xref: /openbmc/linux/drivers/md/raid1.c (revision 3e30a927)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid1.c : Multiple Devices driver for Linux
4  *
5  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6  *
7  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8  *
9  * RAID-1 management functions.
10  *
11  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12  *
13  * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
14  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15  *
16  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
17  * bitmapped intelligence in resync:
18  *
19  *      - bitmap marked during normal i/o
20  *      - bitmap used to skip nondirty blocks during sync
21  *
22  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
23  * - persistent bitmap code
24  */
25 
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/blkdev.h>
29 #include <linux/module.h>
30 #include <linux/seq_file.h>
31 #include <linux/ratelimit.h>
32 #include <linux/interval_tree_generic.h>
33 
34 #include <trace/events/block.h>
35 
36 #include "md.h"
37 #include "raid1.h"
38 #include "md-bitmap.h"
39 
40 #define UNSUPPORTED_MDDEV_FLAGS		\
41 	((1L << MD_HAS_JOURNAL) |	\
42 	 (1L << MD_JOURNAL_CLEAN) |	\
43 	 (1L << MD_HAS_PPL) |		\
44 	 (1L << MD_HAS_MULTIPLE_PPLS))
45 
46 static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
47 static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
48 
49 #define raid1_log(md, fmt, args...)				\
50 	do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
51 
52 #include "raid1-10.c"
53 
54 #define START(node) ((node)->start)
55 #define LAST(node) ((node)->last)
56 INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last,
57 		     START, LAST, static inline, raid1_rb);
58 
59 static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio,
60 				struct serial_info *si, int idx)
61 {
62 	unsigned long flags;
63 	int ret = 0;
64 	sector_t lo = r1_bio->sector;
65 	sector_t hi = lo + r1_bio->sectors;
66 	struct serial_in_rdev *serial = &rdev->serial[idx];
67 
68 	spin_lock_irqsave(&serial->serial_lock, flags);
69 	/* collision happened */
70 	if (raid1_rb_iter_first(&serial->serial_rb, lo, hi))
71 		ret = -EBUSY;
72 	else {
73 		si->start = lo;
74 		si->last = hi;
75 		raid1_rb_insert(si, &serial->serial_rb);
76 	}
77 	spin_unlock_irqrestore(&serial->serial_lock, flags);
78 
79 	return ret;
80 }
81 
82 static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio)
83 {
84 	struct mddev *mddev = rdev->mddev;
85 	struct serial_info *si;
86 	int idx = sector_to_idx(r1_bio->sector);
87 	struct serial_in_rdev *serial = &rdev->serial[idx];
88 
89 	if (WARN_ON(!mddev->serial_info_pool))
90 		return;
91 	si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO);
92 	wait_event(serial->serial_io_wait,
93 		   check_and_add_serial(rdev, r1_bio, si, idx) == 0);
94 }
95 
96 static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi)
97 {
98 	struct serial_info *si;
99 	unsigned long flags;
100 	int found = 0;
101 	struct mddev *mddev = rdev->mddev;
102 	int idx = sector_to_idx(lo);
103 	struct serial_in_rdev *serial = &rdev->serial[idx];
104 
105 	spin_lock_irqsave(&serial->serial_lock, flags);
106 	for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi);
107 	     si; si = raid1_rb_iter_next(si, lo, hi)) {
108 		if (si->start == lo && si->last == hi) {
109 			raid1_rb_remove(si, &serial->serial_rb);
110 			mempool_free(si, mddev->serial_info_pool);
111 			found = 1;
112 			break;
113 		}
114 	}
115 	if (!found)
116 		WARN(1, "The write IO is not recorded for serialization\n");
117 	spin_unlock_irqrestore(&serial->serial_lock, flags);
118 	wake_up(&serial->serial_io_wait);
119 }
120 
121 /*
122  * for resync bio, r1bio pointer can be retrieved from the per-bio
123  * 'struct resync_pages'.
124  */
125 static inline struct r1bio *get_resync_r1bio(struct bio *bio)
126 {
127 	return get_resync_pages(bio)->raid_bio;
128 }
129 
130 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
131 {
132 	struct pool_info *pi = data;
133 	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
134 
135 	/* allocate a r1bio with room for raid_disks entries in the bios array */
136 	return kzalloc(size, gfp_flags);
137 }
138 
139 #define RESYNC_DEPTH 32
140 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
141 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
142 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
143 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
144 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
145 
146 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
147 {
148 	struct pool_info *pi = data;
149 	struct r1bio *r1_bio;
150 	struct bio *bio;
151 	int need_pages;
152 	int j;
153 	struct resync_pages *rps;
154 
155 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
156 	if (!r1_bio)
157 		return NULL;
158 
159 	rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages),
160 			    gfp_flags);
161 	if (!rps)
162 		goto out_free_r1bio;
163 
164 	/*
165 	 * Allocate bios : 1 for reading, n-1 for writing
166 	 */
167 	for (j = pi->raid_disks ; j-- ; ) {
168 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
169 		if (!bio)
170 			goto out_free_bio;
171 		r1_bio->bios[j] = bio;
172 	}
173 	/*
174 	 * Allocate RESYNC_PAGES data pages and attach them to
175 	 * the first bio.
176 	 * If this is a user-requested check/repair, allocate
177 	 * RESYNC_PAGES for each bio.
178 	 */
179 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
180 		need_pages = pi->raid_disks;
181 	else
182 		need_pages = 1;
183 	for (j = 0; j < pi->raid_disks; j++) {
184 		struct resync_pages *rp = &rps[j];
185 
186 		bio = r1_bio->bios[j];
187 
188 		if (j < need_pages) {
189 			if (resync_alloc_pages(rp, gfp_flags))
190 				goto out_free_pages;
191 		} else {
192 			memcpy(rp, &rps[0], sizeof(*rp));
193 			resync_get_all_pages(rp);
194 		}
195 
196 		rp->raid_bio = r1_bio;
197 		bio->bi_private = rp;
198 	}
199 
200 	r1_bio->master_bio = NULL;
201 
202 	return r1_bio;
203 
204 out_free_pages:
205 	while (--j >= 0)
206 		resync_free_pages(&rps[j]);
207 
208 out_free_bio:
209 	while (++j < pi->raid_disks)
210 		bio_put(r1_bio->bios[j]);
211 	kfree(rps);
212 
213 out_free_r1bio:
214 	rbio_pool_free(r1_bio, data);
215 	return NULL;
216 }
217 
218 static void r1buf_pool_free(void *__r1_bio, void *data)
219 {
220 	struct pool_info *pi = data;
221 	int i;
222 	struct r1bio *r1bio = __r1_bio;
223 	struct resync_pages *rp = NULL;
224 
225 	for (i = pi->raid_disks; i--; ) {
226 		rp = get_resync_pages(r1bio->bios[i]);
227 		resync_free_pages(rp);
228 		bio_put(r1bio->bios[i]);
229 	}
230 
231 	/* resync pages array stored in the 1st bio's .bi_private */
232 	kfree(rp);
233 
234 	rbio_pool_free(r1bio, data);
235 }
236 
237 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
238 {
239 	int i;
240 
241 	for (i = 0; i < conf->raid_disks * 2; i++) {
242 		struct bio **bio = r1_bio->bios + i;
243 		if (!BIO_SPECIAL(*bio))
244 			bio_put(*bio);
245 		*bio = NULL;
246 	}
247 }
248 
249 static void free_r1bio(struct r1bio *r1_bio)
250 {
251 	struct r1conf *conf = r1_bio->mddev->private;
252 
253 	put_all_bios(conf, r1_bio);
254 	mempool_free(r1_bio, &conf->r1bio_pool);
255 }
256 
257 static void put_buf(struct r1bio *r1_bio)
258 {
259 	struct r1conf *conf = r1_bio->mddev->private;
260 	sector_t sect = r1_bio->sector;
261 	int i;
262 
263 	for (i = 0; i < conf->raid_disks * 2; i++) {
264 		struct bio *bio = r1_bio->bios[i];
265 		if (bio->bi_end_io)
266 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
267 	}
268 
269 	mempool_free(r1_bio, &conf->r1buf_pool);
270 
271 	lower_barrier(conf, sect);
272 }
273 
274 static void reschedule_retry(struct r1bio *r1_bio)
275 {
276 	unsigned long flags;
277 	struct mddev *mddev = r1_bio->mddev;
278 	struct r1conf *conf = mddev->private;
279 	int idx;
280 
281 	idx = sector_to_idx(r1_bio->sector);
282 	spin_lock_irqsave(&conf->device_lock, flags);
283 	list_add(&r1_bio->retry_list, &conf->retry_list);
284 	atomic_inc(&conf->nr_queued[idx]);
285 	spin_unlock_irqrestore(&conf->device_lock, flags);
286 
287 	wake_up(&conf->wait_barrier);
288 	md_wakeup_thread(mddev->thread);
289 }
290 
291 /*
292  * raid_end_bio_io() is called when we have finished servicing a mirrored
293  * operation and are ready to return a success/failure code to the buffer
294  * cache layer.
295  */
296 static void call_bio_endio(struct r1bio *r1_bio)
297 {
298 	struct bio *bio = r1_bio->master_bio;
299 	struct r1conf *conf = r1_bio->mddev->private;
300 
301 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
302 		bio->bi_status = BLK_STS_IOERR;
303 
304 	bio_endio(bio);
305 	/*
306 	 * Wake up any possible resync thread that waits for the device
307 	 * to go idle.
308 	 */
309 	allow_barrier(conf, r1_bio->sector);
310 }
311 
312 static void raid_end_bio_io(struct r1bio *r1_bio)
313 {
314 	struct bio *bio = r1_bio->master_bio;
315 
316 	/* if nobody has done the final endio yet, do it now */
317 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
318 		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
319 			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
320 			 (unsigned long long) bio->bi_iter.bi_sector,
321 			 (unsigned long long) bio_end_sector(bio) - 1);
322 
323 		call_bio_endio(r1_bio);
324 	}
325 	free_r1bio(r1_bio);
326 }
327 
328 /*
329  * Update disk head position estimator based on IRQ completion info.
330  */
331 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
332 {
333 	struct r1conf *conf = r1_bio->mddev->private;
334 
335 	conf->mirrors[disk].head_position =
336 		r1_bio->sector + (r1_bio->sectors);
337 }
338 
339 /*
340  * Find the disk number which triggered given bio
341  */
342 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
343 {
344 	int mirror;
345 	struct r1conf *conf = r1_bio->mddev->private;
346 	int raid_disks = conf->raid_disks;
347 
348 	for (mirror = 0; mirror < raid_disks * 2; mirror++)
349 		if (r1_bio->bios[mirror] == bio)
350 			break;
351 
352 	BUG_ON(mirror == raid_disks * 2);
353 	update_head_pos(mirror, r1_bio);
354 
355 	return mirror;
356 }
357 
358 static void raid1_end_read_request(struct bio *bio)
359 {
360 	int uptodate = !bio->bi_status;
361 	struct r1bio *r1_bio = bio->bi_private;
362 	struct r1conf *conf = r1_bio->mddev->private;
363 	struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
364 
365 	/*
366 	 * this branch is our 'one mirror IO has finished' event handler:
367 	 */
368 	update_head_pos(r1_bio->read_disk, r1_bio);
369 
370 	if (uptodate)
371 		set_bit(R1BIO_Uptodate, &r1_bio->state);
372 	else if (test_bit(FailFast, &rdev->flags) &&
373 		 test_bit(R1BIO_FailFast, &r1_bio->state))
374 		/* This was a fail-fast read so we definitely
375 		 * want to retry */
376 		;
377 	else {
378 		/* If all other devices have failed, we want to return
379 		 * the error upwards rather than fail the last device.
380 		 * Here we redefine "uptodate" to mean "Don't want to retry"
381 		 */
382 		unsigned long flags;
383 		spin_lock_irqsave(&conf->device_lock, flags);
384 		if (r1_bio->mddev->degraded == conf->raid_disks ||
385 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
386 		     test_bit(In_sync, &rdev->flags)))
387 			uptodate = 1;
388 		spin_unlock_irqrestore(&conf->device_lock, flags);
389 	}
390 
391 	if (uptodate) {
392 		raid_end_bio_io(r1_bio);
393 		rdev_dec_pending(rdev, conf->mddev);
394 	} else {
395 		/*
396 		 * oops, read error:
397 		 */
398 		char b[BDEVNAME_SIZE];
399 		pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
400 				   mdname(conf->mddev),
401 				   bdevname(rdev->bdev, b),
402 				   (unsigned long long)r1_bio->sector);
403 		set_bit(R1BIO_ReadError, &r1_bio->state);
404 		reschedule_retry(r1_bio);
405 		/* don't drop the reference on read_disk yet */
406 	}
407 }
408 
409 static void close_write(struct r1bio *r1_bio)
410 {
411 	/* it really is the end of this request */
412 	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
413 		bio_free_pages(r1_bio->behind_master_bio);
414 		bio_put(r1_bio->behind_master_bio);
415 		r1_bio->behind_master_bio = NULL;
416 	}
417 	/* clear the bitmap if all writes complete successfully */
418 	md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
419 			   r1_bio->sectors,
420 			   !test_bit(R1BIO_Degraded, &r1_bio->state),
421 			   test_bit(R1BIO_BehindIO, &r1_bio->state));
422 	md_write_end(r1_bio->mddev);
423 }
424 
425 static void r1_bio_write_done(struct r1bio *r1_bio)
426 {
427 	if (!atomic_dec_and_test(&r1_bio->remaining))
428 		return;
429 
430 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
431 		reschedule_retry(r1_bio);
432 	else {
433 		close_write(r1_bio);
434 		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
435 			reschedule_retry(r1_bio);
436 		else
437 			raid_end_bio_io(r1_bio);
438 	}
439 }
440 
441 static void raid1_end_write_request(struct bio *bio)
442 {
443 	struct r1bio *r1_bio = bio->bi_private;
444 	int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
445 	struct r1conf *conf = r1_bio->mddev->private;
446 	struct bio *to_put = NULL;
447 	int mirror = find_bio_disk(r1_bio, bio);
448 	struct md_rdev *rdev = conf->mirrors[mirror].rdev;
449 	bool discard_error;
450 	sector_t lo = r1_bio->sector;
451 	sector_t hi = r1_bio->sector + r1_bio->sectors;
452 
453 	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
454 
455 	/*
456 	 * 'one mirror IO has finished' event handler:
457 	 */
458 	if (bio->bi_status && !discard_error) {
459 		set_bit(WriteErrorSeen,	&rdev->flags);
460 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
461 			set_bit(MD_RECOVERY_NEEDED, &
462 				conf->mddev->recovery);
463 
464 		if (test_bit(FailFast, &rdev->flags) &&
465 		    (bio->bi_opf & MD_FAILFAST) &&
466 		    /* We never try FailFast to WriteMostly devices */
467 		    !test_bit(WriteMostly, &rdev->flags)) {
468 			md_error(r1_bio->mddev, rdev);
469 		}
470 
471 		/*
472 		 * When the device is faulty, it is not necessary to
473 		 * handle write error.
474 		 * For failfast, this is the only remaining device,
475 		 * We need to retry the write without FailFast.
