xref: /openbmc/linux/drivers/md/raid1.c (revision 565d76cb)
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33 
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/seq_file.h>
38 #include "md.h"
39 #include "raid1.h"
40 #include "bitmap.h"
41 
42 #define DEBUG 0
43 #if DEBUG
44 #define PRINTK(x...) printk(x)
45 #else
46 #define PRINTK(x...)
47 #endif
48 
49 /*
50  * Number of guaranteed r1bios in case of extreme VM load:
51  */
52 #define	NR_RAID1_BIOS 256
53 
54 
55 static void unplug_slaves(mddev_t *mddev);
56 
57 static void allow_barrier(conf_t *conf);
58 static void lower_barrier(conf_t *conf);
59 
60 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
61 {
62 	struct pool_info *pi = data;
63 	r1bio_t *r1_bio;
64 	int size = offsetof(r1bio_t, bios[pi->raid_disks]);
65 
66 	/* allocate a r1bio with room for raid_disks entries in the bios array */
67 	r1_bio = kzalloc(size, gfp_flags);
68 	if (!r1_bio && pi->mddev)
69 		unplug_slaves(pi->mddev);
70 
71 	return r1_bio;
72 }
73 
74 static void r1bio_pool_free(void *r1_bio, void *data)
75 {
76 	kfree(r1_bio);
77 }
78 
79 #define RESYNC_BLOCK_SIZE (64*1024)
80 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
81 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
82 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
83 #define RESYNC_WINDOW (2048*1024)
84 
85 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
86 {
87 	struct pool_info *pi = data;
88 	struct page *page;
89 	r1bio_t *r1_bio;
90 	struct bio *bio;
91 	int i, j;
92 
93 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
94 	if (!r1_bio) {
95 		unplug_slaves(pi->mddev);
96 		return NULL;
97 	}
98 
99 	/*
100 	 * Allocate bios : 1 for reading, n-1 for writing
101 	 */
102 	for (j = pi->raid_disks ; j-- ; ) {
103 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
104 		if (!bio)
105 			goto out_free_bio;
106 		r1_bio->bios[j] = bio;
107 	}
108 	/*
109 	 * Allocate RESYNC_PAGES data pages and attach them to
110 	 * the first bio.
111 	 * If this is a user-requested check/repair, allocate
112 	 * RESYNC_PAGES for each bio.
113 	 */
114 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
115 		j = pi->raid_disks;
116 	else
117 		j = 1;
118 	while(j--) {
119 		bio = r1_bio->bios[j];
120 		for (i = 0; i < RESYNC_PAGES; i++) {
121 			page = alloc_page(gfp_flags);
122 			if (unlikely(!page))
123 				goto out_free_pages;
124 
125 			bio->bi_io_vec[i].bv_page = page;
126 			bio->bi_vcnt = i+1;
127 		}
128 	}
129 	/* If not user-requests, copy the page pointers to all bios */
130 	if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
131 		for (i=0; i<RESYNC_PAGES ; i++)
132 			for (j=1; j<pi->raid_disks; j++)
133 				r1_bio->bios[j]->bi_io_vec[i].bv_page =
134 					r1_bio->bios[0]->bi_io_vec[i].bv_page;
135 	}
136 
137 	r1_bio->master_bio = NULL;
138 
139 	return r1_bio;
140 
141 out_free_pages:
142 	for (j=0 ; j < pi->raid_disks; j++)
143 		for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
144 			put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
145 	j = -1;
146 out_free_bio:
147 	while ( ++j < pi->raid_disks )
148 		bio_put(r1_bio->bios[j]);
149 	r1bio_pool_free(r1_bio, data);
150 	return NULL;
151 }
152 
153 static void r1buf_pool_free(void *__r1_bio, void *data)
154 {
155 	struct pool_info *pi = data;
156 	int i,j;
157 	r1bio_t *r1bio = __r1_bio;
158 
159 	for (i = 0; i < RESYNC_PAGES; i++)
160 		for (j = pi->raid_disks; j-- ;) {
161 			if (j == 0 ||
162 			    r1bio->bios[j]->bi_io_vec[i].bv_page !=
163 			    r1bio->bios[0]->bi_io_vec[i].bv_page)
164 				safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
165 		}
166 	for (i=0 ; i < pi->raid_disks; i++)
167 		bio_put(r1bio->bios[i]);
168 
169 	r1bio_pool_free(r1bio, data);
170 }
171 
172 static void put_all_bios(conf_t *conf, r1bio_t *r1_bio)
173 {
174 	int i;
175 
176 	for (i = 0; i < conf->raid_disks; i++) {
177 		struct bio **bio = r1_bio->bios + i;
178 		if (*bio && *bio != IO_BLOCKED)
179 			bio_put(*bio);
180 		*bio = NULL;
181 	}
182 }
183 
184 static void free_r1bio(r1bio_t *r1_bio)
185 {
186 	conf_t *conf = r1_bio->mddev->private;
187 
188 	/*
189 	 * Wake up any possible resync thread that waits for the device
190 	 * to go idle.
191 	 */
192 	allow_barrier(conf);
193 
194 	put_all_bios(conf, r1_bio);
195 	mempool_free(r1_bio, conf->r1bio_pool);
196 }
197 
198 static void put_buf(r1bio_t *r1_bio)
199 {
200 	conf_t *conf = r1_bio->mddev->private;
201 	int i;
202 
203 	for (i=0; i<conf->raid_disks; i++) {
204 		struct bio *bio = r1_bio->bios[i];
205 		if (bio->bi_end_io)
206 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
207 	}
208 
209 	mempool_free(r1_bio, conf->r1buf_pool);
210 
211 	lower_barrier(conf);
212 }
213 
214 static void reschedule_retry(r1bio_t *r1_bio)
215 {
216 	unsigned long flags;
217 	mddev_t *mddev = r1_bio->mddev;
218 	conf_t *conf = mddev->private;
219 
220 	spin_lock_irqsave(&conf->device_lock, flags);
221 	list_add(&r1_bio->retry_list, &conf->retry_list);
222 	conf->nr_queued ++;
223 	spin_unlock_irqrestore(&conf->device_lock, flags);
224 
225 	wake_up(&conf->wait_barrier);
226 	md_wakeup_thread(mddev->thread);
227 }
228 
229 /*
230  * raid_end_bio_io() is called when we have finished servicing a mirrored
231  * operation and are ready to return a success/failure code to the buffer
232  * cache layer.
233  */
234 static void raid_end_bio_io(r1bio_t *r1_bio)
235 {
236 	struct bio *bio = r1_bio->master_bio;
237 
238 	/* if nobody has done the final endio yet, do it now */
239 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
240 		PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n",
241 			(bio_data_dir(bio) == WRITE) ? "write" : "read",
242 			(unsigned long long) bio->bi_sector,
243 			(unsigned long long) bio->bi_sector +
244 				(bio->bi_size >> 9) - 1);
245 
246 		bio_endio(bio,
247 			test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO);
248 	}
249 	free_r1bio(r1_bio);
250 }
251 
252 /*
253  * Update disk head position estimator based on IRQ completion info.
254  */
255 static inline void update_head_pos(int disk, r1bio_t *r1_bio)
256 {
257 	conf_t *conf = r1_bio->mddev->private;
258 
259 	conf->mirrors[disk].head_position =
260 		r1_bio->sector + (r1_bio->sectors);
261 }
262 
263 static void raid1_end_read_request(struct bio *bio, int error)
264 {
265 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
266 	r1bio_t *r1_bio = bio->bi_private;
267 	int mirror;
268 	conf_t *conf = r1_bio->mddev->private;
269 
270 	mirror = r1_bio->read_disk;
271 	/*
272 	 * this branch is our 'one mirror IO has finished' event handler:
273 	 */
274 	update_head_pos(mirror, r1_bio);
275 
276 	if (uptodate)
277 		set_bit(R1BIO_Uptodate, &r1_bio->state);
278 	else {
279 		/* If all other devices have failed, we want to return
280 		 * the error upwards rather than fail the last device.
281 		 * Here we redefine "uptodate" to mean "Don't want to retry"
282 		 */
283 		unsigned long flags;
284 		spin_lock_irqsave(&conf->device_lock, flags);
285 		if (r1_bio->mddev->degraded == conf->raid_disks ||
286 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
287 		     !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
288 			uptodate = 1;
289 		spin_unlock_irqrestore(&conf->device_lock, flags);
290 	}
291 
292 	if (uptodate)
293 		raid_end_bio_io(r1_bio);
294 	else {
295 		/*
296 		 * oops, read error:
297 		 */
298 		char b[BDEVNAME_SIZE];
299 		if (printk_ratelimit())
300 			printk(KERN_ERR "md/raid1:%s: %s: rescheduling sector %llu\n",
301 			       mdname(conf->mddev),
302 			       bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector);
303 		reschedule_retry(r1_bio);
304 	}
305 
306 	rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
307 }
308 
309 static void r1_bio_write_done(r1bio_t *r1_bio, int vcnt, struct bio_vec *bv,
310 			      int behind)
311 {
312 	if (atomic_dec_and_test(&r1_bio->remaining))
313 	{
314 		/* it really is the end of this request */
315 		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
316 			/* free extra copy of the data pages */
317 			int i = vcnt;
318 			while (i--)
319 				safe_put_page(bv[i].bv_page);
320 		}
321 		/* clear the bitmap if all writes complete successfully */
322 		bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
323 				r1_bio->sectors,
324 				!test_bit(R1BIO_Degraded, &r1_bio->state),
325 				behind);
326 		md_write_end(r1_bio->mddev);
327 		raid_end_bio_io(r1_bio);
328 	}
329 }
330 
331 static void raid1_end_write_request(struct bio *bio, int error)
332 {
333 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
334 	r1bio_t *r1_bio = bio->bi_private;
335 	int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
336 	conf_t *conf = r1_bio->mddev->private;
337 	struct bio *to_put = NULL;
338 
339 
340 	for (mirror = 0; mirror < conf->raid_disks; mirror++)
341 		if (r1_bio->bios[mirror] == bio)
342 			break;
343 
344 	/*
345 	 * 'one mirror IO has finished' event handler:
346 	 */
347 	r1_bio->bios[mirror] = NULL;
348 	to_put = bio;
349 	if (!uptodate) {
350 		md_error(r1_bio->mddev, conf->mirrors[mirror].rdev);
351 		/* an I/O failed, we can't clear the bitmap */
352 		set_bit(R1BIO_Degraded, &r1_bio->state);
353 	} else
354 		/*
355 		 * Set R1BIO_Uptodate in our master bio, so that we
356 		 * will return a good error code for to the higher
357 		 * levels even if IO on some other mirrored buffer
358 		 * fails.
