); 59 60 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data) 61 { 62 struct pool_info *pi = data; 63 r1bio_t *r1_bio; 64 int size = offsetof(r1bio_t, bios[pi->raid_disks]); 65 66 /* allocate a r1bio with room for raid_disks entries in the bios array */ 67 r1_bio = kzalloc(size, gfp_flags); 68 if (!r1_bio && pi->mddev) 69 unplug_slaves(pi->mddev); 70 71 return r1_bio; 72 } 73 74 static void r1bio_pool_free(void *r1_bio, void *data) 75 { 76 kfree(r1_bio); 77 } 78 79 #define RESYNC_BLOCK_SIZE (64*1024) 80 //#define RESYNC_BLOCK_SIZE PAGE_SIZE 81 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 82 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 83 #define RESYNC_WINDOW (2048*1024) 84 85 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) 86 { 87 struct pool_info *pi = data; 88 struct page *page; 89 r1bio_t *r1_bio; 90 struct bio *bio; 91 int i, j; 92 93 r1_bio = r1bio_pool_alloc(gfp_flags, pi); 94 if (!r1_bio) { 95 unplug_slaves(pi->mddev); 96 return NULL; 97 } 98 99 /* 100 * Allocate bios : 1 for reading, n-1 for writing 101 */ 102 for (j = pi->raid_disks ; j-- ; ) { 103 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 104 if (!bio) 105 goto out_free_bio; 106 r1_bio->bios[j] = bio; 107 } 108 /* 109 * Allocate RESYNC_PAGES data pages and attach them to 110 * the first bio. 111 * If this is a user-requested check/repair, allocate 112 * RESYNC_PAGES for each bio. 113 */ 114 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) 115 j = pi->raid_disks; 116 else 117 j = 1; 118 while(j--) { 119 bio = r1_bio->bios[j]; 120 for (i = 0; i < RESYNC_PAGES; i++) { 121 page = alloc_page(gfp_flags); 122 if (unlikely(!page)) 123 goto out_free_pages; 124 125 bio->bi_io_vec[i].bv_page = page; 126 bio->bi_vcnt = i+1; 127 } 128 } 129 /* If not user-requests, copy the page pointers to all bios */ 130 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) { 131 for (i=0; i<RESYNC_PAGES ; i++) 132 for (j=1; j<pi->raid_disks; j++) 133 r1_bio->bios[j]->bi_io_vec[i].bv_page = 134 r1_bio->bios[0]->bi_io_vec[i].bv_page; 135 } 136 137 r1_bio->master_bio = NULL; 138 139 return r1_bio; 140 141 out_free_pages: 142 for (j=0 ; j < pi->raid_disks; j++) 143 for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++) 144 put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page); 145 j = -1; 146 out_free_bio: 147 while ( ++j < pi->raid_disks ) 148 bio_put(r1_bio->bios[j]); 149 r1bio_pool_free(r1_bio, data); 150 return NULL; 151 } 152 153 static void r1buf_pool_free(void *__r1_bio, void *data) 154 { 155 struct pool_info *pi = data; 156 int i,j; 157 r1bio_t *r1bio = __r1_bio; 158 159 for (i = 0; i < RESYNC_PAGES; i++) 160 for (j = pi->raid_disks; j-- ;) { 161 if (j == 0 || 162 r1bio->bios[j]->bi_io_vec[i].bv_page != 163 r1bio->bios[0]->bi_io_vec[i].bv_page) 164 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page); 165 } 166 for (i=0 ; i < pi->raid_disks; i++) 167 bio_put(r1bio->bios[i]); 168 169 r1bio_pool_free(r1bio, data); 170 } 171 172 static void put_all_bios(conf_t *conf, r1bio_t *r1_bio) 173 { 174 int i; 175 176 for (i = 0; i < conf->raid_disks; i++) { 177 struct bio **bio = r1_bio->bios + i; 178 if (*bio && *bio != IO_BLOCKED) 179 bio_put(*bio); 180 *bio = NULL; 181 } 182 } 183 184 static void free_r1bio(r1bio_t *r1_bio) 185 { 186 conf_t *conf = r1_bio->mddev->private; 187 188 /* 189 * Wake up any possible resync thread that waits for the device 190 * to go idle. 191 */ 192 allow_barrier(conf); 193 194 put_all_bios(conf, r1_bio); 195 mempool_free(r1_bio, conf->r1bio_pool); 196 } 197 198 static void put_buf(r1bio_t *r1_bio) 199 { 200 conf_t *conf = r1_bio->mddev->private; 201 int i; 202 203 for (i=0; i<conf->raid_disks; i++) { 204 struct bio *bio = r1_bio->bios[i]; 205 if (bio->bi_end_io) 206 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev); 207 } 208 209 mempool_free(r1_bio, conf->r1buf_pool); 210 211 lower_barrier(conf); 212 } 213 214 static void reschedule_retry(r1bio_t *r1_bio) 215 { 216 unsigned long flags; 217 mddev_t *mddev = r1_bio->mddev; 218 conf_t *conf = mddev->private; 219 220 spin_lock_irqsave(&conf->device_lock, flags); 221 list_add(&r1_bio->retry_list, &conf->retry_list); 222 conf->nr_queued ++; 223 spin_unlock_irqrestore(&conf->device_lock, flags); 224 225 wake_up(&conf->wait_barrier); 226 md_wakeup_thread(mddev->thread); 227 } 228 229 /* 230 * raid_end_bio_io() is called when we have finished servicing a mirrored 231 * operation and are ready to return a success/failure code to the buffer 232 * cache layer. 233 */ 234 static void raid_end_bio_io(r1bio_t *r1_bio) 235 { 236 struct bio *bio = r1_bio->master_bio; 237 238 /* if nobody has done the final endio yet, do it now */ 239 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 240 PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n", 241 (bio_data_dir(bio) == WRITE) ? "write" : "read", 242 (unsigned long long) bio->bi_sector, 243 (unsigned long long) bio->bi_sector + 244 (bio->bi_size >> 9) - 1); 245 246 bio_endio(bio, 247 test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO); 248 } 249 free_r1bio(r1_bio); 250 } 251 252 /* 253 * Update disk head position estimator based on IRQ completion info. 254 */ 255 static inline void update_head_pos(int disk, r1bio_t *r1_bio) 256 { 257 conf_t *conf = r1_bio->mddev->private; 258 259 conf->mirrors[disk].head_position = 260 r1_bio->sector + (r1_bio->sectors); 261 } 262 263 static void raid1_end_read_request(struct bio *bio, int error) 264 { 265 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 266 r1bio_t *r1_bio = bio->bi_private; 267 int mirror; 268 conf_t *conf = r1_bio->mddev->private; 269 270 mirror = r1_bio->read_disk; 271 /* 272 * this branch is our 'one mirror IO has finished' event handler: 273 */ 274 update_head_pos(mirror, r1_bio); 275 276 if (uptodate) 277 set_bit(R1BIO_Uptodate, &r1_bio->state); 278 else { 279 /* If all other devices have failed, we want to return 280 * the error upwards rather than fail the last device. 281 * Here we redefine "uptodate" to mean "Don't want to retry" 282 */ 283 unsigned long flags; 284 spin_lock_irqsave(&conf->device_lock, flags); 285 if (r1_bio->mddev->degraded == conf->raid_disks || 286 (r1_bio->mddev->degraded == conf->raid_disks-1 && 287 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))) 288 uptodate = 1; 289 spin_unlock_irqrestore(&conf->device_lock, flags); 290 } 291 292 if (uptodate) 293 raid_end_bio_io(r1_bio); 294 else { 295 /* 296 * oops, read error: 297 */ 298 char b[BDEVNAME_SIZE]; 299 if (printk_ratelimit()) 300 printk(KERN_ERR "md/raid1:%s: %s: rescheduling sector %llu\n", 301 mdname(conf->mddev), 302 bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector); 303 reschedule_retry(r1_bio); 304 } 305 306 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev); 307 } 308 309 static void r1_bio_write_done(r1bio_t *r1_bio, int vcnt, struct bio_vec *bv, 310 int behind) 311 { 312 if (atomic_dec_and_test(&r1_bio->remaining)) 313 { 314 /* it really is the end of this request */ 315 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 316 /* free extra copy of the data pages */ 317 int i = vcnt; 318 while (i--) 319 safe_put_page(bv[i].bv_page); 320 } 321 /* clear the bitmap if all writes complete successfully */ 322 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector, 323 r1_bio->sectors, 324 !test_bit(R1BIO_Degraded, &r1_bio->state), 325 behind); 326 md_write_end(r1_bio->mddev); 327 raid_end_bio_io(r1_bio); 328 } 329 } 330 331 static void raid1_end_write_request(struct bio *bio, int error) 332 { 333 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 334 r1bio_t *r1_bio = bio->bi_private; 335 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state); 336 conf_t *conf = r1_bio->mddev->private; 337 struct bio *to_put = NULL; 338 339 340 for (mirror = 0; mirror < conf->raid_disks; mirror++) 341 if (r1_bio->bios[mirror] == bio) 342 break; 343 344 /* 345 * 'one mirror IO has finished' event handler: 346 */ 347 r1_bio->bios[mirror] = NULL; 348 to_put = bio; 349 if (!uptodate) { 350 md_error(r1_bio->mddev, conf->mirrors[mirror].rdev); 351 /* an I/O failed, we can't clear the bitmap */ 352 set_bit(R1BIO_Degraded, &r1_bio->state); 353 } else 354 /* 355 * Set R1BIO_Uptodate in our master bio, so that we 356 * will return a good error code for to the higher 357 * levels even if IO on some other mirrored buffer 358 * fails. 