xref: /openbmc/linux/drivers/md/raid1.c (revision 414e6b9a)
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33 
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include "md.h"
41 #include "raid1.h"
42 #include "bitmap.h"
43 
44 /*
45  * Number of guaranteed r1bios in case of extreme VM load:
46  */
47 #define	NR_RAID1_BIOS 256
48 
49 /* when we get a read error on a read-only array, we redirect to another
50  * device without failing the first device, or trying to over-write to
51  * correct the read error.  To keep track of bad blocks on a per-bio
52  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
53  */
54 #define IO_BLOCKED ((struct bio *)1)
55 /* When we successfully write to a known bad-block, we need to remove the
56  * bad-block marking which must be done from process context.  So we record
57  * the success by setting devs[n].bio to IO_MADE_GOOD
58  */
59 #define IO_MADE_GOOD ((struct bio *)2)
60 
61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
62 
63 /* When there are this many requests queue to be written by
64  * the raid1 thread, we become 'congested' to provide back-pressure
65  * for writeback.
66  */
67 static int max_queued_requests = 1024;
68 
69 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
70 			  sector_t bi_sector);
71 static void lower_barrier(struct r1conf *conf);
72 
73 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
74 {
75 	struct pool_info *pi = data;
76 	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
77 
78 	/* allocate a r1bio with room for raid_disks entries in the bios array */
79 	return kzalloc(size, gfp_flags);
80 }
81 
82 static void r1bio_pool_free(void *r1_bio, void *data)
83 {
84 	kfree(r1_bio);
85 }
86 
87 #define RESYNC_BLOCK_SIZE (64*1024)
88 #define RESYNC_DEPTH 32
89 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
90 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
91 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
92 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
93 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
94 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
95 #define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
96 
97 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
98 {
99 	struct pool_info *pi = data;
100 	struct r1bio *r1_bio;
101 	struct bio *bio;
102 	int need_pages;
103 	int i, j;
104 
105 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
106 	if (!r1_bio)
107 		return NULL;
108 
109 	/*
110 	 * Allocate bios : 1 for reading, n-1 for writing
111 	 */
112 	for (j = pi->raid_disks ; j-- ; ) {
113 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
114 		if (!bio)
115 			goto out_free_bio;
116 		r1_bio->bios[j] = bio;
117 	}
118 	/*
119 	 * Allocate RESYNC_PAGES data pages and attach them to
120 	 * the first bio.
121 	 * If this is a user-requested check/repair, allocate
122 	 * RESYNC_PAGES for each bio.
123 	 */
124 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
125 		need_pages = pi->raid_disks;
126 	else
127 		need_pages = 1;
128 	for (j = 0; j < need_pages; j++) {
129 		bio = r1_bio->bios[j];
130 		bio->bi_vcnt = RESYNC_PAGES;
131 
132 		if (bio_alloc_pages(bio, gfp_flags))
133 			goto out_free_pages;
134 	}
135 	/* If not user-requests, copy the page pointers to all bios */
136 	if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
137 		for (i=0; i<RESYNC_PAGES ; i++)
138 			for (j=1; j<pi->raid_disks; j++)
139 				r1_bio->bios[j]->bi_io_vec[i].bv_page =
140 					r1_bio->bios[0]->bi_io_vec[i].bv_page;
141 	}
142 
143 	r1_bio->master_bio = NULL;
144 
145 	return r1_bio;
146 
147 out_free_pages:
148 	while (--j >= 0) {
149 		struct bio_vec *bv;
150 
151 		bio_for_each_segment_all(bv, r1_bio->bios[j], i)
152 			__free_page(bv->bv_page);
153 	}
154 
155 out_free_bio:
156 	while (++j < pi->raid_disks)
157 		bio_put(r1_bio->bios[j]);
158 	r1bio_pool_free(r1_bio, data);
159 	return NULL;
160 }
161 
162 static void r1buf_pool_free(void *__r1_bio, void *data)
163 {
164 	struct pool_info *pi = data;
165 	int i,j;
166 	struct r1bio *r1bio = __r1_bio;
167 
168 	for (i = 0; i < RESYNC_PAGES; i++)
169 		for (j = pi->raid_disks; j-- ;) {
170 			if (j == 0 ||
171 			    r1bio->bios[j]->bi_io_vec[i].bv_page !=
172 			    r1bio->bios[0]->bi_io_vec[i].bv_page)
173 				safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
174 		}
175 	for (i=0 ; i < pi->raid_disks; i++)
176 		bio_put(r1bio->bios[i]);
177 
178 	r1bio_pool_free(r1bio, data);
179 }
180 
181 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
182 {
183 	int i;
184 
185 	for (i = 0; i < conf->raid_disks * 2; i++) {
186 		struct bio **bio = r1_bio->bios + i;
187 		if (!BIO_SPECIAL(*bio))
188 			bio_put(*bio);
189 		*bio = NULL;
190 	}
191 }
192 
193 static void free_r1bio(struct r1bio *r1_bio)
194 {
195 	struct r1conf *conf = r1_bio->mddev->private;
196 
197 	put_all_bios(conf, r1_bio);
198 	mempool_free(r1_bio, conf->r1bio_pool);
199 }
200 
201 static void put_buf(struct r1bio *r1_bio)
202 {
203 	struct r1conf *conf = r1_bio->mddev->private;
204 	int i;
205 
206 	for (i = 0; i < conf->raid_disks * 2; i++) {
207 		struct bio *bio = r1_bio->bios[i];
208 		if (bio->bi_end_io)
209 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
210 	}
211 
212 	mempool_free(r1_bio, conf->r1buf_pool);
213 
214 	lower_barrier(conf);
215 }
216 
217 static void reschedule_retry(struct r1bio *r1_bio)
218 {
219 	unsigned long flags;
220 	struct mddev *mddev = r1_bio->mddev;
221 	struct r1conf *conf = mddev->private;
222 
223 	spin_lock_irqsave(&conf->device_lock, flags);
224 	list_add(&r1_bio->retry_list, &conf->retry_list);
225 	conf->nr_queued ++;
226 	spin_unlock_irqrestore(&conf->device_lock, flags);
227 
228 	wake_up(&conf->wait_barrier);
229 	md_wakeup_thread(mddev->thread);
230 }
231 
232 /*
233  * raid_end_bio_io() is called when we have finished servicing a mirrored
234  * operation and are ready to return a success/failure code to the buffer
235  * cache layer.
236  */
237 static void call_bio_endio(struct r1bio *r1_bio)
238 {
239 	struct bio *bio = r1_bio->master_bio;
240 	int done;
241 	struct r1conf *conf = r1_bio->mddev->private;
242 	sector_t start_next_window = r1_bio->start_next_window;
243 	sector_t bi_sector = bio->bi_iter.bi_sector;
244 
245 	if (bio->bi_phys_segments) {
246 		unsigned long flags;
247 		spin_lock_irqsave(&conf->device_lock, flags);
248 		bio->bi_phys_segments--;
249 		done = (bio->bi_phys_segments == 0);
250 		spin_unlock_irqrestore(&conf->device_lock, flags);
251 		/*
252 		 * make_request() might be waiting for
253 		 * bi_phys_segments to decrease
254 		 */
255 		wake_up(&conf->wait_barrier);
256 	} else
257 		done = 1;
258 
259 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
260 		bio->bi_error = -EIO;
261 
262 	if (done) {
263 		bio_endio(bio);
264 		/*
265 		 * Wake up any possible resync thread that waits for the device
266 		 * to go idle.
267 		 */
268 		allow_barrier(conf, start_next_window, bi_sector);
269 	}
270 }
271 
272 static void raid_end_bio_io(struct r1bio *r1_bio)
273 {
274 	struct bio *bio = r1_bio->master_bio;
275 
276 	/* if nobody has done the final endio yet, do it now */
277 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
278 		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
279 			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
280 			 (unsigned long long) bio->bi_iter.bi_sector,
281 			 (unsigned long long) bio_end_sector(bio) - 1);
282 
283 		call_bio_endio(r1_bio);
284 	}
285 	free_r1bio(r1_bio);
286 }
287 
288 /*
289  * Update disk head position estimator based on IRQ completion info.
290  */
291 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
292 {
293 	struct r1conf *conf = r1_bio->mddev->private;
294 
295 	conf->mirrors[disk].head_position =
296 		r1_bio->sector + (r1_bio->sectors);
297 }
298 
299 /*
300  * Find the disk number which triggered given bio
301  */
302 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
303 {
304 	int mirror;
305 	struct r1conf *conf = r1_bio->mddev->private;
306 	int raid_disks = conf->raid_disks;
307 
308 	for (mirror = 0; mirror < raid_disks * 2; mirror++)
309 		if (r1_bio->bios[mirror] == bio)
310 			break;
311 
312 	BUG_ON(mirror == raid_disks * 2);
313 	update_head_pos(mirror, r1_bio);
314 
315 	return mirror;
316 }
317 
318 static void raid1_end_read_request(struct bio *bio)
319 {
320 	int uptodate = !bio->bi_error;
321 	struct r1bio *r1_bio = bio->bi_private;
322 	int mirror;
323 	struct r1conf *conf = r1_bio->mddev->private;
324 
325 	mirror = r1_bio->read_disk;
326 	/*
327 	 * this branch is our 'one mirror IO has finished' event handler:
328 	 */
329 	update_head_pos(mirror, r1_bio);
330 
331 	if (uptodate)
332 		set_bit(R1BIO_Uptodate, &r1_bio->state);
333 	else {
334 		/* If all other devices have failed, we want to return
335 		 * the error upwards rather than fail the last device.
336 		 * Here we redefine "uptodate" to mean "Don't want to retry"
337 		 */
338 		unsigned long flags;
339 		spin_lock_irqsave(&conf->device_lock, flags);
340 		if (r1_bio->mddev->degraded == conf->raid_disks ||
341 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
342 		     test_bit(In_sync, &conf->mirrors[mirror].rdev->flags)))
343 			uptodate = 1;
344 		spin_unlock_irqrestore(&conf->device_lock, flags);
345 	}
346 
347 	if (uptodate) {
348 		raid_end_bio_io(r1_bio);
349 		rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
350 	} else {
351 		/*
352 		 * oops, read error:
353 		 */
354 		char b[BDEVNAME_SIZE];
355 		printk_ratelimited(
356 			KERN_ERR "md/raid1:%s: %s: "
357 			"rescheduling sector %llu\n",
358 			mdname(conf->mddev),
359 			bdevname(conf->mirrors[mirror].rdev->bdev,
360 				 b),
361 			(unsigned long long)r1_bio->sector);
362 		set_bit(R1BIO_ReadError, &r1_bio->state);
363 		reschedule_retry(r1_bio);
364 		/* don't drop the reference on read_disk yet */
365 	}
366 }
367 
368 static void close_write(struct r1bio *r1_bio)
369 {
370 	/* it really is the end of this request */
371 	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
372 		/* free extra copy of the data pages */
373 		int i = r1_bio->behind_page_count;
374 		while (i--)
375 			safe_put_page(r1_bio->behind_bvecs[i].bv_page);
376 		kfree(r1_bio->behind_bvecs);
377 		r1_bio->behind_bvecs = NULL;
378 	}
379 	/* clear the bitmap if all writes complete successfully */
380 	bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
381 			r1_bio->sectors,
382 			!test_bit(R1BIO_Degraded, &r1_bio->state),
383 			test_bit(R1BIO_BehindIO, &r1_bio->state));
384 	md_write_end(r1_bio->mddev);
385 }
386 
387 static void r1_bio_write_done(struct r1bio *r1_bio)
388 {
389 	if (!atomic_dec_and_test(&r1_bio->remaining))
390 		return;
391 
392 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
393 		reschedule_retry(r1_bio);
394 	else {
395 		close_write(r1_bio);
396 		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
397 			reschedule_retry(r1_bio);
398 		else
399 			raid_end_bio_io(r1_bio);
400 	}
401 }
402 
403 static void raid1_end_write_request(struct bio *bio)
404 {
405 	struct r1bio *r1_bio = bio->bi_private;
406 	int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
407 	struct r1conf *conf = r1_bio->mddev->private;
408 	struct bio *to_put = NULL;
409 
410 	mirror = find_bio_disk(r1_bio, bio);
411 
412 	/*
413 	 * 'one mirror IO has finished' event handler:
414 	 */
415 	if (bio->bi_error) {
416 		set_bit(WriteErrorSeen,
417 			&conf->mirrors[mirror].rdev->flags);
418 		if (!test_and_set_bit(WantReplacement,
419 				      &conf->mirrors[mirror].rdev->flags))
420 			set_bit(MD_RECOVERY_NEEDED, &
421 				conf->mddev->recovery);
422 
423 		set_bit(R1BIO_WriteError, &r1_bio->state);
424 	} else {
425 		/*
426 		 * Set R1BIO_Uptodate in our master bio, so that we
427 		 * will return a good error code for to the higher
428 		 * levels even if IO on some other mirrored buffer
429 		 * fails.
430 		 *
431 		 * The 'master' represents the composite IO operation
432 		 * to user-side. So if something waits for IO, then it
433 		 * will wait for the 'master' bio.
434 		 */
435 		sector_t first_bad;
436 		int bad_sectors;
437 
438 		r1_bio->bios[mirror] = NULL;
439 		to_put = bio;
440 		/*
441 		 * Do not set R1BIO_Uptodate if the current device is
442 		 * rebuilding or Faulty. This is because we cannot use
443 		 * such device for properly reading the data back (we could
444 		 * potentially use it, if the current write would have felt
445 		 * before rdev->recovery_offset, but for simplicity we don't
446 		 * check this here.
