1 /* 2 * raid1.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat 5 * 6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman 7 * 8 * RAID-1 management functions. 9 * 10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 11 * 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk> 13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> 14 * 15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support 16 * bitmapped intelligence in resync: 17 * 18 * - bitmap marked during normal i/o 19 * - bitmap used to skip nondirty blocks during sync 20 * 21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology: 22 * - persistent bitmap code 23 * 24 * This program is free software; you can redistribute it and/or modify 25 * it under the terms of the GNU General Public License as published by 26 * the Free Software Foundation; either version 2, or (at your option) 27 * any later version. 28 * 29 * You should have received a copy of the GNU General Public License 30 * (for example /usr/src/linux/COPYING); if not, write to the Free 31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 32 */ 33 34 #include <linux/slab.h> 35 #include <linux/delay.h> 36 #include <linux/blkdev.h> 37 #include <linux/module.h> 38 #include <linux/seq_file.h> 39 #include <linux/ratelimit.h> 40 41 #include <trace/events/block.h> 42 43 #include "md.h" 44 #include "raid1.h" 45 #include "md-bitmap.h" 46 47 #define UNSUPPORTED_MDDEV_FLAGS \ 48 ((1L << MD_HAS_JOURNAL) | \ 49 (1L << MD_JOURNAL_CLEAN) | \ 50 (1L << MD_HAS_PPL) | \ 51 (1L << MD_HAS_MULTIPLE_PPLS)) 52 53 /* 54 * Number of guaranteed r1bios in case of extreme VM load: 55 */ 56 #define NR_RAID1_BIOS 256 57 58 /* when we get a read error on a read-only array, we redirect to another 59 * device without failing the first device, or trying to over-write to 60 * correct the read error. To keep track of bad blocks on a per-bio 61 * level, we store IO_BLOCKED in the appropriate 'bios' pointer 62 */ 63 #define IO_BLOCKED ((struct bio *)1) 64 /* When we successfully write to a known bad-block, we need to remove the 65 * bad-block marking which must be done from process context. So we record 66 * the success by setting devs[n].bio to IO_MADE_GOOD 67 */ 68 #define IO_MADE_GOOD ((struct bio *)2) 69 70 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2) 71 72 /* When there are this many requests queue to be written by 73 * the raid1 thread, we become 'congested' to provide back-pressure 74 * for writeback. 75 */ 76 static int max_queued_requests = 1024; 77 78 static void allow_barrier(struct r1conf *conf, sector_t sector_nr); 79 static void lower_barrier(struct r1conf *conf, sector_t sector_nr); 80 81 #define raid1_log(md, fmt, args...) \ 82 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0) 83 84 #include "raid1-10.c" 85 86 /* 87 * for resync bio, r1bio pointer can be retrieved from the per-bio 88 * 'struct resync_pages'. 89 */ 90 static inline struct r1bio *get_resync_r1bio(struct bio *bio) 91 { 92 return get_resync_pages(bio)->raid_bio; 93 } 94 95 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data) 96 { 97 struct pool_info *pi = data; 98 int size = offsetof(struct r1bio, bios[pi->raid_disks]); 99 100 /* allocate a r1bio with room for raid_disks entries in the bios array */ 101 return kzalloc(size, gfp_flags); 102 } 103 104 static void r1bio_pool_free(void *r1_bio, void *data) 105 { 106 kfree(r1_bio); 107 } 108 109 #define RESYNC_DEPTH 32 110 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 111 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH) 112 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9) 113 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW) 114 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9) 115 116 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) 117 { 118 struct pool_info *pi = data; 119 struct r1bio *r1_bio; 120 struct bio *bio; 121 int need_pages; 122 int j; 123 struct resync_pages *rps; 124 125 r1_bio = r1bio_pool_alloc(gfp_flags, pi); 126 if (!r1_bio) 127 return NULL; 128 129 rps = kmalloc(sizeof(struct resync_pages) * pi->raid_disks, 130 gfp_flags); 131 if (!rps) 132 goto out_free_r1bio; 133 134 /* 135 * Allocate bios : 1 for reading, n-1 for writing 136 */ 137 for (j = pi->raid_disks ; j-- ; ) { 138 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 139 if (!bio) 140 goto out_free_bio; 141 r1_bio->bios[j] = bio; 142 } 143 /* 144 * Allocate RESYNC_PAGES data pages and attach them to 145 * the first bio. 146 * If this is a user-requested check/repair, allocate 147 * RESYNC_PAGES for each bio. 148 */ 149 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) 150 need_pages = pi->raid_disks; 151 else 152 need_pages = 1; 153 for (j = 0; j < pi->raid_disks; j++) { 154 struct resync_pages *rp = &rps[j]; 155 156 bio = r1_bio->bios[j]; 157 158 if (j < need_pages) { 159 if (resync_alloc_pages(rp, gfp_flags)) 160 goto out_free_pages; 161 } else { 162 memcpy(rp, &rps[0], sizeof(*rp)); 163 resync_get_all_pages(rp); 164 } 165 166 rp->raid_bio = r1_bio; 167 bio->bi_private = rp; 168 } 169 170 r1_bio->master_bio = NULL; 171 172 return r1_bio; 173 174 out_free_pages: 175 while (--j >= 0) 176 resync_free_pages(&rps[j]); 177 178 out_free_bio: 179 while (++j < pi->raid_disks) 180 bio_put(r1_bio->bios[j]); 181 kfree(rps); 182 183 out_free_r1bio: 184 r1bio_pool_free(r1_bio, data); 185 return NULL; 186 } 187 188 static void r1buf_pool_free(void *__r1_bio, void *data) 189 { 190 struct pool_info *pi = data; 191 int i; 192 struct r1bio *r1bio = __r1_bio; 193 struct resync_pages *rp = NULL; 194 195 for (i = pi->raid_disks; i--; ) { 196 rp = get_resync_pages(r1bio->bios[i]); 197 resync_free_pages(rp); 198 bio_put(r1bio->bios[i]); 199 } 200 201 /* resync pages array stored in the 1st bio's .bi_private */ 202 kfree(rp); 203 204 r1bio_pool_free(r1bio, data); 205 } 206 207 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio) 208 { 209 int i; 210 211 for (i = 0; i < conf->raid_disks * 2; i++) { 212 struct bio **bio = r1_bio->bios + i; 213 if (!BIO_SPECIAL(*bio)) 214 bio_put(*bio); 215 *bio = NULL; 216 } 217 } 218 219 static void free_r1bio(struct r1bio *r1_bio) 220 { 221 struct r1conf *conf = r1_bio->mddev->private; 222 223 put_all_bios(conf, r1_bio); 224 mempool_free(r1_bio, conf->r1bio_pool); 225 } 226 227 static void put_buf(struct r1bio *r1_bio) 228 { 229 struct r1conf *conf = r1_bio->mddev->private; 230 sector_t sect = r1_bio->sector; 231 int i; 232 233 for (i = 0; i < conf->raid_disks * 2; i++) { 234 struct bio *bio = r1_bio->bios[i]; 235 if (bio->bi_end_io) 236 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev); 237 } 238 239 mempool_free(r1_bio, conf->r1buf_pool); 240 241 lower_barrier(conf, sect); 242 } 243 244 static void reschedule_retry(struct r1bio *r1_bio) 245 { 246 unsigned long flags; 247 struct mddev *mddev = r1_bio->mddev; 248 struct r1conf *conf = mddev->private; 249 int idx; 250 251 idx = sector_to_idx(r1_bio->sector); 252 spin_lock_irqsave(&conf->device_lock, flags); 253 list_add(&r1_bio->retry_list, &conf->retry_list); 254 atomic_inc(&conf->nr_queued[idx]); 255 spin_unlock_irqrestore(&conf->device_lock, flags); 256 257 wake_up(&conf->wait_barrier); 258 md_wakeup_thread(mddev->thread); 259 } 260 261 /* 262 * raid_end_bio_io() is called when we have finished servicing a mirrored 263 * operation and are ready to return a success/failure code to the buffer 264 * cache layer. 265 */ 266 static void call_bio_endio(struct r1bio *r1_bio) 267 { 268 struct bio *bio = r1_bio->master_bio; 269 struct r1conf *conf = r1_bio->mddev->private; 270 271 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 272 bio->bi_status = BLK_STS_IOERR; 273 274 bio_endio(bio); 275 /* 276 * Wake up any possible resync thread that waits for the device 277 * to go idle. 278 */ 279 allow_barrier(conf, r1_bio->sector); 280 } 281 282 static void raid_end_bio_io(struct r1bio *r1_bio) 283 { 284 struct bio *bio = r1_bio->master_bio; 285 286 /* if nobody has done the final endio yet, do it now */ 287 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 288 pr_debug("raid1: sync end %s on sectors %llu-%llu\n", 289 (bio_data_dir(bio) == WRITE) ? "write" : "read", 290 (unsigned long long) bio->bi_iter.bi_sector, 291 (unsigned long long) bio_end_sector(bio) - 1); 292 293 call_bio_endio(r1_bio); 294 } 295 free_r1bio(r1_bio); 296 } 297 298 /* 299 * Update disk head position estimator based on IRQ completion info. 300 */ 301 static inline void update_head_pos(int disk, struct r1bio *r1_bio) 302 { 303 struct r1conf *conf = r1_bio->mddev->private; 304 305 conf->mirrors[disk].head_position = 306 r1_bio->sector + (r1_bio->sectors); 307 } 308 309 /* 310 * Find the disk number which triggered given bio 311 */ 312 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio) 313 { 314 int mirror; 315 struct r1conf *conf = r1_bio->mddev->private; 316 int raid_disks = conf->raid_disks; 317 318 for (mirror = 0; mirror < raid_disks * 2; mirror++) 319 if (r1_bio->bios[mirror] == bio) 320 break; 321 322 BUG_ON(mirror == raid_disks * 2); 323 update_head_pos(mirror, r1_bio); 324 325 return mirror; 326 } 327 328 static void raid1_end_read_request(struct bio *bio) 329 { 330 int uptodate = !bio->bi_status; 331 struct r1bio *r1_bio = bio->bi_private; 332 struct r1conf *conf = r1_bio->mddev->private; 333 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev; 334 335 /* 336 * this branch is our 'one mirror IO has finished' event handler: 337 */ 338 update_head_pos(r1_bio->read_disk, r1_bio); 339 340 if (uptodate) 341 set_bit(R1BIO_Uptodate, &r1_bio->state); 342 else if (test_bit(FailFast, &rdev->flags) && 343 test_bit(R1BIO_FailFast, &r1_bio->state)) 344 /* This was a fail-fast read so we definitely 345 * want to retry */ 346 ; 347 else { 348 /* If all other devices have failed, we want to return 349 * the error upwards rather than fail the last device. 350 * Here we redefine "uptodate" to mean "Don't want to retry" 351 */ 352 unsigned long flags; 353 spin_lock_irqsave(&conf->device_lock, flags); 354 if (r1_bio->mddev->degraded == conf->raid_disks || 355 (r1_bio->mddev->degraded == conf->raid_disks-1 && 356 test_bit(In_sync, &rdev->flags))) 357 uptodate = 1; 358 spin_unlock_irqrestore(&conf->device_lock, flags); 359 } 360 361 if (uptodate) { 362 raid_end_bio_io(r1_bio); 363 rdev_dec_pending(rdev, conf->mddev); 364 } else { 365 /* 366 * oops, read error: 367 */ 368 char b[BDEVNAME_SIZE]; 369 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n", 370 mdname(conf->mddev), 371 bdevname(rdev->bdev, b), 372 (unsigned long long)r1_bio->sector); 373 set_bit(R1BIO_ReadError, &r1_bio->state); 374 reschedule_retry(r1_bio); 375 /* don't drop the reference on read_disk yet */ 376 } 377 } 378 379 static void close_write(struct r1bio *r1_bio) 380 { 381 /* it really is the end of this request */ 382 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 383 bio_free_pages(r1_bio->behind_master_bio); 384 bio_put(r1_bio->behind_master_bio); 385 r1_bio->behind_master_bio = NULL; 386 } 387 /* clear the bitmap if all writes complete successfully */ 388 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector, 389 r1_bio->sectors, 390 !test_bit(R1BIO_Degraded, &r1_bio->state), 391 test_bit(R1BIO_BehindIO, &r1_bio->state)); 392 md_write_end(r1_bio->mddev); 393 } 394 395 static void r1_bio_write_done(struct r1bio *r1_bio) 396 { 397 if (!atomic_dec_and_test(&r1_bio->remaining)) 398 return; 399 400 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 401 reschedule_retry(r1_bio); 402 else { 403 close_write(r1_bio); 404 if (test_bit(R1BIO_MadeGood, &r1_bio->state)) 405 reschedule_retry(r1_bio); 406 else 407 raid_end_bio_io(r1_bio); 408 } 409 } 410 411 static void raid1_end_write_request(struct bio *bio) 412 { 413 struct r1bio *r1_bio = bio->bi_private; 414 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state); 415 struct r1conf *conf = r1_bio->mddev->private; 416 struct bio *to_put = NULL; 417 int mirror = find_bio_disk(r1_bio, bio); 418 struct md_rdev *rdev = conf->mirrors[mirror].rdev; 419 bool discard_error; 420 421 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD; 422 423 /* 424 * 'one mirror IO has finished' event handler: 425 */ 426 if (bio->bi_status && !discard_error) { 427 set_bit(WriteErrorSeen, &rdev->flags); 428 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 429 set_bit(MD_RECOVERY_NEEDED, & 430 conf->mddev->recovery); 431 432 if (test_bit(FailFast, &rdev->flags) && 433 (bio->bi_opf & MD_FAILFAST) && 434 /* We never try FailFast to WriteMostly devices */ 435 !test_bit(WriteMostly, &rdev->flags)) { 436 md_error(r1_bio->mddev, rdev); 437 if (!test_bit(Faulty, &rdev->flags)) 438 /* This is the only remaining device, 439 * We need to retry the write without 440 * FailFast 441 */ 442 set_bit(R1BIO_WriteError, &r1_bio->state); 443 else { 444 /* Finished with this branch */ 445 r1_bio->bios[mirror] = NULL; 446 to_put = bio; 447 } 448 } else 449 set_bit(R1BIO_WriteError, &r1_bio->state); 450 } else { 451 /* 452 * Set R1BIO_Uptodate in our master bio, so that we 453 * will return a good error code for to the higher 454 * levels even if IO on some other mirrored buffer 455 * fails. 