xref: /openbmc/linux/drivers/md/raid1.c (revision 423f04d6)
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33 
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include "md.h"
41 #include "raid1.h"
42 #include "bitmap.h"
43 
44 /*
45  * Number of guaranteed r1bios in case of extreme VM load:
46  */
47 #define	NR_RAID1_BIOS 256
48 
49 /* when we get a read error on a read-only array, we redirect to another
50  * device without failing the first device, or trying to over-write to
51  * correct the read error.  To keep track of bad blocks on a per-bio
52  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
53  */
54 #define IO_BLOCKED ((struct bio *)1)
55 /* When we successfully write to a known bad-block, we need to remove the
56  * bad-block marking which must be done from process context.  So we record
57  * the success by setting devs[n].bio to IO_MADE_GOOD
58  */
59 #define IO_MADE_GOOD ((struct bio *)2)
60 
61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
62 
63 /* When there are this many requests queue to be written by
64  * the raid1 thread, we become 'congested' to provide back-pressure
65  * for writeback.
66  */
67 static int max_queued_requests = 1024;
68 
69 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
70 			  sector_t bi_sector);
71 static void lower_barrier(struct r1conf *conf);
72 
73 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
74 {
75 	struct pool_info *pi = data;
76 	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
77 
78 	/* allocate a r1bio with room for raid_disks entries in the bios array */
79 	return kzalloc(size, gfp_flags);
80 }
81 
82 static void r1bio_pool_free(void *r1_bio, void *data)
83 {
84 	kfree(r1_bio);
85 }
86 
87 #define RESYNC_BLOCK_SIZE (64*1024)
88 #define RESYNC_DEPTH 32
89 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
90 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
91 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
92 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
93 #define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
94 
95 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
96 {
97 	struct pool_info *pi = data;
98 	struct r1bio *r1_bio;
99 	struct bio *bio;
100 	int need_pages;
101 	int i, j;
102 
103 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
104 	if (!r1_bio)
105 		return NULL;
106 
107 	/*
108 	 * Allocate bios : 1 for reading, n-1 for writing
109 	 */
110 	for (j = pi->raid_disks ; j-- ; ) {
111 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
112 		if (!bio)
113 			goto out_free_bio;
114 		r1_bio->bios[j] = bio;
115 	}
116 	/*
117 	 * Allocate RESYNC_PAGES data pages and attach them to
118 	 * the first bio.
119 	 * If this is a user-requested check/repair, allocate
120 	 * RESYNC_PAGES for each bio.
121 	 */
122 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
123 		need_pages = pi->raid_disks;
124 	else
125 		need_pages = 1;
126 	for (j = 0; j < need_pages; j++) {
127 		bio = r1_bio->bios[j];
128 		bio->bi_vcnt = RESYNC_PAGES;
129 
130 		if (bio_alloc_pages(bio, gfp_flags))
131 			goto out_free_pages;
132 	}
133 	/* If not user-requests, copy the page pointers to all bios */
134 	if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
135 		for (i=0; i<RESYNC_PAGES ; i++)
136 			for (j=1; j<pi->raid_disks; j++)
137 				r1_bio->bios[j]->bi_io_vec[i].bv_page =
138 					r1_bio->bios[0]->bi_io_vec[i].bv_page;
139 	}
140 
141 	r1_bio->master_bio = NULL;
142 
143 	return r1_bio;
144 
145 out_free_pages:
146 	while (--j >= 0) {
147 		struct bio_vec *bv;
148 
149 		bio_for_each_segment_all(bv, r1_bio->bios[j], i)
150 			__free_page(bv->bv_page);
151 	}
152 
153 out_free_bio:
154 	while (++j < pi->raid_disks)
155 		bio_put(r1_bio->bios[j]);
156 	r1bio_pool_free(r1_bio, data);
157 	return NULL;
158 }
159 
160 static void r1buf_pool_free(void *__r1_bio, void *data)
161 {
162 	struct pool_info *pi = data;
163 	int i,j;
164 	struct r1bio *r1bio = __r1_bio;
165 
166 	for (i = 0; i < RESYNC_PAGES; i++)
167 		for (j = pi->raid_disks; j-- ;) {
168 			if (j == 0 ||
169 			    r1bio->bios[j]->bi_io_vec[i].bv_page !=
170 			    r1bio->bios[0]->bi_io_vec[i].bv_page)
171 				safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
172 		}
173 	for (i=0 ; i < pi->raid_disks; i++)
174 		bio_put(r1bio->bios[i]);
175 
176 	r1bio_pool_free(r1bio, data);
177 }
178 
179 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
180 {
181 	int i;
182 
183 	for (i = 0; i < conf->raid_disks * 2; i++) {
184 		struct bio **bio = r1_bio->bios + i;
185 		if (!BIO_SPECIAL(*bio))
186 			bio_put(*bio);
187 		*bio = NULL;
188 	}
189 }
190 
191 static void free_r1bio(struct r1bio *r1_bio)
192 {
193 	struct r1conf *conf = r1_bio->mddev->private;
194 
195 	put_all_bios(conf, r1_bio);
196 	mempool_free(r1_bio, conf->r1bio_pool);
197 }
198 
199 static void put_buf(struct r1bio *r1_bio)
200 {
201 	struct r1conf *conf = r1_bio->mddev->private;
202 	int i;
203 
204 	for (i = 0; i < conf->raid_disks * 2; i++) {
205 		struct bio *bio = r1_bio->bios[i];
206 		if (bio->bi_end_io)
207 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
208 	}
209 
210 	mempool_free(r1_bio, conf->r1buf_pool);
211 
212 	lower_barrier(conf);
213 }
214 
215 static void reschedule_retry(struct r1bio *r1_bio)
216 {
217 	unsigned long flags;
218 	struct mddev *mddev = r1_bio->mddev;
219 	struct r1conf *conf = mddev->private;
220 
221 	spin_lock_irqsave(&conf->device_lock, flags);
222 	list_add(&r1_bio->retry_list, &conf->retry_list);
223 	conf->nr_queued ++;
224 	spin_unlock_irqrestore(&conf->device_lock, flags);
225 
226 	wake_up(&conf->wait_barrier);
227 	md_wakeup_thread(mddev->thread);
228 }
229 
230 /*
231  * raid_end_bio_io() is called when we have finished servicing a mirrored
232  * operation and are ready to return a success/failure code to the buffer
233  * cache layer.
234  */
235 static void call_bio_endio(struct r1bio *r1_bio)
236 {
237 	struct bio *bio = r1_bio->master_bio;
238 	int done;
239 	struct r1conf *conf = r1_bio->mddev->private;
240 	sector_t start_next_window = r1_bio->start_next_window;
241 	sector_t bi_sector = bio->bi_iter.bi_sector;
242 
243 	if (bio->bi_phys_segments) {
244 		unsigned long flags;
245 		spin_lock_irqsave(&conf->device_lock, flags);
246 		bio->bi_phys_segments--;
247 		done = (bio->bi_phys_segments == 0);
248 		spin_unlock_irqrestore(&conf->device_lock, flags);
249 		/*
250 		 * make_request() might be waiting for
251 		 * bi_phys_segments to decrease
252 		 */
253 		wake_up(&conf->wait_barrier);
254 	} else
255 		done = 1;
256 
257 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
258 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
259 	if (done) {
260 		bio_endio(bio, 0);
261 		/*
262 		 * Wake up any possible resync thread that waits for the device
263 		 * to go idle.
264 		 */
265 		allow_barrier(conf, start_next_window, bi_sector);
266 	}
267 }
268 
269 static void raid_end_bio_io(struct r1bio *r1_bio)
270 {
271 	struct bio *bio = r1_bio->master_bio;
272 
273 	/* if nobody has done the final endio yet, do it now */
274 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
275 		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
276 			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
277 			 (unsigned long long) bio->bi_iter.bi_sector,
278 			 (unsigned long long) bio_end_sector(bio) - 1);
279 
280 		call_bio_endio(r1_bio);
281 	}
282 	free_r1bio(r1_bio);
283 }
284 
285 /*
286  * Update disk head position estimator based on IRQ completion info.
287  */
288 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
289 {
290 	struct r1conf *conf = r1_bio->mddev->private;
291 
292 	conf->mirrors[disk].head_position =
293 		r1_bio->sector + (r1_bio->sectors);
294 }
295 
296 /*
297  * Find the disk number which triggered given bio
298  */
299 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
300 {
301 	int mirror;
302 	struct r1conf *conf = r1_bio->mddev->private;
303 	int raid_disks = conf->raid_disks;
304 
305 	for (mirror = 0; mirror < raid_disks * 2; mirror++)
306 		if (r1_bio->bios[mirror] == bio)
307 			break;
308 
309 	BUG_ON(mirror == raid_disks * 2);
310 	update_head_pos(mirror, r1_bio);
311 
312 	return mirror;
313 }
314 
315 static void raid1_end_read_request(struct bio *bio, int error)
316 {
317 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
318 	struct r1bio *r1_bio = bio->bi_private;
319 	int mirror;
320 	struct r1conf *conf = r1_bio->mddev->private;
321 
322 	mirror = r1_bio->read_disk;
323 	/*
324 	 * this branch is our 'one mirror IO has finished' event handler:
325 	 */
326 	update_head_pos(mirror, r1_bio);
327 
328 	if (uptodate)
329 		set_bit(R1BIO_Uptodate, &r1_bio->state);
330 	else {
331 		/* If all other devices have failed, we want to return
332 		 * the error upwards rather than fail the last device.
333 		 * Here we redefine "uptodate" to mean "Don't want to retry"
334 		 */
335 		unsigned long flags;
336 		spin_lock_irqsave(&conf->device_lock, flags);
337 		if (r1_bio->mddev->degraded == conf->raid_disks ||
338 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
339 		     test_bit(In_sync, &conf->mirrors[mirror].rdev->flags)))
340 			uptodate = 1;
341 		spin_unlock_irqrestore(&conf->device_lock, flags);
342 	}
343 
344 	if (uptodate) {
345 		raid_end_bio_io(r1_bio);
346 		rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
347 	} else {
348 		/*
349 		 * oops, read error:
350 		 */
351 		char b[BDEVNAME_SIZE];
352 		printk_ratelimited(
353 			KERN_ERR "md/raid1:%s: %s: "
354 			"rescheduling sector %llu\n",
355 			mdname(conf->mddev),
356 			bdevname(conf->mirrors[mirror].rdev->bdev,
357 				 b),
358 			(unsigned long long)r1_bio->sector);
359 		set_bit(R1BIO_ReadError, &r1_bio->state);
360 		reschedule_retry(r1_bio);
361 		/* don't drop the reference on read_disk yet */
362 	}
363 }
364 
365 static void close_write(struct r1bio *r1_bio)
366 {
367 	/* it really is the end of this request */
368 	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
369 		/* free extra copy of the data pages */
370 		int i = r1_bio->behind_page_count;
371 		while (i--)
372 			safe_put_page(r1_bio->behind_bvecs[i].bv_page);
373 		kfree(r1_bio->behind_bvecs);
374 		r1_bio->behind_bvecs = NULL;
375 	}
376 	/* clear the bitmap if all writes complete successfully */
377 	bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
378 			r1_bio->sectors,
379 			!test_bit(R1BIO_Degraded, &r1_bio->state),
380 			test_bit(R1BIO_BehindIO, &r1_bio->state));
381 	md_write_end(r1_bio->mddev);
382 }
383 
384 static void r1_bio_write_done(struct r1bio *r1_bio)
385 {
386 	if (!atomic_dec_and_test(&r1_bio->remaining))
387 		return;
388 
389 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
390 		reschedule_retry(r1_bio);
391 	else {
392 		close_write(r1_bio);
393 		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
394 			reschedule_retry(r1_bio);
395 		else
396 			raid_end_bio_io(r1_bio);
397 	}
398 }
399 
400 static void raid1_end_write_request(struct bio *bio, int error)
401 {
402 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
403 	struct r1bio *r1_bio = bio->bi_private;
404 	int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
405 	struct r1conf *conf = r1_bio->mddev->private;
406 	struct bio *to_put = NULL;
407 
408 	mirror = find_bio_disk(r1_bio, bio);
409 
410 	/*
411 	 * 'one mirror IO has finished' event handler:
412 	 */
413 	if (!uptodate) {
414 		set_bit(WriteErrorSeen,
415 			&conf->mirrors[mirror].rdev->flags);
416 		if (!test_and_set_bit(WantReplacement,
417 				      &conf->mirrors[mirror].rdev->flags))
418 			set_bit(MD_RECOVERY_NEEDED, &
419 				conf->mddev->recovery);
420 
421 		set_bit(R1BIO_WriteError, &r1_bio->state);
422 	} else {
423 		/*
424 		 * Set R1BIO_Uptodate in our master bio, so that we
425 		 * will return a good error code for to the higher
426 		 * levels even if IO on some other mirrored buffer
427 		 * fails.
428 		 *
429 		 * The 'master' represents the composite IO operation
430 		 * to user-side. So if something waits for IO, then it
431 		 * will wait for the 'master' bio.
432 		 */
433 		sector_t first_bad;
434 		int bad_sectors;
435 
436 		r1_bio->bios[mirror] = NULL;
437 		to_put = bio;
438 		/*
439 		 * Do not set R1BIO_Uptodate if the current device is
440 		 * rebuilding or Faulty. This is because we cannot use
441 		 * such device for properly reading the data back (we could
442 		 * potentially use it, if the current write would have felt
443 		 * before rdev->recovery_offset, but for simplicity we don't
444 		 * check this here.