447 		 */
448 		if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) &&
449 		    !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))
450 			set_bit(R1BIO_Uptodate, &r1_bio->state);
451 
452 		/* Maybe we can clear some bad blocks. */
453 		if (is_badblock(conf->mirrors[mirror].rdev,
454 				r1_bio->sector, r1_bio->sectors,
455 				&first_bad, &bad_sectors)) {
456 			r1_bio->bios[mirror] = IO_MADE_GOOD;
457 			set_bit(R1BIO_MadeGood, &r1_bio->state);
458 		}
459 	}
460 
461 	if (behind) {
462 		if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
463 			atomic_dec(&r1_bio->behind_remaining);
464 
465 		/*
466 		 * In behind mode, we ACK the master bio once the I/O
467 		 * has safely reached all non-writemostly
468 		 * disks. Setting the Returned bit ensures that this
469 		 * gets done only once -- we don't ever want to return
470 		 * -EIO here, instead we'll wait
471 		 */
472 		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
473 		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
474 			/* Maybe we can return now */
475 			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
476 				struct bio *mbio = r1_bio->master_bio;
477 				pr_debug("raid1: behind end write sectors"
478 					 " %llu-%llu\n",
479 					 (unsigned long long) mbio->bi_iter.bi_sector,
480 					 (unsigned long long) bio_end_sector(mbio) - 1);
481 				call_bio_endio(r1_bio);
482 			}
483 		}
484 	}
485 	if (r1_bio->bios[mirror] == NULL)
486 		rdev_dec_pending(conf->mirrors[mirror].rdev,
487 				 conf->mddev);
488 
489 	/*
490 	 * Let's see if all mirrored write operations have finished
491 	 * already.
492 	 */
493 	r1_bio_write_done(r1_bio);
494 
495 	if (to_put)
496 		bio_put(to_put);
497 }
498 
499 /*
500  * This routine returns the disk from which the requested read should
501  * be done. There is a per-array 'next expected sequential IO' sector
502  * number - if this matches on the next IO then we use the last disk.
503  * There is also a per-disk 'last know head position' sector that is
504  * maintained from IRQ contexts, both the normal and the resync IO
505  * completion handlers update this position correctly. If there is no
506  * perfect sequential match then we pick the disk whose head is closest.
507  *
508  * If there are 2 mirrors in the same 2 devices, performance degrades
509  * because position is mirror, not device based.
510  *
511  * The rdev for the device selected will have nr_pending incremented.
512  */
513 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
514 {
515 	const sector_t this_sector = r1_bio->sector;
516 	int sectors;
517 	int best_good_sectors;
518 	int best_disk, best_dist_disk, best_pending_disk;
519 	int has_nonrot_disk;
520 	int disk;
521 	sector_t best_dist;
522 	unsigned int min_pending;
523 	struct md_rdev *rdev;
524 	int choose_first;
525 	int choose_next_idle;
526 
527 	rcu_read_lock();
528 	/*
529 	 * Check if we can balance. We can balance on the whole
530 	 * device if no resync is going on, or below the resync window.
531 	 * We take the first readable disk when above the resync window.
532 	 */
533  retry:
534 	sectors = r1_bio->sectors;
535 	best_disk = -1;
536 	best_dist_disk = -1;
537 	best_dist = MaxSector;
538 	best_pending_disk = -1;
539 	min_pending = UINT_MAX;
540 	best_good_sectors = 0;
541 	has_nonrot_disk = 0;
542 	choose_next_idle = 0;
543 
544 	if ((conf->mddev->recovery_cp < this_sector + sectors) ||
545 	    (mddev_is_clustered(conf->mddev) &&
546 	    md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
547 		    this_sector + sectors)))
548 		choose_first = 1;
549 	else
550 		choose_first = 0;
551 
552 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
553 		sector_t dist;
554 		sector_t first_bad;
555 		int bad_sectors;
556 		unsigned int pending;
557 		bool nonrot;
558 
559 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
560 		if (r1_bio->bios[disk] == IO_BLOCKED
561 		    || rdev == NULL
562 		    || test_bit(Faulty, &rdev->flags))
563 			continue;
564 		if (!test_bit(In_sync, &rdev->flags) &&
565 		    rdev->recovery_offset < this_sector + sectors)
566 			continue;
567 		if (test_bit(WriteMostly, &rdev->flags)) {
568 			/* Don't balance among write-mostly, just
569 			 * use the first as a last resort */
570 			if (best_dist_disk < 0) {
571 				if (is_badblock(rdev, this_sector, sectors,
572 						&first_bad, &bad_sectors)) {
573 					if (first_bad <= this_sector)
574 						/* Cannot use this */
575 						continue;
576 					best_good_sectors = first_bad - this_sector;
577 				} else
578 					best_good_sectors = sectors;
579 				best_dist_disk = disk;
580 				best_pending_disk = disk;
581 			}
582 			continue;
583 		}
584 		/* This is a reasonable device to use.  It might
585 		 * even be best.
586 		 */
587 		if (is_badblock(rdev, this_sector, sectors,
588 				&first_bad, &bad_sectors)) {
589 			if (best_dist < MaxSector)
590 				/* already have a better device */
591 				continue;
592 			if (first_bad <= this_sector) {
593 				/* cannot read here. If this is the 'primary'
594 				 * device, then we must not read beyond
595 				 * bad_sectors from another device..
596 				 */
597 				bad_sectors -= (this_sector - first_bad);
598 				if (choose_first && sectors > bad_sectors)
599 					sectors = bad_sectors;
600 				if (best_good_sectors > sectors)
601 					best_good_sectors = sectors;
602 
603 			} else {
604 				sector_t good_sectors = first_bad - this_sector;
605 				if (good_sectors > best_good_sectors) {
606 					best_good_sectors = good_sectors;
607 					best_disk = disk;
608 				}
609 				if (choose_first)
610 					break;
611 			}
612 			continue;
613 		} else
614 			best_good_sectors = sectors;
615 
616 		nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
617 		has_nonrot_disk |= nonrot;
618 		pending = atomic_read(&rdev->nr_pending);
619 		dist = abs(this_sector - conf->mirrors[disk].head_position);
620 		if (choose_first) {
621 			best_disk = disk;
622 			break;
623 		}
624 		/* Don't change to another disk for sequential reads */
625 		if (conf->mirrors[disk].next_seq_sect == this_sector
626 		    || dist == 0) {
627 			int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
628 			struct raid1_info *mirror = &conf->mirrors[disk];
629 
630 			best_disk = disk;
631 			/*
632 			 * If buffered sequential IO size exceeds optimal
633 			 * iosize, check if there is idle disk. If yes, choose
634 			 * the idle disk. read_balance could already choose an
635 			 * idle disk before noticing it's a sequential IO in
636 			 * this disk. This doesn't matter because this disk
637 			 * will idle, next time it will be utilized after the
638 			 * first disk has IO size exceeds optimal iosize. In
639 			 * this way, iosize of the first disk will be optimal
640 			 * iosize at least. iosize of the second disk might be
641 			 * small, but not a big deal since when the second disk
642 			 * starts IO, the first disk is likely still busy.
643 			 */
644 			if (nonrot && opt_iosize > 0 &&
645 			    mirror->seq_start != MaxSector &&
646 			    mirror->next_seq_sect > opt_iosize &&
647 			    mirror->next_seq_sect - opt_iosize >=
648 			    mirror->seq_start) {
649 				choose_next_idle = 1;
650 				continue;
651 			}
652 			break;
653 		}
654 		/* If device is idle, use it */
655 		if (pending == 0) {
656 			best_disk = disk;
657 			break;
658 		}
659 
660 		if (choose_next_idle)
661 			continue;
662 
663 		if (min_pending > pending) {
664 			min_pending = pending;
665 			best_pending_disk = disk;
666 		}
667 
668 		if (dist < best_dist) {
669 			best_dist = dist;
670 			best_dist_disk = disk;
671 		}
672 	}
673 
674 	/*
675 	 * If all disks are rotational, choose the closest disk. If any disk is
676 	 * non-rotational, choose the disk with less pending request even the
677 	 * disk is rotational, which might/might not be optimal for raids with
678 	 * mixed ratation/non-rotational disks depending on workload.
679 	 */
680 	if (best_disk == -1) {
681 		if (has_nonrot_disk)
682 			best_disk = best_pending_disk;
683 		else
684 			best_disk = best_dist_disk;
685 	}
686 
687 	if (best_disk >= 0) {
688 		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
689 		if (!rdev)
690 			goto retry;
691 		atomic_inc(&rdev->nr_pending);
692 		sectors = best_good_sectors;
693 
694 		if (conf->mirrors[best_disk].next_seq_sect != this_sector)
695 			conf->mirrors[best_disk].seq_start = this_sector;
696 
697 		conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
698 	}
699 	rcu_read_unlock();
700 	*max_sectors = sectors;
701 
702 	return best_disk;
703 }
704 
705 static int raid1_congested(struct mddev *mddev, int bits)
706 {
707 	struct r1conf *conf = mddev->private;
708 	int i, ret = 0;
709 
710 	if ((bits & (1 << WB_async_congested)) &&
711 	    conf->pending_count >= max_queued_requests)
712 		return 1;
713 
714 	rcu_read_lock();
715 	for (i = 0; i < conf->raid_disks * 2; i++) {
716 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
717 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
718 			struct request_queue *q = bdev_get_queue(rdev->bdev);
719 
720 			BUG_ON(!q);
721 
722 			/* Note the '|| 1' - when read_balance prefers
723 			 * non-congested targets, it can be removed
724 			 */
725 			if ((bits & (1 << WB_async_congested)) || 1)
726 				ret |= bdi_congested(&q->backing_dev_info, bits);
727 			else
728 				ret &= bdi_congested(&q->backing_dev_info, bits);
729 		}
730 	}
731 	rcu_read_unlock();
732 	return ret;
733 }
734 
735 static void flush_pending_writes(struct r1conf *conf)
736 {
737 	/* Any writes that have been queued but are awaiting
738 	 * bitmap updates get flushed here.
739 	 */
740 	spin_lock_irq(&conf->device_lock);
741 
742 	if (conf->pending_bio_list.head) {
743 		struct bio *bio;
744 		bio = bio_list_get(&conf->pending_bio_list);
745 		conf->pending_count = 0;
746 		spin_unlock_irq(&conf->device_lock);
747 		/* flush any pending bitmap writes to
748 		 * disk before proceeding w/ I/O */
749 		bitmap_unplug(conf->mddev->bitmap);
750 		wake_up(&conf->wait_barrier);
751 
752 		while (bio) { /* submit pending writes */
753 			struct bio *next = bio->bi_next;
754 			bio->bi_next = NULL;
755 			if (unlikely((bio->bi_rw & REQ_DISCARD) &&
756 			    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
757 				/* Just ignore it */
758 				bio_endio(bio);
759 			else
760 				generic_make_request(bio);
761 			bio = next;
762 		}
763 	} else
764 		spin_unlock_irq(&conf->device_lock);
765 }
766 
767 /* Barriers....
768  * Sometimes we need to suspend IO while we do something else,
769  * either some resync/recovery, or reconfigure the array.
770  * To do this we raise a 'barrier'.
771  * The 'barrier' is a counter that can be raised multiple times
772  * to count how many activities are happening which preclude
773  * normal IO.
774  * We can only raise the barrier if there is no pending IO.
775  * i.e. if nr_pending == 0.
776  * We choose only to raise the barrier if no-one is waiting for the
777  * barrier to go down.  This means that as soon as an IO request
778  * is ready, no other operations which require a barrier will start
779  * until the IO request has had a chance.
780  *
781  * So: regular IO calls 'wait_barrier'.  When that returns there
782  *    is no backgroup IO happening,  It must arrange to call
783  *    allow_barrier when it has finished its IO.
784  * backgroup IO calls must call raise_barrier.  Once that returns
785  *    there is no normal IO happeing.  It must arrange to call
786  *    lower_barrier when the particular background IO completes.
787  */
788 static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
789 {
790 	spin_lock_irq(&conf->resync_lock);
791 
792 	/* Wait until no block IO is waiting */
793 	wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
794 			    conf->resync_lock);
795 
796 	/* block any new IO from starting */
797 	conf->barrier++;
798 	conf->next_resync = sector_nr;
799 
800 	/* For these conditions we must wait:
801 	 * A: while the array is in frozen state
802 	 * B: while barrier >= RESYNC_DEPTH, meaning resync reach
803 	 *    the max count which allowed.
804 	 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
805 	 *    next resync will reach to the window which normal bios are
806 	 *    handling.
807 	 * D: while there are any active requests in the current window.
808 	 */
809 	wait_event_lock_irq(conf->wait_barrier,
810 			    !conf->array_frozen &&
811 			    conf->barrier < RESYNC_DEPTH &&
812 			    conf->current_window_requests == 0 &&
813 			    (conf->start_next_window >=
814 			     conf->next_resync + RESYNC_SECTORS),
815 			    conf->resync_lock);
816 
817 	conf->nr_pending++;
818 	spin_unlock_irq(&conf->resync_lock);
819 }
820 
821 static void lower_barrier(struct r1conf *conf)
822 {
823 	unsigned long flags;
824 	BUG_ON(conf->barrier <= 0);
825 	spin_lock_irqsave(&conf->resync_lock, flags);
826 	conf->barrier--;
827 	conf->nr_pending--;
828 	spin_unlock_irqrestore(&conf->resync_lock, flags);
829 	wake_up(&conf->wait_barrier);
830 }
831 
832 static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
833 {
834 	bool wait = false;
835 
836 	if (conf->array_frozen || !bio)
837 		wait = true;
838 	else if (conf->barrier && bio_data_dir(bio) == WRITE) {
839 		if ((conf->mddev->curr_resync_completed
840 		     >= bio_end_sector(bio)) ||
841 		    (conf->next_resync + NEXT_NORMALIO_DISTANCE
842 		     <= bio->bi_iter.bi_sector))
843 			wait = false;
844 		else
845 			wait = true;
846 	}
847 
848 	return wait;
849 }
850 
851 static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
852 {
853 	sector_t sector = 0;
854 
855 	spin_lock_irq(&conf->resync_lock);
856 	if (need_to_wait_for_sync(conf, bio)) {
857 		conf->nr_waiting++;
858 		/* Wait for the barrier to drop.
859 		 * However if there are already pending
860 		 * requests (preventing the barrier from
861 		 * rising completely), and the
862 		 * per-process bio queue isn't empty,
863 		 * then don't wait, as we need to empty
864 		 * that queue to allow conf->start_next_window
865 		 * to increase.