476 		 */
477 		if (!test_bit(Faulty, &rdev->flags))
478 			set_bit(R1BIO_WriteError, &r1_bio->state);
479 		else {
480 			/* Finished with this branch */
481 			r1_bio->bios[mirror] = NULL;
482 			to_put = bio;
483 		}
484 	} else {
485 		/*
486 		 * Set R1BIO_Uptodate in our master bio, so that we
487 		 * will return a good error code for to the higher
488 		 * levels even if IO on some other mirrored buffer
489 		 * fails.
490 		 *
491 		 * The 'master' represents the composite IO operation
492 		 * to user-side. So if something waits for IO, then it
493 		 * will wait for the 'master' bio.
494 		 */
495 		sector_t first_bad;
496 		int bad_sectors;
497 
498 		r1_bio->bios[mirror] = NULL;
499 		to_put = bio;
500 		/*
501 		 * Do not set R1BIO_Uptodate if the current device is
502 		 * rebuilding or Faulty. This is because we cannot use
503 		 * such device for properly reading the data back (we could
504 		 * potentially use it, if the current write would have felt
505 		 * before rdev->recovery_offset, but for simplicity we don't
506 		 * check this here.
507 		 */
508 		if (test_bit(In_sync, &rdev->flags) &&
509 		    !test_bit(Faulty, &rdev->flags))
510 			set_bit(R1BIO_Uptodate, &r1_bio->state);
511 
512 		/* Maybe we can clear some bad blocks. */
513 		if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
514 				&first_bad, &bad_sectors) && !discard_error) {
515 			r1_bio->bios[mirror] = IO_MADE_GOOD;
516 			set_bit(R1BIO_MadeGood, &r1_bio->state);
517 		}
518 	}
519 
520 	if (behind) {
521 		if (test_bit(CollisionCheck, &rdev->flags))
522 			remove_serial(rdev, lo, hi);
523 		if (test_bit(WriteMostly, &rdev->flags))
524 			atomic_dec(&r1_bio->behind_remaining);
525 
526 		/*
527 		 * In behind mode, we ACK the master bio once the I/O
528 		 * has safely reached all non-writemostly
529 		 * disks. Setting the Returned bit ensures that this
530 		 * gets done only once -- we don't ever want to return
531 		 * -EIO here, instead we'll wait
532 		 */
533 		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
534 		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
535 			/* Maybe we can return now */
536 			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
537 				struct bio *mbio = r1_bio->master_bio;
538 				pr_debug("raid1: behind end write sectors"
539 					 " %llu-%llu\n",
540 					 (unsigned long long) mbio->bi_iter.bi_sector,
541 					 (unsigned long long) bio_end_sector(mbio) - 1);
542 				call_bio_endio(r1_bio);
543 			}
544 		}
545 	} else if (rdev->mddev->serialize_policy)
546 		remove_serial(rdev, lo, hi);
547 	if (r1_bio->bios[mirror] == NULL)
548 		rdev_dec_pending(rdev, conf->mddev);
549 
550 	/*
551 	 * Let's see if all mirrored write operations have finished
552 	 * already.
553 	 */
554 	r1_bio_write_done(r1_bio);
555 
556 	if (to_put)
557 		bio_put(to_put);
558 }
559 
560 static sector_t align_to_barrier_unit_end(sector_t start_sector,
561 					  sector_t sectors)
562 {
563 	sector_t len;
564 
565 	WARN_ON(sectors == 0);
566 	/*
567 	 * len is the number of sectors from start_sector to end of the
568 	 * barrier unit which start_sector belongs to.
569 	 */
570 	len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
571 	      start_sector;
572 
573 	if (len > sectors)
574 		len = sectors;
575 
576 	return len;
577 }
578 
579 /*
580  * This routine returns the disk from which the requested read should
581  * be done. There is a per-array 'next expected sequential IO' sector
582  * number - if this matches on the next IO then we use the last disk.
583  * There is also a per-disk 'last know head position' sector that is
584  * maintained from IRQ contexts, both the normal and the resync IO
585  * completion handlers update this position correctly. If there is no
586  * perfect sequential match then we pick the disk whose head is closest.
587  *
588  * If there are 2 mirrors in the same 2 devices, performance degrades
589  * because position is mirror, not device based.
590  *
591  * The rdev for the device selected will have nr_pending incremented.
592  */
593 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
594 {
595 	const sector_t this_sector = r1_bio->sector;
596 	int sectors;
597 	int best_good_sectors;
598 	int best_disk, best_dist_disk, best_pending_disk;
599 	int has_nonrot_disk;
600 	int disk;
601 	sector_t best_dist;
602 	unsigned int min_pending;
603 	struct md_rdev *rdev;
604 	int choose_first;
605 	int choose_next_idle;
606 
607 	rcu_read_lock();
608 	/*
609 	 * Check if we can balance. We can balance on the whole
610 	 * device if no resync is going on, or below the resync window.
611 	 * We take the first readable disk when above the resync window.
612 	 */
613  retry:
614 	sectors = r1_bio->sectors;
615 	best_disk = -1;
616 	best_dist_disk = -1;
617 	best_dist = MaxSector;
618 	best_pending_disk = -1;
619 	min_pending = UINT_MAX;
620 	best_good_sectors = 0;
621 	has_nonrot_disk = 0;
622 	choose_next_idle = 0;
623 	clear_bit(R1BIO_FailFast, &r1_bio->state);
624 
625 	if ((conf->mddev->recovery_cp < this_sector + sectors) ||
626 	    (mddev_is_clustered(conf->mddev) &&
627 	    md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
628 		    this_sector + sectors)))
629 		choose_first = 1;
630 	else
631 		choose_first = 0;
632 
633 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
634 		sector_t dist;
635 		sector_t first_bad;
636 		int bad_sectors;
637 		unsigned int pending;
638 		bool nonrot;
639 
640 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
641 		if (r1_bio->bios[disk] == IO_BLOCKED
642 		    || rdev == NULL
643 		    || test_bit(Faulty, &rdev->flags))
644 			continue;
645 		if (!test_bit(In_sync, &rdev->flags) &&
646 		    rdev->recovery_offset < this_sector + sectors)
647 			continue;
648 		if (test_bit(WriteMostly, &rdev->flags)) {
649 			/* Don't balance among write-mostly, just
650 			 * use the first as a last resort */
651 			if (best_dist_disk < 0) {
652 				if (is_badblock(rdev, this_sector, sectors,
653 						&first_bad, &bad_sectors)) {
654 					if (first_bad <= this_sector)
655 						/* Cannot use this */
656 						continue;
657 					best_good_sectors = first_bad - this_sector;
658 				} else
659 					best_good_sectors = sectors;
660 				best_dist_disk = disk;
661 				best_pending_disk = disk;
662 			}
663 			continue;
664 		}
665 		/* This is a reasonable device to use.  It might
666 		 * even be best.
667 		 */
668 		if (is_badblock(rdev, this_sector, sectors,
669 				&first_bad, &bad_sectors)) {
670 			if (best_dist < MaxSector)
671 				/* already have a better device */
672 				continue;
673 			if (first_bad <= this_sector) {
674 				/* cannot read here. If this is the 'primary'
675 				 * device, then we must not read beyond
676 				 * bad_sectors from another device..
677 				 */
678 				bad_sectors -= (this_sector - first_bad);
679 				if (choose_first && sectors > bad_sectors)
680 					sectors = bad_sectors;
681 				if (best_good_sectors > sectors)
682 					best_good_sectors = sectors;
683 
684 			} else {
685 				sector_t good_sectors = first_bad - this_sector;
686 				if (good_sectors > best_good_sectors) {
687 					best_good_sectors = good_sectors;
688 					best_disk = disk;
689 				}
690 				if (choose_first)
691 					break;
692 			}
693 			continue;
694 		} else {
695 			if ((sectors > best_good_sectors) && (best_disk >= 0))
696 				best_disk = -1;
697 			best_good_sectors = sectors;
698 		}
699 
700 		if (best_disk >= 0)
701 			/* At least two disks to choose from so failfast is OK */
702 			set_bit(R1BIO_FailFast, &r1_bio->state);
703 
704 		nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
705 		has_nonrot_disk |= nonrot;
706 		pending = atomic_read(&rdev->nr_pending);
707 		dist = abs(this_sector - conf->mirrors[disk].head_position);
708 		if (choose_first) {
709 			best_disk = disk;
710 			break;
711 		}
712 		/* Don't change to another disk for sequential reads */
713 		if (conf->mirrors[disk].next_seq_sect == this_sector
714 		    || dist == 0) {
715 			int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
716 			struct raid1_info *mirror = &conf->mirrors[disk];
717 
718 			best_disk = disk;
719 			/*
720 			 * If buffered sequential IO size exceeds optimal
721 			 * iosize, check if there is idle disk. If yes, choose
722 			 * the idle disk. read_balance could already choose an
723 			 * idle disk before noticing it's a sequential IO in
724 			 * this disk. This doesn't matter because this disk
725 			 * will idle, next time it will be utilized after the
726 			 * first disk has IO size exceeds optimal iosize. In
727 			 * this way, iosize of the first disk will be optimal
728 			 * iosize at least. iosize of the second disk might be
729 			 * small, but not a big deal since when the second disk
730 			 * starts IO, the first disk is likely still busy.
731 			 */
732 			if (nonrot && opt_iosize > 0 &&
733 			    mirror->seq_start != MaxSector &&
734 			    mirror->next_seq_sect > opt_iosize &&
735 			    mirror->next_seq_sect - opt_iosize >=
736 			    mirror->seq_start) {
737 				choose_next_idle = 1;
738 				continue;
739 			}
740 			break;
741 		}
742 
743 		if (choose_next_idle)
744 			continue;
745 
746 		if (min_pending > pending) {
747 			min_pending = pending;
748 			best_pending_disk = disk;
749 		}
750 
751 		if (dist < best_dist) {
752 			best_dist = dist;
753 			best_dist_disk = disk;
754 		}
755 	}
756 
757 	/*
758 	 * If all disks are rotational, choose the closest disk. If any disk is
759 	 * non-rotational, choose the disk with less pending request even the
760 	 * disk is rotational, which might/might not be optimal for raids with
761 	 * mixed ratation/non-rotational disks depending on workload.
762 	 */
763 	if (best_disk == -1) {
764 		if (has_nonrot_disk || min_pending == 0)
765 			best_disk = best_pending_disk;
766 		else
767 			best_disk = best_dist_disk;
768 	}
769 
770 	if (best_disk >= 0) {
771 		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
772 		if (!rdev)
773 			goto retry;
774 		atomic_inc(&rdev->nr_pending);
775 		sectors = best_good_sectors;
776 
777 		if (conf->mirrors[best_disk].next_seq_sect != this_sector)
778 			conf->mirrors[best_disk].seq_start = this_sector;
779 
780 		conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
781 	}
782 	rcu_read_unlock();
783 	*max_sectors = sectors;
784 
785 	return best_disk;
786 }
787 
788 static int raid1_congested(struct mddev *mddev, int bits)
789 {
790 	struct r1conf *conf = mddev->private;
791 	int i, ret = 0;
792 
793 	if ((bits & (1 << WB_async_congested)) &&
794 	    conf->pending_count >= max_queued_requests)
795 		return 1;
796 
797 	rcu_read_lock();
798 	for (i = 0; i < conf->raid_disks * 2; i++) {
799 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
800 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
801 			struct request_queue *q = bdev_get_queue(rdev->bdev);
802 
803 			BUG_ON(!q);
804 
805 			/* Note the '|| 1' - when read_balance prefers
806 			 * non-congested targets, it can be removed
807 			 */
808 			if ((bits & (1 << WB_async_congested)) || 1)
809 				ret |= bdi_congested(q->backing_dev_info, bits);
810 			else
811 				ret &= bdi_congested(q->backing_dev_info, bits);
812 		}
813 	}
814 	rcu_read_unlock();
815 	return ret;
816 }
817 
818 static void flush_bio_list(struct r1conf *conf, struct bio *bio)
819 {
820 	/* flush any pending bitmap writes to disk before proceeding w/ I/O */
821 	md_bitmap_unplug(conf->mddev->bitmap);
822 	wake_up(&conf->wait_barrier);
823 
824 	while (bio) { /* submit pending writes */
825 		struct bio *next = bio->bi_next;
826 		struct md_rdev *rdev = (void *)bio->bi_disk;
827 		bio->bi_next = NULL;
828 		bio_set_dev(bio, rdev->bdev);
829 		if (test_bit(Faulty, &rdev->flags)) {
830 			bio_io_error(bio);
831 		} else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
832 				    !blk_queue_discard(bio->bi_disk->queue)))
833 			/* Just ignore it */
834 			bio_endio(bio);
835 		else
836 			generic_make_request(bio);
837 		bio = next;
838 		cond_resched();
839 	}
840 }
841 
842 static void flush_pending_writes(struct r1conf *conf)
843 {
844 	/* Any writes that have been queued but are awaiting
845 	 * bitmap updates get flushed here.
846 	 */
847 	spin_lock_irq(&conf->device_lock);
848 
849 	if (conf->pending_bio_list.head) {
850 		struct blk_plug plug;
851 		struct bio *bio;
852 
853 		bio = bio_list_get(&conf->pending_bio_list);
854 		conf->pending_count = 0;
855 		spin_unlock_irq(&conf->device_lock);
856 
857 		/*
858 		 * As this is called in a wait_event() loop (see freeze_array),
859 		 * current->state might be TASK_UNINTERRUPTIBLE which will
860 		 * cause a warning when we prepare to wait again.  As it is
861 		 * rare that this path is taken, it is perfectly safe to force
862 		 * us to go around the wait_event() loop again, so the warning
863 		 * is a false-positive.  Silence the warning by resetting
864 		 * thread state
865 		 */
866 		__set_current_state(TASK_RUNNING);
867 		blk_start_plug(&plug);
868 		flush_bio_list(conf, bio);
869 		blk_finish_plug(&plug);
870 	} else
871 		spin_unlock_irq(&conf->device_lock);
872 }
873 
874 /* Barriers....
875  * Sometimes we need to suspend IO while we do something else,
876  * either some resync/recovery, or reconfigure the array.
877  * To do this we raise a 'barrier'.
878  * The 'barrier' is a counter that can be raised multiple times
879  * to count how many activities are happening which preclude
880  * normal IO.
881  * We can only raise the barrier if there is no pending IO.
882  * i.e. if nr_pending == 0.
883  * We choose only to raise the barrier if no-one is waiting for the
884  * barrier to go down.  This means that as soon as an IO request
885  * is ready, no other operations which require a barrier will start
886  * until the IO request has had a chance.
887  *
888  * So: regular IO calls 'wait_barrier'.  When that returns there
889  *    is no backgroup IO happening,  It must arrange to call
890  *    allow_barrier when it has finished its IO.
891  * backgroup IO calls must call raise_barrier.  Once that returns
892  *    there is no normal IO happeing.  It must arrange to call
893  *    lower_barrier when the particular background IO completes.
894  *
895  * If resync/recovery is interrupted, returns -EINTR;
896  * Otherwise, returns 0.