359 * 360 * The 'master' represents the composite IO operation 361 * to user-side. So if something waits for IO, then it 362 * will wait for the 'master' bio. 363 */ 364 set_bit(R1BIO_Uptodate, &r1_bio->state); 365 366 update_head_pos(mirror, r1_bio); 367 368 if (behind) { 369 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags)) 370 atomic_dec(&r1_bio->behind_remaining); 371 372 /* 373 * In behind mode, we ACK the master bio once the I/O 374 * has safely reached all non-writemostly 375 * disks. Setting the Returned bit ensures that this 376 * gets done only once -- we don't ever want to return 377 * -EIO here, instead we'll wait 378 */ 379 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) && 380 test_bit(R1BIO_Uptodate, &r1_bio->state)) { 381 /* Maybe we can return now */ 382 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 383 struct bio *mbio = r1_bio->master_bio; 384 PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n", 385 (unsigned long long) mbio->bi_sector, 386 (unsigned long long) mbio->bi_sector + 387 (mbio->bi_size >> 9) - 1); 388 bio_endio(mbio, 0); 389 } 390 } 391 } 392 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev); 393 394 /* 395 * Let's see if all mirrored write operations have finished 396 * already. 397 */ 398 r1_bio_write_done(r1_bio, bio->bi_vcnt, bio->bi_io_vec, behind); 399 400 if (to_put) 401 bio_put(to_put); 402 } 403 404 405 /* 406 * This routine returns the disk from which the requested read should 407 * be done. There is a per-array 'next expected sequential IO' sector 408 * number - if this matches on the next IO then we use the last disk. 409 * There is also a per-disk 'last know head position' sector that is 410 * maintained from IRQ contexts, both the normal and the resync IO 411 * completion handlers update this position correctly. If there is no 412 * perfect sequential match then we pick the disk whose head is closest. 413 * 414 * If there are 2 mirrors in the same 2 devices, performance degrades 415 * because position is mirror, not device based. 416 * 417 * The rdev for the device selected will have nr_pending incremented. 418 */ 419 static int read_balance(conf_t *conf, r1bio_t *r1_bio) 420 { 421 const sector_t this_sector = r1_bio->sector; 422 const int sectors = r1_bio->sectors; 423 int new_disk = -1; 424 int start_disk; 425 int i; 426 sector_t new_distance, current_distance; 427 mdk_rdev_t *rdev; 428 int choose_first; 429 430 rcu_read_lock(); 431 /* 432 * Check if we can balance. We can balance on the whole 433 * device if no resync is going on, or below the resync window. 434 * We take the first readable disk when above the resync window. 435 */ 436 retry: 437 if (conf->mddev->recovery_cp < MaxSector && 438 (this_sector + sectors >= conf->next_resync)) { 439 choose_first = 1; 440 start_disk = 0; 441 } else { 442 choose_first = 0; 443 start_disk = conf->last_used; 444 } 445 446 /* make sure the disk is operational */ 447 for (i = 0 ; i < conf->raid_disks ; i++) { 448 int disk = start_disk + i; 449 if (disk >= conf->raid_disks) 450 disk -= conf->raid_disks; 451 452 rdev = rcu_dereference(conf->mirrors[disk].rdev); 453 if (r1_bio->bios[disk] == IO_BLOCKED 454 || rdev == NULL 455 || !test_bit(In_sync, &rdev->flags)) 456 continue; 457 458 new_disk = disk; 459 if (!test_bit(WriteMostly, &rdev->flags)) 460 break; 461 } 462 463 if (new_disk < 0 || choose_first) 464 goto rb_out; 465 466 /* 467 * Don't change to another disk for sequential reads: 468 */ 469 if (conf->next_seq_sect == this_sector) 470 goto rb_out; 471 if (this_sector == conf->mirrors[new_disk].head_position) 472 goto rb_out; 473 474 current_distance = abs(this_sector 475 - conf->mirrors[new_disk].head_position); 476 477 /* look for a better disk - i.e. head is closer */ 478 start_disk = new_disk; 479 for (i = 1; i < conf->raid_disks; i++) { 480 int disk = start_disk + 1; 481 if (disk >= conf->raid_disks) 482 disk -= conf->raid_disks; 483 484 rdev = rcu_dereference(conf->mirrors[disk].rdev); 485 if (r1_bio->bios[disk] == IO_BLOCKED 486 || rdev == NULL 487 || !test_bit(In_sync, &rdev->flags) 488 || test_bit(WriteMostly, &rdev->flags)) 489 continue; 490 491 if (!atomic_read(&rdev->nr_pending)) { 492 new_disk = disk; 493 break; 494 } 495 new_distance = abs(this_sector - conf->mirrors[disk].head_position); 496 if (new_distance < current_distance) { 497 current_distance = new_distance; 498 new_disk = disk; 499 } 500 } 501 502 rb_out: 503 if (new_disk >= 0) { 504 rdev = rcu_dereference(conf->mirrors[new_disk].rdev); 505 if (!rdev) 506 goto retry; 507 atomic_inc(&rdev->nr_pending); 508 if (!test_bit(In_sync, &rdev->flags)) { 509 /* cannot risk returning a device that failed 510 * before we inc'ed nr_pending 511 */ 512 rdev_dec_pending(rdev, conf->mddev); 513 goto retry; 514 } 515 conf->next_seq_sect = this_sector + sectors; 516 conf->last_used = new_disk; 517 } 518 rcu_read_unlock(); 519 520 return new_disk; 521 } 522 523 static void unplug_slaves(mddev_t *mddev) 524 { 525 conf_t *conf = mddev->private; 526 int i; 527 528 rcu_read_lock(); 529 for (i=0; i<mddev->raid_disks; i++) { 530 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 531 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) { 532 struct request_queue *r_queue = bdev_get_queue(rdev->bdev); 533 534 atomic_inc(&rdev->nr_pending); 535 rcu_read_unlock(); 536 537 blk_unplug(r_queue); 538 539 rdev_dec_pending(rdev, mddev); 540 rcu_read_lock(); 541 } 542 } 543 rcu_read_unlock(); 544 } 545 546 static void raid1_unplug(struct request_queue *q) 547 { 548 mddev_t *mddev = q->queuedata; 549 550 unplug_slaves(mddev); 551 md_wakeup_thread(mddev->thread); 552 } 553 554 static int raid1_congested(void *data, int bits) 555 { 556 mddev_t *mddev = data; 557 conf_t *conf = mddev->private; 558 int i, ret = 0; 559 560 if (mddev_congested(mddev, bits)) 561 return 1; 562 563 rcu_read_lock(); 564 for (i = 0; i < mddev->raid_disks; i++) { 565 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 566 if (rdev && !test_bit(Faulty, &rdev->flags)) { 567 struct request_queue *q = bdev_get_queue(rdev->bdev); 568 569 /* Note the '|| 1' - when read_balance prefers 570 * non-congested targets, it can be removed 571 */ 572 if ((bits & (1<<BDI_async_congested)) || 1) 573 ret |= bdi_congested(&q->backing_dev_info, bits); 574 else 575 ret &= bdi_congested(&q->backing_dev_info, bits); 576 } 577 } 578 rcu_read_unlock(); 579 return ret; 580 } 581 582 583 static int flush_pending_writes(conf_t *conf) 584 { 585 /* Any writes that have been queued but are awaiting 586 * bitmap updates get flushed here. 587 * We return 1 if any requests were actually submitted. 588 */ 589 int rv = 0; 590 591 spin_lock_irq(&conf->device_lock); 592 593 if (conf->pending_bio_list.head) { 594 struct bio *bio; 595 bio = bio_list_get(&conf->pending_bio_list); 596 /* Only take the spinlock to quiet a warning */ 597 spin_lock(conf->mddev->queue->queue_lock); 598 blk_remove_plug(conf->mddev->queue); 599 spin_unlock(conf->mddev->queue->queue_lock); 600 spin_unlock_irq(&conf->device_lock); 601 /* flush any pending bitmap writes to 602 * disk before proceeding w/ I/O */ 603 bitmap_unplug(conf->mddev->bitmap); 604 605 while (bio) { /* submit pending writes */ 606 struct bio *next = bio->bi_next; 607 bio->bi_next = NULL; 608 generic_make_request(bio); 609 bio = next; 610 } 611 rv = 1; 612 } else 613 spin_unlock_irq(&conf->device_lock); 614 return rv; 615 } 616 617 /* Barriers.... 618 * Sometimes we need to suspend IO while we do something else, 619 * either some resync/recovery, or reconfigure the array. 620 * To do this we raise a 'barrier'. 621 * The 'barrier' is a counter that can be raised multiple times 622 * to count how many activities are happening which preclude 623 * normal IO. 624 * We can only raise the barrier if there is no pending IO. 625 * i.e. if nr_pending == 0. 