1 /* 2 * raid1.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat 5 * 6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman 7 * 8 * RAID-1 management functions. 9 * 10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 11 * 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk> 13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> 14 * 15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support 16 * bitmapped intelligence in resync: 17 * 18 * - bitmap marked during normal i/o 19 * - bitmap used to skip nondirty blocks during sync 20 * 21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology: 22 * - persistent bitmap code 23 * 24 * This program is free software; you can redistribute it and/or modify 25 * it under the terms of the GNU General Public License as published by 26 * the Free Software Foundation; either version 2, or (at your option) 27 * any later version. 28 * 29 * You should have received a copy of the GNU General Public License 30 * (for example /usr/src/linux/COPYING); if not, write to the Free 31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 32 */ 33 34 #include <linux/slab.h> 35 #include <linux/delay.h> 36 #include <linux/blkdev.h> 37 #include <linux/module.h> 38 #include <linux/seq_file.h> 39 #include <linux/ratelimit.h> 40 #include <linux/sched/signal.h> 41 42 #include <trace/events/block.h> 43 44 #include "md.h" 45 #include "raid1.h" 46 #include "bitmap.h" 47 48 #define UNSUPPORTED_MDDEV_FLAGS \ 49 ((1L << MD_HAS_JOURNAL) | \ 50 (1L << MD_JOURNAL_CLEAN)) 51 52 /* 53 * Number of guaranteed r1bios in case of extreme VM load: 54 */ 55 #define NR_RAID1_BIOS 256 56 57 /* when we get a read error on a read-only array, we redirect to another 58 * device without failing the first device, or trying to over-write to 59 * correct the read error. To keep track of bad blocks on a per-bio 60 * level, we store IO_BLOCKED in the appropriate 'bios' pointer 61 */ 62 #define IO_BLOCKED ((struct bio *)1) 63 /* When we successfully write to a known bad-block, we need to remove the 64 * bad-block marking which must be done from process context. So we record 65 * the success by setting devs[n].bio to IO_MADE_GOOD 66 */ 67 #define IO_MADE_GOOD ((struct bio *)2) 68 69 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2) 70 71 /* When there are this many requests queue to be written by 72 * the raid1 thread, we become 'congested' to provide back-pressure 73 * for writeback. 74 */ 75 static int max_queued_requests = 1024; 76 77 static void allow_barrier(struct r1conf *conf, sector_t sector_nr); 78 static void lower_barrier(struct r1conf *conf, sector_t sector_nr); 79 80 #define raid1_log(md, fmt, args...) \ 81 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0) 82 83 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data) 84 { 85 struct pool_info *pi = data; 86 int size = offsetof(struct r1bio, bios[pi->raid_disks]); 87 88 /* allocate a r1bio with room for raid_disks entries in the bios array */ 89 return kzalloc(size, gfp_flags); 90 } 91 92 static void r1bio_pool_free(void *r1_bio, void *data) 93 { 94 kfree(r1_bio); 95 } 96 97 #define RESYNC_BLOCK_SIZE (64*1024) 98 #define RESYNC_DEPTH 32 99 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 100 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 101 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH) 102 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9) 103 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW) 104 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9) 105 106 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) 107 { 108 struct pool_info *pi = data; 109 struct r1bio *r1_bio; 110 struct bio *bio; 111 int need_pages; 112 int i, j; 113 114 r1_bio = r1bio_pool_alloc(gfp_flags, pi); 115 if (!r1_bio) 116 return NULL; 117 118 /* 119 * Allocate bios : 1 for reading, n-1 for writing 120 */ 121 for (j = pi->raid_disks ; j-- ; ) { 122 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 123 if (!bio) 124 goto out_free_bio; 125 r1_bio->bios[j] = bio; 126 } 127 /* 128 * Allocate RESYNC_PAGES data pages and attach them to 129 * the first bio. 130 * If this is a user-requested check/repair, allocate 131 * RESYNC_PAGES for each bio. 132 */ 133 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) 134 need_pages = pi->raid_disks; 135 else 136 need_pages = 1; 137 for (j = 0; j < need_pages; j++) { 138 bio = r1_bio->bios[j]; 139 bio->bi_vcnt = RESYNC_PAGES; 140 141 if (bio_alloc_pages(bio, gfp_flags)) 142 goto out_free_pages; 143 } 144 /* If not user-requests, copy the page pointers to all bios */ 145 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) { 146 for (i=0; i<RESYNC_PAGES ; i++) 147 for (j=1; j<pi->raid_disks; j++) 148 r1_bio->bios[j]->bi_io_vec[i].bv_page = 149 r1_bio->bios[0]->bi_io_vec[i].bv_page; 150 } 151 152 r1_bio->master_bio = NULL; 153 154 return r1_bio; 155 156 out_free_pages: 157 while (--j >= 0) 158 bio_free_pages(r1_bio->bios[j]); 159 160 out_free_bio: 161 while (++j < pi->raid_disks) 162 bio_put(r1_bio->bios[j]); 163 r1bio_pool_free(r1_bio, data); 164 return NULL; 165 } 166 167 static void r1buf_pool_free(void *__r1_bio, void *data) 168 { 169 struct pool_info *pi = data; 170 int i,j; 171 struct r1bio *r1bio = __r1_bio; 172 173 for (i = 0; i < RESYNC_PAGES; i++) 174 for (j = pi->raid_disks; j-- ;) { 175 if (j == 0 || 176 r1bio->bios[j]->bi_io_vec[i].bv_page != 177 r1bio->bios[0]->bi_io_vec[i].bv_page) 178 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page); 179 } 180 for (i=0 ; i < pi->raid_disks; i++) 181 bio_put(r1bio->bios[i]); 182 183 r1bio_pool_free(r1bio, data); 184 } 185 186 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio) 187 { 188 int i; 189 190 for (i = 0; i < conf->raid_disks * 2; i++) { 191 struct bio **bio = r1_bio->bios + i; 192 if (!BIO_SPECIAL(*bio)) 193 bio_put(*bio); 194 *bio = NULL; 195 } 196 } 197 198 static void free_r1bio(struct r1bio *r1_bio) 199 { 200 struct r1conf *conf = r1_bio->mddev->private; 201 202 put_all_bios(conf, r1_bio); 203 mempool_free(r1_bio, conf->r1bio_pool); 204 } 205 206 static void put_buf(struct r1bio *r1_bio) 207 { 208 struct r1conf *conf = r1_bio->mddev->private; 209 sector_t sect = r1_bio->sector; 210 int i; 211 212 for (i = 0; i < conf->raid_disks * 2; i++) { 213 struct bio *bio = r1_bio->bios[i]; 214 if (bio->bi_end_io) 215 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev); 216 } 217 218 mempool_free(r1_bio, conf->r1buf_pool); 219 220 lower_barrier(conf, sect); 221 } 222 223 static void reschedule_retry(struct r1bio *r1_bio) 224 { 225 unsigned long flags; 226 struct mddev *mddev = r1_bio->mddev; 227 struct r1conf *conf = mddev->private; 228 int idx; 229 230 idx = sector_to_idx(r1_bio->sector); 231 spin_lock_irqsave(&conf->device_lock, flags); 232 list_add(&r1_bio->retry_list, &conf->retry_list); 233 atomic_inc(&conf->nr_queued[idx]); 234 spin_unlock_irqrestore(&conf->device_lock, flags); 235 236 wake_up(&conf->wait_barrier); 237 md_wakeup_thread(mddev->thread); 238 } 239 240 /* 241 * raid_end_bio_io() is called when we have finished servicing a mirrored 242 * operation and are ready to return a success/failure code to the buffer 243 * cache layer. 244 */ 245 static void call_bio_endio(struct r1bio *r1_bio) 246 { 247 struct bio *bio = r1_bio->master_bio; 248 int done; 249 struct r1conf *conf = r1_bio->mddev->private; 250 sector_t bi_sector = bio->bi_iter.bi_sector; 251 252 if (bio->bi_phys_segments) { 253 unsigned long flags; 254 spin_lock_irqsave(&conf->device_lock, flags); 255 bio->bi_phys_segments--; 256 done = (bio->bi_phys_segments == 0); 257 spin_unlock_irqrestore(&conf->device_lock, flags); 258 /* 259 * make_request() might be waiting for 260 * bi_phys_segments to decrease 261 */ 262 wake_up(&conf->wait_barrier); 263 } else 264 done = 1; 265 266 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 267 bio->bi_error = -EIO; 268 269 if (done) { 270 bio_endio(bio); 271 /* 272 * Wake up any possible resync thread that waits for the device 273 * to go idle. 274 */ 275 allow_barrier(conf, bi_sector); 276 } 277 } 278 279 static void raid_end_bio_io(struct r1bio *r1_bio) 280 { 281 struct bio *bio = r1_bio->master_bio; 282 283 /* if nobody has done the final endio yet, do it now */ 284 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 285 pr_debug("raid1: sync end %s on sectors %llu-%llu\n", 286 (bio_data_dir(bio) == WRITE) ? "write" : "read", 287 (unsigned long long) bio->bi_iter.bi_sector, 288 (unsigned long long) bio_end_sector(bio) - 1); 289 290 call_bio_endio(r1_bio); 291 } 292 free_r1bio(r1_bio); 293 } 294 295 /* 296 * Update disk head position estimator based on IRQ completion info. 297 */ 298 static inline void update_head_pos(int disk, struct r1bio *r1_bio) 299 { 300 struct r1conf *conf = r1_bio->mddev->private; 301 302 conf->mirrors[disk].head_position = 303 r1_bio->sector + (r1_bio->sectors); 304 } 305 306 /* 307 * Find the disk number which triggered given bio 308 */ 309 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio) 310 { 311 int mirror; 312 struct r1conf *conf = r1_bio->mddev->private; 313 int raid_disks = conf->raid_disks; 314 315 for (mirror = 0; mirror < raid_disks * 2; mirror++) 316 if (r1_bio->bios[mirror] == bio) 317 break; 318 319 BUG_ON(mirror == raid_disks * 2); 320 update_head_pos(mirror, r1_bio); 321 322 return mirror; 323 } 324 325 static void raid1_end_read_request(struct bio *bio) 326 { 327 int uptodate = !bio->bi_error; 328 struct r1bio *r1_bio = bio->bi_private; 329 struct r1conf *conf = r1_bio->mddev->private; 330 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev; 331 332 /* 333 * this branch is our 'one mirror IO has finished' event handler: 334 */ 335 update_head_pos(r1_bio->read_disk, r1_bio); 336 337 if (uptodate) 338 set_bit(R1BIO_Uptodate, &r1_bio->state); 339 else if (test_bit(FailFast, &rdev->flags) && 340 test_bit(R1BIO_FailFast, &r1_bio->state)) 341 /* This was a fail-fast read so we definitely 342 * want to retry */ 343 ; 344 else { 345 /* If all other devices have failed, we want to return 346 * the error upwards rather than fail the last device. 347 * Here we redefine "uptodate" to mean "Don't want to retry" 348 */ 349 unsigned long flags; 350 spin_lock_irqsave(&conf->device_lock, flags); 351 if (r1_bio->mddev->degraded == conf->raid_disks || 352 (r1_bio->mddev->degraded == conf->raid_disks-1 && 353 test_bit(In_sync, &rdev->flags))) 354 uptodate = 1; 355 spin_unlock_irqrestore(&conf->device_lock, flags); 356 } 357 358 if (uptodate) { 359 raid_end_bio_io(r1_bio); 360 rdev_dec_pending(rdev, conf->mddev); 361 } else { 362 /* 363 * oops, read error: 364 */ 365 char b[BDEVNAME_SIZE]; 366 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n", 367 mdname(conf->mddev), 368 bdevname(rdev->bdev, b), 369 (unsigned long long)r1_bio->sector); 370 set_bit(R1BIO_ReadError, &r1_bio->state); 371 reschedule_retry(r1_bio); 372 /* don't drop the reference on read_disk yet */ 373 } 374 } 375 376 static void close_write(struct r1bio *r1_bio) 377 { 378 /* it really is the end of this request */ 379 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 380 /* free extra copy of the data pages */ 381 int i = r1_bio->behind_page_count; 382 while (i--) 383 safe_put_page(r1_bio->behind_bvecs[i].bv_page); 384 kfree(r1_bio->behind_bvecs); 385 r1_bio->behind_bvecs = NULL; 386 } 387 /* clear the bitmap if all writes complete successfully */ 388 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector, 389 r1_bio->sectors, 390 !test_bit(R1BIO_Degraded, &r1_bio->state), 391 test_bit(R1BIO_BehindIO, &r1_bio->state)); 392 md_write_end(r1_bio->mddev); 393 } 394 395 static void r1_bio_write_done(struct r1bio *r1_bio) 396 { 397 if (!atomic_dec_and_test(&r1_bio->remaining)) 398 return; 399 400 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 401 reschedule_retry(r1_bio); 402 else { 403 close_write(r1_bio); 404 if (test_bit(R1BIO_MadeGood, &r1_bio->state)) 405 reschedule_retry(r1_bio); 406 else 407 raid_end_bio_io(r1_bio); 408 } 409 } 410 411 static void raid1_end_write_request(struct bio *bio) 412 { 413 struct r1bio *r1_bio = bio->bi_private; 414 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state); 415 struct r1conf *conf = r1_bio->mddev->private; 416 struct bio *to_put = NULL; 417 int mirror = find_bio_disk(r1_bio, bio); 418 struct md_rdev *rdev = conf->mirrors[mirror].rdev; 419 bool discard_error; 420 421 discard_error = bio->bi_error && bio_op(bio) == REQ_OP_DISCARD; 422 423 /* 424 * 'one mirror IO has finished' event handler: 425 */ 426 if (bio->bi_error && !discard_error) { 427 set_bit(WriteErrorSeen, &rdev->flags); 428 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 429 set_bit(MD_RECOVERY_NEEDED, & 430 conf->mddev->recovery); 431 432 if (test_bit(FailFast, &rdev->flags) && 433 (bio->bi_opf & MD_FAILFAST) && 434 /* We never try FailFast to WriteMostly devices */ 435 !test_bit(WriteMostly, &rdev->flags)) { 436 md_error(r1_bio->mddev, rdev); 437 if (!test_bit(Faulty, &rdev->flags)) 438 /* This is the only remaining device, 439 * We need to retry the write without 440 * FailFast 441 */ 442 set_bit(R1BIO_WriteError, &r1_bio->state); 443 else { 444 /* Finished with this branch */ 445 r1_bio->bios[mirror] = NULL; 446 to_put = bio; 447 } 448 } else 449 set_bit(R1BIO_WriteError, &r1_bio->state); 450 } else { 451 /* 452 * Set R1BIO_Uptodate in our master bio, so that we 453 * will return a good error code for to the higher 454 * levels even if IO on some other mirrored buffer 455 * fails. 