xref: /openbmc/linux/drivers/md/raid1.c (revision 3fd83717)
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33 
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include "md.h"
41 #include "raid1.h"
42 #include "bitmap.h"
43 
44 /*
45  * Number of guaranteed r1bios in case of extreme VM load:
46  */
47 #define	NR_RAID1_BIOS 256
48 
49 /* when we get a read error on a read-only array, we redirect to another
50  * device without failing the first device, or trying to over-write to
51  * correct the read error.  To keep track of bad blocks on a per-bio
52  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
53  */
54 #define IO_BLOCKED ((struct bio *)1)
55 /* When we successfully write to a known bad-block, we need to remove the
56  * bad-block marking which must be done from process context.  So we record
57  * the success by setting devs[n].bio to IO_MADE_GOOD
58  */
59 #define IO_MADE_GOOD ((struct bio *)2)
60 
61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
62 
63 /* When there are this many requests queue to be written by
64  * the raid1 thread, we become 'congested' to provide back-pressure
65  * for writeback.
66  */
67 static int max_queued_requests = 1024;
68 
69 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
70 			  sector_t bi_sector);
71 static void lower_barrier(struct r1conf *conf);
72 
73 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
74 {
75 	struct pool_info *pi = data;
76 	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
77 
78 	/* allocate a r1bio with room for raid_disks entries in the bios array */
79 	return kzalloc(size, gfp_flags);
80 }
81 
82 static void r1bio_pool_free(void *r1_bio, void *data)
83 {
84 	kfree(r1_bio);
85 }
86 
87 #define RESYNC_BLOCK_SIZE (64*1024)
88 #define RESYNC_DEPTH 32
89 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
90 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
91 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
92 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
93 #define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
94 
95 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
96 {
97 	struct pool_info *pi = data;
98 	struct r1bio *r1_bio;
99 	struct bio *bio;
100 	int need_pages;
101 	int i, j;
102 
103 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
104 	if (!r1_bio)
105 		return NULL;
106 
107 	/*
108 	 * Allocate bios : 1 for reading, n-1 for writing
109 	 */
110 	for (j = pi->raid_disks ; j-- ; ) {
111 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
112 		if (!bio)
113 			goto out_free_bio;
114 		r1_bio->bios[j] = bio;
115 	}
116 	/*
117 	 * Allocate RESYNC_PAGES data pages and attach them to
118 	 * the first bio.
119 	 * If this is a user-requested check/repair, allocate
120 	 * RESYNC_PAGES for each bio.
121 	 */
122 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
123 		need_pages = pi->raid_disks;
124 	else
125 		need_pages = 1;
126 	for (j = 0; j < need_pages; j++) {
127 		bio = r1_bio->bios[j];
128 		bio->bi_vcnt = RESYNC_PAGES;
129 
130 		if (bio_alloc_pages(bio, gfp_flags))
131 			goto out_free_pages;
132 	}
133 	/* If not user-requests, copy the page pointers to all bios */
134 	if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
135 		for (i=0; i<RESYNC_PAGES ; i++)
136 			for (j=1; j<pi->raid_disks; j++)
137 				r1_bio->bios[j]->bi_io_vec[i].bv_page =
138 					r1_bio->bios[0]->bi_io_vec[i].bv_page;
139 	}
140 
141 	r1_bio->master_bio = NULL;
142 
143 	return r1_bio;
144 
145 out_free_pages:
146 	while (--j >= 0) {
147 		struct bio_vec *bv;
148 
149 		bio_for_each_segment_all(bv, r1_bio->bios[j], i)
150 			__free_page(bv->bv_page);
151 	}
152 
153 out_free_bio:
154 	while (++j < pi->raid_disks)
155 		bio_put(r1_bio->bios[j]);
156 	r1bio_pool_free(r1_bio, data);
157 	return NULL;
158 }
159 
160 static void r1buf_pool_free(void *__r1_bio, void *data)
161 {
162 	struct pool_info *pi = data;
163 	int i,j;
164 	struct r1bio *r1bio = __r1_bio;
165 
166 	for (i = 0; i < RESYNC_PAGES; i++)
167 		for (j = pi->raid_disks; j-- ;) {
168 			if (j == 0 ||
169 			    r1bio->bios[j]->bi_io_vec[i].bv_page !=
170 			    r1bio->bios[0]->bi_io_vec[i].bv_page)
171 				safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
172 		}
173 	for (i=0 ; i < pi->raid_disks; i++)
174 		bio_put(r1bio->bios[i]);
175 
176 	r1bio_pool_free(r1bio, data);
177 }
178 
179 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
180 {
181 	int i;
182 
183 	for (i = 0; i < conf->raid_disks * 2; i++) {
184 		struct bio **bio = r1_bio->bios + i;
185 		if (!BIO_SPECIAL(*bio))
186 			bio_put(*bio);
187 		*bio = NULL;
188 	}
189 }
190 
191 static void free_r1bio(struct r1bio *r1_bio)
192 {
193 	struct r1conf *conf = r1_bio->mddev->private;
194 
195 	put_all_bios(conf, r1_bio);
196 	mempool_free(r1_bio, conf->r1bio_pool);
197 }
198 
199 static void put_buf(struct r1bio *r1_bio)
200 {
201 	struct r1conf *conf = r1_bio->mddev->private;
202 	int i;
203 
204 	for (i = 0; i < conf->raid_disks * 2; i++) {
205 		struct bio *bio = r1_bio->bios[i];
206 		if (bio->bi_end_io)
207 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
208 	}
209 
210 	mempool_free(r1_bio, conf->r1buf_pool);
211 
212 	lower_barrier(conf);
213 }
214 
215 static void reschedule_retry(struct r1bio *r1_bio)
216 {
217 	unsigned long flags;
218 	struct mddev *mddev = r1_bio->mddev;
219 	struct r1conf *conf = mddev->private;
220 
221 	spin_lock_irqsave(&conf->device_lock, flags);
222 	list_add(&r1_bio->retry_list, &conf->retry_list);
223 	conf->nr_queued ++;
224 	spin_unlock_irqrestore(&conf->device_lock, flags);
225 
226 	wake_up(&conf->wait_barrier);
227 	md_wakeup_thread(mddev->thread);
228 }
229 
230 /*
231  * raid_end_bio_io() is called when we have finished servicing a mirrored
232  * operation and are ready to return a success/failure code to the buffer
233  * cache layer.
234  */
235 static void call_bio_endio(struct r1bio *r1_bio)
236 {
237 	struct bio *bio = r1_bio->master_bio;
238 	int done;
239 	struct r1conf *conf = r1_bio->mddev->private;
240 	sector_t start_next_window = r1_bio->start_next_window;
241 	sector_t bi_sector = bio->bi_iter.bi_sector;
242 
243 	if (bio->bi_phys_segments) {
244 		unsigned long flags;
245 		spin_lock_irqsave(&conf->device_lock, flags);
246 		bio->bi_phys_segments--;
247 		done = (bio->bi_phys_segments == 0);
248 		spin_unlock_irqrestore(&conf->device_lock, flags);
249 		/*
250 		 * make_request() might be waiting for
251 		 * bi_phys_segments to decrease
252 		 */
253 		wake_up(&conf->wait_barrier);
254 	} else
255 		done = 1;
256 
257 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
258 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
259 	if (done) {
260 		bio_endio(bio, 0);
261 		/*
262 		 * Wake up any possible resync thread that waits for the device
263 		 * to go idle.
264 		 */
265 		allow_barrier(conf, start_next_window, bi_sector);
266 	}
267 }
268 
269 static void raid_end_bio_io(struct r1bio *r1_bio)
270 {
271 	struct bio *bio = r1_bio->master_bio;
272 
273 	/* if nobody has done the final endio yet, do it now */
274 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
275 		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
276 			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
277 			 (unsigned long long) bio->bi_iter.bi_sector,
278 			 (unsigned long long) bio_end_sector(bio) - 1);
279 
280 		call_bio_endio(r1_bio);
281 	}
282 	free_r1bio(r1_bio);
283 }
284 
285 /*
286  * Update disk head position estimator based on IRQ completion info.
287  */
288 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
289 {
290 	struct r1conf *conf = r1_bio->mddev->private;
291 
292 	conf->mirrors[disk].head_position =
293 		r1_bio->sector + (r1_bio->sectors);
294 }
295 
296 /*
297  * Find the disk number which triggered given bio
298  */
299 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
300 {
301 	int mirror;
302 	struct r1conf *conf = r1_bio->mddev->private;
303 	int raid_disks = conf->raid_disks;
304 
305 	for (mirror = 0; mirror < raid_disks * 2; mirror++)
306 		if (r1_bio->bios[mirror] == bio)
307 			break;
308 
309 	BUG_ON(mirror == raid_disks * 2);
310 	update_head_pos(mirror, r1_bio);
311 
312 	return mirror;
313 }
314 
315 static void raid1_end_read_request(struct bio *bio, int error)
316 {
317 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
318 	struct r1bio *r1_bio = bio->bi_private;
319 	int mirror;
320 	struct r1conf *conf = r1_bio->mddev->private;
321 
322 	mirror = r1_bio->read_disk;
323 	/*
324 	 * this branch is our 'one mirror IO has finished' event handler:
325 	 */
326 	update_head_pos(mirror, r1_bio);
327 
328 	if (uptodate)
329 		set_bit(R1BIO_Uptodate, &r1_bio->state);
330 	else {
331 		/* If all other devices have failed, we want to return
332 		 * the error upwards rather than fail the last device.
333 		 * Here we redefine "uptodate" to mean "Don't want to retry"
334 		 */
335 		unsigned long flags;
336 		spin_lock_irqsave(&conf->device_lock, flags);
337 		if (r1_bio->mddev->degraded == conf->raid_disks ||
338 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
339 		     !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
340 			uptodate = 1;
341 		spin_unlock_irqrestore(&conf->device_lock, flags);
342 	}
343 
344 	if (uptodate) {
345 		raid_end_bio_io(r1_bio);
346 		rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
347 	} else {
348 		/*
349 		 * oops, read error:
350 		 */
351 		char b[BDEVNAME_SIZE];
352 		printk_ratelimited(
353 			KERN_ERR "md/raid1:%s: %s: "
354 			"rescheduling sector %llu\n",
355 			mdname(conf->mddev),
356 			bdevname(conf->mirrors[mirror].rdev->bdev,
357 				 b),
358 			(unsigned long long)r1_bio->sector);
359 		set_bit(R1BIO_ReadError, &r1_bio->state);
360 		reschedule_retry(r1_bio);
361 		/* don't drop the reference on read_disk yet */
362 	}
363 }
364 
365 static void close_write(struct r1bio *r1_bio)
366 {
367 	/* it really is the end of this request */
368 	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
369 		/* free extra copy of the data pages */
370 		int i = r1_bio->behind_page_count;
371 		while (i--)
372 			safe_put_page(r1_bio->behind_bvecs[i].bv_page);
373 		kfree(r1_bio->behind_bvecs);
374 		r1_bio->behind_bvecs = NULL;
375 	}
376 	/* clear the bitmap if all writes complete successfully */
377 	bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
378 			r1_bio->sectors,
379 			!test_bit(R1BIO_Degraded, &r1_bio->state),
380 			test_bit(R1BIO_BehindIO, &r1_bio->state));
381 	md_write_end(r1_bio->mddev);
382 }
383 
384 static void r1_bio_write_done(struct r1bio *r1_bio)
385 {
386 	if (!atomic_dec_and_test(&r1_bio->remaining))
387 		return;
388 
389 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
390 		reschedule_retry(r1_bio);
391 	else {
392 		close_write(r1_bio);
393 		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
394 			reschedule_retry(r1_bio);
395 		else
396 			raid_end_bio_io(r1_bio);
397 	}
398 }
399 
400 static void raid1_end_write_request(struct bio *bio, int error)
401 {
402 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
403 	struct r1bio *r1_bio = bio->bi_private;
404 	int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
405 	struct r1conf *conf = r1_bio->mddev->private;
406 	struct bio *to_put = NULL;
407 
408 	mirror = find_bio_disk(r1_bio, bio);
409 
410 	/*
411 	 * 'one mirror IO has finished' event handler:
412 	 */
413 	if (!uptodate) {
414 		set_bit(WriteErrorSeen,
415 			&conf->mirrors[mirror].rdev->flags);
416 		if (!test_and_set_bit(WantReplacement,
417 				      &conf->mirrors[mirror].rdev->flags))
418 			set_bit(MD_RECOVERY_NEEDED, &
419 				conf->mddev->recovery);
420 
421 		set_bit(R1BIO_WriteError, &r1_bio->state);
422 	} else {
423 		/*
424 		 * Set R1BIO_Uptodate in our master bio, so that we
425 		 * will return a good error code for to the higher
426 		 * levels even if IO on some other mirrored buffer
427 		 * fails.
428 		 *
429 		 * The 'master' represents the composite IO operation
430 		 * to user-side. So if something waits for IO, then it
431 		 * will wait for the 'master' bio.
432 		 */
433 		sector_t first_bad;
434 		int bad_sectors;
435 
436 		r1_bio->bios[mirror] = NULL;
437 		to_put = bio;
438 		/*
439 		 * Do not set R1BIO_Uptodate if the current device is
440 		 * rebuilding or Faulty. This is because we cannot use
441 		 * such device for properly reading the data back (we could
442 		 * potentially use it, if the current write would have felt
443 		 * before rdev->recovery_offset, but for simplicity we don't
444 		 * check this here.