445 		 */
446 		if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) &&
447 		    !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))
448 			set_bit(R1BIO_Uptodate, &r1_bio->state);
449 
450 		/* Maybe we can clear some bad blocks. */
451 		if (is_badblock(conf->mirrors[mirror].rdev,
452 				r1_bio->sector, r1_bio->sectors,
453 				&first_bad, &bad_sectors)) {
454 			r1_bio->bios[mirror] = IO_MADE_GOOD;
455 			set_bit(R1BIO_MadeGood, &r1_bio->state);
456 		}
457 	}
458 
459 	if (behind) {
460 		if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
461 			atomic_dec(&r1_bio->behind_remaining);
462 
463 		/*
464 		 * In behind mode, we ACK the master bio once the I/O
465 		 * has safely reached all non-writemostly
466 		 * disks. Setting the Returned bit ensures that this
467 		 * gets done only once -- we don't ever want to return
468 		 * -EIO here, instead we'll wait
469 		 */
470 		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
471 		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
472 			/* Maybe we can return now */
473 			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
474 				struct bio *mbio = r1_bio->master_bio;
475 				pr_debug("raid1: behind end write sectors"
476 					 " %llu-%llu\n",
477 					 (unsigned long long) mbio->bi_iter.bi_sector,
478 					 (unsigned long long) bio_end_sector(mbio) - 1);
479 				call_bio_endio(r1_bio);
480 			}
481 		}
482 	}
483 	if (r1_bio->bios[mirror] == NULL)
484 		rdev_dec_pending(conf->mirrors[mirror].rdev,
485 				 conf->mddev);
486 
487 	/*
488 	 * Let's see if all mirrored write operations have finished
489 	 * already.
490 	 */
491 	r1_bio_write_done(r1_bio);
492 
493 	if (to_put)
494 		bio_put(to_put);
495 }
496 
497 /*
498  * This routine returns the disk from which the requested read should
499  * be done. There is a per-array 'next expected sequential IO' sector
500  * number - if this matches on the next IO then we use the last disk.
501  * There is also a per-disk 'last know head position' sector that is
502  * maintained from IRQ contexts, both the normal and the resync IO
503  * completion handlers update this position correctly. If there is no
504  * perfect sequential match then we pick the disk whose head is closest.
505  *
506  * If there are 2 mirrors in the same 2 devices, performance degrades
507  * because position is mirror, not device based.
508  *
509  * The rdev for the device selected will have nr_pending incremented.
510  */
511 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
512 {
513 	const sector_t this_sector = r1_bio->sector;
514 	int sectors;
515 	int best_good_sectors;
516 	int best_disk, best_dist_disk, best_pending_disk;
517 	int has_nonrot_disk;
518 	int disk;
519 	sector_t best_dist;
520 	unsigned int min_pending;
521 	struct md_rdev *rdev;
522 	int choose_first;
523 	int choose_next_idle;
524 
525 	rcu_read_lock();
526 	/*
527 	 * Check if we can balance. We can balance on the whole
528 	 * device if no resync is going on, or below the resync window.
529 	 * We take the first readable disk when above the resync window.
530 	 */
531  retry:
532 	sectors = r1_bio->sectors;
533 	best_disk = -1;
534 	best_dist_disk = -1;
535 	best_dist = MaxSector;
536 	best_pending_disk = -1;
537 	min_pending = UINT_MAX;
538 	best_good_sectors = 0;
539 	has_nonrot_disk = 0;
540 	choose_next_idle = 0;
541 
542 	if ((conf->mddev->recovery_cp < this_sector + sectors) ||
543 	    (mddev_is_clustered(conf->mddev) &&
544 	    md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
545 		    this_sector + sectors)))
546 		choose_first = 1;
547 	else
548 		choose_first = 0;
549 
550 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
551 		sector_t dist;
552 		sector_t first_bad;
553 		int bad_sectors;
554 		unsigned int pending;
555 		bool nonrot;
556 
557 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
558 		if (r1_bio->bios[disk] == IO_BLOCKED
559 		    || rdev == NULL
560 		    || test_bit(Unmerged, &rdev->flags)
561 		    || test_bit(Faulty, &rdev->flags))
562 			continue;
563 		if (!test_bit(In_sync, &rdev->flags) &&
564 		    rdev->recovery_offset < this_sector + sectors)
565 			continue;
566 		if (test_bit(WriteMostly, &rdev->flags)) {
567 			/* Don't balance among write-mostly, just
568 			 * use the first as a last resort */
569 			if (best_dist_disk < 0) {
570 				if (is_badblock(rdev, this_sector, sectors,
571 						&first_bad, &bad_sectors)) {
572 					if (first_bad < this_sector)
573 						/* Cannot use this */
574 						continue;
575 					best_good_sectors = first_bad - this_sector;
576 				} else
577 					best_good_sectors = sectors;
578 				best_dist_disk = disk;
579 				best_pending_disk = disk;
580 			}
581 			continue;
582 		}
583 		/* This is a reasonable device to use.  It might
584 		 * even be best.
585 		 */
586 		if (is_badblock(rdev, this_sector, sectors,
587 				&first_bad, &bad_sectors)) {
588 			if (best_dist < MaxSector)
589 				/* already have a better device */
590 				continue;
591 			if (first_bad <= this_sector) {
592 				/* cannot read here. If this is the 'primary'
593 				 * device, then we must not read beyond
594 				 * bad_sectors from another device..
595 				 */
596 				bad_sectors -= (this_sector - first_bad);
597 				if (choose_first && sectors > bad_sectors)
598 					sectors = bad_sectors;
599 				if (best_good_sectors > sectors)
600 					best_good_sectors = sectors;
601 
602 			} else {
603 				sector_t good_sectors = first_bad - this_sector;
604 				if (good_sectors > best_good_sectors) {
605 					best_good_sectors = good_sectors;
606 					best_disk = disk;
607 				}
608 				if (choose_first)
609 					break;
610 			}
611 			continue;
612 		} else
613 			best_good_sectors = sectors;
614 
615 		nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
616 		has_nonrot_disk |= nonrot;
617 		pending = atomic_read(&rdev->nr_pending);
618 		dist = abs(this_sector - conf->mirrors[disk].head_position);
619 		if (choose_first) {
620 			best_disk = disk;
621 			break;
622 		}
623 		/* Don't change to another disk for sequential reads */
624 		if (conf->mirrors[disk].next_seq_sect == this_sector
625 		    || dist == 0) {
626 			int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
627 			struct raid1_info *mirror = &conf->mirrors[disk];
628 
629 			best_disk = disk;
630 			/*
631 			 * If buffered sequential IO size exceeds optimal
632 			 * iosize, check if there is idle disk. If yes, choose
633 			 * the idle disk. read_balance could already choose an
634 			 * idle disk before noticing it's a sequential IO in
635 			 * this disk. This doesn't matter because this disk
636 			 * will idle, next time it will be utilized after the
637 			 * first disk has IO size exceeds optimal iosize. In
638 			 * this way, iosize of the first disk will be optimal
639 			 * iosize at least. iosize of the second disk might be
640 			 * small, but not a big deal since when the second disk
641 			 * starts IO, the first disk is likely still busy.
642 			 */
643 			if (nonrot && opt_iosize > 0 &&
644 			    mirror->seq_start != MaxSector &&
645 			    mirror->next_seq_sect > opt_iosize &&
646 			    mirror->next_seq_sect - opt_iosize >=
647 			    mirror->seq_start) {
648 				choose_next_idle = 1;
649 				continue;
650 			}
651 			break;
652 		}
653 		/* If device is idle, use it */
654 		if (pending == 0) {
655 			best_disk = disk;
656 			break;
657 		}
658 
659 		if (choose_next_idle)
660 			continue;
661 
662 		if (min_pending > pending) {
663 			min_pending = pending;
664 			best_pending_disk = disk;
665 		}
666 
667 		if (dist < best_dist) {
668 			best_dist = dist;
669 			best_dist_disk = disk;
670 		}
671 	}
672 
673 	/*
674 	 * If all disks are rotational, choose the closest disk. If any disk is
675 	 * non-rotational, choose the disk with less pending request even the
676 	 * disk is rotational, which might/might not be optimal for raids with
677 	 * mixed ratation/non-rotational disks depending on workload.
678 	 */
679 	if (best_disk == -1) {
680 		if (has_nonrot_disk)
681 			best_disk = best_pending_disk;
682 		else
683 			best_disk = best_dist_disk;
684 	}
685 
686 	if (best_disk >= 0) {
687 		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
688 		if (!rdev)
689 			goto retry;
690 		atomic_inc(&rdev->nr_pending);
691 		if (test_bit(Faulty, &rdev->flags)) {
692 			/* cannot risk returning a device that failed
693 			 * before we inc'ed nr_pending
694 			 */
695 			rdev_dec_pending(rdev, conf->mddev);
696 			goto retry;
697 		}
698 		sectors = best_good_sectors;
699 
700 		if (conf->mirrors[best_disk].next_seq_sect != this_sector)
701 			conf->mirrors[best_disk].seq_start = this_sector;
702 
703 		conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
704 	}
705 	rcu_read_unlock();
706 	*max_sectors = sectors;
707 
708 	return best_disk;
709 }
710 
711 static int raid1_mergeable_bvec(struct mddev *mddev,
712 				struct bvec_merge_data *bvm,
713 				struct bio_vec *biovec)
714 {
715 	struct r1conf *conf = mddev->private;
716 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
717 	int max = biovec->bv_len;
718 
719 	if (mddev->merge_check_needed) {
720 		int disk;
721 		rcu_read_lock();
722 		for (disk = 0; disk < conf->raid_disks * 2; disk++) {
723 			struct md_rdev *rdev = rcu_dereference(
724 				conf->mirrors[disk].rdev);
725 			if (rdev && !test_bit(Faulty, &rdev->flags)) {
726 				struct request_queue *q =
727 					bdev_get_queue(rdev->bdev);
728 				if (q->merge_bvec_fn) {
729 					bvm->bi_sector = sector +
730 						rdev->data_offset;
731 					bvm->bi_bdev = rdev->bdev;
732 					max = min(max, q->merge_bvec_fn(
733 							  q, bvm, biovec));
734 				}
735 			}
736 		}
737 		rcu_read_unlock();
738 	}
739 	return max;
740 
741 }
742 
743 static int raid1_congested(struct mddev *mddev, int bits)
744 {
745 	struct r1conf *conf = mddev->private;
746 	int i, ret = 0;
747 
748 	if ((bits & (1 << WB_async_congested)) &&
749 	    conf->pending_count >= max_queued_requests)
750 		return 1;
751 
752 	rcu_read_lock();
753 	for (i = 0; i < conf->raid_disks * 2; i++) {
754 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
755 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
756 			struct request_queue *q = bdev_get_queue(rdev->bdev);
757 
758 			BUG_ON(!q);
759 
760 			/* Note the '|| 1' - when read_balance prefers
761 			 * non-congested targets, it can be removed
762 			 */
763 			if ((bits & (1 << WB_async_congested)) || 1)
764 				ret |= bdi_congested(&q->backing_dev_info, bits);
765 			else
766 				ret &= bdi_congested(&q->backing_dev_info, bits);
767 		}
768 	}
769 	rcu_read_unlock();
770 	return ret;
771 }
772 
773 static void flush_pending_writes(struct r1conf *conf)
774 {
775 	/* Any writes that have been queued but are awaiting
776 	 * bitmap updates get flushed here.
777 	 */
778 	spin_lock_irq(&conf->device_lock);
779 
780 	if (conf->pending_bio_list.head) {
781 		struct bio *bio;
782 		bio = bio_list_get(&conf->pending_bio_list);
783 		conf->pending_count = 0;
784 		spin_unlock_irq(&conf->device_lock);
785 		/* flush any pending bitmap writes to
786 		 * disk before proceeding w/ I/O */
787 		bitmap_unplug(conf->mddev->bitmap);
788 		wake_up(&conf->wait_barrier);
789 
790 		while (bio) { /* submit pending writes */
791 			struct bio *next = bio->bi_next;
792 			bio->bi_next = NULL;
793 			if (unlikely((bio->bi_rw & REQ_DISCARD) &&
794 			    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
795 				/* Just ignore it */
796 				bio_endio(bio, 0);
797 			else
798 				generic_make_request(bio);
799 			bio = next;
800 		}
801 	} else
802 		spin_unlock_irq(&conf->device_lock);
803 }
804 
805 /* Barriers....
806  * Sometimes we need to suspend IO while we do something else,
807  * either some resync/recovery, or reconfigure the array.
808  * To do this we raise a 'barrier'.
809  * The 'barrier' is a counter that can be raised multiple times
810  * to count how many activities are happening which preclude
811  * normal IO.
812  * We can only raise the barrier if there is no pending IO.
813  * i.e. if nr_pending == 0.
814  * We choose only to raise the barrier if no-one is waiting for the
815  * barrier to go down.  This means that as soon as an IO request
816  * is ready, no other operations which require a barrier will start
817  * until the IO request has had a chance.
818  *
819  * So: regular IO calls 'wait_barrier'.  When that returns there
820  *    is no backgroup IO happening,  It must arrange to call
821  *    allow_barrier when it has finished its IO.
822  * backgroup IO calls must call raise_barrier.  Once that returns
823  *    there is no normal IO happeing.  It must arrange to call
824  *    lower_barrier when the particular background IO completes.
825  */
826 static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
827 {
828 	spin_lock_irq(&conf->resync_lock);
829 
830 	/* Wait until no block IO is waiting */
831 	wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
832 			    conf->resync_lock);
833 
834 	/* block any new IO from starting */
835 	conf->barrier++;
836 	conf->next_resync = sector_nr;
837 
838 	/* For these conditions we must wait:
839 	 * A: while the array is in frozen state
840 	 * B: while barrier >= RESYNC_DEPTH, meaning resync reach
841 	 *    the max count which allowed.
842 	 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
843 	 *    next resync will reach to the window which normal bios are
844 	 *    handling.
845 	 * D: while there are any active requests in the current window.