456 * 457 * The 'master' represents the composite IO operation 458 * to user-side. So if something waits for IO, then it 459 * will wait for the 'master' bio. 460 */ 461 sector_t first_bad; 462 int bad_sectors; 463 464 r1_bio->bios[mirror] = NULL; 465 to_put = bio; 466 /* 467 * Do not set R1BIO_Uptodate if the current device is 468 * rebuilding or Faulty. This is because we cannot use 469 * such device for properly reading the data back (we could 470 * potentially use it, if the current write would have felt 471 * before rdev->recovery_offset, but for simplicity we don't 472 * check this here. 473 */ 474 if (test_bit(In_sync, &rdev->flags) && 475 !test_bit(Faulty, &rdev->flags)) 476 set_bit(R1BIO_Uptodate, &r1_bio->state); 477 478 /* Maybe we can clear some bad blocks. */ 479 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors, 480 &first_bad, &bad_sectors) && !discard_error) { 481 r1_bio->bios[mirror] = IO_MADE_GOOD; 482 set_bit(R1BIO_MadeGood, &r1_bio->state); 483 } 484 } 485 486 if (behind) { 487 if (test_bit(WriteMostly, &rdev->flags)) 488 atomic_dec(&r1_bio->behind_remaining); 489 490 /* 491 * In behind mode, we ACK the master bio once the I/O 492 * has safely reached all non-writemostly 493 * disks. Setting the Returned bit ensures that this 494 * gets done only once -- we don't ever want to return 495 * -EIO here, instead we'll wait 496 */ 497 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) && 498 test_bit(R1BIO_Uptodate, &r1_bio->state)) { 499 /* Maybe we can return now */ 500 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 501 struct bio *mbio = r1_bio->master_bio; 502 pr_debug("raid1: behind end write sectors" 503 " %llu-%llu\n", 504 (unsigned long long) mbio->bi_iter.bi_sector, 505 (unsigned long long) bio_end_sector(mbio) - 1); 506 call_bio_endio(r1_bio); 507 } 508 } 509 } 510 if (r1_bio->bios[mirror] == NULL) 511 rdev_dec_pending(rdev, conf->mddev); 512 513 /* 514 * Let's see if all mirrored write operations have finished 515 * already. 516 */ 517 r1_bio_write_done(r1_bio); 518 519 if (to_put) 520 bio_put(to_put); 521 } 522 523 static sector_t align_to_barrier_unit_end(sector_t start_sector, 524 sector_t sectors) 525 { 526 sector_t len; 527 528 WARN_ON(sectors == 0); 529 /* 530 * len is the number of sectors from start_sector to end of the 531 * barrier unit which start_sector belongs to. 532 */ 533 len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) - 534 start_sector; 535 536 if (len > sectors) 537 len = sectors; 538 539 return len; 540 } 541 542 /* 543 * This routine returns the disk from which the requested read should 544 * be done. There is a per-array 'next expected sequential IO' sector 545 * number - if this matches on the next IO then we use the last disk. 546 * There is also a per-disk 'last know head position' sector that is 547 * maintained from IRQ contexts, both the normal and the resync IO 548 * completion handlers update this position correctly. If there is no 549 * perfect sequential match then we pick the disk whose head is closest. 550 * 551 * If there are 2 mirrors in the same 2 devices, performance degrades 552 * because position is mirror, not device based. 553 * 554 * The rdev for the device selected will have nr_pending incremented. 555 */ 556 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors) 557 { 558 const sector_t this_sector = r1_bio->sector; 559 int sectors; 560 int best_good_sectors; 561 int best_disk, best_dist_disk, best_pending_disk; 562 int has_nonrot_disk; 563 int disk; 564 sector_t best_dist; 565 unsigned int min_pending; 566 struct md_rdev *rdev; 567 int choose_first; 568 int choose_next_idle; 569 570 rcu_read_lock(); 571 /* 572 * Check if we can balance. We can balance on the whole 573 * device if no resync is going on, or below the resync window. 574 * We take the first readable disk when above the resync window. 575 */ 576 retry: 577 sectors = r1_bio->sectors; 578 best_disk = -1; 579 best_dist_disk = -1; 580 best_dist = MaxSector; 581 best_pending_disk = -1; 582 min_pending = UINT_MAX; 583 best_good_sectors = 0; 584 has_nonrot_disk = 0; 585 choose_next_idle = 0; 586 clear_bit(R1BIO_FailFast, &r1_bio->state); 587 588 if ((conf->mddev->recovery_cp < this_sector + sectors) || 589 (mddev_is_clustered(conf->mddev) && 590 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector, 591 this_sector + sectors))) 592 choose_first = 1; 593 else 594 choose_first = 0; 595 596 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) { 597 sector_t dist; 598 sector_t first_bad; 599 int bad_sectors; 600 unsigned int pending; 601 bool nonrot; 602 603 rdev = rcu_dereference(conf->mirrors[disk].rdev); 604 if (r1_bio->bios[disk] == IO_BLOCKED 605 || rdev == NULL 606 || test_bit(Faulty, &rdev->flags)) 607 continue; 608 if (!test_bit(In_sync, &rdev->flags) && 609 rdev->recovery_offset < this_sector + sectors) 610 continue; 611 if (test_bit(WriteMostly, &rdev->flags)) { 612 /* Don't balance among write-mostly, just 613 * use the first as a last resort */ 614 if (best_dist_disk < 0) { 615 if (is_badblock(rdev, this_sector, sectors, 616 &first_bad, &bad_sectors)) { 617 if (first_bad <= this_sector) 618 /* Cannot use this */ 619 continue; 620 best_good_sectors = first_bad - this_sector; 621 } else 622 best_good_sectors = sectors; 623 best_dist_disk = disk; 624 best_pending_disk = disk; 625 } 626 continue; 627 } 628 /* This is a reasonable device to use. It might 629 * even be best. 630 */ 631 if (is_badblock(rdev, this_sector, sectors, 632 &first_bad, &bad_sectors)) { 633 if (best_dist < MaxSector) 634 /* already have a better device */ 635 continue; 636 if (first_bad <= this_sector) { 637 /* cannot read here. If this is the 'primary' 638 * device, then we must not read beyond 639 * bad_sectors from another device.. 640 */ 641 bad_sectors -= (this_sector - first_bad); 642 if (choose_first && sectors > bad_sectors) 643 sectors = bad_sectors; 644 if (best_good_sectors > sectors) 645 best_good_sectors = sectors; 646 647 } else { 648 sector_t good_sectors = first_bad - this_sector; 649 if (good_sectors > best_good_sectors) { 650 best_good_sectors = good_sectors; 651 best_disk = disk; 652 } 653 if (choose_first) 654 break; 655 } 656 continue; 657 } else 658 best_good_sectors = sectors; 659 660 if (best_disk >= 0) 661 /* At least two disks to choose from so failfast is OK */ 662 set_bit(R1BIO_FailFast, &r1_bio->state); 663 664 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev)); 665 has_nonrot_disk |= nonrot; 666 pending = atomic_read(&rdev->nr_pending); 667 dist = abs(this_sector - conf->mirrors[disk].head_position); 668 if (choose_first) { 669 best_disk = disk; 670 break; 671 } 672 /* Don't change to another disk for sequential reads */ 673 if (conf->mirrors[disk].next_seq_sect == this_sector 674 || dist == 0) { 675 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9; 676 struct raid1_info *mirror = &conf->mirrors[disk]; 677 678 best_disk = disk; 679 /* 680 * If buffered sequential IO size exceeds optimal 681 * iosize, check if there is idle disk. If yes, choose 682 * the idle disk. read_balance could already choose an 683 * idle disk before noticing it's a sequential IO in 684 * this disk. This doesn't matter because this disk 685 * will idle, next time it will be utilized after the 686 * first disk has IO size exceeds optimal iosize. In 687 * this way, iosize of the first disk will be optimal 688 * iosize at least. iosize of the second disk might be 689 * small, but not a big deal since when the second disk 690 * starts IO, the first disk is likely still busy. 691 */ 692 if (nonrot && opt_iosize > 0 && 693 mirror->seq_start != MaxSector && 694 mirror->next_seq_sect > opt_iosize && 695 mirror->next_seq_sect - opt_iosize >= 696 mirror->seq_start) { 697 choose_next_idle = 1; 698 continue; 699 } 700 break; 701 } 702 703 if (choose_next_idle) 704 continue; 705 706 if (min_pending > pending) { 707 min_pending = pending; 708 best_pending_disk = disk; 709 } 710 711 if (dist < best_dist) { 712 best_dist = dist; 713 best_dist_disk = disk; 714 } 715 } 716 717 /* 718 * If all disks are rotational, choose the closest disk. If any disk is 719 * non-rotational, choose the disk with less pending request even the 720 * disk is rotational, which might/might not be optimal for raids with 721 * mixed ratation/non-rotational disks depending on workload. 722 */ 723 if (best_disk == -1) { 724 if (has_nonrot_disk || min_pending == 0) 725 best_disk = best_pending_disk; 726 else 727 best_disk = best_dist_disk; 728 } 729 730 if (best_disk >= 0) { 731 rdev = rcu_dereference(conf->mirrors[best_disk].rdev); 732 if (!rdev) 733 goto retry; 734 atomic_inc(&rdev->nr_pending); 735 sectors = best_good_sectors; 736 737 if (conf->mirrors[best_disk].next_seq_sect != this_sector) 738 conf->mirrors[best_disk].seq_start = this_sector; 739 740 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors; 741 } 742 rcu_read_unlock(); 743 *max_sectors = sectors; 744 745 return best_disk; 746 } 747 748 static int raid1_congested(struct mddev *mddev, int bits) 749 { 750 struct r1conf *conf = mddev->private; 751 int i, ret = 0; 752 753 if ((bits & (1 << WB_async_congested)) && 754 conf->pending_count >= max_queued_requests) 755 return 1; 756 757 rcu_read_lock(); 758 for (i = 0; i < conf->raid_disks * 2; i++) { 759 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 760 if (rdev && !test_bit(Faulty, &rdev->flags)) { 761 struct request_queue *q = bdev_get_queue(rdev->bdev); 762 763 BUG_ON(!q); 764 765 /* Note the '|| 1' - when read_balance prefers 766 * non-congested targets, it can be removed 767 */ 768 if ((bits & (1 << WB_async_congested)) || 1) 769 ret |= bdi_congested(q->backing_dev_info, bits); 770 else 771 ret &= bdi_congested(q->backing_dev_info, bits); 772 } 773 } 774 rcu_read_unlock(); 775 return ret; 776 } 777 778 static void flush_pending_writes(struct r1conf *conf) 779 { 780 /* Any writes that have been queued but are awaiting 781 * bitmap updates get flushed here. 782 */ 783 spin_lock_irq(&conf->device_lock); 784 785 if (conf->pending_bio_list.head) { 786 struct bio *bio; 787 bio = bio_list_get(&conf->pending_bio_list); 788 conf->pending_count = 0; 789 spin_unlock_irq(&conf->device_lock); 790 /* flush any pending bitmap writes to 791 * disk before proceeding w/ I/O */ 792 bitmap_unplug(conf->mddev->bitmap); 793 wake_up(&conf->wait_barrier); 794 795 while (bio) { /* submit pending writes */ 796 struct bio *next = bio->bi_next; 797 struct md_rdev *rdev = (void*)bio->bi_bdev; 798 bio->bi_next = NULL; 799 bio->bi_bdev = rdev->bdev; 800 if (test_bit(Faulty, &rdev->flags)) { 801 bio->bi_error = -EIO; 802 bio_endio(bio); 803 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) && 804 !blk_queue_discard(bdev_get_queue(bio->bi_bdev)))) 805 /* Just ignore it */ 806 bio_endio(bio); 807 else 808 generic_make_request(bio); 809 bio = next; 810 } 811 } else 812 spin_unlock_irq(&conf->device_lock); 813 } 814 815 /* Barriers.... 816 * Sometimes we need to suspend IO while we do something else, 817 * either some resync/recovery, or reconfigure the array. 818 * To do this we raise a 'barrier'. 819 * The 'barrier' is a counter that can be raised multiple times 820 * to count how many activities are happening which preclude 821 * normal IO. 822 * We can only raise the barrier if there is no pending IO. 823 * i.e. if nr_pending == 0. 824 * We choose only to raise the barrier if no-one is waiting for the 825 * barrier to go down. This means that as soon as an IO request 826 * is ready, no other operations which require a barrier will start 827 * until the IO request has had a chance. 828 * 829 * So: regular IO calls 'wait_barrier'. When that returns there 830 * is no backgroup IO happening, It must arrange to call 831 * allow_barrier when it has finished its IO. 832 * backgroup IO calls must call raise_barrier. Once that returns 833 * there is no normal IO happeing. It must arrange to call 834 * lower_barrier when the particular background IO completes. 835 */ 836 static void raise_barrier(struct r1conf *conf, sector_t sector_nr) 837 { 838 int idx = sector_to_idx(sector_nr); 839 840 spin_lock_irq(&conf->resync_lock); 841 842 /* Wait until no block IO is waiting */ 843 wait_event_lock_irq(conf->wait_barrier, 844 !atomic_read(&conf->nr_waiting[idx]), 845 conf->resync_lock); 846 847 /* block any new IO from starting */ 848 atomic_inc(&conf->barrier[idx]); 849 /* 850 * In raise_barrier() we firstly increase conf->barrier[idx] then 851 * check conf->nr_pending[idx]. In _wait_barrier() we firstly 852 * increase conf->nr_pending[idx] then check conf->barrier[idx]. 853 * A memory barrier here to make sure conf->nr_pending[idx] won't 854 * be fetched before conf->barrier[idx] is increased. Otherwise 855 * there will be a race between raise_barrier() and _wait_barrier(). 856 */ 857 smp_mb__after_atomic(); 858 859 /* For these conditions we must wait: 860 * A: while the array is in frozen state 861 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O 862 * existing in corresponding I/O barrier bucket. 