626 * We choose only to raise the barrier if no-one is waiting for the 627 * barrier to go down. This means that as soon as an IO request 628 * is ready, no other operations which require a barrier will start 629 * until the IO request has had a chance. 630 * 631 * So: regular IO calls 'wait_barrier'. When that returns there 632 * is no backgroup IO happening, It must arrange to call 633 * allow_barrier when it has finished its IO. 634 * backgroup IO calls must call raise_barrier. Once that returns 635 * there is no normal IO happeing. It must arrange to call 636 * lower_barrier when the particular background IO completes. 637 */ 638 #define RESYNC_DEPTH 32 639 640 static void raise_barrier(conf_t *conf) 641 { 642 spin_lock_irq(&conf->resync_lock); 643 644 /* Wait until no block IO is waiting */ 645 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting, 646 conf->resync_lock, 647 raid1_unplug(conf->mddev->queue)); 648 649 /* block any new IO from starting */ 650 conf->barrier++; 651 652 /* Now wait for all pending IO to complete */ 653 wait_event_lock_irq(conf->wait_barrier, 654 !conf->nr_pending && conf->barrier < RESYNC_DEPTH, 655 conf->resync_lock, 656 raid1_unplug(conf->mddev->queue)); 657 658 spin_unlock_irq(&conf->resync_lock); 659 } 660 661 static void lower_barrier(conf_t *conf) 662 { 663 unsigned long flags; 664 BUG_ON(conf->barrier <= 0); 665 spin_lock_irqsave(&conf->resync_lock, flags); 666 conf->barrier--; 667 spin_unlock_irqrestore(&conf->resync_lock, flags); 668 wake_up(&conf->wait_barrier); 669 } 670 671 static void wait_barrier(conf_t *conf) 672 { 673 spin_lock_irq(&conf->resync_lock); 674 if (conf->barrier) { 675 conf->nr_waiting++; 676 wait_event_lock_irq(conf->wait_barrier, !conf->barrier, 677 conf->resync_lock, 678 raid1_unplug(conf->mddev->queue)); 679 conf->nr_waiting--; 680 } 681 conf->nr_pending++; 682 spin_unlock_irq(&conf->resync_lock); 683 } 684 685 static void allow_barrier(conf_t *conf) 686 { 687 unsigned long flags; 688 spin_lock_irqsave(&conf->resync_lock, flags); 689 conf->nr_pending--; 690 spin_unlock_irqrestore(&conf->resync_lock, flags); 691 wake_up(&conf->wait_barrier); 692 } 693 694 static void freeze_array(conf_t *conf) 695 { 696 /* stop syncio and normal IO and wait for everything to 697 * go quite. 698 * We increment barrier and nr_waiting, and then 699 * wait until nr_pending match nr_queued+1 700 * This is called in the context of one normal IO request 701 * that has failed. Thus any sync request that might be pending 702 * will be blocked by nr_pending, and we need to wait for 703 * pending IO requests to complete or be queued for re-try. 704 * Thus the number queued (nr_queued) plus this request (1) 705 * must match the number of pending IOs (nr_pending) before 706 * we continue. 707 */ 708 spin_lock_irq(&conf->resync_lock); 709 conf->barrier++; 710 conf->nr_waiting++; 711 wait_event_lock_irq(conf->wait_barrier, 712 conf->nr_pending == conf->nr_queued+1, 713 conf->resync_lock, 714 ({ flush_pending_writes(conf); 715 raid1_unplug(conf->mddev->queue); })); 716 spin_unlock_irq(&conf->resync_lock); 717 } 718 static void unfreeze_array(conf_t *conf) 719 { 720 /* reverse the effect of the freeze */ 721 spin_lock_irq(&conf->resync_lock); 722 conf->barrier--; 723 conf->nr_waiting--; 724 wake_up(&conf->wait_barrier); 725 spin_unlock_irq(&conf->resync_lock); 726 } 727 728 729 /* duplicate the data pages for behind I/O 730 * We return a list of bio_vec rather than just page pointers 731 * as it makes freeing easier 732 */ 733 static struct bio_vec *alloc_behind_pages(struct bio *bio) 734 { 735 int i; 736 struct bio_vec *bvec; 737 struct bio_vec *pages = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec), 738 GFP_NOIO); 739 if (unlikely(!pages)) 740 goto do_sync_io; 741 742 bio_for_each_segment(bvec, bio, i) { 743 pages[i].bv_page = alloc_page(GFP_NOIO); 744 if (unlikely(!pages[i].bv_page)) 745 goto do_sync_io; 746 memcpy(kmap(pages[i].bv_page) + bvec->bv_offset, 747 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len); 748 kunmap(pages[i].bv_page); 749 kunmap(bvec->bv_page); 750 } 751 752 return pages; 753 754 do_sync_io: 755 if (pages) 756 for (i = 0; i < bio->bi_vcnt && pages[i].bv_page; i++) 757 put_page(pages[i].bv_page); 758 kfree(pages); 759 PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size); 760 return NULL; 761 } 762 763 static int make_request(mddev_t *mddev, struct bio * bio) 764 { 765 conf_t *conf = mddev->private; 766 mirror_info_t *mirror; 767 r1bio_t *r1_bio; 768 struct bio *read_bio; 769 int i, targets = 0, disks; 770 struct bitmap *bitmap; 771 unsigned long flags; 772 struct bio_vec *behind_pages = NULL; 773 const int rw = bio_data_dir(bio); 774 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC); 775 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA)); 776 mdk_rdev_t *blocked_rdev; 777 778 /* 779 * Register the new request and wait if the reconstruction 780 * thread has put up a bar for new requests. 781 * Continue immediately if no resync is active currently. 782 */ 783 784 md_write_start(mddev, bio); /* wait on superblock update early */ 785 786 if (bio_data_dir(bio) == WRITE && 787 bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo && 788 bio->bi_sector < mddev->suspend_hi) { 789 /* As the suspend_* range is controlled by 790 * userspace, we want an interruptible 791 * wait. 792 */ 793 DEFINE_WAIT(w); 794 for (;;) { 795 flush_signals(current); 796 prepare_to_wait(&conf->wait_barrier, 797 &w, TASK_INTERRUPTIBLE); 798 if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo || 799 bio->bi_sector >= mddev->suspend_hi) 800 break; 801 schedule(); 802 } 803 finish_wait(&conf->wait_barrier, &w); 804 } 805 806 wait_barrier(conf); 807 808 bitmap = mddev->bitmap; 809 810 /* 811 * make_request() can abort the operation when READA is being 812 * used and no empty request is available. 813 * 814 */ 815 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 816 817 r1_bio->master_bio = bio; 818 r1_bio->sectors = bio->bi_size >> 9; 819 r1_bio->state = 0; 820 r1_bio->mddev = mddev; 821 r1_bio->sector = bio->bi_sector; 822 823 if (rw == READ) { 824 /* 825 * read balancing logic: 826 */ 827 int rdisk = read_balance(conf, r1_bio); 828 829 if (rdisk < 0) { 830 /* couldn't find anywhere to read from */ 831 raid_end_bio_io(r1_bio); 832 return 0; 833 } 834 mirror = conf->mirrors + rdisk; 835 836 if (test_bit(WriteMostly, &mirror->rdev->flags) && 837 bitmap) { 838 /* Reading from a write-mostly device must 839 * take care not to over-take any writes 840 * that are 'behind' 841 */ 842 wait_event(bitmap->behind_wait, 843 atomic_read(&bitmap->behind_writes) == 0); 844 } 845 r1_bio->read_disk = rdisk; 846 847 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev); 848 849 r1_bio->bios[rdisk] = read_bio; 850 851 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset; 852 read_bio->bi_bdev = mirror->rdev->bdev; 853 read_bio->bi_end_io = raid1_end_read_request; 854 read_bio->bi_rw = READ | do_sync; 855 read_bio->bi_private = r1_bio; 856 857 generic_make_request(read_bio); 858 return 0; 859 } 860 861 /* 862 * WRITE: 863 */ 864 /* first select target devices under spinlock and 865 * inc refcount on their rdev. Record them by setting 866 * bios[x] to bio 867 */ 868 disks = conf->raid_disks; 869 retry_write: 870 blocked_rdev = NULL; 871 rcu_read_lock(); 872 for (i = 0; i < disks; i++) { 873 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 874 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 875 atomic_inc(&rdev->nr_pending); 876 blocked_rdev = rdev; 877 break; 878 } 879 if (rdev && !test_bit(Faulty, &rdev->flags)) { 880 atomic_inc(&rdev->nr_pending); 881 if (test_bit(Faulty, &rdev->flags)) { 882 rdev_dec_pending(rdev, mddev); 883 r1_bio->bios[i] = NULL; 884 } else { 885 r1_bio->bios[i] = bio; 886 targets++; 887 } 888 } else 889 r1_bio->bios[i] = NULL; 890 } 891 rcu_read_unlock(); 892 893 if (unlikely(blocked_rdev)) { 894 /* Wait for this device to become unblocked */ 895 int j; 896 897 for (j = 0; j < i; j++) 898 if (r1_bio->bios[j]) 899 rdev_dec_pending(conf->mirrors[j].rdev, mddev); 900 901 allow_barrier(conf); 902 md_wait_for_blocked_rdev(blocked_rdev, mddev); 903 wait_barrier(conf); 904 goto retry_write; 905 } 906 907 BUG_ON(targets == 0); /* we never fail the last device */ 908 909 if (targets < conf->raid_disks) { 910 /* array is degraded, we will not clear the bitmap 911 * on I/O completion (see raid1_end_write_request) */ 912 set_bit(R1BIO_Degraded, &r1_bio->state); 913 } 914 915 /* do behind I/O ? 