866 		 */
867 		wait_event_lock_irq(conf->wait_barrier,
868 				    !conf->array_frozen &&
869 				    (!conf->barrier ||
870 				     ((conf->start_next_window <
871 				       conf->next_resync + RESYNC_SECTORS) &&
872 				      current->bio_list &&
873 				      !bio_list_empty(current->bio_list))),
874 				    conf->resync_lock);
875 		conf->nr_waiting--;
876 	}
877 
878 	if (bio && bio_data_dir(bio) == WRITE) {
879 		if (bio->bi_iter.bi_sector >= conf->next_resync) {
880 			if (conf->start_next_window == MaxSector)
881 				conf->start_next_window =
882 					conf->next_resync +
883 					NEXT_NORMALIO_DISTANCE;
884 
885 			if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
886 			    <= bio->bi_iter.bi_sector)
887 				conf->next_window_requests++;
888 			else
889 				conf->current_window_requests++;
890 			sector = conf->start_next_window;
891 		}
892 	}
893 
894 	conf->nr_pending++;
895 	spin_unlock_irq(&conf->resync_lock);
896 	return sector;
897 }
898 
899 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
900 			  sector_t bi_sector)
901 {
902 	unsigned long flags;
903 
904 	spin_lock_irqsave(&conf->resync_lock, flags);
905 	conf->nr_pending--;
906 	if (start_next_window) {
907 		if (start_next_window == conf->start_next_window) {
908 			if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
909 			    <= bi_sector)
910 				conf->next_window_requests--;
911 			else
912 				conf->current_window_requests--;
913 		} else
914 			conf->current_window_requests--;
915 
916 		if (!conf->current_window_requests) {
917 			if (conf->next_window_requests) {
918 				conf->current_window_requests =
919 					conf->next_window_requests;
920 				conf->next_window_requests = 0;
921 				conf->start_next_window +=
922 					NEXT_NORMALIO_DISTANCE;
923 			} else
924 				conf->start_next_window = MaxSector;
925 		}
926 	}
927 	spin_unlock_irqrestore(&conf->resync_lock, flags);
928 	wake_up(&conf->wait_barrier);
929 }
930 
931 static void freeze_array(struct r1conf *conf, int extra)
932 {
933 	/* stop syncio and normal IO and wait for everything to
934 	 * go quite.
935 	 * We wait until nr_pending match nr_queued+extra
936 	 * This is called in the context of one normal IO request
937 	 * that has failed. Thus any sync request that might be pending
938 	 * will be blocked by nr_pending, and we need to wait for
939 	 * pending IO requests to complete or be queued for re-try.
940 	 * Thus the number queued (nr_queued) plus this request (extra)
941 	 * must match the number of pending IOs (nr_pending) before
942 	 * we continue.
943 	 */
944 	spin_lock_irq(&conf->resync_lock);
945 	conf->array_frozen = 1;
946 	wait_event_lock_irq_cmd(conf->wait_barrier,
947 				conf->nr_pending == conf->nr_queued+extra,
948 				conf->resync_lock,
949 				flush_pending_writes(conf));
950 	spin_unlock_irq(&conf->resync_lock);
951 }
952 static void unfreeze_array(struct r1conf *conf)
953 {
954 	/* reverse the effect of the freeze */
955 	spin_lock_irq(&conf->resync_lock);
956 	conf->array_frozen = 0;
957 	wake_up(&conf->wait_barrier);
958 	spin_unlock_irq(&conf->resync_lock);
959 }
960 
961 /* duplicate the data pages for behind I/O
962  */
963 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
964 {
965 	int i;
966 	struct bio_vec *bvec;
967 	struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
968 					GFP_NOIO);
969 	if (unlikely(!bvecs))
970 		return;
971 
972 	bio_for_each_segment_all(bvec, bio, i) {
973 		bvecs[i] = *bvec;
974 		bvecs[i].bv_page = alloc_page(GFP_NOIO);
975 		if (unlikely(!bvecs[i].bv_page))
976 			goto do_sync_io;
977 		memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
978 		       kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
979 		kunmap(bvecs[i].bv_page);
980 		kunmap(bvec->bv_page);
981 	}
982 	r1_bio->behind_bvecs = bvecs;
983 	r1_bio->behind_page_count = bio->bi_vcnt;
984 	set_bit(R1BIO_BehindIO, &r1_bio->state);
985 	return;
986 
987 do_sync_io:
988 	for (i = 0; i < bio->bi_vcnt; i++)
989 		if (bvecs[i].bv_page)
990 			put_page(bvecs[i].bv_page);
991 	kfree(bvecs);
992 	pr_debug("%dB behind alloc failed, doing sync I/O\n",
993 		 bio->bi_iter.bi_size);
994 }
995 
996 struct raid1_plug_cb {
997 	struct blk_plug_cb	cb;
998 	struct bio_list		pending;
999 	int			pending_cnt;
1000 };
1001 
1002 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1003 {
1004 	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1005 						  cb);
1006 	struct mddev *mddev = plug->cb.data;
1007 	struct r1conf *conf = mddev->private;
1008 	struct bio *bio;
1009 
1010 	if (from_schedule || current->bio_list) {
1011 		spin_lock_irq(&conf->device_lock);
1012 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1013 		conf->pending_count += plug->pending_cnt;
1014 		spin_unlock_irq(&conf->device_lock);
1015 		wake_up(&conf->wait_barrier);
1016 		md_wakeup_thread(mddev->thread);
1017 		kfree(plug);
1018 		return;
1019 	}
1020 
1021 	/* we aren't scheduling, so we can do the write-out directly. */
1022 	bio = bio_list_get(&plug->pending);
1023 	bitmap_unplug(mddev->bitmap);
1024 	wake_up(&conf->wait_barrier);
1025 
1026 	while (bio) { /* submit pending writes */
1027 		struct bio *next = bio->bi_next;
1028 		bio->bi_next = NULL;
1029 		if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1030 		    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1031 			/* Just ignore it */
1032 			bio_endio(bio);
1033 		else
1034 			generic_make_request(bio);
1035 		bio = next;
1036 	}
1037 	kfree(plug);
1038 }
1039 
1040 static void raid1_make_request(struct mddev *mddev, struct bio * bio)
1041 {
1042 	struct r1conf *conf = mddev->private;
1043 	struct raid1_info *mirror;
1044 	struct r1bio *r1_bio;
1045 	struct bio *read_bio;
1046 	int i, disks;
1047 	struct bitmap *bitmap;
1048 	unsigned long flags;
1049 	const int rw = bio_data_dir(bio);
1050 	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1051 	const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
1052 	const unsigned long do_discard = (bio->bi_rw
1053 					  & (REQ_DISCARD | REQ_SECURE));
1054 	const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1055 	struct md_rdev *blocked_rdev;
1056 	struct blk_plug_cb *cb;
1057 	struct raid1_plug_cb *plug = NULL;
1058 	int first_clone;
1059 	int sectors_handled;
1060 	int max_sectors;
1061 	sector_t start_next_window;
1062 
1063 	/*
1064 	 * Register the new request and wait if the reconstruction
1065 	 * thread has put up a bar for new requests.
1066 	 * Continue immediately if no resync is active currently.
1067 	 */
1068 
1069 	md_write_start(mddev, bio); /* wait on superblock update early */
1070 
1071 	if (bio_data_dir(bio) == WRITE &&
1072 	    ((bio_end_sector(bio) > mddev->suspend_lo &&
1073 	    bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1074 	    (mddev_is_clustered(mddev) &&
1075 	     md_cluster_ops->area_resyncing(mddev, WRITE,
1076 		     bio->bi_iter.bi_sector, bio_end_sector(bio))))) {
1077 		/* As the suspend_* range is controlled by
1078 		 * userspace, we want an interruptible
1079 		 * wait.
1080 		 */
1081 		DEFINE_WAIT(w);
1082 		for (;;) {
1083 			flush_signals(current);
1084 			prepare_to_wait(&conf->wait_barrier,
1085 					&w, TASK_INTERRUPTIBLE);
1086 			if (bio_end_sector(bio) <= mddev->suspend_lo ||
1087 			    bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1088 			    (mddev_is_clustered(mddev) &&
1089 			     !md_cluster_ops->area_resyncing(mddev, WRITE,
1090 				     bio->bi_iter.bi_sector, bio_end_sector(bio))))
1091 				break;
1092 			schedule();
1093 		}
1094 		finish_wait(&conf->wait_barrier, &w);
1095 	}
1096 
1097 	start_next_window = wait_barrier(conf, bio);
1098 
1099 	bitmap = mddev->bitmap;
1100 
1101 	/*
1102 	 * make_request() can abort the operation when READA is being
1103 	 * used and no empty request is available.
1104 	 *
1105 	 */
1106 	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1107 
1108 	r1_bio->master_bio = bio;
1109 	r1_bio->sectors = bio_sectors(bio);
1110 	r1_bio->state = 0;
1111 	r1_bio->mddev = mddev;
1112 	r1_bio->sector = bio->bi_iter.bi_sector;
1113 
1114 	/* We might need to issue multiple reads to different
1115 	 * devices if there are bad blocks around, so we keep
1116 	 * track of the number of reads in bio->bi_phys_segments.
1117 	 * If this is 0, there is only one r1_bio and no locking
1118 	 * will be needed when requests complete.  If it is
1119 	 * non-zero, then it is the number of not-completed requests.
1120 	 */
1121 	bio->bi_phys_segments = 0;
1122 	bio_clear_flag(bio, BIO_SEG_VALID);
1123 
1124 	if (rw == READ) {
1125 		/*
1126 		 * read balancing logic:
1127 		 */
1128 		int rdisk;
1129 
1130 read_again:
1131 		rdisk = read_balance(conf, r1_bio, &max_sectors);
1132 
1133 		if (rdisk < 0) {
1134 			/* couldn't find anywhere to read from */
1135 			raid_end_bio_io(r1_bio);
1136 			return;
1137 		}
1138 		mirror = conf->mirrors + rdisk;
1139 
1140 		if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1141 		    bitmap) {
1142 			/* Reading from a write-mostly device must
1143 			 * take care not to over-take any writes
1144 			 * that are 'behind'
1145 			 */
1146 			wait_event(bitmap->behind_wait,
1147 				   atomic_read(&bitmap->behind_writes) == 0);
1148 		}
1149 		r1_bio->read_disk = rdisk;
1150 		r1_bio->start_next_window = 0;
1151 
1152 		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1153 		bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1154 			 max_sectors);
1155 
1156 		r1_bio->bios[rdisk] = read_bio;
1157 
1158 		read_bio->bi_iter.bi_sector = r1_bio->sector +
1159 			mirror->rdev->data_offset;
1160 		read_bio->bi_bdev = mirror->rdev->bdev;
1161 		read_bio->bi_end_io = raid1_end_read_request;
1162 		read_bio->bi_rw = READ | do_sync;
1163 		read_bio->bi_private = r1_bio;
1164 
1165 		if (max_sectors < r1_bio->sectors) {
1166 			/* could not read all from this device, so we will
1167 			 * need another r1_bio.
1168 			 */
1169 
1170 			sectors_handled = (r1_bio->sector + max_sectors
1171 					   - bio->bi_iter.bi_sector);
1172 			r1_bio->sectors = max_sectors;
1173 			spin_lock_irq(&conf->device_lock);
1174 			if (bio->bi_phys_segments == 0)
1175 				bio->bi_phys_segments = 2;
1176 			else
1177 				bio->bi_phys_segments++;
1178 			spin_unlock_irq(&conf->device_lock);
1179 			/* Cannot call generic_make_request directly
1180 			 * as that will be queued in __make_request
1181 			 * and subsequent mempool_alloc might block waiting
1182 			 * for it.  So hand bio over to raid1d.
1183 			 */
1184 			reschedule_retry(r1_bio);
1185 
1186 			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1187 
1188 			r1_bio->master_bio = bio;
1189 			r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1190 			r1_bio->state = 0;
1191 			r1_bio->mddev = mddev;
1192 			r1_bio->sector = bio->bi_iter.bi_sector +
1193 				sectors_handled;
1194 			goto read_again;
1195 		} else
1196 			generic_make_request(read_bio);
1197 		return;
1198 	}
1199 
1200 	/*
1201 	 * WRITE:
1202 	 */
1203 	if (conf->pending_count >= max_queued_requests) {
1204 		md_wakeup_thread(mddev->thread);
1205 		wait_event(conf->wait_barrier,
1206 			   conf->pending_count < max_queued_requests);
1207 	}
1208 	/* first select target devices under rcu_lock and
1209 	 * inc refcount on their rdev.  Record them by setting
1210 	 * bios[x] to bio
1211 	 * If there are known/acknowledged bad blocks on any device on
1212 	 * which we have seen a write error, we want to avoid writing those
1213 	 * blocks.
1214 	 * This potentially requires several writes to write around
1215 	 * the bad blocks.  Each set of writes gets it's own r1bio
1216 	 * with a set of bios attached.
1217 	 */
1218 
1219 	disks = conf->raid_disks * 2;
1220  retry_write:
1221 	r1_bio->start_next_window = start_next_window;
1222 	blocked_rdev = NULL;
1223 	rcu_read_lock();
1224 	max_sectors = r1_bio->sectors;
1225 	for (i = 0;  i < disks; i++) {
1226 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1227 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1228 			atomic_inc(&rdev->nr_pending);
1229 			blocked_rdev = rdev;
1230 			break;
1231 		}
1232 		r1_bio->bios[i] = NULL;
1233 		if (!rdev || test_bit(Faulty, &rdev->flags)) {
1234 			if (i < conf->raid_disks)
1235 				set_bit(R1BIO_Degraded, &r1_bio->state);
1236 			continue;
1237 		}
1238 
1239 		atomic_inc(&rdev->nr_pending);
1240 		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1241 			sector_t first_bad;
1242 			int bad_sectors;
1243 			int is_bad;
1244 
1245 			is_bad = is_badblock(rdev, r1_bio->sector,
1246 					     max_sectors,
1247 					     &first_bad, &bad_sectors);
1248 			if (is_bad < 0) {
1249 				/* mustn't write here until the bad block is
1250 				 * acknowledged*/
1251 				set_bit(BlockedBadBlocks, &rdev->flags);
1252 				blocked_rdev = rdev;
1253 				break;
1254 			}
1255 			if (is_bad && first_bad <= r1_bio->sector) {
1256 				/* Cannot write here at all */
1257 				bad_sectors -= (r1_bio->sector - first_bad);
1258 				if (bad_sectors < max_sectors)
1259 					/* mustn't write more than bad_sectors
1260 					 * to other devices yet
1261 					 */
1262 					max_sectors = bad_sectors;
1263 				rdev_dec_pending(rdev, mddev);
1264 				/* We don't set R1BIO_Degraded as that
1265 				 * only applies if the disk is
1266 				 * missing, so it might be re-added,
1267 				 * and we want to know to recover this
1268 				 * chunk.