456 * 457 * The 'master' represents the composite IO operation 458 * to user-side. So if something waits for IO, then it 459 * will wait for the 'master' bio. 460 */ 461 sector_t first_bad; 462 int bad_sectors; 463 464 r1_bio->bios[mirror] = NULL; 465 to_put = bio; 466 /* 467 * Do not set R1BIO_Uptodate if the current device is 468 * rebuilding or Faulty. This is because we cannot use 469 * such device for properly reading the data back (we could 470 * potentially use it, if the current write would have felt 471 * before rdev->recovery_offset, but for simplicity we don't 472 * check this here. 473 */ 474 if (test_bit(In_sync, &rdev->flags) && 475 !test_bit(Faulty, &rdev->flags)) 476 set_bit(R1BIO_Uptodate, &r1_bio->state); 477 478 /* Maybe we can clear some bad blocks. */ 479 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors, 480 &first_bad, &bad_sectors) && !discard_error) { 481 r1_bio->bios[mirror] = IO_MADE_GOOD; 482 set_bit(R1BIO_MadeGood, &r1_bio->state); 483 } 484 } 485 486 if (behind) { 487 if (test_bit(WriteMostly, &rdev->flags)) 488 atomic_dec(&r1_bio->behind_remaining); 489 490 /* 491 * In behind mode, we ACK the master bio once the I/O 492 * has safely reached all non-writemostly 493 * disks. Setting the Returned bit ensures that this 494 * gets done only once -- we don't ever want to return 495 * -EIO here, instead we'll wait 496 */ 497 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) && 498 test_bit(R1BIO_Uptodate, &r1_bio->state)) { 499 /* Maybe we can return now */ 500 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 501 struct bio *mbio = r1_bio->master_bio; 502 pr_debug("raid1: behind end write sectors" 503 " %llu-%llu\n", 504 (unsigned long long) mbio->bi_iter.bi_sector, 505 (unsigned long long) bio_end_sector(mbio) - 1); 506 call_bio_endio(r1_bio); 507 } 508 } 509 } 510 if (r1_bio->bios[mirror] == NULL) 511 rdev_dec_pending(rdev, conf->mddev); 512 513 /* 514 * Let's see if all mirrored write operations have finished 515 * already. 516 */ 517 r1_bio_write_done(r1_bio); 518 519 if (to_put) 520 bio_put(to_put); 521 } 522 523 static sector_t align_to_barrier_unit_end(sector_t start_sector, 524 sector_t sectors) 525 { 526 sector_t len; 527 528 WARN_ON(sectors == 0); 529 /* 530 * len is the number of sectors from start_sector to end of the 531 * barrier unit which start_sector belongs to. 532 */ 533 len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) - 534 start_sector; 535 536 if (len > sectors) 537 len = sectors; 538 539 return len; 540 } 541 542 /* 543 * This routine returns the disk from which the requested read should 544 * be done. There is a per-array 'next expected sequential IO' sector 545 * number - if this matches on the next IO then we use the last disk. 546 * There is also a per-disk 'last know head position' sector that is 547 * maintained from IRQ contexts, both the normal and the resync IO 548 * completion handlers update this position correctly. If there is no 549 * perfect sequential match then we pick the disk whose head is closest. 550 * 551 * If there are 2 mirrors in the same 2 devices, performance degrades 552 * because position is mirror, not device based. 553 * 554 * The rdev for the device selected will have nr_pending incremented. 555 */ 556 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors) 557 { 558 const sector_t this_sector = r1_bio->sector; 559 int sectors; 560 int best_good_sectors; 561 int best_disk, best_dist_disk, best_pending_disk; 562 int has_nonrot_disk; 563 int disk; 564 sector_t best_dist; 565 unsigned int min_pending; 566 struct md_rdev *rdev; 567 int choose_first; 568 int choose_next_idle; 569 570 rcu_read_lock(); 571 /* 572 * Check if we can balance. We can balance on the whole 573 * device if no resync is going on, or below the resync window. 574 * We take the first readable disk when above the resync window. 575 */ 576 retry: 577 sectors = r1_bio->sectors; 578 best_disk = -1; 579 best_dist_disk = -1; 580 best_dist = MaxSector; 581 best_pending_disk = -1; 582 min_pending = UINT_MAX; 583 best_good_sectors = 0; 584 has_nonrot_disk = 0; 585 choose_next_idle = 0; 586 clear_bit(R1BIO_FailFast, &r1_bio->state); 587 588 if ((conf->mddev->recovery_cp < this_sector + sectors) || 589 (mddev_is_clustered(conf->mddev) && 590 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector, 591 this_sector + sectors))) 592 choose_first = 1; 593 else 594 choose_first = 0; 595 596 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) { 597 sector_t dist; 598 sector_t first_bad; 599 int bad_sectors; 600 unsigned int pending; 601 bool nonrot; 602 603 rdev = rcu_dereference(conf->mirrors[disk].rdev); 604 if (r1_bio->bios[disk] == IO_BLOCKED 605 || rdev == NULL 606 || test_bit(Faulty, &rdev->flags)) 607 continue; 608 if (!test_bit(In_sync, &rdev->flags) && 609 rdev->recovery_offset < this_sector + sectors) 610 continue; 611 if (test_bit(WriteMostly, &rdev->flags)) { 612 /* Don't balance among write-mostly, just 613 * use the first as a last resort */ 614 if (best_dist_disk < 0) { 615 if (is_badblock(rdev, this_sector, sectors, 616 &first_bad, &bad_sectors)) { 617 if (first_bad <= this_sector) 618 /* Cannot use this */ 619 continue; 620 best_good_sectors = first_bad - this_sector; 621 } else 622 best_good_sectors = sectors; 623 best_dist_disk = disk; 624 best_pending_disk = disk; 625 } 626 continue; 627 } 628 /* This is a reasonable device to use. It might 629 * even be best. 630 */ 631 if (is_badblock(rdev, this_sector, sectors, 632 &first_bad, &bad_sectors)) { 633 if (best_dist < MaxSector) 634 /* already have a better device */ 635 continue; 636 if (first_bad <= this_sector) { 637 /* cannot read here. If this is the 'primary' 638 * device, then we must not read beyond 639 * bad_sectors from another device.. 640 */ 641 bad_sectors -= (this_sector - first_bad); 642 if (choose_first && sectors > bad_sectors) 643 sectors = bad_sectors; 644 if (best_good_sectors > sectors) 645 best_good_sectors = sectors; 646 647 } else { 648 sector_t good_sectors = first_bad - this_sector; 649 if (good_sectors > best_good_sectors) { 650 best_good_sectors = good_sectors; 651 best_disk = disk; 652 } 653 if (choose_first) 654 break; 655 } 656 continue; 657 } else { 658 if ((sectors > best_good_sectors) && (best_disk >= 0)) 659 best_disk = -1; 660 best_good_sectors = sectors; 661 } 662 663 if (best_disk >= 0) 664 /* At least two disks to choose from so failfast is OK */ 665 set_bit(R1BIO_FailFast, &r1_bio->state); 666 667 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev)); 668 has_nonrot_disk |= nonrot; 669 pending = atomic_read(&rdev->nr_pending); 670 dist = abs(this_sector - conf->mirrors[disk].head_position); 671 if (choose_first) { 672 best_disk = disk; 673 break; 674 } 675 /* Don't change to another disk for sequential reads */ 676 if (conf->mirrors[disk].next_seq_sect == this_sector 677 || dist == 0) { 678 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9; 679 struct raid1_info *mirror = &conf->mirrors[disk]; 680 681 best_disk = disk; 682 /* 683 * If buffered sequential IO size exceeds optimal 684 * iosize, check if there is idle disk. If yes, choose 685 * the idle disk. read_balance could already choose an 686 * idle disk before noticing it's a sequential IO in 687 * this disk. This doesn't matter because this disk 688 * will idle, next time it will be utilized after the 689 * first disk has IO size exceeds optimal iosize. In 690 * this way, iosize of the first disk will be optimal 691 * iosize at least. iosize of the second disk might be 692 * small, but not a big deal since when the second disk 693 * starts IO, the first disk is likely still busy. 694 */ 695 if (nonrot && opt_iosize > 0 && 696 mirror->seq_start != MaxSector && 697 mirror->next_seq_sect > opt_iosize && 698 mirror->next_seq_sect - opt_iosize >= 699 mirror->seq_start) { 700 choose_next_idle = 1; 701 continue; 702 } 703 break; 704 } 705 706 if (choose_next_idle) 707 continue; 708 709 if (min_pending > pending) { 710 min_pending = pending; 711 best_pending_disk = disk; 712 } 713 714 if (dist < best_dist) { 715 best_dist = dist; 716 best_dist_disk = disk; 717 } 718 } 719 720 /* 721 * If all disks are rotational, choose the closest disk. If any disk is 722 * non-rotational, choose the disk with less pending request even the 723 * disk is rotational, which might/might not be optimal for raids with 724 * mixed ratation/non-rotational disks depending on workload. 725 */ 726 if (best_disk == -1) { 727 if (has_nonrot_disk || min_pending == 0) 728 best_disk = best_pending_disk; 729 else 730 best_disk = best_dist_disk; 731 } 732 733 if (best_disk >= 0) { 734 rdev = rcu_dereference(conf->mirrors[best_disk].rdev); 735 if (!rdev) 736 goto retry; 737 atomic_inc(&rdev->nr_pending); 738 sectors = best_good_sectors; 739 740 if (conf->mirrors[best_disk].next_seq_sect != this_sector) 741 conf->mirrors[best_disk].seq_start = this_sector; 742 743 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors; 744 } 745 rcu_read_unlock(); 746 *max_sectors = sectors; 747 748 return best_disk; 749 } 750 751 static int raid1_congested(struct mddev *mddev, int bits) 752 { 753 struct r1conf *conf = mddev->private; 754 int i, ret = 0; 755 756 if ((bits & (1 << WB_async_congested)) && 757 conf->pending_count >= max_queued_requests) 758 return 1; 759 760 rcu_read_lock(); 761 for (i = 0; i < conf->raid_disks * 2; i++) { 762 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 763 if (rdev && !test_bit(Faulty, &rdev->flags)) { 764 struct request_queue *q = bdev_get_queue(rdev->bdev); 765 766 BUG_ON(!q); 767 768 /* Note the '|| 1' - when read_balance prefers 769 * non-congested targets, it can be removed 770 */ 771 if ((bits & (1 << WB_async_congested)) || 1) 772 ret |= bdi_congested(q->backing_dev_info, bits); 773 else 774 ret &= bdi_congested(q->backing_dev_info, bits); 775 } 776 } 777 rcu_read_unlock(); 778 return ret; 779 } 780 781 static void flush_bio_list(struct r1conf *conf, struct bio *bio) 782 { 783 /* flush any pending bitmap writes to disk before proceeding w/ I/O */ 784 bitmap_unplug(conf->mddev->bitmap); 785 wake_up(&conf->wait_barrier); 786 787 while (bio) { /* submit pending writes */ 788 struct bio *next = bio->bi_next; 789 struct md_rdev *rdev = (void *)bio->bi_disk; 790 bio->bi_next = NULL; 791 bio_set_dev(bio, rdev->bdev); 792 if (test_bit(Faulty, &rdev->flags)) { 793 bio_io_error(bio); 794 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) && 795 !blk_queue_discard(bio->bi_disk->queue))) 796 /* Just ignore it */ 797 bio_endio(bio); 798 else 799 generic_make_request(bio); 800 bio = next; 801 } 802 } 803 804 static void flush_pending_writes(struct r1conf *conf) 805 { 806 /* Any writes that have been queued but are awaiting 807 * bitmap updates get flushed here. 808 */ 809 spin_lock_irq(&conf->device_lock); 810 811 if (conf->pending_bio_list.head) { 812 struct blk_plug plug; 813 struct bio *bio; 814 815 bio = bio_list_get(&conf->pending_bio_list); 816 conf->pending_count = 0; 817 spin_unlock_irq(&conf->device_lock); 818 blk_start_plug(&plug); 819 flush_bio_list(conf, bio); 820 blk_finish_plug(&plug); 821 } else 822 spin_unlock_irq(&conf->device_lock); 823 } 824 825 /* Barriers.... 826 * Sometimes we need to suspend IO while we do something else, 827 * either some resync/recovery, or reconfigure the array. 828 * To do this we raise a 'barrier'. 829 * The 'barrier' is a counter that can be raised multiple times 830 * to count how many activities are happening which preclude 831 * normal IO. 832 * We can only raise the barrier if there is no pending IO. 833 * i.e. if nr_pending == 0. 834 * We choose only to raise the barrier if no-one is waiting for the 835 * barrier to go down. This means that as soon as an IO request 836 * is ready, no other operations which require a barrier will start 837 * until the IO request has had a chance. 