916 * Not if there are too many, or cannot allocate memory, 917 * or a reader on WriteMostly is waiting for behind writes 918 * to flush */ 919 if (bitmap && 920 (atomic_read(&bitmap->behind_writes) 921 < mddev->bitmap_info.max_write_behind) && 922 !waitqueue_active(&bitmap->behind_wait) && 923 (behind_pages = alloc_behind_pages(bio)) != NULL) 924 set_bit(R1BIO_BehindIO, &r1_bio->state); 925 926 atomic_set(&r1_bio->remaining, 1); 927 atomic_set(&r1_bio->behind_remaining, 0); 928 929 bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors, 930 test_bit(R1BIO_BehindIO, &r1_bio->state)); 931 for (i = 0; i < disks; i++) { 932 struct bio *mbio; 933 if (!r1_bio->bios[i]) 934 continue; 935 936 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 937 r1_bio->bios[i] = mbio; 938 939 mbio->bi_sector = r1_bio->sector + conf->mirrors[i].rdev->data_offset; 940 mbio->bi_bdev = conf->mirrors[i].rdev->bdev; 941 mbio->bi_end_io = raid1_end_write_request; 942 mbio->bi_rw = WRITE | do_flush_fua | do_sync; 943 mbio->bi_private = r1_bio; 944 945 if (behind_pages) { 946 struct bio_vec *bvec; 947 int j; 948 949 /* Yes, I really want the '__' version so that 950 * we clear any unused pointer in the io_vec, rather 951 * than leave them unchanged. This is important 952 * because when we come to free the pages, we won't 953 * know the original bi_idx, so we just free 954 * them all 955 */ 956 __bio_for_each_segment(bvec, mbio, j, 0) 957 bvec->bv_page = behind_pages[j].bv_page; 958 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags)) 959 atomic_inc(&r1_bio->behind_remaining); 960 } 961 962 atomic_inc(&r1_bio->remaining); 963 spin_lock_irqsave(&conf->device_lock, flags); 964 bio_list_add(&conf->pending_bio_list, mbio); 965 blk_plug_device_unlocked(mddev->queue); 966 spin_unlock_irqrestore(&conf->device_lock, flags); 967 } 968 r1_bio_write_done(r1_bio, bio->bi_vcnt, behind_pages, behind_pages != NULL); 969 kfree(behind_pages); /* the behind pages are attached to the bios now */ 970 971 /* In case raid1d snuck in to freeze_array */ 972 wake_up(&conf->wait_barrier); 973 974 if (do_sync) 975 md_wakeup_thread(mddev->thread); 976 977 return 0; 978 } 979 980 static void status(struct seq_file *seq, mddev_t *mddev) 981 { 982 conf_t *conf = mddev->private; 983 int i; 984 985 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 986 conf->raid_disks - mddev->degraded); 987 rcu_read_lock(); 988 for (i = 0; i < conf->raid_disks; i++) { 989 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 990 seq_printf(seq, "%s", 991 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 992 } 993 rcu_read_unlock(); 994 seq_printf(seq, "]"); 995 } 996 997 998 static void error(mddev_t *mddev, mdk_rdev_t *rdev) 999 { 1000 char b[BDEVNAME_SIZE]; 1001 conf_t *conf = mddev->private; 1002 1003 /* 1004 * If it is not operational, then we have already marked it as dead 1005 * else if it is the last working disks, ignore the error, let the 1006 * next level up know. 1007 * else mark the drive as failed 1008 */ 1009 if (test_bit(In_sync, &rdev->flags) 1010 && (conf->raid_disks - mddev->degraded) == 1) { 1011 /* 1012 * Don't fail the drive, act as though we were just a 1013 * normal single drive. 1014 * However don't try a recovery from this drive as 1015 * it is very likely to fail. 1016 */ 1017 mddev->recovery_disabled = 1; 1018 return; 1019 } 1020 if (test_and_clear_bit(In_sync, &rdev->flags)) { 1021 unsigned long flags; 1022 spin_lock_irqsave(&conf->device_lock, flags); 1023 mddev->degraded++; 1024 set_bit(Faulty, &rdev->flags); 1025 spin_unlock_irqrestore(&conf->device_lock, flags); 1026 /* 1027 * if recovery is running, make sure it aborts. 1028 */ 1029 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1030 } else 1031 set_bit(Faulty, &rdev->flags); 1032 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1033 printk(KERN_ALERT 1034 "md/raid1:%s: Disk failure on %s, disabling device.\n" 1035 "md/raid1:%s: Operation continuing on %d devices.\n", 1036 mdname(mddev), bdevname(rdev->bdev, b), 1037 mdname(mddev), conf->raid_disks - mddev->degraded); 1038 } 1039 1040 static void print_conf(conf_t *conf) 1041 { 1042 int i; 1043 1044 printk(KERN_DEBUG "RAID1 conf printout:\n"); 1045 if (!conf) { 1046 printk(KERN_DEBUG "(!conf)\n"); 1047 return; 1048 } 1049 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1050 conf->raid_disks); 1051 1052 rcu_read_lock(); 1053 for (i = 0; i < conf->raid_disks; i++) { 1054 char b[BDEVNAME_SIZE]; 1055 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 1056 if (rdev) 1057 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n", 1058 i, !test_bit(In_sync, &rdev->flags), 1059 !test_bit(Faulty, &rdev->flags), 1060 bdevname(rdev->bdev,b)); 1061 } 1062 rcu_read_unlock(); 1063 } 1064 1065 static void close_sync(conf_t *conf) 1066 { 1067 wait_barrier(conf); 1068 allow_barrier(conf); 1069 1070 mempool_destroy(conf->r1buf_pool); 1071 conf->r1buf_pool = NULL; 1072 } 1073 1074 static int raid1_spare_active(mddev_t *mddev) 1075 { 1076 int i; 1077 conf_t *conf = mddev->private; 1078 int count = 0; 1079 unsigned long flags; 1080 1081 /* 1082 * Find all failed disks within the RAID1 configuration 1083 * and mark them readable. 1084 * Called under mddev lock, so rcu protection not needed. 1085 */ 1086 for (i = 0; i < conf->raid_disks; i++) { 1087 mdk_rdev_t *rdev = conf->mirrors[i].rdev; 1088 if (rdev 1089 && !test_bit(Faulty, &rdev->flags) 1090 && !test_and_set_bit(In_sync, &rdev->flags)) { 1091 count++; 1092 sysfs_notify_dirent(rdev->sysfs_state); 1093 } 1094 } 1095 spin_lock_irqsave(&conf->device_lock, flags); 1096 mddev->degraded -= count; 1097 spin_unlock_irqrestore(&conf->device_lock, flags); 1098 1099 print_conf(conf); 1100 return count; 1101 } 1102 1103 1104 static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev) 1105 { 1106 conf_t *conf = mddev->private; 1107 int err = -EEXIST; 1108 int mirror = 0; 1109 mirror_info_t *p; 1110 int first = 0; 1111 int last = mddev->raid_disks - 1; 1112 1113 if (rdev->raid_disk >= 0) 1114 first = last = rdev->raid_disk; 1115 1116 for (mirror = first; mirror <= last; mirror++) 1117 if ( !(p=conf->mirrors+mirror)->rdev) { 1118 1119 disk_stack_limits(mddev->gendisk, rdev->bdev, 1120 rdev->data_offset << 9); 1121 /* as we don't honour merge_bvec_fn, we must 1122 * never risk violating it, so limit 1123 * ->max_segments to one lying with a single 1124 * page, as a one page request is never in 1125 * violation. 1126 */ 1127 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) { 1128 blk_queue_max_segments(mddev->queue, 1); 1129 blk_queue_segment_boundary(mddev->queue, 1130 PAGE_CACHE_SIZE - 1); 1131 } 1132 1133 p->head_position = 0; 1134 rdev->raid_disk = mirror; 1135 err = 0; 1136 /* As all devices are equivalent, we don't need a full recovery 1137 * if this was recently any drive of the array 1138 */ 1139 if (rdev->saved_raid_disk < 0) 1140 conf->fullsync = 1; 1141 rcu_assign_pointer(p->rdev, rdev); 1142 break; 1143 } 1144 md_integrity_add_rdev(rdev, mddev); 1145 print_conf(conf); 1146 return err; 1147 } 1148 1149 static int raid1_remove_disk(mddev_t *mddev, int number) 1150 { 1151 conf_t *conf = mddev->private; 1152 int err = 0; 1153 mdk_rdev_t *rdev; 1154 mirror_info_t *p = conf->mirrors+ number; 1155 1156 print_conf(conf); 1157 rdev = p->rdev; 1158 if (rdev) { 1159 if (test_bit(In_sync, &rdev->flags) || 1160 atomic_read(&rdev->nr_pending)) { 1161 err = -EBUSY; 1162 goto abort; 1163 } 1164 /* Only remove non-faulty devices if recovery 1165 * is not possible. 