xref: /openbmc/linux/drivers/md/raid1.c (revision 41a336e0)
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33 
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include "md.h"
41 #include "raid1.h"
42 #include "bitmap.h"
43 
44 /*
45  * Number of guaranteed r1bios in case of extreme VM load:
46  */
47 #define	NR_RAID1_BIOS 256
48 
49 /* when we get a read error on a read-only array, we redirect to another
50  * device without failing the first device, or trying to over-write to
51  * correct the read error.  To keep track of bad blocks on a per-bio
52  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
53  */
54 #define IO_BLOCKED ((struct bio *)1)
55 /* When we successfully write to a known bad-block, we need to remove the
56  * bad-block marking which must be done from process context.  So we record
57  * the success by setting devs[n].bio to IO_MADE_GOOD
58  */
59 #define IO_MADE_GOOD ((struct bio *)2)
60 
61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
62 
63 /* When there are this many requests queue to be written by
64  * the raid1 thread, we become 'congested' to provide back-pressure
65  * for writeback.
66  */
67 static int max_queued_requests = 1024;
68 
69 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
70 			  sector_t bi_sector);
71 static void lower_barrier(struct r1conf *conf);
72 
73 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
74 {
75 	struct pool_info *pi = data;
76 	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
77 
78 	/* allocate a r1bio with room for raid_disks entries in the bios array */
79 	return kzalloc(size, gfp_flags);
80 }
81 
82 static void r1bio_pool_free(void *r1_bio, void *data)
83 {
84 	kfree(r1_bio);
85 }
86 
87 #define RESYNC_BLOCK_SIZE (64*1024)
88 #define RESYNC_DEPTH 32
89 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
90 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
91 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
92 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
93 #define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
94 
95 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
96 {
97 	struct pool_info *pi = data;
98 	struct r1bio *r1_bio;
99 	struct bio *bio;
100 	int i, j;
101 
102 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
103 	if (!r1_bio)
104 		return NULL;
105 
106 	/*
107 	 * Allocate bios : 1 for reading, n-1 for writing
108 	 */
109 	for (j = pi->raid_disks ; j-- ; ) {
110 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
111 		if (!bio)
112 			goto out_free_bio;
113 		r1_bio->bios[j] = bio;
114 	}
115 	/*
116 	 * Allocate RESYNC_PAGES data pages and attach them to
117 	 * the first bio.
118 	 * If this is a user-requested check/repair, allocate
119 	 * RESYNC_PAGES for each bio.
120 	 */
121 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
122 		j = pi->raid_disks;
123 	else
124 		j = 1;
125 	while(j--) {
126 		bio = r1_bio->bios[j];
127 		bio->bi_vcnt = RESYNC_PAGES;
128 
129 		if (bio_alloc_pages(bio, gfp_flags))
130 			goto out_free_bio;
131 	}
132 	/* If not user-requests, copy the page pointers to all bios */
133 	if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
134 		for (i=0; i<RESYNC_PAGES ; i++)
135 			for (j=1; j<pi->raid_disks; j++)
136 				r1_bio->bios[j]->bi_io_vec[i].bv_page =
137 					r1_bio->bios[0]->bi_io_vec[i].bv_page;
138 	}
139 
140 	r1_bio->master_bio = NULL;
141 
142 	return r1_bio;
143 
144 out_free_bio:
145 	while (++j < pi->raid_disks)
146 		bio_put(r1_bio->bios[j]);
147 	r1bio_pool_free(r1_bio, data);
148 	return NULL;
149 }
150 
151 static void r1buf_pool_free(void *__r1_bio, void *data)
152 {
153 	struct pool_info *pi = data;
154 	int i,j;
155 	struct r1bio *r1bio = __r1_bio;
156 
157 	for (i = 0; i < RESYNC_PAGES; i++)
158 		for (j = pi->raid_disks; j-- ;) {
159 			if (j == 0 ||
160 			    r1bio->bios[j]->bi_io_vec[i].bv_page !=
161 			    r1bio->bios[0]->bi_io_vec[i].bv_page)
162 				safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
163 		}
164 	for (i=0 ; i < pi->raid_disks; i++)
165 		bio_put(r1bio->bios[i]);
166 
167 	r1bio_pool_free(r1bio, data);
168 }
169 
170 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
171 {
172 	int i;
173 
174 	for (i = 0; i < conf->raid_disks * 2; i++) {
175 		struct bio **bio = r1_bio->bios + i;
176 		if (!BIO_SPECIAL(*bio))
177 			bio_put(*bio);
178 		*bio = NULL;
179 	}
180 }
181 
182 static void free_r1bio(struct r1bio *r1_bio)
183 {
184 	struct r1conf *conf = r1_bio->mddev->private;
185 
186 	put_all_bios(conf, r1_bio);
187 	mempool_free(r1_bio, conf->r1bio_pool);
188 }
189 
190 static void put_buf(struct r1bio *r1_bio)
191 {
192 	struct r1conf *conf = r1_bio->mddev->private;
193 	int i;
194 
195 	for (i = 0; i < conf->raid_disks * 2; i++) {
196 		struct bio *bio = r1_bio->bios[i];
197 		if (bio->bi_end_io)
198 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
199 	}
200 
201 	mempool_free(r1_bio, conf->r1buf_pool);
202 
203 	lower_barrier(conf);
204 }
205 
206 static void reschedule_retry(struct r1bio *r1_bio)
207 {
208 	unsigned long flags;
209 	struct mddev *mddev = r1_bio->mddev;
210 	struct r1conf *conf = mddev->private;
211 
212 	spin_lock_irqsave(&conf->device_lock, flags);
213 	list_add(&r1_bio->retry_list, &conf->retry_list);
214 	conf->nr_queued ++;
215 	spin_unlock_irqrestore(&conf->device_lock, flags);
216 
217 	wake_up(&conf->wait_barrier);
218 	md_wakeup_thread(mddev->thread);
219 }
220 
221 /*
222  * raid_end_bio_io() is called when we have finished servicing a mirrored
223  * operation and are ready to return a success/failure code to the buffer
224  * cache layer.
225  */
226 static void call_bio_endio(struct r1bio *r1_bio)
227 {
228 	struct bio *bio = r1_bio->master_bio;
229 	int done;
230 	struct r1conf *conf = r1_bio->mddev->private;
231 	sector_t start_next_window = r1_bio->start_next_window;
232 	sector_t bi_sector = bio->bi_sector;
233 
234 	if (bio->bi_phys_segments) {
235 		unsigned long flags;
236 		spin_lock_irqsave(&conf->device_lock, flags);
237 		bio->bi_phys_segments--;
238 		done = (bio->bi_phys_segments == 0);
239 		spin_unlock_irqrestore(&conf->device_lock, flags);
240 		/*
241 		 * make_request() might be waiting for
242 		 * bi_phys_segments to decrease
243 		 */
244 		wake_up(&conf->wait_barrier);
245 	} else
246 		done = 1;
247 
248 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
249 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
250 	if (done) {
251 		bio_endio(bio, 0);
252 		/*
253 		 * Wake up any possible resync thread that waits for the device
254 		 * to go idle.
255 		 */
256 		allow_barrier(conf, start_next_window, bi_sector);
257 	}
258 }
259 
260 static void raid_end_bio_io(struct r1bio *r1_bio)
261 {
262 	struct bio *bio = r1_bio->master_bio;
263 
264 	/* if nobody has done the final endio yet, do it now */
265 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
266 		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
267 			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
268 			 (unsigned long long) bio->bi_sector,
269 			 (unsigned long long) bio->bi_sector +
270 			 bio_sectors(bio) - 1);
271 
272 		call_bio_endio(r1_bio);
273 	}
274 	free_r1bio(r1_bio);
275 }
276 
277 /*
278  * Update disk head position estimator based on IRQ completion info.
279  */
280 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
281 {
282 	struct r1conf *conf = r1_bio->mddev->private;
283 
284 	conf->mirrors[disk].head_position =
285 		r1_bio->sector + (r1_bio->sectors);
286 }
287 
288 /*
289  * Find the disk number which triggered given bio
290  */
291 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
292 {
293 	int mirror;
294 	struct r1conf *conf = r1_bio->mddev->private;
295 	int raid_disks = conf->raid_disks;
296 
297 	for (mirror = 0; mirror < raid_disks * 2; mirror++)
298 		if (r1_bio->bios[mirror] == bio)
299 			break;
300 
301 	BUG_ON(mirror == raid_disks * 2);
302 	update_head_pos(mirror, r1_bio);
303 
304 	return mirror;
305 }
306 
307 static void raid1_end_read_request(struct bio *bio, int error)
308 {
309 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
310 	struct r1bio *r1_bio = bio->bi_private;
311 	int mirror;
312 	struct r1conf *conf = r1_bio->mddev->private;
313 
314 	mirror = r1_bio->read_disk;
315 	/*
316 	 * this branch is our 'one mirror IO has finished' event handler:
317 	 */
318 	update_head_pos(mirror, r1_bio);
319 
320 	if (uptodate)
321 		set_bit(R1BIO_Uptodate, &r1_bio->state);
322 	else {
323 		/* If all other devices have failed, we want to return
324 		 * the error upwards rather than fail the last device.
325 		 * Here we redefine "uptodate" to mean "Don't want to retry"
326 		 */
327 		unsigned long flags;
328 		spin_lock_irqsave(&conf->device_lock, flags);
329 		if (r1_bio->mddev->degraded == conf->raid_disks ||
330 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
331 		     !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
332 			uptodate = 1;
333 		spin_unlock_irqrestore(&conf->device_lock, flags);
334 	}
335 
336 	if (uptodate) {
337 		raid_end_bio_io(r1_bio);
338 		rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
339 	} else {
340 		/*
341 		 * oops, read error:
342 		 */
343 		char b[BDEVNAME_SIZE];
344 		printk_ratelimited(
345 			KERN_ERR "md/raid1:%s: %s: "
346 			"rescheduling sector %llu\n",
347 			mdname(conf->mddev),
348 			bdevname(conf->mirrors[mirror].rdev->bdev,
349 				 b),
350 			(unsigned long long)r1_bio->sector);
351 		set_bit(R1BIO_ReadError, &r1_bio->state);
352 		reschedule_retry(r1_bio);
353 		/* don't drop the reference on read_disk yet */
354 	}
355 }
356 
357 static void close_write(struct r1bio *r1_bio)
358 {
359 	/* it really is the end of this request */
360 	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
361 		/* free extra copy of the data pages */
362 		int i = r1_bio->behind_page_count;
363 		while (i--)
364 			safe_put_page(r1_bio->behind_bvecs[i].bv_page);
365 		kfree(r1_bio->behind_bvecs);
366 		r1_bio->behind_bvecs = NULL;
367 	}
368 	/* clear the bitmap if all writes complete successfully */
369 	bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
370 			r1_bio->sectors,
371 			!test_bit(R1BIO_Degraded, &r1_bio->state),
372 			test_bit(R1BIO_BehindIO, &r1_bio->state));
373 	md_write_end(r1_bio->mddev);
374 }
375 
376 static void r1_bio_write_done(struct r1bio *r1_bio)
377 {
378 	if (!atomic_dec_and_test(&r1_bio->remaining))
379 		return;
380 
381 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
382 		reschedule_retry(r1_bio);
383 	else {
384 		close_write(r1_bio);
385 		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
386 			reschedule_retry(r1_bio);
387 		else
388 			raid_end_bio_io(r1_bio);
389 	}
390 }
391 
392 static void raid1_end_write_request(struct bio *bio, int error)
393 {
394 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
395 	struct r1bio *r1_bio = bio->bi_private;
396 	int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
397 	struct r1conf *conf = r1_bio->mddev->private;
398 	struct bio *to_put = NULL;
399 
400 	mirror = find_bio_disk(r1_bio, bio);
401 
402 	/*
403 	 * 'one mirror IO has finished' event handler:
404 	 */
405 	if (!uptodate) {
406 		set_bit(WriteErrorSeen,
407 			&conf->mirrors[mirror].rdev->flags);
408 		if (!test_and_set_bit(WantReplacement,
409 				      &conf->mirrors[mirror].rdev->flags))
410 			set_bit(MD_RECOVERY_NEEDED, &
411 				conf->mddev->recovery);
412 
413 		set_bit(R1BIO_WriteError, &r1_bio->state);
414 	} else {
415 		/*
416 		 * Set R1BIO_Uptodate in our master bio, so that we
417 		 * will return a good error code for to the higher
418 		 * levels even if IO on some other mirrored buffer
419 		 * fails.
420 		 *
421 		 * The 'master' represents the composite IO operation
422 		 * to user-side. So if something waits for IO, then it
423 		 * will wait for the 'master' bio.
424 		 */
425 		sector_t first_bad;
426 		int bad_sectors;
427 
428 		r1_bio->bios[mirror] = NULL;
429 		to_put = bio;
430 		/*
431 		 * Do not set R1BIO_Uptodate if the current device is
432 		 * rebuilding or Faulty. This is because we cannot use
433 		 * such device for properly reading the data back (we could
434 		 * potentially use it, if the current write would have felt
435 		 * before rdev->recovery_offset, but for simplicity we don't
436 		 * check this here.
437 		 */
438 		if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) &&
439 		    !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))
440 			set_bit(R1BIO_Uptodate, &r1_bio->state);
441 
442 		/* Maybe we can clear some bad blocks. */
443 		if (is_badblock(conf->mirrors[mirror].rdev,
444 				r1_bio->sector, r1_bio->sectors,
445 				&first_bad, &bad_sectors)) {
446 			r1_bio->bios[mirror] = IO_MADE_GOOD;
447 			set_bit(R1BIO_MadeGood, &r1_bio->state);
448 		}
449 	}
450 
451 	if (behind) {
452 		if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
453 			atomic_dec(&r1_bio->behind_remaining);
454 
455 		/*
456 		 * In behind mode, we ACK the master bio once the I/O
457 		 * has safely reached all non-writemostly
458 		 * disks. Setting the Returned bit ensures that this
459 		 * gets done only once -- we don't ever want to return
460 		 * -EIO here, instead we'll wait
461 		 */
462 		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
463 		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
464 			/* Maybe we can return now */
465 			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
466 				struct bio *mbio = r1_bio->master_bio;
467 				pr_debug("raid1: behind end write sectors"
468 					 " %llu-%llu\n",
469 					 (unsigned long long) mbio->bi_sector,
470 					 (unsigned long long) mbio->bi_sector +
471 					 bio_sectors(mbio) - 1);
472 				call_bio_endio(r1_bio);
473 			}
474 		}
475 	}
476 	if (r1_bio->bios[mirror] == NULL)
477 		rdev_dec_pending(conf->mirrors[mirror].rdev,
478 				 conf->mddev);
479 
480 	/*
481 	 * Let's see if all mirrored write operations have finished
482 	 * already.