846 	 */
847 	wait_event_lock_irq(conf->wait_barrier,
848 			    !conf->array_frozen &&
849 			    conf->barrier < RESYNC_DEPTH &&
850 			    conf->current_window_requests == 0 &&
851 			    (conf->start_next_window >=
852 			     conf->next_resync + RESYNC_SECTORS),
853 			    conf->resync_lock);
854 
855 	conf->nr_pending++;
856 	spin_unlock_irq(&conf->resync_lock);
857 }
858 
859 static void lower_barrier(struct r1conf *conf)
860 {
861 	unsigned long flags;
862 	BUG_ON(conf->barrier <= 0);
863 	spin_lock_irqsave(&conf->resync_lock, flags);
864 	conf->barrier--;
865 	conf->nr_pending--;
866 	spin_unlock_irqrestore(&conf->resync_lock, flags);
867 	wake_up(&conf->wait_barrier);
868 }
869 
870 static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
871 {
872 	bool wait = false;
873 
874 	if (conf->array_frozen || !bio)
875 		wait = true;
876 	else if (conf->barrier && bio_data_dir(bio) == WRITE) {
877 		if ((conf->mddev->curr_resync_completed
878 		     >= bio_end_sector(bio)) ||
879 		    (conf->next_resync + NEXT_NORMALIO_DISTANCE
880 		     <= bio->bi_iter.bi_sector))
881 			wait = false;
882 		else
883 			wait = true;
884 	}
885 
886 	return wait;
887 }
888 
889 static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
890 {
891 	sector_t sector = 0;
892 
893 	spin_lock_irq(&conf->resync_lock);
894 	if (need_to_wait_for_sync(conf, bio)) {
895 		conf->nr_waiting++;
896 		/* Wait for the barrier to drop.
897 		 * However if there are already pending
898 		 * requests (preventing the barrier from
899 		 * rising completely), and the
900 		 * per-process bio queue isn't empty,
901 		 * then don't wait, as we need to empty
902 		 * that queue to allow conf->start_next_window
903 		 * to increase.
904 		 */
905 		wait_event_lock_irq(conf->wait_barrier,
906 				    !conf->array_frozen &&
907 				    (!conf->barrier ||
908 				     ((conf->start_next_window <
909 				       conf->next_resync + RESYNC_SECTORS) &&
910 				      current->bio_list &&
911 				      !bio_list_empty(current->bio_list))),
912 				    conf->resync_lock);
913 		conf->nr_waiting--;
914 	}
915 
916 	if (bio && bio_data_dir(bio) == WRITE) {
917 		if (bio->bi_iter.bi_sector >=
918 		    conf->mddev->curr_resync_completed) {
919 			if (conf->start_next_window == MaxSector)
920 				conf->start_next_window =
921 					conf->next_resync +
922 					NEXT_NORMALIO_DISTANCE;
923 
924 			if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
925 			    <= bio->bi_iter.bi_sector)
926 				conf->next_window_requests++;
927 			else
928 				conf->current_window_requests++;
929 			sector = conf->start_next_window;
930 		}
931 	}
932 
933 	conf->nr_pending++;
934 	spin_unlock_irq(&conf->resync_lock);
935 	return sector;
936 }
937 
938 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
939 			  sector_t bi_sector)
940 {
941 	unsigned long flags;
942 
943 	spin_lock_irqsave(&conf->resync_lock, flags);
944 	conf->nr_pending--;
945 	if (start_next_window) {
946 		if (start_next_window == conf->start_next_window) {
947 			if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
948 			    <= bi_sector)
949 				conf->next_window_requests--;
950 			else
951 				conf->current_window_requests--;
952 		} else
953 			conf->current_window_requests--;
954 
955 		if (!conf->current_window_requests) {
956 			if (conf->next_window_requests) {
957 				conf->current_window_requests =
958 					conf->next_window_requests;
959 				conf->next_window_requests = 0;
960 				conf->start_next_window +=
961 					NEXT_NORMALIO_DISTANCE;
962 			} else
963 				conf->start_next_window = MaxSector;
964 		}
965 	}
966 	spin_unlock_irqrestore(&conf->resync_lock, flags);
967 	wake_up(&conf->wait_barrier);
968 }
969 
970 static void freeze_array(struct r1conf *conf, int extra)
971 {
972 	/* stop syncio and normal IO and wait for everything to
973 	 * go quite.
974 	 * We wait until nr_pending match nr_queued+extra
975 	 * This is called in the context of one normal IO request
976 	 * that has failed. Thus any sync request that might be pending
977 	 * will be blocked by nr_pending, and we need to wait for
978 	 * pending IO requests to complete or be queued for re-try.
979 	 * Thus the number queued (nr_queued) plus this request (extra)
980 	 * must match the number of pending IOs (nr_pending) before
981 	 * we continue.
982 	 */
983 	spin_lock_irq(&conf->resync_lock);
984 	conf->array_frozen = 1;
985 	wait_event_lock_irq_cmd(conf->wait_barrier,
986 				conf->nr_pending == conf->nr_queued+extra,
987 				conf->resync_lock,
988 				flush_pending_writes(conf));
989 	spin_unlock_irq(&conf->resync_lock);
990 }
991 static void unfreeze_array(struct r1conf *conf)
992 {
993 	/* reverse the effect of the freeze */
994 	spin_lock_irq(&conf->resync_lock);
995 	conf->array_frozen = 0;
996 	wake_up(&conf->wait_barrier);
997 	spin_unlock_irq(&conf->resync_lock);
998 }
999 
1000 /* duplicate the data pages for behind I/O
1001  */
1002 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
1003 {
1004 	int i;
1005 	struct bio_vec *bvec;
1006 	struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
1007 					GFP_NOIO);
1008 	if (unlikely(!bvecs))
1009 		return;
1010 
1011 	bio_for_each_segment_all(bvec, bio, i) {
1012 		bvecs[i] = *bvec;
1013 		bvecs[i].bv_page = alloc_page(GFP_NOIO);
1014 		if (unlikely(!bvecs[i].bv_page))
1015 			goto do_sync_io;
1016 		memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
1017 		       kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
1018 		kunmap(bvecs[i].bv_page);
1019 		kunmap(bvec->bv_page);
1020 	}
1021 	r1_bio->behind_bvecs = bvecs;
1022 	r1_bio->behind_page_count = bio->bi_vcnt;
1023 	set_bit(R1BIO_BehindIO, &r1_bio->state);
1024 	return;
1025 
1026 do_sync_io:
1027 	for (i = 0; i < bio->bi_vcnt; i++)
1028 		if (bvecs[i].bv_page)
1029 			put_page(bvecs[i].bv_page);
1030 	kfree(bvecs);
1031 	pr_debug("%dB behind alloc failed, doing sync I/O\n",
1032 		 bio->bi_iter.bi_size);
1033 }
1034 
1035 struct raid1_plug_cb {
1036 	struct blk_plug_cb	cb;
1037 	struct bio_list		pending;
1038 	int			pending_cnt;
1039 };
1040 
1041 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1042 {
1043 	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1044 						  cb);
1045 	struct mddev *mddev = plug->cb.data;
1046 	struct r1conf *conf = mddev->private;
1047 	struct bio *bio;
1048 
1049 	if (from_schedule || current->bio_list) {
1050 		spin_lock_irq(&conf->device_lock);
1051 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1052 		conf->pending_count += plug->pending_cnt;
1053 		spin_unlock_irq(&conf->device_lock);
1054 		wake_up(&conf->wait_barrier);
1055 		md_wakeup_thread(mddev->thread);
1056 		kfree(plug);
1057 		return;
1058 	}
1059 
1060 	/* we aren't scheduling, so we can do the write-out directly. */
1061 	bio = bio_list_get(&plug->pending);
1062 	bitmap_unplug(mddev->bitmap);
1063 	wake_up(&conf->wait_barrier);
1064 
1065 	while (bio) { /* submit pending writes */
1066 		struct bio *next = bio->bi_next;
1067 		bio->bi_next = NULL;
1068 		if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1069 		    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1070 			/* Just ignore it */
1071 			bio_endio(bio, 0);
1072 		else
1073 			generic_make_request(bio);
1074 		bio = next;
1075 	}
1076 	kfree(plug);
1077 }
1078 
1079 static void make_request(struct mddev *mddev, struct bio * bio)
1080 {
1081 	struct r1conf *conf = mddev->private;
1082 	struct raid1_info *mirror;
1083 	struct r1bio *r1_bio;
1084 	struct bio *read_bio;
1085 	int i, disks;
1086 	struct bitmap *bitmap;
1087 	unsigned long flags;
1088 	const int rw = bio_data_dir(bio);
1089 	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1090 	const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
1091 	const unsigned long do_discard = (bio->bi_rw
1092 					  & (REQ_DISCARD | REQ_SECURE));
1093 	const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1094 	struct md_rdev *blocked_rdev;
1095 	struct blk_plug_cb *cb;
1096 	struct raid1_plug_cb *plug = NULL;
1097 	int first_clone;
1098 	int sectors_handled;
1099 	int max_sectors;
1100 	sector_t start_next_window;
1101 
1102 	/*
1103 	 * Register the new request and wait if the reconstruction
1104 	 * thread has put up a bar for new requests.
1105 	 * Continue immediately if no resync is active currently.
1106 	 */
1107 
1108 	md_write_start(mddev, bio); /* wait on superblock update early */
1109 
1110 	if (bio_data_dir(bio) == WRITE &&
1111 	    ((bio_end_sector(bio) > mddev->suspend_lo &&
1112 	    bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1113 	    (mddev_is_clustered(mddev) &&
1114 	     md_cluster_ops->area_resyncing(mddev, WRITE,
1115 		     bio->bi_iter.bi_sector, bio_end_sector(bio))))) {
1116 		/* As the suspend_* range is controlled by
1117 		 * userspace, we want an interruptible
1118 		 * wait.
1119 		 */
1120 		DEFINE_WAIT(w);
1121 		for (;;) {
1122 			flush_signals(current);
1123 			prepare_to_wait(&conf->wait_barrier,
1124 					&w, TASK_INTERRUPTIBLE);
1125 			if (bio_end_sector(bio) <= mddev->suspend_lo ||
1126 			    bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1127 			    (mddev_is_clustered(mddev) &&
1128 			     !md_cluster_ops->area_resyncing(mddev, WRITE,
1129 				     bio->bi_iter.bi_sector, bio_end_sector(bio))))
1130 				break;
1131 			schedule();
1132 		}
1133 		finish_wait(&conf->wait_barrier, &w);
1134 	}
1135 
1136 	start_next_window = wait_barrier(conf, bio);
1137 
1138 	bitmap = mddev->bitmap;
1139 
1140 	/*
1141 	 * make_request() can abort the operation when READA is being
1142 	 * used and no empty request is available.
1143 	 *
1144 	 */
1145 	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1146 
1147 	r1_bio->master_bio = bio;
1148 	r1_bio->sectors = bio_sectors(bio);
1149 	r1_bio->state = 0;
1150 	r1_bio->mddev = mddev;
1151 	r1_bio->sector = bio->bi_iter.bi_sector;
1152 
1153 	/* We might need to issue multiple reads to different
1154 	 * devices if there are bad blocks around, so we keep
1155 	 * track of the number of reads in bio->bi_phys_segments.
1156 	 * If this is 0, there is only one r1_bio and no locking
1157 	 * will be needed when requests complete.  If it is
1158 	 * non-zero, then it is the number of not-completed requests.
1159 	 */
1160 	bio->bi_phys_segments = 0;
1161 	clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1162 
1163 	if (rw == READ) {
1164 		/*
1165 		 * read balancing logic:
1166 		 */
1167 		int rdisk;
1168 
1169 read_again:
1170 		rdisk = read_balance(conf, r1_bio, &max_sectors);
1171 
1172 		if (rdisk < 0) {
1173 			/* couldn't find anywhere to read from */
1174 			raid_end_bio_io(r1_bio);
1175 			return;
1176 		}
1177 		mirror = conf->mirrors + rdisk;
1178 
1179 		if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1180 		    bitmap) {
1181 			/* Reading from a write-mostly device must
1182 			 * take care not to over-take any writes
1183 			 * that are 'behind'
1184 			 */
1185 			wait_event(bitmap->behind_wait,
1186 				   atomic_read(&bitmap->behind_writes) == 0);
1187 		}
1188 		r1_bio->read_disk = rdisk;
1189 		r1_bio->start_next_window = 0;
1190 
1191 		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1192 		bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1193 			 max_sectors);
1194 
1195 		r1_bio->bios[rdisk] = read_bio;
1196 
1197 		read_bio->bi_iter.bi_sector = r1_bio->sector +
1198 			mirror->rdev->data_offset;
1199 		read_bio->bi_bdev = mirror->rdev->bdev;
1200 		read_bio->bi_end_io = raid1_end_read_request;
1201 		read_bio->bi_rw = READ | do_sync;
1202 		read_bio->bi_private = r1_bio;
1203 
1204 		if (max_sectors < r1_bio->sectors) {
1205 			/* could not read all from this device, so we will
1206 			 * need another r1_bio.
1207 			 */
1208 
1209 			sectors_handled = (r1_bio->sector + max_sectors
1210 					   - bio->bi_iter.bi_sector);
1211 			r1_bio->sectors = max_sectors;
1212 			spin_lock_irq(&conf->device_lock);
1213 			if (bio->bi_phys_segments == 0)
1214 				bio->bi_phys_segments = 2;
1215 			else
1216 				bio->bi_phys_segments++;
1217 			spin_unlock_irq(&conf->device_lock);
1218 			/* Cannot call generic_make_request directly
1219 			 * as that will be queued in __make_request
1220 			 * and subsequent mempool_alloc might block waiting
1221 			 * for it.  So hand bio over to raid1d.
1222 			 */
1223 			reschedule_retry(r1_bio);
1224 
1225 			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1226 
1227 			r1_bio->master_bio = bio;
1228 			r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1229 			r1_bio->state = 0;
1230 			r1_bio->mddev = mddev;
1231 			r1_bio->sector = bio->bi_iter.bi_sector +
1232 				sectors_handled;
1233 			goto read_again;
1234 		} else
1235 			generic_make_request(read_bio);
1236 		return;
1237 	}
1238 
1239 	/*
1240 	 * WRITE:
1241 	 */
1242 	if (conf->pending_count >= max_queued_requests) {
1243 		md_wakeup_thread(mddev->thread);
1244 		wait_event(conf->wait_barrier,
1245 			   conf->pending_count < max_queued_requests);
1246 	}
1247 	/* first select target devices under rcu_lock and
1248 	 * inc refcount on their rdev.  Record them by setting
1249 	 * bios[x] to bio
1250 	 * If there are known/acknowledged bad blocks on any device on
1251 	 * which we have seen a write error, we want to avoid writing those
1252 	 * blocks.