897  */
898 static int raise_barrier(struct r1conf *conf, sector_t sector_nr)
899 {
900 	int idx = sector_to_idx(sector_nr);
901 
902 	spin_lock_irq(&conf->resync_lock);
903 
904 	/* Wait until no block IO is waiting */
905 	wait_event_lock_irq(conf->wait_barrier,
906 			    !atomic_read(&conf->nr_waiting[idx]),
907 			    conf->resync_lock);
908 
909 	/* block any new IO from starting */
910 	atomic_inc(&conf->barrier[idx]);
911 	/*
912 	 * In raise_barrier() we firstly increase conf->barrier[idx] then
913 	 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
914 	 * increase conf->nr_pending[idx] then check conf->barrier[idx].
915 	 * A memory barrier here to make sure conf->nr_pending[idx] won't
916 	 * be fetched before conf->barrier[idx] is increased. Otherwise
917 	 * there will be a race between raise_barrier() and _wait_barrier().
918 	 */
919 	smp_mb__after_atomic();
920 
921 	/* For these conditions we must wait:
922 	 * A: while the array is in frozen state
923 	 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
924 	 *    existing in corresponding I/O barrier bucket.
925 	 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
926 	 *    max resync count which allowed on current I/O barrier bucket.
927 	 */
928 	wait_event_lock_irq(conf->wait_barrier,
929 			    (!conf->array_frozen &&
930 			     !atomic_read(&conf->nr_pending[idx]) &&
931 			     atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
932 				test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
933 			    conf->resync_lock);
934 
935 	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
936 		atomic_dec(&conf->barrier[idx]);
937 		spin_unlock_irq(&conf->resync_lock);
938 		wake_up(&conf->wait_barrier);
939 		return -EINTR;
940 	}
941 
942 	atomic_inc(&conf->nr_sync_pending);
943 	spin_unlock_irq(&conf->resync_lock);
944 
945 	return 0;
946 }
947 
948 static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
949 {
950 	int idx = sector_to_idx(sector_nr);
951 
952 	BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
953 
954 	atomic_dec(&conf->barrier[idx]);
955 	atomic_dec(&conf->nr_sync_pending);
956 	wake_up(&conf->wait_barrier);
957 }
958 
959 static void _wait_barrier(struct r1conf *conf, int idx)
960 {
961 	/*
962 	 * We need to increase conf->nr_pending[idx] very early here,
963 	 * then raise_barrier() can be blocked when it waits for
964 	 * conf->nr_pending[idx] to be 0. Then we can avoid holding
965 	 * conf->resync_lock when there is no barrier raised in same
966 	 * barrier unit bucket. Also if the array is frozen, I/O
967 	 * should be blocked until array is unfrozen.
968 	 */
969 	atomic_inc(&conf->nr_pending[idx]);
970 	/*
971 	 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
972 	 * check conf->barrier[idx]. In raise_barrier() we firstly increase
973 	 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
974 	 * barrier is necessary here to make sure conf->barrier[idx] won't be
975 	 * fetched before conf->nr_pending[idx] is increased. Otherwise there
976 	 * will be a race between _wait_barrier() and raise_barrier().
977 	 */
978 	smp_mb__after_atomic();
979 
980 	/*
981 	 * Don't worry about checking two atomic_t variables at same time
982 	 * here. If during we check conf->barrier[idx], the array is
983 	 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
984 	 * 0, it is safe to return and make the I/O continue. Because the
985 	 * array is frozen, all I/O returned here will eventually complete
986 	 * or be queued, no race will happen. See code comment in
987 	 * frozen_array().
988 	 */
989 	if (!READ_ONCE(conf->array_frozen) &&
990 	    !atomic_read(&conf->barrier[idx]))
991 		return;
992 
993 	/*
994 	 * After holding conf->resync_lock, conf->nr_pending[idx]
995 	 * should be decreased before waiting for barrier to drop.
996 	 * Otherwise, we may encounter a race condition because
997 	 * raise_barrer() might be waiting for conf->nr_pending[idx]
998 	 * to be 0 at same time.
999 	 */
1000 	spin_lock_irq(&conf->resync_lock);
1001 	atomic_inc(&conf->nr_waiting[idx]);
1002 	atomic_dec(&conf->nr_pending[idx]);
1003 	/*
1004 	 * In case freeze_array() is waiting for
1005 	 * get_unqueued_pending() == extra
1006 	 */
1007 	wake_up(&conf->wait_barrier);
1008 	/* Wait for the barrier in same barrier unit bucket to drop. */
1009 	wait_event_lock_irq(conf->wait_barrier,
1010 			    !conf->array_frozen &&
1011 			     !atomic_read(&conf->barrier[idx]),
1012 			    conf->resync_lock);
1013 	atomic_inc(&conf->nr_pending[idx]);
1014 	atomic_dec(&conf->nr_waiting[idx]);
1015 	spin_unlock_irq(&conf->resync_lock);
1016 }
1017 
1018 static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
1019 {
1020 	int idx = sector_to_idx(sector_nr);
1021 
1022 	/*
1023 	 * Very similar to _wait_barrier(). The difference is, for read
1024 	 * I/O we don't need wait for sync I/O, but if the whole array
1025 	 * is frozen, the read I/O still has to wait until the array is
1026 	 * unfrozen. Since there is no ordering requirement with
1027 	 * conf->barrier[idx] here, memory barrier is unnecessary as well.
1028 	 */
1029 	atomic_inc(&conf->nr_pending[idx]);
1030 
1031 	if (!READ_ONCE(conf->array_frozen))
1032 		return;
1033 
1034 	spin_lock_irq(&conf->resync_lock);
1035 	atomic_inc(&conf->nr_waiting[idx]);
1036 	atomic_dec(&conf->nr_pending[idx]);
1037 	/*
1038 	 * In case freeze_array() is waiting for
1039 	 * get_unqueued_pending() == extra
1040 	 */
1041 	wake_up(&conf->wait_barrier);
1042 	/* Wait for array to be unfrozen */
1043 	wait_event_lock_irq(conf->wait_barrier,
1044 			    !conf->array_frozen,
1045 			    conf->resync_lock);
1046 	atomic_inc(&conf->nr_pending[idx]);
1047 	atomic_dec(&conf->nr_waiting[idx]);
1048 	spin_unlock_irq(&conf->resync_lock);
1049 }
1050 
1051 static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
1052 {
1053 	int idx = sector_to_idx(sector_nr);
1054 
1055 	_wait_barrier(conf, idx);
1056 }
1057 
1058 static void _allow_barrier(struct r1conf *conf, int idx)
1059 {
1060 	atomic_dec(&conf->nr_pending[idx]);
1061 	wake_up(&conf->wait_barrier);
1062 }
1063 
1064 static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1065 {
1066 	int idx = sector_to_idx(sector_nr);
1067 
1068 	_allow_barrier(conf, idx);
1069 }
1070 
1071 /* conf->resync_lock should be held */
1072 static int get_unqueued_pending(struct r1conf *conf)
1073 {
1074 	int idx, ret;
1075 
1076 	ret = atomic_read(&conf->nr_sync_pending);
1077 	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1078 		ret += atomic_read(&conf->nr_pending[idx]) -
1079 			atomic_read(&conf->nr_queued[idx]);
1080 
1081 	return ret;
1082 }
1083 
1084 static void freeze_array(struct r1conf *conf, int extra)
1085 {
1086 	/* Stop sync I/O and normal I/O and wait for everything to
1087 	 * go quiet.
1088 	 * This is called in two situations:
1089 	 * 1) management command handlers (reshape, remove disk, quiesce).
1090 	 * 2) one normal I/O request failed.
1091 
1092 	 * After array_frozen is set to 1, new sync IO will be blocked at
1093 	 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1094 	 * or wait_read_barrier(). The flying I/Os will either complete or be
1095 	 * queued. When everything goes quite, there are only queued I/Os left.
1096 
1097 	 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1098 	 * barrier bucket index which this I/O request hits. When all sync and
1099 	 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1100 	 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1101 	 * in handle_read_error(), we may call freeze_array() before trying to
1102 	 * fix the read error. In this case, the error read I/O is not queued,
1103 	 * so get_unqueued_pending() == 1.
1104 	 *
1105 	 * Therefore before this function returns, we need to wait until
1106 	 * get_unqueued_pendings(conf) gets equal to extra. For
1107 	 * normal I/O context, extra is 1, in rested situations extra is 0.
1108 	 */
1109 	spin_lock_irq(&conf->resync_lock);
1110 	conf->array_frozen = 1;
1111 	raid1_log(conf->mddev, "wait freeze");
1112 	wait_event_lock_irq_cmd(
1113 		conf->wait_barrier,
1114 		get_unqueued_pending(conf) == extra,
1115 		conf->resync_lock,
1116 		flush_pending_writes(conf));
1117 	spin_unlock_irq(&conf->resync_lock);
1118 }
1119 static void unfreeze_array(struct r1conf *conf)
1120 {
1121 	/* reverse the effect of the freeze */
1122 	spin_lock_irq(&conf->resync_lock);
1123 	conf->array_frozen = 0;
1124 	spin_unlock_irq(&conf->resync_lock);
1125 	wake_up(&conf->wait_barrier);
1126 }
1127 
1128 static void alloc_behind_master_bio(struct r1bio *r1_bio,
1129 					   struct bio *bio)
1130 {
1131 	int size = bio->bi_iter.bi_size;
1132 	unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1133 	int i = 0;
1134 	struct bio *behind_bio = NULL;
1135 
1136 	behind_bio = bio_alloc_mddev(GFP_NOIO, vcnt, r1_bio->mddev);
1137 	if (!behind_bio)
1138 		return;
1139 
1140 	/* discard op, we don't support writezero/writesame yet */
1141 	if (!bio_has_data(bio)) {
1142 		behind_bio->bi_iter.bi_size = size;
1143 		goto skip_copy;
1144 	}
1145 
1146 	behind_bio->bi_write_hint = bio->bi_write_hint;
1147 
1148 	while (i < vcnt && size) {
1149 		struct page *page;
1150 		int len = min_t(int, PAGE_SIZE, size);
1151 
1152 		page = alloc_page(GFP_NOIO);
1153 		if (unlikely(!page))
1154 			goto free_pages;
1155 
1156 		bio_add_page(behind_bio, page, len, 0);
1157 
1158 		size -= len;
1159 		i++;
1160 	}
1161 
1162 	bio_copy_data(behind_bio, bio);
1163 skip_copy:
1164 	r1_bio->behind_master_bio = behind_bio;
1165 	set_bit(R1BIO_BehindIO, &r1_bio->state);
1166 
1167 	return;
1168 
1169 free_pages:
1170 	pr_debug("%dB behind alloc failed, doing sync I/O\n",
1171 		 bio->bi_iter.bi_size);
1172 	bio_free_pages(behind_bio);
1173 	bio_put(behind_bio);
1174 }
1175 
1176 struct raid1_plug_cb {
1177 	struct blk_plug_cb	cb;
1178 	struct bio_list		pending;
1179 	int			pending_cnt;
1180 };
1181 
1182 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1183 {
1184 	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1185 						  cb);
1186 	struct mddev *mddev = plug->cb.data;
1187 	struct r1conf *conf = mddev->private;
1188 	struct bio *bio;
1189 
1190 	if (from_schedule || current->bio_list) {
1191 		spin_lock_irq(&conf->device_lock);
1192 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1193 		conf->pending_count += plug->pending_cnt;
1194 		spin_unlock_irq(&conf->device_lock);
1195 		wake_up(&conf->wait_barrier);
1196 		md_wakeup_thread(mddev->thread);
1197 		kfree(plug);
1198 		return;
1199 	}
1200 
1201 	/* we aren't scheduling, so we can do the write-out directly. */
1202 	bio = bio_list_get(&plug->pending);
1203 	flush_bio_list(conf, bio);
1204 	kfree(plug);
1205 }
1206 
1207 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1208 {
1209 	r1_bio->master_bio = bio;
1210 	r1_bio->sectors = bio_sectors(bio);
1211 	r1_bio->state = 0;
1212 	r1_bio->mddev = mddev;
1213 	r1_bio->sector = bio->bi_iter.bi_sector;
1214 }
1215 
1216 static inline struct r1bio *
1217 alloc_r1bio(struct mddev *mddev, struct bio *bio)
1218 {
1219 	struct r1conf *conf = mddev->private;
1220 	struct r1bio *r1_bio;
1221 
1222 	r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO);
1223 	/* Ensure no bio records IO_BLOCKED */
1224 	memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1225 	init_r1bio(r1_bio, mddev, bio);
1226 	return r1_bio;
1227 }
1228 
1229 static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1230 			       int max_read_sectors, struct r1bio *r1_bio)
1231 {
1232 	struct r1conf *conf = mddev->private;
1233 	struct raid1_info *mirror;
1234 	struct bio *read_bio;
1235 	struct bitmap *bitmap = mddev->bitmap;
1236 	const int op = bio_op(bio);
1237 	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1238 	int max_sectors;
1239 	int rdisk;
1240 	bool print_msg = !!r1_bio;
1241 	char b[BDEVNAME_SIZE];
1242 
1243 	/*
1244 	 * If r1_bio is set, we are blocking the raid1d thread
1245 	 * so there is a tiny risk of deadlock.  So ask for
1246 	 * emergency memory if needed.
1247 	 */
1248 	gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1249 
1250 	if (print_msg) {
1251 		/* Need to get the block device name carefully */
1252 		struct md_rdev *rdev;
1253 		rcu_read_lock();
1254 		rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1255 		if (rdev)
1256 			bdevname(rdev->bdev, b);
1257 		else
1258 			strcpy(b, "???");
1259 		rcu_read_unlock();
1260 	}
1261 
1262 	/*
1263 	 * Still need barrier for READ in case that whole
1264 	 * array is frozen.
1265 	 */
1266 	wait_read_barrier(conf, bio->bi_iter.bi_sector);
1267 
1268 	if (!r1_bio)
1269 		r1_bio = alloc_r1bio(mddev, bio);
1270 	else
1271 		init_r1bio(r1_bio, mddev, bio);
1272 	r1_bio->sectors = max_read_sectors;
1273 
1274 	/*
1275 	 * make_request() can abort the operation when read-ahead is being
1276 	 * used and no empty request is available.
