1 /* 2 * raid1.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat 5 * 6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman 7 * 8 * RAID-1 management functions. 9 * 10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 11 * 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk> 13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> 14 * 15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support 16 * bitmapped intelligence in resync: 17 * 18 * - bitmap marked during normal i/o 19 * - bitmap used to skip nondirty blocks during sync 20 * 21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology: 22 * - persistent bitmap code 23 * 24 * This program is free software; you can redistribute it and/or modify 25 * it under the terms of the GNU General Public License as published by 26 * the Free Software Foundation; either version 2, or (at your option) 27 * any later version. 28 * 29 * You should have received a copy of the GNU General Public License 30 * (for example /usr/src/linux/COPYING); if not, write to the Free 31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 32 */ 33 34 #include <linux/slab.h> 35 #include <linux/delay.h> 36 #include <linux/blkdev.h> 37 #include <linux/module.h> 38 #include <linux/seq_file.h> 39 #include <linux/ratelimit.h> 40 #include <trace/events/block.h> 41 #include "md.h" 42 #include "raid1.h" 43 #include "bitmap.h" 44 45 #define UNSUPPORTED_MDDEV_FLAGS \ 46 ((1L << MD_HAS_JOURNAL) | \ 47 (1L << MD_JOURNAL_CLEAN)) 48 49 /* 50 * Number of guaranteed r1bios in case of extreme VM load: 51 */ 52 #define NR_RAID1_BIOS 256 53 54 /* when we get a read error on a read-only array, we redirect to another 55 * device without failing the first device, or trying to over-write to 56 * correct the read error. To keep track of bad blocks on a per-bio 57 * level, we store IO_BLOCKED in the appropriate 'bios' pointer 58 */ 59 #define IO_BLOCKED ((struct bio *)1) 60 /* When we successfully write to a known bad-block, we need to remove the 61 * bad-block marking which must be done from process context. So we record 62 * the success by setting devs[n].bio to IO_MADE_GOOD 63 */ 64 #define IO_MADE_GOOD ((struct bio *)2) 65 66 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2) 67 68 /* When there are this many requests queue to be written by 69 * the raid1 thread, we become 'congested' to provide back-pressure 70 * for writeback. 71 */ 72 static int max_queued_requests = 1024; 73 74 static void allow_barrier(struct r1conf *conf, sector_t start_next_window, 75 sector_t bi_sector); 76 static void lower_barrier(struct r1conf *conf); 77 78 #define raid1_log(md, fmt, args...) \ 79 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0) 80 81 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data) 82 { 83 struct pool_info *pi = data; 84 int size = offsetof(struct r1bio, bios[pi->raid_disks]); 85 86 /* allocate a r1bio with room for raid_disks entries in the bios array */ 87 return kzalloc(size, gfp_flags); 88 } 89 90 static void r1bio_pool_free(void *r1_bio, void *data) 91 { 92 kfree(r1_bio); 93 } 94 95 #define RESYNC_BLOCK_SIZE (64*1024) 96 #define RESYNC_DEPTH 32 97 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 98 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 99 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH) 100 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9) 101 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW) 102 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9) 103 #define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS) 104 105 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) 106 { 107 struct pool_info *pi = data; 108 struct r1bio *r1_bio; 109 struct bio *bio; 110 int need_pages; 111 int i, j; 112 113 r1_bio = r1bio_pool_alloc(gfp_flags, pi); 114 if (!r1_bio) 115 return NULL; 116 117 /* 118 * Allocate bios : 1 for reading, n-1 for writing 119 */ 120 for (j = pi->raid_disks ; j-- ; ) { 121 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 122 if (!bio) 123 goto out_free_bio; 124 r1_bio->bios[j] = bio; 125 } 126 /* 127 * Allocate RESYNC_PAGES data pages and attach them to 128 * the first bio. 129 * If this is a user-requested check/repair, allocate 130 * RESYNC_PAGES for each bio. 131 */ 132 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) 133 need_pages = pi->raid_disks; 134 else 135 need_pages = 1; 136 for (j = 0; j < need_pages; j++) { 137 bio = r1_bio->bios[j]; 138 bio->bi_vcnt = RESYNC_PAGES; 139 140 if (bio_alloc_pages(bio, gfp_flags)) 141 goto out_free_pages; 142 } 143 /* If not user-requests, copy the page pointers to all bios */ 144 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) { 145 for (i=0; i<RESYNC_PAGES ; i++) 146 for (j=1; j<pi->raid_disks; j++) 147 r1_bio->bios[j]->bi_io_vec[i].bv_page = 148 r1_bio->bios[0]->bi_io_vec[i].bv_page; 149 } 150 151 r1_bio->master_bio = NULL; 152 153 return r1_bio; 154 155 out_free_pages: 156 while (--j >= 0) 157 bio_free_pages(r1_bio->bios[j]); 158 159 out_free_bio: 160 while (++j < pi->raid_disks) 161 bio_put(r1_bio->bios[j]); 162 r1bio_pool_free(r1_bio, data); 163 return NULL; 164 } 165 166 static void r1buf_pool_free(void *__r1_bio, void *data) 167 { 168 struct pool_info *pi = data; 169 int i,j; 170 struct r1bio *r1bio = __r1_bio; 171 172 for (i = 0; i < RESYNC_PAGES; i++) 173 for (j = pi->raid_disks; j-- ;) { 174 if (j == 0 || 175 r1bio->bios[j]->bi_io_vec[i].bv_page != 176 r1bio->bios[0]->bi_io_vec[i].bv_page) 177 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page); 178 } 179 for (i=0 ; i < pi->raid_disks; i++) 180 bio_put(r1bio->bios[i]); 181 182 r1bio_pool_free(r1bio, data); 183 } 184 185 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio) 186 { 187 int i; 188 189 for (i = 0; i < conf->raid_disks * 2; i++) { 190 struct bio **bio = r1_bio->bios + i; 191 if (!BIO_SPECIAL(*bio)) 192 bio_put(*bio); 193 *bio = NULL; 194 } 195 } 196 197 static void free_r1bio(struct r1bio *r1_bio) 198 { 199 struct r1conf *conf = r1_bio->mddev->private; 200 201 put_all_bios(conf, r1_bio); 202 mempool_free(r1_bio, conf->r1bio_pool); 203 } 204 205 static void put_buf(struct r1bio *r1_bio) 206 { 207 struct r1conf *conf = r1_bio->mddev->private; 208 int i; 209 210 for (i = 0; i < conf->raid_disks * 2; i++) { 211 struct bio *bio = r1_bio->bios[i]; 212 if (bio->bi_end_io) 213 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev); 214 } 215 216 mempool_free(r1_bio, conf->r1buf_pool); 217 218 lower_barrier(conf); 219 } 220 221 static void reschedule_retry(struct r1bio *r1_bio) 222 { 223 unsigned long flags; 224 struct mddev *mddev = r1_bio->mddev; 225 struct r1conf *conf = mddev->private; 226 227 spin_lock_irqsave(&conf->device_lock, flags); 228 list_add(&r1_bio->retry_list, &conf->retry_list); 229 conf->nr_queued ++; 230 spin_unlock_irqrestore(&conf->device_lock, flags); 231 232 wake_up(&conf->wait_barrier); 233 md_wakeup_thread(mddev->thread); 234 } 235 236 /* 237 * raid_end_bio_io() is called when we have finished servicing a mirrored 238 * operation and are ready to return a success/failure code to the buffer 239 * cache layer. 240 */ 241 static void call_bio_endio(struct r1bio *r1_bio) 242 { 243 struct bio *bio = r1_bio->master_bio; 244 int done; 245 struct r1conf *conf = r1_bio->mddev->private; 246 sector_t start_next_window = r1_bio->start_next_window; 247 sector_t bi_sector = bio->bi_iter.bi_sector; 248 249 if (bio->bi_phys_segments) { 250 unsigned long flags; 251 spin_lock_irqsave(&conf->device_lock, flags); 252 bio->bi_phys_segments--; 253 done = (bio->bi_phys_segments == 0); 254 spin_unlock_irqrestore(&conf->device_lock, flags); 255 /* 256 * make_request() might be waiting for 257 * bi_phys_segments to decrease 258 */ 259 wake_up(&conf->wait_barrier); 260 } else 261 done = 1; 262 263 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 264 bio->bi_error = -EIO; 265 266 if (done) { 267 bio_endio(bio); 268 /* 269 * Wake up any possible resync thread that waits for the device 270 * to go idle. 271 */ 272 allow_barrier(conf, start_next_window, bi_sector); 273 } 274 } 275 276 static void raid_end_bio_io(struct r1bio *r1_bio) 277 { 278 struct bio *bio = r1_bio->master_bio; 279 280 /* if nobody has done the final endio yet, do it now */ 281 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 282 pr_debug("raid1: sync end %s on sectors %llu-%llu\n", 283 (bio_data_dir(bio) == WRITE) ? "write" : "read", 284 (unsigned long long) bio->bi_iter.bi_sector, 285 (unsigned long long) bio_end_sector(bio) - 1); 286 287 call_bio_endio(r1_bio); 288 } 289 free_r1bio(r1_bio); 290 } 291 292 /* 293 * Update disk head position estimator based on IRQ completion info. 294 */ 295 static inline void update_head_pos(int disk, struct r1bio *r1_bio) 296 { 297 struct r1conf *conf = r1_bio->mddev->private; 298 299 conf->mirrors[disk].head_position = 300 r1_bio->sector + (r1_bio->sectors); 301 } 302 303 /* 304 * Find the disk number which triggered given bio 305 */ 306 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio) 307 { 308 int mirror; 309 struct r1conf *conf = r1_bio->mddev->private; 310 int raid_disks = conf->raid_disks; 311 312 for (mirror = 0; mirror < raid_disks * 2; mirror++) 313 if (r1_bio->bios[mirror] == bio) 314 break; 315 316 BUG_ON(mirror == raid_disks * 2); 317 update_head_pos(mirror, r1_bio); 318 319 return mirror; 320 } 321 322 static void raid1_end_read_request(struct bio *bio) 323 { 324 int uptodate = !bio->bi_error; 325 struct r1bio *r1_bio = bio->bi_private; 326 struct r1conf *conf = r1_bio->mddev->private; 327 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev; 328 329 /* 330 * this branch is our 'one mirror IO has finished' event handler: 331 */ 332 update_head_pos(r1_bio->read_disk, r1_bio); 333 334 if (uptodate) 335 set_bit(R1BIO_Uptodate, &r1_bio->state); 336 else if (test_bit(FailFast, &rdev->flags) && 337 test_bit(R1BIO_FailFast, &r1_bio->state)) 338 /* This was a fail-fast read so we definitely 339 * want to retry */ 340 ; 341 else { 342 /* If all other devices have failed, we want to return 343 * the error upwards rather than fail the last device. 344 * Here we redefine "uptodate" to mean "Don't want to retry" 345 */ 346 unsigned long flags; 347 spin_lock_irqsave(&conf->device_lock, flags); 348 if (r1_bio->mddev->degraded == conf->raid_disks || 349 (r1_bio->mddev->degraded == conf->raid_disks-1 && 350 test_bit(In_sync, &rdev->flags))) 351 uptodate = 1; 352 spin_unlock_irqrestore(&conf->device_lock, flags); 353 } 354 355 if (uptodate) { 356 raid_end_bio_io(r1_bio); 357 rdev_dec_pending(rdev, conf->mddev); 358 } else { 359 /* 360 * oops, read error: 361 */ 362 char b[BDEVNAME_SIZE]; 363 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n", 364 mdname(conf->mddev), 365 bdevname(rdev->bdev, b), 366 (unsigned long long)r1_bio->sector); 367 set_bit(R1BIO_ReadError, &r1_bio->state); 368 reschedule_retry(r1_bio); 369 /* don't drop the reference on read_disk yet */ 370 } 371 } 372 373 static void close_write(struct r1bio *r1_bio) 374 { 375 /* it really is the end of this request */ 376 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 377 /* free extra copy of the data pages */ 378 int i = r1_bio->behind_page_count; 379 while (i--) 380 safe_put_page(r1_bio->behind_bvecs[i].bv_page); 381 kfree(r1_bio->behind_bvecs); 382 r1_bio->behind_bvecs = NULL; 383 } 384 /* clear the bitmap if all writes complete successfully */ 385 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector, 386 r1_bio->sectors, 387 !test_bit(R1BIO_Degraded, &r1_bio->state), 388 test_bit(R1BIO_BehindIO, &r1_bio->state)); 389 md_write_end(r1_bio->mddev); 390 } 391 392 static void r1_bio_write_done(struct r1bio *r1_bio) 393 { 394 if (!atomic_dec_and_test(&r1_bio->remaining)) 395 return; 396 397 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 398 reschedule_retry(r1_bio); 399 else { 400 close_write(r1_bio); 401 if (test_bit(R1BIO_MadeGood, &r1_bio->state)) 402 reschedule_retry(r1_bio); 403 else 404 raid_end_bio_io(r1_bio); 405 } 406 } 407 408 static void raid1_end_write_request(struct bio *bio) 409 { 410 struct r1bio *r1_bio = bio->bi_private; 411 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state); 412 struct r1conf *conf = r1_bio->mddev->private; 413 struct bio *to_put = NULL; 414 int mirror = find_bio_disk(r1_bio, bio); 415 struct md_rdev *rdev = conf->mirrors[mirror].rdev; 416 bool discard_error; 417 418 discard_error = bio->bi_error && bio_op(bio) == REQ_OP_DISCARD; 419 420 /* 421 * 'one mirror IO has finished' event handler: 422 */ 423 if (bio->bi_error && !discard_error) { 424 set_bit(WriteErrorSeen, &rdev->flags); 425 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 426 set_bit(MD_RECOVERY_NEEDED, & 427 conf->mddev->recovery); 428 429 if (test_bit(FailFast, &rdev->flags) && 430 (bio->bi_opf & MD_FAILFAST) && 431 /* We never try FailFast to WriteMostly devices */ 432 !test_bit(WriteMostly, &rdev->flags)) { 433 md_error(r1_bio->mddev, rdev); 434 if (!test_bit(Faulty, &rdev->flags)) 435 /* This is the only remaining device, 436 * We need to retry the write without 437 * FailFast 438 */ 439 set_bit(R1BIO_WriteError, &r1_bio->state); 440 else { 441 /* Finished with this branch */ 442 r1_bio->bios[mirror] = NULL; 443 to_put = bio; 444 } 445 } else 446 set_bit(R1BIO_WriteError, &r1_bio->state); 447 } else { 448 /* 449 * Set R1BIO_Uptodate in our master bio, so that we 450 * will return a good error code for to the higher 451 * levels even if IO on some other mirrored buffer 452 * fails. 