xref: /openbmc/linux/drivers/md/raid1.c (revision 55eb9a6c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid1.c : Multiple Devices driver for Linux
4  *
5  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6  *
7  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8  *
9  * RAID-1 management functions.
10  *
11  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12  *
13  * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
14  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15  *
16  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
17  * bitmapped intelligence in resync:
18  *
19  *      - bitmap marked during normal i/o
20  *      - bitmap used to skip nondirty blocks during sync
21  *
22  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
23  * - persistent bitmap code
24  */
25 
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/blkdev.h>
29 #include <linux/module.h>
30 #include <linux/seq_file.h>
31 #include <linux/ratelimit.h>
32 #include <linux/interval_tree_generic.h>
33 
34 #include <trace/events/block.h>
35 
36 #include "md.h"
37 #include "raid1.h"
38 #include "md-bitmap.h"
39 
40 #define UNSUPPORTED_MDDEV_FLAGS		\
41 	((1L << MD_HAS_JOURNAL) |	\
42 	 (1L << MD_JOURNAL_CLEAN) |	\
43 	 (1L << MD_HAS_PPL) |		\
44 	 (1L << MD_HAS_MULTIPLE_PPLS))
45 
46 static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
47 static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
48 
49 #define raid1_log(md, fmt, args...)				\
50 	do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
51 
52 #include "raid1-10.c"
53 
54 #define START(node) ((node)->start)
55 #define LAST(node) ((node)->last)
56 INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last,
57 		     START, LAST, static inline, raid1_rb);
58 
59 static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio,
60 				struct serial_info *si, int idx)
61 {
62 	unsigned long flags;
63 	int ret = 0;
64 	sector_t lo = r1_bio->sector;
65 	sector_t hi = lo + r1_bio->sectors;
66 	struct serial_in_rdev *serial = &rdev->serial[idx];
67 
68 	spin_lock_irqsave(&serial->serial_lock, flags);
69 	/* collision happened */
70 	if (raid1_rb_iter_first(&serial->serial_rb, lo, hi))
71 		ret = -EBUSY;
72 	else {
73 		si->start = lo;
74 		si->last = hi;
75 		raid1_rb_insert(si, &serial->serial_rb);
76 	}
77 	spin_unlock_irqrestore(&serial->serial_lock, flags);
78 
79 	return ret;
80 }
81 
82 static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio)
83 {
84 	struct mddev *mddev = rdev->mddev;
85 	struct serial_info *si;
86 	int idx = sector_to_idx(r1_bio->sector);
87 	struct serial_in_rdev *serial = &rdev->serial[idx];
88 
89 	if (WARN_ON(!mddev->serial_info_pool))
90 		return;
91 	si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO);
92 	wait_event(serial->serial_io_wait,
93 		   check_and_add_serial(rdev, r1_bio, si, idx) == 0);
94 }
95 
96 static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi)
97 {
98 	struct serial_info *si;
99 	unsigned long flags;
100 	int found = 0;
101 	struct mddev *mddev = rdev->mddev;
102 	int idx = sector_to_idx(lo);
103 	struct serial_in_rdev *serial = &rdev->serial[idx];
104 
105 	spin_lock_irqsave(&serial->serial_lock, flags);
106 	for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi);
107 	     si; si = raid1_rb_iter_next(si, lo, hi)) {
108 		if (si->start == lo && si->last == hi) {
109 			raid1_rb_remove(si, &serial->serial_rb);
110 			mempool_free(si, mddev->serial_info_pool);
111 			found = 1;
112 			break;
113 		}
114 	}
115 	if (!found)
116 		WARN(1, "The write IO is not recorded for serialization\n");
117 	spin_unlock_irqrestore(&serial->serial_lock, flags);
118 	wake_up(&serial->serial_io_wait);
119 }
120 
121 /*
122  * for resync bio, r1bio pointer can be retrieved from the per-bio
123  * 'struct resync_pages'.
124  */
125 static inline struct r1bio *get_resync_r1bio(struct bio *bio)
126 {
127 	return get_resync_pages(bio)->raid_bio;
128 }
129 
130 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
131 {
132 	struct pool_info *pi = data;
133 	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
134 
135 	/* allocate a r1bio with room for raid_disks entries in the bios array */
136 	return kzalloc(size, gfp_flags);
137 }
138 
139 #define RESYNC_DEPTH 32
140 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
141 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
142 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
143 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
144 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
145 
146 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
147 {
148 	struct pool_info *pi = data;
149 	struct r1bio *r1_bio;
150 	struct bio *bio;
151 	int need_pages;
152 	int j;
153 	struct resync_pages *rps;
154 
155 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
156 	if (!r1_bio)
157 		return NULL;
158 
159 	rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages),
160 			    gfp_flags);
161 	if (!rps)
162 		goto out_free_r1bio;
163 
164 	/*
165 	 * Allocate bios : 1 for reading, n-1 for writing
166 	 */
167 	for (j = pi->raid_disks ; j-- ; ) {
168 		bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
169 		if (!bio)
170 			goto out_free_bio;
171 		bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
172 		r1_bio->bios[j] = bio;
173 	}
174 	/*
175 	 * Allocate RESYNC_PAGES data pages and attach them to
176 	 * the first bio.
177 	 * If this is a user-requested check/repair, allocate
178 	 * RESYNC_PAGES for each bio.
179 	 */
180 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
181 		need_pages = pi->raid_disks;
182 	else
183 		need_pages = 1;
184 	for (j = 0; j < pi->raid_disks; j++) {
185 		struct resync_pages *rp = &rps[j];
186 
187 		bio = r1_bio->bios[j];
188 
189 		if (j < need_pages) {
190 			if (resync_alloc_pages(rp, gfp_flags))
191 				goto out_free_pages;
192 		} else {
193 			memcpy(rp, &rps[0], sizeof(*rp));
194 			resync_get_all_pages(rp);
195 		}
196 
197 		rp->raid_bio = r1_bio;
198 		bio->bi_private = rp;
199 	}
200 
201 	r1_bio->master_bio = NULL;
202 
203 	return r1_bio;
204 
205 out_free_pages:
206 	while (--j >= 0)
207 		resync_free_pages(&rps[j]);
208 
209 out_free_bio:
210 	while (++j < pi->raid_disks) {
211 		bio_uninit(r1_bio->bios[j]);
212 		kfree(r1_bio->bios[j]);
213 	}
214 	kfree(rps);
215 
216 out_free_r1bio:
217 	rbio_pool_free(r1_bio, data);
218 	return NULL;
219 }
220 
221 static void r1buf_pool_free(void *__r1_bio, void *data)
222 {
223 	struct pool_info *pi = data;
224 	int i;
225 	struct r1bio *r1bio = __r1_bio;
226 	struct resync_pages *rp = NULL;
227 
228 	for (i = pi->raid_disks; i--; ) {
229 		rp = get_resync_pages(r1bio->bios[i]);
230 		resync_free_pages(rp);
231 		bio_uninit(r1bio->bios[i]);
232 		kfree(r1bio->bios[i]);
233 	}
234 
235 	/* resync pages array stored in the 1st bio's .bi_private */
236 	kfree(rp);
237 
238 	rbio_pool_free(r1bio, data);
239 }
240 
241 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
242 {
243 	int i;
244 
245 	for (i = 0; i < conf->raid_disks * 2; i++) {
246 		struct bio **bio = r1_bio->bios + i;
247 		if (!BIO_SPECIAL(*bio))
248 			bio_put(*bio);
249 		*bio = NULL;
250 	}
251 }
252 
253 static void free_r1bio(struct r1bio *r1_bio)
254 {
255 	struct r1conf *conf = r1_bio->mddev->private;
256 
257 	put_all_bios(conf, r1_bio);
258 	mempool_free(r1_bio, &conf->r1bio_pool);
259 }
260 
261 static void put_buf(struct r1bio *r1_bio)
262 {
263 	struct r1conf *conf = r1_bio->mddev->private;
264 	sector_t sect = r1_bio->sector;
265 	int i;
266 
267 	for (i = 0; i < conf->raid_disks * 2; i++) {
268 		struct bio *bio = r1_bio->bios[i];
269 		if (bio->bi_end_io)
270 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
271 	}
272 
273 	mempool_free(r1_bio, &conf->r1buf_pool);
274 
275 	lower_barrier(conf, sect);
276 }
277 
278 static void reschedule_retry(struct r1bio *r1_bio)
279 {
280 	unsigned long flags;
281 	struct mddev *mddev = r1_bio->mddev;
282 	struct r1conf *conf = mddev->private;
283 	int idx;
284 
285 	idx = sector_to_idx(r1_bio->sector);
286 	spin_lock_irqsave(&conf->device_lock, flags);
287 	list_add(&r1_bio->retry_list, &conf->retry_list);
288 	atomic_inc(&conf->nr_queued[idx]);
289 	spin_unlock_irqrestore(&conf->device_lock, flags);
290 
291 	wake_up(&conf->wait_barrier);
292 	md_wakeup_thread(mddev->thread);
293 }
294 
295 /*
296  * raid_end_bio_io() is called when we have finished servicing a mirrored
297  * operation and are ready to return a success/failure code to the buffer
298  * cache layer.
299  */
300 static void call_bio_endio(struct r1bio *r1_bio)
301 {
302 	struct bio *bio = r1_bio->master_bio;
303 
304 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
305 		bio->bi_status = BLK_STS_IOERR;
306 
307 	if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
308 		bio_end_io_acct(bio, r1_bio->start_time);
309 	bio_endio(bio);
310 }
311 
312 static void raid_end_bio_io(struct r1bio *r1_bio)
313 {
314 	struct bio *bio = r1_bio->master_bio;
315 	struct r1conf *conf = r1_bio->mddev->private;
316 
317 	/* if nobody has done the final endio yet, do it now */
318 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
319 		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
320 			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
321 			 (unsigned long long) bio->bi_iter.bi_sector,
322 			 (unsigned long long) bio_end_sector(bio) - 1);
323 
324 		call_bio_endio(r1_bio);
325 	}
326 	/*
327 	 * Wake up any possible resync thread that waits for the device
328 	 * to go idle.  All I/Os, even write-behind writes, are done.
329 	 */
330 	allow_barrier(conf, r1_bio->sector);
331 
332 	free_r1bio(r1_bio);
333 }
334 
335 /*
336  * Update disk head position estimator based on IRQ completion info.
337  */
338 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
339 {
340 	struct r1conf *conf = r1_bio->mddev->private;
341 
342 	conf->mirrors[disk].head_position =
343 		r1_bio->sector + (r1_bio->sectors);
344 }
345 
346 /*
347  * Find the disk number which triggered given bio
348  */
349 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
350 {
351 	int mirror;
352 	struct r1conf *conf = r1_bio->mddev->private;
353 	int raid_disks = conf->raid_disks;
354 
355 	for (mirror = 0; mirror < raid_disks * 2; mirror++)
356 		if (r1_bio->bios[mirror] == bio)
357 			break;
358 
359 	BUG_ON(mirror == raid_disks * 2);
360 	update_head_pos(mirror, r1_bio);
361 
362 	return mirror;
363 }
364 
365 static void raid1_end_read_request(struct bio *bio)
366 {
367 	int uptodate = !bio->bi_status;
368 	struct r1bio *r1_bio = bio->bi_private;
369 	struct r1conf *conf = r1_bio->mddev->private;
370 	struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
371 
372 	/*
373 	 * this branch is our 'one mirror IO has finished' event handler:
374 	 */
375 	update_head_pos(r1_bio->read_disk, r1_bio);
376 
377 	if (uptodate)
378 		set_bit(R1BIO_Uptodate, &r1_bio->state);
379 	else if (test_bit(FailFast, &rdev->flags) &&
380 		 test_bit(R1BIO_FailFast, &r1_bio->state))
381 		/* This was a fail-fast read so we definitely
382 		 * want to retry */
383 		;
384 	else {
385 		/* If all other devices have failed, we want to return
386 		 * the error upwards rather than fail the last device.
387 		 * Here we redefine "uptodate" to mean "Don't want to retry"
388 		 */
389 		unsigned long flags;
390 		spin_lock_irqsave(&conf->device_lock, flags);
391 		if (r1_bio->mddev->degraded == conf->raid_disks ||
392 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
393 		     test_bit(In_sync, &rdev->flags)))
394 			uptodate = 1;
395 		spin_unlock_irqrestore(&conf->device_lock, flags);
396 	}
397 
398 	if (uptodate) {
399 		raid_end_bio_io(r1_bio);
400 		rdev_dec_pending(rdev, conf->mddev);
401 	} else {
402 		/*
403 		 * oops, read error:
404 		 */
405 		char b[BDEVNAME_SIZE];
406 		pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
407 				   mdname(conf->mddev),
408 				   bdevname(rdev->bdev, b),
409 				   (unsigned long long)r1_bio->sector);
410 		set_bit(R1BIO_ReadError, &r1_bio->state);
411 		reschedule_retry(r1_bio);
412 		/* don't drop the reference on read_disk yet */
413 	}
414 }
415 
416 static void close_write(struct r1bio *r1_bio)
417 {
418 	/* it really is the end of this request */
419 	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
420 		bio_free_pages(r1_bio->behind_master_bio);
421 		bio_put(r1_bio->behind_master_bio);
422 		r1_bio->behind_master_bio = NULL;
423 	}
424 	/* clear the bitmap if all writes complete successfully */
425 	md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
426 			   r1_bio->sectors,
427 			   !test_bit(R1BIO_Degraded, &r1_bio->state),
428 			   test_bit(R1BIO_BehindIO, &r1_bio->state));
429 	md_write_end(r1_bio->mddev);
430 }
431 
432 static void r1_bio_write_done(struct r1bio *r1_bio)
433 {
434 	if (!atomic_dec_and_test(&r1_bio->remaining))
435 		return;
436 
437 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
438 		reschedule_retry(r1_bio);
439 	else {
440 		close_write(r1_bio);
441 		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
442 			reschedule_retry(r1_bio);
443 		else
444 			raid_end_bio_io(r1_bio);
445 	}
446 }
447 
448 static void raid1_end_write_request(struct bio *bio)
449 {
450 	struct r1bio *r1_bio = bio->bi_private;
451 	int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
452 	struct r1conf *conf = r1_bio->mddev->private;
453 	struct bio *to_put = NULL;
454 	int mirror = find_bio_disk(r1_bio, bio);
455 	struct md_rdev *rdev = conf->mirrors[mirror].rdev;
456 	bool discard_error;
457 	sector_t lo = r1_bio->sector;
458 	sector_t hi = r1_bio->sector + r1_bio->sectors;
459 
460 	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
461 
462 	/*
463 	 * 'one mirror IO has finished' event handler:
464 	 */
465 	if (bio->bi_status && !discard_error) {
466 		set_bit(WriteErrorSeen,	&rdev->flags);
467 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
468 			set_bit(MD_RECOVERY_NEEDED, &
469 				conf->mddev->recovery);
470 
471 		if (test_bit(FailFast, &rdev->flags) &&
472 		    (bio->bi_opf & MD_FAILFAST) &&
473 		    /* We never try FailFast to WriteMostly devices */
474 		    !test_bit(WriteMostly, &rdev->flags)) {
475 			md_error(r1_bio->mddev, rdev);
476 		}
477 
478 		/*
479 		 * When the device is faulty, it is not necessary to
480 		 * handle write error.
