1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * raid1.c : Multiple Devices driver for Linux 4 * 5 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat 6 * 7 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman 8 * 9 * RAID-1 management functions. 10 * 11 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 12 * 13 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk> 14 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> 15 * 16 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support 17 * bitmapped intelligence in resync: 18 * 19 * - bitmap marked during normal i/o 20 * - bitmap used to skip nondirty blocks during sync 21 * 22 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology: 23 * - persistent bitmap code 24 */ 25 26 #include <linux/slab.h> 27 #include <linux/delay.h> 28 #include <linux/blkdev.h> 29 #include <linux/module.h> 30 #include <linux/seq_file.h> 31 #include <linux/ratelimit.h> 32 #include <linux/interval_tree_generic.h> 33 34 #include <trace/events/block.h> 35 36 #include "md.h" 37 #include "raid1.h" 38 #include "md-bitmap.h" 39 40 #define UNSUPPORTED_MDDEV_FLAGS \ 41 ((1L << MD_HAS_JOURNAL) | \ 42 (1L << MD_JOURNAL_CLEAN) | \ 43 (1L << MD_HAS_PPL) | \ 44 (1L << MD_HAS_MULTIPLE_PPLS)) 45 46 static void allow_barrier(struct r1conf *conf, sector_t sector_nr); 47 static void lower_barrier(struct r1conf *conf, sector_t sector_nr); 48 49 #define raid1_log(md, fmt, args...) \ 50 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0) 51 52 #include "raid1-10.c" 53 54 #define START(node) ((node)->start) 55 #define LAST(node) ((node)->last) 56 INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last, 57 START, LAST, static inline, raid1_rb); 58 59 static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio, 60 struct serial_info *si, int idx) 61 { 62 unsigned long flags; 63 int ret = 0; 64 sector_t lo = r1_bio->sector; 65 sector_t hi = lo + r1_bio->sectors; 66 struct serial_in_rdev *serial = &rdev->serial[idx]; 67 68 spin_lock_irqsave(&serial->serial_lock, flags); 69 /* collision happened */ 70 if (raid1_rb_iter_first(&serial->serial_rb, lo, hi)) 71 ret = -EBUSY; 72 else { 73 si->start = lo; 74 si->last = hi; 75 raid1_rb_insert(si, &serial->serial_rb); 76 } 77 spin_unlock_irqrestore(&serial->serial_lock, flags); 78 79 return ret; 80 } 81 82 static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio) 83 { 84 struct mddev *mddev = rdev->mddev; 85 struct serial_info *si; 86 int idx = sector_to_idx(r1_bio->sector); 87 struct serial_in_rdev *serial = &rdev->serial[idx]; 88 89 if (WARN_ON(!mddev->serial_info_pool)) 90 return; 91 si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO); 92 wait_event(serial->serial_io_wait, 93 check_and_add_serial(rdev, r1_bio, si, idx) == 0); 94 } 95 96 static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi) 97 { 98 struct serial_info *si; 99 unsigned long flags; 100 int found = 0; 101 struct mddev *mddev = rdev->mddev; 102 int idx = sector_to_idx(lo); 103 struct serial_in_rdev *serial = &rdev->serial[idx]; 104 105 spin_lock_irqsave(&serial->serial_lock, flags); 106 for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi); 107 si; si = raid1_rb_iter_next(si, lo, hi)) { 108 if (si->start == lo && si->last == hi) { 109 raid1_rb_remove(si, &serial->serial_rb); 110 mempool_free(si, mddev->serial_info_pool); 111 found = 1; 112 break; 113 } 114 } 115 if (!found) 116 WARN(1, "The write IO is not recorded for serialization\n"); 117 spin_unlock_irqrestore(&serial->serial_lock, flags); 118 wake_up(&serial->serial_io_wait); 119 } 120 121 /* 122 * for resync bio, r1bio pointer can be retrieved from the per-bio 123 * 'struct resync_pages'. 124 */ 125 static inline struct r1bio *get_resync_r1bio(struct bio *bio) 126 { 127 return get_resync_pages(bio)->raid_bio; 128 } 129 130 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data) 131 { 132 struct pool_info *pi = data; 133 int size = offsetof(struct r1bio, bios[pi->raid_disks]); 134 135 /* allocate a r1bio with room for raid_disks entries in the bios array */ 136 return kzalloc(size, gfp_flags); 137 } 138 139 #define RESYNC_DEPTH 32 140 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 141 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH) 142 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9) 143 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW) 144 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9) 145 146 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) 147 { 148 struct pool_info *pi = data; 149 struct r1bio *r1_bio; 150 struct bio *bio; 151 int need_pages; 152 int j; 153 struct resync_pages *rps; 154 155 r1_bio = r1bio_pool_alloc(gfp_flags, pi); 156 if (!r1_bio) 157 return NULL; 158 159 rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages), 160 gfp_flags); 161 if (!rps) 162 goto out_free_r1bio; 163 164 /* 165 * Allocate bios : 1 for reading, n-1 for writing 166 */ 167 for (j = pi->raid_disks ; j-- ; ) { 168 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 169 if (!bio) 170 goto out_free_bio; 171 r1_bio->bios[j] = bio; 172 } 173 /* 174 * Allocate RESYNC_PAGES data pages and attach them to 175 * the first bio. 176 * If this is a user-requested check/repair, allocate 177 * RESYNC_PAGES for each bio. 178 */ 179 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) 180 need_pages = pi->raid_disks; 181 else 182 need_pages = 1; 183 for (j = 0; j < pi->raid_disks; j++) { 184 struct resync_pages *rp = &rps[j]; 185 186 bio = r1_bio->bios[j]; 187 188 if (j < need_pages) { 189 if (resync_alloc_pages(rp, gfp_flags)) 190 goto out_free_pages; 191 } else { 192 memcpy(rp, &rps[0], sizeof(*rp)); 193 resync_get_all_pages(rp); 194 } 195 196 rp->raid_bio = r1_bio; 197 bio->bi_private = rp; 198 } 199 200 r1_bio->master_bio = NULL; 201 202 return r1_bio; 203 204 out_free_pages: 205 while (--j >= 0) 206 resync_free_pages(&rps[j]); 207 208 out_free_bio: 209 while (++j < pi->raid_disks) 210 bio_put(r1_bio->bios[j]); 211 kfree(rps); 212 213 out_free_r1bio: 214 rbio_pool_free(r1_bio, data); 215 return NULL; 216 } 217 218 static void r1buf_pool_free(void *__r1_bio, void *data) 219 { 220 struct pool_info *pi = data; 221 int i; 222 struct r1bio *r1bio = __r1_bio; 223 struct resync_pages *rp = NULL; 224 225 for (i = pi->raid_disks; i--; ) { 226 rp = get_resync_pages(r1bio->bios[i]); 227 resync_free_pages(rp); 228 bio_put(r1bio->bios[i]); 229 } 230 231 /* resync pages array stored in the 1st bio's .bi_private */ 232 kfree(rp); 233 234 rbio_pool_free(r1bio, data); 235 } 236 237 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio) 238 { 239 int i; 240 241 for (i = 0; i < conf->raid_disks * 2; i++) { 242 struct bio **bio = r1_bio->bios + i; 243 if (!BIO_SPECIAL(*bio)) 244 bio_put(*bio); 245 *bio = NULL; 246 } 247 } 248 249 static void free_r1bio(struct r1bio *r1_bio) 250 { 251 struct r1conf *conf = r1_bio->mddev->private; 252 253 put_all_bios(conf, r1_bio); 254 mempool_free(r1_bio, &conf->r1bio_pool); 255 } 256 257 static void put_buf(struct r1bio *r1_bio) 258 { 259 struct r1conf *conf = r1_bio->mddev->private; 260 sector_t sect = r1_bio->sector; 261 int i; 262 263 for (i = 0; i < conf->raid_disks * 2; i++) { 264 struct bio *bio = r1_bio->bios[i]; 265 if (bio->bi_end_io) 266 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev); 267 } 268 269 mempool_free(r1_bio, &conf->r1buf_pool); 270 271 lower_barrier(conf, sect); 272 } 273 274 static void reschedule_retry(struct r1bio *r1_bio) 275 { 276 unsigned long flags; 277 struct mddev *mddev = r1_bio->mddev; 278 struct r1conf *conf = mddev->private; 279 int idx; 280 281 idx = sector_to_idx(r1_bio->sector); 282 spin_lock_irqsave(&conf->device_lock, flags); 283 list_add(&r1_bio->retry_list, &conf->retry_list); 284 atomic_inc(&conf->nr_queued[idx]); 285 spin_unlock_irqrestore(&conf->device_lock, flags); 286 287 wake_up(&conf->wait_barrier); 288 md_wakeup_thread(mddev->thread); 289 } 290 291 /* 292 * raid_end_bio_io() is called when we have finished servicing a mirrored 293 * operation and are ready to return a success/failure code to the buffer 294 * cache layer. 295 */ 296 static void call_bio_endio(struct r1bio *r1_bio) 297 { 298 struct bio *bio = r1_bio->master_bio; 299 300 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 301 bio->bi_status = BLK_STS_IOERR; 302 303 bio_endio(bio); 304 } 305 306 static void raid_end_bio_io(struct r1bio *r1_bio) 307 { 308 struct bio *bio = r1_bio->master_bio; 309 struct r1conf *conf = r1_bio->mddev->private; 310 311 /* if nobody has done the final endio yet, do it now */ 312 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 313 pr_debug("raid1: sync end %s on sectors %llu-%llu\n", 314 (bio_data_dir(bio) == WRITE) ? "write" : "read", 315 (unsigned long long) bio->bi_iter.bi_sector, 316 (unsigned long long) bio_end_sector(bio) - 1); 317 318 call_bio_endio(r1_bio); 319 } 320 /* 321 * Wake up any possible resync thread that waits for the device 322 * to go idle. All I/Os, even write-behind writes, are done. 323 */ 324 allow_barrier(conf, r1_bio->sector); 325 326 free_r1bio(r1_bio); 327 } 328 329 /* 330 * Update disk head position estimator based on IRQ completion info. 331 */ 332 static inline void update_head_pos(int disk, struct r1bio *r1_bio) 333 { 334 struct r1conf *conf = r1_bio->mddev->private; 335 336 conf->mirrors[disk].head_position = 337 r1_bio->sector + (r1_bio->sectors); 338 } 339 340 /* 341 * Find the disk number which triggered given bio 342 */ 343 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio) 344 { 345 int mirror; 346 struct r1conf *conf = r1_bio->mddev->private; 347 int raid_disks = conf->raid_disks; 348 349 for (mirror = 0; mirror < raid_disks * 2; mirror++) 350 if (r1_bio->bios[mirror] == bio) 351 break; 352 353 BUG_ON(mirror == raid_disks * 2); 354 update_head_pos(mirror, r1_bio); 355 356 return mirror; 357 } 358 359 static void raid1_end_read_request(struct bio *bio) 360 { 361 int uptodate = !bio->bi_status; 362 struct r1bio *r1_bio = bio->bi_private; 363 struct r1conf *conf = r1_bio->mddev->private; 364 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev; 365 366 /* 367 * this branch is our 'one mirror IO has finished' event handler: 368 */ 369 update_head_pos(r1_bio->read_disk, r1_bio); 370 371 if (uptodate) 372 set_bit(R1BIO_Uptodate, &r1_bio->state); 373 else if (test_bit(FailFast, &rdev->flags) && 374 test_bit(R1BIO_FailFast, &r1_bio->state)) 375 /* This was a fail-fast read so we definitely 376 * want to retry */ 377 ; 378 else { 379 /* If all other devices have failed, we want to return 380 * the error upwards rather than fail the last device. 381 * Here we redefine "uptodate" to mean "Don't want to retry" 382 */ 383 unsigned long flags; 384 spin_lock_irqsave(&conf->device_lock, flags); 385 if (r1_bio->mddev->degraded == conf->raid_disks || 386 (r1_bio->mddev->degraded == conf->raid_disks-1 && 387 test_bit(In_sync, &rdev->flags))) 388 uptodate = 1; 389 spin_unlock_irqrestore(&conf->device_lock, flags); 390 } 391 392 if (uptodate) { 393 raid_end_bio_io(r1_bio); 394 rdev_dec_pending(rdev, conf->mddev); 395 } else { 396 /* 397 * oops, read error: 398 */ 399 char b[BDEVNAME_SIZE]; 400 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n", 401 mdname(conf->mddev), 402 bdevname(rdev->bdev, b), 403 (unsigned long long)r1_bio->sector); 404 set_bit(R1BIO_ReadError, &r1_bio->state); 405 reschedule_retry(r1_bio); 406 /* don't drop the reference on read_disk yet */ 407 } 408 } 409 410 static void close_write(struct r1bio *r1_bio) 411 { 412 /* it really is the end of this request */ 413 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 414 bio_free_pages(r1_bio->behind_master_bio); 415 bio_put(r1_bio->behind_master_bio); 416 r1_bio->behind_master_bio = NULL; 417 } 418 /* clear the bitmap if all writes complete successfully */ 419 md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector, 420 r1_bio->sectors, 421 !test_bit(R1BIO_Degraded, &r1_bio->state), 422 test_bit(R1BIO_BehindIO, &r1_bio->state)); 423 md_write_end(r1_bio->mddev); 424 } 425 426 static void r1_bio_write_done(struct r1bio *r1_bio) 427 { 428 if (!atomic_dec_and_test(&r1_bio->remaining)) 429 return; 430 431 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 432 reschedule_retry(r1_bio); 433 else { 434 close_write(r1_bio); 435 if (test_bit(R1BIO_MadeGood, &r1_bio->state)) 436 reschedule_retry(r1_bio); 437 else 438 raid_end_bio_io(r1_bio); 439 } 440 } 441 442 static void raid1_end_write_request(struct bio *bio) 443 { 444 struct r1bio *r1_bio = bio->bi_private; 445 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state); 446 struct r1conf *conf = r1_bio->mddev->private; 447 struct bio *to_put = NULL; 448 int mirror = find_bio_disk(r1_bio, bio); 449 struct md_rdev *rdev = conf->mirrors[mirror].rdev; 450 bool discard_error; 451 sector_t lo = r1_bio->sector; 452 sector_t hi = r1_bio->sector + r1_bio->sectors; 453 454 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD; 455 456 /* 457 * 'one mirror IO has finished' event handler: 458 */ 459 if (bio->bi_status && !discard_error) { 460 set_bit(WriteErrorSeen, &rdev->flags); 461 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 462 set_bit(MD_RECOVERY_NEEDED, & 463 conf->mddev->recovery); 464 465 if (test_bit(FailFast, &rdev->flags) && 466 (bio->bi_opf & MD_FAILFAST) && 467 /* We never try FailFast to WriteMostly devices */ 468 !test_bit(WriteMostly, &rdev->flags)) { 469 md_error(r1_bio->mddev, rdev); 470 } 471 472 /* 473 * When the device is faulty, it is not necessary to 474 * handle write error. 