1166 */ 1167 if (!test_bit(Faulty, &rdev->flags) && 1168 !mddev->recovery_disabled && 1169 mddev->degraded < conf->raid_disks) { 1170 err = -EBUSY; 1171 goto abort; 1172 } 1173 p->rdev = NULL; 1174 synchronize_rcu(); 1175 if (atomic_read(&rdev->nr_pending)) { 1176 /* lost the race, try later */ 1177 err = -EBUSY; 1178 p->rdev = rdev; 1179 goto abort; 1180 } 1181 md_integrity_register(mddev); 1182 } 1183 abort: 1184 1185 print_conf(conf); 1186 return err; 1187 } 1188 1189 1190 static void end_sync_read(struct bio *bio, int error) 1191 { 1192 r1bio_t *r1_bio = bio->bi_private; 1193 int i; 1194 1195 for (i=r1_bio->mddev->raid_disks; i--; ) 1196 if (r1_bio->bios[i] == bio) 1197 break; 1198 BUG_ON(i < 0); 1199 update_head_pos(i, r1_bio); 1200 /* 1201 * we have read a block, now it needs to be re-written, 1202 * or re-read if the read failed. 1203 * We don't do much here, just schedule handling by raid1d 1204 */ 1205 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 1206 set_bit(R1BIO_Uptodate, &r1_bio->state); 1207 1208 if (atomic_dec_and_test(&r1_bio->remaining)) 1209 reschedule_retry(r1_bio); 1210 } 1211 1212 static void end_sync_write(struct bio *bio, int error) 1213 { 1214 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1215 r1bio_t *r1_bio = bio->bi_private; 1216 mddev_t *mddev = r1_bio->mddev; 1217 conf_t *conf = mddev->private; 1218 int i; 1219 int mirror=0; 1220 1221 for (i = 0; i < conf->raid_disks; i++) 1222 if (r1_bio->bios[i] == bio) { 1223 mirror = i; 1224 break; 1225 } 1226 if (!uptodate) { 1227 sector_t sync_blocks = 0; 1228 sector_t s = r1_bio->sector; 1229 long sectors_to_go = r1_bio->sectors; 1230 /* make sure these bits doesn't get cleared. */ 1231 do { 1232 bitmap_end_sync(mddev->bitmap, s, 1233 &sync_blocks, 1); 1234 s += sync_blocks; 1235 sectors_to_go -= sync_blocks; 1236 } while (sectors_to_go > 0); 1237 md_error(mddev, conf->mirrors[mirror].rdev); 1238 } 1239 1240 update_head_pos(mirror, r1_bio); 1241 1242 if (atomic_dec_and_test(&r1_bio->remaining)) { 1243 sector_t s = r1_bio->sectors; 1244 put_buf(r1_bio); 1245 md_done_sync(mddev, s, uptodate); 1246 } 1247 } 1248 1249 static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio) 1250 { 1251 conf_t *conf = mddev->private; 1252 int i; 1253 int disks = conf->raid_disks; 1254 struct bio *bio, *wbio; 1255 1256 bio = r1_bio->bios[r1_bio->read_disk]; 1257 1258 1259 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1260 /* We have read all readable devices. If we haven't 1261 * got the block, then there is no hope left. 1262 * If we have, then we want to do a comparison 1263 * and skip the write if everything is the same. 1264 * If any blocks failed to read, then we need to 1265 * attempt an over-write 1266 */ 1267 int primary; 1268 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) { 1269 for (i=0; i<mddev->raid_disks; i++) 1270 if (r1_bio->bios[i]->bi_end_io == end_sync_read) 1271 md_error(mddev, conf->mirrors[i].rdev); 1272 1273 md_done_sync(mddev, r1_bio->sectors, 1); 1274 put_buf(r1_bio); 1275 return; 1276 } 1277 for (primary=0; primary<mddev->raid_disks; primary++) 1278 if (r1_bio->bios[primary]->bi_end_io == end_sync_read && 1279 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) { 1280 r1_bio->bios[primary]->bi_end_io = NULL; 1281 rdev_dec_pending(conf->mirrors[primary].rdev, mddev); 1282 break; 1283 } 1284 r1_bio->read_disk = primary; 1285 for (i=0; i<mddev->raid_disks; i++) 1286 if (r1_bio->bios[i]->bi_end_io == end_sync_read) { 1287 int j; 1288 int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9); 1289 struct bio *pbio = r1_bio->bios[primary]; 1290 struct bio *sbio = r1_bio->bios[i]; 1291 1292 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) { 1293 for (j = vcnt; j-- ; ) { 1294 struct page *p, *s; 1295 p = pbio->bi_io_vec[j].bv_page; 1296 s = sbio->bi_io_vec[j].bv_page; 1297 if (memcmp(page_address(p), 1298 page_address(s), 1299 PAGE_SIZE)) 1300 break; 1301 } 1302 } else 1303 j = 0; 1304 if (j >= 0) 1305 mddev->resync_mismatches += r1_bio->sectors; 1306 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery) 1307 && test_bit(BIO_UPTODATE, &sbio->bi_flags))) { 1308 sbio->bi_end_io = NULL; 1309 rdev_dec_pending(conf->mirrors[i].rdev, mddev); 1310 } else { 1311 /* fixup the bio for reuse */ 1312 int size; 1313 sbio->bi_vcnt = vcnt; 1314 sbio->bi_size = r1_bio->sectors << 9; 1315 sbio->bi_idx = 0; 1316 sbio->bi_phys_segments = 0; 1317 sbio->bi_flags &= ~(BIO_POOL_MASK - 1); 1318 sbio->bi_flags |= 1 << BIO_UPTODATE; 1319 sbio->bi_next = NULL; 1320 sbio->bi_sector = r1_bio->sector + 1321 conf->mirrors[i].rdev->data_offset; 1322 sbio->bi_bdev = conf->mirrors[i].rdev->bdev; 1323 size = sbio->bi_size; 1324 for (j = 0; j < vcnt ; j++) { 1325 struct bio_vec *bi; 1326 bi = &sbio->bi_io_vec[j]; 1327 bi->bv_offset = 0; 1328 if (size > PAGE_SIZE) 1329 bi->bv_len = PAGE_SIZE; 1330 else 1331 bi->bv_len = size; 1332 size -= PAGE_SIZE; 1333 memcpy(page_address(bi->bv_page), 1334 page_address(pbio->bi_io_vec[j].bv_page), 1335 PAGE_SIZE); 1336 } 1337 1338 } 1339 } 1340 } 1341 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) { 1342 /* ouch - failed to read all of that. 1343 * Try some synchronous reads of other devices to get 1344 * good data, much like with normal read errors. Only 1345 * read into the pages we already have so we don't 1346 * need to re-issue the read request. 1347 * We don't need to freeze the array, because being in an 1348 * active sync request, there is no normal IO, and 1349 * no overlapping syncs. 1350 */ 1351 sector_t sect = r1_bio->sector; 1352 int sectors = r1_bio->sectors; 1353 int idx = 0; 1354 1355 while(sectors) { 1356 int s = sectors; 1357 int d = r1_bio->read_disk; 1358 int success = 0; 1359 mdk_rdev_t *rdev; 1360 1361 if (s > (PAGE_SIZE>>9)) 1362 s = PAGE_SIZE >> 9; 1363 do { 1364 if (r1_bio->bios[d]->bi_end_io == end_sync_read) { 1365 /* No rcu protection needed here devices 1366 * can only be removed when no resync is 1367 * active, and resync is currently active 1368 */ 1369 rdev = conf->mirrors[d].rdev; 1370 if (sync_page_io(rdev, 1371 sect, 1372 s<<9, 1373 bio->bi_io_vec[idx].bv_page, 1374 READ, false)) { 1375 success = 1; 1376 break; 1377 } 1378 } 1379 d++; 1380 if (d == conf->raid_disks) 1381 d = 0; 1382 } while (!success && d != r1_bio->read_disk); 1383 1384 if (success) { 1385 int start = d; 1386 /* write it back and re-read */ 1387 set_bit(R1BIO_Uptodate, &r1_bio->state); 1388 while (d != r1_bio->read_disk) { 1389 if (d == 0) 1390 d = conf->raid_disks; 1391 d--; 1392 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1393 continue; 1394 rdev = conf->mirrors[d].rdev; 1395 atomic_add(s, &rdev->corrected_errors); 1396 if (sync_page_io(rdev, 1397 sect, 1398 s<<9, 1399 bio->bi_io_vec[idx].bv_page, 1400 WRITE, false) == 0) 1401 md_error(mddev, rdev); 1402 } 1403 d = start; 1404 while (d != r1_bio->read_disk) { 1405 if (d == 0) 1406 d = conf->raid_disks; 1407 d--; 1408 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1409 continue; 1410 rdev = conf->mirrors[d].rdev; 1411 if (sync_page_io(rdev, 1412 sect, 1413 s<<9, 1414 bio->bi_io_vec[idx].bv_page, 1415 READ, false) == 0) 1416 md_error(mddev, rdev); 1417 } 1418 } else { 1419 char b[BDEVNAME_SIZE]; 1420 /* Cannot read from anywhere, array is toast */ 1421 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev); 1422 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error" 1423 " for block %llu\n", 1424 mdname(mddev), 1425 bdevname(bio->bi_bdev, b), 1426 (unsigned long long)r1_bio->sector); 1427 md_done_sync(mddev, r1_bio->sectors, 0); 1428 put_buf(r1_bio); 1429 return; 1430 } 1431 sectors -= s; 1432 sect += s; 1433 idx ++; 1434 } 1435 } 1436 1437 /* 1438 * schedule writes 1439 */ 1440 atomic_set(&r1_bio->remaining, 1); 1441 for (i = 0; i < disks ; i++) { 1442 wbio = r1_bio->bios[i]; 1443 if (wbio->bi_end_io == NULL || 1444 (wbio->bi_end_io == end_sync_read && 1445 (i == r1_bio->read_disk || 1446 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)))) 1447 continue; 1448 1449 wbio->bi_rw = WRITE; 1450 wbio->bi_end_io = end_sync_write; 1451 atomic_inc(&r1_bio->remaining); 1452 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9); 1453 1454 generic_make_request(wbio); 1455 } 1456 1457 if (atomic_dec_and_test(&r1_bio->remaining)) { 1458 /* if we're here, all write(s) have completed, so clean up */ 1459 md_done_sync(mddev, r1_bio->sectors, 1); 1460 put_buf(r1_bio); 1461 } 1462 } 1463 1464 /* 1465 * This is a kernel thread which: 1466 * 1467 * 1. Retries failed read operations on working mirrors. 