xref: /openbmc/linux/drivers/md/raid1.c (revision 4f6cce39)
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33 
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include <linux/sched/signal.h>
41 
42 #include <trace/events/block.h>
43 
44 #include "md.h"
45 #include "raid1.h"
46 #include "bitmap.h"
47 
48 #define UNSUPPORTED_MDDEV_FLAGS		\
49 	((1L << MD_HAS_JOURNAL) |	\
50 	 (1L << MD_JOURNAL_CLEAN))
51 
52 /*
53  * Number of guaranteed r1bios in case of extreme VM load:
54  */
55 #define	NR_RAID1_BIOS 256
56 
57 /* when we get a read error on a read-only array, we redirect to another
58  * device without failing the first device, or trying to over-write to
59  * correct the read error.  To keep track of bad blocks on a per-bio
60  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
61  */
62 #define IO_BLOCKED ((struct bio *)1)
63 /* When we successfully write to a known bad-block, we need to remove the
64  * bad-block marking which must be done from process context.  So we record
65  * the success by setting devs[n].bio to IO_MADE_GOOD
66  */
67 #define IO_MADE_GOOD ((struct bio *)2)
68 
69 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
70 
71 /* When there are this many requests queue to be written by
72  * the raid1 thread, we become 'congested' to provide back-pressure
73  * for writeback.
74  */
75 static int max_queued_requests = 1024;
76 
77 static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
78 static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
79 
80 #define raid1_log(md, fmt, args...)				\
81 	do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
82 
83 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
84 {
85 	struct pool_info *pi = data;
86 	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
87 
88 	/* allocate a r1bio with room for raid_disks entries in the bios array */
89 	return kzalloc(size, gfp_flags);
90 }
91 
92 static void r1bio_pool_free(void *r1_bio, void *data)
93 {
94 	kfree(r1_bio);
95 }
96 
97 #define RESYNC_BLOCK_SIZE (64*1024)
98 #define RESYNC_DEPTH 32
99 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
100 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
101 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
102 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
103 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
104 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
105 
106 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
107 {
108 	struct pool_info *pi = data;
109 	struct r1bio *r1_bio;
110 	struct bio *bio;
111 	int need_pages;
112 	int i, j;
113 
114 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
115 	if (!r1_bio)
116 		return NULL;
117 
118 	/*
119 	 * Allocate bios : 1 for reading, n-1 for writing
120 	 */
121 	for (j = pi->raid_disks ; j-- ; ) {
122 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
123 		if (!bio)
124 			goto out_free_bio;
125 		r1_bio->bios[j] = bio;
126 	}
127 	/*
128 	 * Allocate RESYNC_PAGES data pages and attach them to
129 	 * the first bio.
130 	 * If this is a user-requested check/repair, allocate
131 	 * RESYNC_PAGES for each bio.
132 	 */
133 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
134 		need_pages = pi->raid_disks;
135 	else
136 		need_pages = 1;
137 	for (j = 0; j < need_pages; j++) {
138 		bio = r1_bio->bios[j];
139 		bio->bi_vcnt = RESYNC_PAGES;
140 
141 		if (bio_alloc_pages(bio, gfp_flags))
142 			goto out_free_pages;
143 	}
144 	/* If not user-requests, copy the page pointers to all bios */
145 	if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
146 		for (i=0; i<RESYNC_PAGES ; i++)
147 			for (j=1; j<pi->raid_disks; j++)
148 				r1_bio->bios[j]->bi_io_vec[i].bv_page =
149 					r1_bio->bios[0]->bi_io_vec[i].bv_page;
150 	}
151 
152 	r1_bio->master_bio = NULL;
153 
154 	return r1_bio;
155 
156 out_free_pages:
157 	while (--j >= 0)
158 		bio_free_pages(r1_bio->bios[j]);
159 
160 out_free_bio:
161 	while (++j < pi->raid_disks)
162 		bio_put(r1_bio->bios[j]);
163 	r1bio_pool_free(r1_bio, data);
164 	return NULL;
165 }
166 
167 static void r1buf_pool_free(void *__r1_bio, void *data)
168 {
169 	struct pool_info *pi = data;
170 	int i,j;
171 	struct r1bio *r1bio = __r1_bio;
172 
173 	for (i = 0; i < RESYNC_PAGES; i++)
174 		for (j = pi->raid_disks; j-- ;) {
175 			if (j == 0 ||
176 			    r1bio->bios[j]->bi_io_vec[i].bv_page !=
177 			    r1bio->bios[0]->bi_io_vec[i].bv_page)
178 				safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
179 		}
180 	for (i=0 ; i < pi->raid_disks; i++)
181 		bio_put(r1bio->bios[i]);
182 
183 	r1bio_pool_free(r1bio, data);
184 }
185 
186 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
187 {
188 	int i;
189 
190 	for (i = 0; i < conf->raid_disks * 2; i++) {
191 		struct bio **bio = r1_bio->bios + i;
192 		if (!BIO_SPECIAL(*bio))
193 			bio_put(*bio);
194 		*bio = NULL;
195 	}
196 }
197 
198 static void free_r1bio(struct r1bio *r1_bio)
199 {
200 	struct r1conf *conf = r1_bio->mddev->private;
201 
202 	put_all_bios(conf, r1_bio);
203 	mempool_free(r1_bio, conf->r1bio_pool);
204 }
205 
206 static void put_buf(struct r1bio *r1_bio)
207 {
208 	struct r1conf *conf = r1_bio->mddev->private;
209 	sector_t sect = r1_bio->sector;
210 	int i;
211 
212 	for (i = 0; i < conf->raid_disks * 2; i++) {
213 		struct bio *bio = r1_bio->bios[i];
214 		if (bio->bi_end_io)
215 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
216 	}
217 
218 	mempool_free(r1_bio, conf->r1buf_pool);
219 
220 	lower_barrier(conf, sect);
221 }
222 
223 static void reschedule_retry(struct r1bio *r1_bio)
224 {
225 	unsigned long flags;
226 	struct mddev *mddev = r1_bio->mddev;
227 	struct r1conf *conf = mddev->private;
228 	int idx;
229 
230 	idx = sector_to_idx(r1_bio->sector);
231 	spin_lock_irqsave(&conf->device_lock, flags);
232 	list_add(&r1_bio->retry_list, &conf->retry_list);
233 	atomic_inc(&conf->nr_queued[idx]);
234 	spin_unlock_irqrestore(&conf->device_lock, flags);
235 
236 	wake_up(&conf->wait_barrier);
237 	md_wakeup_thread(mddev->thread);
238 }
239 
240 /*
241  * raid_end_bio_io() is called when we have finished servicing a mirrored
242  * operation and are ready to return a success/failure code to the buffer
243  * cache layer.
244  */
245 static void call_bio_endio(struct r1bio *r1_bio)
246 {
247 	struct bio *bio = r1_bio->master_bio;
248 	int done;
249 	struct r1conf *conf = r1_bio->mddev->private;
250 	sector_t bi_sector = bio->bi_iter.bi_sector;
251 
252 	if (bio->bi_phys_segments) {
253 		unsigned long flags;
254 		spin_lock_irqsave(&conf->device_lock, flags);
255 		bio->bi_phys_segments--;
256 		done = (bio->bi_phys_segments == 0);
257 		spin_unlock_irqrestore(&conf->device_lock, flags);
258 		/*
259 		 * make_request() might be waiting for
260 		 * bi_phys_segments to decrease
261 		 */
262 		wake_up(&conf->wait_barrier);
263 	} else
264 		done = 1;
265 
266 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
267 		bio->bi_error = -EIO;
268 
269 	if (done) {
270 		bio_endio(bio);
271 		/*
272 		 * Wake up any possible resync thread that waits for the device
273 		 * to go idle.
274 		 */
275 		allow_barrier(conf, bi_sector);
276 	}
277 }
278 
279 static void raid_end_bio_io(struct r1bio *r1_bio)
280 {
281 	struct bio *bio = r1_bio->master_bio;
282 
283 	/* if nobody has done the final endio yet, do it now */
284 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
285 		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
286 			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
287 			 (unsigned long long) bio->bi_iter.bi_sector,
288 			 (unsigned long long) bio_end_sector(bio) - 1);
289 
290 		call_bio_endio(r1_bio);
291 	}
292 	free_r1bio(r1_bio);
293 }
294 
295 /*
296  * Update disk head position estimator based on IRQ completion info.
297  */
298 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
299 {
300 	struct r1conf *conf = r1_bio->mddev->private;
301 
302 	conf->mirrors[disk].head_position =
303 		r1_bio->sector + (r1_bio->sectors);
304 }
305 
306 /*
307  * Find the disk number which triggered given bio
308  */
309 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
310 {
311 	int mirror;
312 	struct r1conf *conf = r1_bio->mddev->private;
313 	int raid_disks = conf->raid_disks;
314 
315 	for (mirror = 0; mirror < raid_disks * 2; mirror++)
316 		if (r1_bio->bios[mirror] == bio)
317 			break;
318 
319 	BUG_ON(mirror == raid_disks * 2);
320 	update_head_pos(mirror, r1_bio);
321 
322 	return mirror;
323 }
324 
325 static void raid1_end_read_request(struct bio *bio)
326 {
327 	int uptodate = !bio->bi_error;
328 	struct r1bio *r1_bio = bio->bi_private;
329 	struct r1conf *conf = r1_bio->mddev->private;
330 	struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
331 
332 	/*
333 	 * this branch is our 'one mirror IO has finished' event handler:
334 	 */
335 	update_head_pos(r1_bio->read_disk, r1_bio);
336 
337 	if (uptodate)
338 		set_bit(R1BIO_Uptodate, &r1_bio->state);
339 	else if (test_bit(FailFast, &rdev->flags) &&
340 		 test_bit(R1BIO_FailFast, &r1_bio->state))
341 		/* This was a fail-fast read so we definitely
342 		 * want to retry */
343 		;
344 	else {
345 		/* If all other devices have failed, we want to return
346 		 * the error upwards rather than fail the last device.
347 		 * Here we redefine "uptodate" to mean "Don't want to retry"
348 		 */
349 		unsigned long flags;
350 		spin_lock_irqsave(&conf->device_lock, flags);
351 		if (r1_bio->mddev->degraded == conf->raid_disks ||
352 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
353 		     test_bit(In_sync, &rdev->flags)))
354 			uptodate = 1;
355 		spin_unlock_irqrestore(&conf->device_lock, flags);
356 	}
357 
358 	if (uptodate) {
359 		raid_end_bio_io(r1_bio);
360 		rdev_dec_pending(rdev, conf->mddev);
361 	} else {
362 		/*
363 		 * oops, read error:
364 		 */
365 		char b[BDEVNAME_SIZE];
366 		pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
367 				   mdname(conf->mddev),
368 				   bdevname(rdev->bdev, b),
369 				   (unsigned long long)r1_bio->sector);
370 		set_bit(R1BIO_ReadError, &r1_bio->state);
371 		reschedule_retry(r1_bio);
372 		/* don't drop the reference on read_disk yet */
373 	}
374 }
375 
376 static void close_write(struct r1bio *r1_bio)
377 {
378 	/* it really is the end of this request */
379 	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
380 		/* free extra copy of the data pages */
381 		int i = r1_bio->behind_page_count;
382 		while (i--)
383 			safe_put_page(r1_bio->behind_bvecs[i].bv_page);
384 		kfree(r1_bio->behind_bvecs);
385 		r1_bio->behind_bvecs = NULL;
386 	}
387 	/* clear the bitmap if all writes complete successfully */
388 	bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
389 			r1_bio->sectors,
390 			!test_bit(R1BIO_Degraded, &r1_bio->state),
391 			test_bit(R1BIO_BehindIO, &r1_bio->state));
392 	md_write_end(r1_bio->mddev);
393 }
394 
395 static void r1_bio_write_done(struct r1bio *r1_bio)
396 {
397 	if (!atomic_dec_and_test(&r1_bio->remaining))
398 		return;
399 
400 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
401 		reschedule_retry(r1_bio);
402 	else {
403 		close_write(r1_bio);
404 		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
405 			reschedule_retry(r1_bio);
406 		else
407 			raid_end_bio_io(r1_bio);
408 	}
409 }
410 
411 static void raid1_end_write_request(struct bio *bio)
412 {
413 	struct r1bio *r1_bio = bio->bi_private;
414 	int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
415 	struct r1conf *conf = r1_bio->mddev->private;
416 	struct bio *to_put = NULL;
417 	int mirror = find_bio_disk(r1_bio, bio);
418 	struct md_rdev *rdev = conf->mirrors[mirror].rdev;
419 	bool discard_error;
420 
421 	discard_error = bio->bi_error && bio_op(bio) == REQ_OP_DISCARD;
422 
423 	/*
424 	 * 'one mirror IO has finished' event handler:
425 	 */
426 	if (bio->bi_error && !discard_error) {
427 		set_bit(WriteErrorSeen,	&rdev->flags);
428 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
429 			set_bit(MD_RECOVERY_NEEDED, &
430 				conf->mddev->recovery);
431 
432 		if (test_bit(FailFast, &rdev->flags) &&
433 		    (bio->bi_opf & MD_FAILFAST) &&
434 		    /* We never try FailFast to WriteMostly devices */
435 		    !test_bit(WriteMostly, &rdev->flags)) {
436 			md_error(r1_bio->mddev, rdev);
437 			if (!test_bit(Faulty, &rdev->flags))
438 				/* This is the only remaining device,
439 				 * We need to retry the write without
440 				 * FailFast
441 				 */
442 				set_bit(R1BIO_WriteError, &r1_bio->state);
443 			else {
444 				/* Finished with this branch */
445 				r1_bio->bios[mirror] = NULL;
446 				to_put = bio;
447 			}
448 		} else
449 			set_bit(R1BIO_WriteError, &r1_bio->state);
450 	} else {
451 		/*
452 		 * Set R1BIO_Uptodate in our master bio, so that we
453 		 * will return a good error code for to the higher
454 		 * levels even if IO on some other mirrored buffer
455 		 * fails.
456 		 *
457 		 * The 'master' represents the composite IO operation
458 		 * to user-side. So if something waits for IO, then it
459 		 * will wait for the 'master' bio.
460 		 */
461 		sector_t first_bad;
462 		int bad_sectors;
463 
464 		r1_bio->bios[mirror] = NULL;
465 		to_put = bio;
466 		/*
467 		 * Do not set R1BIO_Uptodate if the current device is
468 		 * rebuilding or Faulty. This is because we cannot use
469 		 * such device for properly reading the data back (we could
470 		 * potentially use it, if the current write would have felt
471 		 * before rdev->recovery_offset, but for simplicity we don't
472 		 * check this here.
473 		 */
474 		if (test_bit(In_sync, &rdev->flags) &&
475 		    !test_bit(Faulty, &rdev->flags))
476 			set_bit(R1BIO_Uptodate, &r1_bio->state);
477 
478 		/* Maybe we can clear some bad blocks. */
479 		if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
480 				&first_bad, &bad_sectors) && !discard_error) {
481 			r1_bio->bios[mirror] = IO_MADE_GOOD;
482 			set_bit(R1BIO_MadeGood, &r1_bio->state);
483 		}
484 	}
485 
486 	if (behind) {
487 		if (test_bit(WriteMostly, &rdev->flags))
488 			atomic_dec(&r1_bio->behind_remaining);
489 
490 		/*
491 		 * In behind mode, we ACK the master bio once the I/O
492 		 * has safely reached all non-writemostly
493 		 * disks. Setting the Returned bit ensures that this
494 		 * gets done only once -- we don't ever want to return
495 		 * -EIO here, instead we'll wait
496 		 */
497 		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
498 		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
499 			/* Maybe we can return now */
500 			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
501 				struct bio *mbio = r1_bio->master_bio;
502 				pr_debug("raid1: behind end write sectors"
503 					 " %llu-%llu\n",
504 					 (unsigned long long) mbio->bi_iter.bi_sector,
505 					 (unsigned long long) bio_end_sector(mbio) - 1);
506 				call_bio_endio(r1_bio);
507 			}
508 		}
509 	}
510 	if (r1_bio->bios[mirror] == NULL)
511 		rdev_dec_pending(rdev, conf->mddev);
512 
513 	/*
514 	 * Let's see if all mirrored write operations have finished
515 	 * already.