481 		 */
482 		if (!test_bit(Faulty, &rdev->flags))
483 			set_bit(R1BIO_WriteError, &r1_bio->state);
484 		else {
485 			/* Fail the request */
486 			set_bit(R1BIO_Degraded, &r1_bio->state);
487 			/* Finished with this branch */
488 			r1_bio->bios[mirror] = NULL;
489 			to_put = bio;
490 		}
491 	} else {
492 		/*
493 		 * Set R1BIO_Uptodate in our master bio, so that we
494 		 * will return a good error code for to the higher
495 		 * levels even if IO on some other mirrored buffer
496 		 * fails.
497 		 *
498 		 * The 'master' represents the composite IO operation
499 		 * to user-side. So if something waits for IO, then it
500 		 * will wait for the 'master' bio.
501 		 */
502 		sector_t first_bad;
503 		int bad_sectors;
504 
505 		r1_bio->bios[mirror] = NULL;
506 		to_put = bio;
507 		/*
508 		 * Do not set R1BIO_Uptodate if the current device is
509 		 * rebuilding or Faulty. This is because we cannot use
510 		 * such device for properly reading the data back (we could
511 		 * potentially use it, if the current write would have felt
512 		 * before rdev->recovery_offset, but for simplicity we don't
513 		 * check this here.
514 		 */
515 		if (test_bit(In_sync, &rdev->flags) &&
516 		    !test_bit(Faulty, &rdev->flags))
517 			set_bit(R1BIO_Uptodate, &r1_bio->state);
518 
519 		/* Maybe we can clear some bad blocks. */
520 		if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
521 				&first_bad, &bad_sectors) && !discard_error) {
522 			r1_bio->bios[mirror] = IO_MADE_GOOD;
523 			set_bit(R1BIO_MadeGood, &r1_bio->state);
524 		}
525 	}
526 
527 	if (behind) {
528 		if (test_bit(CollisionCheck, &rdev->flags))
529 			remove_serial(rdev, lo, hi);
530 		if (test_bit(WriteMostly, &rdev->flags))
531 			atomic_dec(&r1_bio->behind_remaining);
532 
533 		/*
534 		 * In behind mode, we ACK the master bio once the I/O
535 		 * has safely reached all non-writemostly
536 		 * disks. Setting the Returned bit ensures that this
537 		 * gets done only once -- we don't ever want to return
538 		 * -EIO here, instead we'll wait
539 		 */
540 		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
541 		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
542 			/* Maybe we can return now */
543 			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
544 				struct bio *mbio = r1_bio->master_bio;
545 				pr_debug("raid1: behind end write sectors"
546 					 " %llu-%llu\n",
547 					 (unsigned long long) mbio->bi_iter.bi_sector,
548 					 (unsigned long long) bio_end_sector(mbio) - 1);
549 				call_bio_endio(r1_bio);
550 			}
551 		}
552 	} else if (rdev->mddev->serialize_policy)
553 		remove_serial(rdev, lo, hi);
554 	if (r1_bio->bios[mirror] == NULL)
555 		rdev_dec_pending(rdev, conf->mddev);
556 
557 	/*
558 	 * Let's see if all mirrored write operations have finished
559 	 * already.
560 	 */
561 	r1_bio_write_done(r1_bio);
562 
563 	if (to_put)
564 		bio_put(to_put);
565 }
566 
567 static sector_t align_to_barrier_unit_end(sector_t start_sector,
568 					  sector_t sectors)
569 {
570 	sector_t len;
571 
572 	WARN_ON(sectors == 0);
573 	/*
574 	 * len is the number of sectors from start_sector to end of the
575 	 * barrier unit which start_sector belongs to.
576 	 */
577 	len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
578 	      start_sector;
579 
580 	if (len > sectors)
581 		len = sectors;
582 
583 	return len;
584 }
585 
586 /*
587  * This routine returns the disk from which the requested read should
588  * be done. There is a per-array 'next expected sequential IO' sector
589  * number - if this matches on the next IO then we use the last disk.
590  * There is also a per-disk 'last know head position' sector that is
591  * maintained from IRQ contexts, both the normal and the resync IO
592  * completion handlers update this position correctly. If there is no
593  * perfect sequential match then we pick the disk whose head is closest.
594  *
595  * If there are 2 mirrors in the same 2 devices, performance degrades
596  * because position is mirror, not device based.
597  *
598  * The rdev for the device selected will have nr_pending incremented.
599  */
600 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
601 {
602 	const sector_t this_sector = r1_bio->sector;
603 	int sectors;
604 	int best_good_sectors;
605 	int best_disk, best_dist_disk, best_pending_disk;
606 	int has_nonrot_disk;
607 	int disk;
608 	sector_t best_dist;
609 	unsigned int min_pending;
610 	struct md_rdev *rdev;
611 	int choose_first;
612 	int choose_next_idle;
613 
614 	rcu_read_lock();
615 	/*
616 	 * Check if we can balance. We can balance on the whole
617 	 * device if no resync is going on, or below the resync window.
618 	 * We take the first readable disk when above the resync window.
619 	 */
620  retry:
621 	sectors = r1_bio->sectors;
622 	best_disk = -1;
623 	best_dist_disk = -1;
624 	best_dist = MaxSector;
625 	best_pending_disk = -1;
626 	min_pending = UINT_MAX;
627 	best_good_sectors = 0;
628 	has_nonrot_disk = 0;
629 	choose_next_idle = 0;
630 	clear_bit(R1BIO_FailFast, &r1_bio->state);
631 
632 	if ((conf->mddev->recovery_cp < this_sector + sectors) ||
633 	    (mddev_is_clustered(conf->mddev) &&
634 	    md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
635 		    this_sector + sectors)))
636 		choose_first = 1;
637 	else
638 		choose_first = 0;
639 
640 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
641 		sector_t dist;
642 		sector_t first_bad;
643 		int bad_sectors;
644 		unsigned int pending;
645 		bool nonrot;
646 
647 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
648 		if (r1_bio->bios[disk] == IO_BLOCKED
649 		    || rdev == NULL
650 		    || test_bit(Faulty, &rdev->flags))
651 			continue;
652 		if (!test_bit(In_sync, &rdev->flags) &&
653 		    rdev->recovery_offset < this_sector + sectors)
654 			continue;
655 		if (test_bit(WriteMostly, &rdev->flags)) {
656 			/* Don't balance among write-mostly, just
657 			 * use the first as a last resort */
658 			if (best_dist_disk < 0) {
659 				if (is_badblock(rdev, this_sector, sectors,
660 						&first_bad, &bad_sectors)) {
661 					if (first_bad <= this_sector)
662 						/* Cannot use this */
663 						continue;
664 					best_good_sectors = first_bad - this_sector;
665 				} else
666 					best_good_sectors = sectors;
667 				best_dist_disk = disk;
668 				best_pending_disk = disk;
669 			}
670 			continue;
671 		}
672 		/* This is a reasonable device to use.  It might
673 		 * even be best.
674 		 */
675 		if (is_badblock(rdev, this_sector, sectors,
676 				&first_bad, &bad_sectors)) {
677 			if (best_dist < MaxSector)
678 				/* already have a better device */
679 				continue;
680 			if (first_bad <= this_sector) {
681 				/* cannot read here. If this is the 'primary'
682 				 * device, then we must not read beyond
683 				 * bad_sectors from another device..
684 				 */
685 				bad_sectors -= (this_sector - first_bad);
686 				if (choose_first && sectors > bad_sectors)
687 					sectors = bad_sectors;
688 				if (best_good_sectors > sectors)
689 					best_good_sectors = sectors;
690 
691 			} else {
692 				sector_t good_sectors = first_bad - this_sector;
693 				if (good_sectors > best_good_sectors) {
694 					best_good_sectors = good_sectors;
695 					best_disk = disk;
696 				}
697 				if (choose_first)
698 					break;
699 			}
700 			continue;
701 		} else {
702 			if ((sectors > best_good_sectors) && (best_disk >= 0))
703 				best_disk = -1;
704 			best_good_sectors = sectors;
705 		}
706 
707 		if (best_disk >= 0)
708 			/* At least two disks to choose from so failfast is OK */
709 			set_bit(R1BIO_FailFast, &r1_bio->state);
710 
711 		nonrot = bdev_nonrot(rdev->bdev);
712 		has_nonrot_disk |= nonrot;
713 		pending = atomic_read(&rdev->nr_pending);
714 		dist = abs(this_sector - conf->mirrors[disk].head_position);
715 		if (choose_first) {
716 			best_disk = disk;
717 			break;
718 		}
719 		/* Don't change to another disk for sequential reads */
720 		if (conf->mirrors[disk].next_seq_sect == this_sector
721 		    || dist == 0) {
722 			int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
723 			struct raid1_info *mirror = &conf->mirrors[disk];
724 
725 			best_disk = disk;
726 			/*
727 			 * If buffered sequential IO size exceeds optimal
728 			 * iosize, check if there is idle disk. If yes, choose
729 			 * the idle disk. read_balance could already choose an
730 			 * idle disk before noticing it's a sequential IO in
731 			 * this disk. This doesn't matter because this disk
732 			 * will idle, next time it will be utilized after the
733 			 * first disk has IO size exceeds optimal iosize. In
734 			 * this way, iosize of the first disk will be optimal
735 			 * iosize at least. iosize of the second disk might be
736 			 * small, but not a big deal since when the second disk
737 			 * starts IO, the first disk is likely still busy.
738 			 */
739 			if (nonrot && opt_iosize > 0 &&
740 			    mirror->seq_start != MaxSector &&
741 			    mirror->next_seq_sect > opt_iosize &&
742 			    mirror->next_seq_sect - opt_iosize >=
743 			    mirror->seq_start) {
744 				choose_next_idle = 1;
745 				continue;
746 			}
747 			break;
748 		}
749 
750 		if (choose_next_idle)
751 			continue;
752 
753 		if (min_pending > pending) {
754 			min_pending = pending;
755 			best_pending_disk = disk;
756 		}
757 
758 		if (dist < best_dist) {
759 			best_dist = dist;
760 			best_dist_disk = disk;
761 		}
762 	}
763 
764 	/*
765 	 * If all disks are rotational, choose the closest disk. If any disk is
766 	 * non-rotational, choose the disk with less pending request even the
767 	 * disk is rotational, which might/might not be optimal for raids with
768 	 * mixed ratation/non-rotational disks depending on workload.
769 	 */
770 	if (best_disk == -1) {
771 		if (has_nonrot_disk || min_pending == 0)
772 			best_disk = best_pending_disk;
773 		else
774 			best_disk = best_dist_disk;
775 	}
776 
777 	if (best_disk >= 0) {
778 		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
779 		if (!rdev)
780 			goto retry;
781 		atomic_inc(&rdev->nr_pending);
782 		sectors = best_good_sectors;
783 
784 		if (conf->mirrors[best_disk].next_seq_sect != this_sector)
785 			conf->mirrors[best_disk].seq_start = this_sector;
786 
787 		conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
788 	}
789 	rcu_read_unlock();
790 	*max_sectors = sectors;
791 
792 	return best_disk;
793 }
794 
795 static void flush_bio_list(struct r1conf *conf, struct bio *bio)
796 {
797 	/* flush any pending bitmap writes to disk before proceeding w/ I/O */
798 	md_bitmap_unplug(conf->mddev->bitmap);
799 	wake_up(&conf->wait_barrier);
800 
801 	while (bio) { /* submit pending writes */
802 		struct bio *next = bio->bi_next;
803 		struct md_rdev *rdev = (void *)bio->bi_bdev;
804 		bio->bi_next = NULL;
805 		bio_set_dev(bio, rdev->bdev);
806 		if (test_bit(Faulty, &rdev->flags)) {
807 			bio_io_error(bio);
808 		} else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
809 				    !bdev_max_discard_sectors(bio->bi_bdev)))
810 			/* Just ignore it */
811 			bio_endio(bio);
812 		else
813 			submit_bio_noacct(bio);
814 		bio = next;
815 		cond_resched();
816 	}
817 }
818 
819 static void flush_pending_writes(struct r1conf *conf)
820 {
821 	/* Any writes that have been queued but are awaiting
822 	 * bitmap updates get flushed here.
823 	 */
824 	spin_lock_irq(&conf->device_lock);
825 
826 	if (conf->pending_bio_list.head) {
827 		struct blk_plug plug;
828 		struct bio *bio;
829 
830 		bio = bio_list_get(&conf->pending_bio_list);
831 		spin_unlock_irq(&conf->device_lock);
832 
833 		/*
834 		 * As this is called in a wait_event() loop (see freeze_array),
835 		 * current->state might be TASK_UNINTERRUPTIBLE which will
836 		 * cause a warning when we prepare to wait again.  As it is
837 		 * rare that this path is taken, it is perfectly safe to force
838 		 * us to go around the wait_event() loop again, so the warning
839 		 * is a false-positive.  Silence the warning by resetting
840 		 * thread state
841 		 */
842 		__set_current_state(TASK_RUNNING);
843 		blk_start_plug(&plug);
844 		flush_bio_list(conf, bio);
845 		blk_finish_plug(&plug);
846 	} else
847 		spin_unlock_irq(&conf->device_lock);
848 }
849 
850 /* Barriers....
851  * Sometimes we need to suspend IO while we do something else,
852  * either some resync/recovery, or reconfigure the array.
853  * To do this we raise a 'barrier'.
854  * The 'barrier' is a counter that can be raised multiple times
855  * to count how many activities are happening which preclude
856  * normal IO.
857  * We can only raise the barrier if there is no pending IO.
858  * i.e. if nr_pending == 0.
859  * We choose only to raise the barrier if no-one is waiting for the
860  * barrier to go down.  This means that as soon as an IO request
861  * is ready, no other operations which require a barrier will start
862  * until the IO request has had a chance.
863  *
864  * So: regular IO calls 'wait_barrier'.  When that returns there
865  *    is no backgroup IO happening,  It must arrange to call
866  *    allow_barrier when it has finished its IO.
867  * backgroup IO calls must call raise_barrier.  Once that returns
868  *    there is no normal IO happeing.  It must arrange to call
869  *    lower_barrier when the particular background IO completes.
870  *
871  * If resync/recovery is interrupted, returns -EINTR;
872  * Otherwise, returns 0.
873  */
874 static int raise_barrier(struct r1conf *conf, sector_t sector_nr)
875 {
876 	int idx = sector_to_idx(sector_nr);
877 
878 	spin_lock_irq(&conf->resync_lock);
879 
880 	/* Wait until no block IO is waiting */
881 	wait_event_lock_irq(conf->wait_barrier,
882 			    !atomic_read(&conf->nr_waiting[idx]),
883 			    conf->resync_lock);
884 
885 	/* block any new IO from starting */
886 	atomic_inc(&conf->barrier[idx]);
887 	/*
888 	 * In raise_barrier() we firstly increase conf->barrier[idx] then
889 	 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
890 	 * increase conf->nr_pending[idx] then check conf->barrier[idx].
891 	 * A memory barrier here to make sure conf->nr_pending[idx] won't
892 	 * be fetched before conf->barrier[idx] is increased. Otherwise
893 	 * there will be a race between raise_barrier() and _wait_barrier().