445 		 */
446 		if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) &&
447 		    !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))
448 			set_bit(R1BIO_Uptodate, &r1_bio->state);
449 
450 		/* Maybe we can clear some bad blocks. */
451 		if (is_badblock(conf->mirrors[mirror].rdev,
452 				r1_bio->sector, r1_bio->sectors,
453 				&first_bad, &bad_sectors)) {
454 			r1_bio->bios[mirror] = IO_MADE_GOOD;
455 			set_bit(R1BIO_MadeGood, &r1_bio->state);
456 		}
457 	}
458 
459 	if (behind) {
460 		if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
461 			atomic_dec(&r1_bio->behind_remaining);
462 
463 		/*
464 		 * In behind mode, we ACK the master bio once the I/O
465 		 * has safely reached all non-writemostly
466 		 * disks. Setting the Returned bit ensures that this
467 		 * gets done only once -- we don't ever want to return
468 		 * -EIO here, instead we'll wait
469 		 */
470 		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
471 		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
472 			/* Maybe we can return now */
473 			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
474 				struct bio *mbio = r1_bio->master_bio;
475 				pr_debug("raid1: behind end write sectors"
476 					 " %llu-%llu\n",
477 					 (unsigned long long) mbio->bi_iter.bi_sector,
478 					 (unsigned long long) bio_end_sector(mbio) - 1);
479 				call_bio_endio(r1_bio);
480 			}
481 		}
482 	}
483 	if (r1_bio->bios[mirror] == NULL)
484 		rdev_dec_pending(conf->mirrors[mirror].rdev,
485 				 conf->mddev);
486 
487 	/*
488 	 * Let's see if all mirrored write operations have finished
489 	 * already.
490 	 */
491 	r1_bio_write_done(r1_bio);
492 
493 	if (to_put)
494 		bio_put(to_put);
495 }
496 
497 
498 /*
499  * This routine returns the disk from which the requested read should
500  * be done. There is a per-array 'next expected sequential IO' sector
501  * number - if this matches on the next IO then we use the last disk.
502  * There is also a per-disk 'last know head position' sector that is
503  * maintained from IRQ contexts, both the normal and the resync IO
504  * completion handlers update this position correctly. If there is no
505  * perfect sequential match then we pick the disk whose head is closest.
506  *
507  * If there are 2 mirrors in the same 2 devices, performance degrades
508  * because position is mirror, not device based.
509  *
510  * The rdev for the device selected will have nr_pending incremented.
511  */
512 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
513 {
514 	const sector_t this_sector = r1_bio->sector;
515 	int sectors;
516 	int best_good_sectors;
517 	int best_disk, best_dist_disk, best_pending_disk;
518 	int has_nonrot_disk;
519 	int disk;
520 	sector_t best_dist;
521 	unsigned int min_pending;
522 	struct md_rdev *rdev;
523 	int choose_first;
524 	int choose_next_idle;
525 
526 	rcu_read_lock();
527 	/*
528 	 * Check if we can balance. We can balance on the whole
529 	 * device if no resync is going on, or below the resync window.
530 	 * We take the first readable disk when above the resync window.
531 	 */
532  retry:
533 	sectors = r1_bio->sectors;
534 	best_disk = -1;
535 	best_dist_disk = -1;
536 	best_dist = MaxSector;
537 	best_pending_disk = -1;
538 	min_pending = UINT_MAX;
539 	best_good_sectors = 0;
540 	has_nonrot_disk = 0;
541 	choose_next_idle = 0;
542 
543 	choose_first = (conf->mddev->recovery_cp < this_sector + sectors);
544 
545 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
546 		sector_t dist;
547 		sector_t first_bad;
548 		int bad_sectors;
549 		unsigned int pending;
550 		bool nonrot;
551 
552 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
553 		if (r1_bio->bios[disk] == IO_BLOCKED
554 		    || rdev == NULL
555 		    || test_bit(Unmerged, &rdev->flags)
556 		    || test_bit(Faulty, &rdev->flags))
557 			continue;
558 		if (!test_bit(In_sync, &rdev->flags) &&
559 		    rdev->recovery_offset < this_sector + sectors)
560 			continue;
561 		if (test_bit(WriteMostly, &rdev->flags)) {
562 			/* Don't balance among write-mostly, just
563 			 * use the first as a last resort */
564 			if (best_disk < 0) {
565 				if (is_badblock(rdev, this_sector, sectors,
566 						&first_bad, &bad_sectors)) {
567 					if (first_bad < this_sector)
568 						/* Cannot use this */
569 						continue;
570 					best_good_sectors = first_bad - this_sector;
571 				} else
572 					best_good_sectors = sectors;
573 				best_disk = disk;
574 			}
575 			continue;
576 		}
577 		/* This is a reasonable device to use.  It might
578 		 * even be best.
579 		 */
580 		if (is_badblock(rdev, this_sector, sectors,
581 				&first_bad, &bad_sectors)) {
582 			if (best_dist < MaxSector)
583 				/* already have a better device */
584 				continue;
585 			if (first_bad <= this_sector) {
586 				/* cannot read here. If this is the 'primary'
587 				 * device, then we must not read beyond
588 				 * bad_sectors from another device..
589 				 */
590 				bad_sectors -= (this_sector - first_bad);
591 				if (choose_first && sectors > bad_sectors)
592 					sectors = bad_sectors;
593 				if (best_good_sectors > sectors)
594 					best_good_sectors = sectors;
595 
596 			} else {
597 				sector_t good_sectors = first_bad - this_sector;
598 				if (good_sectors > best_good_sectors) {
599 					best_good_sectors = good_sectors;
600 					best_disk = disk;
601 				}
602 				if (choose_first)
603 					break;
604 			}
605 			continue;
606 		} else
607 			best_good_sectors = sectors;
608 
609 		nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
610 		has_nonrot_disk |= nonrot;
611 		pending = atomic_read(&rdev->nr_pending);
612 		dist = abs(this_sector - conf->mirrors[disk].head_position);
613 		if (choose_first) {
614 			best_disk = disk;
615 			break;
616 		}
617 		/* Don't change to another disk for sequential reads */
618 		if (conf->mirrors[disk].next_seq_sect == this_sector
619 		    || dist == 0) {
620 			int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
621 			struct raid1_info *mirror = &conf->mirrors[disk];
622 
623 			best_disk = disk;
624 			/*
625 			 * If buffered sequential IO size exceeds optimal
626 			 * iosize, check if there is idle disk. If yes, choose
627 			 * the idle disk. read_balance could already choose an
628 			 * idle disk before noticing it's a sequential IO in
629 			 * this disk. This doesn't matter because this disk
630 			 * will idle, next time it will be utilized after the
631 			 * first disk has IO size exceeds optimal iosize. In
632 			 * this way, iosize of the first disk will be optimal
633 			 * iosize at least. iosize of the second disk might be
634 			 * small, but not a big deal since when the second disk
635 			 * starts IO, the first disk is likely still busy.
636 			 */
637 			if (nonrot && opt_iosize > 0 &&
638 			    mirror->seq_start != MaxSector &&
639 			    mirror->next_seq_sect > opt_iosize &&
640 			    mirror->next_seq_sect - opt_iosize >=
641 			    mirror->seq_start) {
642 				choose_next_idle = 1;
643 				continue;
644 			}
645 			break;
646 		}
647 		/* If device is idle, use it */
648 		if (pending == 0) {
649 			best_disk = disk;
650 			break;
651 		}
652 
653 		if (choose_next_idle)
654 			continue;
655 
656 		if (min_pending > pending) {
657 			min_pending = pending;
658 			best_pending_disk = disk;
659 		}
660 
661 		if (dist < best_dist) {
662 			best_dist = dist;
663 			best_dist_disk = disk;
664 		}
665 	}
666 
667 	/*
668 	 * If all disks are rotational, choose the closest disk. If any disk is
669 	 * non-rotational, choose the disk with less pending request even the
670 	 * disk is rotational, which might/might not be optimal for raids with
671 	 * mixed ratation/non-rotational disks depending on workload.
672 	 */
673 	if (best_disk == -1) {
674 		if (has_nonrot_disk)
675 			best_disk = best_pending_disk;
676 		else
677 			best_disk = best_dist_disk;
678 	}
679 
680 	if (best_disk >= 0) {
681 		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
682 		if (!rdev)
683 			goto retry;
684 		atomic_inc(&rdev->nr_pending);
685 		if (test_bit(Faulty, &rdev->flags)) {
686 			/* cannot risk returning a device that failed
687 			 * before we inc'ed nr_pending
688 			 */
689 			rdev_dec_pending(rdev, conf->mddev);
690 			goto retry;
691 		}
692 		sectors = best_good_sectors;
693 
694 		if (conf->mirrors[best_disk].next_seq_sect != this_sector)
695 			conf->mirrors[best_disk].seq_start = this_sector;
696 
697 		conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
698 	}
699 	rcu_read_unlock();
700 	*max_sectors = sectors;
701 
702 	return best_disk;
703 }
704 
705 static int raid1_mergeable_bvec(struct request_queue *q,
706 				struct bvec_merge_data *bvm,
707 				struct bio_vec *biovec)
708 {
709 	struct mddev *mddev = q->queuedata;
710 	struct r1conf *conf = mddev->private;
711 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
712 	int max = biovec->bv_len;
713 
714 	if (mddev->merge_check_needed) {
715 		int disk;
716 		rcu_read_lock();
717 		for (disk = 0; disk < conf->raid_disks * 2; disk++) {
718 			struct md_rdev *rdev = rcu_dereference(
719 				conf->mirrors[disk].rdev);
720 			if (rdev && !test_bit(Faulty, &rdev->flags)) {
721 				struct request_queue *q =
722 					bdev_get_queue(rdev->bdev);
723 				if (q->merge_bvec_fn) {
724 					bvm->bi_sector = sector +
725 						rdev->data_offset;
726 					bvm->bi_bdev = rdev->bdev;
727 					max = min(max, q->merge_bvec_fn(
728 							  q, bvm, biovec));
729 				}
730 			}
731 		}
732 		rcu_read_unlock();
733 	}
734 	return max;
735 
736 }
737 
738 int md_raid1_congested(struct mddev *mddev, int bits)
739 {
740 	struct r1conf *conf = mddev->private;
741 	int i, ret = 0;
742 
743 	if ((bits & (1 << BDI_async_congested)) &&
744 	    conf->pending_count >= max_queued_requests)
745 		return 1;
746 
747 	rcu_read_lock();
748 	for (i = 0; i < conf->raid_disks * 2; i++) {
749 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
750 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
751 			struct request_queue *q = bdev_get_queue(rdev->bdev);
752 
753 			BUG_ON(!q);
754 
755 			/* Note the '|| 1' - when read_balance prefers
756 			 * non-congested targets, it can be removed
757 			 */
758 			if ((bits & (1<<BDI_async_congested)) || 1)
759 				ret |= bdi_congested(&q->backing_dev_info, bits);
760 			else
761 				ret &= bdi_congested(&q->backing_dev_info, bits);
762 		}
763 	}
764 	rcu_read_unlock();
765 	return ret;
766 }
767 EXPORT_SYMBOL_GPL(md_raid1_congested);
768 
769 static int raid1_congested(void *data, int bits)
770 {
771 	struct mddev *mddev = data;
772 
773 	return mddev_congested(mddev, bits) ||
774 		md_raid1_congested(mddev, bits);
775 }
776 
777 static void flush_pending_writes(struct r1conf *conf)
778 {
779 	/* Any writes that have been queued but are awaiting
780 	 * bitmap updates get flushed here.
781 	 */
782 	spin_lock_irq(&conf->device_lock);
783 
784 	if (conf->pending_bio_list.head) {
785 		struct bio *bio;
786 		bio = bio_list_get(&conf->pending_bio_list);
787 		conf->pending_count = 0;
788 		spin_unlock_irq(&conf->device_lock);
789 		/* flush any pending bitmap writes to
790 		 * disk before proceeding w/ I/O */
791 		bitmap_unplug(conf->mddev->bitmap);
792 		wake_up(&conf->wait_barrier);
793 
794 		while (bio) { /* submit pending writes */
795 			struct bio *next = bio->bi_next;
796 			bio->bi_next = NULL;
797 			if (unlikely((bio->bi_rw & REQ_DISCARD) &&
798 			    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
799 				/* Just ignore it */
800 				bio_endio(bio, 0);
801 			else
802 				generic_make_request(bio);
803 			bio = next;
804 		}
805 	} else
806 		spin_unlock_irq(&conf->device_lock);
807 }
808 
809 /* Barriers....
810  * Sometimes we need to suspend IO while we do something else,
811  * either some resync/recovery, or reconfigure the array.
812  * To do this we raise a 'barrier'.
813  * The 'barrier' is a counter that can be raised multiple times
814  * to count how many activities are happening which preclude
815  * normal IO.
816  * We can only raise the barrier if there is no pending IO.
817  * i.e. if nr_pending == 0.
818  * We choose only to raise the barrier if no-one is waiting for the
819  * barrier to go down.  This means that as soon as an IO request
820  * is ready, no other operations which require a barrier will start
821  * until the IO request has had a chance.
822  *
823  * So: regular IO calls 'wait_barrier'.  When that returns there
824  *    is no backgroup IO happening,  It must arrange to call
825  *    allow_barrier when it has finished its IO.
826  * backgroup IO calls must call raise_barrier.  Once that returns
827  *    there is no normal IO happeing.  It must arrange to call
828  *    lower_barrier when the particular background IO completes.
829  */
830 static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
831 {
832 	spin_lock_irq(&conf->resync_lock);
833 
834 	/* Wait until no block IO is waiting */
835 	wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
836 			    conf->resync_lock);
837 
838 	/* block any new IO from starting */
839 	conf->barrier++;
840 	conf->next_resync = sector_nr;
841 
842 	/* For these conditions we must wait:
843 	 * A: while the array is in frozen state
844 	 * B: while barrier >= RESYNC_DEPTH, meaning resync reach
845 	 *    the max count which allowed.
846 	 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
847 	 *    next resync will reach to the window which normal bios are
848 	 *    handling.
849 	 * D: while there are any active requests in the current window.
