1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * raid1.c : Multiple Devices driver for Linux 4 * 5 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat 6 * 7 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman 8 * 9 * RAID-1 management functions. 10 * 11 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 12 * 13 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk> 14 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> 15 * 16 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support 17 * bitmapped intelligence in resync: 18 * 19 * - bitmap marked during normal i/o 20 * - bitmap used to skip nondirty blocks during sync 21 * 22 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology: 23 * - persistent bitmap code 24 */ 25 26 #include <linux/slab.h> 27 #include <linux/delay.h> 28 #include <linux/blkdev.h> 29 #include <linux/module.h> 30 #include <linux/seq_file.h> 31 #include <linux/ratelimit.h> 32 33 #include <trace/events/block.h> 34 35 #include "md.h" 36 #include "raid1.h" 37 #include "md-bitmap.h" 38 39 #define UNSUPPORTED_MDDEV_FLAGS \ 40 ((1L << MD_HAS_JOURNAL) | \ 41 (1L << MD_JOURNAL_CLEAN) | \ 42 (1L << MD_HAS_PPL) | \ 43 (1L << MD_HAS_MULTIPLE_PPLS)) 44 45 /* 46 * Number of guaranteed r1bios in case of extreme VM load: 47 */ 48 #define NR_RAID1_BIOS 256 49 50 /* when we get a read error on a read-only array, we redirect to another 51 * device without failing the first device, or trying to over-write to 52 * correct the read error. To keep track of bad blocks on a per-bio 53 * level, we store IO_BLOCKED in the appropriate 'bios' pointer 54 */ 55 #define IO_BLOCKED ((struct bio *)1) 56 /* When we successfully write to a known bad-block, we need to remove the 57 * bad-block marking which must be done from process context. So we record 58 * the success by setting devs[n].bio to IO_MADE_GOOD 59 */ 60 #define IO_MADE_GOOD ((struct bio *)2) 61 62 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2) 63 64 /* When there are this many requests queue to be written by 65 * the raid1 thread, we become 'congested' to provide back-pressure 66 * for writeback. 67 */ 68 static int max_queued_requests = 1024; 69 70 static void allow_barrier(struct r1conf *conf, sector_t sector_nr); 71 static void lower_barrier(struct r1conf *conf, sector_t sector_nr); 72 73 #define raid1_log(md, fmt, args...) \ 74 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0) 75 76 #include "raid1-10.c" 77 78 /* 79 * for resync bio, r1bio pointer can be retrieved from the per-bio 80 * 'struct resync_pages'. 81 */ 82 static inline struct r1bio *get_resync_r1bio(struct bio *bio) 83 { 84 return get_resync_pages(bio)->raid_bio; 85 } 86 87 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data) 88 { 89 struct pool_info *pi = data; 90 int size = offsetof(struct r1bio, bios[pi->raid_disks]); 91 92 /* allocate a r1bio with room for raid_disks entries in the bios array */ 93 return kzalloc(size, gfp_flags); 94 } 95 96 static void r1bio_pool_free(void *r1_bio, void *data) 97 { 98 kfree(r1_bio); 99 } 100 101 #define RESYNC_DEPTH 32 102 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 103 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH) 104 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9) 105 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW) 106 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9) 107 108 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) 109 { 110 struct pool_info *pi = data; 111 struct r1bio *r1_bio; 112 struct bio *bio; 113 int need_pages; 114 int j; 115 struct resync_pages *rps; 116 117 r1_bio = r1bio_pool_alloc(gfp_flags, pi); 118 if (!r1_bio) 119 return NULL; 120 121 rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages), 122 gfp_flags); 123 if (!rps) 124 goto out_free_r1bio; 125 126 /* 127 * Allocate bios : 1 for reading, n-1 for writing 128 */ 129 for (j = pi->raid_disks ; j-- ; ) { 130 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 131 if (!bio) 132 goto out_free_bio; 133 r1_bio->bios[j] = bio; 134 } 135 /* 136 * Allocate RESYNC_PAGES data pages and attach them to 137 * the first bio. 138 * If this is a user-requested check/repair, allocate 139 * RESYNC_PAGES for each bio. 140 */ 141 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) 142 need_pages = pi->raid_disks; 143 else 144 need_pages = 1; 145 for (j = 0; j < pi->raid_disks; j++) { 146 struct resync_pages *rp = &rps[j]; 147 148 bio = r1_bio->bios[j]; 149 150 if (j < need_pages) { 151 if (resync_alloc_pages(rp, gfp_flags)) 152 goto out_free_pages; 153 } else { 154 memcpy(rp, &rps[0], sizeof(*rp)); 155 resync_get_all_pages(rp); 156 } 157 158 rp->raid_bio = r1_bio; 159 bio->bi_private = rp; 160 } 161 162 r1_bio->master_bio = NULL; 163 164 return r1_bio; 165 166 out_free_pages: 167 while (--j >= 0) 168 resync_free_pages(&rps[j]); 169 170 out_free_bio: 171 while (++j < pi->raid_disks) 172 bio_put(r1_bio->bios[j]); 173 kfree(rps); 174 175 out_free_r1bio: 176 r1bio_pool_free(r1_bio, data); 177 return NULL; 178 } 179 180 static void r1buf_pool_free(void *__r1_bio, void *data) 181 { 182 struct pool_info *pi = data; 183 int i; 184 struct r1bio *r1bio = __r1_bio; 185 struct resync_pages *rp = NULL; 186 187 for (i = pi->raid_disks; i--; ) { 188 rp = get_resync_pages(r1bio->bios[i]); 189 resync_free_pages(rp); 190 bio_put(r1bio->bios[i]); 191 } 192 193 /* resync pages array stored in the 1st bio's .bi_private */ 194 kfree(rp); 195 196 r1bio_pool_free(r1bio, data); 197 } 198 199 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio) 200 { 201 int i; 202 203 for (i = 0; i < conf->raid_disks * 2; i++) { 204 struct bio **bio = r1_bio->bios + i; 205 if (!BIO_SPECIAL(*bio)) 206 bio_put(*bio); 207 *bio = NULL; 208 } 209 } 210 211 static void free_r1bio(struct r1bio *r1_bio) 212 { 213 struct r1conf *conf = r1_bio->mddev->private; 214 215 put_all_bios(conf, r1_bio); 216 mempool_free(r1_bio, &conf->r1bio_pool); 217 } 218 219 static void put_buf(struct r1bio *r1_bio) 220 { 221 struct r1conf *conf = r1_bio->mddev->private; 222 sector_t sect = r1_bio->sector; 223 int i; 224 225 for (i = 0; i < conf->raid_disks * 2; i++) { 226 struct bio *bio = r1_bio->bios[i]; 227 if (bio->bi_end_io) 228 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev); 229 } 230 231 mempool_free(r1_bio, &conf->r1buf_pool); 232 233 lower_barrier(conf, sect); 234 } 235 236 static void reschedule_retry(struct r1bio *r1_bio) 237 { 238 unsigned long flags; 239 struct mddev *mddev = r1_bio->mddev; 240 struct r1conf *conf = mddev->private; 241 int idx; 242 243 idx = sector_to_idx(r1_bio->sector); 244 spin_lock_irqsave(&conf->device_lock, flags); 245 list_add(&r1_bio->retry_list, &conf->retry_list); 246 atomic_inc(&conf->nr_queued[idx]); 247 spin_unlock_irqrestore(&conf->device_lock, flags); 248 249 wake_up(&conf->wait_barrier); 250 md_wakeup_thread(mddev->thread); 251 } 252 253 /* 254 * raid_end_bio_io() is called when we have finished servicing a mirrored 255 * operation and are ready to return a success/failure code to the buffer 256 * cache layer. 257 */ 258 static void call_bio_endio(struct r1bio *r1_bio) 259 { 260 struct bio *bio = r1_bio->master_bio; 261 struct r1conf *conf = r1_bio->mddev->private; 262 263 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 264 bio->bi_status = BLK_STS_IOERR; 265 266 bio_endio(bio); 267 /* 268 * Wake up any possible resync thread that waits for the device 269 * to go idle. 270 */ 271 allow_barrier(conf, r1_bio->sector); 272 } 273 274 static void raid_end_bio_io(struct r1bio *r1_bio) 275 { 276 struct bio *bio = r1_bio->master_bio; 277 278 /* if nobody has done the final endio yet, do it now */ 279 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 280 pr_debug("raid1: sync end %s on sectors %llu-%llu\n", 281 (bio_data_dir(bio) == WRITE) ? "write" : "read", 282 (unsigned long long) bio->bi_iter.bi_sector, 283 (unsigned long long) bio_end_sector(bio) - 1); 284 285 call_bio_endio(r1_bio); 286 } 287 free_r1bio(r1_bio); 288 } 289 290 /* 291 * Update disk head position estimator based on IRQ completion info. 292 */ 293 static inline void update_head_pos(int disk, struct r1bio *r1_bio) 294 { 295 struct r1conf *conf = r1_bio->mddev->private; 296 297 conf->mirrors[disk].head_position = 298 r1_bio->sector + (r1_bio->sectors); 299 } 300 301 /* 302 * Find the disk number which triggered given bio 303 */ 304 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio) 305 { 306 int mirror; 307 struct r1conf *conf = r1_bio->mddev->private; 308 int raid_disks = conf->raid_disks; 309 310 for (mirror = 0; mirror < raid_disks * 2; mirror++) 311 if (r1_bio->bios[mirror] == bio) 312 break; 313 314 BUG_ON(mirror == raid_disks * 2); 315 update_head_pos(mirror, r1_bio); 316 317 return mirror; 318 } 319 320 static void raid1_end_read_request(struct bio *bio) 321 { 322 int uptodate = !bio->bi_status; 323 struct r1bio *r1_bio = bio->bi_private; 324 struct r1conf *conf = r1_bio->mddev->private; 325 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev; 326 327 /* 328 * this branch is our 'one mirror IO has finished' event handler: 329 */ 330 update_head_pos(r1_bio->read_disk, r1_bio); 331 332 if (uptodate) 333 set_bit(R1BIO_Uptodate, &r1_bio->state); 334 else if (test_bit(FailFast, &rdev->flags) && 335 test_bit(R1BIO_FailFast, &r1_bio->state)) 336 /* This was a fail-fast read so we definitely 337 * want to retry */ 338 ; 339 else { 340 /* If all other devices have failed, we want to return 341 * the error upwards rather than fail the last device. 342 * Here we redefine "uptodate" to mean "Don't want to retry" 343 */ 344 unsigned long flags; 345 spin_lock_irqsave(&conf->device_lock, flags); 346 if (r1_bio->mddev->degraded == conf->raid_disks || 347 (r1_bio->mddev->degraded == conf->raid_disks-1 && 348 test_bit(In_sync, &rdev->flags))) 349 uptodate = 1; 350 spin_unlock_irqrestore(&conf->device_lock, flags); 351 } 352 353 if (uptodate) { 354 raid_end_bio_io(r1_bio); 355 rdev_dec_pending(rdev, conf->mddev); 356 } else { 357 /* 358 * oops, read error: 359 */ 360 char b[BDEVNAME_SIZE]; 361 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n", 362 mdname(conf->mddev), 363 bdevname(rdev->bdev, b), 364 (unsigned long long)r1_bio->sector); 365 set_bit(R1BIO_ReadError, &r1_bio->state); 366 reschedule_retry(r1_bio); 367 /* don't drop the reference on read_disk yet */ 368 } 369 } 370 371 static void close_write(struct r1bio *r1_bio) 372 { 373 /* it really is the end of this request */ 374 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 375 bio_free_pages(r1_bio->behind_master_bio); 376 bio_put(r1_bio->behind_master_bio); 377 r1_bio->behind_master_bio = NULL; 378 } 379 /* clear the bitmap if all writes complete successfully */ 380 md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector, 381 r1_bio->sectors, 382 !test_bit(R1BIO_Degraded, &r1_bio->state), 383 test_bit(R1BIO_BehindIO, &r1_bio->state)); 384 md_write_end(r1_bio->mddev); 385 } 386 387 static void r1_bio_write_done(struct r1bio *r1_bio) 388 { 389 if (!atomic_dec_and_test(&r1_bio->remaining)) 390 return; 391 392 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 393 reschedule_retry(r1_bio); 394 else { 395 close_write(r1_bio); 396 if (test_bit(R1BIO_MadeGood, &r1_bio->state)) 397 reschedule_retry(r1_bio); 398 else 399 raid_end_bio_io(r1_bio); 400 } 401 } 402 403 static void raid1_end_write_request(struct bio *bio) 404 { 405 struct r1bio *r1_bio = bio->bi_private; 406 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state); 407 struct r1conf *conf = r1_bio->mddev->private; 408 struct bio *to_put = NULL; 409 int mirror = find_bio_disk(r1_bio, bio); 410 struct md_rdev *rdev = conf->mirrors[mirror].rdev; 411 bool discard_error; 412 413 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD; 414 415 /* 416 * 'one mirror IO has finished' event handler: 417 */ 418 if (bio->bi_status && !discard_error) { 419 set_bit(WriteErrorSeen, &rdev->flags); 420 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 421 set_bit(MD_RECOVERY_NEEDED, & 422 conf->mddev->recovery); 423 424 if (test_bit(FailFast, &rdev->flags) && 425 (bio->bi_opf & MD_FAILFAST) && 426 /* We never try FailFast to WriteMostly devices */ 427 !test_bit(WriteMostly, &rdev->flags)) { 428 md_error(r1_bio->mddev, rdev); 429 if (!test_bit(Faulty, &rdev->flags)) 430 /* This is the only remaining device, 431 * We need to retry the write without 432 * FailFast 433 */ 434 set_bit(R1BIO_WriteError, &r1_bio->state); 435 else { 436 /* Finished with this branch */ 437 r1_bio->bios[mirror] = NULL; 438 to_put = bio; 439 } 440 } else 441 set_bit(R1BIO_WriteError, &r1_bio->state); 442 } else { 443 /* 444 * Set R1BIO_Uptodate in our master bio, so that we 445 * will return a good error code for to the higher 446 * levels even if IO on some other mirrored buffer 447 * fails. 