1253 	 * This potentially requires several writes to write around
1254 	 * the bad blocks.  Each set of writes gets it's own r1bio
1255 	 * with a set of bios attached.
1256 	 */
1257 
1258 	disks = conf->raid_disks * 2;
1259  retry_write:
1260 	r1_bio->start_next_window = start_next_window;
1261 	blocked_rdev = NULL;
1262 	rcu_read_lock();
1263 	max_sectors = r1_bio->sectors;
1264 	for (i = 0;  i < disks; i++) {
1265 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1266 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1267 			atomic_inc(&rdev->nr_pending);
1268 			blocked_rdev = rdev;
1269 			break;
1270 		}
1271 		r1_bio->bios[i] = NULL;
1272 		if (!rdev || test_bit(Faulty, &rdev->flags)
1273 		    || test_bit(Unmerged, &rdev->flags)) {
1274 			if (i < conf->raid_disks)
1275 				set_bit(R1BIO_Degraded, &r1_bio->state);
1276 			continue;
1277 		}
1278 
1279 		atomic_inc(&rdev->nr_pending);
1280 		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1281 			sector_t first_bad;
1282 			int bad_sectors;
1283 			int is_bad;
1284 
1285 			is_bad = is_badblock(rdev, r1_bio->sector,
1286 					     max_sectors,
1287 					     &first_bad, &bad_sectors);
1288 			if (is_bad < 0) {
1289 				/* mustn't write here until the bad block is
1290 				 * acknowledged*/
1291 				set_bit(BlockedBadBlocks, &rdev->flags);
1292 				blocked_rdev = rdev;
1293 				break;
1294 			}
1295 			if (is_bad && first_bad <= r1_bio->sector) {
1296 				/* Cannot write here at all */
1297 				bad_sectors -= (r1_bio->sector - first_bad);
1298 				if (bad_sectors < max_sectors)
1299 					/* mustn't write more than bad_sectors
1300 					 * to other devices yet
1301 					 */
1302 					max_sectors = bad_sectors;
1303 				rdev_dec_pending(rdev, mddev);
1304 				/* We don't set R1BIO_Degraded as that
1305 				 * only applies if the disk is
1306 				 * missing, so it might be re-added,
1307 				 * and we want to know to recover this
1308 				 * chunk.
1309 				 * In this case the device is here,
1310 				 * and the fact that this chunk is not
1311 				 * in-sync is recorded in the bad
1312 				 * block log
1313 				 */
1314 				continue;
1315 			}
1316 			if (is_bad) {
1317 				int good_sectors = first_bad - r1_bio->sector;
1318 				if (good_sectors < max_sectors)
1319 					max_sectors = good_sectors;
1320 			}
1321 		}
1322 		r1_bio->bios[i] = bio;
1323 	}
1324 	rcu_read_unlock();
1325 
1326 	if (unlikely(blocked_rdev)) {
1327 		/* Wait for this device to become unblocked */
1328 		int j;
1329 		sector_t old = start_next_window;
1330 
1331 		for (j = 0; j < i; j++)
1332 			if (r1_bio->bios[j])
1333 				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1334 		r1_bio->state = 0;
1335 		allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
1336 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1337 		start_next_window = wait_barrier(conf, bio);
1338 		/*
1339 		 * We must make sure the multi r1bios of bio have
1340 		 * the same value of bi_phys_segments
1341 		 */
1342 		if (bio->bi_phys_segments && old &&
1343 		    old != start_next_window)
1344 			/* Wait for the former r1bio(s) to complete */
1345 			wait_event(conf->wait_barrier,
1346 				   bio->bi_phys_segments == 1);
1347 		goto retry_write;
1348 	}
1349 
1350 	if (max_sectors < r1_bio->sectors) {
1351 		/* We are splitting this write into multiple parts, so
1352 		 * we need to prepare for allocating another r1_bio.
1353 		 */
1354 		r1_bio->sectors = max_sectors;
1355 		spin_lock_irq(&conf->device_lock);
1356 		if (bio->bi_phys_segments == 0)
1357 			bio->bi_phys_segments = 2;
1358 		else
1359 			bio->bi_phys_segments++;
1360 		spin_unlock_irq(&conf->device_lock);
1361 	}
1362 	sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
1363 
1364 	atomic_set(&r1_bio->remaining, 1);
1365 	atomic_set(&r1_bio->behind_remaining, 0);
1366 
1367 	first_clone = 1;
1368 	for (i = 0; i < disks; i++) {
1369 		struct bio *mbio;
1370 		if (!r1_bio->bios[i])
1371 			continue;
1372 
1373 		mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1374 		bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors);
1375 
1376 		if (first_clone) {
1377 			/* do behind I/O ?
1378 			 * Not if there are too many, or cannot
1379 			 * allocate memory, or a reader on WriteMostly
1380 			 * is waiting for behind writes to flush */
1381 			if (bitmap &&
1382 			    (atomic_read(&bitmap->behind_writes)
1383 			     < mddev->bitmap_info.max_write_behind) &&
1384 			    !waitqueue_active(&bitmap->behind_wait))
1385 				alloc_behind_pages(mbio, r1_bio);
1386 
1387 			bitmap_startwrite(bitmap, r1_bio->sector,
1388 					  r1_bio->sectors,
1389 					  test_bit(R1BIO_BehindIO,
1390 						   &r1_bio->state));
1391 			first_clone = 0;
1392 		}
1393 		if (r1_bio->behind_bvecs) {
1394 			struct bio_vec *bvec;
1395 			int j;
1396 
1397 			/*
1398 			 * We trimmed the bio, so _all is legit
1399 			 */
1400 			bio_for_each_segment_all(bvec, mbio, j)
1401 				bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1402 			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1403 				atomic_inc(&r1_bio->behind_remaining);
1404 		}
1405 
1406 		r1_bio->bios[i] = mbio;
1407 
1408 		mbio->bi_iter.bi_sector	= (r1_bio->sector +
1409 				   conf->mirrors[i].rdev->data_offset);
1410 		mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1411 		mbio->bi_end_io	= raid1_end_write_request;
1412 		mbio->bi_rw =
1413 			WRITE | do_flush_fua | do_sync | do_discard | do_same;
1414 		mbio->bi_private = r1_bio;
1415 
1416 		atomic_inc(&r1_bio->remaining);
1417 
1418 		cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1419 		if (cb)
1420 			plug = container_of(cb, struct raid1_plug_cb, cb);
1421 		else
1422 			plug = NULL;
1423 		spin_lock_irqsave(&conf->device_lock, flags);
1424 		if (plug) {
1425 			bio_list_add(&plug->pending, mbio);
1426 			plug->pending_cnt++;
1427 		} else {
1428 			bio_list_add(&conf->pending_bio_list, mbio);
1429 			conf->pending_count++;
1430 		}
1431 		spin_unlock_irqrestore(&conf->device_lock, flags);
1432 		if (!plug)
1433 			md_wakeup_thread(mddev->thread);
1434 	}
1435 	/* Mustn't call r1_bio_write_done before this next test,
1436 	 * as it could result in the bio being freed.
1437 	 */
1438 	if (sectors_handled < bio_sectors(bio)) {
1439 		r1_bio_write_done(r1_bio);
1440 		/* We need another r1_bio.  It has already been counted
1441 		 * in bio->bi_phys_segments
1442 		 */
1443 		r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1444 		r1_bio->master_bio = bio;
1445 		r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1446 		r1_bio->state = 0;
1447 		r1_bio->mddev = mddev;
1448 		r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1449 		goto retry_write;
1450 	}
1451 
1452 	r1_bio_write_done(r1_bio);
1453 
1454 	/* In case raid1d snuck in to freeze_array */
1455 	wake_up(&conf->wait_barrier);
1456 }
1457 
1458 static void status(struct seq_file *seq, struct mddev *mddev)
1459 {
1460 	struct r1conf *conf = mddev->private;
1461 	int i;
1462 
1463 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1464 		   conf->raid_disks - mddev->degraded);
1465 	rcu_read_lock();
1466 	for (i = 0; i < conf->raid_disks; i++) {
1467 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1468 		seq_printf(seq, "%s",
1469 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1470 	}
1471 	rcu_read_unlock();
1472 	seq_printf(seq, "]");
1473 }
1474 
1475 static void error(struct mddev *mddev, struct md_rdev *rdev)
1476 {
1477 	char b[BDEVNAME_SIZE];
1478 	struct r1conf *conf = mddev->private;
1479 	unsigned long flags;
1480 
1481 	/*
1482 	 * If it is not operational, then we have already marked it as dead
1483 	 * else if it is the last working disks, ignore the error, let the
1484 	 * next level up know.
1485 	 * else mark the drive as failed
1486 	 */
1487 	if (test_bit(In_sync, &rdev->flags)
1488 	    && (conf->raid_disks - mddev->degraded) == 1) {
1489 		/*
1490 		 * Don't fail the drive, act as though we were just a
1491 		 * normal single drive.
1492 		 * However don't try a recovery from this drive as
1493 		 * it is very likely to fail.
1494 		 */
1495 		conf->recovery_disabled = mddev->recovery_disabled;
1496 		return;
1497 	}
1498 	set_bit(Blocked, &rdev->flags);
1499 	spin_lock_irqsave(&conf->device_lock, flags);
1500 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1501 		mddev->degraded++;
1502 		set_bit(Faulty, &rdev->flags);
1503 	} else
1504 		set_bit(Faulty, &rdev->flags);
1505 	spin_unlock_irqrestore(&conf->device_lock, flags);
1506 	/*
1507 	 * if recovery is running, make sure it aborts.
1508 	 */
1509 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1510 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1511 	printk(KERN_ALERT
1512 	       "md/raid1:%s: Disk failure on %s, disabling device.\n"
1513 	       "md/raid1:%s: Operation continuing on %d devices.\n",
1514 	       mdname(mddev), bdevname(rdev->bdev, b),
1515 	       mdname(mddev), conf->raid_disks - mddev->degraded);
1516 }
1517 
1518 static void print_conf(struct r1conf *conf)
1519 {
1520 	int i;
1521 
1522 	printk(KERN_DEBUG "RAID1 conf printout:\n");
1523 	if (!conf) {
1524 		printk(KERN_DEBUG "(!conf)\n");
1525 		return;
1526 	}
1527 	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1528 		conf->raid_disks);
1529 
1530 	rcu_read_lock();
1531 	for (i = 0; i < conf->raid_disks; i++) {
1532 		char b[BDEVNAME_SIZE];
1533 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1534 		if (rdev)
1535 			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1536 			       i, !test_bit(In_sync, &rdev->flags),
1537 			       !test_bit(Faulty, &rdev->flags),
1538 			       bdevname(rdev->bdev,b));
1539 	}
1540 	rcu_read_unlock();
1541 }
1542 
1543 static void close_sync(struct r1conf *conf)
1544 {
1545 	wait_barrier(conf, NULL);
1546 	allow_barrier(conf, 0, 0);
1547 
1548 	mempool_destroy(conf->r1buf_pool);
1549 	conf->r1buf_pool = NULL;
1550 
1551 	spin_lock_irq(&conf->resync_lock);
1552 	conf->next_resync = 0;
1553 	conf->start_next_window = MaxSector;
1554 	conf->current_window_requests +=
1555 		conf->next_window_requests;
1556 	conf->next_window_requests = 0;
1557 	spin_unlock_irq(&conf->resync_lock);
1558 }
1559 
1560 static int raid1_spare_active(struct mddev *mddev)
1561 {
1562 	int i;
1563 	struct r1conf *conf = mddev->private;
1564 	int count = 0;
1565 	unsigned long flags;
1566 
1567 	/*
1568 	 * Find all failed disks within the RAID1 configuration
1569 	 * and mark them readable.
1570 	 * Called under mddev lock, so rcu protection not needed.
1571 	 * device_lock used to avoid races with raid1_end_read_request
1572 	 * which expects 'In_sync' flags and ->degraded to be consistent.
1573 	 */
1574 	spin_lock_irqsave(&conf->device_lock, flags);
1575 	for (i = 0; i < conf->raid_disks; i++) {
1576 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1577 		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1578 		if (repl
1579 		    && !test_bit(Candidate, &repl->flags)
1580 		    && repl->recovery_offset == MaxSector
1581 		    && !test_bit(Faulty, &repl->flags)
1582 		    && !test_and_set_bit(In_sync, &repl->flags)) {
1583 			/* replacement has just become active */
1584 			if (!rdev ||
1585 			    !test_and_clear_bit(In_sync, &rdev->flags))
1586 				count++;
1587 			if (rdev) {
1588 				/* Replaced device not technically
1589 				 * faulty, but we need to be sure
1590 				 * it gets removed and never re-added
1591 				 */
1592 				set_bit(Faulty, &rdev->flags);
1593 				sysfs_notify_dirent_safe(
1594 					rdev->sysfs_state);
1595 			}
1596 		}
1597 		if (rdev
1598 		    && rdev->recovery_offset == MaxSector
1599 		    && !test_bit(Faulty, &rdev->flags)
1600 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1601 			count++;
1602 			sysfs_notify_dirent_safe(rdev->sysfs_state);
1603 		}
1604 	}
1605 	mddev->degraded -= count;
1606 	spin_unlock_irqrestore(&conf->device_lock, flags);
1607 
1608 	print_conf(conf);
1609 	return count;
1610 }
1611 
1612 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1613 {
1614 	struct r1conf *conf = mddev->private;
1615 	int err = -EEXIST;
1616 	int mirror = 0;
1617 	struct raid1_info *p;
1618 	int first = 0;
1619 	int last = conf->raid_disks - 1;
1620 	struct request_queue *q = bdev_get_queue(rdev->bdev);
1621 
1622 	if (mddev->recovery_disabled == conf->recovery_disabled)
1623 		return -EBUSY;
1624 
1625 	if (rdev->raid_disk >= 0)
1626 		first = last = rdev->raid_disk;
1627 
1628 	if (q->merge_bvec_fn) {
1629 		set_bit(Unmerged, &rdev->flags);
1630 		mddev->merge_check_needed = 1;
1631 	}
1632 
1633 	for (mirror = first; mirror <= last; mirror++) {
1634 		p = conf->mirrors+mirror;
1635 		if (!p->rdev) {
1636 
1637 			if (mddev->gendisk)
1638 				disk_stack_limits(mddev->gendisk, rdev->bdev,
1639 						  rdev->data_offset << 9);
1640 
1641 			p->head_position = 0;
1642 			rdev->raid_disk = mirror;
1643 			err = 0;
1644 			/* As all devices are equivalent, we don't need a full recovery
1645 			 * if this was recently any drive of the array
1646 			 */
1647 			if (rdev->saved_raid_disk < 0)
1648 				conf->fullsync = 1;
1649 			rcu_assign_pointer(p->rdev, rdev);
1650 			break;
1651 		}
1652 		if (test_bit(WantReplacement, &p->rdev->flags) &&
1653 		    p[conf->raid_disks].rdev == NULL) {
1654 			/* Add this device as a replacement */
1655 			clear_bit(In_sync, &rdev->flags);
1656 			set_bit(Replacement, &rdev->flags);
1657 			rdev->raid_disk = mirror;
1658 			err = 0;
1659 			conf->fullsync = 1;
1660 			rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1661 			break;
1662 		}
1663 	}
1664 	if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1665 		/* Some requests might not have seen this new
1666 		 * merge_bvec_fn.  We must wait for them to complete
1667 		 * before merging the device fully.