475 * For failfast, this is the only remaining device, 476 * We need to retry the write without FailFast. 477 */ 478 if (!test_bit(Faulty, &rdev->flags)) 479 set_bit(R1BIO_WriteError, &r1_bio->state); 480 else { 481 /* Finished with this branch */ 482 r1_bio->bios[mirror] = NULL; 483 to_put = bio; 484 } 485 } else { 486 /* 487 * Set R1BIO_Uptodate in our master bio, so that we 488 * will return a good error code for to the higher 489 * levels even if IO on some other mirrored buffer 490 * fails. 491 * 492 * The 'master' represents the composite IO operation 493 * to user-side. So if something waits for IO, then it 494 * will wait for the 'master' bio. 495 */ 496 sector_t first_bad; 497 int bad_sectors; 498 499 r1_bio->bios[mirror] = NULL; 500 to_put = bio; 501 /* 502 * Do not set R1BIO_Uptodate if the current device is 503 * rebuilding or Faulty. This is because we cannot use 504 * such device for properly reading the data back (we could 505 * potentially use it, if the current write would have felt 506 * before rdev->recovery_offset, but for simplicity we don't 507 * check this here. 508 */ 509 if (test_bit(In_sync, &rdev->flags) && 510 !test_bit(Faulty, &rdev->flags)) 511 set_bit(R1BIO_Uptodate, &r1_bio->state); 512 513 /* Maybe we can clear some bad blocks. */ 514 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors, 515 &first_bad, &bad_sectors) && !discard_error) { 516 r1_bio->bios[mirror] = IO_MADE_GOOD; 517 set_bit(R1BIO_MadeGood, &r1_bio->state); 518 } 519 } 520 521 if (behind) { 522 if (test_bit(CollisionCheck, &rdev->flags)) 523 remove_serial(rdev, lo, hi); 524 if (test_bit(WriteMostly, &rdev->flags)) 525 atomic_dec(&r1_bio->behind_remaining); 526 527 /* 528 * In behind mode, we ACK the master bio once the I/O 529 * has safely reached all non-writemostly 530 * disks. Setting the Returned bit ensures that this 531 * gets done only once -- we don't ever want to return 532 * -EIO here, instead we'll wait 533 */ 534 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) && 535 test_bit(R1BIO_Uptodate, &r1_bio->state)) { 536 /* Maybe we can return now */ 537 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 538 struct bio *mbio = r1_bio->master_bio; 539 pr_debug("raid1: behind end write sectors" 540 " %llu-%llu\n", 541 (unsigned long long) mbio->bi_iter.bi_sector, 542 (unsigned long long) bio_end_sector(mbio) - 1); 543 call_bio_endio(r1_bio); 544 } 545 } 546 } else if (rdev->mddev->serialize_policy) 547 remove_serial(rdev, lo, hi); 548 if (r1_bio->bios[mirror] == NULL) 549 rdev_dec_pending(rdev, conf->mddev); 550 551 /* 552 * Let's see if all mirrored write operations have finished 553 * already. 554 */ 555 r1_bio_write_done(r1_bio); 556 557 if (to_put) 558 bio_put(to_put); 559 } 560 561 static sector_t align_to_barrier_unit_end(sector_t start_sector, 562 sector_t sectors) 563 { 564 sector_t len; 565 566 WARN_ON(sectors == 0); 567 /* 568 * len is the number of sectors from start_sector to end of the 569 * barrier unit which start_sector belongs to. 570 */ 571 len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) - 572 start_sector; 573 574 if (len > sectors) 575 len = sectors; 576 577 return len; 578 } 579 580 /* 581 * This routine returns the disk from which the requested read should 582 * be done. There is a per-array 'next expected sequential IO' sector 583 * number - if this matches on the next IO then we use the last disk. 584 * There is also a per-disk 'last know head position' sector that is 585 * maintained from IRQ contexts, both the normal and the resync IO 586 * completion handlers update this position correctly. If there is no 587 * perfect sequential match then we pick the disk whose head is closest. 588 * 589 * If there are 2 mirrors in the same 2 devices, performance degrades 590 * because position is mirror, not device based. 591 * 592 * The rdev for the device selected will have nr_pending incremented. 593 */ 594 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors) 595 { 596 const sector_t this_sector = r1_bio->sector; 597 int sectors; 598 int best_good_sectors; 599 int best_disk, best_dist_disk, best_pending_disk; 600 int has_nonrot_disk; 601 int disk; 602 sector_t best_dist; 603 unsigned int min_pending; 604 struct md_rdev *rdev; 605 int choose_first; 606 int choose_next_idle; 607 608 rcu_read_lock(); 609 /* 610 * Check if we can balance. We can balance on the whole 611 * device if no resync is going on, or below the resync window. 612 * We take the first readable disk when above the resync window. 613 */ 614 retry: 615 sectors = r1_bio->sectors; 616 best_disk = -1; 617 best_dist_disk = -1; 618 best_dist = MaxSector; 619 best_pending_disk = -1; 620 min_pending = UINT_MAX; 621 best_good_sectors = 0; 622 has_nonrot_disk = 0; 623 choose_next_idle = 0; 624 clear_bit(R1BIO_FailFast, &r1_bio->state); 625 626 if ((conf->mddev->recovery_cp < this_sector + sectors) || 627 (mddev_is_clustered(conf->mddev) && 628 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector, 629 this_sector + sectors))) 630 choose_first = 1; 631 else 632 choose_first = 0; 633 634 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) { 635 sector_t dist; 636 sector_t first_bad; 637 int bad_sectors; 638 unsigned int pending; 639 bool nonrot; 640 641 rdev = rcu_dereference(conf->mirrors[disk].rdev); 642 if (r1_bio->bios[disk] == IO_BLOCKED 643 || rdev == NULL 644 || test_bit(Faulty, &rdev->flags)) 645 continue; 646 if (!test_bit(In_sync, &rdev->flags) && 647 rdev->recovery_offset < this_sector + sectors) 648 continue; 649 if (test_bit(WriteMostly, &rdev->flags)) { 650 /* Don't balance among write-mostly, just 651 * use the first as a last resort */ 652 if (best_dist_disk < 0) { 653 if (is_badblock(rdev, this_sector, sectors, 654 &first_bad, &bad_sectors)) { 655 if (first_bad <= this_sector) 656 /* Cannot use this */ 657 continue; 658 best_good_sectors = first_bad - this_sector; 659 } else 660 best_good_sectors = sectors; 661 best_dist_disk = disk; 662 best_pending_disk = disk; 663 } 664 continue; 665 } 666 /* This is a reasonable device to use. It might 667 * even be best. 668 */ 669 if (is_badblock(rdev, this_sector, sectors, 670 &first_bad, &bad_sectors)) { 671 if (best_dist < MaxSector) 672 /* already have a better device */ 673 continue; 674 if (first_bad <= this_sector) { 675 /* cannot read here. If this is the 'primary' 676 * device, then we must not read beyond 677 * bad_sectors from another device.. 678 */ 679 bad_sectors -= (this_sector - first_bad); 680 if (choose_first && sectors > bad_sectors) 681 sectors = bad_sectors; 682 if (best_good_sectors > sectors) 683 best_good_sectors = sectors; 684 685 } else { 686 sector_t good_sectors = first_bad - this_sector; 687 if (good_sectors > best_good_sectors) { 688 best_good_sectors = good_sectors; 689 best_disk = disk; 690 } 691 if (choose_first) 692 break; 693 } 694 continue; 695 } else { 696 if ((sectors > best_good_sectors) && (best_disk >= 0)) 697 best_disk = -1; 698 best_good_sectors = sectors; 699 } 700 701 if (best_disk >= 0) 702 /* At least two disks to choose from so failfast is OK */ 703 set_bit(R1BIO_FailFast, &r1_bio->state); 704 705 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev)); 706 has_nonrot_disk |= nonrot; 707 pending = atomic_read(&rdev->nr_pending); 708 dist = abs(this_sector - conf->mirrors[disk].head_position); 709 if (choose_first) { 710 best_disk = disk; 711 break; 712 } 713 /* Don't change to another disk for sequential reads */ 714 if (conf->mirrors[disk].next_seq_sect == this_sector 715 || dist == 0) { 716 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9; 717 struct raid1_info *mirror = &conf->mirrors[disk]; 718 719 best_disk = disk; 720 /* 721 * If buffered sequential IO size exceeds optimal 722 * iosize, check if there is idle disk. If yes, choose 723 * the idle disk. read_balance could already choose an 724 * idle disk before noticing it's a sequential IO in 725 * this disk. This doesn't matter because this disk 726 * will idle, next time it will be utilized after the 727 * first disk has IO size exceeds optimal iosize. In 728 * this way, iosize of the first disk will be optimal 729 * iosize at least. iosize of the second disk might be 730 * small, but not a big deal since when the second disk 731 * starts IO, the first disk is likely still busy. 732 */ 733 if (nonrot && opt_iosize > 0 && 734 mirror->seq_start != MaxSector && 735 mirror->next_seq_sect > opt_iosize && 736 mirror->next_seq_sect - opt_iosize >= 737 mirror->seq_start) { 738 choose_next_idle = 1; 739 continue; 740 } 741 break; 742 } 743 744 if (choose_next_idle) 745 continue; 746 747 if (min_pending > pending) { 748 min_pending = pending; 749 best_pending_disk = disk; 750 } 751 752 if (dist < best_dist) { 753 best_dist = dist; 754 best_dist_disk = disk; 755 } 756 } 757 758 /* 759 * If all disks are rotational, choose the closest disk. If any disk is 760 * non-rotational, choose the disk with less pending request even the 761 * disk is rotational, which might/might not be optimal for raids with 762 * mixed ratation/non-rotational disks depending on workload. 763 */ 764 if (best_disk == -1) { 765 if (has_nonrot_disk || min_pending == 0) 766 best_disk = best_pending_disk; 767 else 768 best_disk = best_dist_disk; 769 } 770 771 if (best_disk >= 0) { 772 rdev = rcu_dereference(conf->mirrors[best_disk].rdev); 773 if (!rdev) 774 goto retry; 775 atomic_inc(&rdev->nr_pending); 776 sectors = best_good_sectors; 777 778 if (conf->mirrors[best_disk].next_seq_sect != this_sector) 779 conf->mirrors[best_disk].seq_start = this_sector; 780 781 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors; 782 } 783 rcu_read_unlock(); 784 *max_sectors = sectors; 785 786 return best_disk; 787 } 788 789 static void flush_bio_list(struct r1conf *conf, struct bio *bio) 790 { 791 /* flush any pending bitmap writes to disk before proceeding w/ I/O */ 792 md_bitmap_unplug(conf->mddev->bitmap); 793 wake_up(&conf->wait_barrier); 794 795 while (bio) { /* submit pending writes */ 796 struct bio *next = bio->bi_next; 797 struct md_rdev *rdev = (void *)bio->bi_disk; 798 bio->bi_next = NULL; 799 bio_set_dev(bio, rdev->bdev); 800 if (test_bit(Faulty, &rdev->flags)) { 801 bio_io_error(bio); 802 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) && 803 !blk_queue_discard(bio->bi_disk->queue))) 804 /* Just ignore it */ 805 bio_endio(bio); 806 else 807 submit_bio_noacct(bio); 808 bio = next; 809 cond_resched(); 810 } 811 } 812 813 static void flush_pending_writes(struct r1conf *conf) 814 { 815 /* Any writes that have been queued but are awaiting 816 * bitmap updates get flushed here. 817 */ 818 spin_lock_irq(&conf->device_lock); 819 820 if (conf->pending_bio_list.head) { 821 struct blk_plug plug; 822 struct bio *bio; 823 824 bio = bio_list_get(&conf->pending_bio_list); 825 conf->pending_count = 0; 826 spin_unlock_irq(&conf->device_lock); 827 828 /* 829 * As this is called in a wait_event() loop (see freeze_array), 830 * current->state might be TASK_UNINTERRUPTIBLE which will 831 * cause a warning when we prepare to wait again. As it is 832 * rare that this path is taken, it is perfectly safe to force 833 * us to go around the wait_event() loop again, so the warning 834 * is a false-positive. Silence the warning by resetting 835 * thread state 836 */ 837 __set_current_state(TASK_RUNNING); 838 blk_start_plug(&plug); 839 flush_bio_list(conf, bio); 840 blk_finish_plug(&plug); 841 } else 842 spin_unlock_irq(&conf->device_lock); 843 } 844 845 /* Barriers.... 846 * Sometimes we need to suspend IO while we do something else, 847 * either some resync/recovery, or reconfigure the array. 848 * To do this we raise a 'barrier'. 849 * The 'barrier' is a counter that can be raised multiple times 850 * to count how many activities are happening which preclude 851 * normal IO. 852 * We can only raise the barrier if there is no pending IO. 853 * i.e. if nr_pending == 0. 854 * We choose only to raise the barrier if no-one is waiting for the 855 * barrier to go down. This means that as soon as an IO request 856 * is ready, no other operations which require a barrier will start 857 * until the IO request has had a chance. 