359 		 *
360 		 * The 'master' represents the composite IO operation
361 		 * to user-side. So if something waits for IO, then it
362 		 * will wait for the 'master' bio.
363 		 */
364 		set_bit(R1BIO_Uptodate, &r1_bio->state);
365 
366 	update_head_pos(mirror, r1_bio);
367 
368 	if (behind) {
369 		if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
370 			atomic_dec(&r1_bio->behind_remaining);
371 
372 		/*
373 		 * In behind mode, we ACK the master bio once the I/O
374 		 * has safely reached all non-writemostly
375 		 * disks. Setting the Returned bit ensures that this
376 		 * gets done only once -- we don't ever want to return
377 		 * -EIO here, instead we'll wait
378 		 */
379 		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
380 		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
381 			/* Maybe we can return now */
382 			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
383 				struct bio *mbio = r1_bio->master_bio;
384 				PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n",
385 				       (unsigned long long) mbio->bi_sector,
386 				       (unsigned long long) mbio->bi_sector +
387 				       (mbio->bi_size >> 9) - 1);
388 				bio_endio(mbio, 0);
389 			}
390 		}
391 	}
392 	rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
393 
394 	/*
395 	 * Let's see if all mirrored write operations have finished
396 	 * already.
397 	 */
398 	r1_bio_write_done(r1_bio, bio->bi_vcnt, bio->bi_io_vec, behind);
399 
400 	if (to_put)
401 		bio_put(to_put);
402 }
403 
404 
405 /*
406  * This routine returns the disk from which the requested read should
407  * be done. There is a per-array 'next expected sequential IO' sector
408  * number - if this matches on the next IO then we use the last disk.
409  * There is also a per-disk 'last know head position' sector that is
410  * maintained from IRQ contexts, both the normal and the resync IO
411  * completion handlers update this position correctly. If there is no
412  * perfect sequential match then we pick the disk whose head is closest.
413  *
414  * If there are 2 mirrors in the same 2 devices, performance degrades
415  * because position is mirror, not device based.
416  *
417  * The rdev for the device selected will have nr_pending incremented.
418  */
419 static int read_balance(conf_t *conf, r1bio_t *r1_bio)
420 {
421 	const sector_t this_sector = r1_bio->sector;
422 	const int sectors = r1_bio->sectors;
423 	int new_disk = -1;
424 	int start_disk;
425 	int i;
426 	sector_t new_distance, current_distance;
427 	mdk_rdev_t *rdev;
428 	int choose_first;
429 
430 	rcu_read_lock();
431 	/*
432 	 * Check if we can balance. We can balance on the whole
433 	 * device if no resync is going on, or below the resync window.
434 	 * We take the first readable disk when above the resync window.
435 	 */
436  retry:
437 	if (conf->mddev->recovery_cp < MaxSector &&
438 	    (this_sector + sectors >= conf->next_resync)) {
439 		choose_first = 1;
440 		start_disk = 0;
441 	} else {
442 		choose_first = 0;
443 		start_disk = conf->last_used;
444 	}
445 
446 	/* make sure the disk is operational */
447 	for (i = 0 ; i < conf->raid_disks ; i++) {
448 		int disk = start_disk + i;
449 		if (disk >= conf->raid_disks)
450 			disk -= conf->raid_disks;
451 
452 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
453 		if (r1_bio->bios[disk] == IO_BLOCKED
454 		    || rdev == NULL
455 		    || !test_bit(In_sync, &rdev->flags))
456 			continue;
457 
458 		new_disk = disk;
459 		if (!test_bit(WriteMostly, &rdev->flags))
460 			break;
461 	}
462 
463 	if (new_disk < 0 || choose_first)
464 		goto rb_out;
465 
466 	/*
467 	 * Don't change to another disk for sequential reads:
468 	 */
469 	if (conf->next_seq_sect == this_sector)
470 		goto rb_out;
471 	if (this_sector == conf->mirrors[new_disk].head_position)
472 		goto rb_out;
473 
474 	current_distance = abs(this_sector
475 			       - conf->mirrors[new_disk].head_position);
476 
477 	/* look for a better disk - i.e. head is closer */
478 	start_disk = new_disk;
479 	for (i = 1; i < conf->raid_disks; i++) {
480 		int disk = start_disk + 1;
481 		if (disk >= conf->raid_disks)
482 			disk -= conf->raid_disks;
483 
484 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
485 		if (r1_bio->bios[disk] == IO_BLOCKED
486 		    || rdev == NULL
487 		    || !test_bit(In_sync, &rdev->flags)
488 		    || test_bit(WriteMostly, &rdev->flags))
489 			continue;
490 
491 		if (!atomic_read(&rdev->nr_pending)) {
492 			new_disk = disk;
493 			break;
494 		}
495 		new_distance = abs(this_sector - conf->mirrors[disk].head_position);
496 		if (new_distance < current_distance) {
497 			current_distance = new_distance;
498 			new_disk = disk;
499 		}
500 	}
501 
502  rb_out:
503 	if (new_disk >= 0) {
504 		rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
505 		if (!rdev)
506 			goto retry;
507 		atomic_inc(&rdev->nr_pending);
508 		if (!test_bit(In_sync, &rdev->flags)) {
509 			/* cannot risk returning a device that failed
510 			 * before we inc'ed nr_pending
511 			 */
512 			rdev_dec_pending(rdev, conf->mddev);
513 			goto retry;
514 		}
515 		conf->next_seq_sect = this_sector + sectors;
516 		conf->last_used = new_disk;
517 	}
518 	rcu_read_unlock();
519 
520 	return new_disk;
521 }
522 
523 static void unplug_slaves(mddev_t *mddev)
524 {
525 	conf_t *conf = mddev->private;
526 	int i;
527 
528 	rcu_read_lock();
529 	for (i=0; i<mddev->raid_disks; i++) {
530 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
531 		if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
532 			struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
533 
534 			atomic_inc(&rdev->nr_pending);
535 			rcu_read_unlock();
536 
537 			blk_unplug(r_queue);
538 
539 			rdev_dec_pending(rdev, mddev);
540 			rcu_read_lock();
541 		}
542 	}
543 	rcu_read_unlock();
544 }
545 
546 static void raid1_unplug(struct request_queue *q)
547 {
548 	mddev_t *mddev = q->queuedata;
549 
550 	unplug_slaves(mddev);
551 	md_wakeup_thread(mddev->thread);
552 }
553 
554 static int raid1_congested(void *data, int bits)
555 {
556 	mddev_t *mddev = data;
557 	conf_t *conf = mddev->private;
558 	int i, ret = 0;
559 
560 	if (mddev_congested(mddev, bits))
561 		return 1;
562 
563 	rcu_read_lock();
564 	for (i = 0; i < mddev->raid_disks; i++) {
565 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
566 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
567 			struct request_queue *q = bdev_get_queue(rdev->bdev);
568 
569 			/* Note the '|| 1' - when read_balance prefers
570 			 * non-congested targets, it can be removed
571 			 */
572 			if ((bits & (1<<BDI_async_congested)) || 1)
573 				ret |= bdi_congested(&q->backing_dev_info, bits);
574 			else
575 				ret &= bdi_congested(&q->backing_dev_info, bits);
576 		}
577 	}
578 	rcu_read_unlock();
579 	return ret;
580 }
581 
582 
583 static int flush_pending_writes(conf_t *conf)
584 {
585 	/* Any writes that have been queued but are awaiting
586 	 * bitmap updates get flushed here.
587 	 * We return 1 if any requests were actually submitted.
588 	 */
589 	int rv = 0;
590 
591 	spin_lock_irq(&conf->device_lock);
592 
593 	if (conf->pending_bio_list.head) {
594 		struct bio *bio;
595 		bio = bio_list_get(&conf->pending_bio_list);
596 		/* Only take the spinlock to quiet a warning */
597 		spin_lock(conf->mddev->queue->queue_lock);
598 		blk_remove_plug(conf->mddev->queue);
599 		spin_unlock(conf->mddev->queue->queue_lock);
600 		spin_unlock_irq(&conf->device_lock);
601 		/* flush any pending bitmap writes to
602 		 * disk before proceeding w/ I/O */
603 		bitmap_unplug(conf->mddev->bitmap);
604 
605 		while (bio) { /* submit pending writes */
606 			struct bio *next = bio->bi_next;
607 			bio->bi_next = NULL;
608 			generic_make_request(bio);
609 			bio = next;
610 		}
611 		rv = 1;
612 	} else
613 		spin_unlock_irq(&conf->device_lock);
614 	return rv;
615 }
616 
617 /* Barriers....
618  * Sometimes we need to suspend IO while we do something else,
619  * either some resync/recovery, or reconfigure the array.
620  * To do this we raise a 'barrier'.
621  * The 'barrier' is a counter that can be raised multiple times
622  * to count how many activities are happening which preclude
623  * normal IO.
624  * We can only raise the barrier if there is no pending IO.
625  * i.e. if nr_pending == 0.
626  * We choose only to raise the barrier if no-one is waiting for the
627  * barrier to go down.  This means that as soon as an IO request
628  * is ready, no other operations which require a barrier will start
629  * until the IO request has had a chance.
630  *
631  * So: regular IO calls 'wait_barrier'.  When that returns there
632  *    is no backgroup IO happening,  It must arrange to call
633  *    allow_barrier when it has finished its IO.
634  * backgroup IO calls must call raise_barrier.  Once that returns
635  *    there is no normal IO happeing.  It must arrange to call
636  *    lower_barrier when the particular background IO completes.
