xref: /openbmc/linux/drivers/md/raid1.c (revision 4a3fad70)
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33 
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 
41 #include <trace/events/block.h>
42 
43 #include "md.h"
44 #include "raid1.h"
45 #include "md-bitmap.h"
46 
47 #define UNSUPPORTED_MDDEV_FLAGS		\
48 	((1L << MD_HAS_JOURNAL) |	\
49 	 (1L << MD_JOURNAL_CLEAN) |	\
50 	 (1L << MD_HAS_PPL) |		\
51 	 (1L << MD_HAS_MULTIPLE_PPLS))
52 
53 /*
54  * Number of guaranteed r1bios in case of extreme VM load:
55  */
56 #define	NR_RAID1_BIOS 256
57 
58 /* when we get a read error on a read-only array, we redirect to another
59  * device without failing the first device, or trying to over-write to
60  * correct the read error.  To keep track of bad blocks on a per-bio
61  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
62  */
63 #define IO_BLOCKED ((struct bio *)1)
64 /* When we successfully write to a known bad-block, we need to remove the
65  * bad-block marking which must be done from process context.  So we record
66  * the success by setting devs[n].bio to IO_MADE_GOOD
67  */
68 #define IO_MADE_GOOD ((struct bio *)2)
69 
70 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
71 
72 /* When there are this many requests queue to be written by
73  * the raid1 thread, we become 'congested' to provide back-pressure
74  * for writeback.
75  */
76 static int max_queued_requests = 1024;
77 
78 static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
79 static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
80 
81 #define raid1_log(md, fmt, args...)				\
82 	do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
83 
84 #include "raid1-10.c"
85 
86 /*
87  * for resync bio, r1bio pointer can be retrieved from the per-bio
88  * 'struct resync_pages'.
89  */
90 static inline struct r1bio *get_resync_r1bio(struct bio *bio)
91 {
92 	return get_resync_pages(bio)->raid_bio;
93 }
94 
95 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
96 {
97 	struct pool_info *pi = data;
98 	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
99 
100 	/* allocate a r1bio with room for raid_disks entries in the bios array */
101 	return kzalloc(size, gfp_flags);
102 }
103 
104 static void r1bio_pool_free(void *r1_bio, void *data)
105 {
106 	kfree(r1_bio);
107 }
108 
109 #define RESYNC_DEPTH 32
110 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
111 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
112 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
113 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
114 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
115 
116 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
117 {
118 	struct pool_info *pi = data;
119 	struct r1bio *r1_bio;
120 	struct bio *bio;
121 	int need_pages;
122 	int j;
123 	struct resync_pages *rps;
124 
125 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
126 	if (!r1_bio)
127 		return NULL;
128 
129 	rps = kmalloc(sizeof(struct resync_pages) * pi->raid_disks,
130 		      gfp_flags);
131 	if (!rps)
132 		goto out_free_r1bio;
133 
134 	/*
135 	 * Allocate bios : 1 for reading, n-1 for writing
136 	 */
137 	for (j = pi->raid_disks ; j-- ; ) {
138 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
139 		if (!bio)
140 			goto out_free_bio;
141 		r1_bio->bios[j] = bio;
142 	}
143 	/*
144 	 * Allocate RESYNC_PAGES data pages and attach them to
145 	 * the first bio.
146 	 * If this is a user-requested check/repair, allocate
147 	 * RESYNC_PAGES for each bio.
148 	 */
149 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
150 		need_pages = pi->raid_disks;
151 	else
152 		need_pages = 1;
153 	for (j = 0; j < pi->raid_disks; j++) {
154 		struct resync_pages *rp = &rps[j];
155 
156 		bio = r1_bio->bios[j];
157 
158 		if (j < need_pages) {
159 			if (resync_alloc_pages(rp, gfp_flags))
160 				goto out_free_pages;
161 		} else {
162 			memcpy(rp, &rps[0], sizeof(*rp));
163 			resync_get_all_pages(rp);
164 		}
165 
166 		rp->raid_bio = r1_bio;
167 		bio->bi_private = rp;
168 	}
169 
170 	r1_bio->master_bio = NULL;
171 
172 	return r1_bio;
173 
174 out_free_pages:
175 	while (--j >= 0)
176 		resync_free_pages(&rps[j]);
177 
178 out_free_bio:
179 	while (++j < pi->raid_disks)
180 		bio_put(r1_bio->bios[j]);
181 	kfree(rps);
182 
183 out_free_r1bio:
184 	r1bio_pool_free(r1_bio, data);
185 	return NULL;
186 }
187 
188 static void r1buf_pool_free(void *__r1_bio, void *data)
189 {
190 	struct pool_info *pi = data;
191 	int i;
192 	struct r1bio *r1bio = __r1_bio;
193 	struct resync_pages *rp = NULL;
194 
195 	for (i = pi->raid_disks; i--; ) {
196 		rp = get_resync_pages(r1bio->bios[i]);
197 		resync_free_pages(rp);
198 		bio_put(r1bio->bios[i]);
199 	}
200 
201 	/* resync pages array stored in the 1st bio's .bi_private */
202 	kfree(rp);
203 
204 	r1bio_pool_free(r1bio, data);
205 }
206 
207 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
208 {
209 	int i;
210 
211 	for (i = 0; i < conf->raid_disks * 2; i++) {
212 		struct bio **bio = r1_bio->bios + i;
213 		if (!BIO_SPECIAL(*bio))
214 			bio_put(*bio);
215 		*bio = NULL;
216 	}
217 }
218 
219 static void free_r1bio(struct r1bio *r1_bio)
220 {
221 	struct r1conf *conf = r1_bio->mddev->private;
222 
223 	put_all_bios(conf, r1_bio);
224 	mempool_free(r1_bio, conf->r1bio_pool);
225 }
226 
227 static void put_buf(struct r1bio *r1_bio)
228 {
229 	struct r1conf *conf = r1_bio->mddev->private;
230 	sector_t sect = r1_bio->sector;
231 	int i;
232 
233 	for (i = 0; i < conf->raid_disks * 2; i++) {
234 		struct bio *bio = r1_bio->bios[i];
235 		if (bio->bi_end_io)
236 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
237 	}
238 
239 	mempool_free(r1_bio, conf->r1buf_pool);
240 
241 	lower_barrier(conf, sect);
242 }
243 
244 static void reschedule_retry(struct r1bio *r1_bio)
245 {
246 	unsigned long flags;
247 	struct mddev *mddev = r1_bio->mddev;
248 	struct r1conf *conf = mddev->private;
249 	int idx;
250 
251 	idx = sector_to_idx(r1_bio->sector);
252 	spin_lock_irqsave(&conf->device_lock, flags);
253 	list_add(&r1_bio->retry_list, &conf->retry_list);
254 	atomic_inc(&conf->nr_queued[idx]);
255 	spin_unlock_irqrestore(&conf->device_lock, flags);
256 
257 	wake_up(&conf->wait_barrier);
258 	md_wakeup_thread(mddev->thread);
259 }
260 
261 /*
262  * raid_end_bio_io() is called when we have finished servicing a mirrored
263  * operation and are ready to return a success/failure code to the buffer
264  * cache layer.
265  */
266 static void call_bio_endio(struct r1bio *r1_bio)
267 {
268 	struct bio *bio = r1_bio->master_bio;
269 	struct r1conf *conf = r1_bio->mddev->private;
270 
271 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
272 		bio->bi_status = BLK_STS_IOERR;
273 
274 	bio_endio(bio);
275 	/*
276 	 * Wake up any possible resync thread that waits for the device
277 	 * to go idle.
278 	 */
279 	allow_barrier(conf, r1_bio->sector);
280 }
281 
282 static void raid_end_bio_io(struct r1bio *r1_bio)
283 {
284 	struct bio *bio = r1_bio->master_bio;
285 
286 	/* if nobody has done the final endio yet, do it now */
287 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
288 		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
289 			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
290 			 (unsigned long long) bio->bi_iter.bi_sector,
291 			 (unsigned long long) bio_end_sector(bio) - 1);
292 
293 		call_bio_endio(r1_bio);
294 	}
295 	free_r1bio(r1_bio);
296 }
297 
298 /*
299  * Update disk head position estimator based on IRQ completion info.
300  */
301 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
302 {
303 	struct r1conf *conf = r1_bio->mddev->private;
304 
305 	conf->mirrors[disk].head_position =
306 		r1_bio->sector + (r1_bio->sectors);
307 }
308 
309 /*
310  * Find the disk number which triggered given bio
311  */
312 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
313 {
314 	int mirror;
315 	struct r1conf *conf = r1_bio->mddev->private;
316 	int raid_disks = conf->raid_disks;
317 
318 	for (mirror = 0; mirror < raid_disks * 2; mirror++)
319 		if (r1_bio->bios[mirror] == bio)
320 			break;
321 
322 	BUG_ON(mirror == raid_disks * 2);
323 	update_head_pos(mirror, r1_bio);
324 
325 	return mirror;
326 }
327 
328 static void raid1_end_read_request(struct bio *bio)
329 {
330 	int uptodate = !bio->bi_status;
331 	struct r1bio *r1_bio = bio->bi_private;
332 	struct r1conf *conf = r1_bio->mddev->private;
333 	struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
334 
335 	/*
336 	 * this branch is our 'one mirror IO has finished' event handler:
337 	 */
338 	update_head_pos(r1_bio->read_disk, r1_bio);
339 
340 	if (uptodate)
341 		set_bit(R1BIO_Uptodate, &r1_bio->state);
342 	else if (test_bit(FailFast, &rdev->flags) &&
343 		 test_bit(R1BIO_FailFast, &r1_bio->state))
344 		/* This was a fail-fast read so we definitely
345 		 * want to retry */
346 		;
347 	else {
348 		/* If all other devices have failed, we want to return
349 		 * the error upwards rather than fail the last device.
350 		 * Here we redefine "uptodate" to mean "Don't want to retry"
351 		 */
352 		unsigned long flags;
353 		spin_lock_irqsave(&conf->device_lock, flags);
354 		if (r1_bio->mddev->degraded == conf->raid_disks ||
355 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
356 		     test_bit(In_sync, &rdev->flags)))
357 			uptodate = 1;
358 		spin_unlock_irqrestore(&conf->device_lock, flags);
359 	}
360 
361 	if (uptodate) {
362 		raid_end_bio_io(r1_bio);
363 		rdev_dec_pending(rdev, conf->mddev);
364 	} else {
365 		/*
366 		 * oops, read error:
367 		 */
368 		char b[BDEVNAME_SIZE];
369 		pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
370 				   mdname(conf->mddev),
371 				   bdevname(rdev->bdev, b),
372 				   (unsigned long long)r1_bio->sector);
373 		set_bit(R1BIO_ReadError, &r1_bio->state);
374 		reschedule_retry(r1_bio);
375 		/* don't drop the reference on read_disk yet */
376 	}
377 }
378 
379 static void close_write(struct r1bio *r1_bio)
380 {
381 	/* it really is the end of this request */
382 	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
383 		bio_free_pages(r1_bio->behind_master_bio);
384 		bio_put(r1_bio->behind_master_bio);
385 		r1_bio->behind_master_bio = NULL;
386 	}
387 	/* clear the bitmap if all writes complete successfully */
388 	bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
389 			r1_bio->sectors,
390 			!test_bit(R1BIO_Degraded, &r1_bio->state),
391 			test_bit(R1BIO_BehindIO, &r1_bio->state));
392 	md_write_end(r1_bio->mddev);
393 }
394 
395 static void r1_bio_write_done(struct r1bio *r1_bio)
396 {
397 	if (!atomic_dec_and_test(&r1_bio->remaining))
398 		return;
399 
400 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
401 		reschedule_retry(r1_bio);
402 	else {
403 		close_write(r1_bio);
404 		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
405 			reschedule_retry(r1_bio);
406 		else
407 			raid_end_bio_io(r1_bio);
408 	}
409 }
410 
411 static void raid1_end_write_request(struct bio *bio)
412 {
413 	struct r1bio *r1_bio = bio->bi_private;
414 	int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
415 	struct r1conf *conf = r1_bio->mddev->private;
416 	struct bio *to_put = NULL;
417 	int mirror = find_bio_disk(r1_bio, bio);
418 	struct md_rdev *rdev = conf->mirrors[mirror].rdev;
419 	bool discard_error;
420 
421 	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
422 
423 	/*
424 	 * 'one mirror IO has finished' event handler:
425 	 */
426 	if (bio->bi_status && !discard_error) {
427 		set_bit(WriteErrorSeen,	&rdev->flags);
428 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
429 			set_bit(MD_RECOVERY_NEEDED, &
430 				conf->mddev->recovery);
431 
432 		if (test_bit(FailFast, &rdev->flags) &&
433 		    (bio->bi_opf & MD_FAILFAST) &&
434 		    /* We never try FailFast to WriteMostly devices */
435 		    !test_bit(WriteMostly, &rdev->flags)) {
436 			md_error(r1_bio->mddev, rdev);
437 			if (!test_bit(Faulty, &rdev->flags))
438 				/* This is the only remaining device,
439 				 * We need to retry the write without
440 				 * FailFast
441 				 */
442 				set_bit(R1BIO_WriteError, &r1_bio->state);
443 			else {
444 				/* Finished with this branch */
445 				r1_bio->bios[mirror] = NULL;
446 				to_put = bio;
447 			}
448 		} else
449 			set_bit(R1BIO_WriteError, &r1_bio->state);
450 	} else {
451 		/*
452 		 * Set R1BIO_Uptodate in our master bio, so that we
453 		 * will return a good error code for to the higher
454 		 * levels even if IO on some other mirrored buffer
455 		 * fails.
456 		 *
457 		 * The 'master' represents the composite IO operation
458 		 * to user-side. So if something waits for IO, then it
459 		 * will wait for the 'master' bio.
460 		 */
461 		sector_t first_bad;
462 		int bad_sectors;
463 
464 		r1_bio->bios[mirror] = NULL;
465 		to_put = bio;
466 		/*
467 		 * Do not set R1BIO_Uptodate if the current device is
468 		 * rebuilding or Faulty. This is because we cannot use
469 		 * such device for properly reading the data back (we could
470 		 * potentially use it, if the current write would have felt
471 		 * before rdev->recovery_offset, but for simplicity we don't
472 		 * check this here.