483 	 */
484 	r1_bio_write_done(r1_bio);
485 
486 	if (to_put)
487 		bio_put(to_put);
488 }
489 
490 
491 /*
492  * This routine returns the disk from which the requested read should
493  * be done. There is a per-array 'next expected sequential IO' sector
494  * number - if this matches on the next IO then we use the last disk.
495  * There is also a per-disk 'last know head position' sector that is
496  * maintained from IRQ contexts, both the normal and the resync IO
497  * completion handlers update this position correctly. If there is no
498  * perfect sequential match then we pick the disk whose head is closest.
499  *
500  * If there are 2 mirrors in the same 2 devices, performance degrades
501  * because position is mirror, not device based.
502  *
503  * The rdev for the device selected will have nr_pending incremented.
504  */
505 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
506 {
507 	const sector_t this_sector = r1_bio->sector;
508 	int sectors;
509 	int best_good_sectors;
510 	int best_disk, best_dist_disk, best_pending_disk;
511 	int has_nonrot_disk;
512 	int disk;
513 	sector_t best_dist;
514 	unsigned int min_pending;
515 	struct md_rdev *rdev;
516 	int choose_first;
517 	int choose_next_idle;
518 
519 	rcu_read_lock();
520 	/*
521 	 * Check if we can balance. We can balance on the whole
522 	 * device if no resync is going on, or below the resync window.
523 	 * We take the first readable disk when above the resync window.
524 	 */
525  retry:
526 	sectors = r1_bio->sectors;
527 	best_disk = -1;
528 	best_dist_disk = -1;
529 	best_dist = MaxSector;
530 	best_pending_disk = -1;
531 	min_pending = UINT_MAX;
532 	best_good_sectors = 0;
533 	has_nonrot_disk = 0;
534 	choose_next_idle = 0;
535 
536 	if (conf->mddev->recovery_cp < MaxSector &&
537 	    (this_sector + sectors >= conf->next_resync))
538 		choose_first = 1;
539 	else
540 		choose_first = 0;
541 
542 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
543 		sector_t dist;
544 		sector_t first_bad;
545 		int bad_sectors;
546 		unsigned int pending;
547 		bool nonrot;
548 
549 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
550 		if (r1_bio->bios[disk] == IO_BLOCKED
551 		    || rdev == NULL
552 		    || test_bit(Unmerged, &rdev->flags)
553 		    || test_bit(Faulty, &rdev->flags))
554 			continue;
555 		if (!test_bit(In_sync, &rdev->flags) &&
556 		    rdev->recovery_offset < this_sector + sectors)
557 			continue;
558 		if (test_bit(WriteMostly, &rdev->flags)) {
559 			/* Don't balance among write-mostly, just
560 			 * use the first as a last resort */
561 			if (best_disk < 0) {
562 				if (is_badblock(rdev, this_sector, sectors,
563 						&first_bad, &bad_sectors)) {
564 					if (first_bad < this_sector)
565 						/* Cannot use this */
566 						continue;
567 					best_good_sectors = first_bad - this_sector;
568 				} else
569 					best_good_sectors = sectors;
570 				best_disk = disk;
571 			}
572 			continue;
573 		}
574 		/* This is a reasonable device to use.  It might
575 		 * even be best.
576 		 */
577 		if (is_badblock(rdev, this_sector, sectors,
578 				&first_bad, &bad_sectors)) {
579 			if (best_dist < MaxSector)
580 				/* already have a better device */
581 				continue;
582 			if (first_bad <= this_sector) {
583 				/* cannot read here. If this is the 'primary'
584 				 * device, then we must not read beyond
585 				 * bad_sectors from another device..
586 				 */
587 				bad_sectors -= (this_sector - first_bad);
588 				if (choose_first && sectors > bad_sectors)
589 					sectors = bad_sectors;
590 				if (best_good_sectors > sectors)
591 					best_good_sectors = sectors;
592 
593 			} else {
594 				sector_t good_sectors = first_bad - this_sector;
595 				if (good_sectors > best_good_sectors) {
596 					best_good_sectors = good_sectors;
597 					best_disk = disk;
598 				}
599 				if (choose_first)
600 					break;
601 			}
602 			continue;
603 		} else
604 			best_good_sectors = sectors;
605 
606 		nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
607 		has_nonrot_disk |= nonrot;
608 		pending = atomic_read(&rdev->nr_pending);
609 		dist = abs(this_sector - conf->mirrors[disk].head_position);
610 		if (choose_first) {
611 			best_disk = disk;
612 			break;
613 		}
614 		/* Don't change to another disk for sequential reads */
615 		if (conf->mirrors[disk].next_seq_sect == this_sector
616 		    || dist == 0) {
617 			int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
618 			struct raid1_info *mirror = &conf->mirrors[disk];
619 
620 			best_disk = disk;
621 			/*
622 			 * If buffered sequential IO size exceeds optimal
623 			 * iosize, check if there is idle disk. If yes, choose
624 			 * the idle disk. read_balance could already choose an
625 			 * idle disk before noticing it's a sequential IO in
626 			 * this disk. This doesn't matter because this disk
627 			 * will idle, next time it will be utilized after the
628 			 * first disk has IO size exceeds optimal iosize. In
629 			 * this way, iosize of the first disk will be optimal
630 			 * iosize at least. iosize of the second disk might be
631 			 * small, but not a big deal since when the second disk
632 			 * starts IO, the first disk is likely still busy.
633 			 */
634 			if (nonrot && opt_iosize > 0 &&
635 			    mirror->seq_start != MaxSector &&
636 			    mirror->next_seq_sect > opt_iosize &&
637 			    mirror->next_seq_sect - opt_iosize >=
638 			    mirror->seq_start) {
639 				choose_next_idle = 1;
640 				continue;
641 			}
642 			break;
643 		}
644 		/* If device is idle, use it */
645 		if (pending == 0) {
646 			best_disk = disk;
647 			break;
648 		}
649 
650 		if (choose_next_idle)
651 			continue;
652 
653 		if (min_pending > pending) {
654 			min_pending = pending;
655 			best_pending_disk = disk;
656 		}
657 
658 		if (dist < best_dist) {
659 			best_dist = dist;
660 			best_dist_disk = disk;
661 		}
662 	}
663 
664 	/*
665 	 * If all disks are rotational, choose the closest disk. If any disk is
666 	 * non-rotational, choose the disk with less pending request even the
667 	 * disk is rotational, which might/might not be optimal for raids with
668 	 * mixed ratation/non-rotational disks depending on workload.
669 	 */
670 	if (best_disk == -1) {
671 		if (has_nonrot_disk)
672 			best_disk = best_pending_disk;
673 		else
674 			best_disk = best_dist_disk;
675 	}
676 
677 	if (best_disk >= 0) {
678 		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
679 		if (!rdev)
680 			goto retry;
681 		atomic_inc(&rdev->nr_pending);
682 		if (test_bit(Faulty, &rdev->flags)) {
683 			/* cannot risk returning a device that failed
684 			 * before we inc'ed nr_pending
685 			 */
686 			rdev_dec_pending(rdev, conf->mddev);
687 			goto retry;
688 		}
689 		sectors = best_good_sectors;
690 
691 		if (conf->mirrors[best_disk].next_seq_sect != this_sector)
692 			conf->mirrors[best_disk].seq_start = this_sector;
693 
694 		conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
695 	}
696 	rcu_read_unlock();
697 	*max_sectors = sectors;
698 
699 	return best_disk;
700 }
701 
702 static int raid1_mergeable_bvec(struct request_queue *q,
703 				struct bvec_merge_data *bvm,
704 				struct bio_vec *biovec)
705 {
706 	struct mddev *mddev = q->queuedata;
707 	struct r1conf *conf = mddev->private;
708 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
709 	int max = biovec->bv_len;
710 
711 	if (mddev->merge_check_needed) {
712 		int disk;
713 		rcu_read_lock();
714 		for (disk = 0; disk < conf->raid_disks * 2; disk++) {
715 			struct md_rdev *rdev = rcu_dereference(
716 				conf->mirrors[disk].rdev);
717 			if (rdev && !test_bit(Faulty, &rdev->flags)) {
718 				struct request_queue *q =
719 					bdev_get_queue(rdev->bdev);
720 				if (q->merge_bvec_fn) {
721 					bvm->bi_sector = sector +
722 						rdev->data_offset;
723 					bvm->bi_bdev = rdev->bdev;
724 					max = min(max, q->merge_bvec_fn(
725 							  q, bvm, biovec));
726 				}
727 			}
728 		}
729 		rcu_read_unlock();
730 	}
731 	return max;
732 
733 }
734 
735 int md_raid1_congested(struct mddev *mddev, int bits)
736 {
737 	struct r1conf *conf = mddev->private;
738 	int i, ret = 0;
739 
740 	if ((bits & (1 << BDI_async_congested)) &&
741 	    conf->pending_count >= max_queued_requests)
742 		return 1;
743 
744 	rcu_read_lock();
745 	for (i = 0; i < conf->raid_disks * 2; i++) {
746 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
747 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
748 			struct request_queue *q = bdev_get_queue(rdev->bdev);
749 
750 			BUG_ON(!q);
751 
752 			/* Note the '|| 1' - when read_balance prefers
753 			 * non-congested targets, it can be removed
754 			 */
755 			if ((bits & (1<<BDI_async_congested)) || 1)
756 				ret |= bdi_congested(&q->backing_dev_info, bits);
757 			else
758 				ret &= bdi_congested(&q->backing_dev_info, bits);
759 		}
760 	}
761 	rcu_read_unlock();
762 	return ret;
763 }
764 EXPORT_SYMBOL_GPL(md_raid1_congested);
765 
766 static int raid1_congested(void *data, int bits)
767 {
768 	struct mddev *mddev = data;
769 
770 	return mddev_congested(mddev, bits) ||
771 		md_raid1_congested(mddev, bits);
772 }
773 
774 static void flush_pending_writes(struct r1conf *conf)
775 {
776 	/* Any writes that have been queued but are awaiting
777 	 * bitmap updates get flushed here.
778 	 */
779 	spin_lock_irq(&conf->device_lock);
780 
781 	if (conf->pending_bio_list.head) {
782 		struct bio *bio;
783 		bio = bio_list_get(&conf->pending_bio_list);
784 		conf->pending_count = 0;
785 		spin_unlock_irq(&conf->device_lock);
786 		/* flush any pending bitmap writes to
787 		 * disk before proceeding w/ I/O */
788 		bitmap_unplug(conf->mddev->bitmap);
789 		wake_up(&conf->wait_barrier);
790 
791 		while (bio) { /* submit pending writes */
792 			struct bio *next = bio->bi_next;
793 			bio->bi_next = NULL;
794 			if (unlikely((bio->bi_rw & REQ_DISCARD) &&
795 			    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
796 				/* Just ignore it */
797 				bio_endio(bio, 0);
798 			else
799 				generic_make_request(bio);
800 			bio = next;
801 		}
802 	} else
803 		spin_unlock_irq(&conf->device_lock);
804 }
805 
806 /* Barriers....
807  * Sometimes we need to suspend IO while we do something else,
808  * either some resync/recovery, or reconfigure the array.
809  * To do this we raise a 'barrier'.
810  * The 'barrier' is a counter that can be raised multiple times
811  * to count how many activities are happening which preclude
812  * normal IO.
813  * We can only raise the barrier if there is no pending IO.
814  * i.e. if nr_pending == 0.
815  * We choose only to raise the barrier if no-one is waiting for the
816  * barrier to go down.  This means that as soon as an IO request
817  * is ready, no other operations which require a barrier will start
818  * until the IO request has had a chance.
819  *
820  * So: regular IO calls 'wait_barrier'.  When that returns there
821  *    is no backgroup IO happening,  It must arrange to call
822  *    allow_barrier when it has finished its IO.
823  * backgroup IO calls must call raise_barrier.  Once that returns
824  *    there is no normal IO happeing.  It must arrange to call
825  *    lower_barrier when the particular background IO completes.
826  */
827 static void raise_barrier(struct r1conf *conf)
828 {
829 	spin_lock_irq(&conf->resync_lock);
830 
831 	/* Wait until no block IO is waiting */
832 	wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
833 			    conf->resync_lock);
834 
835 	/* block any new IO from starting */
836 	conf->barrier++;
837 
838 	/* For these conditions we must wait:
839 	 * A: while the array is in frozen state
840 	 * B: while barrier >= RESYNC_DEPTH, meaning resync reach
841 	 *    the max count which allowed.
842 	 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
843 	 *    next resync will reach to the window which normal bios are
844 	 *    handling.