1277 	 */
1278 	rdisk = read_balance(conf, r1_bio, &max_sectors);
1279 
1280 	if (rdisk < 0) {
1281 		/* couldn't find anywhere to read from */
1282 		if (print_msg) {
1283 			pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1284 					    mdname(mddev),
1285 					    b,
1286 					    (unsigned long long)r1_bio->sector);
1287 		}
1288 		raid_end_bio_io(r1_bio);
1289 		return;
1290 	}
1291 	mirror = conf->mirrors + rdisk;
1292 
1293 	if (print_msg)
1294 		pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
1295 				    mdname(mddev),
1296 				    (unsigned long long)r1_bio->sector,
1297 				    bdevname(mirror->rdev->bdev, b));
1298 
1299 	if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1300 	    bitmap) {
1301 		/*
1302 		 * Reading from a write-mostly device must take care not to
1303 		 * over-take any writes that are 'behind'
1304 		 */
1305 		raid1_log(mddev, "wait behind writes");
1306 		wait_event(bitmap->behind_wait,
1307 			   atomic_read(&bitmap->behind_writes) == 0);
1308 	}
1309 
1310 	if (max_sectors < bio_sectors(bio)) {
1311 		struct bio *split = bio_split(bio, max_sectors,
1312 					      gfp, &conf->bio_split);
1313 		bio_chain(split, bio);
1314 		generic_make_request(bio);
1315 		bio = split;
1316 		r1_bio->master_bio = bio;
1317 		r1_bio->sectors = max_sectors;
1318 	}
1319 
1320 	r1_bio->read_disk = rdisk;
1321 
1322 	read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
1323 
1324 	r1_bio->bios[rdisk] = read_bio;
1325 
1326 	read_bio->bi_iter.bi_sector = r1_bio->sector +
1327 		mirror->rdev->data_offset;
1328 	bio_set_dev(read_bio, mirror->rdev->bdev);
1329 	read_bio->bi_end_io = raid1_end_read_request;
1330 	bio_set_op_attrs(read_bio, op, do_sync);
1331 	if (test_bit(FailFast, &mirror->rdev->flags) &&
1332 	    test_bit(R1BIO_FailFast, &r1_bio->state))
1333 	        read_bio->bi_opf |= MD_FAILFAST;
1334 	read_bio->bi_private = r1_bio;
1335 
1336 	if (mddev->gendisk)
1337 	        trace_block_bio_remap(read_bio->bi_disk->queue, read_bio,
1338 				disk_devt(mddev->gendisk), r1_bio->sector);
1339 
1340 	generic_make_request(read_bio);
1341 }
1342 
1343 static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1344 				int max_write_sectors)
1345 {
1346 	struct r1conf *conf = mddev->private;
1347 	struct r1bio *r1_bio;
1348 	int i, disks;
1349 	struct bitmap *bitmap = mddev->bitmap;
1350 	unsigned long flags;
1351 	struct md_rdev *blocked_rdev;
1352 	struct blk_plug_cb *cb;
1353 	struct raid1_plug_cb *plug = NULL;
1354 	int first_clone;
1355 	int max_sectors;
1356 
1357 	if (mddev_is_clustered(mddev) &&
1358 	     md_cluster_ops->area_resyncing(mddev, WRITE,
1359 		     bio->bi_iter.bi_sector, bio_end_sector(bio))) {
1360 
1361 		DEFINE_WAIT(w);
1362 		for (;;) {
1363 			prepare_to_wait(&conf->wait_barrier,
1364 					&w, TASK_IDLE);
1365 			if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1366 							bio->bi_iter.bi_sector,
1367 							bio_end_sector(bio)))
1368 				break;
1369 			schedule();
1370 		}
1371 		finish_wait(&conf->wait_barrier, &w);
1372 	}
1373 
1374 	/*
1375 	 * Register the new request and wait if the reconstruction
1376 	 * thread has put up a bar for new requests.
1377 	 * Continue immediately if no resync is active currently.
1378 	 */
1379 	wait_barrier(conf, bio->bi_iter.bi_sector);
1380 
1381 	r1_bio = alloc_r1bio(mddev, bio);
1382 	r1_bio->sectors = max_write_sectors;
1383 
1384 	if (conf->pending_count >= max_queued_requests) {
1385 		md_wakeup_thread(mddev->thread);
1386 		raid1_log(mddev, "wait queued");
1387 		wait_event(conf->wait_barrier,
1388 			   conf->pending_count < max_queued_requests);
1389 	}
1390 	/* first select target devices under rcu_lock and
1391 	 * inc refcount on their rdev.  Record them by setting
1392 	 * bios[x] to bio
1393 	 * If there are known/acknowledged bad blocks on any device on
1394 	 * which we have seen a write error, we want to avoid writing those
1395 	 * blocks.
1396 	 * This potentially requires several writes to write around
1397 	 * the bad blocks.  Each set of writes gets it's own r1bio
1398 	 * with a set of bios attached.
1399 	 */
1400 
1401 	disks = conf->raid_disks * 2;
1402  retry_write:
1403 	blocked_rdev = NULL;
1404 	rcu_read_lock();
1405 	max_sectors = r1_bio->sectors;
1406 	for (i = 0;  i < disks; i++) {
1407 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1408 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1409 			atomic_inc(&rdev->nr_pending);
1410 			blocked_rdev = rdev;
1411 			break;
1412 		}
1413 		r1_bio->bios[i] = NULL;
1414 		if (!rdev || test_bit(Faulty, &rdev->flags)) {
1415 			if (i < conf->raid_disks)
1416 				set_bit(R1BIO_Degraded, &r1_bio->state);
1417 			continue;
1418 		}
1419 
1420 		atomic_inc(&rdev->nr_pending);
1421 		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1422 			sector_t first_bad;
1423 			int bad_sectors;
1424 			int is_bad;
1425 
1426 			is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1427 					     &first_bad, &bad_sectors);
1428 			if (is_bad < 0) {
1429 				/* mustn't write here until the bad block is
1430 				 * acknowledged*/
1431 				set_bit(BlockedBadBlocks, &rdev->flags);
1432 				blocked_rdev = rdev;
1433 				break;
1434 			}
1435 			if (is_bad && first_bad <= r1_bio->sector) {
1436 				/* Cannot write here at all */
1437 				bad_sectors -= (r1_bio->sector - first_bad);
1438 				if (bad_sectors < max_sectors)
1439 					/* mustn't write more than bad_sectors
1440 					 * to other devices yet
1441 					 */
1442 					max_sectors = bad_sectors;
1443 				rdev_dec_pending(rdev, mddev);
1444 				/* We don't set R1BIO_Degraded as that
1445 				 * only applies if the disk is
1446 				 * missing, so it might be re-added,
1447 				 * and we want to know to recover this
1448 				 * chunk.
1449 				 * In this case the device is here,
1450 				 * and the fact that this chunk is not
1451 				 * in-sync is recorded in the bad
1452 				 * block log
1453 				 */
1454 				continue;
1455 			}
1456 			if (is_bad) {
1457 				int good_sectors = first_bad - r1_bio->sector;
1458 				if (good_sectors < max_sectors)
1459 					max_sectors = good_sectors;
1460 			}
1461 		}
1462 		r1_bio->bios[i] = bio;
1463 	}
1464 	rcu_read_unlock();
1465 
1466 	if (unlikely(blocked_rdev)) {
1467 		/* Wait for this device to become unblocked */
1468 		int j;
1469 
1470 		for (j = 0; j < i; j++)
1471 			if (r1_bio->bios[j])
1472 				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1473 		r1_bio->state = 0;
1474 		allow_barrier(conf, bio->bi_iter.bi_sector);
1475 		raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1476 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1477 		wait_barrier(conf, bio->bi_iter.bi_sector);
1478 		goto retry_write;
1479 	}
1480 
1481 	if (max_sectors < bio_sectors(bio)) {
1482 		struct bio *split = bio_split(bio, max_sectors,
1483 					      GFP_NOIO, &conf->bio_split);
1484 		bio_chain(split, bio);
1485 		generic_make_request(bio);
1486 		bio = split;
1487 		r1_bio->master_bio = bio;
1488 		r1_bio->sectors = max_sectors;
1489 	}
1490 
1491 	atomic_set(&r1_bio->remaining, 1);
1492 	atomic_set(&r1_bio->behind_remaining, 0);
1493 
1494 	first_clone = 1;
1495 
1496 	for (i = 0; i < disks; i++) {
1497 		struct bio *mbio = NULL;
1498 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1499 		if (!r1_bio->bios[i])
1500 			continue;
1501 
1502 		if (first_clone) {
1503 			/* do behind I/O ?
1504 			 * Not if there are too many, or cannot
1505 			 * allocate memory, or a reader on WriteMostly
1506 			 * is waiting for behind writes to flush */
1507 			if (bitmap &&
1508 			    (atomic_read(&bitmap->behind_writes)
1509 			     < mddev->bitmap_info.max_write_behind) &&
1510 			    !waitqueue_active(&bitmap->behind_wait)) {
1511 				alloc_behind_master_bio(r1_bio, bio);
1512 			}
1513 
1514 			md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors,
1515 					     test_bit(R1BIO_BehindIO, &r1_bio->state));
1516 			first_clone = 0;
1517 		}
1518 
1519 		if (r1_bio->behind_master_bio)
1520 			mbio = bio_clone_fast(r1_bio->behind_master_bio,
1521 					      GFP_NOIO, &mddev->bio_set);
1522 		else
1523 			mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1524 
1525 		if (r1_bio->behind_master_bio) {
1526 			if (test_bit(CollisionCheck, &rdev->flags))
1527 				wait_for_serialization(rdev, r1_bio);
1528 			if (test_bit(WriteMostly, &rdev->flags))
1529 				atomic_inc(&r1_bio->behind_remaining);
1530 		} else if (mddev->serialize_policy)
1531 			wait_for_serialization(rdev, r1_bio);
1532 
1533 		r1_bio->bios[i] = mbio;
1534 
1535 		mbio->bi_iter.bi_sector	= (r1_bio->sector +
1536 				   conf->mirrors[i].rdev->data_offset);
1537 		bio_set_dev(mbio, conf->mirrors[i].rdev->bdev);
1538 		mbio->bi_end_io	= raid1_end_write_request;
1539 		mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1540 		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1541 		    !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1542 		    conf->raid_disks - mddev->degraded > 1)
1543 			mbio->bi_opf |= MD_FAILFAST;
1544 		mbio->bi_private = r1_bio;
1545 
1546 		atomic_inc(&r1_bio->remaining);
1547 
1548 		if (mddev->gendisk)
1549 			trace_block_bio_remap(mbio->bi_disk->queue,
1550 					      mbio, disk_devt(mddev->gendisk),
1551 					      r1_bio->sector);
1552 		/* flush_pending_writes() needs access to the rdev so...*/
1553 		mbio->bi_disk = (void *)conf->mirrors[i].rdev;
1554 
1555 		cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1556 		if (cb)
1557 			plug = container_of(cb, struct raid1_plug_cb, cb);
1558 		else
1559 			plug = NULL;
1560 		if (plug) {
1561 			bio_list_add(&plug->pending, mbio);
1562 			plug->pending_cnt++;
1563 		} else {
1564 			spin_lock_irqsave(&conf->device_lock, flags);
1565 			bio_list_add(&conf->pending_bio_list, mbio);
1566 			conf->pending_count++;
1567 			spin_unlock_irqrestore(&conf->device_lock, flags);
1568 			md_wakeup_thread(mddev->thread);
1569 		}
1570 	}
1571 
1572 	r1_bio_write_done(r1_bio);
1573 
1574 	/* In case raid1d snuck in to freeze_array */
1575 	wake_up(&conf->wait_barrier);
1576 }
1577 
1578 static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1579 {
1580 	sector_t sectors;
1581 
1582 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1583 	    && md_flush_request(mddev, bio))
1584 		return true;
1585 
1586 	/*
1587 	 * There is a limit to the maximum size, but
1588 	 * the read/write handler might find a lower limit
1589 	 * due to bad blocks.  To avoid multiple splits,
1590 	 * we pass the maximum number of sectors down
1591 	 * and let the lower level perform the split.
1592 	 */
1593 	sectors = align_to_barrier_unit_end(
1594 		bio->bi_iter.bi_sector, bio_sectors(bio));
1595 
1596 	if (bio_data_dir(bio) == READ)
1597 		raid1_read_request(mddev, bio, sectors, NULL);
1598 	else {
1599 		if (!md_write_start(mddev,bio))
1600 			return false;
1601 		raid1_write_request(mddev, bio, sectors);
1602 	}
1603 	return true;
1604 }
1605 
1606 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1607 {
1608 	struct r1conf *conf = mddev->private;
1609 	int i;
1610 
1611 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1612 		   conf->raid_disks - mddev->degraded);
1613 	rcu_read_lock();
1614 	for (i = 0; i < conf->raid_disks; i++) {
1615 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1616 		seq_printf(seq, "%s",
1617 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1618 	}
1619 	rcu_read_unlock();
1620 	seq_printf(seq, "]");
1621 }
1622 
1623 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1624 {
1625 	char b[BDEVNAME_SIZE];
1626 	struct r1conf *conf = mddev->private;
1627 	unsigned long flags;
1628 
1629 	/*
1630 	 * If it is not operational, then we have already marked it as dead
1631 	 * else if it is the last working disks with "fail_last_dev == false",
1632 	 * ignore the error, let the next level up know.
1633 	 * else mark the drive as failed
1634 	 */
1635 	spin_lock_irqsave(&conf->device_lock, flags);
1636 	if (test_bit(In_sync, &rdev->flags) && !mddev->fail_last_dev
1637 	    && (conf->raid_disks - mddev->degraded) == 1) {
1638 		/*
1639 		 * Don't fail the drive, act as though we were just a
1640 		 * normal single drive.
1641 		 * However don't try a recovery from this drive as
1642 		 * it is very likely to fail.
1643 		 */
1644 		conf->recovery_disabled = mddev->recovery_disabled;
1645 		spin_unlock_irqrestore(&conf->device_lock, flags);
1646 		return;
1647 	}
1648 	set_bit(Blocked, &rdev->flags);
1649 	if (test_and_clear_bit(In_sync, &rdev->flags))
1650 		mddev->degraded++;
1651 	set_bit(Faulty, &rdev->flags);
1652 	spin_unlock_irqrestore(&conf->device_lock, flags);
1653 	/*
1654 	 * if recovery is running, make sure it aborts.
1655 	 */
1656 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1657 	set_mask_bits(&mddev->sb_flags, 0,
1658 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1659 	pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1660 		"md/raid1:%s: Operation continuing on %d devices.\n",
1661 		mdname(mddev), bdevname(rdev->bdev, b),
1662 		mdname(mddev), conf->raid_disks - mddev->degraded);
1663 }
1664 
1665 static void print_conf(struct r1conf *conf)
1666 {
1667 	int i;
1668 
1669 	pr_debug("RAID1 conf printout:\n");
1670 	if (!conf) {
1671 		pr_debug("(!conf)\n");
1672 		return;
1673 	}
1674 	pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1675 		 conf->raid_disks);
1676 
1677 	rcu_read_lock();
1678 	for (i = 0; i < conf->raid_disks; i++) {
1679 		char b[BDEVNAME_SIZE];
1680 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1681 		if (rdev)
1682 			pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1683 				 i, !test_bit(In_sync, &rdev->flags),
1684 				 !test_bit(Faulty, &rdev->flags),
1685 				 bdevname(rdev->bdev,b));
1686 	}
1687 	rcu_read_unlock();
1688 }
1689 
1690 static void close_sync(struct r1conf *conf)
1691 {
1692 	int idx;
1693 
1694 	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1695 		_wait_barrier(conf, idx);
1696 		_allow_barrier(conf, idx);
1697 	}
1698 
1699 	mempool_exit(&conf->r1buf_pool);
1700 }
1701 
1702 static int raid1_spare_active(struct mddev *mddev)
1703 {
1704 	int i;
1705 	struct r1conf *conf = mddev->private;
1706 	int count = 0;
1707 	unsigned long flags;
1708 
1709 	/*
1710 	 * Find all failed disks within the RAID1 configuration
1711 	 * and mark them readable.
1712 	 * Called under mddev lock, so rcu protection not needed.
1713 	 * device_lock used to avoid races with raid1_end_read_request
1714 	 * which expects 'In_sync' flags and ->degraded to be consistent.