448 * 449 * The 'master' represents the composite IO operation 450 * to user-side. So if something waits for IO, then it 451 * will wait for the 'master' bio. 452 */ 453 sector_t first_bad; 454 int bad_sectors; 455 456 r1_bio->bios[mirror] = NULL; 457 to_put = bio; 458 /* 459 * Do not set R1BIO_Uptodate if the current device is 460 * rebuilding or Faulty. This is because we cannot use 461 * such device for properly reading the data back (we could 462 * potentially use it, if the current write would have felt 463 * before rdev->recovery_offset, but for simplicity we don't 464 * check this here. 465 */ 466 if (test_bit(In_sync, &rdev->flags) && 467 !test_bit(Faulty, &rdev->flags)) 468 set_bit(R1BIO_Uptodate, &r1_bio->state); 469 470 /* Maybe we can clear some bad blocks. */ 471 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors, 472 &first_bad, &bad_sectors) && !discard_error) { 473 r1_bio->bios[mirror] = IO_MADE_GOOD; 474 set_bit(R1BIO_MadeGood, &r1_bio->state); 475 } 476 } 477 478 if (behind) { 479 if (test_bit(WriteMostly, &rdev->flags)) 480 atomic_dec(&r1_bio->behind_remaining); 481 482 /* 483 * In behind mode, we ACK the master bio once the I/O 484 * has safely reached all non-writemostly 485 * disks. Setting the Returned bit ensures that this 486 * gets done only once -- we don't ever want to return 487 * -EIO here, instead we'll wait 488 */ 489 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) && 490 test_bit(R1BIO_Uptodate, &r1_bio->state)) { 491 /* Maybe we can return now */ 492 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 493 struct bio *mbio = r1_bio->master_bio; 494 pr_debug("raid1: behind end write sectors" 495 " %llu-%llu\n", 496 (unsigned long long) mbio->bi_iter.bi_sector, 497 (unsigned long long) bio_end_sector(mbio) - 1); 498 call_bio_endio(r1_bio); 499 } 500 } 501 } 502 if (r1_bio->bios[mirror] == NULL) 503 rdev_dec_pending(rdev, conf->mddev); 504 505 /* 506 * Let's see if all mirrored write operations have finished 507 * already. 508 */ 509 r1_bio_write_done(r1_bio); 510 511 if (to_put) 512 bio_put(to_put); 513 } 514 515 static sector_t align_to_barrier_unit_end(sector_t start_sector, 516 sector_t sectors) 517 { 518 sector_t len; 519 520 WARN_ON(sectors == 0); 521 /* 522 * len is the number of sectors from start_sector to end of the 523 * barrier unit which start_sector belongs to. 524 */ 525 len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) - 526 start_sector; 527 528 if (len > sectors) 529 len = sectors; 530 531 return len; 532 } 533 534 /* 535 * This routine returns the disk from which the requested read should 536 * be done. There is a per-array 'next expected sequential IO' sector 537 * number - if this matches on the next IO then we use the last disk. 538 * There is also a per-disk 'last know head position' sector that is 539 * maintained from IRQ contexts, both the normal and the resync IO 540 * completion handlers update this position correctly. If there is no 541 * perfect sequential match then we pick the disk whose head is closest. 542 * 543 * If there are 2 mirrors in the same 2 devices, performance degrades 544 * because position is mirror, not device based. 545 * 546 * The rdev for the device selected will have nr_pending incremented. 547 */ 548 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors) 549 { 550 const sector_t this_sector = r1_bio->sector; 551 int sectors; 552 int best_good_sectors; 553 int best_disk, best_dist_disk, best_pending_disk; 554 int has_nonrot_disk; 555 int disk; 556 sector_t best_dist; 557 unsigned int min_pending; 558 struct md_rdev *rdev; 559 int choose_first; 560 int choose_next_idle; 561 562 rcu_read_lock(); 563 /* 564 * Check if we can balance. We can balance on the whole 565 * device if no resync is going on, or below the resync window. 566 * We take the first readable disk when above the resync window. 567 */ 568 retry: 569 sectors = r1_bio->sectors; 570 best_disk = -1; 571 best_dist_disk = -1; 572 best_dist = MaxSector; 573 best_pending_disk = -1; 574 min_pending = UINT_MAX; 575 best_good_sectors = 0; 576 has_nonrot_disk = 0; 577 choose_next_idle = 0; 578 clear_bit(R1BIO_FailFast, &r1_bio->state); 579 580 if ((conf->mddev->recovery_cp < this_sector + sectors) || 581 (mddev_is_clustered(conf->mddev) && 582 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector, 583 this_sector + sectors))) 584 choose_first = 1; 585 else 586 choose_first = 0; 587 588 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) { 589 sector_t dist; 590 sector_t first_bad; 591 int bad_sectors; 592 unsigned int pending; 593 bool nonrot; 594 595 rdev = rcu_dereference(conf->mirrors[disk].rdev); 596 if (r1_bio->bios[disk] == IO_BLOCKED 597 || rdev == NULL 598 || test_bit(Faulty, &rdev->flags)) 599 continue; 600 if (!test_bit(In_sync, &rdev->flags) && 601 rdev->recovery_offset < this_sector + sectors) 602 continue; 603 if (test_bit(WriteMostly, &rdev->flags)) { 604 /* Don't balance among write-mostly, just 605 * use the first as a last resort */ 606 if (best_dist_disk < 0) { 607 if (is_badblock(rdev, this_sector, sectors, 608 &first_bad, &bad_sectors)) { 609 if (first_bad <= this_sector) 610 /* Cannot use this */ 611 continue; 612 best_good_sectors = first_bad - this_sector; 613 } else 614 best_good_sectors = sectors; 615 best_dist_disk = disk; 616 best_pending_disk = disk; 617 } 618 continue; 619 } 620 /* This is a reasonable device to use. It might 621 * even be best. 622 */ 623 if (is_badblock(rdev, this_sector, sectors, 624 &first_bad, &bad_sectors)) { 625 if (best_dist < MaxSector) 626 /* already have a better device */ 627 continue; 628 if (first_bad <= this_sector) { 629 /* cannot read here. If this is the 'primary' 630 * device, then we must not read beyond 631 * bad_sectors from another device.. 632 */ 633 bad_sectors -= (this_sector - first_bad); 634 if (choose_first && sectors > bad_sectors) 635 sectors = bad_sectors; 636 if (best_good_sectors > sectors) 637 best_good_sectors = sectors; 638 639 } else { 640 sector_t good_sectors = first_bad - this_sector; 641 if (good_sectors > best_good_sectors) { 642 best_good_sectors = good_sectors; 643 best_disk = disk; 644 } 645 if (choose_first) 646 break; 647 } 648 continue; 649 } else { 650 if ((sectors > best_good_sectors) && (best_disk >= 0)) 651 best_disk = -1; 652 best_good_sectors = sectors; 653 } 654 655 if (best_disk >= 0) 656 /* At least two disks to choose from so failfast is OK */ 657 set_bit(R1BIO_FailFast, &r1_bio->state); 658 659 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev)); 660 has_nonrot_disk |= nonrot; 661 pending = atomic_read(&rdev->nr_pending); 662 dist = abs(this_sector - conf->mirrors[disk].head_position); 663 if (choose_first) { 664 best_disk = disk; 665 break; 666 } 667 /* Don't change to another disk for sequential reads */ 668 if (conf->mirrors[disk].next_seq_sect == this_sector 669 || dist == 0) { 670 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9; 671 struct raid1_info *mirror = &conf->mirrors[disk]; 672 673 best_disk = disk; 674 /* 675 * If buffered sequential IO size exceeds optimal 676 * iosize, check if there is idle disk. If yes, choose 677 * the idle disk. read_balance could already choose an 678 * idle disk before noticing it's a sequential IO in 679 * this disk. This doesn't matter because this disk 680 * will idle, next time it will be utilized after the 681 * first disk has IO size exceeds optimal iosize. In 682 * this way, iosize of the first disk will be optimal 683 * iosize at least. iosize of the second disk might be 684 * small, but not a big deal since when the second disk 685 * starts IO, the first disk is likely still busy. 686 */ 687 if (nonrot && opt_iosize > 0 && 688 mirror->seq_start != MaxSector && 689 mirror->next_seq_sect > opt_iosize && 690 mirror->next_seq_sect - opt_iosize >= 691 mirror->seq_start) { 692 choose_next_idle = 1; 693 continue; 694 } 695 break; 696 } 697 698 if (choose_next_idle) 699 continue; 700 701 if (min_pending > pending) { 702 min_pending = pending; 703 best_pending_disk = disk; 704 } 705 706 if (dist < best_dist) { 707 best_dist = dist; 708 best_dist_disk = disk; 709 } 710 } 711 712 /* 713 * If all disks are rotational, choose the closest disk. If any disk is 714 * non-rotational, choose the disk with less pending request even the 715 * disk is rotational, which might/might not be optimal for raids with 716 * mixed ratation/non-rotational disks depending on workload. 717 */ 718 if (best_disk == -1) { 719 if (has_nonrot_disk || min_pending == 0) 720 best_disk = best_pending_disk; 721 else 722 best_disk = best_dist_disk; 723 } 724 725 if (best_disk >= 0) { 726 rdev = rcu_dereference(conf->mirrors[best_disk].rdev); 727 if (!rdev) 728 goto retry; 729 atomic_inc(&rdev->nr_pending); 730 sectors = best_good_sectors; 731 732 if (conf->mirrors[best_disk].next_seq_sect != this_sector) 733 conf->mirrors[best_disk].seq_start = this_sector; 734 735 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors; 736 } 737 rcu_read_unlock(); 738 *max_sectors = sectors; 739 740 return best_disk; 741 } 742 743 static int raid1_congested(struct mddev *mddev, int bits) 744 { 745 struct r1conf *conf = mddev->private; 746 int i, ret = 0; 747 748 if ((bits & (1 << WB_async_congested)) && 749 conf->pending_count >= max_queued_requests) 750 return 1; 751 752 rcu_read_lock(); 753 for (i = 0; i < conf->raid_disks * 2; i++) { 754 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 755 if (rdev && !test_bit(Faulty, &rdev->flags)) { 756 struct request_queue *q = bdev_get_queue(rdev->bdev); 757 758 BUG_ON(!q); 759 760 /* Note the '|| 1' - when read_balance prefers 761 * non-congested targets, it can be removed 762 */ 763 if ((bits & (1 << WB_async_congested)) || 1) 764 ret |= bdi_congested(q->backing_dev_info, bits); 765 else 766 ret &= bdi_congested(q->backing_dev_info, bits); 767 } 768 } 769 rcu_read_unlock(); 770 return ret; 771 } 772 773 static void flush_bio_list(struct r1conf *conf, struct bio *bio) 774 { 775 /* flush any pending bitmap writes to disk before proceeding w/ I/O */ 776 md_bitmap_unplug(conf->mddev->bitmap); 777 wake_up(&conf->wait_barrier); 778 779 while (bio) { /* submit pending writes */ 780 struct bio *next = bio->bi_next; 781 struct md_rdev *rdev = (void *)bio->bi_disk; 782 bio->bi_next = NULL; 783 bio_set_dev(bio, rdev->bdev); 784 if (test_bit(Faulty, &rdev->flags)) { 785 bio_io_error(bio); 786 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) && 787 !blk_queue_discard(bio->bi_disk->queue))) 788 /* Just ignore it */ 789 bio_endio(bio); 790 else 791 generic_make_request(bio); 792 bio = next; 793 } 794 } 795 796 static void flush_pending_writes(struct r1conf *conf) 797 { 798 /* Any writes that have been queued but are awaiting 799 * bitmap updates get flushed here. 800 */ 801 spin_lock_irq(&conf->device_lock); 802 803 if (conf->pending_bio_list.head) { 804 struct blk_plug plug; 805 struct bio *bio; 806 807 bio = bio_list_get(&conf->pending_bio_list); 808 conf->pending_count = 0; 809 spin_unlock_irq(&conf->device_lock); 810 811 /* 812 * As this is called in a wait_event() loop (see freeze_array), 813 * current->state might be TASK_UNINTERRUPTIBLE which will 814 * cause a warning when we prepare to wait again. As it is 815 * rare that this path is taken, it is perfectly safe to force 816 * us to go around the wait_event() loop again, so the warning 817 * is a false-positive. Silence the warning by resetting 818 * thread state 819 */ 820 __set_current_state(TASK_RUNNING); 821 blk_start_plug(&plug); 822 flush_bio_list(conf, bio); 823 blk_finish_plug(&plug); 824 } else 825 spin_unlock_irq(&conf->device_lock); 826 } 827 828 /* Barriers.... 829 * Sometimes we need to suspend IO while we do something else, 830 * either some resync/recovery, or reconfigure the array. 831 * To do this we raise a 'barrier'. 832 * The 'barrier' is a counter that can be raised multiple times 833 * to count how many activities are happening which preclude 834 * normal IO. 835 * We can only raise the barrier if there is no pending IO. 836 * i.e. if nr_pending == 0. 837 * We choose only to raise the barrier if no-one is waiting for the 838 * barrier to go down. This means that as soon as an IO request 839 * is ready, no other operations which require a barrier will start 840 * until the IO request has had a chance. 841 * 842 * So: regular IO calls 'wait_barrier'. When that returns there 843 * is no backgroup IO happening, It must arrange to call 844 * allow_barrier when it has finished its IO. 845 * backgroup IO calls must call raise_barrier. Once that returns 846 * there is no normal IO happeing. It must arrange to call 847 * lower_barrier when the particular background IO completes. 