516 	 */
517 	r1_bio_write_done(r1_bio);
518 
519 	if (to_put)
520 		bio_put(to_put);
521 }
522 
523 static sector_t align_to_barrier_unit_end(sector_t start_sector,
524 					  sector_t sectors)
525 {
526 	sector_t len;
527 
528 	WARN_ON(sectors == 0);
529 	/*
530 	 * len is the number of sectors from start_sector to end of the
531 	 * barrier unit which start_sector belongs to.
532 	 */
533 	len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
534 	      start_sector;
535 
536 	if (len > sectors)
537 		len = sectors;
538 
539 	return len;
540 }
541 
542 /*
543  * This routine returns the disk from which the requested read should
544  * be done. There is a per-array 'next expected sequential IO' sector
545  * number - if this matches on the next IO then we use the last disk.
546  * There is also a per-disk 'last know head position' sector that is
547  * maintained from IRQ contexts, both the normal and the resync IO
548  * completion handlers update this position correctly. If there is no
549  * perfect sequential match then we pick the disk whose head is closest.
550  *
551  * If there are 2 mirrors in the same 2 devices, performance degrades
552  * because position is mirror, not device based.
553  *
554  * The rdev for the device selected will have nr_pending incremented.
555  */
556 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
557 {
558 	const sector_t this_sector = r1_bio->sector;
559 	int sectors;
560 	int best_good_sectors;
561 	int best_disk, best_dist_disk, best_pending_disk;
562 	int has_nonrot_disk;
563 	int disk;
564 	sector_t best_dist;
565 	unsigned int min_pending;
566 	struct md_rdev *rdev;
567 	int choose_first;
568 	int choose_next_idle;
569 
570 	rcu_read_lock();
571 	/*
572 	 * Check if we can balance. We can balance on the whole
573 	 * device if no resync is going on, or below the resync window.
574 	 * We take the first readable disk when above the resync window.
575 	 */
576  retry:
577 	sectors = r1_bio->sectors;
578 	best_disk = -1;
579 	best_dist_disk = -1;
580 	best_dist = MaxSector;
581 	best_pending_disk = -1;
582 	min_pending = UINT_MAX;
583 	best_good_sectors = 0;
584 	has_nonrot_disk = 0;
585 	choose_next_idle = 0;
586 	clear_bit(R1BIO_FailFast, &r1_bio->state);
587 
588 	if ((conf->mddev->recovery_cp < this_sector + sectors) ||
589 	    (mddev_is_clustered(conf->mddev) &&
590 	    md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
591 		    this_sector + sectors)))
592 		choose_first = 1;
593 	else
594 		choose_first = 0;
595 
596 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
597 		sector_t dist;
598 		sector_t first_bad;
599 		int bad_sectors;
600 		unsigned int pending;
601 		bool nonrot;
602 
603 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
604 		if (r1_bio->bios[disk] == IO_BLOCKED
605 		    || rdev == NULL
606 		    || test_bit(Faulty, &rdev->flags))
607 			continue;
608 		if (!test_bit(In_sync, &rdev->flags) &&
609 		    rdev->recovery_offset < this_sector + sectors)
610 			continue;
611 		if (test_bit(WriteMostly, &rdev->flags)) {
612 			/* Don't balance among write-mostly, just
613 			 * use the first as a last resort */
614 			if (best_dist_disk < 0) {
615 				if (is_badblock(rdev, this_sector, sectors,
616 						&first_bad, &bad_sectors)) {
617 					if (first_bad <= this_sector)
618 						/* Cannot use this */
619 						continue;
620 					best_good_sectors = first_bad - this_sector;
621 				} else
622 					best_good_sectors = sectors;
623 				best_dist_disk = disk;
624 				best_pending_disk = disk;
625 			}
626 			continue;
627 		}
628 		/* This is a reasonable device to use.  It might
629 		 * even be best.
630 		 */
631 		if (is_badblock(rdev, this_sector, sectors,
632 				&first_bad, &bad_sectors)) {
633 			if (best_dist < MaxSector)
634 				/* already have a better device */
635 				continue;
636 			if (first_bad <= this_sector) {
637 				/* cannot read here. If this is the 'primary'
638 				 * device, then we must not read beyond
639 				 * bad_sectors from another device..
640 				 */
641 				bad_sectors -= (this_sector - first_bad);
642 				if (choose_first && sectors > bad_sectors)
643 					sectors = bad_sectors;
644 				if (best_good_sectors > sectors)
645 					best_good_sectors = sectors;
646 
647 			} else {
648 				sector_t good_sectors = first_bad - this_sector;
649 				if (good_sectors > best_good_sectors) {
650 					best_good_sectors = good_sectors;
651 					best_disk = disk;
652 				}
653 				if (choose_first)
654 					break;
655 			}
656 			continue;
657 		} else
658 			best_good_sectors = sectors;
659 
660 		if (best_disk >= 0)
661 			/* At least two disks to choose from so failfast is OK */
662 			set_bit(R1BIO_FailFast, &r1_bio->state);
663 
664 		nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
665 		has_nonrot_disk |= nonrot;
666 		pending = atomic_read(&rdev->nr_pending);
667 		dist = abs(this_sector - conf->mirrors[disk].head_position);
668 		if (choose_first) {
669 			best_disk = disk;
670 			break;
671 		}
672 		/* Don't change to another disk for sequential reads */
673 		if (conf->mirrors[disk].next_seq_sect == this_sector
674 		    || dist == 0) {
675 			int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
676 			struct raid1_info *mirror = &conf->mirrors[disk];
677 
678 			best_disk = disk;
679 			/*
680 			 * If buffered sequential IO size exceeds optimal
681 			 * iosize, check if there is idle disk. If yes, choose
682 			 * the idle disk. read_balance could already choose an
683 			 * idle disk before noticing it's a sequential IO in
684 			 * this disk. This doesn't matter because this disk
685 			 * will idle, next time it will be utilized after the
686 			 * first disk has IO size exceeds optimal iosize. In
687 			 * this way, iosize of the first disk will be optimal
688 			 * iosize at least. iosize of the second disk might be
689 			 * small, but not a big deal since when the second disk
690 			 * starts IO, the first disk is likely still busy.
691 			 */
692 			if (nonrot && opt_iosize > 0 &&
693 			    mirror->seq_start != MaxSector &&
694 			    mirror->next_seq_sect > opt_iosize &&
695 			    mirror->next_seq_sect - opt_iosize >=
696 			    mirror->seq_start) {
697 				choose_next_idle = 1;
698 				continue;
699 			}
700 			break;
701 		}
702 
703 		if (choose_next_idle)
704 			continue;
705 
706 		if (min_pending > pending) {
707 			min_pending = pending;
708 			best_pending_disk = disk;
709 		}
710 
711 		if (dist < best_dist) {
712 			best_dist = dist;
713 			best_dist_disk = disk;
714 		}
715 	}
716 
717 	/*
718 	 * If all disks are rotational, choose the closest disk. If any disk is
719 	 * non-rotational, choose the disk with less pending request even the
720 	 * disk is rotational, which might/might not be optimal for raids with
721 	 * mixed ratation/non-rotational disks depending on workload.
722 	 */
723 	if (best_disk == -1) {
724 		if (has_nonrot_disk || min_pending == 0)
725 			best_disk = best_pending_disk;
726 		else
727 			best_disk = best_dist_disk;
728 	}
729 
730 	if (best_disk >= 0) {
731 		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
732 		if (!rdev)
733 			goto retry;
734 		atomic_inc(&rdev->nr_pending);
735 		sectors = best_good_sectors;
736 
737 		if (conf->mirrors[best_disk].next_seq_sect != this_sector)
738 			conf->mirrors[best_disk].seq_start = this_sector;
739 
740 		conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
741 	}
742 	rcu_read_unlock();
743 	*max_sectors = sectors;
744 
745 	return best_disk;
746 }
747 
748 static int raid1_congested(struct mddev *mddev, int bits)
749 {
750 	struct r1conf *conf = mddev->private;
751 	int i, ret = 0;
752 
753 	if ((bits & (1 << WB_async_congested)) &&
754 	    conf->pending_count >= max_queued_requests)
755 		return 1;
756 
757 	rcu_read_lock();
758 	for (i = 0; i < conf->raid_disks * 2; i++) {
759 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
760 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
761 			struct request_queue *q = bdev_get_queue(rdev->bdev);
762 
763 			BUG_ON(!q);
764 
765 			/* Note the '|| 1' - when read_balance prefers
766 			 * non-congested targets, it can be removed
767 			 */
768 			if ((bits & (1 << WB_async_congested)) || 1)
769 				ret |= bdi_congested(q->backing_dev_info, bits);
770 			else
771 				ret &= bdi_congested(q->backing_dev_info, bits);
772 		}
773 	}
774 	rcu_read_unlock();
775 	return ret;
776 }
777 
778 static void flush_pending_writes(struct r1conf *conf)
779 {
780 	/* Any writes that have been queued but are awaiting
781 	 * bitmap updates get flushed here.
782 	 */
783 	spin_lock_irq(&conf->device_lock);
784 
785 	if (conf->pending_bio_list.head) {
786 		struct bio *bio;
787 		bio = bio_list_get(&conf->pending_bio_list);
788 		conf->pending_count = 0;
789 		spin_unlock_irq(&conf->device_lock);
790 		/* flush any pending bitmap writes to
791 		 * disk before proceeding w/ I/O */
792 		bitmap_unplug(conf->mddev->bitmap);
793 		wake_up(&conf->wait_barrier);
794 
795 		while (bio) { /* submit pending writes */
796 			struct bio *next = bio->bi_next;
797 			struct md_rdev *rdev = (void*)bio->bi_bdev;
798 			bio->bi_next = NULL;
799 			bio->bi_bdev = rdev->bdev;
800 			if (test_bit(Faulty, &rdev->flags)) {
801 				bio->bi_error = -EIO;
802 				bio_endio(bio);
803 			} else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
804 					    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
805 				/* Just ignore it */
806 				bio_endio(bio);
807 			else
808 				generic_make_request(bio);
809 			bio = next;
810 		}
811 	} else
812 		spin_unlock_irq(&conf->device_lock);
813 }
814 
815 /* Barriers....
816  * Sometimes we need to suspend IO while we do something else,
817  * either some resync/recovery, or reconfigure the array.
818  * To do this we raise a 'barrier'.
819  * The 'barrier' is a counter that can be raised multiple times
820  * to count how many activities are happening which preclude
821  * normal IO.
822  * We can only raise the barrier if there is no pending IO.
823  * i.e. if nr_pending == 0.
824  * We choose only to raise the barrier if no-one is waiting for the
825  * barrier to go down.  This means that as soon as an IO request
826  * is ready, no other operations which require a barrier will start
827  * until the IO request has had a chance.
828  *
829  * So: regular IO calls 'wait_barrier'.  When that returns there
830  *    is no backgroup IO happening,  It must arrange to call
831  *    allow_barrier when it has finished its IO.
832  * backgroup IO calls must call raise_barrier.  Once that returns
833  *    there is no normal IO happeing.  It must arrange to call
834  *    lower_barrier when the particular background IO completes.
835  */
836 static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
837 {
838 	int idx = sector_to_idx(sector_nr);
839 
840 	spin_lock_irq(&conf->resync_lock);
841 
842 	/* Wait until no block IO is waiting */
843 	wait_event_lock_irq(conf->wait_barrier,
844 			    !atomic_read(&conf->nr_waiting[idx]),
845 			    conf->resync_lock);
846 
847 	/* block any new IO from starting */
848 	atomic_inc(&conf->barrier[idx]);
849 	/*
850 	 * In raise_barrier() we firstly increase conf->barrier[idx] then
851 	 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
852 	 * increase conf->nr_pending[idx] then check conf->barrier[idx].
853 	 * A memory barrier here to make sure conf->nr_pending[idx] won't
854 	 * be fetched before conf->barrier[idx] is increased. Otherwise
855 	 * there will be a race between raise_barrier() and _wait_barrier().
856 	 */
857 	smp_mb__after_atomic();
858 
859 	/* For these conditions we must wait:
860 	 * A: while the array is in frozen state
861 	 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
862 	 *    existing in corresponding I/O barrier bucket.
863 	 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
864 	 *    max resync count which allowed on current I/O barrier bucket.
865 	 */
866 	wait_event_lock_irq(conf->wait_barrier,
867 			    !conf->array_frozen &&
868 			     !atomic_read(&conf->nr_pending[idx]) &&
869 			     atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH,
870 			    conf->resync_lock);
871 
872 	atomic_inc(&conf->nr_pending[idx]);
873 	spin_unlock_irq(&conf->resync_lock);
874 }
875 
876 static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
877 {
878 	int idx = sector_to_idx(sector_nr);
879 
880 	BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
881 
882 	atomic_dec(&conf->barrier[idx]);
883 	atomic_dec(&conf->nr_pending[idx]);
884 	wake_up(&conf->wait_barrier);
885 }
886 
887 static void _wait_barrier(struct r1conf *conf, int idx)
888 {
889 	/*
890 	 * We need to increase conf->nr_pending[idx] very early here,
891 	 * then raise_barrier() can be blocked when it waits for
892 	 * conf->nr_pending[idx] to be 0. Then we can avoid holding
893 	 * conf->resync_lock when there is no barrier raised in same
894 	 * barrier unit bucket. Also if the array is frozen, I/O
895 	 * should be blocked until array is unfrozen.
896 	 */
897 	atomic_inc(&conf->nr_pending[idx]);
898 	/*
899 	 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
900 	 * check conf->barrier[idx]. In raise_barrier() we firstly increase
901 	 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
902 	 * barrier is necessary here to make sure conf->barrier[idx] won't be
903 	 * fetched before conf->nr_pending[idx] is increased. Otherwise there
904 	 * will be a race between _wait_barrier() and raise_barrier().
905 	 */
906 	smp_mb__after_atomic();
907 
908 	/*
909 	 * Don't worry about checking two atomic_t variables at same time
910 	 * here. If during we check conf->barrier[idx], the array is
911 	 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
912 	 * 0, it is safe to return and make the I/O continue. Because the
913 	 * array is frozen, all I/O returned here will eventually complete
914 	 * or be queued, no race will happen. See code comment in
915 	 * frozen_array().
916 	 */
917 	if (!READ_ONCE(conf->array_frozen) &&
918 	    !atomic_read(&conf->barrier[idx]))
919 		return;
920 
921 	/*
922 	 * After holding conf->resync_lock, conf->nr_pending[idx]
923 	 * should be decreased before waiting for barrier to drop.
924 	 * Otherwise, we may encounter a race condition because
925 	 * raise_barrer() might be waiting for conf->nr_pending[idx]
926 	 * to be 0 at same time.