858 * 859 * So: regular IO calls 'wait_barrier'. When that returns there 860 * is no backgroup IO happening, It must arrange to call 861 * allow_barrier when it has finished its IO. 862 * backgroup IO calls must call raise_barrier. Once that returns 863 * there is no normal IO happeing. It must arrange to call 864 * lower_barrier when the particular background IO completes. 865 * 866 * If resync/recovery is interrupted, returns -EINTR; 867 * Otherwise, returns 0. 868 */ 869 static int raise_barrier(struct r1conf *conf, sector_t sector_nr) 870 { 871 int idx = sector_to_idx(sector_nr); 872 873 spin_lock_irq(&conf->resync_lock); 874 875 /* Wait until no block IO is waiting */ 876 wait_event_lock_irq(conf->wait_barrier, 877 !atomic_read(&conf->nr_waiting[idx]), 878 conf->resync_lock); 879 880 /* block any new IO from starting */ 881 atomic_inc(&conf->barrier[idx]); 882 /* 883 * In raise_barrier() we firstly increase conf->barrier[idx] then 884 * check conf->nr_pending[idx]. In _wait_barrier() we firstly 885 * increase conf->nr_pending[idx] then check conf->barrier[idx]. 886 * A memory barrier here to make sure conf->nr_pending[idx] won't 887 * be fetched before conf->barrier[idx] is increased. Otherwise 888 * there will be a race between raise_barrier() and _wait_barrier(). 889 */ 890 smp_mb__after_atomic(); 891 892 /* For these conditions we must wait: 893 * A: while the array is in frozen state 894 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O 895 * existing in corresponding I/O barrier bucket. 896 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches 897 * max resync count which allowed on current I/O barrier bucket. 898 */ 899 wait_event_lock_irq(conf->wait_barrier, 900 (!conf->array_frozen && 901 !atomic_read(&conf->nr_pending[idx]) && 902 atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) || 903 test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery), 904 conf->resync_lock); 905 906 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) { 907 atomic_dec(&conf->barrier[idx]); 908 spin_unlock_irq(&conf->resync_lock); 909 wake_up(&conf->wait_barrier); 910 return -EINTR; 911 } 912 913 atomic_inc(&conf->nr_sync_pending); 914 spin_unlock_irq(&conf->resync_lock); 915 916 return 0; 917 } 918 919 static void lower_barrier(struct r1conf *conf, sector_t sector_nr) 920 { 921 int idx = sector_to_idx(sector_nr); 922 923 BUG_ON(atomic_read(&conf->barrier[idx]) <= 0); 924 925 atomic_dec(&conf->barrier[idx]); 926 atomic_dec(&conf->nr_sync_pending); 927 wake_up(&conf->wait_barrier); 928 } 929 930 static void _wait_barrier(struct r1conf *conf, int idx) 931 { 932 /* 933 * We need to increase conf->nr_pending[idx] very early here, 934 * then raise_barrier() can be blocked when it waits for 935 * conf->nr_pending[idx] to be 0. Then we can avoid holding 936 * conf->resync_lock when there is no barrier raised in same 937 * barrier unit bucket. Also if the array is frozen, I/O 938 * should be blocked until array is unfrozen. 939 */ 940 atomic_inc(&conf->nr_pending[idx]); 941 /* 942 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then 943 * check conf->barrier[idx]. In raise_barrier() we firstly increase 944 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory 945 * barrier is necessary here to make sure conf->barrier[idx] won't be 946 * fetched before conf->nr_pending[idx] is increased. Otherwise there 947 * will be a race between _wait_barrier() and raise_barrier(). 948 */ 949 smp_mb__after_atomic(); 950 951 /* 952 * Don't worry about checking two atomic_t variables at same time 953 * here. If during we check conf->barrier[idx], the array is 954 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is 955 * 0, it is safe to return and make the I/O continue. Because the 956 * array is frozen, all I/O returned here will eventually complete 957 * or be queued, no race will happen. See code comment in 958 * frozen_array(). 959 */ 960 if (!READ_ONCE(conf->array_frozen) && 961 !atomic_read(&conf->barrier[idx])) 962 return; 963 964 /* 965 * After holding conf->resync_lock, conf->nr_pending[idx] 966 * should be decreased before waiting for barrier to drop. 967 * Otherwise, we may encounter a race condition because 968 * raise_barrer() might be waiting for conf->nr_pending[idx] 969 * to be 0 at same time. 970 */ 971 spin_lock_irq(&conf->resync_lock); 972 atomic_inc(&conf->nr_waiting[idx]); 973 atomic_dec(&conf->nr_pending[idx]); 974 /* 975 * In case freeze_array() is waiting for 976 * get_unqueued_pending() == extra 977 */ 978 wake_up(&conf->wait_barrier); 979 /* Wait for the barrier in same barrier unit bucket to drop. */ 980 wait_event_lock_irq(conf->wait_barrier, 981 !conf->array_frozen && 982 !atomic_read(&conf->barrier[idx]), 983 conf->resync_lock); 984 atomic_inc(&conf->nr_pending[idx]); 985 atomic_dec(&conf->nr_waiting[idx]); 986 spin_unlock_irq(&conf->resync_lock); 987 } 988 989 static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr) 990 { 991 int idx = sector_to_idx(sector_nr); 992 993 /* 994 * Very similar to _wait_barrier(). The difference is, for read 995 * I/O we don't need wait for sync I/O, but if the whole array 996 * is frozen, the read I/O still has to wait until the array is 997 * unfrozen. Since there is no ordering requirement with 998 * conf->barrier[idx] here, memory barrier is unnecessary as well. 999 */ 1000 atomic_inc(&conf->nr_pending[idx]); 1001 1002 if (!READ_ONCE(conf->array_frozen)) 1003 return; 1004 1005 spin_lock_irq(&conf->resync_lock); 1006 atomic_inc(&conf->nr_waiting[idx]); 1007 atomic_dec(&conf->nr_pending[idx]); 1008 /* 1009 * In case freeze_array() is waiting for 1010 * get_unqueued_pending() == extra 1011 */ 1012 wake_up(&conf->wait_barrier); 1013 /* Wait for array to be unfrozen */ 1014 wait_event_lock_irq(conf->wait_barrier, 1015 !conf->array_frozen, 1016 conf->resync_lock); 1017 atomic_inc(&conf->nr_pending[idx]); 1018 atomic_dec(&conf->nr_waiting[idx]); 1019 spin_unlock_irq(&conf->resync_lock); 1020 } 1021 1022 static void wait_barrier(struct r1conf *conf, sector_t sector_nr) 1023 { 1024 int idx = sector_to_idx(sector_nr); 1025 1026 _wait_barrier(conf, idx); 1027 } 1028 1029 static void _allow_barrier(struct r1conf *conf, int idx) 1030 { 1031 atomic_dec(&conf->nr_pending[idx]); 1032 wake_up(&conf->wait_barrier); 1033 } 1034 1035 static void allow_barrier(struct r1conf *conf, sector_t sector_nr) 1036 { 1037 int idx = sector_to_idx(sector_nr); 1038 1039 _allow_barrier(conf, idx); 1040 } 1041 1042 /* conf->resync_lock should be held */ 1043 static int get_unqueued_pending(struct r1conf *conf) 1044 { 1045 int idx, ret; 1046 1047 ret = atomic_read(&conf->nr_sync_pending); 1048 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) 1049 ret += atomic_read(&conf->nr_pending[idx]) - 1050 atomic_read(&conf->nr_queued[idx]); 1051 1052 return ret; 1053 } 1054 1055 static void freeze_array(struct r1conf *conf, int extra) 1056 { 1057 /* Stop sync I/O and normal I/O and wait for everything to 1058 * go quiet. 1059 * This is called in two situations: 1060 * 1) management command handlers (reshape, remove disk, quiesce). 1061 * 2) one normal I/O request failed. 1062 1063 * After array_frozen is set to 1, new sync IO will be blocked at 1064 * raise_barrier(), and new normal I/O will blocked at _wait_barrier() 1065 * or wait_read_barrier(). The flying I/Os will either complete or be 1066 * queued. When everything goes quite, there are only queued I/Os left. 1067 1068 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the 1069 * barrier bucket index which this I/O request hits. When all sync and 1070 * normal I/O are queued, sum of all conf->nr_pending[] will match sum 1071 * of all conf->nr_queued[]. But normal I/O failure is an exception, 1072 * in handle_read_error(), we may call freeze_array() before trying to 1073 * fix the read error. In this case, the error read I/O is not queued, 1074 * so get_unqueued_pending() == 1. 1075 * 1076 * Therefore before this function returns, we need to wait until 1077 * get_unqueued_pendings(conf) gets equal to extra. For 1078 * normal I/O context, extra is 1, in rested situations extra is 0. 1079 */ 1080 spin_lock_irq(&conf->resync_lock); 1081 conf->array_frozen = 1; 1082 raid1_log(conf->mddev, "wait freeze"); 1083 wait_event_lock_irq_cmd( 1084 conf->wait_barrier, 1085 get_unqueued_pending(conf) == extra, 1086 conf->resync_lock, 1087 flush_pending_writes(conf)); 1088 spin_unlock_irq(&conf->resync_lock); 1089 } 1090 static void unfreeze_array(struct r1conf *conf) 1091 { 1092 /* reverse the effect of the freeze */ 1093 spin_lock_irq(&conf->resync_lock); 1094 conf->array_frozen = 0; 1095 spin_unlock_irq(&conf->resync_lock); 1096 wake_up(&conf->wait_barrier); 1097 } 1098 1099 static void alloc_behind_master_bio(struct r1bio *r1_bio, 1100 struct bio *bio) 1101 { 1102 int size = bio->bi_iter.bi_size; 1103 unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1104 int i = 0; 1105 struct bio *behind_bio = NULL; 1106 1107 behind_bio = bio_alloc_mddev(GFP_NOIO, vcnt, r1_bio->mddev); 1108 if (!behind_bio) 1109 return; 1110 1111 /* discard op, we don't support writezero/writesame yet */ 1112 if (!bio_has_data(bio)) { 1113 behind_bio->bi_iter.bi_size = size; 1114 goto skip_copy; 1115 } 1116 1117 behind_bio->bi_write_hint = bio->bi_write_hint; 1118 1119 while (i < vcnt && size) { 1120 struct page *page; 1121 int len = min_t(int, PAGE_SIZE, size); 1122 1123 page = alloc_page(GFP_NOIO); 1124 if (unlikely(!page)) 1125 goto free_pages; 1126 1127 bio_add_page(behind_bio, page, len, 0); 1128 1129 size -= len; 1130 i++; 1131 } 1132 1133 bio_copy_data(behind_bio, bio); 1134 skip_copy: 1135 r1_bio->behind_master_bio = behind_bio; 1136 set_bit(R1BIO_BehindIO, &r1_bio->state); 1137 1138 return; 1139 1140 free_pages: 1141 pr_debug("%dB behind alloc failed, doing sync I/O\n", 1142 bio->bi_iter.bi_size); 1143 bio_free_pages(behind_bio); 1144 bio_put(behind_bio); 1145 } 1146 1147 struct raid1_plug_cb { 1148 struct blk_plug_cb cb; 1149 struct bio_list pending; 1150 int pending_cnt; 1151 }; 1152 1153 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule) 1154 { 1155 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, 1156 cb); 1157 struct mddev *mddev = plug->cb.data; 1158 struct r1conf *conf = mddev->private; 1159 struct bio *bio; 1160 1161 if (from_schedule || current->bio_list) { 1162 spin_lock_irq(&conf->device_lock); 1163 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1164 conf->pending_count += plug->pending_cnt; 1165 spin_unlock_irq(&conf->device_lock); 1166 wake_up(&conf->wait_barrier); 1167 md_wakeup_thread(mddev->thread); 1168 kfree(plug); 1169 return; 1170 } 1171 1172 /* we aren't scheduling, so we can do the write-out directly. */ 1173 bio = bio_list_get(&plug->pending); 1174 flush_bio_list(conf, bio); 1175 kfree(plug); 1176 } 1177 1178 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio) 1179 { 1180 r1_bio->master_bio = bio; 1181 r1_bio->sectors = bio_sectors(bio); 1182 r1_bio->state = 0; 1183 r1_bio->mddev = mddev; 1184 r1_bio->sector = bio->bi_iter.bi_sector; 1185 } 1186 1187 static inline struct r1bio * 1188 alloc_r1bio(struct mddev *mddev, struct bio *bio) 1189 { 1190 struct r1conf *conf = mddev->private; 1191 struct r1bio *r1_bio; 1192 1193 r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO); 1194 /* Ensure no bio records IO_BLOCKED */ 1195 memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0])); 1196 init_r1bio(r1_bio, mddev, bio); 1197 return r1_bio; 1198 } 1199 1200 static void raid1_read_request(struct mddev *mddev, struct bio *bio, 1201 int max_read_sectors, struct r1bio *r1_bio) 1202 { 1203 struct r1conf *conf = mddev->private; 1204 struct raid1_info *mirror; 1205 struct bio *read_bio; 1206 struct bitmap *bitmap = mddev->bitmap; 1207 const int op = bio_op(bio); 1208 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC); 1209 int max_sectors; 1210 int rdisk; 1211 bool print_msg = !!r1_bio; 1212 char b[BDEVNAME_SIZE]; 1213 1214 /* 1215 * If r1_bio is set, we are blocking the raid1d thread 1216 * so there is a tiny risk of deadlock. So ask for 1217 * emergency memory if needed. 1218 */ 1219 gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO; 1220 1221 if (print_msg) { 1222 /* Need to get the block device name carefully */ 1223 struct md_rdev *rdev; 1224 rcu_read_lock(); 1225 rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev); 1226 if (rdev) 1227 bdevname(rdev->bdev, b); 1228 else 1229 strcpy(b, "???"); 1230 rcu_read_unlock(); 1231 } 1232 1233 /* 1234 * Still need barrier for READ in case that whole 1235 * array is frozen. 1236 */ 1237 wait_read_barrier(conf, bio->bi_iter.bi_sector); 1238 1239 if (!r1_bio) 1240 r1_bio = alloc_r1bio(mddev, bio); 1241 else 1242 init_r1bio(r1_bio, mddev, bio); 1243 r1_bio->sectors = max_read_sectors; 1244 1245 /* 1246 * make_request() can abort the operation when read-ahead is being 1247 * used and no empty request is available. 