894 	 */
895 	smp_mb__after_atomic();
896 
897 	/* For these conditions we must wait:
898 	 * A: while the array is in frozen state
899 	 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
900 	 *    existing in corresponding I/O barrier bucket.
901 	 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
902 	 *    max resync count which allowed on current I/O barrier bucket.
903 	 */
904 	wait_event_lock_irq(conf->wait_barrier,
905 			    (!conf->array_frozen &&
906 			     !atomic_read(&conf->nr_pending[idx]) &&
907 			     atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
908 				test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
909 			    conf->resync_lock);
910 
911 	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
912 		atomic_dec(&conf->barrier[idx]);
913 		spin_unlock_irq(&conf->resync_lock);
914 		wake_up(&conf->wait_barrier);
915 		return -EINTR;
916 	}
917 
918 	atomic_inc(&conf->nr_sync_pending);
919 	spin_unlock_irq(&conf->resync_lock);
920 
921 	return 0;
922 }
923 
924 static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
925 {
926 	int idx = sector_to_idx(sector_nr);
927 
928 	BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
929 
930 	atomic_dec(&conf->barrier[idx]);
931 	atomic_dec(&conf->nr_sync_pending);
932 	wake_up(&conf->wait_barrier);
933 }
934 
935 static bool _wait_barrier(struct r1conf *conf, int idx, bool nowait)
936 {
937 	bool ret = true;
938 
939 	/*
940 	 * We need to increase conf->nr_pending[idx] very early here,
941 	 * then raise_barrier() can be blocked when it waits for
942 	 * conf->nr_pending[idx] to be 0. Then we can avoid holding
943 	 * conf->resync_lock when there is no barrier raised in same
944 	 * barrier unit bucket. Also if the array is frozen, I/O
945 	 * should be blocked until array is unfrozen.
946 	 */
947 	atomic_inc(&conf->nr_pending[idx]);
948 	/*
949 	 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
950 	 * check conf->barrier[idx]. In raise_barrier() we firstly increase
951 	 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
952 	 * barrier is necessary here to make sure conf->barrier[idx] won't be
953 	 * fetched before conf->nr_pending[idx] is increased. Otherwise there
954 	 * will be a race between _wait_barrier() and raise_barrier().
955 	 */
956 	smp_mb__after_atomic();
957 
958 	/*
959 	 * Don't worry about checking two atomic_t variables at same time
960 	 * here. If during we check conf->barrier[idx], the array is
961 	 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
962 	 * 0, it is safe to return and make the I/O continue. Because the
963 	 * array is frozen, all I/O returned here will eventually complete
964 	 * or be queued, no race will happen. See code comment in
965 	 * frozen_array().
966 	 */
967 	if (!READ_ONCE(conf->array_frozen) &&
968 	    !atomic_read(&conf->barrier[idx]))
969 		return ret;
970 
971 	/*
972 	 * After holding conf->resync_lock, conf->nr_pending[idx]
973 	 * should be decreased before waiting for barrier to drop.
974 	 * Otherwise, we may encounter a race condition because
975 	 * raise_barrer() might be waiting for conf->nr_pending[idx]
976 	 * to be 0 at same time.
977 	 */
978 	spin_lock_irq(&conf->resync_lock);
979 	atomic_inc(&conf->nr_waiting[idx]);
980 	atomic_dec(&conf->nr_pending[idx]);
981 	/*
982 	 * In case freeze_array() is waiting for
983 	 * get_unqueued_pending() == extra
984 	 */
985 	wake_up(&conf->wait_barrier);
986 	/* Wait for the barrier in same barrier unit bucket to drop. */
987 
988 	/* Return false when nowait flag is set */
989 	if (nowait) {
990 		ret = false;
991 	} else {
992 		wait_event_lock_irq(conf->wait_barrier,
993 				!conf->array_frozen &&
994 				!atomic_read(&conf->barrier[idx]),
995 				conf->resync_lock);
996 		atomic_inc(&conf->nr_pending[idx]);
997 	}
998 
999 	atomic_dec(&conf->nr_waiting[idx]);
1000 	spin_unlock_irq(&conf->resync_lock);
1001 	return ret;
1002 }
1003 
1004 static bool wait_read_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
1005 {
1006 	int idx = sector_to_idx(sector_nr);
1007 	bool ret = true;
1008 
1009 	/*
1010 	 * Very similar to _wait_barrier(). The difference is, for read
1011 	 * I/O we don't need wait for sync I/O, but if the whole array
1012 	 * is frozen, the read I/O still has to wait until the array is
1013 	 * unfrozen. Since there is no ordering requirement with
1014 	 * conf->barrier[idx] here, memory barrier is unnecessary as well.
1015 	 */
1016 	atomic_inc(&conf->nr_pending[idx]);
1017 
1018 	if (!READ_ONCE(conf->array_frozen))
1019 		return ret;
1020 
1021 	spin_lock_irq(&conf->resync_lock);
1022 	atomic_inc(&conf->nr_waiting[idx]);
1023 	atomic_dec(&conf->nr_pending[idx]);
1024 	/*
1025 	 * In case freeze_array() is waiting for
1026 	 * get_unqueued_pending() == extra
1027 	 */
1028 	wake_up(&conf->wait_barrier);
1029 	/* Wait for array to be unfrozen */
1030 
1031 	/* Return false when nowait flag is set */
1032 	if (nowait) {
1033 		/* Return false when nowait flag is set */
1034 		ret = false;
1035 	} else {
1036 		wait_event_lock_irq(conf->wait_barrier,
1037 				!conf->array_frozen,
1038 				conf->resync_lock);
1039 		atomic_inc(&conf->nr_pending[idx]);
1040 	}
1041 
1042 	atomic_dec(&conf->nr_waiting[idx]);
1043 	spin_unlock_irq(&conf->resync_lock);
1044 	return ret;
1045 }
1046 
1047 static bool wait_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
1048 {
1049 	int idx = sector_to_idx(sector_nr);
1050 
1051 	return _wait_barrier(conf, idx, nowait);
1052 }
1053 
1054 static void _allow_barrier(struct r1conf *conf, int idx)
1055 {
1056 	atomic_dec(&conf->nr_pending[idx]);
1057 	wake_up(&conf->wait_barrier);
1058 }
1059 
1060 static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1061 {
1062 	int idx = sector_to_idx(sector_nr);
1063 
1064 	_allow_barrier(conf, idx);
1065 }
1066 
1067 /* conf->resync_lock should be held */
1068 static int get_unqueued_pending(struct r1conf *conf)
1069 {
1070 	int idx, ret;
1071 
1072 	ret = atomic_read(&conf->nr_sync_pending);
1073 	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1074 		ret += atomic_read(&conf->nr_pending[idx]) -
1075 			atomic_read(&conf->nr_queued[idx]);
1076 
1077 	return ret;
1078 }
1079 
1080 static void freeze_array(struct r1conf *conf, int extra)
1081 {
1082 	/* Stop sync I/O and normal I/O and wait for everything to
1083 	 * go quiet.
1084 	 * This is called in two situations:
1085 	 * 1) management command handlers (reshape, remove disk, quiesce).
1086 	 * 2) one normal I/O request failed.
1087 
1088 	 * After array_frozen is set to 1, new sync IO will be blocked at
1089 	 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1090 	 * or wait_read_barrier(). The flying I/Os will either complete or be
1091 	 * queued. When everything goes quite, there are only queued I/Os left.
1092 
1093 	 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1094 	 * barrier bucket index which this I/O request hits. When all sync and
1095 	 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1096 	 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1097 	 * in handle_read_error(), we may call freeze_array() before trying to
1098 	 * fix the read error. In this case, the error read I/O is not queued,
1099 	 * so get_unqueued_pending() == 1.
1100 	 *
1101 	 * Therefore before this function returns, we need to wait until
1102 	 * get_unqueued_pendings(conf) gets equal to extra. For
1103 	 * normal I/O context, extra is 1, in rested situations extra is 0.
1104 	 */
1105 	spin_lock_irq(&conf->resync_lock);
1106 	conf->array_frozen = 1;
1107 	raid1_log(conf->mddev, "wait freeze");
1108 	wait_event_lock_irq_cmd(
1109 		conf->wait_barrier,
1110 		get_unqueued_pending(conf) == extra,
1111 		conf->resync_lock,
1112 		flush_pending_writes(conf));
1113 	spin_unlock_irq(&conf->resync_lock);
1114 }
1115 static void unfreeze_array(struct r1conf *conf)
1116 {
1117 	/* reverse the effect of the freeze */
1118 	spin_lock_irq(&conf->resync_lock);
1119 	conf->array_frozen = 0;
1120 	spin_unlock_irq(&conf->resync_lock);
1121 	wake_up(&conf->wait_barrier);
1122 }
1123 
1124 static void alloc_behind_master_bio(struct r1bio *r1_bio,
1125 					   struct bio *bio)
1126 {
1127 	int size = bio->bi_iter.bi_size;
1128 	unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1129 	int i = 0;
1130 	struct bio *behind_bio = NULL;
1131 
1132 	behind_bio = bio_alloc_bioset(NULL, vcnt, 0, GFP_NOIO,
1133 				      &r1_bio->mddev->bio_set);
1134 	if (!behind_bio)
1135 		return;
1136 
1137 	/* discard op, we don't support writezero/writesame yet */
1138 	if (!bio_has_data(bio)) {
1139 		behind_bio->bi_iter.bi_size = size;
1140 		goto skip_copy;
1141 	}
1142 
1143 	while (i < vcnt && size) {
1144 		struct page *page;
1145 		int len = min_t(int, PAGE_SIZE, size);
1146 
1147 		page = alloc_page(GFP_NOIO);
1148 		if (unlikely(!page))
1149 			goto free_pages;
1150 
1151 		bio_add_page(behind_bio, page, len, 0);
1152 
1153 		size -= len;
1154 		i++;
1155 	}
1156 
1157 	bio_copy_data(behind_bio, bio);
1158 skip_copy:
1159 	r1_bio->behind_master_bio = behind_bio;
1160 	set_bit(R1BIO_BehindIO, &r1_bio->state);
1161 
1162 	return;
1163 
1164 free_pages:
1165 	pr_debug("%dB behind alloc failed, doing sync I/O\n",
1166 		 bio->bi_iter.bi_size);
1167 	bio_free_pages(behind_bio);
1168 	bio_put(behind_bio);
1169 }
1170 
1171 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1172 {
1173 	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1174 						  cb);
1175 	struct mddev *mddev = plug->cb.data;
1176 	struct r1conf *conf = mddev->private;
1177 	struct bio *bio;
1178 
1179 	if (from_schedule || current->bio_list) {
1180 		spin_lock_irq(&conf->device_lock);
1181 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1182 		spin_unlock_irq(&conf->device_lock);
1183 		wake_up(&conf->wait_barrier);
1184 		md_wakeup_thread(mddev->thread);
1185 		kfree(plug);
1186 		return;
1187 	}
1188 
1189 	/* we aren't scheduling, so we can do the write-out directly. */
1190 	bio = bio_list_get(&plug->pending);
1191 	flush_bio_list(conf, bio);
1192 	kfree(plug);
1193 }
1194 
1195 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1196 {
1197 	r1_bio->master_bio = bio;
1198 	r1_bio->sectors = bio_sectors(bio);
1199 	r1_bio->state = 0;
1200 	r1_bio->mddev = mddev;
1201 	r1_bio->sector = bio->bi_iter.bi_sector;
1202 }
1203 
1204 static inline struct r1bio *
1205 alloc_r1bio(struct mddev *mddev, struct bio *bio)
1206 {
1207 	struct r1conf *conf = mddev->private;
1208 	struct r1bio *r1_bio;
1209 
1210 	r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO);
1211 	/* Ensure no bio records IO_BLOCKED */
1212 	memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1213 	init_r1bio(r1_bio, mddev, bio);
1214 	return r1_bio;
1215 }
1216 
1217 static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1218 			       int max_read_sectors, struct r1bio *r1_bio)
1219 {
1220 	struct r1conf *conf = mddev->private;
1221 	struct raid1_info *mirror;
1222 	struct bio *read_bio;
1223 	struct bitmap *bitmap = mddev->bitmap;
1224 	const int op = bio_op(bio);
1225 	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1226 	int max_sectors;
1227 	int rdisk;
1228 	bool r1bio_existed = !!r1_bio;
1229 	char b[BDEVNAME_SIZE];
1230 
1231 	/*
1232 	 * If r1_bio is set, we are blocking the raid1d thread
1233 	 * so there is a tiny risk of deadlock.  So ask for
1234 	 * emergency memory if needed.
1235 	 */
1236 	gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1237 
1238 	if (r1bio_existed) {
1239 		/* Need to get the block device name carefully */
1240 		struct md_rdev *rdev;
1241 		rcu_read_lock();
1242 		rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1243 		if (rdev)
1244 			bdevname(rdev->bdev, b);
1245 		else
1246 			strcpy(b, "???");
1247 		rcu_read_unlock();
1248 	}
1249 
1250 	/*
1251 	 * Still need barrier for READ in case that whole
1252 	 * array is frozen.
1253 	 */
1254 	if (!wait_read_barrier(conf, bio->bi_iter.bi_sector,
1255 				bio->bi_opf & REQ_NOWAIT)) {
1256 		bio_wouldblock_error(bio);
1257 		return;
1258 	}
1259 
1260 	if (!r1_bio)
1261 		r1_bio = alloc_r1bio(mddev, bio);
1262 	else
1263 		init_r1bio(r1_bio, mddev, bio);
1264 	r1_bio->sectors = max_read_sectors;
1265 
1266 	/*
1267 	 * make_request() can abort the operation when read-ahead is being
1268 	 * used and no empty request is available.