1468 * 2. Updates the raid superblock when problems encounter. 1469 * 3. Performs writes following reads for array syncronising. 1470 */ 1471 1472 static void fix_read_error(conf_t *conf, int read_disk, 1473 sector_t sect, int sectors) 1474 { 1475 mddev_t *mddev = conf->mddev; 1476 while(sectors) { 1477 int s = sectors; 1478 int d = read_disk; 1479 int success = 0; 1480 int start; 1481 mdk_rdev_t *rdev; 1482 1483 if (s > (PAGE_SIZE>>9)) 1484 s = PAGE_SIZE >> 9; 1485 1486 do { 1487 /* Note: no rcu protection needed here 1488 * as this is synchronous in the raid1d thread 1489 * which is the thread that might remove 1490 * a device. If raid1d ever becomes multi-threaded.... 1491 */ 1492 rdev = conf->mirrors[d].rdev; 1493 if (rdev && 1494 test_bit(In_sync, &rdev->flags) && 1495 sync_page_io(rdev, sect, s<<9, 1496 conf->tmppage, READ, false)) 1497 success = 1; 1498 else { 1499 d++; 1500 if (d == conf->raid_disks) 1501 d = 0; 1502 } 1503 } while (!success && d != read_disk); 1504 1505 if (!success) { 1506 /* Cannot read from anywhere -- bye bye array */ 1507 md_error(mddev, conf->mirrors[read_disk].rdev); 1508 break; 1509 } 1510 /* write it back and re-read */ 1511 start = d; 1512 while (d != read_disk) { 1513 if (d==0) 1514 d = conf->raid_disks; 1515 d--; 1516 rdev = conf->mirrors[d].rdev; 1517 if (rdev && 1518 test_bit(In_sync, &rdev->flags)) { 1519 if (sync_page_io(rdev, sect, s<<9, 1520 conf->tmppage, WRITE, false) 1521 == 0) 1522 /* Well, this device is dead */ 1523 md_error(mddev, rdev); 1524 } 1525 } 1526 d = start; 1527 while (d != read_disk) { 1528 char b[BDEVNAME_SIZE]; 1529 if (d==0) 1530 d = conf->raid_disks; 1531 d--; 1532 rdev = conf->mirrors[d].rdev; 1533 if (rdev && 1534 test_bit(In_sync, &rdev->flags)) { 1535 if (sync_page_io(rdev, sect, s<<9, 1536 conf->tmppage, READ, false) 1537 == 0) 1538 /* Well, this device is dead */ 1539 md_error(mddev, rdev); 1540 else { 1541 atomic_add(s, &rdev->corrected_errors); 1542 printk(KERN_INFO 1543 "md/raid1:%s: read error corrected " 1544 "(%d sectors at %llu on %s)\n", 1545 mdname(mddev), s, 1546 (unsigned long long)(sect + 1547 rdev->data_offset), 1548 bdevname(rdev->bdev, b)); 1549 } 1550 } 1551 } 1552 sectors -= s; 1553 sect += s; 1554 } 1555 } 1556 1557 static void raid1d(mddev_t *mddev) 1558 { 1559 r1bio_t *r1_bio; 1560 struct bio *bio; 1561 unsigned long flags; 1562 conf_t *conf = mddev->private; 1563 struct list_head *head = &conf->retry_list; 1564 int unplug=0; 1565 mdk_rdev_t *rdev; 1566 1567 md_check_recovery(mddev); 1568 1569 for (;;) { 1570 char b[BDEVNAME_SIZE]; 1571 1572 unplug += flush_pending_writes(conf); 1573 1574 spin_lock_irqsave(&conf->device_lock, flags); 1575 if (list_empty(head)) { 1576 spin_unlock_irqrestore(&conf->device_lock, flags); 1577 break; 1578 } 1579 r1_bio = list_entry(head->prev, r1bio_t, retry_list); 1580 list_del(head->prev); 1581 conf->nr_queued--; 1582 spin_unlock_irqrestore(&conf->device_lock, flags); 1583 1584 mddev = r1_bio->mddev; 1585 conf = mddev->private; 1586 if (test_bit(R1BIO_IsSync, &r1_bio->state)) { 1587 sync_request_write(mddev, r1_bio); 1588 unplug = 1; 1589 } else { 1590 int disk; 1591 1592 /* we got a read error. Maybe the drive is bad. Maybe just 1593 * the block and we can fix it. 1594 * We freeze all other IO, and try reading the block from 1595 * other devices. When we find one, we re-write 1596 * and check it that fixes the read error. 1597 * This is all done synchronously while the array is 1598 * frozen 1599 */ 1600 if (mddev->ro == 0) { 1601 freeze_array(conf); 1602 fix_read_error(conf, r1_bio->read_disk, 1603 r1_bio->sector, 1604 r1_bio->sectors); 1605 unfreeze_array(conf); 1606 } else 1607 md_error(mddev, 1608 conf->mirrors[r1_bio->read_disk].rdev); 1609 1610 bio = r1_bio->bios[r1_bio->read_disk]; 1611 if ((disk=read_balance(conf, r1_bio)) == -1) { 1612 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O" 1613 " read error for block %llu\n", 1614 mdname(mddev), 1615 bdevname(bio->bi_bdev,b), 1616 (unsigned long long)r1_bio->sector); 1617 raid_end_bio_io(r1_bio); 1618 } else { 1619 const unsigned long do_sync = r1_bio->master_bio->bi_rw & REQ_SYNC; 1620 r1_bio->bios[r1_bio->read_disk] = 1621 mddev->ro ? IO_BLOCKED : NULL; 1622 r1_bio->read_disk = disk; 1623 bio_put(bio); 1624 bio = bio_clone_mddev(r1_bio->master_bio, 1625 GFP_NOIO, mddev); 1626 r1_bio->bios[r1_bio->read_disk] = bio; 1627 rdev = conf->mirrors[disk].rdev; 1628 if (printk_ratelimit()) 1629 printk(KERN_ERR "md/raid1:%s: redirecting sector %llu to" 1630 " other mirror: %s\n", 1631 mdname(mddev), 1632 (unsigned long long)r1_bio->sector, 1633 bdevname(rdev->bdev,b)); 1634 bio->bi_sector = r1_bio->sector + rdev->data_offset; 1635 bio->bi_bdev = rdev->bdev; 1636 bio->bi_end_io = raid1_end_read_request; 1637 bio->bi_rw = READ | do_sync; 1638 bio->bi_private = r1_bio; 1639 unplug = 1; 1640 generic_make_request(bio); 1641 } 1642 } 1643 cond_resched(); 1644 } 1645 if (unplug) 1646 unplug_slaves(mddev); 1647 } 1648 1649 1650 static int init_resync(conf_t *conf) 1651 { 1652 int buffs; 1653 1654 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 1655 BUG_ON(conf->r1buf_pool); 1656 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free, 1657 conf->poolinfo); 1658 if (!conf->r1buf_pool) 1659 return -ENOMEM; 1660 conf->next_resync = 0; 1661 return 0; 1662 } 1663 1664 /* 1665 * perform a "sync" on one "block" 1666 * 1667 * We need to make sure that no normal I/O request - particularly write 1668 * requests - conflict with active sync requests. 1669 * 1670 * This is achieved by tracking pending requests and a 'barrier' concept 1671 * that can be installed to exclude normal IO requests. 1672 */ 1673 1674 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster) 1675 { 1676 conf_t *conf = mddev->private; 1677 r1bio_t *r1_bio; 1678 struct bio *bio; 1679 sector_t max_sector, nr_sectors; 1680 int disk = -1; 1681 int i; 1682 int wonly = -1; 1683 int write_targets = 0, read_targets = 0; 1684 sector_t sync_blocks; 1685 int still_degraded = 0; 1686 1687 if (!conf->r1buf_pool) 1688 if (init_resync(conf)) 1689 return 0; 1690 1691 max_sector = mddev->dev_sectors; 1692 if (sector_nr >= max_sector) { 1693 /* If we aborted, we need to abort the 1694 * sync on the 'current' bitmap chunk (there will 1695 * only be one in raid1 resync. 1696 * We can find the current addess in mddev->curr_resync 1697 */ 1698 if (mddev->curr_resync < max_sector) /* aborted */ 1699 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 1700 &sync_blocks, 1); 1701 else /* completed sync */ 1702 conf->fullsync = 0; 1703 1704 bitmap_close_sync(mddev->bitmap); 1705 close_sync(conf); 1706 return 0; 1707 } 1708 1709 if (mddev->bitmap == NULL && 1710 mddev->recovery_cp == MaxSector && 1711 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 1712 conf->fullsync == 0) { 1713 *skipped = 1; 1714 return max_sector - sector_nr; 1715 } 1716 /* before building a request, check if we can skip these blocks.. 1717 * This call the bitmap_start_sync doesn't actually record anything 1718 */ 1719 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 1720 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1721 /* We can skip this block, and probably several more */ 1722 *skipped = 1; 1723 return sync_blocks; 1724 } 1725 /* 1726 * If there is non-resync activity waiting for a turn, 1727 * and resync is going fast enough, 1728 * then let it though before starting on this new sync request. 1729 */ 1730 if (!go_faster && conf->nr_waiting) 1731 msleep_interruptible(1000); 1732 1733 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 1734 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO); 1735 raise_barrier(conf); 1736 1737 conf->next_resync = sector_nr; 1738 1739 rcu_read_lock(); 1740 /* 1741 * If we get a correctably read error during resync or recovery, 1742 * we might want to read from a different device. So we 1743 * flag all drives that could conceivably be read from for READ, 1744 * and any others (which will be non-In_sync devices) for WRITE. 