1269 				 * In this case the device is here,
1270 				 * and the fact that this chunk is not
1271 				 * in-sync is recorded in the bad
1272 				 * block log
1273 				 */
1274 				continue;
1275 			}
1276 			if (is_bad) {
1277 				int good_sectors = first_bad - r1_bio->sector;
1278 				if (good_sectors < max_sectors)
1279 					max_sectors = good_sectors;
1280 			}
1281 		}
1282 		r1_bio->bios[i] = bio;
1283 	}
1284 	rcu_read_unlock();
1285 
1286 	if (unlikely(blocked_rdev)) {
1287 		/* Wait for this device to become unblocked */
1288 		int j;
1289 		sector_t old = start_next_window;
1290 
1291 		for (j = 0; j < i; j++)
1292 			if (r1_bio->bios[j])
1293 				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1294 		r1_bio->state = 0;
1295 		allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
1296 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1297 		start_next_window = wait_barrier(conf, bio);
1298 		/*
1299 		 * We must make sure the multi r1bios of bio have
1300 		 * the same value of bi_phys_segments
1301 		 */
1302 		if (bio->bi_phys_segments && old &&
1303 		    old != start_next_window)
1304 			/* Wait for the former r1bio(s) to complete */
1305 			wait_event(conf->wait_barrier,
1306 				   bio->bi_phys_segments == 1);
1307 		goto retry_write;
1308 	}
1309 
1310 	if (max_sectors < r1_bio->sectors) {
1311 		/* We are splitting this write into multiple parts, so
1312 		 * we need to prepare for allocating another r1_bio.
1313 		 */
1314 		r1_bio->sectors = max_sectors;
1315 		spin_lock_irq(&conf->device_lock);
1316 		if (bio->bi_phys_segments == 0)
1317 			bio->bi_phys_segments = 2;
1318 		else
1319 			bio->bi_phys_segments++;
1320 		spin_unlock_irq(&conf->device_lock);
1321 	}
1322 	sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
1323 
1324 	atomic_set(&r1_bio->remaining, 1);
1325 	atomic_set(&r1_bio->behind_remaining, 0);
1326 
1327 	first_clone = 1;
1328 	for (i = 0; i < disks; i++) {
1329 		struct bio *mbio;
1330 		if (!r1_bio->bios[i])
1331 			continue;
1332 
1333 		mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1334 		bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors);
1335 
1336 		if (first_clone) {
1337 			/* do behind I/O ?
1338 			 * Not if there are too many, or cannot
1339 			 * allocate memory, or a reader on WriteMostly
1340 			 * is waiting for behind writes to flush */
1341 			if (bitmap &&
1342 			    (atomic_read(&bitmap->behind_writes)
1343 			     < mddev->bitmap_info.max_write_behind) &&
1344 			    !waitqueue_active(&bitmap->behind_wait))
1345 				alloc_behind_pages(mbio, r1_bio);
1346 
1347 			bitmap_startwrite(bitmap, r1_bio->sector,
1348 					  r1_bio->sectors,
1349 					  test_bit(R1BIO_BehindIO,
1350 						   &r1_bio->state));
1351 			first_clone = 0;
1352 		}
1353 		if (r1_bio->behind_bvecs) {
1354 			struct bio_vec *bvec;
1355 			int j;
1356 
1357 			/*
1358 			 * We trimmed the bio, so _all is legit
1359 			 */
1360 			bio_for_each_segment_all(bvec, mbio, j)
1361 				bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1362 			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1363 				atomic_inc(&r1_bio->behind_remaining);
1364 		}
1365 
1366 		r1_bio->bios[i] = mbio;
1367 
1368 		mbio->bi_iter.bi_sector	= (r1_bio->sector +
1369 				   conf->mirrors[i].rdev->data_offset);
1370 		mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1371 		mbio->bi_end_io	= raid1_end_write_request;
1372 		mbio->bi_rw =
1373 			WRITE | do_flush_fua | do_sync | do_discard | do_same;
1374 		mbio->bi_private = r1_bio;
1375 
1376 		atomic_inc(&r1_bio->remaining);
1377 
1378 		cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1379 		if (cb)
1380 			plug = container_of(cb, struct raid1_plug_cb, cb);
1381 		else
1382 			plug = NULL;
1383 		spin_lock_irqsave(&conf->device_lock, flags);
1384 		if (plug) {
1385 			bio_list_add(&plug->pending, mbio);
1386 			plug->pending_cnt++;
1387 		} else {
1388 			bio_list_add(&conf->pending_bio_list, mbio);
1389 			conf->pending_count++;
1390 		}
1391 		spin_unlock_irqrestore(&conf->device_lock, flags);
1392 		if (!plug)
1393 			md_wakeup_thread(mddev->thread);
1394 	}
1395 	/* Mustn't call r1_bio_write_done before this next test,
1396 	 * as it could result in the bio being freed.
1397 	 */
1398 	if (sectors_handled < bio_sectors(bio)) {
1399 		r1_bio_write_done(r1_bio);
1400 		/* We need another r1_bio.  It has already been counted
1401 		 * in bio->bi_phys_segments
1402 		 */
1403 		r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1404 		r1_bio->master_bio = bio;
1405 		r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1406 		r1_bio->state = 0;
1407 		r1_bio->mddev = mddev;
1408 		r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1409 		goto retry_write;
1410 	}
1411 
1412 	r1_bio_write_done(r1_bio);
1413 
1414 	/* In case raid1d snuck in to freeze_array */
1415 	wake_up(&conf->wait_barrier);
1416 }
1417 
1418 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1419 {
1420 	struct r1conf *conf = mddev->private;
1421 	int i;
1422 
1423 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1424 		   conf->raid_disks - mddev->degraded);
1425 	rcu_read_lock();
1426 	for (i = 0; i < conf->raid_disks; i++) {
1427 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1428 		seq_printf(seq, "%s",
1429 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1430 	}
1431 	rcu_read_unlock();
1432 	seq_printf(seq, "]");
1433 }
1434 
1435 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1436 {
1437 	char b[BDEVNAME_SIZE];
1438 	struct r1conf *conf = mddev->private;
1439 	unsigned long flags;
1440 
1441 	/*
1442 	 * If it is not operational, then we have already marked it as dead
1443 	 * else if it is the last working disks, ignore the error, let the
1444 	 * next level up know.
1445 	 * else mark the drive as failed
1446 	 */
1447 	if (test_bit(In_sync, &rdev->flags)
1448 	    && (conf->raid_disks - mddev->degraded) == 1) {
1449 		/*
1450 		 * Don't fail the drive, act as though we were just a
1451 		 * normal single drive.
1452 		 * However don't try a recovery from this drive as
1453 		 * it is very likely to fail.
1454 		 */
1455 		conf->recovery_disabled = mddev->recovery_disabled;
1456 		return;
1457 	}
1458 	set_bit(Blocked, &rdev->flags);
1459 	spin_lock_irqsave(&conf->device_lock, flags);
1460 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1461 		mddev->degraded++;
1462 		set_bit(Faulty, &rdev->flags);
1463 	} else
1464 		set_bit(Faulty, &rdev->flags);
1465 	spin_unlock_irqrestore(&conf->device_lock, flags);
1466 	/*
1467 	 * if recovery is running, make sure it aborts.
1468 	 */
1469 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1470 	set_mask_bits(&mddev->flags, 0,
1471 		      BIT(MD_CHANGE_DEVS) | BIT(MD_CHANGE_PENDING));
1472 	printk(KERN_ALERT
1473 	       "md/raid1:%s: Disk failure on %s, disabling device.\n"
1474 	       "md/raid1:%s: Operation continuing on %d devices.\n",
1475 	       mdname(mddev), bdevname(rdev->bdev, b),
1476 	       mdname(mddev), conf->raid_disks - mddev->degraded);
1477 }
1478 
1479 static void print_conf(struct r1conf *conf)
1480 {
1481 	int i;
1482 
1483 	printk(KERN_DEBUG "RAID1 conf printout:\n");
1484 	if (!conf) {
1485 		printk(KERN_DEBUG "(!conf)\n");
1486 		return;
1487 	}
1488 	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1489 		conf->raid_disks);
1490 
1491 	rcu_read_lock();
1492 	for (i = 0; i < conf->raid_disks; i++) {
1493 		char b[BDEVNAME_SIZE];
1494 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1495 		if (rdev)
1496 			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1497 			       i, !test_bit(In_sync, &rdev->flags),
1498 			       !test_bit(Faulty, &rdev->flags),
1499 			       bdevname(rdev->bdev,b));
1500 	}
1501 	rcu_read_unlock();
1502 }
1503 
1504 static void close_sync(struct r1conf *conf)
1505 {
1506 	wait_barrier(conf, NULL);
1507 	allow_barrier(conf, 0, 0);
1508 
1509 	mempool_destroy(conf->r1buf_pool);
1510 	conf->r1buf_pool = NULL;
1511 
1512 	spin_lock_irq(&conf->resync_lock);
1513 	conf->next_resync = MaxSector - 2 * NEXT_NORMALIO_DISTANCE;
1514 	conf->start_next_window = MaxSector;
1515 	conf->current_window_requests +=
1516 		conf->next_window_requests;
1517 	conf->next_window_requests = 0;
1518 	spin_unlock_irq(&conf->resync_lock);
1519 }
1520 
1521 static int raid1_spare_active(struct mddev *mddev)
1522 {
1523 	int i;
1524 	struct r1conf *conf = mddev->private;
1525 	int count = 0;
1526 	unsigned long flags;
1527 
1528 	/*
1529 	 * Find all failed disks within the RAID1 configuration
1530 	 * and mark them readable.
1531 	 * Called under mddev lock, so rcu protection not needed.
1532 	 * device_lock used to avoid races with raid1_end_read_request
1533 	 * which expects 'In_sync' flags and ->degraded to be consistent.
1534 	 */
1535 	spin_lock_irqsave(&conf->device_lock, flags);
1536 	for (i = 0; i < conf->raid_disks; i++) {
1537 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1538 		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1539 		if (repl
1540 		    && !test_bit(Candidate, &repl->flags)
1541 		    && repl->recovery_offset == MaxSector
1542 		    && !test_bit(Faulty, &repl->flags)
1543 		    && !test_and_set_bit(In_sync, &repl->flags)) {
1544 			/* replacement has just become active */
1545 			if (!rdev ||
1546 			    !test_and_clear_bit(In_sync, &rdev->flags))
1547 				count++;
1548 			if (rdev) {
1549 				/* Replaced device not technically
1550 				 * faulty, but we need to be sure
1551 				 * it gets removed and never re-added
1552 				 */
1553 				set_bit(Faulty, &rdev->flags);
1554 				sysfs_notify_dirent_safe(
1555 					rdev->sysfs_state);
1556 			}
1557 		}
1558 		if (rdev
1559 		    && rdev->recovery_offset == MaxSector
1560 		    && !test_bit(Faulty, &rdev->flags)
1561 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1562 			count++;
1563 			sysfs_notify_dirent_safe(rdev->sysfs_state);
1564 		}
1565 	}
1566 	mddev->degraded -= count;
1567 	spin_unlock_irqrestore(&conf->device_lock, flags);
1568 
1569 	print_conf(conf);
1570 	return count;
1571 }
1572 
1573 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1574 {
1575 	struct r1conf *conf = mddev->private;
1576 	int err = -EEXIST;
1577 	int mirror = 0;
1578 	struct raid1_info *p;
1579 	int first = 0;
1580 	int last = conf->raid_disks - 1;
1581 
1582 	if (mddev->recovery_disabled == conf->recovery_disabled)
1583 		return -EBUSY;
1584 
1585 	if (md_integrity_add_rdev(rdev, mddev))
1586 		return -ENXIO;
1587 
1588 	if (rdev->raid_disk >= 0)
1589 		first = last = rdev->raid_disk;
1590 
1591 	/*
1592 	 * find the disk ... but prefer rdev->saved_raid_disk
1593 	 * if possible.
1594 	 */
1595 	if (rdev->saved_raid_disk >= 0 &&
1596 	    rdev->saved_raid_disk >= first &&
1597 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1598 		first = last = rdev->saved_raid_disk;
1599 
1600 	for (mirror = first; mirror <= last; mirror++) {
1601 		p = conf->mirrors+mirror;
1602 		if (!p->rdev) {
1603 
1604 			if (mddev->gendisk)
1605 				disk_stack_limits(mddev->gendisk, rdev->bdev,
1606 						  rdev->data_offset << 9);
1607 
1608 			p->head_position = 0;
1609 			rdev->raid_disk = mirror;
1610 			err = 0;
1611 			/* As all devices are equivalent, we don't need a full recovery
1612 			 * if this was recently any drive of the array
1613 			 */
1614 			if (rdev->saved_raid_disk < 0)
1615 				conf->fullsync = 1;
1616 			rcu_assign_pointer(p->rdev, rdev);
1617 			break;
1618 		}
1619 		if (test_bit(WantReplacement, &p->rdev->flags) &&
1620 		    p[conf->raid_disks].rdev == NULL) {
1621 			/* Add this device as a replacement */
1622 			clear_bit(In_sync, &rdev->flags);
1623 			set_bit(Replacement, &rdev->flags);
1624 			rdev->raid_disk = mirror;
1625 			err = 0;
1626 			conf->fullsync = 1;
1627 			rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1628 			break;
1629 		}
1630 	}
1631 	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1632 		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1633 	print_conf(conf);
1634 	return err;
1635 }
1636 
1637 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1638 {
1639 	struct r1conf *conf = mddev->private;
1640 	int err = 0;
1641 	int number = rdev->raid_disk;
1642 	struct raid1_info *p = conf->mirrors + number;
1643 
1644 	if (rdev != p->rdev)
1645 		p = conf->mirrors + conf->raid_disks + number;
1646 
1647 	print_conf(conf);
1648 	if (rdev == p->rdev) {
1649 		if (test_bit(In_sync, &rdev->flags) ||
1650 		    atomic_read(&rdev->nr_pending)) {
1651 			err = -EBUSY;
1652 			goto abort;
1653 		}
1654 		/* Only remove non-faulty devices if recovery
1655 		 * is not possible.