1248 */ 1249 rdisk = read_balance(conf, r1_bio, &max_sectors); 1250 1251 if (rdisk < 0) { 1252 /* couldn't find anywhere to read from */ 1253 if (print_msg) { 1254 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n", 1255 mdname(mddev), 1256 b, 1257 (unsigned long long)r1_bio->sector); 1258 } 1259 raid_end_bio_io(r1_bio); 1260 return; 1261 } 1262 mirror = conf->mirrors + rdisk; 1263 1264 if (print_msg) 1265 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n", 1266 mdname(mddev), 1267 (unsigned long long)r1_bio->sector, 1268 bdevname(mirror->rdev->bdev, b)); 1269 1270 if (test_bit(WriteMostly, &mirror->rdev->flags) && 1271 bitmap) { 1272 /* 1273 * Reading from a write-mostly device must take care not to 1274 * over-take any writes that are 'behind' 1275 */ 1276 raid1_log(mddev, "wait behind writes"); 1277 wait_event(bitmap->behind_wait, 1278 atomic_read(&bitmap->behind_writes) == 0); 1279 } 1280 1281 if (max_sectors < bio_sectors(bio)) { 1282 struct bio *split = bio_split(bio, max_sectors, 1283 gfp, &conf->bio_split); 1284 bio_chain(split, bio); 1285 submit_bio_noacct(bio); 1286 bio = split; 1287 r1_bio->master_bio = bio; 1288 r1_bio->sectors = max_sectors; 1289 } 1290 1291 r1_bio->read_disk = rdisk; 1292 1293 read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set); 1294 1295 r1_bio->bios[rdisk] = read_bio; 1296 1297 read_bio->bi_iter.bi_sector = r1_bio->sector + 1298 mirror->rdev->data_offset; 1299 bio_set_dev(read_bio, mirror->rdev->bdev); 1300 read_bio->bi_end_io = raid1_end_read_request; 1301 bio_set_op_attrs(read_bio, op, do_sync); 1302 if (test_bit(FailFast, &mirror->rdev->flags) && 1303 test_bit(R1BIO_FailFast, &r1_bio->state)) 1304 read_bio->bi_opf |= MD_FAILFAST; 1305 read_bio->bi_private = r1_bio; 1306 1307 if (mddev->gendisk) 1308 trace_block_bio_remap(read_bio->bi_disk->queue, read_bio, 1309 disk_devt(mddev->gendisk), r1_bio->sector); 1310 1311 submit_bio_noacct(read_bio); 1312 } 1313 1314 static void raid1_write_request(struct mddev *mddev, struct bio *bio, 1315 int max_write_sectors) 1316 { 1317 struct r1conf *conf = mddev->private; 1318 struct r1bio *r1_bio; 1319 int i, disks; 1320 struct bitmap *bitmap = mddev->bitmap; 1321 unsigned long flags; 1322 struct md_rdev *blocked_rdev; 1323 struct blk_plug_cb *cb; 1324 struct raid1_plug_cb *plug = NULL; 1325 int first_clone; 1326 int max_sectors; 1327 1328 if (mddev_is_clustered(mddev) && 1329 md_cluster_ops->area_resyncing(mddev, WRITE, 1330 bio->bi_iter.bi_sector, bio_end_sector(bio))) { 1331 1332 DEFINE_WAIT(w); 1333 for (;;) { 1334 prepare_to_wait(&conf->wait_barrier, 1335 &w, TASK_IDLE); 1336 if (!md_cluster_ops->area_resyncing(mddev, WRITE, 1337 bio->bi_iter.bi_sector, 1338 bio_end_sector(bio))) 1339 break; 1340 schedule(); 1341 } 1342 finish_wait(&conf->wait_barrier, &w); 1343 } 1344 1345 /* 1346 * Register the new request and wait if the reconstruction 1347 * thread has put up a bar for new requests. 1348 * Continue immediately if no resync is active currently. 1349 */ 1350 wait_barrier(conf, bio->bi_iter.bi_sector); 1351 1352 r1_bio = alloc_r1bio(mddev, bio); 1353 r1_bio->sectors = max_write_sectors; 1354 1355 if (conf->pending_count >= max_queued_requests) { 1356 md_wakeup_thread(mddev->thread); 1357 raid1_log(mddev, "wait queued"); 1358 wait_event(conf->wait_barrier, 1359 conf->pending_count < max_queued_requests); 1360 } 1361 /* first select target devices under rcu_lock and 1362 * inc refcount on their rdev. Record them by setting 1363 * bios[x] to bio 1364 * If there are known/acknowledged bad blocks on any device on 1365 * which we have seen a write error, we want to avoid writing those 1366 * blocks. 1367 * This potentially requires several writes to write around 1368 * the bad blocks. Each set of writes gets it's own r1bio 1369 * with a set of bios attached. 1370 */ 1371 1372 disks = conf->raid_disks * 2; 1373 retry_write: 1374 blocked_rdev = NULL; 1375 rcu_read_lock(); 1376 max_sectors = r1_bio->sectors; 1377 for (i = 0; i < disks; i++) { 1378 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1379 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1380 atomic_inc(&rdev->nr_pending); 1381 blocked_rdev = rdev; 1382 break; 1383 } 1384 r1_bio->bios[i] = NULL; 1385 if (!rdev || test_bit(Faulty, &rdev->flags)) { 1386 if (i < conf->raid_disks) 1387 set_bit(R1BIO_Degraded, &r1_bio->state); 1388 continue; 1389 } 1390 1391 atomic_inc(&rdev->nr_pending); 1392 if (test_bit(WriteErrorSeen, &rdev->flags)) { 1393 sector_t first_bad; 1394 int bad_sectors; 1395 int is_bad; 1396 1397 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors, 1398 &first_bad, &bad_sectors); 1399 if (is_bad < 0) { 1400 /* mustn't write here until the bad block is 1401 * acknowledged*/ 1402 set_bit(BlockedBadBlocks, &rdev->flags); 1403 blocked_rdev = rdev; 1404 break; 1405 } 1406 if (is_bad && first_bad <= r1_bio->sector) { 1407 /* Cannot write here at all */ 1408 bad_sectors -= (r1_bio->sector - first_bad); 1409 if (bad_sectors < max_sectors) 1410 /* mustn't write more than bad_sectors 1411 * to other devices yet 1412 */ 1413 max_sectors = bad_sectors; 1414 rdev_dec_pending(rdev, mddev); 1415 /* We don't set R1BIO_Degraded as that 1416 * only applies if the disk is 1417 * missing, so it might be re-added, 1418 * and we want to know to recover this 1419 * chunk. 1420 * In this case the device is here, 1421 * and the fact that this chunk is not 1422 * in-sync is recorded in the bad 1423 * block log 1424 */ 1425 continue; 1426 } 1427 if (is_bad) { 1428 int good_sectors = first_bad - r1_bio->sector; 1429 if (good_sectors < max_sectors) 1430 max_sectors = good_sectors; 1431 } 1432 } 1433 r1_bio->bios[i] = bio; 1434 } 1435 rcu_read_unlock(); 1436 1437 if (unlikely(blocked_rdev)) { 1438 /* Wait for this device to become unblocked */ 1439 int j; 1440 1441 for (j = 0; j < i; j++) 1442 if (r1_bio->bios[j]) 1443 rdev_dec_pending(conf->mirrors[j].rdev, mddev); 1444 r1_bio->state = 0; 1445 allow_barrier(conf, bio->bi_iter.bi_sector); 1446 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk); 1447 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1448 wait_barrier(conf, bio->bi_iter.bi_sector); 1449 goto retry_write; 1450 } 1451 1452 if (max_sectors < bio_sectors(bio)) { 1453 struct bio *split = bio_split(bio, max_sectors, 1454 GFP_NOIO, &conf->bio_split); 1455 bio_chain(split, bio); 1456 submit_bio_noacct(bio); 1457 bio = split; 1458 r1_bio->master_bio = bio; 1459 r1_bio->sectors = max_sectors; 1460 } 1461 1462 atomic_set(&r1_bio->remaining, 1); 1463 atomic_set(&r1_bio->behind_remaining, 0); 1464 1465 first_clone = 1; 1466 1467 for (i = 0; i < disks; i++) { 1468 struct bio *mbio = NULL; 1469 struct md_rdev *rdev = conf->mirrors[i].rdev; 1470 if (!r1_bio->bios[i]) 1471 continue; 1472 1473 if (first_clone) { 1474 /* do behind I/O ? 1475 * Not if there are too many, or cannot 1476 * allocate memory, or a reader on WriteMostly 1477 * is waiting for behind writes to flush */ 1478 if (bitmap && 1479 (atomic_read(&bitmap->behind_writes) 1480 < mddev->bitmap_info.max_write_behind) && 1481 !waitqueue_active(&bitmap->behind_wait)) { 1482 alloc_behind_master_bio(r1_bio, bio); 1483 } 1484 1485 md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors, 1486 test_bit(R1BIO_BehindIO, &r1_bio->state)); 1487 first_clone = 0; 1488 } 1489 1490 if (r1_bio->behind_master_bio) 1491 mbio = bio_clone_fast(r1_bio->behind_master_bio, 1492 GFP_NOIO, &mddev->bio_set); 1493 else 1494 mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set); 1495 1496 if (r1_bio->behind_master_bio) { 1497 if (test_bit(CollisionCheck, &rdev->flags)) 1498 wait_for_serialization(rdev, r1_bio); 1499 if (test_bit(WriteMostly, &rdev->flags)) 1500 atomic_inc(&r1_bio->behind_remaining); 1501 } else if (mddev->serialize_policy) 1502 wait_for_serialization(rdev, r1_bio); 1503 1504 r1_bio->bios[i] = mbio; 1505 1506 mbio->bi_iter.bi_sector = (r1_bio->sector + 1507 conf->mirrors[i].rdev->data_offset); 1508 bio_set_dev(mbio, conf->mirrors[i].rdev->bdev); 1509 mbio->bi_end_io = raid1_end_write_request; 1510 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA)); 1511 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) && 1512 !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) && 1513 conf->raid_disks - mddev->degraded > 1) 1514 mbio->bi_opf |= MD_FAILFAST; 1515 mbio->bi_private = r1_bio; 1516 1517 atomic_inc(&r1_bio->remaining); 1518 1519 if (mddev->gendisk) 1520 trace_block_bio_remap(mbio->bi_disk->queue, 1521 mbio, disk_devt(mddev->gendisk), 1522 r1_bio->sector); 1523 /* flush_pending_writes() needs access to the rdev so...*/ 1524 mbio->bi_disk = (void *)conf->mirrors[i].rdev; 1525 1526 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug)); 1527 if (cb) 1528 plug = container_of(cb, struct raid1_plug_cb, cb); 1529 else 1530 plug = NULL; 1531 if (plug) { 1532 bio_list_add(&plug->pending, mbio); 1533 plug->pending_cnt++; 1534 } else { 1535 spin_lock_irqsave(&conf->device_lock, flags); 1536 bio_list_add(&conf->pending_bio_list, mbio); 1537 conf->pending_count++; 1538 spin_unlock_irqrestore(&conf->device_lock, flags); 1539 md_wakeup_thread(mddev->thread); 1540 } 1541 } 1542 1543 r1_bio_write_done(r1_bio); 1544 1545 /* In case raid1d snuck in to freeze_array */ 1546 wake_up(&conf->wait_barrier); 1547 } 1548 1549 static bool raid1_make_request(struct mddev *mddev, struct bio *bio) 1550 { 1551 sector_t sectors; 1552 1553 if (unlikely(bio->bi_opf & REQ_PREFLUSH) 1554 && md_flush_request(mddev, bio)) 1555 return true; 1556 1557 /* 1558 * There is a limit to the maximum size, but 1559 * the read/write handler might find a lower limit 1560 * due to bad blocks. To avoid multiple splits, 1561 * we pass the maximum number of sectors down 1562 * and let the lower level perform the split. 1563 */ 1564 sectors = align_to_barrier_unit_end( 1565 bio->bi_iter.bi_sector, bio_sectors(bio)); 1566 1567 if (bio_data_dir(bio) == READ) 1568 raid1_read_request(mddev, bio, sectors, NULL); 1569 else { 1570 if (!md_write_start(mddev,bio)) 1571 return false; 1572 raid1_write_request(mddev, bio, sectors); 1573 } 1574 return true; 1575 } 1576 1577 static void raid1_status(struct seq_file *seq, struct mddev *mddev) 1578 { 1579 struct r1conf *conf = mddev->private; 1580 int i; 1581 1582 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 1583 conf->raid_disks - mddev->degraded); 1584 rcu_read_lock(); 1585 for (i = 0; i < conf->raid_disks; i++) { 1586 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1587 seq_printf(seq, "%s", 1588 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1589 } 1590 rcu_read_unlock(); 1591 seq_printf(seq, "]"); 1592 } 1593 1594 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev) 1595 { 1596 char b[BDEVNAME_SIZE]; 1597 struct r1conf *conf = mddev->private; 1598 unsigned long flags; 1599 1600 /* 1601 * If it is not operational, then we have already marked it as dead 1602 * else if it is the last working disks with "fail_last_dev == false", 1603 * ignore the error, let the next level up know. 1604 * else mark the drive as failed 1605 */ 1606 spin_lock_irqsave(&conf->device_lock, flags); 1607 if (test_bit(In_sync, &rdev->flags) && !mddev->fail_last_dev 1608 && (conf->raid_disks - mddev->degraded) == 1) { 1609 /* 1610 * Don't fail the drive, act as though we were just a 1611 * normal single drive. 1612 * However don't try a recovery from this drive as 1613 * it is very likely to fail. 1614 */ 1615 conf->recovery_disabled = mddev->recovery_disabled; 1616 spin_unlock_irqrestore(&conf->device_lock, flags); 1617 return; 1618 } 1619 set_bit(Blocked, &rdev->flags); 1620 if (test_and_clear_bit(In_sync, &rdev->flags)) 1621 mddev->degraded++; 1622 set_bit(Faulty, &rdev->flags); 1623 spin_unlock_irqrestore(&conf->device_lock, flags); 1624 /* 1625 * if recovery is running, make sure it aborts. 1626 */ 1627 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1628 set_mask_bits(&mddev->sb_flags, 0, 1629 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1630 pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n" 1631 "md/raid1:%s: Operation continuing on %d devices.