1668 		 * First we make sure any code which has tested
1669 		 * our function has submitted the request, then
1670 		 * we wait for all outstanding requests to complete.
1671 		 */
1672 		synchronize_sched();
1673 		freeze_array(conf, 0);
1674 		unfreeze_array(conf);
1675 		clear_bit(Unmerged, &rdev->flags);
1676 	}
1677 	md_integrity_add_rdev(rdev, mddev);
1678 	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1679 		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1680 	print_conf(conf);
1681 	return err;
1682 }
1683 
1684 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1685 {
1686 	struct r1conf *conf = mddev->private;
1687 	int err = 0;
1688 	int number = rdev->raid_disk;
1689 	struct raid1_info *p = conf->mirrors + number;
1690 
1691 	if (rdev != p->rdev)
1692 		p = conf->mirrors + conf->raid_disks + number;
1693 
1694 	print_conf(conf);
1695 	if (rdev == p->rdev) {
1696 		if (test_bit(In_sync, &rdev->flags) ||
1697 		    atomic_read(&rdev->nr_pending)) {
1698 			err = -EBUSY;
1699 			goto abort;
1700 		}
1701 		/* Only remove non-faulty devices if recovery
1702 		 * is not possible.
1703 		 */
1704 		if (!test_bit(Faulty, &rdev->flags) &&
1705 		    mddev->recovery_disabled != conf->recovery_disabled &&
1706 		    mddev->degraded < conf->raid_disks) {
1707 			err = -EBUSY;
1708 			goto abort;
1709 		}
1710 		p->rdev = NULL;
1711 		synchronize_rcu();
1712 		if (atomic_read(&rdev->nr_pending)) {
1713 			/* lost the race, try later */
1714 			err = -EBUSY;
1715 			p->rdev = rdev;
1716 			goto abort;
1717 		} else if (conf->mirrors[conf->raid_disks + number].rdev) {
1718 			/* We just removed a device that is being replaced.
1719 			 * Move down the replacement.  We drain all IO before
1720 			 * doing this to avoid confusion.
1721 			 */
1722 			struct md_rdev *repl =
1723 				conf->mirrors[conf->raid_disks + number].rdev;
1724 			freeze_array(conf, 0);
1725 			clear_bit(Replacement, &repl->flags);
1726 			p->rdev = repl;
1727 			conf->mirrors[conf->raid_disks + number].rdev = NULL;
1728 			unfreeze_array(conf);
1729 			clear_bit(WantReplacement, &rdev->flags);
1730 		} else
1731 			clear_bit(WantReplacement, &rdev->flags);
1732 		err = md_integrity_register(mddev);
1733 	}
1734 abort:
1735 
1736 	print_conf(conf);
1737 	return err;
1738 }
1739 
1740 static void end_sync_read(struct bio *bio, int error)
1741 {
1742 	struct r1bio *r1_bio = bio->bi_private;
1743 
1744 	update_head_pos(r1_bio->read_disk, r1_bio);
1745 
1746 	/*
1747 	 * we have read a block, now it needs to be re-written,
1748 	 * or re-read if the read failed.
1749 	 * We don't do much here, just schedule handling by raid1d
1750 	 */
1751 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1752 		set_bit(R1BIO_Uptodate, &r1_bio->state);
1753 
1754 	if (atomic_dec_and_test(&r1_bio->remaining))
1755 		reschedule_retry(r1_bio);
1756 }
1757 
1758 static void end_sync_write(struct bio *bio, int error)
1759 {
1760 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1761 	struct r1bio *r1_bio = bio->bi_private;
1762 	struct mddev *mddev = r1_bio->mddev;
1763 	struct r1conf *conf = mddev->private;
1764 	int mirror=0;
1765 	sector_t first_bad;
1766 	int bad_sectors;
1767 
1768 	mirror = find_bio_disk(r1_bio, bio);
1769 
1770 	if (!uptodate) {
1771 		sector_t sync_blocks = 0;
1772 		sector_t s = r1_bio->sector;
1773 		long sectors_to_go = r1_bio->sectors;
1774 		/* make sure these bits doesn't get cleared. */
1775 		do {
1776 			bitmap_end_sync(mddev->bitmap, s,
1777 					&sync_blocks, 1);
1778 			s += sync_blocks;
1779 			sectors_to_go -= sync_blocks;
1780 		} while (sectors_to_go > 0);
1781 		set_bit(WriteErrorSeen,
1782 			&conf->mirrors[mirror].rdev->flags);
1783 		if (!test_and_set_bit(WantReplacement,
1784 				      &conf->mirrors[mirror].rdev->flags))
1785 			set_bit(MD_RECOVERY_NEEDED, &
1786 				mddev->recovery);
1787 		set_bit(R1BIO_WriteError, &r1_bio->state);
1788 	} else if (is_badblock(conf->mirrors[mirror].rdev,
1789 			       r1_bio->sector,
1790 			       r1_bio->sectors,
1791 			       &first_bad, &bad_sectors) &&
1792 		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1793 				r1_bio->sector,
1794 				r1_bio->sectors,
1795 				&first_bad, &bad_sectors)
1796 		)
1797 		set_bit(R1BIO_MadeGood, &r1_bio->state);
1798 
1799 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1800 		int s = r1_bio->sectors;
1801 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1802 		    test_bit(R1BIO_WriteError, &r1_bio->state))
1803 			reschedule_retry(r1_bio);
1804 		else {
1805 			put_buf(r1_bio);
1806 			md_done_sync(mddev, s, uptodate);
1807 		}
1808 	}
1809 }
1810 
1811 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1812 			    int sectors, struct page *page, int rw)
1813 {
1814 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1815 		/* success */
1816 		return 1;
1817 	if (rw == WRITE) {
1818 		set_bit(WriteErrorSeen, &rdev->flags);
1819 		if (!test_and_set_bit(WantReplacement,
1820 				      &rdev->flags))
1821 			set_bit(MD_RECOVERY_NEEDED, &
1822 				rdev->mddev->recovery);
1823 	}
1824 	/* need to record an error - either for the block or the device */
1825 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1826 		md_error(rdev->mddev, rdev);
1827 	return 0;
1828 }
1829 
1830 static int fix_sync_read_error(struct r1bio *r1_bio)
1831 {
1832 	/* Try some synchronous reads of other devices to get
1833 	 * good data, much like with normal read errors.  Only
1834 	 * read into the pages we already have so we don't
1835 	 * need to re-issue the read request.
1836 	 * We don't need to freeze the array, because being in an
1837 	 * active sync request, there is no normal IO, and
1838 	 * no overlapping syncs.
1839 	 * We don't need to check is_badblock() again as we
1840 	 * made sure that anything with a bad block in range
1841 	 * will have bi_end_io clear.
1842 	 */
1843 	struct mddev *mddev = r1_bio->mddev;
1844 	struct r1conf *conf = mddev->private;
1845 	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1846 	sector_t sect = r1_bio->sector;
1847 	int sectors = r1_bio->sectors;
1848 	int idx = 0;
1849 
1850 	while(sectors) {
1851 		int s = sectors;
1852 		int d = r1_bio->read_disk;
1853 		int success = 0;
1854 		struct md_rdev *rdev;
1855 		int start;
1856 
1857 		if (s > (PAGE_SIZE>>9))
1858 			s = PAGE_SIZE >> 9;
1859 		do {
1860 			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1861 				/* No rcu protection needed here devices
1862 				 * can only be removed when no resync is
1863 				 * active, and resync is currently active
1864 				 */
1865 				rdev = conf->mirrors[d].rdev;
1866 				if (sync_page_io(rdev, sect, s<<9,
1867 						 bio->bi_io_vec[idx].bv_page,
1868 						 READ, false)) {
1869 					success = 1;
1870 					break;
1871 				}
1872 			}
1873 			d++;
1874 			if (d == conf->raid_disks * 2)
1875 				d = 0;
1876 		} while (!success && d != r1_bio->read_disk);
1877 
1878 		if (!success) {
1879 			char b[BDEVNAME_SIZE];
1880 			int abort = 0;
1881 			/* Cannot read from anywhere, this block is lost.
1882 			 * Record a bad block on each device.  If that doesn't
1883 			 * work just disable and interrupt the recovery.
1884 			 * Don't fail devices as that won't really help.
1885 			 */
1886 			printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1887 			       " for block %llu\n",
1888 			       mdname(mddev),
1889 			       bdevname(bio->bi_bdev, b),
1890 			       (unsigned long long)r1_bio->sector);
1891 			for (d = 0; d < conf->raid_disks * 2; d++) {
1892 				rdev = conf->mirrors[d].rdev;
1893 				if (!rdev || test_bit(Faulty, &rdev->flags))
1894 					continue;
1895 				if (!rdev_set_badblocks(rdev, sect, s, 0))
1896 					abort = 1;
1897 			}
1898 			if (abort) {
1899 				conf->recovery_disabled =
1900 					mddev->recovery_disabled;
1901 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1902 				md_done_sync(mddev, r1_bio->sectors, 0);
1903 				put_buf(r1_bio);
1904 				return 0;
1905 			}
1906 			/* Try next page */
1907 			sectors -= s;
1908 			sect += s;
1909 			idx++;
1910 			continue;
1911 		}
1912 
1913 		start = d;
1914 		/* write it back and re-read */
1915 		while (d != r1_bio->read_disk) {
1916 			if (d == 0)
1917 				d = conf->raid_disks * 2;
1918 			d--;
1919 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1920 				continue;
1921 			rdev = conf->mirrors[d].rdev;
1922 			if (r1_sync_page_io(rdev, sect, s,
1923 					    bio->bi_io_vec[idx].bv_page,
1924 					    WRITE) == 0) {
1925 				r1_bio->bios[d]->bi_end_io = NULL;
1926 				rdev_dec_pending(rdev, mddev);
1927 			}
1928 		}
1929 		d = start;
1930 		while (d != r1_bio->read_disk) {
1931 			if (d == 0)
1932 				d = conf->raid_disks * 2;
1933 			d--;
1934 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1935 				continue;
1936 			rdev = conf->mirrors[d].rdev;
1937 			if (r1_sync_page_io(rdev, sect, s,
1938 					    bio->bi_io_vec[idx].bv_page,
1939 					    READ) != 0)
1940 				atomic_add(s, &rdev->corrected_errors);
1941 		}
1942 		sectors -= s;
1943 		sect += s;
1944 		idx ++;
1945 	}
1946 	set_bit(R1BIO_Uptodate, &r1_bio->state);
1947 	set_bit(BIO_UPTODATE, &bio->bi_flags);
1948 	return 1;
1949 }
1950 
1951 static void process_checks(struct r1bio *r1_bio)
1952 {
1953 	/* We have read all readable devices.  If we haven't
1954 	 * got the block, then there is no hope left.
1955 	 * If we have, then we want to do a comparison
1956 	 * and skip the write if everything is the same.