845 	 */
846 	wait_event_lock_irq(conf->wait_barrier,
847 			    !conf->array_frozen &&
848 			    conf->barrier < RESYNC_DEPTH &&
849 			    (conf->start_next_window >=
850 			     conf->next_resync + RESYNC_SECTORS),
851 			    conf->resync_lock);
852 
853 	spin_unlock_irq(&conf->resync_lock);
854 }
855 
856 static void lower_barrier(struct r1conf *conf)
857 {
858 	unsigned long flags;
859 	BUG_ON(conf->barrier <= 0);
860 	spin_lock_irqsave(&conf->resync_lock, flags);
861 	conf->barrier--;
862 	spin_unlock_irqrestore(&conf->resync_lock, flags);
863 	wake_up(&conf->wait_barrier);
864 }
865 
866 static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
867 {
868 	bool wait = false;
869 
870 	if (conf->array_frozen || !bio)
871 		wait = true;
872 	else if (conf->barrier && bio_data_dir(bio) == WRITE) {
873 		if (conf->next_resync < RESYNC_WINDOW_SECTORS)
874 			wait = true;
875 		else if ((conf->next_resync - RESYNC_WINDOW_SECTORS
876 				>= bio_end_sector(bio)) ||
877 			 (conf->next_resync + NEXT_NORMALIO_DISTANCE
878 				<= bio->bi_sector))
879 			wait = false;
880 		else
881 			wait = true;
882 	}
883 
884 	return wait;
885 }
886 
887 static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
888 {
889 	sector_t sector = 0;
890 
891 	spin_lock_irq(&conf->resync_lock);
892 	if (need_to_wait_for_sync(conf, bio)) {
893 		conf->nr_waiting++;
894 		/* Wait for the barrier to drop.
895 		 * However if there are already pending
896 		 * requests (preventing the barrier from
897 		 * rising completely), and the
898 		 * pre-process bio queue isn't empty,
899 		 * then don't wait, as we need to empty
900 		 * that queue to get the nr_pending
901 		 * count down.
902 		 */
903 		wait_event_lock_irq(conf->wait_barrier,
904 				    !conf->array_frozen &&
905 				    (!conf->barrier ||
906 				    ((conf->start_next_window <
907 				      conf->next_resync + RESYNC_SECTORS) &&
908 				     current->bio_list &&
909 				     !bio_list_empty(current->bio_list))),
910 				    conf->resync_lock);
911 		conf->nr_waiting--;
912 	}
913 
914 	if (bio && bio_data_dir(bio) == WRITE) {
915 		if (conf->next_resync + NEXT_NORMALIO_DISTANCE
916 		    <= bio->bi_sector) {
917 			if (conf->start_next_window == MaxSector)
918 				conf->start_next_window =
919 					conf->next_resync +
920 					NEXT_NORMALIO_DISTANCE;
921 
922 			if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
923 			    <= bio->bi_sector)
924 				conf->next_window_requests++;
925 			else
926 				conf->current_window_requests++;
927 			sector = conf->start_next_window;
928 		}
929 	}
930 
931 	conf->nr_pending++;
932 	spin_unlock_irq(&conf->resync_lock);
933 	return sector;
934 }
935 
936 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
937 			  sector_t bi_sector)
938 {
939 	unsigned long flags;
940 
941 	spin_lock_irqsave(&conf->resync_lock, flags);
942 	conf->nr_pending--;
943 	if (start_next_window) {
944 		if (start_next_window == conf->start_next_window) {
945 			if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
946 			    <= bi_sector)
947 				conf->next_window_requests--;
948 			else
949 				conf->current_window_requests--;
950 		} else
951 			conf->current_window_requests--;
952 
953 		if (!conf->current_window_requests) {
954 			if (conf->next_window_requests) {
955 				conf->current_window_requests =
956 					conf->next_window_requests;
957 				conf->next_window_requests = 0;
958 				conf->start_next_window +=
959 					NEXT_NORMALIO_DISTANCE;
960 			} else
961 				conf->start_next_window = MaxSector;
962 		}
963 	}
964 	spin_unlock_irqrestore(&conf->resync_lock, flags);
965 	wake_up(&conf->wait_barrier);
966 }
967 
968 static void freeze_array(struct r1conf *conf, int extra)
969 {
970 	/* stop syncio and normal IO and wait for everything to
971 	 * go quite.
972 	 * We wait until nr_pending match nr_queued+extra
973 	 * This is called in the context of one normal IO request
974 	 * that has failed. Thus any sync request that might be pending
975 	 * will be blocked by nr_pending, and we need to wait for
976 	 * pending IO requests to complete or be queued for re-try.
977 	 * Thus the number queued (nr_queued) plus this request (extra)
978 	 * must match the number of pending IOs (nr_pending) before
979 	 * we continue.
980 	 */
981 	spin_lock_irq(&conf->resync_lock);
982 	conf->array_frozen = 1;
983 	wait_event_lock_irq_cmd(conf->wait_barrier,
984 				conf->nr_pending == conf->nr_queued+extra,
985 				conf->resync_lock,
986 				flush_pending_writes(conf));
987 	spin_unlock_irq(&conf->resync_lock);
988 }
989 static void unfreeze_array(struct r1conf *conf)
990 {
991 	/* reverse the effect of the freeze */
992 	spin_lock_irq(&conf->resync_lock);
993 	conf->array_frozen = 0;
994 	wake_up(&conf->wait_barrier);
995 	spin_unlock_irq(&conf->resync_lock);
996 }
997 
998 
999 /* duplicate the data pages for behind I/O
1000  */
1001 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
1002 {
1003 	int i;
1004 	struct bio_vec *bvec;
1005 	struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
1006 					GFP_NOIO);
1007 	if (unlikely(!bvecs))
1008 		return;
1009 
1010 	bio_for_each_segment_all(bvec, bio, i) {
1011 		bvecs[i] = *bvec;
1012 		bvecs[i].bv_page = alloc_page(GFP_NOIO);
1013 		if (unlikely(!bvecs[i].bv_page))
1014 			goto do_sync_io;
1015 		memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
1016 		       kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
1017 		kunmap(bvecs[i].bv_page);
1018 		kunmap(bvec->bv_page);
1019 	}
1020 	r1_bio->behind_bvecs = bvecs;
1021 	r1_bio->behind_page_count = bio->bi_vcnt;
1022 	set_bit(R1BIO_BehindIO, &r1_bio->state);
1023 	return;
1024 
1025 do_sync_io:
1026 	for (i = 0; i < bio->bi_vcnt; i++)
1027 		if (bvecs[i].bv_page)
1028 			put_page(bvecs[i].bv_page);
1029 	kfree(bvecs);
1030 	pr_debug("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
1031 }
1032 
1033 struct raid1_plug_cb {
1034 	struct blk_plug_cb	cb;
1035 	struct bio_list		pending;
1036 	int			pending_cnt;
1037 };
1038 
1039 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1040 {
1041 	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1042 						  cb);
1043 	struct mddev *mddev = plug->cb.data;
1044 	struct r1conf *conf = mddev->private;
1045 	struct bio *bio;
1046 
1047 	if (from_schedule || current->bio_list) {
1048 		spin_lock_irq(&conf->device_lock);
1049 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1050 		conf->pending_count += plug->pending_cnt;
1051 		spin_unlock_irq(&conf->device_lock);
1052 		wake_up(&conf->wait_barrier);
1053 		md_wakeup_thread(mddev->thread);
1054 		kfree(plug);
1055 		return;
1056 	}
1057 
1058 	/* we aren't scheduling, so we can do the write-out directly. */
1059 	bio = bio_list_get(&plug->pending);
1060 	bitmap_unplug(mddev->bitmap);
1061 	wake_up(&conf->wait_barrier);
1062 
1063 	while (bio) { /* submit pending writes */
1064 		struct bio *next = bio->bi_next;
1065 		bio->bi_next = NULL;
1066 		if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1067 		    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1068 			/* Just ignore it */
1069 			bio_endio(bio, 0);
1070 		else
1071 			generic_make_request(bio);
1072 		bio = next;
1073 	}
1074 	kfree(plug);
1075 }
1076 
1077 static void make_request(struct mddev *mddev, struct bio * bio)
1078 {
1079 	struct r1conf *conf = mddev->private;
1080 	struct raid1_info *mirror;
1081 	struct r1bio *r1_bio;
1082 	struct bio *read_bio;
1083 	int i, disks;
1084 	struct bitmap *bitmap;
1085 	unsigned long flags;
1086 	const int rw = bio_data_dir(bio);
1087 	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1088 	const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
1089 	const unsigned long do_discard = (bio->bi_rw
1090 					  & (REQ_DISCARD | REQ_SECURE));
1091 	const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1092 	struct md_rdev *blocked_rdev;
1093 	struct blk_plug_cb *cb;
1094 	struct raid1_plug_cb *plug = NULL;
1095 	int first_clone;
1096 	int sectors_handled;
1097 	int max_sectors;
1098 	sector_t start_next_window;
1099 
1100 	/*
1101 	 * Register the new request and wait if the reconstruction
1102 	 * thread has put up a bar for new requests.
1103 	 * Continue immediately if no resync is active currently.
1104 	 */
1105 
1106 	md_write_start(mddev, bio); /* wait on superblock update early */
1107 
1108 	if (bio_data_dir(bio) == WRITE &&
1109 	    bio_end_sector(bio) > mddev->suspend_lo &&
1110 	    bio->bi_sector < mddev->suspend_hi) {
1111 		/* As the suspend_* range is controlled by
1112 		 * userspace, we want an interruptible
1113 		 * wait.
1114 		 */
1115 		DEFINE_WAIT(w);
1116 		for (;;) {
1117 			flush_signals(current);
1118 			prepare_to_wait(&conf->wait_barrier,
1119 					&w, TASK_INTERRUPTIBLE);
1120 			if (bio_end_sector(bio) <= mddev->suspend_lo ||
1121 			    bio->bi_sector >= mddev->suspend_hi)
1122 				break;
1123 			schedule();
1124 		}
1125 		finish_wait(&conf->wait_barrier, &w);
1126 	}
1127 
1128 	start_next_window = wait_barrier(conf, bio);
1129 
1130 	bitmap = mddev->bitmap;
1131 
1132 	/*
1133 	 * make_request() can abort the operation when READA is being
1134 	 * used and no empty request is available.
1135 	 *
1136 	 */
1137 	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1138 
1139 	r1_bio->master_bio = bio;
1140 	r1_bio->sectors = bio_sectors(bio);
1141 	r1_bio->state = 0;
1142 	r1_bio->mddev = mddev;
1143 	r1_bio->sector = bio->bi_sector;
1144 
1145 	/* We might need to issue multiple reads to different
1146 	 * devices if there are bad blocks around, so we keep
1147 	 * track of the number of reads in bio->bi_phys_segments.
1148 	 * If this is 0, there is only one r1_bio and no locking
1149 	 * will be needed when requests complete.  If it is
1150 	 * non-zero, then it is the number of not-completed requests.
1151 	 */
1152 	bio->bi_phys_segments = 0;
1153 	clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1154 
1155 	if (rw == READ) {
1156 		/*
1157 		 * read balancing logic:
1158 		 */
1159 		int rdisk;
1160 
1161 read_again:
1162 		rdisk = read_balance(conf, r1_bio, &max_sectors);
1163 
1164 		if (rdisk < 0) {
1165 			/* couldn't find anywhere to read from */
1166 			raid_end_bio_io(r1_bio);
1167 			return;
1168 		}
1169 		mirror = conf->mirrors + rdisk;
1170 
1171 		if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1172 		    bitmap) {
1173 			/* Reading from a write-mostly device must
1174 			 * take care not to over-take any writes
1175 			 * that are 'behind'
1176 			 */
1177 			wait_event(bitmap->behind_wait,
1178 				   atomic_read(&bitmap->behind_writes) == 0);
1179 		}
1180 		r1_bio->read_disk = rdisk;
1181 
1182 		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1183 		bio_trim(read_bio, r1_bio->sector - bio->bi_sector,
1184 			 max_sectors);
1185 
1186 		r1_bio->bios[rdisk] = read_bio;
1187 
1188 		read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
1189 		read_bio->bi_bdev = mirror->rdev->bdev;
1190 		read_bio->bi_end_io = raid1_end_read_request;
1191 		read_bio->bi_rw = READ | do_sync;
1192 		read_bio->bi_private = r1_bio;
1193 
1194 		if (max_sectors < r1_bio->sectors) {
1195 			/* could not read all from this device, so we will
1196 			 * need another r1_bio.
1197 			 */
1198 
1199 			sectors_handled = (r1_bio->sector + max_sectors
1200 					   - bio->bi_sector);
1201 			r1_bio->sectors = max_sectors;
1202 			spin_lock_irq(&conf->device_lock);
1203 			if (bio->bi_phys_segments == 0)
1204 				bio->bi_phys_segments = 2;
1205 			else
1206 				bio->bi_phys_segments++;
1207 			spin_unlock_irq(&conf->device_lock);
1208 			/* Cannot call generic_make_request directly
1209 			 * as that will be queued in __make_request
1210 			 * and subsequent mempool_alloc might block waiting
1211 			 * for it.  So hand bio over to raid1d.
1212 			 */
1213 			reschedule_retry(r1_bio);
1214 
1215 			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1216 
1217 			r1_bio->master_bio = bio;
1218 			r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1219 			r1_bio->state = 0;
1220 			r1_bio->mddev = mddev;
1221 			r1_bio->sector = bio->bi_sector + sectors_handled;
1222 			goto read_again;
1223 		} else
1224 			generic_make_request(read_bio);
1225 		return;
1226 	}
1227 
1228 	/*
1229 	 * WRITE:
1230 	 */
1231 	if (conf->pending_count >= max_queued_requests) {
1232 		md_wakeup_thread(mddev->thread);
1233 		wait_event(conf->wait_barrier,
1234 			   conf->pending_count < max_queued_requests);
1235 	}
1236 	/* first select target devices under rcu_lock and
1237 	 * inc refcount on their rdev.  Record them by setting
1238 	 * bios[x] to bio
1239 	 * If there are known/acknowledged bad blocks on any device on
1240 	 * which we have seen a write error, we want to avoid writing those
1241 	 * blocks.
1242 	 * This potentially requires several writes to write around
1243 	 * the bad blocks.  Each set of writes gets it's own r1bio
1244 	 * with a set of bios attached.