\n", 1632 mdname(mddev), bdevname(rdev->bdev, b), 1633 mdname(mddev), conf->raid_disks - mddev->degraded); 1634 } 1635 1636 static void print_conf(struct r1conf *conf) 1637 { 1638 int i; 1639 1640 pr_debug("RAID1 conf printout:\n"); 1641 if (!conf) { 1642 pr_debug("(!conf)\n"); 1643 return; 1644 } 1645 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1646 conf->raid_disks); 1647 1648 rcu_read_lock(); 1649 for (i = 0; i < conf->raid_disks; i++) { 1650 char b[BDEVNAME_SIZE]; 1651 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1652 if (rdev) 1653 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n", 1654 i, !test_bit(In_sync, &rdev->flags), 1655 !test_bit(Faulty, &rdev->flags), 1656 bdevname(rdev->bdev,b)); 1657 } 1658 rcu_read_unlock(); 1659 } 1660 1661 static void close_sync(struct r1conf *conf) 1662 { 1663 int idx; 1664 1665 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) { 1666 _wait_barrier(conf, idx); 1667 _allow_barrier(conf, idx); 1668 } 1669 1670 mempool_exit(&conf->r1buf_pool); 1671 } 1672 1673 static int raid1_spare_active(struct mddev *mddev) 1674 { 1675 int i; 1676 struct r1conf *conf = mddev->private; 1677 int count = 0; 1678 unsigned long flags; 1679 1680 /* 1681 * Find all failed disks within the RAID1 configuration 1682 * and mark them readable. 1683 * Called under mddev lock, so rcu protection not needed. 1684 * device_lock used to avoid races with raid1_end_read_request 1685 * which expects 'In_sync' flags and ->degraded to be consistent. 1686 */ 1687 spin_lock_irqsave(&conf->device_lock, flags); 1688 for (i = 0; i < conf->raid_disks; i++) { 1689 struct md_rdev *rdev = conf->mirrors[i].rdev; 1690 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev; 1691 if (repl 1692 && !test_bit(Candidate, &repl->flags) 1693 && repl->recovery_offset == MaxSector 1694 && !test_bit(Faulty, &repl->flags) 1695 && !test_and_set_bit(In_sync, &repl->flags)) { 1696 /* replacement has just become active */ 1697 if (!rdev || 1698 !test_and_clear_bit(In_sync, &rdev->flags)) 1699 count++; 1700 if (rdev) { 1701 /* Replaced device not technically 1702 * faulty, but we need to be sure 1703 * it gets removed and never re-added 1704 */ 1705 set_bit(Faulty, &rdev->flags); 1706 sysfs_notify_dirent_safe( 1707 rdev->sysfs_state); 1708 } 1709 } 1710 if (rdev 1711 && rdev->recovery_offset == MaxSector 1712 && !test_bit(Faulty, &rdev->flags) 1713 && !test_and_set_bit(In_sync, &rdev->flags)) { 1714 count++; 1715 sysfs_notify_dirent_safe(rdev->sysfs_state); 1716 } 1717 } 1718 mddev->degraded -= count; 1719 spin_unlock_irqrestore(&conf->device_lock, flags); 1720 1721 print_conf(conf); 1722 return count; 1723 } 1724 1725 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1726 { 1727 struct r1conf *conf = mddev->private; 1728 int err = -EEXIST; 1729 int mirror = 0; 1730 struct raid1_info *p; 1731 int first = 0; 1732 int last = conf->raid_disks - 1; 1733 1734 if (mddev->recovery_disabled == conf->recovery_disabled) 1735 return -EBUSY; 1736 1737 if (md_integrity_add_rdev(rdev, mddev)) 1738 return -ENXIO; 1739 1740 if (rdev->raid_disk >= 0) 1741 first = last = rdev->raid_disk; 1742 1743 /* 1744 * find the disk ... but prefer rdev->saved_raid_disk 1745 * if possible. 1746 */ 1747 if (rdev->saved_raid_disk >= 0 && 1748 rdev->saved_raid_disk >= first && 1749 rdev->saved_raid_disk < conf->raid_disks && 1750 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1751 first = last = rdev->saved_raid_disk; 1752 1753 for (mirror = first; mirror <= last; mirror++) { 1754 p = conf->mirrors + mirror; 1755 if (!p->rdev) { 1756 if (mddev->gendisk) 1757 disk_stack_limits(mddev->gendisk, rdev->bdev, 1758 rdev->data_offset << 9); 1759 1760 p->head_position = 0; 1761 rdev->raid_disk = mirror; 1762 err = 0; 1763 /* As all devices are equivalent, we don't need a full recovery 1764 * if this was recently any drive of the array 1765 */ 1766 if (rdev->saved_raid_disk < 0) 1767 conf->fullsync = 1; 1768 rcu_assign_pointer(p->rdev, rdev); 1769 break; 1770 } 1771 if (test_bit(WantReplacement, &p->rdev->flags) && 1772 p[conf->raid_disks].rdev == NULL) { 1773 /* Add this device as a replacement */ 1774 clear_bit(In_sync, &rdev->flags); 1775 set_bit(Replacement, &rdev->flags); 1776 rdev->raid_disk = mirror; 1777 err = 0; 1778 conf->fullsync = 1; 1779 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev); 1780 break; 1781 } 1782 } 1783 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev))) 1784 blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue); 1785 print_conf(conf); 1786 return err; 1787 } 1788 1789 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1790 { 1791 struct r1conf *conf = mddev->private; 1792 int err = 0; 1793 int number = rdev->raid_disk; 1794 struct raid1_info *p = conf->mirrors + number; 1795 1796 if (rdev != p->rdev) 1797 p = conf->mirrors + conf->raid_disks + number; 1798 1799 print_conf(conf); 1800 if (rdev == p->rdev) { 1801 if (test_bit(In_sync, &rdev->flags) || 1802 atomic_read(&rdev->nr_pending)) { 1803 err = -EBUSY; 1804 goto abort; 1805 } 1806 /* Only remove non-faulty devices if recovery 1807 * is not possible. 1808 */ 1809 if (!test_bit(Faulty, &rdev->flags) && 1810 mddev->recovery_disabled != conf->recovery_disabled && 1811 mddev->degraded < conf->raid_disks) { 1812 err = -EBUSY; 1813 goto abort; 1814 } 1815 p->rdev = NULL; 1816 if (!test_bit(RemoveSynchronized, &rdev->flags)) { 1817 synchronize_rcu(); 1818 if (atomic_read(&rdev->nr_pending)) { 1819 /* lost the race, try later */ 1820 err = -EBUSY; 1821 p->rdev = rdev; 1822 goto abort; 1823 } 1824 } 1825 if (conf->mirrors[conf->raid_disks + number].rdev) { 1826 /* We just removed a device that is being replaced. 1827 * Move down the replacement. We drain all IO before 1828 * doing this to avoid confusion. 1829 */ 1830 struct md_rdev *repl = 1831 conf->mirrors[conf->raid_disks + number].rdev; 1832 freeze_array(conf, 0); 1833 if (atomic_read(&repl->nr_pending)) { 1834 /* It means that some queued IO of retry_list 1835 * hold repl. Thus, we cannot set replacement 1836 * as NULL, avoiding rdev NULL pointer 1837 * dereference in sync_request_write and 1838 * handle_write_finished. 1839 */ 1840 err = -EBUSY; 1841 unfreeze_array(conf); 1842 goto abort; 1843 } 1844 clear_bit(Replacement, &repl->flags); 1845 p->rdev = repl; 1846 conf->mirrors[conf->raid_disks + number].rdev = NULL; 1847 unfreeze_array(conf); 1848 } 1849 1850 clear_bit(WantReplacement, &rdev->flags); 1851 err = md_integrity_register(mddev); 1852 } 1853 abort: 1854 1855 print_conf(conf); 1856 return err; 1857 } 1858 1859 static void end_sync_read(struct bio *bio) 1860 { 1861 struct r1bio *r1_bio = get_resync_r1bio(bio); 1862 1863 update_head_pos(r1_bio->read_disk, r1_bio); 1864 1865 /* 1866 * we have read a block, now it needs to be re-written, 1867 * or re-read if the read failed. 1868 * We don't do much here, just schedule handling by raid1d 1869 */ 1870 if (!bio->bi_status) 1871 set_bit(R1BIO_Uptodate, &r1_bio->state); 1872 1873 if (atomic_dec_and_test(&r1_bio->remaining)) 1874 reschedule_retry(r1_bio); 1875 } 1876 1877 static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio) 1878 { 1879 sector_t sync_blocks = 0; 1880 sector_t s = r1_bio->sector; 1881 long sectors_to_go = r1_bio->sectors; 1882 1883 /* make sure these bits don't get cleared. */ 1884 do { 1885 md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1); 1886 s += sync_blocks; 1887 sectors_to_go -= sync_blocks; 1888 } while (sectors_to_go > 0); 1889 } 1890 1891 static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate) 1892 { 1893 if (atomic_dec_and_test(&r1_bio->remaining)) { 1894 struct mddev *mddev = r1_bio->mddev; 1895 int s = r1_bio->sectors; 1896 1897 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 1898 test_bit(R1BIO_WriteError, &r1_bio->state)) 1899 reschedule_retry(r1_bio); 1900 else { 1901 put_buf(r1_bio); 1902 md_done_sync(mddev, s, uptodate); 1903 } 1904 } 1905 } 1906 1907 static void end_sync_write(struct bio *bio) 1908 { 1909 int uptodate = !bio->bi_status; 1910 struct r1bio *r1_bio = get_resync_r1bio(bio); 1911 struct mddev *mddev = r1_bio->mddev; 1912 struct r1conf *conf = mddev->private; 1913 sector_t first_bad; 1914 int bad_sectors; 1915 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev; 1916 1917 if (!uptodate) { 1918 abort_sync_write(mddev, r1_bio); 1919 set_bit(WriteErrorSeen, &rdev->flags); 1920 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 1921 set_bit(MD_RECOVERY_NEEDED, & 1922 mddev->recovery); 1923 set_bit(R1BIO_WriteError, &r1_bio->state); 1924 } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors, 1925 &first_bad, &bad_sectors) && 1926 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev, 1927 r1_bio->sector, 1928 r1_bio->sectors, 1929 &first_bad, &bad_sectors) 1930 ) 1931 set_bit(R1BIO_MadeGood, &r1_bio->state); 1932 1933 put_sync_write_buf(r1_bio, uptodate); 1934 } 1935 1936 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector, 1937 int sectors, struct page *page, int rw) 1938 { 1939 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false)) 1940 /* success */ 1941 return 1; 1942 if (rw == WRITE) { 1943 set_bit(WriteErrorSeen, &rdev->flags); 1944 if (!test_and_set_bit(WantReplacement, 1945 &rdev->flags)) 1946 set_bit(MD_RECOVERY_NEEDED, & 1947 rdev->mddev->recovery); 1948 } 1949 /* need to record an error - either for the block or the device */ 1950 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 1951 md_error(rdev->mddev, rdev); 1952 return 0; 1953 } 1954 1955 static int fix_sync_read_error(struct r1bio *r1_bio) 1956 { 1957 /* Try some synchronous reads of other devices to get 1958 * good data, much like with normal read errors. Only 1959 * read into the pages we already have so we don't 1960 * need to re-issue the read request. 1961 * We don't need to freeze the array, because being in an 1962 * active sync request, there is no normal IO, and 1963 * no overlapping syncs. 1964 * We don't need to check is_badblock() again as we 1965 * made sure that anything with a bad block in range 1966 * will have bi_end_io clear. 1967 */ 1968 struct mddev *mddev = r1_bio->mddev; 1969 struct r1conf *conf = mddev->private; 1970 struct bio *bio = r1_bio->bios[r1_bio->read_disk]; 1971 struct page **pages = get_resync_pages(bio)->pages; 1972 sector_t sect = r1_bio->sector; 1973 int sectors = r1_bio->sectors; 1974 int idx = 0; 1975 struct md_rdev *rdev; 1976 1977 rdev = conf->mirrors[r1_bio->read_disk].rdev; 1978 if (test_bit(FailFast, &rdev->flags)) { 1979 /* Don't try recovering from here - just fail it 1980 * ... unless it is the last working device of course */ 1981 md_error(mddev, rdev); 1982 if (test_bit(Faulty, &rdev->flags)) 1983 /* Don't try to read from here, but make sure 1984 * put_buf does it's thing 1985 */ 1986 bio->bi_end_io = end_sync_write; 1987 } 1988 1989 while(sectors) { 1990 int s = sectors; 1991 int d = r1_bio->read_disk; 1992 int success = 0; 1993 int start; 1994 1995 if (s > (PAGE_SIZE>>9)) 1996 s = PAGE_SIZE >> 9; 1997 do { 1998 if (r1_bio->bios[d]->bi_end_io == end_sync_read) { 1999 /* No rcu protection needed here devices 2000 * can only be removed when no resync is 2001 * active, and resync is currently active 2002 */ 2003 rdev = conf->mirrors[d].rdev; 2004 if (sync_page_io(rdev, sect, s<<9, 2005 pages[idx], 2006 REQ_OP_READ, 0, false)) { 2007 success = 1; 2008 break; 2009 } 2010 } 2011 d++; 2012 if (d == conf->raid_disks * 2) 2013 d = 0; 2014 } while (!success && d != r1_bio->read_disk); 2015 2016 if (!success) { 2017 char b[BDEVNAME_SIZE]; 2018 int abort = 0; 2019 /* Cannot read from anywhere, this block is lost. 2020 * Record a bad block on each device. If that doesn't 2021 * work just disable and interrupt the recovery. 