927 	 */
928 	spin_lock_irq(&conf->resync_lock);
929 	atomic_inc(&conf->nr_waiting[idx]);
930 	atomic_dec(&conf->nr_pending[idx]);
931 	/*
932 	 * In case freeze_array() is waiting for
933 	 * get_unqueued_pending() == extra
934 	 */
935 	wake_up(&conf->wait_barrier);
936 	/* Wait for the barrier in same barrier unit bucket to drop. */
937 	wait_event_lock_irq(conf->wait_barrier,
938 			    !conf->array_frozen &&
939 			     !atomic_read(&conf->barrier[idx]),
940 			    conf->resync_lock);
941 	atomic_inc(&conf->nr_pending[idx]);
942 	atomic_dec(&conf->nr_waiting[idx]);
943 	spin_unlock_irq(&conf->resync_lock);
944 }
945 
946 static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
947 {
948 	int idx = sector_to_idx(sector_nr);
949 
950 	/*
951 	 * Very similar to _wait_barrier(). The difference is, for read
952 	 * I/O we don't need wait for sync I/O, but if the whole array
953 	 * is frozen, the read I/O still has to wait until the array is
954 	 * unfrozen. Since there is no ordering requirement with
955 	 * conf->barrier[idx] here, memory barrier is unnecessary as well.
956 	 */
957 	atomic_inc(&conf->nr_pending[idx]);
958 
959 	if (!READ_ONCE(conf->array_frozen))
960 		return;
961 
962 	spin_lock_irq(&conf->resync_lock);
963 	atomic_inc(&conf->nr_waiting[idx]);
964 	atomic_dec(&conf->nr_pending[idx]);
965 	/*
966 	 * In case freeze_array() is waiting for
967 	 * get_unqueued_pending() == extra
968 	 */
969 	wake_up(&conf->wait_barrier);
970 	/* Wait for array to be unfrozen */
971 	wait_event_lock_irq(conf->wait_barrier,
972 			    !conf->array_frozen,
973 			    conf->resync_lock);
974 	atomic_inc(&conf->nr_pending[idx]);
975 	atomic_dec(&conf->nr_waiting[idx]);
976 	spin_unlock_irq(&conf->resync_lock);
977 }
978 
979 static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
980 {
981 	int idx = sector_to_idx(sector_nr);
982 
983 	_wait_barrier(conf, idx);
984 }
985 
986 static void wait_all_barriers(struct r1conf *conf)
987 {
988 	int idx;
989 
990 	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
991 		_wait_barrier(conf, idx);
992 }
993 
994 static void _allow_barrier(struct r1conf *conf, int idx)
995 {
996 	atomic_dec(&conf->nr_pending[idx]);
997 	wake_up(&conf->wait_barrier);
998 }
999 
1000 static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1001 {
1002 	int idx = sector_to_idx(sector_nr);
1003 
1004 	_allow_barrier(conf, idx);
1005 }
1006 
1007 static void allow_all_barriers(struct r1conf *conf)
1008 {
1009 	int idx;
1010 
1011 	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1012 		_allow_barrier(conf, idx);
1013 }
1014 
1015 /* conf->resync_lock should be held */
1016 static int get_unqueued_pending(struct r1conf *conf)
1017 {
1018 	int idx, ret;
1019 
1020 	for (ret = 0, idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1021 		ret += atomic_read(&conf->nr_pending[idx]) -
1022 			atomic_read(&conf->nr_queued[idx]);
1023 
1024 	return ret;
1025 }
1026 
1027 static void freeze_array(struct r1conf *conf, int extra)
1028 {
1029 	/* Stop sync I/O and normal I/O and wait for everything to
1030 	 * go quiet.
1031 	 * This is called in two situations:
1032 	 * 1) management command handlers (reshape, remove disk, quiesce).
1033 	 * 2) one normal I/O request failed.
1034 
1035 	 * After array_frozen is set to 1, new sync IO will be blocked at
1036 	 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1037 	 * or wait_read_barrier(). The flying I/Os will either complete or be
1038 	 * queued. When everything goes quite, there are only queued I/Os left.
1039 
1040 	 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1041 	 * barrier bucket index which this I/O request hits. When all sync and
1042 	 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1043 	 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1044 	 * in handle_read_error(), we may call freeze_array() before trying to
1045 	 * fix the read error. In this case, the error read I/O is not queued,
1046 	 * so get_unqueued_pending() == 1.
1047 	 *
1048 	 * Therefore before this function returns, we need to wait until
1049 	 * get_unqueued_pendings(conf) gets equal to extra. For
1050 	 * normal I/O context, extra is 1, in rested situations extra is 0.
1051 	 */
1052 	spin_lock_irq(&conf->resync_lock);
1053 	conf->array_frozen = 1;
1054 	raid1_log(conf->mddev, "wait freeze");
1055 	wait_event_lock_irq_cmd(
1056 		conf->wait_barrier,
1057 		get_unqueued_pending(conf) == extra,
1058 		conf->resync_lock,
1059 		flush_pending_writes(conf));
1060 	spin_unlock_irq(&conf->resync_lock);
1061 }
1062 static void unfreeze_array(struct r1conf *conf)
1063 {
1064 	/* reverse the effect of the freeze */
1065 	spin_lock_irq(&conf->resync_lock);
1066 	conf->array_frozen = 0;
1067 	spin_unlock_irq(&conf->resync_lock);
1068 	wake_up(&conf->wait_barrier);
1069 }
1070 
1071 /* duplicate the data pages for behind I/O
1072  */
1073 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
1074 {
1075 	int i;
1076 	struct bio_vec *bvec;
1077 	struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
1078 					GFP_NOIO);
1079 	if (unlikely(!bvecs))
1080 		return;
1081 
1082 	bio_for_each_segment_all(bvec, bio, i) {
1083 		bvecs[i] = *bvec;
1084 		bvecs[i].bv_page = alloc_page(GFP_NOIO);
1085 		if (unlikely(!bvecs[i].bv_page))
1086 			goto do_sync_io;
1087 		memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
1088 		       kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
1089 		kunmap(bvecs[i].bv_page);
1090 		kunmap(bvec->bv_page);
1091 	}
1092 	r1_bio->behind_bvecs = bvecs;
1093 	r1_bio->behind_page_count = bio->bi_vcnt;
1094 	set_bit(R1BIO_BehindIO, &r1_bio->state);
1095 	return;
1096 
1097 do_sync_io:
1098 	for (i = 0; i < bio->bi_vcnt; i++)
1099 		if (bvecs[i].bv_page)
1100 			put_page(bvecs[i].bv_page);
1101 	kfree(bvecs);
1102 	pr_debug("%dB behind alloc failed, doing sync I/O\n",
1103 		 bio->bi_iter.bi_size);
1104 }
1105 
1106 struct raid1_plug_cb {
1107 	struct blk_plug_cb	cb;
1108 	struct bio_list		pending;
1109 	int			pending_cnt;
1110 };
1111 
1112 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1113 {
1114 	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1115 						  cb);
1116 	struct mddev *mddev = plug->cb.data;
1117 	struct r1conf *conf = mddev->private;
1118 	struct bio *bio;
1119 
1120 	if (from_schedule || current->bio_list) {
1121 		spin_lock_irq(&conf->device_lock);
1122 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1123 		conf->pending_count += plug->pending_cnt;
1124 		spin_unlock_irq(&conf->device_lock);
1125 		wake_up(&conf->wait_barrier);
1126 		md_wakeup_thread(mddev->thread);
1127 		kfree(plug);
1128 		return;
1129 	}
1130 
1131 	/* we aren't scheduling, so we can do the write-out directly. */
1132 	bio = bio_list_get(&plug->pending);
1133 	bitmap_unplug(mddev->bitmap);
1134 	wake_up(&conf->wait_barrier);
1135 
1136 	while (bio) { /* submit pending writes */
1137 		struct bio *next = bio->bi_next;
1138 		struct md_rdev *rdev = (void*)bio->bi_bdev;
1139 		bio->bi_next = NULL;
1140 		bio->bi_bdev = rdev->bdev;
1141 		if (test_bit(Faulty, &rdev->flags)) {
1142 			bio->bi_error = -EIO;
1143 			bio_endio(bio);
1144 		} else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
1145 				    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1146 			/* Just ignore it */
1147 			bio_endio(bio);
1148 		else
1149 			generic_make_request(bio);
1150 		bio = next;
1151 	}
1152 	kfree(plug);
1153 }
1154 
1155 static inline struct r1bio *
1156 alloc_r1bio(struct mddev *mddev, struct bio *bio, sector_t sectors_handled)
1157 {
1158 	struct r1conf *conf = mddev->private;
1159 	struct r1bio *r1_bio;
1160 
1161 	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1162 
1163 	r1_bio->master_bio = bio;
1164 	r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1165 	r1_bio->state = 0;
1166 	r1_bio->mddev = mddev;
1167 	r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1168 
1169 	return r1_bio;
1170 }
1171 
1172 static void raid1_read_request(struct mddev *mddev, struct bio *bio)
1173 {
1174 	struct r1conf *conf = mddev->private;
1175 	struct raid1_info *mirror;
1176 	struct r1bio *r1_bio;
1177 	struct bio *read_bio;
1178 	struct bitmap *bitmap = mddev->bitmap;
1179 	const int op = bio_op(bio);
1180 	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1181 	int sectors_handled;
1182 	int max_sectors;
1183 	int rdisk;
1184 
1185 	/*
1186 	 * Still need barrier for READ in case that whole
1187 	 * array is frozen.
1188 	 */
1189 	wait_read_barrier(conf, bio->bi_iter.bi_sector);
1190 
1191 	r1_bio = alloc_r1bio(mddev, bio, 0);
1192 
1193 	/*
1194 	 * We might need to issue multiple reads to different
1195 	 * devices if there are bad blocks around, so we keep
1196 	 * track of the number of reads in bio->bi_phys_segments.
1197 	 * If this is 0, there is only one r1_bio and no locking
1198 	 * will be needed when requests complete.  If it is
1199 	 * non-zero, then it is the number of not-completed requests.
1200 	 */
1201 	bio->bi_phys_segments = 0;
1202 	bio_clear_flag(bio, BIO_SEG_VALID);
1203 
1204 	/*
1205 	 * make_request() can abort the operation when read-ahead is being
1206 	 * used and no empty request is available.
1207 	 */
1208 read_again:
1209 	rdisk = read_balance(conf, r1_bio, &max_sectors);
1210 
1211 	if (rdisk < 0) {
1212 		/* couldn't find anywhere to read from */
1213 		raid_end_bio_io(r1_bio);
1214 		return;
1215 	}
1216 	mirror = conf->mirrors + rdisk;
1217 
1218 	if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1219 	    bitmap) {
1220 		/*
1221 		 * Reading from a write-mostly device must take care not to
1222 		 * over-take any writes that are 'behind'
1223 		 */
1224 		raid1_log(mddev, "wait behind writes");
1225 		wait_event(bitmap->behind_wait,
1226 			   atomic_read(&bitmap->behind_writes) == 0);
1227 	}
1228 	r1_bio->read_disk = rdisk;
1229 
1230 	read_bio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
1231 	bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1232 		 max_sectors);
1233 
1234 	r1_bio->bios[rdisk] = read_bio;
1235 
1236 	read_bio->bi_iter.bi_sector = r1_bio->sector +
1237 		mirror->rdev->data_offset;
1238 	read_bio->bi_bdev = mirror->rdev->bdev;
1239 	read_bio->bi_end_io = raid1_end_read_request;
1240 	bio_set_op_attrs(read_bio, op, do_sync);
1241 	if (test_bit(FailFast, &mirror->rdev->flags) &&
1242 	    test_bit(R1BIO_FailFast, &r1_bio->state))
1243 	        read_bio->bi_opf |= MD_FAILFAST;
1244 	read_bio->bi_private = r1_bio;
1245 
1246 	if (mddev->gendisk)
1247 	        trace_block_bio_remap(bdev_get_queue(read_bio->bi_bdev),
1248 	                              read_bio, disk_devt(mddev->gendisk),
1249 	                              r1_bio->sector);
1250 
1251 	if (max_sectors < r1_bio->sectors) {
1252 		/*
1253 		 * could not read all from this device, so we will need another
1254 		 * r1_bio.
1255 		 */
1256 		sectors_handled = (r1_bio->sector + max_sectors
1257 				   - bio->bi_iter.bi_sector);
1258 		r1_bio->sectors = max_sectors;
1259 		spin_lock_irq(&conf->device_lock);
1260 		if (bio->bi_phys_segments == 0)
1261 			bio->bi_phys_segments = 2;
1262 		else
1263 			bio->bi_phys_segments++;
1264 		spin_unlock_irq(&conf->device_lock);
1265 
1266 		/*
1267 		 * Cannot call generic_make_request directly as that will be
1268 		 * queued in __make_request and subsequent mempool_alloc might
1269 		 * block waiting for it.  So hand bio over to raid1d.
1270 		 */
1271 		reschedule_retry(r1_bio);
1272 
1273 		r1_bio = alloc_r1bio(mddev, bio, sectors_handled);
1274 		goto read_again;
1275 	} else
1276 		generic_make_request(read_bio);
1277 }
1278 
1279 static void raid1_write_request(struct mddev *mddev, struct bio *bio)
1280 {
1281 	struct r1conf *conf = mddev->private;
1282 	struct r1bio *r1_bio;
1283 	int i, disks;
1284 	struct bitmap *bitmap = mddev->bitmap;
1285 	unsigned long flags;
1286 	struct md_rdev *blocked_rdev;
1287 	struct blk_plug_cb *cb;
1288 	struct raid1_plug_cb *plug = NULL;
1289 	int first_clone;
1290 	int sectors_handled;
1291 	int max_sectors;
1292 
1293 	/*
1294 	 * Register the new request and wait if the reconstruction
1295 	 * thread has put up a bar for new requests.
1296 	 * Continue immediately if no resync is active currently.
1297 	 */
1298 
1299 	md_write_start(mddev, bio); /* wait on superblock update early */
1300 
1301 	if ((bio_end_sector(bio) > mddev->suspend_lo &&
1302 	    bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1303 	    (mddev_is_clustered(mddev) &&
1304 	     md_cluster_ops->area_resyncing(mddev, WRITE,
1305 		     bio->bi_iter.bi_sector, bio_end_sector(bio)))) {
1306 
1307 		/*
1308 		 * As the suspend_* range is controlled by userspace, we want
1309 		 * an interruptible wait.
1310 		 */
1311 		DEFINE_WAIT(w);
1312 		for (;;) {
1313 			flush_signals(current);
1314 			prepare_to_wait(&conf->wait_barrier,
1315 					&w, TASK_INTERRUPTIBLE);
1316 			if (bio_end_sector(bio) <= mddev->suspend_lo ||
1317 			    bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1318 			    (mddev_is_clustered(mddev) &&
1319 			     !md_cluster_ops->area_resyncing(mddev, WRITE,
1320 				     bio->bi_iter.bi_sector,
1321 				     bio_end_sector(bio))))
1322 				break;
1323 			schedule();
1324 		}
1325 		finish_wait(&conf->wait_barrier, &w);
1326 	}
1327 	wait_barrier(conf, bio->bi_iter.bi_sector);
1328 
1329 	r1_bio = alloc_r1bio(mddev, bio, 0);
1330 
1331 	/* We might need to issue multiple writes to different
1332 	 * devices if there are bad blocks around, so we keep
1333 	 * track of the number of writes in bio->bi_phys_segments.