1269 	 */
1270 	rdisk = read_balance(conf, r1_bio, &max_sectors);
1271 
1272 	if (rdisk < 0) {
1273 		/* couldn't find anywhere to read from */
1274 		if (r1bio_existed) {
1275 			pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1276 					    mdname(mddev),
1277 					    b,
1278 					    (unsigned long long)r1_bio->sector);
1279 		}
1280 		raid_end_bio_io(r1_bio);
1281 		return;
1282 	}
1283 	mirror = conf->mirrors + rdisk;
1284 
1285 	if (r1bio_existed)
1286 		pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
1287 				    mdname(mddev),
1288 				    (unsigned long long)r1_bio->sector,
1289 				    bdevname(mirror->rdev->bdev, b));
1290 
1291 	if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1292 	    bitmap) {
1293 		/*
1294 		 * Reading from a write-mostly device must take care not to
1295 		 * over-take any writes that are 'behind'
1296 		 */
1297 		raid1_log(mddev, "wait behind writes");
1298 		wait_event(bitmap->behind_wait,
1299 			   atomic_read(&bitmap->behind_writes) == 0);
1300 	}
1301 
1302 	if (max_sectors < bio_sectors(bio)) {
1303 		struct bio *split = bio_split(bio, max_sectors,
1304 					      gfp, &conf->bio_split);
1305 		bio_chain(split, bio);
1306 		submit_bio_noacct(bio);
1307 		bio = split;
1308 		r1_bio->master_bio = bio;
1309 		r1_bio->sectors = max_sectors;
1310 	}
1311 
1312 	r1_bio->read_disk = rdisk;
1313 
1314 	if (!r1bio_existed && blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
1315 		r1_bio->start_time = bio_start_io_acct(bio);
1316 
1317 	read_bio = bio_alloc_clone(mirror->rdev->bdev, bio, gfp,
1318 				   &mddev->bio_set);
1319 
1320 	r1_bio->bios[rdisk] = read_bio;
1321 
1322 	read_bio->bi_iter.bi_sector = r1_bio->sector +
1323 		mirror->rdev->data_offset;
1324 	read_bio->bi_end_io = raid1_end_read_request;
1325 	bio_set_op_attrs(read_bio, op, do_sync);
1326 	if (test_bit(FailFast, &mirror->rdev->flags) &&
1327 	    test_bit(R1BIO_FailFast, &r1_bio->state))
1328 	        read_bio->bi_opf |= MD_FAILFAST;
1329 	read_bio->bi_private = r1_bio;
1330 
1331 	if (mddev->gendisk)
1332 	        trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk),
1333 				      r1_bio->sector);
1334 
1335 	submit_bio_noacct(read_bio);
1336 }
1337 
1338 static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1339 				int max_write_sectors)
1340 {
1341 	struct r1conf *conf = mddev->private;
1342 	struct r1bio *r1_bio;
1343 	int i, disks;
1344 	struct bitmap *bitmap = mddev->bitmap;
1345 	unsigned long flags;
1346 	struct md_rdev *blocked_rdev;
1347 	struct blk_plug_cb *cb;
1348 	struct raid1_plug_cb *plug = NULL;
1349 	int first_clone;
1350 	int max_sectors;
1351 	bool write_behind = false;
1352 
1353 	if (mddev_is_clustered(mddev) &&
1354 	     md_cluster_ops->area_resyncing(mddev, WRITE,
1355 		     bio->bi_iter.bi_sector, bio_end_sector(bio))) {
1356 
1357 		DEFINE_WAIT(w);
1358 		if (bio->bi_opf & REQ_NOWAIT) {
1359 			bio_wouldblock_error(bio);
1360 			return;
1361 		}
1362 		for (;;) {
1363 			prepare_to_wait(&conf->wait_barrier,
1364 					&w, TASK_IDLE);
1365 			if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1366 							bio->bi_iter.bi_sector,
1367 							bio_end_sector(bio)))
1368 				break;
1369 			schedule();
1370 		}
1371 		finish_wait(&conf->wait_barrier, &w);
1372 	}
1373 
1374 	/*
1375 	 * Register the new request and wait if the reconstruction
1376 	 * thread has put up a bar for new requests.
1377 	 * Continue immediately if no resync is active currently.
1378 	 */
1379 	if (!wait_barrier(conf, bio->bi_iter.bi_sector,
1380 				bio->bi_opf & REQ_NOWAIT)) {
1381 		bio_wouldblock_error(bio);
1382 		return;
1383 	}
1384 
1385 	r1_bio = alloc_r1bio(mddev, bio);
1386 	r1_bio->sectors = max_write_sectors;
1387 
1388 	/* first select target devices under rcu_lock and
1389 	 * inc refcount on their rdev.  Record them by setting
1390 	 * bios[x] to bio
1391 	 * If there are known/acknowledged bad blocks on any device on
1392 	 * which we have seen a write error, we want to avoid writing those
1393 	 * blocks.
1394 	 * This potentially requires several writes to write around
1395 	 * the bad blocks.  Each set of writes gets it's own r1bio
1396 	 * with a set of bios attached.
1397 	 */
1398 
1399 	disks = conf->raid_disks * 2;
1400  retry_write:
1401 	blocked_rdev = NULL;
1402 	rcu_read_lock();
1403 	max_sectors = r1_bio->sectors;
1404 	for (i = 0;  i < disks; i++) {
1405 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1406 
1407 		/*
1408 		 * The write-behind io is only attempted on drives marked as
1409 		 * write-mostly, which means we could allocate write behind
1410 		 * bio later.
1411 		 */
1412 		if (rdev && test_bit(WriteMostly, &rdev->flags))
1413 			write_behind = true;
1414 
1415 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1416 			atomic_inc(&rdev->nr_pending);
1417 			blocked_rdev = rdev;
1418 			break;
1419 		}
1420 		r1_bio->bios[i] = NULL;
1421 		if (!rdev || test_bit(Faulty, &rdev->flags)) {
1422 			if (i < conf->raid_disks)
1423 				set_bit(R1BIO_Degraded, &r1_bio->state);
1424 			continue;
1425 		}
1426 
1427 		atomic_inc(&rdev->nr_pending);
1428 		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1429 			sector_t first_bad;
1430 			int bad_sectors;
1431 			int is_bad;
1432 
1433 			is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1434 					     &first_bad, &bad_sectors);
1435 			if (is_bad < 0) {
1436 				/* mustn't write here until the bad block is
1437 				 * acknowledged*/
1438 				set_bit(BlockedBadBlocks, &rdev->flags);
1439 				blocked_rdev = rdev;
1440 				break;
1441 			}
1442 			if (is_bad && first_bad <= r1_bio->sector) {
1443 				/* Cannot write here at all */
1444 				bad_sectors -= (r1_bio->sector - first_bad);
1445 				if (bad_sectors < max_sectors)
1446 					/* mustn't write more than bad_sectors
1447 					 * to other devices yet
1448 					 */
1449 					max_sectors = bad_sectors;
1450 				rdev_dec_pending(rdev, mddev);
1451 				/* We don't set R1BIO_Degraded as that
1452 				 * only applies if the disk is
1453 				 * missing, so it might be re-added,
1454 				 * and we want to know to recover this
1455 				 * chunk.
1456 				 * In this case the device is here,
1457 				 * and the fact that this chunk is not
1458 				 * in-sync is recorded in the bad
1459 				 * block log
1460 				 */
1461 				continue;
1462 			}
1463 			if (is_bad) {
1464 				int good_sectors = first_bad - r1_bio->sector;
1465 				if (good_sectors < max_sectors)
1466 					max_sectors = good_sectors;
1467 			}
1468 		}
1469 		r1_bio->bios[i] = bio;
1470 	}
1471 	rcu_read_unlock();
1472 
1473 	if (unlikely(blocked_rdev)) {
1474 		/* Wait for this device to become unblocked */
1475 		int j;
1476 
1477 		for (j = 0; j < i; j++)
1478 			if (r1_bio->bios[j])
1479 				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1480 		r1_bio->state = 0;
1481 		allow_barrier(conf, bio->bi_iter.bi_sector);
1482 
1483 		if (bio->bi_opf & REQ_NOWAIT) {
1484 			bio_wouldblock_error(bio);
1485 			return;
1486 		}
1487 		raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1488 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1489 		wait_barrier(conf, bio->bi_iter.bi_sector, false);
1490 		goto retry_write;
1491 	}
1492 
1493 	/*
1494 	 * When using a bitmap, we may call alloc_behind_master_bio below.
1495 	 * alloc_behind_master_bio allocates a copy of the data payload a page
1496 	 * at a time and thus needs a new bio that can fit the whole payload
1497 	 * this bio in page sized chunks.
1498 	 */
1499 	if (write_behind && bitmap)
1500 		max_sectors = min_t(int, max_sectors,
1501 				    BIO_MAX_VECS * (PAGE_SIZE >> 9));
1502 	if (max_sectors < bio_sectors(bio)) {
1503 		struct bio *split = bio_split(bio, max_sectors,
1504 					      GFP_NOIO, &conf->bio_split);
1505 		bio_chain(split, bio);
1506 		submit_bio_noacct(bio);
1507 		bio = split;
1508 		r1_bio->master_bio = bio;
1509 		r1_bio->sectors = max_sectors;
1510 	}
1511 
1512 	if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
1513 		r1_bio->start_time = bio_start_io_acct(bio);
1514 	atomic_set(&r1_bio->remaining, 1);
1515 	atomic_set(&r1_bio->behind_remaining, 0);
1516 
1517 	first_clone = 1;
1518 
1519 	for (i = 0; i < disks; i++) {
1520 		struct bio *mbio = NULL;
1521 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1522 		if (!r1_bio->bios[i])
1523 			continue;
1524 
1525 		if (first_clone) {
1526 			/* do behind I/O ?
1527 			 * Not if there are too many, or cannot
1528 			 * allocate memory, or a reader on WriteMostly
1529 			 * is waiting for behind writes to flush */
1530 			if (bitmap &&
1531 			    test_bit(WriteMostly, &rdev->flags) &&
1532 			    (atomic_read(&bitmap->behind_writes)
1533 			     < mddev->bitmap_info.max_write_behind) &&
1534 			    !waitqueue_active(&bitmap->behind_wait)) {
1535 				alloc_behind_master_bio(r1_bio, bio);
1536 			}
1537 
1538 			md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors,
1539 					     test_bit(R1BIO_BehindIO, &r1_bio->state));
1540 			first_clone = 0;
1541 		}
1542 
1543 		if (r1_bio->behind_master_bio) {
1544 			mbio = bio_alloc_clone(rdev->bdev,
1545 					       r1_bio->behind_master_bio,
1546 					       GFP_NOIO, &mddev->bio_set);
1547 			if (test_bit(CollisionCheck, &rdev->flags))
1548 				wait_for_serialization(rdev, r1_bio);
1549 			if (test_bit(WriteMostly, &rdev->flags))
1550 				atomic_inc(&r1_bio->behind_remaining);
1551 		} else {
1552 			mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO,
1553 					       &mddev->bio_set);
1554 
1555 			if (mddev->serialize_policy)
1556 				wait_for_serialization(rdev, r1_bio);
1557 		}
1558 
1559 		r1_bio->bios[i] = mbio;
1560 
1561 		mbio->bi_iter.bi_sector	= (r1_bio->sector + rdev->data_offset);
1562 		mbio->bi_end_io	= raid1_end_write_request;
1563 		mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1564 		if (test_bit(FailFast, &rdev->flags) &&
1565 		    !test_bit(WriteMostly, &rdev->flags) &&
1566 		    conf->raid_disks - mddev->degraded > 1)
1567 			mbio->bi_opf |= MD_FAILFAST;
1568 		mbio->bi_private = r1_bio;
1569 
1570 		atomic_inc(&r1_bio->remaining);
1571 
1572 		if (mddev->gendisk)
1573 			trace_block_bio_remap(mbio, disk_devt(mddev->gendisk),
1574 					      r1_bio->sector);
1575 		/* flush_pending_writes() needs access to the rdev so...*/
1576 		mbio->bi_bdev = (void *)rdev;
1577 
1578 		cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1579 		if (cb)
1580 			plug = container_of(cb, struct raid1_plug_cb, cb);
1581 		else
1582 			plug = NULL;
1583 		if (plug) {
1584 			bio_list_add(&plug->pending, mbio);
1585 		} else {
1586 			spin_lock_irqsave(&conf->device_lock, flags);
1587 			bio_list_add(&conf->pending_bio_list, mbio);
1588 			spin_unlock_irqrestore(&conf->device_lock, flags);
1589 			md_wakeup_thread(mddev->thread);
1590 		}
1591 	}
1592 
1593 	r1_bio_write_done(r1_bio);
1594 
1595 	/* In case raid1d snuck in to freeze_array */
1596 	wake_up(&conf->wait_barrier);
1597 }
1598 
1599 static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1600 {
1601 	sector_t sectors;
1602 
1603 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1604 	    && md_flush_request(mddev, bio))
1605 		return true;
1606 
1607 	/*
1608 	 * There is a limit to the maximum size, but
1609 	 * the read/write handler might find a lower limit
1610 	 * due to bad blocks.  To avoid multiple splits,
1611 	 * we pass the maximum number of sectors down
1612 	 * and let the lower level perform the split.
1613 	 */
1614 	sectors = align_to_barrier_unit_end(
1615 		bio->bi_iter.bi_sector, bio_sectors(bio));
1616 
1617 	if (bio_data_dir(bio) == READ)
1618 		raid1_read_request(mddev, bio, sectors, NULL);
1619 	else {
1620 		if (!md_write_start(mddev,bio))
1621 			return false;
1622 		raid1_write_request(mddev, bio, sectors);
1623 	}
1624 	return true;
1625 }
1626 
1627 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1628 {
1629 	struct r1conf *conf = mddev->private;
1630 	int i;
1631 
1632 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1633 		   conf->raid_disks - mddev->degraded);
1634 	rcu_read_lock();
1635 	for (i = 0; i < conf->raid_disks; i++) {
1636 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1637 		seq_printf(seq, "%s",
1638 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1639 	}
1640 	rcu_read_unlock();
1641 	seq_printf(seq, "]");
1642 }
1643 
1644 /**
1645  * raid1_error() - RAID1 error handler.
1646  * @mddev: affected md device.
1647  * @rdev: member device to fail.
1648  *
1649  * The routine acknowledges &rdev failure and determines new @mddev state.
1650  * If it failed, then:
1651  *	- &MD_BROKEN flag is set in &mddev->flags.
1652  *	- recovery is disabled.
1653  * Otherwise, it must be degraded:
1654  *	- recovery is interrupted.
1655  *	- &mddev->degraded is bumped.
1656  *
1657  * @rdev is marked as &Faulty excluding case when array is failed and
1658  * &mddev->fail_last_dev is off.
1659  */
1660 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1661 {
1662 	char b[BDEVNAME_SIZE];
1663 	struct r1conf *conf = mddev->private;
1664 	unsigned long flags;
1665 
1666 	spin_lock_irqsave(&conf->device_lock, flags);
1667 
1668 	if (test_bit(In_sync, &rdev->flags) &&
1669 	    (conf->raid_disks - mddev->degraded) == 1) {
1670 		set_bit(MD_BROKEN, &mddev->flags);
1671 
1672 		if (!mddev->fail_last_dev) {
1673 			conf->recovery_disabled = mddev->recovery_disabled;
1674 			spin_unlock_irqrestore(&conf->device_lock, flags);
1675 			return;
1676 		}
1677 	}
1678 	set_bit(Blocked, &rdev->flags);
1679 	if (test_and_clear_bit(In_sync, &rdev->flags))
1680 		mddev->degraded++;
1681 	set_bit(Faulty, &rdev->flags);
1682 	spin_unlock_irqrestore(&conf->device_lock, flags);
1683 	/*
1684 	 * if recovery is running, make sure it aborts.
1685 	 */
1686 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1687 	set_mask_bits(&mddev->sb_flags, 0,
1688 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1689 	pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1690 		"md/raid1:%s: Operation continuing on %d devices.\n",
1691 		mdname(mddev), bdevname(rdev->bdev, b),
1692 		mdname(mddev), conf->raid_disks - mddev->degraded);
1693 }
1694 
1695 static void print_conf(struct r1conf *conf)
1696 {
1697 	int i;
1698 
1699 	pr_debug("RAID1 conf printout:\n");
1700 	if (!conf) {
1701 		pr_debug("(!conf)\n");
1702 		return;
1703 	}
1704 	pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1705 		 conf->raid_disks);
1706 
1707 	rcu_read_lock();
1708 	for (i = 0; i < conf->raid_disks; i++) {
1709 		char b[BDEVNAME_SIZE];
1710 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1711 		if (rdev)
1712 			pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1713 				 i, !test_bit(In_sync, &rdev->flags),
1714 				 !test_bit(Faulty, &rdev->flags),
1715 				 bdevname(rdev->bdev,b));
1716 	}
1717 	rcu_read_unlock();
1718 }
1719 
1720 static void close_sync(struct r1conf *conf)
1721 {
1722 	int idx;
1723 
1724 	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1725 		_wait_barrier(conf, idx, false);
1726 		_allow_barrier(conf, idx);
1727 	}
1728 
1729 	mempool_exit(&conf->r1buf_pool);
1730 }
1731 
1732 static int raid1_spare_active(struct mddev *mddev)
1733 {
1734 	int i;
1735 	struct r1conf *conf = mddev->private;
1736 	int count = 0;
1737 	unsigned long flags;
1738 
1739 	/*
1740 	 * Find all failed disks within the RAID1 configuration
1741 	 * and mark them readable.