473 		 */
474 		if (test_bit(In_sync, &rdev->flags) &&
475 		    !test_bit(Faulty, &rdev->flags))
476 			set_bit(R1BIO_Uptodate, &r1_bio->state);
477 
478 		/* Maybe we can clear some bad blocks. */
479 		if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
480 				&first_bad, &bad_sectors) && !discard_error) {
481 			r1_bio->bios[mirror] = IO_MADE_GOOD;
482 			set_bit(R1BIO_MadeGood, &r1_bio->state);
483 		}
484 	}
485 
486 	if (behind) {
487 		if (test_bit(WriteMostly, &rdev->flags))
488 			atomic_dec(&r1_bio->behind_remaining);
489 
490 		/*
491 		 * In behind mode, we ACK the master bio once the I/O
492 		 * has safely reached all non-writemostly
493 		 * disks. Setting the Returned bit ensures that this
494 		 * gets done only once -- we don't ever want to return
495 		 * -EIO here, instead we'll wait
496 		 */
497 		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
498 		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
499 			/* Maybe we can return now */
500 			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
501 				struct bio *mbio = r1_bio->master_bio;
502 				pr_debug("raid1: behind end write sectors"
503 					 " %llu-%llu\n",
504 					 (unsigned long long) mbio->bi_iter.bi_sector,
505 					 (unsigned long long) bio_end_sector(mbio) - 1);
506 				call_bio_endio(r1_bio);
507 			}
508 		}
509 	}
510 	if (r1_bio->bios[mirror] == NULL)
511 		rdev_dec_pending(rdev, conf->mddev);
512 
513 	/*
514 	 * Let's see if all mirrored write operations have finished
515 	 * already.
516 	 */
517 	r1_bio_write_done(r1_bio);
518 
519 	if (to_put)
520 		bio_put(to_put);
521 }
522 
523 static sector_t align_to_barrier_unit_end(sector_t start_sector,
524 					  sector_t sectors)
525 {
526 	sector_t len;
527 
528 	WARN_ON(sectors == 0);
529 	/*
530 	 * len is the number of sectors from start_sector to end of the
531 	 * barrier unit which start_sector belongs to.
532 	 */
533 	len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
534 	      start_sector;
535 
536 	if (len > sectors)
537 		len = sectors;
538 
539 	return len;
540 }
541 
542 /*
543  * This routine returns the disk from which the requested read should
544  * be done. There is a per-array 'next expected sequential IO' sector
545  * number - if this matches on the next IO then we use the last disk.
546  * There is also a per-disk 'last know head position' sector that is
547  * maintained from IRQ contexts, both the normal and the resync IO
548  * completion handlers update this position correctly. If there is no
549  * perfect sequential match then we pick the disk whose head is closest.
550  *
551  * If there are 2 mirrors in the same 2 devices, performance degrades
552  * because position is mirror, not device based.
553  *
554  * The rdev for the device selected will have nr_pending incremented.
555  */
556 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
557 {
558 	const sector_t this_sector = r1_bio->sector;
559 	int sectors;
560 	int best_good_sectors;
561 	int best_disk, best_dist_disk, best_pending_disk;
562 	int has_nonrot_disk;
563 	int disk;
564 	sector_t best_dist;
565 	unsigned int min_pending;
566 	struct md_rdev *rdev;
567 	int choose_first;
568 	int choose_next_idle;
569 
570 	rcu_read_lock();
571 	/*
572 	 * Check if we can balance. We can balance on the whole
573 	 * device if no resync is going on, or below the resync window.
574 	 * We take the first readable disk when above the resync window.
575 	 */
576  retry:
577 	sectors = r1_bio->sectors;
578 	best_disk = -1;
579 	best_dist_disk = -1;
580 	best_dist = MaxSector;
581 	best_pending_disk = -1;
582 	min_pending = UINT_MAX;
583 	best_good_sectors = 0;
584 	has_nonrot_disk = 0;
585 	choose_next_idle = 0;
586 	clear_bit(R1BIO_FailFast, &r1_bio->state);
587 
588 	if ((conf->mddev->recovery_cp < this_sector + sectors) ||
589 	    (mddev_is_clustered(conf->mddev) &&
590 	    md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
591 		    this_sector + sectors)))
592 		choose_first = 1;
593 	else
594 		choose_first = 0;
595 
596 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
597 		sector_t dist;
598 		sector_t first_bad;
599 		int bad_sectors;
600 		unsigned int pending;
601 		bool nonrot;
602 
603 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
604 		if (r1_bio->bios[disk] == IO_BLOCKED
605 		    || rdev == NULL
606 		    || test_bit(Faulty, &rdev->flags))
607 			continue;
608 		if (!test_bit(In_sync, &rdev->flags) &&
609 		    rdev->recovery_offset < this_sector + sectors)
610 			continue;
611 		if (test_bit(WriteMostly, &rdev->flags)) {
612 			/* Don't balance among write-mostly, just
613 			 * use the first as a last resort */
614 			if (best_dist_disk < 0) {
615 				if (is_badblock(rdev, this_sector, sectors,
616 						&first_bad, &bad_sectors)) {
617 					if (first_bad <= this_sector)
618 						/* Cannot use this */
619 						continue;
620 					best_good_sectors = first_bad - this_sector;
621 				} else
622 					best_good_sectors = sectors;
623 				best_dist_disk = disk;
624 				best_pending_disk = disk;
625 			}
626 			continue;
627 		}
628 		/* This is a reasonable device to use.  It might
629 		 * even be best.
630 		 */
631 		if (is_badblock(rdev, this_sector, sectors,
632 				&first_bad, &bad_sectors)) {
633 			if (best_dist < MaxSector)
634 				/* already have a better device */
635 				continue;
636 			if (first_bad <= this_sector) {
637 				/* cannot read here. If this is the 'primary'
638 				 * device, then we must not read beyond
639 				 * bad_sectors from another device..
640 				 */
641 				bad_sectors -= (this_sector - first_bad);
642 				if (choose_first && sectors > bad_sectors)
643 					sectors = bad_sectors;
644 				if (best_good_sectors > sectors)
645 					best_good_sectors = sectors;
646 
647 			} else {
648 				sector_t good_sectors = first_bad - this_sector;
649 				if (good_sectors > best_good_sectors) {
650 					best_good_sectors = good_sectors;
651 					best_disk = disk;
652 				}
653 				if (choose_first)
654 					break;
655 			}
656 			continue;
657 		} else {
658 			if ((sectors > best_good_sectors) && (best_disk >= 0))
659 				best_disk = -1;
660 			best_good_sectors = sectors;
661 		}
662 
663 		if (best_disk >= 0)
664 			/* At least two disks to choose from so failfast is OK */
665 			set_bit(R1BIO_FailFast, &r1_bio->state);
666 
667 		nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
668 		has_nonrot_disk |= nonrot;
669 		pending = atomic_read(&rdev->nr_pending);
670 		dist = abs(this_sector - conf->mirrors[disk].head_position);
671 		if (choose_first) {
672 			best_disk = disk;
673 			break;
674 		}
675 		/* Don't change to another disk for sequential reads */
676 		if (conf->mirrors[disk].next_seq_sect == this_sector
677 		    || dist == 0) {
678 			int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
679 			struct raid1_info *mirror = &conf->mirrors[disk];
680 
681 			best_disk = disk;
682 			/*
683 			 * If buffered sequential IO size exceeds optimal
684 			 * iosize, check if there is idle disk. If yes, choose
685 			 * the idle disk. read_balance could already choose an
686 			 * idle disk before noticing it's a sequential IO in
687 			 * this disk. This doesn't matter because this disk
688 			 * will idle, next time it will be utilized after the
689 			 * first disk has IO size exceeds optimal iosize. In
690 			 * this way, iosize of the first disk will be optimal
691 			 * iosize at least. iosize of the second disk might be
692 			 * small, but not a big deal since when the second disk
693 			 * starts IO, the first disk is likely still busy.
694 			 */
695 			if (nonrot && opt_iosize > 0 &&
696 			    mirror->seq_start != MaxSector &&
697 			    mirror->next_seq_sect > opt_iosize &&
698 			    mirror->next_seq_sect - opt_iosize >=
699 			    mirror->seq_start) {
700 				choose_next_idle = 1;
701 				continue;
702 			}
703 			break;
704 		}
705 
706 		if (choose_next_idle)
707 			continue;
708 
709 		if (min_pending > pending) {
710 			min_pending = pending;
711 			best_pending_disk = disk;
712 		}
713 
714 		if (dist < best_dist) {
715 			best_dist = dist;
716 			best_dist_disk = disk;
717 		}
718 	}
719 
720 	/*
721 	 * If all disks are rotational, choose the closest disk. If any disk is
722 	 * non-rotational, choose the disk with less pending request even the
723 	 * disk is rotational, which might/might not be optimal for raids with
724 	 * mixed ratation/non-rotational disks depending on workload.
725 	 */
726 	if (best_disk == -1) {
727 		if (has_nonrot_disk || min_pending == 0)
728 			best_disk = best_pending_disk;
729 		else
730 			best_disk = best_dist_disk;
731 	}
732 
733 	if (best_disk >= 0) {
734 		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
735 		if (!rdev)
736 			goto retry;
737 		atomic_inc(&rdev->nr_pending);
738 		sectors = best_good_sectors;
739 
740 		if (conf->mirrors[best_disk].next_seq_sect != this_sector)
741 			conf->mirrors[best_disk].seq_start = this_sector;
742 
743 		conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
744 	}
745 	rcu_read_unlock();
746 	*max_sectors = sectors;
747 
748 	return best_disk;
749 }
750 
751 static int raid1_congested(struct mddev *mddev, int bits)
752 {
753 	struct r1conf *conf = mddev->private;
754 	int i, ret = 0;
755 
756 	if ((bits & (1 << WB_async_congested)) &&
757 	    conf->pending_count >= max_queued_requests)
758 		return 1;
759 
760 	rcu_read_lock();
761 	for (i = 0; i < conf->raid_disks * 2; i++) {
762 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
763 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
764 			struct request_queue *q = bdev_get_queue(rdev->bdev);
765 
766 			BUG_ON(!q);
767 
768 			/* Note the '|| 1' - when read_balance prefers
769 			 * non-congested targets, it can be removed
770 			 */
771 			if ((bits & (1 << WB_async_congested)) || 1)
772 				ret |= bdi_congested(q->backing_dev_info, bits);
773 			else
774 				ret &= bdi_congested(q->backing_dev_info, bits);
775 		}
776 	}
777 	rcu_read_unlock();
778 	return ret;
779 }
780 
781 static void flush_bio_list(struct r1conf *conf, struct bio *bio)
782 {
783 	/* flush any pending bitmap writes to disk before proceeding w/ I/O */
784 	bitmap_unplug(conf->mddev->bitmap);
785 	wake_up(&conf->wait_barrier);
786 
787 	while (bio) { /* submit pending writes */
788 		struct bio *next = bio->bi_next;
789 		struct md_rdev *rdev = (void *)bio->bi_disk;
790 		bio->bi_next = NULL;
791 		bio_set_dev(bio, rdev->bdev);
792 		if (test_bit(Faulty, &rdev->flags)) {
793 			bio_io_error(bio);
794 		} else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
795 				    !blk_queue_discard(bio->bi_disk->queue)))
796 			/* Just ignore it */
797 			bio_endio(bio);
798 		else
799 			generic_make_request(bio);
800 		bio = next;
801 	}
802 }
803 
804 static void flush_pending_writes(struct r1conf *conf)
805 {
806 	/* Any writes that have been queued but are awaiting
807 	 * bitmap updates get flushed here.
808 	 */
809 	spin_lock_irq(&conf->device_lock);
810 
811 	if (conf->pending_bio_list.head) {
812 		struct blk_plug plug;
813 		struct bio *bio;
814 
815 		bio = bio_list_get(&conf->pending_bio_list);
816 		conf->pending_count = 0;
817 		spin_unlock_irq(&conf->device_lock);
818 		blk_start_plug(&plug);
819 		flush_bio_list(conf, bio);
820 		blk_finish_plug(&plug);
821 	} else
822 		spin_unlock_irq(&conf->device_lock);
823 }
824 
825 /* Barriers....
826  * Sometimes we need to suspend IO while we do something else,
827  * either some resync/recovery, or reconfigure the array.
828  * To do this we raise a 'barrier'.
829  * The 'barrier' is a counter that can be raised multiple times
830  * to count how many activities are happening which preclude
831  * normal IO.
832  * We can only raise the barrier if there is no pending IO.
833  * i.e. if nr_pending == 0.
834  * We choose only to raise the barrier if no-one is waiting for the
835  * barrier to go down.  This means that as soon as an IO request
836  * is ready, no other operations which require a barrier will start
837  * until the IO request has had a chance.
838  *
839  * So: regular IO calls 'wait_barrier'.  When that returns there
840  *    is no backgroup IO happening,  It must arrange to call
841  *    allow_barrier when it has finished its IO.
842  * backgroup IO calls must call raise_barrier.  Once that returns
843  *    there is no normal IO happeing.  It must arrange to call
844  *    lower_barrier when the particular background IO completes.
845  */
846 static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
847 {
848 	int idx = sector_to_idx(sector_nr);
849 
850 	spin_lock_irq(&conf->resync_lock);
851 
852 	/* Wait until no block IO is waiting */
853 	wait_event_lock_irq(conf->wait_barrier,
854 			    !atomic_read(&conf->nr_waiting[idx]),
855 			    conf->resync_lock);
856 
857 	/* block any new IO from starting */
858 	atomic_inc(&conf->barrier[idx]);
859 	/*
860 	 * In raise_barrier() we firstly increase conf->barrier[idx] then
861 	 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
862 	 * increase conf->nr_pending[idx] then check conf->barrier[idx].
863 	 * A memory barrier here to make sure conf->nr_pending[idx] won't
864 	 * be fetched before conf->barrier[idx] is increased. Otherwise
865 	 * there will be a race between raise_barrier() and _wait_barrier().
866 	 */
867 	smp_mb__after_atomic();
868 
869 	/* For these conditions we must wait:
870 	 * A: while the array is in frozen state
871 	 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
872 	 *    existing in corresponding I/O barrier bucket.
873 	 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
874 	 *    max resync count which allowed on current I/O barrier bucket.
875 	 */
876 	wait_event_lock_irq(conf->wait_barrier,
877 			    !conf->array_frozen &&
878 			     !atomic_read(&conf->nr_pending[idx]) &&
879 			     atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH,
880 			    conf->resync_lock);
881 
882 	atomic_inc(&conf->nr_sync_pending);
883 	spin_unlock_irq(&conf->resync_lock);
884 }
885 
886 static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
887 {
888 	int idx = sector_to_idx(sector_nr);
889 
890 	BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
891 
892 	atomic_dec(&conf->barrier[idx]);
893 	atomic_dec(&conf->nr_sync_pending);
894 	wake_up(&conf->wait_barrier);
895 }
896 
897 static void _wait_barrier(struct r1conf *conf, int idx)
898 {
899 	/*
900 	 * We need to increase conf->nr_pending[idx] very early here,
901 	 * then raise_barrier() can be blocked when it waits for
902 	 * conf->nr_pending[idx] to be 0. Then we can avoid holding
903 	 * conf->resync_lock when there is no barrier raised in same
904 	 * barrier unit bucket. Also if the array is frozen, I/O
905 	 * should be blocked until array is unfrozen.