1334 	 * If this is 0, there is only one r1_bio and no locking
1335 	 * will be needed when requests complete.  If it is
1336 	 * non-zero, then it is the number of not-completed requests.
1337 	 */
1338 	bio->bi_phys_segments = 0;
1339 	bio_clear_flag(bio, BIO_SEG_VALID);
1340 
1341 	if (conf->pending_count >= max_queued_requests) {
1342 		md_wakeup_thread(mddev->thread);
1343 		raid1_log(mddev, "wait queued");
1344 		wait_event(conf->wait_barrier,
1345 			   conf->pending_count < max_queued_requests);
1346 	}
1347 	/* first select target devices under rcu_lock and
1348 	 * inc refcount on their rdev.  Record them by setting
1349 	 * bios[x] to bio
1350 	 * If there are known/acknowledged bad blocks on any device on
1351 	 * which we have seen a write error, we want to avoid writing those
1352 	 * blocks.
1353 	 * This potentially requires several writes to write around
1354 	 * the bad blocks.  Each set of writes gets it's own r1bio
1355 	 * with a set of bios attached.
1356 	 */
1357 
1358 	disks = conf->raid_disks * 2;
1359  retry_write:
1360 	blocked_rdev = NULL;
1361 	rcu_read_lock();
1362 	max_sectors = r1_bio->sectors;
1363 	for (i = 0;  i < disks; i++) {
1364 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1365 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1366 			atomic_inc(&rdev->nr_pending);
1367 			blocked_rdev = rdev;
1368 			break;
1369 		}
1370 		r1_bio->bios[i] = NULL;
1371 		if (!rdev || test_bit(Faulty, &rdev->flags)) {
1372 			if (i < conf->raid_disks)
1373 				set_bit(R1BIO_Degraded, &r1_bio->state);
1374 			continue;
1375 		}
1376 
1377 		atomic_inc(&rdev->nr_pending);
1378 		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1379 			sector_t first_bad;
1380 			int bad_sectors;
1381 			int is_bad;
1382 
1383 			is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1384 					     &first_bad, &bad_sectors);
1385 			if (is_bad < 0) {
1386 				/* mustn't write here until the bad block is
1387 				 * acknowledged*/
1388 				set_bit(BlockedBadBlocks, &rdev->flags);
1389 				blocked_rdev = rdev;
1390 				break;
1391 			}
1392 			if (is_bad && first_bad <= r1_bio->sector) {
1393 				/* Cannot write here at all */
1394 				bad_sectors -= (r1_bio->sector - first_bad);
1395 				if (bad_sectors < max_sectors)
1396 					/* mustn't write more than bad_sectors
1397 					 * to other devices yet
1398 					 */
1399 					max_sectors = bad_sectors;
1400 				rdev_dec_pending(rdev, mddev);
1401 				/* We don't set R1BIO_Degraded as that
1402 				 * only applies if the disk is
1403 				 * missing, so it might be re-added,
1404 				 * and we want to know to recover this
1405 				 * chunk.
1406 				 * In this case the device is here,
1407 				 * and the fact that this chunk is not
1408 				 * in-sync is recorded in the bad
1409 				 * block log
1410 				 */
1411 				continue;
1412 			}
1413 			if (is_bad) {
1414 				int good_sectors = first_bad - r1_bio->sector;
1415 				if (good_sectors < max_sectors)
1416 					max_sectors = good_sectors;
1417 			}
1418 		}
1419 		r1_bio->bios[i] = bio;
1420 	}
1421 	rcu_read_unlock();
1422 
1423 	if (unlikely(blocked_rdev)) {
1424 		/* Wait for this device to become unblocked */
1425 		int j;
1426 
1427 		for (j = 0; j < i; j++)
1428 			if (r1_bio->bios[j])
1429 				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1430 		r1_bio->state = 0;
1431 		allow_barrier(conf, bio->bi_iter.bi_sector);
1432 		raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1433 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1434 		wait_barrier(conf, bio->bi_iter.bi_sector);
1435 		goto retry_write;
1436 	}
1437 
1438 	if (max_sectors < r1_bio->sectors) {
1439 		/* We are splitting this write into multiple parts, so
1440 		 * we need to prepare for allocating another r1_bio.
1441 		 */
1442 		r1_bio->sectors = max_sectors;
1443 		spin_lock_irq(&conf->device_lock);
1444 		if (bio->bi_phys_segments == 0)
1445 			bio->bi_phys_segments = 2;
1446 		else
1447 			bio->bi_phys_segments++;
1448 		spin_unlock_irq(&conf->device_lock);
1449 	}
1450 	sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
1451 
1452 	atomic_set(&r1_bio->remaining, 1);
1453 	atomic_set(&r1_bio->behind_remaining, 0);
1454 
1455 	first_clone = 1;
1456 	for (i = 0; i < disks; i++) {
1457 		struct bio *mbio = NULL;
1458 		sector_t offset;
1459 		if (!r1_bio->bios[i])
1460 			continue;
1461 
1462 		offset = r1_bio->sector - bio->bi_iter.bi_sector;
1463 
1464 		if (first_clone) {
1465 			/* do behind I/O ?
1466 			 * Not if there are too many, or cannot
1467 			 * allocate memory, or a reader on WriteMostly
1468 			 * is waiting for behind writes to flush */
1469 			if (bitmap &&
1470 			    (atomic_read(&bitmap->behind_writes)
1471 			     < mddev->bitmap_info.max_write_behind) &&
1472 			    !waitqueue_active(&bitmap->behind_wait)) {
1473 				mbio = bio_clone_bioset_partial(bio, GFP_NOIO,
1474 								mddev->bio_set,
1475 								offset << 9,
1476 								max_sectors << 9);
1477 				alloc_behind_pages(mbio, r1_bio);
1478 			}
1479 
1480 			bitmap_startwrite(bitmap, r1_bio->sector,
1481 					  r1_bio->sectors,
1482 					  test_bit(R1BIO_BehindIO,
1483 						   &r1_bio->state));
1484 			first_clone = 0;
1485 		}
1486 
1487 		if (!mbio) {
1488 			if (r1_bio->behind_bvecs)
1489 				mbio = bio_clone_bioset_partial(bio, GFP_NOIO,
1490 								mddev->bio_set,
1491 								offset << 9,
1492 								max_sectors << 9);
1493 			else {
1494 				mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
1495 				bio_trim(mbio, offset, max_sectors);
1496 			}
1497 		}
1498 
1499 		if (r1_bio->behind_bvecs) {
1500 			struct bio_vec *bvec;
1501 			int j;
1502 
1503 			/*
1504 			 * We trimmed the bio, so _all is legit
1505 			 */
1506 			bio_for_each_segment_all(bvec, mbio, j)
1507 				bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1508 			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1509 				atomic_inc(&r1_bio->behind_remaining);
1510 		}
1511 
1512 		r1_bio->bios[i] = mbio;
1513 
1514 		mbio->bi_iter.bi_sector	= (r1_bio->sector +
1515 				   conf->mirrors[i].rdev->data_offset);
1516 		mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1517 		mbio->bi_end_io	= raid1_end_write_request;
1518 		mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1519 		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1520 		    !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1521 		    conf->raid_disks - mddev->degraded > 1)
1522 			mbio->bi_opf |= MD_FAILFAST;
1523 		mbio->bi_private = r1_bio;
1524 
1525 		atomic_inc(&r1_bio->remaining);
1526 
1527 		if (mddev->gendisk)
1528 			trace_block_bio_remap(bdev_get_queue(mbio->bi_bdev),
1529 					      mbio, disk_devt(mddev->gendisk),
1530 					      r1_bio->sector);
1531 		/* flush_pending_writes() needs access to the rdev so...*/
1532 		mbio->bi_bdev = (void*)conf->mirrors[i].rdev;
1533 
1534 		cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1535 		if (cb)
1536 			plug = container_of(cb, struct raid1_plug_cb, cb);
1537 		else
1538 			plug = NULL;
1539 		spin_lock_irqsave(&conf->device_lock, flags);
1540 		if (plug) {
1541 			bio_list_add(&plug->pending, mbio);
1542 			plug->pending_cnt++;
1543 		} else {
1544 			bio_list_add(&conf->pending_bio_list, mbio);
1545 			conf->pending_count++;
1546 		}
1547 		spin_unlock_irqrestore(&conf->device_lock, flags);
1548 		if (!plug)
1549 			md_wakeup_thread(mddev->thread);
1550 	}
1551 	/* Mustn't call r1_bio_write_done before this next test,
1552 	 * as it could result in the bio being freed.
1553 	 */
1554 	if (sectors_handled < bio_sectors(bio)) {
1555 		r1_bio_write_done(r1_bio);
1556 		/* We need another r1_bio.  It has already been counted
1557 		 * in bio->bi_phys_segments
1558 		 */
1559 		r1_bio = alloc_r1bio(mddev, bio, sectors_handled);
1560 		goto retry_write;
1561 	}
1562 
1563 	r1_bio_write_done(r1_bio);
1564 
1565 	/* In case raid1d snuck in to freeze_array */
1566 	wake_up(&conf->wait_barrier);
1567 }
1568 
1569 static void raid1_make_request(struct mddev *mddev, struct bio *bio)
1570 {
1571 	struct bio *split;
1572 	sector_t sectors;
1573 
1574 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1575 		md_flush_request(mddev, bio);
1576 		return;
1577 	}
1578 
1579 	/* if bio exceeds barrier unit boundary, split it */
1580 	do {
1581 		sectors = align_to_barrier_unit_end(
1582 				bio->bi_iter.bi_sector, bio_sectors(bio));
1583 		if (sectors < bio_sectors(bio)) {
1584 			split = bio_split(bio, sectors, GFP_NOIO, fs_bio_set);
1585 			bio_chain(split, bio);
1586 		} else {
1587 			split = bio;
1588 		}
1589 
1590 		if (bio_data_dir(split) == READ) {
1591 			raid1_read_request(mddev, split);
1592 
1593 			/*
1594 			 * If a bio is splitted, the first part of bio will
1595 			 * pass barrier but the bio is queued in
1596 			 * current->bio_list (see generic_make_request). If
1597 			 * there is a raise_barrier() called here, the second
1598 			 * part of bio can't pass barrier. But since the first
1599 			 * part bio isn't dispatched to underlaying disks yet,
1600 			 * the barrier is never released, hence raise_barrier
1601 			 * will alays wait. We have a deadlock.
1602 			 * Note, this only happens in read path. For write
1603 			 * path, the first part of bio is dispatched in a
1604 			 * schedule() call (because of blk plug) or offloaded
1605 			 * to raid10d.
1606 			 * Quitting from the function immediately can change
1607 			 * the bio order queued in bio_list and avoid the deadlock.
1608 			 */
1609 			if (split != bio) {
1610 				generic_make_request(bio);
1611 				break;
1612 			}
1613 		} else
1614 			raid1_write_request(mddev, split);
1615 	} while (split != bio);
1616 }
1617 
1618 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1619 {
1620 	struct r1conf *conf = mddev->private;
1621 	int i;
1622 
1623 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1624 		   conf->raid_disks - mddev->degraded);
1625 	rcu_read_lock();
1626 	for (i = 0; i < conf->raid_disks; i++) {
1627 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1628 		seq_printf(seq, "%s",
1629 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1630 	}
1631 	rcu_read_unlock();
1632 	seq_printf(seq, "]");
1633 }
1634 
1635 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1636 {
1637 	char b[BDEVNAME_SIZE];
1638 	struct r1conf *conf = mddev->private;
1639 	unsigned long flags;
1640 
1641 	/*
1642 	 * If it is not operational, then we have already marked it as dead
1643 	 * else if it is the last working disks, ignore the error, let the
1644 	 * next level up know.
1645 	 * else mark the drive as failed
1646 	 */
1647 	spin_lock_irqsave(&conf->device_lock, flags);
1648 	if (test_bit(In_sync, &rdev->flags)
1649 	    && (conf->raid_disks - mddev->degraded) == 1) {
1650 		/*
1651 		 * Don't fail the drive, act as though we were just a
1652 		 * normal single drive.
1653 		 * However don't try a recovery from this drive as
1654 		 * it is very likely to fail.
1655 		 */
1656 		conf->recovery_disabled = mddev->recovery_disabled;
1657 		spin_unlock_irqrestore(&conf->device_lock, flags);
1658 		return;
1659 	}
1660 	set_bit(Blocked, &rdev->flags);
1661 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1662 		mddev->degraded++;
1663 		set_bit(Faulty, &rdev->flags);
1664 	} else
1665 		set_bit(Faulty, &rdev->flags);
1666 	spin_unlock_irqrestore(&conf->device_lock, flags);
1667 	/*
1668 	 * if recovery is running, make sure it aborts.
1669 	 */
1670 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1671 	set_mask_bits(&mddev->sb_flags, 0,
1672 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1673 	pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1674 		"md/raid1:%s: Operation continuing on %d devices.\n",
1675 		mdname(mddev), bdevname(rdev->bdev, b),
1676 		mdname(mddev), conf->raid_disks - mddev->degraded);
1677 }
1678 
1679 static void print_conf(struct r1conf *conf)
1680 {
1681 	int i;
1682 
1683 	pr_debug("RAID1 conf printout:\n");
1684 	if (!conf) {
1685 		pr_debug("(!conf)\n");
1686 		return;
1687 	}
1688 	pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1689 		 conf->raid_disks);
1690 
1691 	rcu_read_lock();
1692 	for (i = 0; i < conf->raid_disks; i++) {
1693 		char b[BDEVNAME_SIZE];
1694 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1695 		if (rdev)
1696 			pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1697 				 i, !test_bit(In_sync, &rdev->flags),
1698 				 !test_bit(Faulty, &rdev->flags),
1699 				 bdevname(rdev->bdev,b));
1700 	}
1701 	rcu_read_unlock();
1702 }
1703 
1704 static void close_sync(struct r1conf *conf)
1705 {
1706 	wait_all_barriers(conf);
1707 	allow_all_barriers(conf);
1708 
1709 	mempool_destroy(conf->r1buf_pool);
1710 	conf->r1buf_pool = NULL;
1711 }
1712 
1713 static int raid1_spare_active(struct mddev *mddev)
1714 {
1715 	int i;
1716 	struct r1conf *conf = mddev->private;
1717 	int count = 0;
1718 	unsigned long flags;
1719 
1720 	/*
1721 	 * Find all failed disks within the RAID1 configuration
1722 	 * and mark them readable.
1723 	 * Called under mddev lock, so rcu protection not needed.
1724 	 * device_lock used to avoid races with raid1_end_read_request
1725 	 * which expects 'In_sync' flags and ->degraded to be consistent.