863 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches 864 * max resync count which allowed on current I/O barrier bucket. 865 */ 866 wait_event_lock_irq(conf->wait_barrier, 867 !conf->array_frozen && 868 !atomic_read(&conf->nr_pending[idx]) && 869 atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH, 870 conf->resync_lock); 871 872 atomic_inc(&conf->nr_pending[idx]); 873 spin_unlock_irq(&conf->resync_lock); 874 } 875 876 static void lower_barrier(struct r1conf *conf, sector_t sector_nr) 877 { 878 int idx = sector_to_idx(sector_nr); 879 880 BUG_ON(atomic_read(&conf->barrier[idx]) <= 0); 881 882 atomic_dec(&conf->barrier[idx]); 883 atomic_dec(&conf->nr_pending[idx]); 884 wake_up(&conf->wait_barrier); 885 } 886 887 static void _wait_barrier(struct r1conf *conf, int idx) 888 { 889 /* 890 * We need to increase conf->nr_pending[idx] very early here, 891 * then raise_barrier() can be blocked when it waits for 892 * conf->nr_pending[idx] to be 0. Then we can avoid holding 893 * conf->resync_lock when there is no barrier raised in same 894 * barrier unit bucket. Also if the array is frozen, I/O 895 * should be blocked until array is unfrozen. 896 */ 897 atomic_inc(&conf->nr_pending[idx]); 898 /* 899 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then 900 * check conf->barrier[idx]. In raise_barrier() we firstly increase 901 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory 902 * barrier is necessary here to make sure conf->barrier[idx] won't be 903 * fetched before conf->nr_pending[idx] is increased. Otherwise there 904 * will be a race between _wait_barrier() and raise_barrier(). 905 */ 906 smp_mb__after_atomic(); 907 908 /* 909 * Don't worry about checking two atomic_t variables at same time 910 * here. If during we check conf->barrier[idx], the array is 911 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is 912 * 0, it is safe to return and make the I/O continue. Because the 913 * array is frozen, all I/O returned here will eventually complete 914 * or be queued, no race will happen. See code comment in 915 * frozen_array(). 916 */ 917 if (!READ_ONCE(conf->array_frozen) && 918 !atomic_read(&conf->barrier[idx])) 919 return; 920 921 /* 922 * After holding conf->resync_lock, conf->nr_pending[idx] 923 * should be decreased before waiting for barrier to drop. 924 * Otherwise, we may encounter a race condition because 925 * raise_barrer() might be waiting for conf->nr_pending[idx] 926 * to be 0 at same time. 927 */ 928 spin_lock_irq(&conf->resync_lock); 929 atomic_inc(&conf->nr_waiting[idx]); 930 atomic_dec(&conf->nr_pending[idx]); 931 /* 932 * In case freeze_array() is waiting for 933 * get_unqueued_pending() == extra 934 */ 935 wake_up(&conf->wait_barrier); 936 /* Wait for the barrier in same barrier unit bucket to drop. */ 937 wait_event_lock_irq(conf->wait_barrier, 938 !conf->array_frozen && 939 !atomic_read(&conf->barrier[idx]), 940 conf->resync_lock); 941 atomic_inc(&conf->nr_pending[idx]); 942 atomic_dec(&conf->nr_waiting[idx]); 943 spin_unlock_irq(&conf->resync_lock); 944 } 945 946 static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr) 947 { 948 int idx = sector_to_idx(sector_nr); 949 950 /* 951 * Very similar to _wait_barrier(). The difference is, for read 952 * I/O we don't need wait for sync I/O, but if the whole array 953 * is frozen, the read I/O still has to wait until the array is 954 * unfrozen. Since there is no ordering requirement with 955 * conf->barrier[idx] here, memory barrier is unnecessary as well. 956 */ 957 atomic_inc(&conf->nr_pending[idx]); 958 959 if (!READ_ONCE(conf->array_frozen)) 960 return; 961 962 spin_lock_irq(&conf->resync_lock); 963 atomic_inc(&conf->nr_waiting[idx]); 964 atomic_dec(&conf->nr_pending[idx]); 965 /* 966 * In case freeze_array() is waiting for 967 * get_unqueued_pending() == extra 968 */ 969 wake_up(&conf->wait_barrier); 970 /* Wait for array to be unfrozen */ 971 wait_event_lock_irq(conf->wait_barrier, 972 !conf->array_frozen, 973 conf->resync_lock); 974 atomic_inc(&conf->nr_pending[idx]); 975 atomic_dec(&conf->nr_waiting[idx]); 976 spin_unlock_irq(&conf->resync_lock); 977 } 978 979 static void wait_barrier(struct r1conf *conf, sector_t sector_nr) 980 { 981 int idx = sector_to_idx(sector_nr); 982 983 _wait_barrier(conf, idx); 984 } 985 986 static void wait_all_barriers(struct r1conf *conf) 987 { 988 int idx; 989 990 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) 991 _wait_barrier(conf, idx); 992 } 993 994 static void _allow_barrier(struct r1conf *conf, int idx) 995 { 996 atomic_dec(&conf->nr_pending[idx]); 997 wake_up(&conf->wait_barrier); 998 } 999 1000 static void allow_barrier(struct r1conf *conf, sector_t sector_nr) 1001 { 1002 int idx = sector_to_idx(sector_nr); 1003 1004 _allow_barrier(conf, idx); 1005 } 1006 1007 static void allow_all_barriers(struct r1conf *conf) 1008 { 1009 int idx; 1010 1011 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) 1012 _allow_barrier(conf, idx); 1013 } 1014 1015 /* conf->resync_lock should be held */ 1016 static int get_unqueued_pending(struct r1conf *conf) 1017 { 1018 int idx, ret; 1019 1020 for (ret = 0, idx = 0; idx < BARRIER_BUCKETS_NR; idx++) 1021 ret += atomic_read(&conf->nr_pending[idx]) - 1022 atomic_read(&conf->nr_queued[idx]); 1023 1024 return ret; 1025 } 1026 1027 static void freeze_array(struct r1conf *conf, int extra) 1028 { 1029 /* Stop sync I/O and normal I/O and wait for everything to 1030 * go quiet. 1031 * This is called in two situations: 1032 * 1) management command handlers (reshape, remove disk, quiesce). 1033 * 2) one normal I/O request failed. 1034 1035 * After array_frozen is set to 1, new sync IO will be blocked at 1036 * raise_barrier(), and new normal I/O will blocked at _wait_barrier() 1037 * or wait_read_barrier(). The flying I/Os will either complete or be 1038 * queued. When everything goes quite, there are only queued I/Os left. 1039 1040 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the 1041 * barrier bucket index which this I/O request hits. When all sync and 1042 * normal I/O are queued, sum of all conf->nr_pending[] will match sum 1043 * of all conf->nr_queued[]. But normal I/O failure is an exception, 1044 * in handle_read_error(), we may call freeze_array() before trying to 1045 * fix the read error. In this case, the error read I/O is not queued, 1046 * so get_unqueued_pending() == 1. 1047 * 1048 * Therefore before this function returns, we need to wait until 1049 * get_unqueued_pendings(conf) gets equal to extra. For 1050 * normal I/O context, extra is 1, in rested situations extra is 0. 1051 */ 1052 spin_lock_irq(&conf->resync_lock); 1053 conf->array_frozen = 1; 1054 raid1_log(conf->mddev, "wait freeze"); 1055 wait_event_lock_irq_cmd( 1056 conf->wait_barrier, 1057 get_unqueued_pending(conf) == extra, 1058 conf->resync_lock, 1059 flush_pending_writes(conf)); 1060 spin_unlock_irq(&conf->resync_lock); 1061 } 1062 static void unfreeze_array(struct r1conf *conf) 1063 { 1064 /* reverse the effect of the freeze */ 1065 spin_lock_irq(&conf->resync_lock); 1066 conf->array_frozen = 0; 1067 spin_unlock_irq(&conf->resync_lock); 1068 wake_up(&conf->wait_barrier); 1069 } 1070 1071 /* duplicate the data pages for behind I/O 1072 */ 1073 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio) 1074 { 1075 int i; 1076 struct bio_vec *bvec; 1077 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec), 1078 GFP_NOIO); 1079 if (unlikely(!bvecs)) 1080 return; 1081 1082 bio_for_each_segment_all(bvec, bio, i) { 1083 bvecs[i] = *bvec; 1084 bvecs[i].bv_page = alloc_page(GFP_NOIO); 1085 if (unlikely(!bvecs[i].bv_page)) 1086 goto do_sync_io; 1087 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset, 1088 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len); 1089 kunmap(bvecs[i].bv_page); 1090 kunmap(bvec->bv_page); 1091 } 1092 r1_bio->behind_bvecs = bvecs; 1093 r1_bio->behind_page_count = bio->bi_vcnt; 1094 set_bit(R1BIO_BehindIO, &r1_bio->state); 1095 return; 1096 1097 do_sync_io: 1098 for (i = 0; i < bio->bi_vcnt; i++) 1099 if (bvecs[i].bv_page) 1100 put_page(bvecs[i].bv_page); 1101 kfree(bvecs); 1102 pr_debug("%dB behind alloc failed, doing sync I/O\n", 1103 bio->bi_iter.bi_size); 1104 } 1105 1106 struct raid1_plug_cb { 1107 struct blk_plug_cb cb; 1108 struct bio_list pending; 1109 int pending_cnt; 1110 }; 1111 1112 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule) 1113 { 1114 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, 1115 cb); 1116 struct mddev *mddev = plug->cb.data; 1117 struct r1conf *conf = mddev->private; 1118 struct bio *bio; 1119 1120 if (from_schedule || current->bio_list) { 1121 spin_lock_irq(&conf->device_lock); 1122 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1123 conf->pending_count += plug->pending_cnt; 1124 spin_unlock_irq(&conf->device_lock); 1125 wake_up(&conf->wait_barrier); 1126 md_wakeup_thread(mddev->thread); 1127 kfree(plug); 1128 return; 1129 } 1130 1131 /* we aren't scheduling, so we can do the write-out directly. */ 1132 bio = bio_list_get(&plug->pending); 1133 bitmap_unplug(mddev->bitmap); 1134 wake_up(&conf->wait_barrier); 1135 1136 while (bio) { /* submit pending writes */ 1137 struct bio *next = bio->bi_next; 1138 struct md_rdev *rdev = (void*)bio->bi_bdev; 1139 bio->bi_next = NULL; 1140 bio->bi_bdev = rdev->bdev; 1141 if (test_bit(Faulty, &rdev->flags)) { 1142 bio->bi_error = -EIO; 1143 bio_endio(bio); 1144 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) && 1145 !blk_queue_discard(bdev_get_queue(bio->bi_bdev)))) 1146 /* Just ignore it */ 1147 bio_endio(bio); 1148 else 1149 generic_make_request(bio); 1150 bio = next; 1151 } 1152 kfree(plug); 1153 } 1154 1155 static inline struct r1bio * 1156 alloc_r1bio(struct mddev *mddev, struct bio *bio, sector_t sectors_handled) 1157 { 1158 struct r1conf *conf = mddev->private; 1159 struct r1bio *r1_bio; 1160 1161 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 1162 1163 r1_bio->master_bio = bio; 1164 r1_bio->sectors = bio_sectors(bio) - sectors_handled; 1165 r1_bio->state = 0; 1166 r1_bio->mddev = mddev; 1167 r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled; 1168 1169 return r1_bio; 1170 } 1171 1172 static void raid1_read_request(struct mddev *mddev, struct bio *bio) 1173 { 1174 struct r1conf *conf = mddev->private; 1175 struct raid1_info *mirror; 1176 struct r1bio *r1_bio; 1177 struct bio *read_bio; 1178 struct bitmap *bitmap = mddev->bitmap; 1179 const int op = bio_op(bio); 1180 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC); 1181 int sectors_handled; 1182 int max_sectors; 1183 int rdisk; 1184 1185 /* 1186 * Still need barrier for READ in case that whole 1187 * array is frozen. 1188 */ 1189 wait_read_barrier(conf, bio->bi_iter.bi_sector); 1190 1191 r1_bio = alloc_r1bio(mddev, bio, 0); 1192 1193 /* 1194 * We might need to issue multiple reads to different 1195 * devices if there are bad blocks around, so we keep 1196 * track of the number of reads in bio->bi_phys_segments. 1197 * If this is 0, there is only one r1_bio and no locking 1198 * will be needed when requests complete. If it is 1199 * non-zero, then it is the number of not-completed requests. 1200 */ 1201 bio->bi_phys_segments = 0; 1202 bio_clear_flag(bio, BIO_SEG_VALID); 1203 1204 /* 1205 * make_request() can abort the operation when read-ahead is being 1206 * used and no empty request is available. 1207 */ 1208 read_again: 1209 rdisk = read_balance(conf, r1_bio, &max_sectors); 1210 1211 if (rdisk < 0) { 1212 /* couldn't find anywhere to read from */ 1213 raid_end_bio_io(r1_bio); 1214 return; 1215 } 1216 mirror = conf->mirrors + rdisk; 1217 1218 if (test_bit(WriteMostly, &mirror->rdev->flags) && 1219 bitmap) { 1220 /* 1221 * Reading from a write-mostly device must take care not to 1222 * over-take any writes that are 'behind' 1223 */ 1224 raid1_log(mddev, "wait behind writes"); 1225 wait_event(bitmap->behind_wait, 1226 atomic_read(&bitmap->behind_writes) == 0); 1227 } 1228 r1_bio->read_disk = rdisk; 1229 1230 read_bio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set); 1231 bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector, 1232 max_sectors); 1233 1234 r1_bio->bios[rdisk] = read_bio; 1235 1236 read_bio->bi_iter.bi_sector = r1_bio->sector + 1237 mirror->rdev->data_offset; 1238 read_bio->bi_bdev = mirror->rdev->bdev; 1239 read_bio->bi_end_io = raid1_end_read_request; 1240 bio_set_op_attrs(read_bio, op, do_sync); 1241 if (test_bit(FailFast, &mirror->rdev->flags) && 1242 test_bit(R1BIO_FailFast, &r1_bio->state)) 1243 read_bio->bi_opf |= MD_FAILFAST; 1244 read_bio->bi_private = r1_bio; 1245 1246 if (mddev->gendisk) 1247 trace_block_bio_remap(bdev_get_queue(read_bio->bi_bdev), 1248 read_bio, disk_devt(mddev->gendisk), 1249 r1_bio->sector); 1250 1251 if (max_sectors < r1_bio->sectors) { 1252 /* 1253 * could not read all from this device, so we will need another 1254 * r1_bio. 1255 */ 1256 sectors_handled = (r1_bio->sector + max_sectors 1257 - bio->bi_iter.bi_sector); 1258 r1_bio->sectors = max_sectors; 1259 spin_lock_irq(&conf->device_lock); 1260 if (bio->bi_phys_segments == 0) 1261 bio->bi_phys_segments = 2; 1262 else 1263 bio->bi_phys_segments++; 1264 spin_unlock_irq(&conf->device_lock); 1265 1266 /* 1267 * Cannot call generic_make_request directly as that will be 1268 * queued in __make_request and subsequent mempool_alloc might 1269 * block waiting for it. So hand bio over to raid1d. 1270 */ 1271 reschedule_retry(r1_bio); 1272 1273 r1_bio = alloc_r1bio(mddev, bio, sectors_handled); 1274 goto read_again; 1275 } else 1276 generic_make_request(read_bio); 1277 } 1278 1279 static void raid1_write_request(struct mddev *mddev, struct bio *bio) 1280 { 1281 struct r1conf *conf = mddev->private; 1282 struct r1bio *r1_bio; 1283 int i, disks; 1284 struct bitmap *bitmap = mddev->bitmap; 1285 unsigned long flags; 1286 struct md_rdev *blocked_rdev; 1287 struct blk_plug_cb *cb; 1288 struct raid1_plug_cb *plug = NULL; 1289 int first_clone; 1290 int sectors_handled; 1291 int max_sectors; 1292 1293 /* 1294 * Register the new request and wait if the reconstruction 1295 * thread has put up a bar for new requests. 