1245 	 */
1246 
1247 	disks = conf->raid_disks * 2;
1248  retry_write:
1249 	r1_bio->start_next_window = start_next_window;
1250 	blocked_rdev = NULL;
1251 	rcu_read_lock();
1252 	max_sectors = r1_bio->sectors;
1253 	for (i = 0;  i < disks; i++) {
1254 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1255 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1256 			atomic_inc(&rdev->nr_pending);
1257 			blocked_rdev = rdev;
1258 			break;
1259 		}
1260 		r1_bio->bios[i] = NULL;
1261 		if (!rdev || test_bit(Faulty, &rdev->flags)
1262 		    || test_bit(Unmerged, &rdev->flags)) {
1263 			if (i < conf->raid_disks)
1264 				set_bit(R1BIO_Degraded, &r1_bio->state);
1265 			continue;
1266 		}
1267 
1268 		atomic_inc(&rdev->nr_pending);
1269 		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1270 			sector_t first_bad;
1271 			int bad_sectors;
1272 			int is_bad;
1273 
1274 			is_bad = is_badblock(rdev, r1_bio->sector,
1275 					     max_sectors,
1276 					     &first_bad, &bad_sectors);
1277 			if (is_bad < 0) {
1278 				/* mustn't write here until the bad block is
1279 				 * acknowledged*/
1280 				set_bit(BlockedBadBlocks, &rdev->flags);
1281 				blocked_rdev = rdev;
1282 				break;
1283 			}
1284 			if (is_bad && first_bad <= r1_bio->sector) {
1285 				/* Cannot write here at all */
1286 				bad_sectors -= (r1_bio->sector - first_bad);
1287 				if (bad_sectors < max_sectors)
1288 					/* mustn't write more than bad_sectors
1289 					 * to other devices yet
1290 					 */
1291 					max_sectors = bad_sectors;
1292 				rdev_dec_pending(rdev, mddev);
1293 				/* We don't set R1BIO_Degraded as that
1294 				 * only applies if the disk is
1295 				 * missing, so it might be re-added,
1296 				 * and we want to know to recover this
1297 				 * chunk.
1298 				 * In this case the device is here,
1299 				 * and the fact that this chunk is not
1300 				 * in-sync is recorded in the bad
1301 				 * block log
1302 				 */
1303 				continue;
1304 			}
1305 			if (is_bad) {
1306 				int good_sectors = first_bad - r1_bio->sector;
1307 				if (good_sectors < max_sectors)
1308 					max_sectors = good_sectors;
1309 			}
1310 		}
1311 		r1_bio->bios[i] = bio;
1312 	}
1313 	rcu_read_unlock();
1314 
1315 	if (unlikely(blocked_rdev)) {
1316 		/* Wait for this device to become unblocked */
1317 		int j;
1318 		sector_t old = start_next_window;
1319 
1320 		for (j = 0; j < i; j++)
1321 			if (r1_bio->bios[j])
1322 				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1323 		r1_bio->state = 0;
1324 		allow_barrier(conf, start_next_window, bio->bi_sector);
1325 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1326 		start_next_window = wait_barrier(conf, bio);
1327 		/*
1328 		 * We must make sure the multi r1bios of bio have
1329 		 * the same value of bi_phys_segments
1330 		 */
1331 		if (bio->bi_phys_segments && old &&
1332 		    old != start_next_window)
1333 			/* Wait for the former r1bio(s) to complete */
1334 			wait_event(conf->wait_barrier,
1335 				   bio->bi_phys_segments == 1);
1336 		goto retry_write;
1337 	}
1338 
1339 	if (max_sectors < r1_bio->sectors) {
1340 		/* We are splitting this write into multiple parts, so
1341 		 * we need to prepare for allocating another r1_bio.
1342 		 */
1343 		r1_bio->sectors = max_sectors;
1344 		spin_lock_irq(&conf->device_lock);
1345 		if (bio->bi_phys_segments == 0)
1346 			bio->bi_phys_segments = 2;
1347 		else
1348 			bio->bi_phys_segments++;
1349 		spin_unlock_irq(&conf->device_lock);
1350 	}
1351 	sectors_handled = r1_bio->sector + max_sectors - bio->bi_sector;
1352 
1353 	atomic_set(&r1_bio->remaining, 1);
1354 	atomic_set(&r1_bio->behind_remaining, 0);
1355 
1356 	first_clone = 1;
1357 	for (i = 0; i < disks; i++) {
1358 		struct bio *mbio;
1359 		if (!r1_bio->bios[i])
1360 			continue;
1361 
1362 		mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1363 		bio_trim(mbio, r1_bio->sector - bio->bi_sector, max_sectors);
1364 
1365 		if (first_clone) {
1366 			/* do behind I/O ?
1367 			 * Not if there are too many, or cannot
1368 			 * allocate memory, or a reader on WriteMostly
1369 			 * is waiting for behind writes to flush */
1370 			if (bitmap &&
1371 			    (atomic_read(&bitmap->behind_writes)
1372 			     < mddev->bitmap_info.max_write_behind) &&
1373 			    !waitqueue_active(&bitmap->behind_wait))
1374 				alloc_behind_pages(mbio, r1_bio);
1375 
1376 			bitmap_startwrite(bitmap, r1_bio->sector,
1377 					  r1_bio->sectors,
1378 					  test_bit(R1BIO_BehindIO,
1379 						   &r1_bio->state));
1380 			first_clone = 0;
1381 		}
1382 		if (r1_bio->behind_bvecs) {
1383 			struct bio_vec *bvec;
1384 			int j;
1385 
1386 			/*
1387 			 * We trimmed the bio, so _all is legit
1388 			 */
1389 			bio_for_each_segment_all(bvec, mbio, j)
1390 				bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1391 			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1392 				atomic_inc(&r1_bio->behind_remaining);
1393 		}
1394 
1395 		r1_bio->bios[i] = mbio;
1396 
1397 		mbio->bi_sector	= (r1_bio->sector +
1398 				   conf->mirrors[i].rdev->data_offset);
1399 		mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1400 		mbio->bi_end_io	= raid1_end_write_request;
1401 		mbio->bi_rw =
1402 			WRITE | do_flush_fua | do_sync | do_discard | do_same;
1403 		mbio->bi_private = r1_bio;
1404 
1405 		atomic_inc(&r1_bio->remaining);
1406 
1407 		cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1408 		if (cb)
1409 			plug = container_of(cb, struct raid1_plug_cb, cb);
1410 		else
1411 			plug = NULL;
1412 		spin_lock_irqsave(&conf->device_lock, flags);
1413 		if (plug) {
1414 			bio_list_add(&plug->pending, mbio);
1415 			plug->pending_cnt++;
1416 		} else {
1417 			bio_list_add(&conf->pending_bio_list, mbio);
1418 			conf->pending_count++;
1419 		}
1420 		spin_unlock_irqrestore(&conf->device_lock, flags);
1421 		if (!plug)
1422 			md_wakeup_thread(mddev->thread);
1423 	}
1424 	/* Mustn't call r1_bio_write_done before this next test,
1425 	 * as it could result in the bio being freed.
1426 	 */
1427 	if (sectors_handled < bio_sectors(bio)) {
1428 		r1_bio_write_done(r1_bio);
1429 		/* We need another r1_bio.  It has already been counted
1430 		 * in bio->bi_phys_segments
1431 		 */
1432 		r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1433 		r1_bio->master_bio = bio;
1434 		r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1435 		r1_bio->state = 0;
1436 		r1_bio->mddev = mddev;
1437 		r1_bio->sector = bio->bi_sector + sectors_handled;
1438 		goto retry_write;
1439 	}
1440 
1441 	r1_bio_write_done(r1_bio);
1442 
1443 	/* In case raid1d snuck in to freeze_array */
1444 	wake_up(&conf->wait_barrier);
1445 }
1446 
1447 static void status(struct seq_file *seq, struct mddev *mddev)
1448 {
1449 	struct r1conf *conf = mddev->private;
1450 	int i;
1451 
1452 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1453 		   conf->raid_disks - mddev->degraded);
1454 	rcu_read_lock();
1455 	for (i = 0; i < conf->raid_disks; i++) {
1456 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1457 		seq_printf(seq, "%s",
1458 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1459 	}
1460 	rcu_read_unlock();
1461 	seq_printf(seq, "]");
1462 }
1463 
1464 
1465 static void error(struct mddev *mddev, struct md_rdev *rdev)
1466 {
1467 	char b[BDEVNAME_SIZE];
1468 	struct r1conf *conf = mddev->private;
1469 
1470 	/*
1471 	 * If it is not operational, then we have already marked it as dead
1472 	 * else if it is the last working disks, ignore the error, let the
1473 	 * next level up know.
1474 	 * else mark the drive as failed
1475 	 */
1476 	if (test_bit(In_sync, &rdev->flags)
1477 	    && (conf->raid_disks - mddev->degraded) == 1) {
1478 		/*
1479 		 * Don't fail the drive, act as though we were just a
1480 		 * normal single drive.
1481 		 * However don't try a recovery from this drive as
1482 		 * it is very likely to fail.
1483 		 */
1484 		conf->recovery_disabled = mddev->recovery_disabled;
1485 		return;
1486 	}
1487 	set_bit(Blocked, &rdev->flags);
1488 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1489 		unsigned long flags;
1490 		spin_lock_irqsave(&conf->device_lock, flags);
1491 		mddev->degraded++;
1492 		set_bit(Faulty, &rdev->flags);
1493 		spin_unlock_irqrestore(&conf->device_lock, flags);
1494 		/*
1495 		 * if recovery is running, make sure it aborts.
1496 		 */
1497 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1498 	} else
1499 		set_bit(Faulty, &rdev->flags);
1500 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1501 	printk(KERN_ALERT
1502 	       "md/raid1:%s: Disk failure on %s, disabling device.\n"
1503 	       "md/raid1:%s: Operation continuing on %d devices.\n",
1504 	       mdname(mddev), bdevname(rdev->bdev, b),
1505 	       mdname(mddev), conf->raid_disks - mddev->degraded);
1506 }
1507 
1508 static void print_conf(struct r1conf *conf)
1509 {
1510 	int i;
1511 
1512 	printk(KERN_DEBUG "RAID1 conf printout:\n");
1513 	if (!conf) {
1514 		printk(KERN_DEBUG "(!conf)\n");
1515 		return;
1516 	}
1517 	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1518 		conf->raid_disks);
1519 
1520 	rcu_read_lock();
1521 	for (i = 0; i < conf->raid_disks; i++) {
1522 		char b[BDEVNAME_SIZE];
1523 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1524 		if (rdev)
1525 			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1526 			       i, !test_bit(In_sync, &rdev->flags),
1527 			       !test_bit(Faulty, &rdev->flags),
1528 			       bdevname(rdev->bdev,b));
1529 	}
1530 	rcu_read_unlock();
1531 }
1532 
1533 static void close_sync(struct r1conf *conf)
1534 {
1535 	wait_barrier(conf, NULL);
1536 	allow_barrier(conf, 0, 0);
1537 
1538 	mempool_destroy(conf->r1buf_pool);
1539 	conf->r1buf_pool = NULL;
1540 
1541 	conf->next_resync = 0;
1542 	conf->start_next_window = MaxSector;
1543 }
1544 
1545 static int raid1_spare_active(struct mddev *mddev)
1546 {
1547 	int i;
1548 	struct r1conf *conf = mddev->private;
1549 	int count = 0;
1550 	unsigned long flags;
1551 
1552 	/*
1553 	 * Find all failed disks within the RAID1 configuration
1554 	 * and mark them readable.
1555 	 * Called under mddev lock, so rcu protection not needed.
1556 	 */
1557 	for (i = 0; i < conf->raid_disks; i++) {
1558 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1559 		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1560 		if (repl
1561 		    && repl->recovery_offset == MaxSector
1562 		    && !test_bit(Faulty, &repl->flags)
1563 		    && !test_and_set_bit(In_sync, &repl->flags)) {
1564 			/* replacement has just become active */
1565 			if (!rdev ||
1566 			    !test_and_clear_bit(In_sync, &rdev->flags))
1567 				count++;
1568 			if (rdev) {
1569 				/* Replaced device not technically
1570 				 * faulty, but we need to be sure
1571 				 * it gets removed and never re-added
1572 				 */
1573 				set_bit(Faulty, &rdev->flags);
1574 				sysfs_notify_dirent_safe(
1575 					rdev->sysfs_state);
1576 			}
1577 		}
1578 		if (rdev
1579 		    && rdev->recovery_offset == MaxSector
1580 		    && !test_bit(Faulty, &rdev->flags)
1581 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1582 			count++;
1583 			sysfs_notify_dirent_safe(rdev->sysfs_state);
1584 		}
1585 	}
1586 	spin_lock_irqsave(&conf->device_lock, flags);
1587 	mddev->degraded -= count;
1588 	spin_unlock_irqrestore(&conf->device_lock, flags);
1589 
1590 	print_conf(conf);
1591 	return count;
1592 }
1593 
1594 
1595 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1596 {
1597 	struct r1conf *conf = mddev->private;
1598 	int err = -EEXIST;
1599 	int mirror = 0;
1600 	struct raid1_info *p;
1601 	int first = 0;
1602 	int last = conf->raid_disks - 1;
1603 	struct request_queue *q = bdev_get_queue(rdev->bdev);
1604 
1605 	if (mddev->recovery_disabled == conf->recovery_disabled)
1606 		return -EBUSY;
1607 
1608 	if (rdev->raid_disk >= 0)
1609 		first = last = rdev->raid_disk;
1610 
1611 	if (q->merge_bvec_fn) {
1612 		set_bit(Unmerged, &rdev->flags);
1613 		mddev->merge_check_needed = 1;
1614 	}
1615 
1616 	for (mirror = first; mirror <= last; mirror++) {
1617 		p = conf->mirrors+mirror;
1618 		if (!p->rdev) {
1619 
1620 			if (mddev->gendisk)
1621 				disk_stack_limits(mddev->gendisk, rdev->bdev,
1622 						  rdev->data_offset << 9);
1623 
1624 			p->head_position = 0;
1625 			rdev->raid_disk = mirror;
1626 			err = 0;
1627 			/* As all devices are equivalent, we don't need a full recovery
1628 			 * if this was recently any drive of the array
1629 			 */
1630 			if (rdev->saved_raid_disk < 0)
1631 				conf->fullsync = 1;
1632 			rcu_assign_pointer(p->rdev, rdev);
1633 			break;
1634 		}
1635 		if (test_bit(WantReplacement, &p->rdev->flags) &&
1636 		    p[conf->raid_disks].rdev == NULL) {
1637 			/* Add this device as a replacement */
1638 			clear_bit(In_sync, &rdev->flags);
1639 			set_bit(Replacement, &rdev->flags);
1640 			rdev->raid_disk = mirror;
1641 			err = 0;
1642 			conf->fullsync = 1;
1643 			rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1644 			break;
1645 		}
1646 	}
1647 	if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1648 		/* Some requests might not have seen this new
1649 		 * merge_bvec_fn.  We must wait for them to complete
1650 		 * before merging the device fully.
