1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * raid1.c : Multiple Devices driver for Linux 4 * 5 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat 6 * 7 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman 8 * 9 * RAID-1 management functions. 10 * 11 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 12 * 13 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk> 14 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> 15 * 16 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support 17 * bitmapped intelligence in resync: 18 * 19 * - bitmap marked during normal i/o 20 * - bitmap used to skip nondirty blocks during sync 21 * 22 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology: 23 * - persistent bitmap code 24 */ 25 26 #include <linux/slab.h> 27 #include <linux/delay.h> 28 #include <linux/blkdev.h> 29 #include <linux/module.h> 30 #include <linux/seq_file.h> 31 #include <linux/ratelimit.h> 32 #include <linux/interval_tree_generic.h> 33 34 #include <trace/events/block.h> 35 36 #include "md.h" 37 #include "raid1.h" 38 #include "md-bitmap.h" 39 40 #define UNSUPPORTED_MDDEV_FLAGS \ 41 ((1L << MD_HAS_JOURNAL) | \ 42 (1L << MD_JOURNAL_CLEAN) | \ 43 (1L << MD_HAS_PPL) | \ 44 (1L << MD_HAS_MULTIPLE_PPLS)) 45 46 static void allow_barrier(struct r1conf *conf, sector_t sector_nr); 47 static void lower_barrier(struct r1conf *conf, sector_t sector_nr); 48 49 #define raid1_log(md, fmt, args...) \ 50 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0) 51 52 #include "raid1-10.c" 53 54 #define START(node) ((node)->start) 55 #define LAST(node) ((node)->last) 56 INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last, 57 START, LAST, static inline, raid1_rb); 58 59 static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio, 60 struct serial_info *si, int idx) 61 { 62 unsigned long flags; 63 int ret = 0; 64 sector_t lo = r1_bio->sector; 65 sector_t hi = lo + r1_bio->sectors; 66 struct serial_in_rdev *serial = &rdev->serial[idx]; 67 68 spin_lock_irqsave(&serial->serial_lock, flags); 69 /* collision happened */ 70 if (raid1_rb_iter_first(&serial->serial_rb, lo, hi)) 71 ret = -EBUSY; 72 else { 73 si->start = lo; 74 si->last = hi; 75 raid1_rb_insert(si, &serial->serial_rb); 76 } 77 spin_unlock_irqrestore(&serial->serial_lock, flags); 78 79 return ret; 80 } 81 82 static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio) 83 { 84 struct mddev *mddev = rdev->mddev; 85 struct serial_info *si; 86 int idx = sector_to_idx(r1_bio->sector); 87 struct serial_in_rdev *serial = &rdev->serial[idx]; 88 89 if (WARN_ON(!mddev->serial_info_pool)) 90 return; 91 si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO); 92 wait_event(serial->serial_io_wait, 93 check_and_add_serial(rdev, r1_bio, si, idx) == 0); 94 } 95 96 static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi) 97 { 98 struct serial_info *si; 99 unsigned long flags; 100 int found = 0; 101 struct mddev *mddev = rdev->mddev; 102 int idx = sector_to_idx(lo); 103 struct serial_in_rdev *serial = &rdev->serial[idx]; 104 105 spin_lock_irqsave(&serial->serial_lock, flags); 106 for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi); 107 si; si = raid1_rb_iter_next(si, lo, hi)) { 108 if (si->start == lo && si->last == hi) { 109 raid1_rb_remove(si, &serial->serial_rb); 110 mempool_free(si, mddev->serial_info_pool); 111 found = 1; 112 break; 113 } 114 } 115 if (!found) 116 WARN(1, "The write IO is not recorded for serialization\n"); 117 spin_unlock_irqrestore(&serial->serial_lock, flags); 118 wake_up(&serial->serial_io_wait); 119 } 120 121 /* 122 * for resync bio, r1bio pointer can be retrieved from the per-bio 123 * 'struct resync_pages'. 124 */ 125 static inline struct r1bio *get_resync_r1bio(struct bio *bio) 126 { 127 return get_resync_pages(bio)->raid_bio; 128 } 129 130 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data) 131 { 132 struct pool_info *pi = data; 133 int size = offsetof(struct r1bio, bios[pi->raid_disks]); 134 135 /* allocate a r1bio with room for raid_disks entries in the bios array */ 136 return kzalloc(size, gfp_flags); 137 } 138 139 #define RESYNC_DEPTH 32 140 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 141 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH) 142 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9) 143 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW) 144 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9) 145 146 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) 147 { 148 struct pool_info *pi = data; 149 struct r1bio *r1_bio; 150 struct bio *bio; 151 int need_pages; 152 int j; 153 struct resync_pages *rps; 154 155 r1_bio = r1bio_pool_alloc(gfp_flags, pi); 156 if (!r1_bio) 157 return NULL; 158 159 rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages), 160 gfp_flags); 161 if (!rps) 162 goto out_free_r1bio; 163 164 /* 165 * Allocate bios : 1 for reading, n-1 for writing 166 */ 167 for (j = pi->raid_disks ; j-- ; ) { 168 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags); 169 if (!bio) 170 goto out_free_bio; 171 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0); 172 r1_bio->bios[j] = bio; 173 } 174 /* 175 * Allocate RESYNC_PAGES data pages and attach them to 176 * the first bio. 177 * If this is a user-requested check/repair, allocate 178 * RESYNC_PAGES for each bio. 179 */ 180 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) 181 need_pages = pi->raid_disks; 182 else 183 need_pages = 1; 184 for (j = 0; j < pi->raid_disks; j++) { 185 struct resync_pages *rp = &rps[j]; 186 187 bio = r1_bio->bios[j]; 188 189 if (j < need_pages) { 190 if (resync_alloc_pages(rp, gfp_flags)) 191 goto out_free_pages; 192 } else { 193 memcpy(rp, &rps[0], sizeof(*rp)); 194 resync_get_all_pages(rp); 195 } 196 197 rp->raid_bio = r1_bio; 198 bio->bi_private = rp; 199 } 200 201 r1_bio->master_bio = NULL; 202 203 return r1_bio; 204 205 out_free_pages: 206 while (--j >= 0) 207 resync_free_pages(&rps[j]); 208 209 out_free_bio: 210 while (++j < pi->raid_disks) { 211 bio_uninit(r1_bio->bios[j]); 212 kfree(r1_bio->bios[j]); 213 } 214 kfree(rps); 215 216 out_free_r1bio: 217 rbio_pool_free(r1_bio, data); 218 return NULL; 219 } 220 221 static void r1buf_pool_free(void *__r1_bio, void *data) 222 { 223 struct pool_info *pi = data; 224 int i; 225 struct r1bio *r1bio = __r1_bio; 226 struct resync_pages *rp = NULL; 227 228 for (i = pi->raid_disks; i--; ) { 229 rp = get_resync_pages(r1bio->bios[i]); 230 resync_free_pages(rp); 231 bio_uninit(r1bio->bios[i]); 232 kfree(r1bio->bios[i]); 233 } 234 235 /* resync pages array stored in the 1st bio's .bi_private */ 236 kfree(rp); 237 238 rbio_pool_free(r1bio, data); 239 } 240 241 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio) 242 { 243 int i; 244 245 for (i = 0; i < conf->raid_disks * 2; i++) { 246 struct bio **bio = r1_bio->bios + i; 247 if (!BIO_SPECIAL(*bio)) 248 bio_put(*bio); 249 *bio = NULL; 250 } 251 } 252 253 static void free_r1bio(struct r1bio *r1_bio) 254 { 255 struct r1conf *conf = r1_bio->mddev->private; 256 257 put_all_bios(conf, r1_bio); 258 mempool_free(r1_bio, &conf->r1bio_pool); 259 } 260 261 static void put_buf(struct r1bio *r1_bio) 262 { 263 struct r1conf *conf = r1_bio->mddev->private; 264 sector_t sect = r1_bio->sector; 265 int i; 266 267 for (i = 0; i < conf->raid_disks * 2; i++) { 268 struct bio *bio = r1_bio->bios[i]; 269 if (bio->bi_end_io) 270 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev); 271 } 272 273 mempool_free(r1_bio, &conf->r1buf_pool); 274 275 lower_barrier(conf, sect); 276 } 277 278 static void reschedule_retry(struct r1bio *r1_bio) 279 { 280 unsigned long flags; 281 struct mddev *mddev = r1_bio->mddev; 282 struct r1conf *conf = mddev->private; 283 int idx; 284 285 idx = sector_to_idx(r1_bio->sector); 286 spin_lock_irqsave(&conf->device_lock, flags); 287 list_add(&r1_bio->retry_list, &conf->retry_list); 288 atomic_inc(&conf->nr_queued[idx]); 289 spin_unlock_irqrestore(&conf->device_lock, flags); 290 291 wake_up(&conf->wait_barrier); 292 md_wakeup_thread(mddev->thread); 293 } 294 295 /* 296 * raid_end_bio_io() is called when we have finished servicing a mirrored 297 * operation and are ready to return a success/failure code to the buffer 298 * cache layer. 299 */ 300 static void call_bio_endio(struct r1bio *r1_bio) 301 { 302 struct bio *bio = r1_bio->master_bio; 303 304 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 305 bio->bi_status = BLK_STS_IOERR; 306 307 if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue)) 308 bio_end_io_acct(bio, r1_bio->start_time); 309 bio_endio(bio); 310 } 311 312 static void raid_end_bio_io(struct r1bio *r1_bio) 313 { 314 struct bio *bio = r1_bio->master_bio; 315 struct r1conf *conf = r1_bio->mddev->private; 316 317 /* if nobody has done the final endio yet, do it now */ 318 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 319 pr_debug("raid1: sync end %s on sectors %llu-%llu\n", 320 (bio_data_dir(bio) == WRITE) ? "write" : "read", 321 (unsigned long long) bio->bi_iter.bi_sector, 322 (unsigned long long) bio_end_sector(bio) - 1); 323 324 call_bio_endio(r1_bio); 325 } 326 /* 327 * Wake up any possible resync thread that waits for the device 328 * to go idle. All I/Os, even write-behind writes, are done. 329 */ 330 allow_barrier(conf, r1_bio->sector); 331 332 free_r1bio(r1_bio); 333 } 334 335 /* 336 * Update disk head position estimator based on IRQ completion info. 337 */ 338 static inline void update_head_pos(int disk, struct r1bio *r1_bio) 339 { 340 struct r1conf *conf = r1_bio->mddev->private; 341 342 conf->mirrors[disk].head_position = 343 r1_bio->sector + (r1_bio->sectors); 344 } 345 346 /* 347 * Find the disk number which triggered given bio 348 */ 349 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio) 350 { 351 int mirror; 352 struct r1conf *conf = r1_bio->mddev->private; 353 int raid_disks = conf->raid_disks; 354 355 for (mirror = 0; mirror < raid_disks * 2; mirror++) 356 if (r1_bio->bios[mirror] == bio) 357 break; 358 359 BUG_ON(mirror == raid_disks * 2); 360 update_head_pos(mirror, r1_bio); 361 362 return mirror; 363 } 364 365 static void raid1_end_read_request(struct bio *bio) 366 { 367 int uptodate = !bio->bi_status; 368 struct r1bio *r1_bio = bio->bi_private; 369 struct r1conf *conf = r1_bio->mddev->private; 370 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev; 371 372 /* 373 * this branch is our 'one mirror IO has finished' event handler: 374 */ 375 update_head_pos(r1_bio->read_disk, r1_bio); 376 377 if (uptodate) 378 set_bit(R1BIO_Uptodate, &r1_bio->state); 379 else if (test_bit(FailFast, &rdev->flags) && 380 test_bit(R1BIO_FailFast, &r1_bio->state)) 381 /* This was a fail-fast read so we definitely 382 * want to retry */ 383 ; 384 else { 385 /* If all other devices have failed, we want to return 386 * the error upwards rather than fail the last device. 387 * Here we redefine "uptodate" to mean "Don't want to retry" 388 */ 389 unsigned long flags; 390 spin_lock_irqsave(&conf->device_lock, flags); 391 if (r1_bio->mddev->degraded == conf->raid_disks || 392 (r1_bio->mddev->degraded == conf->raid_disks-1 && 393 test_bit(In_sync, &rdev->flags))) 394 uptodate = 1; 395 spin_unlock_irqrestore(&conf->device_lock, flags); 396 } 397 398 if (uptodate) { 399 raid_end_bio_io(r1_bio); 400 rdev_dec_pending(rdev, conf->mddev); 401 } else { 402 /* 403 * oops, read error: 404 */ 405 char b[BDEVNAME_SIZE]; 406 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n", 407 mdname(conf->mddev), 408 bdevname(rdev->bdev, b), 409 (unsigned long long)r1_bio->sector); 410 set_bit(R1BIO_ReadError, &r1_bio->state); 411 reschedule_retry(r1_bio); 412 /* don't drop the reference on read_disk yet */ 413 } 414 } 415 416 static void close_write(struct r1bio *r1_bio) 417 { 418 /* it really is the end of this request */ 419 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 420 bio_free_pages(r1_bio->behind_master_bio); 421 bio_put(r1_bio->behind_master_bio); 422 r1_bio->behind_master_bio = NULL; 423 } 424 /* clear the bitmap if all writes complete successfully */ 425 md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector, 426 r1_bio->sectors, 427 !test_bit(R1BIO_Degraded, &r1_bio->state), 428 test_bit(R1BIO_BehindIO, &r1_bio->state)); 429 md_write_end(r1_bio->mddev); 430 } 431 432 static void r1_bio_write_done(struct r1bio *r1_bio) 433 { 434 if (!atomic_dec_and_test(&r1_bio->remaining)) 435 return; 436 437 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 438 reschedule_retry(r1_bio); 439 else { 440 close_write(r1_bio); 441 if (test_bit(R1BIO_MadeGood, &r1_bio->state)) 442 reschedule_retry(r1_bio); 443 else 444 raid_end_bio_io(r1_bio); 445 } 446 } 447 448 static void raid1_end_write_request(struct bio *bio) 449 { 450 struct r1bio *r1_bio = bio->bi_private; 451 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state); 452 struct r1conf *conf = r1_bio->mddev->private; 453 struct bio *to_put = NULL; 454 int mirror = find_bio_disk(r1_bio, bio); 455 struct md_rdev *rdev = conf->mirrors[mirror].rdev; 456 bool discard_error; 457 sector_t lo = r1_bio->sector; 458 sector_t hi = r1_bio->sector + r1_bio->sectors; 459 460 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD; 461 462 /* 463 * 'one mirror IO has finished' event handler: 464 */ 465 if (bio->bi_status && !discard_error) { 466 set_bit(WriteErrorSeen, &rdev->flags); 467 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 468 set_bit(MD_RECOVERY_NEEDED, & 469 conf->mddev->recovery); 470 471 if (test_bit(FailFast, &rdev->flags) && 472 (bio->bi_opf & MD_FAILFAST) && 473 /* We never try FailFast to WriteMostly devices */ 474 !test_bit(WriteMostly, &rdev->flags)) { 475 md_error(r1_bio->mddev, rdev); 476 } 477 478 /* 479 * When the device is faulty, it is not necessary to 480 * handle write error. 