1745 * If a read fails, we try reading from something else for which READ 1746 * is OK. 1747 */ 1748 1749 r1_bio->mddev = mddev; 1750 r1_bio->sector = sector_nr; 1751 r1_bio->state = 0; 1752 set_bit(R1BIO_IsSync, &r1_bio->state); 1753 1754 for (i=0; i < conf->raid_disks; i++) { 1755 mdk_rdev_t *rdev; 1756 bio = r1_bio->bios[i]; 1757 1758 /* take from bio_init */ 1759 bio->bi_next = NULL; 1760 bio->bi_flags &= ~(BIO_POOL_MASK-1); 1761 bio->bi_flags |= 1 << BIO_UPTODATE; 1762 bio->bi_comp_cpu = -1; 1763 bio->bi_rw = READ; 1764 bio->bi_vcnt = 0; 1765 bio->bi_idx = 0; 1766 bio->bi_phys_segments = 0; 1767 bio->bi_size = 0; 1768 bio->bi_end_io = NULL; 1769 bio->bi_private = NULL; 1770 1771 rdev = rcu_dereference(conf->mirrors[i].rdev); 1772 if (rdev == NULL || 1773 test_bit(Faulty, &rdev->flags)) { 1774 still_degraded = 1; 1775 continue; 1776 } else if (!test_bit(In_sync, &rdev->flags)) { 1777 bio->bi_rw = WRITE; 1778 bio->bi_end_io = end_sync_write; 1779 write_targets ++; 1780 } else { 1781 /* may need to read from here */ 1782 bio->bi_rw = READ; 1783 bio->bi_end_io = end_sync_read; 1784 if (test_bit(WriteMostly, &rdev->flags)) { 1785 if (wonly < 0) 1786 wonly = i; 1787 } else { 1788 if (disk < 0) 1789 disk = i; 1790 } 1791 read_targets++; 1792 } 1793 atomic_inc(&rdev->nr_pending); 1794 bio->bi_sector = sector_nr + rdev->data_offset; 1795 bio->bi_bdev = rdev->bdev; 1796 bio->bi_private = r1_bio; 1797 } 1798 rcu_read_unlock(); 1799 if (disk < 0) 1800 disk = wonly; 1801 r1_bio->read_disk = disk; 1802 1803 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0) 1804 /* extra read targets are also write targets */ 1805 write_targets += read_targets-1; 1806 1807 if (write_targets == 0 || read_targets == 0) { 1808 /* There is nowhere to write, so all non-sync 1809 * drives must be failed - so we are finished 1810 */ 1811 sector_t rv = max_sector - sector_nr; 1812 *skipped = 1; 1813 put_buf(r1_bio); 1814 return rv; 1815 } 1816 1817 if (max_sector > mddev->resync_max) 1818 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 1819 nr_sectors = 0; 1820 sync_blocks = 0; 1821 do { 1822 struct page *page; 1823 int len = PAGE_SIZE; 1824 if (sector_nr + (len>>9) > max_sector) 1825 len = (max_sector - sector_nr) << 9; 1826 if (len == 0) 1827 break; 1828 if (sync_blocks == 0) { 1829 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 1830 &sync_blocks, still_degraded) && 1831 !conf->fullsync && 1832 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 1833 break; 1834 BUG_ON(sync_blocks < (PAGE_SIZE>>9)); 1835 if ((len >> 9) > sync_blocks) 1836 len = sync_blocks<<9; 1837 } 1838 1839 for (i=0 ; i < conf->raid_disks; i++) { 1840 bio = r1_bio->bios[i]; 1841 if (bio->bi_end_io) { 1842 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 1843 if (bio_add_page(bio, page, len, 0) == 0) { 1844 /* stop here */ 1845 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 1846 while (i > 0) { 1847 i--; 1848 bio = r1_bio->bios[i]; 1849 if (bio->bi_end_io==NULL) 1850 continue; 1851 /* remove last page from this bio */ 1852 bio->bi_vcnt--; 1853 bio->bi_size -= len; 1854 bio->bi_flags &= ~(1<< BIO_SEG_VALID); 1855 } 1856 goto bio_full; 1857 } 1858 } 1859 } 1860 nr_sectors += len>>9; 1861 sector_nr += len>>9; 1862 sync_blocks -= (len>>9); 1863 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES); 1864 bio_full: 1865 r1_bio->sectors = nr_sectors; 1866 1867 /* For a user-requested sync, we read all readable devices and do a 1868 * compare 1869 */ 1870 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1871 atomic_set(&r1_bio->remaining, read_targets); 1872 for (i=0; i<conf->raid_disks; i++) { 1873 bio = r1_bio->bios[i]; 1874 if (bio->bi_end_io == end_sync_read) { 1875 md_sync_acct(bio->bi_bdev, nr_sectors); 1876 generic_make_request(bio); 1877 } 1878 } 1879 } else { 1880 atomic_set(&r1_bio->remaining, 1); 1881 bio = r1_bio->bios[r1_bio->read_disk]; 1882 md_sync_acct(bio->bi_bdev, nr_sectors); 1883 generic_make_request(bio); 1884 1885 } 1886 return nr_sectors; 1887 } 1888 1889 static sector_t raid1_size(mddev_t *mddev, sector_t sectors, int raid_disks) 1890 { 1891 if (sectors) 1892 return sectors; 1893 1894 return mddev->dev_sectors; 1895 } 1896 1897 static conf_t *setup_conf(mddev_t *mddev) 1898 { 1899 conf_t *conf; 1900 int i; 1901 mirror_info_t *disk; 1902 mdk_rdev_t *rdev; 1903 int err = -ENOMEM; 1904 1905 conf = kzalloc(sizeof(conf_t), GFP_KERNEL); 1906 if (!conf) 1907 goto abort; 1908 1909 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks, 1910 GFP_KERNEL); 1911 if (!conf->mirrors) 1912 goto abort; 1913 1914 conf->tmppage = alloc_page(GFP_KERNEL); 1915 if (!conf->tmppage) 1916 goto abort; 1917 1918 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL); 1919 if (!conf->poolinfo) 1920 goto abort; 1921 conf->poolinfo->raid_disks = mddev->raid_disks; 1922 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 1923 r1bio_pool_free, 1924 conf->poolinfo); 1925 if (!conf->r1bio_pool) 1926 goto abort; 1927 1928 conf->poolinfo->mddev = mddev; 1929 1930 spin_lock_init(&conf->device_lock); 1931 list_for_each_entry(rdev, &mddev->disks, same_set) { 1932 int disk_idx = rdev->raid_disk; 1933 if (disk_idx >= mddev->raid_disks 1934 || disk_idx < 0) 1935 continue; 1936 disk = conf->mirrors + disk_idx; 1937 1938 disk->rdev = rdev; 1939 1940 disk->head_position = 0; 1941 } 1942 conf->raid_disks = mddev->raid_disks; 1943 conf->mddev = mddev; 1944 INIT_LIST_HEAD(&conf->retry_list); 1945 1946 spin_lock_init(&conf->resync_lock); 1947 init_waitqueue_head(&conf->wait_barrier); 1948 1949 bio_list_init(&conf->pending_bio_list); 1950 1951 conf->last_used = -1; 1952 for (i = 0; i < conf->raid_disks; i++) { 1953 1954 disk = conf->mirrors + i; 1955 1956 if (!disk->rdev || 1957 !test_bit(In_sync, &disk->rdev->flags)) { 1958 disk->head_position = 0; 1959 if (disk->rdev) 1960 conf->fullsync = 1; 1961 } else if (conf->last_used < 0) 1962 /* 1963 * The first working device is used as a 1964 * starting point to read balancing. 1965 */ 1966 conf->last_used = i; 1967 } 1968 1969 err = -EIO; 1970 if (conf->last_used < 0) { 1971 printk(KERN_ERR "md/raid1:%s: no operational mirrors\n", 1972 mdname(mddev)); 1973 goto abort; 1974 } 1975 err = -ENOMEM; 1976 conf->thread = md_register_thread(raid1d, mddev, NULL); 1977 if (!conf->thread) { 1978 printk(KERN_ERR 1979 "md/raid1:%s: couldn't allocate thread\n", 1980 mdname(mddev)); 1981 goto abort; 1982 } 1983 1984 return conf; 1985 1986 abort: 1987 if (conf) { 1988 if (conf->r1bio_pool) 1989 mempool_destroy(conf->r1bio_pool); 1990 kfree(conf->mirrors); 1991 safe_put_page(conf->tmppage); 1992 kfree(conf->poolinfo); 1993 kfree(conf); 1994 } 1995 return ERR_PTR(err); 1996 } 1997 1998 static int run(mddev_t *mddev) 1999 { 2000 conf_t *conf; 2001 int i; 2002 mdk_rdev_t *rdev; 2003 2004 if (mddev->level != 1) { 2005 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n", 2006 mdname(mddev), mddev->level); 2007 return -EIO; 2008 } 2009 if (mddev->reshape_position != MaxSector) { 2010 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n", 2011 mdname(mddev)); 2012 return -EIO; 2013 } 2014 /* 2015 * copy the already verified devices into our private RAID1 2016 * bookkeeping area. [whatever we allocate in run(), 2017 * should be freed in stop()] 2018 */ 2019 if (mddev->private == NULL) 2020 conf = setup_conf(mddev); 2021 else 2022 conf = mddev->private; 2023 2024 if (IS_ERR(conf)) 2025 return PTR_ERR(conf); 2026 2027 list_for_each_entry(rdev, &mddev->disks, same_set) { 2028 disk_stack_limits(mddev->gendisk, rdev->bdev, 2029 rdev->data_offset << 9); 2030 /* as we don't honour merge_bvec_fn, we must never risk 2031 * violating it, so limit ->max_segments to 1 lying within 2032 * a single page, as a one page request is never in violation. 