838 * 839 * So: regular IO calls 'wait_barrier'. When that returns there 840 * is no backgroup IO happening, It must arrange to call 841 * allow_barrier when it has finished its IO. 842 * backgroup IO calls must call raise_barrier. Once that returns 843 * there is no normal IO happeing. It must arrange to call 844 * lower_barrier when the particular background IO completes. 845 */ 846 static void raise_barrier(struct r1conf *conf, sector_t sector_nr) 847 { 848 int idx = sector_to_idx(sector_nr); 849 850 spin_lock_irq(&conf->resync_lock); 851 852 /* Wait until no block IO is waiting */ 853 wait_event_lock_irq(conf->wait_barrier, 854 !atomic_read(&conf->nr_waiting[idx]), 855 conf->resync_lock); 856 857 /* block any new IO from starting */ 858 atomic_inc(&conf->barrier[idx]); 859 /* 860 * In raise_barrier() we firstly increase conf->barrier[idx] then 861 * check conf->nr_pending[idx]. In _wait_barrier() we firstly 862 * increase conf->nr_pending[idx] then check conf->barrier[idx]. 863 * A memory barrier here to make sure conf->nr_pending[idx] won't 864 * be fetched before conf->barrier[idx] is increased. Otherwise 865 * there will be a race between raise_barrier() and _wait_barrier(). 866 */ 867 smp_mb__after_atomic(); 868 869 /* For these conditions we must wait: 870 * A: while the array is in frozen state 871 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O 872 * existing in corresponding I/O barrier bucket. 873 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches 874 * max resync count which allowed on current I/O barrier bucket. 875 */ 876 wait_event_lock_irq(conf->wait_barrier, 877 !conf->array_frozen && 878 !atomic_read(&conf->nr_pending[idx]) && 879 atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH, 880 conf->resync_lock); 881 882 atomic_inc(&conf->nr_sync_pending); 883 spin_unlock_irq(&conf->resync_lock); 884 } 885 886 static void lower_barrier(struct r1conf *conf, sector_t sector_nr) 887 { 888 int idx = sector_to_idx(sector_nr); 889 890 BUG_ON(atomic_read(&conf->barrier[idx]) <= 0); 891 892 atomic_dec(&conf->barrier[idx]); 893 atomic_dec(&conf->nr_sync_pending); 894 wake_up(&conf->wait_barrier); 895 } 896 897 static void _wait_barrier(struct r1conf *conf, int idx) 898 { 899 /* 900 * We need to increase conf->nr_pending[idx] very early here, 901 * then raise_barrier() can be blocked when it waits for 902 * conf->nr_pending[idx] to be 0. Then we can avoid holding 903 * conf->resync_lock when there is no barrier raised in same 904 * barrier unit bucket. Also if the array is frozen, I/O 905 * should be blocked until array is unfrozen. 906 */ 907 atomic_inc(&conf->nr_pending[idx]); 908 /* 909 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then 910 * check conf->barrier[idx]. In raise_barrier() we firstly increase 911 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory 912 * barrier is necessary here to make sure conf->barrier[idx] won't be 913 * fetched before conf->nr_pending[idx] is increased. Otherwise there 914 * will be a race between _wait_barrier() and raise_barrier(). 915 */ 916 smp_mb__after_atomic(); 917 918 /* 919 * Don't worry about checking two atomic_t variables at same time 920 * here. If during we check conf->barrier[idx], the array is 921 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is 922 * 0, it is safe to return and make the I/O continue. Because the 923 * array is frozen, all I/O returned here will eventually complete 924 * or be queued, no race will happen. See code comment in 925 * frozen_array(). 926 */ 927 if (!READ_ONCE(conf->array_frozen) && 928 !atomic_read(&conf->barrier[idx])) 929 return; 930 931 /* 932 * After holding conf->resync_lock, conf->nr_pending[idx] 933 * should be decreased before waiting for barrier to drop. 934 * Otherwise, we may encounter a race condition because 935 * raise_barrer() might be waiting for conf->nr_pending[idx] 936 * to be 0 at same time. 937 */ 938 spin_lock_irq(&conf->resync_lock); 939 atomic_inc(&conf->nr_waiting[idx]); 940 atomic_dec(&conf->nr_pending[idx]); 941 /* 942 * In case freeze_array() is waiting for 943 * get_unqueued_pending() == extra 944 */ 945 wake_up(&conf->wait_barrier); 946 /* Wait for the barrier in same barrier unit bucket to drop. */ 947 wait_event_lock_irq(conf->wait_barrier, 948 !conf->array_frozen && 949 !atomic_read(&conf->barrier[idx]), 950 conf->resync_lock); 951 atomic_inc(&conf->nr_pending[idx]); 952 atomic_dec(&conf->nr_waiting[idx]); 953 spin_unlock_irq(&conf->resync_lock); 954 } 955 956 static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr) 957 { 958 int idx = sector_to_idx(sector_nr); 959 960 /* 961 * Very similar to _wait_barrier(). The difference is, for read 962 * I/O we don't need wait for sync I/O, but if the whole array 963 * is frozen, the read I/O still has to wait until the array is 964 * unfrozen. Since there is no ordering requirement with 965 * conf->barrier[idx] here, memory barrier is unnecessary as well. 966 */ 967 atomic_inc(&conf->nr_pending[idx]); 968 969 if (!READ_ONCE(conf->array_frozen)) 970 return; 971 972 spin_lock_irq(&conf->resync_lock); 973 atomic_inc(&conf->nr_waiting[idx]); 974 atomic_dec(&conf->nr_pending[idx]); 975 /* 976 * In case freeze_array() is waiting for 977 * get_unqueued_pending() == extra 978 */ 979 wake_up(&conf->wait_barrier); 980 /* Wait for array to be unfrozen */ 981 wait_event_lock_irq(conf->wait_barrier, 982 !conf->array_frozen, 983 conf->resync_lock); 984 atomic_inc(&conf->nr_pending[idx]); 985 atomic_dec(&conf->nr_waiting[idx]); 986 spin_unlock_irq(&conf->resync_lock); 987 } 988 989 static void wait_barrier(struct r1conf *conf, sector_t sector_nr) 990 { 991 int idx = sector_to_idx(sector_nr); 992 993 _wait_barrier(conf, idx); 994 } 995 996 static void _allow_barrier(struct r1conf *conf, int idx) 997 { 998 atomic_dec(&conf->nr_pending[idx]); 999 wake_up(&conf->wait_barrier); 1000 } 1001 1002 static void allow_barrier(struct r1conf *conf, sector_t sector_nr) 1003 { 1004 int idx = sector_to_idx(sector_nr); 1005 1006 _allow_barrier(conf, idx); 1007 } 1008 1009 /* conf->resync_lock should be held */ 1010 static int get_unqueued_pending(struct r1conf *conf) 1011 { 1012 int idx, ret; 1013 1014 ret = atomic_read(&conf->nr_sync_pending); 1015 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) 1016 ret += atomic_read(&conf->nr_pending[idx]) - 1017 atomic_read(&conf->nr_queued[idx]); 1018 1019 return ret; 1020 } 1021 1022 static void freeze_array(struct r1conf *conf, int extra) 1023 { 1024 /* Stop sync I/O and normal I/O and wait for everything to 1025 * go quiet. 1026 * This is called in two situations: 1027 * 1) management command handlers (reshape, remove disk, quiesce). 1028 * 2) one normal I/O request failed. 1029 1030 * After array_frozen is set to 1, new sync IO will be blocked at 1031 * raise_barrier(), and new normal I/O will blocked at _wait_barrier() 1032 * or wait_read_barrier(). The flying I/Os will either complete or be 1033 * queued. When everything goes quite, there are only queued I/Os left. 1034 1035 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the 1036 * barrier bucket index which this I/O request hits. When all sync and 1037 * normal I/O are queued, sum of all conf->nr_pending[] will match sum 1038 * of all conf->nr_queued[]. But normal I/O failure is an exception, 1039 * in handle_read_error(), we may call freeze_array() before trying to 1040 * fix the read error. In this case, the error read I/O is not queued, 1041 * so get_unqueued_pending() == 1. 1042 * 1043 * Therefore before this function returns, we need to wait until 1044 * get_unqueued_pendings(conf) gets equal to extra. For 1045 * normal I/O context, extra is 1, in rested situations extra is 0. 1046 */ 1047 spin_lock_irq(&conf->resync_lock); 1048 conf->array_frozen = 1; 1049 raid1_log(conf->mddev, "wait freeze"); 1050 wait_event_lock_irq_cmd( 1051 conf->wait_barrier, 1052 get_unqueued_pending(conf) == extra, 1053 conf->resync_lock, 1054 flush_pending_writes(conf)); 1055 spin_unlock_irq(&conf->resync_lock); 1056 } 1057 static void unfreeze_array(struct r1conf *conf) 1058 { 1059 /* reverse the effect of the freeze */ 1060 spin_lock_irq(&conf->resync_lock); 1061 conf->array_frozen = 0; 1062 spin_unlock_irq(&conf->resync_lock); 1063 wake_up(&conf->wait_barrier); 1064 } 1065 1066 static void alloc_behind_master_bio(struct r1bio *r1_bio, 1067 struct bio *bio) 1068 { 1069 int size = bio->bi_iter.bi_size; 1070 unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1071 int i = 0; 1072 struct bio *behind_bio = NULL; 1073 1074 behind_bio = bio_alloc_mddev(GFP_NOIO, vcnt, r1_bio->mddev); 1075 if (!behind_bio) 1076 return; 1077 1078 /* discard op, we don't support writezero/writesame yet */ 1079 if (!bio_has_data(bio)) { 1080 behind_bio->bi_iter.bi_size = size; 1081 goto skip_copy; 1082 } 1083 1084 while (i < vcnt && size) { 1085 struct page *page; 1086 int len = min_t(int, PAGE_SIZE, size); 1087 1088 page = alloc_page(GFP_NOIO); 1089 if (unlikely(!page)) 1090 goto free_pages; 1091 1092 bio_add_page(behind_bio, page, len, 0); 1093 1094 size -= len; 1095 i++; 1096 } 1097 1098 bio_copy_data(behind_bio, bio); 1099 skip_copy: 1100 r1_bio->behind_master_bio = behind_bio;; 1101 set_bit(R1BIO_BehindIO, &r1_bio->state); 1102 1103 return; 1104 1105 free_pages: 1106 pr_debug("%dB behind alloc failed, doing sync I/O\n", 1107 bio->bi_iter.bi_size); 1108 bio_free_pages(behind_bio); 1109 bio_put(behind_bio); 1110 } 1111 1112 struct raid1_plug_cb { 1113 struct blk_plug_cb cb; 1114 struct bio_list pending; 1115 int pending_cnt; 1116 }; 1117 1118 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule) 1119 { 1120 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, 1121 cb); 1122 struct mddev *mddev = plug->cb.data; 1123 struct r1conf *conf = mddev->private; 1124 struct bio *bio; 1125 1126 if (from_schedule || current->bio_list) { 1127 spin_lock_irq(&conf->device_lock); 1128 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1129 conf->pending_count += plug->pending_cnt; 1130 spin_unlock_irq(&conf->device_lock); 1131 wake_up(&conf->wait_barrier); 1132 md_wakeup_thread(mddev->thread); 1133 kfree(plug); 1134 return; 1135 } 1136 1137 /* we aren't scheduling, so we can do the write-out directly. */ 1138 bio = bio_list_get(&plug->pending); 1139 flush_bio_list(conf, bio); 1140 kfree(plug); 1141 } 1142 1143 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio) 1144 { 1145 r1_bio->master_bio = bio; 1146 r1_bio->sectors = bio_sectors(bio); 1147 r1_bio->state = 0; 1148 r1_bio->mddev = mddev; 1149 r1_bio->sector = bio->bi_iter.bi_sector; 1150 } 1151 1152 static inline struct r1bio * 1153 alloc_r1bio(struct mddev *mddev, struct bio *bio) 1154 { 1155 struct r1conf *conf = mddev->private; 1156 struct r1bio *r1_bio; 1157 1158 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 1159 /* Ensure no bio records IO_BLOCKED */ 1160 memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0])); 1161 init_r1bio(r1_bio, mddev, bio); 1162 return r1_bio; 1163 } 1164 1165 static void raid1_read_request(struct mddev *mddev, struct bio *bio, 1166 int max_read_sectors, struct r1bio *r1_bio) 1167 { 1168 struct r1conf *conf = mddev->private; 1169 struct raid1_info *mirror; 1170 struct bio *read_bio; 1171 struct bitmap *bitmap = mddev->bitmap; 1172 const int op = bio_op(bio); 1173 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC); 1174 int max_sectors; 1175 int rdisk; 1176 bool print_msg = !!r1_bio; 1177 char b[BDEVNAME_SIZE]; 1178 1179 /* 1180 * If r1_bio is set, we are blocking the raid1d thread 1181 * so there is a tiny risk of deadlock. So ask for 1182 * emergency memory if needed. 1183 */ 1184 gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO; 1185 1186 if (print_msg) { 1187 /* Need to get the block device name carefully */ 1188 struct md_rdev *rdev; 1189 rcu_read_lock(); 1190 rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev); 1191 if (rdev) 1192 bdevname(rdev->bdev, b); 1193 else 1194 strcpy(b, "???"); 1195 rcu_read_unlock(); 1196 } 1197 1198 /* 1199 * Still need barrier for READ in case that whole 1200 * array is frozen. 1201 */ 1202 wait_read_barrier(conf, bio->bi_iter.bi_sector); 1203 1204 if (!r1_bio) 1205 r1_bio = alloc_r1bio(mddev, bio); 1206 else 1207 init_r1bio(r1_bio, mddev, bio); 1208 r1_bio->sectors = max_read_sectors; 1209 1210 /* 1211 * make_request() can abort the operation when read-ahead is being 1212 * used and no empty request is available. 