1651 		 * First we make sure any code which has tested
1652 		 * our function has submitted the request, then
1653 		 * we wait for all outstanding requests to complete.
1654 		 */
1655 		synchronize_sched();
1656 		freeze_array(conf, 0);
1657 		unfreeze_array(conf);
1658 		clear_bit(Unmerged, &rdev->flags);
1659 	}
1660 	md_integrity_add_rdev(rdev, mddev);
1661 	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1662 		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1663 	print_conf(conf);
1664 	return err;
1665 }
1666 
1667 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1668 {
1669 	struct r1conf *conf = mddev->private;
1670 	int err = 0;
1671 	int number = rdev->raid_disk;
1672 	struct raid1_info *p = conf->mirrors + number;
1673 
1674 	if (rdev != p->rdev)
1675 		p = conf->mirrors + conf->raid_disks + number;
1676 
1677 	print_conf(conf);
1678 	if (rdev == p->rdev) {
1679 		if (test_bit(In_sync, &rdev->flags) ||
1680 		    atomic_read(&rdev->nr_pending)) {
1681 			err = -EBUSY;
1682 			goto abort;
1683 		}
1684 		/* Only remove non-faulty devices if recovery
1685 		 * is not possible.
1686 		 */
1687 		if (!test_bit(Faulty, &rdev->flags) &&
1688 		    mddev->recovery_disabled != conf->recovery_disabled &&
1689 		    mddev->degraded < conf->raid_disks) {
1690 			err = -EBUSY;
1691 			goto abort;
1692 		}
1693 		p->rdev = NULL;
1694 		synchronize_rcu();
1695 		if (atomic_read(&rdev->nr_pending)) {
1696 			/* lost the race, try later */
1697 			err = -EBUSY;
1698 			p->rdev = rdev;
1699 			goto abort;
1700 		} else if (conf->mirrors[conf->raid_disks + number].rdev) {
1701 			/* We just removed a device that is being replaced.
1702 			 * Move down the replacement.  We drain all IO before
1703 			 * doing this to avoid confusion.
1704 			 */
1705 			struct md_rdev *repl =
1706 				conf->mirrors[conf->raid_disks + number].rdev;
1707 			freeze_array(conf, 0);
1708 			clear_bit(Replacement, &repl->flags);
1709 			p->rdev = repl;
1710 			conf->mirrors[conf->raid_disks + number].rdev = NULL;
1711 			unfreeze_array(conf);
1712 			clear_bit(WantReplacement, &rdev->flags);
1713 		} else
1714 			clear_bit(WantReplacement, &rdev->flags);
1715 		err = md_integrity_register(mddev);
1716 	}
1717 abort:
1718 
1719 	print_conf(conf);
1720 	return err;
1721 }
1722 
1723 
1724 static void end_sync_read(struct bio *bio, int error)
1725 {
1726 	struct r1bio *r1_bio = bio->bi_private;
1727 
1728 	update_head_pos(r1_bio->read_disk, r1_bio);
1729 
1730 	/*
1731 	 * we have read a block, now it needs to be re-written,
1732 	 * or re-read if the read failed.
1733 	 * We don't do much here, just schedule handling by raid1d
1734 	 */
1735 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1736 		set_bit(R1BIO_Uptodate, &r1_bio->state);
1737 
1738 	if (atomic_dec_and_test(&r1_bio->remaining))
1739 		reschedule_retry(r1_bio);
1740 }
1741 
1742 static void end_sync_write(struct bio *bio, int error)
1743 {
1744 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1745 	struct r1bio *r1_bio = bio->bi_private;
1746 	struct mddev *mddev = r1_bio->mddev;
1747 	struct r1conf *conf = mddev->private;
1748 	int mirror=0;
1749 	sector_t first_bad;
1750 	int bad_sectors;
1751 
1752 	mirror = find_bio_disk(r1_bio, bio);
1753 
1754 	if (!uptodate) {
1755 		sector_t sync_blocks = 0;
1756 		sector_t s = r1_bio->sector;
1757 		long sectors_to_go = r1_bio->sectors;
1758 		/* make sure these bits doesn't get cleared. */
1759 		do {
1760 			bitmap_end_sync(mddev->bitmap, s,
1761 					&sync_blocks, 1);
1762 			s += sync_blocks;
1763 			sectors_to_go -= sync_blocks;
1764 		} while (sectors_to_go > 0);
1765 		set_bit(WriteErrorSeen,
1766 			&conf->mirrors[mirror].rdev->flags);
1767 		if (!test_and_set_bit(WantReplacement,
1768 				      &conf->mirrors[mirror].rdev->flags))
1769 			set_bit(MD_RECOVERY_NEEDED, &
1770 				mddev->recovery);
1771 		set_bit(R1BIO_WriteError, &r1_bio->state);
1772 	} else if (is_badblock(conf->mirrors[mirror].rdev,
1773 			       r1_bio->sector,
1774 			       r1_bio->sectors,
1775 			       &first_bad, &bad_sectors) &&
1776 		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1777 				r1_bio->sector,
1778 				r1_bio->sectors,
1779 				&first_bad, &bad_sectors)
1780 		)
1781 		set_bit(R1BIO_MadeGood, &r1_bio->state);
1782 
1783 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1784 		int s = r1_bio->sectors;
1785 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1786 		    test_bit(R1BIO_WriteError, &r1_bio->state))
1787 			reschedule_retry(r1_bio);
1788 		else {
1789 			put_buf(r1_bio);
1790 			md_done_sync(mddev, s, uptodate);
1791 		}
1792 	}
1793 }
1794 
1795 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1796 			    int sectors, struct page *page, int rw)
1797 {
1798 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1799 		/* success */
1800 		return 1;
1801 	if (rw == WRITE) {
1802 		set_bit(WriteErrorSeen, &rdev->flags);
1803 		if (!test_and_set_bit(WantReplacement,
1804 				      &rdev->flags))
1805 			set_bit(MD_RECOVERY_NEEDED, &
1806 				rdev->mddev->recovery);
1807 	}
1808 	/* need to record an error - either for the block or the device */
1809 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1810 		md_error(rdev->mddev, rdev);
1811 	return 0;
1812 }
1813 
1814 static int fix_sync_read_error(struct r1bio *r1_bio)
1815 {
1816 	/* Try some synchronous reads of other devices to get
1817 	 * good data, much like with normal read errors.  Only
1818 	 * read into the pages we already have so we don't
1819 	 * need to re-issue the read request.
1820 	 * We don't need to freeze the array, because being in an
1821 	 * active sync request, there is no normal IO, and
1822 	 * no overlapping syncs.
1823 	 * We don't need to check is_badblock() again as we
1824 	 * made sure that anything with a bad block in range
1825 	 * will have bi_end_io clear.
1826 	 */
1827 	struct mddev *mddev = r1_bio->mddev;
1828 	struct r1conf *conf = mddev->private;
1829 	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1830 	sector_t sect = r1_bio->sector;
1831 	int sectors = r1_bio->sectors;
1832 	int idx = 0;
1833 
1834 	while(sectors) {
1835 		int s = sectors;
1836 		int d = r1_bio->read_disk;
1837 		int success = 0;
1838 		struct md_rdev *rdev;
1839 		int start;
1840 
1841 		if (s > (PAGE_SIZE>>9))
1842 			s = PAGE_SIZE >> 9;
1843 		do {
1844 			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1845 				/* No rcu protection needed here devices
1846 				 * can only be removed when no resync is
1847 				 * active, and resync is currently active
1848 				 */
1849 				rdev = conf->mirrors[d].rdev;
1850 				if (sync_page_io(rdev, sect, s<<9,
1851 						 bio->bi_io_vec[idx].bv_page,
1852 						 READ, false)) {
1853 					success = 1;
1854 					break;
1855 				}
1856 			}
1857 			d++;
1858 			if (d == conf->raid_disks * 2)
1859 				d = 0;
1860 		} while (!success && d != r1_bio->read_disk);
1861 
1862 		if (!success) {
1863 			char b[BDEVNAME_SIZE];
1864 			int abort = 0;
1865 			/* Cannot read from anywhere, this block is lost.
1866 			 * Record a bad block on each device.  If that doesn't
1867 			 * work just disable and interrupt the recovery.
1868 			 * Don't fail devices as that won't really help.
1869 			 */
1870 			printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1871 			       " for block %llu\n",
1872 			       mdname(mddev),
1873 			       bdevname(bio->bi_bdev, b),
1874 			       (unsigned long long)r1_bio->sector);
1875 			for (d = 0; d < conf->raid_disks * 2; d++) {
1876 				rdev = conf->mirrors[d].rdev;
1877 				if (!rdev || test_bit(Faulty, &rdev->flags))
1878 					continue;
1879 				if (!rdev_set_badblocks(rdev, sect, s, 0))
1880 					abort = 1;
1881 			}
1882 			if (abort) {
1883 				conf->recovery_disabled =
1884 					mddev->recovery_disabled;
1885 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1886 				md_done_sync(mddev, r1_bio->sectors, 0);
1887 				put_buf(r1_bio);
1888 				return 0;
1889 			}
1890 			/* Try next page */
1891 			sectors -= s;
1892 			sect += s;
1893 			idx++;
1894 			continue;
1895 		}
1896 
1897 		start = d;
1898 		/* write it back and re-read */
1899 		while (d != r1_bio->read_disk) {
1900 			if (d == 0)
1901 				d = conf->raid_disks * 2;
1902 			d--;
1903 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1904 				continue;
1905 			rdev = conf->mirrors[d].rdev;
1906 			if (r1_sync_page_io(rdev, sect, s,
1907 					    bio->bi_io_vec[idx].bv_page,
1908 					    WRITE) == 0) {
1909 				r1_bio->bios[d]->bi_end_io = NULL;
1910 				rdev_dec_pending(rdev, mddev);
1911 			}
1912 		}
1913 		d = start;
1914 		while (d != r1_bio->read_disk) {
1915 			if (d == 0)
1916 				d = conf->raid_disks * 2;
1917 			d--;
1918 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1919 				continue;
1920 			rdev = conf->mirrors[d].rdev;
1921 			if (r1_sync_page_io(rdev, sect, s,
1922 					    bio->bi_io_vec[idx].bv_page,
1923 					    READ) != 0)
1924 				atomic_add(s, &rdev->corrected_errors);
1925 		}
1926 		sectors -= s;
1927 		sect += s;
1928 		idx ++;
1929 	}
1930 	set_bit(R1BIO_Uptodate, &r1_bio->state);
1931 	set_bit(BIO_UPTODATE, &bio->bi_flags);
1932 	return 1;
1933 }
1934 
1935 static int process_checks(struct r1bio *r1_bio)
1936 {
1937 	/* We have read all readable devices.  If we haven't
1938 	 * got the block, then there is no hope left.
1939 	 * If we have, then we want to do a comparison
1940 	 * and skip the write if everything is the same.
1941 	 * If any blocks failed to read, then we need to
1942 	 * attempt an over-write
1943 	 */
1944 	struct mddev *mddev = r1_bio->mddev;
1945 	struct r1conf *conf = mddev->private;
1946 	int primary;
1947 	int i;
1948 	int vcnt;
1949 
1950 	/* Fix variable parts of all bios */
1951 	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1952 	for (i = 0; i < conf->raid_disks * 2; i++) {
1953 		int j;
1954 		int size;
1955 		struct bio *b = r1_bio->bios[i];
1956 		if (b->bi_end_io != end_sync_read)
1957 			continue;
1958 		/* fixup the bio for reuse */
1959 		bio_reset(b);
1960 		b->bi_vcnt = vcnt;
1961 		b->bi_size = r1_bio->sectors << 9;
1962 		b->bi_sector = r1_bio->sector +
1963 			conf->mirrors[i].rdev->data_offset;
1964 		b->bi_bdev = conf->mirrors[i].rdev->bdev;
1965 		b->bi_end_io = end_sync_read;
1966 		b->bi_private = r1_bio;
1967 
1968 		size = b->bi_size;
1969 		for (j = 0; j < vcnt ; j++) {
1970 			struct bio_vec *bi;
1971 			bi = &b->bi_io_vec[j];
1972 			bi->bv_offset = 0;
1973 			if (size > PAGE_SIZE)
1974 				bi->bv_len = PAGE_SIZE;
1975 			else
1976 				bi->bv_len = size;
1977 			size -= PAGE_SIZE;
1978 		}
1979 	}
1980 	for (primary = 0; primary < conf->raid_disks * 2; primary++)
1981 		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1982 		    test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1983 			r1_bio->bios[primary]->bi_end_io = NULL;
1984 			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1985 			break;
1986 		}
1987 	r1_bio->read_disk = primary;
1988 	for (i = 0; i < conf->raid_disks * 2; i++) {
1989 		int j;
1990 		struct bio *pbio = r1_bio->bios[primary];
1991 		struct bio *sbio = r1_bio->bios[i];
1992 
1993 		if (sbio->bi_end_io != end_sync_read)
1994 			continue;
1995 
1996 		if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1997 			for (j = vcnt; j-- ; ) {
1998 				struct page *p, *s;
1999 				p = pbio->bi_io_vec[j].bv_page;
2000 				s = sbio->bi_io_vec[j].bv_page;
2001 				if (memcmp(page_address(p),
2002 					   page_address(s),
2003 					   sbio->bi_io_vec[j].bv_len))
2004 					break;
2005 			}
2006 		} else
2007 			j = 0;
2008 		if (j >= 0)
2009 			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2010 		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2011 			      && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
2012 			/* No need to write to this device. */
2013 			sbio->bi_end_io = NULL;
2014 			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2015 			continue;
2016 		}
2017 
2018 		bio_copy_data(sbio, pbio);
2019 	}
2020 	return 0;
2021 }
2022 
2023 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2024 {
2025 	struct r1conf *conf = mddev->private;
2026 	int i;
2027 	int disks = conf->raid_disks * 2;
2028 	struct bio *bio, *wbio;
2029 
2030 	bio = r1_bio->bios[r1_bio->read_disk];
2031 
2032 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2033 		/* ouch - failed to read all of that. */
2034 		if (!fix_sync_read_error(r1_bio))
2035 			return;
2036 
2037 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2038 		if (process_checks(r1_bio) < 0)
2039 			return;
2040 	/*
2041 	 * schedule writes
2042 	 */
2043 	atomic_set(&r1_bio->remaining, 1);
2044 	for (i = 0; i < disks ; i++) {
2045 		wbio = r1_bio->bios[i];
2046 		if (wbio->bi_end_io == NULL ||
2047 		    (wbio->bi_end_io == end_sync_read &&
2048 		     (i == r1_bio->read_disk ||
2049 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2050 			continue;
2051 
2052 		wbio->bi_rw = WRITE;
2053 		wbio->bi_end_io = end_sync_write;
2054 		atomic_inc(&r1_bio->remaining);
2055 		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2056 
2057 		generic_make_request(wbio);
2058 	}
2059 
2060 	if (atomic_dec_and_test(&r1_bio->remaining)) {
2061 		/* if we're here, all write(s) have completed, so clean up */
2062 		int s = r1_bio->sectors;
2063 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2064 		    test_bit(R1BIO_WriteError, &r1_bio->state))
2065 			reschedule_retry(r1_bio);
2066 		else {
2067 			put_buf(r1_bio);
2068 			md_done_sync(mddev, s, 1);
2069 		}
2070 	}
2071 }
2072 
2073 /*
2074  * This is a kernel thread which:
2075  *
2076  *	1.	Retries failed read operations on working mirrors.