2033 */ 2034 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) { 2035 blk_queue_max_segments(mddev->queue, 1); 2036 blk_queue_segment_boundary(mddev->queue, 2037 PAGE_CACHE_SIZE - 1); 2038 } 2039 } 2040 2041 mddev->degraded = 0; 2042 for (i=0; i < conf->raid_disks; i++) 2043 if (conf->mirrors[i].rdev == NULL || 2044 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) || 2045 test_bit(Faulty, &conf->mirrors[i].rdev->flags)) 2046 mddev->degraded++; 2047 2048 if (conf->raid_disks - mddev->degraded == 1) 2049 mddev->recovery_cp = MaxSector; 2050 2051 if (mddev->recovery_cp != MaxSector) 2052 printk(KERN_NOTICE "md/raid1:%s: not clean" 2053 " -- starting background reconstruction\n", 2054 mdname(mddev)); 2055 printk(KERN_INFO 2056 "md/raid1:%s: active with %d out of %d mirrors\n", 2057 mdname(mddev), mddev->raid_disks - mddev->degraded, 2058 mddev->raid_disks); 2059 2060 /* 2061 * Ok, everything is just fine now 2062 */ 2063 mddev->thread = conf->thread; 2064 conf->thread = NULL; 2065 mddev->private = conf; 2066 2067 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0)); 2068 2069 mddev->queue->unplug_fn = raid1_unplug; 2070 mddev->queue->backing_dev_info.congested_fn = raid1_congested; 2071 mddev->queue->backing_dev_info.congested_data = mddev; 2072 md_integrity_register(mddev); 2073 return 0; 2074 } 2075 2076 static int stop(mddev_t *mddev) 2077 { 2078 conf_t *conf = mddev->private; 2079 struct bitmap *bitmap = mddev->bitmap; 2080 2081 /* wait for behind writes to complete */ 2082 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) { 2083 printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n", 2084 mdname(mddev)); 2085 /* need to kick something here to make sure I/O goes? */ 2086 wait_event(bitmap->behind_wait, 2087 atomic_read(&bitmap->behind_writes) == 0); 2088 } 2089 2090 raise_barrier(conf); 2091 lower_barrier(conf); 2092 2093 md_unregister_thread(mddev->thread); 2094 mddev->thread = NULL; 2095 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 2096 if (conf->r1bio_pool) 2097 mempool_destroy(conf->r1bio_pool); 2098 kfree(conf->mirrors); 2099 kfree(conf->poolinfo); 2100 kfree(conf); 2101 mddev->private = NULL; 2102 return 0; 2103 } 2104 2105 static int raid1_resize(mddev_t *mddev, sector_t sectors) 2106 { 2107 /* no resync is happening, and there is enough space 2108 * on all devices, so we can resize. 2109 * We need to make sure resync covers any new space. 2110 * If the array is shrinking we should possibly wait until 2111 * any io in the removed space completes, but it hardly seems 2112 * worth it. 2113 */ 2114 md_set_array_sectors(mddev, raid1_size(mddev, sectors, 0)); 2115 if (mddev->array_sectors > raid1_size(mddev, sectors, 0)) 2116 return -EINVAL; 2117 set_capacity(mddev->gendisk, mddev->array_sectors); 2118 revalidate_disk(mddev->gendisk); 2119 if (sectors > mddev->dev_sectors && 2120 mddev->recovery_cp == MaxSector) { 2121 mddev->recovery_cp = mddev->dev_sectors; 2122 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2123 } 2124 mddev->dev_sectors = sectors; 2125 mddev->resync_max_sectors = sectors; 2126 return 0; 2127 } 2128 2129 static int raid1_reshape(mddev_t *mddev) 2130 { 2131 /* We need to: 2132 * 1/ resize the r1bio_pool 2133 * 2/ resize conf->mirrors 2134 * 2135 * We allocate a new r1bio_pool if we can. 2136 * Then raise a device barrier and wait until all IO stops. 2137 * Then resize conf->mirrors and swap in the new r1bio pool. 2138 * 2139 * At the same time, we "pack" the devices so that all the missing 2140 * devices have the higher raid_disk numbers. 2141 */ 2142 mempool_t *newpool, *oldpool; 2143 struct pool_info *newpoolinfo; 2144 mirror_info_t *newmirrors; 2145 conf_t *conf = mddev->private; 2146 int cnt, raid_disks; 2147 unsigned long flags; 2148 int d, d2, err; 2149 2150 /* Cannot change chunk_size, layout, or level */ 2151 if (mddev->chunk_sectors != mddev->new_chunk_sectors || 2152 mddev->layout != mddev->new_layout || 2153 mddev->level != mddev->new_level) { 2154 mddev->new_chunk_sectors = mddev->chunk_sectors; 2155 mddev->new_layout = mddev->layout; 2156 mddev->new_level = mddev->level; 2157 return -EINVAL; 2158 } 2159 2160 err = md_allow_write(mddev); 2161 if (err) 2162 return err; 2163 2164 raid_disks = mddev->raid_disks + mddev->delta_disks; 2165 2166 if (raid_disks < conf->raid_disks) { 2167 cnt=0; 2168 for (d= 0; d < conf->raid_disks; d++) 2169 if (conf->mirrors[d].rdev) 2170 cnt++; 2171 if (cnt > raid_disks) 2172 return -EBUSY; 2173 } 2174 2175 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL); 2176 if (!newpoolinfo) 2177 return -ENOMEM; 2178 newpoolinfo->mddev = mddev; 2179 newpoolinfo->raid_disks = raid_disks; 2180 2181 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 2182 r1bio_pool_free, newpoolinfo); 2183 if (!newpool) { 2184 kfree(newpoolinfo); 2185 return -ENOMEM; 2186 } 2187 newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL); 2188 if (!newmirrors) { 2189 kfree(newpoolinfo); 2190 mempool_destroy(newpool); 2191 return -ENOMEM; 2192 } 2193 2194 raise_barrier(conf); 2195 2196 /* ok, everything is stopped */ 2197 oldpool = conf->r1bio_pool; 2198 conf->r1bio_pool = newpool; 2199 2200 for (d = d2 = 0; d < conf->raid_disks; d++) { 2201 mdk_rdev_t *rdev = conf->mirrors[d].rdev; 2202 if (rdev && rdev->raid_disk != d2) { 2203 char nm[20]; 2204 sprintf(nm, "rd%d", rdev->raid_disk); 2205 sysfs_remove_link(&mddev->kobj, nm); 2206 rdev->raid_disk = d2; 2207 sprintf(nm, "rd%d", rdev->raid_disk); 2208 sysfs_remove_link(&mddev->kobj, nm); 2209 if (sysfs_create_link(&mddev->kobj, 2210 &rdev->kobj, nm)) 2211 printk(KERN_WARNING 2212 "md/raid1:%s: cannot register " 2213 "%s\n", 2214 mdname(mddev), nm); 2215 } 2216 if (rdev) 2217 newmirrors[d2++].rdev = rdev; 2218 } 2219 kfree(conf->mirrors); 2220 conf->mirrors = newmirrors; 2221 kfree(conf->poolinfo); 2222 conf->poolinfo = newpoolinfo; 2223 2224 spin_lock_irqsave(&conf->device_lock, flags); 2225 mddev->degraded += (raid_disks - conf->raid_disks); 2226 spin_unlock_irqrestore(&conf->device_lock, flags); 2227 conf->raid_disks = mddev->raid_disks = raid_disks; 2228 mddev->delta_disks = 0; 2229 2230 conf->last_used = 0; /* just make sure it is in-range */ 2231 lower_barrier(conf); 2232 2233 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2234 md_wakeup_thread(mddev->thread); 2235 2236 mempool_destroy(oldpool); 2237 return 0; 2238 } 2239 2240 static void raid1_quiesce(mddev_t *mddev, int state) 2241 { 2242 conf_t *conf = mddev->private; 2243 2244 switch(state) { 2245 case 2: /* wake for suspend */ 2246 wake_up(&conf->wait_barrier); 2247 break; 2248 case 1: 2249 raise_barrier(conf); 2250 break; 2251 case 0: 2252 lower_barrier(conf); 2253 break; 2254 } 2255 } 2256 2257 static void *raid1_takeover(mddev_t *mddev) 2258 { 2259 /* raid1 can take over: 2260 * raid5 with 2 devices, any layout or chunk size 2261 */ 2262 if (mddev->level == 5 && mddev->raid_disks == 2) { 2263 conf_t *conf; 2264 mddev->new_level = 1; 2265 mddev->new_layout = 0; 2266 mddev->new_chunk_sectors = 0; 2267 conf = setup_conf(mddev); 2268 if (!IS_ERR(conf)) 2269 conf->barrier = 1; 2270 return conf; 2271 } 2272 return ERR_PTR(-EINVAL); 2273 } 2274 2275 static struct mdk_personality raid1_personality = 2276 { 2277 .name = "raid1", 2278 .level = 1, 2279 .owner = THIS_MODULE, 2280 .make_request = make_request, 2281 .run = run, 2282 .stop = stop, 2283 .status = status, 2284 .error_handler = error, 2285 .hot_add_disk = raid1_add_disk, 2286 .hot_remove_disk= raid1_remove_disk, 2287 .spare_active = raid1_spare_active, 2288 .sync_request = sync_request, 2289 .resize = raid1_resize, 2290 .size = raid1_size, 2291 .check_reshape = raid1_reshape, 2292 .quiesce = raid1_quiesce, 2293 .takeover = raid1_takeover, 2294 }; 2295 2296 static int __init raid_init(void) 2297 { 2298 return register_md_personality(&raid1_personality); 2299 } 2300 2301 static void raid_exit(void) 2302 { 2303 unregister_md_personality(&raid1_personality); 2304 } 2305 2306 module_init(raid_init); 2307 module_exit(raid_exit); 2308 MODULE_LICENSE("GPL"); 2309 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD"); 2310 MODULE_ALIAS("md-personality-3"); /* RAID1 */ 2311 MODULE_ALIAS("md-raid1"); 2312 MODULE_ALIAS("md-level-1"); 2313