1213 */ 1214 rdisk = read_balance(conf, r1_bio, &max_sectors); 1215 1216 if (rdisk < 0) { 1217 /* couldn't find anywhere to read from */ 1218 if (print_msg) { 1219 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n", 1220 mdname(mddev), 1221 b, 1222 (unsigned long long)r1_bio->sector); 1223 } 1224 raid_end_bio_io(r1_bio); 1225 return; 1226 } 1227 mirror = conf->mirrors + rdisk; 1228 1229 if (print_msg) 1230 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n", 1231 mdname(mddev), 1232 (unsigned long long)r1_bio->sector, 1233 bdevname(mirror->rdev->bdev, b)); 1234 1235 if (test_bit(WriteMostly, &mirror->rdev->flags) && 1236 bitmap) { 1237 /* 1238 * Reading from a write-mostly device must take care not to 1239 * over-take any writes that are 'behind' 1240 */ 1241 raid1_log(mddev, "wait behind writes"); 1242 wait_event(bitmap->behind_wait, 1243 atomic_read(&bitmap->behind_writes) == 0); 1244 } 1245 1246 if (max_sectors < bio_sectors(bio)) { 1247 struct bio *split = bio_split(bio, max_sectors, 1248 gfp, conf->bio_split); 1249 bio_chain(split, bio); 1250 generic_make_request(bio); 1251 bio = split; 1252 r1_bio->master_bio = bio; 1253 r1_bio->sectors = max_sectors; 1254 } 1255 1256 r1_bio->read_disk = rdisk; 1257 1258 read_bio = bio_clone_fast(bio, gfp, mddev->bio_set); 1259 1260 r1_bio->bios[rdisk] = read_bio; 1261 1262 read_bio->bi_iter.bi_sector = r1_bio->sector + 1263 mirror->rdev->data_offset; 1264 bio_set_dev(read_bio, mirror->rdev->bdev); 1265 read_bio->bi_end_io = raid1_end_read_request; 1266 bio_set_op_attrs(read_bio, op, do_sync); 1267 if (test_bit(FailFast, &mirror->rdev->flags) && 1268 test_bit(R1BIO_FailFast, &r1_bio->state)) 1269 read_bio->bi_opf |= MD_FAILFAST; 1270 read_bio->bi_private = r1_bio; 1271 1272 if (mddev->gendisk) 1273 trace_block_bio_remap(read_bio->bi_disk->queue, read_bio, 1274 disk_devt(mddev->gendisk), r1_bio->sector); 1275 1276 generic_make_request(read_bio); 1277 } 1278 1279 static void raid1_write_request(struct mddev *mddev, struct bio *bio, 1280 int max_write_sectors) 1281 { 1282 struct r1conf *conf = mddev->private; 1283 struct r1bio *r1_bio; 1284 int i, disks; 1285 struct bitmap *bitmap = mddev->bitmap; 1286 unsigned long flags; 1287 struct md_rdev *blocked_rdev; 1288 struct blk_plug_cb *cb; 1289 struct raid1_plug_cb *plug = NULL; 1290 int first_clone; 1291 int max_sectors; 1292 1293 if (mddev_is_clustered(mddev) && 1294 md_cluster_ops->area_resyncing(mddev, WRITE, 1295 bio->bi_iter.bi_sector, bio_end_sector(bio))) { 1296 1297 DEFINE_WAIT(w); 1298 for (;;) { 1299 prepare_to_wait(&conf->wait_barrier, 1300 &w, TASK_IDLE); 1301 if (!md_cluster_ops->area_resyncing(mddev, WRITE, 1302 bio->bi_iter.bi_sector, 1303 bio_end_sector(bio))) 1304 break; 1305 schedule(); 1306 } 1307 finish_wait(&conf->wait_barrier, &w); 1308 } 1309 1310 /* 1311 * Register the new request and wait if the reconstruction 1312 * thread has put up a bar for new requests. 1313 * Continue immediately if no resync is active currently. 1314 */ 1315 wait_barrier(conf, bio->bi_iter.bi_sector); 1316 1317 r1_bio = alloc_r1bio(mddev, bio); 1318 r1_bio->sectors = max_write_sectors; 1319 1320 if (conf->pending_count >= max_queued_requests) { 1321 md_wakeup_thread(mddev->thread); 1322 raid1_log(mddev, "wait queued"); 1323 wait_event(conf->wait_barrier, 1324 conf->pending_count < max_queued_requests); 1325 } 1326 /* first select target devices under rcu_lock and 1327 * inc refcount on their rdev. Record them by setting 1328 * bios[x] to bio 1329 * If there are known/acknowledged bad blocks on any device on 1330 * which we have seen a write error, we want to avoid writing those 1331 * blocks. 1332 * This potentially requires several writes to write around 1333 * the bad blocks. Each set of writes gets it's own r1bio 1334 * with a set of bios attached. 1335 */ 1336 1337 disks = conf->raid_disks * 2; 1338 retry_write: 1339 blocked_rdev = NULL; 1340 rcu_read_lock(); 1341 max_sectors = r1_bio->sectors; 1342 for (i = 0; i < disks; i++) { 1343 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1344 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1345 atomic_inc(&rdev->nr_pending); 1346 blocked_rdev = rdev; 1347 break; 1348 } 1349 r1_bio->bios[i] = NULL; 1350 if (!rdev || test_bit(Faulty, &rdev->flags)) { 1351 if (i < conf->raid_disks) 1352 set_bit(R1BIO_Degraded, &r1_bio->state); 1353 continue; 1354 } 1355 1356 atomic_inc(&rdev->nr_pending); 1357 if (test_bit(WriteErrorSeen, &rdev->flags)) { 1358 sector_t first_bad; 1359 int bad_sectors; 1360 int is_bad; 1361 1362 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors, 1363 &first_bad, &bad_sectors); 1364 if (is_bad < 0) { 1365 /* mustn't write here until the bad block is 1366 * acknowledged*/ 1367 set_bit(BlockedBadBlocks, &rdev->flags); 1368 blocked_rdev = rdev; 1369 break; 1370 } 1371 if (is_bad && first_bad <= r1_bio->sector) { 1372 /* Cannot write here at all */ 1373 bad_sectors -= (r1_bio->sector - first_bad); 1374 if (bad_sectors < max_sectors) 1375 /* mustn't write more than bad_sectors 1376 * to other devices yet 1377 */ 1378 max_sectors = bad_sectors; 1379 rdev_dec_pending(rdev, mddev); 1380 /* We don't set R1BIO_Degraded as that 1381 * only applies if the disk is 1382 * missing, so it might be re-added, 1383 * and we want to know to recover this 1384 * chunk. 1385 * In this case the device is here, 1386 * and the fact that this chunk is not 1387 * in-sync is recorded in the bad 1388 * block log 1389 */ 1390 continue; 1391 } 1392 if (is_bad) { 1393 int good_sectors = first_bad - r1_bio->sector; 1394 if (good_sectors < max_sectors) 1395 max_sectors = good_sectors; 1396 } 1397 } 1398 r1_bio->bios[i] = bio; 1399 } 1400 rcu_read_unlock(); 1401 1402 if (unlikely(blocked_rdev)) { 1403 /* Wait for this device to become unblocked */ 1404 int j; 1405 1406 for (j = 0; j < i; j++) 1407 if (r1_bio->bios[j]) 1408 rdev_dec_pending(conf->mirrors[j].rdev, mddev); 1409 r1_bio->state = 0; 1410 allow_barrier(conf, bio->bi_iter.bi_sector); 1411 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk); 1412 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1413 wait_barrier(conf, bio->bi_iter.bi_sector); 1414 goto retry_write; 1415 } 1416 1417 if (max_sectors < bio_sectors(bio)) { 1418 struct bio *split = bio_split(bio, max_sectors, 1419 GFP_NOIO, conf->bio_split); 1420 bio_chain(split, bio); 1421 generic_make_request(bio); 1422 bio = split; 1423 r1_bio->master_bio = bio; 1424 r1_bio->sectors = max_sectors; 1425 } 1426 1427 atomic_set(&r1_bio->remaining, 1); 1428 atomic_set(&r1_bio->behind_remaining, 0); 1429 1430 first_clone = 1; 1431 1432 for (i = 0; i < disks; i++) { 1433 struct bio *mbio = NULL; 1434 if (!r1_bio->bios[i]) 1435 continue; 1436 1437 1438 if (first_clone) { 1439 /* do behind I/O ? 1440 * Not if there are too many, or cannot 1441 * allocate memory, or a reader on WriteMostly 1442 * is waiting for behind writes to flush */ 1443 if (bitmap && 1444 (atomic_read(&bitmap->behind_writes) 1445 < mddev->bitmap_info.max_write_behind) && 1446 !waitqueue_active(&bitmap->behind_wait)) { 1447 alloc_behind_master_bio(r1_bio, bio); 1448 } 1449 1450 bitmap_startwrite(bitmap, r1_bio->sector, 1451 r1_bio->sectors, 1452 test_bit(R1BIO_BehindIO, 1453 &r1_bio->state)); 1454 first_clone = 0; 1455 } 1456 1457 if (r1_bio->behind_master_bio) 1458 mbio = bio_clone_fast(r1_bio->behind_master_bio, 1459 GFP_NOIO, mddev->bio_set); 1460 else 1461 mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set); 1462 1463 if (r1_bio->behind_master_bio) { 1464 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags)) 1465 atomic_inc(&r1_bio->behind_remaining); 1466 } 1467 1468 r1_bio->bios[i] = mbio; 1469 1470 mbio->bi_iter.bi_sector = (r1_bio->sector + 1471 conf->mirrors[i].rdev->data_offset); 1472 bio_set_dev(mbio, conf->mirrors[i].rdev->bdev); 1473 mbio->bi_end_io = raid1_end_write_request; 1474 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA)); 1475 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) && 1476 !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) && 1477 conf->raid_disks - mddev->degraded > 1) 1478 mbio->bi_opf |= MD_FAILFAST; 1479 mbio->bi_private = r1_bio; 1480 1481 atomic_inc(&r1_bio->remaining); 1482 1483 if (mddev->gendisk) 1484 trace_block_bio_remap(mbio->bi_disk->queue, 1485 mbio, disk_devt(mddev->gendisk), 1486 r1_bio->sector); 1487 /* flush_pending_writes() needs access to the rdev so...*/ 1488 mbio->bi_disk = (void *)conf->mirrors[i].rdev; 1489 1490 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug)); 1491 if (cb) 1492 plug = container_of(cb, struct raid1_plug_cb, cb); 1493 else 1494 plug = NULL; 1495 if (plug) { 1496 bio_list_add(&plug->pending, mbio); 1497 plug->pending_cnt++; 1498 } else { 1499 spin_lock_irqsave(&conf->device_lock, flags); 1500 bio_list_add(&conf->pending_bio_list, mbio); 1501 conf->pending_count++; 1502 spin_unlock_irqrestore(&conf->device_lock, flags); 1503 md_wakeup_thread(mddev->thread); 1504 } 1505 } 1506 1507 r1_bio_write_done(r1_bio); 1508 1509 /* In case raid1d snuck in to freeze_array */ 1510 wake_up(&conf->wait_barrier); 1511 } 1512 1513 static bool raid1_make_request(struct mddev *mddev, struct bio *bio) 1514 { 1515 sector_t sectors; 1516 1517 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) { 1518 md_flush_request(mddev, bio); 1519 return true; 1520 } 1521 1522 /* 1523 * There is a limit to the maximum size, but 1524 * the read/write handler might find a lower limit 1525 * due to bad blocks. To avoid multiple splits, 1526 * we pass the maximum number of sectors down 1527 * and let the lower level perform the split. 1528 */ 1529 sectors = align_to_barrier_unit_end( 1530 bio->bi_iter.bi_sector, bio_sectors(bio)); 1531 1532 if (bio_data_dir(bio) == READ) 1533 raid1_read_request(mddev, bio, sectors, NULL); 1534 else { 1535 if (!md_write_start(mddev,bio)) 1536 return false; 1537 raid1_write_request(mddev, bio, sectors); 1538 } 1539 return true; 1540 } 1541 1542 static void raid1_status(struct seq_file *seq, struct mddev *mddev) 1543 { 1544 struct r1conf *conf = mddev->private; 1545 int i; 1546 1547 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 1548 conf->raid_disks - mddev->degraded); 1549 rcu_read_lock(); 1550 for (i = 0; i < conf->raid_disks; i++) { 1551 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1552 seq_printf(seq, "%s", 1553 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1554 } 1555 rcu_read_unlock(); 1556 seq_printf(seq, "]"); 1557 } 1558 1559 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev) 1560 { 1561 char b[BDEVNAME_SIZE]; 1562 struct r1conf *conf = mddev->private; 1563 unsigned long flags; 1564 1565 /* 1566 * If it is not operational, then we have already marked it as dead 1567 * else if it is the last working disks, ignore the error, let the 1568 * next level up know. 1569 * else mark the drive as failed 1570 */ 1571 spin_lock_irqsave(&conf->device_lock, flags); 1572 if (test_bit(In_sync, &rdev->flags) 1573 && (conf->raid_disks - mddev->degraded) == 1) { 1574 /* 1575 * Don't fail the drive, act as though we were just a 1576 * normal single drive. 1577 * However don't try a recovery from this drive as 1578 * it is very likely to fail. 1579 */ 1580 conf->recovery_disabled = mddev->recovery_disabled; 1581 spin_unlock_irqrestore(&conf->device_lock, flags); 1582 return; 1583 } 1584 set_bit(Blocked, &rdev->flags); 1585 if (test_and_clear_bit(In_sync, &rdev->flags)) { 1586 mddev->degraded++; 1587 set_bit(Faulty, &rdev->flags); 1588 } else 1589 set_bit(Faulty, &rdev->flags); 1590 spin_unlock_irqrestore(&conf->device_lock, flags); 1591 /* 1592 * if recovery is running, make sure it aborts. 1593 */ 1594 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1595 set_mask_bits(&mddev->sb_flags, 0, 1596 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1597 pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n" 1598 "md/raid1:%s: Operation continuing on %d devices.\n", 1599 mdname(mddev), bdevname(rdev->bdev, b), 1600 mdname(mddev), conf->raid_disks - mddev->degraded); 1601 } 1602 1603 static void print_conf(struct r1conf *conf) 1604 { 1605 int i; 1606 1607 pr_debug("RAID1 conf printout:\n"); 1608 if (!conf) { 1609 pr_debug("(!conf)\n"); 1610 return; 1611 } 1612 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1613 conf->raid_disks); 1614 1615 rcu_read_lock(); 1616 for (i = 0; i < conf->raid_disks; i++) { 1617 char b[BDEVNAME_SIZE]; 1618 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1619 if (rdev) 1620 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n", 1621 i, !test_bit(In_sync, &rdev->flags), 1622 !test_bit(Faulty, &rdev->flags), 1623 bdevname(rdev->bdev,b)); 1624 } 1625 rcu_read_unlock(); 1626 } 1627 1628 static void close_sync(struct r1conf *conf) 1629 { 1630 int idx; 1631 1632 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) { 1633 _wait_barrier(conf, idx); 1634 _allow_barrier(conf, idx); 1635 } 1636 1637 mempool_destroy(conf->r1buf_pool); 1638 conf->r1buf_pool = NULL; 1639 } 1640 1641 static int raid1_spare_active(struct mddev *mddev) 1642 { 1643 int i; 1644 struct r1conf *conf = mddev->private; 1645 int count = 0; 1646 unsigned long flags; 1647 1648 /* 1649 * Find all failed disks within the RAID1 configuration 1650 * and mark them readable. 