848 */ 849 static sector_t raise_barrier(struct r1conf *conf, sector_t sector_nr) 850 { 851 int idx = sector_to_idx(sector_nr); 852 853 spin_lock_irq(&conf->resync_lock); 854 855 /* Wait until no block IO is waiting */ 856 wait_event_lock_irq(conf->wait_barrier, 857 !atomic_read(&conf->nr_waiting[idx]), 858 conf->resync_lock); 859 860 /* block any new IO from starting */ 861 atomic_inc(&conf->barrier[idx]); 862 /* 863 * In raise_barrier() we firstly increase conf->barrier[idx] then 864 * check conf->nr_pending[idx]. In _wait_barrier() we firstly 865 * increase conf->nr_pending[idx] then check conf->barrier[idx]. 866 * A memory barrier here to make sure conf->nr_pending[idx] won't 867 * be fetched before conf->barrier[idx] is increased. Otherwise 868 * there will be a race between raise_barrier() and _wait_barrier(). 869 */ 870 smp_mb__after_atomic(); 871 872 /* For these conditions we must wait: 873 * A: while the array is in frozen state 874 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O 875 * existing in corresponding I/O barrier bucket. 876 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches 877 * max resync count which allowed on current I/O barrier bucket. 878 */ 879 wait_event_lock_irq(conf->wait_barrier, 880 (!conf->array_frozen && 881 !atomic_read(&conf->nr_pending[idx]) && 882 atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) || 883 test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery), 884 conf->resync_lock); 885 886 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) { 887 atomic_dec(&conf->barrier[idx]); 888 spin_unlock_irq(&conf->resync_lock); 889 wake_up(&conf->wait_barrier); 890 return -EINTR; 891 } 892 893 atomic_inc(&conf->nr_sync_pending); 894 spin_unlock_irq(&conf->resync_lock); 895 896 return 0; 897 } 898 899 static void lower_barrier(struct r1conf *conf, sector_t sector_nr) 900 { 901 int idx = sector_to_idx(sector_nr); 902 903 BUG_ON(atomic_read(&conf->barrier[idx]) <= 0); 904 905 atomic_dec(&conf->barrier[idx]); 906 atomic_dec(&conf->nr_sync_pending); 907 wake_up(&conf->wait_barrier); 908 } 909 910 static void _wait_barrier(struct r1conf *conf, int idx) 911 { 912 /* 913 * We need to increase conf->nr_pending[idx] very early here, 914 * then raise_barrier() can be blocked when it waits for 915 * conf->nr_pending[idx] to be 0. Then we can avoid holding 916 * conf->resync_lock when there is no barrier raised in same 917 * barrier unit bucket. Also if the array is frozen, I/O 918 * should be blocked until array is unfrozen. 919 */ 920 atomic_inc(&conf->nr_pending[idx]); 921 /* 922 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then 923 * check conf->barrier[idx]. In raise_barrier() we firstly increase 924 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory 925 * barrier is necessary here to make sure conf->barrier[idx] won't be 926 * fetched before conf->nr_pending[idx] is increased. Otherwise there 927 * will be a race between _wait_barrier() and raise_barrier(). 928 */ 929 smp_mb__after_atomic(); 930 931 /* 932 * Don't worry about checking two atomic_t variables at same time 933 * here. If during we check conf->barrier[idx], the array is 934 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is 935 * 0, it is safe to return and make the I/O continue. Because the 936 * array is frozen, all I/O returned here will eventually complete 937 * or be queued, no race will happen. See code comment in 938 * frozen_array(). 939 */ 940 if (!READ_ONCE(conf->array_frozen) && 941 !atomic_read(&conf->barrier[idx])) 942 return; 943 944 /* 945 * After holding conf->resync_lock, conf->nr_pending[idx] 946 * should be decreased before waiting for barrier to drop. 947 * Otherwise, we may encounter a race condition because 948 * raise_barrer() might be waiting for conf->nr_pending[idx] 949 * to be 0 at same time. 950 */ 951 spin_lock_irq(&conf->resync_lock); 952 atomic_inc(&conf->nr_waiting[idx]); 953 atomic_dec(&conf->nr_pending[idx]); 954 /* 955 * In case freeze_array() is waiting for 956 * get_unqueued_pending() == extra 957 */ 958 wake_up(&conf->wait_barrier); 959 /* Wait for the barrier in same barrier unit bucket to drop. */ 960 wait_event_lock_irq(conf->wait_barrier, 961 !conf->array_frozen && 962 !atomic_read(&conf->barrier[idx]), 963 conf->resync_lock); 964 atomic_inc(&conf->nr_pending[idx]); 965 atomic_dec(&conf->nr_waiting[idx]); 966 spin_unlock_irq(&conf->resync_lock); 967 } 968 969 static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr) 970 { 971 int idx = sector_to_idx(sector_nr); 972 973 /* 974 * Very similar to _wait_barrier(). The difference is, for read 975 * I/O we don't need wait for sync I/O, but if the whole array 976 * is frozen, the read I/O still has to wait until the array is 977 * unfrozen. Since there is no ordering requirement with 978 * conf->barrier[idx] here, memory barrier is unnecessary as well. 979 */ 980 atomic_inc(&conf->nr_pending[idx]); 981 982 if (!READ_ONCE(conf->array_frozen)) 983 return; 984 985 spin_lock_irq(&conf->resync_lock); 986 atomic_inc(&conf->nr_waiting[idx]); 987 atomic_dec(&conf->nr_pending[idx]); 988 /* 989 * In case freeze_array() is waiting for 990 * get_unqueued_pending() == extra 991 */ 992 wake_up(&conf->wait_barrier); 993 /* Wait for array to be unfrozen */ 994 wait_event_lock_irq(conf->wait_barrier, 995 !conf->array_frozen, 996 conf->resync_lock); 997 atomic_inc(&conf->nr_pending[idx]); 998 atomic_dec(&conf->nr_waiting[idx]); 999 spin_unlock_irq(&conf->resync_lock); 1000 } 1001 1002 static void wait_barrier(struct r1conf *conf, sector_t sector_nr) 1003 { 1004 int idx = sector_to_idx(sector_nr); 1005 1006 _wait_barrier(conf, idx); 1007 } 1008 1009 static void _allow_barrier(struct r1conf *conf, int idx) 1010 { 1011 atomic_dec(&conf->nr_pending[idx]); 1012 wake_up(&conf->wait_barrier); 1013 } 1014 1015 static void allow_barrier(struct r1conf *conf, sector_t sector_nr) 1016 { 1017 int idx = sector_to_idx(sector_nr); 1018 1019 _allow_barrier(conf, idx); 1020 } 1021 1022 /* conf->resync_lock should be held */ 1023 static int get_unqueued_pending(struct r1conf *conf) 1024 { 1025 int idx, ret; 1026 1027 ret = atomic_read(&conf->nr_sync_pending); 1028 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) 1029 ret += atomic_read(&conf->nr_pending[idx]) - 1030 atomic_read(&conf->nr_queued[idx]); 1031 1032 return ret; 1033 } 1034 1035 static void freeze_array(struct r1conf *conf, int extra) 1036 { 1037 /* Stop sync I/O and normal I/O and wait for everything to 1038 * go quiet. 1039 * This is called in two situations: 1040 * 1) management command handlers (reshape, remove disk, quiesce). 1041 * 2) one normal I/O request failed. 1042 1043 * After array_frozen is set to 1, new sync IO will be blocked at 1044 * raise_barrier(), and new normal I/O will blocked at _wait_barrier() 1045 * or wait_read_barrier(). The flying I/Os will either complete or be 1046 * queued. When everything goes quite, there are only queued I/Os left. 1047 1048 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the 1049 * barrier bucket index which this I/O request hits. When all sync and 1050 * normal I/O are queued, sum of all conf->nr_pending[] will match sum 1051 * of all conf->nr_queued[]. But normal I/O failure is an exception, 1052 * in handle_read_error(), we may call freeze_array() before trying to 1053 * fix the read error. In this case, the error read I/O is not queued, 1054 * so get_unqueued_pending() == 1. 1055 * 1056 * Therefore before this function returns, we need to wait until 1057 * get_unqueued_pendings(conf) gets equal to extra. For 1058 * normal I/O context, extra is 1, in rested situations extra is 0. 1059 */ 1060 spin_lock_irq(&conf->resync_lock); 1061 conf->array_frozen = 1; 1062 raid1_log(conf->mddev, "wait freeze"); 1063 wait_event_lock_irq_cmd( 1064 conf->wait_barrier, 1065 get_unqueued_pending(conf) == extra, 1066 conf->resync_lock, 1067 flush_pending_writes(conf)); 1068 spin_unlock_irq(&conf->resync_lock); 1069 } 1070 static void unfreeze_array(struct r1conf *conf) 1071 { 1072 /* reverse the effect of the freeze */ 1073 spin_lock_irq(&conf->resync_lock); 1074 conf->array_frozen = 0; 1075 spin_unlock_irq(&conf->resync_lock); 1076 wake_up(&conf->wait_barrier); 1077 } 1078 1079 static void alloc_behind_master_bio(struct r1bio *r1_bio, 1080 struct bio *bio) 1081 { 1082 int size = bio->bi_iter.bi_size; 1083 unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1084 int i = 0; 1085 struct bio *behind_bio = NULL; 1086 1087 behind_bio = bio_alloc_mddev(GFP_NOIO, vcnt, r1_bio->mddev); 1088 if (!behind_bio) 1089 return; 1090 1091 /* discard op, we don't support writezero/writesame yet */ 1092 if (!bio_has_data(bio)) { 1093 behind_bio->bi_iter.bi_size = size; 1094 goto skip_copy; 1095 } 1096 1097 behind_bio->bi_write_hint = bio->bi_write_hint; 1098 1099 while (i < vcnt && size) { 1100 struct page *page; 1101 int len = min_t(int, PAGE_SIZE, size); 1102 1103 page = alloc_page(GFP_NOIO); 1104 if (unlikely(!page)) 1105 goto free_pages; 1106 1107 bio_add_page(behind_bio, page, len, 0); 1108 1109 size -= len; 1110 i++; 1111 } 1112 1113 bio_copy_data(behind_bio, bio); 1114 skip_copy: 1115 r1_bio->behind_master_bio = behind_bio; 1116 set_bit(R1BIO_BehindIO, &r1_bio->state); 1117 1118 return; 1119 1120 free_pages: 1121 pr_debug("%dB behind alloc failed, doing sync I/O\n", 1122 bio->bi_iter.bi_size); 1123 bio_free_pages(behind_bio); 1124 bio_put(behind_bio); 1125 } 1126 1127 struct raid1_plug_cb { 1128 struct blk_plug_cb cb; 1129 struct bio_list pending; 1130 int pending_cnt; 1131 }; 1132 1133 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule) 1134 { 1135 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, 1136 cb); 1137 struct mddev *mddev = plug->cb.data; 1138 struct r1conf *conf = mddev->private; 1139 struct bio *bio; 1140 1141 if (from_schedule || current->bio_list) { 1142 spin_lock_irq(&conf->device_lock); 1143 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1144 conf->pending_count += plug->pending_cnt; 1145 spin_unlock_irq(&conf->device_lock); 1146 wake_up(&conf->wait_barrier); 1147 md_wakeup_thread(mddev->thread); 1148 kfree(plug); 1149 return; 1150 } 1151 1152 /* we aren't scheduling, so we can do the write-out directly. */ 1153 bio = bio_list_get(&plug->pending); 1154 flush_bio_list(conf, bio); 1155 kfree(plug); 1156 } 1157 1158 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio) 1159 { 1160 r1_bio->master_bio = bio; 1161 r1_bio->sectors = bio_sectors(bio); 1162 r1_bio->state = 0; 1163 r1_bio->mddev = mddev; 1164 r1_bio->sector = bio->bi_iter.bi_sector; 1165 } 1166 1167 static inline struct r1bio * 1168 alloc_r1bio(struct mddev *mddev, struct bio *bio) 1169 { 1170 struct r1conf *conf = mddev->private; 1171 struct r1bio *r1_bio; 1172 1173 r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO); 1174 /* Ensure no bio records IO_BLOCKED */ 1175 memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0])); 1176 init_r1bio(r1_bio, mddev, bio); 1177 return r1_bio; 1178 } 1179 1180 static void raid1_read_request(struct mddev *mddev, struct bio *bio, 1181 int max_read_sectors, struct r1bio *r1_bio) 1182 { 1183 struct r1conf *conf = mddev->private; 1184 struct raid1_info *mirror; 1185 struct bio *read_bio; 1186 struct bitmap *bitmap = mddev->bitmap; 1187 const int op = bio_op(bio); 1188 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC); 1189 int max_sectors; 1190 int rdisk; 1191 bool print_msg = !!r1_bio; 1192 char b[BDEVNAME_SIZE]; 1193 1194 /* 1195 * If r1_bio is set, we are blocking the raid1d thread 1196 * so there is a tiny risk of deadlock. So ask for 1197 * emergency memory if needed. 1198 */ 1199 gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO; 1200 1201 if (print_msg) { 1202 /* Need to get the block device name carefully */ 1203 struct md_rdev *rdev; 1204 rcu_read_lock(); 1205 rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev); 1206 if (rdev) 1207 bdevname(rdev->bdev, b); 1208 else 1209 strcpy(b, "???"); 1210 rcu_read_unlock(); 1211 } 1212 1213 /* 1214 * Still need barrier for READ in case that whole 1215 * array is frozen. 1216 */ 1217 wait_read_barrier(conf, bio->bi_iter.bi_sector); 1218 1219 if (!r1_bio) 1220 r1_bio = alloc_r1bio(mddev, bio); 1221 else 1222 init_r1bio(r1_bio, mddev, bio); 1223 r1_bio->sectors = max_read_sectors; 1224 1225 /* 1226 * make_request() can abort the operation when read-ahead is being 1227 * used and no empty request is available. 