453 * 454 * The 'master' represents the composite IO operation 455 * to user-side. So if something waits for IO, then it 456 * will wait for the 'master' bio. 457 */ 458 sector_t first_bad; 459 int bad_sectors; 460 461 r1_bio->bios[mirror] = NULL; 462 to_put = bio; 463 /* 464 * Do not set R1BIO_Uptodate if the current device is 465 * rebuilding or Faulty. This is because we cannot use 466 * such device for properly reading the data back (we could 467 * potentially use it, if the current write would have felt 468 * before rdev->recovery_offset, but for simplicity we don't 469 * check this here. 470 */ 471 if (test_bit(In_sync, &rdev->flags) && 472 !test_bit(Faulty, &rdev->flags)) 473 set_bit(R1BIO_Uptodate, &r1_bio->state); 474 475 /* Maybe we can clear some bad blocks. */ 476 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors, 477 &first_bad, &bad_sectors) && !discard_error) { 478 r1_bio->bios[mirror] = IO_MADE_GOOD; 479 set_bit(R1BIO_MadeGood, &r1_bio->state); 480 } 481 } 482 483 if (behind) { 484 if (test_bit(WriteMostly, &rdev->flags)) 485 atomic_dec(&r1_bio->behind_remaining); 486 487 /* 488 * In behind mode, we ACK the master bio once the I/O 489 * has safely reached all non-writemostly 490 * disks. Setting the Returned bit ensures that this 491 * gets done only once -- we don't ever want to return 492 * -EIO here, instead we'll wait 493 */ 494 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) && 495 test_bit(R1BIO_Uptodate, &r1_bio->state)) { 496 /* Maybe we can return now */ 497 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 498 struct bio *mbio = r1_bio->master_bio; 499 pr_debug("raid1: behind end write sectors" 500 " %llu-%llu\n", 501 (unsigned long long) mbio->bi_iter.bi_sector, 502 (unsigned long long) bio_end_sector(mbio) - 1); 503 call_bio_endio(r1_bio); 504 } 505 } 506 } 507 if (r1_bio->bios[mirror] == NULL) 508 rdev_dec_pending(rdev, conf->mddev); 509 510 /* 511 * Let's see if all mirrored write operations have finished 512 * already. 513 */ 514 r1_bio_write_done(r1_bio); 515 516 if (to_put) 517 bio_put(to_put); 518 } 519 520 /* 521 * This routine returns the disk from which the requested read should 522 * be done. There is a per-array 'next expected sequential IO' sector 523 * number - if this matches on the next IO then we use the last disk. 524 * There is also a per-disk 'last know head position' sector that is 525 * maintained from IRQ contexts, both the normal and the resync IO 526 * completion handlers update this position correctly. If there is no 527 * perfect sequential match then we pick the disk whose head is closest. 528 * 529 * If there are 2 mirrors in the same 2 devices, performance degrades 530 * because position is mirror, not device based. 531 * 532 * The rdev for the device selected will have nr_pending incremented. 533 */ 534 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors) 535 { 536 const sector_t this_sector = r1_bio->sector; 537 int sectors; 538 int best_good_sectors; 539 int best_disk, best_dist_disk, best_pending_disk; 540 int has_nonrot_disk; 541 int disk; 542 sector_t best_dist; 543 unsigned int min_pending; 544 struct md_rdev *rdev; 545 int choose_first; 546 int choose_next_idle; 547 548 rcu_read_lock(); 549 /* 550 * Check if we can balance. We can balance on the whole 551 * device if no resync is going on, or below the resync window. 552 * We take the first readable disk when above the resync window. 553 */ 554 retry: 555 sectors = r1_bio->sectors; 556 best_disk = -1; 557 best_dist_disk = -1; 558 best_dist = MaxSector; 559 best_pending_disk = -1; 560 min_pending = UINT_MAX; 561 best_good_sectors = 0; 562 has_nonrot_disk = 0; 563 choose_next_idle = 0; 564 clear_bit(R1BIO_FailFast, &r1_bio->state); 565 566 if ((conf->mddev->recovery_cp < this_sector + sectors) || 567 (mddev_is_clustered(conf->mddev) && 568 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector, 569 this_sector + sectors))) 570 choose_first = 1; 571 else 572 choose_first = 0; 573 574 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) { 575 sector_t dist; 576 sector_t first_bad; 577 int bad_sectors; 578 unsigned int pending; 579 bool nonrot; 580 581 rdev = rcu_dereference(conf->mirrors[disk].rdev); 582 if (r1_bio->bios[disk] == IO_BLOCKED 583 || rdev == NULL 584 || test_bit(Faulty, &rdev->flags)) 585 continue; 586 if (!test_bit(In_sync, &rdev->flags) && 587 rdev->recovery_offset < this_sector + sectors) 588 continue; 589 if (test_bit(WriteMostly, &rdev->flags)) { 590 /* Don't balance among write-mostly, just 591 * use the first as a last resort */ 592 if (best_dist_disk < 0) { 593 if (is_badblock(rdev, this_sector, sectors, 594 &first_bad, &bad_sectors)) { 595 if (first_bad <= this_sector) 596 /* Cannot use this */ 597 continue; 598 best_good_sectors = first_bad - this_sector; 599 } else 600 best_good_sectors = sectors; 601 best_dist_disk = disk; 602 best_pending_disk = disk; 603 } 604 continue; 605 } 606 /* This is a reasonable device to use. It might 607 * even be best. 608 */ 609 if (is_badblock(rdev, this_sector, sectors, 610 &first_bad, &bad_sectors)) { 611 if (best_dist < MaxSector) 612 /* already have a better device */ 613 continue; 614 if (first_bad <= this_sector) { 615 /* cannot read here. If this is the 'primary' 616 * device, then we must not read beyond 617 * bad_sectors from another device.. 618 */ 619 bad_sectors -= (this_sector - first_bad); 620 if (choose_first && sectors > bad_sectors) 621 sectors = bad_sectors; 622 if (best_good_sectors > sectors) 623 best_good_sectors = sectors; 624 625 } else { 626 sector_t good_sectors = first_bad - this_sector; 627 if (good_sectors > best_good_sectors) { 628 best_good_sectors = good_sectors; 629 best_disk = disk; 630 } 631 if (choose_first) 632 break; 633 } 634 continue; 635 } else 636 best_good_sectors = sectors; 637 638 if (best_disk >= 0) 639 /* At least two disks to choose from so failfast is OK */ 640 set_bit(R1BIO_FailFast, &r1_bio->state); 641 642 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev)); 643 has_nonrot_disk |= nonrot; 644 pending = atomic_read(&rdev->nr_pending); 645 dist = abs(this_sector - conf->mirrors[disk].head_position); 646 if (choose_first) { 647 best_disk = disk; 648 break; 649 } 650 /* Don't change to another disk for sequential reads */ 651 if (conf->mirrors[disk].next_seq_sect == this_sector 652 || dist == 0) { 653 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9; 654 struct raid1_info *mirror = &conf->mirrors[disk]; 655 656 best_disk = disk; 657 /* 658 * If buffered sequential IO size exceeds optimal 659 * iosize, check if there is idle disk. If yes, choose 660 * the idle disk. read_balance could already choose an 661 * idle disk before noticing it's a sequential IO in 662 * this disk. This doesn't matter because this disk 663 * will idle, next time it will be utilized after the 664 * first disk has IO size exceeds optimal iosize. In 665 * this way, iosize of the first disk will be optimal 666 * iosize at least. iosize of the second disk might be 667 * small, but not a big deal since when the second disk 668 * starts IO, the first disk is likely still busy. 669 */ 670 if (nonrot && opt_iosize > 0 && 671 mirror->seq_start != MaxSector && 672 mirror->next_seq_sect > opt_iosize && 673 mirror->next_seq_sect - opt_iosize >= 674 mirror->seq_start) { 675 choose_next_idle = 1; 676 continue; 677 } 678 break; 679 } 680 681 if (choose_next_idle) 682 continue; 683 684 if (min_pending > pending) { 685 min_pending = pending; 686 best_pending_disk = disk; 687 } 688 689 if (dist < best_dist) { 690 best_dist = dist; 691 best_dist_disk = disk; 692 } 693 } 694 695 /* 696 * If all disks are rotational, choose the closest disk. If any disk is 697 * non-rotational, choose the disk with less pending request even the 698 * disk is rotational, which might/might not be optimal for raids with 699 * mixed ratation/non-rotational disks depending on workload. 700 */ 701 if (best_disk == -1) { 702 if (has_nonrot_disk || min_pending == 0) 703 best_disk = best_pending_disk; 704 else 705 best_disk = best_dist_disk; 706 } 707 708 if (best_disk >= 0) { 709 rdev = rcu_dereference(conf->mirrors[best_disk].rdev); 710 if (!rdev) 711 goto retry; 712 atomic_inc(&rdev->nr_pending); 713 sectors = best_good_sectors; 714 715 if (conf->mirrors[best_disk].next_seq_sect != this_sector) 716 conf->mirrors[best_disk].seq_start = this_sector; 717 718 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors; 719 } 720 rcu_read_unlock(); 721 *max_sectors = sectors; 722 723 return best_disk; 724 } 725 726 static int raid1_congested(struct mddev *mddev, int bits) 727 { 728 struct r1conf *conf = mddev->private; 729 int i, ret = 0; 730 731 if ((bits & (1 << WB_async_congested)) && 732 conf->pending_count >= max_queued_requests) 733 return 1; 734 735 rcu_read_lock(); 736 for (i = 0; i < conf->raid_disks * 2; i++) { 737 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 738 if (rdev && !test_bit(Faulty, &rdev->flags)) { 739 struct request_queue *q = bdev_get_queue(rdev->bdev); 740 741 BUG_ON(!q); 742 743 /* Note the '|| 1' - when read_balance prefers 744 * non-congested targets, it can be removed 745 */ 746 if ((bits & (1 << WB_async_congested)) || 1) 747 ret |= bdi_congested(q->backing_dev_info, bits); 748 else 749 ret &= bdi_congested(q->backing_dev_info, bits); 750 } 751 } 752 rcu_read_unlock(); 753 return ret; 754 } 755 756 static void flush_pending_writes(struct r1conf *conf) 757 { 758 /* Any writes that have been queued but are awaiting 759 * bitmap updates get flushed here. 760 */ 761 spin_lock_irq(&conf->device_lock); 762 763 if (conf->pending_bio_list.head) { 764 struct bio *bio; 765 bio = bio_list_get(&conf->pending_bio_list); 766 conf->pending_count = 0; 767 spin_unlock_irq(&conf->device_lock); 768 /* flush any pending bitmap writes to 769 * disk before proceeding w/ I/O */ 770 bitmap_unplug(conf->mddev->bitmap); 771 wake_up(&conf->wait_barrier); 772 773 while (bio) { /* submit pending writes */ 774 struct bio *next = bio->bi_next; 775 struct md_rdev *rdev = (void*)bio->bi_bdev; 776 bio->bi_next = NULL; 777 bio->bi_bdev = rdev->bdev; 778 if (test_bit(Faulty, &rdev->flags)) { 779 bio->bi_error = -EIO; 780 bio_endio(bio); 781 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) && 782 !blk_queue_discard(bdev_get_queue(bio->bi_bdev)))) 783 /* Just ignore it */ 784 bio_endio(bio); 785 else 786 generic_make_request(bio); 787 bio = next; 788 } 789 } else 790 spin_unlock_irq(&conf->device_lock); 791 } 792 793 /* Barriers.... 794 * Sometimes we need to suspend IO while we do something else, 795 * either some resync/recovery, or reconfigure the array. 796 * To do this we raise a 'barrier'. 797 * The 'barrier' is a counter that can be raised multiple times 798 * to count how many activities are happening which preclude 799 * normal IO. 800 * We can only raise the barrier if there is no pending IO. 801 * i.e. if nr_pending == 0. 802 * We choose only to raise the barrier if no-one is waiting for the 803 * barrier to go down. This means that as soon as an IO request 804 * is ready, no other operations which require a barrier will start 805 * until the IO request has had a chance. 806 * 807 * So: regular IO calls 'wait_barrier'. When that returns there 808 * is no backgroup IO happening, It must arrange to call 809 * allow_barrier when it has finished its IO. 810 * backgroup IO calls must call raise_barrier. Once that returns 811 * there is no normal IO happeing. It must arrange to call 812 * lower_barrier when the particular background IO completes. 