1651 * Called under mddev lock, so rcu protection not needed. 1652 * device_lock used to avoid races with raid1_end_read_request 1653 * which expects 'In_sync' flags and ->degraded to be consistent. 1654 */ 1655 spin_lock_irqsave(&conf->device_lock, flags); 1656 for (i = 0; i < conf->raid_disks; i++) { 1657 struct md_rdev *rdev = conf->mirrors[i].rdev; 1658 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev; 1659 if (repl 1660 && !test_bit(Candidate, &repl->flags) 1661 && repl->recovery_offset == MaxSector 1662 && !test_bit(Faulty, &repl->flags) 1663 && !test_and_set_bit(In_sync, &repl->flags)) { 1664 /* replacement has just become active */ 1665 if (!rdev || 1666 !test_and_clear_bit(In_sync, &rdev->flags)) 1667 count++; 1668 if (rdev) { 1669 /* Replaced device not technically 1670 * faulty, but we need to be sure 1671 * it gets removed and never re-added 1672 */ 1673 set_bit(Faulty, &rdev->flags); 1674 sysfs_notify_dirent_safe( 1675 rdev->sysfs_state); 1676 } 1677 } 1678 if (rdev 1679 && rdev->recovery_offset == MaxSector 1680 && !test_bit(Faulty, &rdev->flags) 1681 && !test_and_set_bit(In_sync, &rdev->flags)) { 1682 count++; 1683 sysfs_notify_dirent_safe(rdev->sysfs_state); 1684 } 1685 } 1686 mddev->degraded -= count; 1687 spin_unlock_irqrestore(&conf->device_lock, flags); 1688 1689 print_conf(conf); 1690 return count; 1691 } 1692 1693 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1694 { 1695 struct r1conf *conf = mddev->private; 1696 int err = -EEXIST; 1697 int mirror = 0; 1698 struct raid1_info *p; 1699 int first = 0; 1700 int last = conf->raid_disks - 1; 1701 1702 if (mddev->recovery_disabled == conf->recovery_disabled) 1703 return -EBUSY; 1704 1705 if (md_integrity_add_rdev(rdev, mddev)) 1706 return -ENXIO; 1707 1708 if (rdev->raid_disk >= 0) 1709 first = last = rdev->raid_disk; 1710 1711 /* 1712 * find the disk ... but prefer rdev->saved_raid_disk 1713 * if possible. 1714 */ 1715 if (rdev->saved_raid_disk >= 0 && 1716 rdev->saved_raid_disk >= first && 1717 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1718 first = last = rdev->saved_raid_disk; 1719 1720 for (mirror = first; mirror <= last; mirror++) { 1721 p = conf->mirrors+mirror; 1722 if (!p->rdev) { 1723 1724 if (mddev->gendisk) 1725 disk_stack_limits(mddev->gendisk, rdev->bdev, 1726 rdev->data_offset << 9); 1727 1728 p->head_position = 0; 1729 rdev->raid_disk = mirror; 1730 err = 0; 1731 /* As all devices are equivalent, we don't need a full recovery 1732 * if this was recently any drive of the array 1733 */ 1734 if (rdev->saved_raid_disk < 0) 1735 conf->fullsync = 1; 1736 rcu_assign_pointer(p->rdev, rdev); 1737 break; 1738 } 1739 if (test_bit(WantReplacement, &p->rdev->flags) && 1740 p[conf->raid_disks].rdev == NULL) { 1741 /* Add this device as a replacement */ 1742 clear_bit(In_sync, &rdev->flags); 1743 set_bit(Replacement, &rdev->flags); 1744 rdev->raid_disk = mirror; 1745 err = 0; 1746 conf->fullsync = 1; 1747 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev); 1748 break; 1749 } 1750 } 1751 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev))) 1752 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue); 1753 print_conf(conf); 1754 return err; 1755 } 1756 1757 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1758 { 1759 struct r1conf *conf = mddev->private; 1760 int err = 0; 1761 int number = rdev->raid_disk; 1762 struct raid1_info *p = conf->mirrors + number; 1763 1764 if (rdev != p->rdev) 1765 p = conf->mirrors + conf->raid_disks + number; 1766 1767 print_conf(conf); 1768 if (rdev == p->rdev) { 1769 if (test_bit(In_sync, &rdev->flags) || 1770 atomic_read(&rdev->nr_pending)) { 1771 err = -EBUSY; 1772 goto abort; 1773 } 1774 /* Only remove non-faulty devices if recovery 1775 * is not possible. 1776 */ 1777 if (!test_bit(Faulty, &rdev->flags) && 1778 mddev->recovery_disabled != conf->recovery_disabled && 1779 mddev->degraded < conf->raid_disks) { 1780 err = -EBUSY; 1781 goto abort; 1782 } 1783 p->rdev = NULL; 1784 if (!test_bit(RemoveSynchronized, &rdev->flags)) { 1785 synchronize_rcu(); 1786 if (atomic_read(&rdev->nr_pending)) { 1787 /* lost the race, try later */ 1788 err = -EBUSY; 1789 p->rdev = rdev; 1790 goto abort; 1791 } 1792 } 1793 if (conf->mirrors[conf->raid_disks + number].rdev) { 1794 /* We just removed a device that is being replaced. 1795 * Move down the replacement. We drain all IO before 1796 * doing this to avoid confusion. 1797 */ 1798 struct md_rdev *repl = 1799 conf->mirrors[conf->raid_disks + number].rdev; 1800 freeze_array(conf, 0); 1801 clear_bit(Replacement, &repl->flags); 1802 p->rdev = repl; 1803 conf->mirrors[conf->raid_disks + number].rdev = NULL; 1804 unfreeze_array(conf); 1805 } 1806 1807 clear_bit(WantReplacement, &rdev->flags); 1808 err = md_integrity_register(mddev); 1809 } 1810 abort: 1811 1812 print_conf(conf); 1813 return err; 1814 } 1815 1816 static void end_sync_read(struct bio *bio) 1817 { 1818 struct r1bio *r1_bio = get_resync_r1bio(bio); 1819 1820 update_head_pos(r1_bio->read_disk, r1_bio); 1821 1822 /* 1823 * we have read a block, now it needs to be re-written, 1824 * or re-read if the read failed. 1825 * We don't do much here, just schedule handling by raid1d 1826 */ 1827 if (!bio->bi_status) 1828 set_bit(R1BIO_Uptodate, &r1_bio->state); 1829 1830 if (atomic_dec_and_test(&r1_bio->remaining)) 1831 reschedule_retry(r1_bio); 1832 } 1833 1834 static void end_sync_write(struct bio *bio) 1835 { 1836 int uptodate = !bio->bi_status; 1837 struct r1bio *r1_bio = get_resync_r1bio(bio); 1838 struct mddev *mddev = r1_bio->mddev; 1839 struct r1conf *conf = mddev->private; 1840 sector_t first_bad; 1841 int bad_sectors; 1842 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev; 1843 1844 if (!uptodate) { 1845 sector_t sync_blocks = 0; 1846 sector_t s = r1_bio->sector; 1847 long sectors_to_go = r1_bio->sectors; 1848 /* make sure these bits doesn't get cleared. */ 1849 do { 1850 bitmap_end_sync(mddev->bitmap, s, 1851 &sync_blocks, 1); 1852 s += sync_blocks; 1853 sectors_to_go -= sync_blocks; 1854 } while (sectors_to_go > 0); 1855 set_bit(WriteErrorSeen, &rdev->flags); 1856 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 1857 set_bit(MD_RECOVERY_NEEDED, & 1858 mddev->recovery); 1859 set_bit(R1BIO_WriteError, &r1_bio->state); 1860 } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors, 1861 &first_bad, &bad_sectors) && 1862 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev, 1863 r1_bio->sector, 1864 r1_bio->sectors, 1865 &first_bad, &bad_sectors) 1866 ) 1867 set_bit(R1BIO_MadeGood, &r1_bio->state); 1868 1869 if (atomic_dec_and_test(&r1_bio->remaining)) { 1870 int s = r1_bio->sectors; 1871 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 1872 test_bit(R1BIO_WriteError, &r1_bio->state)) 1873 reschedule_retry(r1_bio); 1874 else { 1875 put_buf(r1_bio); 1876 md_done_sync(mddev, s, uptodate); 1877 } 1878 } 1879 } 1880 1881 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector, 1882 int sectors, struct page *page, int rw) 1883 { 1884 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false)) 1885 /* success */ 1886 return 1; 1887 if (rw == WRITE) { 1888 set_bit(WriteErrorSeen, &rdev->flags); 1889 if (!test_and_set_bit(WantReplacement, 1890 &rdev->flags)) 1891 set_bit(MD_RECOVERY_NEEDED, & 1892 rdev->mddev->recovery); 1893 } 1894 /* need to record an error - either for the block or the device */ 1895 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 1896 md_error(rdev->mddev, rdev); 1897 return 0; 1898 } 1899 1900 static int fix_sync_read_error(struct r1bio *r1_bio) 1901 { 1902 /* Try some synchronous reads of other devices to get 1903 * good data, much like with normal read errors. Only 1904 * read into the pages we already have so we don't 1905 * need to re-issue the read request. 1906 * We don't need to freeze the array, because being in an 1907 * active sync request, there is no normal IO, and 1908 * no overlapping syncs. 1909 * We don't need to check is_badblock() again as we 1910 * made sure that anything with a bad block in range 1911 * will have bi_end_io clear. 1912 */ 1913 struct mddev *mddev = r1_bio->mddev; 1914 struct r1conf *conf = mddev->private; 1915 struct bio *bio = r1_bio->bios[r1_bio->read_disk]; 1916 struct page **pages = get_resync_pages(bio)->pages; 1917 sector_t sect = r1_bio->sector; 1918 int sectors = r1_bio->sectors; 1919 int idx = 0; 1920 struct md_rdev *rdev; 1921 1922 rdev = conf->mirrors[r1_bio->read_disk].rdev; 1923 if (test_bit(FailFast, &rdev->flags)) { 1924 /* Don't try recovering from here - just fail it 1925 * ... unless it is the last working device of course */ 1926 md_error(mddev, rdev); 1927 if (test_bit(Faulty, &rdev->flags)) 1928 /* Don't try to read from here, but make sure 1929 * put_buf does it's thing 1930 */ 1931 bio->bi_end_io = end_sync_write; 1932 } 1933 1934 while(sectors) { 1935 int s = sectors; 1936 int d = r1_bio->read_disk; 1937 int success = 0; 1938 int start; 1939 1940 if (s > (PAGE_SIZE>>9)) 1941 s = PAGE_SIZE >> 9; 1942 do { 1943 if (r1_bio->bios[d]->bi_end_io == end_sync_read) { 1944 /* No rcu protection needed here devices 1945 * can only be removed when no resync is 1946 * active, and resync is currently active 1947 */ 1948 rdev = conf->mirrors[d].rdev; 1949 if (sync_page_io(rdev, sect, s<<9, 1950 pages[idx], 1951 REQ_OP_READ, 0, false)) { 1952 success = 1; 1953 break; 1954 } 1955 } 1956 d++; 1957 if (d == conf->raid_disks * 2) 1958 d = 0; 1959 } while (!success && d != r1_bio->read_disk); 1960 1961 if (!success) { 1962 char b[BDEVNAME_SIZE]; 1963 int abort = 0; 1964 /* Cannot read from anywhere, this block is lost. 1965 * Record a bad block on each device. If that doesn't 1966 * work just disable and interrupt the recovery. 1967 * Don't fail devices as that won't really help. 1968 */ 1969 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n", 1970 mdname(mddev), bio_devname(bio, b), 1971 (unsigned long long)r1_bio->sector); 1972 for (d = 0; d < conf->raid_disks * 2; d++) { 1973 rdev = conf->mirrors[d].rdev; 1974 if (!rdev || test_bit(Faulty, &rdev->flags)) 1975 continue; 1976 if (!rdev_set_badblocks(rdev, sect, s, 0)) 1977 abort = 1; 1978 } 1979 if (abort) { 1980 conf->recovery_disabled = 1981 mddev->recovery_disabled; 1982 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1983 md_done_sync(mddev, r1_bio->sectors, 0); 1984 put_buf(r1_bio); 1985 return 0; 1986 } 1987 /* Try next page */ 1988 sectors -= s; 1989 sect += s; 1990 idx++; 1991 continue; 1992 } 1993 1994 start = d; 1995 /* write it back and re-read */ 1996 while (d != r1_bio->read_disk) { 1997 if (d == 0) 1998 d = conf->raid_disks * 2; 1999 d--; 2000 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 2001 continue; 2002 rdev = conf->mirrors[d].rdev; 2003 if (r1_sync_page_io(rdev, sect, s, 2004 pages[idx], 2005 WRITE) == 0) { 2006 r1_bio->bios[d]->bi_end_io = NULL; 2007 rdev_dec_pending(rdev, mddev); 2008 } 2009 } 2010 d = start; 2011 while (d != r1_bio->read_disk) { 2012 if (d == 0) 2013 d = conf->raid_disks * 2; 2014 d--; 2015 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 2016 continue; 2017 rdev = conf->mirrors[d].rdev; 2018 if (r1_sync_page_io(rdev, sect, s, 2019 pages[idx], 2020 READ) != 0) 2021 atomic_add(s, &rdev->corrected_errors); 2022 } 2023 sectors -= s; 2024 sect += s; 2025 idx ++; 2026 } 2027 set_bit(R1BIO_Uptodate, &r1_bio->state); 2028 bio->bi_status = 0; 2029 return 1; 2030 } 2031 2032 static void process_checks(struct r1bio *r1_bio) 2033 { 2034 /* We have read all readable devices. If we haven't 2035 * got the block, then there is no hope left. 2036 * If we have, then we want to do a comparison 2037 * and skip the write if everything is the same. 2038 * If any blocks failed to read, then we need to 2039 * attempt an over-write 2040 */ 2041 struct mddev *mddev = r1_bio->mddev; 2042 struct r1conf *conf = mddev->private; 2043 int primary; 2044 int i; 2045 int vcnt; 2046 2047 /* Fix variable parts of all bios */ 2048 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9); 2049 for (i = 0; i < conf->raid_disks * 2; i++) { 2050 blk_status_t status; 2051 struct bio *b = r1_bio->bios[i]; 2052 struct resync_pages *rp = get_resync_pages(b); 2053 if (b->bi_end_io != end_sync_read) 