1228 */ 1229 rdisk = read_balance(conf, r1_bio, &max_sectors); 1230 1231 if (rdisk < 0) { 1232 /* couldn't find anywhere to read from */ 1233 if (print_msg) { 1234 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n", 1235 mdname(mddev), 1236 b, 1237 (unsigned long long)r1_bio->sector); 1238 } 1239 raid_end_bio_io(r1_bio); 1240 return; 1241 } 1242 mirror = conf->mirrors + rdisk; 1243 1244 if (print_msg) 1245 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n", 1246 mdname(mddev), 1247 (unsigned long long)r1_bio->sector, 1248 bdevname(mirror->rdev->bdev, b)); 1249 1250 if (test_bit(WriteMostly, &mirror->rdev->flags) && 1251 bitmap) { 1252 /* 1253 * Reading from a write-mostly device must take care not to 1254 * over-take any writes that are 'behind' 1255 */ 1256 raid1_log(mddev, "wait behind writes"); 1257 wait_event(bitmap->behind_wait, 1258 atomic_read(&bitmap->behind_writes) == 0); 1259 } 1260 1261 if (max_sectors < bio_sectors(bio)) { 1262 struct bio *split = bio_split(bio, max_sectors, 1263 gfp, &conf->bio_split); 1264 bio_chain(split, bio); 1265 generic_make_request(bio); 1266 bio = split; 1267 r1_bio->master_bio = bio; 1268 r1_bio->sectors = max_sectors; 1269 } 1270 1271 r1_bio->read_disk = rdisk; 1272 1273 read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set); 1274 1275 r1_bio->bios[rdisk] = read_bio; 1276 1277 read_bio->bi_iter.bi_sector = r1_bio->sector + 1278 mirror->rdev->data_offset; 1279 bio_set_dev(read_bio, mirror->rdev->bdev); 1280 read_bio->bi_end_io = raid1_end_read_request; 1281 bio_set_op_attrs(read_bio, op, do_sync); 1282 if (test_bit(FailFast, &mirror->rdev->flags) && 1283 test_bit(R1BIO_FailFast, &r1_bio->state)) 1284 read_bio->bi_opf |= MD_FAILFAST; 1285 read_bio->bi_private = r1_bio; 1286 1287 if (mddev->gendisk) 1288 trace_block_bio_remap(read_bio->bi_disk->queue, read_bio, 1289 disk_devt(mddev->gendisk), r1_bio->sector); 1290 1291 generic_make_request(read_bio); 1292 } 1293 1294 static void raid1_write_request(struct mddev *mddev, struct bio *bio, 1295 int max_write_sectors) 1296 { 1297 struct r1conf *conf = mddev->private; 1298 struct r1bio *r1_bio; 1299 int i, disks; 1300 struct bitmap *bitmap = mddev->bitmap; 1301 unsigned long flags; 1302 struct md_rdev *blocked_rdev; 1303 struct blk_plug_cb *cb; 1304 struct raid1_plug_cb *plug = NULL; 1305 int first_clone; 1306 int max_sectors; 1307 1308 if (mddev_is_clustered(mddev) && 1309 md_cluster_ops->area_resyncing(mddev, WRITE, 1310 bio->bi_iter.bi_sector, bio_end_sector(bio))) { 1311 1312 DEFINE_WAIT(w); 1313 for (;;) { 1314 prepare_to_wait(&conf->wait_barrier, 1315 &w, TASK_IDLE); 1316 if (!md_cluster_ops->area_resyncing(mddev, WRITE, 1317 bio->bi_iter.bi_sector, 1318 bio_end_sector(bio))) 1319 break; 1320 schedule(); 1321 } 1322 finish_wait(&conf->wait_barrier, &w); 1323 } 1324 1325 /* 1326 * Register the new request and wait if the reconstruction 1327 * thread has put up a bar for new requests. 1328 * Continue immediately if no resync is active currently. 1329 */ 1330 wait_barrier(conf, bio->bi_iter.bi_sector); 1331 1332 r1_bio = alloc_r1bio(mddev, bio); 1333 r1_bio->sectors = max_write_sectors; 1334 1335 if (conf->pending_count >= max_queued_requests) { 1336 md_wakeup_thread(mddev->thread); 1337 raid1_log(mddev, "wait queued"); 1338 wait_event(conf->wait_barrier, 1339 conf->pending_count < max_queued_requests); 1340 } 1341 /* first select target devices under rcu_lock and 1342 * inc refcount on their rdev. Record them by setting 1343 * bios[x] to bio 1344 * If there are known/acknowledged bad blocks on any device on 1345 * which we have seen a write error, we want to avoid writing those 1346 * blocks. 1347 * This potentially requires several writes to write around 1348 * the bad blocks. Each set of writes gets it's own r1bio 1349 * with a set of bios attached. 1350 */ 1351 1352 disks = conf->raid_disks * 2; 1353 retry_write: 1354 blocked_rdev = NULL; 1355 rcu_read_lock(); 1356 max_sectors = r1_bio->sectors; 1357 for (i = 0; i < disks; i++) { 1358 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1359 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1360 atomic_inc(&rdev->nr_pending); 1361 blocked_rdev = rdev; 1362 break; 1363 } 1364 r1_bio->bios[i] = NULL; 1365 if (!rdev || test_bit(Faulty, &rdev->flags)) { 1366 if (i < conf->raid_disks) 1367 set_bit(R1BIO_Degraded, &r1_bio->state); 1368 continue; 1369 } 1370 1371 atomic_inc(&rdev->nr_pending); 1372 if (test_bit(WriteErrorSeen, &rdev->flags)) { 1373 sector_t first_bad; 1374 int bad_sectors; 1375 int is_bad; 1376 1377 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors, 1378 &first_bad, &bad_sectors); 1379 if (is_bad < 0) { 1380 /* mustn't write here until the bad block is 1381 * acknowledged*/ 1382 set_bit(BlockedBadBlocks, &rdev->flags); 1383 blocked_rdev = rdev; 1384 break; 1385 } 1386 if (is_bad && first_bad <= r1_bio->sector) { 1387 /* Cannot write here at all */ 1388 bad_sectors -= (r1_bio->sector - first_bad); 1389 if (bad_sectors < max_sectors) 1390 /* mustn't write more than bad_sectors 1391 * to other devices yet 1392 */ 1393 max_sectors = bad_sectors; 1394 rdev_dec_pending(rdev, mddev); 1395 /* We don't set R1BIO_Degraded as that 1396 * only applies if the disk is 1397 * missing, so it might be re-added, 1398 * and we want to know to recover this 1399 * chunk. 1400 * In this case the device is here, 1401 * and the fact that this chunk is not 1402 * in-sync is recorded in the bad 1403 * block log 1404 */ 1405 continue; 1406 } 1407 if (is_bad) { 1408 int good_sectors = first_bad - r1_bio->sector; 1409 if (good_sectors < max_sectors) 1410 max_sectors = good_sectors; 1411 } 1412 } 1413 r1_bio->bios[i] = bio; 1414 } 1415 rcu_read_unlock(); 1416 1417 if (unlikely(blocked_rdev)) { 1418 /* Wait for this device to become unblocked */ 1419 int j; 1420 1421 for (j = 0; j < i; j++) 1422 if (r1_bio->bios[j]) 1423 rdev_dec_pending(conf->mirrors[j].rdev, mddev); 1424 r1_bio->state = 0; 1425 allow_barrier(conf, bio->bi_iter.bi_sector); 1426 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk); 1427 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1428 wait_barrier(conf, bio->bi_iter.bi_sector); 1429 goto retry_write; 1430 } 1431 1432 if (max_sectors < bio_sectors(bio)) { 1433 struct bio *split = bio_split(bio, max_sectors, 1434 GFP_NOIO, &conf->bio_split); 1435 bio_chain(split, bio); 1436 generic_make_request(bio); 1437 bio = split; 1438 r1_bio->master_bio = bio; 1439 r1_bio->sectors = max_sectors; 1440 } 1441 1442 atomic_set(&r1_bio->remaining, 1); 1443 atomic_set(&r1_bio->behind_remaining, 0); 1444 1445 first_clone = 1; 1446 1447 for (i = 0; i < disks; i++) { 1448 struct bio *mbio = NULL; 1449 if (!r1_bio->bios[i]) 1450 continue; 1451 1452 1453 if (first_clone) { 1454 /* do behind I/O ? 1455 * Not if there are too many, or cannot 1456 * allocate memory, or a reader on WriteMostly 1457 * is waiting for behind writes to flush */ 1458 if (bitmap && 1459 (atomic_read(&bitmap->behind_writes) 1460 < mddev->bitmap_info.max_write_behind) && 1461 !waitqueue_active(&bitmap->behind_wait)) { 1462 alloc_behind_master_bio(r1_bio, bio); 1463 } 1464 1465 md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors, 1466 test_bit(R1BIO_BehindIO, &r1_bio->state)); 1467 first_clone = 0; 1468 } 1469 1470 if (r1_bio->behind_master_bio) 1471 mbio = bio_clone_fast(r1_bio->behind_master_bio, 1472 GFP_NOIO, &mddev->bio_set); 1473 else 1474 mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set); 1475 1476 if (r1_bio->behind_master_bio) { 1477 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags)) 1478 atomic_inc(&r1_bio->behind_remaining); 1479 } 1480 1481 r1_bio->bios[i] = mbio; 1482 1483 mbio->bi_iter.bi_sector = (r1_bio->sector + 1484 conf->mirrors[i].rdev->data_offset); 1485 bio_set_dev(mbio, conf->mirrors[i].rdev->bdev); 1486 mbio->bi_end_io = raid1_end_write_request; 1487 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA)); 1488 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) && 1489 !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) && 1490 conf->raid_disks - mddev->degraded > 1) 1491 mbio->bi_opf |= MD_FAILFAST; 1492 mbio->bi_private = r1_bio; 1493 1494 atomic_inc(&r1_bio->remaining); 1495 1496 if (mddev->gendisk) 1497 trace_block_bio_remap(mbio->bi_disk->queue, 1498 mbio, disk_devt(mddev->gendisk), 1499 r1_bio->sector); 1500 /* flush_pending_writes() needs access to the rdev so...*/ 1501 mbio->bi_disk = (void *)conf->mirrors[i].rdev; 1502 1503 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug)); 1504 if (cb) 1505 plug = container_of(cb, struct raid1_plug_cb, cb); 1506 else 1507 plug = NULL; 1508 if (plug) { 1509 bio_list_add(&plug->pending, mbio); 1510 plug->pending_cnt++; 1511 } else { 1512 spin_lock_irqsave(&conf->device_lock, flags); 1513 bio_list_add(&conf->pending_bio_list, mbio); 1514 conf->pending_count++; 1515 spin_unlock_irqrestore(&conf->device_lock, flags); 1516 md_wakeup_thread(mddev->thread); 1517 } 1518 } 1519 1520 r1_bio_write_done(r1_bio); 1521 1522 /* In case raid1d snuck in to freeze_array */ 1523 wake_up(&conf->wait_barrier); 1524 } 1525 1526 static bool raid1_make_request(struct mddev *mddev, struct bio *bio) 1527 { 1528 sector_t sectors; 1529 1530 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) { 1531 md_flush_request(mddev, bio); 1532 return true; 1533 } 1534 1535 /* 1536 * There is a limit to the maximum size, but 1537 * the read/write handler might find a lower limit 1538 * due to bad blocks. To avoid multiple splits, 1539 * we pass the maximum number of sectors down 1540 * and let the lower level perform the split. 1541 */ 1542 sectors = align_to_barrier_unit_end( 1543 bio->bi_iter.bi_sector, bio_sectors(bio)); 1544 1545 if (bio_data_dir(bio) == READ) 1546 raid1_read_request(mddev, bio, sectors, NULL); 1547 else { 1548 if (!md_write_start(mddev,bio)) 1549 return false; 1550 raid1_write_request(mddev, bio, sectors); 1551 } 1552 return true; 1553 } 1554 1555 static void raid1_status(struct seq_file *seq, struct mddev *mddev) 1556 { 1557 struct r1conf *conf = mddev->private; 1558 int i; 1559 1560 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 1561 conf->raid_disks - mddev->degraded); 1562 rcu_read_lock(); 1563 for (i = 0; i < conf->raid_disks; i++) { 1564 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1565 seq_printf(seq, "%s", 1566 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1567 } 1568 rcu_read_unlock(); 1569 seq_printf(seq, "]"); 1570 } 1571 1572 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev) 1573 { 1574 char b[BDEVNAME_SIZE]; 1575 struct r1conf *conf = mddev->private; 1576 unsigned long flags; 1577 1578 /* 1579 * If it is not operational, then we have already marked it as dead 1580 * else if it is the last working disks, ignore the error, let the 1581 * next level up know. 1582 * else mark the drive as failed 1583 */ 1584 spin_lock_irqsave(&conf->device_lock, flags); 1585 if (test_bit(In_sync, &rdev->flags) 1586 && (conf->raid_disks - mddev->degraded) == 1) { 1587 /* 1588 * Don't fail the drive, act as though we were just a 1589 * normal single drive. 1590 * However don't try a recovery from this drive as 1591 * it is very likely to fail. 1592 */ 1593 conf->recovery_disabled = mddev->recovery_disabled; 1594 spin_unlock_irqrestore(&conf->device_lock, flags); 1595 return; 1596 } 1597 set_bit(Blocked, &rdev->flags); 1598 if (test_and_clear_bit(In_sync, &rdev->flags)) 1599 mddev->degraded++; 1600 set_bit(Faulty, &rdev->flags); 1601 spin_unlock_irqrestore(&conf->device_lock, flags); 1602 /* 1603 * if recovery is running, make sure it aborts. 1604 */ 1605 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1606 set_mask_bits(&mddev->sb_flags, 0, 1607 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1608 pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n" 1609 "md/raid1:%s: Operation continuing on %d devices.\n", 1610 mdname(mddev), bdevname(rdev->bdev, b), 1611 mdname(mddev), conf->raid_disks - mddev->degraded); 1612 } 1613 1614 static void print_conf(struct r1conf *conf) 1615 { 1616 int i; 1617 1618 pr_debug("RAID1 conf printout:\n"); 1619 if (!conf) { 1620 pr_debug("(!conf)\n"); 1621 return; 1622 } 1623 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1624 conf->raid_disks); 1625 1626 rcu_read_lock(); 1627 for (i = 0; i < conf->raid_disks; i++) { 1628 char b[BDEVNAME_SIZE]; 1629 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1630 if (rdev) 1631 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n", 1632 i, !test_bit(In_sync, &rdev->flags), 1633 !test_bit(Faulty, &rdev->flags), 1634 bdevname(rdev->bdev,b)); 1635 } 1636 rcu_read_unlock(); 1637 } 1638 1639 static void close_sync(struct r1conf *conf) 1640 { 1641 int idx; 1642 1643 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) { 1644 _wait_barrier(conf, idx); 1645 _allow_barrier(conf, idx); 1646 } 1647 1648 mempool_exit(&conf->r1buf_pool); 1649 } 1650 1651 static int raid1_spare_active(struct mddev *mddev) 1652 { 1653 int i; 1654 struct r1conf *conf = mddev->private; 1655 int count = 0; 1656 unsigned long flags; 1657 1658 /* 1659 * Find all failed disks within the RAID1 configuration 1660 * and mark them readable. 