906 	 */
907 	atomic_inc(&conf->nr_pending[idx]);
908 	/*
909 	 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
910 	 * check conf->barrier[idx]. In raise_barrier() we firstly increase
911 	 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
912 	 * barrier is necessary here to make sure conf->barrier[idx] won't be
913 	 * fetched before conf->nr_pending[idx] is increased. Otherwise there
914 	 * will be a race between _wait_barrier() and raise_barrier().
915 	 */
916 	smp_mb__after_atomic();
917 
918 	/*
919 	 * Don't worry about checking two atomic_t variables at same time
920 	 * here. If during we check conf->barrier[idx], the array is
921 	 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
922 	 * 0, it is safe to return and make the I/O continue. Because the
923 	 * array is frozen, all I/O returned here will eventually complete
924 	 * or be queued, no race will happen. See code comment in
925 	 * frozen_array().
926 	 */
927 	if (!READ_ONCE(conf->array_frozen) &&
928 	    !atomic_read(&conf->barrier[idx]))
929 		return;
930 
931 	/*
932 	 * After holding conf->resync_lock, conf->nr_pending[idx]
933 	 * should be decreased before waiting for barrier to drop.
934 	 * Otherwise, we may encounter a race condition because
935 	 * raise_barrer() might be waiting for conf->nr_pending[idx]
936 	 * to be 0 at same time.
937 	 */
938 	spin_lock_irq(&conf->resync_lock);
939 	atomic_inc(&conf->nr_waiting[idx]);
940 	atomic_dec(&conf->nr_pending[idx]);
941 	/*
942 	 * In case freeze_array() is waiting for
943 	 * get_unqueued_pending() == extra
944 	 */
945 	wake_up(&conf->wait_barrier);
946 	/* Wait for the barrier in same barrier unit bucket to drop. */
947 	wait_event_lock_irq(conf->wait_barrier,
948 			    !conf->array_frozen &&
949 			     !atomic_read(&conf->barrier[idx]),
950 			    conf->resync_lock);
951 	atomic_inc(&conf->nr_pending[idx]);
952 	atomic_dec(&conf->nr_waiting[idx]);
953 	spin_unlock_irq(&conf->resync_lock);
954 }
955 
956 static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
957 {
958 	int idx = sector_to_idx(sector_nr);
959 
960 	/*
961 	 * Very similar to _wait_barrier(). The difference is, for read
962 	 * I/O we don't need wait for sync I/O, but if the whole array
963 	 * is frozen, the read I/O still has to wait until the array is
964 	 * unfrozen. Since there is no ordering requirement with
965 	 * conf->barrier[idx] here, memory barrier is unnecessary as well.
966 	 */
967 	atomic_inc(&conf->nr_pending[idx]);
968 
969 	if (!READ_ONCE(conf->array_frozen))
970 		return;
971 
972 	spin_lock_irq(&conf->resync_lock);
973 	atomic_inc(&conf->nr_waiting[idx]);
974 	atomic_dec(&conf->nr_pending[idx]);
975 	/*
976 	 * In case freeze_array() is waiting for
977 	 * get_unqueued_pending() == extra
978 	 */
979 	wake_up(&conf->wait_barrier);
980 	/* Wait for array to be unfrozen */
981 	wait_event_lock_irq(conf->wait_barrier,
982 			    !conf->array_frozen,
983 			    conf->resync_lock);
984 	atomic_inc(&conf->nr_pending[idx]);
985 	atomic_dec(&conf->nr_waiting[idx]);
986 	spin_unlock_irq(&conf->resync_lock);
987 }
988 
989 static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
990 {
991 	int idx = sector_to_idx(sector_nr);
992 
993 	_wait_barrier(conf, idx);
994 }
995 
996 static void _allow_barrier(struct r1conf *conf, int idx)
997 {
998 	atomic_dec(&conf->nr_pending[idx]);
999 	wake_up(&conf->wait_barrier);
1000 }
1001 
1002 static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1003 {
1004 	int idx = sector_to_idx(sector_nr);
1005 
1006 	_allow_barrier(conf, idx);
1007 }
1008 
1009 /* conf->resync_lock should be held */
1010 static int get_unqueued_pending(struct r1conf *conf)
1011 {
1012 	int idx, ret;
1013 
1014 	ret = atomic_read(&conf->nr_sync_pending);
1015 	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1016 		ret += atomic_read(&conf->nr_pending[idx]) -
1017 			atomic_read(&conf->nr_queued[idx]);
1018 
1019 	return ret;
1020 }
1021 
1022 static void freeze_array(struct r1conf *conf, int extra)
1023 {
1024 	/* Stop sync I/O and normal I/O and wait for everything to
1025 	 * go quiet.
1026 	 * This is called in two situations:
1027 	 * 1) management command handlers (reshape, remove disk, quiesce).
1028 	 * 2) one normal I/O request failed.
1029 
1030 	 * After array_frozen is set to 1, new sync IO will be blocked at
1031 	 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1032 	 * or wait_read_barrier(). The flying I/Os will either complete or be
1033 	 * queued. When everything goes quite, there are only queued I/Os left.
1034 
1035 	 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1036 	 * barrier bucket index which this I/O request hits. When all sync and
1037 	 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1038 	 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1039 	 * in handle_read_error(), we may call freeze_array() before trying to
1040 	 * fix the read error. In this case, the error read I/O is not queued,
1041 	 * so get_unqueued_pending() == 1.
1042 	 *
1043 	 * Therefore before this function returns, we need to wait until
1044 	 * get_unqueued_pendings(conf) gets equal to extra. For
1045 	 * normal I/O context, extra is 1, in rested situations extra is 0.
1046 	 */
1047 	spin_lock_irq(&conf->resync_lock);
1048 	conf->array_frozen = 1;
1049 	raid1_log(conf->mddev, "wait freeze");
1050 	wait_event_lock_irq_cmd(
1051 		conf->wait_barrier,
1052 		get_unqueued_pending(conf) == extra,
1053 		conf->resync_lock,
1054 		flush_pending_writes(conf));
1055 	spin_unlock_irq(&conf->resync_lock);
1056 }
1057 static void unfreeze_array(struct r1conf *conf)
1058 {
1059 	/* reverse the effect of the freeze */
1060 	spin_lock_irq(&conf->resync_lock);
1061 	conf->array_frozen = 0;
1062 	spin_unlock_irq(&conf->resync_lock);
1063 	wake_up(&conf->wait_barrier);
1064 }
1065 
1066 static void alloc_behind_master_bio(struct r1bio *r1_bio,
1067 					   struct bio *bio)
1068 {
1069 	int size = bio->bi_iter.bi_size;
1070 	unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1071 	int i = 0;
1072 	struct bio *behind_bio = NULL;
1073 
1074 	behind_bio = bio_alloc_mddev(GFP_NOIO, vcnt, r1_bio->mddev);
1075 	if (!behind_bio)
1076 		return;
1077 
1078 	/* discard op, we don't support writezero/writesame yet */
1079 	if (!bio_has_data(bio)) {
1080 		behind_bio->bi_iter.bi_size = size;
1081 		goto skip_copy;
1082 	}
1083 
1084 	while (i < vcnt && size) {
1085 		struct page *page;
1086 		int len = min_t(int, PAGE_SIZE, size);
1087 
1088 		page = alloc_page(GFP_NOIO);
1089 		if (unlikely(!page))
1090 			goto free_pages;
1091 
1092 		bio_add_page(behind_bio, page, len, 0);
1093 
1094 		size -= len;
1095 		i++;
1096 	}
1097 
1098 	bio_copy_data(behind_bio, bio);
1099 skip_copy:
1100 	r1_bio->behind_master_bio = behind_bio;;
1101 	set_bit(R1BIO_BehindIO, &r1_bio->state);
1102 
1103 	return;
1104 
1105 free_pages:
1106 	pr_debug("%dB behind alloc failed, doing sync I/O\n",
1107 		 bio->bi_iter.bi_size);
1108 	bio_free_pages(behind_bio);
1109 	bio_put(behind_bio);
1110 }
1111 
1112 struct raid1_plug_cb {
1113 	struct blk_plug_cb	cb;
1114 	struct bio_list		pending;
1115 	int			pending_cnt;
1116 };
1117 
1118 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1119 {
1120 	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1121 						  cb);
1122 	struct mddev *mddev = plug->cb.data;
1123 	struct r1conf *conf = mddev->private;
1124 	struct bio *bio;
1125 
1126 	if (from_schedule || current->bio_list) {
1127 		spin_lock_irq(&conf->device_lock);
1128 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1129 		conf->pending_count += plug->pending_cnt;
1130 		spin_unlock_irq(&conf->device_lock);
1131 		wake_up(&conf->wait_barrier);
1132 		md_wakeup_thread(mddev->thread);
1133 		kfree(plug);
1134 		return;
1135 	}
1136 
1137 	/* we aren't scheduling, so we can do the write-out directly. */
1138 	bio = bio_list_get(&plug->pending);
1139 	flush_bio_list(conf, bio);
1140 	kfree(plug);
1141 }
1142 
1143 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1144 {
1145 	r1_bio->master_bio = bio;
1146 	r1_bio->sectors = bio_sectors(bio);
1147 	r1_bio->state = 0;
1148 	r1_bio->mddev = mddev;
1149 	r1_bio->sector = bio->bi_iter.bi_sector;
1150 }
1151 
1152 static inline struct r1bio *
1153 alloc_r1bio(struct mddev *mddev, struct bio *bio)
1154 {
1155 	struct r1conf *conf = mddev->private;
1156 	struct r1bio *r1_bio;
1157 
1158 	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1159 	/* Ensure no bio records IO_BLOCKED */
1160 	memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1161 	init_r1bio(r1_bio, mddev, bio);
1162 	return r1_bio;
1163 }
1164 
1165 static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1166 			       int max_read_sectors, struct r1bio *r1_bio)
1167 {
1168 	struct r1conf *conf = mddev->private;
1169 	struct raid1_info *mirror;
1170 	struct bio *read_bio;
1171 	struct bitmap *bitmap = mddev->bitmap;
1172 	const int op = bio_op(bio);
1173 	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1174 	int max_sectors;
1175 	int rdisk;
1176 	bool print_msg = !!r1_bio;
1177 	char b[BDEVNAME_SIZE];
1178 
1179 	/*
1180 	 * If r1_bio is set, we are blocking the raid1d thread
1181 	 * so there is a tiny risk of deadlock.  So ask for
1182 	 * emergency memory if needed.
1183 	 */
1184 	gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1185 
1186 	if (print_msg) {
1187 		/* Need to get the block device name carefully */
1188 		struct md_rdev *rdev;
1189 		rcu_read_lock();
1190 		rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1191 		if (rdev)
1192 			bdevname(rdev->bdev, b);
1193 		else
1194 			strcpy(b, "???");
1195 		rcu_read_unlock();
1196 	}
1197 
1198 	/*
1199 	 * Still need barrier for READ in case that whole
1200 	 * array is frozen.
1201 	 */
1202 	wait_read_barrier(conf, bio->bi_iter.bi_sector);
1203 
1204 	if (!r1_bio)
1205 		r1_bio = alloc_r1bio(mddev, bio);
1206 	else
1207 		init_r1bio(r1_bio, mddev, bio);
1208 	r1_bio->sectors = max_read_sectors;
1209 
1210 	/*
1211 	 * make_request() can abort the operation when read-ahead is being
1212 	 * used and no empty request is available.
1213 	 */
1214 	rdisk = read_balance(conf, r1_bio, &max_sectors);
1215 
1216 	if (rdisk < 0) {
1217 		/* couldn't find anywhere to read from */
1218 		if (print_msg) {
1219 			pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1220 					    mdname(mddev),
1221 					    b,
1222 					    (unsigned long long)r1_bio->sector);
1223 		}
1224 		raid_end_bio_io(r1_bio);
1225 		return;
1226 	}
1227 	mirror = conf->mirrors + rdisk;
1228 
1229 	if (print_msg)
1230 		pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
1231 				    mdname(mddev),
1232 				    (unsigned long long)r1_bio->sector,
1233 				    bdevname(mirror->rdev->bdev, b));
1234 
1235 	if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1236 	    bitmap) {
1237 		/*
1238 		 * Reading from a write-mostly device must take care not to
1239 		 * over-take any writes that are 'behind'
1240 		 */
1241 		raid1_log(mddev, "wait behind writes");
1242 		wait_event(bitmap->behind_wait,
1243 			   atomic_read(&bitmap->behind_writes) == 0);
1244 	}
1245 
1246 	if (max_sectors < bio_sectors(bio)) {
1247 		struct bio *split = bio_split(bio, max_sectors,
1248 					      gfp, conf->bio_split);
1249 		bio_chain(split, bio);
1250 		generic_make_request(bio);
1251 		bio = split;
1252 		r1_bio->master_bio = bio;
1253 		r1_bio->sectors = max_sectors;
1254 	}
1255 
1256 	r1_bio->read_disk = rdisk;
1257 
1258 	read_bio = bio_clone_fast(bio, gfp, mddev->bio_set);
1259 
1260 	r1_bio->bios[rdisk] = read_bio;
1261 
1262 	read_bio->bi_iter.bi_sector = r1_bio->sector +
1263 		mirror->rdev->data_offset;
1264 	bio_set_dev(read_bio, mirror->rdev->bdev);
1265 	read_bio->bi_end_io = raid1_end_read_request;
1266 	bio_set_op_attrs(read_bio, op, do_sync);
1267 	if (test_bit(FailFast, &mirror->rdev->flags) &&
1268 	    test_bit(R1BIO_FailFast, &r1_bio->state))
1269 	        read_bio->bi_opf |= MD_FAILFAST;
1270 	read_bio->bi_private = r1_bio;
1271 
1272 	if (mddev->gendisk)
1273 	        trace_block_bio_remap(read_bio->bi_disk->queue, read_bio,
1274 				disk_devt(mddev->gendisk), r1_bio->sector);
1275 
1276 	generic_make_request(read_bio);
1277 }
1278 
1279 static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1280 				int max_write_sectors)
1281 {
1282 	struct r1conf *conf = mddev->private;
1283 	struct r1bio *r1_bio;
1284 	int i, disks;
1285 	struct bitmap *bitmap = mddev->bitmap;
1286 	unsigned long flags;
1287 	struct md_rdev *blocked_rdev;
1288 	struct blk_plug_cb *cb;
1289 	struct raid1_plug_cb *plug = NULL;
1290 	int first_clone;
1291 	int max_sectors;
1292 
1293 	if (mddev_is_clustered(mddev) &&
1294 	     md_cluster_ops->area_resyncing(mddev, WRITE,
1295 		     bio->bi_iter.bi_sector, bio_end_sector(bio))) {
1296 
1297 		DEFINE_WAIT(w);
1298 		for (;;) {
1299 			prepare_to_wait(&conf->wait_barrier,
1300 					&w, TASK_IDLE);
1301 			if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1302 							bio->bi_iter.bi_sector,
1303 							bio_end_sector(bio)))
1304 				break;
1305 			schedule();
1306 		}
1307 		finish_wait(&conf->wait_barrier, &w);
1308 	}
1309 
1310 	/*
1311 	 * Register the new request and wait if the reconstruction
1312 	 * thread has put up a bar for new requests.