2054 continue; 2055 /* fixup the bio for reuse, but preserve errno */ 2056 status = b->bi_status; 2057 bio_reset(b); 2058 b->bi_status = status; 2059 b->bi_iter.bi_sector = r1_bio->sector + 2060 conf->mirrors[i].rdev->data_offset; 2061 bio_set_dev(b, conf->mirrors[i].rdev->bdev); 2062 b->bi_end_io = end_sync_read; 2063 rp->raid_bio = r1_bio; 2064 b->bi_private = rp; 2065 2066 /* initialize bvec table again */ 2067 md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9); 2068 } 2069 for (primary = 0; primary < conf->raid_disks * 2; primary++) 2070 if (r1_bio->bios[primary]->bi_end_io == end_sync_read && 2071 !r1_bio->bios[primary]->bi_status) { 2072 r1_bio->bios[primary]->bi_end_io = NULL; 2073 rdev_dec_pending(conf->mirrors[primary].rdev, mddev); 2074 break; 2075 } 2076 r1_bio->read_disk = primary; 2077 for (i = 0; i < conf->raid_disks * 2; i++) { 2078 int j; 2079 struct bio *pbio = r1_bio->bios[primary]; 2080 struct bio *sbio = r1_bio->bios[i]; 2081 blk_status_t status = sbio->bi_status; 2082 struct page **ppages = get_resync_pages(pbio)->pages; 2083 struct page **spages = get_resync_pages(sbio)->pages; 2084 struct bio_vec *bi; 2085 int page_len[RESYNC_PAGES] = { 0 }; 2086 2087 if (sbio->bi_end_io != end_sync_read) 2088 continue; 2089 /* Now we can 'fixup' the error value */ 2090 sbio->bi_status = 0; 2091 2092 bio_for_each_segment_all(bi, sbio, j) 2093 page_len[j] = bi->bv_len; 2094 2095 if (!status) { 2096 for (j = vcnt; j-- ; ) { 2097 if (memcmp(page_address(ppages[j]), 2098 page_address(spages[j]), 2099 page_len[j])) 2100 break; 2101 } 2102 } else 2103 j = 0; 2104 if (j >= 0) 2105 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches); 2106 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery) 2107 && !status)) { 2108 /* No need to write to this device. */ 2109 sbio->bi_end_io = NULL; 2110 rdev_dec_pending(conf->mirrors[i].rdev, mddev); 2111 continue; 2112 } 2113 2114 bio_copy_data(sbio, pbio); 2115 } 2116 } 2117 2118 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio) 2119 { 2120 struct r1conf *conf = mddev->private; 2121 int i; 2122 int disks = conf->raid_disks * 2; 2123 struct bio *wbio; 2124 2125 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 2126 /* ouch - failed to read all of that. */ 2127 if (!fix_sync_read_error(r1_bio)) 2128 return; 2129 2130 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2131 process_checks(r1_bio); 2132 2133 /* 2134 * schedule writes 2135 */ 2136 atomic_set(&r1_bio->remaining, 1); 2137 for (i = 0; i < disks ; i++) { 2138 wbio = r1_bio->bios[i]; 2139 if (wbio->bi_end_io == NULL || 2140 (wbio->bi_end_io == end_sync_read && 2141 (i == r1_bio->read_disk || 2142 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)))) 2143 continue; 2144 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) 2145 continue; 2146 2147 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0); 2148 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags)) 2149 wbio->bi_opf |= MD_FAILFAST; 2150 2151 wbio->bi_end_io = end_sync_write; 2152 atomic_inc(&r1_bio->remaining); 2153 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio)); 2154 2155 generic_make_request(wbio); 2156 } 2157 2158 if (atomic_dec_and_test(&r1_bio->remaining)) { 2159 /* if we're here, all write(s) have completed, so clean up */ 2160 int s = r1_bio->sectors; 2161 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2162 test_bit(R1BIO_WriteError, &r1_bio->state)) 2163 reschedule_retry(r1_bio); 2164 else { 2165 put_buf(r1_bio); 2166 md_done_sync(mddev, s, 1); 2167 } 2168 } 2169 } 2170 2171 /* 2172 * This is a kernel thread which: 2173 * 2174 * 1. Retries failed read operations on working mirrors. 2175 * 2. Updates the raid superblock when problems encounter. 2176 * 3. Performs writes following reads for array synchronising. 2177 */ 2178 2179 static void fix_read_error(struct r1conf *conf, int read_disk, 2180 sector_t sect, int sectors) 2181 { 2182 struct mddev *mddev = conf->mddev; 2183 while(sectors) { 2184 int s = sectors; 2185 int d = read_disk; 2186 int success = 0; 2187 int start; 2188 struct md_rdev *rdev; 2189 2190 if (s > (PAGE_SIZE>>9)) 2191 s = PAGE_SIZE >> 9; 2192 2193 do { 2194 sector_t first_bad; 2195 int bad_sectors; 2196 2197 rcu_read_lock(); 2198 rdev = rcu_dereference(conf->mirrors[d].rdev); 2199 if (rdev && 2200 (test_bit(In_sync, &rdev->flags) || 2201 (!test_bit(Faulty, &rdev->flags) && 2202 rdev->recovery_offset >= sect + s)) && 2203 is_badblock(rdev, sect, s, 2204 &first_bad, &bad_sectors) == 0) { 2205 atomic_inc(&rdev->nr_pending); 2206 rcu_read_unlock(); 2207 if (sync_page_io(rdev, sect, s<<9, 2208 conf->tmppage, REQ_OP_READ, 0, false)) 2209 success = 1; 2210 rdev_dec_pending(rdev, mddev); 2211 if (success) 2212 break; 2213 } else 2214 rcu_read_unlock(); 2215 d++; 2216 if (d == conf->raid_disks * 2) 2217 d = 0; 2218 } while (!success && d != read_disk); 2219 2220 if (!success) { 2221 /* Cannot read from anywhere - mark it bad */ 2222 struct md_rdev *rdev = conf->mirrors[read_disk].rdev; 2223 if (!rdev_set_badblocks(rdev, sect, s, 0)) 2224 md_error(mddev, rdev); 2225 break; 2226 } 2227 /* write it back and re-read */ 2228 start = d; 2229 while (d != read_disk) { 2230 if (d==0) 2231 d = conf->raid_disks * 2; 2232 d--; 2233 rcu_read_lock(); 2234 rdev = rcu_dereference(conf->mirrors[d].rdev); 2235 if (rdev && 2236 !test_bit(Faulty, &rdev->flags)) { 2237 atomic_inc(&rdev->nr_pending); 2238 rcu_read_unlock(); 2239 r1_sync_page_io(rdev, sect, s, 2240 conf->tmppage, WRITE); 2241 rdev_dec_pending(rdev, mddev); 2242 } else 2243 rcu_read_unlock(); 2244 } 2245 d = start; 2246 while (d != read_disk) { 2247 char b[BDEVNAME_SIZE]; 2248 if (d==0) 2249 d = conf->raid_disks * 2; 2250 d--; 2251 rcu_read_lock(); 2252 rdev = rcu_dereference(conf->mirrors[d].rdev); 2253 if (rdev && 2254 !test_bit(Faulty, &rdev->flags)) { 2255 atomic_inc(&rdev->nr_pending); 2256 rcu_read_unlock(); 2257 if (r1_sync_page_io(rdev, sect, s, 2258 conf->tmppage, READ)) { 2259 atomic_add(s, &rdev->corrected_errors); 2260 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n", 2261 mdname(mddev), s, 2262 (unsigned long long)(sect + 2263 rdev->data_offset), 2264 bdevname(rdev->bdev, b)); 2265 } 2266 rdev_dec_pending(rdev, mddev); 2267 } else 2268 rcu_read_unlock(); 2269 } 2270 sectors -= s; 2271 sect += s; 2272 } 2273 } 2274 2275 static int narrow_write_error(struct r1bio *r1_bio, int i) 2276 { 2277 struct mddev *mddev = r1_bio->mddev; 2278 struct r1conf *conf = mddev->private; 2279 struct md_rdev *rdev = conf->mirrors[i].rdev; 2280 2281 /* bio has the data to be written to device 'i' where 2282 * we just recently had a write error. 2283 * We repeatedly clone the bio and trim down to one block, 2284 * then try the write. Where the write fails we record 2285 * a bad block. 2286 * It is conceivable that the bio doesn't exactly align with 2287 * blocks. We must handle this somehow. 2288 * 2289 * We currently own a reference on the rdev. 2290 */ 2291 2292 int block_sectors; 2293 sector_t sector; 2294 int sectors; 2295 int sect_to_write = r1_bio->sectors; 2296 int ok = 1; 2297 2298 if (rdev->badblocks.shift < 0) 2299 return 0; 2300 2301 block_sectors = roundup(1 << rdev->badblocks.shift, 2302 bdev_logical_block_size(rdev->bdev) >> 9); 2303 sector = r1_bio->sector; 2304 sectors = ((sector + block_sectors) 2305 & ~(sector_t)(block_sectors - 1)) 2306 - sector; 2307 2308 while (sect_to_write) { 2309 struct bio *wbio; 2310 if (sectors > sect_to_write) 2311 sectors = sect_to_write; 2312 /* Write at 'sector' for 'sectors'*/ 2313 2314 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 2315 wbio = bio_clone_fast(r1_bio->behind_master_bio, 2316 GFP_NOIO, 2317 mddev->bio_set); 2318 } else { 2319 wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO, 2320 mddev->bio_set); 2321 } 2322 2323 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0); 2324 wbio->bi_iter.bi_sector = r1_bio->sector; 2325 wbio->bi_iter.bi_size = r1_bio->sectors << 9; 2326 2327 bio_trim(wbio, sector - r1_bio->sector, sectors); 2328 wbio->bi_iter.bi_sector += rdev->data_offset; 2329 bio_set_dev(wbio, rdev->bdev); 2330 2331 if (submit_bio_wait(wbio) < 0) 2332 /* failure! */ 2333 ok = rdev_set_badblocks(rdev, sector, 2334 sectors, 0) 2335 && ok; 2336 2337 bio_put(wbio); 2338 sect_to_write -= sectors; 2339 sector += sectors; 2340 sectors = block_sectors; 2341 } 2342 return ok; 2343 } 2344 2345 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2346 { 2347 int m; 2348 int s = r1_bio->sectors; 2349 for (m = 0; m < conf->raid_disks * 2 ; m++) { 2350 struct md_rdev *rdev = conf->mirrors[m].rdev; 2351 struct bio *bio = r1_bio->bios[m]; 2352 if (bio->bi_end_io == NULL) 2353 continue; 2354 if (!bio->bi_status && 2355 test_bit(R1BIO_MadeGood, &r1_bio->state)) { 2356 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0); 2357 } 2358 if (bio->bi_status && 2359 test_bit(R1BIO_WriteError, &r1_bio->state)) { 2360 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0)) 2361 md_error(conf->mddev, rdev); 2362 } 2363 } 2364 put_buf(r1_bio); 2365 md_done_sync(conf->mddev, s, 1); 2366 } 2367 2368 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2369 { 2370 int m, idx; 2371 bool fail = false; 2372 2373 for (m = 0; m < conf->raid_disks * 2 ; m++) 2374 if (r1_bio->bios[m] == IO_MADE_GOOD) { 2375 struct md_rdev *rdev = conf->mirrors[m].rdev; 2376 rdev_clear_badblocks(rdev, 2377 r1_bio->sector, 2378 r1_bio->sectors, 0); 2379 rdev_dec_pending(rdev, conf->mddev); 2380 } else if (r1_bio->bios[m] != NULL) { 2381 /* This drive got a write error. We need to 2382 * narrow down and record precise write 2383 * errors. 2384 */ 2385 fail = true; 2386 if (!narrow_write_error(r1_bio, m)) { 2387 md_error(conf->mddev, 2388 conf->mirrors[m].rdev); 2389 /* an I/O failed, we can't clear the bitmap */ 2390 set_bit(R1BIO_Degraded, &r1_bio->state); 2391 } 2392 rdev_dec_pending(conf->mirrors[m].rdev, 2393 conf->mddev); 2394 } 2395 if (fail) { 2396 spin_lock_irq(&conf->device_lock); 2397 list_add(&r1_bio->retry_list, &conf->bio_end_io_list); 2398 idx = sector_to_idx(r1_bio->sector); 2399 atomic_inc(&conf->nr_queued[idx]); 2400 spin_unlock_irq(&conf->device_lock); 2401 /* 2402 * In case freeze_array() is waiting for condition 2403 * get_unqueued_pending() == extra to be true. 2404 */ 2405 wake_up(&conf->wait_barrier); 2406 md_wakeup_thread(conf->mddev->thread); 2407 } else { 2408 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2409 close_write(r1_bio); 2410 raid_end_bio_io(r1_bio); 2411 } 2412 } 2413 2414 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio) 2415 { 2416 struct mddev *mddev = conf->mddev; 2417 struct bio *bio; 2418 struct md_rdev *rdev; 2419 sector_t bio_sector; 2420 2421 clear_bit(R1BIO_ReadError, &r1_bio->state); 2422 /* we got a read error. Maybe the drive is bad. Maybe just 2423 * the block and we can fix it. 2424 * We freeze all other IO, and try reading the block from 2425 * other devices. When we find one, we re-write 2426 * and check it that fixes the read error. 