1742 	 * Called under mddev lock, so rcu protection not needed.
1743 	 * device_lock used to avoid races with raid1_end_read_request
1744 	 * which expects 'In_sync' flags and ->degraded to be consistent.
1745 	 */
1746 	spin_lock_irqsave(&conf->device_lock, flags);
1747 	for (i = 0; i < conf->raid_disks; i++) {
1748 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1749 		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1750 		if (repl
1751 		    && !test_bit(Candidate, &repl->flags)
1752 		    && repl->recovery_offset == MaxSector
1753 		    && !test_bit(Faulty, &repl->flags)
1754 		    && !test_and_set_bit(In_sync, &repl->flags)) {
1755 			/* replacement has just become active */
1756 			if (!rdev ||
1757 			    !test_and_clear_bit(In_sync, &rdev->flags))
1758 				count++;
1759 			if (rdev) {
1760 				/* Replaced device not technically
1761 				 * faulty, but we need to be sure
1762 				 * it gets removed and never re-added
1763 				 */
1764 				set_bit(Faulty, &rdev->flags);
1765 				sysfs_notify_dirent_safe(
1766 					rdev->sysfs_state);
1767 			}
1768 		}
1769 		if (rdev
1770 		    && rdev->recovery_offset == MaxSector
1771 		    && !test_bit(Faulty, &rdev->flags)
1772 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1773 			count++;
1774 			sysfs_notify_dirent_safe(rdev->sysfs_state);
1775 		}
1776 	}
1777 	mddev->degraded -= count;
1778 	spin_unlock_irqrestore(&conf->device_lock, flags);
1779 
1780 	print_conf(conf);
1781 	return count;
1782 }
1783 
1784 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1785 {
1786 	struct r1conf *conf = mddev->private;
1787 	int err = -EEXIST;
1788 	int mirror = 0;
1789 	struct raid1_info *p;
1790 	int first = 0;
1791 	int last = conf->raid_disks - 1;
1792 
1793 	if (mddev->recovery_disabled == conf->recovery_disabled)
1794 		return -EBUSY;
1795 
1796 	if (md_integrity_add_rdev(rdev, mddev))
1797 		return -ENXIO;
1798 
1799 	if (rdev->raid_disk >= 0)
1800 		first = last = rdev->raid_disk;
1801 
1802 	/*
1803 	 * find the disk ... but prefer rdev->saved_raid_disk
1804 	 * if possible.
1805 	 */
1806 	if (rdev->saved_raid_disk >= 0 &&
1807 	    rdev->saved_raid_disk >= first &&
1808 	    rdev->saved_raid_disk < conf->raid_disks &&
1809 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1810 		first = last = rdev->saved_raid_disk;
1811 
1812 	for (mirror = first; mirror <= last; mirror++) {
1813 		p = conf->mirrors + mirror;
1814 		if (!p->rdev) {
1815 			if (mddev->gendisk)
1816 				disk_stack_limits(mddev->gendisk, rdev->bdev,
1817 						  rdev->data_offset << 9);
1818 
1819 			p->head_position = 0;
1820 			rdev->raid_disk = mirror;
1821 			err = 0;
1822 			/* As all devices are equivalent, we don't need a full recovery
1823 			 * if this was recently any drive of the array
1824 			 */
1825 			if (rdev->saved_raid_disk < 0)
1826 				conf->fullsync = 1;
1827 			rcu_assign_pointer(p->rdev, rdev);
1828 			break;
1829 		}
1830 		if (test_bit(WantReplacement, &p->rdev->flags) &&
1831 		    p[conf->raid_disks].rdev == NULL) {
1832 			/* Add this device as a replacement */
1833 			clear_bit(In_sync, &rdev->flags);
1834 			set_bit(Replacement, &rdev->flags);
1835 			rdev->raid_disk = mirror;
1836 			err = 0;
1837 			conf->fullsync = 1;
1838 			rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1839 			break;
1840 		}
1841 	}
1842 	print_conf(conf);
1843 	return err;
1844 }
1845 
1846 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1847 {
1848 	struct r1conf *conf = mddev->private;
1849 	int err = 0;
1850 	int number = rdev->raid_disk;
1851 	struct raid1_info *p = conf->mirrors + number;
1852 
1853 	if (rdev != p->rdev)
1854 		p = conf->mirrors + conf->raid_disks + number;
1855 
1856 	print_conf(conf);
1857 	if (rdev == p->rdev) {
1858 		if (test_bit(In_sync, &rdev->flags) ||
1859 		    atomic_read(&rdev->nr_pending)) {
1860 			err = -EBUSY;
1861 			goto abort;
1862 		}
1863 		/* Only remove non-faulty devices if recovery
1864 		 * is not possible.
1865 		 */
1866 		if (!test_bit(Faulty, &rdev->flags) &&
1867 		    mddev->recovery_disabled != conf->recovery_disabled &&
1868 		    mddev->degraded < conf->raid_disks) {
1869 			err = -EBUSY;
1870 			goto abort;
1871 		}
1872 		p->rdev = NULL;
1873 		if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1874 			synchronize_rcu();
1875 			if (atomic_read(&rdev->nr_pending)) {
1876 				/* lost the race, try later */
1877 				err = -EBUSY;
1878 				p->rdev = rdev;
1879 				goto abort;
1880 			}
1881 		}
1882 		if (conf->mirrors[conf->raid_disks + number].rdev) {
1883 			/* We just removed a device that is being replaced.
1884 			 * Move down the replacement.  We drain all IO before
1885 			 * doing this to avoid confusion.
1886 			 */
1887 			struct md_rdev *repl =
1888 				conf->mirrors[conf->raid_disks + number].rdev;
1889 			freeze_array(conf, 0);
1890 			if (atomic_read(&repl->nr_pending)) {
1891 				/* It means that some queued IO of retry_list
1892 				 * hold repl. Thus, we cannot set replacement
1893 				 * as NULL, avoiding rdev NULL pointer
1894 				 * dereference in sync_request_write and
1895 				 * handle_write_finished.
1896 				 */
1897 				err = -EBUSY;
1898 				unfreeze_array(conf);
1899 				goto abort;
1900 			}
1901 			clear_bit(Replacement, &repl->flags);
1902 			p->rdev = repl;
1903 			conf->mirrors[conf->raid_disks + number].rdev = NULL;
1904 			unfreeze_array(conf);
1905 		}
1906 
1907 		clear_bit(WantReplacement, &rdev->flags);
1908 		err = md_integrity_register(mddev);
1909 	}
1910 abort:
1911 
1912 	print_conf(conf);
1913 	return err;
1914 }
1915 
1916 static void end_sync_read(struct bio *bio)
1917 {
1918 	struct r1bio *r1_bio = get_resync_r1bio(bio);
1919 
1920 	update_head_pos(r1_bio->read_disk, r1_bio);
1921 
1922 	/*
1923 	 * we have read a block, now it needs to be re-written,
1924 	 * or re-read if the read failed.
1925 	 * We don't do much here, just schedule handling by raid1d
1926 	 */
1927 	if (!bio->bi_status)
1928 		set_bit(R1BIO_Uptodate, &r1_bio->state);
1929 
1930 	if (atomic_dec_and_test(&r1_bio->remaining))
1931 		reschedule_retry(r1_bio);
1932 }
1933 
1934 static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
1935 {
1936 	sector_t sync_blocks = 0;
1937 	sector_t s = r1_bio->sector;
1938 	long sectors_to_go = r1_bio->sectors;
1939 
1940 	/* make sure these bits don't get cleared. */
1941 	do {
1942 		md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1);
1943 		s += sync_blocks;
1944 		sectors_to_go -= sync_blocks;
1945 	} while (sectors_to_go > 0);
1946 }
1947 
1948 static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate)
1949 {
1950 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1951 		struct mddev *mddev = r1_bio->mddev;
1952 		int s = r1_bio->sectors;
1953 
1954 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1955 		    test_bit(R1BIO_WriteError, &r1_bio->state))
1956 			reschedule_retry(r1_bio);
1957 		else {
1958 			put_buf(r1_bio);
1959 			md_done_sync(mddev, s, uptodate);
1960 		}
1961 	}
1962 }
1963 
1964 static void end_sync_write(struct bio *bio)
1965 {
1966 	int uptodate = !bio->bi_status;
1967 	struct r1bio *r1_bio = get_resync_r1bio(bio);
1968 	struct mddev *mddev = r1_bio->mddev;
1969 	struct r1conf *conf = mddev->private;
1970 	sector_t first_bad;
1971 	int bad_sectors;
1972 	struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1973 
1974 	if (!uptodate) {
1975 		abort_sync_write(mddev, r1_bio);
1976 		set_bit(WriteErrorSeen, &rdev->flags);
1977 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
1978 			set_bit(MD_RECOVERY_NEEDED, &
1979 				mddev->recovery);
1980 		set_bit(R1BIO_WriteError, &r1_bio->state);
1981 	} else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1982 			       &first_bad, &bad_sectors) &&
1983 		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1984 				r1_bio->sector,
1985 				r1_bio->sectors,
1986 				&first_bad, &bad_sectors)
1987 		)
1988 		set_bit(R1BIO_MadeGood, &r1_bio->state);
1989 
1990 	put_sync_write_buf(r1_bio, uptodate);
1991 }
1992 
1993 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1994 			    int sectors, struct page *page, int rw)
1995 {
1996 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1997 		/* success */
1998 		return 1;
1999 	if (rw == WRITE) {
2000 		set_bit(WriteErrorSeen, &rdev->flags);
2001 		if (!test_and_set_bit(WantReplacement,
2002 				      &rdev->flags))
2003 			set_bit(MD_RECOVERY_NEEDED, &
2004 				rdev->mddev->recovery);
2005 	}
2006 	/* need to record an error - either for the block or the device */
2007 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2008 		md_error(rdev->mddev, rdev);
2009 	return 0;
2010 }
2011 
2012 static int fix_sync_read_error(struct r1bio *r1_bio)
2013 {
2014 	/* Try some synchronous reads of other devices to get
2015 	 * good data, much like with normal read errors.  Only
2016 	 * read into the pages we already have so we don't
2017 	 * need to re-issue the read request.
2018 	 * We don't need to freeze the array, because being in an
2019 	 * active sync request, there is no normal IO, and
2020 	 * no overlapping syncs.
2021 	 * We don't need to check is_badblock() again as we
2022 	 * made sure that anything with a bad block in range
2023 	 * will have bi_end_io clear.
2024 	 */
2025 	struct mddev *mddev = r1_bio->mddev;
2026 	struct r1conf *conf = mddev->private;
2027 	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
2028 	struct page **pages = get_resync_pages(bio)->pages;
2029 	sector_t sect = r1_bio->sector;
2030 	int sectors = r1_bio->sectors;
2031 	int idx = 0;
2032 	struct md_rdev *rdev;
2033 
2034 	rdev = conf->mirrors[r1_bio->read_disk].rdev;
2035 	if (test_bit(FailFast, &rdev->flags)) {
2036 		/* Don't try recovering from here - just fail it
2037 		 * ... unless it is the last working device of course */
2038 		md_error(mddev, rdev);
2039 		if (test_bit(Faulty, &rdev->flags))
2040 			/* Don't try to read from here, but make sure
2041 			 * put_buf does it's thing
2042 			 */
2043 			bio->bi_end_io = end_sync_write;
2044 	}
2045 
2046 	while(sectors) {
2047 		int s = sectors;
2048 		int d = r1_bio->read_disk;
2049 		int success = 0;
2050 		int start;
2051 
2052 		if (s > (PAGE_SIZE>>9))
2053 			s = PAGE_SIZE >> 9;
2054 		do {
2055 			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
2056 				/* No rcu protection needed here devices
2057 				 * can only be removed when no resync is
2058 				 * active, and resync is currently active
2059 				 */
2060 				rdev = conf->mirrors[d].rdev;
2061 				if (sync_page_io(rdev, sect, s<<9,
2062 						 pages[idx],
2063 						 REQ_OP_READ, 0, false)) {
2064 					success = 1;
2065 					break;
2066 				}
2067 			}
2068 			d++;
2069 			if (d == conf->raid_disks * 2)
2070 				d = 0;
2071 		} while (!success && d != r1_bio->read_disk);
2072 
2073 		if (!success) {
2074 			int abort = 0;
2075 			/* Cannot read from anywhere, this block is lost.
2076 			 * Record a bad block on each device.  If that doesn't
2077 			 * work just disable and interrupt the recovery.
2078 			 * Don't fail devices as that won't really help.
2079 			 */
2080 			pr_crit_ratelimited("md/raid1:%s: %pg: unrecoverable I/O read error for block %llu\n",
2081 					    mdname(mddev), bio->bi_bdev,
2082 					    (unsigned long long)r1_bio->sector);
2083 			for (d = 0; d < conf->raid_disks * 2; d++) {
2084 				rdev = conf->mirrors[d].rdev;
2085 				if (!rdev || test_bit(Faulty, &rdev->flags))
2086 					continue;
2087 				if (!rdev_set_badblocks(rdev, sect, s, 0))
2088 					abort = 1;
2089 			}
2090 			if (abort) {
2091 				conf->recovery_disabled =
2092 					mddev->recovery_disabled;
2093 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2094 				md_done_sync(mddev, r1_bio->sectors, 0);
2095 				put_buf(r1_bio);
2096 				return 0;
2097 			}
2098 			/* Try next page */
2099 			sectors -= s;
2100 			sect += s;
2101 			idx++;
2102 			continue;
2103 		}
2104 
2105 		start = d;
2106 		/* write it back and re-read */
2107 		while (d != r1_bio->read_disk) {
2108 			if (d == 0)
2109 				d = conf->raid_disks * 2;
2110 			d--;
2111 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2112 				continue;
2113 			rdev = conf->mirrors[d].rdev;
2114 			if (r1_sync_page_io(rdev, sect, s,
2115 					    pages[idx],
2116 					    WRITE) == 0) {
2117 				r1_bio->bios[d]->bi_end_io = NULL;
2118 				rdev_dec_pending(rdev, mddev);
2119 			}
2120 		}
2121 		d = start;
2122 		while (d != r1_bio->read_disk) {
2123 			if (d == 0)
2124 				d = conf->raid_disks * 2;
2125 			d--;
2126 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2127 				continue;
2128 			rdev = conf->mirrors[d].rdev;
2129 			if (r1_sync_page_io(rdev, sect, s,
2130 					    pages[idx],
2131 					    READ) != 0)
2132 				atomic_add(s, &rdev->corrected_errors);
2133 		}
2134 		sectors -= s;
2135 		sect += s;
2136 		idx ++;
2137 	}
2138 	set_bit(R1BIO_Uptodate, &r1_bio->state);
2139 	bio->bi_status = 0;
2140 	return 1;
2141 }
2142 
2143 static void process_checks(struct r1bio *r1_bio)
2144 {
2145 	/* We have read all readable devices.  If we haven't
2146 	 * got the block, then there is no hope left.