1296 * Continue immediately if no resync is active currently. 1297 */ 1298 1299 md_write_start(mddev, bio); /* wait on superblock update early */ 1300 1301 if ((bio_end_sector(bio) > mddev->suspend_lo && 1302 bio->bi_iter.bi_sector < mddev->suspend_hi) || 1303 (mddev_is_clustered(mddev) && 1304 md_cluster_ops->area_resyncing(mddev, WRITE, 1305 bio->bi_iter.bi_sector, bio_end_sector(bio)))) { 1306 1307 /* 1308 * As the suspend_* range is controlled by userspace, we want 1309 * an interruptible wait. 1310 */ 1311 DEFINE_WAIT(w); 1312 for (;;) { 1313 flush_signals(current); 1314 prepare_to_wait(&conf->wait_barrier, 1315 &w, TASK_INTERRUPTIBLE); 1316 if (bio_end_sector(bio) <= mddev->suspend_lo || 1317 bio->bi_iter.bi_sector >= mddev->suspend_hi || 1318 (mddev_is_clustered(mddev) && 1319 !md_cluster_ops->area_resyncing(mddev, WRITE, 1320 bio->bi_iter.bi_sector, 1321 bio_end_sector(bio)))) 1322 break; 1323 schedule(); 1324 } 1325 finish_wait(&conf->wait_barrier, &w); 1326 } 1327 wait_barrier(conf, bio->bi_iter.bi_sector); 1328 1329 r1_bio = alloc_r1bio(mddev, bio, 0); 1330 1331 /* We might need to issue multiple writes to different 1332 * devices if there are bad blocks around, so we keep 1333 * track of the number of writes in bio->bi_phys_segments. 1334 * If this is 0, there is only one r1_bio and no locking 1335 * will be needed when requests complete. If it is 1336 * non-zero, then it is the number of not-completed requests. 1337 */ 1338 bio->bi_phys_segments = 0; 1339 bio_clear_flag(bio, BIO_SEG_VALID); 1340 1341 if (conf->pending_count >= max_queued_requests) { 1342 md_wakeup_thread(mddev->thread); 1343 raid1_log(mddev, "wait queued"); 1344 wait_event(conf->wait_barrier, 1345 conf->pending_count < max_queued_requests); 1346 } 1347 /* first select target devices under rcu_lock and 1348 * inc refcount on their rdev. Record them by setting 1349 * bios[x] to bio 1350 * If there are known/acknowledged bad blocks on any device on 1351 * which we have seen a write error, we want to avoid writing those 1352 * blocks. 1353 * This potentially requires several writes to write around 1354 * the bad blocks. Each set of writes gets it's own r1bio 1355 * with a set of bios attached. 1356 */ 1357 1358 disks = conf->raid_disks * 2; 1359 retry_write: 1360 blocked_rdev = NULL; 1361 rcu_read_lock(); 1362 max_sectors = r1_bio->sectors; 1363 for (i = 0; i < disks; i++) { 1364 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1365 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1366 atomic_inc(&rdev->nr_pending); 1367 blocked_rdev = rdev; 1368 break; 1369 } 1370 r1_bio->bios[i] = NULL; 1371 if (!rdev || test_bit(Faulty, &rdev->flags)) { 1372 if (i < conf->raid_disks) 1373 set_bit(R1BIO_Degraded, &r1_bio->state); 1374 continue; 1375 } 1376 1377 atomic_inc(&rdev->nr_pending); 1378 if (test_bit(WriteErrorSeen, &rdev->flags)) { 1379 sector_t first_bad; 1380 int bad_sectors; 1381 int is_bad; 1382 1383 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors, 1384 &first_bad, &bad_sectors); 1385 if (is_bad < 0) { 1386 /* mustn't write here until the bad block is 1387 * acknowledged*/ 1388 set_bit(BlockedBadBlocks, &rdev->flags); 1389 blocked_rdev = rdev; 1390 break; 1391 } 1392 if (is_bad && first_bad <= r1_bio->sector) { 1393 /* Cannot write here at all */ 1394 bad_sectors -= (r1_bio->sector - first_bad); 1395 if (bad_sectors < max_sectors) 1396 /* mustn't write more than bad_sectors 1397 * to other devices yet 1398 */ 1399 max_sectors = bad_sectors; 1400 rdev_dec_pending(rdev, mddev); 1401 /* We don't set R1BIO_Degraded as that 1402 * only applies if the disk is 1403 * missing, so it might be re-added, 1404 * and we want to know to recover this 1405 * chunk. 1406 * In this case the device is here, 1407 * and the fact that this chunk is not 1408 * in-sync is recorded in the bad 1409 * block log 1410 */ 1411 continue; 1412 } 1413 if (is_bad) { 1414 int good_sectors = first_bad - r1_bio->sector; 1415 if (good_sectors < max_sectors) 1416 max_sectors = good_sectors; 1417 } 1418 } 1419 r1_bio->bios[i] = bio; 1420 } 1421 rcu_read_unlock(); 1422 1423 if (unlikely(blocked_rdev)) { 1424 /* Wait for this device to become unblocked */ 1425 int j; 1426 1427 for (j = 0; j < i; j++) 1428 if (r1_bio->bios[j]) 1429 rdev_dec_pending(conf->mirrors[j].rdev, mddev); 1430 r1_bio->state = 0; 1431 allow_barrier(conf, bio->bi_iter.bi_sector); 1432 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk); 1433 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1434 wait_barrier(conf, bio->bi_iter.bi_sector); 1435 goto retry_write; 1436 } 1437 1438 if (max_sectors < r1_bio->sectors) { 1439 /* We are splitting this write into multiple parts, so 1440 * we need to prepare for allocating another r1_bio. 1441 */ 1442 r1_bio->sectors = max_sectors; 1443 spin_lock_irq(&conf->device_lock); 1444 if (bio->bi_phys_segments == 0) 1445 bio->bi_phys_segments = 2; 1446 else 1447 bio->bi_phys_segments++; 1448 spin_unlock_irq(&conf->device_lock); 1449 } 1450 sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector; 1451 1452 atomic_set(&r1_bio->remaining, 1); 1453 atomic_set(&r1_bio->behind_remaining, 0); 1454 1455 first_clone = 1; 1456 for (i = 0; i < disks; i++) { 1457 struct bio *mbio = NULL; 1458 sector_t offset; 1459 if (!r1_bio->bios[i]) 1460 continue; 1461 1462 offset = r1_bio->sector - bio->bi_iter.bi_sector; 1463 1464 if (first_clone) { 1465 /* do behind I/O ? 1466 * Not if there are too many, or cannot 1467 * allocate memory, or a reader on WriteMostly 1468 * is waiting for behind writes to flush */ 1469 if (bitmap && 1470 (atomic_read(&bitmap->behind_writes) 1471 < mddev->bitmap_info.max_write_behind) && 1472 !waitqueue_active(&bitmap->behind_wait)) { 1473 mbio = bio_clone_bioset_partial(bio, GFP_NOIO, 1474 mddev->bio_set, 1475 offset << 9, 1476 max_sectors << 9); 1477 alloc_behind_pages(mbio, r1_bio); 1478 } 1479 1480 bitmap_startwrite(bitmap, r1_bio->sector, 1481 r1_bio->sectors, 1482 test_bit(R1BIO_BehindIO, 1483 &r1_bio->state)); 1484 first_clone = 0; 1485 } 1486 1487 if (!mbio) { 1488 if (r1_bio->behind_bvecs) 1489 mbio = bio_clone_bioset_partial(bio, GFP_NOIO, 1490 mddev->bio_set, 1491 offset << 9, 1492 max_sectors << 9); 1493 else { 1494 mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set); 1495 bio_trim(mbio, offset, max_sectors); 1496 } 1497 } 1498 1499 if (r1_bio->behind_bvecs) { 1500 struct bio_vec *bvec; 1501 int j; 1502 1503 /* 1504 * We trimmed the bio, so _all is legit 1505 */ 1506 bio_for_each_segment_all(bvec, mbio, j) 1507 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page; 1508 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags)) 1509 atomic_inc(&r1_bio->behind_remaining); 1510 } 1511 1512 r1_bio->bios[i] = mbio; 1513 1514 mbio->bi_iter.bi_sector = (r1_bio->sector + 1515 conf->mirrors[i].rdev->data_offset); 1516 mbio->bi_bdev = conf->mirrors[i].rdev->bdev; 1517 mbio->bi_end_io = raid1_end_write_request; 1518 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA)); 1519 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) && 1520 !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) && 1521 conf->raid_disks - mddev->degraded > 1) 1522 mbio->bi_opf |= MD_FAILFAST; 1523 mbio->bi_private = r1_bio; 1524 1525 atomic_inc(&r1_bio->remaining); 1526 1527 if (mddev->gendisk) 1528 trace_block_bio_remap(bdev_get_queue(mbio->bi_bdev), 1529 mbio, disk_devt(mddev->gendisk), 1530 r1_bio->sector); 1531 /* flush_pending_writes() needs access to the rdev so...*/ 1532 mbio->bi_bdev = (void*)conf->mirrors[i].rdev; 1533 1534 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug)); 1535 if (cb) 1536 plug = container_of(cb, struct raid1_plug_cb, cb); 1537 else 1538 plug = NULL; 1539 spin_lock_irqsave(&conf->device_lock, flags); 1540 if (plug) { 1541 bio_list_add(&plug->pending, mbio); 1542 plug->pending_cnt++; 1543 } else { 1544 bio_list_add(&conf->pending_bio_list, mbio); 1545 conf->pending_count++; 1546 } 1547 spin_unlock_irqrestore(&conf->device_lock, flags); 1548 if (!plug) 1549 md_wakeup_thread(mddev->thread); 1550 } 1551 /* Mustn't call r1_bio_write_done before this next test, 1552 * as it could result in the bio being freed. 1553 */ 1554 if (sectors_handled < bio_sectors(bio)) { 1555 r1_bio_write_done(r1_bio); 1556 /* We need another r1_bio. It has already been counted 1557 * in bio->bi_phys_segments 1558 */ 1559 r1_bio = alloc_r1bio(mddev, bio, sectors_handled); 1560 goto retry_write; 1561 } 1562 1563 r1_bio_write_done(r1_bio); 1564 1565 /* In case raid1d snuck in to freeze_array */ 1566 wake_up(&conf->wait_barrier); 1567 } 1568 1569 static void raid1_make_request(struct mddev *mddev, struct bio *bio) 1570 { 1571 struct bio *split; 1572 sector_t sectors; 1573 1574 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) { 1575 md_flush_request(mddev, bio); 1576 return; 1577 } 1578 1579 /* if bio exceeds barrier unit boundary, split it */ 1580 do { 1581 sectors = align_to_barrier_unit_end( 1582 bio->bi_iter.bi_sector, bio_sectors(bio)); 1583 if (sectors < bio_sectors(bio)) { 1584 split = bio_split(bio, sectors, GFP_NOIO, fs_bio_set); 1585 bio_chain(split, bio); 1586 } else { 1587 split = bio; 1588 } 1589 1590 if (bio_data_dir(split) == READ) { 1591 raid1_read_request(mddev, split); 1592 1593 /* 1594 * If a bio is splitted, the first part of bio will 1595 * pass barrier but the bio is queued in 1596 * current->bio_list (see generic_make_request). If 1597 * there is a raise_barrier() called here, the second 1598 * part of bio can't pass barrier. But since the first 1599 * part bio isn't dispatched to underlaying disks yet, 1600 * the barrier is never released, hence raise_barrier 1601 * will alays wait. We have a deadlock. 1602 * Note, this only happens in read path. For write 1603 * path, the first part of bio is dispatched in a 1604 * schedule() call (because of blk plug) or offloaded 1605 * to raid10d. 1606 * Quitting from the function immediately can change 1607 * the bio order queued in bio_list and avoid the deadlock. 1608 */ 1609 if (split != bio) { 1610 generic_make_request(bio); 1611 break; 1612 } 1613 } else 1614 raid1_write_request(mddev, split); 1615 } while (split != bio); 1616 } 1617 1618 static void raid1_status(struct seq_file *seq, struct mddev *mddev) 1619 { 1620 struct r1conf *conf = mddev->private; 1621 int i; 1622 1623 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 1624 conf->raid_disks - mddev->degraded); 1625 rcu_read_lock(); 1626 for (i = 0; i < conf->raid_disks; i++) { 1627 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1628 seq_printf(seq, "%s", 1629 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1630 } 1631 rcu_read_unlock(); 1632 seq_printf(seq, "]"); 1633 } 1634 1635 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev) 1636 { 1637 char b[BDEVNAME_SIZE]; 1638 struct r1conf *conf = mddev->private; 1639 unsigned long flags; 1640 1641 /* 1642 * If it is not operational, then we have already marked it as dead 1643 * else if it is the last working disks, ignore the error, let the 1644 * next level up know. 1645 * else mark the drive as failed 1646 */ 1647 spin_lock_irqsave(&conf->device_lock, flags); 1648 if (test_bit(In_sync, &rdev->flags) 1649 && (conf->raid_disks - mddev->degraded) == 1) { 1650 /* 1651 * Don't fail the drive, act as though we were just a 1652 * normal single drive. 1653 * However don't try a recovery from this drive as 1654 * it is very likely to fail. 1655 */ 1656 conf->recovery_disabled = mddev->recovery_disabled; 1657 spin_unlock_irqrestore(&conf->device_lock, flags); 1658 return; 1659 } 1660 set_bit(Blocked, &rdev->flags); 1661 if (test_and_clear_bit(In_sync, &rdev->flags)) { 1662 mddev->degraded++; 1663 set_bit(Faulty, &rdev->flags); 1664 } else 1665 set_bit(Faulty, &rdev->flags); 1666 spin_unlock_irqrestore(&conf->device_lock, flags); 1667 /* 1668 * if recovery is running, make sure it aborts. 1669 */ 1670 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1671 set_mask_bits(&mddev->sb_flags, 0, 1672 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1673 pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n" 1674 "md/raid1:%s: Operation continuing on %d devices.