1656 		 */
1657 		if (!test_bit(Faulty, &rdev->flags) &&
1658 		    mddev->recovery_disabled != conf->recovery_disabled &&
1659 		    mddev->degraded < conf->raid_disks) {
1660 			err = -EBUSY;
1661 			goto abort;
1662 		}
1663 		p->rdev = NULL;
1664 		synchronize_rcu();
1665 		if (atomic_read(&rdev->nr_pending)) {
1666 			/* lost the race, try later */
1667 			err = -EBUSY;
1668 			p->rdev = rdev;
1669 			goto abort;
1670 		} else if (conf->mirrors[conf->raid_disks + number].rdev) {
1671 			/* We just removed a device that is being replaced.
1672 			 * Move down the replacement.  We drain all IO before
1673 			 * doing this to avoid confusion.
1674 			 */
1675 			struct md_rdev *repl =
1676 				conf->mirrors[conf->raid_disks + number].rdev;
1677 			freeze_array(conf, 0);
1678 			clear_bit(Replacement, &repl->flags);
1679 			p->rdev = repl;
1680 			conf->mirrors[conf->raid_disks + number].rdev = NULL;
1681 			unfreeze_array(conf);
1682 			clear_bit(WantReplacement, &rdev->flags);
1683 		} else
1684 			clear_bit(WantReplacement, &rdev->flags);
1685 		err = md_integrity_register(mddev);
1686 	}
1687 abort:
1688 
1689 	print_conf(conf);
1690 	return err;
1691 }
1692 
1693 static void end_sync_read(struct bio *bio)
1694 {
1695 	struct r1bio *r1_bio = bio->bi_private;
1696 
1697 	update_head_pos(r1_bio->read_disk, r1_bio);
1698 
1699 	/*
1700 	 * we have read a block, now it needs to be re-written,
1701 	 * or re-read if the read failed.
1702 	 * We don't do much here, just schedule handling by raid1d
1703 	 */
1704 	if (!bio->bi_error)
1705 		set_bit(R1BIO_Uptodate, &r1_bio->state);
1706 
1707 	if (atomic_dec_and_test(&r1_bio->remaining))
1708 		reschedule_retry(r1_bio);
1709 }
1710 
1711 static void end_sync_write(struct bio *bio)
1712 {
1713 	int uptodate = !bio->bi_error;
1714 	struct r1bio *r1_bio = bio->bi_private;
1715 	struct mddev *mddev = r1_bio->mddev;
1716 	struct r1conf *conf = mddev->private;
1717 	int mirror=0;
1718 	sector_t first_bad;
1719 	int bad_sectors;
1720 
1721 	mirror = find_bio_disk(r1_bio, bio);
1722 
1723 	if (!uptodate) {
1724 		sector_t sync_blocks = 0;
1725 		sector_t s = r1_bio->sector;
1726 		long sectors_to_go = r1_bio->sectors;
1727 		/* make sure these bits doesn't get cleared. */
1728 		do {
1729 			bitmap_end_sync(mddev->bitmap, s,
1730 					&sync_blocks, 1);
1731 			s += sync_blocks;
1732 			sectors_to_go -= sync_blocks;
1733 		} while (sectors_to_go > 0);
1734 		set_bit(WriteErrorSeen,
1735 			&conf->mirrors[mirror].rdev->flags);
1736 		if (!test_and_set_bit(WantReplacement,
1737 				      &conf->mirrors[mirror].rdev->flags))
1738 			set_bit(MD_RECOVERY_NEEDED, &
1739 				mddev->recovery);
1740 		set_bit(R1BIO_WriteError, &r1_bio->state);
1741 	} else if (is_badblock(conf->mirrors[mirror].rdev,
1742 			       r1_bio->sector,
1743 			       r1_bio->sectors,
1744 			       &first_bad, &bad_sectors) &&
1745 		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1746 				r1_bio->sector,
1747 				r1_bio->sectors,
1748 				&first_bad, &bad_sectors)
1749 		)
1750 		set_bit(R1BIO_MadeGood, &r1_bio->state);
1751 
1752 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1753 		int s = r1_bio->sectors;
1754 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1755 		    test_bit(R1BIO_WriteError, &r1_bio->state))
1756 			reschedule_retry(r1_bio);
1757 		else {
1758 			put_buf(r1_bio);
1759 			md_done_sync(mddev, s, uptodate);
1760 		}
1761 	}
1762 }
1763 
1764 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1765 			    int sectors, struct page *page, int rw)
1766 {
1767 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1768 		/* success */
1769 		return 1;
1770 	if (rw == WRITE) {
1771 		set_bit(WriteErrorSeen, &rdev->flags);
1772 		if (!test_and_set_bit(WantReplacement,
1773 				      &rdev->flags))
1774 			set_bit(MD_RECOVERY_NEEDED, &
1775 				rdev->mddev->recovery);
1776 	}
1777 	/* need to record an error - either for the block or the device */
1778 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1779 		md_error(rdev->mddev, rdev);
1780 	return 0;
1781 }
1782 
1783 static int fix_sync_read_error(struct r1bio *r1_bio)
1784 {
1785 	/* Try some synchronous reads of other devices to get
1786 	 * good data, much like with normal read errors.  Only
1787 	 * read into the pages we already have so we don't
1788 	 * need to re-issue the read request.
1789 	 * We don't need to freeze the array, because being in an
1790 	 * active sync request, there is no normal IO, and
1791 	 * no overlapping syncs.
1792 	 * We don't need to check is_badblock() again as we
1793 	 * made sure that anything with a bad block in range
1794 	 * will have bi_end_io clear.
1795 	 */
1796 	struct mddev *mddev = r1_bio->mddev;
1797 	struct r1conf *conf = mddev->private;
1798 	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1799 	sector_t sect = r1_bio->sector;
1800 	int sectors = r1_bio->sectors;
1801 	int idx = 0;
1802 
1803 	while(sectors) {
1804 		int s = sectors;
1805 		int d = r1_bio->read_disk;
1806 		int success = 0;
1807 		struct md_rdev *rdev;
1808 		int start;
1809 
1810 		if (s > (PAGE_SIZE>>9))
1811 			s = PAGE_SIZE >> 9;
1812 		do {
1813 			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1814 				/* No rcu protection needed here devices
1815 				 * can only be removed when no resync is
1816 				 * active, and resync is currently active
1817 				 */
1818 				rdev = conf->mirrors[d].rdev;
1819 				if (sync_page_io(rdev, sect, s<<9,
1820 						 bio->bi_io_vec[idx].bv_page,
1821 						 READ, false)) {
1822 					success = 1;
1823 					break;
1824 				}
1825 			}
1826 			d++;
1827 			if (d == conf->raid_disks * 2)
1828 				d = 0;
1829 		} while (!success && d != r1_bio->read_disk);
1830 
1831 		if (!success) {
1832 			char b[BDEVNAME_SIZE];
1833 			int abort = 0;
1834 			/* Cannot read from anywhere, this block is lost.
1835 			 * Record a bad block on each device.  If that doesn't
1836 			 * work just disable and interrupt the recovery.
1837 			 * Don't fail devices as that won't really help.
1838 			 */
1839 			printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1840 			       " for block %llu\n",
1841 			       mdname(mddev),
1842 			       bdevname(bio->bi_bdev, b),
1843 			       (unsigned long long)r1_bio->sector);
1844 			for (d = 0; d < conf->raid_disks * 2; d++) {
1845 				rdev = conf->mirrors[d].rdev;
1846 				if (!rdev || test_bit(Faulty, &rdev->flags))
1847 					continue;
1848 				if (!rdev_set_badblocks(rdev, sect, s, 0))
1849 					abort = 1;
1850 			}
1851 			if (abort) {
1852 				conf->recovery_disabled =
1853 					mddev->recovery_disabled;
1854 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1855 				md_done_sync(mddev, r1_bio->sectors, 0);
1856 				put_buf(r1_bio);
1857 				return 0;
1858 			}
1859 			/* Try next page */
1860 			sectors -= s;
1861 			sect += s;
1862 			idx++;
1863 			continue;
1864 		}
1865 
1866 		start = d;
1867 		/* write it back and re-read */
1868 		while (d != r1_bio->read_disk) {
1869 			if (d == 0)
1870 				d = conf->raid_disks * 2;
1871 			d--;
1872 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1873 				continue;
1874 			rdev = conf->mirrors[d].rdev;
1875 			if (r1_sync_page_io(rdev, sect, s,
1876 					    bio->bi_io_vec[idx].bv_page,
1877 					    WRITE) == 0) {
1878 				r1_bio->bios[d]->bi_end_io = NULL;
1879 				rdev_dec_pending(rdev, mddev);
1880 			}
1881 		}
1882 		d = start;
1883 		while (d != r1_bio->read_disk) {
1884 			if (d == 0)
1885 				d = conf->raid_disks * 2;
1886 			d--;
1887 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1888 				continue;
1889 			rdev = conf->mirrors[d].rdev;
1890 			if (r1_sync_page_io(rdev, sect, s,
1891 					    bio->bi_io_vec[idx].bv_page,
1892 					    READ) != 0)
1893 				atomic_add(s, &rdev->corrected_errors);
1894 		}
1895 		sectors -= s;
1896 		sect += s;
1897 		idx ++;
1898 	}
1899 	set_bit(R1BIO_Uptodate, &r1_bio->state);
1900 	bio->bi_error = 0;
1901 	return 1;
1902 }
1903 
1904 static void process_checks(struct r1bio *r1_bio)
1905 {
1906 	/* We have read all readable devices.  If we haven't
1907 	 * got the block, then there is no hope left.
1908 	 * If we have, then we want to do a comparison
1909 	 * and skip the write if everything is the same.
1910 	 * If any blocks failed to read, then we need to
1911 	 * attempt an over-write
1912 	 */
1913 	struct mddev *mddev = r1_bio->mddev;
1914 	struct r1conf *conf = mddev->private;
1915 	int primary;
1916 	int i;
1917 	int vcnt;
1918 
1919 	/* Fix variable parts of all bios */
1920 	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1921 	for (i = 0; i < conf->raid_disks * 2; i++) {
1922 		int j;
1923 		int size;
1924 		int error;
1925 		struct bio *b = r1_bio->bios[i];
1926 		if (b->bi_end_io != end_sync_read)
1927 			continue;
1928 		/* fixup the bio for reuse, but preserve errno */
1929 		error = b->bi_error;
1930 		bio_reset(b);
1931 		b->bi_error = error;
1932 		b->bi_vcnt = vcnt;
1933 		b->bi_iter.bi_size = r1_bio->sectors << 9;
1934 		b->bi_iter.bi_sector = r1_bio->sector +
1935 			conf->mirrors[i].rdev->data_offset;
1936 		b->bi_bdev = conf->mirrors[i].rdev->bdev;
1937 		b->bi_end_io = end_sync_read;
1938 		b->bi_private = r1_bio;
1939 
1940 		size = b->bi_iter.bi_size;
1941 		for (j = 0; j < vcnt ; j++) {
1942 			struct bio_vec *bi;
1943 			bi = &b->bi_io_vec[j];
1944 			bi->bv_offset = 0;
1945 			if (size > PAGE_SIZE)
1946 				bi->bv_len = PAGE_SIZE;
1947 			else
1948 				bi->bv_len = size;
1949 			size -= PAGE_SIZE;
1950 		}
1951 	}
1952 	for (primary = 0; primary < conf->raid_disks * 2; primary++)
1953 		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1954 		    !r1_bio->bios[primary]->bi_error) {
1955 			r1_bio->bios[primary]->bi_end_io = NULL;
1956 			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1957 			break;
1958 		}
1959 	r1_bio->read_disk = primary;
1960 	for (i = 0; i < conf->raid_disks * 2; i++) {
1961 		int j;
1962 		struct bio *pbio = r1_bio->bios[primary];
1963 		struct bio *sbio = r1_bio->bios[i];
1964 		int error = sbio->bi_error;
1965 
1966 		if (sbio->bi_end_io != end_sync_read)
1967 			continue;
1968 		/* Now we can 'fixup' the error value */
1969 		sbio->bi_error = 0;
1970 
1971 		if (!error) {
1972 			for (j = vcnt; j-- ; ) {
1973 				struct page *p, *s;
1974 				p = pbio->bi_io_vec[j].bv_page;
1975 				s = sbio->bi_io_vec[j].bv_page;
1976 				if (memcmp(page_address(p),
1977 					   page_address(s),
1978 					   sbio->bi_io_vec[j].bv_len))
1979 					break;
1980 			}
1981 		} else
1982 			j = 0;
1983 		if (j >= 0)
1984 			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
1985 		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1986 			      && !error)) {
1987 			/* No need to write to this device. */
1988 			sbio->bi_end_io = NULL;
1989 			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1990 			continue;
1991 		}
1992 
1993 		bio_copy_data(sbio, pbio);
1994 	}
1995 }
1996 
1997 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
1998 {
1999 	struct r1conf *conf = mddev->private;
2000 	int i;
2001 	int disks = conf->raid_disks * 2;
2002 	struct bio *bio, *wbio;
2003 
2004 	bio = r1_bio->bios[r1_bio->read_disk];
2005 
2006 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2007 		/* ouch - failed to read all of that. */
2008 		if (!fix_sync_read_error(r1_bio))
2009 			return;
2010 
2011 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2012 		process_checks(r1_bio);
2013 
2014 	/*
2015 	 * schedule writes
2016 	 */
2017 	atomic_set(&r1_bio->remaining, 1);
2018 	for (i = 0; i < disks ; i++) {
2019 		wbio = r1_bio->bios[i];
2020 		if (wbio->bi_end_io == NULL ||
2021 		    (wbio->bi_end_io == end_sync_read &&
2022 		     (i == r1_bio->read_disk ||
2023 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2024 			continue;
2025 
2026 		wbio->bi_rw = WRITE;
2027 		wbio->bi_end_io = end_sync_write;
2028 		atomic_inc(&r1_bio->remaining);
2029 		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2030 
2031 		generic_make_request(wbio);
2032 	}
2033 
2034 	if (atomic_dec_and_test(&r1_bio->remaining)) {
2035 		/* if we're here, all write(s) have completed, so clean up */
2036 		int s = r1_bio->sectors;
2037 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2038 		    test_bit(R1BIO_WriteError, &r1_bio->state))
2039 			reschedule_retry(r1_bio);
2040 		else {
2041 			put_buf(r1_bio);
2042 			md_done_sync(mddev, s, 1);
2043 		}
2044 	}
2045 }
2046 
2047 /*
2048  * This is a kernel thread which:
2049  *
2050  *	1.	Retries failed read operations on working mirrors.