481 */ 482 if (!test_bit(Faulty, &rdev->flags)) 483 set_bit(R1BIO_WriteError, &r1_bio->state); 484 else { 485 /* Fail the request */ 486 set_bit(R1BIO_Degraded, &r1_bio->state); 487 /* Finished with this branch */ 488 r1_bio->bios[mirror] = NULL; 489 to_put = bio; 490 } 491 } else { 492 /* 493 * Set R1BIO_Uptodate in our master bio, so that we 494 * will return a good error code for to the higher 495 * levels even if IO on some other mirrored buffer 496 * fails. 497 * 498 * The 'master' represents the composite IO operation 499 * to user-side. So if something waits for IO, then it 500 * will wait for the 'master' bio. 501 */ 502 sector_t first_bad; 503 int bad_sectors; 504 505 r1_bio->bios[mirror] = NULL; 506 to_put = bio; 507 /* 508 * Do not set R1BIO_Uptodate if the current device is 509 * rebuilding or Faulty. This is because we cannot use 510 * such device for properly reading the data back (we could 511 * potentially use it, if the current write would have felt 512 * before rdev->recovery_offset, but for simplicity we don't 513 * check this here. 514 */ 515 if (test_bit(In_sync, &rdev->flags) && 516 !test_bit(Faulty, &rdev->flags)) 517 set_bit(R1BIO_Uptodate, &r1_bio->state); 518 519 /* Maybe we can clear some bad blocks. */ 520 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors, 521 &first_bad, &bad_sectors) && !discard_error) { 522 r1_bio->bios[mirror] = IO_MADE_GOOD; 523 set_bit(R1BIO_MadeGood, &r1_bio->state); 524 } 525 } 526 527 if (behind) { 528 if (test_bit(CollisionCheck, &rdev->flags)) 529 remove_serial(rdev, lo, hi); 530 if (test_bit(WriteMostly, &rdev->flags)) 531 atomic_dec(&r1_bio->behind_remaining); 532 533 /* 534 * In behind mode, we ACK the master bio once the I/O 535 * has safely reached all non-writemostly 536 * disks. Setting the Returned bit ensures that this 537 * gets done only once -- we don't ever want to return 538 * -EIO here, instead we'll wait 539 */ 540 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) && 541 test_bit(R1BIO_Uptodate, &r1_bio->state)) { 542 /* Maybe we can return now */ 543 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 544 struct bio *mbio = r1_bio->master_bio; 545 pr_debug("raid1: behind end write sectors" 546 " %llu-%llu\n", 547 (unsigned long long) mbio->bi_iter.bi_sector, 548 (unsigned long long) bio_end_sector(mbio) - 1); 549 call_bio_endio(r1_bio); 550 } 551 } 552 } else if (rdev->mddev->serialize_policy) 553 remove_serial(rdev, lo, hi); 554 if (r1_bio->bios[mirror] == NULL) 555 rdev_dec_pending(rdev, conf->mddev); 556 557 /* 558 * Let's see if all mirrored write operations have finished 559 * already. 560 */ 561 r1_bio_write_done(r1_bio); 562 563 if (to_put) 564 bio_put(to_put); 565 } 566 567 static sector_t align_to_barrier_unit_end(sector_t start_sector, 568 sector_t sectors) 569 { 570 sector_t len; 571 572 WARN_ON(sectors == 0); 573 /* 574 * len is the number of sectors from start_sector to end of the 575 * barrier unit which start_sector belongs to. 576 */ 577 len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) - 578 start_sector; 579 580 if (len > sectors) 581 len = sectors; 582 583 return len; 584 } 585 586 /* 587 * This routine returns the disk from which the requested read should 588 * be done. There is a per-array 'next expected sequential IO' sector 589 * number - if this matches on the next IO then we use the last disk. 590 * There is also a per-disk 'last know head position' sector that is 591 * maintained from IRQ contexts, both the normal and the resync IO 592 * completion handlers update this position correctly. If there is no 593 * perfect sequential match then we pick the disk whose head is closest. 594 * 595 * If there are 2 mirrors in the same 2 devices, performance degrades 596 * because position is mirror, not device based. 597 * 598 * The rdev for the device selected will have nr_pending incremented. 599 */ 600 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors) 601 { 602 const sector_t this_sector = r1_bio->sector; 603 int sectors; 604 int best_good_sectors; 605 int best_disk, best_dist_disk, best_pending_disk; 606 int has_nonrot_disk; 607 int disk; 608 sector_t best_dist; 609 unsigned int min_pending; 610 struct md_rdev *rdev; 611 int choose_first; 612 int choose_next_idle; 613 614 rcu_read_lock(); 615 /* 616 * Check if we can balance. We can balance on the whole 617 * device if no resync is going on, or below the resync window. 618 * We take the first readable disk when above the resync window. 619 */ 620 retry: 621 sectors = r1_bio->sectors; 622 best_disk = -1; 623 best_dist_disk = -1; 624 best_dist = MaxSector; 625 best_pending_disk = -1; 626 min_pending = UINT_MAX; 627 best_good_sectors = 0; 628 has_nonrot_disk = 0; 629 choose_next_idle = 0; 630 clear_bit(R1BIO_FailFast, &r1_bio->state); 631 632 if ((conf->mddev->recovery_cp < this_sector + sectors) || 633 (mddev_is_clustered(conf->mddev) && 634 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector, 635 this_sector + sectors))) 636 choose_first = 1; 637 else 638 choose_first = 0; 639 640 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) { 641 sector_t dist; 642 sector_t first_bad; 643 int bad_sectors; 644 unsigned int pending; 645 bool nonrot; 646 647 rdev = rcu_dereference(conf->mirrors[disk].rdev); 648 if (r1_bio->bios[disk] == IO_BLOCKED 649 || rdev == NULL 650 || test_bit(Faulty, &rdev->flags)) 651 continue; 652 if (!test_bit(In_sync, &rdev->flags) && 653 rdev->recovery_offset < this_sector + sectors) 654 continue; 655 if (test_bit(WriteMostly, &rdev->flags)) { 656 /* Don't balance among write-mostly, just 657 * use the first as a last resort */ 658 if (best_dist_disk < 0) { 659 if (is_badblock(rdev, this_sector, sectors, 660 &first_bad, &bad_sectors)) { 661 if (first_bad <= this_sector) 662 /* Cannot use this */ 663 continue; 664 best_good_sectors = first_bad - this_sector; 665 } else 666 best_good_sectors = sectors; 667 best_dist_disk = disk; 668 best_pending_disk = disk; 669 } 670 continue; 671 } 672 /* This is a reasonable device to use. It might 673 * even be best. 674 */ 675 if (is_badblock(rdev, this_sector, sectors, 676 &first_bad, &bad_sectors)) { 677 if (best_dist < MaxSector) 678 /* already have a better device */ 679 continue; 680 if (first_bad <= this_sector) { 681 /* cannot read here. If this is the 'primary' 682 * device, then we must not read beyond 683 * bad_sectors from another device.. 684 */ 685 bad_sectors -= (this_sector - first_bad); 686 if (choose_first && sectors > bad_sectors) 687 sectors = bad_sectors; 688 if (best_good_sectors > sectors) 689 best_good_sectors = sectors; 690 691 } else { 692 sector_t good_sectors = first_bad - this_sector; 693 if (good_sectors > best_good_sectors) { 694 best_good_sectors = good_sectors; 695 best_disk = disk; 696 } 697 if (choose_first) 698 break; 699 } 700 continue; 701 } else { 702 if ((sectors > best_good_sectors) && (best_disk >= 0)) 703 best_disk = -1; 704 best_good_sectors = sectors; 705 } 706 707 if (best_disk >= 0) 708 /* At least two disks to choose from so failfast is OK */ 709 set_bit(R1BIO_FailFast, &r1_bio->state); 710 711 nonrot = bdev_nonrot(rdev->bdev); 712 has_nonrot_disk |= nonrot; 713 pending = atomic_read(&rdev->nr_pending); 714 dist = abs(this_sector - conf->mirrors[disk].head_position); 715 if (choose_first) { 716 best_disk = disk; 717 break; 718 } 719 /* Don't change to another disk for sequential reads */ 720 if (conf->mirrors[disk].next_seq_sect == this_sector 721 || dist == 0) { 722 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9; 723 struct raid1_info *mirror = &conf->mirrors[disk]; 724 725 best_disk = disk; 726 /* 727 * If buffered sequential IO size exceeds optimal 728 * iosize, check if there is idle disk. If yes, choose 729 * the idle disk. read_balance could already choose an 730 * idle disk before noticing it's a sequential IO in 731 * this disk. This doesn't matter because this disk 732 * will idle, next time it will be utilized after the 733 * first disk has IO size exceeds optimal iosize. In 734 * this way, iosize of the first disk will be optimal 735 * iosize at least. iosize of the second disk might be 736 * small, but not a big deal since when the second disk 737 * starts IO, the first disk is likely still busy. 738 */ 739 if (nonrot && opt_iosize > 0 && 740 mirror->seq_start != MaxSector && 741 mirror->next_seq_sect > opt_iosize && 742 mirror->next_seq_sect - opt_iosize >= 743 mirror->seq_start) { 744 choose_next_idle = 1; 745 continue; 746 } 747 break; 748 } 749 750 if (choose_next_idle) 751 continue; 752 753 if (min_pending > pending) { 754 min_pending = pending; 755 best_pending_disk = disk; 756 } 757 758 if (dist < best_dist) { 759 best_dist = dist; 760 best_dist_disk = disk; 761 } 762 } 763 764 /* 765 * If all disks are rotational, choose the closest disk. If any disk is 766 * non-rotational, choose the disk with less pending request even the 767 * disk is rotational, which might/might not be optimal for raids with 768 * mixed ratation/non-rotational disks depending on workload. 769 */ 770 if (best_disk == -1) { 771 if (has_nonrot_disk || min_pending == 0) 772 best_disk = best_pending_disk; 773 else 774 best_disk = best_dist_disk; 775 } 776 777 if (best_disk >= 0) { 778 rdev = rcu_dereference(conf->mirrors[best_disk].rdev); 779 if (!rdev) 780 goto retry; 781 atomic_inc(&rdev->nr_pending); 782 sectors = best_good_sectors; 783 784 if (conf->mirrors[best_disk].next_seq_sect != this_sector) 785 conf->mirrors[best_disk].seq_start = this_sector; 786 787 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors; 788 } 789 rcu_read_unlock(); 790 *max_sectors = sectors; 791 792 return best_disk; 793 } 794 795 static void flush_bio_list(struct r1conf *conf, struct bio *bio) 796 { 797 /* flush any pending bitmap writes to disk before proceeding w/ I/O */ 798 md_bitmap_unplug(conf->mddev->bitmap); 799 wake_up(&conf->wait_barrier); 800 801 while (bio) { /* submit pending writes */ 802 struct bio *next = bio->bi_next; 803 struct md_rdev *rdev = (void *)bio->bi_bdev; 804 bio->bi_next = NULL; 805 bio_set_dev(bio, rdev->bdev); 806 if (test_bit(Faulty, &rdev->flags)) { 807 bio_io_error(bio); 808 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) && 809 !bdev_max_discard_sectors(bio->bi_bdev))) 810 /* Just ignore it */ 811 bio_endio(bio); 812 else 813 submit_bio_noacct(bio); 814 bio = next; 815 cond_resched(); 816 } 817 } 818 819 static void flush_pending_writes(struct r1conf *conf) 820 { 821 /* Any writes that have been queued but are awaiting 822 * bitmap updates get flushed here. 823 */ 824 spin_lock_irq(&conf->device_lock); 825 826 if (conf->pending_bio_list.head) { 827 struct blk_plug plug; 828 struct bio *bio; 829 830 bio = bio_list_get(&conf->pending_bio_list); 831 spin_unlock_irq(&conf->device_lock); 832 833 /* 834 * As this is called in a wait_event() loop (see freeze_array), 835 * current->state might be TASK_UNINTERRUPTIBLE which will 836 * cause a warning when we prepare to wait again. As it is 837 * rare that this path is taken, it is perfectly safe to force 838 * us to go around the wait_event() loop again, so the warning 839 * is a false-positive. Silence the warning by resetting 840 * thread state 841 */ 842 __set_current_state(TASK_RUNNING); 843 blk_start_plug(&plug); 844 flush_bio_list(conf, bio); 845 blk_finish_plug(&plug); 846 } else 847 spin_unlock_irq(&conf->device_lock); 848 } 849 850 /* Barriers.... 851 * Sometimes we need to suspend IO while we do something else, 852 * either some resync/recovery, or reconfigure the array. 853 * To do this we raise a 'barrier'. 854 * The 'barrier' is a counter that can be raised multiple times 855 * to count how many activities are happening which preclude 856 * normal IO. 857 * We can only raise the barrier if there is no pending IO. 858 * i.e. if nr_pending == 0. 859 * We choose only to raise the barrier if no-one is waiting for the 860 * barrier to go down. This means that as soon as an IO request 861 * is ready, no other operations which require a barrier will start 862 * until the IO request has had a chance. 