2022 * Don't fail devices as that won't really help. 2023 */ 2024 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n", 2025 mdname(mddev), bio_devname(bio, b), 2026 (unsigned long long)r1_bio->sector); 2027 for (d = 0; d < conf->raid_disks * 2; d++) { 2028 rdev = conf->mirrors[d].rdev; 2029 if (!rdev || test_bit(Faulty, &rdev->flags)) 2030 continue; 2031 if (!rdev_set_badblocks(rdev, sect, s, 0)) 2032 abort = 1; 2033 } 2034 if (abort) { 2035 conf->recovery_disabled = 2036 mddev->recovery_disabled; 2037 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2038 md_done_sync(mddev, r1_bio->sectors, 0); 2039 put_buf(r1_bio); 2040 return 0; 2041 } 2042 /* Try next page */ 2043 sectors -= s; 2044 sect += s; 2045 idx++; 2046 continue; 2047 } 2048 2049 start = d; 2050 /* write it back and re-read */ 2051 while (d != r1_bio->read_disk) { 2052 if (d == 0) 2053 d = conf->raid_disks * 2; 2054 d--; 2055 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 2056 continue; 2057 rdev = conf->mirrors[d].rdev; 2058 if (r1_sync_page_io(rdev, sect, s, 2059 pages[idx], 2060 WRITE) == 0) { 2061 r1_bio->bios[d]->bi_end_io = NULL; 2062 rdev_dec_pending(rdev, mddev); 2063 } 2064 } 2065 d = start; 2066 while (d != r1_bio->read_disk) { 2067 if (d == 0) 2068 d = conf->raid_disks * 2; 2069 d--; 2070 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 2071 continue; 2072 rdev = conf->mirrors[d].rdev; 2073 if (r1_sync_page_io(rdev, sect, s, 2074 pages[idx], 2075 READ) != 0) 2076 atomic_add(s, &rdev->corrected_errors); 2077 } 2078 sectors -= s; 2079 sect += s; 2080 idx ++; 2081 } 2082 set_bit(R1BIO_Uptodate, &r1_bio->state); 2083 bio->bi_status = 0; 2084 return 1; 2085 } 2086 2087 static void process_checks(struct r1bio *r1_bio) 2088 { 2089 /* We have read all readable devices. If we haven't 2090 * got the block, then there is no hope left. 2091 * If we have, then we want to do a comparison 2092 * and skip the write if everything is the same. 2093 * If any blocks failed to read, then we need to 2094 * attempt an over-write 2095 */ 2096 struct mddev *mddev = r1_bio->mddev; 2097 struct r1conf *conf = mddev->private; 2098 int primary; 2099 int i; 2100 int vcnt; 2101 2102 /* Fix variable parts of all bios */ 2103 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9); 2104 for (i = 0; i < conf->raid_disks * 2; i++) { 2105 blk_status_t status; 2106 struct bio *b = r1_bio->bios[i]; 2107 struct resync_pages *rp = get_resync_pages(b); 2108 if (b->bi_end_io != end_sync_read) 2109 continue; 2110 /* fixup the bio for reuse, but preserve errno */ 2111 status = b->bi_status; 2112 bio_reset(b); 2113 b->bi_status = status; 2114 b->bi_iter.bi_sector = r1_bio->sector + 2115 conf->mirrors[i].rdev->data_offset; 2116 bio_set_dev(b, conf->mirrors[i].rdev->bdev); 2117 b->bi_end_io = end_sync_read; 2118 rp->raid_bio = r1_bio; 2119 b->bi_private = rp; 2120 2121 /* initialize bvec table again */ 2122 md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9); 2123 } 2124 for (primary = 0; primary < conf->raid_disks * 2; primary++) 2125 if (r1_bio->bios[primary]->bi_end_io == end_sync_read && 2126 !r1_bio->bios[primary]->bi_status) { 2127 r1_bio->bios[primary]->bi_end_io = NULL; 2128 rdev_dec_pending(conf->mirrors[primary].rdev, mddev); 2129 break; 2130 } 2131 r1_bio->read_disk = primary; 2132 for (i = 0; i < conf->raid_disks * 2; i++) { 2133 int j = 0; 2134 struct bio *pbio = r1_bio->bios[primary]; 2135 struct bio *sbio = r1_bio->bios[i]; 2136 blk_status_t status = sbio->bi_status; 2137 struct page **ppages = get_resync_pages(pbio)->pages; 2138 struct page **spages = get_resync_pages(sbio)->pages; 2139 struct bio_vec *bi; 2140 int page_len[RESYNC_PAGES] = { 0 }; 2141 struct bvec_iter_all iter_all; 2142 2143 if (sbio->bi_end_io != end_sync_read) 2144 continue; 2145 /* Now we can 'fixup' the error value */ 2146 sbio->bi_status = 0; 2147 2148 bio_for_each_segment_all(bi, sbio, iter_all) 2149 page_len[j++] = bi->bv_len; 2150 2151 if (!status) { 2152 for (j = vcnt; j-- ; ) { 2153 if (memcmp(page_address(ppages[j]), 2154 page_address(spages[j]), 2155 page_len[j])) 2156 break; 2157 } 2158 } else 2159 j = 0; 2160 if (j >= 0) 2161 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches); 2162 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery) 2163 && !status)) { 2164 /* No need to write to this device. */ 2165 sbio->bi_end_io = NULL; 2166 rdev_dec_pending(conf->mirrors[i].rdev, mddev); 2167 continue; 2168 } 2169 2170 bio_copy_data(sbio, pbio); 2171 } 2172 } 2173 2174 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio) 2175 { 2176 struct r1conf *conf = mddev->private; 2177 int i; 2178 int disks = conf->raid_disks * 2; 2179 struct bio *wbio; 2180 2181 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 2182 /* ouch - failed to read all of that. */ 2183 if (!fix_sync_read_error(r1_bio)) 2184 return; 2185 2186 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2187 process_checks(r1_bio); 2188 2189 /* 2190 * schedule writes 2191 */ 2192 atomic_set(&r1_bio->remaining, 1); 2193 for (i = 0; i < disks ; i++) { 2194 wbio = r1_bio->bios[i]; 2195 if (wbio->bi_end_io == NULL || 2196 (wbio->bi_end_io == end_sync_read && 2197 (i == r1_bio->read_disk || 2198 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)))) 2199 continue; 2200 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) { 2201 abort_sync_write(mddev, r1_bio); 2202 continue; 2203 } 2204 2205 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0); 2206 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags)) 2207 wbio->bi_opf |= MD_FAILFAST; 2208 2209 wbio->bi_end_io = end_sync_write; 2210 atomic_inc(&r1_bio->remaining); 2211 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio)); 2212 2213 submit_bio_noacct(wbio); 2214 } 2215 2216 put_sync_write_buf(r1_bio, 1); 2217 } 2218 2219 /* 2220 * This is a kernel thread which: 2221 * 2222 * 1. Retries failed read operations on working mirrors. 2223 * 2. Updates the raid superblock when problems encounter. 2224 * 3. Performs writes following reads for array synchronising. 2225 */ 2226 2227 static void fix_read_error(struct r1conf *conf, int read_disk, 2228 sector_t sect, int sectors) 2229 { 2230 struct mddev *mddev = conf->mddev; 2231 while(sectors) { 2232 int s = sectors; 2233 int d = read_disk; 2234 int success = 0; 2235 int start; 2236 struct md_rdev *rdev; 2237 2238 if (s > (PAGE_SIZE>>9)) 2239 s = PAGE_SIZE >> 9; 2240 2241 do { 2242 sector_t first_bad; 2243 int bad_sectors; 2244 2245 rcu_read_lock(); 2246 rdev = rcu_dereference(conf->mirrors[d].rdev); 2247 if (rdev && 2248 (test_bit(In_sync, &rdev->flags) || 2249 (!test_bit(Faulty, &rdev->flags) && 2250 rdev->recovery_offset >= sect + s)) && 2251 is_badblock(rdev, sect, s, 2252 &first_bad, &bad_sectors) == 0) { 2253 atomic_inc(&rdev->nr_pending); 2254 rcu_read_unlock(); 2255 if (sync_page_io(rdev, sect, s<<9, 2256 conf->tmppage, REQ_OP_READ, 0, false)) 2257 success = 1; 2258 rdev_dec_pending(rdev, mddev); 2259 if (success) 2260 break; 2261 } else 2262 rcu_read_unlock(); 2263 d++; 2264 if (d == conf->raid_disks * 2) 2265 d = 0; 2266 } while (!success && d != read_disk); 2267 2268 if (!success) { 2269 /* Cannot read from anywhere - mark it bad */ 2270 struct md_rdev *rdev = conf->mirrors[read_disk].rdev; 2271 if (!rdev_set_badblocks(rdev, sect, s, 0)) 2272 md_error(mddev, rdev); 2273 break; 2274 } 2275 /* write it back and re-read */ 2276 start = d; 2277 while (d != read_disk) { 2278 if (d==0) 2279 d = conf->raid_disks * 2; 2280 d--; 2281 rcu_read_lock(); 2282 rdev = rcu_dereference(conf->mirrors[d].rdev); 2283 if (rdev && 2284 !test_bit(Faulty, &rdev->flags)) { 2285 atomic_inc(&rdev->nr_pending); 2286 rcu_read_unlock(); 2287 r1_sync_page_io(rdev, sect, s, 2288 conf->tmppage, WRITE); 2289 rdev_dec_pending(rdev, mddev); 2290 } else 2291 rcu_read_unlock(); 2292 } 2293 d = start; 2294 while (d != read_disk) { 2295 char b[BDEVNAME_SIZE]; 2296 if (d==0) 2297 d = conf->raid_disks * 2; 2298 d--; 2299 rcu_read_lock(); 2300 rdev = rcu_dereference(conf->mirrors[d].rdev); 2301 if (rdev && 2302 !test_bit(Faulty, &rdev->flags)) { 2303 atomic_inc(&rdev->nr_pending); 2304 rcu_read_unlock(); 2305 if (r1_sync_page_io(rdev, sect, s, 2306 conf->tmppage, READ)) { 2307 atomic_add(s, &rdev->corrected_errors); 2308 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n", 2309 mdname(mddev), s, 2310 (unsigned long long)(sect + 2311 rdev->data_offset), 2312 bdevname(rdev->bdev, b)); 2313 } 2314 rdev_dec_pending(rdev, mddev); 2315 } else 2316 rcu_read_unlock(); 2317 } 2318 sectors -= s; 2319 sect += s; 2320 } 2321 } 2322 2323 static int narrow_write_error(struct r1bio *r1_bio, int i) 2324 { 2325 struct mddev *mddev = r1_bio->mddev; 2326 struct r1conf *conf = mddev->private; 2327 struct md_rdev *rdev = conf->mirrors[i].rdev; 2328 2329 /* bio has the data to be written to device 'i' where 2330 * we just recently had a write error. 2331 * We repeatedly clone the bio and trim down to one block, 2332 * then try the write. Where the write fails we record 2333 * a bad block. 2334 * It is conceivable that the bio doesn't exactly align with 2335 * blocks. We must handle this somehow. 2336 * 2337 * We currently own a reference on the rdev. 2338 */ 2339 2340 int block_sectors; 2341 sector_t sector; 2342 int sectors; 2343 int sect_to_write = r1_bio->sectors; 2344 int ok = 1; 2345 2346 if (rdev->badblocks.shift < 0) 2347 return 0; 2348 2349 block_sectors = roundup(1 << rdev->badblocks.shift, 2350 bdev_logical_block_size(rdev->bdev) >> 9); 2351 sector = r1_bio->sector; 2352 sectors = ((sector + block_sectors) 2353 & ~(sector_t)(block_sectors - 1)) 2354 - sector; 2355 2356 while (sect_to_write) { 2357 struct bio *wbio; 2358 if (sectors > sect_to_write) 2359 sectors = sect_to_write; 2360 /* Write at 'sector' for 'sectors'*/ 2361 2362 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 2363 wbio = bio_clone_fast(r1_bio->behind_master_bio, 2364 GFP_NOIO, 2365 &mddev->bio_set); 2366 } else { 2367 wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO, 2368 &mddev->bio_set); 2369 } 2370 2371 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0); 2372 wbio->bi_iter.bi_sector = r1_bio->sector; 2373 wbio->bi_iter.bi_size = r1_bio->sectors << 9; 2374 2375 bio_trim(wbio, sector - r1_bio->sector, sectors); 2376 wbio->bi_iter.bi_sector += rdev->data_offset; 2377 bio_set_dev(wbio, rdev->bdev); 2378 2379 if (submit_bio_wait(wbio) < 0) 2380 /* failure! */ 2381 ok = rdev_set_badblocks(rdev, sector, 2382 sectors, 0) 2383 && ok; 2384 2385 bio_put(wbio); 2386 sect_to_write -= sectors; 2387 sector += sectors; 2388 sectors = block_sectors; 2389 } 2390 return ok; 2391 } 2392 2393 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2394 { 2395 int m; 2396 int s = r1_bio->sectors; 2397 for (m = 0; m < conf->raid_disks * 2 ; m++) { 2398 struct md_rdev *rdev = conf->mirrors[m].rdev; 2399 struct bio *bio = r1_bio->bios[m]; 2400 if (bio->bi_end_io == NULL) 2401 continue; 2402 if (!bio->bi_status && 2403 test_bit(R1BIO_MadeGood, &r1_bio->state)) { 2404 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0); 2405 } 2406 if (bio->bi_status && 2407 test_bit(R1BIO_WriteError, &r1_bio->state)) { 2408 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0)) 2409 md_error(conf->mddev, rdev); 2410 } 2411 } 2412 put_buf(r1_bio); 2413 md_done_sync(conf->mddev, s, 1); 2414 } 2415 2416 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2417 { 2418 int m, idx; 2419 bool fail = false; 2420 2421 for (m = 0; m < conf->raid_disks * 2 ; m++) 2422 if (r1_bio->bios[m] == IO_MADE_GOOD) { 2423 struct md_rdev *rdev = conf->mirrors[m].rdev; 2424 rdev_clear_badblocks(rdev, 2425 r1_bio->sector, 2426 r1_bio->sectors, 0); 2427 rdev_dec_pending(rdev, conf->mddev); 2428 } else if (r1_bio->bios[m] != NULL) { 2429 /* This drive got a write error. We need to 2430 * narrow down and record precise write 2431 * errors. 2432 */ 2433 fail = true; 2434 if (!narrow_write_error(r1_bio, m)) { 2435 md_error(conf->mddev, 2436 conf->mirrors[m].rdev); 2437 /* an I/O failed, we can't clear the bitmap */ 2438 set_bit(R1BIO_Degraded, &r1_bio->state); 2439 } 2440 rdev_dec_pending(conf->mirrors[m].rdev, 2441 conf->mddev); 2442 } 2443 if (fail) { 2444 spin_lock_irq(&conf->device_lock); 2445 list_add(&r1_bio->retry_list, &conf->bio_end_io_list); 2446 idx = sector_to_idx(r1_bio->sector); 2447 atomic_inc(&conf->nr_queued[idx]); 2448 spin_unlock_irq(&conf->device_lock); 2449 /* 2450 * In case freeze_array() is waiting for condition 2451 * get_unqueued_pending() == extra to be true. 2452 */ 2453 wake_up(&conf->wait_barrier); 2454 md_wakeup_thread(conf->mddev->thread); 2455 } else { 2456 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2457 close_write(r1_bio); 2458 raid_end_bio_io(r1_bio); 2459 } 2460 } 2461 2462 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio) 2463 { 2464 struct mddev *mddev = conf->mddev; 2465 struct bio *bio; 2466 struct md_rdev *rdev; 2467 2468 clear_bit(R1BIO_ReadError, &r1_bio->state); 2469 /* we got a read error. Maybe the drive is bad. Maybe just 2470 * the block and we can fix it. 2471 * We freeze all other IO, and try reading the block from 2472 * other devices. When we find one, we re-write 2473 * and check it that fixes the read error. 