637  */
638 #define RESYNC_DEPTH 32
639 
640 static void raise_barrier(conf_t *conf)
641 {
642 	spin_lock_irq(&conf->resync_lock);
643 
644 	/* Wait until no block IO is waiting */
645 	wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
646 			    conf->resync_lock,
647 			    raid1_unplug(conf->mddev->queue));
648 
649 	/* block any new IO from starting */
650 	conf->barrier++;
651 
652 	/* Now wait for all pending IO to complete */
653 	wait_event_lock_irq(conf->wait_barrier,
654 			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
655 			    conf->resync_lock,
656 			    raid1_unplug(conf->mddev->queue));
657 
658 	spin_unlock_irq(&conf->resync_lock);
659 }
660 
661 static void lower_barrier(conf_t *conf)
662 {
663 	unsigned long flags;
664 	BUG_ON(conf->barrier <= 0);
665 	spin_lock_irqsave(&conf->resync_lock, flags);
666 	conf->barrier--;
667 	spin_unlock_irqrestore(&conf->resync_lock, flags);
668 	wake_up(&conf->wait_barrier);
669 }
670 
671 static void wait_barrier(conf_t *conf)
672 {
673 	spin_lock_irq(&conf->resync_lock);
674 	if (conf->barrier) {
675 		conf->nr_waiting++;
676 		wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
677 				    conf->resync_lock,
678 				    raid1_unplug(conf->mddev->queue));
679 		conf->nr_waiting--;
680 	}
681 	conf->nr_pending++;
682 	spin_unlock_irq(&conf->resync_lock);
683 }
684 
685 static void allow_barrier(conf_t *conf)
686 {
687 	unsigned long flags;
688 	spin_lock_irqsave(&conf->resync_lock, flags);
689 	conf->nr_pending--;
690 	spin_unlock_irqrestore(&conf->resync_lock, flags);
691 	wake_up(&conf->wait_barrier);
692 }
693 
694 static void freeze_array(conf_t *conf)
695 {
696 	/* stop syncio and normal IO and wait for everything to
697 	 * go quite.
698 	 * We increment barrier and nr_waiting, and then
699 	 * wait until nr_pending match nr_queued+1
700 	 * This is called in the context of one normal IO request
701 	 * that has failed. Thus any sync request that might be pending
702 	 * will be blocked by nr_pending, and we need to wait for
703 	 * pending IO requests to complete or be queued for re-try.
704 	 * Thus the number queued (nr_queued) plus this request (1)
705 	 * must match the number of pending IOs (nr_pending) before
706 	 * we continue.
707 	 */
708 	spin_lock_irq(&conf->resync_lock);
709 	conf->barrier++;
710 	conf->nr_waiting++;
711 	wait_event_lock_irq(conf->wait_barrier,
712 			    conf->nr_pending == conf->nr_queued+1,
713 			    conf->resync_lock,
714 			    ({ flush_pending_writes(conf);
715 			       raid1_unplug(conf->mddev->queue); }));
716 	spin_unlock_irq(&conf->resync_lock);
717 }
718 static void unfreeze_array(conf_t *conf)
719 {
720 	/* reverse the effect of the freeze */
721 	spin_lock_irq(&conf->resync_lock);
722 	conf->barrier--;
723 	conf->nr_waiting--;
724 	wake_up(&conf->wait_barrier);
725 	spin_unlock_irq(&conf->resync_lock);
726 }
727 
728 
729 /* duplicate the data pages for behind I/O
730  * We return a list of bio_vec rather than just page pointers
731  * as it makes freeing easier
732  */
733 static struct bio_vec *alloc_behind_pages(struct bio *bio)
734 {
735 	int i;
736 	struct bio_vec *bvec;
737 	struct bio_vec *pages = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
738 					GFP_NOIO);
739 	if (unlikely(!pages))
740 		goto do_sync_io;
741 
742 	bio_for_each_segment(bvec, bio, i) {
743 		pages[i].bv_page = alloc_page(GFP_NOIO);
744 		if (unlikely(!pages[i].bv_page))
745 			goto do_sync_io;
746 		memcpy(kmap(pages[i].bv_page) + bvec->bv_offset,
747 			kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
748 		kunmap(pages[i].bv_page);
749 		kunmap(bvec->bv_page);
750 	}
751 
752 	return pages;
753 
754 do_sync_io:
755 	if (pages)
756 		for (i = 0; i < bio->bi_vcnt && pages[i].bv_page; i++)
757 			put_page(pages[i].bv_page);
758 	kfree(pages);
759 	PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
760 	return NULL;
761 }
762 
763 static int make_request(mddev_t *mddev, struct bio * bio)
764 {
765 	conf_t *conf = mddev->private;
766 	mirror_info_t *mirror;
767 	r1bio_t *r1_bio;
768 	struct bio *read_bio;
769 	int i, targets = 0, disks;
770 	struct bitmap *bitmap;
771 	unsigned long flags;
772 	struct bio_vec *behind_pages = NULL;
773 	const int rw = bio_data_dir(bio);
774 	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
775 	const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
776 	mdk_rdev_t *blocked_rdev;
777 
778 	/*
779 	 * Register the new request and wait if the reconstruction
780 	 * thread has put up a bar for new requests.
781 	 * Continue immediately if no resync is active currently.
782 	 */
783 
784 	md_write_start(mddev, bio); /* wait on superblock update early */
785 
786 	if (bio_data_dir(bio) == WRITE &&
787 	    bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo &&
788 	    bio->bi_sector < mddev->suspend_hi) {
789 		/* As the suspend_* range is controlled by
790 		 * userspace, we want an interruptible
791 		 * wait.
792 		 */
793 		DEFINE_WAIT(w);
794 		for (;;) {
795 			flush_signals(current);
796 			prepare_to_wait(&conf->wait_barrier,
797 					&w, TASK_INTERRUPTIBLE);
798 			if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo ||
799 			    bio->bi_sector >= mddev->suspend_hi)
800 				break;
801 			schedule();
802 		}
803 		finish_wait(&conf->wait_barrier, &w);
804 	}
805 
806 	wait_barrier(conf);
807 
808 	bitmap = mddev->bitmap;
809 
810 	/*
811 	 * make_request() can abort the operation when READA is being
812 	 * used and no empty request is available.
813 	 *
814 	 */
815 	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
816 
817 	r1_bio->master_bio = bio;
818 	r1_bio->sectors = bio->bi_size >> 9;
819 	r1_bio->state = 0;
820 	r1_bio->mddev = mddev;
821 	r1_bio->sector = bio->bi_sector;
822 
823 	if (rw == READ) {
824 		/*
825 		 * read balancing logic:
826 		 */
827 		int rdisk = read_balance(conf, r1_bio);
828 
829 		if (rdisk < 0) {
830 			/* couldn't find anywhere to read from */
831 			raid_end_bio_io(r1_bio);
832 			return 0;
833 		}
834 		mirror = conf->mirrors + rdisk;
835 
836 		if (test_bit(WriteMostly, &mirror->rdev->flags) &&
837 		    bitmap) {
838 			/* Reading from a write-mostly device must
839 			 * take care not to over-take any writes
840 			 * that are 'behind'
841 			 */
842 			wait_event(bitmap->behind_wait,
843 				   atomic_read(&bitmap->behind_writes) == 0);
844 		}
845 		r1_bio->read_disk = rdisk;
846 
847 		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
848 
849 		r1_bio->bios[rdisk] = read_bio;
850 
851 		read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
852 		read_bio->bi_bdev = mirror->rdev->bdev;
853 		read_bio->bi_end_io = raid1_end_read_request;
854 		read_bio->bi_rw = READ | do_sync;
855 		read_bio->bi_private = r1_bio;
856 
857 		generic_make_request(read_bio);
858 		return 0;
859 	}
860 
861 	/*
862 	 * WRITE:
863 	 */
864 	/* first select target devices under spinlock and
865 	 * inc refcount on their rdev.  Record them by setting
866 	 * bios[x] to bio
867 	 */
868 	disks = conf->raid_disks;
869  retry_write:
870 	blocked_rdev = NULL;
871 	rcu_read_lock();
872 	for (i = 0;  i < disks; i++) {
873 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
874 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
875 			atomic_inc(&rdev->nr_pending);
876 			blocked_rdev = rdev;
877 			break;
878 		}
879 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
880 			atomic_inc(&rdev->nr_pending);
881 			if (test_bit(Faulty, &rdev->flags)) {
882 				rdev_dec_pending(rdev, mddev);
883 				r1_bio->bios[i] = NULL;
884 			} else {
885 				r1_bio->bios[i] = bio;
886 				targets++;
887 			}
888 		} else
889 			r1_bio->bios[i] = NULL;
890 	}
891 	rcu_read_unlock();
892 
893 	if (unlikely(blocked_rdev)) {
894 		/* Wait for this device to become unblocked */
895 		int j;
896 
897 		for (j = 0; j < i; j++)
898 			if (r1_bio->bios[j])
899 				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
900 
901 		allow_barrier(conf);
902 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
903 		wait_barrier(conf);
904 		goto retry_write;
905 	}
906 
907 	BUG_ON(targets == 0); /* we never fail the last device */
908 
909 	if (targets < conf->raid_disks) {
910 		/* array is degraded, we will not clear the bitmap
911 		 * on I/O completion (see raid1_end_write_request) */
912 		set_bit(R1BIO_Degraded, &r1_bio->state);
913 	}
914 
915 	/* do behind I/O ?