1726 	 */
1727 	spin_lock_irqsave(&conf->device_lock, flags);
1728 	for (i = 0; i < conf->raid_disks; i++) {
1729 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1730 		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1731 		if (repl
1732 		    && !test_bit(Candidate, &repl->flags)
1733 		    && repl->recovery_offset == MaxSector
1734 		    && !test_bit(Faulty, &repl->flags)
1735 		    && !test_and_set_bit(In_sync, &repl->flags)) {
1736 			/* replacement has just become active */
1737 			if (!rdev ||
1738 			    !test_and_clear_bit(In_sync, &rdev->flags))
1739 				count++;
1740 			if (rdev) {
1741 				/* Replaced device not technically
1742 				 * faulty, but we need to be sure
1743 				 * it gets removed and never re-added
1744 				 */
1745 				set_bit(Faulty, &rdev->flags);
1746 				sysfs_notify_dirent_safe(
1747 					rdev->sysfs_state);
1748 			}
1749 		}
1750 		if (rdev
1751 		    && rdev->recovery_offset == MaxSector
1752 		    && !test_bit(Faulty, &rdev->flags)
1753 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1754 			count++;
1755 			sysfs_notify_dirent_safe(rdev->sysfs_state);
1756 		}
1757 	}
1758 	mddev->degraded -= count;
1759 	spin_unlock_irqrestore(&conf->device_lock, flags);
1760 
1761 	print_conf(conf);
1762 	return count;
1763 }
1764 
1765 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1766 {
1767 	struct r1conf *conf = mddev->private;
1768 	int err = -EEXIST;
1769 	int mirror = 0;
1770 	struct raid1_info *p;
1771 	int first = 0;
1772 	int last = conf->raid_disks - 1;
1773 
1774 	if (mddev->recovery_disabled == conf->recovery_disabled)
1775 		return -EBUSY;
1776 
1777 	if (md_integrity_add_rdev(rdev, mddev))
1778 		return -ENXIO;
1779 
1780 	if (rdev->raid_disk >= 0)
1781 		first = last = rdev->raid_disk;
1782 
1783 	/*
1784 	 * find the disk ... but prefer rdev->saved_raid_disk
1785 	 * if possible.
1786 	 */
1787 	if (rdev->saved_raid_disk >= 0 &&
1788 	    rdev->saved_raid_disk >= first &&
1789 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1790 		first = last = rdev->saved_raid_disk;
1791 
1792 	for (mirror = first; mirror <= last; mirror++) {
1793 		p = conf->mirrors+mirror;
1794 		if (!p->rdev) {
1795 
1796 			if (mddev->gendisk)
1797 				disk_stack_limits(mddev->gendisk, rdev->bdev,
1798 						  rdev->data_offset << 9);
1799 
1800 			p->head_position = 0;
1801 			rdev->raid_disk = mirror;
1802 			err = 0;
1803 			/* As all devices are equivalent, we don't need a full recovery
1804 			 * if this was recently any drive of the array
1805 			 */
1806 			if (rdev->saved_raid_disk < 0)
1807 				conf->fullsync = 1;
1808 			rcu_assign_pointer(p->rdev, rdev);
1809 			break;
1810 		}
1811 		if (test_bit(WantReplacement, &p->rdev->flags) &&
1812 		    p[conf->raid_disks].rdev == NULL) {
1813 			/* Add this device as a replacement */
1814 			clear_bit(In_sync, &rdev->flags);
1815 			set_bit(Replacement, &rdev->flags);
1816 			rdev->raid_disk = mirror;
1817 			err = 0;
1818 			conf->fullsync = 1;
1819 			rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1820 			break;
1821 		}
1822 	}
1823 	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1824 		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1825 	print_conf(conf);
1826 	return err;
1827 }
1828 
1829 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1830 {
1831 	struct r1conf *conf = mddev->private;
1832 	int err = 0;
1833 	int number = rdev->raid_disk;
1834 	struct raid1_info *p = conf->mirrors + number;
1835 
1836 	if (rdev != p->rdev)
1837 		p = conf->mirrors + conf->raid_disks + number;
1838 
1839 	print_conf(conf);
1840 	if (rdev == p->rdev) {
1841 		if (test_bit(In_sync, &rdev->flags) ||
1842 		    atomic_read(&rdev->nr_pending)) {
1843 			err = -EBUSY;
1844 			goto abort;
1845 		}
1846 		/* Only remove non-faulty devices if recovery
1847 		 * is not possible.
1848 		 */
1849 		if (!test_bit(Faulty, &rdev->flags) &&
1850 		    mddev->recovery_disabled != conf->recovery_disabled &&
1851 		    mddev->degraded < conf->raid_disks) {
1852 			err = -EBUSY;
1853 			goto abort;
1854 		}
1855 		p->rdev = NULL;
1856 		if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1857 			synchronize_rcu();
1858 			if (atomic_read(&rdev->nr_pending)) {
1859 				/* lost the race, try later */
1860 				err = -EBUSY;
1861 				p->rdev = rdev;
1862 				goto abort;
1863 			}
1864 		}
1865 		if (conf->mirrors[conf->raid_disks + number].rdev) {
1866 			/* We just removed a device that is being replaced.
1867 			 * Move down the replacement.  We drain all IO before
1868 			 * doing this to avoid confusion.
1869 			 */
1870 			struct md_rdev *repl =
1871 				conf->mirrors[conf->raid_disks + number].rdev;
1872 			freeze_array(conf, 0);
1873 			clear_bit(Replacement, &repl->flags);
1874 			p->rdev = repl;
1875 			conf->mirrors[conf->raid_disks + number].rdev = NULL;
1876 			unfreeze_array(conf);
1877 			clear_bit(WantReplacement, &rdev->flags);
1878 		} else
1879 			clear_bit(WantReplacement, &rdev->flags);
1880 		err = md_integrity_register(mddev);
1881 	}
1882 abort:
1883 
1884 	print_conf(conf);
1885 	return err;
1886 }
1887 
1888 static void end_sync_read(struct bio *bio)
1889 {
1890 	struct r1bio *r1_bio = bio->bi_private;
1891 
1892 	update_head_pos(r1_bio->read_disk, r1_bio);
1893 
1894 	/*
1895 	 * we have read a block, now it needs to be re-written,
1896 	 * or re-read if the read failed.
1897 	 * We don't do much here, just schedule handling by raid1d
1898 	 */
1899 	if (!bio->bi_error)
1900 		set_bit(R1BIO_Uptodate, &r1_bio->state);
1901 
1902 	if (atomic_dec_and_test(&r1_bio->remaining))
1903 		reschedule_retry(r1_bio);
1904 }
1905 
1906 static void end_sync_write(struct bio *bio)
1907 {
1908 	int uptodate = !bio->bi_error;
1909 	struct r1bio *r1_bio = bio->bi_private;
1910 	struct mddev *mddev = r1_bio->mddev;
1911 	struct r1conf *conf = mddev->private;
1912 	sector_t first_bad;
1913 	int bad_sectors;
1914 	struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1915 
1916 	if (!uptodate) {
1917 		sector_t sync_blocks = 0;
1918 		sector_t s = r1_bio->sector;
1919 		long sectors_to_go = r1_bio->sectors;
1920 		/* make sure these bits doesn't get cleared. */
1921 		do {
1922 			bitmap_end_sync(mddev->bitmap, s,
1923 					&sync_blocks, 1);
1924 			s += sync_blocks;
1925 			sectors_to_go -= sync_blocks;
1926 		} while (sectors_to_go > 0);
1927 		set_bit(WriteErrorSeen, &rdev->flags);
1928 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
1929 			set_bit(MD_RECOVERY_NEEDED, &
1930 				mddev->recovery);
1931 		set_bit(R1BIO_WriteError, &r1_bio->state);
1932 	} else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1933 			       &first_bad, &bad_sectors) &&
1934 		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1935 				r1_bio->sector,
1936 				r1_bio->sectors,
1937 				&first_bad, &bad_sectors)
1938 		)
1939 		set_bit(R1BIO_MadeGood, &r1_bio->state);
1940 
1941 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1942 		int s = r1_bio->sectors;
1943 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1944 		    test_bit(R1BIO_WriteError, &r1_bio->state))
1945 			reschedule_retry(r1_bio);
1946 		else {
1947 			put_buf(r1_bio);
1948 			md_done_sync(mddev, s, uptodate);
1949 		}
1950 	}
1951 }
1952 
1953 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1954 			    int sectors, struct page *page, int rw)
1955 {
1956 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1957 		/* success */
1958 		return 1;
1959 	if (rw == WRITE) {
1960 		set_bit(WriteErrorSeen, &rdev->flags);
1961 		if (!test_and_set_bit(WantReplacement,
1962 				      &rdev->flags))
1963 			set_bit(MD_RECOVERY_NEEDED, &
1964 				rdev->mddev->recovery);
1965 	}
1966 	/* need to record an error - either for the block or the device */
1967 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1968 		md_error(rdev->mddev, rdev);
1969 	return 0;
1970 }
1971 
1972 static int fix_sync_read_error(struct r1bio *r1_bio)
1973 {
1974 	/* Try some synchronous reads of other devices to get
1975 	 * good data, much like with normal read errors.  Only
1976 	 * read into the pages we already have so we don't
1977 	 * need to re-issue the read request.
1978 	 * We don't need to freeze the array, because being in an
1979 	 * active sync request, there is no normal IO, and
1980 	 * no overlapping syncs.
1981 	 * We don't need to check is_badblock() again as we
1982 	 * made sure that anything with a bad block in range
1983 	 * will have bi_end_io clear.
1984 	 */
1985 	struct mddev *mddev = r1_bio->mddev;
1986 	struct r1conf *conf = mddev->private;
1987 	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1988 	sector_t sect = r1_bio->sector;
1989 	int sectors = r1_bio->sectors;
1990 	int idx = 0;
1991 	struct md_rdev *rdev;
1992 
1993 	rdev = conf->mirrors[r1_bio->read_disk].rdev;
1994 	if (test_bit(FailFast, &rdev->flags)) {
1995 		/* Don't try recovering from here - just fail it
1996 		 * ... unless it is the last working device of course */
1997 		md_error(mddev, rdev);
1998 		if (test_bit(Faulty, &rdev->flags))
1999 			/* Don't try to read from here, but make sure
2000 			 * put_buf does it's thing
2001 			 */
2002 			bio->bi_end_io = end_sync_write;
2003 	}
2004 
2005 	while(sectors) {
2006 		int s = sectors;
2007 		int d = r1_bio->read_disk;
2008 		int success = 0;
2009 		int start;
2010 
2011 		if (s > (PAGE_SIZE>>9))
2012 			s = PAGE_SIZE >> 9;
2013 		do {
2014 			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
2015 				/* No rcu protection needed here devices
2016 				 * can only be removed when no resync is
2017 				 * active, and resync is currently active
2018 				 */
2019 				rdev = conf->mirrors[d].rdev;
2020 				if (sync_page_io(rdev, sect, s<<9,
2021 						 bio->bi_io_vec[idx].bv_page,
2022 						 REQ_OP_READ, 0, false)) {
2023 					success = 1;
2024 					break;
2025 				}
2026 			}
2027 			d++;
2028 			if (d == conf->raid_disks * 2)
2029 				d = 0;
2030 		} while (!success && d != r1_bio->read_disk);
2031 
2032 		if (!success) {
2033 			char b[BDEVNAME_SIZE];
2034 			int abort = 0;
2035 			/* Cannot read from anywhere, this block is lost.
2036 			 * Record a bad block on each device.  If that doesn't
2037 			 * work just disable and interrupt the recovery.
2038 			 * Don't fail devices as that won't really help.
2039 			 */
2040 			pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2041 					    mdname(mddev),
2042 					    bdevname(bio->bi_bdev, b),
2043 					    (unsigned long long)r1_bio->sector);
2044 			for (d = 0; d < conf->raid_disks * 2; d++) {
2045 				rdev = conf->mirrors[d].rdev;
2046 				if (!rdev || test_bit(Faulty, &rdev->flags))
2047 					continue;
2048 				if (!rdev_set_badblocks(rdev, sect, s, 0))
2049 					abort = 1;
2050 			}
2051 			if (abort) {
2052 				conf->recovery_disabled =
2053 					mddev->recovery_disabled;
2054 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2055 				md_done_sync(mddev, r1_bio->sectors, 0);
2056 				put_buf(r1_bio);
2057 				return 0;
2058 			}
2059 			/* Try next page */
2060 			sectors -= s;
2061 			sect += s;
2062 			idx++;
2063 			continue;
2064 		}
2065 
2066 		start = d;
2067 		/* write it back and re-read */
2068 		while (d != r1_bio->read_disk) {
2069 			if (d == 0)
2070 				d = conf->raid_disks * 2;
2071 			d--;
2072 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2073 				continue;
2074 			rdev = conf->mirrors[d].rdev;
2075 			if (r1_sync_page_io(rdev, sect, s,
2076 					    bio->bi_io_vec[idx].bv_page,
2077 					    WRITE) == 0) {
2078 				r1_bio->bios[d]->bi_end_io = NULL;
2079 				rdev_dec_pending(rdev, mddev);
2080 			}
2081 		}
2082 		d = start;
2083 		while (d != r1_bio->read_disk) {
2084 			if (d == 0)
2085 				d = conf->raid_disks * 2;
2086 			d--;
2087 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2088 				continue;
2089 			rdev = conf->mirrors[d].rdev;
2090 			if (r1_sync_page_io(rdev, sect, s,
2091 					    bio->bi_io_vec[idx].bv_page,
2092 					    READ) != 0)
2093 				atomic_add(s, &rdev->corrected_errors);
2094 		}
2095 		sectors -= s;
2096 		sect += s;
2097 		idx ++;
2098 	}
2099 	set_bit(R1BIO_Uptodate, &r1_bio->state);
2100 	bio->bi_error = 0;
2101 	return 1;
2102 }
2103 
2104 static void process_checks(struct r1bio *r1_bio)
2105 {
2106 	/* We have read all readable devices.  If we haven't
2107 	 * got the block, then there is no hope left.
2108 	 * If we have, then we want to do a comparison
2109 	 * and skip the write if everything is the same.