1313 	 * Continue immediately if no resync is active currently.
1314 	 */
1315 	wait_barrier(conf, bio->bi_iter.bi_sector);
1316 
1317 	r1_bio = alloc_r1bio(mddev, bio);
1318 	r1_bio->sectors = max_write_sectors;
1319 
1320 	if (conf->pending_count >= max_queued_requests) {
1321 		md_wakeup_thread(mddev->thread);
1322 		raid1_log(mddev, "wait queued");
1323 		wait_event(conf->wait_barrier,
1324 			   conf->pending_count < max_queued_requests);
1325 	}
1326 	/* first select target devices under rcu_lock and
1327 	 * inc refcount on their rdev.  Record them by setting
1328 	 * bios[x] to bio
1329 	 * If there are known/acknowledged bad blocks on any device on
1330 	 * which we have seen a write error, we want to avoid writing those
1331 	 * blocks.
1332 	 * This potentially requires several writes to write around
1333 	 * the bad blocks.  Each set of writes gets it's own r1bio
1334 	 * with a set of bios attached.
1335 	 */
1336 
1337 	disks = conf->raid_disks * 2;
1338  retry_write:
1339 	blocked_rdev = NULL;
1340 	rcu_read_lock();
1341 	max_sectors = r1_bio->sectors;
1342 	for (i = 0;  i < disks; i++) {
1343 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1344 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1345 			atomic_inc(&rdev->nr_pending);
1346 			blocked_rdev = rdev;
1347 			break;
1348 		}
1349 		r1_bio->bios[i] = NULL;
1350 		if (!rdev || test_bit(Faulty, &rdev->flags)) {
1351 			if (i < conf->raid_disks)
1352 				set_bit(R1BIO_Degraded, &r1_bio->state);
1353 			continue;
1354 		}
1355 
1356 		atomic_inc(&rdev->nr_pending);
1357 		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1358 			sector_t first_bad;
1359 			int bad_sectors;
1360 			int is_bad;
1361 
1362 			is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1363 					     &first_bad, &bad_sectors);
1364 			if (is_bad < 0) {
1365 				/* mustn't write here until the bad block is
1366 				 * acknowledged*/
1367 				set_bit(BlockedBadBlocks, &rdev->flags);
1368 				blocked_rdev = rdev;
1369 				break;
1370 			}
1371 			if (is_bad && first_bad <= r1_bio->sector) {
1372 				/* Cannot write here at all */
1373 				bad_sectors -= (r1_bio->sector - first_bad);
1374 				if (bad_sectors < max_sectors)
1375 					/* mustn't write more than bad_sectors
1376 					 * to other devices yet
1377 					 */
1378 					max_sectors = bad_sectors;
1379 				rdev_dec_pending(rdev, mddev);
1380 				/* We don't set R1BIO_Degraded as that
1381 				 * only applies if the disk is
1382 				 * missing, so it might be re-added,
1383 				 * and we want to know to recover this
1384 				 * chunk.
1385 				 * In this case the device is here,
1386 				 * and the fact that this chunk is not
1387 				 * in-sync is recorded in the bad
1388 				 * block log
1389 				 */
1390 				continue;
1391 			}
1392 			if (is_bad) {
1393 				int good_sectors = first_bad - r1_bio->sector;
1394 				if (good_sectors < max_sectors)
1395 					max_sectors = good_sectors;
1396 			}
1397 		}
1398 		r1_bio->bios[i] = bio;
1399 	}
1400 	rcu_read_unlock();
1401 
1402 	if (unlikely(blocked_rdev)) {
1403 		/* Wait for this device to become unblocked */
1404 		int j;
1405 
1406 		for (j = 0; j < i; j++)
1407 			if (r1_bio->bios[j])
1408 				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1409 		r1_bio->state = 0;
1410 		allow_barrier(conf, bio->bi_iter.bi_sector);
1411 		raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1412 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1413 		wait_barrier(conf, bio->bi_iter.bi_sector);
1414 		goto retry_write;
1415 	}
1416 
1417 	if (max_sectors < bio_sectors(bio)) {
1418 		struct bio *split = bio_split(bio, max_sectors,
1419 					      GFP_NOIO, conf->bio_split);
1420 		bio_chain(split, bio);
1421 		generic_make_request(bio);
1422 		bio = split;
1423 		r1_bio->master_bio = bio;
1424 		r1_bio->sectors = max_sectors;
1425 	}
1426 
1427 	atomic_set(&r1_bio->remaining, 1);
1428 	atomic_set(&r1_bio->behind_remaining, 0);
1429 
1430 	first_clone = 1;
1431 
1432 	for (i = 0; i < disks; i++) {
1433 		struct bio *mbio = NULL;
1434 		if (!r1_bio->bios[i])
1435 			continue;
1436 
1437 
1438 		if (first_clone) {
1439 			/* do behind I/O ?
1440 			 * Not if there are too many, or cannot
1441 			 * allocate memory, or a reader on WriteMostly
1442 			 * is waiting for behind writes to flush */
1443 			if (bitmap &&
1444 			    (atomic_read(&bitmap->behind_writes)
1445 			     < mddev->bitmap_info.max_write_behind) &&
1446 			    !waitqueue_active(&bitmap->behind_wait)) {
1447 				alloc_behind_master_bio(r1_bio, bio);
1448 			}
1449 
1450 			bitmap_startwrite(bitmap, r1_bio->sector,
1451 					  r1_bio->sectors,
1452 					  test_bit(R1BIO_BehindIO,
1453 						   &r1_bio->state));
1454 			first_clone = 0;
1455 		}
1456 
1457 		if (r1_bio->behind_master_bio)
1458 			mbio = bio_clone_fast(r1_bio->behind_master_bio,
1459 					      GFP_NOIO, mddev->bio_set);
1460 		else
1461 			mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
1462 
1463 		if (r1_bio->behind_master_bio) {
1464 			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1465 				atomic_inc(&r1_bio->behind_remaining);
1466 		}
1467 
1468 		r1_bio->bios[i] = mbio;
1469 
1470 		mbio->bi_iter.bi_sector	= (r1_bio->sector +
1471 				   conf->mirrors[i].rdev->data_offset);
1472 		bio_set_dev(mbio, conf->mirrors[i].rdev->bdev);
1473 		mbio->bi_end_io	= raid1_end_write_request;
1474 		mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1475 		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1476 		    !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1477 		    conf->raid_disks - mddev->degraded > 1)
1478 			mbio->bi_opf |= MD_FAILFAST;
1479 		mbio->bi_private = r1_bio;
1480 
1481 		atomic_inc(&r1_bio->remaining);
1482 
1483 		if (mddev->gendisk)
1484 			trace_block_bio_remap(mbio->bi_disk->queue,
1485 					      mbio, disk_devt(mddev->gendisk),
1486 					      r1_bio->sector);
1487 		/* flush_pending_writes() needs access to the rdev so...*/
1488 		mbio->bi_disk = (void *)conf->mirrors[i].rdev;
1489 
1490 		cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1491 		if (cb)
1492 			plug = container_of(cb, struct raid1_plug_cb, cb);
1493 		else
1494 			plug = NULL;
1495 		if (plug) {
1496 			bio_list_add(&plug->pending, mbio);
1497 			plug->pending_cnt++;
1498 		} else {
1499 			spin_lock_irqsave(&conf->device_lock, flags);
1500 			bio_list_add(&conf->pending_bio_list, mbio);
1501 			conf->pending_count++;
1502 			spin_unlock_irqrestore(&conf->device_lock, flags);
1503 			md_wakeup_thread(mddev->thread);
1504 		}
1505 	}
1506 
1507 	r1_bio_write_done(r1_bio);
1508 
1509 	/* In case raid1d snuck in to freeze_array */
1510 	wake_up(&conf->wait_barrier);
1511 }
1512 
1513 static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1514 {
1515 	sector_t sectors;
1516 
1517 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1518 		md_flush_request(mddev, bio);
1519 		return true;
1520 	}
1521 
1522 	/*
1523 	 * There is a limit to the maximum size, but
1524 	 * the read/write handler might find a lower limit
1525 	 * due to bad blocks.  To avoid multiple splits,
1526 	 * we pass the maximum number of sectors down
1527 	 * and let the lower level perform the split.
1528 	 */
1529 	sectors = align_to_barrier_unit_end(
1530 		bio->bi_iter.bi_sector, bio_sectors(bio));
1531 
1532 	if (bio_data_dir(bio) == READ)
1533 		raid1_read_request(mddev, bio, sectors, NULL);
1534 	else {
1535 		if (!md_write_start(mddev,bio))
1536 			return false;
1537 		raid1_write_request(mddev, bio, sectors);
1538 	}
1539 	return true;
1540 }
1541 
1542 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1543 {
1544 	struct r1conf *conf = mddev->private;
1545 	int i;
1546 
1547 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1548 		   conf->raid_disks - mddev->degraded);
1549 	rcu_read_lock();
1550 	for (i = 0; i < conf->raid_disks; i++) {
1551 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1552 		seq_printf(seq, "%s",
1553 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1554 	}
1555 	rcu_read_unlock();
1556 	seq_printf(seq, "]");
1557 }
1558 
1559 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1560 {
1561 	char b[BDEVNAME_SIZE];
1562 	struct r1conf *conf = mddev->private;
1563 	unsigned long flags;
1564 
1565 	/*
1566 	 * If it is not operational, then we have already marked it as dead
1567 	 * else if it is the last working disks, ignore the error, let the
1568 	 * next level up know.
1569 	 * else mark the drive as failed
1570 	 */
1571 	spin_lock_irqsave(&conf->device_lock, flags);
1572 	if (test_bit(In_sync, &rdev->flags)
1573 	    && (conf->raid_disks - mddev->degraded) == 1) {
1574 		/*
1575 		 * Don't fail the drive, act as though we were just a
1576 		 * normal single drive.
1577 		 * However don't try a recovery from this drive as
1578 		 * it is very likely to fail.
1579 		 */
1580 		conf->recovery_disabled = mddev->recovery_disabled;
1581 		spin_unlock_irqrestore(&conf->device_lock, flags);
1582 		return;
1583 	}
1584 	set_bit(Blocked, &rdev->flags);
1585 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1586 		mddev->degraded++;
1587 		set_bit(Faulty, &rdev->flags);
1588 	} else
1589 		set_bit(Faulty, &rdev->flags);
1590 	spin_unlock_irqrestore(&conf->device_lock, flags);
1591 	/*
1592 	 * if recovery is running, make sure it aborts.
1593 	 */
1594 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1595 	set_mask_bits(&mddev->sb_flags, 0,
1596 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1597 	pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1598 		"md/raid1:%s: Operation continuing on %d devices.\n",
1599 		mdname(mddev), bdevname(rdev->bdev, b),
1600 		mdname(mddev), conf->raid_disks - mddev->degraded);
1601 }
1602 
1603 static void print_conf(struct r1conf *conf)
1604 {
1605 	int i;
1606 
1607 	pr_debug("RAID1 conf printout:\n");
1608 	if (!conf) {
1609 		pr_debug("(!conf)\n");
1610 		return;
1611 	}
1612 	pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1613 		 conf->raid_disks);
1614 
1615 	rcu_read_lock();
1616 	for (i = 0; i < conf->raid_disks; i++) {
1617 		char b[BDEVNAME_SIZE];
1618 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1619 		if (rdev)
1620 			pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1621 				 i, !test_bit(In_sync, &rdev->flags),
1622 				 !test_bit(Faulty, &rdev->flags),
1623 				 bdevname(rdev->bdev,b));
1624 	}
1625 	rcu_read_unlock();
1626 }
1627 
1628 static void close_sync(struct r1conf *conf)
1629 {
1630 	int idx;
1631 
1632 	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1633 		_wait_barrier(conf, idx);
1634 		_allow_barrier(conf, idx);
1635 	}
1636 
1637 	mempool_destroy(conf->r1buf_pool);
1638 	conf->r1buf_pool = NULL;
1639 }
1640 
1641 static int raid1_spare_active(struct mddev *mddev)
1642 {
1643 	int i;
1644 	struct r1conf *conf = mddev->private;
1645 	int count = 0;
1646 	unsigned long flags;
1647 
1648 	/*
1649 	 * Find all failed disks within the RAID1 configuration
1650 	 * and mark them readable.
1651 	 * Called under mddev lock, so rcu protection not needed.
1652 	 * device_lock used to avoid races with raid1_end_read_request
1653 	 * which expects 'In_sync' flags and ->degraded to be consistent.
1654 	 */
1655 	spin_lock_irqsave(&conf->device_lock, flags);
1656 	for (i = 0; i < conf->raid_disks; i++) {
1657 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1658 		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1659 		if (repl
1660 		    && !test_bit(Candidate, &repl->flags)
1661 		    && repl->recovery_offset == MaxSector
1662 		    && !test_bit(Faulty, &repl->flags)
1663 		    && !test_and_set_bit(In_sync, &repl->flags)) {
1664 			/* replacement has just become active */
1665 			if (!rdev ||
1666 			    !test_and_clear_bit(In_sync, &rdev->flags))
1667 				count++;
1668 			if (rdev) {
1669 				/* Replaced device not technically
1670 				 * faulty, but we need to be sure
1671 				 * it gets removed and never re-added
1672 				 */
1673 				set_bit(Faulty, &rdev->flags);
1674 				sysfs_notify_dirent_safe(
1675 					rdev->sysfs_state);
1676 			}
1677 		}
1678 		if (rdev
1679 		    && rdev->recovery_offset == MaxSector
1680 		    && !test_bit(Faulty, &rdev->flags)
1681 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1682 			count++;
1683 			sysfs_notify_dirent_safe(rdev->sysfs_state);
1684 		}
1685 	}
1686 	mddev->degraded -= count;
1687 	spin_unlock_irqrestore(&conf->device_lock, flags);
1688 
1689 	print_conf(conf);
1690 	return count;
1691 }
1692 
1693 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1694 {
1695 	struct r1conf *conf = mddev->private;
1696 	int err = -EEXIST;
1697 	int mirror = 0;
1698 	struct raid1_info *p;
1699 	int first = 0;
1700 	int last = conf->raid_disks - 1;
1701 
1702 	if (mddev->recovery_disabled == conf->recovery_disabled)
1703 		return -EBUSY;
1704 
1705 	if (md_integrity_add_rdev(rdev, mddev))
1706 		return -ENXIO;
1707 
1708 	if (rdev->raid_disk >= 0)
1709 		first = last = rdev->raid_disk;
1710 
1711 	/*
1712 	 * find the disk ... but prefer rdev->saved_raid_disk
1713 	 * if possible.