863 * 864 * So: regular IO calls 'wait_barrier'. When that returns there 865 * is no backgroup IO happening, It must arrange to call 866 * allow_barrier when it has finished its IO. 867 * backgroup IO calls must call raise_barrier. Once that returns 868 * there is no normal IO happeing. It must arrange to call 869 * lower_barrier when the particular background IO completes. 870 * 871 * If resync/recovery is interrupted, returns -EINTR; 872 * Otherwise, returns 0. 873 */ 874 static int raise_barrier(struct r1conf *conf, sector_t sector_nr) 875 { 876 int idx = sector_to_idx(sector_nr); 877 878 spin_lock_irq(&conf->resync_lock); 879 880 /* Wait until no block IO is waiting */ 881 wait_event_lock_irq(conf->wait_barrier, 882 !atomic_read(&conf->nr_waiting[idx]), 883 conf->resync_lock); 884 885 /* block any new IO from starting */ 886 atomic_inc(&conf->barrier[idx]); 887 /* 888 * In raise_barrier() we firstly increase conf->barrier[idx] then 889 * check conf->nr_pending[idx]. In _wait_barrier() we firstly 890 * increase conf->nr_pending[idx] then check conf->barrier[idx]. 891 * A memory barrier here to make sure conf->nr_pending[idx] won't 892 * be fetched before conf->barrier[idx] is increased. Otherwise 893 * there will be a race between raise_barrier() and _wait_barrier(). 894 */ 895 smp_mb__after_atomic(); 896 897 /* For these conditions we must wait: 898 * A: while the array is in frozen state 899 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O 900 * existing in corresponding I/O barrier bucket. 901 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches 902 * max resync count which allowed on current I/O barrier bucket. 903 */ 904 wait_event_lock_irq(conf->wait_barrier, 905 (!conf->array_frozen && 906 !atomic_read(&conf->nr_pending[idx]) && 907 atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) || 908 test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery), 909 conf->resync_lock); 910 911 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) { 912 atomic_dec(&conf->barrier[idx]); 913 spin_unlock_irq(&conf->resync_lock); 914 wake_up(&conf->wait_barrier); 915 return -EINTR; 916 } 917 918 atomic_inc(&conf->nr_sync_pending); 919 spin_unlock_irq(&conf->resync_lock); 920 921 return 0; 922 } 923 924 static void lower_barrier(struct r1conf *conf, sector_t sector_nr) 925 { 926 int idx = sector_to_idx(sector_nr); 927 928 BUG_ON(atomic_read(&conf->barrier[idx]) <= 0); 929 930 atomic_dec(&conf->barrier[idx]); 931 atomic_dec(&conf->nr_sync_pending); 932 wake_up(&conf->wait_barrier); 933 } 934 935 static bool _wait_barrier(struct r1conf *conf, int idx, bool nowait) 936 { 937 bool ret = true; 938 939 /* 940 * We need to increase conf->nr_pending[idx] very early here, 941 * then raise_barrier() can be blocked when it waits for 942 * conf->nr_pending[idx] to be 0. Then we can avoid holding 943 * conf->resync_lock when there is no barrier raised in same 944 * barrier unit bucket. Also if the array is frozen, I/O 945 * should be blocked until array is unfrozen. 946 */ 947 atomic_inc(&conf->nr_pending[idx]); 948 /* 949 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then 950 * check conf->barrier[idx]. In raise_barrier() we firstly increase 951 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory 952 * barrier is necessary here to make sure conf->barrier[idx] won't be 953 * fetched before conf->nr_pending[idx] is increased. Otherwise there 954 * will be a race between _wait_barrier() and raise_barrier(). 955 */ 956 smp_mb__after_atomic(); 957 958 /* 959 * Don't worry about checking two atomic_t variables at same time 960 * here. If during we check conf->barrier[idx], the array is 961 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is 962 * 0, it is safe to return and make the I/O continue. Because the 963 * array is frozen, all I/O returned here will eventually complete 964 * or be queued, no race will happen. See code comment in 965 * frozen_array(). 966 */ 967 if (!READ_ONCE(conf->array_frozen) && 968 !atomic_read(&conf->barrier[idx])) 969 return ret; 970 971 /* 972 * After holding conf->resync_lock, conf->nr_pending[idx] 973 * should be decreased before waiting for barrier to drop. 974 * Otherwise, we may encounter a race condition because 975 * raise_barrer() might be waiting for conf->nr_pending[idx] 976 * to be 0 at same time. 977 */ 978 spin_lock_irq(&conf->resync_lock); 979 atomic_inc(&conf->nr_waiting[idx]); 980 atomic_dec(&conf->nr_pending[idx]); 981 /* 982 * In case freeze_array() is waiting for 983 * get_unqueued_pending() == extra 984 */ 985 wake_up(&conf->wait_barrier); 986 /* Wait for the barrier in same barrier unit bucket to drop. */ 987 988 /* Return false when nowait flag is set */ 989 if (nowait) { 990 ret = false; 991 } else { 992 wait_event_lock_irq(conf->wait_barrier, 993 !conf->array_frozen && 994 !atomic_read(&conf->barrier[idx]), 995 conf->resync_lock); 996 atomic_inc(&conf->nr_pending[idx]); 997 } 998 999 atomic_dec(&conf->nr_waiting[idx]); 1000 spin_unlock_irq(&conf->resync_lock); 1001 return ret; 1002 } 1003 1004 static bool wait_read_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait) 1005 { 1006 int idx = sector_to_idx(sector_nr); 1007 bool ret = true; 1008 1009 /* 1010 * Very similar to _wait_barrier(). The difference is, for read 1011 * I/O we don't need wait for sync I/O, but if the whole array 1012 * is frozen, the read I/O still has to wait until the array is 1013 * unfrozen. Since there is no ordering requirement with 1014 * conf->barrier[idx] here, memory barrier is unnecessary as well. 1015 */ 1016 atomic_inc(&conf->nr_pending[idx]); 1017 1018 if (!READ_ONCE(conf->array_frozen)) 1019 return ret; 1020 1021 spin_lock_irq(&conf->resync_lock); 1022 atomic_inc(&conf->nr_waiting[idx]); 1023 atomic_dec(&conf->nr_pending[idx]); 1024 /* 1025 * In case freeze_array() is waiting for 1026 * get_unqueued_pending() == extra 1027 */ 1028 wake_up(&conf->wait_barrier); 1029 /* Wait for array to be unfrozen */ 1030 1031 /* Return false when nowait flag is set */ 1032 if (nowait) { 1033 /* Return false when nowait flag is set */ 1034 ret = false; 1035 } else { 1036 wait_event_lock_irq(conf->wait_barrier, 1037 !conf->array_frozen, 1038 conf->resync_lock); 1039 atomic_inc(&conf->nr_pending[idx]); 1040 } 1041 1042 atomic_dec(&conf->nr_waiting[idx]); 1043 spin_unlock_irq(&conf->resync_lock); 1044 return ret; 1045 } 1046 1047 static bool wait_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait) 1048 { 1049 int idx = sector_to_idx(sector_nr); 1050 1051 return _wait_barrier(conf, idx, nowait); 1052 } 1053 1054 static void _allow_barrier(struct r1conf *conf, int idx) 1055 { 1056 atomic_dec(&conf->nr_pending[idx]); 1057 wake_up(&conf->wait_barrier); 1058 } 1059 1060 static void allow_barrier(struct r1conf *conf, sector_t sector_nr) 1061 { 1062 int idx = sector_to_idx(sector_nr); 1063 1064 _allow_barrier(conf, idx); 1065 } 1066 1067 /* conf->resync_lock should be held */ 1068 static int get_unqueued_pending(struct r1conf *conf) 1069 { 1070 int idx, ret; 1071 1072 ret = atomic_read(&conf->nr_sync_pending); 1073 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) 1074 ret += atomic_read(&conf->nr_pending[idx]) - 1075 atomic_read(&conf->nr_queued[idx]); 1076 1077 return ret; 1078 } 1079 1080 static void freeze_array(struct r1conf *conf, int extra) 1081 { 1082 /* Stop sync I/O and normal I/O and wait for everything to 1083 * go quiet. 1084 * This is called in two situations: 1085 * 1) management command handlers (reshape, remove disk, quiesce). 1086 * 2) one normal I/O request failed. 1087 1088 * After array_frozen is set to 1, new sync IO will be blocked at 1089 * raise_barrier(), and new normal I/O will blocked at _wait_barrier() 1090 * or wait_read_barrier(). The flying I/Os will either complete or be 1091 * queued. When everything goes quite, there are only queued I/Os left. 1092 1093 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the 1094 * barrier bucket index which this I/O request hits. When all sync and 1095 * normal I/O are queued, sum of all conf->nr_pending[] will match sum 1096 * of all conf->nr_queued[]. But normal I/O failure is an exception, 1097 * in handle_read_error(), we may call freeze_array() before trying to 1098 * fix the read error. In this case, the error read I/O is not queued, 1099 * so get_unqueued_pending() == 1. 1100 * 1101 * Therefore before this function returns, we need to wait until 1102 * get_unqueued_pendings(conf) gets equal to extra. For 1103 * normal I/O context, extra is 1, in rested situations extra is 0. 1104 */ 1105 spin_lock_irq(&conf->resync_lock); 1106 conf->array_frozen = 1; 1107 raid1_log(conf->mddev, "wait freeze"); 1108 wait_event_lock_irq_cmd( 1109 conf->wait_barrier, 1110 get_unqueued_pending(conf) == extra, 1111 conf->resync_lock, 1112 flush_pending_writes(conf)); 1113 spin_unlock_irq(&conf->resync_lock); 1114 } 1115 static void unfreeze_array(struct r1conf *conf) 1116 { 1117 /* reverse the effect of the freeze */ 1118 spin_lock_irq(&conf->resync_lock); 1119 conf->array_frozen = 0; 1120 spin_unlock_irq(&conf->resync_lock); 1121 wake_up(&conf->wait_barrier); 1122 } 1123 1124 static void alloc_behind_master_bio(struct r1bio *r1_bio, 1125 struct bio *bio) 1126 { 1127 int size = bio->bi_iter.bi_size; 1128 unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1129 int i = 0; 1130 struct bio *behind_bio = NULL; 1131 1132 behind_bio = bio_alloc_bioset(NULL, vcnt, 0, GFP_NOIO, 1133 &r1_bio->mddev->bio_set); 1134 if (!behind_bio) 1135 return; 1136 1137 /* discard op, we don't support writezero/writesame yet */ 1138 if (!bio_has_data(bio)) { 1139 behind_bio->bi_iter.bi_size = size; 1140 goto skip_copy; 1141 } 1142 1143 while (i < vcnt && size) { 1144 struct page *page; 1145 int len = min_t(int, PAGE_SIZE, size); 1146 1147 page = alloc_page(GFP_NOIO); 1148 if (unlikely(!page)) 1149 goto free_pages; 1150 1151 bio_add_page(behind_bio, page, len, 0); 1152 1153 size -= len; 1154 i++; 1155 } 1156 1157 bio_copy_data(behind_bio, bio); 1158 skip_copy: 1159 r1_bio->behind_master_bio = behind_bio; 1160 set_bit(R1BIO_BehindIO, &r1_bio->state); 1161 1162 return; 1163 1164 free_pages: 1165 pr_debug("%dB behind alloc failed, doing sync I/O\n", 1166 bio->bi_iter.bi_size); 1167 bio_free_pages(behind_bio); 1168 bio_put(behind_bio); 1169 } 1170 1171 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule) 1172 { 1173 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, 1174 cb); 1175 struct mddev *mddev = plug->cb.data; 1176 struct r1conf *conf = mddev->private; 1177 struct bio *bio; 1178 1179 if (from_schedule || current->bio_list) { 1180 spin_lock_irq(&conf->device_lock); 1181 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1182 spin_unlock_irq(&conf->device_lock); 1183 wake_up(&conf->wait_barrier); 1184 md_wakeup_thread(mddev->thread); 1185 kfree(plug); 1186 return; 1187 } 1188 1189 /* we aren't scheduling, so we can do the write-out directly. */ 1190 bio = bio_list_get(&plug->pending); 1191 flush_bio_list(conf, bio); 1192 kfree(plug); 1193 } 1194 1195 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio) 1196 { 1197 r1_bio->master_bio = bio; 1198 r1_bio->sectors = bio_sectors(bio); 1199 r1_bio->state = 0; 1200 r1_bio->mddev = mddev; 1201 r1_bio->sector = bio->bi_iter.bi_sector; 1202 } 1203 1204 static inline struct r1bio * 1205 alloc_r1bio(struct mddev *mddev, struct bio *bio) 1206 { 1207 struct r1conf *conf = mddev->private; 1208 struct r1bio *r1_bio; 1209 1210 r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO); 1211 /* Ensure no bio records IO_BLOCKED */ 1212 memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0])); 1213 init_r1bio(r1_bio, mddev, bio); 1214 return r1_bio; 1215 } 1216 1217 static void raid1_read_request(struct mddev *mddev, struct bio *bio, 1218 int max_read_sectors, struct r1bio *r1_bio) 1219 { 1220 struct r1conf *conf = mddev->private; 1221 struct raid1_info *mirror; 1222 struct bio *read_bio; 1223 struct bitmap *bitmap = mddev->bitmap; 1224 const int op = bio_op(bio); 1225 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC); 1226 int max_sectors; 1227 int rdisk; 1228 bool r1bio_existed = !!r1_bio; 1229 char b[BDEVNAME_SIZE]; 1230 1231 /* 1232 * If r1_bio is set, we are blocking the raid1d thread 1233 * so there is a tiny risk of deadlock. So ask for 1234 * emergency memory if needed. 1235 */ 1236 gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO; 1237 1238 if (r1bio_existed) { 1239 /* Need to get the block device name carefully */ 1240 struct md_rdev *rdev; 1241 rcu_read_lock(); 1242 rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev); 1243 if (rdev) 1244 bdevname(rdev->bdev, b); 1245 else 1246 strcpy(b, "???"); 1247 rcu_read_unlock(); 1248 } 1249 1250 /* 1251 * Still need barrier for READ in case that whole 1252 * array is frozen. 