2051  *	2.	Updates the raid superblock when problems encounter.
2052  *	3.	Performs writes following reads for array synchronising.
2053  */
2054 
2055 static void fix_read_error(struct r1conf *conf, int read_disk,
2056 			   sector_t sect, int sectors)
2057 {
2058 	struct mddev *mddev = conf->mddev;
2059 	while(sectors) {
2060 		int s = sectors;
2061 		int d = read_disk;
2062 		int success = 0;
2063 		int start;
2064 		struct md_rdev *rdev;
2065 
2066 		if (s > (PAGE_SIZE>>9))
2067 			s = PAGE_SIZE >> 9;
2068 
2069 		do {
2070 			/* Note: no rcu protection needed here
2071 			 * as this is synchronous in the raid1d thread
2072 			 * which is the thread that might remove
2073 			 * a device.  If raid1d ever becomes multi-threaded....
2074 			 */
2075 			sector_t first_bad;
2076 			int bad_sectors;
2077 
2078 			rdev = conf->mirrors[d].rdev;
2079 			if (rdev &&
2080 			    (test_bit(In_sync, &rdev->flags) ||
2081 			     (!test_bit(Faulty, &rdev->flags) &&
2082 			      rdev->recovery_offset >= sect + s)) &&
2083 			    is_badblock(rdev, sect, s,
2084 					&first_bad, &bad_sectors) == 0 &&
2085 			    sync_page_io(rdev, sect, s<<9,
2086 					 conf->tmppage, READ, false))
2087 				success = 1;
2088 			else {
2089 				d++;
2090 				if (d == conf->raid_disks * 2)
2091 					d = 0;
2092 			}
2093 		} while (!success && d != read_disk);
2094 
2095 		if (!success) {
2096 			/* Cannot read from anywhere - mark it bad */
2097 			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2098 			if (!rdev_set_badblocks(rdev, sect, s, 0))
2099 				md_error(mddev, rdev);
2100 			break;
2101 		}
2102 		/* write it back and re-read */
2103 		start = d;
2104 		while (d != read_disk) {
2105 			if (d==0)
2106 				d = conf->raid_disks * 2;
2107 			d--;
2108 			rdev = conf->mirrors[d].rdev;
2109 			if (rdev &&
2110 			    !test_bit(Faulty, &rdev->flags))
2111 				r1_sync_page_io(rdev, sect, s,
2112 						conf->tmppage, WRITE);
2113 		}
2114 		d = start;
2115 		while (d != read_disk) {
2116 			char b[BDEVNAME_SIZE];
2117 			if (d==0)
2118 				d = conf->raid_disks * 2;
2119 			d--;
2120 			rdev = conf->mirrors[d].rdev;
2121 			if (rdev &&
2122 			    !test_bit(Faulty, &rdev->flags)) {
2123 				if (r1_sync_page_io(rdev, sect, s,
2124 						    conf->tmppage, READ)) {
2125 					atomic_add(s, &rdev->corrected_errors);
2126 					printk(KERN_INFO
2127 					       "md/raid1:%s: read error corrected "
2128 					       "(%d sectors at %llu on %s)\n",
2129 					       mdname(mddev), s,
2130 					       (unsigned long long)(sect +
2131 					           rdev->data_offset),
2132 					       bdevname(rdev->bdev, b));
2133 				}
2134 			}
2135 		}
2136 		sectors -= s;
2137 		sect += s;
2138 	}
2139 }
2140 
2141 static int narrow_write_error(struct r1bio *r1_bio, int i)
2142 {
2143 	struct mddev *mddev = r1_bio->mddev;
2144 	struct r1conf *conf = mddev->private;
2145 	struct md_rdev *rdev = conf->mirrors[i].rdev;
2146 
2147 	/* bio has the data to be written to device 'i' where
2148 	 * we just recently had a write error.
2149 	 * We repeatedly clone the bio and trim down to one block,
2150 	 * then try the write.  Where the write fails we record
2151 	 * a bad block.
2152 	 * It is conceivable that the bio doesn't exactly align with
2153 	 * blocks.  We must handle this somehow.
2154 	 *
2155 	 * We currently own a reference on the rdev.
2156 	 */
2157 
2158 	int block_sectors;
2159 	sector_t sector;
2160 	int sectors;
2161 	int sect_to_write = r1_bio->sectors;
2162 	int ok = 1;
2163 
2164 	if (rdev->badblocks.shift < 0)
2165 		return 0;
2166 
2167 	block_sectors = roundup(1 << rdev->badblocks.shift,
2168 				bdev_logical_block_size(rdev->bdev) >> 9);
2169 	sector = r1_bio->sector;
2170 	sectors = ((sector + block_sectors)
2171 		   & ~(sector_t)(block_sectors - 1))
2172 		- sector;
2173 
2174 	while (sect_to_write) {
2175 		struct bio *wbio;
2176 		if (sectors > sect_to_write)
2177 			sectors = sect_to_write;
2178 		/* Write at 'sector' for 'sectors'*/
2179 
2180 		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2181 			unsigned vcnt = r1_bio->behind_page_count;
2182 			struct bio_vec *vec = r1_bio->behind_bvecs;
2183 
2184 			while (!vec->bv_page) {
2185 				vec++;
2186 				vcnt--;
2187 			}
2188 
2189 			wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2190 			memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2191 
2192 			wbio->bi_vcnt = vcnt;
2193 		} else {
2194 			wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2195 		}
2196 
2197 		wbio->bi_rw = WRITE;
2198 		wbio->bi_iter.bi_sector = r1_bio->sector;
2199 		wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2200 
2201 		bio_trim(wbio, sector - r1_bio->sector, sectors);
2202 		wbio->bi_iter.bi_sector += rdev->data_offset;
2203 		wbio->bi_bdev = rdev->bdev;
2204 		if (submit_bio_wait(WRITE, wbio) < 0)
2205 			/* failure! */
2206 			ok = rdev_set_badblocks(rdev, sector,
2207 						sectors, 0)
2208 				&& ok;
2209 
2210 		bio_put(wbio);
2211 		sect_to_write -= sectors;
2212 		sector += sectors;
2213 		sectors = block_sectors;
2214 	}
2215 	return ok;
2216 }
2217 
2218 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2219 {
2220 	int m;
2221 	int s = r1_bio->sectors;
2222 	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2223 		struct md_rdev *rdev = conf->mirrors[m].rdev;
2224 		struct bio *bio = r1_bio->bios[m];
2225 		if (bio->bi_end_io == NULL)
2226 			continue;
2227 		if (!bio->bi_error &&
2228 		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2229 			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2230 		}
2231 		if (bio->bi_error &&
2232 		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2233 			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2234 				md_error(conf->mddev, rdev);
2235 		}
2236 	}
2237 	put_buf(r1_bio);
2238 	md_done_sync(conf->mddev, s, 1);
2239 }
2240 
2241 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2242 {
2243 	int m;
2244 	bool fail = false;
2245 	for (m = 0; m < conf->raid_disks * 2 ; m++)
2246 		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2247 			struct md_rdev *rdev = conf->mirrors[m].rdev;
2248 			rdev_clear_badblocks(rdev,
2249 					     r1_bio->sector,
2250 					     r1_bio->sectors, 0);
2251 			rdev_dec_pending(rdev, conf->mddev);
2252 		} else if (r1_bio->bios[m] != NULL) {
2253 			/* This drive got a write error.  We need to
2254 			 * narrow down and record precise write
2255 			 * errors.
2256 			 */
2257 			fail = true;
2258 			if (!narrow_write_error(r1_bio, m)) {
2259 				md_error(conf->mddev,
2260 					 conf->mirrors[m].rdev);
2261 				/* an I/O failed, we can't clear the bitmap */
2262 				set_bit(R1BIO_Degraded, &r1_bio->state);
2263 			}
2264 			rdev_dec_pending(conf->mirrors[m].rdev,
2265 					 conf->mddev);
2266 		}
2267 	if (fail) {
2268 		spin_lock_irq(&conf->device_lock);
2269 		list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2270 		conf->nr_queued++;
2271 		spin_unlock_irq(&conf->device_lock);
2272 		md_wakeup_thread(conf->mddev->thread);
2273 	} else {
2274 		if (test_bit(R1BIO_WriteError, &r1_bio->state))
2275 			close_write(r1_bio);
2276 		raid_end_bio_io(r1_bio);
2277 	}
2278 }
2279 
2280 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2281 {
2282 	int disk;
2283 	int max_sectors;
2284 	struct mddev *mddev = conf->mddev;
2285 	struct bio *bio;
2286 	char b[BDEVNAME_SIZE];
2287 	struct md_rdev *rdev;
2288 
2289 	clear_bit(R1BIO_ReadError, &r1_bio->state);
2290 	/* we got a read error. Maybe the drive is bad.  Maybe just
2291 	 * the block and we can fix it.
2292 	 * We freeze all other IO, and try reading the block from
2293 	 * other devices.  When we find one, we re-write
2294 	 * and check it that fixes the read error.
2295 	 * This is all done synchronously while the array is
2296 	 * frozen
2297 	 */
2298 	if (mddev->ro == 0) {
2299 		freeze_array(conf, 1);
2300 		fix_read_error(conf, r1_bio->read_disk,
2301 			       r1_bio->sector, r1_bio->sectors);
2302 		unfreeze_array(conf);
2303 	} else
2304 		md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2305 	rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
2306 
2307 	bio = r1_bio->bios[r1_bio->read_disk];
2308 	bdevname(bio->bi_bdev, b);
2309 read_more:
2310 	disk = read_balance(conf, r1_bio, &max_sectors);
2311 	if (disk == -1) {
2312 		printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2313 		       " read error for block %llu\n",
2314 		       mdname(mddev), b, (unsigned long long)r1_bio->sector);
2315 		raid_end_bio_io(r1_bio);
2316 	} else {
2317 		const unsigned long do_sync
2318 			= r1_bio->master_bio->bi_rw & REQ_SYNC;
2319 		if (bio) {
2320 			r1_bio->bios[r1_bio->read_disk] =
2321 				mddev->ro ? IO_BLOCKED : NULL;
2322 			bio_put(bio);
2323 		}
2324 		r1_bio->read_disk = disk;
2325 		bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2326 		bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2327 			 max_sectors);
2328 		r1_bio->bios[r1_bio->read_disk] = bio;
2329 		rdev = conf->mirrors[disk].rdev;
2330 		printk_ratelimited(KERN_ERR
2331 				   "md/raid1:%s: redirecting sector %llu"
2332 				   " to other mirror: %s\n",
2333 				   mdname(mddev),
2334 				   (unsigned long long)r1_bio->sector,
2335 				   bdevname(rdev->bdev, b));
2336 		bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
2337 		bio->bi_bdev = rdev->bdev;
2338 		bio->bi_end_io = raid1_end_read_request;
2339 		bio->bi_rw = READ | do_sync;
2340 		bio->bi_private = r1_bio;
2341 		if (max_sectors < r1_bio->sectors) {
2342 			/* Drat - have to split this up more */
2343 			struct bio *mbio = r1_bio->master_bio;
2344 			int sectors_handled = (r1_bio->sector + max_sectors
2345 					       - mbio->bi_iter.bi_sector);
2346 			r1_bio->sectors = max_sectors;
2347 			spin_lock_irq(&conf->device_lock);
2348 			if (mbio->bi_phys_segments == 0)
2349 				mbio->bi_phys_segments = 2;
2350 			else
2351 				mbio->bi_phys_segments++;
2352 			spin_unlock_irq(&conf->device_lock);
2353 			generic_make_request(bio);
2354 			bio = NULL;
2355 
2356 			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2357 
2358 			r1_bio->master_bio = mbio;
2359 			r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
2360 			r1_bio->state = 0;
2361 			set_bit(R1BIO_ReadError, &r1_bio->state);
2362 			r1_bio->mddev = mddev;
2363 			r1_bio->sector = mbio->bi_iter.bi_sector +
2364 				sectors_handled;
2365 
2366 			goto read_more;
2367 		} else
2368 			generic_make_request(bio);
2369 	}
2370 }
2371 
2372 static void raid1d(struct md_thread *thread)
2373 {
2374 	struct mddev *mddev = thread->mddev;
2375 	struct r1bio *r1_bio;
2376 	unsigned long flags;
2377 	struct r1conf *conf = mddev->private;
2378 	struct list_head *head = &conf->retry_list;
2379 	struct blk_plug plug;
2380 
2381 	md_check_recovery(mddev);
2382 
2383 	if (!list_empty_careful(&conf->bio_end_io_list) &&
2384 	    !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2385 		LIST_HEAD(tmp);
2386 		spin_lock_irqsave(&conf->device_lock, flags);
2387 		if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2388 			while (!list_empty(&conf->bio_end_io_list)) {
2389 				list_move(conf->bio_end_io_list.prev, &tmp);
2390 				conf->nr_queued--;
2391 			}
2392 		}
2393 		spin_unlock_irqrestore(&conf->device_lock, flags);
2394 		while (!list_empty(&tmp)) {
2395 			r1_bio = list_first_entry(&tmp, struct r1bio,
2396 						  retry_list);
2397 			list_del(&r1_bio->retry_list);
2398 			if (mddev->degraded)
2399 				set_bit(R1BIO_Degraded, &r1_bio->state);
2400 			if (test_bit(R1BIO_WriteError, &r1_bio->state))
2401 				close_write(r1_bio);
2402 			raid_end_bio_io(r1_bio);
2403 		}
2404 	}
2405 
2406 	blk_start_plug(&plug);
2407 	for (;;) {
2408 
2409 		flush_pending_writes(conf);
2410 
2411 		spin_lock_irqsave(&conf->device_lock, flags);
2412 		if (list_empty(head)) {
2413 			spin_unlock_irqrestore(&conf->device_lock, flags);
2414 			break;
2415 		}
2416 		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2417 		list_del(head->prev);
2418 		conf->nr_queued--;
2419 		spin_unlock_irqrestore(&conf->device_lock, flags);
2420 
2421 		mddev = r1_bio->mddev;
2422 		conf = mddev->private;
2423 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2424 			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2425 			    test_bit(R1BIO_WriteError, &r1_bio->state))
2426 				handle_sync_write_finished(conf, r1_bio);
2427 			else
2428 				sync_request_write(mddev, r1_bio);
2429 		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2430 			   test_bit(R1BIO_WriteError, &r1_bio->state))
2431 			handle_write_finished(conf, r1_bio);
2432 		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2433 			handle_read_error(conf, r1_bio);
2434 		else
2435 			/* just a partial read to be scheduled from separate
2436 			 * context
2437 			 */
2438 			generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2439 
2440 		cond_resched();
2441 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2442 			md_check_recovery(mddev);
2443 	}
2444 	blk_finish_plug(&plug);
2445 }
2446 
2447 static int init_resync(struct r1conf *conf)
2448 {
2449 	int buffs;
2450 
2451 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2452 	BUG_ON(conf->r1buf_pool);
2453 	conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2454 					  conf->poolinfo);
2455 	if (!conf->r1buf_pool)
2456 		return -ENOMEM;
2457 	conf->next_resync = 0;
2458 	return 0;
2459 }
2460 
2461 /*
2462  * perform a "sync" on one "block"
2463  *
2464  * We need to make sure that no normal I/O request - particularly write
2465  * requests - conflict with active sync requests.