1715 	 */
1716 	spin_lock_irqsave(&conf->device_lock, flags);
1717 	for (i = 0; i < conf->raid_disks; i++) {
1718 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1719 		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1720 		if (repl
1721 		    && !test_bit(Candidate, &repl->flags)
1722 		    && repl->recovery_offset == MaxSector
1723 		    && !test_bit(Faulty, &repl->flags)
1724 		    && !test_and_set_bit(In_sync, &repl->flags)) {
1725 			/* replacement has just become active */
1726 			if (!rdev ||
1727 			    !test_and_clear_bit(In_sync, &rdev->flags))
1728 				count++;
1729 			if (rdev) {
1730 				/* Replaced device not technically
1731 				 * faulty, but we need to be sure
1732 				 * it gets removed and never re-added
1733 				 */
1734 				set_bit(Faulty, &rdev->flags);
1735 				sysfs_notify_dirent_safe(
1736 					rdev->sysfs_state);
1737 			}
1738 		}
1739 		if (rdev
1740 		    && rdev->recovery_offset == MaxSector
1741 		    && !test_bit(Faulty, &rdev->flags)
1742 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1743 			count++;
1744 			sysfs_notify_dirent_safe(rdev->sysfs_state);
1745 		}
1746 	}
1747 	mddev->degraded -= count;
1748 	spin_unlock_irqrestore(&conf->device_lock, flags);
1749 
1750 	print_conf(conf);
1751 	return count;
1752 }
1753 
1754 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1755 {
1756 	struct r1conf *conf = mddev->private;
1757 	int err = -EEXIST;
1758 	int mirror = 0;
1759 	struct raid1_info *p;
1760 	int first = 0;
1761 	int last = conf->raid_disks - 1;
1762 
1763 	if (mddev->recovery_disabled == conf->recovery_disabled)
1764 		return -EBUSY;
1765 
1766 	if (md_integrity_add_rdev(rdev, mddev))
1767 		return -ENXIO;
1768 
1769 	if (rdev->raid_disk >= 0)
1770 		first = last = rdev->raid_disk;
1771 
1772 	/*
1773 	 * find the disk ... but prefer rdev->saved_raid_disk
1774 	 * if possible.
1775 	 */
1776 	if (rdev->saved_raid_disk >= 0 &&
1777 	    rdev->saved_raid_disk >= first &&
1778 	    rdev->saved_raid_disk < conf->raid_disks &&
1779 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1780 		first = last = rdev->saved_raid_disk;
1781 
1782 	for (mirror = first; mirror <= last; mirror++) {
1783 		p = conf->mirrors + mirror;
1784 		if (!p->rdev) {
1785 			if (mddev->gendisk)
1786 				disk_stack_limits(mddev->gendisk, rdev->bdev,
1787 						  rdev->data_offset << 9);
1788 
1789 			p->head_position = 0;
1790 			rdev->raid_disk = mirror;
1791 			err = 0;
1792 			/* As all devices are equivalent, we don't need a full recovery
1793 			 * if this was recently any drive of the array
1794 			 */
1795 			if (rdev->saved_raid_disk < 0)
1796 				conf->fullsync = 1;
1797 			rcu_assign_pointer(p->rdev, rdev);
1798 			break;
1799 		}
1800 		if (test_bit(WantReplacement, &p->rdev->flags) &&
1801 		    p[conf->raid_disks].rdev == NULL) {
1802 			/* Add this device as a replacement */
1803 			clear_bit(In_sync, &rdev->flags);
1804 			set_bit(Replacement, &rdev->flags);
1805 			rdev->raid_disk = mirror;
1806 			err = 0;
1807 			conf->fullsync = 1;
1808 			rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1809 			break;
1810 		}
1811 	}
1812 	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1813 		blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
1814 	print_conf(conf);
1815 	return err;
1816 }
1817 
1818 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1819 {
1820 	struct r1conf *conf = mddev->private;
1821 	int err = 0;
1822 	int number = rdev->raid_disk;
1823 	struct raid1_info *p = conf->mirrors + number;
1824 
1825 	if (rdev != p->rdev)
1826 		p = conf->mirrors + conf->raid_disks + number;
1827 
1828 	print_conf(conf);
1829 	if (rdev == p->rdev) {
1830 		if (test_bit(In_sync, &rdev->flags) ||
1831 		    atomic_read(&rdev->nr_pending)) {
1832 			err = -EBUSY;
1833 			goto abort;
1834 		}
1835 		/* Only remove non-faulty devices if recovery
1836 		 * is not possible.
1837 		 */
1838 		if (!test_bit(Faulty, &rdev->flags) &&
1839 		    mddev->recovery_disabled != conf->recovery_disabled &&
1840 		    mddev->degraded < conf->raid_disks) {
1841 			err = -EBUSY;
1842 			goto abort;
1843 		}
1844 		p->rdev = NULL;
1845 		if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1846 			synchronize_rcu();
1847 			if (atomic_read(&rdev->nr_pending)) {
1848 				/* lost the race, try later */
1849 				err = -EBUSY;
1850 				p->rdev = rdev;
1851 				goto abort;
1852 			}
1853 		}
1854 		if (conf->mirrors[conf->raid_disks + number].rdev) {
1855 			/* We just removed a device that is being replaced.
1856 			 * Move down the replacement.  We drain all IO before
1857 			 * doing this to avoid confusion.
1858 			 */
1859 			struct md_rdev *repl =
1860 				conf->mirrors[conf->raid_disks + number].rdev;
1861 			freeze_array(conf, 0);
1862 			if (atomic_read(&repl->nr_pending)) {
1863 				/* It means that some queued IO of retry_list
1864 				 * hold repl. Thus, we cannot set replacement
1865 				 * as NULL, avoiding rdev NULL pointer
1866 				 * dereference in sync_request_write and
1867 				 * handle_write_finished.
1868 				 */
1869 				err = -EBUSY;
1870 				unfreeze_array(conf);
1871 				goto abort;
1872 			}
1873 			clear_bit(Replacement, &repl->flags);
1874 			p->rdev = repl;
1875 			conf->mirrors[conf->raid_disks + number].rdev = NULL;
1876 			unfreeze_array(conf);
1877 		}
1878 
1879 		clear_bit(WantReplacement, &rdev->flags);
1880 		err = md_integrity_register(mddev);
1881 	}
1882 abort:
1883 
1884 	print_conf(conf);
1885 	return err;
1886 }
1887 
1888 static void end_sync_read(struct bio *bio)
1889 {
1890 	struct r1bio *r1_bio = get_resync_r1bio(bio);
1891 
1892 	update_head_pos(r1_bio->read_disk, r1_bio);
1893 
1894 	/*
1895 	 * we have read a block, now it needs to be re-written,
1896 	 * or re-read if the read failed.
1897 	 * We don't do much here, just schedule handling by raid1d
1898 	 */
1899 	if (!bio->bi_status)
1900 		set_bit(R1BIO_Uptodate, &r1_bio->state);
1901 
1902 	if (atomic_dec_and_test(&r1_bio->remaining))
1903 		reschedule_retry(r1_bio);
1904 }
1905 
1906 static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
1907 {
1908 	sector_t sync_blocks = 0;
1909 	sector_t s = r1_bio->sector;
1910 	long sectors_to_go = r1_bio->sectors;
1911 
1912 	/* make sure these bits don't get cleared. */
1913 	do {
1914 		md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1);
1915 		s += sync_blocks;
1916 		sectors_to_go -= sync_blocks;
1917 	} while (sectors_to_go > 0);
1918 }
1919 
1920 static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate)
1921 {
1922 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1923 		struct mddev *mddev = r1_bio->mddev;
1924 		int s = r1_bio->sectors;
1925 
1926 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1927 		    test_bit(R1BIO_WriteError, &r1_bio->state))
1928 			reschedule_retry(r1_bio);
1929 		else {
1930 			put_buf(r1_bio);
1931 			md_done_sync(mddev, s, uptodate);
1932 		}
1933 	}
1934 }
1935 
1936 static void end_sync_write(struct bio *bio)
1937 {
1938 	int uptodate = !bio->bi_status;
1939 	struct r1bio *r1_bio = get_resync_r1bio(bio);
1940 	struct mddev *mddev = r1_bio->mddev;
1941 	struct r1conf *conf = mddev->private;
1942 	sector_t first_bad;
1943 	int bad_sectors;
1944 	struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1945 
1946 	if (!uptodate) {
1947 		abort_sync_write(mddev, r1_bio);
1948 		set_bit(WriteErrorSeen, &rdev->flags);
1949 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
1950 			set_bit(MD_RECOVERY_NEEDED, &
1951 				mddev->recovery);
1952 		set_bit(R1BIO_WriteError, &r1_bio->state);
1953 	} else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1954 			       &first_bad, &bad_sectors) &&
1955 		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1956 				r1_bio->sector,
1957 				r1_bio->sectors,
1958 				&first_bad, &bad_sectors)
1959 		)
1960 		set_bit(R1BIO_MadeGood, &r1_bio->state);
1961 
1962 	put_sync_write_buf(r1_bio, uptodate);
1963 }
1964 
1965 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1966 			    int sectors, struct page *page, int rw)
1967 {
1968 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1969 		/* success */
1970 		return 1;
1971 	if (rw == WRITE) {
1972 		set_bit(WriteErrorSeen, &rdev->flags);
1973 		if (!test_and_set_bit(WantReplacement,
1974 				      &rdev->flags))
1975 			set_bit(MD_RECOVERY_NEEDED, &
1976 				rdev->mddev->recovery);
1977 	}
1978 	/* need to record an error - either for the block or the device */
1979 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1980 		md_error(rdev->mddev, rdev);
1981 	return 0;
1982 }
1983 
1984 static int fix_sync_read_error(struct r1bio *r1_bio)
1985 {
1986 	/* Try some synchronous reads of other devices to get
1987 	 * good data, much like with normal read errors.  Only
1988 	 * read into the pages we already have so we don't
1989 	 * need to re-issue the read request.
1990 	 * We don't need to freeze the array, because being in an
1991 	 * active sync request, there is no normal IO, and
1992 	 * no overlapping syncs.
1993 	 * We don't need to check is_badblock() again as we
1994 	 * made sure that anything with a bad block in range
1995 	 * will have bi_end_io clear.
1996 	 */
1997 	struct mddev *mddev = r1_bio->mddev;
1998 	struct r1conf *conf = mddev->private;
1999 	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
2000 	struct page **pages = get_resync_pages(bio)->pages;
2001 	sector_t sect = r1_bio->sector;
2002 	int sectors = r1_bio->sectors;
2003 	int idx = 0;
2004 	struct md_rdev *rdev;
2005 
2006 	rdev = conf->mirrors[r1_bio->read_disk].rdev;
2007 	if (test_bit(FailFast, &rdev->flags)) {
2008 		/* Don't try recovering from here - just fail it
2009 		 * ... unless it is the last working device of course */
2010 		md_error(mddev, rdev);
2011 		if (test_bit(Faulty, &rdev->flags))
2012 			/* Don't try to read from here, but make sure
2013 			 * put_buf does it's thing
2014 			 */
2015 			bio->bi_end_io = end_sync_write;
2016 	}
2017 
2018 	while(sectors) {
2019 		int s = sectors;
2020 		int d = r1_bio->read_disk;
2021 		int success = 0;
2022 		int start;
2023 
2024 		if (s > (PAGE_SIZE>>9))
2025 			s = PAGE_SIZE >> 9;
2026 		do {
2027 			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
2028 				/* No rcu protection needed here devices
2029 				 * can only be removed when no resync is
2030 				 * active, and resync is currently active
2031 				 */
2032 				rdev = conf->mirrors[d].rdev;
2033 				if (sync_page_io(rdev, sect, s<<9,
2034 						 pages[idx],
2035 						 REQ_OP_READ, 0, false)) {
2036 					success = 1;
2037 					break;
2038 				}
2039 			}
2040 			d++;
2041 			if (d == conf->raid_disks * 2)
2042 				d = 0;
2043 		} while (!success && d != r1_bio->read_disk);
2044 
2045 		if (!success) {
2046 			char b[BDEVNAME_SIZE];
2047 			int abort = 0;
2048 			/* Cannot read from anywhere, this block is lost.
2049 			 * Record a bad block on each device.  If that doesn't
2050 			 * work just disable and interrupt the recovery.
2051 			 * Don't fail devices as that won't really help.
2052 			 */
2053 			pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2054 					    mdname(mddev), bio_devname(bio, b),
2055 					    (unsigned long long)r1_bio->sector);
2056 			for (d = 0; d < conf->raid_disks * 2; d++) {
2057 				rdev = conf->mirrors[d].rdev;
2058 				if (!rdev || test_bit(Faulty, &rdev->flags))
2059 					continue;
2060 				if (!rdev_set_badblocks(rdev, sect, s, 0))
2061 					abort = 1;
2062 			}
2063 			if (abort) {
2064 				conf->recovery_disabled =
2065 					mddev->recovery_disabled;
2066 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2067 				md_done_sync(mddev, r1_bio->sectors, 0);
2068 				put_buf(r1_bio);
2069 				return 0;
2070 			}
2071 			/* Try next page */
2072 			sectors -= s;
2073 			sect += s;
2074 			idx++;
2075 			continue;
2076 		}
2077 
2078 		start = d;
2079 		/* write it back and re-read */
2080 		while (d != r1_bio->read_disk) {
2081 			if (d == 0)
2082 				d = conf->raid_disks * 2;
2083 			d--;
2084 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2085 				continue;
2086 			rdev = conf->mirrors[d].rdev;
2087 			if (r1_sync_page_io(rdev, sect, s,
2088 					    pages[idx],
2089 					    WRITE) == 0) {
2090 				r1_bio->bios[d]->bi_end_io = NULL;
2091 				rdev_dec_pending(rdev, mddev);
2092 			}
2093 		}
2094 		d = start;
2095 		while (d != r1_bio->read_disk) {
2096 			if (d == 0)
2097 				d = conf->raid_disks * 2;
2098 			d--;
2099 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2100 				continue;
2101 			rdev = conf->mirrors[d].rdev;
2102 			if (r1_sync_page_io(rdev, sect, s,
2103 					    pages[idx],
2104 					    READ) != 0)
2105 				atomic_add(s, &rdev->corrected_errors);
2106 		}
2107 		sectors -= s;
2108 		sect += s;
2109 		idx ++;
2110 	}
2111 	set_bit(R1BIO_Uptodate, &r1_bio->state);
2112 	bio->bi_status = 0;
2113 	return 1;
2114 }
2115 
2116 static void process_checks(struct r1bio *r1_bio)
2117 {
2118 	/* We have read all readable devices.  If we haven't
2119 	 * got the block, then there is no hope left.
2120 	 * If we have, then we want to do a comparison
2121 	 * and skip the write if everything is the same.