1253 */ 1254 if (!wait_read_barrier(conf, bio->bi_iter.bi_sector, 1255 bio->bi_opf & REQ_NOWAIT)) { 1256 bio_wouldblock_error(bio); 1257 return; 1258 } 1259 1260 if (!r1_bio) 1261 r1_bio = alloc_r1bio(mddev, bio); 1262 else 1263 init_r1bio(r1_bio, mddev, bio); 1264 r1_bio->sectors = max_read_sectors; 1265 1266 /* 1267 * make_request() can abort the operation when read-ahead is being 1268 * used and no empty request is available. 1269 */ 1270 rdisk = read_balance(conf, r1_bio, &max_sectors); 1271 1272 if (rdisk < 0) { 1273 /* couldn't find anywhere to read from */ 1274 if (r1bio_existed) { 1275 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n", 1276 mdname(mddev), 1277 b, 1278 (unsigned long long)r1_bio->sector); 1279 } 1280 raid_end_bio_io(r1_bio); 1281 return; 1282 } 1283 mirror = conf->mirrors + rdisk; 1284 1285 if (r1bio_existed) 1286 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n", 1287 mdname(mddev), 1288 (unsigned long long)r1_bio->sector, 1289 bdevname(mirror->rdev->bdev, b)); 1290 1291 if (test_bit(WriteMostly, &mirror->rdev->flags) && 1292 bitmap) { 1293 /* 1294 * Reading from a write-mostly device must take care not to 1295 * over-take any writes that are 'behind' 1296 */ 1297 raid1_log(mddev, "wait behind writes"); 1298 wait_event(bitmap->behind_wait, 1299 atomic_read(&bitmap->behind_writes) == 0); 1300 } 1301 1302 if (max_sectors < bio_sectors(bio)) { 1303 struct bio *split = bio_split(bio, max_sectors, 1304 gfp, &conf->bio_split); 1305 bio_chain(split, bio); 1306 submit_bio_noacct(bio); 1307 bio = split; 1308 r1_bio->master_bio = bio; 1309 r1_bio->sectors = max_sectors; 1310 } 1311 1312 r1_bio->read_disk = rdisk; 1313 1314 if (!r1bio_existed && blk_queue_io_stat(bio->bi_bdev->bd_disk->queue)) 1315 r1_bio->start_time = bio_start_io_acct(bio); 1316 1317 read_bio = bio_alloc_clone(mirror->rdev->bdev, bio, gfp, 1318 &mddev->bio_set); 1319 1320 r1_bio->bios[rdisk] = read_bio; 1321 1322 read_bio->bi_iter.bi_sector = r1_bio->sector + 1323 mirror->rdev->data_offset; 1324 read_bio->bi_end_io = raid1_end_read_request; 1325 bio_set_op_attrs(read_bio, op, do_sync); 1326 if (test_bit(FailFast, &mirror->rdev->flags) && 1327 test_bit(R1BIO_FailFast, &r1_bio->state)) 1328 read_bio->bi_opf |= MD_FAILFAST; 1329 read_bio->bi_private = r1_bio; 1330 1331 if (mddev->gendisk) 1332 trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk), 1333 r1_bio->sector); 1334 1335 submit_bio_noacct(read_bio); 1336 } 1337 1338 static void raid1_write_request(struct mddev *mddev, struct bio *bio, 1339 int max_write_sectors) 1340 { 1341 struct r1conf *conf = mddev->private; 1342 struct r1bio *r1_bio; 1343 int i, disks; 1344 struct bitmap *bitmap = mddev->bitmap; 1345 unsigned long flags; 1346 struct md_rdev *blocked_rdev; 1347 struct blk_plug_cb *cb; 1348 struct raid1_plug_cb *plug = NULL; 1349 int first_clone; 1350 int max_sectors; 1351 bool write_behind = false; 1352 1353 if (mddev_is_clustered(mddev) && 1354 md_cluster_ops->area_resyncing(mddev, WRITE, 1355 bio->bi_iter.bi_sector, bio_end_sector(bio))) { 1356 1357 DEFINE_WAIT(w); 1358 if (bio->bi_opf & REQ_NOWAIT) { 1359 bio_wouldblock_error(bio); 1360 return; 1361 } 1362 for (;;) { 1363 prepare_to_wait(&conf->wait_barrier, 1364 &w, TASK_IDLE); 1365 if (!md_cluster_ops->area_resyncing(mddev, WRITE, 1366 bio->bi_iter.bi_sector, 1367 bio_end_sector(bio))) 1368 break; 1369 schedule(); 1370 } 1371 finish_wait(&conf->wait_barrier, &w); 1372 } 1373 1374 /* 1375 * Register the new request and wait if the reconstruction 1376 * thread has put up a bar for new requests. 1377 * Continue immediately if no resync is active currently. 1378 */ 1379 if (!wait_barrier(conf, bio->bi_iter.bi_sector, 1380 bio->bi_opf & REQ_NOWAIT)) { 1381 bio_wouldblock_error(bio); 1382 return; 1383 } 1384 1385 r1_bio = alloc_r1bio(mddev, bio); 1386 r1_bio->sectors = max_write_sectors; 1387 1388 /* first select target devices under rcu_lock and 1389 * inc refcount on their rdev. Record them by setting 1390 * bios[x] to bio 1391 * If there are known/acknowledged bad blocks on any device on 1392 * which we have seen a write error, we want to avoid writing those 1393 * blocks. 1394 * This potentially requires several writes to write around 1395 * the bad blocks. Each set of writes gets it's own r1bio 1396 * with a set of bios attached. 1397 */ 1398 1399 disks = conf->raid_disks * 2; 1400 retry_write: 1401 blocked_rdev = NULL; 1402 rcu_read_lock(); 1403 max_sectors = r1_bio->sectors; 1404 for (i = 0; i < disks; i++) { 1405 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1406 1407 /* 1408 * The write-behind io is only attempted on drives marked as 1409 * write-mostly, which means we could allocate write behind 1410 * bio later. 1411 */ 1412 if (rdev && test_bit(WriteMostly, &rdev->flags)) 1413 write_behind = true; 1414 1415 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1416 atomic_inc(&rdev->nr_pending); 1417 blocked_rdev = rdev; 1418 break; 1419 } 1420 r1_bio->bios[i] = NULL; 1421 if (!rdev || test_bit(Faulty, &rdev->flags)) { 1422 if (i < conf->raid_disks) 1423 set_bit(R1BIO_Degraded, &r1_bio->state); 1424 continue; 1425 } 1426 1427 atomic_inc(&rdev->nr_pending); 1428 if (test_bit(WriteErrorSeen, &rdev->flags)) { 1429 sector_t first_bad; 1430 int bad_sectors; 1431 int is_bad; 1432 1433 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors, 1434 &first_bad, &bad_sectors); 1435 if (is_bad < 0) { 1436 /* mustn't write here until the bad block is 1437 * acknowledged*/ 1438 set_bit(BlockedBadBlocks, &rdev->flags); 1439 blocked_rdev = rdev; 1440 break; 1441 } 1442 if (is_bad && first_bad <= r1_bio->sector) { 1443 /* Cannot write here at all */ 1444 bad_sectors -= (r1_bio->sector - first_bad); 1445 if (bad_sectors < max_sectors) 1446 /* mustn't write more than bad_sectors 1447 * to other devices yet 1448 */ 1449 max_sectors = bad_sectors; 1450 rdev_dec_pending(rdev, mddev); 1451 /* We don't set R1BIO_Degraded as that 1452 * only applies if the disk is 1453 * missing, so it might be re-added, 1454 * and we want to know to recover this 1455 * chunk. 1456 * In this case the device is here, 1457 * and the fact that this chunk is not 1458 * in-sync is recorded in the bad 1459 * block log 1460 */ 1461 continue; 1462 } 1463 if (is_bad) { 1464 int good_sectors = first_bad - r1_bio->sector; 1465 if (good_sectors < max_sectors) 1466 max_sectors = good_sectors; 1467 } 1468 } 1469 r1_bio->bios[i] = bio; 1470 } 1471 rcu_read_unlock(); 1472 1473 if (unlikely(blocked_rdev)) { 1474 /* Wait for this device to become unblocked */ 1475 int j; 1476 1477 for (j = 0; j < i; j++) 1478 if (r1_bio->bios[j]) 1479 rdev_dec_pending(conf->mirrors[j].rdev, mddev); 1480 r1_bio->state = 0; 1481 allow_barrier(conf, bio->bi_iter.bi_sector); 1482 1483 if (bio->bi_opf & REQ_NOWAIT) { 1484 bio_wouldblock_error(bio); 1485 return; 1486 } 1487 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk); 1488 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1489 wait_barrier(conf, bio->bi_iter.bi_sector, false); 1490 goto retry_write; 1491 } 1492 1493 /* 1494 * When using a bitmap, we may call alloc_behind_master_bio below. 1495 * alloc_behind_master_bio allocates a copy of the data payload a page 1496 * at a time and thus needs a new bio that can fit the whole payload 1497 * this bio in page sized chunks. 1498 */ 1499 if (write_behind && bitmap) 1500 max_sectors = min_t(int, max_sectors, 1501 BIO_MAX_VECS * (PAGE_SIZE >> 9)); 1502 if (max_sectors < bio_sectors(bio)) { 1503 struct bio *split = bio_split(bio, max_sectors, 1504 GFP_NOIO, &conf->bio_split); 1505 bio_chain(split, bio); 1506 submit_bio_noacct(bio); 1507 bio = split; 1508 r1_bio->master_bio = bio; 1509 r1_bio->sectors = max_sectors; 1510 } 1511 1512 if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue)) 1513 r1_bio->start_time = bio_start_io_acct(bio); 1514 atomic_set(&r1_bio->remaining, 1); 1515 atomic_set(&r1_bio->behind_remaining, 0); 1516 1517 first_clone = 1; 1518 1519 for (i = 0; i < disks; i++) { 1520 struct bio *mbio = NULL; 1521 struct md_rdev *rdev = conf->mirrors[i].rdev; 1522 if (!r1_bio->bios[i]) 1523 continue; 1524 1525 if (first_clone) { 1526 /* do behind I/O ? 1527 * Not if there are too many, or cannot 1528 * allocate memory, or a reader on WriteMostly 1529 * is waiting for behind writes to flush */ 1530 if (bitmap && 1531 test_bit(WriteMostly, &rdev->flags) && 1532 (atomic_read(&bitmap->behind_writes) 1533 < mddev->bitmap_info.max_write_behind) && 1534 !waitqueue_active(&bitmap->behind_wait)) { 1535 alloc_behind_master_bio(r1_bio, bio); 1536 } 1537 1538 md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors, 1539 test_bit(R1BIO_BehindIO, &r1_bio->state)); 1540 first_clone = 0; 1541 } 1542 1543 if (r1_bio->behind_master_bio) { 1544 mbio = bio_alloc_clone(rdev->bdev, 1545 r1_bio->behind_master_bio, 1546 GFP_NOIO, &mddev->bio_set); 1547 if (test_bit(CollisionCheck, &rdev->flags)) 1548 wait_for_serialization(rdev, r1_bio); 1549 if (test_bit(WriteMostly, &rdev->flags)) 1550 atomic_inc(&r1_bio->behind_remaining); 1551 } else { 1552 mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, 1553 &mddev->bio_set); 1554 1555 if (mddev->serialize_policy) 1556 wait_for_serialization(rdev, r1_bio); 1557 } 1558 1559 r1_bio->bios[i] = mbio; 1560 1561 mbio->bi_iter.bi_sector = (r1_bio->sector + rdev->data_offset); 1562 mbio->bi_end_io = raid1_end_write_request; 1563 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA)); 1564 if (test_bit(FailFast, &rdev->flags) && 1565 !test_bit(WriteMostly, &rdev->flags) && 1566 conf->raid_disks - mddev->degraded > 1) 1567 mbio->bi_opf |= MD_FAILFAST; 1568 mbio->bi_private = r1_bio; 1569 1570 atomic_inc(&r1_bio->remaining); 1571 1572 if (mddev->gendisk) 1573 trace_block_bio_remap(mbio, disk_devt(mddev->gendisk), 1574 r1_bio->sector); 1575 /* flush_pending_writes() needs access to the rdev so...*/ 1576 mbio->bi_bdev = (void *)rdev; 1577 1578 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug)); 1579 if (cb) 1580 plug = container_of(cb, struct raid1_plug_cb, cb); 1581 else 1582 plug = NULL; 1583 if (plug) { 1584 bio_list_add(&plug->pending, mbio); 1585 } else { 1586 spin_lock_irqsave(&conf->device_lock, flags); 1587 bio_list_add(&conf->pending_bio_list, mbio); 1588 spin_unlock_irqrestore(&conf->device_lock, flags); 1589 md_wakeup_thread(mddev->thread); 1590 } 1591 } 1592 1593 r1_bio_write_done(r1_bio); 1594 1595 /* In case raid1d snuck in to freeze_array */ 1596 wake_up(&conf->wait_barrier); 1597 } 1598 1599 static bool raid1_make_request(struct mddev *mddev, struct bio *bio) 1600 { 1601 sector_t sectors; 1602 1603 if (unlikely(bio->bi_opf & REQ_PREFLUSH) 1604 && md_flush_request(mddev, bio)) 1605 return true; 1606 1607 /* 1608 * There is a limit to the maximum size, but 1609 * the read/write handler might find a lower limit 1610 * due to bad blocks. To avoid multiple splits, 1611 * we pass the maximum number of sectors down 1612 * and let the lower level perform the split. 1613 */ 1614 sectors = align_to_barrier_unit_end( 1615 bio->bi_iter.bi_sector, bio_sectors(bio)); 1616 1617 if (bio_data_dir(bio) == READ) 1618 raid1_read_request(mddev, bio, sectors, NULL); 1619 else { 1620 if (!md_write_start(mddev,bio)) 1621 return false; 1622 raid1_write_request(mddev, bio, sectors); 1623 } 1624 return true; 1625 } 1626 1627 static void raid1_status(struct seq_file *seq, struct mddev *mddev) 1628 { 1629 struct r1conf *conf = mddev->private; 1630 int i; 1631 1632 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 1633 conf->raid_disks - mddev->degraded); 1634 rcu_read_lock(); 1635 for (i = 0; i < conf->raid_disks; i++) { 1636 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1637 seq_printf(seq, "%s", 1638 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1639 } 1640 rcu_read_unlock(); 1641 seq_printf(seq, "]"); 1642 } 1643 1644 /** 1645 * raid1_error() - RAID1 error handler. 1646 * @mddev: affected md device. 1647 * @rdev: member device to fail. 1648 * 1649 * The routine acknowledges &rdev failure and determines new @mddev state. 1650 * If it failed, then: 1651 * - &MD_BROKEN flag is set in &mddev->flags. 1652 * - recovery is disabled. 1653 * Otherwise, it must be degraded: 1654 * - recovery is interrupted. 1655 * - &mddev->degraded is bumped. 1656 * 1657 * @rdev is marked as &Faulty excluding case when array is failed and 1658 * &mddev->fail_last_dev is off. 1659 */ 1660 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev) 1661 { 1662 char b[BDEVNAME_SIZE]; 1663 struct r1conf *conf = mddev->private; 1664 unsigned long flags; 1665 1666 spin_lock_irqsave(&conf->device_lock, flags); 1667 1668 if (test_bit(In_sync, &rdev->flags) && 1669 (conf->raid_disks - mddev->degraded) == 1) { 1670 set_bit(MD_BROKEN, &mddev->flags); 1671 1672 if (!mddev->fail_last_dev) { 1673 conf->recovery_disabled = mddev->recovery_disabled; 1674 spin_unlock_irqrestore(&conf->device_lock, flags); 1675 return; 1676 } 1677 } 1678 set_bit(Blocked, &rdev->flags); 1679 if (test_and_clear_bit(In_sync, &rdev->flags)) 1680 mddev->degraded++; 1681 set_bit(Faulty, &rdev->flags); 1682 spin_unlock_irqrestore(&conf->device_lock, flags); 1683 /* 1684 * if recovery is running, make sure it aborts. 