2077  *	2.	Updates the raid superblock when problems encounter.
2078  *	3.	Performs writes following reads for array synchronising.
2079  */
2080 
2081 static void fix_read_error(struct r1conf *conf, int read_disk,
2082 			   sector_t sect, int sectors)
2083 {
2084 	struct mddev *mddev = conf->mddev;
2085 	while(sectors) {
2086 		int s = sectors;
2087 		int d = read_disk;
2088 		int success = 0;
2089 		int start;
2090 		struct md_rdev *rdev;
2091 
2092 		if (s > (PAGE_SIZE>>9))
2093 			s = PAGE_SIZE >> 9;
2094 
2095 		do {
2096 			/* Note: no rcu protection needed here
2097 			 * as this is synchronous in the raid1d thread
2098 			 * which is the thread that might remove
2099 			 * a device.  If raid1d ever becomes multi-threaded....
2100 			 */
2101 			sector_t first_bad;
2102 			int bad_sectors;
2103 
2104 			rdev = conf->mirrors[d].rdev;
2105 			if (rdev &&
2106 			    (test_bit(In_sync, &rdev->flags) ||
2107 			     (!test_bit(Faulty, &rdev->flags) &&
2108 			      rdev->recovery_offset >= sect + s)) &&
2109 			    is_badblock(rdev, sect, s,
2110 					&first_bad, &bad_sectors) == 0 &&
2111 			    sync_page_io(rdev, sect, s<<9,
2112 					 conf->tmppage, READ, false))
2113 				success = 1;
2114 			else {
2115 				d++;
2116 				if (d == conf->raid_disks * 2)
2117 					d = 0;
2118 			}
2119 		} while (!success && d != read_disk);
2120 
2121 		if (!success) {
2122 			/* Cannot read from anywhere - mark it bad */
2123 			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2124 			if (!rdev_set_badblocks(rdev, sect, s, 0))
2125 				md_error(mddev, rdev);
2126 			break;
2127 		}
2128 		/* write it back and re-read */
2129 		start = d;
2130 		while (d != read_disk) {
2131 			if (d==0)
2132 				d = conf->raid_disks * 2;
2133 			d--;
2134 			rdev = conf->mirrors[d].rdev;
2135 			if (rdev &&
2136 			    test_bit(In_sync, &rdev->flags))
2137 				r1_sync_page_io(rdev, sect, s,
2138 						conf->tmppage, WRITE);
2139 		}
2140 		d = start;
2141 		while (d != read_disk) {
2142 			char b[BDEVNAME_SIZE];
2143 			if (d==0)
2144 				d = conf->raid_disks * 2;
2145 			d--;
2146 			rdev = conf->mirrors[d].rdev;
2147 			if (rdev &&
2148 			    test_bit(In_sync, &rdev->flags)) {
2149 				if (r1_sync_page_io(rdev, sect, s,
2150 						    conf->tmppage, READ)) {
2151 					atomic_add(s, &rdev->corrected_errors);
2152 					printk(KERN_INFO
2153 					       "md/raid1:%s: read error corrected "
2154 					       "(%d sectors at %llu on %s)\n",
2155 					       mdname(mddev), s,
2156 					       (unsigned long long)(sect +
2157 					           rdev->data_offset),
2158 					       bdevname(rdev->bdev, b));
2159 				}
2160 			}
2161 		}
2162 		sectors -= s;
2163 		sect += s;
2164 	}
2165 }
2166 
2167 static int narrow_write_error(struct r1bio *r1_bio, int i)
2168 {
2169 	struct mddev *mddev = r1_bio->mddev;
2170 	struct r1conf *conf = mddev->private;
2171 	struct md_rdev *rdev = conf->mirrors[i].rdev;
2172 
2173 	/* bio has the data to be written to device 'i' where
2174 	 * we just recently had a write error.
2175 	 * We repeatedly clone the bio and trim down to one block,
2176 	 * then try the write.  Where the write fails we record
2177 	 * a bad block.
2178 	 * It is conceivable that the bio doesn't exactly align with
2179 	 * blocks.  We must handle this somehow.
2180 	 *
2181 	 * We currently own a reference on the rdev.
2182 	 */
2183 
2184 	int block_sectors;
2185 	sector_t sector;
2186 	int sectors;
2187 	int sect_to_write = r1_bio->sectors;
2188 	int ok = 1;
2189 
2190 	if (rdev->badblocks.shift < 0)
2191 		return 0;
2192 
2193 	block_sectors = 1 << rdev->badblocks.shift;
2194 	sector = r1_bio->sector;
2195 	sectors = ((sector + block_sectors)
2196 		   & ~(sector_t)(block_sectors - 1))
2197 		- sector;
2198 
2199 	while (sect_to_write) {
2200 		struct bio *wbio;
2201 		if (sectors > sect_to_write)
2202 			sectors = sect_to_write;
2203 		/* Write at 'sector' for 'sectors'*/
2204 
2205 		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2206 			unsigned vcnt = r1_bio->behind_page_count;
2207 			struct bio_vec *vec = r1_bio->behind_bvecs;
2208 
2209 			while (!vec->bv_page) {
2210 				vec++;
2211 				vcnt--;
2212 			}
2213 
2214 			wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2215 			memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2216 
2217 			wbio->bi_vcnt = vcnt;
2218 		} else {
2219 			wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2220 		}
2221 
2222 		wbio->bi_rw = WRITE;
2223 		wbio->bi_sector = r1_bio->sector;
2224 		wbio->bi_size = r1_bio->sectors << 9;
2225 
2226 		bio_trim(wbio, sector - r1_bio->sector, sectors);
2227 		wbio->bi_sector += rdev->data_offset;
2228 		wbio->bi_bdev = rdev->bdev;
2229 		if (submit_bio_wait(WRITE, wbio) == 0)
2230 			/* failure! */
2231 			ok = rdev_set_badblocks(rdev, sector,
2232 						sectors, 0)
2233 				&& ok;
2234 
2235 		bio_put(wbio);
2236 		sect_to_write -= sectors;
2237 		sector += sectors;
2238 		sectors = block_sectors;
2239 	}
2240 	return ok;
2241 }
2242 
2243 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2244 {
2245 	int m;
2246 	int s = r1_bio->sectors;
2247 	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2248 		struct md_rdev *rdev = conf->mirrors[m].rdev;
2249 		struct bio *bio = r1_bio->bios[m];
2250 		if (bio->bi_end_io == NULL)
2251 			continue;
2252 		if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2253 		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2254 			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2255 		}
2256 		if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2257 		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2258 			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2259 				md_error(conf->mddev, rdev);
2260 		}
2261 	}
2262 	put_buf(r1_bio);
2263 	md_done_sync(conf->mddev, s, 1);
2264 }
2265 
2266 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2267 {
2268 	int m;
2269 	for (m = 0; m < conf->raid_disks * 2 ; m++)
2270 		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2271 			struct md_rdev *rdev = conf->mirrors[m].rdev;
2272 			rdev_clear_badblocks(rdev,
2273 					     r1_bio->sector,
2274 					     r1_bio->sectors, 0);
2275 			rdev_dec_pending(rdev, conf->mddev);
2276 		} else if (r1_bio->bios[m] != NULL) {
2277 			/* This drive got a write error.  We need to
2278 			 * narrow down and record precise write
2279 			 * errors.
2280 			 */
2281 			if (!narrow_write_error(r1_bio, m)) {
2282 				md_error(conf->mddev,
2283 					 conf->mirrors[m].rdev);
2284 				/* an I/O failed, we can't clear the bitmap */
2285 				set_bit(R1BIO_Degraded, &r1_bio->state);
2286 			}
2287 			rdev_dec_pending(conf->mirrors[m].rdev,
2288 					 conf->mddev);
2289 		}
2290 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
2291 		close_write(r1_bio);
2292 	raid_end_bio_io(r1_bio);
2293 }
2294 
2295 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2296 {
2297 	int disk;
2298 	int max_sectors;
2299 	struct mddev *mddev = conf->mddev;
2300 	struct bio *bio;
2301 	char b[BDEVNAME_SIZE];
2302 	struct md_rdev *rdev;
2303 
2304 	clear_bit(R1BIO_ReadError, &r1_bio->state);
2305 	/* we got a read error. Maybe the drive is bad.  Maybe just
2306 	 * the block and we can fix it.
2307 	 * We freeze all other IO, and try reading the block from
2308 	 * other devices.  When we find one, we re-write
2309 	 * and check it that fixes the read error.
2310 	 * This is all done synchronously while the array is
2311 	 * frozen
2312 	 */
2313 	if (mddev->ro == 0) {
2314 		freeze_array(conf, 1);
2315 		fix_read_error(conf, r1_bio->read_disk,
2316 			       r1_bio->sector, r1_bio->sectors);
2317 		unfreeze_array(conf);
2318 	} else
2319 		md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2320 	rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
2321 
2322 	bio = r1_bio->bios[r1_bio->read_disk];
2323 	bdevname(bio->bi_bdev, b);
2324 read_more:
2325 	disk = read_balance(conf, r1_bio, &max_sectors);
2326 	if (disk == -1) {
2327 		printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2328 		       " read error for block %llu\n",
2329 		       mdname(mddev), b, (unsigned long long)r1_bio->sector);
2330 		raid_end_bio_io(r1_bio);
2331 	} else {
2332 		const unsigned long do_sync
2333 			= r1_bio->master_bio->bi_rw & REQ_SYNC;
2334 		if (bio) {
2335 			r1_bio->bios[r1_bio->read_disk] =
2336 				mddev->ro ? IO_BLOCKED : NULL;
2337 			bio_put(bio);
2338 		}
2339 		r1_bio->read_disk = disk;
2340 		bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2341 		bio_trim(bio, r1_bio->sector - bio->bi_sector, max_sectors);
2342 		r1_bio->bios[r1_bio->read_disk] = bio;
2343 		rdev = conf->mirrors[disk].rdev;
2344 		printk_ratelimited(KERN_ERR
2345 				   "md/raid1:%s: redirecting sector %llu"
2346 				   " to other mirror: %s\n",
2347 				   mdname(mddev),
2348 				   (unsigned long long)r1_bio->sector,
2349 				   bdevname(rdev->bdev, b));
2350 		bio->bi_sector = r1_bio->sector + rdev->data_offset;
2351 		bio->bi_bdev = rdev->bdev;
2352 		bio->bi_end_io = raid1_end_read_request;
2353 		bio->bi_rw = READ | do_sync;
2354 		bio->bi_private = r1_bio;
2355 		if (max_sectors < r1_bio->sectors) {
2356 			/* Drat - have to split this up more */
2357 			struct bio *mbio = r1_bio->master_bio;
2358 			int sectors_handled = (r1_bio->sector + max_sectors
2359 					       - mbio->bi_sector);
2360 			r1_bio->sectors = max_sectors;
2361 			spin_lock_irq(&conf->device_lock);
2362 			if (mbio->bi_phys_segments == 0)
2363 				mbio->bi_phys_segments = 2;
2364 			else
2365 				mbio->bi_phys_segments++;
2366 			spin_unlock_irq(&conf->device_lock);
2367 			generic_make_request(bio);
2368 			bio = NULL;
2369 
2370 			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2371 
2372 			r1_bio->master_bio = mbio;
2373 			r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
2374 			r1_bio->state = 0;
2375 			set_bit(R1BIO_ReadError, &r1_bio->state);
2376 			r1_bio->mddev = mddev;
2377 			r1_bio->sector = mbio->bi_sector + sectors_handled;
2378 
2379 			goto read_more;
2380 		} else
2381 			generic_make_request(bio);
2382 	}
2383 }
2384 
2385 static void raid1d(struct md_thread *thread)
2386 {
2387 	struct mddev *mddev = thread->mddev;
2388 	struct r1bio *r1_bio;
2389 	unsigned long flags;
2390 	struct r1conf *conf = mddev->private;
2391 	struct list_head *head = &conf->retry_list;
2392 	struct blk_plug plug;
2393 
2394 	md_check_recovery(mddev);
2395 
2396 	blk_start_plug(&plug);
2397 	for (;;) {
2398 
2399 		flush_pending_writes(conf);
2400 
2401 		spin_lock_irqsave(&conf->device_lock, flags);
2402 		if (list_empty(head)) {
2403 			spin_unlock_irqrestore(&conf->device_lock, flags);
2404 			break;
2405 		}
2406 		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2407 		list_del(head->prev);
2408 		conf->nr_queued--;
2409 		spin_unlock_irqrestore(&conf->device_lock, flags);
2410 
2411 		mddev = r1_bio->mddev;
2412 		conf = mddev->private;
2413 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2414 			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2415 			    test_bit(R1BIO_WriteError, &r1_bio->state))
2416 				handle_sync_write_finished(conf, r1_bio);
2417 			else
2418 				sync_request_write(mddev, r1_bio);
2419 		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2420 			   test_bit(R1BIO_WriteError, &r1_bio->state))
2421 			handle_write_finished(conf, r1_bio);
2422 		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2423 			handle_read_error(conf, r1_bio);
2424 		else
2425 			/* just a partial read to be scheduled from separate
2426 			 * context
2427 			 */
2428 			generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2429 
2430 		cond_resched();
2431 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2432 			md_check_recovery(mddev);
2433 	}
2434 	blk_finish_plug(&plug);
2435 }
2436 
2437 
2438 static int init_resync(struct r1conf *conf)
2439 {
2440 	int buffs;
2441 
2442 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2443 	BUG_ON(conf->r1buf_pool);
2444 	conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2445 					  conf->poolinfo);
2446 	if (!conf->r1buf_pool)
2447 		return -ENOMEM;
2448 	conf->next_resync = 0;
2449 	return 0;
2450 }
2451 
2452 /*
2453  * perform a "sync" on one "block"
2454  *
2455  * We need to make sure that no normal I/O request - particularly write
2456  * requests - conflict with active sync requests.