1957 	 * If any blocks failed to read, then we need to
1958 	 * attempt an over-write
1959 	 */
1960 	struct mddev *mddev = r1_bio->mddev;
1961 	struct r1conf *conf = mddev->private;
1962 	int primary;
1963 	int i;
1964 	int vcnt;
1965 
1966 	/* Fix variable parts of all bios */
1967 	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1968 	for (i = 0; i < conf->raid_disks * 2; i++) {
1969 		int j;
1970 		int size;
1971 		int uptodate;
1972 		struct bio *b = r1_bio->bios[i];
1973 		if (b->bi_end_io != end_sync_read)
1974 			continue;
1975 		/* fixup the bio for reuse, but preserve BIO_UPTODATE */
1976 		uptodate = test_bit(BIO_UPTODATE, &b->bi_flags);
1977 		bio_reset(b);
1978 		if (!uptodate)
1979 			clear_bit(BIO_UPTODATE, &b->bi_flags);
1980 		b->bi_vcnt = vcnt;
1981 		b->bi_iter.bi_size = r1_bio->sectors << 9;
1982 		b->bi_iter.bi_sector = r1_bio->sector +
1983 			conf->mirrors[i].rdev->data_offset;
1984 		b->bi_bdev = conf->mirrors[i].rdev->bdev;
1985 		b->bi_end_io = end_sync_read;
1986 		b->bi_private = r1_bio;
1987 
1988 		size = b->bi_iter.bi_size;
1989 		for (j = 0; j < vcnt ; j++) {
1990 			struct bio_vec *bi;
1991 			bi = &b->bi_io_vec[j];
1992 			bi->bv_offset = 0;
1993 			if (size > PAGE_SIZE)
1994 				bi->bv_len = PAGE_SIZE;
1995 			else
1996 				bi->bv_len = size;
1997 			size -= PAGE_SIZE;
1998 		}
1999 	}
2000 	for (primary = 0; primary < conf->raid_disks * 2; primary++)
2001 		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2002 		    test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
2003 			r1_bio->bios[primary]->bi_end_io = NULL;
2004 			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2005 			break;
2006 		}
2007 	r1_bio->read_disk = primary;
2008 	for (i = 0; i < conf->raid_disks * 2; i++) {
2009 		int j;
2010 		struct bio *pbio = r1_bio->bios[primary];
2011 		struct bio *sbio = r1_bio->bios[i];
2012 		int uptodate = test_bit(BIO_UPTODATE, &sbio->bi_flags);
2013 
2014 		if (sbio->bi_end_io != end_sync_read)
2015 			continue;
2016 		/* Now we can 'fixup' the BIO_UPTODATE flag */
2017 		set_bit(BIO_UPTODATE, &sbio->bi_flags);
2018 
2019 		if (uptodate) {
2020 			for (j = vcnt; j-- ; ) {
2021 				struct page *p, *s;
2022 				p = pbio->bi_io_vec[j].bv_page;
2023 				s = sbio->bi_io_vec[j].bv_page;
2024 				if (memcmp(page_address(p),
2025 					   page_address(s),
2026 					   sbio->bi_io_vec[j].bv_len))
2027 					break;
2028 			}
2029 		} else
2030 			j = 0;
2031 		if (j >= 0)
2032 			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2033 		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2034 			      && uptodate)) {
2035 			/* No need to write to this device. */
2036 			sbio->bi_end_io = NULL;
2037 			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2038 			continue;
2039 		}
2040 
2041 		bio_copy_data(sbio, pbio);
2042 	}
2043 }
2044 
2045 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2046 {
2047 	struct r1conf *conf = mddev->private;
2048 	int i;
2049 	int disks = conf->raid_disks * 2;
2050 	struct bio *bio, *wbio;
2051 
2052 	bio = r1_bio->bios[r1_bio->read_disk];
2053 
2054 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2055 		/* ouch - failed to read all of that. */
2056 		if (!fix_sync_read_error(r1_bio))
2057 			return;
2058 
2059 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2060 		process_checks(r1_bio);
2061 
2062 	/*
2063 	 * schedule writes
2064 	 */
2065 	atomic_set(&r1_bio->remaining, 1);
2066 	for (i = 0; i < disks ; i++) {
2067 		wbio = r1_bio->bios[i];
2068 		if (wbio->bi_end_io == NULL ||
2069 		    (wbio->bi_end_io == end_sync_read &&
2070 		     (i == r1_bio->read_disk ||
2071 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2072 			continue;
2073 
2074 		wbio->bi_rw = WRITE;
2075 		wbio->bi_end_io = end_sync_write;
2076 		atomic_inc(&r1_bio->remaining);
2077 		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2078 
2079 		generic_make_request(wbio);
2080 	}
2081 
2082 	if (atomic_dec_and_test(&r1_bio->remaining)) {
2083 		/* if we're here, all write(s) have completed, so clean up */
2084 		int s = r1_bio->sectors;
2085 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2086 		    test_bit(R1BIO_WriteError, &r1_bio->state))
2087 			reschedule_retry(r1_bio);
2088 		else {
2089 			put_buf(r1_bio);
2090 			md_done_sync(mddev, s, 1);
2091 		}
2092 	}
2093 }
2094 
2095 /*
2096  * This is a kernel thread which:
2097  *
2098  *	1.	Retries failed read operations on working mirrors.
2099  *	2.	Updates the raid superblock when problems encounter.
2100  *	3.	Performs writes following reads for array synchronising.
2101  */
2102 
2103 static void fix_read_error(struct r1conf *conf, int read_disk,
2104 			   sector_t sect, int sectors)
2105 {
2106 	struct mddev *mddev = conf->mddev;
2107 	while(sectors) {
2108 		int s = sectors;
2109 		int d = read_disk;
2110 		int success = 0;
2111 		int start;
2112 		struct md_rdev *rdev;
2113 
2114 		if (s > (PAGE_SIZE>>9))
2115 			s = PAGE_SIZE >> 9;
2116 
2117 		do {
2118 			/* Note: no rcu protection needed here
2119 			 * as this is synchronous in the raid1d thread
2120 			 * which is the thread that might remove
2121 			 * a device.  If raid1d ever becomes multi-threaded....
2122 			 */
2123 			sector_t first_bad;
2124 			int bad_sectors;
2125 
2126 			rdev = conf->mirrors[d].rdev;
2127 			if (rdev &&
2128 			    (test_bit(In_sync, &rdev->flags) ||
2129 			     (!test_bit(Faulty, &rdev->flags) &&
2130 			      rdev->recovery_offset >= sect + s)) &&
2131 			    is_badblock(rdev, sect, s,
2132 					&first_bad, &bad_sectors) == 0 &&
2133 			    sync_page_io(rdev, sect, s<<9,
2134 					 conf->tmppage, READ, false))
2135 				success = 1;
2136 			else {
2137 				d++;
2138 				if (d == conf->raid_disks * 2)
2139 					d = 0;
2140 			}
2141 		} while (!success && d != read_disk);
2142 
2143 		if (!success) {
2144 			/* Cannot read from anywhere - mark it bad */
2145 			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2146 			if (!rdev_set_badblocks(rdev, sect, s, 0))
2147 				md_error(mddev, rdev);
2148 			break;
2149 		}
2150 		/* write it back and re-read */
2151 		start = d;
2152 		while (d != read_disk) {
2153 			if (d==0)
2154 				d = conf->raid_disks * 2;
2155 			d--;
2156 			rdev = conf->mirrors[d].rdev;
2157 			if (rdev &&
2158 			    !test_bit(Faulty, &rdev->flags))
2159 				r1_sync_page_io(rdev, sect, s,
2160 						conf->tmppage, WRITE);
2161 		}
2162 		d = start;
2163 		while (d != read_disk) {
2164 			char b[BDEVNAME_SIZE];
2165 			if (d==0)
2166 				d = conf->raid_disks * 2;
2167 			d--;
2168 			rdev = conf->mirrors[d].rdev;
2169 			if (rdev &&
2170 			    !test_bit(Faulty, &rdev->flags)) {
2171 				if (r1_sync_page_io(rdev, sect, s,
2172 						    conf->tmppage, READ)) {
2173 					atomic_add(s, &rdev->corrected_errors);
2174 					printk(KERN_INFO
2175 					       "md/raid1:%s: read error corrected "
2176 					       "(%d sectors at %llu on %s)\n",
2177 					       mdname(mddev), s,
2178 					       (unsigned long long)(sect +
2179 					           rdev->data_offset),
2180 					       bdevname(rdev->bdev, b));
2181 				}
2182 			}
2183 		}
2184 		sectors -= s;
2185 		sect += s;
2186 	}
2187 }
2188 
2189 static int narrow_write_error(struct r1bio *r1_bio, int i)
2190 {
2191 	struct mddev *mddev = r1_bio->mddev;
2192 	struct r1conf *conf = mddev->private;
2193 	struct md_rdev *rdev = conf->mirrors[i].rdev;
2194 
2195 	/* bio has the data to be written to device 'i' where
2196 	 * we just recently had a write error.
2197 	 * We repeatedly clone the bio and trim down to one block,
2198 	 * then try the write.  Where the write fails we record
2199 	 * a bad block.
2200 	 * It is conceivable that the bio doesn't exactly align with
2201 	 * blocks.  We must handle this somehow.
2202 	 *
2203 	 * We currently own a reference on the rdev.
2204 	 */
2205 
2206 	int block_sectors;
2207 	sector_t sector;
2208 	int sectors;
2209 	int sect_to_write = r1_bio->sectors;
2210 	int ok = 1;
2211 
2212 	if (rdev->badblocks.shift < 0)
2213 		return 0;
2214 
2215 	block_sectors = roundup(1 << rdev->badblocks.shift,
2216 				bdev_logical_block_size(rdev->bdev) >> 9);
2217 	sector = r1_bio->sector;
2218 	sectors = ((sector + block_sectors)
2219 		   & ~(sector_t)(block_sectors - 1))
2220 		- sector;
2221 
2222 	while (sect_to_write) {
2223 		struct bio *wbio;
2224 		if (sectors > sect_to_write)
2225 			sectors = sect_to_write;
2226 		/* Write at 'sector' for 'sectors'*/
2227 
2228 		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2229 			unsigned vcnt = r1_bio->behind_page_count;
2230 			struct bio_vec *vec = r1_bio->behind_bvecs;
2231 
2232 			while (!vec->bv_page) {
2233 				vec++;
2234 				vcnt--;
2235 			}
2236 
2237 			wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2238 			memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2239 
2240 			wbio->bi_vcnt = vcnt;
2241 		} else {
2242 			wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2243 		}
2244 
2245 		wbio->bi_rw = WRITE;
2246 		wbio->bi_iter.bi_sector = r1_bio->sector;
2247 		wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2248 
2249 		bio_trim(wbio, sector - r1_bio->sector, sectors);
2250 		wbio->bi_iter.bi_sector += rdev->data_offset;
2251 		wbio->bi_bdev = rdev->bdev;
2252 		if (submit_bio_wait(WRITE, wbio) == 0)
2253 			/* failure! */
2254 			ok = rdev_set_badblocks(rdev, sector,
2255 						sectors, 0)
2256 				&& ok;
2257 
2258 		bio_put(wbio);
2259 		sect_to_write -= sectors;
2260 		sector += sectors;
2261 		sectors = block_sectors;
2262 	}
2263 	return ok;
2264 }
2265 
2266 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2267 {
2268 	int m;
2269 	int s = r1_bio->sectors;
2270 	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2271 		struct md_rdev *rdev = conf->mirrors[m].rdev;
2272 		struct bio *bio = r1_bio->bios[m];
2273 		if (bio->bi_end_io == NULL)
2274 			continue;
2275 		if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2276 		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2277 			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2278 		}
2279 		if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2280 		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2281 			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2282 				md_error(conf->mddev, rdev);
2283 		}
2284 	}
2285 	put_buf(r1_bio);
2286 	md_done_sync(conf->mddev, s, 1);
2287 }
2288 
2289 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2290 {
2291 	int m;
2292 	for (m = 0; m < conf->raid_disks * 2 ; m++)
2293 		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2294 			struct md_rdev *rdev = conf->mirrors[m].rdev;
2295 			rdev_clear_badblocks(rdev,
2296 					     r1_bio->sector,
2297 					     r1_bio->sectors, 0);
2298 			rdev_dec_pending(rdev, conf->mddev);
2299 		} else if (r1_bio->bios[m] != NULL) {
2300 			/* This drive got a write error.  We need to
2301 			 * narrow down and record precise write
2302 			 * errors.
2303 			 */
2304 			if (!narrow_write_error(r1_bio, m)) {
2305 				md_error(conf->mddev,
2306 					 conf->mirrors[m].rdev);
2307 				/* an I/O failed, we can't clear the bitmap */
2308 				set_bit(R1BIO_Degraded, &r1_bio->state);
2309 			}
2310 			rdev_dec_pending(conf->mirrors[m].rdev,
2311 					 conf->mddev);
2312 		}
2313 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
2314 		close_write(r1_bio);
2315 	raid_end_bio_io(r1_bio);
2316 }
2317 
2318 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2319 {
2320 	int disk;
2321 	int max_sectors;
2322 	struct mddev *mddev = conf->mddev;
2323 	struct bio *bio;
2324 	char b[BDEVNAME_SIZE];
2325 	struct md_rdev *rdev;
2326 
2327 	clear_bit(R1BIO_ReadError, &r1_bio->state);
2328 	/* we got a read error. Maybe the drive is bad.  Maybe just
2329 	 * the block and we can fix it.
2330 	 * We freeze all other IO, and try reading the block from
2331 	 * other devices.  When we find one, we re-write
2332 	 * and check it that fixes the read error.