2147 	 * If we have, then we want to do a comparison
2148 	 * and skip the write if everything is the same.
2149 	 * If any blocks failed to read, then we need to
2150 	 * attempt an over-write
2151 	 */
2152 	struct mddev *mddev = r1_bio->mddev;
2153 	struct r1conf *conf = mddev->private;
2154 	int primary;
2155 	int i;
2156 	int vcnt;
2157 
2158 	/* Fix variable parts of all bios */
2159 	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2160 	for (i = 0; i < conf->raid_disks * 2; i++) {
2161 		blk_status_t status;
2162 		struct bio *b = r1_bio->bios[i];
2163 		struct resync_pages *rp = get_resync_pages(b);
2164 		if (b->bi_end_io != end_sync_read)
2165 			continue;
2166 		/* fixup the bio for reuse, but preserve errno */
2167 		status = b->bi_status;
2168 		bio_reset(b, conf->mirrors[i].rdev->bdev, REQ_OP_READ);
2169 		b->bi_status = status;
2170 		b->bi_iter.bi_sector = r1_bio->sector +
2171 			conf->mirrors[i].rdev->data_offset;
2172 		b->bi_end_io = end_sync_read;
2173 		rp->raid_bio = r1_bio;
2174 		b->bi_private = rp;
2175 
2176 		/* initialize bvec table again */
2177 		md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2178 	}
2179 	for (primary = 0; primary < conf->raid_disks * 2; primary++)
2180 		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2181 		    !r1_bio->bios[primary]->bi_status) {
2182 			r1_bio->bios[primary]->bi_end_io = NULL;
2183 			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2184 			break;
2185 		}
2186 	r1_bio->read_disk = primary;
2187 	for (i = 0; i < conf->raid_disks * 2; i++) {
2188 		int j = 0;
2189 		struct bio *pbio = r1_bio->bios[primary];
2190 		struct bio *sbio = r1_bio->bios[i];
2191 		blk_status_t status = sbio->bi_status;
2192 		struct page **ppages = get_resync_pages(pbio)->pages;
2193 		struct page **spages = get_resync_pages(sbio)->pages;
2194 		struct bio_vec *bi;
2195 		int page_len[RESYNC_PAGES] = { 0 };
2196 		struct bvec_iter_all iter_all;
2197 
2198 		if (sbio->bi_end_io != end_sync_read)
2199 			continue;
2200 		/* Now we can 'fixup' the error value */
2201 		sbio->bi_status = 0;
2202 
2203 		bio_for_each_segment_all(bi, sbio, iter_all)
2204 			page_len[j++] = bi->bv_len;
2205 
2206 		if (!status) {
2207 			for (j = vcnt; j-- ; ) {
2208 				if (memcmp(page_address(ppages[j]),
2209 					   page_address(spages[j]),
2210 					   page_len[j]))
2211 					break;
2212 			}
2213 		} else
2214 			j = 0;
2215 		if (j >= 0)
2216 			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2217 		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2218 			      && !status)) {
2219 			/* No need to write to this device. */
2220 			sbio->bi_end_io = NULL;
2221 			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2222 			continue;
2223 		}
2224 
2225 		bio_copy_data(sbio, pbio);
2226 	}
2227 }
2228 
2229 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2230 {
2231 	struct r1conf *conf = mddev->private;
2232 	int i;
2233 	int disks = conf->raid_disks * 2;
2234 	struct bio *wbio;
2235 
2236 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2237 		/* ouch - failed to read all of that. */
2238 		if (!fix_sync_read_error(r1_bio))
2239 			return;
2240 
2241 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2242 		process_checks(r1_bio);
2243 
2244 	/*
2245 	 * schedule writes
2246 	 */
2247 	atomic_set(&r1_bio->remaining, 1);
2248 	for (i = 0; i < disks ; i++) {
2249 		wbio = r1_bio->bios[i];
2250 		if (wbio->bi_end_io == NULL ||
2251 		    (wbio->bi_end_io == end_sync_read &&
2252 		     (i == r1_bio->read_disk ||
2253 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2254 			continue;
2255 		if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
2256 			abort_sync_write(mddev, r1_bio);
2257 			continue;
2258 		}
2259 
2260 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2261 		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2262 			wbio->bi_opf |= MD_FAILFAST;
2263 
2264 		wbio->bi_end_io = end_sync_write;
2265 		atomic_inc(&r1_bio->remaining);
2266 		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2267 
2268 		submit_bio_noacct(wbio);
2269 	}
2270 
2271 	put_sync_write_buf(r1_bio, 1);
2272 }
2273 
2274 /*
2275  * This is a kernel thread which:
2276  *
2277  *	1.	Retries failed read operations on working mirrors.
2278  *	2.	Updates the raid superblock when problems encounter.
2279  *	3.	Performs writes following reads for array synchronising.
2280  */
2281 
2282 static void fix_read_error(struct r1conf *conf, int read_disk,
2283 			   sector_t sect, int sectors)
2284 {
2285 	struct mddev *mddev = conf->mddev;
2286 	while(sectors) {
2287 		int s = sectors;
2288 		int d = read_disk;
2289 		int success = 0;
2290 		int start;
2291 		struct md_rdev *rdev;
2292 
2293 		if (s > (PAGE_SIZE>>9))
2294 			s = PAGE_SIZE >> 9;
2295 
2296 		do {
2297 			sector_t first_bad;
2298 			int bad_sectors;
2299 
2300 			rcu_read_lock();
2301 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2302 			if (rdev &&
2303 			    (test_bit(In_sync, &rdev->flags) ||
2304 			     (!test_bit(Faulty, &rdev->flags) &&
2305 			      rdev->recovery_offset >= sect + s)) &&
2306 			    is_badblock(rdev, sect, s,
2307 					&first_bad, &bad_sectors) == 0) {
2308 				atomic_inc(&rdev->nr_pending);
2309 				rcu_read_unlock();
2310 				if (sync_page_io(rdev, sect, s<<9,
2311 					 conf->tmppage, REQ_OP_READ, 0, false))
2312 					success = 1;
2313 				rdev_dec_pending(rdev, mddev);
2314 				if (success)
2315 					break;
2316 			} else
2317 				rcu_read_unlock();
2318 			d++;
2319 			if (d == conf->raid_disks * 2)
2320 				d = 0;
2321 		} while (!success && d != read_disk);
2322 
2323 		if (!success) {
2324 			/* Cannot read from anywhere - mark it bad */
2325 			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2326 			if (!rdev_set_badblocks(rdev, sect, s, 0))
2327 				md_error(mddev, rdev);
2328 			break;
2329 		}
2330 		/* write it back and re-read */
2331 		start = d;
2332 		while (d != read_disk) {
2333 			if (d==0)
2334 				d = conf->raid_disks * 2;
2335 			d--;
2336 			rcu_read_lock();
2337 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2338 			if (rdev &&
2339 			    !test_bit(Faulty, &rdev->flags)) {
2340 				atomic_inc(&rdev->nr_pending);
2341 				rcu_read_unlock();
2342 				r1_sync_page_io(rdev, sect, s,
2343 						conf->tmppage, WRITE);
2344 				rdev_dec_pending(rdev, mddev);
2345 			} else
2346 				rcu_read_unlock();
2347 		}
2348 		d = start;
2349 		while (d != read_disk) {
2350 			char b[BDEVNAME_SIZE];
2351 			if (d==0)
2352 				d = conf->raid_disks * 2;
2353 			d--;
2354 			rcu_read_lock();
2355 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2356 			if (rdev &&
2357 			    !test_bit(Faulty, &rdev->flags)) {
2358 				atomic_inc(&rdev->nr_pending);
2359 				rcu_read_unlock();
2360 				if (r1_sync_page_io(rdev, sect, s,
2361 						    conf->tmppage, READ)) {
2362 					atomic_add(s, &rdev->corrected_errors);
2363 					pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2364 						mdname(mddev), s,
2365 						(unsigned long long)(sect +
2366 								     rdev->data_offset),
2367 						bdevname(rdev->bdev, b));
2368 				}
2369 				rdev_dec_pending(rdev, mddev);
2370 			} else
2371 				rcu_read_unlock();
2372 		}
2373 		sectors -= s;
2374 		sect += s;
2375 	}
2376 }
2377 
2378 static int narrow_write_error(struct r1bio *r1_bio, int i)
2379 {
2380 	struct mddev *mddev = r1_bio->mddev;
2381 	struct r1conf *conf = mddev->private;
2382 	struct md_rdev *rdev = conf->mirrors[i].rdev;
2383 
2384 	/* bio has the data to be written to device 'i' where
2385 	 * we just recently had a write error.
2386 	 * We repeatedly clone the bio and trim down to one block,
2387 	 * then try the write.  Where the write fails we record
2388 	 * a bad block.
2389 	 * It is conceivable that the bio doesn't exactly align with
2390 	 * blocks.  We must handle this somehow.
2391 	 *
2392 	 * We currently own a reference on the rdev.
2393 	 */
2394 
2395 	int block_sectors;
2396 	sector_t sector;
2397 	int sectors;
2398 	int sect_to_write = r1_bio->sectors;
2399 	int ok = 1;
2400 
2401 	if (rdev->badblocks.shift < 0)
2402 		return 0;
2403 
2404 	block_sectors = roundup(1 << rdev->badblocks.shift,
2405 				bdev_logical_block_size(rdev->bdev) >> 9);
2406 	sector = r1_bio->sector;
2407 	sectors = ((sector + block_sectors)
2408 		   & ~(sector_t)(block_sectors - 1))
2409 		- sector;
2410 
2411 	while (sect_to_write) {
2412 		struct bio *wbio;
2413 		if (sectors > sect_to_write)
2414 			sectors = sect_to_write;
2415 		/* Write at 'sector' for 'sectors'*/
2416 
2417 		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2418 			wbio = bio_alloc_clone(rdev->bdev,
2419 					       r1_bio->behind_master_bio,
2420 					       GFP_NOIO, &mddev->bio_set);
2421 		} else {
2422 			wbio = bio_alloc_clone(rdev->bdev, r1_bio->master_bio,
2423 					       GFP_NOIO, &mddev->bio_set);
2424 		}
2425 
2426 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2427 		wbio->bi_iter.bi_sector = r1_bio->sector;
2428 		wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2429 
2430 		bio_trim(wbio, sector - r1_bio->sector, sectors);
2431 		wbio->bi_iter.bi_sector += rdev->data_offset;
2432 
2433 		if (submit_bio_wait(wbio) < 0)
2434 			/* failure! */
2435 			ok = rdev_set_badblocks(rdev, sector,
2436 						sectors, 0)
2437 				&& ok;
2438 
2439 		bio_put(wbio);
2440 		sect_to_write -= sectors;
2441 		sector += sectors;
2442 		sectors = block_sectors;
2443 	}
2444 	return ok;
2445 }
2446 
2447 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2448 {
2449 	int m;
2450 	int s = r1_bio->sectors;
2451 	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2452 		struct md_rdev *rdev = conf->mirrors[m].rdev;
2453 		struct bio *bio = r1_bio->bios[m];
2454 		if (bio->bi_end_io == NULL)
2455 			continue;
2456 		if (!bio->bi_status &&
2457 		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2458 			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2459 		}
2460 		if (bio->bi_status &&
2461 		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2462 			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2463 				md_error(conf->mddev, rdev);
2464 		}
2465 	}
2466 	put_buf(r1_bio);
2467 	md_done_sync(conf->mddev, s, 1);
2468 }
2469 
2470 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2471 {
2472 	int m, idx;
2473 	bool fail = false;
2474 
2475 	for (m = 0; m < conf->raid_disks * 2 ; m++)
2476 		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2477 			struct md_rdev *rdev = conf->mirrors[m].rdev;
2478 			rdev_clear_badblocks(rdev,
2479 					     r1_bio->sector,
2480 					     r1_bio->sectors, 0);
2481 			rdev_dec_pending(rdev, conf->mddev);
2482 		} else if (r1_bio->bios[m] != NULL) {
2483 			/* This drive got a write error.  We need to
2484 			 * narrow down and record precise write
2485 			 * errors.
2486 			 */
2487 			fail = true;
2488 			if (!narrow_write_error(r1_bio, m)) {
2489 				md_error(conf->mddev,
2490 					 conf->mirrors[m].rdev);
2491 				/* an I/O failed, we can't clear the bitmap */
2492 				set_bit(R1BIO_Degraded, &r1_bio->state);
2493 			}
2494 			rdev_dec_pending(conf->mirrors[m].rdev,
2495 					 conf->mddev);
2496 		}
2497 	if (fail) {
2498 		spin_lock_irq(&conf->device_lock);
2499 		list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2500 		idx = sector_to_idx(r1_bio->sector);
2501 		atomic_inc(&conf->nr_queued[idx]);
2502 		spin_unlock_irq(&conf->device_lock);
2503 		/*
2504 		 * In case freeze_array() is waiting for condition
2505 		 * get_unqueued_pending() == extra to be true.
2506 		 */
2507 		wake_up(&conf->wait_barrier);
2508 		md_wakeup_thread(conf->mddev->thread);
2509 	} else {
2510 		if (test_bit(R1BIO_WriteError, &r1_bio->state))
2511 			close_write(r1_bio);
2512 		raid_end_bio_io(r1_bio);
2513 	}
2514 }
2515 
2516 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2517 {
2518 	struct mddev *mddev = conf->mddev;
2519 	struct bio *bio;
2520 	struct md_rdev *rdev;
2521 
2522 	clear_bit(R1BIO_ReadError, &r1_bio->state);
2523 	/* we got a read error. Maybe the drive is bad.  Maybe just
2524 	 * the block and we can fix it.
2525 	 * We freeze all other IO, and try reading the block from
2526 	 * other devices.  When we find one, we re-write
2527 	 * and check it that fixes the read error.