850 	 */
851 	wait_event_lock_irq(conf->wait_barrier,
852 			    !conf->array_frozen &&
853 			    conf->barrier < RESYNC_DEPTH &&
854 			    conf->current_window_requests == 0 &&
855 			    (conf->start_next_window >=
856 			     conf->next_resync + RESYNC_SECTORS),
857 			    conf->resync_lock);
858 
859 	conf->nr_pending++;
860 	spin_unlock_irq(&conf->resync_lock);
861 }
862 
863 static void lower_barrier(struct r1conf *conf)
864 {
865 	unsigned long flags;
866 	BUG_ON(conf->barrier <= 0);
867 	spin_lock_irqsave(&conf->resync_lock, flags);
868 	conf->barrier--;
869 	conf->nr_pending--;
870 	spin_unlock_irqrestore(&conf->resync_lock, flags);
871 	wake_up(&conf->wait_barrier);
872 }
873 
874 static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
875 {
876 	bool wait = false;
877 
878 	if (conf->array_frozen || !bio)
879 		wait = true;
880 	else if (conf->barrier && bio_data_dir(bio) == WRITE) {
881 		if ((conf->mddev->curr_resync_completed
882 		     >= bio_end_sector(bio)) ||
883 		    (conf->next_resync + NEXT_NORMALIO_DISTANCE
884 		     <= bio->bi_iter.bi_sector))
885 			wait = false;
886 		else
887 			wait = true;
888 	}
889 
890 	return wait;
891 }
892 
893 static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
894 {
895 	sector_t sector = 0;
896 
897 	spin_lock_irq(&conf->resync_lock);
898 	if (need_to_wait_for_sync(conf, bio)) {
899 		conf->nr_waiting++;
900 		/* Wait for the barrier to drop.
901 		 * However if there are already pending
902 		 * requests (preventing the barrier from
903 		 * rising completely), and the
904 		 * per-process bio queue isn't empty,
905 		 * then don't wait, as we need to empty
906 		 * that queue to allow conf->start_next_window
907 		 * to increase.
908 		 */
909 		wait_event_lock_irq(conf->wait_barrier,
910 				    !conf->array_frozen &&
911 				    (!conf->barrier ||
912 				     ((conf->start_next_window <
913 				       conf->next_resync + RESYNC_SECTORS) &&
914 				      current->bio_list &&
915 				      !bio_list_empty(current->bio_list))),
916 				    conf->resync_lock);
917 		conf->nr_waiting--;
918 	}
919 
920 	if (bio && bio_data_dir(bio) == WRITE) {
921 		if (bio->bi_iter.bi_sector >=
922 		    conf->mddev->curr_resync_completed) {
923 			if (conf->start_next_window == MaxSector)
924 				conf->start_next_window =
925 					conf->next_resync +
926 					NEXT_NORMALIO_DISTANCE;
927 
928 			if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
929 			    <= bio->bi_iter.bi_sector)
930 				conf->next_window_requests++;
931 			else
932 				conf->current_window_requests++;
933 			sector = conf->start_next_window;
934 		}
935 	}
936 
937 	conf->nr_pending++;
938 	spin_unlock_irq(&conf->resync_lock);
939 	return sector;
940 }
941 
942 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
943 			  sector_t bi_sector)
944 {
945 	unsigned long flags;
946 
947 	spin_lock_irqsave(&conf->resync_lock, flags);
948 	conf->nr_pending--;
949 	if (start_next_window) {
950 		if (start_next_window == conf->start_next_window) {
951 			if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
952 			    <= bi_sector)
953 				conf->next_window_requests--;
954 			else
955 				conf->current_window_requests--;
956 		} else
957 			conf->current_window_requests--;
958 
959 		if (!conf->current_window_requests) {
960 			if (conf->next_window_requests) {
961 				conf->current_window_requests =
962 					conf->next_window_requests;
963 				conf->next_window_requests = 0;
964 				conf->start_next_window +=
965 					NEXT_NORMALIO_DISTANCE;
966 			} else
967 				conf->start_next_window = MaxSector;
968 		}
969 	}
970 	spin_unlock_irqrestore(&conf->resync_lock, flags);
971 	wake_up(&conf->wait_barrier);
972 }
973 
974 static void freeze_array(struct r1conf *conf, int extra)
975 {
976 	/* stop syncio and normal IO and wait for everything to
977 	 * go quite.
978 	 * We wait until nr_pending match nr_queued+extra
979 	 * This is called in the context of one normal IO request
980 	 * that has failed. Thus any sync request that might be pending
981 	 * will be blocked by nr_pending, and we need to wait for
982 	 * pending IO requests to complete or be queued for re-try.
983 	 * Thus the number queued (nr_queued) plus this request (extra)
984 	 * must match the number of pending IOs (nr_pending) before
985 	 * we continue.
986 	 */
987 	spin_lock_irq(&conf->resync_lock);
988 	conf->array_frozen = 1;
989 	wait_event_lock_irq_cmd(conf->wait_barrier,
990 				conf->nr_pending == conf->nr_queued+extra,
991 				conf->resync_lock,
992 				flush_pending_writes(conf));
993 	spin_unlock_irq(&conf->resync_lock);
994 }
995 static void unfreeze_array(struct r1conf *conf)
996 {
997 	/* reverse the effect of the freeze */
998 	spin_lock_irq(&conf->resync_lock);
999 	conf->array_frozen = 0;
1000 	wake_up(&conf->wait_barrier);
1001 	spin_unlock_irq(&conf->resync_lock);
1002 }
1003 
1004 
1005 /* duplicate the data pages for behind I/O
1006  */
1007 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
1008 {
1009 	int i;
1010 	struct bio_vec *bvec;
1011 	struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
1012 					GFP_NOIO);
1013 	if (unlikely(!bvecs))
1014 		return;
1015 
1016 	bio_for_each_segment_all(bvec, bio, i) {
1017 		bvecs[i] = *bvec;
1018 		bvecs[i].bv_page = alloc_page(GFP_NOIO);
1019 		if (unlikely(!bvecs[i].bv_page))
1020 			goto do_sync_io;
1021 		memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
1022 		       kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
1023 		kunmap(bvecs[i].bv_page);
1024 		kunmap(bvec->bv_page);
1025 	}
1026 	r1_bio->behind_bvecs = bvecs;
1027 	r1_bio->behind_page_count = bio->bi_vcnt;
1028 	set_bit(R1BIO_BehindIO, &r1_bio->state);
1029 	return;
1030 
1031 do_sync_io:
1032 	for (i = 0; i < bio->bi_vcnt; i++)
1033 		if (bvecs[i].bv_page)
1034 			put_page(bvecs[i].bv_page);
1035 	kfree(bvecs);
1036 	pr_debug("%dB behind alloc failed, doing sync I/O\n",
1037 		 bio->bi_iter.bi_size);
1038 }
1039 
1040 struct raid1_plug_cb {
1041 	struct blk_plug_cb	cb;
1042 	struct bio_list		pending;
1043 	int			pending_cnt;
1044 };
1045 
1046 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1047 {
1048 	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1049 						  cb);
1050 	struct mddev *mddev = plug->cb.data;
1051 	struct r1conf *conf = mddev->private;
1052 	struct bio *bio;
1053 
1054 	if (from_schedule || current->bio_list) {
1055 		spin_lock_irq(&conf->device_lock);
1056 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1057 		conf->pending_count += plug->pending_cnt;
1058 		spin_unlock_irq(&conf->device_lock);
1059 		wake_up(&conf->wait_barrier);
1060 		md_wakeup_thread(mddev->thread);
1061 		kfree(plug);
1062 		return;
1063 	}
1064 
1065 	/* we aren't scheduling, so we can do the write-out directly. */
1066 	bio = bio_list_get(&plug->pending);
1067 	bitmap_unplug(mddev->bitmap);
1068 	wake_up(&conf->wait_barrier);
1069 
1070 	while (bio) { /* submit pending writes */
1071 		struct bio *next = bio->bi_next;
1072 		bio->bi_next = NULL;
1073 		if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1074 		    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1075 			/* Just ignore it */
1076 			bio_endio(bio, 0);
1077 		else
1078 			generic_make_request(bio);
1079 		bio = next;
1080 	}
1081 	kfree(plug);
1082 }
1083 
1084 static void make_request(struct mddev *mddev, struct bio * bio)
1085 {
1086 	struct r1conf *conf = mddev->private;
1087 	struct raid1_info *mirror;
1088 	struct r1bio *r1_bio;
1089 	struct bio *read_bio;
1090 	int i, disks;
1091 	struct bitmap *bitmap;
1092 	unsigned long flags;
1093 	const int rw = bio_data_dir(bio);
1094 	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1095 	const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
1096 	const unsigned long do_discard = (bio->bi_rw
1097 					  & (REQ_DISCARD | REQ_SECURE));
1098 	const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1099 	struct md_rdev *blocked_rdev;
1100 	struct blk_plug_cb *cb;
1101 	struct raid1_plug_cb *plug = NULL;
1102 	int first_clone;
1103 	int sectors_handled;
1104 	int max_sectors;
1105 	sector_t start_next_window;
1106 
1107 	/*
1108 	 * Register the new request and wait if the reconstruction
1109 	 * thread has put up a bar for new requests.
1110 	 * Continue immediately if no resync is active currently.
1111 	 */
1112 
1113 	md_write_start(mddev, bio); /* wait on superblock update early */
1114 
1115 	if (bio_data_dir(bio) == WRITE &&
1116 	    bio_end_sector(bio) > mddev->suspend_lo &&
1117 	    bio->bi_iter.bi_sector < mddev->suspend_hi) {
1118 		/* As the suspend_* range is controlled by
1119 		 * userspace, we want an interruptible
1120 		 * wait.
1121 		 */
1122 		DEFINE_WAIT(w);
1123 		for (;;) {
1124 			flush_signals(current);
1125 			prepare_to_wait(&conf->wait_barrier,
1126 					&w, TASK_INTERRUPTIBLE);
1127 			if (bio_end_sector(bio) <= mddev->suspend_lo ||
1128 			    bio->bi_iter.bi_sector >= mddev->suspend_hi)
1129 				break;
1130 			schedule();
1131 		}
1132 		finish_wait(&conf->wait_barrier, &w);
1133 	}
1134 
1135 	start_next_window = wait_barrier(conf, bio);
1136 
1137 	bitmap = mddev->bitmap;
1138 
1139 	/*
1140 	 * make_request() can abort the operation when READA is being
1141 	 * used and no empty request is available.
1142 	 *
1143 	 */
1144 	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1145 
1146 	r1_bio->master_bio = bio;
1147 	r1_bio->sectors = bio_sectors(bio);
1148 	r1_bio->state = 0;
1149 	r1_bio->mddev = mddev;
1150 	r1_bio->sector = bio->bi_iter.bi_sector;
1151 
1152 	/* We might need to issue multiple reads to different
1153 	 * devices if there are bad blocks around, so we keep
1154 	 * track of the number of reads in bio->bi_phys_segments.
1155 	 * If this is 0, there is only one r1_bio and no locking
1156 	 * will be needed when requests complete.  If it is
1157 	 * non-zero, then it is the number of not-completed requests.
1158 	 */
1159 	bio->bi_phys_segments = 0;
1160 	clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1161 
1162 	if (rw == READ) {
1163 		/*
1164 		 * read balancing logic:
1165 		 */
1166 		int rdisk;
1167 
1168 read_again:
1169 		rdisk = read_balance(conf, r1_bio, &max_sectors);
1170 
1171 		if (rdisk < 0) {
1172 			/* couldn't find anywhere to read from */
1173 			raid_end_bio_io(r1_bio);
1174 			return;
1175 		}
1176 		mirror = conf->mirrors + rdisk;
1177 
1178 		if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1179 		    bitmap) {
1180 			/* Reading from a write-mostly device must
1181 			 * take care not to over-take any writes
1182 			 * that are 'behind'
1183 			 */
1184 			wait_event(bitmap->behind_wait,
1185 				   atomic_read(&bitmap->behind_writes) == 0);
1186 		}
1187 		r1_bio->read_disk = rdisk;
1188 		r1_bio->start_next_window = 0;
1189 
1190 		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1191 		bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1192 			 max_sectors);
1193 
1194 		r1_bio->bios[rdisk] = read_bio;
1195 
1196 		read_bio->bi_iter.bi_sector = r1_bio->sector +
1197 			mirror->rdev->data_offset;
1198 		read_bio->bi_bdev = mirror->rdev->bdev;
1199 		read_bio->bi_end_io = raid1_end_read_request;
1200 		read_bio->bi_rw = READ | do_sync;
1201 		read_bio->bi_private = r1_bio;
1202 
1203 		if (max_sectors < r1_bio->sectors) {
1204 			/* could not read all from this device, so we will
1205 			 * need another r1_bio.
1206 			 */
1207 
1208 			sectors_handled = (r1_bio->sector + max_sectors
1209 					   - bio->bi_iter.bi_sector);
1210 			r1_bio->sectors = max_sectors;
1211 			spin_lock_irq(&conf->device_lock);
1212 			if (bio->bi_phys_segments == 0)
1213 				bio->bi_phys_segments = 2;
1214 			else
1215 				bio->bi_phys_segments++;
1216 			spin_unlock_irq(&conf->device_lock);
1217 			/* Cannot call generic_make_request directly
1218 			 * as that will be queued in __make_request
1219 			 * and subsequent mempool_alloc might block waiting
1220 			 * for it.  So hand bio over to raid1d.
1221 			 */
1222 			reschedule_retry(r1_bio);
1223 
1224 			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1225 
1226 			r1_bio->master_bio = bio;
1227 			r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1228 			r1_bio->state = 0;
1229 			r1_bio->mddev = mddev;
1230 			r1_bio->sector = bio->bi_iter.bi_sector +
1231 				sectors_handled;
1232 			goto read_again;
1233 		} else
1234 			generic_make_request(read_bio);
1235 		return;
1236 	}
1237 
1238 	/*
1239 	 * WRITE:
1240 	 */
1241 	if (conf->pending_count >= max_queued_requests) {
1242 		md_wakeup_thread(mddev->thread);
1243 		wait_event(conf->wait_barrier,
1244 			   conf->pending_count < max_queued_requests);
1245 	}
1246 	/* first select target devices under rcu_lock and
1247 	 * inc refcount on their rdev.  Record them by setting
1248 	 * bios[x] to bio
1249 	 * If there are known/acknowledged bad blocks on any device on
1250 	 * which we have seen a write error, we want to avoid writing those
1251 	 * blocks.
1252 	 * This potentially requires several writes to write around
1253 	 * the bad blocks.  Each set of writes gets it's own r1bio
1254 	 * with a set of bios attached.