\n", 1675 mdname(mddev), bdevname(rdev->bdev, b), 1676 mdname(mddev), conf->raid_disks - mddev->degraded); 1677 } 1678 1679 static void print_conf(struct r1conf *conf) 1680 { 1681 int i; 1682 1683 pr_debug("RAID1 conf printout:\n"); 1684 if (!conf) { 1685 pr_debug("(!conf)\n"); 1686 return; 1687 } 1688 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1689 conf->raid_disks); 1690 1691 rcu_read_lock(); 1692 for (i = 0; i < conf->raid_disks; i++) { 1693 char b[BDEVNAME_SIZE]; 1694 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1695 if (rdev) 1696 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n", 1697 i, !test_bit(In_sync, &rdev->flags), 1698 !test_bit(Faulty, &rdev->flags), 1699 bdevname(rdev->bdev,b)); 1700 } 1701 rcu_read_unlock(); 1702 } 1703 1704 static void close_sync(struct r1conf *conf) 1705 { 1706 wait_all_barriers(conf); 1707 allow_all_barriers(conf); 1708 1709 mempool_destroy(conf->r1buf_pool); 1710 conf->r1buf_pool = NULL; 1711 } 1712 1713 static int raid1_spare_active(struct mddev *mddev) 1714 { 1715 int i; 1716 struct r1conf *conf = mddev->private; 1717 int count = 0; 1718 unsigned long flags; 1719 1720 /* 1721 * Find all failed disks within the RAID1 configuration 1722 * and mark them readable. 1723 * Called under mddev lock, so rcu protection not needed. 1724 * device_lock used to avoid races with raid1_end_read_request 1725 * which expects 'In_sync' flags and ->degraded to be consistent. 1726 */ 1727 spin_lock_irqsave(&conf->device_lock, flags); 1728 for (i = 0; i < conf->raid_disks; i++) { 1729 struct md_rdev *rdev = conf->mirrors[i].rdev; 1730 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev; 1731 if (repl 1732 && !test_bit(Candidate, &repl->flags) 1733 && repl->recovery_offset == MaxSector 1734 && !test_bit(Faulty, &repl->flags) 1735 && !test_and_set_bit(In_sync, &repl->flags)) { 1736 /* replacement has just become active */ 1737 if (!rdev || 1738 !test_and_clear_bit(In_sync, &rdev->flags)) 1739 count++; 1740 if (rdev) { 1741 /* Replaced device not technically 1742 * faulty, but we need to be sure 1743 * it gets removed and never re-added 1744 */ 1745 set_bit(Faulty, &rdev->flags); 1746 sysfs_notify_dirent_safe( 1747 rdev->sysfs_state); 1748 } 1749 } 1750 if (rdev 1751 && rdev->recovery_offset == MaxSector 1752 && !test_bit(Faulty, &rdev->flags) 1753 && !test_and_set_bit(In_sync, &rdev->flags)) { 1754 count++; 1755 sysfs_notify_dirent_safe(rdev->sysfs_state); 1756 } 1757 } 1758 mddev->degraded -= count; 1759 spin_unlock_irqrestore(&conf->device_lock, flags); 1760 1761 print_conf(conf); 1762 return count; 1763 } 1764 1765 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1766 { 1767 struct r1conf *conf = mddev->private; 1768 int err = -EEXIST; 1769 int mirror = 0; 1770 struct raid1_info *p; 1771 int first = 0; 1772 int last = conf->raid_disks - 1; 1773 1774 if (mddev->recovery_disabled == conf->recovery_disabled) 1775 return -EBUSY; 1776 1777 if (md_integrity_add_rdev(rdev, mddev)) 1778 return -ENXIO; 1779 1780 if (rdev->raid_disk >= 0) 1781 first = last = rdev->raid_disk; 1782 1783 /* 1784 * find the disk ... but prefer rdev->saved_raid_disk 1785 * if possible. 1786 */ 1787 if (rdev->saved_raid_disk >= 0 && 1788 rdev->saved_raid_disk >= first && 1789 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1790 first = last = rdev->saved_raid_disk; 1791 1792 for (mirror = first; mirror <= last; mirror++) { 1793 p = conf->mirrors+mirror; 1794 if (!p->rdev) { 1795 1796 if (mddev->gendisk) 1797 disk_stack_limits(mddev->gendisk, rdev->bdev, 1798 rdev->data_offset << 9); 1799 1800 p->head_position = 0; 1801 rdev->raid_disk = mirror; 1802 err = 0; 1803 /* As all devices are equivalent, we don't need a full recovery 1804 * if this was recently any drive of the array 1805 */ 1806 if (rdev->saved_raid_disk < 0) 1807 conf->fullsync = 1; 1808 rcu_assign_pointer(p->rdev, rdev); 1809 break; 1810 } 1811 if (test_bit(WantReplacement, &p->rdev->flags) && 1812 p[conf->raid_disks].rdev == NULL) { 1813 /* Add this device as a replacement */ 1814 clear_bit(In_sync, &rdev->flags); 1815 set_bit(Replacement, &rdev->flags); 1816 rdev->raid_disk = mirror; 1817 err = 0; 1818 conf->fullsync = 1; 1819 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev); 1820 break; 1821 } 1822 } 1823 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev))) 1824 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue); 1825 print_conf(conf); 1826 return err; 1827 } 1828 1829 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1830 { 1831 struct r1conf *conf = mddev->private; 1832 int err = 0; 1833 int number = rdev->raid_disk; 1834 struct raid1_info *p = conf->mirrors + number; 1835 1836 if (rdev != p->rdev) 1837 p = conf->mirrors + conf->raid_disks + number; 1838 1839 print_conf(conf); 1840 if (rdev == p->rdev) { 1841 if (test_bit(In_sync, &rdev->flags) || 1842 atomic_read(&rdev->nr_pending)) { 1843 err = -EBUSY; 1844 goto abort; 1845 } 1846 /* Only remove non-faulty devices if recovery 1847 * is not possible. 1848 */ 1849 if (!test_bit(Faulty, &rdev->flags) && 1850 mddev->recovery_disabled != conf->recovery_disabled && 1851 mddev->degraded < conf->raid_disks) { 1852 err = -EBUSY; 1853 goto abort; 1854 } 1855 p->rdev = NULL; 1856 if (!test_bit(RemoveSynchronized, &rdev->flags)) { 1857 synchronize_rcu(); 1858 if (atomic_read(&rdev->nr_pending)) { 1859 /* lost the race, try later */ 1860 err = -EBUSY; 1861 p->rdev = rdev; 1862 goto abort; 1863 } 1864 } 1865 if (conf->mirrors[conf->raid_disks + number].rdev) { 1866 /* We just removed a device that is being replaced. 1867 * Move down the replacement. We drain all IO before 1868 * doing this to avoid confusion. 1869 */ 1870 struct md_rdev *repl = 1871 conf->mirrors[conf->raid_disks + number].rdev; 1872 freeze_array(conf, 0); 1873 clear_bit(Replacement, &repl->flags); 1874 p->rdev = repl; 1875 conf->mirrors[conf->raid_disks + number].rdev = NULL; 1876 unfreeze_array(conf); 1877 clear_bit(WantReplacement, &rdev->flags); 1878 } else 1879 clear_bit(WantReplacement, &rdev->flags); 1880 err = md_integrity_register(mddev); 1881 } 1882 abort: 1883 1884 print_conf(conf); 1885 return err; 1886 } 1887 1888 static void end_sync_read(struct bio *bio) 1889 { 1890 struct r1bio *r1_bio = bio->bi_private; 1891 1892 update_head_pos(r1_bio->read_disk, r1_bio); 1893 1894 /* 1895 * we have read a block, now it needs to be re-written, 1896 * or re-read if the read failed. 1897 * We don't do much here, just schedule handling by raid1d 1898 */ 1899 if (!bio->bi_error) 1900 set_bit(R1BIO_Uptodate, &r1_bio->state); 1901 1902 if (atomic_dec_and_test(&r1_bio->remaining)) 1903 reschedule_retry(r1_bio); 1904 } 1905 1906 static void end_sync_write(struct bio *bio) 1907 { 1908 int uptodate = !bio->bi_error; 1909 struct r1bio *r1_bio = bio->bi_private; 1910 struct mddev *mddev = r1_bio->mddev; 1911 struct r1conf *conf = mddev->private; 1912 sector_t first_bad; 1913 int bad_sectors; 1914 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev; 1915 1916 if (!uptodate) { 1917 sector_t sync_blocks = 0; 1918 sector_t s = r1_bio->sector; 1919 long sectors_to_go = r1_bio->sectors; 1920 /* make sure these bits doesn't get cleared. */ 1921 do { 1922 bitmap_end_sync(mddev->bitmap, s, 1923 &sync_blocks, 1); 1924 s += sync_blocks; 1925 sectors_to_go -= sync_blocks; 1926 } while (sectors_to_go > 0); 1927 set_bit(WriteErrorSeen, &rdev->flags); 1928 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 1929 set_bit(MD_RECOVERY_NEEDED, & 1930 mddev->recovery); 1931 set_bit(R1BIO_WriteError, &r1_bio->state); 1932 } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors, 1933 &first_bad, &bad_sectors) && 1934 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev, 1935 r1_bio->sector, 1936 r1_bio->sectors, 1937 &first_bad, &bad_sectors) 1938 ) 1939 set_bit(R1BIO_MadeGood, &r1_bio->state); 1940 1941 if (atomic_dec_and_test(&r1_bio->remaining)) { 1942 int s = r1_bio->sectors; 1943 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 1944 test_bit(R1BIO_WriteError, &r1_bio->state)) 1945 reschedule_retry(r1_bio); 1946 else { 1947 put_buf(r1_bio); 1948 md_done_sync(mddev, s, uptodate); 1949 } 1950 } 1951 } 1952 1953 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector, 1954 int sectors, struct page *page, int rw) 1955 { 1956 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false)) 1957 /* success */ 1958 return 1; 1959 if (rw == WRITE) { 1960 set_bit(WriteErrorSeen, &rdev->flags); 1961 if (!test_and_set_bit(WantReplacement, 1962 &rdev->flags)) 1963 set_bit(MD_RECOVERY_NEEDED, & 1964 rdev->mddev->recovery); 1965 } 1966 /* need to record an error - either for the block or the device */ 1967 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 1968 md_error(rdev->mddev, rdev); 1969 return 0; 1970 } 1971 1972 static int fix_sync_read_error(struct r1bio *r1_bio) 1973 { 1974 /* Try some synchronous reads of other devices to get 1975 * good data, much like with normal read errors. Only 1976 * read into the pages we already have so we don't 1977 * need to re-issue the read request. 1978 * We don't need to freeze the array, because being in an 1979 * active sync request, there is no normal IO, and 1980 * no overlapping syncs. 1981 * We don't need to check is_badblock() again as we 1982 * made sure that anything with a bad block in range 1983 * will have bi_end_io clear. 1984 */ 1985 struct mddev *mddev = r1_bio->mddev; 1986 struct r1conf *conf = mddev->private; 1987 struct bio *bio = r1_bio->bios[r1_bio->read_disk]; 1988 sector_t sect = r1_bio->sector; 1989 int sectors = r1_bio->sectors; 1990 int idx = 0; 1991 struct md_rdev *rdev; 1992 1993 rdev = conf->mirrors[r1_bio->read_disk].rdev; 1994 if (test_bit(FailFast, &rdev->flags)) { 1995 /* Don't try recovering from here - just fail it 1996 * ... unless it is the last working device of course */ 1997 md_error(mddev, rdev); 1998 if (test_bit(Faulty, &rdev->flags)) 1999 /* Don't try to read from here, but make sure 2000 * put_buf does it's thing 2001 */ 2002 bio->bi_end_io = end_sync_write; 2003 } 2004 2005 while(sectors) { 2006 int s = sectors; 2007 int d = r1_bio->read_disk; 2008 int success = 0; 2009 int start; 2010 2011 if (s > (PAGE_SIZE>>9)) 2012 s = PAGE_SIZE >> 9; 2013 do { 2014 if (r1_bio->bios[d]->bi_end_io == end_sync_read) { 2015 /* No rcu protection needed here devices 2016 * can only be removed when no resync is 2017 * active, and resync is currently active 2018 */ 2019 rdev = conf->mirrors[d].rdev; 2020 if (sync_page_io(rdev, sect, s<<9, 2021 bio->bi_io_vec[idx].bv_page, 2022 REQ_OP_READ, 0, false)) { 2023 success = 1; 2024 break; 2025 } 2026 } 2027 d++; 2028 if (d == conf->raid_disks * 2) 2029 d = 0; 2030 } while (!success && d != r1_bio->read_disk); 2031 2032 if (!success) { 2033 char b[BDEVNAME_SIZE]; 2034 int abort = 0; 2035 /* Cannot read from anywhere, this block is lost. 2036 * Record a bad block on each device. If that doesn't 2037 * work just disable and interrupt the recovery. 2038 * Don't fail devices as that won't really help. 2039 */ 2040 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n", 2041 mdname(mddev), 2042 bdevname(bio->bi_bdev, b), 2043 (unsigned long long)r1_bio->sector); 2044 for (d = 0; d < conf->raid_disks * 2; d++) { 2045 rdev = conf->mirrors[d].rdev; 2046 if (!rdev || test_bit(Faulty, &rdev->flags)) 2047 continue; 2048 if (!rdev_set_badblocks(rdev, sect, s, 0)) 2049 abort = 1; 2050 } 2051 if (abort) { 2052 conf->recovery_disabled = 2053 mddev->recovery_disabled; 2054 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2055 md_done_sync(mddev, r1_bio->sectors, 0); 2056 put_buf(r1_bio); 2057 return 0; 2058 } 2059 /* Try next page */ 2060 sectors -= s; 2061 sect += s; 2062 idx++; 2063 continue; 2064 } 2065 2066 start = d; 2067 /* write it back and re-read */ 2068 while (d != r1_bio->read_disk) { 2069 if (d == 0) 2070 d = conf->raid_disks * 2; 2071 d--; 2072 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 2073 continue; 2074 rdev = conf->mirrors[d].rdev; 2075 if (r1_sync_page_io(rdev, sect, s, 2076 bio->bi_io_vec[idx].bv_page, 2077 WRITE) == 0) { 2078 r1_bio->bios[d]->bi_end_io = NULL; 2079 rdev_dec_pending(rdev, mddev); 2080 } 2081 } 2082 d = start; 2083 while (d != r1_bio->read_disk) { 2084 if (d == 0) 2085 d = conf->raid_disks * 2; 2086 d--; 2087 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 2088 continue; 2089 rdev = conf->mirrors[d].rdev; 2090 if (r1_sync_page_io(rdev, sect, s, 2091 bio->bi_io_vec[idx].bv_page, 2092 READ) != 0) 2093 atomic_add(s, &rdev->corrected_errors); 2094 } 2095 sectors -= s; 2096 sect += s; 2097 idx ++; 2098 } 2099 set_bit(R1BIO_Uptodate, &r1_bio->state); 2100 bio->bi_error = 0; 2101 return 1; 2102 } 2103 2104 static void process_checks(struct r1bio *r1_bio) 2105 { 2106 /* We have read all readable devices. If we haven't 2107 * got the block, then there is no hope left. 2108 * If we have, then we want to do a comparison 2109 * and skip the write if everything is the same. 2110 * If any blocks failed to read, then we need to 2111 * attempt an over-write 2112 */ 2113 struct mddev *mddev = r1_bio->mddev; 2114 struct r1conf *conf = mddev->private; 2115 int primary; 2116 int i; 2117 int vcnt; 2118 2119 /* Fix variable parts of all bios */ 2120 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9); 2121 for (i = 0; i < conf->raid_disks * 2; i++) { 2122 int j; 2123 int size; 2124 int error; 2125 struct bio *b = r1_bio->bios[i]; 2126 if (b->bi_end_io != end_sync_read) 2127 