813 */ 814 static void raise_barrier(struct r1conf *conf, sector_t sector_nr) 815 { 816 spin_lock_irq(&conf->resync_lock); 817 818 /* Wait until no block IO is waiting */ 819 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting, 820 conf->resync_lock); 821 822 /* block any new IO from starting */ 823 conf->barrier++; 824 conf->next_resync = sector_nr; 825 826 /* For these conditions we must wait: 827 * A: while the array is in frozen state 828 * B: while barrier >= RESYNC_DEPTH, meaning resync reach 829 * the max count which allowed. 830 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning 831 * next resync will reach to the window which normal bios are 832 * handling. 833 * D: while there are any active requests in the current window. 834 */ 835 wait_event_lock_irq(conf->wait_barrier, 836 !conf->array_frozen && 837 conf->barrier < RESYNC_DEPTH && 838 conf->current_window_requests == 0 && 839 (conf->start_next_window >= 840 conf->next_resync + RESYNC_SECTORS), 841 conf->resync_lock); 842 843 conf->nr_pending++; 844 spin_unlock_irq(&conf->resync_lock); 845 } 846 847 static void lower_barrier(struct r1conf *conf) 848 { 849 unsigned long flags; 850 BUG_ON(conf->barrier <= 0); 851 spin_lock_irqsave(&conf->resync_lock, flags); 852 conf->barrier--; 853 conf->nr_pending--; 854 spin_unlock_irqrestore(&conf->resync_lock, flags); 855 wake_up(&conf->wait_barrier); 856 } 857 858 static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio) 859 { 860 bool wait = false; 861 862 if (conf->array_frozen || !bio) 863 wait = true; 864 else if (conf->barrier && bio_data_dir(bio) == WRITE) { 865 if ((conf->mddev->curr_resync_completed 866 >= bio_end_sector(bio)) || 867 (conf->start_next_window + NEXT_NORMALIO_DISTANCE 868 <= bio->bi_iter.bi_sector)) 869 wait = false; 870 else 871 wait = true; 872 } 873 874 return wait; 875 } 876 877 static sector_t wait_barrier(struct r1conf *conf, struct bio *bio) 878 { 879 sector_t sector = 0; 880 881 spin_lock_irq(&conf->resync_lock); 882 if (need_to_wait_for_sync(conf, bio)) { 883 conf->nr_waiting++; 884 /* Wait for the barrier to drop. 885 * However if there are already pending 886 * requests (preventing the barrier from 887 * rising completely), and the 888 * per-process bio queue isn't empty, 889 * then don't wait, as we need to empty 890 * that queue to allow conf->start_next_window 891 * to increase. 892 */ 893 raid1_log(conf->mddev, "wait barrier"); 894 wait_event_lock_irq(conf->wait_barrier, 895 !conf->array_frozen && 896 (!conf->barrier || 897 ((conf->start_next_window < 898 conf->next_resync + RESYNC_SECTORS) && 899 current->bio_list && 900 !bio_list_empty(current->bio_list))), 901 conf->resync_lock); 902 conf->nr_waiting--; 903 } 904 905 if (bio && bio_data_dir(bio) == WRITE) { 906 if (bio->bi_iter.bi_sector >= conf->next_resync) { 907 if (conf->start_next_window == MaxSector) 908 conf->start_next_window = 909 conf->next_resync + 910 NEXT_NORMALIO_DISTANCE; 911 912 if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE) 913 <= bio->bi_iter.bi_sector) 914 conf->next_window_requests++; 915 else 916 conf->current_window_requests++; 917 sector = conf->start_next_window; 918 } 919 } 920 921 conf->nr_pending++; 922 spin_unlock_irq(&conf->resync_lock); 923 return sector; 924 } 925 926 static void allow_barrier(struct r1conf *conf, sector_t start_next_window, 927 sector_t bi_sector) 928 { 929 unsigned long flags; 930 931 spin_lock_irqsave(&conf->resync_lock, flags); 932 conf->nr_pending--; 933 if (start_next_window) { 934 if (start_next_window == conf->start_next_window) { 935 if (conf->start_next_window + NEXT_NORMALIO_DISTANCE 936 <= bi_sector) 937 conf->next_window_requests--; 938 else 939 conf->current_window_requests--; 940 } else 941 conf->current_window_requests--; 942 943 if (!conf->current_window_requests) { 944 if (conf->next_window_requests) { 945 conf->current_window_requests = 946 conf->next_window_requests; 947 conf->next_window_requests = 0; 948 conf->start_next_window += 949 NEXT_NORMALIO_DISTANCE; 950 } else 951 conf->start_next_window = MaxSector; 952 } 953 } 954 spin_unlock_irqrestore(&conf->resync_lock, flags); 955 wake_up(&conf->wait_barrier); 956 } 957 958 static void freeze_array(struct r1conf *conf, int extra) 959 { 960 /* stop syncio and normal IO and wait for everything to 961 * go quite. 962 * We wait until nr_pending match nr_queued+extra 963 * This is called in the context of one normal IO request 964 * that has failed. Thus any sync request that might be pending 965 * will be blocked by nr_pending, and we need to wait for 966 * pending IO requests to complete or be queued for re-try. 967 * Thus the number queued (nr_queued) plus this request (extra) 968 * must match the number of pending IOs (nr_pending) before 969 * we continue. 970 */ 971 spin_lock_irq(&conf->resync_lock); 972 conf->array_frozen = 1; 973 raid1_log(conf->mddev, "wait freeze"); 974 wait_event_lock_irq_cmd(conf->wait_barrier, 975 conf->nr_pending == conf->nr_queued+extra, 976 conf->resync_lock, 977 flush_pending_writes(conf)); 978 spin_unlock_irq(&conf->resync_lock); 979 } 980 static void unfreeze_array(struct r1conf *conf) 981 { 982 /* reverse the effect of the freeze */ 983 spin_lock_irq(&conf->resync_lock); 984 conf->array_frozen = 0; 985 wake_up(&conf->wait_barrier); 986 spin_unlock_irq(&conf->resync_lock); 987 } 988 989 /* duplicate the data pages for behind I/O 990 */ 991 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio) 992 { 993 int i; 994 struct bio_vec *bvec; 995 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec), 996 GFP_NOIO); 997 if (unlikely(!bvecs)) 998 return; 999 1000 bio_for_each_segment_all(bvec, bio, i) { 1001 bvecs[i] = *bvec; 1002 bvecs[i].bv_page = alloc_page(GFP_NOIO); 1003 if (unlikely(!bvecs[i].bv_page)) 1004 goto do_sync_io; 1005 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset, 1006 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len); 1007 kunmap(bvecs[i].bv_page); 1008 kunmap(bvec->bv_page); 1009 } 1010 r1_bio->behind_bvecs = bvecs; 1011 r1_bio->behind_page_count = bio->bi_vcnt; 1012 set_bit(R1BIO_BehindIO, &r1_bio->state); 1013 return; 1014 1015 do_sync_io: 1016 for (i = 0; i < bio->bi_vcnt; i++) 1017 if (bvecs[i].bv_page) 1018 put_page(bvecs[i].bv_page); 1019 kfree(bvecs); 1020 pr_debug("%dB behind alloc failed, doing sync I/O\n", 1021 bio->bi_iter.bi_size); 1022 } 1023 1024 struct raid1_plug_cb { 1025 struct blk_plug_cb cb; 1026 struct bio_list pending; 1027 int pending_cnt; 1028 }; 1029 1030 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule) 1031 { 1032 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, 1033 cb); 1034 struct mddev *mddev = plug->cb.data; 1035 struct r1conf *conf = mddev->private; 1036 struct bio *bio; 1037 1038 if (from_schedule || current->bio_list) { 1039 spin_lock_irq(&conf->device_lock); 1040 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1041 conf->pending_count += plug->pending_cnt; 1042 spin_unlock_irq(&conf->device_lock); 1043 wake_up(&conf->wait_barrier); 1044 md_wakeup_thread(mddev->thread); 1045 kfree(plug); 1046 return; 1047 } 1048 1049 /* we aren't scheduling, so we can do the write-out directly. */ 1050 bio = bio_list_get(&plug->pending); 1051 bitmap_unplug(mddev->bitmap); 1052 wake_up(&conf->wait_barrier); 1053 1054 while (bio) { /* submit pending writes */ 1055 struct bio *next = bio->bi_next; 1056 struct md_rdev *rdev = (void*)bio->bi_bdev; 1057 bio->bi_next = NULL; 1058 bio->bi_bdev = rdev->bdev; 1059 if (test_bit(Faulty, &rdev->flags)) { 1060 bio->bi_error = -EIO; 1061 bio_endio(bio); 1062 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) && 1063 !blk_queue_discard(bdev_get_queue(bio->bi_bdev)))) 1064 /* Just ignore it */ 1065 bio_endio(bio); 1066 else 1067 generic_make_request(bio); 1068 bio = next; 1069 } 1070 kfree(plug); 1071 } 1072 1073 static void raid1_read_request(struct mddev *mddev, struct bio *bio, 1074 struct r1bio *r1_bio) 1075 { 1076 struct r1conf *conf = mddev->private; 1077 struct raid1_info *mirror; 1078 struct bio *read_bio; 1079 struct bitmap *bitmap = mddev->bitmap; 1080 const int op = bio_op(bio); 1081 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC); 1082 int sectors_handled; 1083 int max_sectors; 1084 int rdisk; 1085 1086 wait_barrier(conf, bio); 1087 1088 read_again: 1089 rdisk = read_balance(conf, r1_bio, &max_sectors); 1090 1091 if (rdisk < 0) { 1092 /* couldn't find anywhere to read from */ 1093 raid_end_bio_io(r1_bio); 1094 return; 1095 } 1096 mirror = conf->mirrors + rdisk; 1097 1098 if (test_bit(WriteMostly, &mirror->rdev->flags) && 1099 bitmap) { 1100 /* 1101 * Reading from a write-mostly device must take care not to 1102 * over-take any writes that are 'behind' 1103 */ 1104 raid1_log(mddev, "wait behind writes"); 1105 wait_event(bitmap->behind_wait, 1106 atomic_read(&bitmap->behind_writes) == 0); 1107 } 1108 r1_bio->read_disk = rdisk; 1109 r1_bio->start_next_window = 0; 1110 1111 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1112 bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector, 1113 max_sectors); 1114 1115 r1_bio->bios[rdisk] = read_bio; 1116 1117 read_bio->bi_iter.bi_sector = r1_bio->sector + 1118 mirror->rdev->data_offset; 1119 read_bio->bi_bdev = mirror->rdev->bdev; 1120 read_bio->bi_end_io = raid1_end_read_request; 1121 bio_set_op_attrs(read_bio, op, do_sync); 1122 if (test_bit(FailFast, &mirror->rdev->flags) && 1123 test_bit(R1BIO_FailFast, &r1_bio->state)) 1124 read_bio->bi_opf |= MD_FAILFAST; 1125 read_bio->bi_private = r1_bio; 1126 1127 if (mddev->gendisk) 1128 trace_block_bio_remap(bdev_get_queue(read_bio->bi_bdev), 1129 read_bio, disk_devt(mddev->gendisk), 1130 r1_bio->sector); 1131 1132 if (max_sectors < r1_bio->sectors) { 1133 /* 1134 * could not read all from this device, so we will need another 1135 * r1_bio. 1136 */ 1137 sectors_handled = (r1_bio->sector + max_sectors 1138 - bio->bi_iter.bi_sector); 1139 r1_bio->sectors = max_sectors; 1140 spin_lock_irq(&conf->device_lock); 1141 if (bio->bi_phys_segments == 0) 1142 bio->bi_phys_segments = 2; 1143 else 1144 bio->bi_phys_segments++; 1145 spin_unlock_irq(&conf->device_lock); 1146 1147 /* 1148 * Cannot call generic_make_request directly as that will be 1149 * queued in __make_request and subsequent mempool_alloc might 1150 * block waiting for it. So hand bio over to raid1d. 1151 */ 1152 reschedule_retry(r1_bio); 1153 1154 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 1155 1156 r1_bio->master_bio = bio; 1157 r1_bio->sectors = bio_sectors(bio) - sectors_handled; 1158 r1_bio->state = 0; 1159 r1_bio->mddev = mddev; 1160 r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled; 1161 goto read_again; 1162 } else 1163 generic_make_request(read_bio); 1164 } 1165 1166 static void raid1_write_request(struct mddev *mddev, struct bio *bio, 1167 struct r1bio *r1_bio) 1168 { 1169 struct r1conf *conf = mddev->private; 1170 int i, disks; 1171 struct bitmap *bitmap = mddev->bitmap; 1172 unsigned long flags; 1173 struct md_rdev *blocked_rdev; 1174 struct blk_plug_cb *cb; 1175 struct raid1_plug_cb *plug = NULL; 1176 int first_clone; 1177 int sectors_handled; 1178 int max_sectors; 1179 sector_t start_next_window; 1180 1181 /* 1182 * Register the new request and wait if the reconstruction 1183 * thread has put up a bar for new requests. 1184 * Continue immediately if no resync is active currently. 1185 */ 1186 1187 md_write_start(mddev, bio); /* wait on superblock update early */ 1188 1189 if ((bio_end_sector(bio) > mddev->suspend_lo && 1190 bio->bi_iter.bi_sector < mddev->suspend_hi) || 1191 (mddev_is_clustered(mddev) && 1192 md_cluster_ops->area_resyncing(mddev, WRITE, 1193 bio->bi_iter.bi_sector, bio_end_sector(bio)))) { 1194 1195 /* 1196 * As the suspend_* range is controlled by userspace, we want 1197 * an interruptible wait. 1198 */ 1199 DEFINE_WAIT(w); 1200 for (;;) { 1201 flush_signals(current); 1202 prepare_to_wait(&conf->wait_barrier, 1203 &w, TASK_INTERRUPTIBLE); 1204 if (bio_end_sector(bio) <= mddev->suspend_lo || 1205 bio->bi_iter.bi_sector >= mddev->suspend_hi || 1206 (mddev_is_clustered(mddev) && 1207 !md_cluster_ops->area_resyncing(mddev, WRITE, 1208 bio->bi_iter.bi_sector, 1209 bio_end_sector(bio)))) 1210 break; 1211 schedule(); 1212 } 1213 finish_wait(&conf->wait_barrier, &w); 1214 } 1215 start_next_window = wait_barrier(conf, bio); 1216 1217 if (conf->pending_count >= max_queued_requests) { 1218 md_wakeup_thread(mddev->thread); 1219 raid1_log(mddev, "wait queued"); 1220 wait_event(conf->wait_barrier, 1221 conf->pending_count < max_queued_requests); 1222 } 1223 /* first select target devices under rcu_lock and 1224 * inc refcount on their rdev. Record them by setting 1225 * bios[x] to bio 1226 * If there are known/acknowledged bad blocks on any device on 1227 * which we have seen a write error, we want to avoid writing those 1228 * blocks. 