2474 * This is all done synchronously while the array is 2475 * frozen 2476 */ 2477 2478 bio = r1_bio->bios[r1_bio->read_disk]; 2479 bio_put(bio); 2480 r1_bio->bios[r1_bio->read_disk] = NULL; 2481 2482 rdev = conf->mirrors[r1_bio->read_disk].rdev; 2483 if (mddev->ro == 0 2484 && !test_bit(FailFast, &rdev->flags)) { 2485 freeze_array(conf, 1); 2486 fix_read_error(conf, r1_bio->read_disk, 2487 r1_bio->sector, r1_bio->sectors); 2488 unfreeze_array(conf); 2489 } else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) { 2490 md_error(mddev, rdev); 2491 } else { 2492 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED; 2493 } 2494 2495 rdev_dec_pending(rdev, conf->mddev); 2496 allow_barrier(conf, r1_bio->sector); 2497 bio = r1_bio->master_bio; 2498 2499 /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */ 2500 r1_bio->state = 0; 2501 raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio); 2502 } 2503 2504 static void raid1d(struct md_thread *thread) 2505 { 2506 struct mddev *mddev = thread->mddev; 2507 struct r1bio *r1_bio; 2508 unsigned long flags; 2509 struct r1conf *conf = mddev->private; 2510 struct list_head *head = &conf->retry_list; 2511 struct blk_plug plug; 2512 int idx; 2513 2514 md_check_recovery(mddev); 2515 2516 if (!list_empty_careful(&conf->bio_end_io_list) && 2517 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 2518 LIST_HEAD(tmp); 2519 spin_lock_irqsave(&conf->device_lock, flags); 2520 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 2521 list_splice_init(&conf->bio_end_io_list, &tmp); 2522 spin_unlock_irqrestore(&conf->device_lock, flags); 2523 while (!list_empty(&tmp)) { 2524 r1_bio = list_first_entry(&tmp, struct r1bio, 2525 retry_list); 2526 list_del(&r1_bio->retry_list); 2527 idx = sector_to_idx(r1_bio->sector); 2528 atomic_dec(&conf->nr_queued[idx]); 2529 if (mddev->degraded) 2530 set_bit(R1BIO_Degraded, &r1_bio->state); 2531 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2532 close_write(r1_bio); 2533 raid_end_bio_io(r1_bio); 2534 } 2535 } 2536 2537 blk_start_plug(&plug); 2538 for (;;) { 2539 2540 flush_pending_writes(conf); 2541 2542 spin_lock_irqsave(&conf->device_lock, flags); 2543 if (list_empty(head)) { 2544 spin_unlock_irqrestore(&conf->device_lock, flags); 2545 break; 2546 } 2547 r1_bio = list_entry(head->prev, struct r1bio, retry_list); 2548 list_del(head->prev); 2549 idx = sector_to_idx(r1_bio->sector); 2550 atomic_dec(&conf->nr_queued[idx]); 2551 spin_unlock_irqrestore(&conf->device_lock, flags); 2552 2553 mddev = r1_bio->mddev; 2554 conf = mddev->private; 2555 if (test_bit(R1BIO_IsSync, &r1_bio->state)) { 2556 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2557 test_bit(R1BIO_WriteError, &r1_bio->state)) 2558 handle_sync_write_finished(conf, r1_bio); 2559 else 2560 sync_request_write(mddev, r1_bio); 2561 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2562 test_bit(R1BIO_WriteError, &r1_bio->state)) 2563 handle_write_finished(conf, r1_bio); 2564 else if (test_bit(R1BIO_ReadError, &r1_bio->state)) 2565 handle_read_error(conf, r1_bio); 2566 else 2567 WARN_ON_ONCE(1); 2568 2569 cond_resched(); 2570 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING)) 2571 md_check_recovery(mddev); 2572 } 2573 blk_finish_plug(&plug); 2574 } 2575 2576 static int init_resync(struct r1conf *conf) 2577 { 2578 int buffs; 2579 2580 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2581 BUG_ON(mempool_initialized(&conf->r1buf_pool)); 2582 2583 return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc, 2584 r1buf_pool_free, conf->poolinfo); 2585 } 2586 2587 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf) 2588 { 2589 struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO); 2590 struct resync_pages *rps; 2591 struct bio *bio; 2592 int i; 2593 2594 for (i = conf->poolinfo->raid_disks; i--; ) { 2595 bio = r1bio->bios[i]; 2596 rps = bio->bi_private; 2597 bio_reset(bio); 2598 bio->bi_private = rps; 2599 } 2600 r1bio->master_bio = NULL; 2601 return r1bio; 2602 } 2603 2604 /* 2605 * perform a "sync" on one "block" 2606 * 2607 * We need to make sure that no normal I/O request - particularly write 2608 * requests - conflict with active sync requests. 2609 * 2610 * This is achieved by tracking pending requests and a 'barrier' concept 2611 * that can be installed to exclude normal IO requests. 2612 */ 2613 2614 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr, 2615 int *skipped) 2616 { 2617 struct r1conf *conf = mddev->private; 2618 struct r1bio *r1_bio; 2619 struct bio *bio; 2620 sector_t max_sector, nr_sectors; 2621 int disk = -1; 2622 int i; 2623 int wonly = -1; 2624 int write_targets = 0, read_targets = 0; 2625 sector_t sync_blocks; 2626 int still_degraded = 0; 2627 int good_sectors = RESYNC_SECTORS; 2628 int min_bad = 0; /* number of sectors that are bad in all devices */ 2629 int idx = sector_to_idx(sector_nr); 2630 int page_idx = 0; 2631 2632 if (!mempool_initialized(&conf->r1buf_pool)) 2633 if (init_resync(conf)) 2634 return 0; 2635 2636 max_sector = mddev->dev_sectors; 2637 if (sector_nr >= max_sector) { 2638 /* If we aborted, we need to abort the 2639 * sync on the 'current' bitmap chunk (there will 2640 * only be one in raid1 resync. 2641 * We can find the current addess in mddev->curr_resync 2642 */ 2643 if (mddev->curr_resync < max_sector) /* aborted */ 2644 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2645 &sync_blocks, 1); 2646 else /* completed sync */ 2647 conf->fullsync = 0; 2648 2649 md_bitmap_close_sync(mddev->bitmap); 2650 close_sync(conf); 2651 2652 if (mddev_is_clustered(mddev)) { 2653 conf->cluster_sync_low = 0; 2654 conf->cluster_sync_high = 0; 2655 } 2656 return 0; 2657 } 2658 2659 if (mddev->bitmap == NULL && 2660 mddev->recovery_cp == MaxSector && 2661 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 2662 conf->fullsync == 0) { 2663 *skipped = 1; 2664 return max_sector - sector_nr; 2665 } 2666 /* before building a request, check if we can skip these blocks.. 2667 * This call the bitmap_start_sync doesn't actually record anything 2668 */ 2669 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 2670 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2671 /* We can skip this block, and probably several more */ 2672 *skipped = 1; 2673 return sync_blocks; 2674 } 2675 2676 /* 2677 * If there is non-resync activity waiting for a turn, then let it 2678 * though before starting on this new sync request. 2679 */ 2680 if (atomic_read(&conf->nr_waiting[idx])) 2681 schedule_timeout_uninterruptible(1); 2682 2683 /* we are incrementing sector_nr below. To be safe, we check against 2684 * sector_nr + two times RESYNC_SECTORS 2685 */ 2686 2687 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, 2688 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high)); 2689 2690 2691 if (raise_barrier(conf, sector_nr)) 2692 return 0; 2693 2694 r1_bio = raid1_alloc_init_r1buf(conf); 2695 2696 rcu_read_lock(); 2697 /* 2698 * If we get a correctably read error during resync or recovery, 2699 * we might want to read from a different device. So we 2700 * flag all drives that could conceivably be read from for READ, 2701 * and any others (which will be non-In_sync devices) for WRITE. 2702 * If a read fails, we try reading from something else for which READ 2703 * is OK. 2704 */ 2705 2706 r1_bio->mddev = mddev; 2707 r1_bio->sector = sector_nr; 2708 r1_bio->state = 0; 2709 set_bit(R1BIO_IsSync, &r1_bio->state); 2710 /* make sure good_sectors won't go across barrier unit boundary */ 2711 good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors); 2712 2713 for (i = 0; i < conf->raid_disks * 2; i++) { 2714 struct md_rdev *rdev; 2715 bio = r1_bio->bios[i]; 2716 2717 rdev = rcu_dereference(conf->mirrors[i].rdev); 2718 if (rdev == NULL || 2719 test_bit(Faulty, &rdev->flags)) { 2720 if (i < conf->raid_disks) 2721 still_degraded = 1; 2722 } else if (!test_bit(In_sync, &rdev->flags)) { 2723 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 2724 bio->bi_end_io = end_sync_write; 2725 write_targets ++; 2726 } else { 2727 /* may need to read from here */ 2728 sector_t first_bad = MaxSector; 2729 int bad_sectors; 2730 2731 if (is_badblock(rdev, sector_nr, good_sectors, 2732 &first_bad, &bad_sectors)) { 2733 if (first_bad > sector_nr) 2734 good_sectors = first_bad - sector_nr; 2735 else { 2736 bad_sectors -= (sector_nr - first_bad); 2737 if (min_bad == 0 || 2738 min_bad > bad_sectors) 2739 min_bad = bad_sectors; 2740 } 2741 } 2742 if (sector_nr < first_bad) { 2743 if (test_bit(WriteMostly, &rdev->flags)) { 2744 if (wonly < 0) 2745 wonly = i; 2746 } else { 2747 if (disk < 0) 2748 disk = i; 2749 } 2750 bio_set_op_attrs(bio, REQ_OP_READ, 0); 2751 bio->bi_end_io = end_sync_read; 2752 read_targets++; 2753 } else if (!test_bit(WriteErrorSeen, &rdev->flags) && 2754 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 2755 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 2756 /* 2757 * The device is suitable for reading (InSync), 2758 * but has bad block(s) here. Let's try to correct them, 2759 * if we are doing resync or repair. Otherwise, leave 2760 * this device alone for this sync request. 2761 */ 2762 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 2763 bio->bi_end_io = end_sync_write; 2764 write_targets++; 2765 } 2766 } 2767 if (rdev && bio->bi_end_io) { 2768 atomic_inc(&rdev->nr_pending); 2769 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset; 2770 bio_set_dev(bio, rdev->bdev); 2771 if (test_bit(FailFast, &rdev->flags)) 2772 bio->bi_opf |= MD_FAILFAST; 2773 } 2774 } 2775 rcu_read_unlock(); 2776 if (disk < 0) 2777 disk = wonly; 2778 r1_bio->read_disk = disk; 2779 2780 if (read_targets == 0 && min_bad > 0) { 2781 /* These sectors are bad on all InSync devices, so we 2782 * need to mark them bad on all write targets 2783 */ 2784 int ok = 1; 2785 for (i = 0 ; i < conf->raid_disks * 2 ; i++) 2786 if (r1_bio->bios[i]->bi_end_io == end_sync_write) { 2787 struct md_rdev *rdev = conf->mirrors[i].rdev; 2788 ok = rdev_set_badblocks(rdev, sector_nr, 2789 min_bad, 0 2790 ) && ok; 2791 } 2792 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2793 *skipped = 1; 2794 put_buf(r1_bio); 2795 2796 if (!ok) { 2797 /* Cannot record the badblocks, so need to 2798 * abort the resync. 2799 * If there are multiple read targets, could just 2800 * fail the really bad ones ??? 2801 */ 2802 conf->recovery_disabled = mddev->recovery_disabled; 2803 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2804 return 0; 2805 } else 2806 return min_bad; 2807 2808 } 2809 if (min_bad > 0 && min_bad < good_sectors) { 2810 /* only resync enough to reach the next bad->good 2811 * transition */ 2812 good_sectors = min_bad; 2813 } 2814 2815 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0) 2816 /* extra read targets are also write targets */ 2817 write_targets += read_targets-1; 2818 2819 if (write_targets == 0 || read_targets == 0) { 2820 /* There is nowhere to write, so all non-sync 2821 * drives must be failed - so we are finished 2822 */ 2823 sector_t rv; 2824 if (min_bad > 0) 2825 max_sector = sector_nr + min_bad; 2826 rv = max_sector - sector_nr; 2827 *skipped = 1; 2828 put_buf(r1_bio); 2829 return rv; 2830 } 2831 2832 if (max_sector > mddev->resync_max) 2833 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 2834 if (max_sector > sector_nr + good_sectors) 2835 max_sector = sector_nr + good_sectors; 2836 nr_sectors = 0; 2837 sync_blocks = 0; 2838 do { 2839 struct page *page; 2840 int len = PAGE_SIZE; 2841 if (sector_nr + (len>>9) > max_sector) 2842 len = (max_sector - sector_nr) << 9; 2843 if (len == 0) 2844 break; 2845 if (sync_blocks == 0) { 2846 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, 2847 &sync_blocks, still_degraded) && 2848 !conf->fullsync && 2849 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2850 break; 2851 if ((len >> 9) > sync_blocks) 2852 len = sync_blocks<<9; 2853 } 2854 2855 for (i = 0 ; i < conf->raid_disks * 2; i++) { 2856 struct resync_pages *rp; 2857 2858 bio = r1_bio->bios[i]; 2859 rp = get_resync_pages(bio); 2860 if (bio->bi_end_io) { 2861 page = resync_fetch_page(rp, page_idx); 2862 2863 /* 2864 * won't fail because the vec table is big 2865 * enough to hold all these pages 2866 */ 2867 bio_add_page(bio, page, len, 0); 2868 } 2869 } 2870 nr_sectors += len>>9; 2871 sector_nr += len>>9; 2872 sync_blocks -= (len>>9); 2873 } while (++page_idx < RESYNC_PAGES); 2874 2875 r1_bio->sectors = nr_sectors; 2876 2877 if (mddev_is_clustered(mddev) && 2878 conf->cluster_sync_high < sector_nr + nr_sectors) { 2879 conf->cluster_sync_low = mddev->curr_resync_completed; 2880 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS; 2881 /* Send resync message */ 2882 md_cluster_ops->resync_info_update(mddev, 2883 conf->cluster_sync_low, 2884 conf->cluster_sync_high); 2885 } 2886 2887 /* For a user-requested sync, we read all readable devices and do a 2888 * compare 2889 */ 2890 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2891 atomic_set(&r1_bio->remaining, read_targets); 2892 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) { 2893 bio = r1_bio->bios[i]; 2894 if (bio->bi_end_io == end_sync_read) { 2895 read_targets--; 2896 md_sync_acct_bio(bio, nr_sectors); 2897 if (read_targets == 1) 2898 bio->bi_opf &= ~MD_FAILFAST; 2899 submit_bio_noacct(bio); 2900 } 2901 } 2902 } else { 2903 atomic_set(&r1_bio->remaining, 1); 2904 bio = r1_bio->bios[r1_bio->read_disk]; 2905 md_sync_acct_bio(bio, nr_sectors); 2906 if (read_targets == 1) 2907 bio->bi_opf &= ~MD_FAILFAST; 2908 submit_bio_noacct(bio); 2909 } 2910 return nr_sectors; 2911 } 2912 2913 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks) 2914 { 2915 if (sectors) 2916 return sectors; 2917 2918 return mddev->dev_sectors; 2919 } 2920 2921 static struct r1conf *setup_conf(struct mddev *mddev) 2922 { 2923 struct r1conf *conf; 2924 int i; 2925 struct raid1_info *disk; 2926 struct md_rdev *rdev; 2927 int err = -ENOMEM; 2928 2929 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL); 2930 if (!conf) 2931 goto abort; 2932 2933 conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR, 2934 sizeof(atomic_t), GFP_KERNEL); 2935 if (!conf->nr_pending) 2936 