1685 */ 1686 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1687 set_mask_bits(&mddev->sb_flags, 0, 1688 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1689 pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n" 1690 "md/raid1:%s: Operation continuing on %d devices.\n", 1691 mdname(mddev), bdevname(rdev->bdev, b), 1692 mdname(mddev), conf->raid_disks - mddev->degraded); 1693 } 1694 1695 static void print_conf(struct r1conf *conf) 1696 { 1697 int i; 1698 1699 pr_debug("RAID1 conf printout:\n"); 1700 if (!conf) { 1701 pr_debug("(!conf)\n"); 1702 return; 1703 } 1704 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1705 conf->raid_disks); 1706 1707 rcu_read_lock(); 1708 for (i = 0; i < conf->raid_disks; i++) { 1709 char b[BDEVNAME_SIZE]; 1710 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1711 if (rdev) 1712 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n", 1713 i, !test_bit(In_sync, &rdev->flags), 1714 !test_bit(Faulty, &rdev->flags), 1715 bdevname(rdev->bdev,b)); 1716 } 1717 rcu_read_unlock(); 1718 } 1719 1720 static void close_sync(struct r1conf *conf) 1721 { 1722 int idx; 1723 1724 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) { 1725 _wait_barrier(conf, idx, false); 1726 _allow_barrier(conf, idx); 1727 } 1728 1729 mempool_exit(&conf->r1buf_pool); 1730 } 1731 1732 static int raid1_spare_active(struct mddev *mddev) 1733 { 1734 int i; 1735 struct r1conf *conf = mddev->private; 1736 int count = 0; 1737 unsigned long flags; 1738 1739 /* 1740 * Find all failed disks within the RAID1 configuration 1741 * and mark them readable. 1742 * Called under mddev lock, so rcu protection not needed. 1743 * device_lock used to avoid races with raid1_end_read_request 1744 * which expects 'In_sync' flags and ->degraded to be consistent. 1745 */ 1746 spin_lock_irqsave(&conf->device_lock, flags); 1747 for (i = 0; i < conf->raid_disks; i++) { 1748 struct md_rdev *rdev = conf->mirrors[i].rdev; 1749 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev; 1750 if (repl 1751 && !test_bit(Candidate, &repl->flags) 1752 && repl->recovery_offset == MaxSector 1753 && !test_bit(Faulty, &repl->flags) 1754 && !test_and_set_bit(In_sync, &repl->flags)) { 1755 /* replacement has just become active */ 1756 if (!rdev || 1757 !test_and_clear_bit(In_sync, &rdev->flags)) 1758 count++; 1759 if (rdev) { 1760 /* Replaced device not technically 1761 * faulty, but we need to be sure 1762 * it gets removed and never re-added 1763 */ 1764 set_bit(Faulty, &rdev->flags); 1765 sysfs_notify_dirent_safe( 1766 rdev->sysfs_state); 1767 } 1768 } 1769 if (rdev 1770 && rdev->recovery_offset == MaxSector 1771 && !test_bit(Faulty, &rdev->flags) 1772 && !test_and_set_bit(In_sync, &rdev->flags)) { 1773 count++; 1774 sysfs_notify_dirent_safe(rdev->sysfs_state); 1775 } 1776 } 1777 mddev->degraded -= count; 1778 spin_unlock_irqrestore(&conf->device_lock, flags); 1779 1780 print_conf(conf); 1781 return count; 1782 } 1783 1784 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1785 { 1786 struct r1conf *conf = mddev->private; 1787 int err = -EEXIST; 1788 int mirror = 0; 1789 struct raid1_info *p; 1790 int first = 0; 1791 int last = conf->raid_disks - 1; 1792 1793 if (mddev->recovery_disabled == conf->recovery_disabled) 1794 return -EBUSY; 1795 1796 if (md_integrity_add_rdev(rdev, mddev)) 1797 return -ENXIO; 1798 1799 if (rdev->raid_disk >= 0) 1800 first = last = rdev->raid_disk; 1801 1802 /* 1803 * find the disk ... but prefer rdev->saved_raid_disk 1804 * if possible. 1805 */ 1806 if (rdev->saved_raid_disk >= 0 && 1807 rdev->saved_raid_disk >= first && 1808 rdev->saved_raid_disk < conf->raid_disks && 1809 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1810 first = last = rdev->saved_raid_disk; 1811 1812 for (mirror = first; mirror <= last; mirror++) { 1813 p = conf->mirrors + mirror; 1814 if (!p->rdev) { 1815 if (mddev->gendisk) 1816 disk_stack_limits(mddev->gendisk, rdev->bdev, 1817 rdev->data_offset << 9); 1818 1819 p->head_position = 0; 1820 rdev->raid_disk = mirror; 1821 err = 0; 1822 /* As all devices are equivalent, we don't need a full recovery 1823 * if this was recently any drive of the array 1824 */ 1825 if (rdev->saved_raid_disk < 0) 1826 conf->fullsync = 1; 1827 rcu_assign_pointer(p->rdev, rdev); 1828 break; 1829 } 1830 if (test_bit(WantReplacement, &p->rdev->flags) && 1831 p[conf->raid_disks].rdev == NULL) { 1832 /* Add this device as a replacement */ 1833 clear_bit(In_sync, &rdev->flags); 1834 set_bit(Replacement, &rdev->flags); 1835 rdev->raid_disk = mirror; 1836 err = 0; 1837 conf->fullsync = 1; 1838 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev); 1839 break; 1840 } 1841 } 1842 print_conf(conf); 1843 return err; 1844 } 1845 1846 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1847 { 1848 struct r1conf *conf = mddev->private; 1849 int err = 0; 1850 int number = rdev->raid_disk; 1851 struct raid1_info *p = conf->mirrors + number; 1852 1853 if (rdev != p->rdev) 1854 p = conf->mirrors + conf->raid_disks + number; 1855 1856 print_conf(conf); 1857 if (rdev == p->rdev) { 1858 if (test_bit(In_sync, &rdev->flags) || 1859 atomic_read(&rdev->nr_pending)) { 1860 err = -EBUSY; 1861 goto abort; 1862 } 1863 /* Only remove non-faulty devices if recovery 1864 * is not possible. 1865 */ 1866 if (!test_bit(Faulty, &rdev->flags) && 1867 mddev->recovery_disabled != conf->recovery_disabled && 1868 mddev->degraded < conf->raid_disks) { 1869 err = -EBUSY; 1870 goto abort; 1871 } 1872 p->rdev = NULL; 1873 if (!test_bit(RemoveSynchronized, &rdev->flags)) { 1874 synchronize_rcu(); 1875 if (atomic_read(&rdev->nr_pending)) { 1876 /* lost the race, try later */ 1877 err = -EBUSY; 1878 p->rdev = rdev; 1879 goto abort; 1880 } 1881 } 1882 if (conf->mirrors[conf->raid_disks + number].rdev) { 1883 /* We just removed a device that is being replaced. 1884 * Move down the replacement. We drain all IO before 1885 * doing this to avoid confusion. 1886 */ 1887 struct md_rdev *repl = 1888 conf->mirrors[conf->raid_disks + number].rdev; 1889 freeze_array(conf, 0); 1890 if (atomic_read(&repl->nr_pending)) { 1891 /* It means that some queued IO of retry_list 1892 * hold repl. Thus, we cannot set replacement 1893 * as NULL, avoiding rdev NULL pointer 1894 * dereference in sync_request_write and 1895 * handle_write_finished. 1896 */ 1897 err = -EBUSY; 1898 unfreeze_array(conf); 1899 goto abort; 1900 } 1901 clear_bit(Replacement, &repl->flags); 1902 p->rdev = repl; 1903 conf->mirrors[conf->raid_disks + number].rdev = NULL; 1904 unfreeze_array(conf); 1905 } 1906 1907 clear_bit(WantReplacement, &rdev->flags); 1908 err = md_integrity_register(mddev); 1909 } 1910 abort: 1911 1912 print_conf(conf); 1913 return err; 1914 } 1915 1916 static void end_sync_read(struct bio *bio) 1917 { 1918 struct r1bio *r1_bio = get_resync_r1bio(bio); 1919 1920 update_head_pos(r1_bio->read_disk, r1_bio); 1921 1922 /* 1923 * we have read a block, now it needs to be re-written, 1924 * or re-read if the read failed. 1925 * We don't do much here, just schedule handling by raid1d 1926 */ 1927 if (!bio->bi_status) 1928 set_bit(R1BIO_Uptodate, &r1_bio->state); 1929 1930 if (atomic_dec_and_test(&r1_bio->remaining)) 1931 reschedule_retry(r1_bio); 1932 } 1933 1934 static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio) 1935 { 1936 sector_t sync_blocks = 0; 1937 sector_t s = r1_bio->sector; 1938 long sectors_to_go = r1_bio->sectors; 1939 1940 /* make sure these bits don't get cleared. */ 1941 do { 1942 md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1); 1943 s += sync_blocks; 1944 sectors_to_go -= sync_blocks; 1945 } while (sectors_to_go > 0); 1946 } 1947 1948 static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate) 1949 { 1950 if (atomic_dec_and_test(&r1_bio->remaining)) { 1951 struct mddev *mddev = r1_bio->mddev; 1952 int s = r1_bio->sectors; 1953 1954 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 1955 test_bit(R1BIO_WriteError, &r1_bio->state)) 1956 reschedule_retry(r1_bio); 1957 else { 1958 put_buf(r1_bio); 1959 md_done_sync(mddev, s, uptodate); 1960 } 1961 } 1962 } 1963 1964 static void end_sync_write(struct bio *bio) 1965 { 1966 int uptodate = !bio->bi_status; 1967 struct r1bio *r1_bio = get_resync_r1bio(bio); 1968 struct mddev *mddev = r1_bio->mddev; 1969 struct r1conf *conf = mddev->private; 1970 sector_t first_bad; 1971 int bad_sectors; 1972 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev; 1973 1974 if (!uptodate) { 1975 abort_sync_write(mddev, r1_bio); 1976 set_bit(WriteErrorSeen, &rdev->flags); 1977 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 1978 set_bit(MD_RECOVERY_NEEDED, & 1979 mddev->recovery); 1980 set_bit(R1BIO_WriteError, &r1_bio->state); 1981 } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors, 1982 &first_bad, &bad_sectors) && 1983 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev, 1984 r1_bio->sector, 1985 r1_bio->sectors, 1986 &first_bad, &bad_sectors) 1987 ) 1988 set_bit(R1BIO_MadeGood, &r1_bio->state); 1989 1990 put_sync_write_buf(r1_bio, uptodate); 1991 } 1992 1993 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector, 1994 int sectors, struct page *page, int rw) 1995 { 1996 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false)) 1997 /* success */ 1998 return 1; 1999 if (rw == WRITE) { 2000 set_bit(WriteErrorSeen, &rdev->flags); 2001 if (!test_and_set_bit(WantReplacement, 2002 &rdev->flags)) 2003 set_bit(MD_RECOVERY_NEEDED, & 2004 rdev->mddev->recovery); 2005 } 2006 /* need to record an error - either for the block or the device */ 2007 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 2008 md_error(rdev->mddev, rdev); 2009 return 0; 2010 } 2011 2012 static int fix_sync_read_error(struct r1bio *r1_bio) 2013 { 2014 /* Try some synchronous reads of other devices to get 2015 * good data, much like with normal read errors. Only 2016 * read into the pages we already have so we don't 2017 * need to re-issue the read request. 2018 * We don't need to freeze the array, because being in an 2019 * active sync request, there is no normal IO, and 2020 * no overlapping syncs. 2021 * We don't need to check is_badblock() again as we 2022 * made sure that anything with a bad block in range 2023 * will have bi_end_io clear. 2024 */ 2025 struct mddev *mddev = r1_bio->mddev; 2026 struct r1conf *conf = mddev->private; 2027 struct bio *bio = r1_bio->bios[r1_bio->read_disk]; 2028 struct page **pages = get_resync_pages(bio)->pages; 2029 sector_t sect = r1_bio->sector; 2030 int sectors = r1_bio->sectors; 2031 int idx = 0; 2032 struct md_rdev *rdev; 2033 2034 rdev = conf->mirrors[r1_bio->read_disk].rdev; 2035 if (test_bit(FailFast, &rdev->flags)) { 2036 /* Don't try recovering from here - just fail it 2037 * ... unless it is the last working device of course */ 2038 md_error(mddev, rdev); 2039 if (test_bit(Faulty, &rdev->flags)) 2040 /* Don't try to read from here, but make sure 2041 * put_buf does it's thing 2042 */ 2043 bio->bi_end_io = end_sync_write; 2044 } 2045 2046 while(sectors) { 2047 int s = sectors; 2048 int d = r1_bio->read_disk; 2049 int success = 0; 2050 int start; 2051 2052 if (s > (PAGE_SIZE>>9)) 2053 s = PAGE_SIZE >> 9; 2054 do { 2055 if (r1_bio->bios[d]->bi_end_io == end_sync_read) { 2056 /* No rcu protection needed here devices 2057 * can only be removed when no resync is 2058 * active, and resync is currently active 2059 */ 2060 rdev = conf->mirrors[d].rdev; 2061 if (sync_page_io(rdev, sect, s<<9, 2062 pages[idx], 2063 REQ_OP_READ, 0, false)) { 2064 success = 1; 2065 break; 2066 } 2067 } 2068 d++; 2069 if (d == conf->raid_disks * 2) 2070 d = 0; 2071 } while (!success && d != r1_bio->read_disk); 2072 2073 if (!success) { 2074 int abort = 0; 2075 /* Cannot read from anywhere, this block is lost. 2076 * Record a bad block on each device. If that doesn't 2077 * work just disable and interrupt the recovery. 