2528 	 * This is all done synchronously while the array is
2529 	 * frozen
2530 	 */
2531 
2532 	bio = r1_bio->bios[r1_bio->read_disk];
2533 	bio_put(bio);
2534 	r1_bio->bios[r1_bio->read_disk] = NULL;
2535 
2536 	rdev = conf->mirrors[r1_bio->read_disk].rdev;
2537 	if (mddev->ro == 0
2538 	    && !test_bit(FailFast, &rdev->flags)) {
2539 		freeze_array(conf, 1);
2540 		fix_read_error(conf, r1_bio->read_disk,
2541 			       r1_bio->sector, r1_bio->sectors);
2542 		unfreeze_array(conf);
2543 	} else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
2544 		md_error(mddev, rdev);
2545 	} else {
2546 		r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2547 	}
2548 
2549 	rdev_dec_pending(rdev, conf->mddev);
2550 	allow_barrier(conf, r1_bio->sector);
2551 	bio = r1_bio->master_bio;
2552 
2553 	/* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2554 	r1_bio->state = 0;
2555 	raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2556 }
2557 
2558 static void raid1d(struct md_thread *thread)
2559 {
2560 	struct mddev *mddev = thread->mddev;
2561 	struct r1bio *r1_bio;
2562 	unsigned long flags;
2563 	struct r1conf *conf = mddev->private;
2564 	struct list_head *head = &conf->retry_list;
2565 	struct blk_plug plug;
2566 	int idx;
2567 
2568 	md_check_recovery(mddev);
2569 
2570 	if (!list_empty_careful(&conf->bio_end_io_list) &&
2571 	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2572 		LIST_HEAD(tmp);
2573 		spin_lock_irqsave(&conf->device_lock, flags);
2574 		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2575 			list_splice_init(&conf->bio_end_io_list, &tmp);
2576 		spin_unlock_irqrestore(&conf->device_lock, flags);
2577 		while (!list_empty(&tmp)) {
2578 			r1_bio = list_first_entry(&tmp, struct r1bio,
2579 						  retry_list);
2580 			list_del(&r1_bio->retry_list);
2581 			idx = sector_to_idx(r1_bio->sector);
2582 			atomic_dec(&conf->nr_queued[idx]);
2583 			if (mddev->degraded)
2584 				set_bit(R1BIO_Degraded, &r1_bio->state);
2585 			if (test_bit(R1BIO_WriteError, &r1_bio->state))
2586 				close_write(r1_bio);
2587 			raid_end_bio_io(r1_bio);
2588 		}
2589 	}
2590 
2591 	blk_start_plug(&plug);
2592 	for (;;) {
2593 
2594 		flush_pending_writes(conf);
2595 
2596 		spin_lock_irqsave(&conf->device_lock, flags);
2597 		if (list_empty(head)) {
2598 			spin_unlock_irqrestore(&conf->device_lock, flags);
2599 			break;
2600 		}
2601 		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2602 		list_del(head->prev);
2603 		idx = sector_to_idx(r1_bio->sector);
2604 		atomic_dec(&conf->nr_queued[idx]);
2605 		spin_unlock_irqrestore(&conf->device_lock, flags);
2606 
2607 		mddev = r1_bio->mddev;
2608 		conf = mddev->private;
2609 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2610 			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2611 			    test_bit(R1BIO_WriteError, &r1_bio->state))
2612 				handle_sync_write_finished(conf, r1_bio);
2613 			else
2614 				sync_request_write(mddev, r1_bio);
2615 		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2616 			   test_bit(R1BIO_WriteError, &r1_bio->state))
2617 			handle_write_finished(conf, r1_bio);
2618 		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2619 			handle_read_error(conf, r1_bio);
2620 		else
2621 			WARN_ON_ONCE(1);
2622 
2623 		cond_resched();
2624 		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2625 			md_check_recovery(mddev);
2626 	}
2627 	blk_finish_plug(&plug);
2628 }
2629 
2630 static int init_resync(struct r1conf *conf)
2631 {
2632 	int buffs;
2633 
2634 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2635 	BUG_ON(mempool_initialized(&conf->r1buf_pool));
2636 
2637 	return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
2638 			    r1buf_pool_free, conf->poolinfo);
2639 }
2640 
2641 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2642 {
2643 	struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
2644 	struct resync_pages *rps;
2645 	struct bio *bio;
2646 	int i;
2647 
2648 	for (i = conf->poolinfo->raid_disks; i--; ) {
2649 		bio = r1bio->bios[i];
2650 		rps = bio->bi_private;
2651 		bio_reset(bio, NULL, 0);
2652 		bio->bi_private = rps;
2653 	}
2654 	r1bio->master_bio = NULL;
2655 	return r1bio;
2656 }
2657 
2658 /*
2659  * perform a "sync" on one "block"
2660  *
2661  * We need to make sure that no normal I/O request - particularly write
2662  * requests - conflict with active sync requests.
2663  *
2664  * This is achieved by tracking pending requests and a 'barrier' concept
2665  * that can be installed to exclude normal IO requests.
2666  */
2667 
2668 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2669 				   int *skipped)
2670 {
2671 	struct r1conf *conf = mddev->private;
2672 	struct r1bio *r1_bio;
2673 	struct bio *bio;
2674 	sector_t max_sector, nr_sectors;
2675 	int disk = -1;
2676 	int i;
2677 	int wonly = -1;
2678 	int write_targets = 0, read_targets = 0;
2679 	sector_t sync_blocks;
2680 	int still_degraded = 0;
2681 	int good_sectors = RESYNC_SECTORS;
2682 	int min_bad = 0; /* number of sectors that are bad in all devices */
2683 	int idx = sector_to_idx(sector_nr);
2684 	int page_idx = 0;
2685 
2686 	if (!mempool_initialized(&conf->r1buf_pool))
2687 		if (init_resync(conf))
2688 			return 0;
2689 
2690 	max_sector = mddev->dev_sectors;
2691 	if (sector_nr >= max_sector) {
2692 		/* If we aborted, we need to abort the
2693 		 * sync on the 'current' bitmap chunk (there will
2694 		 * only be one in raid1 resync.
2695 		 * We can find the current addess in mddev->curr_resync
2696 		 */
2697 		if (mddev->curr_resync < max_sector) /* aborted */
2698 			md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2699 					   &sync_blocks, 1);
2700 		else /* completed sync */
2701 			conf->fullsync = 0;
2702 
2703 		md_bitmap_close_sync(mddev->bitmap);
2704 		close_sync(conf);
2705 
2706 		if (mddev_is_clustered(mddev)) {
2707 			conf->cluster_sync_low = 0;
2708 			conf->cluster_sync_high = 0;
2709 		}
2710 		return 0;
2711 	}
2712 
2713 	if (mddev->bitmap == NULL &&
2714 	    mddev->recovery_cp == MaxSector &&
2715 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2716 	    conf->fullsync == 0) {
2717 		*skipped = 1;
2718 		return max_sector - sector_nr;
2719 	}
2720 	/* before building a request, check if we can skip these blocks..
2721 	 * This call the bitmap_start_sync doesn't actually record anything
2722 	 */
2723 	if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2724 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2725 		/* We can skip this block, and probably several more */
2726 		*skipped = 1;
2727 		return sync_blocks;
2728 	}
2729 
2730 	/*
2731 	 * If there is non-resync activity waiting for a turn, then let it
2732 	 * though before starting on this new sync request.
2733 	 */
2734 	if (atomic_read(&conf->nr_waiting[idx]))
2735 		schedule_timeout_uninterruptible(1);
2736 
2737 	/* we are incrementing sector_nr below. To be safe, we check against
2738 	 * sector_nr + two times RESYNC_SECTORS
2739 	 */
2740 
2741 	md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2742 		mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2743 
2744 
2745 	if (raise_barrier(conf, sector_nr))
2746 		return 0;
2747 
2748 	r1_bio = raid1_alloc_init_r1buf(conf);
2749 
2750 	rcu_read_lock();
2751 	/*
2752 	 * If we get a correctably read error during resync or recovery,
2753 	 * we might want to read from a different device.  So we
2754 	 * flag all drives that could conceivably be read from for READ,
2755 	 * and any others (which will be non-In_sync devices) for WRITE.
2756 	 * If a read fails, we try reading from something else for which READ
2757 	 * is OK.
2758 	 */
2759 
2760 	r1_bio->mddev = mddev;
2761 	r1_bio->sector = sector_nr;
2762 	r1_bio->state = 0;
2763 	set_bit(R1BIO_IsSync, &r1_bio->state);
2764 	/* make sure good_sectors won't go across barrier unit boundary */
2765 	good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2766 
2767 	for (i = 0; i < conf->raid_disks * 2; i++) {
2768 		struct md_rdev *rdev;
2769 		bio = r1_bio->bios[i];
2770 
2771 		rdev = rcu_dereference(conf->mirrors[i].rdev);
2772 		if (rdev == NULL ||
2773 		    test_bit(Faulty, &rdev->flags)) {
2774 			if (i < conf->raid_disks)
2775 				still_degraded = 1;
2776 		} else if (!test_bit(In_sync, &rdev->flags)) {
2777 			bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2778 			bio->bi_end_io = end_sync_write;
2779 			write_targets ++;
2780 		} else {
2781 			/* may need to read from here */
2782 			sector_t first_bad = MaxSector;
2783 			int bad_sectors;
2784 
2785 			if (is_badblock(rdev, sector_nr, good_sectors,
2786 					&first_bad, &bad_sectors)) {
2787 				if (first_bad > sector_nr)
2788 					good_sectors = first_bad - sector_nr;
2789 				else {
2790 					bad_sectors -= (sector_nr - first_bad);
2791 					if (min_bad == 0 ||
2792 					    min_bad > bad_sectors)
2793 						min_bad = bad_sectors;
2794 				}
2795 			}
2796 			if (sector_nr < first_bad) {
2797 				if (test_bit(WriteMostly, &rdev->flags)) {
2798 					if (wonly < 0)
2799 						wonly = i;
2800 				} else {
2801 					if (disk < 0)
2802 						disk = i;
2803 				}
2804 				bio_set_op_attrs(bio, REQ_OP_READ, 0);
2805 				bio->bi_end_io = end_sync_read;
2806 				read_targets++;
2807 			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2808 				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2809 				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2810 				/*
2811 				 * The device is suitable for reading (InSync),
2812 				 * but has bad block(s) here. Let's try to correct them,
2813 				 * if we are doing resync or repair. Otherwise, leave
2814 				 * this device alone for this sync request.
2815 				 */
2816 				bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2817 				bio->bi_end_io = end_sync_write;
2818 				write_targets++;
2819 			}
2820 		}
2821 		if (rdev && bio->bi_end_io) {
2822 			atomic_inc(&rdev->nr_pending);
2823 			bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2824 			bio_set_dev(bio, rdev->bdev);
2825 			if (test_bit(FailFast, &rdev->flags))
2826 				bio->bi_opf |= MD_FAILFAST;
2827 		}
2828 	}
2829 	rcu_read_unlock();
2830 	if (disk < 0)
2831 		disk = wonly;
2832 	r1_bio->read_disk = disk;
2833 
2834 	if (read_targets == 0 && min_bad > 0) {
2835 		/* These sectors are bad on all InSync devices, so we
2836 		 * need to mark them bad on all write targets
2837 		 */
2838 		int ok = 1;
2839 		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2840 			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2841 				struct md_rdev *rdev = conf->mirrors[i].rdev;
2842 				ok = rdev_set_badblocks(rdev, sector_nr,
2843 							min_bad, 0
2844 					) && ok;
2845 			}
2846 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2847 		*skipped = 1;
2848 		put_buf(r1_bio);
2849 
2850 		if (!ok) {
2851 			/* Cannot record the badblocks, so need to
2852 			 * abort the resync.
2853 			 * If there are multiple read targets, could just
2854 			 * fail the really bad ones ???
2855 			 */
2856 			conf->recovery_disabled = mddev->recovery_disabled;
2857 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2858 			return 0;
2859 		} else
2860 			return min_bad;
2861 
2862 	}
2863 	if (min_bad > 0 && min_bad < good_sectors) {
2864 		/* only resync enough to reach the next bad->good
2865 		 * transition */
2866 		good_sectors = min_bad;
2867 	}
2868 
2869 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2870 		/* extra read targets are also write targets */
2871 		write_targets += read_targets-1;
2872 
2873 	if (write_targets == 0 || read_targets == 0) {
2874 		/* There is nowhere to write, so all non-sync
2875 		 * drives must be failed - so we are finished
2876 		 */
2877 		sector_t rv;
2878 		if (min_bad > 0)
2879 			max_sector = sector_nr + min_bad;
2880 		rv = max_sector - sector_nr;
2881 		*skipped = 1;
2882 		put_buf(r1_bio);
2883 		return rv;
2884 	}
2885 
2886 	if (max_sector > mddev->resync_max)
2887 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2888 	if (max_sector > sector_nr + good_sectors)
2889 		max_sector = sector_nr + good_sectors;
2890 	nr_sectors = 0;
2891 	sync_blocks = 0;
2892 	do {
2893 		struct page *page;
2894 		int len = PAGE_SIZE;
2895 		if (sector_nr + (len>>9) > max_sector)
2896 			len = (max_sector - sector_nr) << 9;
2897 		if (len == 0)
2898 			break;
2899 		if (sync_blocks == 0) {
2900 			if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
2901 						  &sync_blocks, still_degraded) &&
2902 			    !conf->fullsync &&
2903 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2904 				break;
2905 			if ((len >> 9) > sync_blocks)
2906 				len = sync_blocks<<9;
2907 		}
2908 
2909 		for (i = 0 ; i < conf->raid_disks * 2; i++) {
2910 			struct resync_pages *rp;
2911 
2912 			bio = r1_bio->bios[i];
2913 			rp = get_resync_pages(bio);
2914 			if (bio->bi_end_io) {
2915 				page = resync_fetch_page(rp, page_idx);
2916 
2917 				/*
2918 				 * won't fail because the vec table is big
2919 				 * enough to hold all these pages
2920 				 */
2921 				bio_add_page(bio, page, len, 0);
2922 			}
2923 		}
2924 		nr_sectors += len>>9;
2925 		sector_nr += len>>9;
2926 		sync_blocks -= (len>>9);
2927 	} while (++page_idx < RESYNC_PAGES);
2928 
2929 	r1_bio->sectors = nr_sectors;
2930 
2931 	if (mddev_is_clustered(mddev) &&
2932 			conf->cluster_sync_high < sector_nr + nr_sectors) {
2933 		conf->cluster_sync_low = mddev->curr_resync_completed;
2934 		conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2935 		/* Send resync message */
2936 		md_cluster_ops->resync_info_update(mddev,
2937 				conf->cluster_sync_low,
2938 				conf->cluster_sync_high);
2939 	}
2940 
2941 	/* For a user-requested sync, we read all readable devices and do a
2942 	 * compare
2943 	 */
2944 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2945 		atomic_set(&r1_bio->remaining, read_targets);
2946 		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2947 			bio = r1_bio->bios[i];
2948 			if (bio->bi_end_io == end_sync_read) {
2949 				read_targets--;