2466  *
2467  * This is achieved by tracking pending requests and a 'barrier' concept
2468  * that can be installed to exclude normal IO requests.
2469  */
2470 
2471 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2472 				   int *skipped)
2473 {
2474 	struct r1conf *conf = mddev->private;
2475 	struct r1bio *r1_bio;
2476 	struct bio *bio;
2477 	sector_t max_sector, nr_sectors;
2478 	int disk = -1;
2479 	int i;
2480 	int wonly = -1;
2481 	int write_targets = 0, read_targets = 0;
2482 	sector_t sync_blocks;
2483 	int still_degraded = 0;
2484 	int good_sectors = RESYNC_SECTORS;
2485 	int min_bad = 0; /* number of sectors that are bad in all devices */
2486 
2487 	if (!conf->r1buf_pool)
2488 		if (init_resync(conf))
2489 			return 0;
2490 
2491 	max_sector = mddev->dev_sectors;
2492 	if (sector_nr >= max_sector) {
2493 		/* If we aborted, we need to abort the
2494 		 * sync on the 'current' bitmap chunk (there will
2495 		 * only be one in raid1 resync.
2496 		 * We can find the current addess in mddev->curr_resync
2497 		 */
2498 		if (mddev->curr_resync < max_sector) /* aborted */
2499 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2500 						&sync_blocks, 1);
2501 		else /* completed sync */
2502 			conf->fullsync = 0;
2503 
2504 		bitmap_close_sync(mddev->bitmap);
2505 		close_sync(conf);
2506 
2507 		if (mddev_is_clustered(mddev)) {
2508 			conf->cluster_sync_low = 0;
2509 			conf->cluster_sync_high = 0;
2510 		}
2511 		return 0;
2512 	}
2513 
2514 	if (mddev->bitmap == NULL &&
2515 	    mddev->recovery_cp == MaxSector &&
2516 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2517 	    conf->fullsync == 0) {
2518 		*skipped = 1;
2519 		return max_sector - sector_nr;
2520 	}
2521 	/* before building a request, check if we can skip these blocks..
2522 	 * This call the bitmap_start_sync doesn't actually record anything
2523 	 */
2524 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2525 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2526 		/* We can skip this block, and probably several more */
2527 		*skipped = 1;
2528 		return sync_blocks;
2529 	}
2530 
2531 	/*
2532 	 * If there is non-resync activity waiting for a turn, then let it
2533 	 * though before starting on this new sync request.
2534 	 */
2535 	if (conf->nr_waiting)
2536 		schedule_timeout_uninterruptible(1);
2537 
2538 	/* we are incrementing sector_nr below. To be safe, we check against
2539 	 * sector_nr + two times RESYNC_SECTORS
2540 	 */
2541 
2542 	bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2543 		mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2544 	r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2545 
2546 	raise_barrier(conf, sector_nr);
2547 
2548 	rcu_read_lock();
2549 	/*
2550 	 * If we get a correctably read error during resync or recovery,
2551 	 * we might want to read from a different device.  So we
2552 	 * flag all drives that could conceivably be read from for READ,
2553 	 * and any others (which will be non-In_sync devices) for WRITE.
2554 	 * If a read fails, we try reading from something else for which READ
2555 	 * is OK.
2556 	 */
2557 
2558 	r1_bio->mddev = mddev;
2559 	r1_bio->sector = sector_nr;
2560 	r1_bio->state = 0;
2561 	set_bit(R1BIO_IsSync, &r1_bio->state);
2562 
2563 	for (i = 0; i < conf->raid_disks * 2; i++) {
2564 		struct md_rdev *rdev;
2565 		bio = r1_bio->bios[i];
2566 		bio_reset(bio);
2567 
2568 		rdev = rcu_dereference(conf->mirrors[i].rdev);
2569 		if (rdev == NULL ||
2570 		    test_bit(Faulty, &rdev->flags)) {
2571 			if (i < conf->raid_disks)
2572 				still_degraded = 1;
2573 		} else if (!test_bit(In_sync, &rdev->flags)) {
2574 			bio->bi_rw = WRITE;
2575 			bio->bi_end_io = end_sync_write;
2576 			write_targets ++;
2577 		} else {
2578 			/* may need to read from here */
2579 			sector_t first_bad = MaxSector;
2580 			int bad_sectors;
2581 
2582 			if (is_badblock(rdev, sector_nr, good_sectors,
2583 					&first_bad, &bad_sectors)) {
2584 				if (first_bad > sector_nr)
2585 					good_sectors = first_bad - sector_nr;
2586 				else {
2587 					bad_sectors -= (sector_nr - first_bad);
2588 					if (min_bad == 0 ||
2589 					    min_bad > bad_sectors)
2590 						min_bad = bad_sectors;
2591 				}
2592 			}
2593 			if (sector_nr < first_bad) {
2594 				if (test_bit(WriteMostly, &rdev->flags)) {
2595 					if (wonly < 0)
2596 						wonly = i;
2597 				} else {
2598 					if (disk < 0)
2599 						disk = i;
2600 				}
2601 				bio->bi_rw = READ;
2602 				bio->bi_end_io = end_sync_read;
2603 				read_targets++;
2604 			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2605 				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2606 				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2607 				/*
2608 				 * The device is suitable for reading (InSync),
2609 				 * but has bad block(s) here. Let's try to correct them,
2610 				 * if we are doing resync or repair. Otherwise, leave
2611 				 * this device alone for this sync request.
2612 				 */
2613 				bio->bi_rw = WRITE;
2614 				bio->bi_end_io = end_sync_write;
2615 				write_targets++;
2616 			}
2617 		}
2618 		if (bio->bi_end_io) {
2619 			atomic_inc(&rdev->nr_pending);
2620 			bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2621 			bio->bi_bdev = rdev->bdev;
2622 			bio->bi_private = r1_bio;
2623 		}
2624 	}
2625 	rcu_read_unlock();
2626 	if (disk < 0)
2627 		disk = wonly;
2628 	r1_bio->read_disk = disk;
2629 
2630 	if (read_targets == 0 && min_bad > 0) {
2631 		/* These sectors are bad on all InSync devices, so we
2632 		 * need to mark them bad on all write targets
2633 		 */
2634 		int ok = 1;
2635 		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2636 			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2637 				struct md_rdev *rdev = conf->mirrors[i].rdev;
2638 				ok = rdev_set_badblocks(rdev, sector_nr,
2639 							min_bad, 0
2640 					) && ok;
2641 			}
2642 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
2643 		*skipped = 1;
2644 		put_buf(r1_bio);
2645 
2646 		if (!ok) {
2647 			/* Cannot record the badblocks, so need to
2648 			 * abort the resync.
2649 			 * If there are multiple read targets, could just
2650 			 * fail the really bad ones ???
2651 			 */
2652 			conf->recovery_disabled = mddev->recovery_disabled;
2653 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2654 			return 0;
2655 		} else
2656 			return min_bad;
2657 
2658 	}
2659 	if (min_bad > 0 && min_bad < good_sectors) {
2660 		/* only resync enough to reach the next bad->good
2661 		 * transition */
2662 		good_sectors = min_bad;
2663 	}
2664 
2665 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2666 		/* extra read targets are also write targets */
2667 		write_targets += read_targets-1;
2668 
2669 	if (write_targets == 0 || read_targets == 0) {
2670 		/* There is nowhere to write, so all non-sync
2671 		 * drives must be failed - so we are finished
2672 		 */
2673 		sector_t rv;
2674 		if (min_bad > 0)
2675 			max_sector = sector_nr + min_bad;
2676 		rv = max_sector - sector_nr;
2677 		*skipped = 1;
2678 		put_buf(r1_bio);
2679 		return rv;
2680 	}
2681 
2682 	if (max_sector > mddev->resync_max)
2683 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2684 	if (max_sector > sector_nr + good_sectors)
2685 		max_sector = sector_nr + good_sectors;
2686 	nr_sectors = 0;
2687 	sync_blocks = 0;
2688 	do {
2689 		struct page *page;
2690 		int len = PAGE_SIZE;
2691 		if (sector_nr + (len>>9) > max_sector)
2692 			len = (max_sector - sector_nr) << 9;
2693 		if (len == 0)
2694 			break;
2695 		if (sync_blocks == 0) {
2696 			if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2697 					       &sync_blocks, still_degraded) &&
2698 			    !conf->fullsync &&
2699 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2700 				break;
2701 			if ((len >> 9) > sync_blocks)
2702 				len = sync_blocks<<9;
2703 		}
2704 
2705 		for (i = 0 ; i < conf->raid_disks * 2; i++) {
2706 			bio = r1_bio->bios[i];
2707 			if (bio->bi_end_io) {
2708 				page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2709 				if (bio_add_page(bio, page, len, 0) == 0) {
2710 					/* stop here */
2711 					bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2712 					while (i > 0) {
2713 						i--;
2714 						bio = r1_bio->bios[i];
2715 						if (bio->bi_end_io==NULL)
2716 							continue;
2717 						/* remove last page from this bio */
2718 						bio->bi_vcnt--;
2719 						bio->bi_iter.bi_size -= len;
2720 						bio_clear_flag(bio, BIO_SEG_VALID);
2721 					}
2722 					goto bio_full;
2723 				}
2724 			}
2725 		}
2726 		nr_sectors += len>>9;
2727 		sector_nr += len>>9;
2728 		sync_blocks -= (len>>9);
2729 	} while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2730  bio_full:
2731 	r1_bio->sectors = nr_sectors;
2732 
2733 	if (mddev_is_clustered(mddev) &&
2734 			conf->cluster_sync_high < sector_nr + nr_sectors) {
2735 		conf->cluster_sync_low = mddev->curr_resync_completed;
2736 		conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2737 		/* Send resync message */
2738 		md_cluster_ops->resync_info_update(mddev,
2739 				conf->cluster_sync_low,
2740 				conf->cluster_sync_high);
2741 	}
2742 
2743 	/* For a user-requested sync, we read all readable devices and do a
2744 	 * compare
2745 	 */
2746 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2747 		atomic_set(&r1_bio->remaining, read_targets);
2748 		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2749 			bio = r1_bio->bios[i];
2750 			if (bio->bi_end_io == end_sync_read) {
2751 				read_targets--;
2752 				md_sync_acct(bio->bi_bdev, nr_sectors);
2753 				generic_make_request(bio);
2754 			}
2755 		}
2756 	} else {
2757 		atomic_set(&r1_bio->remaining, 1);
2758 		bio = r1_bio->bios[r1_bio->read_disk];
2759 		md_sync_acct(bio->bi_bdev, nr_sectors);
2760 		generic_make_request(bio);
2761 
2762 	}
2763 	return nr_sectors;
2764 }
2765 
2766 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2767 {
2768 	if (sectors)
2769 		return sectors;
2770 
2771 	return mddev->dev_sectors;
2772 }
2773 
2774 static struct r1conf *setup_conf(struct mddev *mddev)
2775 {
2776 	struct r1conf *conf;
2777 	int i;
2778 	struct raid1_info *disk;
2779 	struct md_rdev *rdev;
2780 	int err = -ENOMEM;
2781 
2782 	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2783 	if (!conf)
2784 		goto abort;
2785 
2786 	conf->mirrors = kzalloc(sizeof(struct raid1_info)
2787 				* mddev->raid_disks * 2,
2788 				 GFP_KERNEL);
2789 	if (!conf->mirrors)
2790 		goto abort;
2791 
2792 	conf->tmppage = alloc_page(GFP_KERNEL);
2793 	if (!conf->tmppage)
2794 		goto abort;
2795 
2796 	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2797 	if (!conf->poolinfo)
2798 		goto abort;
2799 	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2800 	conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2801 					  r1bio_pool_free,
2802 					  conf->poolinfo);
2803 	if (!conf->r1bio_pool)
2804 		goto abort;
2805 
2806 	conf->poolinfo->mddev = mddev;
2807 
2808 	err = -EINVAL;
2809 	spin_lock_init(&conf->device_lock);
2810 	rdev_for_each(rdev, mddev) {
2811 		struct request_queue *q;
2812 		int disk_idx = rdev->raid_disk;
2813 		if (disk_idx >= mddev->raid_disks
2814 		    || disk_idx < 0)
2815 			continue;
2816 		if (test_bit(Replacement, &rdev->flags))
2817 			disk = conf->mirrors + mddev->raid_disks + disk_idx;
2818 		else
2819 			disk = conf->mirrors + disk_idx;
2820 
2821 		if (disk->rdev)
2822 			goto abort;
2823 		disk->rdev = rdev;
2824 		q = bdev_get_queue(rdev->bdev);
2825 
2826 		disk->head_position = 0;