2122 	 * If any blocks failed to read, then we need to
2123 	 * attempt an over-write
2124 	 */
2125 	struct mddev *mddev = r1_bio->mddev;
2126 	struct r1conf *conf = mddev->private;
2127 	int primary;
2128 	int i;
2129 	int vcnt;
2130 
2131 	/* Fix variable parts of all bios */
2132 	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2133 	for (i = 0; i < conf->raid_disks * 2; i++) {
2134 		blk_status_t status;
2135 		struct bio *b = r1_bio->bios[i];
2136 		struct resync_pages *rp = get_resync_pages(b);
2137 		if (b->bi_end_io != end_sync_read)
2138 			continue;
2139 		/* fixup the bio for reuse, but preserve errno */
2140 		status = b->bi_status;
2141 		bio_reset(b);
2142 		b->bi_status = status;
2143 		b->bi_iter.bi_sector = r1_bio->sector +
2144 			conf->mirrors[i].rdev->data_offset;
2145 		bio_set_dev(b, conf->mirrors[i].rdev->bdev);
2146 		b->bi_end_io = end_sync_read;
2147 		rp->raid_bio = r1_bio;
2148 		b->bi_private = rp;
2149 
2150 		/* initialize bvec table again */
2151 		md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2152 	}
2153 	for (primary = 0; primary < conf->raid_disks * 2; primary++)
2154 		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2155 		    !r1_bio->bios[primary]->bi_status) {
2156 			r1_bio->bios[primary]->bi_end_io = NULL;
2157 			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2158 			break;
2159 		}
2160 	r1_bio->read_disk = primary;
2161 	for (i = 0; i < conf->raid_disks * 2; i++) {
2162 		int j = 0;
2163 		struct bio *pbio = r1_bio->bios[primary];
2164 		struct bio *sbio = r1_bio->bios[i];
2165 		blk_status_t status = sbio->bi_status;
2166 		struct page **ppages = get_resync_pages(pbio)->pages;
2167 		struct page **spages = get_resync_pages(sbio)->pages;
2168 		struct bio_vec *bi;
2169 		int page_len[RESYNC_PAGES] = { 0 };
2170 		struct bvec_iter_all iter_all;
2171 
2172 		if (sbio->bi_end_io != end_sync_read)
2173 			continue;
2174 		/* Now we can 'fixup' the error value */
2175 		sbio->bi_status = 0;
2176 
2177 		bio_for_each_segment_all(bi, sbio, iter_all)
2178 			page_len[j++] = bi->bv_len;
2179 
2180 		if (!status) {
2181 			for (j = vcnt; j-- ; ) {
2182 				if (memcmp(page_address(ppages[j]),
2183 					   page_address(spages[j]),
2184 					   page_len[j]))
2185 					break;
2186 			}
2187 		} else
2188 			j = 0;
2189 		if (j >= 0)
2190 			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2191 		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2192 			      && !status)) {
2193 			/* No need to write to this device. */
2194 			sbio->bi_end_io = NULL;
2195 			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2196 			continue;
2197 		}
2198 
2199 		bio_copy_data(sbio, pbio);
2200 	}
2201 }
2202 
2203 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2204 {
2205 	struct r1conf *conf = mddev->private;
2206 	int i;
2207 	int disks = conf->raid_disks * 2;
2208 	struct bio *wbio;
2209 
2210 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2211 		/* ouch - failed to read all of that. */
2212 		if (!fix_sync_read_error(r1_bio))
2213 			return;
2214 
2215 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2216 		process_checks(r1_bio);
2217 
2218 	/*
2219 	 * schedule writes
2220 	 */
2221 	atomic_set(&r1_bio->remaining, 1);
2222 	for (i = 0; i < disks ; i++) {
2223 		wbio = r1_bio->bios[i];
2224 		if (wbio->bi_end_io == NULL ||
2225 		    (wbio->bi_end_io == end_sync_read &&
2226 		     (i == r1_bio->read_disk ||
2227 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2228 			continue;
2229 		if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
2230 			abort_sync_write(mddev, r1_bio);
2231 			continue;
2232 		}
2233 
2234 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2235 		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2236 			wbio->bi_opf |= MD_FAILFAST;
2237 
2238 		wbio->bi_end_io = end_sync_write;
2239 		atomic_inc(&r1_bio->remaining);
2240 		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2241 
2242 		generic_make_request(wbio);
2243 	}
2244 
2245 	put_sync_write_buf(r1_bio, 1);
2246 }
2247 
2248 /*
2249  * This is a kernel thread which:
2250  *
2251  *	1.	Retries failed read operations on working mirrors.
2252  *	2.	Updates the raid superblock when problems encounter.
2253  *	3.	Performs writes following reads for array synchronising.
2254  */
2255 
2256 static void fix_read_error(struct r1conf *conf, int read_disk,
2257 			   sector_t sect, int sectors)
2258 {
2259 	struct mddev *mddev = conf->mddev;
2260 	while(sectors) {
2261 		int s = sectors;
2262 		int d = read_disk;
2263 		int success = 0;
2264 		int start;
2265 		struct md_rdev *rdev;
2266 
2267 		if (s > (PAGE_SIZE>>9))
2268 			s = PAGE_SIZE >> 9;
2269 
2270 		do {
2271 			sector_t first_bad;
2272 			int bad_sectors;
2273 
2274 			rcu_read_lock();
2275 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2276 			if (rdev &&
2277 			    (test_bit(In_sync, &rdev->flags) ||
2278 			     (!test_bit(Faulty, &rdev->flags) &&
2279 			      rdev->recovery_offset >= sect + s)) &&
2280 			    is_badblock(rdev, sect, s,
2281 					&first_bad, &bad_sectors) == 0) {
2282 				atomic_inc(&rdev->nr_pending);
2283 				rcu_read_unlock();
2284 				if (sync_page_io(rdev, sect, s<<9,
2285 					 conf->tmppage, REQ_OP_READ, 0, false))
2286 					success = 1;
2287 				rdev_dec_pending(rdev, mddev);
2288 				if (success)
2289 					break;
2290 			} else
2291 				rcu_read_unlock();
2292 			d++;
2293 			if (d == conf->raid_disks * 2)
2294 				d = 0;
2295 		} while (!success && d != read_disk);
2296 
2297 		if (!success) {
2298 			/* Cannot read from anywhere - mark it bad */
2299 			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2300 			if (!rdev_set_badblocks(rdev, sect, s, 0))
2301 				md_error(mddev, rdev);
2302 			break;
2303 		}
2304 		/* write it back and re-read */
2305 		start = d;
2306 		while (d != read_disk) {
2307 			if (d==0)
2308 				d = conf->raid_disks * 2;
2309 			d--;
2310 			rcu_read_lock();
2311 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2312 			if (rdev &&
2313 			    !test_bit(Faulty, &rdev->flags)) {
2314 				atomic_inc(&rdev->nr_pending);
2315 				rcu_read_unlock();
2316 				r1_sync_page_io(rdev, sect, s,
2317 						conf->tmppage, WRITE);
2318 				rdev_dec_pending(rdev, mddev);
2319 			} else
2320 				rcu_read_unlock();
2321 		}
2322 		d = start;
2323 		while (d != read_disk) {
2324 			char b[BDEVNAME_SIZE];
2325 			if (d==0)
2326 				d = conf->raid_disks * 2;
2327 			d--;
2328 			rcu_read_lock();
2329 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2330 			if (rdev &&
2331 			    !test_bit(Faulty, &rdev->flags)) {
2332 				atomic_inc(&rdev->nr_pending);
2333 				rcu_read_unlock();
2334 				if (r1_sync_page_io(rdev, sect, s,
2335 						    conf->tmppage, READ)) {
2336 					atomic_add(s, &rdev->corrected_errors);
2337 					pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2338 						mdname(mddev), s,
2339 						(unsigned long long)(sect +
2340 								     rdev->data_offset),
2341 						bdevname(rdev->bdev, b));
2342 				}
2343 				rdev_dec_pending(rdev, mddev);
2344 			} else
2345 				rcu_read_unlock();
2346 		}
2347 		sectors -= s;
2348 		sect += s;
2349 	}
2350 }
2351 
2352 static int narrow_write_error(struct r1bio *r1_bio, int i)
2353 {
2354 	struct mddev *mddev = r1_bio->mddev;
2355 	struct r1conf *conf = mddev->private;
2356 	struct md_rdev *rdev = conf->mirrors[i].rdev;
2357 
2358 	/* bio has the data to be written to device 'i' where
2359 	 * we just recently had a write error.
2360 	 * We repeatedly clone the bio and trim down to one block,
2361 	 * then try the write.  Where the write fails we record
2362 	 * a bad block.
2363 	 * It is conceivable that the bio doesn't exactly align with
2364 	 * blocks.  We must handle this somehow.
2365 	 *
2366 	 * We currently own a reference on the rdev.
2367 	 */
2368 
2369 	int block_sectors;
2370 	sector_t sector;
2371 	int sectors;
2372 	int sect_to_write = r1_bio->sectors;
2373 	int ok = 1;
2374 
2375 	if (rdev->badblocks.shift < 0)
2376 		return 0;
2377 
2378 	block_sectors = roundup(1 << rdev->badblocks.shift,
2379 				bdev_logical_block_size(rdev->bdev) >> 9);
2380 	sector = r1_bio->sector;
2381 	sectors = ((sector + block_sectors)
2382 		   & ~(sector_t)(block_sectors - 1))
2383 		- sector;
2384 
2385 	while (sect_to_write) {
2386 		struct bio *wbio;
2387 		if (sectors > sect_to_write)
2388 			sectors = sect_to_write;
2389 		/* Write at 'sector' for 'sectors'*/
2390 
2391 		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2392 			wbio = bio_clone_fast(r1_bio->behind_master_bio,
2393 					      GFP_NOIO,
2394 					      &mddev->bio_set);
2395 		} else {
2396 			wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2397 					      &mddev->bio_set);
2398 		}
2399 
2400 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2401 		wbio->bi_iter.bi_sector = r1_bio->sector;
2402 		wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2403 
2404 		bio_trim(wbio, sector - r1_bio->sector, sectors);
2405 		wbio->bi_iter.bi_sector += rdev->data_offset;
2406 		bio_set_dev(wbio, rdev->bdev);
2407 
2408 		if (submit_bio_wait(wbio) < 0)
2409 			/* failure! */
2410 			ok = rdev_set_badblocks(rdev, sector,
2411 						sectors, 0)
2412 				&& ok;
2413 
2414 		bio_put(wbio);
2415 		sect_to_write -= sectors;
2416 		sector += sectors;
2417 		sectors = block_sectors;
2418 	}
2419 	return ok;
2420 }
2421 
2422 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2423 {
2424 	int m;
2425 	int s = r1_bio->sectors;
2426 	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2427 		struct md_rdev *rdev = conf->mirrors[m].rdev;
2428 		struct bio *bio = r1_bio->bios[m];
2429 		if (bio->bi_end_io == NULL)
2430 			continue;
2431 		if (!bio->bi_status &&
2432 		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2433 			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2434 		}
2435 		if (bio->bi_status &&
2436 		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2437 			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2438 				md_error(conf->mddev, rdev);
2439 		}
2440 	}
2441 	put_buf(r1_bio);
2442 	md_done_sync(conf->mddev, s, 1);
2443 }
2444 
2445 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2446 {
2447 	int m, idx;
2448 	bool fail = false;
2449 
2450 	for (m = 0; m < conf->raid_disks * 2 ; m++)
2451 		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2452 			struct md_rdev *rdev = conf->mirrors[m].rdev;
2453 			rdev_clear_badblocks(rdev,
2454 					     r1_bio->sector,
2455 					     r1_bio->sectors, 0);
2456 			rdev_dec_pending(rdev, conf->mddev);
2457 		} else if (r1_bio->bios[m] != NULL) {
2458 			/* This drive got a write error.  We need to
2459 			 * narrow down and record precise write
2460 			 * errors.
2461 			 */
2462 			fail = true;
2463 			if (!narrow_write_error(r1_bio, m)) {
2464 				md_error(conf->mddev,
2465 					 conf->mirrors[m].rdev);
2466 				/* an I/O failed, we can't clear the bitmap */
2467 				set_bit(R1BIO_Degraded, &r1_bio->state);
2468 			}
2469 			rdev_dec_pending(conf->mirrors[m].rdev,
2470 					 conf->mddev);
2471 		}
2472 	if (fail) {
2473 		spin_lock_irq(&conf->device_lock);
2474 		list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2475 		idx = sector_to_idx(r1_bio->sector);
2476 		atomic_inc(&conf->nr_queued[idx]);
2477 		spin_unlock_irq(&conf->device_lock);
2478 		/*
2479 		 * In case freeze_array() is waiting for condition
2480 		 * get_unqueued_pending() == extra to be true.
2481 		 */
2482 		wake_up(&conf->wait_barrier);
2483 		md_wakeup_thread(conf->mddev->thread);
2484 	} else {
2485 		if (test_bit(R1BIO_WriteError, &r1_bio->state))
2486 			close_write(r1_bio);
2487 		raid_end_bio_io(r1_bio);
2488 	}
2489 }
2490 
2491 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2492 {
2493 	struct mddev *mddev = conf->mddev;
2494 	struct bio *bio;
2495 	struct md_rdev *rdev;
2496 
2497 	clear_bit(R1BIO_ReadError, &r1_bio->state);
2498 	/* we got a read error. Maybe the drive is bad.  Maybe just
2499 	 * the block and we can fix it.
2500 	 * We freeze all other IO, and try reading the block from
2501 	 * other devices.  When we find one, we re-write
2502 	 * and check it that fixes the read error.