2427 * This is all done synchronously while the array is 2428 * frozen 2429 */ 2430 2431 bio = r1_bio->bios[r1_bio->read_disk]; 2432 bio_sector = conf->mirrors[r1_bio->read_disk].rdev->data_offset + r1_bio->sector; 2433 bio_put(bio); 2434 r1_bio->bios[r1_bio->read_disk] = NULL; 2435 2436 rdev = conf->mirrors[r1_bio->read_disk].rdev; 2437 if (mddev->ro == 0 2438 && !test_bit(FailFast, &rdev->flags)) { 2439 freeze_array(conf, 1); 2440 fix_read_error(conf, r1_bio->read_disk, 2441 r1_bio->sector, r1_bio->sectors); 2442 unfreeze_array(conf); 2443 } else { 2444 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED; 2445 } 2446 2447 rdev_dec_pending(rdev, conf->mddev); 2448 allow_barrier(conf, r1_bio->sector); 2449 bio = r1_bio->master_bio; 2450 2451 /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */ 2452 r1_bio->state = 0; 2453 raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio); 2454 } 2455 2456 static void raid1d(struct md_thread *thread) 2457 { 2458 struct mddev *mddev = thread->mddev; 2459 struct r1bio *r1_bio; 2460 unsigned long flags; 2461 struct r1conf *conf = mddev->private; 2462 struct list_head *head = &conf->retry_list; 2463 struct blk_plug plug; 2464 int idx; 2465 2466 md_check_recovery(mddev); 2467 2468 if (!list_empty_careful(&conf->bio_end_io_list) && 2469 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 2470 LIST_HEAD(tmp); 2471 spin_lock_irqsave(&conf->device_lock, flags); 2472 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 2473 list_splice_init(&conf->bio_end_io_list, &tmp); 2474 spin_unlock_irqrestore(&conf->device_lock, flags); 2475 while (!list_empty(&tmp)) { 2476 r1_bio = list_first_entry(&tmp, struct r1bio, 2477 retry_list); 2478 list_del(&r1_bio->retry_list); 2479 idx = sector_to_idx(r1_bio->sector); 2480 atomic_dec(&conf->nr_queued[idx]); 2481 if (mddev->degraded) 2482 set_bit(R1BIO_Degraded, &r1_bio->state); 2483 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2484 close_write(r1_bio); 2485 raid_end_bio_io(r1_bio); 2486 } 2487 } 2488 2489 blk_start_plug(&plug); 2490 for (;;) { 2491 2492 flush_pending_writes(conf); 2493 2494 spin_lock_irqsave(&conf->device_lock, flags); 2495 if (list_empty(head)) { 2496 spin_unlock_irqrestore(&conf->device_lock, flags); 2497 break; 2498 } 2499 r1_bio = list_entry(head->prev, struct r1bio, retry_list); 2500 list_del(head->prev); 2501 idx = sector_to_idx(r1_bio->sector); 2502 atomic_dec(&conf->nr_queued[idx]); 2503 spin_unlock_irqrestore(&conf->device_lock, flags); 2504 2505 mddev = r1_bio->mddev; 2506 conf = mddev->private; 2507 if (test_bit(R1BIO_IsSync, &r1_bio->state)) { 2508 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2509 test_bit(R1BIO_WriteError, &r1_bio->state)) 2510 handle_sync_write_finished(conf, r1_bio); 2511 else 2512 sync_request_write(mddev, r1_bio); 2513 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2514 test_bit(R1BIO_WriteError, &r1_bio->state)) 2515 handle_write_finished(conf, r1_bio); 2516 else if (test_bit(R1BIO_ReadError, &r1_bio->state)) 2517 handle_read_error(conf, r1_bio); 2518 else 2519 WARN_ON_ONCE(1); 2520 2521 cond_resched(); 2522 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING)) 2523 md_check_recovery(mddev); 2524 } 2525 blk_finish_plug(&plug); 2526 } 2527 2528 static int init_resync(struct r1conf *conf) 2529 { 2530 int buffs; 2531 2532 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2533 BUG_ON(conf->r1buf_pool); 2534 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free, 2535 conf->poolinfo); 2536 if (!conf->r1buf_pool) 2537 return -ENOMEM; 2538 return 0; 2539 } 2540 2541 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf) 2542 { 2543 struct r1bio *r1bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO); 2544 struct resync_pages *rps; 2545 struct bio *bio; 2546 int i; 2547 2548 for (i = conf->poolinfo->raid_disks; i--; ) { 2549 bio = r1bio->bios[i]; 2550 rps = bio->bi_private; 2551 bio_reset(bio); 2552 bio->bi_private = rps; 2553 } 2554 r1bio->master_bio = NULL; 2555 return r1bio; 2556 } 2557 2558 /* 2559 * perform a "sync" on one "block" 2560 * 2561 * We need to make sure that no normal I/O request - particularly write 2562 * requests - conflict with active sync requests. 2563 * 2564 * This is achieved by tracking pending requests and a 'barrier' concept 2565 * that can be installed to exclude normal IO requests. 2566 */ 2567 2568 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr, 2569 int *skipped) 2570 { 2571 struct r1conf *conf = mddev->private; 2572 struct r1bio *r1_bio; 2573 struct bio *bio; 2574 sector_t max_sector, nr_sectors; 2575 int disk = -1; 2576 int i; 2577 int wonly = -1; 2578 int write_targets = 0, read_targets = 0; 2579 sector_t sync_blocks; 2580 int still_degraded = 0; 2581 int good_sectors = RESYNC_SECTORS; 2582 int min_bad = 0; /* number of sectors that are bad in all devices */ 2583 int idx = sector_to_idx(sector_nr); 2584 int page_idx = 0; 2585 2586 if (!conf->r1buf_pool) 2587 if (init_resync(conf)) 2588 return 0; 2589 2590 max_sector = mddev->dev_sectors; 2591 if (sector_nr >= max_sector) { 2592 /* If we aborted, we need to abort the 2593 * sync on the 'current' bitmap chunk (there will 2594 * only be one in raid1 resync. 2595 * We can find the current addess in mddev->curr_resync 2596 */ 2597 if (mddev->curr_resync < max_sector) /* aborted */ 2598 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2599 &sync_blocks, 1); 2600 else /* completed sync */ 2601 conf->fullsync = 0; 2602 2603 bitmap_close_sync(mddev->bitmap); 2604 close_sync(conf); 2605 2606 if (mddev_is_clustered(mddev)) { 2607 conf->cluster_sync_low = 0; 2608 conf->cluster_sync_high = 0; 2609 } 2610 return 0; 2611 } 2612 2613 if (mddev->bitmap == NULL && 2614 mddev->recovery_cp == MaxSector && 2615 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 2616 conf->fullsync == 0) { 2617 *skipped = 1; 2618 return max_sector - sector_nr; 2619 } 2620 /* before building a request, check if we can skip these blocks.. 2621 * This call the bitmap_start_sync doesn't actually record anything 2622 */ 2623 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 2624 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2625 /* We can skip this block, and probably several more */ 2626 *skipped = 1; 2627 return sync_blocks; 2628 } 2629 2630 /* 2631 * If there is non-resync activity waiting for a turn, then let it 2632 * though before starting on this new sync request. 2633 */ 2634 if (atomic_read(&conf->nr_waiting[idx])) 2635 schedule_timeout_uninterruptible(1); 2636 2637 /* we are incrementing sector_nr below. To be safe, we check against 2638 * sector_nr + two times RESYNC_SECTORS 2639 */ 2640 2641 bitmap_cond_end_sync(mddev->bitmap, sector_nr, 2642 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high)); 2643 r1_bio = raid1_alloc_init_r1buf(conf); 2644 2645 raise_barrier(conf, sector_nr); 2646 2647 rcu_read_lock(); 2648 /* 2649 * If we get a correctably read error during resync or recovery, 2650 * we might want to read from a different device. So we 2651 * flag all drives that could conceivably be read from for READ, 2652 * and any others (which will be non-In_sync devices) for WRITE. 2653 * If a read fails, we try reading from something else for which READ 2654 * is OK. 2655 */ 2656 2657 r1_bio->mddev = mddev; 2658 r1_bio->sector = sector_nr; 2659 r1_bio->state = 0; 2660 set_bit(R1BIO_IsSync, &r1_bio->state); 2661 /* make sure good_sectors won't go across barrier unit boundary */ 2662 good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors); 2663 2664 for (i = 0; i < conf->raid_disks * 2; i++) { 2665 struct md_rdev *rdev; 2666 bio = r1_bio->bios[i]; 2667 2668 rdev = rcu_dereference(conf->mirrors[i].rdev); 2669 if (rdev == NULL || 2670 test_bit(Faulty, &rdev->flags)) { 2671 if (i < conf->raid_disks) 2672 still_degraded = 1; 2673 } else if (!test_bit(In_sync, &rdev->flags)) { 2674 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 2675 bio->bi_end_io = end_sync_write; 2676 write_targets ++; 2677 } else { 2678 /* may need to read from here */ 2679 sector_t first_bad = MaxSector; 2680 int bad_sectors; 2681 2682 if (is_badblock(rdev, sector_nr, good_sectors, 2683 &first_bad, &bad_sectors)) { 2684 if (first_bad > sector_nr) 2685 good_sectors = first_bad - sector_nr; 2686 else { 2687 bad_sectors -= (sector_nr - first_bad); 2688 if (min_bad == 0 || 2689 min_bad > bad_sectors) 2690 min_bad = bad_sectors; 2691 } 2692 } 2693 if (sector_nr < first_bad) { 2694 if (test_bit(WriteMostly, &rdev->flags)) { 2695 if (wonly < 0) 2696 wonly = i; 2697 } else { 2698 if (disk < 0) 2699 disk = i; 2700 } 2701 bio_set_op_attrs(bio, REQ_OP_READ, 0); 2702 bio->bi_end_io = end_sync_read; 2703 read_targets++; 2704 } else if (!test_bit(WriteErrorSeen, &rdev->flags) && 2705 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 2706 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 2707 /* 2708 * The device is suitable for reading (InSync), 2709 * but has bad block(s) here. Let's try to correct them, 2710 * if we are doing resync or repair. Otherwise, leave 2711 * this device alone for this sync request. 2712 */ 2713 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 2714 bio->bi_end_io = end_sync_write; 2715 write_targets++; 2716 } 2717 } 2718 if (bio->bi_end_io) { 2719 atomic_inc(&rdev->nr_pending); 2720 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset; 2721 bio_set_dev(bio, rdev->bdev); 2722 if (test_bit(FailFast, &rdev->flags)) 2723 bio->bi_opf |= MD_FAILFAST; 2724 } 2725 } 2726 rcu_read_unlock(); 2727 if (disk < 0) 2728 disk = wonly; 2729 r1_bio->read_disk = disk; 2730 2731 if (read_targets == 0 && min_bad > 0) { 2732 /* These sectors are bad on all InSync devices, so we 2733 * need to mark them bad on all write targets 2734 */ 2735 int ok = 1; 2736 for (i = 0 ; i < conf->raid_disks * 2 ; i++) 2737 if (r1_bio->bios[i]->bi_end_io == end_sync_write) { 2738 struct md_rdev *rdev = conf->mirrors[i].rdev; 2739 ok = rdev_set_badblocks(rdev, sector_nr, 2740 min_bad, 0 2741 ) && ok; 2742 } 2743 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2744 *skipped = 1; 2745 put_buf(r1_bio); 2746 2747 if (!ok) { 2748 /* Cannot record the badblocks, so need to 2749 * abort the resync. 2750 * If there are multiple read targets, could just 2751 * fail the really bad ones ??? 2752 */ 2753 conf->recovery_disabled = mddev->recovery_disabled; 2754 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2755 return 0; 2756 } else 2757 return min_bad; 2758 2759 } 2760 if (min_bad > 0 && min_bad < good_sectors) { 2761 /* only resync enough to reach the next bad->good 2762 * transition */ 2763 good_sectors = min_bad; 2764 } 2765 2766 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0) 2767 /* extra read targets are also write targets */ 2768 write_targets += read_targets-1; 2769 2770 if (write_targets == 0 || read_targets == 0) { 2771 /* There is nowhere to write, so all non-sync 2772 * drives must be failed - so we are finished 2773 */ 2774 sector_t rv; 2775 if (min_bad > 0) 2776 max_sector = sector_nr + min_bad; 2777 rv = max_sector - sector_nr; 2778 *skipped = 1; 2779 put_buf(r1_bio); 2780 return rv; 2781 } 2782 2783 if (max_sector > mddev->resync_max) 2784 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 2785 if (max_sector > sector_nr + good_sectors) 2786 max_sector = sector_nr + good_sectors; 2787 nr_sectors = 0; 2788 sync_blocks = 0; 2789 do { 2790 struct page *page; 2791 int len = PAGE_SIZE; 2792 if (sector_nr + (len>>9) > max_sector) 2793 len = (max_sector - sector_nr) << 9; 2794 if (len == 0) 2795 break; 2796 if (sync_blocks == 0) { 2797 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 2798 &sync_blocks, still_degraded) && 2799 !conf->fullsync && 2800 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2801 break; 2802 if ((len >> 9) > sync_blocks) 2803 len = sync_blocks<<9; 2804 } 2805 2806 for (i = 0 ; i < conf->raid_disks * 2; i++) { 2807 struct resync_pages *rp; 2808 2809 bio = r1_bio->bios[i]; 2810 rp = get_resync_pages(bio); 2811 if (bio->bi_end_io) { 2812 page = resync_fetch_page(rp, page_idx); 2813 2814 /* 2815 * won't fail because the vec table is big 2816 * enough to hold all these pages 2817 */ 2818 bio_add_page(bio, page, len, 0); 2819 } 2820 } 2821 nr_sectors += len>>9; 2822 sector_nr += len>>9; 2823 sync_blocks -= (len>>9); 2824 } while (++page_idx < RESYNC_PAGES); 2825 2826 r1_bio->sectors = nr_sectors; 2827 2828 if (mddev_is_clustered(mddev) && 2829 conf->cluster_sync_high < sector_nr + nr_sectors) { 2830 conf->cluster_sync_low = mddev->curr_resync_completed; 2831 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS; 2832 /* Send resync message */ 2833 md_cluster_ops->resync_info_update(mddev, 2834 conf->cluster_sync_low, 2835 conf->cluster_sync_high); 2836 } 2837 2838 /* For a user-requested sync, we read all readable devices and do a 2839 * compare 2840 */ 2841 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2842 atomic_set(&r1_bio->remaining, read_targets); 2843 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) { 2844 bio = r1_bio->bios[i]; 2845 if (bio->bi_end_io == end_sync_read) { 2846 read_targets--; 2847 md_sync_acct_bio(bio, nr_sectors); 2848 if (read_targets == 1) 2849 bio->bi_opf &= ~MD_FAILFAST; 2850 generic_make_request(bio); 2851 } 2852 } 2853 } else { 2854 atomic_set(&r1_bio->remaining, 1); 2855 bio = r1_bio->bios[r1_bio->read_disk]; 2856 md_sync_acct_bio(bio, nr_sectors); 2857 if (read_targets == 1) 2858 bio->bi_opf &= ~MD_FAILFAST; 2859 generic_make_request(bio); 2860 2861 } 2862 return nr_sectors; 2863 } 2864 2865 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks) 2866 { 2867 if (sectors) 2868 return sectors; 2869 2870 return mddev->dev_sectors; 2871 } 2872 2873 static struct r1conf *setup_conf(struct mddev *mddev) 2874 { 2875 struct r1conf *conf; 2876 int i; 2877 struct raid1_info *disk; 2878 struct md_rdev *rdev; 2879 int err = -ENOMEM; 2880 2881 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL); 2882 if (!conf) 2883 goto abort; 2884 2885 conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR, 2886 sizeof(atomic_t), GFP_KERNEL); 2887 if (!conf->nr_pending) 2888 goto abort; 2889 2890 conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR, 2891 sizeof(atomic_t), GFP_KERNEL); 2892 if (!conf->nr_waiting) 2893 goto abort; 2894 2895 conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR, 2896 sizeof(atomic_t), GFP_KERNEL); 2897 if (!conf->nr_queued) 2898 goto abort; 2899 2900 conf->barrier = kcalloc(BARRIER_BUCKETS_NR, 2901 sizeof(atomic_t), GFP_KERNEL); 2902 if (!conf->barrier) 2903 goto abort; 2904 2905 conf->mirrors = kzalloc(sizeof(struct raid1_info) 2906 * mddev->raid_disks * 2, 2907 GFP_KERNEL); 2908 if (!conf->mirrors) 2909 goto abort; 2910 2911 conf->tmppage = alloc_page(GFP_KERNEL); 2912 if (!conf->tmppage) 2913 goto abort; 2914 2915 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL); 2916 if (!conf->poolinfo) 2917 goto abort; 2918 conf->poolinfo->raid_disks = mddev->raid_disks * 2; 2919 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 2920 r1bio_pool_free, 2921 conf->poolinfo); 2922 if (!conf->r1bio_pool) 2923 goto abort; 2924 2925 conf->bio_split = bioset_create(BIO_POOL_SIZE, 0, 0); 2926 if (!conf->bio_split) 2927 goto abort; 2928 2929 conf->poolinfo->mddev = mddev; 2930 2931 err = -EINVAL; 2932 spin_lock_init(&conf->device_lock); 2933 rdev_for_each(rdev, mddev) { 2934 int disk_idx = rdev->raid_disk; 2935 if (disk_idx >= mddev->raid_disks 2936 || disk_idx < 0) 2937 continue; 2938 if (test_bit(Replacement, &rdev->flags)) 2939 disk = conf->mirrors + mddev->raid_disks + disk_idx; 2940 else 2941 disk = conf->mirrors + disk_idx; 2942 2943 if (disk->rdev) 2944 goto abort; 2945 disk->rdev = rdev; 2946 disk->head_position = 0; 2947 disk->seq_start = MaxSector; 2948 } 2949 conf->raid_disks = mddev->raid_disks; 2950 conf->mddev = mddev; 2951 INIT_LIST_HEAD(&conf->retry_list); 2952 INIT_LIST_HEAD(&conf->bio_end_io_list); 2953 2954 spin_lock_init(&conf->resync_lock); 2955 init_waitqueue_head(&conf->wait_barrier); 2956 2957 bio_list_init(&conf->pending_bio_list); 2958 conf->pending_count = 0; 2959 conf->recovery_disabled = mddev->recovery_disabled - 1; 2960 2961 err = -EIO; 2962 for (i = 0; i < conf->raid_disks * 2; i++) { 2963 2964 disk = conf->mirrors + i; 2965 2966 if (i < conf->raid_disks && 2967 disk[conf->raid_disks].rdev) { 2968 /* This slot has a replacement. */ 2969 if (!disk->rdev) { 2970 /* No original, just make the replacement 2971 * a recovering spare 2972 */ 2973 disk->rdev = 2974 disk[conf->raid_disks].rdev; 2975 disk[conf->raid_disks].rdev = NULL; 2976 } else if (!test_bit(In_sync, &disk->rdev->flags)) 2977 /* Original is not in_sync - bad */ 2978 goto abort; 2979 } 2980 2981 if (!disk->rdev || 2982 !test_bit(In_sync, &disk->rdev->flags)) { 2983 disk->head_position = 0; 2984 if (disk->rdev && 2985 (disk->rdev->saved_raid_disk < 0)) 2986 conf->fullsync = 1; 2987 } 2988 } 2989 2990 err = -ENOMEM; 2991 conf->thread = md_register_thread(raid1d, mddev, "raid1"); 2992 if (!conf->thread) 2993 goto abort; 2994 2995 return conf; 2996 2997 abort: 2998 if (conf) { 2999 mempool_destroy(conf->r1bio_pool); 3000 kfree(conf->mirrors); 3001 safe_put_page(conf->tmppage); 3002 kfree(conf->poolinfo); 3003 kfree(conf->nr_pending); 3004 kfree(conf->nr_waiting); 3005 kfree(conf->nr_queued); 3006 kfree(conf->barrier); 3007 if (conf->bio_split) 3008 bioset_free(conf->bio_split); 3009 kfree(conf); 3010 } 3011 return ERR_PTR(err); 3012 } 3013 3014 static void raid1_free(struct mddev *mddev, void *priv); 3015 static int raid1_run(struct mddev *mddev) 3016 { 3017 struct r1conf *conf; 3018 int i; 3019 struct md_rdev *rdev; 3020 int ret; 3021 bool discard_supported = false; 3022 3023 if (mddev->level != 1) { 3024 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n", 3025 mdname(mddev), mddev->level); 3026 return -EIO; 3027 } 3028 if (mddev->reshape_position != MaxSector) { 3029 pr_warn("md/raid1:%s: reshape_position set but not supported\n", 3030 mdname(mddev)); 3031 return -EIO; 3032 } 3033 if (mddev_init_writes_pending(mddev) < 0) 3034 return -ENOMEM; 3035 /* 3036 * copy the already verified devices into our private RAID1 3037 * bookkeeping area. [whatever we allocate in run(), 3038 * should be freed in raid1_free()] 3039 */ 3040 if (mddev->private == NULL) 3041 conf = setup_conf(mddev); 3042 else 3043 conf = mddev->private; 3044 3045 if (IS_ERR(conf)) 3046 return PTR_ERR(conf); 3047 3048 if (mddev->queue) { 3049 blk_queue_max_write_same_sectors(mddev->queue, 0); 3050 blk_queue_max_write_zeroes_sectors(mddev->queue, 0); 3051 } 3052 3053 rdev_for_each(rdev, mddev) { 3054 if (!mddev->gendisk) 3055 continue; 3056 disk_stack_limits(mddev->gendisk, rdev->bdev, 3057 rdev->data_offset << 9); 3058 if (blk_queue_discard(bdev_get_queue(rdev->bdev))) 3059 discard_supported = true; 3060 } 3061 3062 mddev->degraded = 0; 3063 for (i=0; i < conf->raid_disks; i++) 3064 if (conf->mirrors[i].rdev == NULL || 3065 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) || 3066 test_bit(Faulty, &conf->mirrors[i].rdev->flags)) 3067 mddev->degraded++; 3068 3069 if (conf->raid_disks - mddev->degraded == 1) 3070 mddev->recovery_cp = MaxSector; 3071 3072 if (mddev->recovery_cp != MaxSector) 3073 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n", 3074 mdname(mddev)); 3075 pr_info("md/raid1:%s: active with %d out of %d mirrors\n", 3076 mdname(mddev), mddev->raid_disks - mddev->degraded, 3077 mddev->raid_disks); 3078 3079 /* 3080 * Ok, everything is just fine now 3081 */ 3082 mddev->thread = conf->thread; 3083 conf->thread = NULL; 3084 mddev->private = conf; 3085 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags); 3086 3087 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0)); 3088 3089 if (mddev->queue) { 3090 if (discard_supported) 3091 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, 3092 mddev->queue); 3093 else 3094 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, 3095 mddev->queue); 3096 } 3097 3098 ret = md_integrity_register(mddev); 3099 if (ret) { 3100 md_unregister_thread(&mddev->thread); 3101 raid1_free(mddev, conf); 3102 } 3103 return ret; 3104 } 3105 3106 static void raid1_free(struct mddev *mddev, void *priv) 3107 { 3108 struct r1conf *conf = priv; 3109 3110 mempool_destroy(conf->r1bio_pool); 3111 kfree(conf->mirrors); 3112 safe_put_page(conf->tmppage); 3113 kfree(conf->poolinfo); 3114 kfree(conf->nr_pending); 3115 kfree(conf->nr_waiting); 3116 kfree(conf->nr_queued); 3117 kfree(conf->barrier); 3118 if (conf->bio_split) 3119 bioset_free(conf->bio_split); 3120 kfree(conf); 3121 } 3122 3123 static int raid1_resize(struct mddev *mddev, sector_t sectors) 3124 { 3125 /* no resync is happening, and there is enough space 3126 * on all devices, so we can resize. 3127 * We need to make sure resync covers any new space. 3128 * If the array is shrinking we should possibly wait until 3129 * any io in the removed space completes, but it hardly seems 3130 * worth it. 3131 */ 3132 sector_t newsize = raid1_size(mddev, sectors, 0); 3133 if (mddev->external_size && 3134 mddev->array_sectors > newsize) 3135 return -EINVAL; 3136 if (mddev->bitmap) { 3137 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0); 3138 if (ret) 3139 return ret; 3140 } 3141 md_set_array_sectors(mddev, newsize); 3142 if (sectors > mddev->dev_sectors && 3143 mddev->recovery_cp > mddev->dev_sectors) { 3144 mddev->recovery_cp = mddev->dev_sectors; 3145 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3146 } 3147 mddev->dev_sectors = sectors; 3148 mddev->resync_max_sectors = sectors; 3149 return 0; 3150 } 3151 3152 static int raid1_reshape(struct mddev *mddev) 3153 { 3154 /* We need to: 3155 * 1/ resize the r1bio_pool 3156 * 2/ resize conf->mirrors 3157 * 3158 * We allocate a new r1bio_pool if we can. 3159 * Then raise a device barrier and wait until all IO stops. 3160 * Then resize conf->mirrors and swap in the new r1bio pool. 3161 * 3162 * At the same time, we "pack" the devices so that all the missing 3163 * devices have the higher raid_disk numbers. 3164 */ 3165 mempool_t *newpool, *oldpool; 3166 struct pool_info *newpoolinfo; 3167 struct raid1_info *newmirrors; 3168 struct r1conf *conf = mddev->private; 3169 int cnt, raid_disks; 3170 unsigned long flags; 3171 int d, d2; 3172 3173 /* Cannot change chunk_size, layout, or level */ 3174 if (mddev->chunk_sectors != mddev->new_chunk_sectors || 3175 mddev->layout != mddev->new_layout || 3176 mddev->level != mddev->new_level) { 3177 mddev->new_chunk_sectors = mddev->chunk_sectors; 3178 mddev->new_layout = mddev->layout; 3179 mddev->new_level = mddev->level; 3180 return -EINVAL; 3181 } 3182 3183 if (!mddev_is_clustered(mddev)) 3184 md_allow_write(mddev); 3185 3186 raid_disks = mddev->raid_disks + mddev->delta_disks; 3187 3188 if (raid_disks < conf->raid_disks) { 3189 cnt=0; 3190 for (d= 0; d < conf->raid_disks; d++) 3191 if (conf->mirrors[d].rdev) 3192 cnt++; 3193 if (cnt > raid_disks) 3194 return -EBUSY; 3195 } 3196 3197 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL); 3198 if (!newpoolinfo) 3199 return -ENOMEM; 3200 newpoolinfo->mddev = mddev; 3201 newpoolinfo->raid_disks = raid_disks * 2; 3202 3203 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 3204 r1bio_pool_free, newpoolinfo); 3205 if (!newpool) { 3206 kfree(newpoolinfo); 3207 return -ENOMEM; 3208 } 3209 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2, 3210 GFP_KERNEL); 3211 if (!newmirrors) { 3212 kfree(newpoolinfo); 3213 mempool_destroy(newpool); 3214 return -ENOMEM; 3215 } 3216 3217 freeze_array(conf, 0); 3218 3219 /* ok, everything is stopped */ 3220 oldpool = conf->r1bio_pool; 3221 conf->r1bio_pool = newpool; 3222 3223 for (d = d2 = 0; d < conf->raid_disks; d++) { 3224 struct md_rdev *rdev = conf->mirrors[d].rdev; 3225 if (rdev && rdev->raid_disk != d2) { 3226 sysfs_unlink_rdev(mddev, rdev); 3227 rdev->raid_disk = d2; 3228 sysfs_unlink_rdev(mddev, rdev); 3229 if (sysfs_link_rdev(mddev, rdev)) 3230 pr_warn("md/raid1:%s: cannot register rd%d\n", 3231 mdname(mddev), rdev->raid_disk); 3232 } 3233 if (rdev) 3234 newmirrors[d2++].rdev = rdev; 3235 } 3236 kfree(conf->mirrors); 3237 conf->mirrors = newmirrors; 3238 kfree(conf->poolinfo); 3239 conf->poolinfo = newpoolinfo; 3240 3241 spin_lock_irqsave(&conf->device_lock, flags); 3242 mddev->degraded += (raid_disks - conf->raid_disks); 3243 spin_unlock_irqrestore(&conf->device_lock, flags); 3244 conf->raid_disks = mddev->raid_disks = raid_disks; 3245 mddev->delta_disks = 0; 3246 3247 unfreeze_array(conf); 3248 3249 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 3250 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3251 md_wakeup_thread(mddev->thread); 3252 3253 mempool_destroy(oldpool); 3254 return 0; 3255 } 3256 3257 static void raid1_quiesce(struct mddev *mddev, int quiesce) 3258 { 3259 struct r1conf *conf = mddev->private; 3260 3261 if (quiesce) 3262 freeze_array(conf, 0); 3263 else 3264 unfreeze_array(conf); 3265 } 3266 3267 static void *raid1_takeover(struct mddev *mddev) 3268 { 3269 /* raid1 can take over: 3270 * raid5 with 2 devices, any layout or chunk size 3271 */ 3272 if (mddev->level == 5 && mddev->raid_disks == 2) { 3273 struct r1conf *conf; 3274 mddev->new_level = 1; 3275 mddev->new_layout = 0; 3276 mddev->new_chunk_sectors = 0; 3277 conf = setup_conf(mddev); 3278 if (!IS_ERR(conf)) { 3279 /* Array must appear to be quiesced */ 3280 conf->array_frozen = 1; 3281 mddev_clear_unsupported_flags(mddev, 3282 UNSUPPORTED_MDDEV_FLAGS); 3283 } 3284 return conf; 3285 } 3286 return ERR_PTR(-EINVAL); 3287 } 3288 3289 static struct md_personality raid1_personality = 3290 { 3291 .name = "raid1", 3292 .level = 1, 3293 .owner = THIS_MODULE, 3294 .make_request = raid1_make_request, 3295 .run = raid1_run, 3296 .free = raid1_free, 3297 .status = raid1_status, 3298 .error_handler = raid1_error, 3299 .hot_add_disk = raid1_add_disk, 3300 .hot_remove_disk= raid1_remove_disk, 3301 .spare_active = raid1_spare_active, 3302 .sync_request = raid1_sync_request, 3303 .resize = raid1_resize, 3304 .size = raid1_size, 3305 .check_reshape = raid1_reshape, 3306 .quiesce = raid1_quiesce, 3307 .takeover = raid1_takeover, 3308 .congested = raid1_congested, 3309 }; 3310 3311 static int __init raid_init(void) 3312 { 3313 return register_md_personality(&raid1_personality); 3314 } 3315 3316 static void raid_exit(void) 3317 { 3318 unregister_md_personality(&raid1_personality); 3319 } 3320 3321 module_init(raid_init); 3322 module_exit(raid_exit); 3323 MODULE_LICENSE("GPL"); 3324 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD"); 3325 MODULE_ALIAS("md-personality-3"); /* RAID1 */ 3326 MODULE_ALIAS("md-raid1"); 3327 MODULE_ALIAS("md-level-1"); 3328 3329 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); 3330