2827 		disk->seq_start = MaxSector;
2828 	}
2829 	conf->raid_disks = mddev->raid_disks;
2830 	conf->mddev = mddev;
2831 	INIT_LIST_HEAD(&conf->retry_list);
2832 	INIT_LIST_HEAD(&conf->bio_end_io_list);
2833 
2834 	spin_lock_init(&conf->resync_lock);
2835 	init_waitqueue_head(&conf->wait_barrier);
2836 
2837 	bio_list_init(&conf->pending_bio_list);
2838 	conf->pending_count = 0;
2839 	conf->recovery_disabled = mddev->recovery_disabled - 1;
2840 
2841 	conf->start_next_window = MaxSector;
2842 	conf->current_window_requests = conf->next_window_requests = 0;
2843 
2844 	err = -EIO;
2845 	for (i = 0; i < conf->raid_disks * 2; i++) {
2846 
2847 		disk = conf->mirrors + i;
2848 
2849 		if (i < conf->raid_disks &&
2850 		    disk[conf->raid_disks].rdev) {
2851 			/* This slot has a replacement. */
2852 			if (!disk->rdev) {
2853 				/* No original, just make the replacement
2854 				 * a recovering spare
2855 				 */
2856 				disk->rdev =
2857 					disk[conf->raid_disks].rdev;
2858 				disk[conf->raid_disks].rdev = NULL;
2859 			} else if (!test_bit(In_sync, &disk->rdev->flags))
2860 				/* Original is not in_sync - bad */
2861 				goto abort;
2862 		}
2863 
2864 		if (!disk->rdev ||
2865 		    !test_bit(In_sync, &disk->rdev->flags)) {
2866 			disk->head_position = 0;
2867 			if (disk->rdev &&
2868 			    (disk->rdev->saved_raid_disk < 0))
2869 				conf->fullsync = 1;
2870 		}
2871 	}
2872 
2873 	err = -ENOMEM;
2874 	conf->thread = md_register_thread(raid1d, mddev, "raid1");
2875 	if (!conf->thread) {
2876 		printk(KERN_ERR
2877 		       "md/raid1:%s: couldn't allocate thread\n",
2878 		       mdname(mddev));
2879 		goto abort;
2880 	}
2881 
2882 	return conf;
2883 
2884  abort:
2885 	if (conf) {
2886 		mempool_destroy(conf->r1bio_pool);
2887 		kfree(conf->mirrors);
2888 		safe_put_page(conf->tmppage);
2889 		kfree(conf->poolinfo);
2890 		kfree(conf);
2891 	}
2892 	return ERR_PTR(err);
2893 }
2894 
2895 static void raid1_free(struct mddev *mddev, void *priv);
2896 static int raid1_run(struct mddev *mddev)
2897 {
2898 	struct r1conf *conf;
2899 	int i;
2900 	struct md_rdev *rdev;
2901 	int ret;
2902 	bool discard_supported = false;
2903 
2904 	if (mddev->level != 1) {
2905 		printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2906 		       mdname(mddev), mddev->level);
2907 		return -EIO;
2908 	}
2909 	if (mddev->reshape_position != MaxSector) {
2910 		printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2911 		       mdname(mddev));
2912 		return -EIO;
2913 	}
2914 	/*
2915 	 * copy the already verified devices into our private RAID1
2916 	 * bookkeeping area. [whatever we allocate in run(),
2917 	 * should be freed in raid1_free()]
2918 	 */
2919 	if (mddev->private == NULL)
2920 		conf = setup_conf(mddev);
2921 	else
2922 		conf = mddev->private;
2923 
2924 	if (IS_ERR(conf))
2925 		return PTR_ERR(conf);
2926 
2927 	if (mddev->queue)
2928 		blk_queue_max_write_same_sectors(mddev->queue, 0);
2929 
2930 	rdev_for_each(rdev, mddev) {
2931 		if (!mddev->gendisk)
2932 			continue;
2933 		disk_stack_limits(mddev->gendisk, rdev->bdev,
2934 				  rdev->data_offset << 9);
2935 		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2936 			discard_supported = true;
2937 	}
2938 
2939 	mddev->degraded = 0;
2940 	for (i=0; i < conf->raid_disks; i++)
2941 		if (conf->mirrors[i].rdev == NULL ||
2942 		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2943 		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2944 			mddev->degraded++;
2945 
2946 	if (conf->raid_disks - mddev->degraded == 1)
2947 		mddev->recovery_cp = MaxSector;
2948 
2949 	if (mddev->recovery_cp != MaxSector)
2950 		printk(KERN_NOTICE "md/raid1:%s: not clean"
2951 		       " -- starting background reconstruction\n",
2952 		       mdname(mddev));
2953 	printk(KERN_INFO
2954 		"md/raid1:%s: active with %d out of %d mirrors\n",
2955 		mdname(mddev), mddev->raid_disks - mddev->degraded,
2956 		mddev->raid_disks);
2957 
2958 	/*
2959 	 * Ok, everything is just fine now
2960 	 */
2961 	mddev->thread = conf->thread;
2962 	conf->thread = NULL;
2963 	mddev->private = conf;
2964 
2965 	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2966 
2967 	if (mddev->queue) {
2968 		if (discard_supported)
2969 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2970 						mddev->queue);
2971 		else
2972 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2973 						  mddev->queue);
2974 	}
2975 
2976 	ret =  md_integrity_register(mddev);
2977 	if (ret) {
2978 		md_unregister_thread(&mddev->thread);
2979 		raid1_free(mddev, conf);
2980 	}
2981 	return ret;
2982 }
2983 
2984 static void raid1_free(struct mddev *mddev, void *priv)
2985 {
2986 	struct r1conf *conf = priv;
2987 
2988 	mempool_destroy(conf->r1bio_pool);
2989 	kfree(conf->mirrors);
2990 	safe_put_page(conf->tmppage);
2991 	kfree(conf->poolinfo);
2992 	kfree(conf);
2993 }
2994 
2995 static int raid1_resize(struct mddev *mddev, sector_t sectors)
2996 {
2997 	/* no resync is happening, and there is enough space
2998 	 * on all devices, so we can resize.
2999 	 * We need to make sure resync covers any new space.
3000 	 * If the array is shrinking we should possibly wait until
3001 	 * any io in the removed space completes, but it hardly seems
3002 	 * worth it.
3003 	 */
3004 	sector_t newsize = raid1_size(mddev, sectors, 0);
3005 	if (mddev->external_size &&
3006 	    mddev->array_sectors > newsize)
3007 		return -EINVAL;
3008 	if (mddev->bitmap) {
3009 		int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3010 		if (ret)
3011 			return ret;
3012 	}
3013 	md_set_array_sectors(mddev, newsize);
3014 	set_capacity(mddev->gendisk, mddev->array_sectors);
3015 	revalidate_disk(mddev->gendisk);
3016 	if (sectors > mddev->dev_sectors &&
3017 	    mddev->recovery_cp > mddev->dev_sectors) {
3018 		mddev->recovery_cp = mddev->dev_sectors;
3019 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3020 	}
3021 	mddev->dev_sectors = sectors;
3022 	mddev->resync_max_sectors = sectors;
3023 	return 0;
3024 }
3025 
3026 static int raid1_reshape(struct mddev *mddev)
3027 {
3028 	/* We need to:
3029 	 * 1/ resize the r1bio_pool
3030 	 * 2/ resize conf->mirrors
3031 	 *
3032 	 * We allocate a new r1bio_pool if we can.
3033 	 * Then raise a device barrier and wait until all IO stops.
3034 	 * Then resize conf->mirrors and swap in the new r1bio pool.
3035 	 *
3036 	 * At the same time, we "pack" the devices so that all the missing
3037 	 * devices have the higher raid_disk numbers.
3038 	 */
3039 	mempool_t *newpool, *oldpool;
3040 	struct pool_info *newpoolinfo;
3041 	struct raid1_info *newmirrors;
3042 	struct r1conf *conf = mddev->private;
3043 	int cnt, raid_disks;
3044 	unsigned long flags;
3045 	int d, d2, err;
3046 
3047 	/* Cannot change chunk_size, layout, or level */
3048 	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3049 	    mddev->layout != mddev->new_layout ||
3050 	    mddev->level != mddev->new_level) {
3051 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3052 		mddev->new_layout = mddev->layout;
3053 		mddev->new_level = mddev->level;
3054 		return -EINVAL;
3055 	}
3056 
3057 	if (!mddev_is_clustered(mddev)) {
3058 		err = md_allow_write(mddev);
3059 		if (err)
3060 			return err;
3061 	}
3062 
3063 	raid_disks = mddev->raid_disks + mddev->delta_disks;
3064 
3065 	if (raid_disks < conf->raid_disks) {
3066 		cnt=0;
3067 		for (d= 0; d < conf->raid_disks; d++)
3068 			if (conf->mirrors[d].rdev)
3069 				cnt++;
3070 		if (cnt > raid_disks)
3071 			return -EBUSY;
3072 	}
3073 
3074 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3075 	if (!newpoolinfo)
3076 		return -ENOMEM;
3077 	newpoolinfo->mddev = mddev;
3078 	newpoolinfo->raid_disks = raid_disks * 2;
3079 
3080 	newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3081 				 r1bio_pool_free, newpoolinfo);
3082 	if (!newpool) {
3083 		kfree(newpoolinfo);
3084 		return -ENOMEM;
3085 	}
3086 	newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3087 			     GFP_KERNEL);
3088 	if (!newmirrors) {
3089 		kfree(newpoolinfo);
3090 		mempool_destroy(newpool);
3091 		return -ENOMEM;
3092 	}
3093 
3094 	freeze_array(conf, 0);
3095 
3096 	/* ok, everything is stopped */
3097 	oldpool = conf->r1bio_pool;
3098 	conf->r1bio_pool = newpool;
3099 
3100 	for (d = d2 = 0; d < conf->raid_disks; d++) {
3101 		struct md_rdev *rdev = conf->mirrors[d].rdev;
3102 		if (rdev && rdev->raid_disk != d2) {
3103 			sysfs_unlink_rdev(mddev, rdev);
3104 			rdev->raid_disk = d2;
3105 			sysfs_unlink_rdev(mddev, rdev);
3106 			if (sysfs_link_rdev(mddev, rdev))
3107 				printk(KERN_WARNING
3108 				       "md/raid1:%s: cannot register rd%d\n",
3109 				       mdname(mddev), rdev->raid_disk);
3110 		}
3111 		if (rdev)
3112 			newmirrors[d2++].rdev = rdev;
3113 	}
3114 	kfree(conf->mirrors);
3115 	conf->mirrors = newmirrors;
3116 	kfree(conf->poolinfo);
3117 	conf->poolinfo = newpoolinfo;
3118 
3119 	spin_lock_irqsave(&conf->device_lock, flags);
3120 	mddev->degraded += (raid_disks - conf->raid_disks);
3121 	spin_unlock_irqrestore(&conf->device_lock, flags);
3122 	conf->raid_disks = mddev->raid_disks = raid_disks;
3123 	mddev->delta_disks = 0;
3124 
3125 	unfreeze_array(conf);
3126 
3127 	set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3128 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3129 	md_wakeup_thread(mddev->thread);
3130 
3131 	mempool_destroy(oldpool);
3132 	return 0;
3133 }
3134 
3135 static void raid1_quiesce(struct mddev *mddev, int state)
3136 {
3137 	struct r1conf *conf = mddev->private;
3138 
3139 	switch(state) {
3140 	case 2: /* wake for suspend */
3141 		wake_up(&conf->wait_barrier);
3142 		break;
3143 	case 1:
3144 		freeze_array(conf, 0);
3145 		break;
3146 	case 0:
3147 		unfreeze_array(conf);
3148 		break;
3149 	}
3150 }
3151 
3152 static void *raid1_takeover(struct mddev *mddev)
3153 {
3154 	/* raid1 can take over:
3155 	 *  raid5 with 2 devices, any layout or chunk size
3156 	 */
3157 	if (mddev->level == 5 && mddev->raid_disks == 2) {
3158 		struct r1conf *conf;
3159 		mddev->new_level = 1;
3160 		mddev->new_layout = 0;
3161 		mddev->new_chunk_sectors = 0;
3162 		conf = setup_conf(mddev);
3163 		if (!IS_ERR(conf))
3164 			/* Array must appear to be quiesced */
3165 			conf->array_frozen = 1;
3166 		return conf;
3167 	}
3168 	return ERR_PTR(-EINVAL);
3169 }
3170 
3171 static struct md_personality raid1_personality =
3172 {
3173 	.name		= "raid1",
3174 	.level		= 1,
3175 	.owner		= THIS_MODULE,
3176 	.make_request	= raid1_make_request,
3177 	.run		= raid1_run,
3178 	.free		= raid1_free,
3179 	.status		= raid1_status,
3180 	.error_handler	= raid1_error,
3181 	.hot_add_disk	= raid1_add_disk,
3182 	.hot_remove_disk= raid1_remove_disk,
3183 	.spare_active	= raid1_spare_active,
3184 	.sync_request	= raid1_sync_request,
3185 	.resize		= raid1_resize,
3186 	.size		= raid1_size,
3187 	.check_reshape	= raid1_reshape,
3188 	.quiesce	= raid1_quiesce,
3189 	.takeover	= raid1_takeover,
3190 	.congested	= raid1_congested,
3191 };
3192 
3193 static int __init raid_init(void)
3194 {
3195 	return register_md_personality(&raid1_personality);
3196 }
3197 
3198 static void raid_exit(void)
3199 {
3200 	unregister_md_personality(&raid1_personality);
3201 }
3202 
3203 module_init(raid_init);
3204 module_exit(raid_exit);
3205 MODULE_LICENSE("GPL");
3206 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3207 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3208 MODULE_ALIAS("md-raid1");
3209 MODULE_ALIAS("md-level-1");
3210 
3211 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
3212