2950 				md_sync_acct_bio(bio, nr_sectors);
2951 				if (read_targets == 1)
2952 					bio->bi_opf &= ~MD_FAILFAST;
2953 				submit_bio_noacct(bio);
2954 			}
2955 		}
2956 	} else {
2957 		atomic_set(&r1_bio->remaining, 1);
2958 		bio = r1_bio->bios[r1_bio->read_disk];
2959 		md_sync_acct_bio(bio, nr_sectors);
2960 		if (read_targets == 1)
2961 			bio->bi_opf &= ~MD_FAILFAST;
2962 		submit_bio_noacct(bio);
2963 	}
2964 	return nr_sectors;
2965 }
2966 
2967 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2968 {
2969 	if (sectors)
2970 		return sectors;
2971 
2972 	return mddev->dev_sectors;
2973 }
2974 
2975 static struct r1conf *setup_conf(struct mddev *mddev)
2976 {
2977 	struct r1conf *conf;
2978 	int i;
2979 	struct raid1_info *disk;
2980 	struct md_rdev *rdev;
2981 	int err = -ENOMEM;
2982 
2983 	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2984 	if (!conf)
2985 		goto abort;
2986 
2987 	conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
2988 				   sizeof(atomic_t), GFP_KERNEL);
2989 	if (!conf->nr_pending)
2990 		goto abort;
2991 
2992 	conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
2993 				   sizeof(atomic_t), GFP_KERNEL);
2994 	if (!conf->nr_waiting)
2995 		goto abort;
2996 
2997 	conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
2998 				  sizeof(atomic_t), GFP_KERNEL);
2999 	if (!conf->nr_queued)
3000 		goto abort;
3001 
3002 	conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
3003 				sizeof(atomic_t), GFP_KERNEL);
3004 	if (!conf->barrier)
3005 		goto abort;
3006 
3007 	conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3008 					    mddev->raid_disks, 2),
3009 				GFP_KERNEL);
3010 	if (!conf->mirrors)
3011 		goto abort;
3012 
3013 	conf->tmppage = alloc_page(GFP_KERNEL);
3014 	if (!conf->tmppage)
3015 		goto abort;
3016 
3017 	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
3018 	if (!conf->poolinfo)
3019 		goto abort;
3020 	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
3021 	err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc,
3022 			   rbio_pool_free, conf->poolinfo);
3023 	if (err)
3024 		goto abort;
3025 
3026 	err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3027 	if (err)
3028 		goto abort;
3029 
3030 	conf->poolinfo->mddev = mddev;
3031 
3032 	err = -EINVAL;
3033 	spin_lock_init(&conf->device_lock);
3034 	rdev_for_each(rdev, mddev) {
3035 		int disk_idx = rdev->raid_disk;
3036 		if (disk_idx >= mddev->raid_disks
3037 		    || disk_idx < 0)
3038 			continue;
3039 		if (test_bit(Replacement, &rdev->flags))
3040 			disk = conf->mirrors + mddev->raid_disks + disk_idx;
3041 		else
3042 			disk = conf->mirrors + disk_idx;
3043 
3044 		if (disk->rdev)
3045 			goto abort;
3046 		disk->rdev = rdev;
3047 		disk->head_position = 0;
3048 		disk->seq_start = MaxSector;
3049 	}
3050 	conf->raid_disks = mddev->raid_disks;
3051 	conf->mddev = mddev;
3052 	INIT_LIST_HEAD(&conf->retry_list);
3053 	INIT_LIST_HEAD(&conf->bio_end_io_list);
3054 
3055 	spin_lock_init(&conf->resync_lock);
3056 	init_waitqueue_head(&conf->wait_barrier);
3057 
3058 	bio_list_init(&conf->pending_bio_list);
3059 	conf->recovery_disabled = mddev->recovery_disabled - 1;
3060 
3061 	err = -EIO;
3062 	for (i = 0; i < conf->raid_disks * 2; i++) {
3063 
3064 		disk = conf->mirrors + i;
3065 
3066 		if (i < conf->raid_disks &&
3067 		    disk[conf->raid_disks].rdev) {
3068 			/* This slot has a replacement. */
3069 			if (!disk->rdev) {
3070 				/* No original, just make the replacement
3071 				 * a recovering spare
3072 				 */
3073 				disk->rdev =
3074 					disk[conf->raid_disks].rdev;
3075 				disk[conf->raid_disks].rdev = NULL;
3076 			} else if (!test_bit(In_sync, &disk->rdev->flags))
3077 				/* Original is not in_sync - bad */
3078 				goto abort;
3079 		}
3080 
3081 		if (!disk->rdev ||
3082 		    !test_bit(In_sync, &disk->rdev->flags)) {
3083 			disk->head_position = 0;
3084 			if (disk->rdev &&
3085 			    (disk->rdev->saved_raid_disk < 0))
3086 				conf->fullsync = 1;
3087 		}
3088 	}
3089 
3090 	err = -ENOMEM;
3091 	conf->thread = md_register_thread(raid1d, mddev, "raid1");
3092 	if (!conf->thread)
3093 		goto abort;
3094 
3095 	return conf;
3096 
3097  abort:
3098 	if (conf) {
3099 		mempool_exit(&conf->r1bio_pool);
3100 		kfree(conf->mirrors);
3101 		safe_put_page(conf->tmppage);
3102 		kfree(conf->poolinfo);
3103 		kfree(conf->nr_pending);
3104 		kfree(conf->nr_waiting);
3105 		kfree(conf->nr_queued);
3106 		kfree(conf->barrier);
3107 		bioset_exit(&conf->bio_split);
3108 		kfree(conf);
3109 	}
3110 	return ERR_PTR(err);
3111 }
3112 
3113 static void raid1_free(struct mddev *mddev, void *priv);
3114 static int raid1_run(struct mddev *mddev)
3115 {
3116 	struct r1conf *conf;
3117 	int i;
3118 	struct md_rdev *rdev;
3119 	int ret;
3120 
3121 	if (mddev->level != 1) {
3122 		pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3123 			mdname(mddev), mddev->level);
3124 		return -EIO;
3125 	}
3126 	if (mddev->reshape_position != MaxSector) {
3127 		pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3128 			mdname(mddev));
3129 		return -EIO;
3130 	}
3131 	if (mddev_init_writes_pending(mddev) < 0)
3132 		return -ENOMEM;
3133 	/*
3134 	 * copy the already verified devices into our private RAID1
3135 	 * bookkeeping area. [whatever we allocate in run(),
3136 	 * should be freed in raid1_free()]
3137 	 */
3138 	if (mddev->private == NULL)
3139 		conf = setup_conf(mddev);
3140 	else
3141 		conf = mddev->private;
3142 
3143 	if (IS_ERR(conf))
3144 		return PTR_ERR(conf);
3145 
3146 	if (mddev->queue)
3147 		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3148 
3149 	rdev_for_each(rdev, mddev) {
3150 		if (!mddev->gendisk)
3151 			continue;
3152 		disk_stack_limits(mddev->gendisk, rdev->bdev,
3153 				  rdev->data_offset << 9);
3154 	}
3155 
3156 	mddev->degraded = 0;
3157 	for (i = 0; i < conf->raid_disks; i++)
3158 		if (conf->mirrors[i].rdev == NULL ||
3159 		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3160 		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3161 			mddev->degraded++;
3162 	/*
3163 	 * RAID1 needs at least one disk in active
3164 	 */
3165 	if (conf->raid_disks - mddev->degraded < 1) {
3166 		ret = -EINVAL;
3167 		goto abort;
3168 	}
3169 
3170 	if (conf->raid_disks - mddev->degraded == 1)
3171 		mddev->recovery_cp = MaxSector;
3172 
3173 	if (mddev->recovery_cp != MaxSector)
3174 		pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3175 			mdname(mddev));
3176 	pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3177 		mdname(mddev), mddev->raid_disks - mddev->degraded,
3178 		mddev->raid_disks);
3179 
3180 	/*
3181 	 * Ok, everything is just fine now
3182 	 */
3183 	mddev->thread = conf->thread;
3184 	conf->thread = NULL;
3185 	mddev->private = conf;
3186 	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3187 
3188 	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3189 
3190 	ret = md_integrity_register(mddev);
3191 	if (ret) {
3192 		md_unregister_thread(&mddev->thread);
3193 		goto abort;
3194 	}
3195 	return 0;
3196 
3197 abort:
3198 	raid1_free(mddev, conf);
3199 	return ret;
3200 }
3201 
3202 static void raid1_free(struct mddev *mddev, void *priv)
3203 {
3204 	struct r1conf *conf = priv;
3205 
3206 	mempool_exit(&conf->r1bio_pool);
3207 	kfree(conf->mirrors);
3208 	safe_put_page(conf->tmppage);
3209 	kfree(conf->poolinfo);
3210 	kfree(conf->nr_pending);
3211 	kfree(conf->nr_waiting);
3212 	kfree(conf->nr_queued);
3213 	kfree(conf->barrier);
3214 	bioset_exit(&conf->bio_split);
3215 	kfree(conf);
3216 }
3217 
3218 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3219 {
3220 	/* no resync is happening, and there is enough space
3221 	 * on all devices, so we can resize.
3222 	 * We need to make sure resync covers any new space.
3223 	 * If the array is shrinking we should possibly wait until
3224 	 * any io in the removed space completes, but it hardly seems
3225 	 * worth it.
3226 	 */
3227 	sector_t newsize = raid1_size(mddev, sectors, 0);
3228 	if (mddev->external_size &&
3229 	    mddev->array_sectors > newsize)
3230 		return -EINVAL;
3231 	if (mddev->bitmap) {
3232 		int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
3233 		if (ret)
3234 			return ret;
3235 	}
3236 	md_set_array_sectors(mddev, newsize);
3237 	if (sectors > mddev->dev_sectors &&
3238 	    mddev->recovery_cp > mddev->dev_sectors) {
3239 		mddev->recovery_cp = mddev->dev_sectors;
3240 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3241 	}
3242 	mddev->dev_sectors = sectors;
3243 	mddev->resync_max_sectors = sectors;
3244 	return 0;
3245 }
3246 
3247 static int raid1_reshape(struct mddev *mddev)
3248 {
3249 	/* We need to:
3250 	 * 1/ resize the r1bio_pool
3251 	 * 2/ resize conf->mirrors
3252 	 *
3253 	 * We allocate a new r1bio_pool if we can.
3254 	 * Then raise a device barrier and wait until all IO stops.
3255 	 * Then resize conf->mirrors and swap in the new r1bio pool.
3256 	 *
3257 	 * At the same time, we "pack" the devices so that all the missing
3258 	 * devices have the higher raid_disk numbers.
3259 	 */
3260 	mempool_t newpool, oldpool;
3261 	struct pool_info *newpoolinfo;
3262 	struct raid1_info *newmirrors;
3263 	struct r1conf *conf = mddev->private;
3264 	int cnt, raid_disks;
3265 	unsigned long flags;
3266 	int d, d2;
3267 	int ret;
3268 
3269 	memset(&newpool, 0, sizeof(newpool));
3270 	memset(&oldpool, 0, sizeof(oldpool));
3271 
3272 	/* Cannot change chunk_size, layout, or level */
3273 	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3274 	    mddev->layout != mddev->new_layout ||
3275 	    mddev->level != mddev->new_level) {
3276 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3277 		mddev->new_layout = mddev->layout;
3278 		mddev->new_level = mddev->level;
3279 		return -EINVAL;
3280 	}
3281 
3282 	if (!mddev_is_clustered(mddev))
3283 		md_allow_write(mddev);
3284 
3285 	raid_disks = mddev->raid_disks + mddev->delta_disks;
3286 
3287 	if (raid_disks < conf->raid_disks) {
3288 		cnt=0;
3289 		for (d= 0; d < conf->raid_disks; d++)
3290 			if (conf->mirrors[d].rdev)
3291 				cnt++;
3292 		if (cnt > raid_disks)
3293 			return -EBUSY;
3294 	}
3295 
3296 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3297 	if (!newpoolinfo)
3298 		return -ENOMEM;
3299 	newpoolinfo->mddev = mddev;
3300 	newpoolinfo->raid_disks = raid_disks * 2;
3301 
3302 	ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc,
3303 			   rbio_pool_free, newpoolinfo);
3304 	if (ret) {
3305 		kfree(newpoolinfo);
3306 		return ret;
3307 	}
3308 	newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3309 					 raid_disks, 2),
3310 			     GFP_KERNEL);
3311 	if (!newmirrors) {
3312 		kfree(newpoolinfo);
3313 		mempool_exit(&newpool);
3314 		return -ENOMEM;
3315 	}
3316 
3317 	freeze_array(conf, 0);
3318 
3319 	/* ok, everything is stopped */
3320 	oldpool = conf->r1bio_pool;
3321 	conf->r1bio_pool = newpool;
3322 
3323 	for (d = d2 = 0; d < conf->raid_disks; d++) {
3324 		struct md_rdev *rdev = conf->mirrors[d].rdev;
3325 		if (rdev && rdev->raid_disk != d2) {
3326 			sysfs_unlink_rdev(mddev, rdev);
3327 			rdev->raid_disk = d2;
3328 			sysfs_unlink_rdev(mddev, rdev);
3329 			if (sysfs_link_rdev(mddev, rdev))
3330 				pr_warn("md/raid1:%s: cannot register rd%d\n",
3331 					mdname(mddev), rdev->raid_disk);
3332 		}
3333 		if (rdev)
3334 			newmirrors[d2++].rdev = rdev;
3335 	}
3336 	kfree(conf->mirrors);
3337 	conf->mirrors = newmirrors;
3338 	kfree(conf->poolinfo);
3339 	conf->poolinfo = newpoolinfo;
3340 
3341 	spin_lock_irqsave(&conf->device_lock, flags);
3342 	mddev->degraded += (raid_disks - conf->raid_disks);
3343 	spin_unlock_irqrestore(&conf->device_lock, flags);
3344 	conf->raid_disks = mddev->raid_disks = raid_disks;
3345 	mddev->delta_disks = 0;
3346 
3347 	unfreeze_array(conf);
3348 
3349 	set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3350 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3351 	md_wakeup_thread(mddev->thread);
3352 
3353 	mempool_exit(&oldpool);
3354 	return 0;
3355 }
3356 
3357 static void raid1_quiesce(struct mddev *mddev, int quiesce)
3358 {
3359 	struct r1conf *conf = mddev->private;
3360 
3361 	if (quiesce)
3362 		freeze_array(conf, 0);
3363 	else
3364 		unfreeze_array(conf);
3365 }
3366 
3367 static void *raid1_takeover(struct mddev *mddev)
3368 {
3369 	/* raid1 can take over:
3370 	 *  raid5 with 2 devices, any layout or chunk size
3371 	 */
3372 	if (mddev->level == 5 && mddev->raid_disks == 2) {
3373 		struct r1conf *conf;
3374 		mddev->new_level = 1;
3375 		mddev->new_layout = 0;
3376 		mddev->new_chunk_sectors = 0;
3377 		conf = setup_conf(mddev);
3378 		if (!IS_ERR(conf)) {
3379 			/* Array must appear to be quiesced */
3380 			conf->array_frozen = 1;
3381 			mddev_clear_unsupported_flags(mddev,
3382 				UNSUPPORTED_MDDEV_FLAGS);
3383 		}
3384 		return conf;
3385 	}
3386 	return ERR_PTR(-EINVAL);
3387 }
3388 
3389 static struct md_personality raid1_personality =
3390 {
3391 	.name		= "raid1",
3392 	.level		= 1,
3393 	.owner		= THIS_MODULE,
3394 	.make_request	= raid1_make_request,
3395 	.run		= raid1_run,
3396 	.free		= raid1_free,
3397 	.status		= raid1_status,
3398 	.error_handler	= raid1_error,
3399 	.hot_add_disk	= raid1_add_disk,
3400 	.hot_remove_disk= raid1_remove_disk,
3401 	.spare_active	= raid1_spare_active,
3402 	.sync_request	= raid1_sync_request,
3403 	.resize		= raid1_resize,
3404 	.size		= raid1_size,
3405 	.check_reshape	= raid1_reshape,
3406 	.quiesce	= raid1_quiesce,
3407 	.takeover	= raid1_takeover,
3408 };
3409 
3410 static int __init raid_init(void)
3411 {
3412 	return register_md_personality(&raid1_personality);
3413 }
3414 
3415 static void raid_exit(void)
3416 {
3417 	unregister_md_personality(&raid1_personality);
3418 }
3419 
3420 module_init(raid_init);
3421 module_exit(raid_exit);
3422 MODULE_LICENSE("GPL");
3423 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3424 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3425 MODULE_ALIAS("md-raid1");
3426 MODULE_ALIAS("md-level-1");
3427