1255 	 */
1256 
1257 	disks = conf->raid_disks * 2;
1258  retry_write:
1259 	r1_bio->start_next_window = start_next_window;
1260 	blocked_rdev = NULL;
1261 	rcu_read_lock();
1262 	max_sectors = r1_bio->sectors;
1263 	for (i = 0;  i < disks; i++) {
1264 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1265 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1266 			atomic_inc(&rdev->nr_pending);
1267 			blocked_rdev = rdev;
1268 			break;
1269 		}
1270 		r1_bio->bios[i] = NULL;
1271 		if (!rdev || test_bit(Faulty, &rdev->flags)
1272 		    || test_bit(Unmerged, &rdev->flags)) {
1273 			if (i < conf->raid_disks)
1274 				set_bit(R1BIO_Degraded, &r1_bio->state);
1275 			continue;
1276 		}
1277 
1278 		atomic_inc(&rdev->nr_pending);
1279 		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1280 			sector_t first_bad;
1281 			int bad_sectors;
1282 			int is_bad;
1283 
1284 			is_bad = is_badblock(rdev, r1_bio->sector,
1285 					     max_sectors,
1286 					     &first_bad, &bad_sectors);
1287 			if (is_bad < 0) {
1288 				/* mustn't write here until the bad block is
1289 				 * acknowledged*/
1290 				set_bit(BlockedBadBlocks, &rdev->flags);
1291 				blocked_rdev = rdev;
1292 				break;
1293 			}
1294 			if (is_bad && first_bad <= r1_bio->sector) {
1295 				/* Cannot write here at all */
1296 				bad_sectors -= (r1_bio->sector - first_bad);
1297 				if (bad_sectors < max_sectors)
1298 					/* mustn't write more than bad_sectors
1299 					 * to other devices yet
1300 					 */
1301 					max_sectors = bad_sectors;
1302 				rdev_dec_pending(rdev, mddev);
1303 				/* We don't set R1BIO_Degraded as that
1304 				 * only applies if the disk is
1305 				 * missing, so it might be re-added,
1306 				 * and we want to know to recover this
1307 				 * chunk.
1308 				 * In this case the device is here,
1309 				 * and the fact that this chunk is not
1310 				 * in-sync is recorded in the bad
1311 				 * block log
1312 				 */
1313 				continue;
1314 			}
1315 			if (is_bad) {
1316 				int good_sectors = first_bad - r1_bio->sector;
1317 				if (good_sectors < max_sectors)
1318 					max_sectors = good_sectors;
1319 			}
1320 		}
1321 		r1_bio->bios[i] = bio;
1322 	}
1323 	rcu_read_unlock();
1324 
1325 	if (unlikely(blocked_rdev)) {
1326 		/* Wait for this device to become unblocked */
1327 		int j;
1328 		sector_t old = start_next_window;
1329 
1330 		for (j = 0; j < i; j++)
1331 			if (r1_bio->bios[j])
1332 				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1333 		r1_bio->state = 0;
1334 		allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
1335 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1336 		start_next_window = wait_barrier(conf, bio);
1337 		/*
1338 		 * We must make sure the multi r1bios of bio have
1339 		 * the same value of bi_phys_segments
1340 		 */
1341 		if (bio->bi_phys_segments && old &&
1342 		    old != start_next_window)
1343 			/* Wait for the former r1bio(s) to complete */
1344 			wait_event(conf->wait_barrier,
1345 				   bio->bi_phys_segments == 1);
1346 		goto retry_write;
1347 	}
1348 
1349 	if (max_sectors < r1_bio->sectors) {
1350 		/* We are splitting this write into multiple parts, so
1351 		 * we need to prepare for allocating another r1_bio.
1352 		 */
1353 		r1_bio->sectors = max_sectors;
1354 		spin_lock_irq(&conf->device_lock);
1355 		if (bio->bi_phys_segments == 0)
1356 			bio->bi_phys_segments = 2;
1357 		else
1358 			bio->bi_phys_segments++;
1359 		spin_unlock_irq(&conf->device_lock);
1360 	}
1361 	sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
1362 
1363 	atomic_set(&r1_bio->remaining, 1);
1364 	atomic_set(&r1_bio->behind_remaining, 0);
1365 
1366 	first_clone = 1;
1367 	for (i = 0; i < disks; i++) {
1368 		struct bio *mbio;
1369 		if (!r1_bio->bios[i])
1370 			continue;
1371 
1372 		mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1373 		bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors);
1374 
1375 		if (first_clone) {
1376 			/* do behind I/O ?
1377 			 * Not if there are too many, or cannot
1378 			 * allocate memory, or a reader on WriteMostly
1379 			 * is waiting for behind writes to flush */
1380 			if (bitmap &&
1381 			    (atomic_read(&bitmap->behind_writes)
1382 			     < mddev->bitmap_info.max_write_behind) &&
1383 			    !waitqueue_active(&bitmap->behind_wait))
1384 				alloc_behind_pages(mbio, r1_bio);
1385 
1386 			bitmap_startwrite(bitmap, r1_bio->sector,
1387 					  r1_bio->sectors,
1388 					  test_bit(R1BIO_BehindIO,
1389 						   &r1_bio->state));
1390 			first_clone = 0;
1391 		}
1392 		if (r1_bio->behind_bvecs) {
1393 			struct bio_vec *bvec;
1394 			int j;
1395 
1396 			/*
1397 			 * We trimmed the bio, so _all is legit
1398 			 */
1399 			bio_for_each_segment_all(bvec, mbio, j)
1400 				bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1401 			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1402 				atomic_inc(&r1_bio->behind_remaining);
1403 		}
1404 
1405 		r1_bio->bios[i] = mbio;
1406 
1407 		mbio->bi_iter.bi_sector	= (r1_bio->sector +
1408 				   conf->mirrors[i].rdev->data_offset);
1409 		mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1410 		mbio->bi_end_io	= raid1_end_write_request;
1411 		mbio->bi_rw =
1412 			WRITE | do_flush_fua | do_sync | do_discard | do_same;
1413 		mbio->bi_private = r1_bio;
1414 
1415 		atomic_inc(&r1_bio->remaining);
1416 
1417 		cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1418 		if (cb)
1419 			plug = container_of(cb, struct raid1_plug_cb, cb);
1420 		else
1421 			plug = NULL;
1422 		spin_lock_irqsave(&conf->device_lock, flags);
1423 		if (plug) {
1424 			bio_list_add(&plug->pending, mbio);
1425 			plug->pending_cnt++;
1426 		} else {
1427 			bio_list_add(&conf->pending_bio_list, mbio);
1428 			conf->pending_count++;
1429 		}
1430 		spin_unlock_irqrestore(&conf->device_lock, flags);
1431 		if (!plug)
1432 			md_wakeup_thread(mddev->thread);
1433 	}
1434 	/* Mustn't call r1_bio_write_done before this next test,
1435 	 * as it could result in the bio being freed.
1436 	 */
1437 	if (sectors_handled < bio_sectors(bio)) {
1438 		r1_bio_write_done(r1_bio);
1439 		/* We need another r1_bio.  It has already been counted
1440 		 * in bio->bi_phys_segments
1441 		 */
1442 		r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1443 		r1_bio->master_bio = bio;
1444 		r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1445 		r1_bio->state = 0;
1446 		r1_bio->mddev = mddev;
1447 		r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1448 		goto retry_write;
1449 	}
1450 
1451 	r1_bio_write_done(r1_bio);
1452 
1453 	/* In case raid1d snuck in to freeze_array */
1454 	wake_up(&conf->wait_barrier);
1455 }
1456 
1457 static void status(struct seq_file *seq, struct mddev *mddev)
1458 {
1459 	struct r1conf *conf = mddev->private;
1460 	int i;
1461 
1462 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1463 		   conf->raid_disks - mddev->degraded);
1464 	rcu_read_lock();
1465 	for (i = 0; i < conf->raid_disks; i++) {
1466 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1467 		seq_printf(seq, "%s",
1468 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1469 	}
1470 	rcu_read_unlock();
1471 	seq_printf(seq, "]");
1472 }
1473 
1474 
1475 static void error(struct mddev *mddev, struct md_rdev *rdev)
1476 {
1477 	char b[BDEVNAME_SIZE];
1478 	struct r1conf *conf = mddev->private;
1479 
1480 	/*
1481 	 * If it is not operational, then we have already marked it as dead
1482 	 * else if it is the last working disks, ignore the error, let the
1483 	 * next level up know.
1484 	 * else mark the drive as failed
1485 	 */
1486 	if (test_bit(In_sync, &rdev->flags)
1487 	    && (conf->raid_disks - mddev->degraded) == 1) {
1488 		/*
1489 		 * Don't fail the drive, act as though we were just a
1490 		 * normal single drive.
1491 		 * However don't try a recovery from this drive as
1492 		 * it is very likely to fail.
1493 		 */
1494 		conf->recovery_disabled = mddev->recovery_disabled;
1495 		return;
1496 	}
1497 	set_bit(Blocked, &rdev->flags);
1498 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1499 		unsigned long flags;
1500 		spin_lock_irqsave(&conf->device_lock, flags);
1501 		mddev->degraded++;
1502 		set_bit(Faulty, &rdev->flags);
1503 		spin_unlock_irqrestore(&conf->device_lock, flags);
1504 	} else
1505 		set_bit(Faulty, &rdev->flags);
1506 	/*
1507 	 * if recovery is running, make sure it aborts.
1508 	 */
1509 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1510 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1511 	printk(KERN_ALERT
1512 	       "md/raid1:%s: Disk failure on %s, disabling device.\n"
1513 	       "md/raid1:%s: Operation continuing on %d devices.\n",
1514 	       mdname(mddev), bdevname(rdev->bdev, b),
1515 	       mdname(mddev), conf->raid_disks - mddev->degraded);
1516 }
1517 
1518 static void print_conf(struct r1conf *conf)
1519 {
1520 	int i;
1521 
1522 	printk(KERN_DEBUG "RAID1 conf printout:\n");
1523 	if (!conf) {
1524 		printk(KERN_DEBUG "(!conf)\n");
1525 		return;
1526 	}
1527 	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1528 		conf->raid_disks);
1529 
1530 	rcu_read_lock();
1531 	for (i = 0; i < conf->raid_disks; i++) {
1532 		char b[BDEVNAME_SIZE];
1533 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1534 		if (rdev)
1535 			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1536 			       i, !test_bit(In_sync, &rdev->flags),
1537 			       !test_bit(Faulty, &rdev->flags),
1538 			       bdevname(rdev->bdev,b));
1539 	}
1540 	rcu_read_unlock();
1541 }
1542 
1543 static void close_sync(struct r1conf *conf)
1544 {
1545 	wait_barrier(conf, NULL);
1546 	allow_barrier(conf, 0, 0);
1547 
1548 	mempool_destroy(conf->r1buf_pool);
1549 	conf->r1buf_pool = NULL;
1550 
1551 	spin_lock_irq(&conf->resync_lock);
1552 	conf->next_resync = 0;
1553 	conf->start_next_window = MaxSector;
1554 	conf->current_window_requests +=
1555 		conf->next_window_requests;
1556 	conf->next_window_requests = 0;
1557 	spin_unlock_irq(&conf->resync_lock);
1558 }
1559 
1560 static int raid1_spare_active(struct mddev *mddev)
1561 {
1562 	int i;
1563 	struct r1conf *conf = mddev->private;
1564 	int count = 0;
1565 	unsigned long flags;
1566 
1567 	/*
1568 	 * Find all failed disks within the RAID1 configuration
1569 	 * and mark them readable.
1570 	 * Called under mddev lock, so rcu protection not needed.
1571 	 */
1572 	for (i = 0; i < conf->raid_disks; i++) {
1573 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1574 		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1575 		if (repl
1576 		    && repl->recovery_offset == MaxSector
1577 		    && !test_bit(Faulty, &repl->flags)
1578 		    && !test_and_set_bit(In_sync, &repl->flags)) {
1579 			/* replacement has just become active */
1580 			if (!rdev ||
1581 			    !test_and_clear_bit(In_sync, &rdev->flags))
1582 				count++;
1583 			if (rdev) {
1584 				/* Replaced device not technically
1585 				 * faulty, but we need to be sure
1586 				 * it gets removed and never re-added
1587 				 */
1588 				set_bit(Faulty, &rdev->flags);
1589 				sysfs_notify_dirent_safe(
1590 					rdev->sysfs_state);
1591 			}
1592 		}
1593 		if (rdev
1594 		    && rdev->recovery_offset == MaxSector
1595 		    && !test_bit(Faulty, &rdev->flags)
1596 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1597 			count++;
1598 			sysfs_notify_dirent_safe(rdev->sysfs_state);
1599 		}
1600 	}
1601 	spin_lock_irqsave(&conf->device_lock, flags);
1602 	mddev->degraded -= count;
1603 	spin_unlock_irqrestore(&conf->device_lock, flags);
1604 
1605 	print_conf(conf);
1606 	return count;
1607 }
1608 
1609 
1610 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1611 {
1612 	struct r1conf *conf = mddev->private;
1613 	int err = -EEXIST;
1614 	int mirror = 0;
1615 	struct raid1_info *p;
1616 	int first = 0;
1617 	int last = conf->raid_disks - 1;
1618 	struct request_queue *q = bdev_get_queue(rdev->bdev);
1619 
1620 	if (mddev->recovery_disabled == conf->recovery_disabled)
1621 		return -EBUSY;
1622 
1623 	if (rdev->raid_disk >= 0)
1624 		first = last = rdev->raid_disk;
1625 
1626 	if (q->merge_bvec_fn) {
1627 		set_bit(Unmerged, &rdev->flags);
1628 		mddev->merge_check_needed = 1;
1629 	}
1630 
1631 	for (mirror = first; mirror <= last; mirror++) {
1632 		p = conf->mirrors+mirror;
1633 		if (!p->rdev) {
1634 
1635 			if (mddev->gendisk)
1636 				disk_stack_limits(mddev->gendisk, rdev->bdev,
1637 						  rdev->data_offset << 9);
1638 
1639 			p->head_position = 0;
1640 			rdev->raid_disk = mirror;
1641 			err = 0;
1642 			/* As all devices are equivalent, we don't need a full recovery
1643 			 * if this was recently any drive of the array
1644 			 */
1645 			if (rdev->saved_raid_disk < 0)
1646 				conf->fullsync = 1;
1647 			rcu_assign_pointer(p->rdev, rdev);
1648 			break;
1649 		}
1650 		if (test_bit(WantReplacement, &p->rdev->flags) &&
1651 		    p[conf->raid_disks].rdev == NULL) {
1652 			/* Add this device as a replacement */
1653 			clear_bit(In_sync, &rdev->flags);
1654 			set_bit(Replacement, &rdev->flags);
1655 			rdev->raid_disk = mirror;
1656 			err = 0;
1657 			conf->fullsync = 1;
1658 			rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1659 			break;
1660 		}
1661 	}
1662 	if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1663 		/* Some requests might not have seen this new
1664 		 * merge_bvec_fn.  We must wait for them to complete
1665 		 * before merging the device fully.