916 	 * Not if there are too many, or cannot allocate memory,
917 	 * or a reader on WriteMostly is waiting for behind writes
918 	 * to flush */
919 	if (bitmap &&
920 	    (atomic_read(&bitmap->behind_writes)
921 	     < mddev->bitmap_info.max_write_behind) &&
922 	    !waitqueue_active(&bitmap->behind_wait) &&
923 	    (behind_pages = alloc_behind_pages(bio)) != NULL)
924 		set_bit(R1BIO_BehindIO, &r1_bio->state);
925 
926 	atomic_set(&r1_bio->remaining, 1);
927 	atomic_set(&r1_bio->behind_remaining, 0);
928 
929 	bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors,
930 				test_bit(R1BIO_BehindIO, &r1_bio->state));
931 	for (i = 0; i < disks; i++) {
932 		struct bio *mbio;
933 		if (!r1_bio->bios[i])
934 			continue;
935 
936 		mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
937 		r1_bio->bios[i] = mbio;
938 
939 		mbio->bi_sector	= r1_bio->sector + conf->mirrors[i].rdev->data_offset;
940 		mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
941 		mbio->bi_end_io	= raid1_end_write_request;
942 		mbio->bi_rw = WRITE | do_flush_fua | do_sync;
943 		mbio->bi_private = r1_bio;
944 
945 		if (behind_pages) {
946 			struct bio_vec *bvec;
947 			int j;
948 
949 			/* Yes, I really want the '__' version so that
950 			 * we clear any unused pointer in the io_vec, rather
951 			 * than leave them unchanged.  This is important
952 			 * because when we come to free the pages, we won't
953 			 * know the original bi_idx, so we just free
954 			 * them all
955 			 */
956 			__bio_for_each_segment(bvec, mbio, j, 0)
957 				bvec->bv_page = behind_pages[j].bv_page;
958 			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
959 				atomic_inc(&r1_bio->behind_remaining);
960 		}
961 
962 		atomic_inc(&r1_bio->remaining);
963 		spin_lock_irqsave(&conf->device_lock, flags);
964 		bio_list_add(&conf->pending_bio_list, mbio);
965 		blk_plug_device_unlocked(mddev->queue);
966 		spin_unlock_irqrestore(&conf->device_lock, flags);
967 	}
968 	r1_bio_write_done(r1_bio, bio->bi_vcnt, behind_pages, behind_pages != NULL);
969 	kfree(behind_pages); /* the behind pages are attached to the bios now */
970 
971 	/* In case raid1d snuck in to freeze_array */
972 	wake_up(&conf->wait_barrier);
973 
974 	if (do_sync)
975 		md_wakeup_thread(mddev->thread);
976 
977 	return 0;
978 }
979 
980 static void status(struct seq_file *seq, mddev_t *mddev)
981 {
982 	conf_t *conf = mddev->private;
983 	int i;
984 
985 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
986 		   conf->raid_disks - mddev->degraded);
987 	rcu_read_lock();
988 	for (i = 0; i < conf->raid_disks; i++) {
989 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
990 		seq_printf(seq, "%s",
991 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
992 	}
993 	rcu_read_unlock();
994 	seq_printf(seq, "]");
995 }
996 
997 
998 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
999 {
1000 	char b[BDEVNAME_SIZE];
1001 	conf_t *conf = mddev->private;
1002 
1003 	/*
1004 	 * If it is not operational, then we have already marked it as dead
1005 	 * else if it is the last working disks, ignore the error, let the
1006 	 * next level up know.
1007 	 * else mark the drive as failed
1008 	 */
1009 	if (test_bit(In_sync, &rdev->flags)
1010 	    && (conf->raid_disks - mddev->degraded) == 1) {
1011 		/*
1012 		 * Don't fail the drive, act as though we were just a
1013 		 * normal single drive.
1014 		 * However don't try a recovery from this drive as
1015 		 * it is very likely to fail.
1016 		 */
1017 		mddev->recovery_disabled = 1;
1018 		return;
1019 	}
1020 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1021 		unsigned long flags;
1022 		spin_lock_irqsave(&conf->device_lock, flags);
1023 		mddev->degraded++;
1024 		set_bit(Faulty, &rdev->flags);
1025 		spin_unlock_irqrestore(&conf->device_lock, flags);
1026 		/*
1027 		 * if recovery is running, make sure it aborts.
1028 		 */
1029 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1030 	} else
1031 		set_bit(Faulty, &rdev->flags);
1032 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1033 	printk(KERN_ALERT
1034 	       "md/raid1:%s: Disk failure on %s, disabling device.\n"
1035 	       "md/raid1:%s: Operation continuing on %d devices.\n",
1036 	       mdname(mddev), bdevname(rdev->bdev, b),
1037 	       mdname(mddev), conf->raid_disks - mddev->degraded);
1038 }
1039 
1040 static void print_conf(conf_t *conf)
1041 {
1042 	int i;
1043 
1044 	printk(KERN_DEBUG "RAID1 conf printout:\n");
1045 	if (!conf) {
1046 		printk(KERN_DEBUG "(!conf)\n");
1047 		return;
1048 	}
1049 	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1050 		conf->raid_disks);
1051 
1052 	rcu_read_lock();
1053 	for (i = 0; i < conf->raid_disks; i++) {
1054 		char b[BDEVNAME_SIZE];
1055 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
1056 		if (rdev)
1057 			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1058 			       i, !test_bit(In_sync, &rdev->flags),
1059 			       !test_bit(Faulty, &rdev->flags),
1060 			       bdevname(rdev->bdev,b));
1061 	}
1062 	rcu_read_unlock();
1063 }
1064 
1065 static void close_sync(conf_t *conf)
1066 {
1067 	wait_barrier(conf);
1068 	allow_barrier(conf);
1069 
1070 	mempool_destroy(conf->r1buf_pool);
1071 	conf->r1buf_pool = NULL;
1072 }
1073 
1074 static int raid1_spare_active(mddev_t *mddev)
1075 {
1076 	int i;
1077 	conf_t *conf = mddev->private;
1078 	int count = 0;
1079 	unsigned long flags;
1080 
1081 	/*
1082 	 * Find all failed disks within the RAID1 configuration
1083 	 * and mark them readable.
1084 	 * Called under mddev lock, so rcu protection not needed.
1085 	 */
1086 	for (i = 0; i < conf->raid_disks; i++) {
1087 		mdk_rdev_t *rdev = conf->mirrors[i].rdev;
1088 		if (rdev
1089 		    && !test_bit(Faulty, &rdev->flags)
1090 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1091 			count++;
1092 			sysfs_notify_dirent(rdev->sysfs_state);
1093 		}
1094 	}
1095 	spin_lock_irqsave(&conf->device_lock, flags);
1096 	mddev->degraded -= count;
1097 	spin_unlock_irqrestore(&conf->device_lock, flags);
1098 
1099 	print_conf(conf);
1100 	return count;
1101 }
1102 
1103 
1104 static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1105 {
1106 	conf_t *conf = mddev->private;
1107 	int err = -EEXIST;
1108 	int mirror = 0;
1109 	mirror_info_t *p;
1110 	int first = 0;
1111 	int last = mddev->raid_disks - 1;
1112 
1113 	if (rdev->raid_disk >= 0)
1114 		first = last = rdev->raid_disk;
1115 
1116 	for (mirror = first; mirror <= last; mirror++)
1117 		if ( !(p=conf->mirrors+mirror)->rdev) {
1118 
1119 			disk_stack_limits(mddev->gendisk, rdev->bdev,
1120 					  rdev->data_offset << 9);
1121 			/* as we don't honour merge_bvec_fn, we must
1122 			 * never risk violating it, so limit
1123 			 * ->max_segments to one lying with a single
1124 			 * page, as a one page request is never in
1125 			 * violation.
1126 			 */
1127 			if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1128 				blk_queue_max_segments(mddev->queue, 1);
1129 				blk_queue_segment_boundary(mddev->queue,
1130 							   PAGE_CACHE_SIZE - 1);
1131 			}
1132 
1133 			p->head_position = 0;
1134 			rdev->raid_disk = mirror;
1135 			err = 0;
1136 			/* As all devices are equivalent, we don't need a full recovery
1137 			 * if this was recently any drive of the array
1138 			 */
1139 			if (rdev->saved_raid_disk < 0)
1140 				conf->fullsync = 1;
1141 			rcu_assign_pointer(p->rdev, rdev);
1142 			break;
1143 		}
1144 	md_integrity_add_rdev(rdev, mddev);
1145 	print_conf(conf);
1146 	return err;
1147 }
1148 
1149 static int raid1_remove_disk(mddev_t *mddev, int number)
1150 {
1151 	conf_t *conf = mddev->private;
1152 	int err = 0;
1153 	mdk_rdev_t *rdev;
1154 	mirror_info_t *p = conf->mirrors+ number;
1155 
1156 	print_conf(conf);
1157 	rdev = p->rdev;
1158 	if (rdev) {
1159 		if (test_bit(In_sync, &rdev->flags) ||
1160 		    atomic_read(&rdev->nr_pending)) {
1161 			err = -EBUSY;
1162 			goto abort;
1163 		}
1164 		/* Only remove non-faulty devices if recovery
1165 		 * is not possible.
1166 		 */
1167 		if (!test_bit(Faulty, &rdev->flags) &&
1168 		    !mddev->recovery_disabled &&
1169 		    mddev->degraded < conf->raid_disks) {
1170 			err = -EBUSY;
1171 			goto abort;
1172 		}
1173 		p->rdev = NULL;
1174 		synchronize_rcu();
1175 		if (atomic_read(&rdev->nr_pending)) {
1176 			/* lost the race, try later */
1177 			err = -EBUSY;
1178 			p->rdev = rdev;
1179 			goto abort;
1180 		}
1181 		md_integrity_register(mddev);
1182 	}
1183 abort:
1184 
1185 	print_conf(conf);
1186 	return err;
1187 }
1188 
1189 
1190 static void end_sync_read(struct bio *bio, int error)
1191 {
1192 	r1bio_t *r1_bio = bio->bi_private;
1193 	int i;
1194 
1195 	for (i=r1_bio->mddev->raid_disks; i--; )
1196 		if (r1_bio->bios[i] == bio)
1197 			break;
1198 	BUG_ON(i < 0);
1199 	update_head_pos(i, r1_bio);
1200 	/*
1201 	 * we have read a block, now it needs to be re-written,
1202 	 * or re-read if the read failed.