1661 * Called under mddev lock, so rcu protection not needed. 1662 * device_lock used to avoid races with raid1_end_read_request 1663 * which expects 'In_sync' flags and ->degraded to be consistent. 1664 */ 1665 spin_lock_irqsave(&conf->device_lock, flags); 1666 for (i = 0; i < conf->raid_disks; i++) { 1667 struct md_rdev *rdev = conf->mirrors[i].rdev; 1668 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev; 1669 if (repl 1670 && !test_bit(Candidate, &repl->flags) 1671 && repl->recovery_offset == MaxSector 1672 && !test_bit(Faulty, &repl->flags) 1673 && !test_and_set_bit(In_sync, &repl->flags)) { 1674 /* replacement has just become active */ 1675 if (!rdev || 1676 !test_and_clear_bit(In_sync, &rdev->flags)) 1677 count++; 1678 if (rdev) { 1679 /* Replaced device not technically 1680 * faulty, but we need to be sure 1681 * it gets removed and never re-added 1682 */ 1683 set_bit(Faulty, &rdev->flags); 1684 sysfs_notify_dirent_safe( 1685 rdev->sysfs_state); 1686 } 1687 } 1688 if (rdev 1689 && rdev->recovery_offset == MaxSector 1690 && !test_bit(Faulty, &rdev->flags) 1691 && !test_and_set_bit(In_sync, &rdev->flags)) { 1692 count++; 1693 sysfs_notify_dirent_safe(rdev->sysfs_state); 1694 } 1695 } 1696 mddev->degraded -= count; 1697 spin_unlock_irqrestore(&conf->device_lock, flags); 1698 1699 print_conf(conf); 1700 return count; 1701 } 1702 1703 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1704 { 1705 struct r1conf *conf = mddev->private; 1706 int err = -EEXIST; 1707 int mirror = 0; 1708 struct raid1_info *p; 1709 int first = 0; 1710 int last = conf->raid_disks - 1; 1711 1712 if (mddev->recovery_disabled == conf->recovery_disabled) 1713 return -EBUSY; 1714 1715 if (md_integrity_add_rdev(rdev, mddev)) 1716 return -ENXIO; 1717 1718 if (rdev->raid_disk >= 0) 1719 first = last = rdev->raid_disk; 1720 1721 /* 1722 * find the disk ... but prefer rdev->saved_raid_disk 1723 * if possible. 1724 */ 1725 if (rdev->saved_raid_disk >= 0 && 1726 rdev->saved_raid_disk >= first && 1727 rdev->saved_raid_disk < conf->raid_disks && 1728 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1729 first = last = rdev->saved_raid_disk; 1730 1731 for (mirror = first; mirror <= last; mirror++) { 1732 p = conf->mirrors+mirror; 1733 if (!p->rdev) { 1734 1735 if (mddev->gendisk) 1736 disk_stack_limits(mddev->gendisk, rdev->bdev, 1737 rdev->data_offset << 9); 1738 1739 p->head_position = 0; 1740 rdev->raid_disk = mirror; 1741 err = 0; 1742 /* As all devices are equivalent, we don't need a full recovery 1743 * if this was recently any drive of the array 1744 */ 1745 if (rdev->saved_raid_disk < 0) 1746 conf->fullsync = 1; 1747 rcu_assign_pointer(p->rdev, rdev); 1748 break; 1749 } 1750 if (test_bit(WantReplacement, &p->rdev->flags) && 1751 p[conf->raid_disks].rdev == NULL) { 1752 /* Add this device as a replacement */ 1753 clear_bit(In_sync, &rdev->flags); 1754 set_bit(Replacement, &rdev->flags); 1755 rdev->raid_disk = mirror; 1756 err = 0; 1757 conf->fullsync = 1; 1758 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev); 1759 break; 1760 } 1761 } 1762 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev))) 1763 blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue); 1764 print_conf(conf); 1765 return err; 1766 } 1767 1768 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1769 { 1770 struct r1conf *conf = mddev->private; 1771 int err = 0; 1772 int number = rdev->raid_disk; 1773 struct raid1_info *p = conf->mirrors + number; 1774 1775 if (rdev != p->rdev) 1776 p = conf->mirrors + conf->raid_disks + number; 1777 1778 print_conf(conf); 1779 if (rdev == p->rdev) { 1780 if (test_bit(In_sync, &rdev->flags) || 1781 atomic_read(&rdev->nr_pending)) { 1782 err = -EBUSY; 1783 goto abort; 1784 } 1785 /* Only remove non-faulty devices if recovery 1786 * is not possible. 1787 */ 1788 if (!test_bit(Faulty, &rdev->flags) && 1789 mddev->recovery_disabled != conf->recovery_disabled && 1790 mddev->degraded < conf->raid_disks) { 1791 err = -EBUSY; 1792 goto abort; 1793 } 1794 p->rdev = NULL; 1795 if (!test_bit(RemoveSynchronized, &rdev->flags)) { 1796 synchronize_rcu(); 1797 if (atomic_read(&rdev->nr_pending)) { 1798 /* lost the race, try later */ 1799 err = -EBUSY; 1800 p->rdev = rdev; 1801 goto abort; 1802 } 1803 } 1804 if (conf->mirrors[conf->raid_disks + number].rdev) { 1805 /* We just removed a device that is being replaced. 1806 * Move down the replacement. We drain all IO before 1807 * doing this to avoid confusion. 1808 */ 1809 struct md_rdev *repl = 1810 conf->mirrors[conf->raid_disks + number].rdev; 1811 freeze_array(conf, 0); 1812 if (atomic_read(&repl->nr_pending)) { 1813 /* It means that some queued IO of retry_list 1814 * hold repl. Thus, we cannot set replacement 1815 * as NULL, avoiding rdev NULL pointer 1816 * dereference in sync_request_write and 1817 * handle_write_finished. 1818 */ 1819 err = -EBUSY; 1820 unfreeze_array(conf); 1821 goto abort; 1822 } 1823 clear_bit(Replacement, &repl->flags); 1824 p->rdev = repl; 1825 conf->mirrors[conf->raid_disks + number].rdev = NULL; 1826 unfreeze_array(conf); 1827 } 1828 1829 clear_bit(WantReplacement, &rdev->flags); 1830 err = md_integrity_register(mddev); 1831 } 1832 abort: 1833 1834 print_conf(conf); 1835 return err; 1836 } 1837 1838 static void end_sync_read(struct bio *bio) 1839 { 1840 struct r1bio *r1_bio = get_resync_r1bio(bio); 1841 1842 update_head_pos(r1_bio->read_disk, r1_bio); 1843 1844 /* 1845 * we have read a block, now it needs to be re-written, 1846 * or re-read if the read failed. 1847 * We don't do much here, just schedule handling by raid1d 1848 */ 1849 if (!bio->bi_status) 1850 set_bit(R1BIO_Uptodate, &r1_bio->state); 1851 1852 if (atomic_dec_and_test(&r1_bio->remaining)) 1853 reschedule_retry(r1_bio); 1854 } 1855 1856 static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio) 1857 { 1858 sector_t sync_blocks = 0; 1859 sector_t s = r1_bio->sector; 1860 long sectors_to_go = r1_bio->sectors; 1861 1862 /* make sure these bits don't get cleared. */ 1863 do { 1864 md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1); 1865 s += sync_blocks; 1866 sectors_to_go -= sync_blocks; 1867 } while (sectors_to_go > 0); 1868 } 1869 1870 static void end_sync_write(struct bio *bio) 1871 { 1872 int uptodate = !bio->bi_status; 1873 struct r1bio *r1_bio = get_resync_r1bio(bio); 1874 struct mddev *mddev = r1_bio->mddev; 1875 struct r1conf *conf = mddev->private; 1876 sector_t first_bad; 1877 int bad_sectors; 1878 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev; 1879 1880 if (!uptodate) { 1881 abort_sync_write(mddev, r1_bio); 1882 set_bit(WriteErrorSeen, &rdev->flags); 1883 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 1884 set_bit(MD_RECOVERY_NEEDED, & 1885 mddev->recovery); 1886 set_bit(R1BIO_WriteError, &r1_bio->state); 1887 } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors, 1888 &first_bad, &bad_sectors) && 1889 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev, 1890 r1_bio->sector, 1891 r1_bio->sectors, 1892 &first_bad, &bad_sectors) 1893 ) 1894 set_bit(R1BIO_MadeGood, &r1_bio->state); 1895 1896 if (atomic_dec_and_test(&r1_bio->remaining)) { 1897 int s = r1_bio->sectors; 1898 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 1899 test_bit(R1BIO_WriteError, &r1_bio->state)) 1900 reschedule_retry(r1_bio); 1901 else { 1902 put_buf(r1_bio); 1903 md_done_sync(mddev, s, uptodate); 1904 } 1905 } 1906 } 1907 1908 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector, 1909 int sectors, struct page *page, int rw) 1910 { 1911 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false)) 1912 /* success */ 1913 return 1; 1914 if (rw == WRITE) { 1915 set_bit(WriteErrorSeen, &rdev->flags); 1916 if (!test_and_set_bit(WantReplacement, 1917 &rdev->flags)) 1918 set_bit(MD_RECOVERY_NEEDED, & 1919 rdev->mddev->recovery); 1920 } 1921 /* need to record an error - either for the block or the device */ 1922 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 1923 md_error(rdev->mddev, rdev); 1924 return 0; 1925 } 1926 1927 static int fix_sync_read_error(struct r1bio *r1_bio) 1928 { 1929 /* Try some synchronous reads of other devices to get 1930 * good data, much like with normal read errors. Only 1931 * read into the pages we already have so we don't 1932 * need to re-issue the read request. 1933 * We don't need to freeze the array, because being in an 1934 * active sync request, there is no normal IO, and 1935 * no overlapping syncs. 1936 * We don't need to check is_badblock() again as we 1937 * made sure that anything with a bad block in range 1938 * will have bi_end_io clear. 1939 */ 1940 struct mddev *mddev = r1_bio->mddev; 1941 struct r1conf *conf = mddev->private; 1942 struct bio *bio = r1_bio->bios[r1_bio->read_disk]; 1943 struct page **pages = get_resync_pages(bio)->pages; 1944 sector_t sect = r1_bio->sector; 1945 int sectors = r1_bio->sectors; 1946 int idx = 0; 1947 struct md_rdev *rdev; 1948 1949 rdev = conf->mirrors[r1_bio->read_disk].rdev; 1950 if (test_bit(FailFast, &rdev->flags)) { 1951 /* Don't try recovering from here - just fail it 1952 * ... unless it is the last working device of course */ 1953 md_error(mddev, rdev); 1954 if (test_bit(Faulty, &rdev->flags)) 1955 /* Don't try to read from here, but make sure 1956 * put_buf does it's thing 1957 */ 1958 bio->bi_end_io = end_sync_write; 1959 } 1960 1961 while(sectors) { 1962 int s = sectors; 1963 int d = r1_bio->read_disk; 1964 int success = 0; 1965 int start; 1966 1967 if (s > (PAGE_SIZE>>9)) 1968 s = PAGE_SIZE >> 9; 1969 do { 1970 if (r1_bio->bios[d]->bi_end_io == end_sync_read) { 1971 /* No rcu protection needed here devices 1972 * can only be removed when no resync is 1973 * active, and resync is currently active 1974 */ 1975 rdev = conf->mirrors[d].rdev; 1976 if (sync_page_io(rdev, sect, s<<9, 1977 pages[idx], 1978 REQ_OP_READ, 0, false)) { 1979 success = 1; 1980 break; 1981 } 1982 } 1983 d++; 1984 if (d == conf->raid_disks * 2) 1985 d = 0; 1986 } while (!success && d != r1_bio->read_disk); 1987 1988 if (!success) { 1989 char b[BDEVNAME_SIZE]; 1990 int abort = 0; 1991 /* Cannot read from anywhere, this block is lost. 1992 * Record a bad block on each device. If that doesn't 1993 * work just disable and interrupt the recovery. 1994 * Don't fail devices as that won't really help. 1995 */ 1996 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n", 1997 mdname(mddev), bio_devname(bio, b), 1998 (unsigned long long)r1_bio->sector); 1999 for (d = 0; d < conf->raid_disks * 2; d++) { 2000 rdev = conf->mirrors[d].rdev; 2001 if (!rdev || test_bit(Faulty, &rdev->flags)) 2002 continue; 2003 if (!rdev_set_badblocks(rdev, sect, s, 0)) 2004 abort = 1; 2005 } 2006 if (abort) { 2007 conf->recovery_disabled = 2008 mddev->recovery_disabled; 2009 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2010 md_done_sync(mddev, r1_bio->sectors, 0); 2011 put_buf(r1_bio); 2012 return 0; 2013 } 2014 /* Try next page */ 2015 sectors -= s; 2016 sect += s; 2017 idx++; 2018 continue; 2019 } 2020 2021 start = d; 2022 /* write it back and re-read */ 2023 while (d != r1_bio->read_disk) { 2024 if (d == 0) 2025 d = conf->raid_disks * 2; 2026 d--; 2027 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 2028 continue; 2029 rdev = conf->mirrors[d].rdev; 2030 if (r1_sync_page_io(rdev, sect, s, 2031 pages[idx], 2032 WRITE) == 0) { 2033 r1_bio->bios[d]->bi_end_io = NULL; 2034 rdev_dec_pending(rdev, mddev); 2035 } 2036 } 2037 d = start; 2038 while (d != r1_bio->read_disk) { 2039 if (d == 0) 2040 d = conf->raid_disks * 2; 2041 d--; 2042 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 2043 continue; 2044 rdev = conf->mirrors[d].rdev; 2045 if (r1_sync_page_io(rdev, sect, s, 2046 pages[idx], 2047 READ) != 0) 2048 atomic_add(s, &rdev->corrected_errors); 2049 } 2050 sectors -= s; 2051 sect += s; 2052 idx ++; 2053 } 2054 set_bit(R1BIO_Uptodate, &r1_bio->state); 2055 bio->bi_status = 0; 2056 return 1; 2057 } 2058 2059 static void process_checks(struct r1bio *r1_bio) 2060 { 2061 /* We have read all readable devices. If we haven't 2062 * got the block, then there is no hope left. 2063 * If we have, then we want to do a comparison 2064 * and skip the write if everything is the same. 2065 * If any blocks failed to read, then we need to 2066 * attempt an over-write 2067 */ 2068 struct mddev *mddev = r1_bio->mddev; 2069 struct r1conf *conf = mddev->private; 2070 int primary; 2071 int i; 2072 int vcnt; 2073 2074 /* Fix variable parts of all bios */ 2075 