2110 	 * If any blocks failed to read, then we need to
2111 	 * attempt an over-write
2112 	 */
2113 	struct mddev *mddev = r1_bio->mddev;
2114 	struct r1conf *conf = mddev->private;
2115 	int primary;
2116 	int i;
2117 	int vcnt;
2118 
2119 	/* Fix variable parts of all bios */
2120 	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2121 	for (i = 0; i < conf->raid_disks * 2; i++) {
2122 		int j;
2123 		int size;
2124 		int error;
2125 		struct bio *b = r1_bio->bios[i];
2126 		if (b->bi_end_io != end_sync_read)
2127 			continue;
2128 		/* fixup the bio for reuse, but preserve errno */
2129 		error = b->bi_error;
2130 		bio_reset(b);
2131 		b->bi_error = error;
2132 		b->bi_vcnt = vcnt;
2133 		b->bi_iter.bi_size = r1_bio->sectors << 9;
2134 		b->bi_iter.bi_sector = r1_bio->sector +
2135 			conf->mirrors[i].rdev->data_offset;
2136 		b->bi_bdev = conf->mirrors[i].rdev->bdev;
2137 		b->bi_end_io = end_sync_read;
2138 		b->bi_private = r1_bio;
2139 
2140 		size = b->bi_iter.bi_size;
2141 		for (j = 0; j < vcnt ; j++) {
2142 			struct bio_vec *bi;
2143 			bi = &b->bi_io_vec[j];
2144 			bi->bv_offset = 0;
2145 			if (size > PAGE_SIZE)
2146 				bi->bv_len = PAGE_SIZE;
2147 			else
2148 				bi->bv_len = size;
2149 			size -= PAGE_SIZE;
2150 		}
2151 	}
2152 	for (primary = 0; primary < conf->raid_disks * 2; primary++)
2153 		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2154 		    !r1_bio->bios[primary]->bi_error) {
2155 			r1_bio->bios[primary]->bi_end_io = NULL;
2156 			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2157 			break;
2158 		}
2159 	r1_bio->read_disk = primary;
2160 	for (i = 0; i < conf->raid_disks * 2; i++) {
2161 		int j;
2162 		struct bio *pbio = r1_bio->bios[primary];
2163 		struct bio *sbio = r1_bio->bios[i];
2164 		int error = sbio->bi_error;
2165 
2166 		if (sbio->bi_end_io != end_sync_read)
2167 			continue;
2168 		/* Now we can 'fixup' the error value */
2169 		sbio->bi_error = 0;
2170 
2171 		if (!error) {
2172 			for (j = vcnt; j-- ; ) {
2173 				struct page *p, *s;
2174 				p = pbio->bi_io_vec[j].bv_page;
2175 				s = sbio->bi_io_vec[j].bv_page;
2176 				if (memcmp(page_address(p),
2177 					   page_address(s),
2178 					   sbio->bi_io_vec[j].bv_len))
2179 					break;
2180 			}
2181 		} else
2182 			j = 0;
2183 		if (j >= 0)
2184 			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2185 		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2186 			      && !error)) {
2187 			/* No need to write to this device. */
2188 			sbio->bi_end_io = NULL;
2189 			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2190 			continue;
2191 		}
2192 
2193 		bio_copy_data(sbio, pbio);
2194 	}
2195 }
2196 
2197 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2198 {
2199 	struct r1conf *conf = mddev->private;
2200 	int i;
2201 	int disks = conf->raid_disks * 2;
2202 	struct bio *bio, *wbio;
2203 
2204 	bio = r1_bio->bios[r1_bio->read_disk];
2205 
2206 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2207 		/* ouch - failed to read all of that. */
2208 		if (!fix_sync_read_error(r1_bio))
2209 			return;
2210 
2211 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2212 		process_checks(r1_bio);
2213 
2214 	/*
2215 	 * schedule writes
2216 	 */
2217 	atomic_set(&r1_bio->remaining, 1);
2218 	for (i = 0; i < disks ; i++) {
2219 		wbio = r1_bio->bios[i];
2220 		if (wbio->bi_end_io == NULL ||
2221 		    (wbio->bi_end_io == end_sync_read &&
2222 		     (i == r1_bio->read_disk ||
2223 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2224 			continue;
2225 
2226 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2227 		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2228 			wbio->bi_opf |= MD_FAILFAST;
2229 
2230 		wbio->bi_end_io = end_sync_write;
2231 		atomic_inc(&r1_bio->remaining);
2232 		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2233 
2234 		generic_make_request(wbio);
2235 	}
2236 
2237 	if (atomic_dec_and_test(&r1_bio->remaining)) {
2238 		/* if we're here, all write(s) have completed, so clean up */
2239 		int s = r1_bio->sectors;
2240 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2241 		    test_bit(R1BIO_WriteError, &r1_bio->state))
2242 			reschedule_retry(r1_bio);
2243 		else {
2244 			put_buf(r1_bio);
2245 			md_done_sync(mddev, s, 1);
2246 		}
2247 	}
2248 }
2249 
2250 /*
2251  * This is a kernel thread which:
2252  *
2253  *	1.	Retries failed read operations on working mirrors.
2254  *	2.	Updates the raid superblock when problems encounter.
2255  *	3.	Performs writes following reads for array synchronising.
2256  */
2257 
2258 static void fix_read_error(struct r1conf *conf, int read_disk,
2259 			   sector_t sect, int sectors)
2260 {
2261 	struct mddev *mddev = conf->mddev;
2262 	while(sectors) {
2263 		int s = sectors;
2264 		int d = read_disk;
2265 		int success = 0;
2266 		int start;
2267 		struct md_rdev *rdev;
2268 
2269 		if (s > (PAGE_SIZE>>9))
2270 			s = PAGE_SIZE >> 9;
2271 
2272 		do {
2273 			sector_t first_bad;
2274 			int bad_sectors;
2275 
2276 			rcu_read_lock();
2277 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2278 			if (rdev &&
2279 			    (test_bit(In_sync, &rdev->flags) ||
2280 			     (!test_bit(Faulty, &rdev->flags) &&
2281 			      rdev->recovery_offset >= sect + s)) &&
2282 			    is_badblock(rdev, sect, s,
2283 					&first_bad, &bad_sectors) == 0) {
2284 				atomic_inc(&rdev->nr_pending);
2285 				rcu_read_unlock();
2286 				if (sync_page_io(rdev, sect, s<<9,
2287 					 conf->tmppage, REQ_OP_READ, 0, false))
2288 					success = 1;
2289 				rdev_dec_pending(rdev, mddev);
2290 				if (success)
2291 					break;
2292 			} else
2293 				rcu_read_unlock();
2294 			d++;
2295 			if (d == conf->raid_disks * 2)
2296 				d = 0;
2297 		} while (!success && d != read_disk);
2298 
2299 		if (!success) {
2300 			/* Cannot read from anywhere - mark it bad */
2301 			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2302 			if (!rdev_set_badblocks(rdev, sect, s, 0))
2303 				md_error(mddev, rdev);
2304 			break;
2305 		}
2306 		/* write it back and re-read */
2307 		start = d;
2308 		while (d != read_disk) {
2309 			if (d==0)
2310 				d = conf->raid_disks * 2;
2311 			d--;
2312 			rcu_read_lock();
2313 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2314 			if (rdev &&
2315 			    !test_bit(Faulty, &rdev->flags)) {
2316 				atomic_inc(&rdev->nr_pending);
2317 				rcu_read_unlock();
2318 				r1_sync_page_io(rdev, sect, s,
2319 						conf->tmppage, WRITE);
2320 				rdev_dec_pending(rdev, mddev);
2321 			} else
2322 				rcu_read_unlock();
2323 		}
2324 		d = start;
2325 		while (d != read_disk) {
2326 			char b[BDEVNAME_SIZE];
2327 			if (d==0)
2328 				d = conf->raid_disks * 2;
2329 			d--;
2330 			rcu_read_lock();
2331 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2332 			if (rdev &&
2333 			    !test_bit(Faulty, &rdev->flags)) {
2334 				atomic_inc(&rdev->nr_pending);
2335 				rcu_read_unlock();
2336 				if (r1_sync_page_io(rdev, sect, s,
2337 						    conf->tmppage, READ)) {
2338 					atomic_add(s, &rdev->corrected_errors);
2339 					pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2340 						mdname(mddev), s,
2341 						(unsigned long long)(sect +
2342 								     rdev->data_offset),
2343 						bdevname(rdev->bdev, b));
2344 				}
2345 				rdev_dec_pending(rdev, mddev);
2346 			} else
2347 				rcu_read_unlock();
2348 		}
2349 		sectors -= s;
2350 		sect += s;
2351 	}
2352 }
2353 
2354 static int narrow_write_error(struct r1bio *r1_bio, int i)
2355 {
2356 	struct mddev *mddev = r1_bio->mddev;
2357 	struct r1conf *conf = mddev->private;
2358 	struct md_rdev *rdev = conf->mirrors[i].rdev;
2359 
2360 	/* bio has the data to be written to device 'i' where
2361 	 * we just recently had a write error.
2362 	 * We repeatedly clone the bio and trim down to one block,
2363 	 * then try the write.  Where the write fails we record
2364 	 * a bad block.
2365 	 * It is conceivable that the bio doesn't exactly align with
2366 	 * blocks.  We must handle this somehow.
2367 	 *
2368 	 * We currently own a reference on the rdev.
2369 	 */
2370 
2371 	int block_sectors;
2372 	sector_t sector;
2373 	int sectors;
2374 	int sect_to_write = r1_bio->sectors;
2375 	int ok = 1;
2376 
2377 	if (rdev->badblocks.shift < 0)
2378 		return 0;
2379 
2380 	block_sectors = roundup(1 << rdev->badblocks.shift,
2381 				bdev_logical_block_size(rdev->bdev) >> 9);
2382 	sector = r1_bio->sector;
2383 	sectors = ((sector + block_sectors)
2384 		   & ~(sector_t)(block_sectors - 1))
2385 		- sector;
2386 
2387 	while (sect_to_write) {
2388 		struct bio *wbio;
2389 		if (sectors > sect_to_write)
2390 			sectors = sect_to_write;
2391 		/* Write at 'sector' for 'sectors'*/
2392 
2393 		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2394 			unsigned vcnt = r1_bio->behind_page_count;
2395 			struct bio_vec *vec = r1_bio->behind_bvecs;
2396 
2397 			while (!vec->bv_page) {
2398 				vec++;
2399 				vcnt--;
2400 			}
2401 
2402 			wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2403 			memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2404 
2405 			wbio->bi_vcnt = vcnt;
2406 		} else {
2407 			wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2408 					      mddev->bio_set);
2409 		}
2410 
2411 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2412 		wbio->bi_iter.bi_sector = r1_bio->sector;
2413 		wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2414 
2415 		bio_trim(wbio, sector - r1_bio->sector, sectors);
2416 		wbio->bi_iter.bi_sector += rdev->data_offset;
2417 		wbio->bi_bdev = rdev->bdev;
2418 
2419 		if (submit_bio_wait(wbio) < 0)
2420 			/* failure! */
2421 			ok = rdev_set_badblocks(rdev, sector,
2422 						sectors, 0)
2423 				&& ok;
2424 
2425 		bio_put(wbio);
2426 		sect_to_write -= sectors;
2427 		sector += sectors;
2428 		sectors = block_sectors;
2429 	}
2430 	return ok;
2431 }
2432 
2433 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2434 {
2435 	int m;
2436 	int s = r1_bio->sectors;
2437 	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2438 		struct md_rdev *rdev = conf->mirrors[m].rdev;
2439 		struct bio *bio = r1_bio->bios[m];
2440 		if (bio->bi_end_io == NULL)
2441 			continue;
2442 		if (!bio->bi_error &&
2443 		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2444 			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2445 		}
2446 		if (bio->bi_error &&
2447 		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2448 			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2449 				md_error(conf->mddev, rdev);
2450 		}
2451 	}
2452 	put_buf(r1_bio);
2453 	md_done_sync(conf->mddev, s, 1);
2454 }
2455 
2456 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2457 {
2458 	int m, idx;
2459 	bool fail = false;
2460 
2461 	for (m = 0; m < conf->raid_disks * 2 ; m++)
2462 		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2463 			struct md_rdev *rdev = conf->mirrors[m].rdev;
2464 			rdev_clear_badblocks(rdev,
2465 					     r1_bio->sector,
2466 					     r1_bio->sectors, 0);
2467 			rdev_dec_pending(rdev, conf->mddev);
2468 		} else if (r1_bio->bios[m] != NULL) {
2469 			/* This drive got a write error.  We need to
2470 			 * narrow down and record precise write
2471 			 * errors.
2472 			 */
2473 			fail = true;
2474 			if (!narrow_write_error(r1_bio, m)) {
2475 				md_error(conf->mddev,
2476 					 conf->mirrors[m].rdev);
2477 				/* an I/O failed, we can't clear the bitmap */
2478 				set_bit(R1BIO_Degraded, &r1_bio->state);
2479 			}
2480 			rdev_dec_pending(conf->mirrors[m].rdev,
2481 					 conf->mddev);
2482 		}
2483 	if (fail) {
2484 		spin_lock_irq(&conf->device_lock);
2485 		list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2486 		idx = sector_to_idx(r1_bio->sector);
2487 		atomic_inc(&conf->nr_queued[idx]);
2488 		spin_unlock_irq(&conf->device_lock);
2489 		/*
2490 		 * In case freeze_array() is waiting for condition
2491 		 * get_unqueued_pending() == extra to be true.
2492 		 */
2493 		wake_up(&conf->wait_barrier);
2494 		md_wakeup_thread(conf->mddev->thread);
2495 	} else {
2496 		if (test_bit(R1BIO_WriteError, &r1_bio->state))
2497 			close_write(r1_bio);
2498 		raid_end_bio_io(r1_bio);
2499 	}
2500 }
2501 
2502 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2503 {
2504 	int disk;
2505 	int max_sectors;
2506 	struct mddev *mddev = conf->mddev;
2507 	struct bio *bio;
2508 	char b[BDEVNAME_SIZE];
2509 	struct md_rdev *rdev;
2510 	dev_t bio_dev;
2511 	sector_t bio_sector;
2512 
2513 	clear_bit(R1BIO_ReadError, &r1_bio->state);
2514 	/* we got a read error. Maybe the drive is bad.  Maybe just
2515 	 * the block and we can fix it.
2516 	 * We freeze all other IO, and try reading the block from
2517 	 * other devices.  When we find one, we re-write
2518 	 * and check it that fixes the read error.