continue; 2128 /* fixup the bio for reuse, but preserve errno */ 2129 error = b->bi_error; 2130 bio_reset(b); 2131 b->bi_error = error; 2132 b->bi_vcnt = vcnt; 2133 b->bi_iter.bi_size = r1_bio->sectors << 9; 2134 b->bi_iter.bi_sector = r1_bio->sector + 2135 conf->mirrors[i].rdev->data_offset; 2136 b->bi_bdev = conf->mirrors[i].rdev->bdev; 2137 b->bi_end_io = end_sync_read; 2138 b->bi_private = r1_bio; 2139 2140 size = b->bi_iter.bi_size; 2141 for (j = 0; j < vcnt ; j++) { 2142 struct bio_vec *bi; 2143 bi = &b->bi_io_vec[j]; 2144 bi->bv_offset = 0; 2145 if (size > PAGE_SIZE) 2146 bi->bv_len = PAGE_SIZE; 2147 else 2148 bi->bv_len = size; 2149 size -= PAGE_SIZE; 2150 } 2151 } 2152 for (primary = 0; primary < conf->raid_disks * 2; primary++) 2153 if (r1_bio->bios[primary]->bi_end_io == end_sync_read && 2154 !r1_bio->bios[primary]->bi_error) { 2155 r1_bio->bios[primary]->bi_end_io = NULL; 2156 rdev_dec_pending(conf->mirrors[primary].rdev, mddev); 2157 break; 2158 } 2159 r1_bio->read_disk = primary; 2160 for (i = 0; i < conf->raid_disks * 2; i++) { 2161 int j; 2162 struct bio *pbio = r1_bio->bios[primary]; 2163 struct bio *sbio = r1_bio->bios[i]; 2164 int error = sbio->bi_error; 2165 2166 if (sbio->bi_end_io != end_sync_read) 2167 continue; 2168 /* Now we can 'fixup' the error value */ 2169 sbio->bi_error = 0; 2170 2171 if (!error) { 2172 for (j = vcnt; j-- ; ) { 2173 struct page *p, *s; 2174 p = pbio->bi_io_vec[j].bv_page; 2175 s = sbio->bi_io_vec[j].bv_page; 2176 if (memcmp(page_address(p), 2177 page_address(s), 2178 sbio->bi_io_vec[j].bv_len)) 2179 break; 2180 } 2181 } else 2182 j = 0; 2183 if (j >= 0) 2184 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches); 2185 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery) 2186 && !error)) { 2187 /* No need to write to this device. */ 2188 sbio->bi_end_io = NULL; 2189 rdev_dec_pending(conf->mirrors[i].rdev, mddev); 2190 continue; 2191 } 2192 2193 bio_copy_data(sbio, pbio); 2194 } 2195 } 2196 2197 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio) 2198 { 2199 struct r1conf *conf = mddev->private; 2200 int i; 2201 int disks = conf->raid_disks * 2; 2202 struct bio *bio, *wbio; 2203 2204 bio = r1_bio->bios[r1_bio->read_disk]; 2205 2206 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 2207 /* ouch - failed to read all of that. */ 2208 if (!fix_sync_read_error(r1_bio)) 2209 return; 2210 2211 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2212 process_checks(r1_bio); 2213 2214 /* 2215 * schedule writes 2216 */ 2217 atomic_set(&r1_bio->remaining, 1); 2218 for (i = 0; i < disks ; i++) { 2219 wbio = r1_bio->bios[i]; 2220 if (wbio->bi_end_io == NULL || 2221 (wbio->bi_end_io == end_sync_read && 2222 (i == r1_bio->read_disk || 2223 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)))) 2224 continue; 2225 2226 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0); 2227 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags)) 2228 wbio->bi_opf |= MD_FAILFAST; 2229 2230 wbio->bi_end_io = end_sync_write; 2231 atomic_inc(&r1_bio->remaining); 2232 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio)); 2233 2234 generic_make_request(wbio); 2235 } 2236 2237 if (atomic_dec_and_test(&r1_bio->remaining)) { 2238 /* if we're here, all write(s) have completed, so clean up */ 2239 int s = r1_bio->sectors; 2240 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2241 test_bit(R1BIO_WriteError, &r1_bio->state)) 2242 reschedule_retry(r1_bio); 2243 else { 2244 put_buf(r1_bio); 2245 md_done_sync(mddev, s, 1); 2246 } 2247 } 2248 } 2249 2250 /* 2251 * This is a kernel thread which: 2252 * 2253 * 1. Retries failed read operations on working mirrors. 2254 * 2. Updates the raid superblock when problems encounter. 2255 * 3. Performs writes following reads for array synchronising. 2256 */ 2257 2258 static void fix_read_error(struct r1conf *conf, int read_disk, 2259 sector_t sect, int sectors) 2260 { 2261 struct mddev *mddev = conf->mddev; 2262 while(sectors) { 2263 int s = sectors; 2264 int d = read_disk; 2265 int success = 0; 2266 int start; 2267 struct md_rdev *rdev; 2268 2269 if (s > (PAGE_SIZE>>9)) 2270 s = PAGE_SIZE >> 9; 2271 2272 do { 2273 sector_t first_bad; 2274 int bad_sectors; 2275 2276 rcu_read_lock(); 2277 rdev = rcu_dereference(conf->mirrors[d].rdev); 2278 if (rdev && 2279 (test_bit(In_sync, &rdev->flags) || 2280 (!test_bit(Faulty, &rdev->flags) && 2281 rdev->recovery_offset >= sect + s)) && 2282 is_badblock(rdev, sect, s, 2283 &first_bad, &bad_sectors) == 0) { 2284 atomic_inc(&rdev->nr_pending); 2285 rcu_read_unlock(); 2286 if (sync_page_io(rdev, sect, s<<9, 2287 conf->tmppage, REQ_OP_READ, 0, false)) 2288 success = 1; 2289 rdev_dec_pending(rdev, mddev); 2290 if (success) 2291 break; 2292 } else 2293 rcu_read_unlock(); 2294 d++; 2295 if (d == conf->raid_disks * 2) 2296 d = 0; 2297 } while (!success && d != read_disk); 2298 2299 if (!success) { 2300 /* Cannot read from anywhere - mark it bad */ 2301 struct md_rdev *rdev = conf->mirrors[read_disk].rdev; 2302 if (!rdev_set_badblocks(rdev, sect, s, 0)) 2303 md_error(mddev, rdev); 2304 break; 2305 } 2306 /* write it back and re-read */ 2307 start = d; 2308 while (d != read_disk) { 2309 if (d==0) 2310 d = conf->raid_disks * 2; 2311 d--; 2312 rcu_read_lock(); 2313 rdev = rcu_dereference(conf->mirrors[d].rdev); 2314 if (rdev && 2315 !test_bit(Faulty, &rdev->flags)) { 2316 atomic_inc(&rdev->nr_pending); 2317 rcu_read_unlock(); 2318 r1_sync_page_io(rdev, sect, s, 2319 conf->tmppage, WRITE); 2320 rdev_dec_pending(rdev, mddev); 2321 } else 2322 rcu_read_unlock(); 2323 } 2324 d = start; 2325 while (d != read_disk) { 2326 char b[BDEVNAME_SIZE]; 2327 if (d==0) 2328 d = conf->raid_disks * 2; 2329 d--; 2330 rcu_read_lock(); 2331 rdev = rcu_dereference(conf->mirrors[d].rdev); 2332 if (rdev && 2333 !test_bit(Faulty, &rdev->flags)) { 2334 atomic_inc(&rdev->nr_pending); 2335 rcu_read_unlock(); 2336 if (r1_sync_page_io(rdev, sect, s, 2337 conf->tmppage, READ)) { 2338 atomic_add(s, &rdev->corrected_errors); 2339 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n", 2340 mdname(mddev), s, 2341 (unsigned long long)(sect + 2342 rdev->data_offset), 2343 bdevname(rdev->bdev, b)); 2344 } 2345 rdev_dec_pending(rdev, mddev); 2346 } else 2347 rcu_read_unlock(); 2348 } 2349 sectors -= s; 2350 sect += s; 2351 } 2352 } 2353 2354 static int narrow_write_error(struct r1bio *r1_bio, int i) 2355 { 2356 struct mddev *mddev = r1_bio->mddev; 2357 struct r1conf *conf = mddev->private; 2358 struct md_rdev *rdev = conf->mirrors[i].rdev; 2359 2360 /* bio has the data to be written to device 'i' where 2361 * we just recently had a write error. 2362 * We repeatedly clone the bio and trim down to one block, 2363 * then try the write. Where the write fails we record 2364 * a bad block. 2365 * It is conceivable that the bio doesn't exactly align with 2366 * blocks. We must handle this somehow. 2367 * 2368 * We currently own a reference on the rdev. 2369 */ 2370 2371 int block_sectors; 2372 sector_t sector; 2373 int sectors; 2374 int sect_to_write = r1_bio->sectors; 2375 int ok = 1; 2376 2377 if (rdev->badblocks.shift < 0) 2378 return 0; 2379 2380 block_sectors = roundup(1 << rdev->badblocks.shift, 2381 bdev_logical_block_size(rdev->bdev) >> 9); 2382 sector = r1_bio->sector; 2383 sectors = ((sector + block_sectors) 2384 & ~(sector_t)(block_sectors - 1)) 2385 - sector; 2386 2387 while (sect_to_write) { 2388 struct bio *wbio; 2389 if (sectors > sect_to_write) 2390 sectors = sect_to_write; 2391 /* Write at 'sector' for 'sectors'*/ 2392 2393 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 2394 unsigned vcnt = r1_bio->behind_page_count; 2395 struct bio_vec *vec = r1_bio->behind_bvecs; 2396 2397 while (!vec->bv_page) { 2398 vec++; 2399 vcnt--; 2400 } 2401 2402 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev); 2403 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec)); 2404 2405 wbio->bi_vcnt = vcnt; 2406 } else { 2407 wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO, 2408 mddev->bio_set); 2409 } 2410 2411 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0); 2412 wbio->bi_iter.bi_sector = r1_bio->sector; 2413 wbio->bi_iter.bi_size = r1_bio->sectors << 9; 2414 2415 bio_trim(wbio, sector - r1_bio->sector, sectors); 2416 wbio->bi_iter.bi_sector += rdev->data_offset; 2417 wbio->bi_bdev = rdev->bdev; 2418 2419 if (submit_bio_wait(wbio) < 0) 2420 /* failure! */ 2421 ok = rdev_set_badblocks(rdev, sector, 2422 sectors, 0) 2423 && ok; 2424 2425 bio_put(wbio); 2426 sect_to_write -= sectors; 2427 sector += sectors; 2428 sectors = block_sectors; 2429 } 2430 return ok; 2431 } 2432 2433 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2434 { 2435 int m; 2436 int s = r1_bio->sectors; 2437 for (m = 0; m < conf->raid_disks * 2 ; m++) { 2438 struct md_rdev *rdev = conf->mirrors[m].rdev; 2439 struct bio *bio = r1_bio->bios[m]; 2440 if (bio->bi_end_io == NULL) 2441 continue; 2442 if (!bio->bi_error && 2443 test_bit(R1BIO_MadeGood, &r1_bio->state)) { 2444 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0); 2445 } 2446 if (bio->bi_error && 2447 test_bit(R1BIO_WriteError, &r1_bio->state)) { 2448 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0)) 2449 md_error(conf->mddev, rdev); 2450 } 2451 } 2452 put_buf(r1_bio); 2453 md_done_sync(conf->mddev, s, 1); 2454 } 2455 2456 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2457 { 2458 int m, idx; 2459 bool fail = false; 2460 2461 for (m = 0; m < conf->raid_disks * 2 ; m++) 2462 if (r1_bio->bios[m] == IO_MADE_GOOD) { 2463 struct md_rdev *rdev = conf->mirrors[m].rdev; 2464 rdev_clear_badblocks(rdev, 2465 r1_bio->sector, 2466 r1_bio->sectors, 0); 2467 rdev_dec_pending(rdev, conf->mddev); 2468 } else if (r1_bio->bios[m] != NULL) { 2469 /* This drive got a write error. We need to 2470 * narrow down and record precise write 2471 * errors. 2472 */ 2473 fail = true; 2474 if (!narrow_write_error(r1_bio, m)) { 2475 md_error(conf->mddev, 2476 conf->mirrors[m].rdev); 2477 /* an I/O failed, we can't clear the bitmap */ 2478 set_bit(R1BIO_Degraded, &r1_bio->state); 2479 } 2480 rdev_dec_pending(conf->mirrors[m].rdev, 2481 conf->mddev); 2482 } 2483 if (fail) { 2484 spin_lock_irq(&conf->device_lock); 2485 list_add(&r1_bio->retry_list, &conf->bio_end_io_list); 2486 idx = sector_to_idx(r1_bio->sector); 2487 atomic_inc(&conf->nr_queued[idx]); 2488 spin_unlock_irq(&conf->device_lock); 2489 /* 2490 * In case freeze_array() is waiting for condition 2491 * get_unqueued_pending() == extra to be true. 2492 */ 2493 wake_up(&conf->wait_barrier); 2494 md_wakeup_thread(conf->mddev->thread); 2495 } else { 2496 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2497 close_write(r1_bio); 2498 raid_end_bio_io(r1_bio); 2499 } 2500 } 2501 2502 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio) 2503 { 2504 int disk; 2505 int max_sectors; 2506 struct mddev *mddev = conf->mddev; 2507 struct bio *bio; 2508 char b[BDEVNAME_SIZE]; 2509 struct md_rdev *rdev; 2510 dev_t bio_dev; 2511 sector_t bio_sector; 2512 2513 clear_bit(R1BIO_ReadError, &r1_bio->state); 2514 /* we got a read error. Maybe the drive is bad. Maybe just 2515 * the block and we can fix it. 2516 * We freeze all other IO, and try reading the block from 2517 * other devices. When we find one, we re-write 2518 * and check it that fixes the read error. 