1203 	 * We don't do much here, just schedule handling by raid1d
1204 	 */
1205 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1206 		set_bit(R1BIO_Uptodate, &r1_bio->state);
1207 
1208 	if (atomic_dec_and_test(&r1_bio->remaining))
1209 		reschedule_retry(r1_bio);
1210 }
1211 
1212 static void end_sync_write(struct bio *bio, int error)
1213 {
1214 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1215 	r1bio_t *r1_bio = bio->bi_private;
1216 	mddev_t *mddev = r1_bio->mddev;
1217 	conf_t *conf = mddev->private;
1218 	int i;
1219 	int mirror=0;
1220 
1221 	for (i = 0; i < conf->raid_disks; i++)
1222 		if (r1_bio->bios[i] == bio) {
1223 			mirror = i;
1224 			break;
1225 		}
1226 	if (!uptodate) {
1227 		sector_t sync_blocks = 0;
1228 		sector_t s = r1_bio->sector;
1229 		long sectors_to_go = r1_bio->sectors;
1230 		/* make sure these bits doesn't get cleared. */
1231 		do {
1232 			bitmap_end_sync(mddev->bitmap, s,
1233 					&sync_blocks, 1);
1234 			s += sync_blocks;
1235 			sectors_to_go -= sync_blocks;
1236 		} while (sectors_to_go > 0);
1237 		md_error(mddev, conf->mirrors[mirror].rdev);
1238 	}
1239 
1240 	update_head_pos(mirror, r1_bio);
1241 
1242 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1243 		sector_t s = r1_bio->sectors;
1244 		put_buf(r1_bio);
1245 		md_done_sync(mddev, s, uptodate);
1246 	}
1247 }
1248 
1249 static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio)
1250 {
1251 	conf_t *conf = mddev->private;
1252 	int i;
1253 	int disks = conf->raid_disks;
1254 	struct bio *bio, *wbio;
1255 
1256 	bio = r1_bio->bios[r1_bio->read_disk];
1257 
1258 
1259 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1260 		/* We have read all readable devices.  If we haven't
1261 		 * got the block, then there is no hope left.
1262 		 * If we have, then we want to do a comparison
1263 		 * and skip the write if everything is the same.
1264 		 * If any blocks failed to read, then we need to
1265 		 * attempt an over-write
1266 		 */
1267 		int primary;
1268 		if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1269 			for (i=0; i<mddev->raid_disks; i++)
1270 				if (r1_bio->bios[i]->bi_end_io == end_sync_read)
1271 					md_error(mddev, conf->mirrors[i].rdev);
1272 
1273 			md_done_sync(mddev, r1_bio->sectors, 1);
1274 			put_buf(r1_bio);
1275 			return;
1276 		}
1277 		for (primary=0; primary<mddev->raid_disks; primary++)
1278 			if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1279 			    test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1280 				r1_bio->bios[primary]->bi_end_io = NULL;
1281 				rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1282 				break;
1283 			}
1284 		r1_bio->read_disk = primary;
1285 		for (i=0; i<mddev->raid_disks; i++)
1286 			if (r1_bio->bios[i]->bi_end_io == end_sync_read) {
1287 				int j;
1288 				int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
1289 				struct bio *pbio = r1_bio->bios[primary];
1290 				struct bio *sbio = r1_bio->bios[i];
1291 
1292 				if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1293 					for (j = vcnt; j-- ; ) {
1294 						struct page *p, *s;
1295 						p = pbio->bi_io_vec[j].bv_page;
1296 						s = sbio->bi_io_vec[j].bv_page;
1297 						if (memcmp(page_address(p),
1298 							   page_address(s),
1299 							   PAGE_SIZE))
1300 							break;
1301 					}
1302 				} else
1303 					j = 0;
1304 				if (j >= 0)
1305 					mddev->resync_mismatches += r1_bio->sectors;
1306 				if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1307 					      && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1308 					sbio->bi_end_io = NULL;
1309 					rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1310 				} else {
1311 					/* fixup the bio for reuse */
1312 					int size;
1313 					sbio->bi_vcnt = vcnt;
1314 					sbio->bi_size = r1_bio->sectors << 9;
1315 					sbio->bi_idx = 0;
1316 					sbio->bi_phys_segments = 0;
1317 					sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1318 					sbio->bi_flags |= 1 << BIO_UPTODATE;
1319 					sbio->bi_next = NULL;
1320 					sbio->bi_sector = r1_bio->sector +
1321 						conf->mirrors[i].rdev->data_offset;
1322 					sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1323 					size = sbio->bi_size;
1324 					for (j = 0; j < vcnt ; j++) {
1325 						struct bio_vec *bi;
1326 						bi = &sbio->bi_io_vec[j];
1327 						bi->bv_offset = 0;
1328 						if (size > PAGE_SIZE)
1329 							bi->bv_len = PAGE_SIZE;
1330 						else
1331 							bi->bv_len = size;
1332 						size -= PAGE_SIZE;
1333 						memcpy(page_address(bi->bv_page),
1334 						       page_address(pbio->bi_io_vec[j].bv_page),
1335 						       PAGE_SIZE);
1336 					}
1337 
1338 				}
1339 			}
1340 	}
1341 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1342 		/* ouch - failed to read all of that.
1343 		 * Try some synchronous reads of other devices to get
1344 		 * good data, much like with normal read errors.  Only
1345 		 * read into the pages we already have so we don't
1346 		 * need to re-issue the read request.
1347 		 * We don't need to freeze the array, because being in an
1348 		 * active sync request, there is no normal IO, and
1349 		 * no overlapping syncs.
1350 		 */
1351 		sector_t sect = r1_bio->sector;
1352 		int sectors = r1_bio->sectors;
1353 		int idx = 0;
1354 
1355 		while(sectors) {
1356 			int s = sectors;
1357 			int d = r1_bio->read_disk;
1358 			int success = 0;
1359 			mdk_rdev_t *rdev;
1360 
1361 			if (s > (PAGE_SIZE>>9))
1362 				s = PAGE_SIZE >> 9;
1363 			do {
1364 				if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1365 					/* No rcu protection needed here devices
1366 					 * can only be removed when no resync is
1367 					 * active, and resync is currently active
1368 					 */
1369 					rdev = conf->mirrors[d].rdev;
1370 					if (sync_page_io(rdev,
1371 							 sect,
1372 							 s<<9,
1373 							 bio->bi_io_vec[idx].bv_page,
1374 							 READ, false)) {
1375 						success = 1;
1376 						break;
1377 					}
1378 				}
1379 				d++;
1380 				if (d == conf->raid_disks)
1381 					d = 0;
1382 			} while (!success && d != r1_bio->read_disk);
1383 
1384 			if (success) {
1385 				int start = d;
1386 				/* write it back and re-read */
1387 				set_bit(R1BIO_Uptodate, &r1_bio->state);
1388 				while (d != r1_bio->read_disk) {
1389 					if (d == 0)
1390 						d = conf->raid_disks;
1391 					d--;
1392 					if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1393 						continue;
1394 					rdev = conf->mirrors[d].rdev;
1395 					atomic_add(s, &rdev->corrected_errors);
1396 					if (sync_page_io(rdev,
1397 							 sect,
1398 							 s<<9,
1399 							 bio->bi_io_vec[idx].bv_page,
1400 							 WRITE, false) == 0)
1401 						md_error(mddev, rdev);
1402 				}
1403 				d = start;
1404 				while (d != r1_bio->read_disk) {
1405 					if (d == 0)
1406 						d = conf->raid_disks;
1407 					d--;
1408 					if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1409 						continue;
1410 					rdev = conf->mirrors[d].rdev;
1411 					if (sync_page_io(rdev,
1412 							 sect,
1413 							 s<<9,
1414 							 bio->bi_io_vec[idx].bv_page,
1415 							 READ, false) == 0)
1416 						md_error(mddev, rdev);
1417 				}
1418 			} else {
1419 				char b[BDEVNAME_SIZE];
1420 				/* Cannot read from anywhere, array is toast */
1421 				md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
1422 				printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1423 				       " for block %llu\n",
1424 				       mdname(mddev),
1425 				       bdevname(bio->bi_bdev, b),
1426 				       (unsigned long long)r1_bio->sector);
1427 				md_done_sync(mddev, r1_bio->sectors, 0);
1428 				put_buf(r1_bio);
1429 				return;
1430 			}
1431 			sectors -= s;
1432 			sect += s;
1433 			idx ++;
1434 		}
1435 	}
1436 
1437 	/*
1438 	 * schedule writes
1439 	 */
1440 	atomic_set(&r1_bio->remaining, 1);
1441 	for (i = 0; i < disks ; i++) {
1442 		wbio = r1_bio->bios[i];
1443 		if (wbio->bi_end_io == NULL ||
1444 		    (wbio->bi_end_io == end_sync_read &&
1445 		     (i == r1_bio->read_disk ||
1446 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1447 			continue;
1448 
1449 		wbio->bi_rw = WRITE;
1450 		wbio->bi_end_io = end_sync_write;
1451 		atomic_inc(&r1_bio->remaining);
1452 		md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1453 
1454 		generic_make_request(wbio);
1455 	}
1456 
1457 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1458 		/* if we're here, all write(s) have completed, so clean up */
1459 		md_done_sync(mddev, r1_bio->sectors, 1);
1460 		put_buf(r1_bio);
1461 	}
1462 }
1463 
1464 /*
1465  * This is a kernel thread which:
1466  *
1467  *	1.	Retries failed read operations on working mirrors.
1468  *	2.	Updates the raid superblock when problems encounter.
1469  *	3.	Performs writes following reads for array syncronising.
1470  */
1471 
1472 static void fix_read_error(conf_t *conf, int read_disk,
1473 			   sector_t sect, int sectors)
1474 {
1475 	mddev_t *mddev = conf->mddev;
1476 	while(sectors) {
1477 		int s = sectors;
1478 		int d = read_disk;
1479 		int success = 0;
1480 		int start;
1481 		mdk_rdev_t *rdev;
1482 
1483 		if (s > (PAGE_SIZE>>9))
1484 			s = PAGE_SIZE >> 9;
1485 
1486 		do {
1487 			/* Note: no rcu protection needed here
1488 			 * as this is synchronous in the raid1d thread
1489 			 * which is the thread that might remove
1490 			 * a device.  If raid1d ever becomes multi-threaded....