2078 * Don't fail devices as that won't really help. 2079 */ 2080 pr_crit_ratelimited("md/raid1:%s: %pg: unrecoverable I/O read error for block %llu\n", 2081 mdname(mddev), bio->bi_bdev, 2082 (unsigned long long)r1_bio->sector); 2083 for (d = 0; d < conf->raid_disks * 2; d++) { 2084 rdev = conf->mirrors[d].rdev; 2085 if (!rdev || test_bit(Faulty, &rdev->flags)) 2086 continue; 2087 if (!rdev_set_badblocks(rdev, sect, s, 0)) 2088 abort = 1; 2089 } 2090 if (abort) { 2091 conf->recovery_disabled = 2092 mddev->recovery_disabled; 2093 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2094 md_done_sync(mddev, r1_bio->sectors, 0); 2095 put_buf(r1_bio); 2096 return 0; 2097 } 2098 /* Try next page */ 2099 sectors -= s; 2100 sect += s; 2101 idx++; 2102 continue; 2103 } 2104 2105 start = d; 2106 /* write it back and re-read */ 2107 while (d != r1_bio->read_disk) { 2108 if (d == 0) 2109 d = conf->raid_disks * 2; 2110 d--; 2111 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 2112 continue; 2113 rdev = conf->mirrors[d].rdev; 2114 if (r1_sync_page_io(rdev, sect, s, 2115 pages[idx], 2116 WRITE) == 0) { 2117 r1_bio->bios[d]->bi_end_io = NULL; 2118 rdev_dec_pending(rdev, mddev); 2119 } 2120 } 2121 d = start; 2122 while (d != r1_bio->read_disk) { 2123 if (d == 0) 2124 d = conf->raid_disks * 2; 2125 d--; 2126 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 2127 continue; 2128 rdev = conf->mirrors[d].rdev; 2129 if (r1_sync_page_io(rdev, sect, s, 2130 pages[idx], 2131 READ) != 0) 2132 atomic_add(s, &rdev->corrected_errors); 2133 } 2134 sectors -= s; 2135 sect += s; 2136 idx ++; 2137 } 2138 set_bit(R1BIO_Uptodate, &r1_bio->state); 2139 bio->bi_status = 0; 2140 return 1; 2141 } 2142 2143 static void process_checks(struct r1bio *r1_bio) 2144 { 2145 /* We have read all readable devices. If we haven't 2146 * got the block, then there is no hope left. 2147 * If we have, then we want to do a comparison 2148 * and skip the write if everything is the same. 2149 * If any blocks failed to read, then we need to 2150 * attempt an over-write 2151 */ 2152 struct mddev *mddev = r1_bio->mddev; 2153 struct r1conf *conf = mddev->private; 2154 int primary; 2155 int i; 2156 int vcnt; 2157 2158 /* Fix variable parts of all bios */ 2159 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9); 2160 for (i = 0; i < conf->raid_disks * 2; i++) { 2161 blk_status_t status; 2162 struct bio *b = r1_bio->bios[i]; 2163 struct resync_pages *rp = get_resync_pages(b); 2164 if (b->bi_end_io != end_sync_read) 2165 continue; 2166 /* fixup the bio for reuse, but preserve errno */ 2167 status = b->bi_status; 2168 bio_reset(b, conf->mirrors[i].rdev->bdev, REQ_OP_READ); 2169 b->bi_status = status; 2170 b->bi_iter.bi_sector = r1_bio->sector + 2171 conf->mirrors[i].rdev->data_offset; 2172 b->bi_end_io = end_sync_read; 2173 rp->raid_bio = r1_bio; 2174 b->bi_private = rp; 2175 2176 /* initialize bvec table again */ 2177 md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9); 2178 } 2179 for (primary = 0; primary < conf->raid_disks * 2; primary++) 2180 if (r1_bio->bios[primary]->bi_end_io == end_sync_read && 2181 !r1_bio->bios[primary]->bi_status) { 2182 r1_bio->bios[primary]->bi_end_io = NULL; 2183 rdev_dec_pending(conf->mirrors[primary].rdev, mddev); 2184 break; 2185 } 2186 r1_bio->read_disk = primary; 2187 for (i = 0; i < conf->raid_disks * 2; i++) { 2188 int j = 0; 2189 struct bio *pbio = r1_bio->bios[primary]; 2190 struct bio *sbio = r1_bio->bios[i]; 2191 blk_status_t status = sbio->bi_status; 2192 struct page **ppages = get_resync_pages(pbio)->pages; 2193 struct page **spages = get_resync_pages(sbio)->pages; 2194 struct bio_vec *bi; 2195 int page_len[RESYNC_PAGES] = { 0 }; 2196 struct bvec_iter_all iter_all; 2197 2198 if (sbio->bi_end_io != end_sync_read) 2199 continue; 2200 /* Now we can 'fixup' the error value */ 2201 sbio->bi_status = 0; 2202 2203 bio_for_each_segment_all(bi, sbio, iter_all) 2204 page_len[j++] = bi->bv_len; 2205 2206 if (!status) { 2207 for (j = vcnt; j-- ; ) { 2208 if (memcmp(page_address(ppages[j]), 2209 page_address(spages[j]), 2210 page_len[j])) 2211 break; 2212 } 2213 } else 2214 j = 0; 2215 if (j >= 0) 2216 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches); 2217 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery) 2218 && !status)) { 2219 /* No need to write to this device. */ 2220 sbio->bi_end_io = NULL; 2221 rdev_dec_pending(conf->mirrors[i].rdev, mddev); 2222 continue; 2223 } 2224 2225 bio_copy_data(sbio, pbio); 2226 } 2227 } 2228 2229 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio) 2230 { 2231 struct r1conf *conf = mddev->private; 2232 int i; 2233 int disks = conf->raid_disks * 2; 2234 struct bio *wbio; 2235 2236 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 2237 /* ouch - failed to read all of that. */ 2238 if (!fix_sync_read_error(r1_bio)) 2239 return; 2240 2241 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2242 process_checks(r1_bio); 2243 2244 /* 2245 * schedule writes 2246 */ 2247 atomic_set(&r1_bio->remaining, 1); 2248 for (i = 0; i < disks ; i++) { 2249 wbio = r1_bio->bios[i]; 2250 if (wbio->bi_end_io == NULL || 2251 (wbio->bi_end_io == end_sync_read && 2252 (i == r1_bio->read_disk || 2253 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)))) 2254 continue; 2255 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) { 2256 abort_sync_write(mddev, r1_bio); 2257 continue; 2258 } 2259 2260 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0); 2261 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags)) 2262 wbio->bi_opf |= MD_FAILFAST; 2263 2264 wbio->bi_end_io = end_sync_write; 2265 atomic_inc(&r1_bio->remaining); 2266 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio)); 2267 2268 submit_bio_noacct(wbio); 2269 } 2270 2271 put_sync_write_buf(r1_bio, 1); 2272 } 2273 2274 /* 2275 * This is a kernel thread which: 2276 * 2277 * 1. Retries failed read operations on working mirrors. 2278 * 2. Updates the raid superblock when problems encounter. 2279 * 3. Performs writes following reads for array synchronising. 2280 */ 2281 2282 static void fix_read_error(struct r1conf *conf, int read_disk, 2283 sector_t sect, int sectors) 2284 { 2285 struct mddev *mddev = conf->mddev; 2286 while(sectors) { 2287 int s = sectors; 2288 int d = read_disk; 2289 int success = 0; 2290 int start; 2291 struct md_rdev *rdev; 2292 2293 if (s > (PAGE_SIZE>>9)) 2294 s = PAGE_SIZE >> 9; 2295 2296 do { 2297 sector_t first_bad; 2298 int bad_sectors; 2299 2300 rcu_read_lock(); 2301 rdev = rcu_dereference(conf->mirrors[d].rdev); 2302 if (rdev && 2303 (test_bit(In_sync, &rdev->flags) || 2304 (!test_bit(Faulty, &rdev->flags) && 2305 rdev->recovery_offset >= sect + s)) && 2306 is_badblock(rdev, sect, s, 2307 &first_bad, &bad_sectors) == 0) { 2308 atomic_inc(&rdev->nr_pending); 2309 rcu_read_unlock(); 2310 if (sync_page_io(rdev, sect, s<<9, 2311 conf->tmppage, REQ_OP_READ, 0, false)) 2312 success = 1; 2313 rdev_dec_pending(rdev, mddev); 2314 if (success) 2315 break; 2316 } else 2317 rcu_read_unlock(); 2318 d++; 2319 if (d == conf->raid_disks * 2) 2320 d = 0; 2321 } while (!success && d != read_disk); 2322 2323 if (!success) { 2324 /* Cannot read from anywhere - mark it bad */ 2325 struct md_rdev *rdev = conf->mirrors[read_disk].rdev; 2326 if (!rdev_set_badblocks(rdev, sect, s, 0)) 2327 md_error(mddev, rdev); 2328 break; 2329 } 2330 /* write it back and re-read */ 2331 start = d; 2332 while (d != read_disk) { 2333 if (d==0) 2334 d = conf->raid_disks * 2; 2335 d--; 2336 rcu_read_lock(); 2337 rdev = rcu_dereference(conf->mirrors[d].rdev); 2338 if (rdev && 2339 !test_bit(Faulty, &rdev->flags)) { 2340 atomic_inc(&rdev->nr_pending); 2341 rcu_read_unlock(); 2342 r1_sync_page_io(rdev, sect, s, 2343 conf->tmppage, WRITE); 2344 rdev_dec_pending(rdev, mddev); 2345 } else 2346 rcu_read_unlock(); 2347 } 2348 d = start; 2349 while (d != read_disk) { 2350 char b[BDEVNAME_SIZE]; 2351 if (d==0) 2352 d = conf->raid_disks * 2; 2353 d--; 2354 rcu_read_lock(); 2355 rdev = rcu_dereference(conf->mirrors[d].rdev); 2356 if (rdev && 2357 !test_bit(Faulty, &rdev->flags)) { 2358 atomic_inc(&rdev->nr_pending); 2359 rcu_read_unlock(); 2360 if (r1_sync_page_io(rdev, sect, s, 2361 conf->tmppage, READ)) { 2362 atomic_add(s, &rdev->corrected_errors); 2363 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n", 2364 mdname(mddev), s, 2365 (unsigned long long)(sect + 2366 rdev->data_offset), 2367 bdevname(rdev->bdev, b)); 2368 } 2369 rdev_dec_pending(rdev, mddev); 2370 } else 2371 rcu_read_unlock(); 2372 } 2373 sectors -= s; 2374 sect += s; 2375 } 2376 } 2377 2378 static int narrow_write_error(struct r1bio *r1_bio, int i) 2379 { 2380 struct mddev *mddev = r1_bio->mddev; 2381 struct r1conf *conf = mddev->private; 2382 struct md_rdev *rdev = conf->mirrors[i].rdev; 2383 2384 /* bio has the data to be written to device 'i' where 2385 * we just recently had a write error. 2386 * We repeatedly clone the bio and trim down to one block, 2387 * then try the write. Where the write fails we record 2388 * a bad block. 2389 * It is conceivable that the bio doesn't exactly align with 2390 * blocks. We must handle this somehow. 2391 * 2392 * We currently own a reference on the rdev. 2393 */ 2394 2395 int block_sectors; 2396 sector_t sector; 2397 int sectors; 2398 int sect_to_write = r1_bio->sectors; 2399 int ok = 1; 2400 2401 if (rdev->badblocks.shift < 0) 2402 return 0; 2403 2404 block_sectors = roundup(1 << rdev->badblocks.shift, 2405 bdev_logical_block_size(rdev->bdev) >> 9); 2406 sector = r1_bio->sector; 2407 sectors = ((sector + block_sectors) 2408 & ~(sector_t)(block_sectors - 1)) 2409 - sector; 2410 2411 while (sect_to_write) { 2412 struct bio *wbio; 2413 if (sectors > sect_to_write) 2414 sectors = sect_to_write; 2415 /* Write at 'sector' for 'sectors'*/ 2416 2417 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 2418 wbio = bio_alloc_clone(rdev->bdev, 2419 r1_bio->behind_master_bio, 2420 GFP_NOIO, &mddev->bio_set); 2421 } else { 2422 wbio = bio_alloc_clone(rdev->bdev, r1_bio->master_bio, 2423 GFP_NOIO, &mddev->bio_set); 2424 } 2425 2426 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0); 2427 wbio->bi_iter.bi_sector = r1_bio->sector; 2428 wbio->bi_iter.bi_size = r1_bio->sectors << 9; 2429 2430 bio_trim(wbio, sector - r1_bio->sector, sectors); 2431 wbio->bi_iter.bi_sector += rdev->data_offset; 2432 2433 if (submit_bio_wait(wbio) < 0) 2434 /* failure! */ 2435 ok = rdev_set_badblocks(rdev, sector, 2436 sectors, 0) 2437 && ok; 2438 2439 bio_put(wbio); 2440 sect_to_write -= sectors; 2441 sector += sectors; 2442 sectors = block_sectors; 2443 } 2444 return ok; 2445 } 2446 2447 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2448 { 2449 int m; 2450 int s = r1_bio->sectors; 2451 for (m = 0; m < conf->raid_disks * 2 ; m++) { 2452 struct md_rdev *rdev = conf->mirrors[m].rdev; 2453 struct bio *bio = r1_bio->bios[m]; 2454 if (bio->bi_end_io == NULL) 2455 continue; 2456 if (!bio->bi_status && 2457 test_bit(R1BIO_MadeGood, &r1_bio->state)) { 2458 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0); 2459 } 2460 if (bio->bi_status && 2461 test_bit(R1BIO_WriteError, &r1_bio->state)) { 2462 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0)) 2463 md_error(conf->mddev, rdev); 2464 } 2465 } 2466 put_buf(r1_bio); 2467 md_done_sync(conf->mddev, s, 1); 2468 } 2469 2470 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2471 { 2472 int m, idx; 2473 bool fail = false; 2474 2475 for (m = 0; m < conf->raid_disks * 2 ; m++) 2476 if (r1_bio->bios[m] == IO_MADE_GOOD) { 2477 struct md_rdev *rdev = conf->mirrors[m].rdev; 2478 rdev_clear_badblocks(rdev, 2479 r1_bio->sector, 2480 r1_bio->sectors, 0); 2481 rdev_dec_pending(rdev, conf->mddev); 2482 } else if (r1_bio->bios[m] != NULL) { 2483 /* This drive got a write error. We need to 2484 * narrow down and record precise write 2485 * errors. 2486 */ 2487 fail = true; 2488 if (!narrow_write_error(r1_bio, m)) { 2489 md_error(conf->mddev, 2490 conf->mirrors[m].rdev); 2491 /* an I/O failed, we can't clear the bitmap */ 2492 set_bit(R1BIO_Degraded, &r1_bio->state); 2493 } 2494 rdev_dec_pending(conf->mirrors[m].rdev, 2495 conf->mddev); 2496 } 2497 if (fail) { 2498 spin_lock_irq(&conf->device_lock); 2499 list_add(&r1_bio->retry_list, &conf->bio_end_io_list); 2500 idx = sector_to_idx(r1_bio->sector); 2501 atomic_inc(&conf->nr_queued[idx]); 2502 spin_unlock_irq(&conf->device_lock); 2503 /* 2504 * In case freeze_array() is waiting for condition 2505 * get_unqueued_pending() == extra to be true. 2506 */ 2507 wake_up(&conf->wait_barrier); 2508 md_wakeup_thread(conf->mddev->thread); 2509 } else { 2510 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2511 close_write(r1_bio); 2512 raid_end_bio_io(r1_bio); 2513 } 2514 } 2515 2516 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio) 2517 { 2518 struct mddev *mddev = conf->mddev; 2519 struct bio *bio; 2520 struct md_rdev *rdev; 2521 2522 clear_bit(R1BIO_ReadError, &r1_bio->state); 2523 /* we got a read error. Maybe the drive is bad. Maybe just 2524 * the block and we can fix it. 2525 * We freeze all other IO, and try reading the block from 2526 * other devices. When we find one, we re-write 2527 * and check it that fixes the read error. 