1666 		 * First we make sure any code which has tested
1667 		 * our function has submitted the request, then
1668 		 * we wait for all outstanding requests to complete.
1669 		 */
1670 		synchronize_sched();
1671 		freeze_array(conf, 0);
1672 		unfreeze_array(conf);
1673 		clear_bit(Unmerged, &rdev->flags);
1674 	}
1675 	md_integrity_add_rdev(rdev, mddev);
1676 	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1677 		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1678 	print_conf(conf);
1679 	return err;
1680 }
1681 
1682 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1683 {
1684 	struct r1conf *conf = mddev->private;
1685 	int err = 0;
1686 	int number = rdev->raid_disk;
1687 	struct raid1_info *p = conf->mirrors + number;
1688 
1689 	if (rdev != p->rdev)
1690 		p = conf->mirrors + conf->raid_disks + number;
1691 
1692 	print_conf(conf);
1693 	if (rdev == p->rdev) {
1694 		if (test_bit(In_sync, &rdev->flags) ||
1695 		    atomic_read(&rdev->nr_pending)) {
1696 			err = -EBUSY;
1697 			goto abort;
1698 		}
1699 		/* Only remove non-faulty devices if recovery
1700 		 * is not possible.
1701 		 */
1702 		if (!test_bit(Faulty, &rdev->flags) &&
1703 		    mddev->recovery_disabled != conf->recovery_disabled &&
1704 		    mddev->degraded < conf->raid_disks) {
1705 			err = -EBUSY;
1706 			goto abort;
1707 		}
1708 		p->rdev = NULL;
1709 		synchronize_rcu();
1710 		if (atomic_read(&rdev->nr_pending)) {
1711 			/* lost the race, try later */
1712 			err = -EBUSY;
1713 			p->rdev = rdev;
1714 			goto abort;
1715 		} else if (conf->mirrors[conf->raid_disks + number].rdev) {
1716 			/* We just removed a device that is being replaced.
1717 			 * Move down the replacement.  We drain all IO before
1718 			 * doing this to avoid confusion.
1719 			 */
1720 			struct md_rdev *repl =
1721 				conf->mirrors[conf->raid_disks + number].rdev;
1722 			freeze_array(conf, 0);
1723 			clear_bit(Replacement, &repl->flags);
1724 			p->rdev = repl;
1725 			conf->mirrors[conf->raid_disks + number].rdev = NULL;
1726 			unfreeze_array(conf);
1727 			clear_bit(WantReplacement, &rdev->flags);
1728 		} else
1729 			clear_bit(WantReplacement, &rdev->flags);
1730 		err = md_integrity_register(mddev);
1731 	}
1732 abort:
1733 
1734 	print_conf(conf);
1735 	return err;
1736 }
1737 
1738 
1739 static void end_sync_read(struct bio *bio, int error)
1740 {
1741 	struct r1bio *r1_bio = bio->bi_private;
1742 
1743 	update_head_pos(r1_bio->read_disk, r1_bio);
1744 
1745 	/*
1746 	 * we have read a block, now it needs to be re-written,
1747 	 * or re-read if the read failed.
1748 	 * We don't do much here, just schedule handling by raid1d
1749 	 */
1750 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1751 		set_bit(R1BIO_Uptodate, &r1_bio->state);
1752 
1753 	if (atomic_dec_and_test(&r1_bio->remaining))
1754 		reschedule_retry(r1_bio);
1755 }
1756 
1757 static void end_sync_write(struct bio *bio, int error)
1758 {
1759 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1760 	struct r1bio *r1_bio = bio->bi_private;
1761 	struct mddev *mddev = r1_bio->mddev;
1762 	struct r1conf *conf = mddev->private;
1763 	int mirror=0;
1764 	sector_t first_bad;
1765 	int bad_sectors;
1766 
1767 	mirror = find_bio_disk(r1_bio, bio);
1768 
1769 	if (!uptodate) {
1770 		sector_t sync_blocks = 0;
1771 		sector_t s = r1_bio->sector;
1772 		long sectors_to_go = r1_bio->sectors;
1773 		/* make sure these bits doesn't get cleared. */
1774 		do {
1775 			bitmap_end_sync(mddev->bitmap, s,
1776 					&sync_blocks, 1);
1777 			s += sync_blocks;
1778 			sectors_to_go -= sync_blocks;
1779 		} while (sectors_to_go > 0);
1780 		set_bit(WriteErrorSeen,
1781 			&conf->mirrors[mirror].rdev->flags);
1782 		if (!test_and_set_bit(WantReplacement,
1783 				      &conf->mirrors[mirror].rdev->flags))
1784 			set_bit(MD_RECOVERY_NEEDED, &
1785 				mddev->recovery);
1786 		set_bit(R1BIO_WriteError, &r1_bio->state);
1787 	} else if (is_badblock(conf->mirrors[mirror].rdev,
1788 			       r1_bio->sector,
1789 			       r1_bio->sectors,
1790 			       &first_bad, &bad_sectors) &&
1791 		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1792 				r1_bio->sector,
1793 				r1_bio->sectors,
1794 				&first_bad, &bad_sectors)
1795 		)
1796 		set_bit(R1BIO_MadeGood, &r1_bio->state);
1797 
1798 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1799 		int s = r1_bio->sectors;
1800 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1801 		    test_bit(R1BIO_WriteError, &r1_bio->state))
1802 			reschedule_retry(r1_bio);
1803 		else {
1804 			put_buf(r1_bio);
1805 			md_done_sync(mddev, s, uptodate);
1806 		}
1807 	}
1808 }
1809 
1810 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1811 			    int sectors, struct page *page, int rw)
1812 {
1813 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1814 		/* success */
1815 		return 1;
1816 	if (rw == WRITE) {
1817 		set_bit(WriteErrorSeen, &rdev->flags);
1818 		if (!test_and_set_bit(WantReplacement,
1819 				      &rdev->flags))
1820 			set_bit(MD_RECOVERY_NEEDED, &
1821 				rdev->mddev->recovery);
1822 	}
1823 	/* need to record an error - either for the block or the device */
1824 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1825 		md_error(rdev->mddev, rdev);
1826 	return 0;
1827 }
1828 
1829 static int fix_sync_read_error(struct r1bio *r1_bio)
1830 {
1831 	/* Try some synchronous reads of other devices to get
1832 	 * good data, much like with normal read errors.  Only
1833 	 * read into the pages we already have so we don't
1834 	 * need to re-issue the read request.
1835 	 * We don't need to freeze the array, because being in an
1836 	 * active sync request, there is no normal IO, and
1837 	 * no overlapping syncs.
1838 	 * We don't need to check is_badblock() again as we
1839 	 * made sure that anything with a bad block in range
1840 	 * will have bi_end_io clear.
1841 	 */
1842 	struct mddev *mddev = r1_bio->mddev;
1843 	struct r1conf *conf = mddev->private;
1844 	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1845 	sector_t sect = r1_bio->sector;
1846 	int sectors = r1_bio->sectors;
1847 	int idx = 0;
1848 
1849 	while(sectors) {
1850 		int s = sectors;
1851 		int d = r1_bio->read_disk;
1852 		int success = 0;
1853 		struct md_rdev *rdev;
1854 		int start;
1855 
1856 		if (s > (PAGE_SIZE>>9))
1857 			s = PAGE_SIZE >> 9;
1858 		do {
1859 			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1860 				/* No rcu protection needed here devices
1861 				 * can only be removed when no resync is
1862 				 * active, and resync is currently active
1863 				 */
1864 				rdev = conf->mirrors[d].rdev;
1865 				if (sync_page_io(rdev, sect, s<<9,
1866 						 bio->bi_io_vec[idx].bv_page,
1867 						 READ, false)) {
1868 					success = 1;
1869 					break;
1870 				}
1871 			}
1872 			d++;
1873 			if (d == conf->raid_disks * 2)
1874 				d = 0;
1875 		} while (!success && d != r1_bio->read_disk);
1876 
1877 		if (!success) {
1878 			char b[BDEVNAME_SIZE];
1879 			int abort = 0;
1880 			/* Cannot read from anywhere, this block is lost.
1881 			 * Record a bad block on each device.  If that doesn't
1882 			 * work just disable and interrupt the recovery.
1883 			 * Don't fail devices as that won't really help.
1884 			 */
1885 			printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1886 			       " for block %llu\n",
1887 			       mdname(mddev),
1888 			       bdevname(bio->bi_bdev, b),
1889 			       (unsigned long long)r1_bio->sector);
1890 			for (d = 0; d < conf->raid_disks * 2; d++) {
1891 				rdev = conf->mirrors[d].rdev;
1892 				if (!rdev || test_bit(Faulty, &rdev->flags))
1893 					continue;
1894 				if (!rdev_set_badblocks(rdev, sect, s, 0))
1895 					abort = 1;
1896 			}
1897 			if (abort) {
1898 				conf->recovery_disabled =
1899 					mddev->recovery_disabled;
1900 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1901 				md_done_sync(mddev, r1_bio->sectors, 0);
1902 				put_buf(r1_bio);
1903 				return 0;
1904 			}
1905 			/* Try next page */
1906 			sectors -= s;
1907 			sect += s;
1908 			idx++;
1909 			continue;
1910 		}
1911 
1912 		start = d;
1913 		/* write it back and re-read */
1914 		while (d != r1_bio->read_disk) {
1915 			if (d == 0)
1916 				d = conf->raid_disks * 2;
1917 			d--;
1918 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1919 				continue;
1920 			rdev = conf->mirrors[d].rdev;
1921 			if (r1_sync_page_io(rdev, sect, s,
1922 					    bio->bi_io_vec[idx].bv_page,
1923 					    WRITE) == 0) {
1924 				r1_bio->bios[d]->bi_end_io = NULL;
1925 				rdev_dec_pending(rdev, mddev);
1926 			}
1927 		}
1928 		d = start;
1929 		while (d != r1_bio->read_disk) {
1930 			if (d == 0)
1931 				d = conf->raid_disks * 2;
1932 			d--;
1933 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1934 				continue;
1935 			rdev = conf->mirrors[d].rdev;
1936 			if (r1_sync_page_io(rdev, sect, s,
1937 					    bio->bi_io_vec[idx].bv_page,
1938 					    READ) != 0)
1939 				atomic_add(s, &rdev->corrected_errors);
1940 		}
1941 		sectors -= s;
1942 		sect += s;
1943 		idx ++;
1944 	}
1945 	set_bit(R1BIO_Uptodate, &r1_bio->state);
1946 	set_bit(BIO_UPTODATE, &bio->bi_flags);
1947 	return 1;
1948 }
1949 
1950 static int process_checks(struct r1bio *r1_bio)
1951 {
1952 	/* We have read all readable devices.  If we haven't
1953 	 * got the block, then there is no hope left.
1954 	 * If we have, then we want to do a comparison
1955 	 * and skip the write if everything is the same.
1956 	 * If any blocks failed to read, then we need to
1957 	 * attempt an over-write
1958 	 */
1959 	struct mddev *mddev = r1_bio->mddev;
1960 	struct r1conf *conf = mddev->private;
1961 	int primary;
1962 	int i;
1963 	int vcnt;
1964 
1965 	/* Fix variable parts of all bios */
1966 	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1967 	for (i = 0; i < conf->raid_disks * 2; i++) {
1968 		int j;
1969 		int size;
1970 		int uptodate;
1971 		struct bio *b = r1_bio->bios[i];
1972 		if (b->bi_end_io != end_sync_read)
1973 			continue;
1974 		/* fixup the bio for reuse, but preserve BIO_UPTODATE */
1975 		uptodate = test_bit(BIO_UPTODATE, &b->bi_flags);
1976 		bio_reset(b);
1977 		if (!uptodate)
1978 			clear_bit(BIO_UPTODATE, &b->bi_flags);
1979 		b->bi_vcnt = vcnt;
1980 		b->bi_iter.bi_size = r1_bio->sectors << 9;
1981 		b->bi_iter.bi_sector = r1_bio->sector +
1982 			conf->mirrors[i].rdev->data_offset;
1983 		b->bi_bdev = conf->mirrors[i].rdev->bdev;
1984 		b->bi_end_io = end_sync_read;
1985 		b->bi_private = r1_bio;
1986 
1987 		size = b->bi_iter.bi_size;
1988 		for (j = 0; j < vcnt ; j++) {
1989 			struct bio_vec *bi;
1990 			bi = &b->bi_io_vec[j];
1991 			bi->bv_offset = 0;
1992 			if (size > PAGE_SIZE)
1993 				bi->bv_len = PAGE_SIZE;
1994 			else
1995 				bi->bv_len = size;
1996 			size -= PAGE_SIZE;
1997 		}
1998 	}
1999 	for (primary = 0; primary < conf->raid_disks * 2; primary++)
2000 		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2001 		    test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
2002 			r1_bio->bios[primary]->bi_end_io = NULL;
2003 			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2004 			break;
2005 		}
2006 	r1_bio->read_disk = primary;
2007 	for (i = 0; i < conf->raid_disks * 2; i++) {
2008 		int j;
2009 		struct bio *pbio = r1_bio->bios[primary];
2010 		struct bio *sbio = r1_bio->bios[i];
2011 		int uptodate = test_bit(BIO_UPTODATE, &sbio->bi_flags);
2012 
2013 		if (sbio->bi_end_io != end_sync_read)
2014 			continue;
2015 		/* Now we can 'fixup' the BIO_UPTODATE flag */
2016 		set_bit(BIO_UPTODATE, &sbio->bi_flags);
2017 
2018 		if (uptodate) {
2019 			for (j = vcnt; j-- ; ) {
2020 				struct page *p, *s;
2021 				p = pbio->bi_io_vec[j].bv_page;
2022 				s = sbio->bi_io_vec[j].bv_page;
2023 				if (memcmp(page_address(p),
2024 					   page_address(s),
2025 					   sbio->bi_io_vec[j].bv_len))
2026 					break;
2027 			}
2028 		} else
2029 			j = 0;
2030 		if (j >= 0)
2031 			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2032 		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2033 			      && uptodate)) {
2034 			/* No need to write to this device. */
2035 			sbio->bi_end_io = NULL;
2036 			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2037 			continue;
2038 		}
2039 
2040 		bio_copy_data(sbio, pbio);
2041 	}
2042 	return 0;
2043 }
2044 
2045 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2046 {
2047 	struct r1conf *conf = mddev->private;
2048 	int i;
2049 	int disks = conf->raid_disks * 2;
2050 	struct bio *bio, *wbio;
2051 
2052 	bio = r1_bio->bios[r1_bio->read_disk];
2053 
2054 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2055 		/* ouch - failed to read all of that. */
2056 		if (!fix_sync_read_error(r1_bio))
2057 			return;
2058 
2059 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2060 		if (process_checks(r1_bio) < 0)
2061 			return;
2062 	/*
2063 	 * schedule writes
2064 	 */
2065 	atomic_set(&r1_bio->remaining, 1);
2066 	for (i = 0; i < disks ; i++) {
2067 		wbio = r1_bio->bios[i];
2068 		if (wbio->bi_end_io == NULL ||
2069 		    (wbio->bi_end_io == end_sync_read &&
2070 		     (i == r1_bio->read_disk ||
2071 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2072 			continue;
2073 
2074 		wbio->bi_rw = WRITE;
2075 		wbio->bi_end_io = end_sync_write;
2076 		atomic_inc(&r1_bio->remaining);
2077 		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2078 
2079 		generic_make_request(wbio);
2080 	}
2081 
2082 	if (atomic_dec_and_test(&r1_bio->remaining)) {
2083 		/* if we're here, all write(s) have completed, so clean up */
2084 		int s = r1_bio->sectors;
2085 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2086 		    test_bit(R1BIO_WriteError, &r1_bio->state))
2087 			reschedule_retry(r1_bio);
2088 		else {
2089 			put_buf(r1_bio);
2090 			md_done_sync(mddev, s, 1);
2091 		}
2092 	}
2093 }
2094 
2095 /*
2096  * This is a kernel thread which:
2097  *
2098  *	1.	Retries failed read operations on working mirrors.