1714 	 */
1715 	if (rdev->saved_raid_disk >= 0 &&
1716 	    rdev->saved_raid_disk >= first &&
1717 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1718 		first = last = rdev->saved_raid_disk;
1719 
1720 	for (mirror = first; mirror <= last; mirror++) {
1721 		p = conf->mirrors+mirror;
1722 		if (!p->rdev) {
1723 
1724 			if (mddev->gendisk)
1725 				disk_stack_limits(mddev->gendisk, rdev->bdev,
1726 						  rdev->data_offset << 9);
1727 
1728 			p->head_position = 0;
1729 			rdev->raid_disk = mirror;
1730 			err = 0;
1731 			/* As all devices are equivalent, we don't need a full recovery
1732 			 * if this was recently any drive of the array
1733 			 */
1734 			if (rdev->saved_raid_disk < 0)
1735 				conf->fullsync = 1;
1736 			rcu_assign_pointer(p->rdev, rdev);
1737 			break;
1738 		}
1739 		if (test_bit(WantReplacement, &p->rdev->flags) &&
1740 		    p[conf->raid_disks].rdev == NULL) {
1741 			/* Add this device as a replacement */
1742 			clear_bit(In_sync, &rdev->flags);
1743 			set_bit(Replacement, &rdev->flags);
1744 			rdev->raid_disk = mirror;
1745 			err = 0;
1746 			conf->fullsync = 1;
1747 			rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1748 			break;
1749 		}
1750 	}
1751 	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1752 		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1753 	print_conf(conf);
1754 	return err;
1755 }
1756 
1757 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1758 {
1759 	struct r1conf *conf = mddev->private;
1760 	int err = 0;
1761 	int number = rdev->raid_disk;
1762 	struct raid1_info *p = conf->mirrors + number;
1763 
1764 	if (rdev != p->rdev)
1765 		p = conf->mirrors + conf->raid_disks + number;
1766 
1767 	print_conf(conf);
1768 	if (rdev == p->rdev) {
1769 		if (test_bit(In_sync, &rdev->flags) ||
1770 		    atomic_read(&rdev->nr_pending)) {
1771 			err = -EBUSY;
1772 			goto abort;
1773 		}
1774 		/* Only remove non-faulty devices if recovery
1775 		 * is not possible.
1776 		 */
1777 		if (!test_bit(Faulty, &rdev->flags) &&
1778 		    mddev->recovery_disabled != conf->recovery_disabled &&
1779 		    mddev->degraded < conf->raid_disks) {
1780 			err = -EBUSY;
1781 			goto abort;
1782 		}
1783 		p->rdev = NULL;
1784 		if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1785 			synchronize_rcu();
1786 			if (atomic_read(&rdev->nr_pending)) {
1787 				/* lost the race, try later */
1788 				err = -EBUSY;
1789 				p->rdev = rdev;
1790 				goto abort;
1791 			}
1792 		}
1793 		if (conf->mirrors[conf->raid_disks + number].rdev) {
1794 			/* We just removed a device that is being replaced.
1795 			 * Move down the replacement.  We drain all IO before
1796 			 * doing this to avoid confusion.
1797 			 */
1798 			struct md_rdev *repl =
1799 				conf->mirrors[conf->raid_disks + number].rdev;
1800 			freeze_array(conf, 0);
1801 			clear_bit(Replacement, &repl->flags);
1802 			p->rdev = repl;
1803 			conf->mirrors[conf->raid_disks + number].rdev = NULL;
1804 			unfreeze_array(conf);
1805 		}
1806 
1807 		clear_bit(WantReplacement, &rdev->flags);
1808 		err = md_integrity_register(mddev);
1809 	}
1810 abort:
1811 
1812 	print_conf(conf);
1813 	return err;
1814 }
1815 
1816 static void end_sync_read(struct bio *bio)
1817 {
1818 	struct r1bio *r1_bio = get_resync_r1bio(bio);
1819 
1820 	update_head_pos(r1_bio->read_disk, r1_bio);
1821 
1822 	/*
1823 	 * we have read a block, now it needs to be re-written,
1824 	 * or re-read if the read failed.
1825 	 * We don't do much here, just schedule handling by raid1d
1826 	 */
1827 	if (!bio->bi_status)
1828 		set_bit(R1BIO_Uptodate, &r1_bio->state);
1829 
1830 	if (atomic_dec_and_test(&r1_bio->remaining))
1831 		reschedule_retry(r1_bio);
1832 }
1833 
1834 static void end_sync_write(struct bio *bio)
1835 {
1836 	int uptodate = !bio->bi_status;
1837 	struct r1bio *r1_bio = get_resync_r1bio(bio);
1838 	struct mddev *mddev = r1_bio->mddev;
1839 	struct r1conf *conf = mddev->private;
1840 	sector_t first_bad;
1841 	int bad_sectors;
1842 	struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1843 
1844 	if (!uptodate) {
1845 		sector_t sync_blocks = 0;
1846 		sector_t s = r1_bio->sector;
1847 		long sectors_to_go = r1_bio->sectors;
1848 		/* make sure these bits doesn't get cleared. */
1849 		do {
1850 			bitmap_end_sync(mddev->bitmap, s,
1851 					&sync_blocks, 1);
1852 			s += sync_blocks;
1853 			sectors_to_go -= sync_blocks;
1854 		} while (sectors_to_go > 0);
1855 		set_bit(WriteErrorSeen, &rdev->flags);
1856 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
1857 			set_bit(MD_RECOVERY_NEEDED, &
1858 				mddev->recovery);
1859 		set_bit(R1BIO_WriteError, &r1_bio->state);
1860 	} else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1861 			       &first_bad, &bad_sectors) &&
1862 		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1863 				r1_bio->sector,
1864 				r1_bio->sectors,
1865 				&first_bad, &bad_sectors)
1866 		)
1867 		set_bit(R1BIO_MadeGood, &r1_bio->state);
1868 
1869 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1870 		int s = r1_bio->sectors;
1871 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1872 		    test_bit(R1BIO_WriteError, &r1_bio->state))
1873 			reschedule_retry(r1_bio);
1874 		else {
1875 			put_buf(r1_bio);
1876 			md_done_sync(mddev, s, uptodate);
1877 		}
1878 	}
1879 }
1880 
1881 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1882 			    int sectors, struct page *page, int rw)
1883 {
1884 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1885 		/* success */
1886 		return 1;
1887 	if (rw == WRITE) {
1888 		set_bit(WriteErrorSeen, &rdev->flags);
1889 		if (!test_and_set_bit(WantReplacement,
1890 				      &rdev->flags))
1891 			set_bit(MD_RECOVERY_NEEDED, &
1892 				rdev->mddev->recovery);
1893 	}
1894 	/* need to record an error - either for the block or the device */
1895 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1896 		md_error(rdev->mddev, rdev);
1897 	return 0;
1898 }
1899 
1900 static int fix_sync_read_error(struct r1bio *r1_bio)
1901 {
1902 	/* Try some synchronous reads of other devices to get
1903 	 * good data, much like with normal read errors.  Only
1904 	 * read into the pages we already have so we don't
1905 	 * need to re-issue the read request.
1906 	 * We don't need to freeze the array, because being in an
1907 	 * active sync request, there is no normal IO, and
1908 	 * no overlapping syncs.
1909 	 * We don't need to check is_badblock() again as we
1910 	 * made sure that anything with a bad block in range
1911 	 * will have bi_end_io clear.
1912 	 */
1913 	struct mddev *mddev = r1_bio->mddev;
1914 	struct r1conf *conf = mddev->private;
1915 	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1916 	struct page **pages = get_resync_pages(bio)->pages;
1917 	sector_t sect = r1_bio->sector;
1918 	int sectors = r1_bio->sectors;
1919 	int idx = 0;
1920 	struct md_rdev *rdev;
1921 
1922 	rdev = conf->mirrors[r1_bio->read_disk].rdev;
1923 	if (test_bit(FailFast, &rdev->flags)) {
1924 		/* Don't try recovering from here - just fail it
1925 		 * ... unless it is the last working device of course */
1926 		md_error(mddev, rdev);
1927 		if (test_bit(Faulty, &rdev->flags))
1928 			/* Don't try to read from here, but make sure
1929 			 * put_buf does it's thing
1930 			 */
1931 			bio->bi_end_io = end_sync_write;
1932 	}
1933 
1934 	while(sectors) {
1935 		int s = sectors;
1936 		int d = r1_bio->read_disk;
1937 		int success = 0;
1938 		int start;
1939 
1940 		if (s > (PAGE_SIZE>>9))
1941 			s = PAGE_SIZE >> 9;
1942 		do {
1943 			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1944 				/* No rcu protection needed here devices
1945 				 * can only be removed when no resync is
1946 				 * active, and resync is currently active
1947 				 */
1948 				rdev = conf->mirrors[d].rdev;
1949 				if (sync_page_io(rdev, sect, s<<9,
1950 						 pages[idx],
1951 						 REQ_OP_READ, 0, false)) {
1952 					success = 1;
1953 					break;
1954 				}
1955 			}
1956 			d++;
1957 			if (d == conf->raid_disks * 2)
1958 				d = 0;
1959 		} while (!success && d != r1_bio->read_disk);
1960 
1961 		if (!success) {
1962 			char b[BDEVNAME_SIZE];
1963 			int abort = 0;
1964 			/* Cannot read from anywhere, this block is lost.
1965 			 * Record a bad block on each device.  If that doesn't
1966 			 * work just disable and interrupt the recovery.
1967 			 * Don't fail devices as that won't really help.
1968 			 */
1969 			pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1970 					    mdname(mddev), bio_devname(bio, b),
1971 					    (unsigned long long)r1_bio->sector);
1972 			for (d = 0; d < conf->raid_disks * 2; d++) {
1973 				rdev = conf->mirrors[d].rdev;
1974 				if (!rdev || test_bit(Faulty, &rdev->flags))
1975 					continue;
1976 				if (!rdev_set_badblocks(rdev, sect, s, 0))
1977 					abort = 1;
1978 			}
1979 			if (abort) {
1980 				conf->recovery_disabled =
1981 					mddev->recovery_disabled;
1982 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1983 				md_done_sync(mddev, r1_bio->sectors, 0);
1984 				put_buf(r1_bio);
1985 				return 0;
1986 			}
1987 			/* Try next page */
1988 			sectors -= s;
1989 			sect += s;
1990 			idx++;
1991 			continue;
1992 		}
1993 
1994 		start = d;
1995 		/* write it back and re-read */
1996 		while (d != r1_bio->read_disk) {
1997 			if (d == 0)
1998 				d = conf->raid_disks * 2;
1999 			d--;
2000 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2001 				continue;
2002 			rdev = conf->mirrors[d].rdev;
2003 			if (r1_sync_page_io(rdev, sect, s,
2004 					    pages[idx],
2005 					    WRITE) == 0) {
2006 				r1_bio->bios[d]->bi_end_io = NULL;
2007 				rdev_dec_pending(rdev, mddev);
2008 			}
2009 		}
2010 		d = start;
2011 		while (d != r1_bio->read_disk) {
2012 			if (d == 0)
2013 				d = conf->raid_disks * 2;
2014 			d--;
2015 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2016 				continue;
2017 			rdev = conf->mirrors[d].rdev;
2018 			if (r1_sync_page_io(rdev, sect, s,
2019 					    pages[idx],
2020 					    READ) != 0)
2021 				atomic_add(s, &rdev->corrected_errors);
2022 		}
2023 		sectors -= s;
2024 		sect += s;
2025 		idx ++;
2026 	}
2027 	set_bit(R1BIO_Uptodate, &r1_bio->state);
2028 	bio->bi_status = 0;
2029 	return 1;
2030 }
2031 
2032 static void process_checks(struct r1bio *r1_bio)
2033 {
2034 	/* We have read all readable devices.  If we haven't
2035 	 * got the block, then there is no hope left.
2036 	 * If we have, then we want to do a comparison
2037 	 * and skip the write if everything is the same.