2519 * This is all done synchronously while the array is 2520 * frozen 2521 */ 2522 2523 bio = r1_bio->bios[r1_bio->read_disk]; 2524 bdevname(bio->bi_bdev, b); 2525 bio_dev = bio->bi_bdev->bd_dev; 2526 bio_sector = conf->mirrors[r1_bio->read_disk].rdev->data_offset + r1_bio->sector; 2527 bio_put(bio); 2528 r1_bio->bios[r1_bio->read_disk] = NULL; 2529 2530 rdev = conf->mirrors[r1_bio->read_disk].rdev; 2531 if (mddev->ro == 0 2532 && !test_bit(FailFast, &rdev->flags)) { 2533 freeze_array(conf, 1); 2534 fix_read_error(conf, r1_bio->read_disk, 2535 r1_bio->sector, r1_bio->sectors); 2536 unfreeze_array(conf); 2537 } else { 2538 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED; 2539 } 2540 2541 rdev_dec_pending(rdev, conf->mddev); 2542 2543 read_more: 2544 disk = read_balance(conf, r1_bio, &max_sectors); 2545 if (disk == -1) { 2546 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n", 2547 mdname(mddev), b, (unsigned long long)r1_bio->sector); 2548 raid_end_bio_io(r1_bio); 2549 } else { 2550 const unsigned long do_sync 2551 = r1_bio->master_bio->bi_opf & REQ_SYNC; 2552 r1_bio->read_disk = disk; 2553 bio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO, 2554 mddev->bio_set); 2555 bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector, 2556 max_sectors); 2557 r1_bio->bios[r1_bio->read_disk] = bio; 2558 rdev = conf->mirrors[disk].rdev; 2559 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n", 2560 mdname(mddev), 2561 (unsigned long long)r1_bio->sector, 2562 bdevname(rdev->bdev, b)); 2563 bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset; 2564 bio->bi_bdev = rdev->bdev; 2565 bio->bi_end_io = raid1_end_read_request; 2566 bio_set_op_attrs(bio, REQ_OP_READ, do_sync); 2567 if (test_bit(FailFast, &rdev->flags) && 2568 test_bit(R1BIO_FailFast, &r1_bio->state)) 2569 bio->bi_opf |= MD_FAILFAST; 2570 bio->bi_private = r1_bio; 2571 if (max_sectors < r1_bio->sectors) { 2572 /* Drat - have to split this up more */ 2573 struct bio *mbio = r1_bio->master_bio; 2574 int sectors_handled = (r1_bio->sector + max_sectors 2575 - mbio->bi_iter.bi_sector); 2576 r1_bio->sectors = max_sectors; 2577 spin_lock_irq(&conf->device_lock); 2578 if (mbio->bi_phys_segments == 0) 2579 mbio->bi_phys_segments = 2; 2580 else 2581 mbio->bi_phys_segments++; 2582 spin_unlock_irq(&conf->device_lock); 2583 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), 2584 bio, bio_dev, bio_sector); 2585 generic_make_request(bio); 2586 bio = NULL; 2587 2588 r1_bio = alloc_r1bio(mddev, mbio, sectors_handled); 2589 set_bit(R1BIO_ReadError, &r1_bio->state); 2590 2591 goto read_more; 2592 } else { 2593 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), 2594 bio, bio_dev, bio_sector); 2595 generic_make_request(bio); 2596 } 2597 } 2598 } 2599 2600 static void raid1d(struct md_thread *thread) 2601 { 2602 struct mddev *mddev = thread->mddev; 2603 struct r1bio *r1_bio; 2604 unsigned long flags; 2605 struct r1conf *conf = mddev->private; 2606 struct list_head *head = &conf->retry_list; 2607 struct blk_plug plug; 2608 int idx; 2609 2610 md_check_recovery(mddev); 2611 2612 if (!list_empty_careful(&conf->bio_end_io_list) && 2613 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 2614 LIST_HEAD(tmp); 2615 spin_lock_irqsave(&conf->device_lock, flags); 2616 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 2617 list_splice_init(&conf->bio_end_io_list, &tmp); 2618 spin_unlock_irqrestore(&conf->device_lock, flags); 2619 while (!list_empty(&tmp)) { 2620 r1_bio = list_first_entry(&tmp, struct r1bio, 2621 retry_list); 2622 list_del(&r1_bio->retry_list); 2623 idx = sector_to_idx(r1_bio->sector); 2624 atomic_dec(&conf->nr_queued[idx]); 2625 if (mddev->degraded) 2626 set_bit(R1BIO_Degraded, &r1_bio->state); 2627 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2628 close_write(r1_bio); 2629 raid_end_bio_io(r1_bio); 2630 } 2631 } 2632 2633 blk_start_plug(&plug); 2634 for (;;) { 2635 2636 flush_pending_writes(conf); 2637 2638 spin_lock_irqsave(&conf->device_lock, flags); 2639 if (list_empty(head)) { 2640 spin_unlock_irqrestore(&conf->device_lock, flags); 2641 break; 2642 } 2643 r1_bio = list_entry(head->prev, struct r1bio, retry_list); 2644 list_del(head->prev); 2645 idx = sector_to_idx(r1_bio->sector); 2646 atomic_dec(&conf->nr_queued[idx]); 2647 spin_unlock_irqrestore(&conf->device_lock, flags); 2648 2649 mddev = r1_bio->mddev; 2650 conf = mddev->private; 2651 if (test_bit(R1BIO_IsSync, &r1_bio->state)) { 2652 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2653 test_bit(R1BIO_WriteError, &r1_bio->state)) 2654 handle_sync_write_finished(conf, r1_bio); 2655 else 2656 sync_request_write(mddev, r1_bio); 2657 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2658 test_bit(R1BIO_WriteError, &r1_bio->state)) 2659 handle_write_finished(conf, r1_bio); 2660 else if (test_bit(R1BIO_ReadError, &r1_bio->state)) 2661 handle_read_error(conf, r1_bio); 2662 else 2663 /* just a partial read to be scheduled from separate 2664 * context 2665 */ 2666 generic_make_request(r1_bio->bios[r1_bio->read_disk]); 2667 2668 cond_resched(); 2669 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING)) 2670 md_check_recovery(mddev); 2671 } 2672 blk_finish_plug(&plug); 2673 } 2674 2675 static int init_resync(struct r1conf *conf) 2676 { 2677 int buffs; 2678 2679 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2680 BUG_ON(conf->r1buf_pool); 2681 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free, 2682 conf->poolinfo); 2683 if (!conf->r1buf_pool) 2684 return -ENOMEM; 2685 return 0; 2686 } 2687 2688 /* 2689 * perform a "sync" on one "block" 2690 * 2691 * We need to make sure that no normal I/O request - particularly write 2692 * requests - conflict with active sync requests. 2693 * 2694 * This is achieved by tracking pending requests and a 'barrier' concept 2695 * that can be installed to exclude normal IO requests. 2696 */ 2697 2698 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr, 2699 int *skipped) 2700 { 2701 struct r1conf *conf = mddev->private; 2702 struct r1bio *r1_bio; 2703 struct bio *bio; 2704 sector_t max_sector, nr_sectors; 2705 int disk = -1; 2706 int i; 2707 int wonly = -1; 2708 int write_targets = 0, read_targets = 0; 2709 sector_t sync_blocks; 2710 int still_degraded = 0; 2711 int good_sectors = RESYNC_SECTORS; 2712 int min_bad = 0; /* number of sectors that are bad in all devices */ 2713 int idx = sector_to_idx(sector_nr); 2714 2715 if (!conf->r1buf_pool) 2716 if (init_resync(conf)) 2717 return 0; 2718 2719 max_sector = mddev->dev_sectors; 2720 if (sector_nr >= max_sector) { 2721 /* If we aborted, we need to abort the 2722 * sync on the 'current' bitmap chunk (there will 2723 * only be one in raid1 resync. 2724 * We can find the current addess in mddev->curr_resync 2725 */ 2726 if (mddev->curr_resync < max_sector) /* aborted */ 2727 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2728 &sync_blocks, 1); 2729 else /* completed sync */ 2730 conf->fullsync = 0; 2731 2732 bitmap_close_sync(mddev->bitmap); 2733 close_sync(conf); 2734 2735 if (mddev_is_clustered(mddev)) { 2736 conf->cluster_sync_low = 0; 2737 conf->cluster_sync_high = 0; 2738 } 2739 return 0; 2740 } 2741 2742 if (mddev->bitmap == NULL && 2743 mddev->recovery_cp == MaxSector && 2744 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 2745 conf->fullsync == 0) { 2746 *skipped = 1; 2747 return max_sector - sector_nr; 2748 } 2749 /* before building a request, check if we can skip these blocks.. 2750 * This call the bitmap_start_sync doesn't actually record anything 2751 */ 2752 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 2753 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2754 /* We can skip this block, and probably several more */ 2755 *skipped = 1; 2756 return sync_blocks; 2757 } 2758 2759 /* 2760 * If there is non-resync activity waiting for a turn, then let it 2761 * though before starting on this new sync request. 2762 */ 2763 if (atomic_read(&conf->nr_waiting[idx])) 2764 schedule_timeout_uninterruptible(1); 2765 2766 /* we are incrementing sector_nr below. To be safe, we check against 2767 * sector_nr + two times RESYNC_SECTORS 2768 */ 2769 2770 bitmap_cond_end_sync(mddev->bitmap, sector_nr, 2771 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high)); 2772 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO); 2773 2774 raise_barrier(conf, sector_nr); 2775 2776 rcu_read_lock(); 2777 /* 2778 * If we get a correctably read error during resync or recovery, 2779 * we might want to read from a different device. So we 2780 * flag all drives that could conceivably be read from for READ, 2781 * and any others (which will be non-In_sync devices) for WRITE. 2782 * If a read fails, we try reading from something else for which READ 2783 * is OK. 2784 */ 2785 2786 r1_bio->mddev = mddev; 2787 r1_bio->sector = sector_nr; 2788 r1_bio->state = 0; 2789 set_bit(R1BIO_IsSync, &r1_bio->state); 2790 /* make sure good_sectors won't go across barrier unit boundary */ 2791 good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors); 2792 2793 for (i = 0; i < conf->raid_disks * 2; i++) { 2794 struct md_rdev *rdev; 2795 bio = r1_bio->bios[i]; 2796 bio_reset(bio); 2797 2798 rdev = rcu_dereference(conf->mirrors[i].rdev); 2799 if (rdev == NULL || 2800 test_bit(Faulty, &rdev->flags)) { 2801 if (i < conf->raid_disks) 2802 still_degraded = 1; 2803 } else if (!test_bit(In_sync, &rdev->flags)) { 2804 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 2805 bio->bi_end_io = end_sync_write; 2806 write_targets ++; 2807 } else { 2808 /* may need to read from here */ 2809 sector_t first_bad = MaxSector; 2810 int bad_sectors; 2811 2812 if (is_badblock(rdev, sector_nr, good_sectors, 2813 &first_bad, &bad_sectors)) { 2814 if (first_bad > sector_nr) 2815 good_sectors = first_bad - sector_nr; 2816 else { 2817 bad_sectors -= (sector_nr - first_bad); 2818 if (min_bad == 0 || 2819 min_bad > bad_sectors) 2820 min_bad = bad_sectors; 2821 } 2822 } 2823 if (sector_nr < first_bad) { 2824 if (test_bit(WriteMostly, &rdev->flags)) { 2825 if (wonly < 0) 2826 wonly = i; 2827 } else { 2828 if (disk < 0) 2829 disk = i; 2830 } 2831 bio_set_op_attrs(bio, REQ_OP_READ, 0); 2832 bio->bi_end_io = end_sync_read; 2833 read_targets++; 2834 } else if (!test_bit(WriteErrorSeen, &rdev->flags) && 2835 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 2836 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 2837 /* 2838 * The device is suitable for reading (InSync), 2839 * but has bad block(s) here. Let's try to correct them, 2840 * if we are doing resync or repair. Otherwise, leave 2841 * this device alone for this sync request. 2842 */ 2843 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 2844 bio->bi_end_io = end_sync_write; 2845 write_targets++; 2846 } 2847 } 2848 if (bio->bi_end_io) { 2849 atomic_inc(&rdev->nr_pending); 2850 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset; 2851 bio->bi_bdev = rdev->bdev; 2852 bio->bi_private = r1_bio; 2853 if (test_bit(FailFast, &rdev->flags)) 2854 bio->bi_opf |= MD_FAILFAST; 2855 } 2856 } 2857 rcu_read_unlock(); 2858 if (disk < 0) 2859 disk = wonly; 2860 r1_bio->read_disk = disk; 2861 2862 if (read_targets == 0 && min_bad > 0) { 2863 /* These sectors are bad on all InSync devices, so we 2864 * need to mark them bad on all write targets 2865 */ 2866 int ok = 1; 2867 for (i = 0 ; i < conf->raid_disks * 2 ; i++) 2868 if (r1_bio->bios[i]->bi_end_io == end_sync_write) { 2869 struct md_rdev *rdev = conf->mirrors[i].rdev; 2870 ok = rdev_set_badblocks(rdev, sector_nr, 2871 min_bad, 0 2872 ) && ok; 2873 } 2874 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2875 *skipped = 1; 2876 put_buf(r1_bio); 2877 2878 if (!ok) { 2879 /* Cannot record the badblocks, so need to 2880 * abort the resync. 2881 * If there are multiple read targets, could just 2882 * fail the really bad ones ??? 2883 */ 2884 conf->recovery_disabled = mddev->recovery_disabled; 2885 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2886 return 0; 2887 } else 2888 return min_bad; 2889 2890 } 2891 if (min_bad > 0 && min_bad < good_sectors) { 2892 /* only resync enough to reach the next bad->good 2893 * transition */ 2894 good_sectors = min_bad; 2895 } 2896 2897 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0) 2898 /* extra read targets are also write targets */ 2899 write_targets += read_targets-1; 2900 2901 if (write_targets == 0 || read_targets == 0) { 2902 /* There is nowhere to write, so all non-sync 2903 * drives must be failed - so we are finished 2904 */ 2905 sector_t rv; 2906 if (min_bad > 0) 2907 max_sector = sector_nr + min_bad; 2908 rv = max_sector - sector_nr; 2909 *skipped = 1; 2910 put_buf(r1_bio); 2911 return rv; 2912 } 2913 2914 if (max_sector > mddev->resync_max) 2915 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 2916 if (max_sector > sector_nr + good_sectors) 2917 max_sector = sector_nr + good_sectors; 2918 nr_sectors = 0; 2919 sync_blocks = 0; 2920 do { 2921 struct page *page; 2922 int len = PAGE_SIZE; 2923 if (sector_nr + (len>>9) > max_sector) 2924 len = (max_sector - sector_nr) << 9; 2925 if (len == 0) 2926 break; 2927 if (sync_blocks == 0) { 2928 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 2929 &sync_blocks, still_degraded) && 2930 !conf->fullsync && 2931 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2932 break; 2933 if ((len >> 9) > sync_blocks) 2934 len = sync_blocks<<9; 2935 } 2936 2937 for (i = 0 ; i < conf->raid_disks * 2; i++) { 2938 bio = r1_bio->bios[i]; 2939 if (bio->bi_end_io) { 2940 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 2941 if (bio_add_page(bio, page, len, 0) == 0) { 2942 /* stop here */ 2943 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 2944 while (i > 0) { 2945 i--; 2946 bio = r1_bio->bios[i]; 2947 if (bio->bi_end_io==NULL) 2948 continue; 2949 /* remove last page from this bio */ 2950 bio->bi_vcnt--; 2951 bio->bi_iter.bi_size -= len; 2952 bio_clear_flag(bio, BIO_SEG_VALID); 2953 } 2954 goto bio_full; 2955 } 2956 } 2957 } 2958 nr_sectors += len>>9; 2959 sector_nr += len>>9; 2960 sync_blocks -= (len>>9); 2961 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES); 2962 bio_full: 2963 r1_bio->sectors = nr_sectors; 2964 2965 if (mddev_is_clustered(mddev) && 2966 conf->cluster_sync_high < sector_nr + nr_sectors) { 2967 conf->cluster_sync_low = mddev->curr_resync_completed; 2968 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS; 2969 /* Send resync message */ 2970 md_cluster_ops->resync_info_update(mddev, 2971 conf->cluster_sync_low, 2972 conf->cluster_sync_high); 2973 } 2974 2975 /* For a user-requested sync, we read all readable devices and do a 2976 * compare 2977 */ 2978 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2979 atomic_set(&r1_bio->remaining, read_targets); 2980 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) { 2981 bio = r1_bio->bios[i]; 2982 if (bio->bi_end_io == end_sync_read) { 2983 read_targets--; 2984 md_sync_acct(bio->bi_bdev, nr_sectors); 2985 if (read_targets == 1) 2986 bio->bi_opf &= ~MD_FAILFAST; 2987 generic_make_request(bio); 2988 } 2989 } 2990 } else { 2991 atomic_set(&r1_bio->remaining, 1); 2992 bio = r1_bio->bios[r1_bio->read_disk]; 2993 