2099  *	2.	Updates the raid superblock when problems encounter.
2100  *	3.	Performs writes following reads for array synchronising.
2101  */
2102 
2103 static void fix_read_error(struct r1conf *conf, int read_disk,
2104 			   sector_t sect, int sectors)
2105 {
2106 	struct mddev *mddev = conf->mddev;
2107 	while(sectors) {
2108 		int s = sectors;
2109 		int d = read_disk;
2110 		int success = 0;
2111 		int start;
2112 		struct md_rdev *rdev;
2113 
2114 		if (s > (PAGE_SIZE>>9))
2115 			s = PAGE_SIZE >> 9;
2116 
2117 		do {
2118 			/* Note: no rcu protection needed here
2119 			 * as this is synchronous in the raid1d thread
2120 			 * which is the thread that might remove
2121 			 * a device.  If raid1d ever becomes multi-threaded....
2122 			 */
2123 			sector_t first_bad;
2124 			int bad_sectors;
2125 
2126 			rdev = conf->mirrors[d].rdev;
2127 			if (rdev &&
2128 			    (test_bit(In_sync, &rdev->flags) ||
2129 			     (!test_bit(Faulty, &rdev->flags) &&
2130 			      rdev->recovery_offset >= sect + s)) &&
2131 			    is_badblock(rdev, sect, s,
2132 					&first_bad, &bad_sectors) == 0 &&
2133 			    sync_page_io(rdev, sect, s<<9,
2134 					 conf->tmppage, READ, false))
2135 				success = 1;
2136 			else {
2137 				d++;
2138 				if (d == conf->raid_disks * 2)
2139 					d = 0;
2140 			}
2141 		} while (!success && d != read_disk);
2142 
2143 		if (!success) {
2144 			/* Cannot read from anywhere - mark it bad */
2145 			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2146 			if (!rdev_set_badblocks(rdev, sect, s, 0))
2147 				md_error(mddev, rdev);
2148 			break;
2149 		}
2150 		/* write it back and re-read */
2151 		start = d;
2152 		while (d != read_disk) {
2153 			if (d==0)
2154 				d = conf->raid_disks * 2;
2155 			d--;
2156 			rdev = conf->mirrors[d].rdev;
2157 			if (rdev &&
2158 			    !test_bit(Faulty, &rdev->flags))
2159 				r1_sync_page_io(rdev, sect, s,
2160 						conf->tmppage, WRITE);
2161 		}
2162 		d = start;
2163 		while (d != read_disk) {
2164 			char b[BDEVNAME_SIZE];
2165 			if (d==0)
2166 				d = conf->raid_disks * 2;
2167 			d--;
2168 			rdev = conf->mirrors[d].rdev;
2169 			if (rdev &&
2170 			    !test_bit(Faulty, &rdev->flags)) {
2171 				if (r1_sync_page_io(rdev, sect, s,
2172 						    conf->tmppage, READ)) {
2173 					atomic_add(s, &rdev->corrected_errors);
2174 					printk(KERN_INFO
2175 					       "md/raid1:%s: read error corrected "
2176 					       "(%d sectors at %llu on %s)\n",
2177 					       mdname(mddev), s,
2178 					       (unsigned long long)(sect +
2179 					           rdev->data_offset),
2180 					       bdevname(rdev->bdev, b));
2181 				}
2182 			}
2183 		}
2184 		sectors -= s;
2185 		sect += s;
2186 	}
2187 }
2188 
2189 static int narrow_write_error(struct r1bio *r1_bio, int i)
2190 {
2191 	struct mddev *mddev = r1_bio->mddev;
2192 	struct r1conf *conf = mddev->private;
2193 	struct md_rdev *rdev = conf->mirrors[i].rdev;
2194 
2195 	/* bio has the data to be written to device 'i' where
2196 	 * we just recently had a write error.
2197 	 * We repeatedly clone the bio and trim down to one block,
2198 	 * then try the write.  Where the write fails we record
2199 	 * a bad block.
2200 	 * It is conceivable that the bio doesn't exactly align with
2201 	 * blocks.  We must handle this somehow.
2202 	 *
2203 	 * We currently own a reference on the rdev.
2204 	 */
2205 
2206 	int block_sectors;
2207 	sector_t sector;
2208 	int sectors;
2209 	int sect_to_write = r1_bio->sectors;
2210 	int ok = 1;
2211 
2212 	if (rdev->badblocks.shift < 0)
2213 		return 0;
2214 
2215 	block_sectors = 1 << rdev->badblocks.shift;
2216 	sector = r1_bio->sector;
2217 	sectors = ((sector + block_sectors)
2218 		   & ~(sector_t)(block_sectors - 1))
2219 		- sector;
2220 
2221 	while (sect_to_write) {
2222 		struct bio *wbio;
2223 		if (sectors > sect_to_write)
2224 			sectors = sect_to_write;
2225 		/* Write at 'sector' for 'sectors'*/
2226 
2227 		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2228 			unsigned vcnt = r1_bio->behind_page_count;
2229 			struct bio_vec *vec = r1_bio->behind_bvecs;
2230 
2231 			while (!vec->bv_page) {
2232 				vec++;
2233 				vcnt--;
2234 			}
2235 
2236 			wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2237 			memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2238 
2239 			wbio->bi_vcnt = vcnt;
2240 		} else {
2241 			wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2242 		}
2243 
2244 		wbio->bi_rw = WRITE;
2245 		wbio->bi_iter.bi_sector = r1_bio->sector;
2246 		wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2247 
2248 		bio_trim(wbio, sector - r1_bio->sector, sectors);
2249 		wbio->bi_iter.bi_sector += rdev->data_offset;
2250 		wbio->bi_bdev = rdev->bdev;
2251 		if (submit_bio_wait(WRITE, wbio) == 0)
2252 			/* failure! */
2253 			ok = rdev_set_badblocks(rdev, sector,
2254 						sectors, 0)
2255 				&& ok;
2256 
2257 		bio_put(wbio);
2258 		sect_to_write -= sectors;
2259 		sector += sectors;
2260 		sectors = block_sectors;
2261 	}
2262 	return ok;
2263 }
2264 
2265 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2266 {
2267 	int m;
2268 	int s = r1_bio->sectors;
2269 	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2270 		struct md_rdev *rdev = conf->mirrors[m].rdev;
2271 		struct bio *bio = r1_bio->bios[m];
2272 		if (bio->bi_end_io == NULL)
2273 			continue;
2274 		if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2275 		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2276 			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2277 		}
2278 		if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2279 		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2280 			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2281 				md_error(conf->mddev, rdev);
2282 		}
2283 	}
2284 	put_buf(r1_bio);
2285 	md_done_sync(conf->mddev, s, 1);
2286 }
2287 
2288 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2289 {
2290 	int m;
2291 	for (m = 0; m < conf->raid_disks * 2 ; m++)
2292 		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2293 			struct md_rdev *rdev = conf->mirrors[m].rdev;
2294 			rdev_clear_badblocks(rdev,
2295 					     r1_bio->sector,
2296 					     r1_bio->sectors, 0);
2297 			rdev_dec_pending(rdev, conf->mddev);
2298 		} else if (r1_bio->bios[m] != NULL) {
2299 			/* This drive got a write error.  We need to
2300 			 * narrow down and record precise write
2301 			 * errors.
2302 			 */
2303 			if (!narrow_write_error(r1_bio, m)) {
2304 				md_error(conf->mddev,
2305 					 conf->mirrors[m].rdev);
2306 				/* an I/O failed, we can't clear the bitmap */
2307 				set_bit(R1BIO_Degraded, &r1_bio->state);
2308 			}
2309 			rdev_dec_pending(conf->mirrors[m].rdev,
2310 					 conf->mddev);
2311 		}
2312 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
2313 		close_write(r1_bio);
2314 	raid_end_bio_io(r1_bio);
2315 }
2316 
2317 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2318 {
2319 	int disk;
2320 	int max_sectors;
2321 	struct mddev *mddev = conf->mddev;
2322 	struct bio *bio;
2323 	char b[BDEVNAME_SIZE];
2324 	struct md_rdev *rdev;
2325 
2326 	clear_bit(R1BIO_ReadError, &r1_bio->state);
2327 	/* we got a read error. Maybe the drive is bad.  Maybe just
2328 	 * the block and we can fix it.
2329 	 * We freeze all other IO, and try reading the block from
2330 	 * other devices.  When we find one, we re-write
2331 	 * and check it that fixes the read error.
2332 	 * This is all done synchronously while the array is
2333 	 * frozen
2334 	 */
2335 	if (mddev->ro == 0) {
2336 		freeze_array(conf, 1);
2337 		fix_read_error(conf, r1_bio->read_disk,
2338 			       r1_bio->sector, r1_bio->sectors);
2339 		unfreeze_array(conf);
2340 	} else
2341 		md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2342 	rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
2343 
2344 	bio = r1_bio->bios[r1_bio->read_disk];
2345 	bdevname(bio->bi_bdev, b);
2346 read_more:
2347 	disk = read_balance(conf, r1_bio, &max_sectors);
2348 	if (disk == -1) {
2349 		printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2350 		       " read error for block %llu\n",
2351 		       mdname(mddev), b, (unsigned long long)r1_bio->sector);
2352 		raid_end_bio_io(r1_bio);
2353 	} else {
2354 		const unsigned long do_sync
2355 			= r1_bio->master_bio->bi_rw & REQ_SYNC;
2356 		if (bio) {
2357 			r1_bio->bios[r1_bio->read_disk] =
2358 				mddev->ro ? IO_BLOCKED : NULL;
2359 			bio_put(bio);
2360 		}
2361 		r1_bio->read_disk = disk;
2362 		bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2363 		bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2364 			 max_sectors);
2365 		r1_bio->bios[r1_bio->read_disk] = bio;
2366 		rdev = conf->mirrors[disk].rdev;
2367 		printk_ratelimited(KERN_ERR
2368 				   "md/raid1:%s: redirecting sector %llu"
2369 				   " to other mirror: %s\n",
2370 				   mdname(mddev),
2371 				   (unsigned long long)r1_bio->sector,
2372 				   bdevname(rdev->bdev, b));
2373 		bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
2374 		bio->bi_bdev = rdev->bdev;
2375 		bio->bi_end_io = raid1_end_read_request;
2376 		bio->bi_rw = READ | do_sync;
2377 		bio->bi_private = r1_bio;
2378 		if (max_sectors < r1_bio->sectors) {
2379 			/* Drat - have to split this up more */
2380 			struct bio *mbio = r1_bio->master_bio;
2381 			int sectors_handled = (r1_bio->sector + max_sectors
2382 					       - mbio->bi_iter.bi_sector);
2383 			r1_bio->sectors = max_sectors;
2384 			spin_lock_irq(&conf->device_lock);
2385 			if (mbio->bi_phys_segments == 0)
2386 				mbio->bi_phys_segments = 2;
2387 			else
2388 				mbio->bi_phys_segments++;
2389 			spin_unlock_irq(&conf->device_lock);
2390 			generic_make_request(bio);
2391 			bio = NULL;
2392 
2393 			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2394 
2395 			r1_bio->master_bio = mbio;
2396 			r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
2397 			r1_bio->state = 0;
2398 			set_bit(R1BIO_ReadError, &r1_bio->state);
2399 			r1_bio->mddev = mddev;
2400 			r1_bio->sector = mbio->bi_iter.bi_sector +
2401 				sectors_handled;
2402 
2403 			goto read_more;
2404 		} else
2405 			generic_make_request(bio);
2406 	}
2407 }
2408 
2409 static void raid1d(struct md_thread *thread)
2410 {
2411 	struct mddev *mddev = thread->mddev;
2412 	struct r1bio *r1_bio;
2413 	unsigned long flags;
2414 	struct r1conf *conf = mddev->private;
2415 	struct list_head *head = &conf->retry_list;
2416 	struct blk_plug plug;
2417 
2418 	md_check_recovery(mddev);
2419 
2420 	blk_start_plug(&plug);
2421 	for (;;) {
2422 
2423 		flush_pending_writes(conf);
2424 
2425 		spin_lock_irqsave(&conf->device_lock, flags);
2426 		if (list_empty(head)) {
2427 			spin_unlock_irqrestore(&conf->device_lock, flags);
2428 			break;
2429 		}
2430 		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2431 		list_del(head->prev);
2432 		conf->nr_queued--;
2433 		spin_unlock_irqrestore(&conf->device_lock, flags);
2434 
2435 		mddev = r1_bio->mddev;
2436 		conf = mddev->private;
2437 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2438 			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2439 			    test_bit(R1BIO_WriteError, &r1_bio->state))
2440 				handle_sync_write_finished(conf, r1_bio);
2441 			else
2442 				sync_request_write(mddev, r1_bio);
2443 		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2444 			   test_bit(R1BIO_WriteError, &r1_bio->state))
2445 			handle_write_finished(conf, r1_bio);
2446 		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2447 			handle_read_error(conf, r1_bio);
2448 		else
2449 			/* just a partial read to be scheduled from separate
2450 			 * context
2451 			 */
2452 			generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2453 
2454 		cond_resched();
2455 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2456 			md_check_recovery(mddev);
2457 	}
2458 	blk_finish_plug(&plug);
2459 }
2460 
2461 
2462 static int init_resync(struct r1conf *conf)
2463 {
2464 	int buffs;
2465 
2466 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2467 	BUG_ON(conf->r1buf_pool);
2468 	conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2469 					  conf->poolinfo);
2470 	if (!conf->r1buf_pool)
2471 		return -ENOMEM;
2472 	conf->next_resync = 0;
2473 	return 0;
2474 }
2475 
2476 /*
2477  * perform a "sync" on one "block"
2478  *
2479  * We need to make sure that no normal I/O request - particularly write
2480  * requests - conflict with active sync requests.