2457  *
2458  * This is achieved by tracking pending requests and a 'barrier' concept
2459  * that can be installed to exclude normal IO requests.
2460  */
2461 
2462 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
2463 {
2464 	struct r1conf *conf = mddev->private;
2465 	struct r1bio *r1_bio;
2466 	struct bio *bio;
2467 	sector_t max_sector, nr_sectors;
2468 	int disk = -1;
2469 	int i;
2470 	int wonly = -1;
2471 	int write_targets = 0, read_targets = 0;
2472 	sector_t sync_blocks;
2473 	int still_degraded = 0;
2474 	int good_sectors = RESYNC_SECTORS;
2475 	int min_bad = 0; /* number of sectors that are bad in all devices */
2476 
2477 	if (!conf->r1buf_pool)
2478 		if (init_resync(conf))
2479 			return 0;
2480 
2481 	max_sector = mddev->dev_sectors;
2482 	if (sector_nr >= max_sector) {
2483 		/* If we aborted, we need to abort the
2484 		 * sync on the 'current' bitmap chunk (there will
2485 		 * only be one in raid1 resync.
2486 		 * We can find the current addess in mddev->curr_resync
2487 		 */
2488 		if (mddev->curr_resync < max_sector) /* aborted */
2489 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2490 						&sync_blocks, 1);
2491 		else /* completed sync */
2492 			conf->fullsync = 0;
2493 
2494 		bitmap_close_sync(mddev->bitmap);
2495 		close_sync(conf);
2496 		return 0;
2497 	}
2498 
2499 	if (mddev->bitmap == NULL &&
2500 	    mddev->recovery_cp == MaxSector &&
2501 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2502 	    conf->fullsync == 0) {
2503 		*skipped = 1;
2504 		return max_sector - sector_nr;
2505 	}
2506 	/* before building a request, check if we can skip these blocks..
2507 	 * This call the bitmap_start_sync doesn't actually record anything
2508 	 */
2509 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2510 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2511 		/* We can skip this block, and probably several more */
2512 		*skipped = 1;
2513 		return sync_blocks;
2514 	}
2515 	/*
2516 	 * If there is non-resync activity waiting for a turn,
2517 	 * and resync is going fast enough,
2518 	 * then let it though before starting on this new sync request.
2519 	 */
2520 	if (!go_faster && conf->nr_waiting)
2521 		msleep_interruptible(1000);
2522 
2523 	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2524 	r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2525 	raise_barrier(conf);
2526 
2527 	conf->next_resync = sector_nr;
2528 
2529 	rcu_read_lock();
2530 	/*
2531 	 * If we get a correctably read error during resync or recovery,
2532 	 * we might want to read from a different device.  So we
2533 	 * flag all drives that could conceivably be read from for READ,
2534 	 * and any others (which will be non-In_sync devices) for WRITE.
2535 	 * If a read fails, we try reading from something else for which READ
2536 	 * is OK.
2537 	 */
2538 
2539 	r1_bio->mddev = mddev;
2540 	r1_bio->sector = sector_nr;
2541 	r1_bio->state = 0;
2542 	set_bit(R1BIO_IsSync, &r1_bio->state);
2543 
2544 	for (i = 0; i < conf->raid_disks * 2; i++) {
2545 		struct md_rdev *rdev;
2546 		bio = r1_bio->bios[i];
2547 		bio_reset(bio);
2548 
2549 		rdev = rcu_dereference(conf->mirrors[i].rdev);
2550 		if (rdev == NULL ||
2551 		    test_bit(Faulty, &rdev->flags)) {
2552 			if (i < conf->raid_disks)
2553 				still_degraded = 1;
2554 		} else if (!test_bit(In_sync, &rdev->flags)) {
2555 			bio->bi_rw = WRITE;
2556 			bio->bi_end_io = end_sync_write;
2557 			write_targets ++;
2558 		} else {
2559 			/* may need to read from here */
2560 			sector_t first_bad = MaxSector;
2561 			int bad_sectors;
2562 
2563 			if (is_badblock(rdev, sector_nr, good_sectors,
2564 					&first_bad, &bad_sectors)) {
2565 				if (first_bad > sector_nr)
2566 					good_sectors = first_bad - sector_nr;
2567 				else {
2568 					bad_sectors -= (sector_nr - first_bad);
2569 					if (min_bad == 0 ||
2570 					    min_bad > bad_sectors)
2571 						min_bad = bad_sectors;
2572 				}
2573 			}
2574 			if (sector_nr < first_bad) {
2575 				if (test_bit(WriteMostly, &rdev->flags)) {
2576 					if (wonly < 0)
2577 						wonly = i;
2578 				} else {
2579 					if (disk < 0)
2580 						disk = i;
2581 				}
2582 				bio->bi_rw = READ;
2583 				bio->bi_end_io = end_sync_read;
2584 				read_targets++;
2585 			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2586 				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2587 				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2588 				/*
2589 				 * The device is suitable for reading (InSync),
2590 				 * but has bad block(s) here. Let's try to correct them,
2591 				 * if we are doing resync or repair. Otherwise, leave
2592 				 * this device alone for this sync request.
2593 				 */
2594 				bio->bi_rw = WRITE;
2595 				bio->bi_end_io = end_sync_write;
2596 				write_targets++;
2597 			}
2598 		}
2599 		if (bio->bi_end_io) {
2600 			atomic_inc(&rdev->nr_pending);
2601 			bio->bi_sector = sector_nr + rdev->data_offset;
2602 			bio->bi_bdev = rdev->bdev;
2603 			bio->bi_private = r1_bio;
2604 		}
2605 	}
2606 	rcu_read_unlock();
2607 	if (disk < 0)
2608 		disk = wonly;
2609 	r1_bio->read_disk = disk;
2610 
2611 	if (read_targets == 0 && min_bad > 0) {
2612 		/* These sectors are bad on all InSync devices, so we
2613 		 * need to mark them bad on all write targets
2614 		 */
2615 		int ok = 1;
2616 		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2617 			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2618 				struct md_rdev *rdev = conf->mirrors[i].rdev;
2619 				ok = rdev_set_badblocks(rdev, sector_nr,
2620 							min_bad, 0
2621 					) && ok;
2622 			}
2623 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
2624 		*skipped = 1;
2625 		put_buf(r1_bio);
2626 
2627 		if (!ok) {
2628 			/* Cannot record the badblocks, so need to
2629 			 * abort the resync.
2630 			 * If there are multiple read targets, could just
2631 			 * fail the really bad ones ???
2632 			 */
2633 			conf->recovery_disabled = mddev->recovery_disabled;
2634 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2635 			return 0;
2636 		} else
2637 			return min_bad;
2638 
2639 	}
2640 	if (min_bad > 0 && min_bad < good_sectors) {
2641 		/* only resync enough to reach the next bad->good
2642 		 * transition */
2643 		good_sectors = min_bad;
2644 	}
2645 
2646 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2647 		/* extra read targets are also write targets */
2648 		write_targets += read_targets-1;
2649 
2650 	if (write_targets == 0 || read_targets == 0) {
2651 		/* There is nowhere to write, so all non-sync
2652 		 * drives must be failed - so we are finished
2653 		 */
2654 		sector_t rv;
2655 		if (min_bad > 0)
2656 			max_sector = sector_nr + min_bad;
2657 		rv = max_sector - sector_nr;
2658 		*skipped = 1;
2659 		put_buf(r1_bio);
2660 		return rv;
2661 	}
2662 
2663 	if (max_sector > mddev->resync_max)
2664 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2665 	if (max_sector > sector_nr + good_sectors)
2666 		max_sector = sector_nr + good_sectors;
2667 	nr_sectors = 0;
2668 	sync_blocks = 0;
2669 	do {
2670 		struct page *page;
2671 		int len = PAGE_SIZE;
2672 		if (sector_nr + (len>>9) > max_sector)
2673 			len = (max_sector - sector_nr) << 9;
2674 		if (len == 0)
2675 			break;
2676 		if (sync_blocks == 0) {
2677 			if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2678 					       &sync_blocks, still_degraded) &&
2679 			    !conf->fullsync &&
2680 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2681 				break;
2682 			BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2683 			if ((len >> 9) > sync_blocks)
2684 				len = sync_blocks<<9;
2685 		}
2686 
2687 		for (i = 0 ; i < conf->raid_disks * 2; i++) {
2688 			bio = r1_bio->bios[i];
2689 			if (bio->bi_end_io) {
2690 				page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2691 				if (bio_add_page(bio, page, len, 0) == 0) {
2692 					/* stop here */
2693 					bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2694 					while (i > 0) {
2695 						i--;
2696 						bio = r1_bio->bios[i];
2697 						if (bio->bi_end_io==NULL)
2698 							continue;
2699 						/* remove last page from this bio */
2700 						bio->bi_vcnt--;
2701 						bio->bi_size -= len;
2702 						bio->bi_flags &= ~(1<< BIO_SEG_VALID);
2703 					}
2704 					goto bio_full;
2705 				}
2706 			}
2707 		}
2708 		nr_sectors += len>>9;
2709 		sector_nr += len>>9;
2710 		sync_blocks -= (len>>9);
2711 	} while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2712  bio_full:
2713 	r1_bio->sectors = nr_sectors;
2714 
2715 	/* For a user-requested sync, we read all readable devices and do a
2716 	 * compare
2717 	 */
2718 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2719 		atomic_set(&r1_bio->remaining, read_targets);
2720 		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2721 			bio = r1_bio->bios[i];
2722 			if (bio->bi_end_io == end_sync_read) {
2723 				read_targets--;
2724 				md_sync_acct(bio->bi_bdev, nr_sectors);
2725 				generic_make_request(bio);
2726 			}
2727 		}
2728 	} else {
2729 		atomic_set(&r1_bio->remaining, 1);
2730 		bio = r1_bio->bios[r1_bio->read_disk];
2731 		md_sync_acct(bio->bi_bdev, nr_sectors);
2732 		generic_make_request(bio);
2733 
2734 	}
2735 	return nr_sectors;
2736 }
2737 
2738 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2739 {
2740 	if (sectors)
2741 		return sectors;
2742 
2743 	return mddev->dev_sectors;
2744 }
2745 
2746 static struct r1conf *setup_conf(struct mddev *mddev)
2747 {
2748 	struct r1conf *conf;
2749 	int i;
2750 	struct raid1_info *disk;
2751 	struct md_rdev *rdev;
2752 	int err = -ENOMEM;
2753 
2754 	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2755 	if (!conf)
2756 		goto abort;
2757 
2758 	conf->mirrors = kzalloc(sizeof(struct raid1_info)
2759 				* mddev->raid_disks * 2,
2760 				 GFP_KERNEL);
2761 	if (!conf->mirrors)
2762 		goto abort;
2763 
2764 	conf->tmppage = alloc_page(GFP_KERNEL);
2765 	if (!conf->tmppage)
2766 		goto abort;
2767 
2768 	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2769 	if (!conf->poolinfo)
2770 		goto abort;
2771 	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2772 	conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2773 					  r1bio_pool_free,
2774 					  conf->poolinfo);
2775 	if (!conf->r1bio_pool)
2776 		goto abort;
2777 
2778 	conf->poolinfo->mddev = mddev;
2779 
2780 	err = -EINVAL;
2781 	spin_lock_init(&conf->device_lock);
2782 	rdev_for_each(rdev, mddev) {
2783 		struct request_queue *q;
2784 		int disk_idx = rdev->raid_disk;
2785 		if (disk_idx >= mddev->raid_disks
2786 		    || disk_idx < 0)
2787 			continue;
2788 		if (test_bit(Replacement, &rdev->flags))
2789 			disk = conf->mirrors + mddev->raid_disks + disk_idx;
2790 		else
2791 			disk = conf->mirrors + disk_idx;
2792 
2793 		if (disk->rdev)
2794 			goto abort;
2795 		disk->rdev = rdev;
2796 		q = bdev_get_queue(rdev->bdev);
2797 		if (q->merge_bvec_fn)
2798 			mddev->merge_check_needed = 1;
2799 
2800 		disk->head_position = 0;
2801 		disk->seq_start = MaxSector;
2802 	}
2803 	conf->raid_disks = mddev->raid_disks;
2804 	conf->mddev = mddev;
2805 	INIT_LIST_HEAD(&conf->retry_list);
2806 
2807 	spin_lock_init(&conf->resync_lock);
2808 	init_waitqueue_head(&conf->wait_barrier);
2809 
2810 	bio_list_init(&conf->pending_bio_list);
2811 	conf->pending_count = 0;
2812 	conf->recovery_disabled = mddev->recovery_disabled - 1;
2813 
2814 	conf->start_next_window = MaxSector;
2815 	conf->current_window_requests = conf->next_window_requests = 0;
2816 
2817 	err = -EIO;