1491 			 */
1492 			rdev = conf->mirrors[d].rdev;
1493 			if (rdev &&
1494 			    test_bit(In_sync, &rdev->flags) &&
1495 			    sync_page_io(rdev, sect, s<<9,
1496 					 conf->tmppage, READ, false))
1497 				success = 1;
1498 			else {
1499 				d++;
1500 				if (d == conf->raid_disks)
1501 					d = 0;
1502 			}
1503 		} while (!success && d != read_disk);
1504 
1505 		if (!success) {
1506 			/* Cannot read from anywhere -- bye bye array */
1507 			md_error(mddev, conf->mirrors[read_disk].rdev);
1508 			break;
1509 		}
1510 		/* write it back and re-read */
1511 		start = d;
1512 		while (d != read_disk) {
1513 			if (d==0)
1514 				d = conf->raid_disks;
1515 			d--;
1516 			rdev = conf->mirrors[d].rdev;
1517 			if (rdev &&
1518 			    test_bit(In_sync, &rdev->flags)) {
1519 				if (sync_page_io(rdev, sect, s<<9,
1520 						 conf->tmppage, WRITE, false)
1521 				    == 0)
1522 					/* Well, this device is dead */
1523 					md_error(mddev, rdev);
1524 			}
1525 		}
1526 		d = start;
1527 		while (d != read_disk) {
1528 			char b[BDEVNAME_SIZE];
1529 			if (d==0)
1530 				d = conf->raid_disks;
1531 			d--;
1532 			rdev = conf->mirrors[d].rdev;
1533 			if (rdev &&
1534 			    test_bit(In_sync, &rdev->flags)) {
1535 				if (sync_page_io(rdev, sect, s<<9,
1536 						 conf->tmppage, READ, false)
1537 				    == 0)
1538 					/* Well, this device is dead */
1539 					md_error(mddev, rdev);
1540 				else {
1541 					atomic_add(s, &rdev->corrected_errors);
1542 					printk(KERN_INFO
1543 					       "md/raid1:%s: read error corrected "
1544 					       "(%d sectors at %llu on %s)\n",
1545 					       mdname(mddev), s,
1546 					       (unsigned long long)(sect +
1547 					           rdev->data_offset),
1548 					       bdevname(rdev->bdev, b));
1549 				}
1550 			}
1551 		}
1552 		sectors -= s;
1553 		sect += s;
1554 	}
1555 }
1556 
1557 static void raid1d(mddev_t *mddev)
1558 {
1559 	r1bio_t *r1_bio;
1560 	struct bio *bio;
1561 	unsigned long flags;
1562 	conf_t *conf = mddev->private;
1563 	struct list_head *head = &conf->retry_list;
1564 	int unplug=0;
1565 	mdk_rdev_t *rdev;
1566 
1567 	md_check_recovery(mddev);
1568 
1569 	for (;;) {
1570 		char b[BDEVNAME_SIZE];
1571 
1572 		unplug += flush_pending_writes(conf);
1573 
1574 		spin_lock_irqsave(&conf->device_lock, flags);
1575 		if (list_empty(head)) {
1576 			spin_unlock_irqrestore(&conf->device_lock, flags);
1577 			break;
1578 		}
1579 		r1_bio = list_entry(head->prev, r1bio_t, retry_list);
1580 		list_del(head->prev);
1581 		conf->nr_queued--;
1582 		spin_unlock_irqrestore(&conf->device_lock, flags);
1583 
1584 		mddev = r1_bio->mddev;
1585 		conf = mddev->private;
1586 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
1587 			sync_request_write(mddev, r1_bio);
1588 			unplug = 1;
1589 		} else {
1590 			int disk;
1591 
1592 			/* we got a read error. Maybe the drive is bad.  Maybe just
1593 			 * the block and we can fix it.
1594 			 * We freeze all other IO, and try reading the block from
1595 			 * other devices.  When we find one, we re-write
1596 			 * and check it that fixes the read error.
1597 			 * This is all done synchronously while the array is
1598 			 * frozen
1599 			 */
1600 			if (mddev->ro == 0) {
1601 				freeze_array(conf);
1602 				fix_read_error(conf, r1_bio->read_disk,
1603 					       r1_bio->sector,
1604 					       r1_bio->sectors);
1605 				unfreeze_array(conf);
1606 			} else
1607 				md_error(mddev,
1608 					 conf->mirrors[r1_bio->read_disk].rdev);
1609 
1610 			bio = r1_bio->bios[r1_bio->read_disk];
1611 			if ((disk=read_balance(conf, r1_bio)) == -1) {
1612 				printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
1613 				       " read error for block %llu\n",
1614 				       mdname(mddev),
1615 				       bdevname(bio->bi_bdev,b),
1616 				       (unsigned long long)r1_bio->sector);
1617 				raid_end_bio_io(r1_bio);
1618 			} else {
1619 				const unsigned long do_sync = r1_bio->master_bio->bi_rw & REQ_SYNC;
1620 				r1_bio->bios[r1_bio->read_disk] =
1621 					mddev->ro ? IO_BLOCKED : NULL;
1622 				r1_bio->read_disk = disk;
1623 				bio_put(bio);
1624 				bio = bio_clone_mddev(r1_bio->master_bio,
1625 						      GFP_NOIO, mddev);
1626 				r1_bio->bios[r1_bio->read_disk] = bio;
1627 				rdev = conf->mirrors[disk].rdev;
1628 				if (printk_ratelimit())
1629 					printk(KERN_ERR "md/raid1:%s: redirecting sector %llu to"
1630 					       " other mirror: %s\n",
1631 					       mdname(mddev),
1632 					       (unsigned long long)r1_bio->sector,
1633 					       bdevname(rdev->bdev,b));
1634 				bio->bi_sector = r1_bio->sector + rdev->data_offset;
1635 				bio->bi_bdev = rdev->bdev;
1636 				bio->bi_end_io = raid1_end_read_request;
1637 				bio->bi_rw = READ | do_sync;
1638 				bio->bi_private = r1_bio;
1639 				unplug = 1;
1640 				generic_make_request(bio);
1641 			}
1642 		}
1643 		cond_resched();
1644 	}
1645 	if (unplug)
1646 		unplug_slaves(mddev);
1647 }
1648 
1649 
1650 static int init_resync(conf_t *conf)
1651 {
1652 	int buffs;
1653 
1654 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1655 	BUG_ON(conf->r1buf_pool);
1656 	conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
1657 					  conf->poolinfo);
1658 	if (!conf->r1buf_pool)
1659 		return -ENOMEM;
1660 	conf->next_resync = 0;
1661 	return 0;
1662 }
1663 
1664 /*
1665  * perform a "sync" on one "block"
1666  *
1667  * We need to make sure that no normal I/O request - particularly write
1668  * requests - conflict with active sync requests.
1669  *
1670  * This is achieved by tracking pending requests and a 'barrier' concept
1671  * that can be installed to exclude normal IO requests.
1672  */
1673 
1674 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1675 {
1676 	conf_t *conf = mddev->private;
1677 	r1bio_t *r1_bio;
1678 	struct bio *bio;
1679 	sector_t max_sector, nr_sectors;
1680 	int disk = -1;
1681 	int i;
1682 	int wonly = -1;
1683 	int write_targets = 0, read_targets = 0;
1684 	sector_t sync_blocks;
1685 	int still_degraded = 0;
1686 
1687 	if (!conf->r1buf_pool)
1688 		if (init_resync(conf))
1689 			return 0;
1690 
1691 	max_sector = mddev->dev_sectors;
1692 	if (sector_nr >= max_sector) {
1693 		/* If we aborted, we need to abort the
1694 		 * sync on the 'current' bitmap chunk (there will
1695 		 * only be one in raid1 resync.
1696 		 * We can find the current addess in mddev->curr_resync
1697 		 */
1698 		if (mddev->curr_resync < max_sector) /* aborted */
1699 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1700 						&sync_blocks, 1);
1701 		else /* completed sync */
1702 			conf->fullsync = 0;
1703 
1704 		bitmap_close_sync(mddev->bitmap);
1705 		close_sync(conf);
1706 		return 0;
1707 	}
1708 
1709 	if (mddev->bitmap == NULL &&
1710 	    mddev->recovery_cp == MaxSector &&
1711 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
1712 	    conf->fullsync == 0) {
1713 		*skipped = 1;
1714 		return max_sector - sector_nr;
1715 	}
1716 	/* before building a request, check if we can skip these blocks..
1717 	 * This call the bitmap_start_sync doesn't actually record anything
1718 	 */
1719 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
1720 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1721 		/* We can skip this block, and probably several more */
1722 		*skipped = 1;
1723 		return sync_blocks;
1724 	}
1725 	/*
1726 	 * If there is non-resync activity waiting for a turn,
1727 	 * and resync is going fast enough,
1728 	 * then let it though before starting on this new sync request.
1729 	 */
1730 	if (!go_faster && conf->nr_waiting)
1731 		msleep_interruptible(1000);
1732 
1733 	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
1734 	r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
1735 	raise_barrier(conf);
1736 
1737 	conf->next_resync = sector_nr;
1738 
1739 	rcu_read_lock();
1740 	/*
1741 	 * If we get a correctably read error during resync or recovery,
1742 	 * we might want to read from a different device.  So we
1743 	 * flag all drives that could conceivably be read from for READ,
1744 	 * and any others (which will be non-In_sync devices) for WRITE.
1745 	 * If a read fails, we try reading from something else for which READ
1746 	 * is OK.