2481  *
2482  * This is achieved by tracking pending requests and a 'barrier' concept
2483  * that can be installed to exclude normal IO requests.
2484  */
2485 
2486 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
2487 {
2488 	struct r1conf *conf = mddev->private;
2489 	struct r1bio *r1_bio;
2490 	struct bio *bio;
2491 	sector_t max_sector, nr_sectors;
2492 	int disk = -1;
2493 	int i;
2494 	int wonly = -1;
2495 	int write_targets = 0, read_targets = 0;
2496 	sector_t sync_blocks;
2497 	int still_degraded = 0;
2498 	int good_sectors = RESYNC_SECTORS;
2499 	int min_bad = 0; /* number of sectors that are bad in all devices */
2500 
2501 	if (!conf->r1buf_pool)
2502 		if (init_resync(conf))
2503 			return 0;
2504 
2505 	max_sector = mddev->dev_sectors;
2506 	if (sector_nr >= max_sector) {
2507 		/* If we aborted, we need to abort the
2508 		 * sync on the 'current' bitmap chunk (there will
2509 		 * only be one in raid1 resync.
2510 		 * We can find the current addess in mddev->curr_resync
2511 		 */
2512 		if (mddev->curr_resync < max_sector) /* aborted */
2513 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2514 						&sync_blocks, 1);
2515 		else /* completed sync */
2516 			conf->fullsync = 0;
2517 
2518 		bitmap_close_sync(mddev->bitmap);
2519 		close_sync(conf);
2520 		return 0;
2521 	}
2522 
2523 	if (mddev->bitmap == NULL &&
2524 	    mddev->recovery_cp == MaxSector &&
2525 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2526 	    conf->fullsync == 0) {
2527 		*skipped = 1;
2528 		return max_sector - sector_nr;
2529 	}
2530 	/* before building a request, check if we can skip these blocks..
2531 	 * This call the bitmap_start_sync doesn't actually record anything
2532 	 */
2533 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2534 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2535 		/* We can skip this block, and probably several more */
2536 		*skipped = 1;
2537 		return sync_blocks;
2538 	}
2539 	/*
2540 	 * If there is non-resync activity waiting for a turn,
2541 	 * and resync is going fast enough,
2542 	 * then let it though before starting on this new sync request.
2543 	 */
2544 	if (!go_faster && conf->nr_waiting)
2545 		msleep_interruptible(1000);
2546 
2547 	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2548 	r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2549 
2550 	raise_barrier(conf, sector_nr);
2551 
2552 	rcu_read_lock();
2553 	/*
2554 	 * If we get a correctably read error during resync or recovery,
2555 	 * we might want to read from a different device.  So we
2556 	 * flag all drives that could conceivably be read from for READ,
2557 	 * and any others (which will be non-In_sync devices) for WRITE.
2558 	 * If a read fails, we try reading from something else for which READ
2559 	 * is OK.
2560 	 */
2561 
2562 	r1_bio->mddev = mddev;
2563 	r1_bio->sector = sector_nr;
2564 	r1_bio->state = 0;
2565 	set_bit(R1BIO_IsSync, &r1_bio->state);
2566 
2567 	for (i = 0; i < conf->raid_disks * 2; i++) {
2568 		struct md_rdev *rdev;
2569 		bio = r1_bio->bios[i];
2570 		bio_reset(bio);
2571 
2572 		rdev = rcu_dereference(conf->mirrors[i].rdev);
2573 		if (rdev == NULL ||
2574 		    test_bit(Faulty, &rdev->flags)) {
2575 			if (i < conf->raid_disks)
2576 				still_degraded = 1;
2577 		} else if (!test_bit(In_sync, &rdev->flags)) {
2578 			bio->bi_rw = WRITE;
2579 			bio->bi_end_io = end_sync_write;
2580 			write_targets ++;
2581 		} else {
2582 			/* may need to read from here */
2583 			sector_t first_bad = MaxSector;
2584 			int bad_sectors;
2585 
2586 			if (is_badblock(rdev, sector_nr, good_sectors,
2587 					&first_bad, &bad_sectors)) {
2588 				if (first_bad > sector_nr)
2589 					good_sectors = first_bad - sector_nr;
2590 				else {
2591 					bad_sectors -= (sector_nr - first_bad);
2592 					if (min_bad == 0 ||
2593 					    min_bad > bad_sectors)
2594 						min_bad = bad_sectors;
2595 				}
2596 			}
2597 			if (sector_nr < first_bad) {
2598 				if (test_bit(WriteMostly, &rdev->flags)) {
2599 					if (wonly < 0)
2600 						wonly = i;
2601 				} else {
2602 					if (disk < 0)
2603 						disk = i;
2604 				}
2605 				bio->bi_rw = READ;
2606 				bio->bi_end_io = end_sync_read;
2607 				read_targets++;
2608 			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2609 				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2610 				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2611 				/*
2612 				 * The device is suitable for reading (InSync),
2613 				 * but has bad block(s) here. Let's try to correct them,
2614 				 * if we are doing resync or repair. Otherwise, leave
2615 				 * this device alone for this sync request.
2616 				 */
2617 				bio->bi_rw = WRITE;
2618 				bio->bi_end_io = end_sync_write;
2619 				write_targets++;
2620 			}
2621 		}
2622 		if (bio->bi_end_io) {
2623 			atomic_inc(&rdev->nr_pending);
2624 			bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2625 			bio->bi_bdev = rdev->bdev;
2626 			bio->bi_private = r1_bio;
2627 		}
2628 	}
2629 	rcu_read_unlock();
2630 	if (disk < 0)
2631 		disk = wonly;
2632 	r1_bio->read_disk = disk;
2633 
2634 	if (read_targets == 0 && min_bad > 0) {
2635 		/* These sectors are bad on all InSync devices, so we
2636 		 * need to mark them bad on all write targets
2637 		 */
2638 		int ok = 1;
2639 		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2640 			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2641 				struct md_rdev *rdev = conf->mirrors[i].rdev;
2642 				ok = rdev_set_badblocks(rdev, sector_nr,
2643 							min_bad, 0
2644 					) && ok;
2645 			}
2646 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
2647 		*skipped = 1;
2648 		put_buf(r1_bio);
2649 
2650 		if (!ok) {
2651 			/* Cannot record the badblocks, so need to
2652 			 * abort the resync.
2653 			 * If there are multiple read targets, could just
2654 			 * fail the really bad ones ???
2655 			 */
2656 			conf->recovery_disabled = mddev->recovery_disabled;
2657 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2658 			return 0;
2659 		} else
2660 			return min_bad;
2661 
2662 	}
2663 	if (min_bad > 0 && min_bad < good_sectors) {
2664 		/* only resync enough to reach the next bad->good
2665 		 * transition */
2666 		good_sectors = min_bad;
2667 	}
2668 
2669 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2670 		/* extra read targets are also write targets */
2671 		write_targets += read_targets-1;
2672 
2673 	if (write_targets == 0 || read_targets == 0) {
2674 		/* There is nowhere to write, so all non-sync
2675 		 * drives must be failed - so we are finished
2676 		 */
2677 		sector_t rv;
2678 		if (min_bad > 0)
2679 			max_sector = sector_nr + min_bad;
2680 		rv = max_sector - sector_nr;
2681 		*skipped = 1;
2682 		put_buf(r1_bio);
2683 		return rv;
2684 	}
2685 
2686 	if (max_sector > mddev->resync_max)
2687 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2688 	if (max_sector > sector_nr + good_sectors)
2689 		max_sector = sector_nr + good_sectors;
2690 	nr_sectors = 0;
2691 	sync_blocks = 0;
2692 	do {
2693 		struct page *page;
2694 		int len = PAGE_SIZE;
2695 		if (sector_nr + (len>>9) > max_sector)
2696 			len = (max_sector - sector_nr) << 9;
2697 		if (len == 0)
2698 			break;
2699 		if (sync_blocks == 0) {
2700 			if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2701 					       &sync_blocks, still_degraded) &&
2702 			    !conf->fullsync &&
2703 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2704 				break;
2705 			BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2706 			if ((len >> 9) > sync_blocks)
2707 				len = sync_blocks<<9;
2708 		}
2709 
2710 		for (i = 0 ; i < conf->raid_disks * 2; i++) {
2711 			bio = r1_bio->bios[i];
2712 			if (bio->bi_end_io) {
2713 				page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2714 				if (bio_add_page(bio, page, len, 0) == 0) {
2715 					/* stop here */
2716 					bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2717 					while (i > 0) {
2718 						i--;
2719 						bio = r1_bio->bios[i];
2720 						if (bio->bi_end_io==NULL)
2721 							continue;
2722 						/* remove last page from this bio */
2723 						bio->bi_vcnt--;
2724 						bio->bi_iter.bi_size -= len;
2725 						__clear_bit(BIO_SEG_VALID, &bio->bi_flags);
2726 					}
2727 					goto bio_full;
2728 				}
2729 			}
2730 		}
2731 		nr_sectors += len>>9;
2732 		sector_nr += len>>9;
2733 		sync_blocks -= (len>>9);
2734 	} while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2735  bio_full:
2736 	r1_bio->sectors = nr_sectors;
2737 
2738 	/* For a user-requested sync, we read all readable devices and do a
2739 	 * compare
2740 	 */
2741 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2742 		atomic_set(&r1_bio->remaining, read_targets);
2743 		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2744 			bio = r1_bio->bios[i];
2745 			if (bio->bi_end_io == end_sync_read) {
2746 				read_targets--;
2747 				md_sync_acct(bio->bi_bdev, nr_sectors);
2748 				generic_make_request(bio);
2749 			}
2750 		}
2751 	} else {
2752 		atomic_set(&r1_bio->remaining, 1);
2753 		bio = r1_bio->bios[r1_bio->read_disk];
2754 		md_sync_acct(bio->bi_bdev, nr_sectors);
2755 		generic_make_request(bio);
2756 
2757 	}
2758 	return nr_sectors;
2759 }
2760 
2761 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2762 {
2763 	if (sectors)
2764 		return sectors;
2765 
2766 	return mddev->dev_sectors;
2767 }
2768 
2769 static struct r1conf *setup_conf(struct mddev *mddev)
2770 {
2771 	struct r1conf *conf;
2772 	int i;
2773 	struct raid1_info *disk;
2774 	struct md_rdev *rdev;
2775 	int err = -ENOMEM;
2776 
2777 	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2778 	if (!conf)
2779 		goto abort;
2780 
2781 	conf->mirrors = kzalloc(sizeof(struct raid1_info)
2782 				* mddev->raid_disks * 2,
2783 				 GFP_KERNEL);
2784 	if (!conf->mirrors)
2785 		goto abort;
2786 
2787 	conf->tmppage = alloc_page(GFP_KERNEL);
2788 	if (!conf->tmppage)
2789 		goto abort;
2790 
2791 	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2792 	if (!conf->poolinfo)
2793 		goto abort;
2794 	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2795 	conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2796 					  r1bio_pool_free,
2797 					  conf->poolinfo);
2798 	if (!conf->r1bio_pool)
2799 		goto abort;
2800 
2801 	conf->poolinfo->mddev = mddev;
2802 
2803 	err = -EINVAL;
2804 	spin_lock_init(&conf->device_lock);
2805 	rdev_for_each(rdev, mddev) {
2806 		struct request_queue *q;
2807 		int disk_idx = rdev->raid_disk;
2808 		if (disk_idx >= mddev->raid_disks
2809 		    || disk_idx < 0)
2810 			continue;
2811 		if (test_bit(Replacement, &rdev->flags))
2812 			disk = conf->mirrors + mddev->raid_disks + disk_idx;
2813 		else
2814 			disk = conf->mirrors + disk_idx;
2815 
2816 		if (disk->rdev)
2817 			goto abort;
2818 		disk->rdev = rdev;
2819 		q = bdev_get_queue(rdev->bdev);
2820 		if (q->merge_bvec_fn)
2821 			mddev->merge_check_needed = 1;
2822 
2823 		disk->head_position = 0;
2824 		disk->seq_start = MaxSector;
2825 	}
2826 	conf->raid_disks = mddev->raid_disks;
2827 	conf->mddev = mddev;
2828 	INIT_LIST_HEAD(&conf->retry_list);
2829 
2830 	spin_lock_init(&conf->resync_lock);
2831 	init_waitqueue_head(&conf->wait_barrier);
2832 
2833 	bio_list_init(&conf->pending_bio_list);
2834 	conf->pending_count = 0;
2835 	conf->recovery_disabled = mddev->recovery_disabled - 1;
2836 
2837 	conf->start_next_window = MaxSector;
2838 	conf->current_window_requests = conf->next_window_requests = 0;
2839 
2840 	err = -EIO;