2519 	 * This is all done synchronously while the array is
2520 	 * frozen
2521 	 */
2522 
2523 	bio = r1_bio->bios[r1_bio->read_disk];
2524 	bdevname(bio->bi_bdev, b);
2525 	bio_dev = bio->bi_bdev->bd_dev;
2526 	bio_sector = conf->mirrors[r1_bio->read_disk].rdev->data_offset + r1_bio->sector;
2527 	bio_put(bio);
2528 	r1_bio->bios[r1_bio->read_disk] = NULL;
2529 
2530 	rdev = conf->mirrors[r1_bio->read_disk].rdev;
2531 	if (mddev->ro == 0
2532 	    && !test_bit(FailFast, &rdev->flags)) {
2533 		freeze_array(conf, 1);
2534 		fix_read_error(conf, r1_bio->read_disk,
2535 			       r1_bio->sector, r1_bio->sectors);
2536 		unfreeze_array(conf);
2537 	} else {
2538 		r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2539 	}
2540 
2541 	rdev_dec_pending(rdev, conf->mddev);
2542 
2543 read_more:
2544 	disk = read_balance(conf, r1_bio, &max_sectors);
2545 	if (disk == -1) {
2546 		pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2547 				    mdname(mddev), b, (unsigned long long)r1_bio->sector);
2548 		raid_end_bio_io(r1_bio);
2549 	} else {
2550 		const unsigned long do_sync
2551 			= r1_bio->master_bio->bi_opf & REQ_SYNC;
2552 		r1_bio->read_disk = disk;
2553 		bio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2554 				     mddev->bio_set);
2555 		bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2556 			 max_sectors);
2557 		r1_bio->bios[r1_bio->read_disk] = bio;
2558 		rdev = conf->mirrors[disk].rdev;
2559 		pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
2560 				    mdname(mddev),
2561 				    (unsigned long long)r1_bio->sector,
2562 				    bdevname(rdev->bdev, b));
2563 		bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
2564 		bio->bi_bdev = rdev->bdev;
2565 		bio->bi_end_io = raid1_end_read_request;
2566 		bio_set_op_attrs(bio, REQ_OP_READ, do_sync);
2567 		if (test_bit(FailFast, &rdev->flags) &&
2568 		    test_bit(R1BIO_FailFast, &r1_bio->state))
2569 			bio->bi_opf |= MD_FAILFAST;
2570 		bio->bi_private = r1_bio;
2571 		if (max_sectors < r1_bio->sectors) {
2572 			/* Drat - have to split this up more */
2573 			struct bio *mbio = r1_bio->master_bio;
2574 			int sectors_handled = (r1_bio->sector + max_sectors
2575 					       - mbio->bi_iter.bi_sector);
2576 			r1_bio->sectors = max_sectors;
2577 			spin_lock_irq(&conf->device_lock);
2578 			if (mbio->bi_phys_segments == 0)
2579 				mbio->bi_phys_segments = 2;
2580 			else
2581 				mbio->bi_phys_segments++;
2582 			spin_unlock_irq(&conf->device_lock);
2583 			trace_block_bio_remap(bdev_get_queue(bio->bi_bdev),
2584 					      bio, bio_dev, bio_sector);
2585 			generic_make_request(bio);
2586 			bio = NULL;
2587 
2588 			r1_bio = alloc_r1bio(mddev, mbio, sectors_handled);
2589 			set_bit(R1BIO_ReadError, &r1_bio->state);
2590 
2591 			goto read_more;
2592 		} else {
2593 			trace_block_bio_remap(bdev_get_queue(bio->bi_bdev),
2594 					      bio, bio_dev, bio_sector);
2595 			generic_make_request(bio);
2596 		}
2597 	}
2598 }
2599 
2600 static void raid1d(struct md_thread *thread)
2601 {
2602 	struct mddev *mddev = thread->mddev;
2603 	struct r1bio *r1_bio;
2604 	unsigned long flags;
2605 	struct r1conf *conf = mddev->private;
2606 	struct list_head *head = &conf->retry_list;
2607 	struct blk_plug plug;
2608 	int idx;
2609 
2610 	md_check_recovery(mddev);
2611 
2612 	if (!list_empty_careful(&conf->bio_end_io_list) &&
2613 	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2614 		LIST_HEAD(tmp);
2615 		spin_lock_irqsave(&conf->device_lock, flags);
2616 		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2617 			list_splice_init(&conf->bio_end_io_list, &tmp);
2618 		spin_unlock_irqrestore(&conf->device_lock, flags);
2619 		while (!list_empty(&tmp)) {
2620 			r1_bio = list_first_entry(&tmp, struct r1bio,
2621 						  retry_list);
2622 			list_del(&r1_bio->retry_list);
2623 			idx = sector_to_idx(r1_bio->sector);
2624 			atomic_dec(&conf->nr_queued[idx]);
2625 			if (mddev->degraded)
2626 				set_bit(R1BIO_Degraded, &r1_bio->state);
2627 			if (test_bit(R1BIO_WriteError, &r1_bio->state))
2628 				close_write(r1_bio);
2629 			raid_end_bio_io(r1_bio);
2630 		}
2631 	}
2632 
2633 	blk_start_plug(&plug);
2634 	for (;;) {
2635 
2636 		flush_pending_writes(conf);
2637 
2638 		spin_lock_irqsave(&conf->device_lock, flags);
2639 		if (list_empty(head)) {
2640 			spin_unlock_irqrestore(&conf->device_lock, flags);
2641 			break;
2642 		}
2643 		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2644 		list_del(head->prev);
2645 		idx = sector_to_idx(r1_bio->sector);
2646 		atomic_dec(&conf->nr_queued[idx]);
2647 		spin_unlock_irqrestore(&conf->device_lock, flags);
2648 
2649 		mddev = r1_bio->mddev;
2650 		conf = mddev->private;
2651 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2652 			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2653 			    test_bit(R1BIO_WriteError, &r1_bio->state))
2654 				handle_sync_write_finished(conf, r1_bio);
2655 			else
2656 				sync_request_write(mddev, r1_bio);
2657 		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2658 			   test_bit(R1BIO_WriteError, &r1_bio->state))
2659 			handle_write_finished(conf, r1_bio);
2660 		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2661 			handle_read_error(conf, r1_bio);
2662 		else
2663 			/* just a partial read to be scheduled from separate
2664 			 * context
2665 			 */
2666 			generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2667 
2668 		cond_resched();
2669 		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2670 			md_check_recovery(mddev);
2671 	}
2672 	blk_finish_plug(&plug);
2673 }
2674 
2675 static int init_resync(struct r1conf *conf)
2676 {
2677 	int buffs;
2678 
2679 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2680 	BUG_ON(conf->r1buf_pool);
2681 	conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2682 					  conf->poolinfo);
2683 	if (!conf->r1buf_pool)
2684 		return -ENOMEM;
2685 	return 0;
2686 }
2687 
2688 /*
2689  * perform a "sync" on one "block"
2690  *
2691  * We need to make sure that no normal I/O request - particularly write
2692  * requests - conflict with active sync requests.
2693  *
2694  * This is achieved by tracking pending requests and a 'barrier' concept
2695  * that can be installed to exclude normal IO requests.
2696  */
2697 
2698 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2699 				   int *skipped)
2700 {
2701 	struct r1conf *conf = mddev->private;
2702 	struct r1bio *r1_bio;
2703 	struct bio *bio;
2704 	sector_t max_sector, nr_sectors;
2705 	int disk = -1;
2706 	int i;
2707 	int wonly = -1;
2708 	int write_targets = 0, read_targets = 0;
2709 	sector_t sync_blocks;
2710 	int still_degraded = 0;
2711 	int good_sectors = RESYNC_SECTORS;
2712 	int min_bad = 0; /* number of sectors that are bad in all devices */
2713 	int idx = sector_to_idx(sector_nr);
2714 
2715 	if (!conf->r1buf_pool)
2716 		if (init_resync(conf))
2717 			return 0;
2718 
2719 	max_sector = mddev->dev_sectors;
2720 	if (sector_nr >= max_sector) {
2721 		/* If we aborted, we need to abort the
2722 		 * sync on the 'current' bitmap chunk (there will
2723 		 * only be one in raid1 resync.
2724 		 * We can find the current addess in mddev->curr_resync
2725 		 */
2726 		if (mddev->curr_resync < max_sector) /* aborted */
2727 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2728 						&sync_blocks, 1);
2729 		else /* completed sync */
2730 			conf->fullsync = 0;
2731 
2732 		bitmap_close_sync(mddev->bitmap);
2733 		close_sync(conf);
2734 
2735 		if (mddev_is_clustered(mddev)) {
2736 			conf->cluster_sync_low = 0;
2737 			conf->cluster_sync_high = 0;
2738 		}
2739 		return 0;
2740 	}
2741 
2742 	if (mddev->bitmap == NULL &&
2743 	    mddev->recovery_cp == MaxSector &&
2744 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2745 	    conf->fullsync == 0) {
2746 		*skipped = 1;
2747 		return max_sector - sector_nr;
2748 	}
2749 	/* before building a request, check if we can skip these blocks..
2750 	 * This call the bitmap_start_sync doesn't actually record anything
2751 	 */
2752 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2753 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2754 		/* We can skip this block, and probably several more */
2755 		*skipped = 1;
2756 		return sync_blocks;
2757 	}
2758 
2759 	/*
2760 	 * If there is non-resync activity waiting for a turn, then let it
2761 	 * though before starting on this new sync request.
2762 	 */
2763 	if (atomic_read(&conf->nr_waiting[idx]))
2764 		schedule_timeout_uninterruptible(1);
2765 
2766 	/* we are incrementing sector_nr below. To be safe, we check against
2767 	 * sector_nr + two times RESYNC_SECTORS
2768 	 */
2769 
2770 	bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2771 		mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2772 	r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2773 
2774 	raise_barrier(conf, sector_nr);
2775 
2776 	rcu_read_lock();
2777 	/*
2778 	 * If we get a correctably read error during resync or recovery,
2779 	 * we might want to read from a different device.  So we
2780 	 * flag all drives that could conceivably be read from for READ,
2781 	 * and any others (which will be non-In_sync devices) for WRITE.
2782 	 * If a read fails, we try reading from something else for which READ
2783 	 * is OK.
2784 	 */
2785 
2786 	r1_bio->mddev = mddev;
2787 	r1_bio->sector = sector_nr;
2788 	r1_bio->state = 0;
2789 	set_bit(R1BIO_IsSync, &r1_bio->state);
2790 	/* make sure good_sectors won't go across barrier unit boundary */
2791 	good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2792 
2793 	for (i = 0; i < conf->raid_disks * 2; i++) {
2794 		struct md_rdev *rdev;
2795 		bio = r1_bio->bios[i];
2796 		bio_reset(bio);
2797 
2798 		rdev = rcu_dereference(conf->mirrors[i].rdev);
2799 		if (rdev == NULL ||
2800 		    test_bit(Faulty, &rdev->flags)) {
2801 			if (i < conf->raid_disks)
2802 				still_degraded = 1;
2803 		} else if (!test_bit(In_sync, &rdev->flags)) {
2804 			bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2805 			bio->bi_end_io = end_sync_write;
2806 			write_targets ++;
2807 		} else {
2808 			/* may need to read from here */
2809 			sector_t first_bad = MaxSector;
2810 			int bad_sectors;
2811 
2812 			if (is_badblock(rdev, sector_nr, good_sectors,
2813 					&first_bad, &bad_sectors)) {
2814 				if (first_bad > sector_nr)
2815 					good_sectors = first_bad - sector_nr;
2816 				else {
2817 					bad_sectors -= (sector_nr - first_bad);
2818 					if (min_bad == 0 ||
2819 					    min_bad > bad_sectors)
2820 						min_bad = bad_sectors;
2821 				}
2822 			}
2823 			if (sector_nr < first_bad) {
2824 				if (test_bit(WriteMostly, &rdev->flags)) {
2825 					if (wonly < 0)
2826 						wonly = i;
2827 				} else {
2828 					if (disk < 0)
2829 						disk = i;
2830 				}
2831 				bio_set_op_attrs(bio, REQ_OP_READ, 0);
2832 				bio->bi_end_io = end_sync_read;
2833 				read_targets++;
2834 			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2835 				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2836 				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2837 				/*
2838 				 * The device is suitable for reading (InSync),
2839 				 * but has bad block(s) here. Let's try to correct them,
2840 				 * if we are doing resync or repair. Otherwise, leave
2841 				 * this device alone for this sync request.
2842 				 */
2843 				bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2844 				bio->bi_end_io = end_sync_write;
2845 				write_targets++;
2846 			}
2847 		}
2848 		if (bio->bi_end_io) {
2849 			atomic_inc(&rdev->nr_pending);
2850 			bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2851 			bio->bi_bdev = rdev->bdev;
2852 			bio->bi_private = r1_bio;
2853 			if (test_bit(FailFast, &rdev->flags))
2854 				bio->bi_opf |= MD_FAILFAST;
2855 		}
2856 	}
2857 	rcu_read_unlock();
2858 	if (disk < 0)
2859 		disk = wonly;
2860 	r1_bio->read_disk = disk;
2861 
2862 	if (read_targets == 0 && min_bad > 0) {
2863 		/* These sectors are bad on all InSync devices, so we
2864 		 * need to mark them bad on all write targets
2865 		 */
2866 		int ok = 1;
2867 		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2868 			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2869 				struct md_rdev *rdev = conf->mirrors[i].rdev;
2870 				ok = rdev_set_badblocks(rdev, sector_nr,
2871 							min_bad, 0
2872 					) && ok;
2873 			}
2874 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2875 		*skipped = 1;
2876 		put_buf(r1_bio);
2877 
2878 		if (!ok) {
2879 			/* Cannot record the badblocks, so need to
2880 			 * abort the resync.
2881 			 * If there are multiple read targets, could just
2882 			 * fail the really bad ones ???
2883 			 */
2884 			conf->recovery_disabled = mddev->recovery_disabled;
2885 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2886 			return 0;
2887 		} else
2888 			return min_bad;
2889 
2890 	}
2891 	if (min_bad > 0 && min_bad < good_sectors) {
2892 		/* only resync enough to reach the next bad->good
2893 		 * transition */
2894 		good_sectors = min_bad;
2895 	}
2896 
2897 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2898 		/* extra read targets are also write targets */
2899 		write_targets += read_targets-1;
2900 
2901 	if (write_targets == 0 || read_targets == 0) {
2902 		/* There is nowhere to write, so all non-sync
2903 		 * drives must be failed - so we are finished
2904 		 */
2905 		sector_t rv;
2906 		if (min_bad > 0)
2907 			max_sector = sector_nr + min_bad;
2908 		rv = max_sector - sector_nr;
2909 		*skipped = 1;
2910 		put_buf(r1_bio);
2911 		return rv;
2912 	}
2913 
2914 	if (max_sector > mddev->resync_max)
2915 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2916 	if (max_sector > sector_nr + good_sectors)
2917 		max_sector = sector_nr + good_sectors;
2918 	nr_sectors = 0;
2919 	sync_blocks = 0;
2920 	do {
2921 		struct page *page;
2922 		int len = PAGE_SIZE;
2923 		if (sector_nr + (len>>9) > max_sector)
2924 			len = (max_sector - sector_nr) << 9;
2925 		if (len == 0)
2926 			break;
2927 		if (sync_blocks == 0) {
2928 			if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2929 					       &sync_blocks, still_degraded) &&
2930 			    !conf->fullsync &&
2931 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2932 				break;
2933 			if ((len >> 9) > sync_blocks)
2934 				len = sync_blocks<<9;
2935 		}
2936 
2937 		for (i = 0 ; i < conf->raid_disks * 2; i++) {
2938 			bio = r1_bio->bios[i];
2939 			if (bio->bi_end_io) {
2940 				page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2941 				if (bio_add_page(bio, page, len, 0) == 0) {
2942 					/* stop here */
2943 					bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2944 					while (i > 0) {
2945 						i--;
2946 						bio = r1_bio->bios[i];
2947 						if (bio->bi_end_io==NULL)
2948 							continue;
2949 						/* remove last page from this bio */
2950 						bio->bi_vcnt--;
2951 						bio->bi_iter.bi_size -= len;
2952 						bio_clear_flag(bio, BIO_SEG_VALID);
2953 					}
2954 					goto bio_full;
2955 				}
2956 			}
2957 		}
2958 		nr_sectors += len>>9;
2959 		sector_nr += len>>9;
2960 		sync_blocks -= (len>>9);