2503 	 * This is all done synchronously while the array is
2504 	 * frozen
2505 	 */
2506 
2507 	bio = r1_bio->bios[r1_bio->read_disk];
2508 	bio_put(bio);
2509 	r1_bio->bios[r1_bio->read_disk] = NULL;
2510 
2511 	rdev = conf->mirrors[r1_bio->read_disk].rdev;
2512 	if (mddev->ro == 0
2513 	    && !test_bit(FailFast, &rdev->flags)) {
2514 		freeze_array(conf, 1);
2515 		fix_read_error(conf, r1_bio->read_disk,
2516 			       r1_bio->sector, r1_bio->sectors);
2517 		unfreeze_array(conf);
2518 	} else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
2519 		md_error(mddev, rdev);
2520 	} else {
2521 		r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2522 	}
2523 
2524 	rdev_dec_pending(rdev, conf->mddev);
2525 	allow_barrier(conf, r1_bio->sector);
2526 	bio = r1_bio->master_bio;
2527 
2528 	/* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2529 	r1_bio->state = 0;
2530 	raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2531 }
2532 
2533 static void raid1d(struct md_thread *thread)
2534 {
2535 	struct mddev *mddev = thread->mddev;
2536 	struct r1bio *r1_bio;
2537 	unsigned long flags;
2538 	struct r1conf *conf = mddev->private;
2539 	struct list_head *head = &conf->retry_list;
2540 	struct blk_plug plug;
2541 	int idx;
2542 
2543 	md_check_recovery(mddev);
2544 
2545 	if (!list_empty_careful(&conf->bio_end_io_list) &&
2546 	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2547 		LIST_HEAD(tmp);
2548 		spin_lock_irqsave(&conf->device_lock, flags);
2549 		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2550 			list_splice_init(&conf->bio_end_io_list, &tmp);
2551 		spin_unlock_irqrestore(&conf->device_lock, flags);
2552 		while (!list_empty(&tmp)) {
2553 			r1_bio = list_first_entry(&tmp, struct r1bio,
2554 						  retry_list);
2555 			list_del(&r1_bio->retry_list);
2556 			idx = sector_to_idx(r1_bio->sector);
2557 			atomic_dec(&conf->nr_queued[idx]);
2558 			if (mddev->degraded)
2559 				set_bit(R1BIO_Degraded, &r1_bio->state);
2560 			if (test_bit(R1BIO_WriteError, &r1_bio->state))
2561 				close_write(r1_bio);
2562 			raid_end_bio_io(r1_bio);
2563 		}
2564 	}
2565 
2566 	blk_start_plug(&plug);
2567 	for (;;) {
2568 
2569 		flush_pending_writes(conf);
2570 
2571 		spin_lock_irqsave(&conf->device_lock, flags);
2572 		if (list_empty(head)) {
2573 			spin_unlock_irqrestore(&conf->device_lock, flags);
2574 			break;
2575 		}
2576 		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2577 		list_del(head->prev);
2578 		idx = sector_to_idx(r1_bio->sector);
2579 		atomic_dec(&conf->nr_queued[idx]);
2580 		spin_unlock_irqrestore(&conf->device_lock, flags);
2581 
2582 		mddev = r1_bio->mddev;
2583 		conf = mddev->private;
2584 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2585 			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2586 			    test_bit(R1BIO_WriteError, &r1_bio->state))
2587 				handle_sync_write_finished(conf, r1_bio);
2588 			else
2589 				sync_request_write(mddev, r1_bio);
2590 		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2591 			   test_bit(R1BIO_WriteError, &r1_bio->state))
2592 			handle_write_finished(conf, r1_bio);
2593 		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2594 			handle_read_error(conf, r1_bio);
2595 		else
2596 			WARN_ON_ONCE(1);
2597 
2598 		cond_resched();
2599 		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2600 			md_check_recovery(mddev);
2601 	}
2602 	blk_finish_plug(&plug);
2603 }
2604 
2605 static int init_resync(struct r1conf *conf)
2606 {
2607 	int buffs;
2608 
2609 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2610 	BUG_ON(mempool_initialized(&conf->r1buf_pool));
2611 
2612 	return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
2613 			    r1buf_pool_free, conf->poolinfo);
2614 }
2615 
2616 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2617 {
2618 	struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
2619 	struct resync_pages *rps;
2620 	struct bio *bio;
2621 	int i;
2622 
2623 	for (i = conf->poolinfo->raid_disks; i--; ) {
2624 		bio = r1bio->bios[i];
2625 		rps = bio->bi_private;
2626 		bio_reset(bio);
2627 		bio->bi_private = rps;
2628 	}
2629 	r1bio->master_bio = NULL;
2630 	return r1bio;
2631 }
2632 
2633 /*
2634  * perform a "sync" on one "block"
2635  *
2636  * We need to make sure that no normal I/O request - particularly write
2637  * requests - conflict with active sync requests.
2638  *
2639  * This is achieved by tracking pending requests and a 'barrier' concept
2640  * that can be installed to exclude normal IO requests.
2641  */
2642 
2643 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2644 				   int *skipped)
2645 {
2646 	struct r1conf *conf = mddev->private;
2647 	struct r1bio *r1_bio;
2648 	struct bio *bio;
2649 	sector_t max_sector, nr_sectors;
2650 	int disk = -1;
2651 	int i;
2652 	int wonly = -1;
2653 	int write_targets = 0, read_targets = 0;
2654 	sector_t sync_blocks;
2655 	int still_degraded = 0;
2656 	int good_sectors = RESYNC_SECTORS;
2657 	int min_bad = 0; /* number of sectors that are bad in all devices */
2658 	int idx = sector_to_idx(sector_nr);
2659 	int page_idx = 0;
2660 
2661 	if (!mempool_initialized(&conf->r1buf_pool))
2662 		if (init_resync(conf))
2663 			return 0;
2664 
2665 	max_sector = mddev->dev_sectors;
2666 	if (sector_nr >= max_sector) {
2667 		/* If we aborted, we need to abort the
2668 		 * sync on the 'current' bitmap chunk (there will
2669 		 * only be one in raid1 resync.
2670 		 * We can find the current addess in mddev->curr_resync
2671 		 */
2672 		if (mddev->curr_resync < max_sector) /* aborted */
2673 			md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2674 					   &sync_blocks, 1);
2675 		else /* completed sync */
2676 			conf->fullsync = 0;
2677 
2678 		md_bitmap_close_sync(mddev->bitmap);
2679 		close_sync(conf);
2680 
2681 		if (mddev_is_clustered(mddev)) {
2682 			conf->cluster_sync_low = 0;
2683 			conf->cluster_sync_high = 0;
2684 		}
2685 		return 0;
2686 	}
2687 
2688 	if (mddev->bitmap == NULL &&
2689 	    mddev->recovery_cp == MaxSector &&
2690 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2691 	    conf->fullsync == 0) {
2692 		*skipped = 1;
2693 		return max_sector - sector_nr;
2694 	}
2695 	/* before building a request, check if we can skip these blocks..
2696 	 * This call the bitmap_start_sync doesn't actually record anything
2697 	 */
2698 	if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2699 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2700 		/* We can skip this block, and probably several more */
2701 		*skipped = 1;
2702 		return sync_blocks;
2703 	}
2704 
2705 	/*
2706 	 * If there is non-resync activity waiting for a turn, then let it
2707 	 * though before starting on this new sync request.
2708 	 */
2709 	if (atomic_read(&conf->nr_waiting[idx]))
2710 		schedule_timeout_uninterruptible(1);
2711 
2712 	/* we are incrementing sector_nr below. To be safe, we check against
2713 	 * sector_nr + two times RESYNC_SECTORS
2714 	 */
2715 
2716 	md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2717 		mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2718 
2719 
2720 	if (raise_barrier(conf, sector_nr))
2721 		return 0;
2722 
2723 	r1_bio = raid1_alloc_init_r1buf(conf);
2724 
2725 	rcu_read_lock();
2726 	/*
2727 	 * If we get a correctably read error during resync or recovery,
2728 	 * we might want to read from a different device.  So we
2729 	 * flag all drives that could conceivably be read from for READ,
2730 	 * and any others (which will be non-In_sync devices) for WRITE.
2731 	 * If a read fails, we try reading from something else for which READ
2732 	 * is OK.
2733 	 */
2734 
2735 	r1_bio->mddev = mddev;
2736 	r1_bio->sector = sector_nr;
2737 	r1_bio->state = 0;
2738 	set_bit(R1BIO_IsSync, &r1_bio->state);
2739 	/* make sure good_sectors won't go across barrier unit boundary */
2740 	good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2741 
2742 	for (i = 0; i < conf->raid_disks * 2; i++) {
2743 		struct md_rdev *rdev;
2744 		bio = r1_bio->bios[i];
2745 
2746 		rdev = rcu_dereference(conf->mirrors[i].rdev);
2747 		if (rdev == NULL ||
2748 		    test_bit(Faulty, &rdev->flags)) {
2749 			if (i < conf->raid_disks)
2750 				still_degraded = 1;
2751 		} else if (!test_bit(In_sync, &rdev->flags)) {
2752 			bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2753 			bio->bi_end_io = end_sync_write;
2754 			write_targets ++;
2755 		} else {
2756 			/* may need to read from here */
2757 			sector_t first_bad = MaxSector;
2758 			int bad_sectors;
2759 
2760 			if (is_badblock(rdev, sector_nr, good_sectors,
2761 					&first_bad, &bad_sectors)) {
2762 				if (first_bad > sector_nr)
2763 					good_sectors = first_bad - sector_nr;
2764 				else {
2765 					bad_sectors -= (sector_nr - first_bad);
2766 					if (min_bad == 0 ||
2767 					    min_bad > bad_sectors)
2768 						min_bad = bad_sectors;
2769 				}
2770 			}
2771 			if (sector_nr < first_bad) {
2772 				if (test_bit(WriteMostly, &rdev->flags)) {
2773 					if (wonly < 0)
2774 						wonly = i;
2775 				} else {
2776 					if (disk < 0)
2777 						disk = i;
2778 				}
2779 				bio_set_op_attrs(bio, REQ_OP_READ, 0);
2780 				bio->bi_end_io = end_sync_read;
2781 				read_targets++;
2782 			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2783 				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2784 				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2785 				/*
2786 				 * The device is suitable for reading (InSync),
2787 				 * but has bad block(s) here. Let's try to correct them,
2788 				 * if we are doing resync or repair. Otherwise, leave
2789 				 * this device alone for this sync request.
2790 				 */
2791 				bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2792 				bio->bi_end_io = end_sync_write;
2793 				write_targets++;
2794 			}
2795 		}
2796 		if (rdev && bio->bi_end_io) {
2797 			atomic_inc(&rdev->nr_pending);
2798 			bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2799 			bio_set_dev(bio, rdev->bdev);
2800 			if (test_bit(FailFast, &rdev->flags))
2801 				bio->bi_opf |= MD_FAILFAST;
2802 		}
2803 	}
2804 	rcu_read_unlock();
2805 	if (disk < 0)
2806 		disk = wonly;
2807 	r1_bio->read_disk = disk;
2808 
2809 	if (read_targets == 0 && min_bad > 0) {
2810 		/* These sectors are bad on all InSync devices, so we
2811 		 * need to mark them bad on all write targets
2812 		 */
2813 		int ok = 1;
2814 		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2815 			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2816 				struct md_rdev *rdev = conf->mirrors[i].rdev;
2817 				ok = rdev_set_badblocks(rdev, sector_nr,
2818 							min_bad, 0
2819 					) && ok;
2820 			}
2821 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2822 		*skipped = 1;
2823 		put_buf(r1_bio);
2824 
2825 		if (!ok) {
2826 			/* Cannot record the badblocks, so need to
2827 			 * abort the resync.
2828 			 * If there are multiple read targets, could just
2829 			 * fail the really bad ones ???
2830 			 */
2831 			conf->recovery_disabled = mddev->recovery_disabled;
2832 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2833 			return 0;
2834 		} else
2835 			return min_bad;
2836 
2837 	}
2838 	if (min_bad > 0 && min_bad < good_sectors) {
2839 		/* only resync enough to reach the next bad->good
2840 		 * transition */
2841 		good_sectors = min_bad;
2842 	}
2843 
2844 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2845 		/* extra read targets are also write targets */
2846 		write_targets += read_targets-1;
2847 
2848 	if (write_targets == 0 || read_targets == 0) {
2849 		/* There is nowhere to write, so all non-sync
2850 		 * drives must be failed - so we are finished
2851 		 */
2852 		sector_t rv;
2853 		if (min_bad > 0)
2854 			max_sector = sector_nr + min_bad;
2855 		rv = max_sector - sector_nr;
2856 		*skipped = 1;
2857 		put_buf(r1_bio);
2858 		return rv;
2859 	}
2860 
2861 	if (max_sector > mddev->resync_max)
2862 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2863 	if (max_sector > sector_nr + good_sectors)
2864 		max_sector = sector_nr + good_sectors;
2865 	nr_sectors = 0;
2866 	sync_blocks = 0;
2867 	do {
2868 		struct page *page;
2869 		int len = PAGE_SIZE;
2870 		if (sector_nr + (len>>9) > max_sector)
2871 			len = (max_sector - sector_nr) << 9;
2872 		if (len == 0)
2873 			break;
2874 		if (sync_blocks == 0) {
2875 			if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
2876 						  &sync_blocks, still_degraded) &&
2877 			    !conf->fullsync &&
2878 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2879 				break;
2880 			if ((len >> 9) > sync_blocks)
2881 				len = sync_blocks<<9;
2882 		}
2883 
2884 		for (i = 0 ; i < conf->raid_disks * 2; i++) {
2885 			struct resync_pages *rp;
2886 
2887 			bio = r1_bio->bios[i];
2888 			rp = get_resync_pages(bio);
2889 			if (bio->bi_end_io) {
2890 				page = resync_fetch_page(rp, page_idx);
2891 
2892 				/*
2893 				 * won't fail because the vec table is big
2894 				 * enough to hold all these pages
2895 				 */
2896 				bio_add_page(bio, page, len, 0);
2897 			}
2898 		}
2899 		nr_sectors += len>>9;
2900 		sector_nr += len>>9;
2901 		sync_blocks -= (len>>9);
2902 	} while (++page_idx < RESYNC_PAGES);
2903 
2904 	r1_bio->sectors = nr_sectors;
2905 
2906 	if (mddev_is_clustered(mddev) &&
2907 			conf->cluster_sync_high < sector_nr + nr_sectors) {
2908 		conf->cluster_sync_low = mddev->curr_resync_completed;
2909 		conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2910 		/* Send resync message */
2911 		md_cluster_ops->resync_info_update(mddev,
2912 				conf->cluster_sync_low,
2913 				conf->cluster_sync_high);
2914 	}
2915 
2916 	/* For a user-requested sync, we read all readable devices and do a
2917 	 * compare
2918 	 */
2919 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2920 		atomic_set(&r1_bio->remaining, read_targets);
2921 		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2922 			bio = r1_bio->bios[i];
2923 			if (bio->bi_end_io == end_sync_read) {
2924 				read_targets--;
2925 				md_sync_acct_bio(bio, nr_sectors);
2926 				if (read_targets == 1)
2927 					bio->bi_opf &= ~MD_FAILFAST;
2928 				generic_make_request(bio);
2929 			}
2930 		}
2931 	} else {
2932 		atomic_set(&r1_bio->remaining, 1);
2933 		bio = r1_bio->bios[r1_bio->read_disk];