goto abort; 2937 2938 conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR, 2939 sizeof(atomic_t), GFP_KERNEL); 2940 if (!conf->nr_waiting) 2941 goto abort; 2942 2943 conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR, 2944 sizeof(atomic_t), GFP_KERNEL); 2945 if (!conf->nr_queued) 2946 goto abort; 2947 2948 conf->barrier = kcalloc(BARRIER_BUCKETS_NR, 2949 sizeof(atomic_t), GFP_KERNEL); 2950 if (!conf->barrier) 2951 goto abort; 2952 2953 conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info), 2954 mddev->raid_disks, 2), 2955 GFP_KERNEL); 2956 if (!conf->mirrors) 2957 goto abort; 2958 2959 conf->tmppage = alloc_page(GFP_KERNEL); 2960 if (!conf->tmppage) 2961 goto abort; 2962 2963 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL); 2964 if (!conf->poolinfo) 2965 goto abort; 2966 conf->poolinfo->raid_disks = mddev->raid_disks * 2; 2967 err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc, 2968 rbio_pool_free, conf->poolinfo); 2969 if (err) 2970 goto abort; 2971 2972 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0); 2973 if (err) 2974 goto abort; 2975 2976 conf->poolinfo->mddev = mddev; 2977 2978 err = -EINVAL; 2979 spin_lock_init(&conf->device_lock); 2980 rdev_for_each(rdev, mddev) { 2981 int disk_idx = rdev->raid_disk; 2982 if (disk_idx >= mddev->raid_disks 2983 || disk_idx < 0) 2984 continue; 2985 if (test_bit(Replacement, &rdev->flags)) 2986 disk = conf->mirrors + mddev->raid_disks + disk_idx; 2987 else 2988 disk = conf->mirrors + disk_idx; 2989 2990 if (disk->rdev) 2991 goto abort; 2992 disk->rdev = rdev; 2993 disk->head_position = 0; 2994 disk->seq_start = MaxSector; 2995 } 2996 conf->raid_disks = mddev->raid_disks; 2997 conf->mddev = mddev; 2998 INIT_LIST_HEAD(&conf->retry_list); 2999 INIT_LIST_HEAD(&conf->bio_end_io_list); 3000 3001 spin_lock_init(&conf->resync_lock); 3002 init_waitqueue_head(&conf->wait_barrier); 3003 3004 bio_list_init(&conf->pending_bio_list); 3005 conf->pending_count = 0; 3006 conf->recovery_disabled = mddev->recovery_disabled - 1; 3007 3008 err = -EIO; 3009 for (i = 0; i < conf->raid_disks * 2; i++) { 3010 3011 disk = conf->mirrors + i; 3012 3013 if (i < conf->raid_disks && 3014 disk[conf->raid_disks].rdev) { 3015 /* This slot has a replacement. */ 3016 if (!disk->rdev) { 3017 /* No original, just make the replacement 3018 * a recovering spare 3019 */ 3020 disk->rdev = 3021 disk[conf->raid_disks].rdev; 3022 disk[conf->raid_disks].rdev = NULL; 3023 } else if (!test_bit(In_sync, &disk->rdev->flags)) 3024 /* Original is not in_sync - bad */ 3025 goto abort; 3026 } 3027 3028 if (!disk->rdev || 3029 !test_bit(In_sync, &disk->rdev->flags)) { 3030 disk->head_position = 0; 3031 if (disk->rdev && 3032 (disk->rdev->saved_raid_disk < 0)) 3033 conf->fullsync = 1; 3034 } 3035 } 3036 3037 err = -ENOMEM; 3038 conf->thread = md_register_thread(raid1d, mddev, "raid1"); 3039 if (!conf->thread) 3040 goto abort; 3041 3042 return conf; 3043 3044 abort: 3045 if (conf) { 3046 mempool_exit(&conf->r1bio_pool); 3047 kfree(conf->mirrors); 3048 safe_put_page(conf->tmppage); 3049 kfree(conf->poolinfo); 3050 kfree(conf->nr_pending); 3051 kfree(conf->nr_waiting); 3052 kfree(conf->nr_queued); 3053 kfree(conf->barrier); 3054 bioset_exit(&conf->bio_split); 3055 kfree(conf); 3056 } 3057 return ERR_PTR(err); 3058 } 3059 3060 static void raid1_free(struct mddev *mddev, void *priv); 3061 static int raid1_run(struct mddev *mddev) 3062 { 3063 struct r1conf *conf; 3064 int i; 3065 struct md_rdev *rdev; 3066 int ret; 3067 bool discard_supported = false; 3068 3069 if (mddev->level != 1) { 3070 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n", 3071 mdname(mddev), mddev->level); 3072 return -EIO; 3073 } 3074 if (mddev->reshape_position != MaxSector) { 3075 pr_warn("md/raid1:%s: reshape_position set but not supported\n", 3076 mdname(mddev)); 3077 return -EIO; 3078 } 3079 if (mddev_init_writes_pending(mddev) < 0) 3080 return -ENOMEM; 3081 /* 3082 * copy the already verified devices into our private RAID1 3083 * bookkeeping area. [whatever we allocate in run(), 3084 * should be freed in raid1_free()] 3085 */ 3086 if (mddev->private == NULL) 3087 conf = setup_conf(mddev); 3088 else 3089 conf = mddev->private; 3090 3091 if (IS_ERR(conf)) 3092 return PTR_ERR(conf); 3093 3094 if (mddev->queue) { 3095 blk_queue_max_write_same_sectors(mddev->queue, 0); 3096 blk_queue_max_write_zeroes_sectors(mddev->queue, 0); 3097 } 3098 3099 rdev_for_each(rdev, mddev) { 3100 if (!mddev->gendisk) 3101 continue; 3102 disk_stack_limits(mddev->gendisk, rdev->bdev, 3103 rdev->data_offset << 9); 3104 if (blk_queue_discard(bdev_get_queue(rdev->bdev))) 3105 discard_supported = true; 3106 } 3107 3108 mddev->degraded = 0; 3109 for (i = 0; i < conf->raid_disks; i++) 3110 if (conf->mirrors[i].rdev == NULL || 3111 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) || 3112 test_bit(Faulty, &conf->mirrors[i].rdev->flags)) 3113 mddev->degraded++; 3114 /* 3115 * RAID1 needs at least one disk in active 3116 */ 3117 if (conf->raid_disks - mddev->degraded < 1) { 3118 ret = -EINVAL; 3119 goto abort; 3120 } 3121 3122 if (conf->raid_disks - mddev->degraded == 1) 3123 mddev->recovery_cp = MaxSector; 3124 3125 if (mddev->recovery_cp != MaxSector) 3126 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n", 3127 mdname(mddev)); 3128 pr_info("md/raid1:%s: active with %d out of %d mirrors\n", 3129 mdname(mddev), mddev->raid_disks - mddev->degraded, 3130 mddev->raid_disks); 3131 3132 /* 3133 * Ok, everything is just fine now 3134 */ 3135 mddev->thread = conf->thread; 3136 conf->thread = NULL; 3137 mddev->private = conf; 3138 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags); 3139 3140 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0)); 3141 3142 if (mddev->queue) { 3143 if (discard_supported) 3144 blk_queue_flag_set(QUEUE_FLAG_DISCARD, 3145 mddev->queue); 3146 else 3147 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, 3148 mddev->queue); 3149 } 3150 3151 ret = md_integrity_register(mddev); 3152 if (ret) { 3153 md_unregister_thread(&mddev->thread); 3154 goto abort; 3155 } 3156 return 0; 3157 3158 abort: 3159 raid1_free(mddev, conf); 3160 return ret; 3161 } 3162 3163 static void raid1_free(struct mddev *mddev, void *priv) 3164 { 3165 struct r1conf *conf = priv; 3166 3167 mempool_exit(&conf->r1bio_pool); 3168 kfree(conf->mirrors); 3169 safe_put_page(conf->tmppage); 3170 kfree(conf->poolinfo); 3171 kfree(conf->nr_pending); 3172 kfree(conf->nr_waiting); 3173 kfree(conf->nr_queued); 3174 kfree(conf->barrier); 3175 bioset_exit(&conf->bio_split); 3176 kfree(conf); 3177 } 3178 3179 static int raid1_resize(struct mddev *mddev, sector_t sectors) 3180 { 3181 /* no resync is happening, and there is enough space 3182 * on all devices, so we can resize. 3183 * We need to make sure resync covers any new space. 3184 * If the array is shrinking we should possibly wait until 3185 * any io in the removed space completes, but it hardly seems 3186 * worth it. 3187 */ 3188 sector_t newsize = raid1_size(mddev, sectors, 0); 3189 if (mddev->external_size && 3190 mddev->array_sectors > newsize) 3191 return -EINVAL; 3192 if (mddev->bitmap) { 3193 int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0); 3194 if (ret) 3195 return ret; 3196 } 3197 md_set_array_sectors(mddev, newsize); 3198 if (sectors > mddev->dev_sectors && 3199 mddev->recovery_cp > mddev->dev_sectors) { 3200 mddev->recovery_cp = mddev->dev_sectors; 3201 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3202 } 3203 mddev->dev_sectors = sectors; 3204 mddev->resync_max_sectors = sectors; 3205 return 0; 3206 } 3207 3208 static int raid1_reshape(struct mddev *mddev) 3209 { 3210 /* We need to: 3211 * 1/ resize the r1bio_pool 3212 * 2/ resize conf->mirrors 3213 * 3214 * We allocate a new r1bio_pool if we can. 3215 * Then raise a device barrier and wait until all IO stops. 3216 * Then resize conf->mirrors and swap in the new r1bio pool. 3217 * 3218 * At the same time, we "pack" the devices so that all the missing 3219 * devices have the higher raid_disk numbers. 3220 */ 3221 mempool_t newpool, oldpool; 3222 struct pool_info *newpoolinfo; 3223 struct raid1_info *newmirrors; 3224 struct r1conf *conf = mddev->private; 3225 int cnt, raid_disks; 3226 unsigned long flags; 3227 int d, d2; 3228 int ret; 3229 3230 memset(&newpool, 0, sizeof(newpool)); 3231 memset(&oldpool, 0, sizeof(oldpool)); 3232 3233 /* Cannot change chunk_size, layout, or level */ 3234 if (mddev->chunk_sectors != mddev->new_chunk_sectors || 3235 mddev->layout != mddev->new_layout || 3236 mddev->level != mddev->new_level) { 3237 mddev->new_chunk_sectors = mddev->chunk_sectors; 3238 mddev->new_layout = mddev->layout; 3239 mddev->new_level = mddev->level; 3240 return -EINVAL; 3241 } 3242 3243 if (!mddev_is_clustered(mddev)) 3244 md_allow_write(mddev); 3245 3246 raid_disks = mddev->raid_disks + mddev->delta_disks; 3247 3248 if (raid_disks < conf->raid_disks) { 3249 cnt=0; 3250 for (d= 0; d < conf->raid_disks; d++) 3251 if (conf->mirrors[d].rdev) 3252 cnt++; 3253 if (cnt > raid_disks) 3254 return -EBUSY; 3255 } 3256 3257 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL); 3258 if (!newpoolinfo) 3259 return -ENOMEM; 3260 newpoolinfo->mddev = mddev; 3261 newpoolinfo->raid_disks = raid_disks * 2; 3262 3263 ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc, 3264 rbio_pool_free, newpoolinfo); 3265 if (ret) { 3266 kfree(newpoolinfo); 3267 return ret; 3268 } 3269 newmirrors = kzalloc(array3_size(sizeof(struct raid1_info), 3270 raid_disks, 2), 3271 GFP_KERNEL); 3272 if (!newmirrors) { 3273 kfree(newpoolinfo); 3274 mempool_exit(&newpool); 3275 return -ENOMEM; 3276 } 3277 3278 freeze_array(conf, 0); 3279 3280 /* ok, everything is stopped */ 3281 oldpool = conf->r1bio_pool; 3282 conf->r1bio_pool = newpool; 3283 3284 for (d = d2 = 0; d < conf->raid_disks; d++) { 3285 struct md_rdev *rdev = conf->mirrors[d].rdev; 3286 if (rdev && rdev->raid_disk != d2) { 3287 sysfs_unlink_rdev(mddev, rdev); 3288 rdev->raid_disk = d2; 3289 sysfs_unlink_rdev(mddev, rdev); 3290 if (sysfs_link_rdev(mddev, rdev)) 3291 pr_warn("md/raid1:%s: cannot register rd%d\n", 3292 mdname(mddev), rdev->raid_disk); 3293 } 3294 if (rdev) 3295 newmirrors[d2++].rdev = rdev; 3296 } 3297 kfree(conf->mirrors); 3298 conf->mirrors = newmirrors; 3299 kfree(conf->poolinfo); 3300 conf->poolinfo = newpoolinfo; 3301 3302 spin_lock_irqsave(&conf->device_lock, flags); 3303 mddev->degraded += (raid_disks - conf->raid_disks); 3304 spin_unlock_irqrestore(&conf->device_lock, flags); 3305 conf->raid_disks = mddev->raid_disks = raid_disks; 3306 mddev->delta_disks = 0; 3307 3308 unfreeze_array(conf); 3309 3310 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 3311 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3312 md_wakeup_thread(mddev->thread); 3313 3314 mempool_exit(&oldpool); 3315 return 0; 3316 } 3317 3318 static void raid1_quiesce(struct mddev *mddev, int quiesce) 3319 { 3320 struct r1conf *conf = mddev->private; 3321 3322 if (quiesce) 3323 freeze_array(conf, 0); 3324 else 3325 unfreeze_array(conf); 3326 } 3327 3328 static void *raid1_takeover(struct mddev *mddev) 3329 { 3330 /* raid1 can take over: 3331 * raid5 with 2 devices, any layout or chunk size 3332 */ 3333 if (mddev->level == 5 && mddev->raid_disks == 2) { 3334 struct r1conf *conf; 3335 mddev->new_level = 1; 3336 mddev->new_layout = 0; 3337 mddev->new_chunk_sectors = 0; 3338 conf = setup_conf(mddev); 3339 if (!IS_ERR(conf)) { 3340 /* Array must appear to be quiesced */ 3341 conf->array_frozen = 1; 3342 mddev_clear_unsupported_flags(mddev, 3343 UNSUPPORTED_MDDEV_FLAGS); 3344 } 3345 return conf; 3346 } 3347 return ERR_PTR(-EINVAL); 3348 } 3349 3350 static struct md_personality raid1_personality = 3351 { 3352 .name = "raid1", 3353 .level = 1, 3354 .owner = THIS_MODULE, 3355 .make_request = raid1_make_request, 3356 .run = raid1_run, 3357 .free = raid1_free, 3358 .status = raid1_status, 3359 .error_handler = raid1_error, 3360 .hot_add_disk = raid1_add_disk, 3361 .hot_remove_disk= raid1_remove_disk, 3362 .spare_active = raid1_spare_active, 3363 .sync_request = raid1_sync_request, 3364 .resize = raid1_resize, 3365 .size = raid1_size, 3366 .check_reshape = raid1_reshape, 3367 .quiesce = raid1_quiesce, 3368 .takeover = raid1_takeover, 3369 }; 3370 3371 static int __init raid_init(void) 3372 { 3373 return register_md_personality(&raid1_personality); 3374 } 3375 3376 static void raid_exit(void) 3377 { 3378 unregister_md_personality(&raid1_personality); 3379 } 3380 3381 module_init(raid_init); 3382 module_exit(raid_exit); 3383 MODULE_LICENSE("GPL"); 3384 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD"); 3385 MODULE_ALIAS("md-personality-3"); /* RAID1 */ 3386 MODULE_ALIAS("md-raid1"); 3387 MODULE_ALIAS("md-level-1"); 3388 3389 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); 3390