2528 * This is all done synchronously while the array is 2529 * frozen 2530 */ 2531 2532 bio = r1_bio->bios[r1_bio->read_disk]; 2533 bio_put(bio); 2534 r1_bio->bios[r1_bio->read_disk] = NULL; 2535 2536 rdev = conf->mirrors[r1_bio->read_disk].rdev; 2537 if (mddev->ro == 0 2538 && !test_bit(FailFast, &rdev->flags)) { 2539 freeze_array(conf, 1); 2540 fix_read_error(conf, r1_bio->read_disk, 2541 r1_bio->sector, r1_bio->sectors); 2542 unfreeze_array(conf); 2543 } else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) { 2544 md_error(mddev, rdev); 2545 } else { 2546 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED; 2547 } 2548 2549 rdev_dec_pending(rdev, conf->mddev); 2550 allow_barrier(conf, r1_bio->sector); 2551 bio = r1_bio->master_bio; 2552 2553 /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */ 2554 r1_bio->state = 0; 2555 raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio); 2556 } 2557 2558 static void raid1d(struct md_thread *thread) 2559 { 2560 struct mddev *mddev = thread->mddev; 2561 struct r1bio *r1_bio; 2562 unsigned long flags; 2563 struct r1conf *conf = mddev->private; 2564 struct list_head *head = &conf->retry_list; 2565 struct blk_plug plug; 2566 int idx; 2567 2568 md_check_recovery(mddev); 2569 2570 if (!list_empty_careful(&conf->bio_end_io_list) && 2571 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 2572 LIST_HEAD(tmp); 2573 spin_lock_irqsave(&conf->device_lock, flags); 2574 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 2575 list_splice_init(&conf->bio_end_io_list, &tmp); 2576 spin_unlock_irqrestore(&conf->device_lock, flags); 2577 while (!list_empty(&tmp)) { 2578 r1_bio = list_first_entry(&tmp, struct r1bio, 2579 retry_list); 2580 list_del(&r1_bio->retry_list); 2581 idx = sector_to_idx(r1_bio->sector); 2582 atomic_dec(&conf->nr_queued[idx]); 2583 if (mddev->degraded) 2584 set_bit(R1BIO_Degraded, &r1_bio->state); 2585 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2586 close_write(r1_bio); 2587 raid_end_bio_io(r1_bio); 2588 } 2589 } 2590 2591 blk_start_plug(&plug); 2592 for (;;) { 2593 2594 flush_pending_writes(conf); 2595 2596 spin_lock_irqsave(&conf->device_lock, flags); 2597 if (list_empty(head)) { 2598 spin_unlock_irqrestore(&conf->device_lock, flags); 2599 break; 2600 } 2601 r1_bio = list_entry(head->prev, struct r1bio, retry_list); 2602 list_del(head->prev); 2603 idx = sector_to_idx(r1_bio->sector); 2604 atomic_dec(&conf->nr_queued[idx]); 2605 spin_unlock_irqrestore(&conf->device_lock, flags); 2606 2607 mddev = r1_bio->mddev; 2608 conf = mddev->private; 2609 if (test_bit(R1BIO_IsSync, &r1_bio->state)) { 2610 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2611 test_bit(R1BIO_WriteError, &r1_bio->state)) 2612 handle_sync_write_finished(conf, r1_bio); 2613 else 2614 sync_request_write(mddev, r1_bio); 2615 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2616 test_bit(R1BIO_WriteError, &r1_bio->state)) 2617 handle_write_finished(conf, r1_bio); 2618 else if (test_bit(R1BIO_ReadError, &r1_bio->state)) 2619 handle_read_error(conf, r1_bio); 2620 else 2621 WARN_ON_ONCE(1); 2622 2623 cond_resched(); 2624 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING)) 2625 md_check_recovery(mddev); 2626 } 2627 blk_finish_plug(&plug); 2628 } 2629 2630 static int init_resync(struct r1conf *conf) 2631 { 2632 int buffs; 2633 2634 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2635 BUG_ON(mempool_initialized(&conf->r1buf_pool)); 2636 2637 return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc, 2638 r1buf_pool_free, conf->poolinfo); 2639 } 2640 2641 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf) 2642 { 2643 struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO); 2644 struct resync_pages *rps; 2645 struct bio *bio; 2646 int i; 2647 2648 for (i = conf->poolinfo->raid_disks; i--; ) { 2649 bio = r1bio->bios[i]; 2650 rps = bio->bi_private; 2651 bio_reset(bio, NULL, 0); 2652 bio->bi_private = rps; 2653 } 2654 r1bio->master_bio = NULL; 2655 return r1bio; 2656 } 2657 2658 /* 2659 * perform a "sync" on one "block" 2660 * 2661 * We need to make sure that no normal I/O request - particularly write 2662 * requests - conflict with active sync requests. 2663 * 2664 * This is achieved by tracking pending requests and a 'barrier' concept 2665 * that can be installed to exclude normal IO requests. 2666 */ 2667 2668 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr, 2669 int *skipped) 2670 { 2671 struct r1conf *conf = mddev->private; 2672 struct r1bio *r1_bio; 2673 struct bio *bio; 2674 sector_t max_sector, nr_sectors; 2675 int disk = -1; 2676 int i; 2677 int wonly = -1; 2678 int write_targets = 0, read_targets = 0; 2679 sector_t sync_blocks; 2680 int still_degraded = 0; 2681 int good_sectors = RESYNC_SECTORS; 2682 int min_bad = 0; /* number of sectors that are bad in all devices */ 2683 int idx = sector_to_idx(sector_nr); 2684 int page_idx = 0; 2685 2686 if (!mempool_initialized(&conf->r1buf_pool)) 2687 if (init_resync(conf)) 2688 return 0; 2689 2690 max_sector = mddev->dev_sectors; 2691 if (sector_nr >= max_sector) { 2692 /* If we aborted, we need to abort the 2693 * sync on the 'current' bitmap chunk (there will 2694 * only be one in raid1 resync. 2695 * We can find the current addess in mddev->curr_resync 2696 */ 2697 if (mddev->curr_resync < max_sector) /* aborted */ 2698 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2699 &sync_blocks, 1); 2700 else /* completed sync */ 2701 conf->fullsync = 0; 2702 2703 md_bitmap_close_sync(mddev->bitmap); 2704 close_sync(conf); 2705 2706 if (mddev_is_clustered(mddev)) { 2707 conf->cluster_sync_low = 0; 2708 conf->cluster_sync_high = 0; 2709 } 2710 return 0; 2711 } 2712 2713 if (mddev->bitmap == NULL && 2714 mddev->recovery_cp == MaxSector && 2715 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 2716 conf->fullsync == 0) { 2717 *skipped = 1; 2718 return max_sector - sector_nr; 2719 } 2720 /* before building a request, check if we can skip these blocks.. 2721 * This call the bitmap_start_sync doesn't actually record anything 2722 */ 2723 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 2724 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2725 /* We can skip this block, and probably several more */ 2726 *skipped = 1; 2727 return sync_blocks; 2728 } 2729 2730 /* 2731 * If there is non-resync activity waiting for a turn, then let it 2732 * though before starting on this new sync request. 2733 */ 2734 if (atomic_read(&conf->nr_waiting[idx])) 2735 schedule_timeout_uninterruptible(1); 2736 2737 /* we are incrementing sector_nr below. To be safe, we check against 2738 * sector_nr + two times RESYNC_SECTORS 2739 */ 2740 2741 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, 2742 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high)); 2743 2744 2745 if (raise_barrier(conf, sector_nr)) 2746 return 0; 2747 2748 r1_bio = raid1_alloc_init_r1buf(conf); 2749 2750 rcu_read_lock(); 2751 /* 2752 * If we get a correctably read error during resync or recovery, 2753 * we might want to read from a different device. So we 2754 * flag all drives that could conceivably be read from for READ, 2755 * and any others (which will be non-In_sync devices) for WRITE. 2756 * If a read fails, we try reading from something else for which READ 2757 * is OK. 2758 */ 2759 2760 r1_bio->mddev = mddev; 2761 r1_bio->sector = sector_nr; 2762 r1_bio->state = 0; 2763 set_bit(R1BIO_IsSync, &r1_bio->state); 2764 /* make sure good_sectors won't go across barrier unit boundary */ 2765 good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors); 2766 2767 for (i = 0; i < conf->raid_disks * 2; i++) { 2768 struct md_rdev *rdev; 2769 bio = r1_bio->bios[i]; 2770 2771 rdev = rcu_dereference(conf->mirrors[i].rdev); 2772 if (rdev == NULL || 2773 test_bit(Faulty, &rdev->flags)) { 2774 if (i < conf->raid_disks) 2775 still_degraded = 1; 2776 } else if (!test_bit(In_sync, &rdev->flags)) { 2777 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 2778 bio->bi_end_io = end_sync_write; 2779 write_targets ++; 2780 } else { 2781 /* may need to read from here */ 2782 sector_t first_bad = MaxSector; 2783 int bad_sectors; 2784 2785 if (is_badblock(rdev, sector_nr, good_sectors, 2786 &first_bad, &bad_sectors)) { 2787 if (first_bad > sector_nr) 2788 good_sectors = first_bad - sector_nr; 2789 else { 2790 bad_sectors -= (sector_nr - first_bad); 2791 if (min_bad == 0 || 2792 min_bad > bad_sectors) 2793 min_bad = bad_sectors; 2794 } 2795 } 2796 if (sector_nr < first_bad) { 2797 if (test_bit(WriteMostly, &rdev->flags)) { 2798 if (wonly < 0) 2799 wonly = i; 2800 } else { 2801 if (disk < 0) 2802 disk = i; 2803 } 2804 bio_set_op_attrs(bio, REQ_OP_READ, 0); 2805 bio->bi_end_io = end_sync_read; 2806 read_targets++; 2807 } else if (!test_bit(WriteErrorSeen, &rdev->flags) && 2808 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 2809 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 2810 /* 2811 * The device is suitable for reading (InSync), 2812 * but has bad block(s) here. Let's try to correct them, 2813 * if we are doing resync or repair. Otherwise, leave 2814 * this device alone for this sync request. 2815 */ 2816 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 2817 bio->bi_end_io = end_sync_write; 2818 write_targets++; 2819 } 2820 } 2821 if (rdev && bio->bi_end_io) { 2822 atomic_inc(&rdev->nr_pending); 2823 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset; 2824 bio_set_dev(bio, rdev->bdev); 2825 if (test_bit(FailFast, &rdev->flags)) 2826 bio->bi_opf |= MD_FAILFAST; 2827 } 2828 } 2829 rcu_read_unlock(); 2830 if (disk < 0) 2831 disk = wonly; 2832 r1_bio->read_disk = disk; 2833 2834 if (read_targets == 0 && min_bad > 0) { 2835 /* These sectors are bad on all InSync devices, so we 2836 * need to mark them bad on all write targets 2837 */ 2838 int ok = 1; 2839 for (i = 0 ; i < conf->raid_disks * 2 ; i++) 2840 if (r1_bio->bios[i]->bi_end_io == end_sync_write) { 2841 struct md_rdev *rdev = conf->mirrors[i].rdev; 2842 ok = rdev_set_badblocks(rdev, sector_nr, 2843 min_bad, 0 2844 ) && ok; 2845 } 2846 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2847 *skipped = 1; 2848 put_buf(r1_bio); 2849 2850 if (!ok) { 2851 /* Cannot record the badblocks, so need to 2852 * abort the resync. 2853 * If there are multiple read targets, could just 2854 * fail the really bad ones ??? 2855 */ 2856 conf->recovery_disabled = mddev->recovery_disabled; 2857 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2858 return 0; 2859 } else 2860 return min_bad; 2861 2862 } 2863 if (min_bad > 0 && min_bad < good_sectors) { 2864 /* only resync enough to reach the next bad->good 2865 * transition */ 2866 good_sectors = min_bad; 2867 } 2868 2869 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0) 2870 /* extra read targets are also write targets */ 2871 write_targets += read_targets-1; 2872 2873 if (write_targets == 0 || read_targets == 0) { 2874 /* There is nowhere to write, so all non-sync 2875 * drives must be failed - so we are finished 2876 */ 2877 sector_t rv; 2878 if (min_bad > 0) 2879 max_sector = sector_nr + min_bad; 2880 rv = max_sector - sector_nr; 2881 *skipped = 1; 2882 put_buf(r1_bio); 2883 return rv; 2884 } 2885 2886 if (max_sector > mddev->resync_max) 2887 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 2888 if (max_sector > sector_nr + good_sectors) 2889 max_sector = sector_nr + good_sectors; 2890 nr_sectors = 0; 2891 sync_blocks = 0; 2892 do { 2893 struct page *page; 2894 int len = PAGE_SIZE; 2895 if (sector_nr + (len>>9) > max_sector) 2896 len = (max_sector - sector_nr) << 9; 2897 if (len == 0) 2898 break; 2899 if (sync_blocks == 0) { 2900 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, 2901 &sync_blocks, still_degraded) && 2902 !conf->fullsync && 2903 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2904 break; 2905 if ((len >> 9) > sync_blocks) 2906 len = sync_blocks<<9; 2907 } 2908 2909 for (i = 0 ; i < conf->raid_disks * 2; i++) { 2910 struct resync_pages *rp; 2911 2912 bio = r1_bio->bios[i]; 2913 rp = get_resync_pages(bio); 2914 if (bio->bi_end_io) { 2915 page = resync_fetch_page(rp, page_idx); 2916 2917 /* 2918 * won't fail because the vec table is big 2919 * enough to hold all these pages 2920 */ 2921 bio_add_page(bio, page, len, 0); 2922 } 2923 } 2924 nr_sectors += len>>9; 2925 sector_nr += len>>9; 2926 sync_blocks -= (len>>9); 2927 } while (++page_idx < RESYNC_PAGES); 2928 2929 r1_bio->sectors = nr_sectors; 2930 2931 if (mddev_is_clustered(mddev) && 2932 conf->cluster_sync_high < sector_nr + nr_sectors) { 2933 conf->cluster_sync_low = mddev->curr_resync_completed; 2934 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS; 2935 /* Send resync message */ 2936 md_cluster_ops->resync_info_update(mddev, 2937 conf->cluster_sync_low, 2938 conf->cluster_sync_high); 2939 } 2940 2941 /* For a user-requested sync, we read all readable devices and do a 2942 * compare 2943 */ 2944 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2945 atomic_set(&r1_bio->remaining, read_targets); 2946 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) { 2947 bio = r1_bio->bios[i]; 2948 if (bio->bi_end_io == end_sync_read) { 2949 read_targets--; 2950 md_sync_acct_bio(bio, nr_sectors); 2951 if (read_targets == 1) 2952 bio->bi_opf &= ~MD_FAILFAST; 2953 submit_bio_noacct(bio); 2954 } 2955 } 2956 } else { 2957 atomic_set(&r1_bio->remaining, 1); 2958 bio = r1_bio->bios[r1_bio->read_disk]; 2959 md_sync_acct_bio(bio, nr_sectors); 2960 if (read_targets == 1) 2961 bio->bi_opf &= ~MD_FAILFAST; 2962 submit_bio_noacct(bio); 2963 } 2964 return