1229 * This potentially requires several writes to write around 1230 * the bad blocks. Each set of writes gets it's own r1bio 1231 * with a set of bios attached. 1232 */ 1233 1234 disks = conf->raid_disks * 2; 1235 retry_write: 1236 r1_bio->start_next_window = start_next_window; 1237 blocked_rdev = NULL; 1238 rcu_read_lock(); 1239 max_sectors = r1_bio->sectors; 1240 for (i = 0; i < disks; i++) { 1241 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1242 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1243 atomic_inc(&rdev->nr_pending); 1244 blocked_rdev = rdev; 1245 break; 1246 } 1247 r1_bio->bios[i] = NULL; 1248 if (!rdev || test_bit(Faulty, &rdev->flags)) { 1249 if (i < conf->raid_disks) 1250 set_bit(R1BIO_Degraded, &r1_bio->state); 1251 continue; 1252 } 1253 1254 atomic_inc(&rdev->nr_pending); 1255 if (test_bit(WriteErrorSeen, &rdev->flags)) { 1256 sector_t first_bad; 1257 int bad_sectors; 1258 int is_bad; 1259 1260 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors, 1261 &first_bad, &bad_sectors); 1262 if (is_bad < 0) { 1263 /* mustn't write here until the bad block is 1264 * acknowledged*/ 1265 set_bit(BlockedBadBlocks, &rdev->flags); 1266 blocked_rdev = rdev; 1267 break; 1268 } 1269 if (is_bad && first_bad <= r1_bio->sector) { 1270 /* Cannot write here at all */ 1271 bad_sectors -= (r1_bio->sector - first_bad); 1272 if (bad_sectors < max_sectors) 1273 /* mustn't write more than bad_sectors 1274 * to other devices yet 1275 */ 1276 max_sectors = bad_sectors; 1277 rdev_dec_pending(rdev, mddev); 1278 /* We don't set R1BIO_Degraded as that 1279 * only applies if the disk is 1280 * missing, so it might be re-added, 1281 * and we want to know to recover this 1282 * chunk. 1283 * In this case the device is here, 1284 * and the fact that this chunk is not 1285 * in-sync is recorded in the bad 1286 * block log 1287 */ 1288 continue; 1289 } 1290 if (is_bad) { 1291 int good_sectors = first_bad - r1_bio->sector; 1292 if (good_sectors < max_sectors) 1293 max_sectors = good_sectors; 1294 } 1295 } 1296 r1_bio->bios[i] = bio; 1297 } 1298 rcu_read_unlock(); 1299 1300 if (unlikely(blocked_rdev)) { 1301 /* Wait for this device to become unblocked */ 1302 int j; 1303 sector_t old = start_next_window; 1304 1305 for (j = 0; j < i; j++) 1306 if (r1_bio->bios[j]) 1307 rdev_dec_pending(conf->mirrors[j].rdev, mddev); 1308 r1_bio->state = 0; 1309 allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector); 1310 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk); 1311 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1312 start_next_window = wait_barrier(conf, bio); 1313 /* 1314 * We must make sure the multi r1bios of bio have 1315 * the same value of bi_phys_segments 1316 */ 1317 if (bio->bi_phys_segments && old && 1318 old != start_next_window) 1319 /* Wait for the former r1bio(s) to complete */ 1320 wait_event(conf->wait_barrier, 1321 bio->bi_phys_segments == 1); 1322 goto retry_write; 1323 } 1324 1325 if (max_sectors < r1_bio->sectors) { 1326 /* We are splitting this write into multiple parts, so 1327 * we need to prepare for allocating another r1_bio. 1328 */ 1329 r1_bio->sectors = max_sectors; 1330 spin_lock_irq(&conf->device_lock); 1331 if (bio->bi_phys_segments == 0) 1332 bio->bi_phys_segments = 2; 1333 else 1334 bio->bi_phys_segments++; 1335 spin_unlock_irq(&conf->device_lock); 1336 } 1337 sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector; 1338 1339 atomic_set(&r1_bio->remaining, 1); 1340 atomic_set(&r1_bio->behind_remaining, 0); 1341 1342 first_clone = 1; 1343 for (i = 0; i < disks; i++) { 1344 struct bio *mbio; 1345 if (!r1_bio->bios[i]) 1346 continue; 1347 1348 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1349 bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, 1350 max_sectors); 1351 1352 if (first_clone) { 1353 /* do behind I/O ? 1354 * Not if there are too many, or cannot 1355 * allocate memory, or a reader on WriteMostly 1356 * is waiting for behind writes to flush */ 1357 if (bitmap && 1358 (atomic_read(&bitmap->behind_writes) 1359 < mddev->bitmap_info.max_write_behind) && 1360 !waitqueue_active(&bitmap->behind_wait)) 1361 alloc_behind_pages(mbio, r1_bio); 1362 1363 bitmap_startwrite(bitmap, r1_bio->sector, 1364 r1_bio->sectors, 1365 test_bit(R1BIO_BehindIO, 1366 &r1_bio->state)); 1367 first_clone = 0; 1368 } 1369 if (r1_bio->behind_bvecs) { 1370 struct bio_vec *bvec; 1371 int j; 1372 1373 /* 1374 * We trimmed the bio, so _all is legit 1375 */ 1376 bio_for_each_segment_all(bvec, mbio, j) 1377 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page; 1378 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags)) 1379 atomic_inc(&r1_bio->behind_remaining); 1380 } 1381 1382 r1_bio->bios[i] = mbio; 1383 1384 mbio->bi_iter.bi_sector = (r1_bio->sector + 1385 conf->mirrors[i].rdev->data_offset); 1386 mbio->bi_bdev = conf->mirrors[i].rdev->bdev; 1387 mbio->bi_end_io = raid1_end_write_request; 1388 mbio->bi_opf = bio_op(bio) | 1389 (bio->bi_opf & (REQ_SYNC | REQ_PREFLUSH | REQ_FUA)); 1390 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) && 1391 !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) && 1392 conf->raid_disks - mddev->degraded > 1) 1393 mbio->bi_opf |= MD_FAILFAST; 1394 mbio->bi_private = r1_bio; 1395 1396 atomic_inc(&r1_bio->remaining); 1397 1398 if (mddev->gendisk) 1399 trace_block_bio_remap(bdev_get_queue(mbio->bi_bdev), 1400 mbio, disk_devt(mddev->gendisk), 1401 r1_bio->sector); 1402 /* flush_pending_writes() needs access to the rdev so...*/ 1403 mbio->bi_bdev = (void*)conf->mirrors[i].rdev; 1404 1405 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug)); 1406 if (cb) 1407 plug = container_of(cb, struct raid1_plug_cb, cb); 1408 else 1409 plug = NULL; 1410 spin_lock_irqsave(&conf->device_lock, flags); 1411 if (plug) { 1412 bio_list_add(&plug->pending, mbio); 1413 plug->pending_cnt++; 1414 } else { 1415 bio_list_add(&conf->pending_bio_list, mbio); 1416 conf->pending_count++; 1417 } 1418 spin_unlock_irqrestore(&conf->device_lock, flags); 1419 if (!plug) 1420 md_wakeup_thread(mddev->thread); 1421 } 1422 /* Mustn't call r1_bio_write_done before this next test, 1423 * as it could result in the bio being freed. 1424 */ 1425 if (sectors_handled < bio_sectors(bio)) { 1426 r1_bio_write_done(r1_bio); 1427 /* We need another r1_bio. It has already been counted 1428 * in bio->bi_phys_segments 1429 */ 1430 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 1431 r1_bio->master_bio = bio; 1432 r1_bio->sectors = bio_sectors(bio) - sectors_handled; 1433 r1_bio->state = 0; 1434 r1_bio->mddev = mddev; 1435 r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled; 1436 goto retry_write; 1437 } 1438 1439 r1_bio_write_done(r1_bio); 1440 1441 /* In case raid1d snuck in to freeze_array */ 1442 wake_up(&conf->wait_barrier); 1443 } 1444 1445 static void raid1_make_request(struct mddev *mddev, struct bio *bio) 1446 { 1447 struct r1conf *conf = mddev->private; 1448 struct r1bio *r1_bio; 1449 1450 /* 1451 * make_request() can abort the operation when read-ahead is being 1452 * used and no empty request is available. 1453 * 1454 */ 1455 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 1456 1457 r1_bio->master_bio = bio; 1458 r1_bio->sectors = bio_sectors(bio); 1459 r1_bio->state = 0; 1460 r1_bio->mddev = mddev; 1461 r1_bio->sector = bio->bi_iter.bi_sector; 1462 1463 /* 1464 * We might need to issue multiple reads to different devices if there 1465 * are bad blocks around, so we keep track of the number of reads in 1466 * bio->bi_phys_segments. If this is 0, there is only one r1_bio and 1467 * no locking will be needed when requests complete. If it is 1468 * non-zero, then it is the number of not-completed requests. 1469 */ 1470 bio->bi_phys_segments = 0; 1471 bio_clear_flag(bio, BIO_SEG_VALID); 1472 1473 if (bio_data_dir(bio) == READ) 1474 raid1_read_request(mddev, bio, r1_bio); 1475 else 1476 raid1_write_request(mddev, bio, r1_bio); 1477 } 1478 1479 static void raid1_status(struct seq_file *seq, struct mddev *mddev) 1480 { 1481 struct r1conf *conf = mddev->private; 1482 int i; 1483 1484 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 1485 conf->raid_disks - mddev->degraded); 1486 rcu_read_lock(); 1487 for (i = 0; i < conf->raid_disks; i++) { 1488 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1489 seq_printf(seq, "%s", 1490 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1491 } 1492 rcu_read_unlock(); 1493 seq_printf(seq, "]"); 1494 } 1495 1496 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev) 1497 { 1498 char b[BDEVNAME_SIZE]; 1499 struct r1conf *conf = mddev->private; 1500 unsigned long flags; 1501 1502 /* 1503 * If it is not operational, then we have already marked it as dead 1504 * else if it is the last working disks, ignore the error, let the 1505 * next level up know. 1506 * else mark the drive as failed 1507 */ 1508 spin_lock_irqsave(&conf->device_lock, flags); 1509 if (test_bit(In_sync, &rdev->flags) 1510 && (conf->raid_disks - mddev->degraded) == 1) { 1511 /* 1512 * Don't fail the drive, act as though we were just a 1513 * normal single drive. 1514 * However don't try a recovery from this drive as 1515 * it is very likely to fail. 1516 */ 1517 conf->recovery_disabled = mddev->recovery_disabled; 1518 spin_unlock_irqrestore(&conf->device_lock, flags); 1519 return; 1520 } 1521 set_bit(Blocked, &rdev->flags); 1522 if (test_and_clear_bit(In_sync, &rdev->flags)) { 1523 mddev->degraded++; 1524 set_bit(Faulty, &rdev->flags); 1525 } else 1526 set_bit(Faulty, &rdev->flags); 1527 spin_unlock_irqrestore(&conf->device_lock, flags); 1528 /* 1529 * if recovery is running, make sure it aborts. 1530 */ 1531 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1532 set_mask_bits(&mddev->sb_flags, 0, 1533 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1534 pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n" 1535 "md/raid1:%s: Operation continuing on %d devices.\n", 1536 mdname(mddev), bdevname(rdev->bdev, b), 1537 mdname(mddev), conf->raid_disks - mddev->degraded); 1538 } 1539 1540 static void print_conf(struct r1conf *conf) 1541 { 1542 int i; 1543 1544 pr_debug("RAID1 conf printout:\n"); 1545 if (!conf) { 1546 pr_debug("(!conf)\n"); 1547 return; 1548 } 1549 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1550 conf->raid_disks); 1551 1552 rcu_read_lock(); 1553 for (i = 0; i < conf->raid_disks; i++) { 1554 char b[BDEVNAME_SIZE]; 1555 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1556 if (rdev) 1557 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n", 1558 i, !test_bit(In_sync, &rdev->flags), 1559 !test_bit(Faulty, &rdev->flags), 1560 bdevname(rdev->bdev,b)); 1561 } 1562 rcu_read_unlock(); 1563 } 1564 1565 static void close_sync(struct r1conf *conf) 1566 { 1567 wait_barrier(conf, NULL); 1568 allow_barrier(conf, 0, 0); 1569 1570 mempool_destroy(conf->r1buf_pool); 1571 conf->r1buf_pool = NULL; 1572 1573 spin_lock_irq(&conf->resync_lock); 1574 conf->next_resync = MaxSector - 2 * NEXT_NORMALIO_DISTANCE; 1575 conf->start_next_window = MaxSector; 1576 conf->current_window_requests += 1577 conf->next_window_requests; 1578 conf->next_window_requests = 0; 1579 spin_unlock_irq(&conf->resync_lock); 1580 } 1581 1582 static int raid1_spare_active(struct mddev *mddev) 1583 { 1584 int i; 1585 struct r1conf *conf = mddev->private; 1586 int count = 0; 1587 unsigned long flags; 1588 1589 /* 1590 * Find all failed disks within the RAID1 configuration 1591 * and mark them readable. 1592 * Called under mddev lock, so rcu protection not needed. 1593 * device_lock used to avoid races with raid1_end_read_request 1594 * which expects 'In_sync' flags and ->degraded to be consistent. 