2961 	} while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2962  bio_full:
2963 	r1_bio->sectors = nr_sectors;
2964 
2965 	if (mddev_is_clustered(mddev) &&
2966 			conf->cluster_sync_high < sector_nr + nr_sectors) {
2967 		conf->cluster_sync_low = mddev->curr_resync_completed;
2968 		conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2969 		/* Send resync message */
2970 		md_cluster_ops->resync_info_update(mddev,
2971 				conf->cluster_sync_low,
2972 				conf->cluster_sync_high);
2973 	}
2974 
2975 	/* For a user-requested sync, we read all readable devices and do a
2976 	 * compare
2977 	 */
2978 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2979 		atomic_set(&r1_bio->remaining, read_targets);
2980 		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2981 			bio = r1_bio->bios[i];
2982 			if (bio->bi_end_io == end_sync_read) {
2983 				read_targets--;
2984 				md_sync_acct(bio->bi_bdev, nr_sectors);
2985 				if (read_targets == 1)
2986 					bio->bi_opf &= ~MD_FAILFAST;
2987 				generic_make_request(bio);
2988 			}
2989 		}
2990 	} else {
2991 		atomic_set(&r1_bio->remaining, 1);
2992 		bio = r1_bio->bios[r1_bio->read_disk];
2993 		md_sync_acct(bio->bi_bdev, nr_sectors);
2994 		if (read_targets == 1)
2995 			bio->bi_opf &= ~MD_FAILFAST;
2996 		generic_make_request(bio);
2997 
2998 	}
2999 	return nr_sectors;
3000 }
3001 
3002 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3003 {
3004 	if (sectors)
3005 		return sectors;
3006 
3007 	return mddev->dev_sectors;
3008 }
3009 
3010 static struct r1conf *setup_conf(struct mddev *mddev)
3011 {
3012 	struct r1conf *conf;
3013 	int i;
3014 	struct raid1_info *disk;
3015 	struct md_rdev *rdev;
3016 	int err = -ENOMEM;
3017 
3018 	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
3019 	if (!conf)
3020 		goto abort;
3021 
3022 	conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
3023 				   sizeof(atomic_t), GFP_KERNEL);
3024 	if (!conf->nr_pending)
3025 		goto abort;
3026 
3027 	conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
3028 				   sizeof(atomic_t), GFP_KERNEL);
3029 	if (!conf->nr_waiting)
3030 		goto abort;
3031 
3032 	conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
3033 				  sizeof(atomic_t), GFP_KERNEL);
3034 	if (!conf->nr_queued)
3035 		goto abort;
3036 
3037 	conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
3038 				sizeof(atomic_t), GFP_KERNEL);
3039 	if (!conf->barrier)
3040 		goto abort;
3041 
3042 	conf->mirrors = kzalloc(sizeof(struct raid1_info)
3043 				* mddev->raid_disks * 2,
3044 				 GFP_KERNEL);
3045 	if (!conf->mirrors)
3046 		goto abort;
3047 
3048 	conf->tmppage = alloc_page(GFP_KERNEL);
3049 	if (!conf->tmppage)
3050 		goto abort;
3051 
3052 	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
3053 	if (!conf->poolinfo)
3054 		goto abort;
3055 	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
3056 	conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3057 					  r1bio_pool_free,
3058 					  conf->poolinfo);
3059 	if (!conf->r1bio_pool)
3060 		goto abort;
3061 
3062 	conf->poolinfo->mddev = mddev;
3063 
3064 	err = -EINVAL;
3065 	spin_lock_init(&conf->device_lock);
3066 	rdev_for_each(rdev, mddev) {
3067 		struct request_queue *q;
3068 		int disk_idx = rdev->raid_disk;
3069 		if (disk_idx >= mddev->raid_disks
3070 		    || disk_idx < 0)
3071 			continue;
3072 		if (test_bit(Replacement, &rdev->flags))
3073 			disk = conf->mirrors + mddev->raid_disks + disk_idx;
3074 		else
3075 			disk = conf->mirrors + disk_idx;
3076 
3077 		if (disk->rdev)
3078 			goto abort;
3079 		disk->rdev = rdev;
3080 		q = bdev_get_queue(rdev->bdev);
3081 
3082 		disk->head_position = 0;
3083 		disk->seq_start = MaxSector;
3084 	}
3085 	conf->raid_disks = mddev->raid_disks;
3086 	conf->mddev = mddev;
3087 	INIT_LIST_HEAD(&conf->retry_list);
3088 	INIT_LIST_HEAD(&conf->bio_end_io_list);
3089 
3090 	spin_lock_init(&conf->resync_lock);
3091 	init_waitqueue_head(&conf->wait_barrier);
3092 
3093 	bio_list_init(&conf->pending_bio_list);
3094 	conf->pending_count = 0;
3095 	conf->recovery_disabled = mddev->recovery_disabled - 1;
3096 
3097 	err = -EIO;
3098 	for (i = 0; i < conf->raid_disks * 2; i++) {
3099 
3100 		disk = conf->mirrors + i;
3101 
3102 		if (i < conf->raid_disks &&
3103 		    disk[conf->raid_disks].rdev) {
3104 			/* This slot has a replacement. */
3105 			if (!disk->rdev) {
3106 				/* No original, just make the replacement
3107 				 * a recovering spare
3108 				 */
3109 				disk->rdev =
3110 					disk[conf->raid_disks].rdev;
3111 				disk[conf->raid_disks].rdev = NULL;
3112 			} else if (!test_bit(In_sync, &disk->rdev->flags))
3113 				/* Original is not in_sync - bad */
3114 				goto abort;
3115 		}
3116 
3117 		if (!disk->rdev ||
3118 		    !test_bit(In_sync, &disk->rdev->flags)) {
3119 			disk->head_position = 0;
3120 			if (disk->rdev &&
3121 			    (disk->rdev->saved_raid_disk < 0))
3122 				conf->fullsync = 1;
3123 		}
3124 	}
3125 
3126 	err = -ENOMEM;
3127 	conf->thread = md_register_thread(raid1d, mddev, "raid1");
3128 	if (!conf->thread)
3129 		goto abort;
3130 
3131 	return conf;
3132 
3133  abort:
3134 	if (conf) {
3135 		mempool_destroy(conf->r1bio_pool);
3136 		kfree(conf->mirrors);
3137 		safe_put_page(conf->tmppage);
3138 		kfree(conf->poolinfo);
3139 		kfree(conf->nr_pending);
3140 		kfree(conf->nr_waiting);
3141 		kfree(conf->nr_queued);
3142 		kfree(conf->barrier);
3143 		kfree(conf);
3144 	}
3145 	return ERR_PTR(err);
3146 }
3147 
3148 static void raid1_free(struct mddev *mddev, void *priv);
3149 static int raid1_run(struct mddev *mddev)
3150 {
3151 	struct r1conf *conf;
3152 	int i;
3153 	struct md_rdev *rdev;
3154 	int ret;
3155 	bool discard_supported = false;
3156 
3157 	if (mddev->level != 1) {
3158 		pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3159 			mdname(mddev), mddev->level);
3160 		return -EIO;
3161 	}
3162 	if (mddev->reshape_position != MaxSector) {
3163 		pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3164 			mdname(mddev));
3165 		return -EIO;
3166 	}
3167 	/*
3168 	 * copy the already verified devices into our private RAID1
3169 	 * bookkeeping area. [whatever we allocate in run(),
3170 	 * should be freed in raid1_free()]
3171 	 */
3172 	if (mddev->private == NULL)
3173 		conf = setup_conf(mddev);
3174 	else
3175 		conf = mddev->private;
3176 
3177 	if (IS_ERR(conf))
3178 		return PTR_ERR(conf);
3179 
3180 	if (mddev->queue)
3181 		blk_queue_max_write_same_sectors(mddev->queue, 0);
3182 
3183 	rdev_for_each(rdev, mddev) {
3184 		if (!mddev->gendisk)
3185 			continue;
3186 		disk_stack_limits(mddev->gendisk, rdev->bdev,
3187 				  rdev->data_offset << 9);
3188 		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3189 			discard_supported = true;
3190 	}
3191 
3192 	mddev->degraded = 0;
3193 	for (i=0; i < conf->raid_disks; i++)
3194 		if (conf->mirrors[i].rdev == NULL ||
3195 		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3196 		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3197 			mddev->degraded++;
3198 
3199 	if (conf->raid_disks - mddev->degraded == 1)
3200 		mddev->recovery_cp = MaxSector;
3201 
3202 	if (mddev->recovery_cp != MaxSector)
3203 		pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3204 			mdname(mddev));
3205 	pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3206 		mdname(mddev), mddev->raid_disks - mddev->degraded,
3207 		mddev->raid_disks);
3208 
3209 	/*
3210 	 * Ok, everything is just fine now
3211 	 */
3212 	mddev->thread = conf->thread;
3213 	conf->thread = NULL;
3214 	mddev->private = conf;
3215 	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3216 
3217 	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3218 
3219 	if (mddev->queue) {
3220 		if (discard_supported)
3221 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3222 						mddev->queue);
3223 		else
3224 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3225 						  mddev->queue);
3226 	}
3227 
3228 	ret =  md_integrity_register(mddev);
3229 	if (ret) {
3230 		md_unregister_thread(&mddev->thread);
3231 		raid1_free(mddev, conf);
3232 	}
3233 	return ret;
3234 }
3235 
3236 static void raid1_free(struct mddev *mddev, void *priv)
3237 {
3238 	struct r1conf *conf = priv;
3239 
3240 	mempool_destroy(conf->r1bio_pool);
3241 	kfree(conf->mirrors);
3242 	safe_put_page(conf->tmppage);
3243 	kfree(conf->poolinfo);
3244 	kfree(conf->nr_pending);
3245 	kfree(conf->nr_waiting);
3246 	kfree(conf->nr_queued);
3247 	kfree(conf->barrier);
3248 	kfree(conf);
3249 }
3250 
3251 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3252 {
3253 	/* no resync is happening, and there is enough space
3254 	 * on all devices, so we can resize.
3255 	 * We need to make sure resync covers any new space.
3256 	 * If the array is shrinking we should possibly wait until
3257 	 * any io in the removed space completes, but it hardly seems
3258 	 * worth it.
3259 	 */
3260 	sector_t newsize = raid1_size(mddev, sectors, 0);
3261 	if (mddev->external_size &&
3262 	    mddev->array_sectors > newsize)
3263 		return -EINVAL;
3264 	if (mddev->bitmap) {
3265 		int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3266 		if (ret)
3267 			return ret;
3268 	}
3269 	md_set_array_sectors(mddev, newsize);
3270 	if (sectors > mddev->dev_sectors &&
3271 	    mddev->recovery_cp > mddev->dev_sectors) {
3272 		mddev->recovery_cp = mddev->dev_sectors;
3273 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3274 	}
3275 	mddev->dev_sectors = sectors;
3276 	mddev->resync_max_sectors = sectors;
3277 	return 0;
3278 }
3279 
3280 static int raid1_reshape(struct mddev *mddev)
3281 {
3282 	/* We need to:
3283 	 * 1/ resize the r1bio_pool
3284 	 * 2/ resize conf->mirrors
3285 	 *
3286 	 * We allocate a new r1bio_pool if we can.
3287 	 * Then raise a device barrier and wait until all IO stops.
3288 	 * Then resize conf->mirrors and swap in the new r1bio pool.
3289 	 *
3290 	 * At the same time, we "pack" the devices so that all the missing
3291 	 * devices have the higher raid_disk numbers.
3292 	 */
3293 	mempool_t *newpool, *oldpool;
3294 	struct pool_info *newpoolinfo;
3295 	struct raid1_info *newmirrors;
3296 	struct r1conf *conf = mddev->private;
3297 	int cnt, raid_disks;
3298 	unsigned long flags;
3299 	int d, d2, err;
3300 
3301 	/* Cannot change chunk_size, layout, or level */
3302 	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3303 	    mddev->layout != mddev->new_layout ||
3304 	    mddev->level != mddev->new_level) {
3305 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3306 		mddev->new_layout = mddev->layout;
3307 		mddev->new_level = mddev->level;
3308 		return -EINVAL;
3309 	}
3310 
3311 	if (!mddev_is_clustered(mddev)) {
3312 		err = md_allow_write(mddev);
3313 		if (err)
3314 			return err;
3315 	}
3316 
3317 	raid_disks = mddev->raid_disks + mddev->delta_disks;
3318 
3319 	if (raid_disks < conf->raid_disks) {
3320 		cnt=0;
3321 		for (d= 0; d < conf->raid_disks; d++)
3322 			if (conf->mirrors[d].rdev)
3323 				cnt++;
3324 		if (cnt > raid_disks)
3325 			return -EBUSY;
3326 	}
3327 
3328 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3329 	if (!newpoolinfo)
3330 		return -ENOMEM;
3331 	newpoolinfo->mddev = mddev;
3332 	newpoolinfo->raid_disks = raid_disks * 2;
3333 
3334 	newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3335 				 r1bio_pool_free, newpoolinfo);
3336 	if (!newpool) {
3337 		kfree(newpoolinfo);
3338 		return -ENOMEM;
3339 	}
3340 	newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3341 			     GFP_KERNEL);
3342 	if (!newmirrors) {
3343 		kfree(newpoolinfo);
3344 		mempool_destroy(newpool);
3345 		return -ENOMEM;
3346 	}
3347 
3348 	freeze_array(conf, 0);
3349 
3350 	/* ok, everything is stopped */
3351 	oldpool = conf->r1bio_pool;
3352 	conf->r1bio_pool = newpool;
3353 
3354 	for (d = d2 = 0; d < conf->raid_disks; d++) {
3355 		struct md_rdev *rdev = conf->mirrors[d].rdev;
3356 		if (rdev && rdev->raid_disk != d2) {
3357 			sysfs_unlink_rdev(mddev, rdev);
3358 			rdev->raid_disk = d2;
3359 			sysfs_unlink_rdev(mddev, rdev);
3360 			if (sysfs_link_rdev(mddev, rdev))
3361 				pr_warn("md/raid1:%s: cannot register rd%d\n",
3362 					mdname(mddev), rdev->raid_disk);
3363 		}
3364 		if (rdev)
3365 			newmirrors[d2++].rdev = rdev;
3366 	}
3367 	kfree(conf->mirrors);
3368 	conf->mirrors = newmirrors;
3369 	kfree(conf->poolinfo);
3370 	conf->poolinfo = newpoolinfo;
3371 
3372 	spin_lock_irqsave(&conf->device_lock, flags);
3373 	mddev->degraded += (raid_disks - conf->raid_disks);
3374 	spin_unlock_irqrestore(&conf->device_lock, flags);
3375 	conf->raid_disks = mddev->raid_disks = raid_disks;
3376 	mddev->delta_disks = 0;
3377 
3378 	unfreeze_array(conf);
3379 
3380 	set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3381 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3382 	md_wakeup_thread(mddev->thread);
3383 
3384 	mempool_destroy(oldpool);
3385 	return 0;
3386 }
3387 
3388 static void raid1_quiesce(struct mddev *mddev, int state)
3389 {
3390 	struct r1conf *conf = mddev->private;
3391 
3392 	switch(state) {
3393 	case 2: /* wake for suspend */
3394 		wake_up(&conf->wait_barrier);
3395 		break;
3396 	case 1:
3397 		freeze_array(conf, 0);
3398 		break;
3399 	case 0:
3400 		unfreeze_array(conf);
3401 		break;
3402 	}
3403 }
3404 
3405 static void *raid1_takeover(struct mddev *mddev)
3406 {
3407 	/* raid1 can take over:
3408 	 *  raid5 with 2 devices, any layout or chunk size
3409 	 */
3410 	if (mddev->level == 5 && mddev->raid_disks == 2) {
3411 		struct r1conf *conf;
3412 		mddev->new_level = 1;
3413 		mddev->new_layout = 0;
3414 		mddev->new_chunk_sectors = 0;
3415 		conf = setup_conf(mddev);
3416 		if (!IS_ERR(conf)) {
3417 			/* Array must appear to be quiesced */
3418 			conf->array_frozen = 1;
3419 			mddev_clear_unsupported_flags(mddev,
3420 				UNSUPPORTED_MDDEV_FLAGS);
3421 		}
3422 		return conf;
3423 	}
3424 	return ERR_PTR(-EINVAL);
3425 }
3426 
3427 static struct md_personality raid1_personality =
3428 {
3429 	.name		= "raid1",
3430 	.level		= 1,
3431 	.owner		= THIS_MODULE,
3432 	.make_request	= raid1_make_request,
3433 	.run		= raid1_run,
3434 	.free		= raid1_free,
3435 	.status		= raid1_status,
3436 	.error_handler	= raid1_error,
3437 	.hot_add_disk	= raid1_add_disk,
3438 	.hot_remove_disk= raid1_remove_disk,
3439 	.spare_active	= raid1_spare_active,
3440 	.sync_request	= raid1_sync_request,
3441 	.resize		= raid1_resize,
3442 	.size		= raid1_size,
3443 	.check_reshape	= raid1_reshape,
3444 	.quiesce	= raid1_quiesce,
3445 	.takeover	= raid1_takeover,
3446 	.congested	= raid1_congested,
3447 };
3448 
3449 static int __init raid_init(void)
3450 {
3451 	return register_md_personality(&raid1_personality);
3452 }
3453 
3454 static void raid_exit(void)
3455 {
3456 	unregister_md_personality(&raid1_personality);
3457 }
3458 
3459 module_init(raid_init);
3460 module_exit(raid_exit);
3461 MODULE_LICENSE("GPL");
3462 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3463 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3464 MODULE_ALIAS("md-raid1");
3465 MODULE_ALIAS("md-level-1");
3466 
3467 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
3468