2818 	for (i = 0; i < conf->raid_disks * 2; i++) {
2819 
2820 		disk = conf->mirrors + i;
2821 
2822 		if (i < conf->raid_disks &&
2823 		    disk[conf->raid_disks].rdev) {
2824 			/* This slot has a replacement. */
2825 			if (!disk->rdev) {
2826 				/* No original, just make the replacement
2827 				 * a recovering spare
2828 				 */
2829 				disk->rdev =
2830 					disk[conf->raid_disks].rdev;
2831 				disk[conf->raid_disks].rdev = NULL;
2832 			} else if (!test_bit(In_sync, &disk->rdev->flags))
2833 				/* Original is not in_sync - bad */
2834 				goto abort;
2835 		}
2836 
2837 		if (!disk->rdev ||
2838 		    !test_bit(In_sync, &disk->rdev->flags)) {
2839 			disk->head_position = 0;
2840 			if (disk->rdev &&
2841 			    (disk->rdev->saved_raid_disk < 0))
2842 				conf->fullsync = 1;
2843 		}
2844 	}
2845 
2846 	err = -ENOMEM;
2847 	conf->thread = md_register_thread(raid1d, mddev, "raid1");
2848 	if (!conf->thread) {
2849 		printk(KERN_ERR
2850 		       "md/raid1:%s: couldn't allocate thread\n",
2851 		       mdname(mddev));
2852 		goto abort;
2853 	}
2854 
2855 	return conf;
2856 
2857  abort:
2858 	if (conf) {
2859 		if (conf->r1bio_pool)
2860 			mempool_destroy(conf->r1bio_pool);
2861 		kfree(conf->mirrors);
2862 		safe_put_page(conf->tmppage);
2863 		kfree(conf->poolinfo);
2864 		kfree(conf);
2865 	}
2866 	return ERR_PTR(err);
2867 }
2868 
2869 static int stop(struct mddev *mddev);
2870 static int run(struct mddev *mddev)
2871 {
2872 	struct r1conf *conf;
2873 	int i;
2874 	struct md_rdev *rdev;
2875 	int ret;
2876 	bool discard_supported = false;
2877 
2878 	if (mddev->level != 1) {
2879 		printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2880 		       mdname(mddev), mddev->level);
2881 		return -EIO;
2882 	}
2883 	if (mddev->reshape_position != MaxSector) {
2884 		printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2885 		       mdname(mddev));
2886 		return -EIO;
2887 	}
2888 	/*
2889 	 * copy the already verified devices into our private RAID1
2890 	 * bookkeeping area. [whatever we allocate in run(),
2891 	 * should be freed in stop()]
2892 	 */
2893 	if (mddev->private == NULL)
2894 		conf = setup_conf(mddev);
2895 	else
2896 		conf = mddev->private;
2897 
2898 	if (IS_ERR(conf))
2899 		return PTR_ERR(conf);
2900 
2901 	if (mddev->queue)
2902 		blk_queue_max_write_same_sectors(mddev->queue, 0);
2903 
2904 	rdev_for_each(rdev, mddev) {
2905 		if (!mddev->gendisk)
2906 			continue;
2907 		disk_stack_limits(mddev->gendisk, rdev->bdev,
2908 				  rdev->data_offset << 9);
2909 		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2910 			discard_supported = true;
2911 	}
2912 
2913 	mddev->degraded = 0;
2914 	for (i=0; i < conf->raid_disks; i++)
2915 		if (conf->mirrors[i].rdev == NULL ||
2916 		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2917 		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2918 			mddev->degraded++;
2919 
2920 	if (conf->raid_disks - mddev->degraded == 1)
2921 		mddev->recovery_cp = MaxSector;
2922 
2923 	if (mddev->recovery_cp != MaxSector)
2924 		printk(KERN_NOTICE "md/raid1:%s: not clean"
2925 		       " -- starting background reconstruction\n",
2926 		       mdname(mddev));
2927 	printk(KERN_INFO
2928 		"md/raid1:%s: active with %d out of %d mirrors\n",
2929 		mdname(mddev), mddev->raid_disks - mddev->degraded,
2930 		mddev->raid_disks);
2931 
2932 	/*
2933 	 * Ok, everything is just fine now
2934 	 */
2935 	mddev->thread = conf->thread;
2936 	conf->thread = NULL;
2937 	mddev->private = conf;
2938 
2939 	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2940 
2941 	if (mddev->queue) {
2942 		mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2943 		mddev->queue->backing_dev_info.congested_data = mddev;
2944 		blk_queue_merge_bvec(mddev->queue, raid1_mergeable_bvec);
2945 
2946 		if (discard_supported)
2947 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2948 						mddev->queue);
2949 		else
2950 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2951 						  mddev->queue);
2952 	}
2953 
2954 	ret =  md_integrity_register(mddev);
2955 	if (ret)
2956 		stop(mddev);
2957 	return ret;
2958 }
2959 
2960 static int stop(struct mddev *mddev)
2961 {
2962 	struct r1conf *conf = mddev->private;
2963 	struct bitmap *bitmap = mddev->bitmap;
2964 
2965 	/* wait for behind writes to complete */
2966 	if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2967 		printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2968 		       mdname(mddev));
2969 		/* need to kick something here to make sure I/O goes? */
2970 		wait_event(bitmap->behind_wait,
2971 			   atomic_read(&bitmap->behind_writes) == 0);
2972 	}
2973 
2974 	freeze_array(conf, 0);
2975 	unfreeze_array(conf);
2976 
2977 	md_unregister_thread(&mddev->thread);
2978 	if (conf->r1bio_pool)
2979 		mempool_destroy(conf->r1bio_pool);
2980 	kfree(conf->mirrors);
2981 	safe_put_page(conf->tmppage);
2982 	kfree(conf->poolinfo);
2983 	kfree(conf);
2984 	mddev->private = NULL;
2985 	return 0;
2986 }
2987 
2988 static int raid1_resize(struct mddev *mddev, sector_t sectors)
2989 {
2990 	/* no resync is happening, and there is enough space
2991 	 * on all devices, so we can resize.
2992 	 * We need to make sure resync covers any new space.
2993 	 * If the array is shrinking we should possibly wait until
2994 	 * any io in the removed space completes, but it hardly seems
2995 	 * worth it.
2996 	 */
2997 	sector_t newsize = raid1_size(mddev, sectors, 0);
2998 	if (mddev->external_size &&
2999 	    mddev->array_sectors > newsize)
3000 		return -EINVAL;
3001 	if (mddev->bitmap) {
3002 		int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3003 		if (ret)
3004 			return ret;
3005 	}
3006 	md_set_array_sectors(mddev, newsize);
3007 	set_capacity(mddev->gendisk, mddev->array_sectors);
3008 	revalidate_disk(mddev->gendisk);
3009 	if (sectors > mddev->dev_sectors &&
3010 	    mddev->recovery_cp > mddev->dev_sectors) {
3011 		mddev->recovery_cp = mddev->dev_sectors;
3012 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3013 	}
3014 	mddev->dev_sectors = sectors;
3015 	mddev->resync_max_sectors = sectors;
3016 	return 0;
3017 }
3018 
3019 static int raid1_reshape(struct mddev *mddev)
3020 {
3021 	/* We need to:
3022 	 * 1/ resize the r1bio_pool
3023 	 * 2/ resize conf->mirrors
3024 	 *
3025 	 * We allocate a new r1bio_pool if we can.
3026 	 * Then raise a device barrier and wait until all IO stops.
3027 	 * Then resize conf->mirrors and swap in the new r1bio pool.
3028 	 *
3029 	 * At the same time, we "pack" the devices so that all the missing
3030 	 * devices have the higher raid_disk numbers.
3031 	 */
3032 	mempool_t *newpool, *oldpool;
3033 	struct pool_info *newpoolinfo;
3034 	struct raid1_info *newmirrors;
3035 	struct r1conf *conf = mddev->private;
3036 	int cnt, raid_disks;
3037 	unsigned long flags;
3038 	int d, d2, err;
3039 
3040 	/* Cannot change chunk_size, layout, or level */
3041 	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3042 	    mddev->layout != mddev->new_layout ||
3043 	    mddev->level != mddev->new_level) {
3044 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3045 		mddev->new_layout = mddev->layout;
3046 		mddev->new_level = mddev->level;
3047 		return -EINVAL;
3048 	}
3049 
3050 	err = md_allow_write(mddev);
3051 	if (err)
3052 		return err;
3053 
3054 	raid_disks = mddev->raid_disks + mddev->delta_disks;
3055 
3056 	if (raid_disks < conf->raid_disks) {
3057 		cnt=0;
3058 		for (d= 0; d < conf->raid_disks; d++)
3059 			if (conf->mirrors[d].rdev)
3060 				cnt++;
3061 		if (cnt > raid_disks)
3062 			return -EBUSY;
3063 	}
3064 
3065 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3066 	if (!newpoolinfo)
3067 		return -ENOMEM;
3068 	newpoolinfo->mddev = mddev;
3069 	newpoolinfo->raid_disks = raid_disks * 2;
3070 
3071 	newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3072 				 r1bio_pool_free, newpoolinfo);
3073 	if (!newpool) {
3074 		kfree(newpoolinfo);
3075 		return -ENOMEM;
3076 	}
3077 	newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3078 			     GFP_KERNEL);
3079 	if (!newmirrors) {
3080 		kfree(newpoolinfo);
3081 		mempool_destroy(newpool);
3082 		return -ENOMEM;
3083 	}
3084 
3085 	freeze_array(conf, 0);
3086 
3087 	/* ok, everything is stopped */
3088 	oldpool = conf->r1bio_pool;
3089 	conf->r1bio_pool = newpool;
3090 
3091 	for (d = d2 = 0; d < conf->raid_disks; d++) {
3092 		struct md_rdev *rdev = conf->mirrors[d].rdev;
3093 		if (rdev && rdev->raid_disk != d2) {
3094 			sysfs_unlink_rdev(mddev, rdev);
3095 			rdev->raid_disk = d2;
3096 			sysfs_unlink_rdev(mddev, rdev);
3097 			if (sysfs_link_rdev(mddev, rdev))
3098 				printk(KERN_WARNING
3099 				       "md/raid1:%s: cannot register rd%d\n",
3100 				       mdname(mddev), rdev->raid_disk);
3101 		}
3102 		if (rdev)
3103 			newmirrors[d2++].rdev = rdev;
3104 	}
3105 	kfree(conf->mirrors);
3106 	conf->mirrors = newmirrors;
3107 	kfree(conf->poolinfo);
3108 	conf->poolinfo = newpoolinfo;
3109 
3110 	spin_lock_irqsave(&conf->device_lock, flags);
3111 	mddev->degraded += (raid_disks - conf->raid_disks);
3112 	spin_unlock_irqrestore(&conf->device_lock, flags);
3113 	conf->raid_disks = mddev->raid_disks = raid_disks;
3114 	mddev->delta_disks = 0;
3115 
3116 	unfreeze_array(conf);
3117 
3118 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3119 	md_wakeup_thread(mddev->thread);
3120 
3121 	mempool_destroy(oldpool);
3122 	return 0;
3123 }
3124 
3125 static void raid1_quiesce(struct mddev *mddev, int state)
3126 {
3127 	struct r1conf *conf = mddev->private;
3128 
3129 	switch(state) {
3130 	case 2: /* wake for suspend */
3131 		wake_up(&conf->wait_barrier);
3132 		break;
3133 	case 1:
3134 		freeze_array(conf, 0);
3135 		break;
3136 	case 0:
3137 		unfreeze_array(conf);
3138 		break;
3139 	}
3140 }
3141 
3142 static void *raid1_takeover(struct mddev *mddev)
3143 {
3144 	/* raid1 can take over:
3145 	 *  raid5 with 2 devices, any layout or chunk size
3146 	 */
3147 	if (mddev->level == 5 && mddev->raid_disks == 2) {
3148 		struct r1conf *conf;
3149 		mddev->new_level = 1;
3150 		mddev->new_layout = 0;
3151 		mddev->new_chunk_sectors = 0;
3152 		conf = setup_conf(mddev);
3153 		if (!IS_ERR(conf))
3154 			/* Array must appear to be quiesced */
3155 			conf->array_frozen = 1;
3156 		return conf;
3157 	}
3158 	return ERR_PTR(-EINVAL);
3159 }
3160 
3161 static struct md_personality raid1_personality =
3162 {
3163 	.name		= "raid1",
3164 	.level		= 1,
3165 	.owner		= THIS_MODULE,
3166 	.make_request	= make_request,
3167 	.run		= run,
3168 	.stop		= stop,
3169 	.status		= status,
3170 	.error_handler	= error,
3171 	.hot_add_disk	= raid1_add_disk,
3172 	.hot_remove_disk= raid1_remove_disk,
3173 	.spare_active	= raid1_spare_active,
3174 	.sync_request	= sync_request,
3175 	.resize		= raid1_resize,
3176 	.size		= raid1_size,
3177 	.check_reshape	= raid1_reshape,
3178 	.quiesce	= raid1_quiesce,
3179 	.takeover	= raid1_takeover,
3180 };
3181 
3182 static int __init raid_init(void)
3183 {
3184 	return register_md_personality(&raid1_personality);
3185 }
3186 
3187 static void raid_exit(void)
3188 {
3189 	unregister_md_personality(&raid1_personality);
3190 }
3191 
3192 module_init(raid_init);
3193 module_exit(raid_exit);
3194 MODULE_LICENSE("GPL");
3195 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3196 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3197 MODULE_ALIAS("md-raid1");
3198 MODULE_ALIAS("md-level-1");
3199 
3200 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
3201