1747 	 */
1748 
1749 	r1_bio->mddev = mddev;
1750 	r1_bio->sector = sector_nr;
1751 	r1_bio->state = 0;
1752 	set_bit(R1BIO_IsSync, &r1_bio->state);
1753 
1754 	for (i=0; i < conf->raid_disks; i++) {
1755 		mdk_rdev_t *rdev;
1756 		bio = r1_bio->bios[i];
1757 
1758 		/* take from bio_init */
1759 		bio->bi_next = NULL;
1760 		bio->bi_flags &= ~(BIO_POOL_MASK-1);
1761 		bio->bi_flags |= 1 << BIO_UPTODATE;
1762 		bio->bi_comp_cpu = -1;
1763 		bio->bi_rw = READ;
1764 		bio->bi_vcnt = 0;
1765 		bio->bi_idx = 0;
1766 		bio->bi_phys_segments = 0;
1767 		bio->bi_size = 0;
1768 		bio->bi_end_io = NULL;
1769 		bio->bi_private = NULL;
1770 
1771 		rdev = rcu_dereference(conf->mirrors[i].rdev);
1772 		if (rdev == NULL ||
1773 			   test_bit(Faulty, &rdev->flags)) {
1774 			still_degraded = 1;
1775 			continue;
1776 		} else if (!test_bit(In_sync, &rdev->flags)) {
1777 			bio->bi_rw = WRITE;
1778 			bio->bi_end_io = end_sync_write;
1779 			write_targets ++;
1780 		} else {
1781 			/* may need to read from here */
1782 			bio->bi_rw = READ;
1783 			bio->bi_end_io = end_sync_read;
1784 			if (test_bit(WriteMostly, &rdev->flags)) {
1785 				if (wonly < 0)
1786 					wonly = i;
1787 			} else {
1788 				if (disk < 0)
1789 					disk = i;
1790 			}
1791 			read_targets++;
1792 		}
1793 		atomic_inc(&rdev->nr_pending);
1794 		bio->bi_sector = sector_nr + rdev->data_offset;
1795 		bio->bi_bdev = rdev->bdev;
1796 		bio->bi_private = r1_bio;
1797 	}
1798 	rcu_read_unlock();
1799 	if (disk < 0)
1800 		disk = wonly;
1801 	r1_bio->read_disk = disk;
1802 
1803 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
1804 		/* extra read targets are also write targets */
1805 		write_targets += read_targets-1;
1806 
1807 	if (write_targets == 0 || read_targets == 0) {
1808 		/* There is nowhere to write, so all non-sync
1809 		 * drives must be failed - so we are finished
1810 		 */
1811 		sector_t rv = max_sector - sector_nr;
1812 		*skipped = 1;
1813 		put_buf(r1_bio);
1814 		return rv;
1815 	}
1816 
1817 	if (max_sector > mddev->resync_max)
1818 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
1819 	nr_sectors = 0;
1820 	sync_blocks = 0;
1821 	do {
1822 		struct page *page;
1823 		int len = PAGE_SIZE;
1824 		if (sector_nr + (len>>9) > max_sector)
1825 			len = (max_sector - sector_nr) << 9;
1826 		if (len == 0)
1827 			break;
1828 		if (sync_blocks == 0) {
1829 			if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1830 					       &sync_blocks, still_degraded) &&
1831 			    !conf->fullsync &&
1832 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1833 				break;
1834 			BUG_ON(sync_blocks < (PAGE_SIZE>>9));
1835 			if ((len >> 9) > sync_blocks)
1836 				len = sync_blocks<<9;
1837 		}
1838 
1839 		for (i=0 ; i < conf->raid_disks; i++) {
1840 			bio = r1_bio->bios[i];
1841 			if (bio->bi_end_io) {
1842 				page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1843 				if (bio_add_page(bio, page, len, 0) == 0) {
1844 					/* stop here */
1845 					bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1846 					while (i > 0) {
1847 						i--;
1848 						bio = r1_bio->bios[i];
1849 						if (bio->bi_end_io==NULL)
1850 							continue;
1851 						/* remove last page from this bio */
1852 						bio->bi_vcnt--;
1853 						bio->bi_size -= len;
1854 						bio->bi_flags &= ~(1<< BIO_SEG_VALID);
1855 					}
1856 					goto bio_full;
1857 				}
1858 			}
1859 		}
1860 		nr_sectors += len>>9;
1861 		sector_nr += len>>9;
1862 		sync_blocks -= (len>>9);
1863 	} while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
1864  bio_full:
1865 	r1_bio->sectors = nr_sectors;
1866 
1867 	/* For a user-requested sync, we read all readable devices and do a
1868 	 * compare
1869 	 */
1870 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1871 		atomic_set(&r1_bio->remaining, read_targets);
1872 		for (i=0; i<conf->raid_disks; i++) {
1873 			bio = r1_bio->bios[i];
1874 			if (bio->bi_end_io == end_sync_read) {
1875 				md_sync_acct(bio->bi_bdev, nr_sectors);
1876 				generic_make_request(bio);
1877 			}
1878 		}
1879 	} else {
1880 		atomic_set(&r1_bio->remaining, 1);
1881 		bio = r1_bio->bios[r1_bio->read_disk];
1882 		md_sync_acct(bio->bi_bdev, nr_sectors);
1883 		generic_make_request(bio);
1884 
1885 	}
1886 	return nr_sectors;
1887 }
1888 
1889 static sector_t raid1_size(mddev_t *mddev, sector_t sectors, int raid_disks)
1890 {
1891 	if (sectors)
1892 		return sectors;
1893 
1894 	return mddev->dev_sectors;
1895 }
1896 
1897 static conf_t *setup_conf(mddev_t *mddev)
1898 {
1899 	conf_t *conf;
1900 	int i;
1901 	mirror_info_t *disk;
1902 	mdk_rdev_t *rdev;
1903 	int err = -ENOMEM;
1904 
1905 	conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
1906 	if (!conf)
1907 		goto abort;
1908 
1909 	conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
1910 				 GFP_KERNEL);
1911 	if (!conf->mirrors)
1912 		goto abort;
1913 
1914 	conf->tmppage = alloc_page(GFP_KERNEL);
1915 	if (!conf->tmppage)
1916 		goto abort;
1917 
1918 	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1919 	if (!conf->poolinfo)
1920 		goto abort;
1921 	conf->poolinfo->raid_disks = mddev->raid_disks;
1922 	conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
1923 					  r1bio_pool_free,
1924 					  conf->poolinfo);
1925 	if (!conf->r1bio_pool)
1926 		goto abort;
1927 
1928 	conf->poolinfo->mddev = mddev;
1929 
1930 	spin_lock_init(&conf->device_lock);
1931 	list_for_each_entry(rdev, &mddev->disks, same_set) {
1932 		int disk_idx = rdev->raid_disk;
1933 		if (disk_idx >= mddev->raid_disks
1934 		    || disk_idx < 0)
1935 			continue;
1936 		disk = conf->mirrors + disk_idx;
1937 
1938 		disk->rdev = rdev;
1939 
1940 		disk->head_position = 0;
1941 	}
1942 	conf->raid_disks = mddev->raid_disks;
1943 	conf->mddev = mddev;
1944 	INIT_LIST_HEAD(&conf->retry_list);
1945 
1946 	spin_lock_init(&conf->resync_lock);
1947 	init_waitqueue_head(&conf->wait_barrier);
1948 
1949 	bio_list_init(&conf->pending_bio_list);
1950 
1951 	conf->last_used = -1;
1952 	for (i = 0; i < conf->raid_disks; i++) {
1953 
1954 		disk = conf->mirrors + i;
1955 
1956 		if (!disk->rdev ||
1957 		    !test_bit(In_sync, &disk->rdev->flags)) {
1958 			disk->head_position = 0;
1959 			if (disk->rdev)
1960 				conf->fullsync = 1;
1961 		} else if (conf->last_used < 0)
1962 			/*
1963 			 * The first working device is used as a
1964 			 * starting point to read balancing.
1965 			 */
1966 			conf->last_used = i;
1967 	}
1968 
1969 	err = -EIO;
1970 	if (conf->last_used < 0) {
1971 		printk(KERN_ERR "md/raid1:%s: no operational mirrors\n",
1972 		       mdname(mddev));
1973 		goto abort;
1974 	}
1975 	err = -ENOMEM;
1976 	conf->thread = md_register_thread(raid1d, mddev, NULL);
1977 	if (!conf->thread) {
1978 		printk(KERN_ERR
1979 		       "md/raid1:%s: couldn't allocate thread\n",
1980 		       mdname(mddev));
1981 		goto abort;
1982 	}
1983 
1984 	return conf;
1985 
1986  abort:
1987 	if (conf) {
1988 		if (conf->r1bio_pool)
1989 			mempool_destroy(conf->r1bio_pool);
1990 		kfree(conf->mirrors);
1991 		safe_put_page(conf->tmppage);
1992 		kfree(conf->poolinfo);
1993 		kfree(conf);
1994 	}
1995 	return ERR_PTR(err);
1996 }
1997 
1998 static int run(mddev_t *mddev)
1999 {
2000 	conf_t *conf;
2001 	int i;
2002 	mdk_rdev_t *rdev;
2003 
2004 	if (mddev->level != 1) {
2005 		printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2006 		       mdname(mddev), mddev->level);
2007 		return -EIO;
2008 	}
2009 	if (mddev->reshape_position != MaxSector) {
2010 		printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2011 		       mdname(mddev));
2012 		return -EIO;
2013 	}
2014 	/*
2015 	 * copy the already verified devices into our private RAID1
2016 	 * bookkeeping area. [whatever we allocate in run(),
2017 	 * should be freed in stop()]
2018 	 */
2019 	if (mddev->private == NULL)
2020 		conf = setup_conf(mddev);
2021 	else
2022 		conf = mddev->private;
2023 
2024 	if (IS_ERR(conf))
2025 		return PTR_ERR(conf);
2026 
2027 	list_for_each_entry(rdev, &mddev->disks, same_set) {
2028 		disk_stack_limits(mddev->gendisk, rdev->bdev,
2029 				  rdev->data_offset << 9);
2030 		/* as we don't honour merge_bvec_fn, we must never risk
2031 		 * violating it, so limit ->max_segments to 1 lying within
2032 		 * a single page, as a one page request is never in violation.