2038 	 * If any blocks failed to read, then we need to
2039 	 * attempt an over-write
2040 	 */
2041 	struct mddev *mddev = r1_bio->mddev;
2042 	struct r1conf *conf = mddev->private;
2043 	int primary;
2044 	int i;
2045 	int vcnt;
2046 
2047 	/* Fix variable parts of all bios */
2048 	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2049 	for (i = 0; i < conf->raid_disks * 2; i++) {
2050 		blk_status_t status;
2051 		struct bio *b = r1_bio->bios[i];
2052 		struct resync_pages *rp = get_resync_pages(b);
2053 		if (b->bi_end_io != end_sync_read)
2054 			continue;
2055 		/* fixup the bio for reuse, but preserve errno */
2056 		status = b->bi_status;
2057 		bio_reset(b);
2058 		b->bi_status = status;
2059 		b->bi_iter.bi_sector = r1_bio->sector +
2060 			conf->mirrors[i].rdev->data_offset;
2061 		bio_set_dev(b, conf->mirrors[i].rdev->bdev);
2062 		b->bi_end_io = end_sync_read;
2063 		rp->raid_bio = r1_bio;
2064 		b->bi_private = rp;
2065 
2066 		/* initialize bvec table again */
2067 		md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2068 	}
2069 	for (primary = 0; primary < conf->raid_disks * 2; primary++)
2070 		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2071 		    !r1_bio->bios[primary]->bi_status) {
2072 			r1_bio->bios[primary]->bi_end_io = NULL;
2073 			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2074 			break;
2075 		}
2076 	r1_bio->read_disk = primary;
2077 	for (i = 0; i < conf->raid_disks * 2; i++) {
2078 		int j;
2079 		struct bio *pbio = r1_bio->bios[primary];
2080 		struct bio *sbio = r1_bio->bios[i];
2081 		blk_status_t status = sbio->bi_status;
2082 		struct page **ppages = get_resync_pages(pbio)->pages;
2083 		struct page **spages = get_resync_pages(sbio)->pages;
2084 		struct bio_vec *bi;
2085 		int page_len[RESYNC_PAGES] = { 0 };
2086 
2087 		if (sbio->bi_end_io != end_sync_read)
2088 			continue;
2089 		/* Now we can 'fixup' the error value */
2090 		sbio->bi_status = 0;
2091 
2092 		bio_for_each_segment_all(bi, sbio, j)
2093 			page_len[j] = bi->bv_len;
2094 
2095 		if (!status) {
2096 			for (j = vcnt; j-- ; ) {
2097 				if (memcmp(page_address(ppages[j]),
2098 					   page_address(spages[j]),
2099 					   page_len[j]))
2100 					break;
2101 			}
2102 		} else
2103 			j = 0;
2104 		if (j >= 0)
2105 			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2106 		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2107 			      && !status)) {
2108 			/* No need to write to this device. */
2109 			sbio->bi_end_io = NULL;
2110 			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2111 			continue;
2112 		}
2113 
2114 		bio_copy_data(sbio, pbio);
2115 	}
2116 }
2117 
2118 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2119 {
2120 	struct r1conf *conf = mddev->private;
2121 	int i;
2122 	int disks = conf->raid_disks * 2;
2123 	struct bio *wbio;
2124 
2125 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2126 		/* ouch - failed to read all of that. */
2127 		if (!fix_sync_read_error(r1_bio))
2128 			return;
2129 
2130 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2131 		process_checks(r1_bio);
2132 
2133 	/*
2134 	 * schedule writes
2135 	 */
2136 	atomic_set(&r1_bio->remaining, 1);
2137 	for (i = 0; i < disks ; i++) {
2138 		wbio = r1_bio->bios[i];
2139 		if (wbio->bi_end_io == NULL ||
2140 		    (wbio->bi_end_io == end_sync_read &&
2141 		     (i == r1_bio->read_disk ||
2142 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2143 			continue;
2144 		if (test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2145 			continue;
2146 
2147 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2148 		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2149 			wbio->bi_opf |= MD_FAILFAST;
2150 
2151 		wbio->bi_end_io = end_sync_write;
2152 		atomic_inc(&r1_bio->remaining);
2153 		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2154 
2155 		generic_make_request(wbio);
2156 	}
2157 
2158 	if (atomic_dec_and_test(&r1_bio->remaining)) {
2159 		/* if we're here, all write(s) have completed, so clean up */
2160 		int s = r1_bio->sectors;
2161 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2162 		    test_bit(R1BIO_WriteError, &r1_bio->state))
2163 			reschedule_retry(r1_bio);
2164 		else {
2165 			put_buf(r1_bio);
2166 			md_done_sync(mddev, s, 1);
2167 		}
2168 	}
2169 }
2170 
2171 /*
2172  * This is a kernel thread which:
2173  *
2174  *	1.	Retries failed read operations on working mirrors.
2175  *	2.	Updates the raid superblock when problems encounter.
2176  *	3.	Performs writes following reads for array synchronising.
2177  */
2178 
2179 static void fix_read_error(struct r1conf *conf, int read_disk,
2180 			   sector_t sect, int sectors)
2181 {
2182 	struct mddev *mddev = conf->mddev;
2183 	while(sectors) {
2184 		int s = sectors;
2185 		int d = read_disk;
2186 		int success = 0;
2187 		int start;
2188 		struct md_rdev *rdev;
2189 
2190 		if (s > (PAGE_SIZE>>9))
2191 			s = PAGE_SIZE >> 9;
2192 
2193 		do {
2194 			sector_t first_bad;
2195 			int bad_sectors;
2196 
2197 			rcu_read_lock();
2198 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2199 			if (rdev &&
2200 			    (test_bit(In_sync, &rdev->flags) ||
2201 			     (!test_bit(Faulty, &rdev->flags) &&
2202 			      rdev->recovery_offset >= sect + s)) &&
2203 			    is_badblock(rdev, sect, s,
2204 					&first_bad, &bad_sectors) == 0) {
2205 				atomic_inc(&rdev->nr_pending);
2206 				rcu_read_unlock();
2207 				if (sync_page_io(rdev, sect, s<<9,
2208 					 conf->tmppage, REQ_OP_READ, 0, false))
2209 					success = 1;
2210 				rdev_dec_pending(rdev, mddev);
2211 				if (success)
2212 					break;
2213 			} else
2214 				rcu_read_unlock();
2215 			d++;
2216 			if (d == conf->raid_disks * 2)
2217 				d = 0;
2218 		} while (!success && d != read_disk);
2219 
2220 		if (!success) {
2221 			/* Cannot read from anywhere - mark it bad */
2222 			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2223 			if (!rdev_set_badblocks(rdev, sect, s, 0))
2224 				md_error(mddev, rdev);
2225 			break;
2226 		}
2227 		/* write it back and re-read */
2228 		start = d;
2229 		while (d != read_disk) {
2230 			if (d==0)
2231 				d = conf->raid_disks * 2;
2232 			d--;
2233 			rcu_read_lock();
2234 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2235 			if (rdev &&
2236 			    !test_bit(Faulty, &rdev->flags)) {
2237 				atomic_inc(&rdev->nr_pending);
2238 				rcu_read_unlock();
2239 				r1_sync_page_io(rdev, sect, s,
2240 						conf->tmppage, WRITE);
2241 				rdev_dec_pending(rdev, mddev);
2242 			} else
2243 				rcu_read_unlock();
2244 		}
2245 		d = start;
2246 		while (d != read_disk) {
2247 			char b[BDEVNAME_SIZE];
2248 			if (d==0)
2249 				d = conf->raid_disks * 2;
2250 			d--;
2251 			rcu_read_lock();
2252 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2253 			if (rdev &&
2254 			    !test_bit(Faulty, &rdev->flags)) {
2255 				atomic_inc(&rdev->nr_pending);
2256 				rcu_read_unlock();
2257 				if (r1_sync_page_io(rdev, sect, s,
2258 						    conf->tmppage, READ)) {
2259 					atomic_add(s, &rdev->corrected_errors);
2260 					pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2261 						mdname(mddev), s,
2262 						(unsigned long long)(sect +
2263 								     rdev->data_offset),
2264 						bdevname(rdev->bdev, b));
2265 				}
2266 				rdev_dec_pending(rdev, mddev);
2267 			} else
2268 				rcu_read_unlock();
2269 		}
2270 		sectors -= s;
2271 		sect += s;
2272 	}
2273 }
2274 
2275 static int narrow_write_error(struct r1bio *r1_bio, int i)
2276 {
2277 	struct mddev *mddev = r1_bio->mddev;
2278 	struct r1conf *conf = mddev->private;
2279 	struct md_rdev *rdev = conf->mirrors[i].rdev;
2280 
2281 	/* bio has the data to be written to device 'i' where
2282 	 * we just recently had a write error.
2283 	 * We repeatedly clone the bio and trim down to one block,
2284 	 * then try the write.  Where the write fails we record
2285 	 * a bad block.
2286 	 * It is conceivable that the bio doesn't exactly align with
2287 	 * blocks.  We must handle this somehow.
2288 	 *
2289 	 * We currently own a reference on the rdev.
2290 	 */
2291 
2292 	int block_sectors;
2293 	sector_t sector;
2294 	int sectors;
2295 	int sect_to_write = r1_bio->sectors;
2296 	int ok = 1;
2297 
2298 	if (rdev->badblocks.shift < 0)
2299 		return 0;
2300 
2301 	block_sectors = roundup(1 << rdev->badblocks.shift,
2302 				bdev_logical_block_size(rdev->bdev) >> 9);
2303 	sector = r1_bio->sector;
2304 	sectors = ((sector + block_sectors)
2305 		   & ~(sector_t)(block_sectors - 1))
2306 		- sector;
2307 
2308 	while (sect_to_write) {
2309 		struct bio *wbio;
2310 		if (sectors > sect_to_write)
2311 			sectors = sect_to_write;
2312 		/* Write at 'sector' for 'sectors'*/
2313 
2314 		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2315 			wbio = bio_clone_fast(r1_bio->behind_master_bio,
2316 					      GFP_NOIO,
2317 					      mddev->bio_set);
2318 		} else {
2319 			wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2320 					      mddev->bio_set);
2321 		}
2322 
2323 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2324 		wbio->bi_iter.bi_sector = r1_bio->sector;
2325 		wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2326 
2327 		bio_trim(wbio, sector - r1_bio->sector, sectors);
2328 		wbio->bi_iter.bi_sector += rdev->data_offset;
2329 		bio_set_dev(wbio, rdev->bdev);
2330 
2331 		if (submit_bio_wait(wbio) < 0)
2332 			/* failure! */
2333 			ok = rdev_set_badblocks(rdev, sector,
2334 						sectors, 0)
2335 				&& ok;
2336 
2337 		bio_put(wbio);
2338 		sect_to_write -= sectors;
2339 		sector += sectors;
2340 		sectors = block_sectors;
2341 	}
2342 	return ok;
2343 }
2344 
2345 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2346 {
2347 	int m;
2348 	int s = r1_bio->sectors;
2349 	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2350 		struct md_rdev *rdev = conf->mirrors[m].rdev;
2351 		struct bio *bio = r1_bio->bios[m];
2352 		if (bio->bi_end_io == NULL)
2353 			continue;
2354 		if (!bio->bi_status &&
2355 		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2356 			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2357 		}
2358 		if (bio->bi_status &&
2359 		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2360 			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2361 				md_error(conf->mddev, rdev);
2362 		}
2363 	}
2364 	put_buf(r1_bio);
2365 	md_done_sync(conf->mddev, s, 1);
2366 }
2367 
2368 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2369 {
2370 	int m, idx;
2371 	bool fail = false;
2372 
2373 	for (m = 0; m < conf->raid_disks * 2 ; m++)
2374 		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2375 			struct md_rdev *rdev = conf->mirrors[m].rdev;
2376 			rdev_clear_badblocks(rdev,
2377 					     r1_bio->sector,
2378 					     r1_bio->sectors, 0);
2379 			rdev_dec_pending(rdev, conf->mddev);
2380 		} else if (r1_bio->bios[m] != NULL) {
2381 			/* This drive got a write error.  We need to
2382 			 * narrow down and record precise write
2383 			 * errors.
2384 			 */
2385 			fail = true;
2386 			if (!narrow_write_error(r1_bio, m)) {
2387 				md_error(conf->mddev,
2388 					 conf->mirrors[m].rdev);
2389 				/* an I/O failed, we can't clear the bitmap */
2390 				set_bit(R1BIO_Degraded, &r1_bio->state);
2391 			}
2392 			rdev_dec_pending(conf->mirrors[m].rdev,
2393 					 conf->mddev);
2394 		}
2395 	if (fail) {
2396 		spin_lock_irq(&conf->device_lock);
2397 		list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2398 		idx = sector_to_idx(r1_bio->sector);
2399 		atomic_inc(&conf->nr_queued[idx]);
2400 		spin_unlock_irq(&conf->device_lock);
2401 		/*
2402 		 * In case freeze_array() is waiting for condition
2403 		 * get_unqueued_pending() == extra to be true.
2404 		 */
2405 		wake_up(&conf->wait_barrier);
2406 		md_wakeup_thread(conf->mddev->thread);
2407 	} else {
2408 		if (test_bit(R1BIO_WriteError, &r1_bio->state))
2409 			close_write(r1_bio);
2410 		raid_end_bio_io(r1_bio);
2411 	}
2412 }
2413 
2414 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2415 {
2416 	struct mddev *mddev = conf->mddev;
2417 	struct bio *bio;
2418 	struct md_rdev *rdev;
2419 	sector_t bio_sector;
2420 
2421 	clear_bit(R1BIO_ReadError, &r1_bio->state);
2422 	/* we got a read error. Maybe the drive is bad.  Maybe just
2423 	 * the block and we can fix it.
2424 	 * We freeze all other IO, and try reading the block from
2425 	 * other devices.  When we find one, we re-write
2426 	 * and check it that fixes the read error.
2427 	 * This is all done synchronously while the array is
2428 	 * frozen
2429 	 */
2430 
2431 	bio = r1_bio->bios[r1_bio->read_disk];
2432 	bio_sector = conf->mirrors[r1_bio->read_disk].rdev->data_offset + r1_bio->sector;
2433 	bio_put(bio);
2434 	r1_bio->bios[r1_bio->read_disk] = NULL;
2435 
2436 	rdev = conf->mirrors[r1_bio->read_disk].rdev;
2437 	if (mddev->ro == 0
2438 	    && !test_bit(FailFast, &rdev->flags)) {
2439 		freeze_array(conf, 1);
2440 		fix_read_error(conf, r1_bio->read_disk,
2441 			       r1_bio->sector, r1_bio->sectors);
2442 		unfreeze_array(conf);
2443 	} else {
2444 		r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2445 	}
2446 
2447 	rdev_dec_pending(rdev, conf->mddev);
2448 	allow_barrier(conf, r1_bio->sector);
2449 	bio = r1_bio->master_bio;
2450 
2451 	/* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2452 	r1_bio->state = 0;
2453 	raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2454 }
2455 
2456 static void raid1d(struct md_thread *thread)
2457 {
2458 	struct mddev *mddev = thread->mddev;
2459 	struct r1bio *r1_bio;
2460 	unsigned long flags;
2461 	struct r1conf *conf = mddev->private;
2462 	struct list_head *head = &conf->retry_list;
2463 	struct blk_plug plug;
2464 	int idx;
2465 
2466 	md_check_recovery(mddev);
2467 
2468 	if (!list_empty_careful(&conf->bio_end_io_list) &&
2469 	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2470 		LIST_HEAD(tmp);
2471 		spin_lock_irqsave(&conf->device_lock, flags);
2472 		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2473 			list_splice_init(&conf->bio_end_io_list, &tmp);
2474 		spin_unlock_irqrestore(&conf->device_lock, flags);
2475 		while (!list_empty(&tmp)) {
2476 			r1_bio = list_first_entry(&tmp, struct r1bio,
2477 						  retry_list);
2478 			list_del(&r1_bio->retry_list);
2479 			idx = sector_to_idx(r1_bio->sector);
2480 			atomic_dec(&conf->nr_queued[idx]);
2481 			if (mddev->degraded)
2482 				set_bit(R1BIO_Degraded, &r1_bio->state);
2483 			if (test_bit(R1BIO_WriteError, &r1_bio->state))
2484 				close_write(r1_bio);
2485 			raid_end_bio_io(r1_bio);
2486 		}
2487 	}
2488 
2489 	blk_start_plug(&plug);
2490 	for (;;) {
2491 
2492 		flush_pending_writes(conf);
2493 
2494 		spin_lock_irqsave(&conf->device_lock, flags);
2495 		if (list_empty(head)) {
2496 			spin_unlock_irqrestore(&conf->device_lock, flags);
2497 			break;
2498 		}
2499 		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2500 		list_del(head->prev);
2501 		idx = sector_to_idx(r1_bio->sector);
2502 		atomic_dec(&conf->nr_queued[idx]);
2503 		spin_unlock_irqrestore(&conf->device_lock, flags);
2504 
2505 		mddev = r1_bio->mddev;
2506 		conf = mddev->private;
2507 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2508 			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2509 			    test_bit(R1BIO_WriteError, &r1_bio->state))
2510 				handle_sync_write_finished(conf, r1_bio);
2511 			else
2512 				sync_request_write(mddev, r1_bio);
2513 		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2514 			   test_bit(R1BIO_WriteError, &r1_bio->state))
2515 			handle_write_finished(conf, r1_bio);
2516 		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2517 			handle_read_error(conf, r1_bio);
2518 		else
2519 			WARN_ON_ONCE(1);
2520 
2521 		cond_resched();
2522 		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2523 			md_check_recovery(mddev);
2524 	}
2525 	blk_finish_plug(&plug);
2526 }
2527 
2528 static int init_resync(struct r1conf *conf)
2529 {
2530 	int buffs;
2531 
2532 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2533 	BUG_ON(conf->r1buf_pool);
2534 	conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2535 					  conf->poolinfo);
2536 	if (!conf->r1buf_pool)
2537 		return -ENOMEM;
2538 	return 0;
2539 }
2540 
2541 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2542 {
2543 	struct r1bio *r1bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2544 	struct resync_pages *rps;
2545 	struct bio *bio;
2546 	int i;
2547 
2548 	for (i = conf->poolinfo->raid_disks; i--; ) {
2549 		bio = r1bio->bios[i];
2550 		rps = bio->bi_private;
2551 		bio_reset(bio);
2552 		bio->bi_private = rps;
2553 	}
2554 	r1bio->master_bio = NULL;
2555 	return r1bio;
2556 }
2557 
2558 /*
2559  * perform a "sync" on one "block"
2560  *
2561  * We need to make sure that no normal I/O request - particularly write
2562  * requests - conflict with active sync requests.