md_sync_acct(bio->bi_bdev, nr_sectors); 2994 if (read_targets == 1) 2995 bio->bi_opf &= ~MD_FAILFAST; 2996 generic_make_request(bio); 2997 2998 } 2999 return nr_sectors; 3000 } 3001 3002 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks) 3003 { 3004 if (sectors) 3005 return sectors; 3006 3007 return mddev->dev_sectors; 3008 } 3009 3010 static struct r1conf *setup_conf(struct mddev *mddev) 3011 { 3012 struct r1conf *conf; 3013 int i; 3014 struct raid1_info *disk; 3015 struct md_rdev *rdev; 3016 int err = -ENOMEM; 3017 3018 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL); 3019 if (!conf) 3020 goto abort; 3021 3022 conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR, 3023 sizeof(atomic_t), GFP_KERNEL); 3024 if (!conf->nr_pending) 3025 goto abort; 3026 3027 conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR, 3028 sizeof(atomic_t), GFP_KERNEL); 3029 if (!conf->nr_waiting) 3030 goto abort; 3031 3032 conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR, 3033 sizeof(atomic_t), GFP_KERNEL); 3034 if (!conf->nr_queued) 3035 goto abort; 3036 3037 conf->barrier = kcalloc(BARRIER_BUCKETS_NR, 3038 sizeof(atomic_t), GFP_KERNEL); 3039 if (!conf->barrier) 3040 goto abort; 3041 3042 conf->mirrors = kzalloc(sizeof(struct raid1_info) 3043 * mddev->raid_disks * 2, 3044 GFP_KERNEL); 3045 if (!conf->mirrors) 3046 goto abort; 3047 3048 conf->tmppage = alloc_page(GFP_KERNEL); 3049 if (!conf->tmppage) 3050 goto abort; 3051 3052 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL); 3053 if (!conf->poolinfo) 3054 goto abort; 3055 conf->poolinfo->raid_disks = mddev->raid_disks * 2; 3056 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 3057 r1bio_pool_free, 3058 conf->poolinfo); 3059 if (!conf->r1bio_pool) 3060 goto abort; 3061 3062 conf->poolinfo->mddev = mddev; 3063 3064 err = -EINVAL; 3065 spin_lock_init(&conf->device_lock); 3066 rdev_for_each(rdev, mddev) { 3067 struct request_queue *q; 3068 int disk_idx = rdev->raid_disk; 3069 if (disk_idx >= mddev->raid_disks 3070 || disk_idx < 0) 3071 continue; 3072 if (test_bit(Replacement, &rdev->flags)) 3073 disk = conf->mirrors + mddev->raid_disks + disk_idx; 3074 else 3075 disk = conf->mirrors + disk_idx; 3076 3077 if (disk->rdev) 3078 goto abort; 3079 disk->rdev = rdev; 3080 q = bdev_get_queue(rdev->bdev); 3081 3082 disk->head_position = 0; 3083 disk->seq_start = MaxSector; 3084 } 3085 conf->raid_disks = mddev->raid_disks; 3086 conf->mddev = mddev; 3087 INIT_LIST_HEAD(&conf->retry_list); 3088 INIT_LIST_HEAD(&conf->bio_end_io_list); 3089 3090 spin_lock_init(&conf->resync_lock); 3091 init_waitqueue_head(&conf->wait_barrier); 3092 3093 bio_list_init(&conf->pending_bio_list); 3094 conf->pending_count = 0; 3095 conf->recovery_disabled = mddev->recovery_disabled - 1; 3096 3097 err = -EIO; 3098 for (i = 0; i < conf->raid_disks * 2; i++) { 3099 3100 disk = conf->mirrors + i; 3101 3102 if (i < conf->raid_disks && 3103 disk[conf->raid_disks].rdev) { 3104 /* This slot has a replacement. */ 3105 if (!disk->rdev) { 3106 /* No original, just make the replacement 3107 * a recovering spare 3108 */ 3109 disk->rdev = 3110 disk[conf->raid_disks].rdev; 3111 disk[conf->raid_disks].rdev = NULL; 3112 } else if (!test_bit(In_sync, &disk->rdev->flags)) 3113 /* Original is not in_sync - bad */ 3114 goto abort; 3115 } 3116 3117 if (!disk->rdev || 3118 !test_bit(In_sync, &disk->rdev->flags)) { 3119 disk->head_position = 0; 3120 if (disk->rdev && 3121 (disk->rdev->saved_raid_disk < 0)) 3122 conf->fullsync = 1; 3123 } 3124 } 3125 3126 err = -ENOMEM; 3127 conf->thread = md_register_thread(raid1d, mddev, "raid1"); 3128 if (!conf->thread) 3129 goto abort; 3130 3131 return conf; 3132 3133 abort: 3134 if (conf) { 3135 mempool_destroy(conf->r1bio_pool); 3136 kfree(conf->mirrors); 3137 safe_put_page(conf->tmppage); 3138 kfree(conf->poolinfo); 3139 kfree(conf->nr_pending); 3140 kfree(conf->nr_waiting); 3141 kfree(conf->nr_queued); 3142 kfree(conf->barrier); 3143 kfree(conf); 3144 } 3145 return ERR_PTR(err); 3146 } 3147 3148 static void raid1_free(struct mddev *mddev, void *priv); 3149 static int raid1_run(struct mddev *mddev) 3150 { 3151 struct r1conf *conf; 3152 int i; 3153 struct md_rdev *rdev; 3154 int ret; 3155 bool discard_supported = false; 3156 3157 if (mddev->level != 1) { 3158 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n", 3159 mdname(mddev), mddev->level); 3160 return -EIO; 3161 } 3162 if (mddev->reshape_position != MaxSector) { 3163 pr_warn("md/raid1:%s: reshape_position set but not supported\n", 3164 mdname(mddev)); 3165 return -EIO; 3166 } 3167 /* 3168 * copy the already verified devices into our private RAID1 3169 * bookkeeping area. [whatever we allocate in run(), 3170 * should be freed in raid1_free()] 3171 */ 3172 if (mddev->private == NULL) 3173 conf = setup_conf(mddev); 3174 else 3175 conf = mddev->private; 3176 3177 if (IS_ERR(conf)) 3178 return PTR_ERR(conf); 3179 3180 if (mddev->queue) 3181 blk_queue_max_write_same_sectors(mddev->queue, 0); 3182 3183 rdev_for_each(rdev, mddev) { 3184 if (!mddev->gendisk) 3185 continue; 3186 disk_stack_limits(mddev->gendisk, rdev->bdev, 3187 rdev->data_offset << 9); 3188 if (blk_queue_discard(bdev_get_queue(rdev->bdev))) 3189 discard_supported = true; 3190 } 3191 3192 mddev->degraded = 0; 3193 for (i=0; i < conf->raid_disks; i++) 3194 if (conf->mirrors[i].rdev == NULL || 3195 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) || 3196 test_bit(Faulty, &conf->mirrors[i].rdev->flags)) 3197 mddev->degraded++; 3198 3199 if (conf->raid_disks - mddev->degraded == 1) 3200 mddev->recovery_cp = MaxSector; 3201 3202 if (mddev->recovery_cp != MaxSector) 3203 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n", 3204 mdname(mddev)); 3205 pr_info("md/raid1:%s: active with %d out of %d mirrors\n", 3206 mdname(mddev), mddev->raid_disks - mddev->degraded, 3207 mddev->raid_disks); 3208 3209 /* 3210 * Ok, everything is just fine now 3211 */ 3212 mddev->thread = conf->thread; 3213 conf->thread = NULL; 3214 mddev->private = conf; 3215 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags); 3216 3217 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0)); 3218 3219 if (mddev->queue) { 3220 if (discard_supported) 3221 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, 3222 mddev->queue); 3223 else 3224 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, 3225 mddev->queue); 3226 } 3227 3228 ret = md_integrity_register(mddev); 3229 if (ret) { 3230 md_unregister_thread(&mddev->thread); 3231 raid1_free(mddev, conf); 3232 } 3233 return ret; 3234 } 3235 3236 static void raid1_free(struct mddev *mddev, void *priv) 3237 { 3238 struct r1conf *conf = priv; 3239 3240 mempool_destroy(conf->r1bio_pool); 3241 kfree(conf->mirrors); 3242 safe_put_page(conf->tmppage); 3243 kfree(conf->poolinfo); 3244 kfree(conf->nr_pending); 3245 kfree(conf->nr_waiting); 3246 kfree(conf->nr_queued); 3247 kfree(conf->barrier); 3248 kfree(conf); 3249 } 3250 3251 static int raid1_resize(struct mddev *mddev, sector_t sectors) 3252 { 3253 /* no resync is happening, and there is enough space 3254 * on all devices, so we can resize. 3255 * We need to make sure resync covers any new space. 3256 * If the array is shrinking we should possibly wait until 3257 * any io in the removed space completes, but it hardly seems 3258 * worth it. 3259 */ 3260 sector_t newsize = raid1_size(mddev, sectors, 0); 3261 if (mddev->external_size && 3262 mddev->array_sectors > newsize) 3263 return -EINVAL; 3264 if (mddev->bitmap) { 3265 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0); 3266 if (ret) 3267 return ret; 3268 } 3269 md_set_array_sectors(mddev, newsize); 3270 if (sectors > mddev->dev_sectors && 3271 mddev->recovery_cp > mddev->dev_sectors) { 3272 mddev->recovery_cp = mddev->dev_sectors; 3273 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3274 } 3275 mddev->dev_sectors = sectors; 3276 mddev->resync_max_sectors = sectors; 3277 return 0; 3278 } 3279 3280 static int raid1_reshape(struct mddev *mddev) 3281 { 3282 /* We need to: 3283 * 1/ resize the r1bio_pool 3284 * 2/ resize conf->mirrors 3285 * 3286 * We allocate a new r1bio_pool if we can. 3287 * Then raise a device barrier and wait until all IO stops. 3288 * Then resize conf->mirrors and swap in the new r1bio pool. 3289 * 3290 * At the same time, we "pack" the devices so that all the missing 3291 * devices have the higher raid_disk numbers. 3292 */ 3293 mempool_t *newpool, *oldpool; 3294 struct pool_info *newpoolinfo; 3295 struct raid1_info *newmirrors; 3296 struct r1conf *conf = mddev->private; 3297 int cnt, raid_disks; 3298 unsigned long flags; 3299 int d, d2, err; 3300 3301 /* Cannot change chunk_size, layout, or level */ 3302 if (mddev->chunk_sectors != mddev->new_chunk_sectors || 3303 mddev->layout != mddev->new_layout || 3304 mddev->level != mddev->new_level) { 3305 mddev->new_chunk_sectors = mddev->chunk_sectors; 3306 mddev->new_layout = mddev->layout; 3307 mddev->new_level = mddev->level; 3308 return -EINVAL; 3309 } 3310 3311 if (!mddev_is_clustered(mddev)) { 3312 err = md_allow_write(mddev); 3313 if (err) 3314 return err; 3315 } 3316 3317 raid_disks = mddev->raid_disks + mddev->delta_disks; 3318 3319 if (raid_disks < conf->raid_disks) { 3320 cnt=0; 3321 for (d= 0; d < conf->raid_disks; d++) 3322 if (conf->mirrors[d].rdev) 3323 cnt++; 3324 if (cnt > raid_disks) 3325 return -EBUSY; 3326 } 3327 3328 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL); 3329 if (!newpoolinfo) 3330 return -ENOMEM; 3331 newpoolinfo->mddev = mddev; 3332 newpoolinfo->raid_disks = raid_disks * 2; 3333 3334 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 3335 r1bio_pool_free, newpoolinfo); 3336 if (!newpool) { 3337 kfree(newpoolinfo); 3338 return -ENOMEM; 3339 } 3340 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2, 3341 GFP_KERNEL); 3342 if (!newmirrors) { 3343 kfree(newpoolinfo); 3344 mempool_destroy(newpool); 3345 return -ENOMEM; 3346 } 3347 3348 freeze_array(conf, 0); 3349 3350 /* ok, everything is stopped */ 3351 oldpool = conf->r1bio_pool; 3352 conf->r1bio_pool = newpool; 3353 3354 for (d = d2 = 0; d < conf->raid_disks; d++) { 3355 struct md_rdev *rdev = conf->mirrors[d].rdev; 3356 if (rdev && rdev->raid_disk != d2) { 3357 sysfs_unlink_rdev(mddev, rdev); 3358 rdev->raid_disk = d2; 3359 sysfs_unlink_rdev(mddev, rdev); 3360 if (sysfs_link_rdev(mddev, rdev)) 3361 pr_warn("md/raid1:%s: cannot register rd%d\n", 3362 mdname(mddev), rdev->raid_disk); 3363 } 3364 if (rdev) 3365 newmirrors[d2++].rdev = rdev; 3366 } 3367 kfree(conf->mirrors); 3368 conf->mirrors = newmirrors; 3369 kfree(conf->poolinfo); 3370 conf->poolinfo = newpoolinfo; 3371 3372 spin_lock_irqsave(&conf->device_lock, flags); 3373 mddev->degraded += (raid_disks - conf->raid_disks); 3374 spin_unlock_irqrestore(&conf->device_lock, flags); 3375 conf->raid_disks = mddev->raid_disks = raid_disks; 3376 mddev->delta_disks = 0; 3377 3378 unfreeze_array(conf); 3379 3380 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 3381 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3382 md_wakeup_thread(mddev->thread); 3383 3384 mempool_destroy(oldpool); 3385 return 0; 3386 } 3387 3388 static void raid1_quiesce(struct mddev *mddev, int state) 3389 { 3390 struct r1conf *conf = mddev->private; 3391 3392 switch(state) { 3393 case 2: /* wake for suspend */ 3394 wake_up(&conf->wait_barrier); 3395 break; 3396 case 1: 3397 freeze_array(conf, 0); 3398 break; 3399 case 0: 3400 unfreeze_array(conf); 3401 break; 3402 } 3403 } 3404 3405 static void *raid1_takeover(struct mddev *mddev) 3406 { 3407 /* raid1 can take over: 3408 * raid5 with 2 devices, any layout or chunk size 3409 */ 3410 if (mddev->level == 5 && mddev->raid_disks == 2) { 3411 struct r1conf *conf; 3412 mddev->new_level = 1; 3413 mddev->new_layout = 0; 3414 mddev->new_chunk_sectors = 0; 3415 conf = setup_conf(mddev); 3416 if (!IS_ERR(conf)) { 3417 /* Array must appear to be quiesced */ 3418 conf->array_frozen = 1; 3419 mddev_clear_unsupported_flags(mddev, 3420 UNSUPPORTED_MDDEV_FLAGS); 3421 } 3422 return conf; 3423 } 3424 return ERR_PTR(-EINVAL); 3425 } 3426 3427 static struct md_personality raid1_personality = 3428 { 3429 .name = "raid1", 3430 .level = 1, 3431 .owner = THIS_MODULE, 3432 .make_request = raid1_make_request, 3433 .run = raid1_run, 3434 .free = raid1_free, 3435 .status = raid1_status, 3436 .error_handler = raid1_error, 3437 .hot_add_disk = raid1_add_disk, 3438 .hot_remove_disk= raid1_remove_disk, 3439 .spare_active = raid1_spare_active, 3440 .sync_request = raid1_sync_request, 3441 .resize = raid1_resize, 3442 .size = raid1_size, 3443 .check_reshape = raid1_reshape, 3444 .quiesce = raid1_quiesce, 3445 .takeover = raid1_takeover, 3446 .congested = raid1_congested, 3447 }; 3448 3449 static int __init raid_init(void) 3450 { 3451 return register_md_personality(&raid1_personality); 3452 } 3453 3454 static void raid_exit(void) 3455 { 3456 unregister_md_personality(&raid1_personality); 3457 } 3458 3459 module_init(raid_init); 3460 module_exit(raid_exit); 3461 MODULE_LICENSE("GPL"); 3462 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD"); 3463 MODULE_ALIAS("md-personality-3"); /* RAID1 */ 3464 MODULE_ALIAS("md-raid1"); 3465 MODULE_ALIAS("md-level-1"); 3466 3467 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); 3468