2841 	for (i = 0; i < conf->raid_disks * 2; i++) {
2842 
2843 		disk = conf->mirrors + i;
2844 
2845 		if (i < conf->raid_disks &&
2846 		    disk[conf->raid_disks].rdev) {
2847 			/* This slot has a replacement. */
2848 			if (!disk->rdev) {
2849 				/* No original, just make the replacement
2850 				 * a recovering spare
2851 				 */
2852 				disk->rdev =
2853 					disk[conf->raid_disks].rdev;
2854 				disk[conf->raid_disks].rdev = NULL;
2855 			} else if (!test_bit(In_sync, &disk->rdev->flags))
2856 				/* Original is not in_sync - bad */
2857 				goto abort;
2858 		}
2859 
2860 		if (!disk->rdev ||
2861 		    !test_bit(In_sync, &disk->rdev->flags)) {
2862 			disk->head_position = 0;
2863 			if (disk->rdev &&
2864 			    (disk->rdev->saved_raid_disk < 0))
2865 				conf->fullsync = 1;
2866 		}
2867 	}
2868 
2869 	err = -ENOMEM;
2870 	conf->thread = md_register_thread(raid1d, mddev, "raid1");
2871 	if (!conf->thread) {
2872 		printk(KERN_ERR
2873 		       "md/raid1:%s: couldn't allocate thread\n",
2874 		       mdname(mddev));
2875 		goto abort;
2876 	}
2877 
2878 	return conf;
2879 
2880  abort:
2881 	if (conf) {
2882 		if (conf->r1bio_pool)
2883 			mempool_destroy(conf->r1bio_pool);
2884 		kfree(conf->mirrors);
2885 		safe_put_page(conf->tmppage);
2886 		kfree(conf->poolinfo);
2887 		kfree(conf);
2888 	}
2889 	return ERR_PTR(err);
2890 }
2891 
2892 static int stop(struct mddev *mddev);
2893 static int run(struct mddev *mddev)
2894 {
2895 	struct r1conf *conf;
2896 	int i;
2897 	struct md_rdev *rdev;
2898 	int ret;
2899 	bool discard_supported = false;
2900 
2901 	if (mddev->level != 1) {
2902 		printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2903 		       mdname(mddev), mddev->level);
2904 		return -EIO;
2905 	}
2906 	if (mddev->reshape_position != MaxSector) {
2907 		printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2908 		       mdname(mddev));
2909 		return -EIO;
2910 	}
2911 	/*
2912 	 * copy the already verified devices into our private RAID1
2913 	 * bookkeeping area. [whatever we allocate in run(),
2914 	 * should be freed in stop()]
2915 	 */
2916 	if (mddev->private == NULL)
2917 		conf = setup_conf(mddev);
2918 	else
2919 		conf = mddev->private;
2920 
2921 	if (IS_ERR(conf))
2922 		return PTR_ERR(conf);
2923 
2924 	if (mddev->queue)
2925 		blk_queue_max_write_same_sectors(mddev->queue, 0);
2926 
2927 	rdev_for_each(rdev, mddev) {
2928 		if (!mddev->gendisk)
2929 			continue;
2930 		disk_stack_limits(mddev->gendisk, rdev->bdev,
2931 				  rdev->data_offset << 9);
2932 		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2933 			discard_supported = true;
2934 	}
2935 
2936 	mddev->degraded = 0;
2937 	for (i=0; i < conf->raid_disks; i++)
2938 		if (conf->mirrors[i].rdev == NULL ||
2939 		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2940 		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2941 			mddev->degraded++;
2942 
2943 	if (conf->raid_disks - mddev->degraded == 1)
2944 		mddev->recovery_cp = MaxSector;
2945 
2946 	if (mddev->recovery_cp != MaxSector)
2947 		printk(KERN_NOTICE "md/raid1:%s: not clean"
2948 		       " -- starting background reconstruction\n",
2949 		       mdname(mddev));
2950 	printk(KERN_INFO
2951 		"md/raid1:%s: active with %d out of %d mirrors\n",
2952 		mdname(mddev), mddev->raid_disks - mddev->degraded,
2953 		mddev->raid_disks);
2954 
2955 	/*
2956 	 * Ok, everything is just fine now
2957 	 */
2958 	mddev->thread = conf->thread;
2959 	conf->thread = NULL;
2960 	mddev->private = conf;
2961 
2962 	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2963 
2964 	if (mddev->queue) {
2965 		mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2966 		mddev->queue->backing_dev_info.congested_data = mddev;
2967 		blk_queue_merge_bvec(mddev->queue, raid1_mergeable_bvec);
2968 
2969 		if (discard_supported)
2970 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2971 						mddev->queue);
2972 		else
2973 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2974 						  mddev->queue);
2975 	}
2976 
2977 	ret =  md_integrity_register(mddev);
2978 	if (ret)
2979 		stop(mddev);
2980 	return ret;
2981 }
2982 
2983 static int stop(struct mddev *mddev)
2984 {
2985 	struct r1conf *conf = mddev->private;
2986 	struct bitmap *bitmap = mddev->bitmap;
2987 
2988 	/* wait for behind writes to complete */
2989 	if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2990 		printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2991 		       mdname(mddev));
2992 		/* need to kick something here to make sure I/O goes? */
2993 		wait_event(bitmap->behind_wait,
2994 			   atomic_read(&bitmap->behind_writes) == 0);
2995 	}
2996 
2997 	freeze_array(conf, 0);
2998 	unfreeze_array(conf);
2999 
3000 	md_unregister_thread(&mddev->thread);
3001 	if (conf->r1bio_pool)
3002 		mempool_destroy(conf->r1bio_pool);
3003 	kfree(conf->mirrors);
3004 	safe_put_page(conf->tmppage);
3005 	kfree(conf->poolinfo);
3006 	kfree(conf);
3007 	mddev->private = NULL;
3008 	return 0;
3009 }
3010 
3011 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3012 {
3013 	/* no resync is happening, and there is enough space
3014 	 * on all devices, so we can resize.
3015 	 * We need to make sure resync covers any new space.
3016 	 * If the array is shrinking we should possibly wait until
3017 	 * any io in the removed space completes, but it hardly seems
3018 	 * worth it.
3019 	 */
3020 	sector_t newsize = raid1_size(mddev, sectors, 0);
3021 	if (mddev->external_size &&
3022 	    mddev->array_sectors > newsize)
3023 		return -EINVAL;
3024 	if (mddev->bitmap) {
3025 		int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3026 		if (ret)
3027 			return ret;
3028 	}
3029 	md_set_array_sectors(mddev, newsize);
3030 	set_capacity(mddev->gendisk, mddev->array_sectors);
3031 	revalidate_disk(mddev->gendisk);
3032 	if (sectors > mddev->dev_sectors &&
3033 	    mddev->recovery_cp > mddev->dev_sectors) {
3034 		mddev->recovery_cp = mddev->dev_sectors;
3035 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3036 	}
3037 	mddev->dev_sectors = sectors;
3038 	mddev->resync_max_sectors = sectors;
3039 	return 0;
3040 }
3041 
3042 static int raid1_reshape(struct mddev *mddev)
3043 {
3044 	/* We need to:
3045 	 * 1/ resize the r1bio_pool
3046 	 * 2/ resize conf->mirrors
3047 	 *
3048 	 * We allocate a new r1bio_pool if we can.
3049 	 * Then raise a device barrier and wait until all IO stops.
3050 	 * Then resize conf->mirrors and swap in the new r1bio pool.
3051 	 *
3052 	 * At the same time, we "pack" the devices so that all the missing
3053 	 * devices have the higher raid_disk numbers.
3054 	 */
3055 	mempool_t *newpool, *oldpool;
3056 	struct pool_info *newpoolinfo;
3057 	struct raid1_info *newmirrors;
3058 	struct r1conf *conf = mddev->private;
3059 	int cnt, raid_disks;
3060 	unsigned long flags;
3061 	int d, d2, err;
3062 
3063 	/* Cannot change chunk_size, layout, or level */
3064 	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3065 	    mddev->layout != mddev->new_layout ||
3066 	    mddev->level != mddev->new_level) {
3067 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3068 		mddev->new_layout = mddev->layout;
3069 		mddev->new_level = mddev->level;
3070 		return -EINVAL;
3071 	}
3072 
3073 	err = md_allow_write(mddev);
3074 	if (err)
3075 		return err;
3076 
3077 	raid_disks = mddev->raid_disks + mddev->delta_disks;
3078 
3079 	if (raid_disks < conf->raid_disks) {
3080 		cnt=0;
3081 		for (d= 0; d < conf->raid_disks; d++)
3082 			if (conf->mirrors[d].rdev)
3083 				cnt++;
3084 		if (cnt > raid_disks)
3085 			return -EBUSY;
3086 	}
3087 
3088 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3089 	if (!newpoolinfo)
3090 		return -ENOMEM;
3091 	newpoolinfo->mddev = mddev;
3092 	newpoolinfo->raid_disks = raid_disks * 2;
3093 
3094 	newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3095 				 r1bio_pool_free, newpoolinfo);
3096 	if (!newpool) {
3097 		kfree(newpoolinfo);
3098 		return -ENOMEM;
3099 	}
3100 	newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3101 			     GFP_KERNEL);
3102 	if (!newmirrors) {
3103 		kfree(newpoolinfo);
3104 		mempool_destroy(newpool);
3105 		return -ENOMEM;
3106 	}
3107 
3108 	freeze_array(conf, 0);
3109 
3110 	/* ok, everything is stopped */
3111 	oldpool = conf->r1bio_pool;
3112 	conf->r1bio_pool = newpool;
3113 
3114 	for (d = d2 = 0; d < conf->raid_disks; d++) {
3115 		struct md_rdev *rdev = conf->mirrors[d].rdev;
3116 		if (rdev && rdev->raid_disk != d2) {
3117 			sysfs_unlink_rdev(mddev, rdev);
3118 			rdev->raid_disk = d2;
3119 			sysfs_unlink_rdev(mddev, rdev);
3120 			if (sysfs_link_rdev(mddev, rdev))
3121 				printk(KERN_WARNING
3122 				       "md/raid1:%s: cannot register rd%d\n",
3123 				       mdname(mddev), rdev->raid_disk);
3124 		}
3125 		if (rdev)
3126 			newmirrors[d2++].rdev = rdev;
3127 	}
3128 	kfree(conf->mirrors);
3129 	conf->mirrors = newmirrors;
3130 	kfree(conf->poolinfo);
3131 	conf->poolinfo = newpoolinfo;
3132 
3133 	spin_lock_irqsave(&conf->device_lock, flags);
3134 	mddev->degraded += (raid_disks - conf->raid_disks);
3135 	spin_unlock_irqrestore(&conf->device_lock, flags);
3136 	conf->raid_disks = mddev->raid_disks = raid_disks;
3137 	mddev->delta_disks = 0;
3138 
3139 	unfreeze_array(conf);
3140 
3141 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3142 	md_wakeup_thread(mddev->thread);
3143 
3144 	mempool_destroy(oldpool);
3145 	return 0;
3146 }
3147 
3148 static void raid1_quiesce(struct mddev *mddev, int state)
3149 {
3150 	struct r1conf *conf = mddev->private;
3151 
3152 	switch(state) {
3153 	case 2: /* wake for suspend */
3154 		wake_up(&conf->wait_barrier);
3155 		break;
3156 	case 1:
3157 		freeze_array(conf, 0);
3158 		break;
3159 	case 0:
3160 		unfreeze_array(conf);
3161 		break;
3162 	}
3163 }
3164 
3165 static void *raid1_takeover(struct mddev *mddev)
3166 {
3167 	/* raid1 can take over:
3168 	 *  raid5 with 2 devices, any layout or chunk size
3169 	 */
3170 	if (mddev->level == 5 && mddev->raid_disks == 2) {
3171 		struct r1conf *conf;
3172 		mddev->new_level = 1;
3173 		mddev->new_layout = 0;
3174 		mddev->new_chunk_sectors = 0;
3175 		conf = setup_conf(mddev);
3176 		if (!IS_ERR(conf))
3177 			/* Array must appear to be quiesced */
3178 			conf->array_frozen = 1;
3179 		return conf;
3180 	}
3181 	return ERR_PTR(-EINVAL);
3182 }
3183 
3184 static struct md_personality raid1_personality =
3185 {
3186 	.name		= "raid1",
3187 	.level		= 1,
3188 	.owner		= THIS_MODULE,
3189 	.make_request	= make_request,
3190 	.run		= run,
3191 	.stop		= stop,
3192 	.status		= status,
3193 	.error_handler	= error,
3194 	.hot_add_disk	= raid1_add_disk,
3195 	.hot_remove_disk= raid1_remove_disk,
3196 	.spare_active	= raid1_spare_active,
3197 	.sync_request	= sync_request,
3198 	.resize		= raid1_resize,
3199 	.size		= raid1_size,
3200 	.check_reshape	= raid1_reshape,
3201 	.quiesce	= raid1_quiesce,
3202 	.takeover	= raid1_takeover,
3203 };
3204 
3205 static int __init raid_init(void)
3206 {
3207 	return register_md_personality(&raid1_personality);
3208 }
3209 
3210 static void raid_exit(void)
3211 {
3212 	unregister_md_personality(&raid1_personality);
3213 }
3214 
3215 module_init(raid_init);
3216 module_exit(raid_exit);
3217 MODULE_LICENSE("GPL");
3218 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3219 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3220 MODULE_ALIAS("md-raid1");
3221 MODULE_ALIAS("md-level-1");
3222 
3223 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
3224