nr_sectors; 2965 } 2966 2967 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks) 2968 { 2969 if (sectors) 2970 return sectors; 2971 2972 return mddev->dev_sectors; 2973 } 2974 2975 static struct r1conf *setup_conf(struct mddev *mddev) 2976 { 2977 struct r1conf *conf; 2978 int i; 2979 struct raid1_info *disk; 2980 struct md_rdev *rdev; 2981 int err = -ENOMEM; 2982 2983 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL); 2984 if (!conf) 2985 goto abort; 2986 2987 conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR, 2988 sizeof(atomic_t), GFP_KERNEL); 2989 if (!conf->nr_pending) 2990 goto abort; 2991 2992 conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR, 2993 sizeof(atomic_t), GFP_KERNEL); 2994 if (!conf->nr_waiting) 2995 goto abort; 2996 2997 conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR, 2998 sizeof(atomic_t), GFP_KERNEL); 2999 if (!conf->nr_queued) 3000 goto abort; 3001 3002 conf->barrier = kcalloc(BARRIER_BUCKETS_NR, 3003 sizeof(atomic_t), GFP_KERNEL); 3004 if (!conf->barrier) 3005 goto abort; 3006 3007 conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info), 3008 mddev->raid_disks, 2), 3009 GFP_KERNEL); 3010 if (!conf->mirrors) 3011 goto abort; 3012 3013 conf->tmppage = alloc_page(GFP_KERNEL); 3014 if (!conf->tmppage) 3015 goto abort; 3016 3017 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL); 3018 if (!conf->poolinfo) 3019 goto abort; 3020 conf->poolinfo->raid_disks = mddev->raid_disks * 2; 3021 err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc, 3022 rbio_pool_free, conf->poolinfo); 3023 if (err) 3024 goto abort; 3025 3026 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0); 3027 if (err) 3028 goto abort; 3029 3030 conf->poolinfo->mddev = mddev; 3031 3032 err = -EINVAL; 3033 spin_lock_init(&conf->device_lock); 3034 rdev_for_each(rdev, mddev) { 3035 int disk_idx = rdev->raid_disk; 3036 if (disk_idx >= mddev->raid_disks 3037 || disk_idx < 0) 3038 continue; 3039 if (test_bit(Replacement, &rdev->flags)) 3040 disk = conf->mirrors + mddev->raid_disks + disk_idx; 3041 else 3042 disk = conf->mirrors + disk_idx; 3043 3044 if (disk->rdev) 3045 goto abort; 3046 disk->rdev = rdev; 3047 disk->head_position = 0; 3048 disk->seq_start = MaxSector; 3049 } 3050 conf->raid_disks = mddev->raid_disks; 3051 conf->mddev = mddev; 3052 INIT_LIST_HEAD(&conf->retry_list); 3053 INIT_LIST_HEAD(&conf->bio_end_io_list); 3054 3055 spin_lock_init(&conf->resync_lock); 3056 init_waitqueue_head(&conf->wait_barrier); 3057 3058 bio_list_init(&conf->pending_bio_list); 3059 conf->recovery_disabled = mddev->recovery_disabled - 1; 3060 3061 err = -EIO; 3062 for (i = 0; i < conf->raid_disks * 2; i++) { 3063 3064 disk = conf->mirrors + i; 3065 3066 if (i < conf->raid_disks && 3067 disk[conf->raid_disks].rdev) { 3068 /* This slot has a replacement. */ 3069 if (!disk->rdev) { 3070 /* No original, just make the replacement 3071 * a recovering spare 3072 */ 3073 disk->rdev = 3074 disk[conf->raid_disks].rdev; 3075 disk[conf->raid_disks].rdev = NULL; 3076 } else if (!test_bit(In_sync, &disk->rdev->flags)) 3077 /* Original is not in_sync - bad */ 3078 goto abort; 3079 } 3080 3081 if (!disk->rdev || 3082 !test_bit(In_sync, &disk->rdev->flags)) { 3083 disk->head_position = 0; 3084 if (disk->rdev && 3085 (disk->rdev->saved_raid_disk < 0)) 3086 conf->fullsync = 1; 3087 } 3088 } 3089 3090 err = -ENOMEM; 3091 conf->thread = md_register_thread(raid1d, mddev, "raid1"); 3092 if (!conf->thread) 3093 goto abort; 3094 3095 return conf; 3096 3097 abort: 3098 if (conf) { 3099 mempool_exit(&conf->r1bio_pool); 3100 kfree(conf->mirrors); 3101 safe_put_page(conf->tmppage); 3102 kfree(conf->poolinfo); 3103 kfree(conf->nr_pending); 3104 kfree(conf->nr_waiting); 3105 kfree(conf->nr_queued); 3106 kfree(conf->barrier); 3107 bioset_exit(&conf->bio_split); 3108 kfree(conf); 3109 } 3110 return ERR_PTR(err); 3111 } 3112 3113 static void raid1_free(struct mddev *mddev, void *priv); 3114 static int raid1_run(struct mddev *mddev) 3115 { 3116 struct r1conf *conf; 3117 int i; 3118 struct md_rdev *rdev; 3119 int ret; 3120 3121 if (mddev->level != 1) { 3122 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n", 3123 mdname(mddev), mddev->level); 3124 return -EIO; 3125 } 3126 if (mddev->reshape_position != MaxSector) { 3127 pr_warn("md/raid1:%s: reshape_position set but not supported\n", 3128 mdname(mddev)); 3129 return -EIO; 3130 } 3131 if (mddev_init_writes_pending(mddev) < 0) 3132 return -ENOMEM; 3133 /* 3134 * copy the already verified devices into our private RAID1 3135 * bookkeeping area. [whatever we allocate in run(), 3136 * should be freed in raid1_free()] 3137 */ 3138 if (mddev->private == NULL) 3139 conf = setup_conf(mddev); 3140 else 3141 conf = mddev->private; 3142 3143 if (IS_ERR(conf)) 3144 return PTR_ERR(conf); 3145 3146 if (mddev->queue) 3147 blk_queue_max_write_zeroes_sectors(mddev->queue, 0); 3148 3149 rdev_for_each(rdev, mddev) { 3150 if (!mddev->gendisk) 3151 continue; 3152 disk_stack_limits(mddev->gendisk, rdev->bdev, 3153 rdev->data_offset << 9); 3154 } 3155 3156 mddev->degraded = 0; 3157 for (i = 0; i < conf->raid_disks; i++) 3158 if (conf->mirrors[i].rdev == NULL || 3159 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) || 3160 test_bit(Faulty, &conf->mirrors[i].rdev->flags)) 3161 mddev->degraded++; 3162 /* 3163 * RAID1 needs at least one disk in active 3164 */ 3165 if (conf->raid_disks - mddev->degraded < 1) { 3166 ret = -EINVAL; 3167 goto abort; 3168 } 3169 3170 if (conf->raid_disks - mddev->degraded == 1) 3171 mddev->recovery_cp = MaxSector; 3172 3173 if (mddev->recovery_cp != MaxSector) 3174 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n", 3175 mdname(mddev)); 3176 pr_info("md/raid1:%s: active with %d out of %d mirrors\n", 3177 mdname(mddev), mddev->raid_disks - mddev->degraded, 3178 mddev->raid_disks); 3179 3180 /* 3181 * Ok, everything is just fine now 3182 */ 3183 mddev->thread = conf->thread; 3184 conf->thread = NULL; 3185 mddev->private = conf; 3186 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags); 3187 3188 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0)); 3189 3190 ret = md_integrity_register(mddev); 3191 if (ret) { 3192 md_unregister_thread(&mddev->thread); 3193 goto abort; 3194 } 3195 return 0; 3196 3197 abort: 3198 raid1_free(mddev, conf); 3199 return ret; 3200 } 3201 3202 static void raid1_free(struct mddev *mddev, void *priv) 3203 { 3204 struct r1conf *conf = priv; 3205 3206 mempool_exit(&conf->r1bio_pool); 3207 kfree(conf->mirrors); 3208 safe_put_page(conf->tmppage); 3209 kfree(conf->poolinfo); 3210 kfree(conf->nr_pending); 3211 kfree(conf->nr_waiting); 3212 kfree(conf->nr_queued); 3213 kfree(conf->barrier); 3214 bioset_exit(&conf->bio_split); 3215 kfree(conf); 3216 } 3217 3218 static int raid1_resize(struct mddev *mddev, sector_t sectors) 3219 { 3220 /* no resync is happening, and there is enough space 3221 * on all devices, so we can resize. 3222 * We need to make sure resync covers any new space. 3223 * If the array is shrinking we should possibly wait until 3224 * any io in the removed space completes, but it hardly seems 3225 * worth it. 3226 */ 3227 sector_t newsize = raid1_size(mddev, sectors, 0); 3228 if (mddev->external_size && 3229 mddev->array_sectors > newsize) 3230 return -EINVAL; 3231 if (mddev->bitmap) { 3232 int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0); 3233 if (ret) 3234 return ret; 3235 } 3236 md_set_array_sectors(mddev, newsize); 3237 if (sectors > mddev->dev_sectors && 3238 mddev->recovery_cp > mddev->dev_sectors) { 3239 mddev->recovery_cp = mddev->dev_sectors; 3240 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3241 } 3242 mddev->dev_sectors = sectors; 3243 mddev->resync_max_sectors = sectors; 3244 return 0; 3245 } 3246 3247 static int raid1_reshape(struct mddev *mddev) 3248 { 3249 /* We need to: 3250 * 1/ resize the r1bio_pool 3251 * 2/ resize conf->mirrors 3252 * 3253 * We allocate a new r1bio_pool if we can. 3254 * Then raise a device barrier and wait until all IO stops. 3255 * Then resize conf->mirrors and swap in the new r1bio pool. 3256 * 3257 * At the same time, we "pack" the devices so that all the missing 3258 * devices have the higher raid_disk numbers. 3259 */ 3260 mempool_t newpool, oldpool; 3261 struct pool_info *newpoolinfo; 3262 struct raid1_info *newmirrors; 3263 struct r1conf *conf = mddev->private; 3264 int cnt, raid_disks; 3265 unsigned long flags; 3266 int d, d2; 3267 int ret; 3268 3269 memset(&newpool, 0, sizeof(newpool)); 3270 memset(&oldpool, 0, sizeof(oldpool)); 3271 3272 /* Cannot change chunk_size, layout, or level */ 3273 if (mddev->chunk_sectors != mddev->new_chunk_sectors || 3274 mddev->layout != mddev->new_layout || 3275 mddev->level != mddev->new_level) { 3276 mddev->new_chunk_sectors = mddev->chunk_sectors; 3277 mddev->new_layout = mddev->layout; 3278 mddev->new_level = mddev->level; 3279 return -EINVAL; 3280 } 3281 3282 if (!mddev_is_clustered(mddev)) 3283 md_allow_write(mddev); 3284 3285 raid_disks = mddev->raid_disks + mddev->delta_disks; 3286 3287 if (raid_disks < conf->raid_disks) { 3288 cnt=0; 3289 for (d= 0; d < conf->raid_disks; d++) 3290 if (conf->mirrors[d].rdev) 3291 cnt++; 3292 if (cnt > raid_disks) 3293 return -EBUSY; 3294 } 3295 3296 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL); 3297 if (!newpoolinfo) 3298 return -ENOMEM; 3299 newpoolinfo->mddev = mddev; 3300 newpoolinfo->raid_disks = raid_disks * 2; 3301 3302 ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc, 3303 rbio_pool_free, newpoolinfo); 3304 if (ret) { 3305 kfree(newpoolinfo); 3306 return ret; 3307 } 3308 newmirrors = kzalloc(array3_size(sizeof(struct raid1_info), 3309 raid_disks, 2), 3310 GFP_KERNEL); 3311 if (!newmirrors) { 3312 kfree(newpoolinfo); 3313 mempool_exit(&newpool); 3314 return -ENOMEM; 3315 } 3316 3317 freeze_array(conf, 0); 3318 3319 /* ok, everything is stopped */ 3320 oldpool = conf->r1bio_pool; 3321 conf->r1bio_pool = newpool; 3322 3323 for (d = d2 = 0; d < conf->raid_disks; d++) { 3324 struct md_rdev *rdev = conf->mirrors[d].rdev; 3325 if (rdev && rdev->raid_disk != d2) { 3326 sysfs_unlink_rdev(mddev, rdev); 3327 rdev->raid_disk = d2; 3328 sysfs_unlink_rdev(mddev, rdev); 3329 if (sysfs_link_rdev(mddev, rdev)) 3330 pr_warn("md/raid1:%s: cannot register rd%d\n", 3331 mdname(mddev), rdev->raid_disk); 3332 } 3333 if (rdev) 3334 newmirrors[d2++].rdev = rdev; 3335 } 3336 kfree(conf->mirrors); 3337 conf->mirrors = newmirrors; 3338 kfree(conf->poolinfo); 3339 conf->poolinfo = newpoolinfo; 3340 3341 spin_lock_irqsave(&conf->device_lock, flags); 3342 mddev->degraded += (raid_disks - conf->raid_disks); 3343 spin_unlock_irqrestore(&conf->device_lock, flags); 3344 conf->raid_disks = mddev->raid_disks = raid_disks; 3345 mddev->delta_disks = 0; 3346 3347 unfreeze_array(conf); 3348 3349 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 3350 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3351 md_wakeup_thread(mddev->thread); 3352 3353 mempool_exit(&oldpool); 3354 return 0; 3355 } 3356 3357 static void raid1_quiesce(struct mddev *mddev, int quiesce) 3358 { 3359 struct r1conf *conf = mddev->private; 3360 3361 if (quiesce) 3362 freeze_array(conf, 0); 3363 else 3364 unfreeze_array(conf); 3365 } 3366 3367 static void *raid1_takeover(struct mddev *mddev) 3368 { 3369 /* raid1 can take over: 3370 * raid5 with 2 devices, any layout or chunk size 3371 */ 3372 if (mddev->level == 5 && mddev->raid_disks == 2) { 3373 struct r1conf *conf; 3374 mddev->new_level = 1; 3375 mddev->new_layout = 0; 3376 mddev->new_chunk_sectors = 0; 3377 conf = setup_conf(mddev); 3378 if (!IS_ERR(conf)) { 3379 /* Array must appear to be quiesced */ 3380 conf->array_frozen = 1; 3381 mddev_clear_unsupported_flags(mddev, 3382 UNSUPPORTED_MDDEV_FLAGS); 3383 } 3384 return conf; 3385 } 3386 return ERR_PTR(-EINVAL); 3387 } 3388 3389 static struct md_personality raid1_personality = 3390 { 3391 .name = "raid1", 3392 .level = 1, 3393 .owner = THIS_MODULE, 3394 .make_request = raid1_make_request, 3395 .run = raid1_run, 3396 .free = raid1_free, 3397 .status = raid1_status, 3398 .error_handler = raid1_error, 3399 .hot_add_disk = raid1_add_disk, 3400 .hot_remove_disk= raid1_remove_disk, 3401 .spare_active = raid1_spare_active, 3402 .sync_request = raid1_sync_request, 3403 .resize = raid1_resize, 3404 .size = raid1_size, 3405 .check_reshape = raid1_reshape, 3406 .quiesce = raid1_quiesce, 3407 .takeover = raid1_takeover, 3408 }; 3409 3410 static int __init raid_init(void) 3411 { 3412 return register_md_personality(&raid1_personality); 3413 } 3414 3415 static void raid_exit(void) 3416 { 3417 unregister_md_personality(&raid1_personality); 3418 } 3419 3420 module_init(raid_init); 3421 module_exit(raid_exit); 3422 MODULE_LICENSE("GPL"); 3423 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD"); 3424 MODULE_ALIAS("md-personality-3"); /* RAID1 */ 3425 MODULE_ALIAS("md-raid1"); 3426 MODULE_ALIAS("md-level-1"); 3427