2333 	 * This is all done synchronously while the array is
2334 	 * frozen
2335 	 */
2336 	if (mddev->ro == 0) {
2337 		freeze_array(conf, 1);
2338 		fix_read_error(conf, r1_bio->read_disk,
2339 			       r1_bio->sector, r1_bio->sectors);
2340 		unfreeze_array(conf);
2341 	} else
2342 		md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2343 	rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
2344 
2345 	bio = r1_bio->bios[r1_bio->read_disk];
2346 	bdevname(bio->bi_bdev, b);
2347 read_more:
2348 	disk = read_balance(conf, r1_bio, &max_sectors);
2349 	if (disk == -1) {
2350 		printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2351 		       " read error for block %llu\n",
2352 		       mdname(mddev), b, (unsigned long long)r1_bio->sector);
2353 		raid_end_bio_io(r1_bio);
2354 	} else {
2355 		const unsigned long do_sync
2356 			= r1_bio->master_bio->bi_rw & REQ_SYNC;
2357 		if (bio) {
2358 			r1_bio->bios[r1_bio->read_disk] =
2359 				mddev->ro ? IO_BLOCKED : NULL;
2360 			bio_put(bio);
2361 		}
2362 		r1_bio->read_disk = disk;
2363 		bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2364 		bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2365 			 max_sectors);
2366 		r1_bio->bios[r1_bio->read_disk] = bio;
2367 		rdev = conf->mirrors[disk].rdev;
2368 		printk_ratelimited(KERN_ERR
2369 				   "md/raid1:%s: redirecting sector %llu"
2370 				   " to other mirror: %s\n",
2371 				   mdname(mddev),
2372 				   (unsigned long long)r1_bio->sector,
2373 				   bdevname(rdev->bdev, b));
2374 		bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
2375 		bio->bi_bdev = rdev->bdev;
2376 		bio->bi_end_io = raid1_end_read_request;
2377 		bio->bi_rw = READ | do_sync;
2378 		bio->bi_private = r1_bio;
2379 		if (max_sectors < r1_bio->sectors) {
2380 			/* Drat - have to split this up more */
2381 			struct bio *mbio = r1_bio->master_bio;
2382 			int sectors_handled = (r1_bio->sector + max_sectors
2383 					       - mbio->bi_iter.bi_sector);
2384 			r1_bio->sectors = max_sectors;
2385 			spin_lock_irq(&conf->device_lock);
2386 			if (mbio->bi_phys_segments == 0)
2387 				mbio->bi_phys_segments = 2;
2388 			else
2389 				mbio->bi_phys_segments++;
2390 			spin_unlock_irq(&conf->device_lock);
2391 			generic_make_request(bio);
2392 			bio = NULL;
2393 
2394 			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2395 
2396 			r1_bio->master_bio = mbio;
2397 			r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
2398 			r1_bio->state = 0;
2399 			set_bit(R1BIO_ReadError, &r1_bio->state);
2400 			r1_bio->mddev = mddev;
2401 			r1_bio->sector = mbio->bi_iter.bi_sector +
2402 				sectors_handled;
2403 
2404 			goto read_more;
2405 		} else
2406 			generic_make_request(bio);
2407 	}
2408 }
2409 
2410 static void raid1d(struct md_thread *thread)
2411 {
2412 	struct mddev *mddev = thread->mddev;
2413 	struct r1bio *r1_bio;
2414 	unsigned long flags;
2415 	struct r1conf *conf = mddev->private;
2416 	struct list_head *head = &conf->retry_list;
2417 	struct blk_plug plug;
2418 
2419 	md_check_recovery(mddev);
2420 
2421 	blk_start_plug(&plug);
2422 	for (;;) {
2423 
2424 		flush_pending_writes(conf);
2425 
2426 		spin_lock_irqsave(&conf->device_lock, flags);
2427 		if (list_empty(head)) {
2428 			spin_unlock_irqrestore(&conf->device_lock, flags);
2429 			break;
2430 		}
2431 		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2432 		list_del(head->prev);
2433 		conf->nr_queued--;
2434 		spin_unlock_irqrestore(&conf->device_lock, flags);
2435 
2436 		mddev = r1_bio->mddev;
2437 		conf = mddev->private;
2438 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2439 			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2440 			    test_bit(R1BIO_WriteError, &r1_bio->state))
2441 				handle_sync_write_finished(conf, r1_bio);
2442 			else
2443 				sync_request_write(mddev, r1_bio);
2444 		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2445 			   test_bit(R1BIO_WriteError, &r1_bio->state))
2446 			handle_write_finished(conf, r1_bio);
2447 		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2448 			handle_read_error(conf, r1_bio);
2449 		else
2450 			/* just a partial read to be scheduled from separate
2451 			 * context
2452 			 */
2453 			generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2454 
2455 		cond_resched();
2456 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2457 			md_check_recovery(mddev);
2458 	}
2459 	blk_finish_plug(&plug);
2460 }
2461 
2462 static int init_resync(struct r1conf *conf)
2463 {
2464 	int buffs;
2465 
2466 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2467 	BUG_ON(conf->r1buf_pool);
2468 	conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2469 					  conf->poolinfo);
2470 	if (!conf->r1buf_pool)
2471 		return -ENOMEM;
2472 	conf->next_resync = 0;
2473 	return 0;
2474 }
2475 
2476 /*
2477  * perform a "sync" on one "block"
2478  *
2479  * We need to make sure that no normal I/O request - particularly write
2480  * requests - conflict with active sync requests.
2481  *
2482  * This is achieved by tracking pending requests and a 'barrier' concept
2483  * that can be installed to exclude normal IO requests.
2484  */
2485 
2486 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
2487 {
2488 	struct r1conf *conf = mddev->private;
2489 	struct r1bio *r1_bio;
2490 	struct bio *bio;
2491 	sector_t max_sector, nr_sectors;
2492 	int disk = -1;
2493 	int i;
2494 	int wonly = -1;
2495 	int write_targets = 0, read_targets = 0;
2496 	sector_t sync_blocks;
2497 	int still_degraded = 0;
2498 	int good_sectors = RESYNC_SECTORS;
2499 	int min_bad = 0; /* number of sectors that are bad in all devices */
2500 
2501 	if (!conf->r1buf_pool)
2502 		if (init_resync(conf))
2503 			return 0;
2504 
2505 	max_sector = mddev->dev_sectors;
2506 	if (sector_nr >= max_sector) {
2507 		/* If we aborted, we need to abort the
2508 		 * sync on the 'current' bitmap chunk (there will
2509 		 * only be one in raid1 resync.
2510 		 * We can find the current addess in mddev->curr_resync
2511 		 */
2512 		if (mddev->curr_resync < max_sector) /* aborted */
2513 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2514 						&sync_blocks, 1);
2515 		else /* completed sync */
2516 			conf->fullsync = 0;
2517 
2518 		bitmap_close_sync(mddev->bitmap);
2519 		close_sync(conf);
2520 		return 0;
2521 	}
2522 
2523 	if (mddev->bitmap == NULL &&
2524 	    mddev->recovery_cp == MaxSector &&
2525 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2526 	    conf->fullsync == 0) {
2527 		*skipped = 1;
2528 		return max_sector - sector_nr;
2529 	}
2530 	/* before building a request, check if we can skip these blocks..
2531 	 * This call the bitmap_start_sync doesn't actually record anything
2532 	 */
2533 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2534 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2535 		/* We can skip this block, and probably several more */
2536 		*skipped = 1;
2537 		return sync_blocks;
2538 	}
2539 
2540 	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2541 	r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2542 
2543 	raise_barrier(conf, sector_nr);
2544 
2545 	rcu_read_lock();
2546 	/*
2547 	 * If we get a correctably read error during resync or recovery,
2548 	 * we might want to read from a different device.  So we
2549 	 * flag all drives that could conceivably be read from for READ,
2550 	 * and any others (which will be non-In_sync devices) for WRITE.
2551 	 * If a read fails, we try reading from something else for which READ
2552 	 * is OK.
2553 	 */
2554 
2555 	r1_bio->mddev = mddev;
2556 	r1_bio->sector = sector_nr;
2557 	r1_bio->state = 0;
2558 	set_bit(R1BIO_IsSync, &r1_bio->state);
2559 
2560 	for (i = 0; i < conf->raid_disks * 2; i++) {
2561 		struct md_rdev *rdev;
2562 		bio = r1_bio->bios[i];
2563 		bio_reset(bio);
2564 
2565 		rdev = rcu_dereference(conf->mirrors[i].rdev);
2566 		if (rdev == NULL ||
2567 		    test_bit(Faulty, &rdev->flags)) {
2568 			if (i < conf->raid_disks)
2569 				still_degraded = 1;
2570 		} else if (!test_bit(In_sync, &rdev->flags)) {
2571 			bio->bi_rw = WRITE;
2572 			bio->bi_end_io = end_sync_write;
2573 			write_targets ++;
2574 		} else {
2575 			/* may need to read from here */
2576 			sector_t first_bad = MaxSector;
2577 			int bad_sectors;
2578 
2579 			if (is_badblock(rdev, sector_nr, good_sectors,
2580 					&first_bad, &bad_sectors)) {
2581 				if (first_bad > sector_nr)
2582 					good_sectors = first_bad - sector_nr;
2583 				else {
2584 					bad_sectors -= (sector_nr - first_bad);
2585 					if (min_bad == 0 ||
2586 					    min_bad > bad_sectors)
2587 						min_bad = bad_sectors;
2588 				}
2589 			}
2590 			if (sector_nr < first_bad) {
2591 				if (test_bit(WriteMostly, &rdev->flags)) {
2592 					if (wonly < 0)
2593 						wonly = i;
2594 				} else {
2595 					if (disk < 0)
2596 						disk = i;
2597 				}
2598 				bio->bi_rw = READ;
2599 				bio->bi_end_io = end_sync_read;
2600 				read_targets++;
2601 			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2602 				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2603 				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2604 				/*
2605 				 * The device is suitable for reading (InSync),
2606 				 * but has bad block(s) here. Let's try to correct them,
2607 				 * if we are doing resync or repair. Otherwise, leave
2608 				 * this device alone for this sync request.
2609 				 */
2610 				bio->bi_rw = WRITE;
2611 				bio->bi_end_io = end_sync_write;
2612 				write_targets++;
2613 			}
2614 		}
2615 		if (bio->bi_end_io) {
2616 			atomic_inc(&rdev->nr_pending);
2617 			bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2618 			bio->bi_bdev = rdev->bdev;
2619 			bio->bi_private = r1_bio;
2620 		}
2621 	}
2622 	rcu_read_unlock();
2623 	if (disk < 0)
2624 		disk = wonly;
2625 	r1_bio->read_disk = disk;
2626 
2627 	if (read_targets == 0 && min_bad > 0) {
2628 		/* These sectors are bad on all InSync devices, so we
2629 		 * need to mark them bad on all write targets
2630 		 */
2631 		int ok = 1;
2632 		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2633 			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2634 				struct md_rdev *rdev = conf->mirrors[i].rdev;
2635 				ok = rdev_set_badblocks(rdev, sector_nr,
2636 							min_bad, 0
2637 					) && ok;
2638 			}
2639 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
2640 		*skipped = 1;
2641 		put_buf(r1_bio);
2642 
2643 		if (!ok) {
2644 			/* Cannot record the badblocks, so need to
2645 			 * abort the resync.
2646 			 * If there are multiple read targets, could just
2647 			 * fail the really bad ones ???
2648 			 */
2649 			conf->recovery_disabled = mddev->recovery_disabled;
2650 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2651 			return 0;
2652 		} else
2653 			return min_bad;
2654 
2655 	}
2656 	if (min_bad > 0 && min_bad < good_sectors) {
2657 		/* only resync enough to reach the next bad->good
2658 		 * transition */
2659 		good_sectors = min_bad;
2660 	}
2661 
2662 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2663 		/* extra read targets are also write targets */
2664 		write_targets += read_targets-1;
2665 
2666 	if (write_targets == 0 || read_targets == 0) {
2667 		/* There is nowhere to write, so all non-sync
2668 		 * drives must be failed - so we are finished
2669 		 */
2670 		sector_t rv;
2671 		if (min_bad > 0)
2672 			max_sector = sector_nr + min_bad;
2673 		rv = max_sector - sector_nr;
2674 		*skipped = 1;
2675 		put_buf(r1_bio);
2676 		return rv;
2677 	}
2678 
2679 	if (max_sector > mddev->resync_max)
2680 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2681 	if (max_sector > sector_nr + good_sectors)
2682 		max_sector = sector_nr + good_sectors;
2683 	nr_sectors = 0;
2684 	sync_blocks = 0;
2685 	do {
2686 		struct page *page;
2687 		int len = PAGE_SIZE;
2688 		if (sector_nr + (len>>9) > max_sector)
2689 			len = (max_sector - sector_nr) << 9;
2690 		if (len == 0)
2691 			break;
2692 		if (sync_blocks == 0) {
2693 			if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2694 					       &sync_blocks, still_degraded) &&
2695 			    !conf->fullsync &&
2696 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2697 				break;
2698 			BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2699 			if ((len >> 9) > sync_blocks)
2700 				len = sync_blocks<<9;
2701 		}
2702 
2703 		for (i = 0 ; i < conf->raid_disks * 2; i++) {
2704 			bio = r1_bio->bios[i];
2705 			if (bio->bi_end_io) {
2706 				page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2707 				if (bio_add_page(bio, page, len, 0) == 0) {
2708 					/* stop here */
2709 					bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2710 					while (i > 0) {
2711 						i--;
2712 						bio = r1_bio->bios[i];
2713 						if (bio->bi_end_io==NULL)
2714 							continue;
2715 						/* remove last page from this bio */
2716 						bio->bi_vcnt--;
2717 						bio->bi_iter.bi_size -= len;
2718 						__clear_bit(BIO_SEG_VALID, &bio->bi_flags);
2719 					}
2720 					goto bio_full;
2721 				}
2722 			}
2723 		}
2724 		nr_sectors += len>>9;
2725 		sector_nr += len>>9;
2726 		sync_blocks -= (len>>9);
2727 	} while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2728  bio_full:
2729 	r1_bio->sectors = nr_sectors;
2730 
2731 	/* For a user-requested sync, we read all readable devices and do a
2732 	 * compare
2733 	 */
2734 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2735 		atomic_set(&r1_bio->remaining, read_targets);
2736 		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2737 			bio = r1_bio->bios[i];
2738 			if (bio->bi_end_io == end_sync_read) {