1595 */ 1596 spin_lock_irqsave(&conf->device_lock, flags); 1597 for (i = 0; i < conf->raid_disks; i++) { 1598 struct md_rdev *rdev = conf->mirrors[i].rdev; 1599 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev; 1600 if (repl 1601 && !test_bit(Candidate, &repl->flags) 1602 && repl->recovery_offset == MaxSector 1603 && !test_bit(Faulty, &repl->flags) 1604 && !test_and_set_bit(In_sync, &repl->flags)) { 1605 /* replacement has just become active */ 1606 if (!rdev || 1607 !test_and_clear_bit(In_sync, &rdev->flags)) 1608 count++; 1609 if (rdev) { 1610 /* Replaced device not technically 1611 * faulty, but we need to be sure 1612 * it gets removed and never re-added 1613 */ 1614 set_bit(Faulty, &rdev->flags); 1615 sysfs_notify_dirent_safe( 1616 rdev->sysfs_state); 1617 } 1618 } 1619 if (rdev 1620 && rdev->recovery_offset == MaxSector 1621 && !test_bit(Faulty, &rdev->flags) 1622 && !test_and_set_bit(In_sync, &rdev->flags)) { 1623 count++; 1624 sysfs_notify_dirent_safe(rdev->sysfs_state); 1625 } 1626 } 1627 mddev->degraded -= count; 1628 spin_unlock_irqrestore(&conf->device_lock, flags); 1629 1630 print_conf(conf); 1631 return count; 1632 } 1633 1634 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1635 { 1636 struct r1conf *conf = mddev->private; 1637 int err = -EEXIST; 1638 int mirror = 0; 1639 struct raid1_info *p; 1640 int first = 0; 1641 int last = conf->raid_disks - 1; 1642 1643 if (mddev->recovery_disabled == conf->recovery_disabled) 1644 return -EBUSY; 1645 1646 if (md_integrity_add_rdev(rdev, mddev)) 1647 return -ENXIO; 1648 1649 if (rdev->raid_disk >= 0) 1650 first = last = rdev->raid_disk; 1651 1652 /* 1653 * find the disk ... but prefer rdev->saved_raid_disk 1654 * if possible. 1655 */ 1656 if (rdev->saved_raid_disk >= 0 && 1657 rdev->saved_raid_disk >= first && 1658 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1659 first = last = rdev->saved_raid_disk; 1660 1661 for (mirror = first; mirror <= last; mirror++) { 1662 p = conf->mirrors+mirror; 1663 if (!p->rdev) { 1664 1665 if (mddev->gendisk) 1666 disk_stack_limits(mddev->gendisk, rdev->bdev, 1667 rdev->data_offset << 9); 1668 1669 p->head_position = 0; 1670 rdev->raid_disk = mirror; 1671 err = 0; 1672 /* As all devices are equivalent, we don't need a full recovery 1673 * if this was recently any drive of the array 1674 */ 1675 if (rdev->saved_raid_disk < 0) 1676 conf->fullsync = 1; 1677 rcu_assign_pointer(p->rdev, rdev); 1678 break; 1679 } 1680 if (test_bit(WantReplacement, &p->rdev->flags) && 1681 p[conf->raid_disks].rdev == NULL) { 1682 /* Add this device as a replacement */ 1683 clear_bit(In_sync, &rdev->flags); 1684 set_bit(Replacement, &rdev->flags); 1685 rdev->raid_disk = mirror; 1686 err = 0; 1687 conf->fullsync = 1; 1688 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev); 1689 break; 1690 } 1691 } 1692 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev))) 1693 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue); 1694 print_conf(conf); 1695 return err; 1696 } 1697 1698 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1699 { 1700 struct r1conf *conf = mddev->private; 1701 int err = 0; 1702 int number = rdev->raid_disk; 1703 struct raid1_info *p = conf->mirrors + number; 1704 1705 if (rdev != p->rdev) 1706 p = conf->mirrors + conf->raid_disks + number; 1707 1708 print_conf(conf); 1709 if (rdev == p->rdev) { 1710 if (test_bit(In_sync, &rdev->flags) || 1711 atomic_read(&rdev->nr_pending)) { 1712 err = -EBUSY; 1713 goto abort; 1714 } 1715 /* Only remove non-faulty devices if recovery 1716 * is not possible. 1717 */ 1718 if (!test_bit(Faulty, &rdev->flags) && 1719 mddev->recovery_disabled != conf->recovery_disabled && 1720 mddev->degraded < conf->raid_disks) { 1721 err = -EBUSY; 1722 goto abort; 1723 } 1724 p->rdev = NULL; 1725 if (!test_bit(RemoveSynchronized, &rdev->flags)) { 1726 synchronize_rcu(); 1727 if (atomic_read(&rdev->nr_pending)) { 1728 /* lost the race, try later */ 1729 err = -EBUSY; 1730 p->rdev = rdev; 1731 goto abort; 1732 } 1733 } 1734 if (conf->mirrors[conf->raid_disks + number].rdev) { 1735 /* We just removed a device that is being replaced. 1736 * Move down the replacement. We drain all IO before 1737 * doing this to avoid confusion. 1738 */ 1739 struct md_rdev *repl = 1740 conf->mirrors[conf->raid_disks + number].rdev; 1741 freeze_array(conf, 0); 1742 clear_bit(Replacement, &repl->flags); 1743 p->rdev = repl; 1744 conf->mirrors[conf->raid_disks + number].rdev = NULL; 1745 unfreeze_array(conf); 1746 clear_bit(WantReplacement, &rdev->flags); 1747 } else 1748 clear_bit(WantReplacement, &rdev->flags); 1749 err = md_integrity_register(mddev); 1750 } 1751 abort: 1752 1753 print_conf(conf); 1754 return err; 1755 } 1756 1757 static void end_sync_read(struct bio *bio) 1758 { 1759 struct r1bio *r1_bio = bio->bi_private; 1760 1761 update_head_pos(r1_bio->read_disk, r1_bio); 1762 1763 /* 1764 * we have read a block, now it needs to be re-written, 1765 * or re-read if the read failed. 1766 * We don't do much here, just schedule handling by raid1d 1767 */ 1768 if (!bio->bi_error) 1769 set_bit(R1BIO_Uptodate, &r1_bio->state); 1770 1771 if (atomic_dec_and_test(&r1_bio->remaining)) 1772 reschedule_retry(r1_bio); 1773 } 1774 1775 static void end_sync_write(struct bio *bio) 1776 { 1777 int uptodate = !bio->bi_error; 1778 struct r1bio *r1_bio = bio->bi_private; 1779 struct mddev *mddev = r1_bio->mddev; 1780 struct r1conf *conf = mddev->private; 1781 sector_t first_bad; 1782 int bad_sectors; 1783 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev; 1784 1785 if (!uptodate) { 1786 sector_t sync_blocks = 0; 1787 sector_t s = r1_bio->sector; 1788 long sectors_to_go = r1_bio->sectors; 1789 /* make sure these bits doesn't get cleared. */ 1790 do { 1791 bitmap_end_sync(mddev->bitmap, s, 1792 &sync_blocks, 1); 1793 s += sync_blocks; 1794 sectors_to_go -= sync_blocks; 1795 } while (sectors_to_go > 0); 1796 set_bit(WriteErrorSeen, &rdev->flags); 1797 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 1798 set_bit(MD_RECOVERY_NEEDED, & 1799 mddev->recovery); 1800 set_bit(R1BIO_WriteError, &r1_bio->state); 1801 } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors, 1802 &first_bad, &bad_sectors) && 1803 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev, 1804 r1_bio->sector, 1805 r1_bio->sectors, 1806 &first_bad, &bad_sectors) 1807 ) 1808 set_bit(R1BIO_MadeGood, &r1_bio->state); 1809 1810 if (atomic_dec_and_test(&r1_bio->remaining)) { 1811 int s = r1_bio->sectors; 1812 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 1813 test_bit(R1BIO_WriteError, &r1_bio->state)) 1814 reschedule_retry(r1_bio); 1815 else { 1816 put_buf(r1_bio); 1817 md_done_sync(mddev, s, uptodate); 1818 } 1819 } 1820 } 1821 1822 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector, 1823 int sectors, struct page *page, int rw) 1824 { 1825 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false)) 1826 /* success */ 1827 return 1; 1828 if (rw == WRITE) { 1829 set_bit(WriteErrorSeen, &rdev->flags); 1830 if (!test_and_set_bit(WantReplacement, 1831 &rdev->flags)) 1832 set_bit(MD_RECOVERY_NEEDED, & 1833 rdev->mddev->recovery); 1834 } 1835 /* need to record an error - either for the block or the device */ 1836 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 1837 md_error(rdev->mddev, rdev); 1838 return 0; 1839 } 1840 1841 static int fix_sync_read_error(struct r1bio *r1_bio) 1842 { 1843 /* Try some synchronous reads of other devices to get 1844 * good data, much like with normal read errors. Only 1845 * read into the pages we already have so we don't 1846 * need to re-issue the read request. 1847 * We don't need to freeze the array, because being in an 1848 * active sync request, there is no normal IO, and 1849 * no overlapping syncs. 1850 * We don't need to check is_badblock() again as we 1851 * made sure that anything with a bad block in range 1852 * will have bi_end_io clear. 1853 */ 1854 struct mddev *mddev = r1_bio->mddev; 1855 struct r1conf *conf = mddev->private; 1856 struct bio *bio = r1_bio->bios[r1_bio->read_disk]; 1857 sector_t sect = r1_bio->sector; 1858 int sectors = r1_bio->sectors; 1859 int idx = 0; 1860 struct md_rdev *rdev; 1861 1862 rdev = conf->mirrors[r1_bio->read_disk].rdev; 1863 if (test_bit(FailFast, &rdev->flags)) { 1864 /* Don't try recovering from here - just fail it 1865 * ... unless it is the last working device of course */ 1866 md_error(mddev, rdev); 1867 if (test_bit(Faulty, &rdev->flags)) 1868 /* Don't try to read from here, but make sure 1869 * put_buf does it's thing 1870 */ 1871 bio->bi_end_io = end_sync_write; 1872 } 1873 1874 while(sectors) { 1875 int s = sectors; 1876 int d = r1_bio->read_disk; 1877 int success = 0; 1878 int start; 1879 1880 if (s > (PAGE_SIZE>>9)) 1881 s = PAGE_SIZE >> 9; 1882 do { 1883 if (r1_bio->bios[d]->bi_end_io == end_sync_read) { 1884 /* No rcu protection needed here devices 1885 * can only be removed when no resync is 1886 * active, and resync is currently active 1887 */ 1888 rdev = conf->mirrors[d].rdev; 1889 if (sync_page_io(rdev, sect, s<<9, 1890 bio->bi_io_vec[idx].bv_page, 1891 REQ_OP_READ, 0, false)) { 1892 success = 1; 1893 break; 1894 } 1895 } 1896 d++; 1897 if (d == conf->raid_disks * 2) 1898 d = 0; 1899 } while (!success && d != r1_bio->read_disk); 1900 1901 if (!success) { 1902 char b[BDEVNAME_SIZE]; 1903 int abort = 0; 1904 /* Cannot read from anywhere, this block is lost. 1905 * Record a bad block on each device. If that doesn't 1906 * work just disable and interrupt the recovery. 1907 * Don't fail devices as that won't really help. 1908 */ 1909 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n", 1910 mdname(mddev), 1911 bdevname(bio->bi_bdev, b), 1912 (unsigned long long)r1_bio->sector); 1913 for (d = 0; d < conf->raid_disks * 2; d++) { 1914 rdev = conf->mirrors[d].rdev; 1915 if (!rdev || test_bit(Faulty, &rdev->flags)) 1916 continue; 1917 if (!rdev_set_badblocks(rdev, sect, s, 0)) 1918 abort = 1; 1919 } 1920 if (abort) { 1921 conf->recovery_disabled = 1922 mddev->recovery_disabled; 1923 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1924 md_done_sync(mddev, r1_bio->sectors, 0); 1925 put_buf(r1_bio); 1926 return 0; 1927 } 1928 /* Try next page */ 1929 sectors -= s; 1930 sect += s; 1931 idx++; 1932 continue; 1933 } 1934 1935 start = d; 1936 /* write it back and re-read */ 1937 while (d != r1_bio->read_disk) { 1938 if (d == 0) 1939 d = conf->raid_disks * 2; 1940 d--; 1941 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1942 continue; 1943 rdev = conf->mirrors[d].rdev; 1944 if (r1_sync_page_io(rdev, sect, s, 1945 bio->bi_io_vec[idx].bv_page, 1946 WRITE) == 0) { 1947 r1_bio->bios[d]->bi_end_io = NULL; 1948 rdev_dec_pending(rdev, mddev); 1949 } 1950 } 1951 d = start; 1952 while (d != r1_bio->read_disk) { 1953 if (d == 0) 1954 d = conf->raid_disks * 2; 1955 d--; 1956 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1957 continue; 1958 rdev = conf->mirrors[d].rdev; 1959 if (r1_sync_page_io(rdev, sect, s, 1960 bio->bi_io_vec[idx].bv_page, 1961 READ) != 0) 1962 atomic_add(s, &rdev->corrected_errors); 1963 } 1964 sectors -= s; 1965 sect += s; 1966 idx ++; 1967 } 1968 set_bit(R1BIO_Uptodate, &r1_bio->state); 1969 bio->bi_error = 0; 1970 return 1; 1971 } 1972 1973 static void process_checks(struct r1bio *r1_bio) 1974 { 1975 /* We have read all readable devices. If we haven't 1976 * got the block, then there is no hope left. 1977 * If we have, then we want to do a comparison 1978 * and skip the write if everything is the same. 1979 * If any blocks failed to read, then we need to 1980 * attempt an over-write 1981 */ 1982 struct mddev *mddev = r1_bio->mddev; 1983 struct r1conf *conf = mddev->private; 1984 int primary; 1985 int i; 1986 int vcnt; 1987 1988 /* Fix variable parts of all bios */ 1989 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9); 1990 for (i = 0; i < conf->raid_disks * 2; i++) { 1991 int j; 1992 int size; 1993 int error; 1994 struct bio *b = r1_bio->bios[i]; 1995 if (b->bi_end_io != end_sync_read) 1996 continue; 1997 /* fixup the bio for reuse, but preserve errno */ 1998 error = b->bi_error; 1999 bio_reset(b); 2000 b->bi_error = error; 2001 b->bi_vcnt = vcnt; 2002 b->bi_iter.bi_size = r1_bio->sectors << 9; 2003 b->bi_iter.bi_sector = r1_bio->sector + 2004 conf->mirrors[i].rdev->data_offset; 2005 b->bi_bdev = conf->mirrors[i].rdev->bdev; 2006 b->bi_end_io = end_sync_read; 2007 b->bi_private = r1_bio; 2008 2009 size = b->bi_iter.bi_size; 2010 for (j = 0; j < vcnt ; j++) { 2011 struct bio_vec *bi; 2012 bi = &b->bi_io_vec[j]; 2013 bi->bv_offset = 0; 2014 if (size > PAGE_SIZE) 2015 bi->bv_len = PAGE_SIZE; 2016 else 2017 bi->bv_len = size; 2018 size -= PAGE_SIZE; 2019 } 2020 } 2021 for (primary = 0; primary < conf->raid_disks * 2; primary++) 2022 if (r1_bio->bios[primary]->bi_end_io == end_sync_read && 2023 !r1_bio->bios[primary]->bi_error) { 2024 r1_bio->bios[primary]->bi_end_io = NULL; 2025 rdev_dec_pending(conf->mirrors[primary].rdev, mddev); 2026 break; 2027 } 2028 r1_bio->read_disk = primary; 2029 for (i = 0; i < conf->raid_disks * 2; i++) { 2030 int j; 2031 struct bio *pbio = r1_bio->bios[primary]; 2032 struct bio *sbio = r1_bio->bios[i]; 2033 int error = sbio->bi_error; 2034 2035 if (sbio->bi_end_io != end_sync_read) 2036 continue; 2037 /* Now we can 'fixup' the error value */ 2038 sbio->bi_error = 0; 2039 2040 if (!error) { 2041 for (j = vcnt; j-- ; ) { 2042 struct page *p, *s; 2043 p = pbio->bi_io_vec[j].bv_page; 2044 s = sbio->bi_io_vec[j].bv_page; 2045 if (memcmp(page_address(p), 2046 page_address(s), 2047 sbio->bi_io_vec[j].bv_len)) 2048 break; 2049 } 2050 } else 2051 j = 0; 2052 if (j >= 0) 2053 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches); 2054 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery) 2055 && !error)) { 2056 /* No need to write to this device. */ 2057 sbio->bi_end_io = NULL; 2058 rdev_dec_pending(conf->mirrors[i].rdev, mddev); 2059 continue; 2060 } 2061 2062 bio_copy_data(sbio, pbio); 2063 } 2064 } 2065 2066 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio) 2067 { 2068 struct r1conf *conf = mddev->private; 2069 int i; 2070 int disks = conf->raid_disks * 2; 2071 struct bio *bio, *wbio; 2072 2073 bio = r1_bio->bios[r1_bio->read_disk]; 2074 2075 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 2076 /* ouch - failed to read all of that. */ 2077 if (!fix_sync_read_error(r1_bio)) 2078 return; 2079 2080 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2081 process_checks(r1_bio); 2082 2083 /* 2084 * schedule writes 2085 */ 2086 atomic_set(&r1_bio->remaining, 1); 2087 for (i = 0; i < disks ; i++) { 2088 wbio = r1_bio->bios[i]; 2089 if (wbio->bi_end_io == NULL || 2090 (wbio->bi_end_io == end_sync_read && 2091 (i == r1_bio->read_disk || 2092 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)))) 2093 continue; 2094 2095 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0); 2096 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags)) 2097 wbio->bi_opf |= MD_FAILFAST; 2098 2099 wbio->bi_end_io = end_sync_write; 2100 atomic_inc(&r1_bio->remaining); 2101 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio)); 2102 2103 generic_make_request(wbio); 2104 } 2105 2106 if (atomic_dec_and_test(&r1_bio->remaining)) { 2107 /* if we're here, all write(s) have completed, so clean up */ 2108 int s = r1_bio->sectors; 2109 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2110 test_bit(R1BIO_WriteError, &r1_bio->state)) 2111 reschedule_retry(r1_bio); 2112 else { 2113 put_buf(r1_bio); 2114 md_done_sync(mddev, s, 1); 2115 } 2116 } 2117 } 2118 2119 /* 2120 * This is a kernel thread which: 2121 * 2122 * 1. Retries failed read operations on working mirrors. 2123 * 2. Updates the raid superblock when problems encounter. 2124 * 3. Performs writes following reads for array synchronising. 2125 */ 2126 2127 static void fix_read_error(struct r1conf *conf, int read_disk, 2128 sector_t sect, int sectors) 2129 { 2130 struct mddev *mddev = conf->mddev; 2131 while(sectors) { 2132 int s = sectors; 2133 int d = read_disk; 2134 int success = 0; 2135 int start; 2136 struct md_rdev *rdev; 2137 2138 if (s > (PAGE_SIZE>>9)) 2139 s = PAGE_SIZE >> 9; 2140 2141 do { 2142 sector_t first_bad; 2143 int bad_sectors; 2144 2145 rcu_read_lock(); 2146 rdev = rcu_dereference(conf->mirrors[d].rdev); 2147 if (rdev && 2148 (test_bit(In_sync, &rdev->flags) || 2149 (!test_bit(Faulty, &rdev->flags) && 2150 rdev->recovery_offset >= sect + s)) && 2151 is_badblock(rdev, sect, s, 2152 &first_bad, &bad_sectors) == 0) { 2153 atomic_inc(&rdev->nr_pending); 2154 rcu_read_unlock(); 2155 if (sync_page_io(rdev, sect, s<<9, 2156 conf->tmppage, REQ_OP_READ, 0, false)) 2157 success = 1; 2158 rdev_dec_pending(rdev, mddev); 2159 if (success) 2160 break; 2161 } else 2162 rcu_read_unlock(); 2163 d++; 2164 if (d == conf->raid_disks * 2) 2165 d = 0; 2166 } while (!success && d != read_disk); 2167 2168 if (!success) { 2169 /* Cannot read from anywhere - mark it bad */ 2170 struct md_rdev *rdev = conf->mirrors[read_disk].rdev; 2171 if (!rdev_set_badblocks(rdev, sect, s, 0)) 2172 md_error(mddev, rdev); 2173 break; 2174 } 2175 /* write it back and re-read */ 2176 start = d; 2177 while (d != read_disk) { 2178 if (d==0) 2179 d = conf->raid_disks * 2; 2180 d--; 2181 rcu_read_lock(); 2182 rdev = rcu_dereference(conf->mirrors[d].rdev); 2183 if (rdev && 2184 !test_bit(Faulty, &rdev->flags)) { 2185 atomic_inc(&rdev->nr_pending); 2186 rcu_read_unlock(); 2187 r1_sync_page_io(rdev, sect, s, 2188 conf->tmppage, WRITE); 2189 rdev_dec_pending(rdev, mddev); 2190 } else 2191 rcu_read_unlock(); 2192 } 2193 d = start; 2194 while (d != read_disk) { 2195 char b[BDEVNAME_SIZE]; 2196 if (d==0) 2197 d = conf->raid_disks * 2; 2198 d--; 2199 rcu_read_lock(); 2200 rdev = rcu_dereference(conf->mirrors[d].rdev); 2201 if (rdev && 2202 !test_bit(Faulty, &rdev->flags)) { 2203 atomic_inc(&rdev->nr_pending); 2204 rcu_read_unlock(); 2205 if (r1_sync_page_io(rdev, sect, s, 2206 conf->tmppage, READ)) { 2207 atomic_add(s, &rdev->corrected_errors); 2208 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n", 2209 mdname(mddev), s, 2210 (unsigned long long)(sect + 2211 rdev->data_offset), 2212 bdevname(rdev->bdev, b)); 2213 } 2214 rdev_dec_pending(rdev, mddev); 2215 } else 2216 rcu_read_unlock(); 2217 } 2218 sectors -= s; 2219 sect += s; 2220 } 2221 } 2222 2223 static int narrow_write_error(struct r1bio *r1_bio, int i) 2224 { 2225 struct mddev *mddev = r1_bio->mddev; 2226 struct r1conf *conf = mddev->private; 2227 struct md_rdev *rdev = conf->mirrors[i].rdev; 2228 2229 /* bio has the data to be written to device 'i' where 2230 * we just recently had a write error. 2231 * We repeatedly clone the bio and trim down to one block, 2232 * then try the write. Where the write fails we record 2233 * a bad block. 2234 * It is conceivable that the bio doesn't exactly align with 2235 * blocks. We must handle this somehow. 2236 * 2237 * We currently own a reference on the rdev. 2238 */ 2239 2240 int block_sectors; 2241 sector_t sector; 2242 int sectors; 2243 int sect_to_write = r1_bio->sectors; 2244 int ok = 1; 2245 2246 if (rdev->badblocks.shift < 0) 2247 return 0; 2248 2249 block_sectors = roundup(1 << rdev->badblocks.shift, 2250 bdev_logical_block_size(rdev->bdev) >> 9); 2251 sector = r1_bio->sector; 2252 sectors = ((sector + block_sectors) 2253 & ~(sector_t)(block_sectors - 1)) 2254 - sector; 2255 2256 while (sect_to_write) { 2257 struct bio *wbio; 2258 if (sectors > sect_to_write) 2259 sectors = sect_to_write; 2260 /* Write at 'sector' for 'sectors'*/ 2261 2262 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 2263 unsigned vcnt = r1_bio->behind_page_count; 2264 struct bio_vec *vec = r1_bio->behind_bvecs; 2265 2266 while (!vec->bv_page) { 2267 vec++; 2268 vcnt--; 2269 } 2270 2271 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev); 2272 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec)); 2273 2274 wbio->bi_vcnt = vcnt; 2275 } else { 2276 wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev); 2277 } 2278 2279 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0); 2280 wbio->bi_iter.bi_sector = r1_bio->sector; 2281 wbio->bi_iter.bi_size = r1_bio->sectors << 9; 2282 2283 bio_trim(wbio, sector - r1_bio->sector, sectors); 2284 wbio->bi_iter.bi_sector += rdev->data_offset; 2285 wbio->bi_bdev = rdev->bdev; 2286 2287 if (submit_bio_wait(wbio) < 0) 2288 /* failure! */ 2289 ok = rdev_set_badblocks(rdev, sector, 2290 sectors, 0) 2291 && ok; 2292 2293 bio_put(wbio); 2294 sect_to_write -= sectors; 2295 sector += sectors; 2296 sectors = block_sectors; 2297 } 2298 return ok; 2299 } 2300 2301 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2302 { 2303 int m; 2304 int s = r1_bio->sectors; 2305 for (m = 0; m < conf->raid_disks * 2 ; m++) { 2306 struct md_rdev *rdev = conf->mirrors[m].rdev; 2307 struct bio *bio = r1_bio->bios[m]; 2308 if (bio->bi_end_io == NULL) 2309 continue; 2310 if (!bio->bi_error && 2311 test_bit(R1BIO_MadeGood, &r1_bio->state)) { 2312 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0); 2313 } 2314 if (bio->bi_error && 2315 test_bit(R1BIO_WriteError, &r1_bio->state)) { 2316 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0)) 2317 md_error(conf->mddev, rdev); 2318 } 2319 } 2320 put_buf(r1_bio); 2321 md_done_sync(conf->mddev, s, 1); 2322 } 2323 2324 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2325 { 2326 int m; 2327 bool fail = false; 2328 for (m = 0; m < conf->raid_disks * 2 ; m++) 2329 if (r1_bio->bios[m] == IO_MADE_GOOD) { 2330 struct md_rdev *rdev = conf->mirrors[m].rdev; 2331 rdev_clear_badblocks(rdev, 2332 r1_bio->sector, 2333 r1_bio->sectors, 0); 2334 rdev_dec_pending(rdev, conf->mddev); 2335 } else if (r1_bio->bios[m] != NULL) { 2336 /* This drive got a write error. We need to 2337 * narrow down and record precise write 2338 * errors. 2339 */ 2340 fail = true; 2341 if (!narrow_write_error(r1_bio, m)) { 2342 md_error(conf->mddev, 2343 conf->mirrors[m].rdev); 2344 /* an I/O failed, we can't clear the bitmap */ 2345 set_bit(R1BIO_Degraded, &r1_bio->state); 2346 } 2347 rdev_dec_pending(conf->mirrors[m].rdev, 2348 conf->mddev); 2349 } 2350 if (fail) { 2351 spin_lock_irq(&conf->device_lock); 2352 list_add(&r1_bio->retry_list, &conf->bio_end_io_list); 2353 conf->nr_queued++; 2354 spin_unlock_irq(&conf->device_lock); 2355 md_wakeup_thread(conf->mddev->thread); 2356 } else { 2357 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2358 close_write(r1_bio); 2359 raid_end_bio_io(r1_bio); 2360 } 2361 } 2362 2363 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio) 2364 { 2365 int disk; 2366 int max_sectors; 2367 struct mddev *mddev = conf->mddev; 2368 struct bio *bio; 2369 char b[BDEVNAME_SIZE]; 2370 struct md_rdev *rdev; 2371 dev_t bio_dev; 2372 sector_t bio_sector; 2373 2374 clear_bit(R1BIO_ReadError, &r1_bio->state); 2375 /* we got a read error. Maybe the drive is bad. Maybe just 2376 * the block and we can fix it. 2377 * We freeze all other IO, and try reading the block from 2378 * other devices. When we find one, we re-write 2379 * and check it that fixes the read error. 2380 * This is all done synchronously while the array is 2381 * frozen 2382 */ 2383 2384 bio = r1_bio->bios[r1_bio->read_disk]; 2385 bdevname(bio->bi_bdev, b); 2386 bio_dev = bio->bi_bdev->bd_dev; 2387 bio_sector = conf->mirrors[r1_bio->read_disk].rdev->data_offset + r1_bio->sector; 2388 bio_put(bio); 2389 r1_bio->bios[r1_bio->read_disk] = NULL; 2390 2391 rdev = conf->mirrors[r1_bio->read_disk].rdev; 2392 if (mddev->ro == 0 2393 && !test_bit(FailFast, &rdev->flags)) { 2394 freeze_array(conf, 1); 2395 fix_read_error(conf, r1_bio->read_disk, 2396 r1_bio->sector, r1_bio->sectors); 2397 unfreeze_array(conf); 2398 } else { 2399 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED; 2400 } 2401 2402 rdev_dec_pending(rdev, conf->mddev); 2403 2404 read_more: 2405 disk = read_balance(conf, r1_bio, &max_sectors); 2406 if (disk == -1) { 2407 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n", 2408 mdname(mddev), b, (unsigned long long)r1_bio->sector); 2409 raid_end_bio_io(r1_bio); 2410 } else { 2411 const unsigned long do_sync 2412 = r1_bio->master_bio->bi_opf & REQ_SYNC; 2413 r1_bio->read_disk = disk; 2414 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev); 2415 bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector, 2416 max_sectors); 2417 r1_bio->bios[r1_bio->read_disk] = bio; 2418 rdev = conf->mirrors[disk].rdev; 2419 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n", 2420 mdname(mddev), 2421 (unsigned long long)r1_bio->sector, 2422 bdevname(rdev->bdev, b)); 2423 bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset; 2424 bio->bi_bdev = rdev->bdev; 2425 bio->bi_end_io = raid1_end_read_request; 2426 bio_set_op_attrs(bio, REQ_OP_READ, do_sync); 2427 if (test_bit(FailFast, &rdev->flags) && 2428 test_bit(R1BIO_FailFast, &r1_bio->state)) 2429 bio->bi_opf |= MD_FAILFAST; 2430 bio->bi_private = r1_bio; 2431 if (max_sectors < r1_bio->sectors) { 2432 /* Drat - have to split this up more */ 2433 struct bio *mbio = r1_bio->master_bio; 2434 int sectors_handled = (r1_bio->sector + max_sectors 2435 - mbio->bi_iter.bi_sector); 2436 r1_bio->sectors = max_sectors; 2437 spin_lock_irq(&conf->device_lock); 2438 if (mbio->bi_phys_segments == 0) 2439 mbio->bi_phys_segments = 2; 2440 else 2441 mbio->bi_phys_segments++; 2442 spin_unlock_irq(&conf->device_lock); 2443 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), 2444 bio, bio_dev, bio_sector); 2445 generic_make_request(bio); 2446 bio = NULL; 2447 2448 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 2449 2450 r1_bio->master_bio = mbio; 2451 r1_bio->sectors = bio_sectors(mbio) - sectors_handled; 2452 r1_bio->state = 0; 2453 set_bit(R1BIO_ReadError, &r1_bio->state); 2454 r1_bio->mddev = mddev; 2455 r1_bio->sector = mbio->bi_iter.bi_sector + 2456 sectors_handled; 2457 2458 goto read_more; 2459 } else { 2460 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), 2461 bio, bio_dev, bio_sector); 2462 generic_make_request(bio); 2463 } 2464 } 2465 } 2466 2467 static void raid1d(struct md_thread *thread) 2468 { 2469 struct mddev *mddev = thread->mddev; 2470 struct r1bio *r1_bio; 2471 unsigned long flags; 2472 struct r1conf *conf = mddev->private; 2473 struct list_head *head = &conf->retry_list; 2474 struct blk_plug plug; 2475 2476 md_check_recovery(mddev); 2477 2478 if (!list_empty_careful(&conf->bio_end_io_list) && 2479 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 2480 LIST_HEAD(tmp); 2481 spin_lock_irqsave(&conf->device_lock, flags); 2482 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 2483 while (!list_empty(&conf->bio_end_io_list)) { 2484 list_move(conf->bio_end_io_list.prev, &tmp); 2485 conf->nr_queued--; 2486 } 2487 } 2488 spin_unlock_irqrestore(&conf->device_lock, flags); 2489 while (!list_empty(&tmp)) { 2490 r1_bio = list_first_entry(&tmp, struct r1bio, 2491 retry_list); 2492 list_del(&r1_bio->retry_list); 2493 if (mddev->degraded) 2494 set_bit(R1BIO_Degraded, &r1_bio->state); 2495 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2496 close_write(r1_bio); 2497 raid_end_bio_io(r1_bio); 2498 } 2499 } 2500 2501 blk_start_plug(&plug); 2502 for (;;) { 2503 2504 flush_pending_writes(conf); 2505 2506 spin_lock_irqsave(&conf->device_lock, flags); 2507 if (list_empty(head)) { 2508 spin_unlock_irqrestore(&conf->device_lock, flags); 2509 break; 2510 } 2511 r1_bio = list_entry(head->prev, struct r1bio, retry_list); 2512 list_del(head->prev); 2513 conf->nr_queued--; 2514 spin_unlock_irqrestore(&conf->device_lock, flags); 2515 2516 mddev = r1_bio->mddev; 2517 conf = mddev->private; 2518 if (test_bit(R1BIO_IsSync, &r1_bio->state)) { 2519 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2520 test_bit(R1BIO_WriteError, &r1_bio->state)) 2521 handle_sync_write_finished(conf, r1_bio); 2522 else 2523 sync_request_write(mddev, r1_bio); 2524 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2525 test_bit(R1BIO_WriteError, &r1_bio->state)) 2526 handle_write_finished(conf, r1_bio); 2527 else if (test_bit(R1BIO_ReadError, &r1_bio->state)) 2528 handle_read_error(conf, r1_bio); 2529 else 2530 /* just a partial read to be scheduled from separate 2531 * context 2532 */ 2533 generic_make_request(r1_bio->bios[r1_bio->read_disk]); 2534 2535 cond_resched(); 2536 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING)) 2537 md_check_recovery(mddev); 2538 } 2539 blk_finish_plug(&plug); 2540 } 2541 2542 static int init_resync(struct r1conf *conf) 2543 { 2544 int buffs; 2545 2546 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2547 BUG_ON(conf->r1buf_pool); 2548 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free, 2549 conf->poolinfo); 2550 if (!conf->r1buf_pool) 2551 return -ENOMEM; 2552 conf->next_resync = 0; 2553 return 0; 2554 } 2555 2556 /* 2557 * perform a "sync" on one "block" 2558 * 2559 * We need to make sure that no normal I/O request - particularly write 2560 * requests - conflict with active sync requests. 2561 * 2562 * This is achieved by tracking pending requests and a 'barrier' concept 2563 * that can be installed to exclude normal IO requests. 2564 */ 2565 2566 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr, 2567 int *skipped) 2568 { 2569 struct r1conf *conf = mddev->private; 2570 struct r1bio *r1_bio; 2571 struct bio *bio; 2572 sector_t max_sector, nr_sectors; 2573 int disk = -1; 2574 int i; 2575 int wonly = -1; 2576 int write_targets = 0, read_targets = 0; 2577 sector_t sync_blocks; 2578 int still_degraded = 0; 2579 int good_sectors = RESYNC_SECTORS; 2580 int min_bad = 0; /* number of sectors that are bad in all devices */ 2581 2582 if (!conf->r1buf_pool) 2583 if (init_resync(conf)) 2584 return 0; 2585 2586 max_sector = mddev->dev_sectors; 2587 if (sector_nr >= max_sector) { 2588 /* If we aborted, we need to abort the 2589 * sync on the 'current' bitmap chunk (there will 2590 * only be one in raid1 resync. 2591 * We can find the current addess in mddev->curr_resync 2592 */ 2593 if (mddev->curr_resync < max_sector) /* aborted */ 2594 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2595 &sync_blocks, 1); 2596 else /* completed sync */ 2597 conf->fullsync = 0; 2598 2599 bitmap_close_sync(mddev->bitmap); 2600 close_sync(conf); 2601 2602 if (mddev_is_clustered(mddev)) { 2603 conf->cluster_sync_low = 0; 2604 conf->cluster_sync_high = 0; 2605 } 2606 return 0; 2607 } 2608 2609 if (mddev->bitmap == NULL && 2610 mddev->recovery_cp == MaxSector && 2611 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 2612 conf->fullsync == 0) { 2613 *skipped = 1; 2614 return max_sector - sector_nr; 2615 } 2616 /* before building a request, check if we can skip these blocks.. 2617 * This call the bitmap_start_sync doesn't actually record anything 2618 */ 2619 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 2620 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2621 /* We can skip this block, and probably several more */ 2622 *skipped = 1; 2623 return sync_blocks; 2624 } 2625 2626 /* 2627 * If there is non-resync activity waiting for a turn, then let it 2628 * though before starting on this new sync request. 2629 */ 2630 if (conf->nr_waiting) 2631 schedule_timeout_uninterruptible(1); 2632 2633 /* we are incrementing sector_nr below. To be safe, we check against 2634 * sector_nr + two times RESYNC_SECTORS 2635 */ 2636 2637 bitmap_cond_end_sync(mddev->bitmap, sector_nr, 2638 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high)); 2639 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO); 2640 2641 raise_barrier(conf, sector_nr); 2642 2643 rcu_read_lock(); 2644 /* 2645 * If we get a correctably read error during resync or recovery, 2646 * we might want to read from a different device. So we 2647 * flag all drives that could conceivably be read from for READ, 2648 * and any others (which will be non-In_sync devices) for WRITE. 2649 * If a read fails, we try reading from something else for which READ 2650 * is OK. 2651 */ 2652 2653 r1_bio->mddev = mddev; 2654 r1_bio->sector = sector_nr; 2655 r1_bio->state = 0; 2656 set_bit(R1BIO_IsSync, &r1_bio->state); 2657 2658 for (i = 0; i < conf->raid_disks * 2; i++) { 2659 struct md_rdev *rdev; 2660 bio = r1_bio->bios[i]; 2661 bio_reset(bio); 2662 2663 rdev = rcu_dereference(conf->mirrors[i].rdev); 2664 if (rdev == NULL || 2665 test_bit(Faulty, &rdev->flags)) { 2666 if (i < conf->raid_disks) 2667 still_degraded = 1; 2668 } else if (!test_bit(In_sync, &rdev->flags)) { 2669 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 2670 bio->bi_end_io = end_sync_write; 2671 write_targets ++; 2672 } else { 2673 /* may need to read from here */ 2674 sector_t first_bad = MaxSector; 2675 int bad_sectors; 2676 2677 if (is_badblock(rdev, sector_nr, good_sectors, 2678 &first_bad, &bad_sectors)) { 2679 if (first_bad > sector_nr) 2680 good_sectors = first_bad - sector_nr; 2681 else { 2682 bad_sectors -= (sector_nr - first_bad); 2683 if (min_bad == 0 || 2684 min_bad > bad_sectors) 2685 min_bad = bad_sectors; 2686 } 2687 } 2688 if (sector_nr < first_bad) { 2689 if (test_bit(WriteMostly, &rdev->flags)) { 2690 if (wonly < 0) 2691 wonly = i; 2692 } else { 2693 if (disk < 0) 2694 disk = i; 2695 } 2696 bio_set_op_attrs(bio, REQ_OP_READ, 0); 2697 bio->bi_end_io = end_sync_read; 2698 read_targets++; 2699 } else if (!test_bit(WriteErrorSeen, &rdev->flags) && 2700 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 2701 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 2702 /* 2703 * The device is suitable for reading (InSync), 2704 * but has bad block(s) here. Let's try to correct them, 2705 * if we are doing resync or repair. Otherwise, leave 2706 * this device alone for this sync request. 2707 */ 2708 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 2709 bio->bi_end_io = end_sync_write; 2710 write_targets++; 2711 } 2712 } 2713 if (bio->bi_end_io) { 2714 atomic_inc(&rdev->nr_pending); 2715 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset; 2716 bio->bi_bdev = rdev->bdev; 2717 bio->bi_private = r1_bio; 2718 if (test_bit(FailFast, &rdev->flags)) 2719 bio->bi_opf |= MD_FAILFAST; 2720 } 2721 } 2722 rcu_read_unlock(); 2723 if (disk < 0) 2724 disk = wonly; 2725 r1_bio->read_disk = disk; 2726 2727 if (read_targets == 0 && min_bad > 0) { 2728 /* These sectors are bad on all InSync devices, so we 2729 * need to mark them bad on all write targets 2730 */ 2731 int ok = 1; 2732 for (i = 0 ; i < conf->raid_disks * 2 ; i++) 2733 if (r1_bio->bios[i]->bi_end_io == end_sync_write) { 2734 struct md_rdev *rdev = conf->mirrors[i].rdev; 2735 ok = rdev_set_badblocks(rdev, sector_nr, 2736 min_bad, 0 2737 ) && ok; 2738 } 2739 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2740 *skipped = 1; 2741 put_buf(r1_bio); 2742 2743 if (!ok) { 2744 /* Cannot record the badblocks, so need to 2745 * abort the resync. 2746 * If there are multiple read targets, could just 2747 * fail the really bad ones ??? 2748 */ 2749 conf->recovery_disabled = mddev->recovery_disabled; 2750 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2751 return 0; 2752 } else 2753 return min_bad; 2754 2755 } 2756 if (min_bad > 0 && min_bad < good_sectors) { 2757 /* only resync enough to reach the next bad->good 2758 * transition */ 2759 good_sectors = min_bad; 2760 } 2761 2762 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0) 2763 /* extra read targets are also write targets */ 2764 write_targets += read_targets-1; 2765 2766 if (write_targets == 0 || read_targets == 0) { 2767 /* There is nowhere to write, so all non-sync 2768 * drives must be failed - so we are finished 2769 */ 2770 sector_t rv; 2771 if (min_bad > 0) 2772 max_sector = sector_nr + min_bad; 2773 rv = max_sector - sector_nr; 2774 *skipped = 1; 2775 put_buf(r1_bio); 2776 return rv; 2777 } 2778 2779 if (max_sector > mddev->resync_max) 2780 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 2781 if (max_sector > sector_nr + good_sectors) 2782 max_sector = sector_nr + good_sectors; 2783 nr_sectors = 0; 2784 sync_blocks = 0; 2785 do { 2786 struct page *page; 2787 int len = PAGE_SIZE; 2788 if (sector_nr + (len>>9) > max_sector) 2789 len = (max_sector - sector_nr) << 9; 2790 if (len == 0) 2791 break; 2792 if (sync_blocks == 0) { 2793 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 2794 &sync_blocks, still_degraded) && 2795 !conf->fullsync && 2796 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2797 break; 2798 if ((len >> 9) > sync_blocks) 2799 len = sync_blocks<<9; 2800 } 2801 2802 for (i = 0 ; i < conf->raid_disks * 2; i++) { 2803 bio = r1_bio->bios[i]; 2804 if (bio->bi_end_io) { 2805 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 2806 if (bio_add_page(bio, page, len, 0) == 0) { 2807 /* stop here */ 2808 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 2809 while (i > 0) { 2810 i--; 2811 bio = r1_bio->bios[i]; 2812 if (bio->bi_end_io==NULL) 2813 continue; 2814 /* remove last page from this bio */ 2815 bio->bi_vcnt--; 2816 bio->bi_iter.bi_size -= len; 2817 bio_clear_flag(bio, BIO_SEG_VALID); 2818 } 2819 goto bio_full; 2820 } 2821 } 2822 } 2823 nr_sectors += len>>9; 2824 sector_nr += len>>9; 2825 sync_blocks -= (len>>9); 2826 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES); 2827 bio_full: 2828 r1_bio->sectors = nr_sectors; 2829 2830 if (mddev_is_clustered(mddev) && 2831 conf->cluster_sync_high < sector_nr + nr_sectors) { 2832 conf->cluster_sync_low = mddev->curr_resync_completed; 2833 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS; 2834 /* Send resync message */ 2835 md_cluster_ops->resync_info_update(mddev, 2836 conf->cluster_sync_low, 2837 conf->cluster_sync_high); 2838 } 2839 2840 /* For a user-requested sync, we read all readable devices and do a 2841 * compare 2842 */ 2843 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2844 atomic_set(&r1_bio->remaining, read_targets); 2845 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) { 2846 bio = r1_bio->bios[i]; 2847 if (bio->bi_end_io == end_sync_read) { 2848 read_targets--; 2849 md_sync_acct(bio->bi_bdev, nr_sectors); 2850 if (read_targets == 1) 2851 bio->bi_opf &= ~MD_FAILFAST; 2852 generic_make_request(bio); 2853 } 2854 } 2855 } else { 2856 atomic_set(&r1_bio->remaining, 1); 2857 bio = r1_bio->bios[r1_bio->read_disk]; 2858 md_sync_acct(bio->bi_bdev, nr_sectors); 2859 if (read_targets == 1) 2860 bio->bi_opf &= ~MD_FAILFAST; 2861 