2563  *
2564  * This is achieved by tracking pending requests and a 'barrier' concept
2565  * that can be installed to exclude normal IO requests.
2566  */
2567 
2568 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2569 				   int *skipped)
2570 {
2571 	struct r1conf *conf = mddev->private;
2572 	struct r1bio *r1_bio;
2573 	struct bio *bio;
2574 	sector_t max_sector, nr_sectors;
2575 	int disk = -1;
2576 	int i;
2577 	int wonly = -1;
2578 	int write_targets = 0, read_targets = 0;
2579 	sector_t sync_blocks;
2580 	int still_degraded = 0;
2581 	int good_sectors = RESYNC_SECTORS;
2582 	int min_bad = 0; /* number of sectors that are bad in all devices */
2583 	int idx = sector_to_idx(sector_nr);
2584 	int page_idx = 0;
2585 
2586 	if (!conf->r1buf_pool)
2587 		if (init_resync(conf))
2588 			return 0;
2589 
2590 	max_sector = mddev->dev_sectors;
2591 	if (sector_nr >= max_sector) {
2592 		/* If we aborted, we need to abort the
2593 		 * sync on the 'current' bitmap chunk (there will
2594 		 * only be one in raid1 resync.
2595 		 * We can find the current addess in mddev->curr_resync
2596 		 */
2597 		if (mddev->curr_resync < max_sector) /* aborted */
2598 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2599 						&sync_blocks, 1);
2600 		else /* completed sync */
2601 			conf->fullsync = 0;
2602 
2603 		bitmap_close_sync(mddev->bitmap);
2604 		close_sync(conf);
2605 
2606 		if (mddev_is_clustered(mddev)) {
2607 			conf->cluster_sync_low = 0;
2608 			conf->cluster_sync_high = 0;
2609 		}
2610 		return 0;
2611 	}
2612 
2613 	if (mddev->bitmap == NULL &&
2614 	    mddev->recovery_cp == MaxSector &&
2615 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2616 	    conf->fullsync == 0) {
2617 		*skipped = 1;
2618 		return max_sector - sector_nr;
2619 	}
2620 	/* before building a request, check if we can skip these blocks..
2621 	 * This call the bitmap_start_sync doesn't actually record anything
2622 	 */
2623 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2624 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2625 		/* We can skip this block, and probably several more */
2626 		*skipped = 1;
2627 		return sync_blocks;
2628 	}
2629 
2630 	/*
2631 	 * If there is non-resync activity waiting for a turn, then let it
2632 	 * though before starting on this new sync request.
2633 	 */
2634 	if (atomic_read(&conf->nr_waiting[idx]))
2635 		schedule_timeout_uninterruptible(1);
2636 
2637 	/* we are incrementing sector_nr below. To be safe, we check against
2638 	 * sector_nr + two times RESYNC_SECTORS
2639 	 */
2640 
2641 	bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2642 		mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2643 	r1_bio = raid1_alloc_init_r1buf(conf);
2644 
2645 	raise_barrier(conf, sector_nr);
2646 
2647 	rcu_read_lock();
2648 	/*
2649 	 * If we get a correctably read error during resync or recovery,
2650 	 * we might want to read from a different device.  So we
2651 	 * flag all drives that could conceivably be read from for READ,
2652 	 * and any others (which will be non-In_sync devices) for WRITE.
2653 	 * If a read fails, we try reading from something else for which READ
2654 	 * is OK.
2655 	 */
2656 
2657 	r1_bio->mddev = mddev;
2658 	r1_bio->sector = sector_nr;
2659 	r1_bio->state = 0;
2660 	set_bit(R1BIO_IsSync, &r1_bio->state);
2661 	/* make sure good_sectors won't go across barrier unit boundary */
2662 	good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2663 
2664 	for (i = 0; i < conf->raid_disks * 2; i++) {
2665 		struct md_rdev *rdev;
2666 		bio = r1_bio->bios[i];
2667 
2668 		rdev = rcu_dereference(conf->mirrors[i].rdev);
2669 		if (rdev == NULL ||
2670 		    test_bit(Faulty, &rdev->flags)) {
2671 			if (i < conf->raid_disks)
2672 				still_degraded = 1;
2673 		} else if (!test_bit(In_sync, &rdev->flags)) {
2674 			bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2675 			bio->bi_end_io = end_sync_write;
2676 			write_targets ++;
2677 		} else {
2678 			/* may need to read from here */
2679 			sector_t first_bad = MaxSector;
2680 			int bad_sectors;
2681 
2682 			if (is_badblock(rdev, sector_nr, good_sectors,
2683 					&first_bad, &bad_sectors)) {
2684 				if (first_bad > sector_nr)
2685 					good_sectors = first_bad - sector_nr;
2686 				else {
2687 					bad_sectors -= (sector_nr - first_bad);
2688 					if (min_bad == 0 ||
2689 					    min_bad > bad_sectors)
2690 						min_bad = bad_sectors;
2691 				}
2692 			}
2693 			if (sector_nr < first_bad) {
2694 				if (test_bit(WriteMostly, &rdev->flags)) {
2695 					if (wonly < 0)
2696 						wonly = i;
2697 				} else {
2698 					if (disk < 0)
2699 						disk = i;
2700 				}
2701 				bio_set_op_attrs(bio, REQ_OP_READ, 0);
2702 				bio->bi_end_io = end_sync_read;
2703 				read_targets++;
2704 			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2705 				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2706 				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2707 				/*
2708 				 * The device is suitable for reading (InSync),
2709 				 * but has bad block(s) here. Let's try to correct them,
2710 				 * if we are doing resync or repair. Otherwise, leave
2711 				 * this device alone for this sync request.
2712 				 */
2713 				bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2714 				bio->bi_end_io = end_sync_write;
2715 				write_targets++;
2716 			}
2717 		}
2718 		if (bio->bi_end_io) {
2719 			atomic_inc(&rdev->nr_pending);
2720 			bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2721 			bio_set_dev(bio, rdev->bdev);
2722 			if (test_bit(FailFast, &rdev->flags))
2723 				bio->bi_opf |= MD_FAILFAST;
2724 		}
2725 	}
2726 	rcu_read_unlock();
2727 	if (disk < 0)
2728 		disk = wonly;
2729 	r1_bio->read_disk = disk;
2730 
2731 	if (read_targets == 0 && min_bad > 0) {
2732 		/* These sectors are bad on all InSync devices, so we
2733 		 * need to mark them bad on all write targets
2734 		 */
2735 		int ok = 1;
2736 		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2737 			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2738 				struct md_rdev *rdev = conf->mirrors[i].rdev;
2739 				ok = rdev_set_badblocks(rdev, sector_nr,
2740 							min_bad, 0
2741 					) && ok;
2742 			}
2743 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2744 		*skipped = 1;
2745 		put_buf(r1_bio);
2746 
2747 		if (!ok) {
2748 			/* Cannot record the badblocks, so need to
2749 			 * abort the resync.
2750 			 * If there are multiple read targets, could just
2751 			 * fail the really bad ones ???
2752 			 */
2753 			conf->recovery_disabled = mddev->recovery_disabled;
2754 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2755 			return 0;
2756 		} else
2757 			return min_bad;
2758 
2759 	}
2760 	if (min_bad > 0 && min_bad < good_sectors) {
2761 		/* only resync enough to reach the next bad->good
2762 		 * transition */
2763 		good_sectors = min_bad;
2764 	}
2765 
2766 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2767 		/* extra read targets are also write targets */
2768 		write_targets += read_targets-1;
2769 
2770 	if (write_targets == 0 || read_targets == 0) {
2771 		/* There is nowhere to write, so all non-sync
2772 		 * drives must be failed - so we are finished
2773 		 */
2774 		sector_t rv;
2775 		if (min_bad > 0)
2776 			max_sector = sector_nr + min_bad;
2777 		rv = max_sector - sector_nr;
2778 		*skipped = 1;
2779 		put_buf(r1_bio);
2780 		return rv;
2781 	}
2782 
2783 	if (max_sector > mddev->resync_max)
2784 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2785 	if (max_sector > sector_nr + good_sectors)
2786 		max_sector = sector_nr + good_sectors;
2787 	nr_sectors = 0;
2788 	sync_blocks = 0;
2789 	do {
2790 		struct page *page;
2791 		int len = PAGE_SIZE;
2792 		if (sector_nr + (len>>9) > max_sector)
2793 			len = (max_sector - sector_nr) << 9;
2794 		if (len == 0)
2795 			break;
2796 		if (sync_blocks == 0) {
2797 			if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2798 					       &sync_blocks, still_degraded) &&
2799 			    !conf->fullsync &&
2800 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2801 				break;
2802 			if ((len >> 9) > sync_blocks)
2803 				len = sync_blocks<<9;
2804 		}
2805 
2806 		for (i = 0 ; i < conf->raid_disks * 2; i++) {
2807 			struct resync_pages *rp;
2808 
2809 			bio = r1_bio->bios[i];
2810 			rp = get_resync_pages(bio);
2811 			if (bio->bi_end_io) {
2812 				page = resync_fetch_page(rp, page_idx);
2813 
2814 				/*
2815 				 * won't fail because the vec table is big
2816 				 * enough to hold all these pages
2817 				 */
2818 				bio_add_page(bio, page, len, 0);
2819 			}
2820 		}
2821 		nr_sectors += len>>9;
2822 		sector_nr += len>>9;
2823 		sync_blocks -= (len>>9);
2824 	} while (++page_idx < RESYNC_PAGES);
2825 
2826 	r1_bio->sectors = nr_sectors;
2827 
2828 	if (mddev_is_clustered(mddev) &&
2829 			conf->cluster_sync_high < sector_nr + nr_sectors) {
2830 		conf->cluster_sync_low = mddev->curr_resync_completed;
2831 		conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2832 		/* Send resync message */
2833 		md_cluster_ops->resync_info_update(mddev,
2834 				conf->cluster_sync_low,
2835 				conf->cluster_sync_high);
2836 	}
2837 
2838 	/* For a user-requested sync, we read all readable devices and do a
2839 	 * compare
2840 	 */
2841 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2842 		atomic_set(&r1_bio->remaining, read_targets);
2843 		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2844 			bio = r1_bio->bios[i];
2845 			if (bio->bi_end_io == end_sync_read) {
2846 				read_targets--;
2847 				md_sync_acct_bio(bio, nr_sectors);
2848 				if (read_targets == 1)
2849 					bio->bi_opf &= ~MD_FAILFAST;
2850 				generic_make_request(bio);
2851 			}
2852 		}
2853 	} else {
2854 		atomic_set(&r1_bio->remaining, 1);
2855 		bio = r1_bio->bios[r1_bio->read_disk];
2856 		md_sync_acct_bio(bio, nr_sectors);
2857 		if (read_targets == 1)
2858 			bio->bi_opf &= ~MD_FAILFAST;
2859 		generic_make_request(bio);
2860 
2861 	}
2862 	return nr_sectors;
2863 }
2864 
2865 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2866 {
2867 	if (sectors)
2868 		return sectors;
2869 
2870 	return mddev->dev_sectors;
2871 }
2872 
2873 static struct r1conf *setup_conf(struct mddev *mddev)
2874 {
2875 	struct r1conf *conf;
2876 	int i;
2877 	struct raid1_info *disk;
2878 	struct md_rdev *rdev;
2879 	int err = -ENOMEM;
2880 
2881 	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2882 	if (!conf)
2883 		goto abort;
2884 
2885 	conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
2886 				   sizeof(atomic_t), GFP_KERNEL);
2887 	if (!conf->nr_pending)
2888 		goto abort;
2889 
2890 	conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
2891 				   sizeof(atomic_t), GFP_KERNEL);
2892 	if (!conf->nr_waiting)
2893 		goto abort;
2894 
2895 	conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
2896 				  sizeof(atomic_t), GFP_KERNEL);
2897 	if (!conf->nr_queued)
2898 		goto abort;
2899 
2900 	conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
2901 				sizeof(atomic_t), GFP_KERNEL);
2902 	if (!conf->barrier)
2903 		goto abort;
2904 
2905 	conf->mirrors = kzalloc(sizeof(struct raid1_info)
2906 				* mddev->raid_disks * 2,
2907 				 GFP_KERNEL);
2908 	if (!conf->mirrors)
2909 		goto abort;
2910 
2911 	conf->tmppage = alloc_page(GFP_KERNEL);
2912 	if (!conf->tmppage)
2913 		goto abort;
2914 
2915 	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2916 	if (!conf->poolinfo)
2917 		goto abort;
2918 	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2919 	conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2920 					  r1bio_pool_free,
2921 					  conf->poolinfo);
2922 	if (!conf->r1bio_pool)
2923 		goto abort;
2924 
2925 	conf->bio_split = bioset_create(BIO_POOL_SIZE, 0, 0);
2926 	if (!conf->bio_split)
2927 		goto abort;
2928 
2929 	conf->poolinfo->mddev = mddev;
2930 
2931 	err = -EINVAL;
2932 	spin_lock_init(&conf->device_lock);
2933 	rdev_for_each(rdev, mddev) {