2934 		md_sync_acct_bio(bio, nr_sectors);
2935 		if (read_targets == 1)
2936 			bio->bi_opf &= ~MD_FAILFAST;
2937 		generic_make_request(bio);
2938 	}
2939 	return nr_sectors;
2940 }
2941 
2942 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2943 {
2944 	if (sectors)
2945 		return sectors;
2946 
2947 	return mddev->dev_sectors;
2948 }
2949 
2950 static struct r1conf *setup_conf(struct mddev *mddev)
2951 {
2952 	struct r1conf *conf;
2953 	int i;
2954 	struct raid1_info *disk;
2955 	struct md_rdev *rdev;
2956 	int err = -ENOMEM;
2957 
2958 	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2959 	if (!conf)
2960 		goto abort;
2961 
2962 	conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
2963 				   sizeof(atomic_t), GFP_KERNEL);
2964 	if (!conf->nr_pending)
2965 		goto abort;
2966 
2967 	conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
2968 				   sizeof(atomic_t), GFP_KERNEL);
2969 	if (!conf->nr_waiting)
2970 		goto abort;
2971 
2972 	conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
2973 				  sizeof(atomic_t), GFP_KERNEL);
2974 	if (!conf->nr_queued)
2975 		goto abort;
2976 
2977 	conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
2978 				sizeof(atomic_t), GFP_KERNEL);
2979 	if (!conf->barrier)
2980 		goto abort;
2981 
2982 	conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
2983 					    mddev->raid_disks, 2),
2984 				GFP_KERNEL);
2985 	if (!conf->mirrors)
2986 		goto abort;
2987 
2988 	conf->tmppage = alloc_page(GFP_KERNEL);
2989 	if (!conf->tmppage)
2990 		goto abort;
2991 
2992 	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2993 	if (!conf->poolinfo)
2994 		goto abort;
2995 	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2996 	err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc,
2997 			   rbio_pool_free, conf->poolinfo);
2998 	if (err)
2999 		goto abort;
3000 
3001 	err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3002 	if (err)
3003 		goto abort;
3004 
3005 	conf->poolinfo->mddev = mddev;
3006 
3007 	err = -EINVAL;
3008 	spin_lock_init(&conf->device_lock);
3009 	rdev_for_each(rdev, mddev) {
3010 		int disk_idx = rdev->raid_disk;
3011 		if (disk_idx >= mddev->raid_disks
3012 		    || disk_idx < 0)
3013 			continue;
3014 		if (test_bit(Replacement, &rdev->flags))
3015 			disk = conf->mirrors + mddev->raid_disks + disk_idx;
3016 		else
3017 			disk = conf->mirrors + disk_idx;
3018 
3019 		if (disk->rdev)
3020 			goto abort;
3021 		disk->rdev = rdev;
3022 		disk->head_position = 0;
3023 		disk->seq_start = MaxSector;
3024 	}
3025 	conf->raid_disks = mddev->raid_disks;
3026 	conf->mddev = mddev;
3027 	INIT_LIST_HEAD(&conf->retry_list);
3028 	INIT_LIST_HEAD(&conf->bio_end_io_list);
3029 
3030 	spin_lock_init(&conf->resync_lock);
3031 	init_waitqueue_head(&conf->wait_barrier);
3032 
3033 	bio_list_init(&conf->pending_bio_list);
3034 	conf->pending_count = 0;
3035 	conf->recovery_disabled = mddev->recovery_disabled - 1;
3036 
3037 	err = -EIO;
3038 	for (i = 0; i < conf->raid_disks * 2; i++) {
3039 
3040 		disk = conf->mirrors + i;
3041 
3042 		if (i < conf->raid_disks &&
3043 		    disk[conf->raid_disks].rdev) {
3044 			/* This slot has a replacement. */
3045 			if (!disk->rdev) {
3046 				/* No original, just make the replacement
3047 				 * a recovering spare
3048 				 */
3049 				disk->rdev =
3050 					disk[conf->raid_disks].rdev;
3051 				disk[conf->raid_disks].rdev = NULL;
3052 			} else if (!test_bit(In_sync, &disk->rdev->flags))
3053 				/* Original is not in_sync - bad */
3054 				goto abort;
3055 		}
3056 
3057 		if (!disk->rdev ||
3058 		    !test_bit(In_sync, &disk->rdev->flags)) {
3059 			disk->head_position = 0;
3060 			if (disk->rdev &&
3061 			    (disk->rdev->saved_raid_disk < 0))
3062 				conf->fullsync = 1;
3063 		}
3064 	}
3065 
3066 	err = -ENOMEM;
3067 	conf->thread = md_register_thread(raid1d, mddev, "raid1");
3068 	if (!conf->thread)
3069 		goto abort;
3070 
3071 	return conf;
3072 
3073  abort:
3074 	if (conf) {
3075 		mempool_exit(&conf->r1bio_pool);
3076 		kfree(conf->mirrors);
3077 		safe_put_page(conf->tmppage);
3078 		kfree(conf->poolinfo);
3079 		kfree(conf->nr_pending);
3080 		kfree(conf->nr_waiting);
3081 		kfree(conf->nr_queued);
3082 		kfree(conf->barrier);
3083 		bioset_exit(&conf->bio_split);
3084 		kfree(conf);
3085 	}
3086 	return ERR_PTR(err);
3087 }
3088 
3089 static void raid1_free(struct mddev *mddev, void *priv);
3090 static int raid1_run(struct mddev *mddev)
3091 {
3092 	struct r1conf *conf;
3093 	int i;
3094 	struct md_rdev *rdev;
3095 	int ret;
3096 	bool discard_supported = false;
3097 
3098 	if (mddev->level != 1) {
3099 		pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3100 			mdname(mddev), mddev->level);
3101 		return -EIO;
3102 	}
3103 	if (mddev->reshape_position != MaxSector) {
3104 		pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3105 			mdname(mddev));
3106 		return -EIO;
3107 	}
3108 	if (mddev_init_writes_pending(mddev) < 0)
3109 		return -ENOMEM;
3110 	/*
3111 	 * copy the already verified devices into our private RAID1
3112 	 * bookkeeping area. [whatever we allocate in run(),
3113 	 * should be freed in raid1_free()]
3114 	 */
3115 	if (mddev->private == NULL)
3116 		conf = setup_conf(mddev);
3117 	else
3118 		conf = mddev->private;
3119 
3120 	if (IS_ERR(conf))
3121 		return PTR_ERR(conf);
3122 
3123 	if (mddev->queue) {
3124 		blk_queue_max_write_same_sectors(mddev->queue, 0);
3125 		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3126 	}
3127 
3128 	rdev_for_each(rdev, mddev) {
3129 		if (!mddev->gendisk)
3130 			continue;
3131 		disk_stack_limits(mddev->gendisk, rdev->bdev,
3132 				  rdev->data_offset << 9);
3133 		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3134 			discard_supported = true;
3135 	}
3136 
3137 	mddev->degraded = 0;
3138 	for (i = 0; i < conf->raid_disks; i++)
3139 		if (conf->mirrors[i].rdev == NULL ||
3140 		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3141 		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3142 			mddev->degraded++;
3143 	/*
3144 	 * RAID1 needs at least one disk in active
3145 	 */
3146 	if (conf->raid_disks - mddev->degraded < 1) {
3147 		ret = -EINVAL;
3148 		goto abort;
3149 	}
3150 
3151 	if (conf->raid_disks - mddev->degraded == 1)
3152 		mddev->recovery_cp = MaxSector;
3153 
3154 	if (mddev->recovery_cp != MaxSector)
3155 		pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3156 			mdname(mddev));
3157 	pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3158 		mdname(mddev), mddev->raid_disks - mddev->degraded,
3159 		mddev->raid_disks);
3160 
3161 	/*
3162 	 * Ok, everything is just fine now
3163 	 */
3164 	mddev->thread = conf->thread;
3165 	conf->thread = NULL;
3166 	mddev->private = conf;
3167 	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3168 
3169 	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3170 
3171 	if (mddev->queue) {
3172 		if (discard_supported)
3173 			blk_queue_flag_set(QUEUE_FLAG_DISCARD,
3174 						mddev->queue);
3175 		else
3176 			blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
3177 						  mddev->queue);
3178 	}
3179 
3180 	ret = md_integrity_register(mddev);
3181 	if (ret) {
3182 		md_unregister_thread(&mddev->thread);
3183 		goto abort;
3184 	}
3185 	return 0;
3186 
3187 abort:
3188 	raid1_free(mddev, conf);
3189 	return ret;
3190 }
3191 
3192 static void raid1_free(struct mddev *mddev, void *priv)
3193 {
3194 	struct r1conf *conf = priv;
3195 
3196 	mempool_exit(&conf->r1bio_pool);
3197 	kfree(conf->mirrors);
3198 	safe_put_page(conf->tmppage);
3199 	kfree(conf->poolinfo);
3200 	kfree(conf->nr_pending);
3201 	kfree(conf->nr_waiting);
3202 	kfree(conf->nr_queued);
3203 	kfree(conf->barrier);
3204 	bioset_exit(&conf->bio_split);
3205 	kfree(conf);
3206 }
3207 
3208 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3209 {
3210 	/* no resync is happening, and there is enough space
3211 	 * on all devices, so we can resize.
3212 	 * We need to make sure resync covers any new space.
3213 	 * If the array is shrinking we should possibly wait until
3214 	 * any io in the removed space completes, but it hardly seems
3215 	 * worth it.
3216 	 */
3217 	sector_t newsize = raid1_size(mddev, sectors, 0);
3218 	if (mddev->external_size &&
3219 	    mddev->array_sectors > newsize)
3220 		return -EINVAL;
3221 	if (mddev->bitmap) {
3222 		int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
3223 		if (ret)
3224 			return ret;
3225 	}
3226 	md_set_array_sectors(mddev, newsize);
3227 	if (sectors > mddev->dev_sectors &&
3228 	    mddev->recovery_cp > mddev->dev_sectors) {
3229 		mddev->recovery_cp = mddev->dev_sectors;
3230 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3231 	}
3232 	mddev->dev_sectors = sectors;
3233 	mddev->resync_max_sectors = sectors;
3234 	return 0;
3235 }
3236 
3237 static int raid1_reshape(struct mddev *mddev)
3238 {
3239 	/* We need to:
3240 	 * 1/ resize the r1bio_pool
3241 	 * 2/ resize conf->mirrors
3242 	 *
3243 	 * We allocate a new r1bio_pool if we can.
3244 	 * Then raise a device barrier and wait until all IO stops.
3245 	 * Then resize conf->mirrors and swap in the new r1bio pool.
3246 	 *
3247 	 * At the same time, we "pack" the devices so that all the missing
3248 	 * devices have the higher raid_disk numbers.
3249 	 */
3250 	mempool_t newpool, oldpool;
3251 	struct pool_info *newpoolinfo;
3252 	struct raid1_info *newmirrors;
3253 	struct r1conf *conf = mddev->private;
3254 	int cnt, raid_disks;
3255 	unsigned long flags;
3256 	int d, d2;
3257 	int ret;
3258 
3259 	memset(&newpool, 0, sizeof(newpool));
3260 	memset(&oldpool, 0, sizeof(oldpool));
3261 
3262 	/* Cannot change chunk_size, layout, or level */
3263 	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3264 	    mddev->layout != mddev->new_layout ||
3265 	    mddev->level != mddev->new_level) {
3266 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3267 		mddev->new_layout = mddev->layout;
3268 		mddev->new_level = mddev->level;
3269 		return -EINVAL;
3270 	}
3271 
3272 	if (!mddev_is_clustered(mddev))
3273 		md_allow_write(mddev);
3274 
3275 	raid_disks = mddev->raid_disks + mddev->delta_disks;
3276 
3277 	if (raid_disks < conf->raid_disks) {
3278 		cnt=0;
3279 		for (d= 0; d < conf->raid_disks; d++)
3280 			if (conf->mirrors[d].rdev)
3281 				cnt++;
3282 		if (cnt > raid_disks)
3283 			return -EBUSY;
3284 	}
3285 
3286 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3287 	if (!newpoolinfo)
3288 		return -ENOMEM;
3289 	newpoolinfo->mddev = mddev;
3290 	newpoolinfo->raid_disks = raid_disks * 2;
3291 
3292 	ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc,
3293 			   rbio_pool_free, newpoolinfo);
3294 	if (ret) {
3295 		kfree(newpoolinfo);
3296 		return ret;
3297 	}
3298 	newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3299 					 raid_disks, 2),
3300 			     GFP_KERNEL);
3301 	if (!newmirrors) {
3302 		kfree(newpoolinfo);
3303 		mempool_exit(&newpool);
3304 		return -ENOMEM;
3305 	}
3306 
3307 	freeze_array(conf, 0);
3308 
3309 	/* ok, everything is stopped */
3310 	oldpool = conf->r1bio_pool;
3311 	conf->r1bio_pool = newpool;
3312 
3313 	for (d = d2 = 0; d < conf->raid_disks; d++) {
3314 		struct md_rdev *rdev = conf->mirrors[d].rdev;
3315 		if (rdev && rdev->raid_disk != d2) {
3316 			sysfs_unlink_rdev(mddev, rdev);
3317 			rdev->raid_disk = d2;
3318 			sysfs_unlink_rdev(mddev, rdev);
3319 			if (sysfs_link_rdev(mddev, rdev))
3320 				pr_warn("md/raid1:%s: cannot register rd%d\n",
3321 					mdname(mddev), rdev->raid_disk);
3322 		}
3323 		if (rdev)
3324 			newmirrors[d2++].rdev = rdev;
3325 	}
3326 	kfree(conf->mirrors);
3327 	conf->mirrors = newmirrors;
3328 	kfree(conf->poolinfo);
3329 	conf->poolinfo = newpoolinfo;
3330 
3331 	spin_lock_irqsave(&conf->device_lock, flags);
3332 	mddev->degraded += (raid_disks - conf->raid_disks);
3333 	spin_unlock_irqrestore(&conf->device_lock, flags);
3334 	conf->raid_disks = mddev->raid_disks = raid_disks;
3335 	mddev->delta_disks = 0;
3336 
3337 	unfreeze_array(conf);
3338 
3339 	set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3340 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3341 	md_wakeup_thread(mddev->thread);
3342 
3343 	mempool_exit(&oldpool);
3344 	return 0;
3345 }
3346 
3347 static void raid1_quiesce(struct mddev *mddev, int quiesce)
3348 {
3349 	struct r1conf *conf = mddev->private;
3350 
3351 	if (quiesce)
3352 		freeze_array(conf, 0);
3353 	else
3354 		unfreeze_array(conf);
3355 }
3356 
3357 static void *raid1_takeover(struct mddev *mddev)
3358 {
3359 	/* raid1 can take over:
3360 	 *  raid5 with 2 devices, any layout or chunk size
3361 	 */
3362 	if (mddev->level == 5 && mddev->raid_disks == 2) {
3363 		struct r1conf *conf;
3364 		mddev->new_level = 1;
3365 		mddev->new_layout = 0;
3366 		mddev->new_chunk_sectors = 0;
3367 		conf = setup_conf(mddev);
3368 		if (!IS_ERR(conf)) {
3369 			/* Array must appear to be quiesced */
3370 			conf->array_frozen = 1;
3371 			mddev_clear_unsupported_flags(mddev,
3372 				UNSUPPORTED_MDDEV_FLAGS);
3373 		}
3374 		return conf;
3375 	}
3376 	return ERR_PTR(-EINVAL);
3377 }
3378 
3379 static struct md_personality raid1_personality =
3380 {
3381 	.name		= "raid1",
3382 	.level		= 1,
3383 	.owner		= THIS_MODULE,
3384 	.make_request	= raid1_make_request,
3385 	.run		= raid1_run,
3386 	.free		= raid1_free,
3387 	.status		= raid1_status,
3388 	.error_handler	= raid1_error,
3389 	.hot_add_disk	= raid1_add_disk,
3390 	.hot_remove_disk= raid1_remove_disk,
3391 	.spare_active	= raid1_spare_active,
3392 	.sync_request	= raid1_sync_request,
3393 	.resize		= raid1_resize,
3394 	.size		= raid1_size,
3395 	.check_reshape	= raid1_reshape,
3396 	.quiesce	= raid1_quiesce,
3397 	.takeover	= raid1_takeover,
3398 	.congested	= raid1_congested,
3399 };
3400 
3401 static int __init raid_init(void)
3402 {
3403 	return register_md_personality(&raid1_personality);
3404 }
3405 
3406 static void raid_exit(void)
3407 {
3408 	unregister_md_personality(&raid1_personality);
3409 }
3410 
3411 module_init(raid_init);
3412 module_exit(raid_exit);
3413 MODULE_LICENSE("GPL");
3414 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3415 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3416 MODULE_ALIAS("md-raid1");
3417 MODULE_ALIAS("md-level-1");
3418 
3419 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
3420