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9); 2076 for (i = 0; i < conf->raid_disks * 2; i++) { 2077 blk_status_t status; 2078 struct bio *b = r1_bio->bios[i]; 2079 struct resync_pages *rp = get_resync_pages(b); 2080 if (b->bi_end_io != end_sync_read) 2081 continue; 2082 /* fixup the bio for reuse, but preserve errno */ 2083 status = b->bi_status; 2084 bio_reset(b); 2085 b->bi_status = status; 2086 b->bi_iter.bi_sector = r1_bio->sector + 2087 conf->mirrors[i].rdev->data_offset; 2088 bio_set_dev(b, conf->mirrors[i].rdev->bdev); 2089 b->bi_end_io = end_sync_read; 2090 rp->raid_bio = r1_bio; 2091 b->bi_private = rp; 2092 2093 /* initialize bvec table again */ 2094 md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9); 2095 } 2096 for (primary = 0; primary < conf->raid_disks * 2; primary++) 2097 if (r1_bio->bios[primary]->bi_end_io == end_sync_read && 2098 !r1_bio->bios[primary]->bi_status) { 2099 r1_bio->bios[primary]->bi_end_io = NULL; 2100 rdev_dec_pending(conf->mirrors[primary].rdev, mddev); 2101 break; 2102 } 2103 r1_bio->read_disk = primary; 2104 for (i = 0; i < conf->raid_disks * 2; i++) { 2105 int j = 0; 2106 struct bio *pbio = r1_bio->bios[primary]; 2107 struct bio *sbio = r1_bio->bios[i]; 2108 blk_status_t status = sbio->bi_status; 2109 struct page **ppages = get_resync_pages(pbio)->pages; 2110 struct page **spages = get_resync_pages(sbio)->pages; 2111 struct bio_vec *bi; 2112 int page_len[RESYNC_PAGES] = { 0 }; 2113 struct bvec_iter_all iter_all; 2114 2115 if (sbio->bi_end_io != end_sync_read) 2116 continue; 2117 /* Now we can 'fixup' the error value */ 2118 sbio->bi_status = 0; 2119 2120 bio_for_each_segment_all(bi, sbio, iter_all) 2121 page_len[j++] = bi->bv_len; 2122 2123 if (!status) { 2124 for (j = vcnt; j-- ; ) { 2125 if (memcmp(page_address(ppages[j]), 2126 page_address(spages[j]), 2127 page_len[j])) 2128 break; 2129 } 2130 } else 2131 j = 0; 2132 if (j >= 0) 2133 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches); 2134 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery) 2135 && !status)) { 2136 /* No need to write to this device. */ 2137 sbio->bi_end_io = NULL; 2138 rdev_dec_pending(conf->mirrors[i].rdev, mddev); 2139 continue; 2140 } 2141 2142 bio_copy_data(sbio, pbio); 2143 } 2144 } 2145 2146 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio) 2147 { 2148 struct r1conf *conf = mddev->private; 2149 int i; 2150 int disks = conf->raid_disks * 2; 2151 struct bio *wbio; 2152 2153 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 2154 /* ouch - failed to read all of that. */ 2155 if (!fix_sync_read_error(r1_bio)) 2156 return; 2157 2158 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2159 process_checks(r1_bio); 2160 2161 /* 2162 * schedule writes 2163 */ 2164 atomic_set(&r1_bio->remaining, 1); 2165 for (i = 0; i < disks ; i++) { 2166 wbio = r1_bio->bios[i]; 2167 if (wbio->bi_end_io == NULL || 2168 (wbio->bi_end_io == end_sync_read && 2169 (i == r1_bio->read_disk || 2170 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)))) 2171 continue; 2172 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) { 2173 abort_sync_write(mddev, r1_bio); 2174 continue; 2175 } 2176 2177 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0); 2178 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags)) 2179 wbio->bi_opf |= MD_FAILFAST; 2180 2181 wbio->bi_end_io = end_sync_write; 2182 atomic_inc(&r1_bio->remaining); 2183 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio)); 2184 2185 generic_make_request(wbio); 2186 } 2187 2188 if (atomic_dec_and_test(&r1_bio->remaining)) { 2189 /* if we're here, all write(s) have completed, so clean up */ 2190 int s = r1_bio->sectors; 2191 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2192 test_bit(R1BIO_WriteError, &r1_bio->state)) 2193 reschedule_retry(r1_bio); 2194 else { 2195 put_buf(r1_bio); 2196 md_done_sync(mddev, s, 1); 2197 } 2198 } 2199 } 2200 2201 /* 2202 * This is a kernel thread which: 2203 * 2204 * 1. Retries failed read operations on working mirrors. 2205 * 2. Updates the raid superblock when problems encounter. 2206 * 3. Performs writes following reads for array synchronising. 2207 */ 2208 2209 static void fix_read_error(struct r1conf *conf, int read_disk, 2210 sector_t sect, int sectors) 2211 { 2212 struct mddev *mddev = conf->mddev; 2213 while(sectors) { 2214 int s = sectors; 2215 int d = read_disk; 2216 int success = 0; 2217 int start; 2218 struct md_rdev *rdev; 2219 2220 if (s > (PAGE_SIZE>>9)) 2221 s = PAGE_SIZE >> 9; 2222 2223 do { 2224 sector_t first_bad; 2225 int bad_sectors; 2226 2227 rcu_read_lock(); 2228 rdev = rcu_dereference(conf->mirrors[d].rdev); 2229 if (rdev && 2230 (test_bit(In_sync, &rdev->flags) || 2231 (!test_bit(Faulty, &rdev->flags) && 2232 rdev->recovery_offset >= sect + s)) && 2233 is_badblock(rdev, sect, s, 2234 &first_bad, &bad_sectors) == 0) { 2235 atomic_inc(&rdev->nr_pending); 2236 rcu_read_unlock(); 2237 if (sync_page_io(rdev, sect, s<<9, 2238 conf->tmppage, REQ_OP_READ, 0, false)) 2239 success = 1; 2240 rdev_dec_pending(rdev, mddev); 2241 if (success) 2242 break; 2243 } else 2244 rcu_read_unlock(); 2245 d++; 2246 if (d == conf->raid_disks * 2) 2247 d = 0; 2248 } while (!success && d != read_disk); 2249 2250 if (!success) { 2251 /* Cannot read from anywhere - mark it bad */ 2252 struct md_rdev *rdev = conf->mirrors[read_disk].rdev; 2253 if (!rdev_set_badblocks(rdev, sect, s, 0)) 2254 md_error(mddev, rdev); 2255 break; 2256 } 2257 /* write it back and re-read */ 2258 start = d; 2259 while (d != read_disk) { 2260 if (d==0) 2261 d = conf->raid_disks * 2; 2262 d--; 2263 rcu_read_lock(); 2264 rdev = rcu_dereference(conf->mirrors[d].rdev); 2265 if (rdev && 2266 !test_bit(Faulty, &rdev->flags)) { 2267 atomic_inc(&rdev->nr_pending); 2268 rcu_read_unlock(); 2269 r1_sync_page_io(rdev, sect, s, 2270 conf->tmppage, WRITE); 2271 rdev_dec_pending(rdev, mddev); 2272 } else 2273 rcu_read_unlock(); 2274 } 2275 d = start; 2276 while (d != read_disk) { 2277 char b[BDEVNAME_SIZE]; 2278 if (d==0) 2279 d = conf->raid_disks * 2; 2280 d--; 2281 rcu_read_lock(); 2282 rdev = rcu_dereference(conf->mirrors[d].rdev); 2283 if (rdev && 2284 !test_bit(Faulty, &rdev->flags)) { 2285 atomic_inc(&rdev->nr_pending); 2286 rcu_read_unlock(); 2287 if (r1_sync_page_io(rdev, sect, s, 2288 conf->tmppage, READ)) { 2289 atomic_add(s, &rdev->corrected_errors); 2290 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n", 2291 mdname(mddev), s, 2292 (unsigned long long)(sect + 2293 rdev->data_offset), 2294 bdevname(rdev->bdev, b)); 2295 } 2296 rdev_dec_pending(rdev, mddev); 2297 } else 2298 rcu_read_unlock(); 2299 } 2300 sectors -= s; 2301 sect += s; 2302 } 2303 } 2304 2305 static int narrow_write_error(struct r1bio *r1_bio, int i) 2306 { 2307 struct mddev *mddev = r1_bio->mddev; 2308 struct r1conf *conf = mddev->private; 2309 struct md_rdev *rdev = conf->mirrors[i].rdev; 2310 2311 /* bio has the data to be written to device 'i' where 2312 * we just recently had a write error. 2313 * We repeatedly clone the bio and trim down to one block, 2314 * then try the write. Where the write fails we record 2315 * a bad block. 2316 * It is conceivable that the bio doesn't exactly align with 2317 * blocks. We must handle this somehow. 2318 * 2319 * We currently own a reference on the rdev. 2320 */ 2321 2322 int block_sectors; 2323 sector_t sector; 2324 int sectors; 2325 int sect_to_write = r1_bio->sectors; 2326 int ok = 1; 2327 2328 if (rdev->badblocks.shift < 0) 2329 return 0; 2330 2331 block_sectors = roundup(1 << rdev->badblocks.shift, 2332 bdev_logical_block_size(rdev->bdev) >> 9); 2333 sector = r1_bio->sector; 2334 sectors = ((sector + block_sectors) 2335 & ~(sector_t)(block_sectors - 1)) 2336 - sector; 2337 2338 while (sect_to_write) { 2339 struct bio *wbio; 2340 if (sectors > sect_to_write) 2341 sectors = sect_to_write; 2342 /* Write at 'sector' for 'sectors'*/ 2343 2344 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 2345 wbio = bio_clone_fast(r1_bio->behind_master_bio, 2346 GFP_NOIO, 2347 &mddev->bio_set); 2348 } else { 2349 wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO, 2350 &mddev->bio_set); 2351 } 2352 2353 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0); 2354 wbio->bi_iter.bi_sector = r1_bio->sector; 2355 wbio->bi_iter.bi_size = r1_bio->sectors << 9; 2356 2357 bio_trim(wbio, sector - r1_bio->sector, sectors); 2358 wbio->bi_iter.bi_sector += rdev->data_offset; 2359 bio_set_dev(wbio, rdev->bdev); 2360 2361 if (submit_bio_wait(wbio) < 0) 2362 /* failure! */ 2363 ok = rdev_set_badblocks(rdev, sector, 2364 sectors, 0) 2365 && ok; 2366 2367 bio_put(wbio); 2368 sect_to_write -= sectors; 2369 sector += sectors; 2370 sectors = block_sectors; 2371 } 2372 return ok; 2373 } 2374 2375 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2376 { 2377 int m; 2378 int s = r1_bio->sectors; 2379 for (m = 0; m < conf->raid_disks * 2 ; m++) { 2380 struct md_rdev *rdev = conf->mirrors[m].rdev; 2381 struct bio *bio = r1_bio->bios[m]; 2382 if (bio->bi_end_io == NULL) 2383 continue; 2384 if (!bio->bi_status && 2385 test_bit(R1BIO_MadeGood, &r1_bio->state)) { 2386 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0); 2387 } 2388 if (bio->bi_status && 2389 test_bit(R1BIO_WriteError, &r1_bio->state)) { 2390 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0)) 2391 md_error(conf->mddev, rdev); 2392 } 2393 } 2394 put_buf(r1_bio); 2395 md_done_sync(conf->mddev, s, 1); 2396 } 2397 2398 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2399 { 2400 int m, idx; 2401 bool fail = false; 2402 2403 for (m = 0; m < conf->raid_disks * 2 ; m++) 2404 if (r1_bio->bios[m] == IO_MADE_GOOD) { 2405 struct md_rdev *rdev = conf->mirrors[m].rdev; 2406 rdev_clear_badblocks(rdev, 2407 r1_bio->sector, 2408 r1_bio->sectors, 0); 2409 rdev_dec_pending(rdev, conf->mddev); 2410 } else if (r1_bio->bios[m] != NULL) { 2411 /* This drive got a write error. We need to 2412 * narrow down and record precise write 2413 * errors. 2414 */ 2415 fail = true; 2416 if (!narrow_write_error(r1_bio, m)) { 2417 md_error(conf->mddev, 2418 conf->mirrors[m].rdev); 2419 /* an I/O failed, we can't clear the bitmap */ 2420 set_bit(R1BIO_Degraded, &r1_bio->state); 2421 } 2422 rdev_dec_pending(conf->mirrors[m].rdev, 2423 conf->mddev); 2424 } 2425 if (fail) { 2426 spin_lock_irq(&conf->device_lock); 2427 list_add(&r1_bio->retry_list, &conf->bio_end_io_list); 2428 idx = sector_to_idx(r1_bio->sector); 2429 atomic_inc(&conf->nr_queued[idx]); 2430 spin_unlock_irq(&conf->device_lock); 2431 /* 2432 * In case freeze_array() is waiting for condition 2433 * get_unqueued_pending() == extra to be true. 2434 */ 2435 wake_up(&conf->wait_barrier); 2436 md_wakeup_thread(conf->mddev->thread); 2437 } else { 2438 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2439 close_write(r1_bio); 2440 raid_end_bio_io(r1_bio); 2441 } 2442 } 2443 2444 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio) 2445 { 2446 struct mddev *mddev = conf->mddev; 2447 struct bio *bio; 2448 struct md_rdev *rdev; 2449 2450 clear_bit(R1BIO_ReadError, &r1_bio->state); 2451 /* we got a read error. Maybe the drive is bad. Maybe just 2452 * the block and we can fix it. 2453 * We freeze all other IO, and try reading the block from 2454 * other devices. When we find one, we re-write 2455 * and check it that fixes the read error. 