generic_make_request(bio); 2862 2863 } 2864 return nr_sectors; 2865 } 2866 2867 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks) 2868 { 2869 if (sectors) 2870 return sectors; 2871 2872 return mddev->dev_sectors; 2873 } 2874 2875 static struct r1conf *setup_conf(struct mddev *mddev) 2876 { 2877 struct r1conf *conf; 2878 int i; 2879 struct raid1_info *disk; 2880 struct md_rdev *rdev; 2881 int err = -ENOMEM; 2882 2883 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL); 2884 if (!conf) 2885 goto abort; 2886 2887 conf->mirrors = kzalloc(sizeof(struct raid1_info) 2888 * mddev->raid_disks * 2, 2889 GFP_KERNEL); 2890 if (!conf->mirrors) 2891 goto abort; 2892 2893 conf->tmppage = alloc_page(GFP_KERNEL); 2894 if (!conf->tmppage) 2895 goto abort; 2896 2897 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL); 2898 if (!conf->poolinfo) 2899 goto abort; 2900 conf->poolinfo->raid_disks = mddev->raid_disks * 2; 2901 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 2902 r1bio_pool_free, 2903 conf->poolinfo); 2904 if (!conf->r1bio_pool) 2905 goto abort; 2906 2907 conf->poolinfo->mddev = mddev; 2908 2909 err = -EINVAL; 2910 spin_lock_init(&conf->device_lock); 2911 rdev_for_each(rdev, mddev) { 2912 struct request_queue *q; 2913 int disk_idx = rdev->raid_disk; 2914 if (disk_idx >= mddev->raid_disks 2915 || disk_idx < 0) 2916 continue; 2917 if (test_bit(Replacement, &rdev->flags)) 2918 disk = conf->mirrors + mddev->raid_disks + disk_idx; 2919 else 2920 disk = conf->mirrors + disk_idx; 2921 2922 if (disk->rdev) 2923 goto abort; 2924 disk->rdev = rdev; 2925 q = bdev_get_queue(rdev->bdev); 2926 2927 disk->head_position = 0; 2928 disk->seq_start = MaxSector; 2929 } 2930 conf->raid_disks = mddev->raid_disks; 2931 conf->mddev = mddev; 2932 INIT_LIST_HEAD(&conf->retry_list); 2933 INIT_LIST_HEAD(&conf->bio_end_io_list); 2934 2935 spin_lock_init(&conf->resync_lock); 2936 init_waitqueue_head(&conf->wait_barrier); 2937 2938 bio_list_init(&conf->pending_bio_list); 2939 conf->pending_count = 0; 2940 conf->recovery_disabled = mddev->recovery_disabled - 1; 2941 2942 conf->start_next_window = MaxSector; 2943 conf->current_window_requests = conf->next_window_requests = 0; 2944 2945 err = -EIO; 2946 for (i = 0; i < conf->raid_disks * 2; i++) { 2947 2948 disk = conf->mirrors + i; 2949 2950 if (i < conf->raid_disks && 2951 disk[conf->raid_disks].rdev) { 2952 /* This slot has a replacement. */ 2953 if (!disk->rdev) { 2954 /* No original, just make the replacement 2955 * a recovering spare 2956 */ 2957 disk->rdev = 2958 disk[conf->raid_disks].rdev; 2959 disk[conf->raid_disks].rdev = NULL; 2960 } else if (!test_bit(In_sync, &disk->rdev->flags)) 2961 /* Original is not in_sync - bad */ 2962 goto abort; 2963 } 2964 2965 if (!disk->rdev || 2966 !test_bit(In_sync, &disk->rdev->flags)) { 2967 disk->head_position = 0; 2968 if (disk->rdev && 2969 (disk->rdev->saved_raid_disk < 0)) 2970 conf->fullsync = 1; 2971 } 2972 } 2973 2974 err = -ENOMEM; 2975 conf->thread = md_register_thread(raid1d, mddev, "raid1"); 2976 if (!conf->thread) 2977 goto abort; 2978 2979 return conf; 2980 2981 abort: 2982 if (conf) { 2983 mempool_destroy(conf->r1bio_pool); 2984 kfree(conf->mirrors); 2985 safe_put_page(conf->tmppage); 2986 kfree(conf->poolinfo); 2987 kfree(conf); 2988 } 2989 return ERR_PTR(err); 2990 } 2991 2992 static void raid1_free(struct mddev *mddev, void *priv); 2993 static int raid1_run(struct mddev *mddev) 2994 { 2995 struct r1conf *conf; 2996 int i; 2997 struct md_rdev *rdev; 2998 int ret; 2999 bool discard_supported = false; 3000 3001 if (mddev->level != 1) { 3002 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n", 3003 mdname(mddev), mddev->level); 3004 return -EIO; 3005 } 3006 if (mddev->reshape_position != MaxSector) { 3007 pr_warn("md/raid1:%s: reshape_position set but not supported\n", 3008 mdname(mddev)); 3009 return -EIO; 3010 } 3011 /* 3012 * copy the already verified devices into our private RAID1 3013 * bookkeeping area. [whatever we allocate in run(), 3014 * should be freed in raid1_free()] 3015 */ 3016 if (mddev->private == NULL) 3017 conf = setup_conf(mddev); 3018 else 3019 conf = mddev->private; 3020 3021 if (IS_ERR(conf)) 3022 return PTR_ERR(conf); 3023 3024 if (mddev->queue) 3025 blk_queue_max_write_same_sectors(mddev->queue, 0); 3026 3027 rdev_for_each(rdev, mddev) { 3028 if (!mddev->gendisk) 3029 continue; 3030 disk_stack_limits(mddev->gendisk, rdev->bdev, 3031 rdev->data_offset << 9); 3032 if (blk_queue_discard(bdev_get_queue(rdev->bdev))) 3033 discard_supported = true; 3034 } 3035 3036 mddev->degraded = 0; 3037 for (i=0; i < conf->raid_disks; i++) 3038 if (conf->mirrors[i].rdev == NULL || 3039 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) || 3040 test_bit(Faulty, &conf->mirrors[i].rdev->flags)) 3041 mddev->degraded++; 3042 3043 if (conf->raid_disks - mddev->degraded == 1) 3044 mddev->recovery_cp = MaxSector; 3045 3046 if (mddev->recovery_cp != MaxSector) 3047 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n", 3048 mdname(mddev)); 3049 pr_info("md/raid1:%s: active with %d out of %d mirrors\n", 3050 mdname(mddev), mddev->raid_disks - mddev->degraded, 3051 mddev->raid_disks); 3052 3053 /* 3054 * Ok, everything is just fine now 3055 */ 3056 mddev->thread = conf->thread; 3057 conf->thread = NULL; 3058 mddev->private = conf; 3059 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags); 3060 3061 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0)); 3062 3063 if (mddev->queue) { 3064 if (discard_supported) 3065 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, 3066 mddev->queue); 3067 else 3068 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, 3069 mddev->queue); 3070 } 3071 3072 ret = md_integrity_register(mddev); 3073 if (ret) { 3074 md_unregister_thread(&mddev->thread); 3075 raid1_free(mddev, conf); 3076 } 3077 return ret; 3078 } 3079 3080 static void raid1_free(struct mddev *mddev, void *priv) 3081 { 3082 struct r1conf *conf = priv; 3083 3084 mempool_destroy(conf->r1bio_pool); 3085 kfree(conf->mirrors); 3086 safe_put_page(conf->tmppage); 3087 kfree(conf->poolinfo); 3088 kfree(conf); 3089 } 3090 3091 static int raid1_resize(struct mddev *mddev, sector_t sectors) 3092 { 3093 /* no resync is happening, and there is enough space 3094 * on all devices, so we can resize. 3095 * We need to make sure resync covers any new space. 3096 * If the array is shrinking we should possibly wait until 3097 * any io in the removed space completes, but it hardly seems 3098 * worth it. 3099 */ 3100 sector_t newsize = raid1_size(mddev, sectors, 0); 3101 if (mddev->external_size && 3102 mddev->array_sectors > newsize) 3103 return -EINVAL; 3104 if (mddev->bitmap) { 3105 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0); 3106 if (ret) 3107 return ret; 3108 } 3109 md_set_array_sectors(mddev, newsize); 3110 set_capacity(mddev->gendisk, mddev->array_sectors); 3111 revalidate_disk(mddev->gendisk); 3112 if (sectors > mddev->dev_sectors && 3113 mddev->recovery_cp > mddev->dev_sectors) { 3114 mddev->recovery_cp = mddev->dev_sectors; 3115 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3116 } 3117 mddev->dev_sectors = sectors; 3118 mddev->resync_max_sectors = sectors; 3119 return 0; 3120 } 3121 3122 static int raid1_reshape(struct mddev *mddev) 3123 { 3124 /* We need to: 3125 * 1/ resize the r1bio_pool 3126 * 2/ resize conf->mirrors 3127 * 3128 * We allocate a new r1bio_pool if we can. 3129 * Then raise a device barrier and wait until all IO stops. 3130 * Then resize conf->mirrors and swap in the new r1bio pool. 3131 * 3132 * At the same time, we "pack" the devices so that all the missing 3133 * devices have the higher raid_disk numbers. 3134 */ 3135 mempool_t *newpool, *oldpool; 3136 struct pool_info *newpoolinfo; 3137 struct raid1_info *newmirrors; 3138 struct r1conf *conf = mddev->private; 3139 int cnt, raid_disks; 3140 unsigned long flags; 3141 int d, d2, err; 3142 3143 /* Cannot change chunk_size, layout, or level */ 3144 if (mddev->chunk_sectors != mddev->new_chunk_sectors || 3145 mddev->layout != mddev->new_layout || 3146 mddev->level != mddev->new_level) { 3147 mddev->new_chunk_sectors = mddev->chunk_sectors; 3148 mddev->new_layout = mddev->layout; 3149 mddev->new_level = mddev->level; 3150 return -EINVAL; 3151 } 3152 3153 if (!mddev_is_clustered(mddev)) { 3154 err = md_allow_write(mddev); 3155 if (err) 3156 return err; 3157 } 3158 3159 raid_disks = mddev->raid_disks + mddev->delta_disks; 3160 3161 if (raid_disks < conf->raid_disks) { 3162 cnt=0; 3163 for (d= 0; d < conf->raid_disks; d++) 3164 if (conf->mirrors[d].rdev) 3165 cnt++; 3166 if (cnt > raid_disks) 3167 return -EBUSY; 3168 } 3169 3170 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL); 3171 if (!newpoolinfo) 3172 return -ENOMEM; 3173 newpoolinfo->mddev = mddev; 3174 newpoolinfo->raid_disks = raid_disks * 2; 3175 3176 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 3177 r1bio_pool_free, newpoolinfo); 3178 if (!newpool) { 3179 kfree(newpoolinfo); 3180 return -ENOMEM; 3181 } 3182 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2, 3183 GFP_KERNEL); 3184 if (!newmirrors) { 3185 kfree(newpoolinfo); 3186 mempool_destroy(newpool); 3187 return -ENOMEM; 3188 } 3189 3190 freeze_array(conf, 0); 3191 3192 /* ok, everything is stopped */ 3193 oldpool = conf->r1bio_pool; 3194 conf->r1bio_pool = newpool; 3195 3196 for (d = d2 = 0; d < conf->raid_disks; d++) { 3197 struct md_rdev *rdev = conf->mirrors[d].rdev; 3198 if (rdev && rdev->raid_disk != d2) { 3199 sysfs_unlink_rdev(mddev, rdev); 3200 rdev->raid_disk = d2; 3201 sysfs_unlink_rdev(mddev, rdev); 3202 if (sysfs_link_rdev(mddev, rdev)) 3203 pr_warn("md/raid1:%s: cannot register rd%d\n", 3204 mdname(mddev), rdev->raid_disk); 3205 } 3206 if (rdev) 3207 newmirrors[d2++].rdev = rdev; 3208 } 3209 kfree(conf->mirrors); 3210 conf->mirrors = newmirrors; 3211 kfree(conf->poolinfo); 3212 conf->poolinfo = newpoolinfo; 3213 3214 spin_lock_irqsave(&conf->device_lock, flags); 3215 mddev->degraded += (raid_disks - conf->raid_disks); 3216 spin_unlock_irqrestore(&conf->device_lock, flags); 3217 conf->raid_disks = mddev->raid_disks = raid_disks; 3218 mddev->delta_disks = 0; 3219 3220 unfreeze_array(conf); 3221 3222 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 3223 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3224 md_wakeup_thread(mddev->thread); 3225 3226 mempool_destroy(oldpool); 3227 return 0; 3228 } 3229 3230 static void raid1_quiesce(struct mddev *mddev, int state) 3231 { 3232 struct r1conf *conf = mddev->private; 3233 3234 switch(state) { 3235 case 2: /* wake for suspend */ 3236 wake_up(&conf->wait_barrier); 3237 break; 3238 case 1: 3239 freeze_array(conf, 0); 3240 break; 3241 case 0: 3242 unfreeze_array(conf); 3243 break; 3244 } 3245 } 3246 3247 static void *raid1_takeover(struct mddev *mddev) 3248 { 3249 /* raid1 can take over: 3250 * raid5 with 2 devices, any layout or chunk size 3251 */ 3252 if (mddev->level == 5 && mddev->raid_disks == 2) { 3253 struct r1conf *conf; 3254 mddev->new_level = 1; 3255 mddev->new_layout = 0; 3256 mddev->new_chunk_sectors = 0; 3257 conf = setup_conf(mddev); 3258 if (!IS_ERR(conf)) { 3259 /* Array must appear to be quiesced */ 3260 conf->array_frozen = 1; 3261 mddev_clear_unsupported_flags(mddev, 3262 UNSUPPORTED_MDDEV_FLAGS); 3263 } 3264 return conf; 3265 } 3266 return ERR_PTR(-EINVAL); 3267 } 3268 3269 static struct md_personality raid1_personality = 3270 { 3271 .name = "raid1", 3272 .level = 1, 3273 .owner = THIS_MODULE, 3274 .make_request = raid1_make_request, 3275 .run = raid1_run, 3276 .free = raid1_free, 3277 .status = raid1_status, 3278 .error_handler = raid1_error, 3279 .hot_add_disk = raid1_add_disk, 3280 .hot_remove_disk= raid1_remove_disk, 3281 .spare_active = raid1_spare_active, 3282 .sync_request = raid1_sync_request, 3283 .resize = raid1_resize, 3284 .size = raid1_size, 3285 .check_reshape = raid1_reshape, 3286 .quiesce = raid1_quiesce, 3287 .takeover = raid1_takeover, 3288 .congested = raid1_congested, 3289 }; 3290 3291 static int __init raid_init(void) 3292 { 3293 return register_md_personality(&raid1_personality); 3294 } 3295 3296 static void raid_exit(void) 3297 { 3298 unregister_md_personality(&raid1_personality); 3299 } 3300 3301 module_init(raid_init); 3302 module_exit(raid_exit); 3303 MODULE_LICENSE("GPL"); 3304 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD"); 3305 MODULE_ALIAS("md-personality-3"); /* RAID1 */ 3306 MODULE_ALIAS("md-raid1"); 3307 MODULE_ALIAS("md-level-1"); 3308 3309 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); 3310