2033 		 */
2034 		if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
2035 			blk_queue_max_segments(mddev->queue, 1);
2036 			blk_queue_segment_boundary(mddev->queue,
2037 						   PAGE_CACHE_SIZE - 1);
2038 		}
2039 	}
2040 
2041 	mddev->degraded = 0;
2042 	for (i=0; i < conf->raid_disks; i++)
2043 		if (conf->mirrors[i].rdev == NULL ||
2044 		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2045 		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2046 			mddev->degraded++;
2047 
2048 	if (conf->raid_disks - mddev->degraded == 1)
2049 		mddev->recovery_cp = MaxSector;
2050 
2051 	if (mddev->recovery_cp != MaxSector)
2052 		printk(KERN_NOTICE "md/raid1:%s: not clean"
2053 		       " -- starting background reconstruction\n",
2054 		       mdname(mddev));
2055 	printk(KERN_INFO
2056 		"md/raid1:%s: active with %d out of %d mirrors\n",
2057 		mdname(mddev), mddev->raid_disks - mddev->degraded,
2058 		mddev->raid_disks);
2059 
2060 	/*
2061 	 * Ok, everything is just fine now
2062 	 */
2063 	mddev->thread = conf->thread;
2064 	conf->thread = NULL;
2065 	mddev->private = conf;
2066 
2067 	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2068 
2069 	mddev->queue->unplug_fn = raid1_unplug;
2070 	mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2071 	mddev->queue->backing_dev_info.congested_data = mddev;
2072 	md_integrity_register(mddev);
2073 	return 0;
2074 }
2075 
2076 static int stop(mddev_t *mddev)
2077 {
2078 	conf_t *conf = mddev->private;
2079 	struct bitmap *bitmap = mddev->bitmap;
2080 
2081 	/* wait for behind writes to complete */
2082 	if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2083 		printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2084 		       mdname(mddev));
2085 		/* need to kick something here to make sure I/O goes? */
2086 		wait_event(bitmap->behind_wait,
2087 			   atomic_read(&bitmap->behind_writes) == 0);
2088 	}
2089 
2090 	raise_barrier(conf);
2091 	lower_barrier(conf);
2092 
2093 	md_unregister_thread(mddev->thread);
2094 	mddev->thread = NULL;
2095 	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2096 	if (conf->r1bio_pool)
2097 		mempool_destroy(conf->r1bio_pool);
2098 	kfree(conf->mirrors);
2099 	kfree(conf->poolinfo);
2100 	kfree(conf);
2101 	mddev->private = NULL;
2102 	return 0;
2103 }
2104 
2105 static int raid1_resize(mddev_t *mddev, sector_t sectors)
2106 {
2107 	/* no resync is happening, and there is enough space
2108 	 * on all devices, so we can resize.
2109 	 * We need to make sure resync covers any new space.
2110 	 * If the array is shrinking we should possibly wait until
2111 	 * any io in the removed space completes, but it hardly seems
2112 	 * worth it.
2113 	 */
2114 	md_set_array_sectors(mddev, raid1_size(mddev, sectors, 0));
2115 	if (mddev->array_sectors > raid1_size(mddev, sectors, 0))
2116 		return -EINVAL;
2117 	set_capacity(mddev->gendisk, mddev->array_sectors);
2118 	revalidate_disk(mddev->gendisk);
2119 	if (sectors > mddev->dev_sectors &&
2120 	    mddev->recovery_cp == MaxSector) {
2121 		mddev->recovery_cp = mddev->dev_sectors;
2122 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2123 	}
2124 	mddev->dev_sectors = sectors;
2125 	mddev->resync_max_sectors = sectors;
2126 	return 0;
2127 }
2128 
2129 static int raid1_reshape(mddev_t *mddev)
2130 {
2131 	/* We need to:
2132 	 * 1/ resize the r1bio_pool
2133 	 * 2/ resize conf->mirrors
2134 	 *
2135 	 * We allocate a new r1bio_pool if we can.
2136 	 * Then raise a device barrier and wait until all IO stops.
2137 	 * Then resize conf->mirrors and swap in the new r1bio pool.
2138 	 *
2139 	 * At the same time, we "pack" the devices so that all the missing
2140 	 * devices have the higher raid_disk numbers.
2141 	 */
2142 	mempool_t *newpool, *oldpool;
2143 	struct pool_info *newpoolinfo;
2144 	mirror_info_t *newmirrors;
2145 	conf_t *conf = mddev->private;
2146 	int cnt, raid_disks;
2147 	unsigned long flags;
2148 	int d, d2, err;
2149 
2150 	/* Cannot change chunk_size, layout, or level */
2151 	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
2152 	    mddev->layout != mddev->new_layout ||
2153 	    mddev->level != mddev->new_level) {
2154 		mddev->new_chunk_sectors = mddev->chunk_sectors;
2155 		mddev->new_layout = mddev->layout;
2156 		mddev->new_level = mddev->level;
2157 		return -EINVAL;
2158 	}
2159 
2160 	err = md_allow_write(mddev);
2161 	if (err)
2162 		return err;
2163 
2164 	raid_disks = mddev->raid_disks + mddev->delta_disks;
2165 
2166 	if (raid_disks < conf->raid_disks) {
2167 		cnt=0;
2168 		for (d= 0; d < conf->raid_disks; d++)
2169 			if (conf->mirrors[d].rdev)
2170 				cnt++;
2171 		if (cnt > raid_disks)
2172 			return -EBUSY;
2173 	}
2174 
2175 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2176 	if (!newpoolinfo)
2177 		return -ENOMEM;
2178 	newpoolinfo->mddev = mddev;
2179 	newpoolinfo->raid_disks = raid_disks;
2180 
2181 	newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2182 				 r1bio_pool_free, newpoolinfo);
2183 	if (!newpool) {
2184 		kfree(newpoolinfo);
2185 		return -ENOMEM;
2186 	}
2187 	newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
2188 	if (!newmirrors) {
2189 		kfree(newpoolinfo);
2190 		mempool_destroy(newpool);
2191 		return -ENOMEM;
2192 	}
2193 
2194 	raise_barrier(conf);
2195 
2196 	/* ok, everything is stopped */
2197 	oldpool = conf->r1bio_pool;
2198 	conf->r1bio_pool = newpool;
2199 
2200 	for (d = d2 = 0; d < conf->raid_disks; d++) {
2201 		mdk_rdev_t *rdev = conf->mirrors[d].rdev;
2202 		if (rdev && rdev->raid_disk != d2) {
2203 			char nm[20];
2204 			sprintf(nm, "rd%d", rdev->raid_disk);
2205 			sysfs_remove_link(&mddev->kobj, nm);
2206 			rdev->raid_disk = d2;
2207 			sprintf(nm, "rd%d", rdev->raid_disk);
2208 			sysfs_remove_link(&mddev->kobj, nm);
2209 			if (sysfs_create_link(&mddev->kobj,
2210 					      &rdev->kobj, nm))
2211 				printk(KERN_WARNING
2212 				       "md/raid1:%s: cannot register "
2213 				       "%s\n",
2214 				       mdname(mddev), nm);
2215 		}
2216 		if (rdev)
2217 			newmirrors[d2++].rdev = rdev;
2218 	}
2219 	kfree(conf->mirrors);
2220 	conf->mirrors = newmirrors;
2221 	kfree(conf->poolinfo);
2222 	conf->poolinfo = newpoolinfo;
2223 
2224 	spin_lock_irqsave(&conf->device_lock, flags);
2225 	mddev->degraded += (raid_disks - conf->raid_disks);
2226 	spin_unlock_irqrestore(&conf->device_lock, flags);
2227 	conf->raid_disks = mddev->raid_disks = raid_disks;
2228 	mddev->delta_disks = 0;
2229 
2230 	conf->last_used = 0; /* just make sure it is in-range */
2231 	lower_barrier(conf);
2232 
2233 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2234 	md_wakeup_thread(mddev->thread);
2235 
2236 	mempool_destroy(oldpool);
2237 	return 0;
2238 }
2239 
2240 static void raid1_quiesce(mddev_t *mddev, int state)
2241 {
2242 	conf_t *conf = mddev->private;
2243 
2244 	switch(state) {
2245 	case 2: /* wake for suspend */
2246 		wake_up(&conf->wait_barrier);
2247 		break;
2248 	case 1:
2249 		raise_barrier(conf);
2250 		break;
2251 	case 0:
2252 		lower_barrier(conf);
2253 		break;
2254 	}
2255 }
2256 
2257 static void *raid1_takeover(mddev_t *mddev)
2258 {
2259 	/* raid1 can take over:
2260 	 *  raid5 with 2 devices, any layout or chunk size
2261 	 */
2262 	if (mddev->level == 5 && mddev->raid_disks == 2) {
2263 		conf_t *conf;
2264 		mddev->new_level = 1;
2265 		mddev->new_layout = 0;
2266 		mddev->new_chunk_sectors = 0;
2267 		conf = setup_conf(mddev);
2268 		if (!IS_ERR(conf))
2269 			conf->barrier = 1;
2270 		return conf;
2271 	}
2272 	return ERR_PTR(-EINVAL);
2273 }
2274 
2275 static struct mdk_personality raid1_personality =
2276 {
2277 	.name		= "raid1",
2278 	.level		= 1,
2279 	.owner		= THIS_MODULE,
2280 	.make_request	= make_request,
2281 	.run		= run,
2282 	.stop		= stop,
2283 	.status		= status,
2284 	.error_handler	= error,
2285 	.hot_add_disk	= raid1_add_disk,
2286 	.hot_remove_disk= raid1_remove_disk,
2287 	.spare_active	= raid1_spare_active,
2288 	.sync_request	= sync_request,
2289 	.resize		= raid1_resize,
2290 	.size		= raid1_size,
2291 	.check_reshape	= raid1_reshape,
2292 	.quiesce	= raid1_quiesce,
2293 	.takeover	= raid1_takeover,
2294 };
2295 
2296 static int __init raid_init(void)
2297 {
2298 	return register_md_personality(&raid1_personality);
2299 }
2300 
2301 static void raid_exit(void)
2302 {
2303 	unregister_md_personality(&raid1_personality);
2304 }
2305 
2306 module_init(raid_init);
2307 module_exit(raid_exit);
2308 MODULE_LICENSE("GPL");
2309 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
2310 MODULE_ALIAS("md-personality-3"); /* RAID1 */
2311 MODULE_ALIAS("md-raid1");
2312 MODULE_ALIAS("md-level-1");
2313