2456 * This is all done synchronously while the array is 2457 * frozen 2458 */ 2459 2460 bio = r1_bio->bios[r1_bio->read_disk]; 2461 bio_put(bio); 2462 r1_bio->bios[r1_bio->read_disk] = NULL; 2463 2464 rdev = conf->mirrors[r1_bio->read_disk].rdev; 2465 if (mddev->ro == 0 2466 && !test_bit(FailFast, &rdev->flags)) { 2467 freeze_array(conf, 1); 2468 fix_read_error(conf, r1_bio->read_disk, 2469 r1_bio->sector, r1_bio->sectors); 2470 unfreeze_array(conf); 2471 } else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) { 2472 md_error(mddev, rdev); 2473 } else { 2474 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED; 2475 } 2476 2477 rdev_dec_pending(rdev, conf->mddev); 2478 allow_barrier(conf, r1_bio->sector); 2479 bio = r1_bio->master_bio; 2480 2481 /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */ 2482 r1_bio->state = 0; 2483 raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio); 2484 } 2485 2486 static void raid1d(struct md_thread *thread) 2487 { 2488 struct mddev *mddev = thread->mddev; 2489 struct r1bio *r1_bio; 2490 unsigned long flags; 2491 struct r1conf *conf = mddev->private; 2492 struct list_head *head = &conf->retry_list; 2493 struct blk_plug plug; 2494 int idx; 2495 2496 md_check_recovery(mddev); 2497 2498 if (!list_empty_careful(&conf->bio_end_io_list) && 2499 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 2500 LIST_HEAD(tmp); 2501 spin_lock_irqsave(&conf->device_lock, flags); 2502 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 2503 list_splice_init(&conf->bio_end_io_list, &tmp); 2504 spin_unlock_irqrestore(&conf->device_lock, flags); 2505 while (!list_empty(&tmp)) { 2506 r1_bio = list_first_entry(&tmp, struct r1bio, 2507 retry_list); 2508 list_del(&r1_bio->retry_list); 2509 idx = sector_to_idx(r1_bio->sector); 2510 atomic_dec(&conf->nr_queued[idx]); 2511 if (mddev->degraded) 2512 set_bit(R1BIO_Degraded, &r1_bio->state); 2513 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2514 close_write(r1_bio); 2515 raid_end_bio_io(r1_bio); 2516 } 2517 } 2518 2519 blk_start_plug(&plug); 2520 for (;;) { 2521 2522 flush_pending_writes(conf); 2523 2524 spin_lock_irqsave(&conf->device_lock, flags); 2525 if (list_empty(head)) { 2526 spin_unlock_irqrestore(&conf->device_lock, flags); 2527 break; 2528 } 2529 r1_bio = list_entry(head->prev, struct r1bio, retry_list); 2530 list_del(head->prev); 2531 idx = sector_to_idx(r1_bio->sector); 2532 atomic_dec(&conf->nr_queued[idx]); 2533 spin_unlock_irqrestore(&conf->device_lock, flags); 2534 2535 mddev = r1_bio->mddev; 2536 conf = mddev->private; 2537 if (test_bit(R1BIO_IsSync, &r1_bio->state)) { 2538 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2539 test_bit(R1BIO_WriteError, &r1_bio->state)) 2540 handle_sync_write_finished(conf, r1_bio); 2541 else 2542 sync_request_write(mddev, r1_bio); 2543 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2544 test_bit(R1BIO_WriteError, &r1_bio->state)) 2545 handle_write_finished(conf, r1_bio); 2546 else if (test_bit(R1BIO_ReadError, &r1_bio->state)) 2547 handle_read_error(conf, r1_bio); 2548 else 2549 WARN_ON_ONCE(1); 2550 2551 cond_resched(); 2552 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING)) 2553 md_check_recovery(mddev); 2554 } 2555 blk_finish_plug(&plug); 2556 } 2557 2558 static int init_resync(struct r1conf *conf) 2559 { 2560 int buffs; 2561 2562 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2563 BUG_ON(mempool_initialized(&conf->r1buf_pool)); 2564 2565 return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc, 2566 r1buf_pool_free, conf->poolinfo); 2567 } 2568 2569 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf) 2570 { 2571 struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO); 2572 struct resync_pages *rps; 2573 struct bio *bio; 2574 int i; 2575 2576 for (i = conf->poolinfo->raid_disks; i--; ) { 2577 bio = r1bio->bios[i]; 2578 rps = bio->bi_private; 2579 bio_reset(bio); 2580 bio->bi_private = rps; 2581 } 2582 r1bio->master_bio = NULL; 2583 return r1bio; 2584 } 2585 2586 /* 2587 * perform a "sync" on one "block" 2588 * 2589 * We need to make sure that no normal I/O request - particularly write 2590 * requests - conflict with active sync requests. 2591 * 2592 * This is achieved by tracking pending requests and a 'barrier' concept 2593 * that can be installed to exclude normal IO requests. 2594 */ 2595 2596 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr, 2597 int *skipped) 2598 { 2599 struct r1conf *conf = mddev->private; 2600 struct r1bio *r1_bio; 2601 struct bio *bio; 2602 sector_t max_sector, nr_sectors; 2603 int disk = -1; 2604 int i; 2605 int wonly = -1; 2606 int write_targets = 0, read_targets = 0; 2607 sector_t sync_blocks; 2608 int still_degraded = 0; 2609 int good_sectors = RESYNC_SECTORS; 2610 int min_bad = 0; /* number of sectors that are bad in all devices */ 2611 int idx = sector_to_idx(sector_nr); 2612 int page_idx = 0; 2613 2614 if (!mempool_initialized(&conf->r1buf_pool)) 2615 if (init_resync(conf)) 2616 return 0; 2617 2618 max_sector = mddev->dev_sectors; 2619 if (sector_nr >= max_sector) { 2620 /* If we aborted, we need to abort the 2621 * sync on the 'current' bitmap chunk (there will 2622 * only be one in raid1 resync. 2623 * We can find the current addess in mddev->curr_resync 2624 */ 2625 if (mddev->curr_resync < max_sector) /* aborted */ 2626 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2627 &sync_blocks, 1); 2628 else /* completed sync */ 2629 conf->fullsync = 0; 2630 2631 md_bitmap_close_sync(mddev->bitmap); 2632 close_sync(conf); 2633 2634 if (mddev_is_clustered(mddev)) { 2635 conf->cluster_sync_low = 0; 2636 conf->cluster_sync_high = 0; 2637 } 2638 return 0; 2639 } 2640 2641 if (mddev->bitmap == NULL && 2642 mddev->recovery_cp == MaxSector && 2643 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 2644 conf->fullsync == 0) { 2645 *skipped = 1; 2646 return max_sector - sector_nr; 2647 } 2648 /* before building a request, check if we can skip these blocks.. 2649 * This call the bitmap_start_sync doesn't actually record anything 2650 */ 2651 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 2652 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2653 /* We can skip this block, and probably several more */ 2654 *skipped = 1; 2655 return sync_blocks; 2656 } 2657 2658 /* 2659 * If there is non-resync activity waiting for a turn, then let it 2660 * though before starting on this new sync request. 2661 */ 2662 if (atomic_read(&conf->nr_waiting[idx])) 2663 schedule_timeout_uninterruptible(1); 2664 2665 /* we are incrementing sector_nr below. To be safe, we check against 2666 * sector_nr + two times RESYNC_SECTORS 2667 */ 2668 2669 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, 2670 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high)); 2671 2672 2673 if (raise_barrier(conf, sector_nr)) 2674 return 0; 2675 2676 r1_bio = raid1_alloc_init_r1buf(conf); 2677 2678 rcu_read_lock(); 2679 /* 2680 * If we get a correctably read error during resync or recovery, 2681 * we might want to read from a different device. So we 2682 * flag all drives that could conceivably be read from for READ, 2683 * and any others (which will be non-In_sync devices) for WRITE. 2684 * If a read fails, we try reading from something else for which READ 2685 * is OK. 2686 */ 2687 2688 r1_bio->mddev = mddev; 2689 r1_bio->sector = sector_nr; 2690 r1_bio->state = 0; 2691 set_bit(R1BIO_IsSync, &r1_bio->state); 2692 /* make sure good_sectors won't go across barrier unit boundary */ 2693 good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors); 2694 2695 for (i = 0; i < conf->raid_disks * 2; i++) { 2696 struct md_rdev *rdev; 2697 bio = r1_bio->bios[i]; 2698 2699 rdev = rcu_dereference(conf->mirrors[i].rdev); 2700 if (rdev == NULL || 2701 test_bit(Faulty, &rdev->flags)) { 2702 if (i < conf->raid_disks) 2703 still_degraded = 1; 2704 } else if (!test_bit(In_sync, &rdev->flags)) { 2705 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 2706 bio->bi_end_io = end_sync_write; 2707 write_targets ++; 2708 } else { 2709 /* may need to read from here */ 2710 sector_t first_bad = MaxSector; 2711 int bad_sectors; 2712 2713 if (is_badblock(rdev, sector_nr, good_sectors, 2714 &first_bad, &bad_sectors)) { 2715 if (first_bad > sector_nr) 2716 good_sectors = first_bad - sector_nr; 2717 else { 2718 bad_sectors -= (sector_nr - first_bad); 2719 if (min_bad == 0 || 2720 min_bad > bad_sectors) 2721 min_bad = bad_sectors; 2722 } 2723 } 2724 if (sector_nr < first_bad) { 2725 if (test_bit(WriteMostly, &rdev->flags)) { 2726 if (wonly < 0) 2727 wonly = i; 2728 } else { 2729 if (disk < 0) 2730 disk = i; 2731 } 2732 bio_set_op_attrs(bio, REQ_OP_READ, 0); 2733 bio->bi_end_io = end_sync_read; 2734 read_targets++; 2735 } else if (!test_bit(WriteErrorSeen, &rdev->flags) && 2736 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 2737 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 2738 /* 2739 * The device is suitable for reading (InSync), 2740 * but has bad block(s) here. Let's try to correct them, 2741 * if we are doing resync or repair. Otherwise, leave 2742 * this device alone for this sync request. 2743 */ 2744 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 2745 bio->bi_end_io = end_sync_write; 2746 write_targets++; 2747 } 2748 } 2749 if (bio->bi_end_io) { 2750 atomic_inc(&rdev->nr_pending); 2751 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset; 2752 bio_set_dev(bio, rdev->bdev); 2753 if (test_bit(FailFast, &rdev->flags)) 2754 bio->bi_opf |= MD_FAILFAST; 2755 } 2756 } 2757 rcu_read_unlock(); 2758 if (disk < 0) 2759 disk = wonly; 2760 r1_bio->read_disk = disk; 2761 2762 if (read_targets == 0 && min_bad > 0) { 2763 /* These sectors are bad on all InSync devices, so we 2764 * need to mark them bad on all write targets 2765 */ 2766 int ok = 1; 2767 for (i = 0 ; i < conf->raid_disks * 2 ; i++) 2768 if (r1_bio->bios[i]->bi_end_io == end_sync_write) { 2769 struct md_rdev *rdev = conf->mirrors[i].rdev; 2770 ok = rdev_set_badblocks(rdev, sector_nr, 2771 min_bad, 0 2772 ) && ok; 2773 } 2774 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2775 *skipped = 1; 2776 put_buf(r1_bio); 2777 2778 if (!ok) { 2779 /* Cannot record the badblocks, so need to 2780 * abort the resync. 2781 * If there are multiple read targets, could just 2782 * fail the really bad ones ??? 2783 */ 2784 conf->recovery_disabled = mddev->recovery_disabled; 2785 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2786 return 0; 2787 } else 2788 return min_bad; 2789 2790 } 2791 if (min_bad > 0 && min_bad < good_sectors) { 2792 /* only resync enough to reach the next bad->good 2793 * transition */ 2794 good_sectors = min_bad; 2795 } 2796 2797 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0) 2798 /* extra read targets are also write targets */ 2799 write_targets += read_targets-1; 2800 2801 if (write_targets == 0 || read_targets == 0) { 2802 /* There is nowhere to write, so all non-sync 2803 * drives must be failed - so we are finished 2804 */ 2805 sector_t rv; 2806 if (min_bad > 0) 2807 max_sector = sector_nr + min_bad; 2808 rv = max_sector - sector_nr; 2809 *skipped = 1; 2810 put_buf(r1_bio); 2811 return rv; 2812 } 2813 2814 if (max_sector > mddev->resync_max) 2815 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 2816 if (max_sector > sector_nr + good_sectors) 2817 max_sector = sector_nr + good_sectors; 2818 nr_sectors = 0; 2819 sync_blocks = 0; 2820 do { 2821 struct page *page; 2822 int len = PAGE_SIZE; 2823 if (sector_nr + (len>>9) > max_sector) 2824 len = (max_sector - sector_nr) << 9; 2825 if (len == 0) 2826 break; 2827 if (sync_blocks == 0) { 2828 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, 2829 &sync_blocks, still_degraded) && 2830 !conf->fullsync && 2831 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2832 break; 2833 if ((len >> 9) > sync_blocks) 2834 len = sync_blocks<<9; 2835 } 2836 2837 for (i = 0 ; i < conf->raid_disks * 2; i++) { 2838 struct resync_pages *rp; 2839 2840 bio = r1_bio->bios[i]; 2841 rp = get_resync_pages(bio); 2842 if (bio->bi_end_io) { 2843 page = resync_fetch_page(rp, page_idx); 2844 2845 /* 2846 * won't fail because the vec table is big 2847 * enough to hold all these pages 2848 */ 2849 bio_add_page(bio, page, len, 0); 2850 } 2851 } 2852 nr_sectors += len>>9; 2853 sector_nr += len>>9; 2854 sync_blocks -= (len>>9); 2855 } while (++page_idx < RESYNC_PAGES); 2856 2857 r1_bio->sectors = nr_sectors; 2858 2859 if (mddev_is_clustered(mddev) && 2860 conf->cluster_sync_high < sector_nr + nr_sectors) { 2861 conf->cluster_sync_low = mddev->curr_resync_completed; 2862 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS; 2863 /* Send resync message */ 2864 md_cluster_ops->resync_info_update(mddev, 2865 conf->cluster_sync_low, 2866 conf->cluster_sync_high); 2867 } 2868 2869 /* For a user-requested sync, we read all readable devices and do a 2870 * compare 2871 */ 2872 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2873 atomic_set(&r1_bio->remaining, read_targets); 2874 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) { 2875 bio = r1_bio->bios[i]; 2876 if (bio->bi_end_io == end_sync_read) { 2877 read_targets--; 2878 md_sync_acct_bio(bio, nr_sectors); 2879 if (read_targets == 1) 2880 bio->bi_opf &= ~MD_FAILFAST; 2881 generic_make_request(bio); 2882 } 2883 } 2884 } else { 2885 atomic_set(&r1_bio->remaining, 1); 2886 bio = r1_bio->bios[r1_bio->read_disk]; 2887 md_sync_acct_bio(bio, nr_sectors); 2888 if (read_targets == 1) 2889 bio->bi_opf &= ~MD_FAILFAST; 2890 generic_make_request(bio); 2891 2892 } 2893 return nr_sectors; 2894 } 2895 2896 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks) 2897 { 2898 if (sectors) 2899 return sectors; 2900 2901 return mddev->dev_sectors; 2902 } 2903 2904 static struct r1conf *setup_conf(struct mddev *mddev) 2905 { 2906 struct r1conf *conf; 2907 int i; 2908 struct raid1_info *disk; 2909 struct md_rdev *rdev; 2910 int err = -ENOMEM; 2911 2912 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL); 2913 if (!conf) 2914 goto abort; 2915 2916 conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR, 2917 sizeof(atomic_t), GFP_KERNEL); 