2934 		int disk_idx = rdev->raid_disk;
2935 		if (disk_idx >= mddev->raid_disks
2936 		    || disk_idx < 0)
2937 			continue;
2938 		if (test_bit(Replacement, &rdev->flags))
2939 			disk = conf->mirrors + mddev->raid_disks + disk_idx;
2940 		else
2941 			disk = conf->mirrors + disk_idx;
2942 
2943 		if (disk->rdev)
2944 			goto abort;
2945 		disk->rdev = rdev;
2946 		disk->head_position = 0;
2947 		disk->seq_start = MaxSector;
2948 	}
2949 	conf->raid_disks = mddev->raid_disks;
2950 	conf->mddev = mddev;
2951 	INIT_LIST_HEAD(&conf->retry_list);
2952 	INIT_LIST_HEAD(&conf->bio_end_io_list);
2953 
2954 	spin_lock_init(&conf->resync_lock);
2955 	init_waitqueue_head(&conf->wait_barrier);
2956 
2957 	bio_list_init(&conf->pending_bio_list);
2958 	conf->pending_count = 0;
2959 	conf->recovery_disabled = mddev->recovery_disabled - 1;
2960 
2961 	err = -EIO;
2962 	for (i = 0; i < conf->raid_disks * 2; i++) {
2963 
2964 		disk = conf->mirrors + i;
2965 
2966 		if (i < conf->raid_disks &&
2967 		    disk[conf->raid_disks].rdev) {
2968 			/* This slot has a replacement. */
2969 			if (!disk->rdev) {
2970 				/* No original, just make the replacement
2971 				 * a recovering spare
2972 				 */
2973 				disk->rdev =
2974 					disk[conf->raid_disks].rdev;
2975 				disk[conf->raid_disks].rdev = NULL;
2976 			} else if (!test_bit(In_sync, &disk->rdev->flags))
2977 				/* Original is not in_sync - bad */
2978 				goto abort;
2979 		}
2980 
2981 		if (!disk->rdev ||
2982 		    !test_bit(In_sync, &disk->rdev->flags)) {
2983 			disk->head_position = 0;
2984 			if (disk->rdev &&
2985 			    (disk->rdev->saved_raid_disk < 0))
2986 				conf->fullsync = 1;
2987 		}
2988 	}
2989 
2990 	err = -ENOMEM;
2991 	conf->thread = md_register_thread(raid1d, mddev, "raid1");
2992 	if (!conf->thread)
2993 		goto abort;
2994 
2995 	return conf;
2996 
2997  abort:
2998 	if (conf) {
2999 		mempool_destroy(conf->r1bio_pool);
3000 		kfree(conf->mirrors);
3001 		safe_put_page(conf->tmppage);
3002 		kfree(conf->poolinfo);
3003 		kfree(conf->nr_pending);
3004 		kfree(conf->nr_waiting);
3005 		kfree(conf->nr_queued);
3006 		kfree(conf->barrier);
3007 		if (conf->bio_split)
3008 			bioset_free(conf->bio_split);
3009 		kfree(conf);
3010 	}
3011 	return ERR_PTR(err);
3012 }
3013 
3014 static void raid1_free(struct mddev *mddev, void *priv);
3015 static int raid1_run(struct mddev *mddev)
3016 {
3017 	struct r1conf *conf;
3018 	int i;
3019 	struct md_rdev *rdev;
3020 	int ret;
3021 	bool discard_supported = false;
3022 
3023 	if (mddev->level != 1) {
3024 		pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3025 			mdname(mddev), mddev->level);
3026 		return -EIO;
3027 	}
3028 	if (mddev->reshape_position != MaxSector) {
3029 		pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3030 			mdname(mddev));
3031 		return -EIO;
3032 	}
3033 	if (mddev_init_writes_pending(mddev) < 0)
3034 		return -ENOMEM;
3035 	/*
3036 	 * copy the already verified devices into our private RAID1
3037 	 * bookkeeping area. [whatever we allocate in run(),
3038 	 * should be freed in raid1_free()]
3039 	 */
3040 	if (mddev->private == NULL)
3041 		conf = setup_conf(mddev);
3042 	else
3043 		conf = mddev->private;
3044 
3045 	if (IS_ERR(conf))
3046 		return PTR_ERR(conf);
3047 
3048 	if (mddev->queue) {
3049 		blk_queue_max_write_same_sectors(mddev->queue, 0);
3050 		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3051 	}
3052 
3053 	rdev_for_each(rdev, mddev) {
3054 		if (!mddev->gendisk)
3055 			continue;
3056 		disk_stack_limits(mddev->gendisk, rdev->bdev,
3057 				  rdev->data_offset << 9);
3058 		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3059 			discard_supported = true;
3060 	}
3061 
3062 	mddev->degraded = 0;
3063 	for (i=0; i < conf->raid_disks; i++)
3064 		if (conf->mirrors[i].rdev == NULL ||
3065 		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3066 		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3067 			mddev->degraded++;
3068 
3069 	if (conf->raid_disks - mddev->degraded == 1)
3070 		mddev->recovery_cp = MaxSector;
3071 
3072 	if (mddev->recovery_cp != MaxSector)
3073 		pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3074 			mdname(mddev));
3075 	pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3076 		mdname(mddev), mddev->raid_disks - mddev->degraded,
3077 		mddev->raid_disks);
3078 
3079 	/*
3080 	 * Ok, everything is just fine now
3081 	 */
3082 	mddev->thread = conf->thread;
3083 	conf->thread = NULL;
3084 	mddev->private = conf;
3085 	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3086 
3087 	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3088 
3089 	if (mddev->queue) {
3090 		if (discard_supported)
3091 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3092 						mddev->queue);
3093 		else
3094 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3095 						  mddev->queue);
3096 	}
3097 
3098 	ret =  md_integrity_register(mddev);
3099 	if (ret) {
3100 		md_unregister_thread(&mddev->thread);
3101 		raid1_free(mddev, conf);
3102 	}
3103 	return ret;
3104 }
3105 
3106 static void raid1_free(struct mddev *mddev, void *priv)
3107 {
3108 	struct r1conf *conf = priv;
3109 
3110 	mempool_destroy(conf->r1bio_pool);
3111 	kfree(conf->mirrors);
3112 	safe_put_page(conf->tmppage);
3113 	kfree(conf->poolinfo);
3114 	kfree(conf->nr_pending);
3115 	kfree(conf->nr_waiting);
3116 	kfree(conf->nr_queued);
3117 	kfree(conf->barrier);
3118 	if (conf->bio_split)
3119 		bioset_free(conf->bio_split);
3120 	kfree(conf);
3121 }
3122 
3123 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3124 {
3125 	/* no resync is happening, and there is enough space
3126 	 * on all devices, so we can resize.
3127 	 * We need to make sure resync covers any new space.
3128 	 * If the array is shrinking we should possibly wait until
3129 	 * any io in the removed space completes, but it hardly seems
3130 	 * worth it.
3131 	 */
3132 	sector_t newsize = raid1_size(mddev, sectors, 0);
3133 	if (mddev->external_size &&
3134 	    mddev->array_sectors > newsize)
3135 		return -EINVAL;
3136 	if (mddev->bitmap) {
3137 		int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3138 		if (ret)
3139 			return ret;
3140 	}
3141 	md_set_array_sectors(mddev, newsize);
3142 	if (sectors > mddev->dev_sectors &&
3143 	    mddev->recovery_cp > mddev->dev_sectors) {
3144 		mddev->recovery_cp = mddev->dev_sectors;
3145 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3146 	}
3147 	mddev->dev_sectors = sectors;
3148 	mddev->resync_max_sectors = sectors;
3149 	return 0;
3150 }
3151 
3152 static int raid1_reshape(struct mddev *mddev)
3153 {
3154 	/* We need to:
3155 	 * 1/ resize the r1bio_pool
3156 	 * 2/ resize conf->mirrors
3157 	 *
3158 	 * We allocate a new r1bio_pool if we can.
3159 	 * Then raise a device barrier and wait until all IO stops.
3160 	 * Then resize conf->mirrors and swap in the new r1bio pool.
3161 	 *
3162 	 * At the same time, we "pack" the devices so that all the missing
3163 	 * devices have the higher raid_disk numbers.
3164 	 */
3165 	mempool_t *newpool, *oldpool;
3166 	struct pool_info *newpoolinfo;
3167 	struct raid1_info *newmirrors;
3168 	struct r1conf *conf = mddev->private;
3169 	int cnt, raid_disks;
3170 	unsigned long flags;
3171 	int d, d2;
3172 
3173 	/* Cannot change chunk_size, layout, or level */
3174 	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3175 	    mddev->layout != mddev->new_layout ||
3176 	    mddev->level != mddev->new_level) {
3177 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3178 		mddev->new_layout = mddev->layout;
3179 		mddev->new_level = mddev->level;
3180 		return -EINVAL;
3181 	}
3182 
3183 	if (!mddev_is_clustered(mddev))
3184 		md_allow_write(mddev);
3185 
3186 	raid_disks = mddev->raid_disks + mddev->delta_disks;
3187 
3188 	if (raid_disks < conf->raid_disks) {
3189 		cnt=0;
3190 		for (d= 0; d < conf->raid_disks; d++)
3191 			if (conf->mirrors[d].rdev)
3192 				cnt++;
3193 		if (cnt > raid_disks)
3194 			return -EBUSY;
3195 	}
3196 
3197 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3198 	if (!newpoolinfo)
3199 		return -ENOMEM;
3200 	newpoolinfo->mddev = mddev;
3201 	newpoolinfo->raid_disks = raid_disks * 2;
3202 
3203 	newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3204 				 r1bio_pool_free, newpoolinfo);
3205 	if (!newpool) {
3206 		kfree(newpoolinfo);
3207 		return -ENOMEM;
3208 	}
3209 	newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3210 			     GFP_KERNEL);
3211 	if (!newmirrors) {
3212 		kfree(newpoolinfo);
3213 		mempool_destroy(newpool);
3214 		return -ENOMEM;
3215 	}
3216 
3217 	freeze_array(conf, 0);
3218 
3219 	/* ok, everything is stopped */
3220 	oldpool = conf->r1bio_pool;
3221 	conf->r1bio_pool = newpool;
3222 
3223 	for (d = d2 = 0; d < conf->raid_disks; d++) {
3224 		struct md_rdev *rdev = conf->mirrors[d].rdev;
3225 		if (rdev && rdev->raid_disk != d2) {
3226 			sysfs_unlink_rdev(mddev, rdev);
3227 			rdev->raid_disk = d2;
3228 			sysfs_unlink_rdev(mddev, rdev);
3229 			if (sysfs_link_rdev(mddev, rdev))
3230 				pr_warn("md/raid1:%s: cannot register rd%d\n",
3231 					mdname(mddev), rdev->raid_disk);
3232 		}
3233 		if (rdev)
3234 			newmirrors[d2++].rdev = rdev;
3235 	}
3236 	kfree(conf->mirrors);
3237 	conf->mirrors = newmirrors;
3238 	kfree(conf->poolinfo);
3239 	conf->poolinfo = newpoolinfo;
3240 
3241 	spin_lock_irqsave(&conf->device_lock, flags);
3242 	mddev->degraded += (raid_disks - conf->raid_disks);
3243 	spin_unlock_irqrestore(&conf->device_lock, flags);
3244 	conf->raid_disks = mddev->raid_disks = raid_disks;
3245 	mddev->delta_disks = 0;
3246 
3247 	unfreeze_array(conf);
3248 
3249 	set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3250 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3251 	md_wakeup_thread(mddev->thread);
3252 
3253 	mempool_destroy(oldpool);
3254 	return 0;
3255 }
3256 
3257 static void raid1_quiesce(struct mddev *mddev, int quiesce)
3258 {
3259 	struct r1conf *conf = mddev->private;
3260 
3261 	if (quiesce)
3262 		freeze_array(conf, 0);
3263 	else
3264 		unfreeze_array(conf);
3265 }
3266 
3267 static void *raid1_takeover(struct mddev *mddev)
3268 {
3269 	/* raid1 can take over:
3270 	 *  raid5 with 2 devices, any layout or chunk size
3271 	 */
3272 	if (mddev->level == 5 && mddev->raid_disks == 2) {
3273 		struct r1conf *conf;
3274 		mddev->new_level = 1;
3275 		mddev->new_layout = 0;
3276 		mddev->new_chunk_sectors = 0;
3277 		conf = setup_conf(mddev);
3278 		if (!IS_ERR(conf)) {
3279 			/* Array must appear to be quiesced */
3280 			conf->array_frozen = 1;
3281 			mddev_clear_unsupported_flags(mddev,
3282 				UNSUPPORTED_MDDEV_FLAGS);
3283 		}
3284 		return conf;
3285 	}
3286 	return ERR_PTR(-EINVAL);
3287 }
3288 
3289 static struct md_personality raid1_personality =
3290 {
3291 	.name		= "raid1",
3292 	.level		= 1,
3293 	.owner		= THIS_MODULE,
3294 	.make_request	= raid1_make_request,
3295 	.run		= raid1_run,
3296 	.free		= raid1_free,
3297 	.status		= raid1_status,
3298 	.error_handler	= raid1_error,
3299 	.hot_add_disk	= raid1_add_disk,
3300 	.hot_remove_disk= raid1_remove_disk,
3301 	.spare_active	= raid1_spare_active,
3302 	.sync_request	= raid1_sync_request,
3303 	.resize		= raid1_resize,
3304 	.size		= raid1_size,
3305 	.check_reshape	= raid1_reshape,
3306 	.quiesce	= raid1_quiesce,
3307 	.takeover	= raid1_takeover,
3308 	.congested	= raid1_congested,
3309 };
3310 
3311 static int __init raid_init(void)
3312 {
3313 	return register_md_personality(&raid1_personality);
3314 }
3315 
3316 static void raid_exit(void)
3317 {
3318 	unregister_md_personality(&raid1_personality);
3319 }
3320 
3321 module_init(raid_init);
3322 module_exit(raid_exit);
3323 MODULE_LICENSE("GPL");
3324 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3325 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3326 MODULE_ALIAS("md-raid1");
3327 MODULE_ALIAS("md-level-1");
3328 
3329 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
3330