2739 				read_targets--;
2740 				md_sync_acct(bio->bi_bdev, nr_sectors);
2741 				generic_make_request(bio);
2742 			}
2743 		}
2744 	} else {
2745 		atomic_set(&r1_bio->remaining, 1);
2746 		bio = r1_bio->bios[r1_bio->read_disk];
2747 		md_sync_acct(bio->bi_bdev, nr_sectors);
2748 		generic_make_request(bio);
2749 
2750 	}
2751 	return nr_sectors;
2752 }
2753 
2754 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2755 {
2756 	if (sectors)
2757 		return sectors;
2758 
2759 	return mddev->dev_sectors;
2760 }
2761 
2762 static struct r1conf *setup_conf(struct mddev *mddev)
2763 {
2764 	struct r1conf *conf;
2765 	int i;
2766 	struct raid1_info *disk;
2767 	struct md_rdev *rdev;
2768 	int err = -ENOMEM;
2769 
2770 	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2771 	if (!conf)
2772 		goto abort;
2773 
2774 	conf->mirrors = kzalloc(sizeof(struct raid1_info)
2775 				* mddev->raid_disks * 2,
2776 				 GFP_KERNEL);
2777 	if (!conf->mirrors)
2778 		goto abort;
2779 
2780 	conf->tmppage = alloc_page(GFP_KERNEL);
2781 	if (!conf->tmppage)
2782 		goto abort;
2783 
2784 	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2785 	if (!conf->poolinfo)
2786 		goto abort;
2787 	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2788 	conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2789 					  r1bio_pool_free,
2790 					  conf->poolinfo);
2791 	if (!conf->r1bio_pool)
2792 		goto abort;
2793 
2794 	conf->poolinfo->mddev = mddev;
2795 
2796 	err = -EINVAL;
2797 	spin_lock_init(&conf->device_lock);
2798 	rdev_for_each(rdev, mddev) {
2799 		struct request_queue *q;
2800 		int disk_idx = rdev->raid_disk;
2801 		if (disk_idx >= mddev->raid_disks
2802 		    || disk_idx < 0)
2803 			continue;
2804 		if (test_bit(Replacement, &rdev->flags))
2805 			disk = conf->mirrors + mddev->raid_disks + disk_idx;
2806 		else
2807 			disk = conf->mirrors + disk_idx;
2808 
2809 		if (disk->rdev)
2810 			goto abort;
2811 		disk->rdev = rdev;
2812 		q = bdev_get_queue(rdev->bdev);
2813 		if (q->merge_bvec_fn)
2814 			mddev->merge_check_needed = 1;
2815 
2816 		disk->head_position = 0;
2817 		disk->seq_start = MaxSector;
2818 	}
2819 	conf->raid_disks = mddev->raid_disks;
2820 	conf->mddev = mddev;
2821 	INIT_LIST_HEAD(&conf->retry_list);
2822 
2823 	spin_lock_init(&conf->resync_lock);
2824 	init_waitqueue_head(&conf->wait_barrier);
2825 
2826 	bio_list_init(&conf->pending_bio_list);
2827 	conf->pending_count = 0;
2828 	conf->recovery_disabled = mddev->recovery_disabled - 1;
2829 
2830 	conf->start_next_window = MaxSector;
2831 	conf->current_window_requests = conf->next_window_requests = 0;
2832 
2833 	err = -EIO;
2834 	for (i = 0; i < conf->raid_disks * 2; i++) {
2835 
2836 		disk = conf->mirrors + i;
2837 
2838 		if (i < conf->raid_disks &&
2839 		    disk[conf->raid_disks].rdev) {
2840 			/* This slot has a replacement. */
2841 			if (!disk->rdev) {
2842 				/* No original, just make the replacement
2843 				 * a recovering spare
2844 				 */
2845 				disk->rdev =
2846 					disk[conf->raid_disks].rdev;
2847 				disk[conf->raid_disks].rdev = NULL;
2848 			} else if (!test_bit(In_sync, &disk->rdev->flags))
2849 				/* Original is not in_sync - bad */
2850 				goto abort;
2851 		}
2852 
2853 		if (!disk->rdev ||
2854 		    !test_bit(In_sync, &disk->rdev->flags)) {
2855 			disk->head_position = 0;
2856 			if (disk->rdev &&
2857 			    (disk->rdev->saved_raid_disk < 0))
2858 				conf->fullsync = 1;
2859 		}
2860 	}
2861 
2862 	err = -ENOMEM;
2863 	conf->thread = md_register_thread(raid1d, mddev, "raid1");
2864 	if (!conf->thread) {
2865 		printk(KERN_ERR
2866 		       "md/raid1:%s: couldn't allocate thread\n",
2867 		       mdname(mddev));
2868 		goto abort;
2869 	}
2870 
2871 	return conf;
2872 
2873  abort:
2874 	if (conf) {
2875 		if (conf->r1bio_pool)
2876 			mempool_destroy(conf->r1bio_pool);
2877 		kfree(conf->mirrors);
2878 		safe_put_page(conf->tmppage);
2879 		kfree(conf->poolinfo);
2880 		kfree(conf);
2881 	}
2882 	return ERR_PTR(err);
2883 }
2884 
2885 static void raid1_free(struct mddev *mddev, void *priv);
2886 static int run(struct mddev *mddev)
2887 {
2888 	struct r1conf *conf;
2889 	int i;
2890 	struct md_rdev *rdev;
2891 	int ret;
2892 	bool discard_supported = false;
2893 
2894 	if (mddev->level != 1) {
2895 		printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2896 		       mdname(mddev), mddev->level);
2897 		return -EIO;
2898 	}
2899 	if (mddev->reshape_position != MaxSector) {
2900 		printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2901 		       mdname(mddev));
2902 		return -EIO;
2903 	}
2904 	/*
2905 	 * copy the already verified devices into our private RAID1
2906 	 * bookkeeping area. [whatever we allocate in run(),
2907 	 * should be freed in raid1_free()]
2908 	 */
2909 	if (mddev->private == NULL)
2910 		conf = setup_conf(mddev);
2911 	else
2912 		conf = mddev->private;
2913 
2914 	if (IS_ERR(conf))
2915 		return PTR_ERR(conf);
2916 
2917 	if (mddev->queue)
2918 		blk_queue_max_write_same_sectors(mddev->queue, 0);
2919 
2920 	rdev_for_each(rdev, mddev) {
2921 		if (!mddev->gendisk)
2922 			continue;
2923 		disk_stack_limits(mddev->gendisk, rdev->bdev,
2924 				  rdev->data_offset << 9);
2925 		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2926 			discard_supported = true;
2927 	}
2928 
2929 	mddev->degraded = 0;
2930 	for (i=0; i < conf->raid_disks; i++)
2931 		if (conf->mirrors[i].rdev == NULL ||
2932 		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2933 		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2934 			mddev->degraded++;
2935 
2936 	if (conf->raid_disks - mddev->degraded == 1)
2937 		mddev->recovery_cp = MaxSector;
2938 
2939 	if (mddev->recovery_cp != MaxSector)
2940 		printk(KERN_NOTICE "md/raid1:%s: not clean"
2941 		       " -- starting background reconstruction\n",
2942 		       mdname(mddev));
2943 	printk(KERN_INFO
2944 		"md/raid1:%s: active with %d out of %d mirrors\n",
2945 		mdname(mddev), mddev->raid_disks - mddev->degraded,
2946 		mddev->raid_disks);
2947 
2948 	/*
2949 	 * Ok, everything is just fine now
2950 	 */
2951 	mddev->thread = conf->thread;
2952 	conf->thread = NULL;
2953 	mddev->private = conf;
2954 
2955 	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2956 
2957 	if (mddev->queue) {
2958 		if (discard_supported)
2959 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2960 						mddev->queue);
2961 		else
2962 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2963 						  mddev->queue);
2964 	}
2965 
2966 	ret =  md_integrity_register(mddev);
2967 	if (ret) {
2968 		md_unregister_thread(&mddev->thread);
2969 		raid1_free(mddev, conf);
2970 	}
2971 	return ret;
2972 }
2973 
2974 static void raid1_free(struct mddev *mddev, void *priv)
2975 {
2976 	struct r1conf *conf = priv;
2977 
2978 	if (conf->r1bio_pool)
2979 		mempool_destroy(conf->r1bio_pool);
2980 	kfree(conf->mirrors);
2981 	safe_put_page(conf->tmppage);
2982 	kfree(conf->poolinfo);
2983 	kfree(conf);
2984 }
2985 
2986 static int raid1_resize(struct mddev *mddev, sector_t sectors)
2987 {
2988 	/* no resync is happening, and there is enough space
2989 	 * on all devices, so we can resize.
2990 	 * We need to make sure resync covers any new space.
2991 	 * If the array is shrinking we should possibly wait until
2992 	 * any io in the removed space completes, but it hardly seems
2993 	 * worth it.
2994 	 */
2995 	sector_t newsize = raid1_size(mddev, sectors, 0);
2996 	if (mddev->external_size &&
2997 	    mddev->array_sectors > newsize)
2998 		return -EINVAL;
2999 	if (mddev->bitmap) {
3000 		int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3001 		if (ret)
3002 			return ret;
3003 	}
3004 	md_set_array_sectors(mddev, newsize);
3005 	set_capacity(mddev->gendisk, mddev->array_sectors);
3006 	revalidate_disk(mddev->gendisk);
3007 	if (sectors > mddev->dev_sectors &&
3008 	    mddev->recovery_cp > mddev->dev_sectors) {
3009 		mddev->recovery_cp = mddev->dev_sectors;
3010 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3011 	}
3012 	mddev->dev_sectors = sectors;
3013 	mddev->resync_max_sectors = sectors;
3014 	return 0;
3015 }
3016 
3017 static int raid1_reshape(struct mddev *mddev)
3018 {
3019 	/* We need to:
3020 	 * 1/ resize the r1bio_pool
3021 	 * 2/ resize conf->mirrors
3022 	 *
3023 	 * We allocate a new r1bio_pool if we can.
3024 	 * Then raise a device barrier and wait until all IO stops.
3025 	 * Then resize conf->mirrors and swap in the new r1bio pool.
3026 	 *
3027 	 * At the same time, we "pack" the devices so that all the missing
3028 	 * devices have the higher raid_disk numbers.
3029 	 */
3030 	mempool_t *newpool, *oldpool;
3031 	struct pool_info *newpoolinfo;
3032 	struct raid1_info *newmirrors;
3033 	struct r1conf *conf = mddev->private;
3034 	int cnt, raid_disks;
3035 	unsigned long flags;
3036 	int d, d2, err;
3037 
3038 	/* Cannot change chunk_size, layout, or level */
3039 	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3040 	    mddev->layout != mddev->new_layout ||
3041 	    mddev->level != mddev->new_level) {
3042 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3043 		mddev->new_layout = mddev->layout;
3044 		mddev->new_level = mddev->level;
3045 		return -EINVAL;
3046 	}
3047 
3048 	err = md_allow_write(mddev);
3049 	if (err)
3050 		return err;
3051 
3052 	raid_disks = mddev->raid_disks + mddev->delta_disks;
3053 
3054 	if (raid_disks < conf->raid_disks) {
3055 		cnt=0;
3056 		for (d= 0; d < conf->raid_disks; d++)
3057 			if (conf->mirrors[d].rdev)
3058 				cnt++;
3059 		if (cnt > raid_disks)
3060 			return -EBUSY;
3061 	}
3062 
3063 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3064 	if (!newpoolinfo)
3065 		return -ENOMEM;
3066 	newpoolinfo->mddev = mddev;
3067 	newpoolinfo->raid_disks = raid_disks * 2;
3068 
3069 	newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3070 				 r1bio_pool_free, newpoolinfo);
3071 	if (!newpool) {
3072 		kfree(newpoolinfo);
3073 		return -ENOMEM;
3074 	}
3075 	newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3076 			     GFP_KERNEL);
3077 	if (!newmirrors) {
3078 		kfree(newpoolinfo);
3079 		mempool_destroy(newpool);
3080 		return -ENOMEM;
3081 	}
3082 
3083 	freeze_array(conf, 0);
3084 
3085 	/* ok, everything is stopped */
3086 	oldpool = conf->r1bio_pool;
3087 	conf->r1bio_pool = newpool;
3088 
3089 	for (d = d2 = 0; d < conf->raid_disks; d++) {
3090 		struct md_rdev *rdev = conf->mirrors[d].rdev;
3091 		if (rdev && rdev->raid_disk != d2) {
3092 			sysfs_unlink_rdev(mddev, rdev);
3093 			rdev->raid_disk = d2;
3094 			sysfs_unlink_rdev(mddev, rdev);
3095 			if (sysfs_link_rdev(mddev, rdev))
3096 				printk(KERN_WARNING
3097 				       "md/raid1:%s: cannot register rd%d\n",
3098 				       mdname(mddev), rdev->raid_disk);
3099 		}
3100 		if (rdev)
3101 			newmirrors[d2++].rdev = rdev;
3102 	}
3103 	kfree(conf->mirrors);
3104 	conf->mirrors = newmirrors;
3105 	kfree(conf->poolinfo);
3106 	conf->poolinfo = newpoolinfo;
3107 
3108 	spin_lock_irqsave(&conf->device_lock, flags);
3109 	mddev->degraded += (raid_disks - conf->raid_disks);
3110 	spin_unlock_irqrestore(&conf->device_lock, flags);
3111 	conf->raid_disks = mddev->raid_disks = raid_disks;
3112 	mddev->delta_disks = 0;
3113 
3114 	unfreeze_array(conf);
3115 
3116 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3117 	md_wakeup_thread(mddev->thread);
3118 
3119 	mempool_destroy(oldpool);
3120 	return 0;
3121 }
3122 
3123 static void raid1_quiesce(struct mddev *mddev, int state)
3124 {
3125 	struct r1conf *conf = mddev->private;
3126 
3127 	switch(state) {
3128 	case 2: /* wake for suspend */
3129 		wake_up(&conf->wait_barrier);
3130 		break;
3131 	case 1:
3132 		freeze_array(conf, 0);
3133 		break;
3134 	case 0:
3135 		unfreeze_array(conf);
3136 		break;
3137 	}
3138 }
3139 
3140 static void *raid1_takeover(struct mddev *mddev)
3141 {
3142 	/* raid1 can take over:
3143 	 *  raid5 with 2 devices, any layout or chunk size
3144 	 */
3145 	if (mddev->level == 5 && mddev->raid_disks == 2) {
3146 		struct r1conf *conf;
3147 		mddev->new_level = 1;
3148 		mddev->new_layout = 0;
3149 		mddev->new_chunk_sectors = 0;
3150 		conf = setup_conf(mddev);
3151 		if (!IS_ERR(conf))
3152 			/* Array must appear to be quiesced */
3153 			conf->array_frozen = 1;
3154 		return conf;
3155 	}
3156 	return ERR_PTR(-EINVAL);
3157 }
3158 
3159 static struct md_personality raid1_personality =
3160 {
3161 	.name		= "raid1",
3162 	.level		= 1,
3163 	.owner		= THIS_MODULE,
3164 	.make_request	= make_request,
3165 	.run		= run,
3166 	.free		= raid1_free,
3167 	.status		= status,
3168 	.error_handler	= error,
3169 	.hot_add_disk	= raid1_add_disk,
3170 	.hot_remove_disk= raid1_remove_disk,
3171 	.spare_active	= raid1_spare_active,
3172 	.sync_request	= sync_request,
3173 	.resize		= raid1_resize,
3174 	.size		= raid1_size,
3175 	.check_reshape	= raid1_reshape,
3176 	.quiesce	= raid1_quiesce,
3177 	.takeover	= raid1_takeover,
3178 	.congested	= raid1_congested,
3179 	.mergeable_bvec	= raid1_mergeable_bvec,
3180 };
3181 
3182 static int __init raid_init(void)
3183 {
3184 	return register_md_personality(&raid1_personality);
3185 }
3186 
3187 static void raid_exit(void)
3188 {
3189 	unregister_md_personality(&raid1_personality);
3190 }
3191 
3192 module_init(raid_init);
3193 module_exit(raid_exit);
3194 MODULE_LICENSE("GPL");
3195 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3196 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3197 MODULE_ALIAS("md-raid1");
3198 MODULE_ALIAS("md-level-1");
3199 
3200 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
3201