2918 if (!conf->nr_pending) 2919 goto abort; 2920 2921 conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR, 2922 sizeof(atomic_t), GFP_KERNEL); 2923 if (!conf->nr_waiting) 2924 goto abort; 2925 2926 conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR, 2927 sizeof(atomic_t), GFP_KERNEL); 2928 if (!conf->nr_queued) 2929 goto abort; 2930 2931 conf->barrier = kcalloc(BARRIER_BUCKETS_NR, 2932 sizeof(atomic_t), GFP_KERNEL); 2933 if (!conf->barrier) 2934 goto abort; 2935 2936 conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info), 2937 mddev->raid_disks, 2), 2938 GFP_KERNEL); 2939 if (!conf->mirrors) 2940 goto abort; 2941 2942 conf->tmppage = alloc_page(GFP_KERNEL); 2943 if (!conf->tmppage) 2944 goto abort; 2945 2946 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL); 2947 if (!conf->poolinfo) 2948 goto abort; 2949 conf->poolinfo->raid_disks = mddev->raid_disks * 2; 2950 err = mempool_init(&conf->r1bio_pool, NR_RAID1_BIOS, r1bio_pool_alloc, 2951 r1bio_pool_free, conf->poolinfo); 2952 if (err) 2953 goto abort; 2954 2955 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0); 2956 if (err) 2957 goto abort; 2958 2959 conf->poolinfo->mddev = mddev; 2960 2961 err = -EINVAL; 2962 spin_lock_init(&conf->device_lock); 2963 rdev_for_each(rdev, mddev) { 2964 int disk_idx = rdev->raid_disk; 2965 if (disk_idx >= mddev->raid_disks 2966 || disk_idx < 0) 2967 continue; 2968 if (test_bit(Replacement, &rdev->flags)) 2969 disk = conf->mirrors + mddev->raid_disks + disk_idx; 2970 else 2971 disk = conf->mirrors + disk_idx; 2972 2973 if (disk->rdev) 2974 goto abort; 2975 disk->rdev = rdev; 2976 disk->head_position = 0; 2977 disk->seq_start = MaxSector; 2978 } 2979 conf->raid_disks = mddev->raid_disks; 2980 conf->mddev = mddev; 2981 INIT_LIST_HEAD(&conf->retry_list); 2982 INIT_LIST_HEAD(&conf->bio_end_io_list); 2983 2984 spin_lock_init(&conf->resync_lock); 2985 init_waitqueue_head(&conf->wait_barrier); 2986 2987 bio_list_init(&conf->pending_bio_list); 2988 conf->pending_count = 0; 2989 conf->recovery_disabled = mddev->recovery_disabled - 1; 2990 2991 err = -EIO; 2992 for (i = 0; i < conf->raid_disks * 2; i++) { 2993 2994 disk = conf->mirrors + i; 2995 2996 if (i < conf->raid_disks && 2997 disk[conf->raid_disks].rdev) { 2998 /* This slot has a replacement. */ 2999 if (!disk->rdev) { 3000 /* No original, just make the replacement 3001 * a recovering spare 3002 */ 3003 disk->rdev = 3004 disk[conf->raid_disks].rdev; 3005 disk[conf->raid_disks].rdev = NULL; 3006 } else if (!test_bit(In_sync, &disk->rdev->flags)) 3007 /* Original is not in_sync - bad */ 3008 goto abort; 3009 } 3010 3011 if (!disk->rdev || 3012 !test_bit(In_sync, &disk->rdev->flags)) { 3013 disk->head_position = 0; 3014 if (disk->rdev && 3015 (disk->rdev->saved_raid_disk < 0)) 3016 conf->fullsync = 1; 3017 } 3018 } 3019 3020 err = -ENOMEM; 3021 conf->thread = md_register_thread(raid1d, mddev, "raid1"); 3022 if (!conf->thread) 3023 goto abort; 3024 3025 return conf; 3026 3027 abort: 3028 if (conf) { 3029 mempool_exit(&conf->r1bio_pool); 3030 kfree(conf->mirrors); 3031 safe_put_page(conf->tmppage); 3032 kfree(conf->poolinfo); 3033 kfree(conf->nr_pending); 3034 kfree(conf->nr_waiting); 3035 kfree(conf->nr_queued); 3036 kfree(conf->barrier); 3037 bioset_exit(&conf->bio_split); 3038 kfree(conf); 3039 } 3040 return ERR_PTR(err); 3041 } 3042 3043 static void raid1_free(struct mddev *mddev, void *priv); 3044 static int raid1_run(struct mddev *mddev) 3045 { 3046 struct r1conf *conf; 3047 int i; 3048 struct md_rdev *rdev; 3049 int ret; 3050 bool discard_supported = false; 3051 3052 if (mddev->level != 1) { 3053 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n", 3054 mdname(mddev), mddev->level); 3055 return -EIO; 3056 } 3057 if (mddev->reshape_position != MaxSector) { 3058 pr_warn("md/raid1:%s: reshape_position set but not supported\n", 3059 mdname(mddev)); 3060 return -EIO; 3061 } 3062 if (mddev_init_writes_pending(mddev) < 0) 3063 return -ENOMEM; 3064 /* 3065 * copy the already verified devices into our private RAID1 3066 * bookkeeping area. [whatever we allocate in run(), 3067 * should be freed in raid1_free()] 3068 */ 3069 if (mddev->private == NULL) 3070 conf = setup_conf(mddev); 3071 else 3072 conf = mddev->private; 3073 3074 if (IS_ERR(conf)) 3075 return PTR_ERR(conf); 3076 3077 if (mddev->queue) { 3078 blk_queue_max_write_same_sectors(mddev->queue, 0); 3079 blk_queue_max_write_zeroes_sectors(mddev->queue, 0); 3080 } 3081 3082 rdev_for_each(rdev, mddev) { 3083 if (!mddev->gendisk) 3084 continue; 3085 disk_stack_limits(mddev->gendisk, rdev->bdev, 3086 rdev->data_offset << 9); 3087 if (blk_queue_discard(bdev_get_queue(rdev->bdev))) 3088 discard_supported = true; 3089 } 3090 3091 mddev->degraded = 0; 3092 for (i=0; i < conf->raid_disks; i++) 3093 if (conf->mirrors[i].rdev == NULL || 3094 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) || 3095 test_bit(Faulty, &conf->mirrors[i].rdev->flags)) 3096 mddev->degraded++; 3097 3098 if (conf->raid_disks - mddev->degraded == 1) 3099 mddev->recovery_cp = MaxSector; 3100 3101 if (mddev->recovery_cp != MaxSector) 3102 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n", 3103 mdname(mddev)); 3104 pr_info("md/raid1:%s: active with %d out of %d mirrors\n", 3105 mdname(mddev), mddev->raid_disks - mddev->degraded, 3106 mddev->raid_disks); 3107 3108 /* 3109 * Ok, everything is just fine now 3110 */ 3111 mddev->thread = conf->thread; 3112 conf->thread = NULL; 3113 mddev->private = conf; 3114 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags); 3115 3116 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0)); 3117 3118 if (mddev->queue) { 3119 if (discard_supported) 3120 blk_queue_flag_set(QUEUE_FLAG_DISCARD, 3121 mddev->queue); 3122 else 3123 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, 3124 mddev->queue); 3125 } 3126 3127 ret = md_integrity_register(mddev); 3128 if (ret) { 3129 md_unregister_thread(&mddev->thread); 3130 raid1_free(mddev, conf); 3131 } 3132 return ret; 3133 } 3134 3135 static void raid1_free(struct mddev *mddev, void *priv) 3136 { 3137 struct r1conf *conf = priv; 3138 3139 mempool_exit(&conf->r1bio_pool); 3140 kfree(conf->mirrors); 3141 safe_put_page(conf->tmppage); 3142 kfree(conf->poolinfo); 3143 kfree(conf->nr_pending); 3144 kfree(conf->nr_waiting); 3145 kfree(conf->nr_queued); 3146 kfree(conf->barrier); 3147 bioset_exit(&conf->bio_split); 3148 kfree(conf); 3149 } 3150 3151 static int raid1_resize(struct mddev *mddev, sector_t sectors) 3152 { 3153 /* no resync is happening, and there is enough space 3154 * on all devices, so we can resize. 3155 * We need to make sure resync covers any new space. 3156 * If the array is shrinking we should possibly wait until 3157 * any io in the removed space completes, but it hardly seems 3158 * worth it. 3159 */ 3160 sector_t newsize = raid1_size(mddev, sectors, 0); 3161 if (mddev->external_size && 3162 mddev->array_sectors > newsize) 3163 return -EINVAL; 3164 if (mddev->bitmap) { 3165 int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0); 3166 if (ret) 3167 return ret; 3168 } 3169 md_set_array_sectors(mddev, newsize); 3170 if (sectors > mddev->dev_sectors && 3171 mddev->recovery_cp > mddev->dev_sectors) { 3172 mddev->recovery_cp = mddev->dev_sectors; 3173 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3174 } 3175 mddev->dev_sectors = sectors; 3176 mddev->resync_max_sectors = sectors; 3177 return 0; 3178 } 3179 3180 static int raid1_reshape(struct mddev *mddev) 3181 { 3182 /* We need to: 3183 * 1/ resize the r1bio_pool 3184 * 2/ resize conf->mirrors 3185 * 3186 * We allocate a new r1bio_pool if we can. 3187 * Then raise a device barrier and wait until all IO stops. 3188 * Then resize conf->mirrors and swap in the new r1bio pool. 3189 * 3190 * At the same time, we "pack" the devices so that all the missing 3191 * devices have the higher raid_disk numbers. 3192 */ 3193 mempool_t newpool, oldpool; 3194 struct pool_info *newpoolinfo; 3195 struct raid1_info *newmirrors; 3196 struct r1conf *conf = mddev->private; 3197 int cnt, raid_disks; 3198 unsigned long flags; 3199 int d, d2; 3200 int ret; 3201 3202 memset(&newpool, 0, sizeof(newpool)); 3203 memset(&oldpool, 0, sizeof(oldpool)); 3204 3205 /* Cannot change chunk_size, layout, or level */ 3206 if (mddev->chunk_sectors != mddev->new_chunk_sectors || 3207 mddev->layout != mddev->new_layout || 3208 mddev->level != mddev->new_level) { 3209 mddev->new_chunk_sectors = mddev->chunk_sectors; 3210 mddev->new_layout = mddev->layout; 3211 mddev->new_level = mddev->level; 3212 return -EINVAL; 3213 } 3214 3215 if (!mddev_is_clustered(mddev)) 3216 md_allow_write(mddev); 3217 3218 raid_disks = mddev->raid_disks + mddev->delta_disks; 3219 3220 if (raid_disks < conf->raid_disks) { 3221 cnt=0; 3222 for (d= 0; d < conf->raid_disks; d++) 3223 if (conf->mirrors[d].rdev) 3224 cnt++; 3225 if (cnt > raid_disks) 3226 return -EBUSY; 3227 } 3228 3229 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL); 3230 if (!newpoolinfo) 3231 return -ENOMEM; 3232 newpoolinfo->mddev = mddev; 3233 newpoolinfo->raid_disks = raid_disks * 2; 3234 3235 ret = mempool_init(&newpool, NR_RAID1_BIOS, r1bio_pool_alloc, 3236 r1bio_pool_free, newpoolinfo); 3237 if (ret) { 3238 kfree(newpoolinfo); 3239 return ret; 3240 } 3241 newmirrors = kzalloc(array3_size(sizeof(struct raid1_info), 3242 raid_disks, 2), 3243 GFP_KERNEL); 3244 if (!newmirrors) { 3245 kfree(newpoolinfo); 3246 mempool_exit(&newpool); 3247 return -ENOMEM; 3248 } 3249 3250 freeze_array(conf, 0); 3251 3252 /* ok, everything is stopped */ 3253 oldpool = conf->r1bio_pool; 3254 conf->r1bio_pool = newpool; 3255 3256 for (d = d2 = 0; d < conf->raid_disks; d++) { 3257 struct md_rdev *rdev = conf->mirrors[d].rdev; 3258 if (rdev && rdev->raid_disk != d2) { 3259 sysfs_unlink_rdev(mddev, rdev); 3260 rdev->raid_disk = d2; 3261 sysfs_unlink_rdev(mddev, rdev); 3262 if (sysfs_link_rdev(mddev, rdev)) 3263 pr_warn("md/raid1:%s: cannot register rd%d\n", 3264 mdname(mddev), rdev->raid_disk); 3265 } 3266 if (rdev) 3267 newmirrors[d2++].rdev = rdev; 3268 } 3269 kfree(conf->mirrors); 3270 conf->mirrors = newmirrors; 3271 kfree(conf->poolinfo); 3272 conf->poolinfo = newpoolinfo; 3273 3274 spin_lock_irqsave(&conf->device_lock, flags); 3275 mddev->degraded += (raid_disks - conf->raid_disks); 3276 spin_unlock_irqrestore(&conf->device_lock, flags); 3277 conf->raid_disks = mddev->raid_disks = raid_disks; 3278 mddev->delta_disks = 0; 3279 3280 unfreeze_array(conf); 3281 3282 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 3283 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3284 md_wakeup_thread(mddev->thread); 3285 3286 mempool_exit(&oldpool); 3287 return 0; 3288 } 3289 3290 static void raid1_quiesce(struct mddev *mddev, int quiesce) 3291 { 3292 struct r1conf *conf = mddev->private; 3293 3294 if (quiesce) 3295 freeze_array(conf, 0); 3296 else 3297 unfreeze_array(conf); 3298 } 3299 3300 static void *raid1_takeover(struct mddev *mddev) 3301 { 3302 /* raid1 can take over: 3303 * raid5 with 2 devices, any layout or chunk size 3304 */ 3305 if (mddev->level == 5 && mddev->raid_disks == 2) { 3306 struct r1conf *conf; 3307 mddev->new_level = 1; 3308 mddev->new_layout = 0; 3309 mddev->new_chunk_sectors = 0; 3310 conf = setup_conf(mddev); 3311 if (!IS_ERR(conf)) { 3312 /* Array must appear to be quiesced */ 3313 conf->array_frozen = 1; 3314 mddev_clear_unsupported_flags(mddev, 3315 UNSUPPORTED_MDDEV_FLAGS); 3316 } 3317 return conf; 3318 } 3319 return ERR_PTR(-EINVAL); 3320 } 3321 3322 static struct md_personality raid1_personality = 3323 { 3324 .name = "raid1", 3325 .level = 1, 3326 .owner = THIS_MODULE, 3327 .make_request = raid1_make_request, 3328 .run = raid1_run, 3329 .free = raid1_free, 3330 .status = raid1_status, 3331 .error_handler = raid1_error, 3332 .hot_add_disk = raid1_add_disk, 3333 .hot_remove_disk= raid1_remove_disk, 3334 .spare_active = raid1_spare_active, 3335 .sync_request = raid1_sync_request, 3336 .resize = raid1_resize, 3337 .size = raid1_size, 3338 .check_reshape = raid1_reshape, 3339 .quiesce = raid1_quiesce, 3340 .takeover = raid1_takeover, 3341 .congested = raid1_congested, 3342 }; 3343 3344 static int __init raid_init(void) 3345 { 3346 return register_md_personality(&raid1_personality); 3347 } 3348 3349 static void raid_exit(void) 3350 { 3351 unregister_md_personality(&raid1_personality); 3352 } 3353 3354 module_init(raid_init); 3355 module_exit(raid_exit); 3356 MODULE_LICENSE("GPL"); 3357 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD"); 3358 MODULE_ALIAS("md-personality-3"); /* RAID1 */ 3359 MODULE_ALIAS("md-raid1"); 3360 MODULE_ALIAS("md-level-1"); 3361 3362 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); 3363