xref: /openbmc/linux/drivers/md/raid1.c (revision 394ed8e4)
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33 
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include <trace/events/block.h>
41 #include "md.h"
42 #include "raid1.h"
43 #include "bitmap.h"
44 
45 #define UNSUPPORTED_MDDEV_FLAGS		\
46 	((1L << MD_HAS_JOURNAL) |	\
47 	 (1L << MD_JOURNAL_CLEAN))
48 
49 /*
50  * Number of guaranteed r1bios in case of extreme VM load:
51  */
52 #define	NR_RAID1_BIOS 256
53 
54 /* when we get a read error on a read-only array, we redirect to another
55  * device without failing the first device, or trying to over-write to
56  * correct the read error.  To keep track of bad blocks on a per-bio
57  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
58  */
59 #define IO_BLOCKED ((struct bio *)1)
60 /* When we successfully write to a known bad-block, we need to remove the
61  * bad-block marking which must be done from process context.  So we record
62  * the success by setting devs[n].bio to IO_MADE_GOOD
63  */
64 #define IO_MADE_GOOD ((struct bio *)2)
65 
66 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
67 
68 /* When there are this many requests queue to be written by
69  * the raid1 thread, we become 'congested' to provide back-pressure
70  * for writeback.
71  */
72 static int max_queued_requests = 1024;
73 
74 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
75 			  sector_t bi_sector);
76 static void lower_barrier(struct r1conf *conf);
77 
78 #define raid1_log(md, fmt, args...)				\
79 	do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
80 
81 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
82 {
83 	struct pool_info *pi = data;
84 	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
85 
86 	/* allocate a r1bio with room for raid_disks entries in the bios array */
87 	return kzalloc(size, gfp_flags);
88 }
89 
90 static void r1bio_pool_free(void *r1_bio, void *data)
91 {
92 	kfree(r1_bio);
93 }
94 
95 #define RESYNC_BLOCK_SIZE (64*1024)
96 #define RESYNC_DEPTH 32
97 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
98 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
99 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
100 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
101 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
102 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
103 #define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
104 
105 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
106 {
107 	struct pool_info *pi = data;
108 	struct r1bio *r1_bio;
109 	struct bio *bio;
110 	int need_pages;
111 	int i, j;
112 
113 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
114 	if (!r1_bio)
115 		return NULL;
116 
117 	/*
118 	 * Allocate bios : 1 for reading, n-1 for writing
119 	 */
120 	for (j = pi->raid_disks ; j-- ; ) {
121 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
122 		if (!bio)
123 			goto out_free_bio;
124 		r1_bio->bios[j] = bio;
125 	}
126 	/*
127 	 * Allocate RESYNC_PAGES data pages and attach them to
128 	 * the first bio.
129 	 * If this is a user-requested check/repair, allocate
130 	 * RESYNC_PAGES for each bio.
131 	 */
132 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
133 		need_pages = pi->raid_disks;
134 	else
135 		need_pages = 1;
136 	for (j = 0; j < need_pages; j++) {
137 		bio = r1_bio->bios[j];
138 		bio->bi_vcnt = RESYNC_PAGES;
139 
140 		if (bio_alloc_pages(bio, gfp_flags))
141 			goto out_free_pages;
142 	}
143 	/* If not user-requests, copy the page pointers to all bios */
144 	if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
145 		for (i=0; i<RESYNC_PAGES ; i++)
146 			for (j=1; j<pi->raid_disks; j++)
147 				r1_bio->bios[j]->bi_io_vec[i].bv_page =
148 					r1_bio->bios[0]->bi_io_vec[i].bv_page;
149 	}
150 
151 	r1_bio->master_bio = NULL;
152 
153 	return r1_bio;
154 
155 out_free_pages:
156 	while (--j >= 0)
157 		bio_free_pages(r1_bio->bios[j]);
158 
159 out_free_bio:
160 	while (++j < pi->raid_disks)
161 		bio_put(r1_bio->bios[j]);
162 	r1bio_pool_free(r1_bio, data);
163 	return NULL;
164 }
165 
166 static void r1buf_pool_free(void *__r1_bio, void *data)
167 {
168 	struct pool_info *pi = data;
169 	int i,j;
170 	struct r1bio *r1bio = __r1_bio;
171 
172 	for (i = 0; i < RESYNC_PAGES; i++)
173 		for (j = pi->raid_disks; j-- ;) {
174 			if (j == 0 ||
175 			    r1bio->bios[j]->bi_io_vec[i].bv_page !=
176 			    r1bio->bios[0]->bi_io_vec[i].bv_page)
177 				safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
178 		}
179 	for (i=0 ; i < pi->raid_disks; i++)
180 		bio_put(r1bio->bios[i]);
181 
182 	r1bio_pool_free(r1bio, data);
183 }
184 
185 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
186 {
187 	int i;
188 
189 	for (i = 0; i < conf->raid_disks * 2; i++) {
190 		struct bio **bio = r1_bio->bios + i;
191 		if (!BIO_SPECIAL(*bio))
192 			bio_put(*bio);
193 		*bio = NULL;
194 	}
195 }
196 
197 static void free_r1bio(struct r1bio *r1_bio)
198 {
199 	struct r1conf *conf = r1_bio->mddev->private;
200 
201 	put_all_bios(conf, r1_bio);
202 	mempool_free(r1_bio, conf->r1bio_pool);
203 }
204 
205 static void put_buf(struct r1bio *r1_bio)
206 {
207 	struct r1conf *conf = r1_bio->mddev->private;
208 	int i;
209 
210 	for (i = 0; i < conf->raid_disks * 2; i++) {
211 		struct bio *bio = r1_bio->bios[i];
212 		if (bio->bi_end_io)
213 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
214 	}
215 
216 	mempool_free(r1_bio, conf->r1buf_pool);
217 
218 	lower_barrier(conf);
219 }
220 
221 static void reschedule_retry(struct r1bio *r1_bio)
222 {
223 	unsigned long flags;
224 	struct mddev *mddev = r1_bio->mddev;
225 	struct r1conf *conf = mddev->private;
226 
227 	spin_lock_irqsave(&conf->device_lock, flags);
228 	list_add(&r1_bio->retry_list, &conf->retry_list);
229 	conf->nr_queued ++;
230 	spin_unlock_irqrestore(&conf->device_lock, flags);
231 
232 	wake_up(&conf->wait_barrier);
233 	md_wakeup_thread(mddev->thread);
234 }
235 
236 /*
237  * raid_end_bio_io() is called when we have finished servicing a mirrored
238  * operation and are ready to return a success/failure code to the buffer
239  * cache layer.
240  */
241 static void call_bio_endio(struct r1bio *r1_bio)
242 {
243 	struct bio *bio = r1_bio->master_bio;
244 	int done;
245 	struct r1conf *conf = r1_bio->mddev->private;
246 	sector_t start_next_window = r1_bio->start_next_window;
247 	sector_t bi_sector = bio->bi_iter.bi_sector;
248 
249 	if (bio->bi_phys_segments) {
250 		unsigned long flags;
251 		spin_lock_irqsave(&conf->device_lock, flags);
252 		bio->bi_phys_segments--;
253 		done = (bio->bi_phys_segments == 0);
254 		spin_unlock_irqrestore(&conf->device_lock, flags);
255 		/*
256 		 * make_request() might be waiting for
257 		 * bi_phys_segments to decrease
258 		 */
259 		wake_up(&conf->wait_barrier);
260 	} else
261 		done = 1;
262 
263 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
264 		bio->bi_error = -EIO;
265 
266 	if (done) {
267 		bio_endio(bio);
268 		/*
269 		 * Wake up any possible resync thread that waits for the device
270 		 * to go idle.
271 		 */
272 		allow_barrier(conf, start_next_window, bi_sector);
273 	}
274 }
275 
276 static void raid_end_bio_io(struct r1bio *r1_bio)
277 {
278 	struct bio *bio = r1_bio->master_bio;
279 
280 	/* if nobody has done the final endio yet, do it now */
281 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
282 		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
283 			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
284 			 (unsigned long long) bio->bi_iter.bi_sector,
285 			 (unsigned long long) bio_end_sector(bio) - 1);
286 
287 		call_bio_endio(r1_bio);
288 	}
289 	free_r1bio(r1_bio);
290 }
291 
292 /*
293  * Update disk head position estimator based on IRQ completion info.
294  */
295 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
296 {
297 	struct r1conf *conf = r1_bio->mddev->private;
298 
299 	conf->mirrors[disk].head_position =
300 		r1_bio->sector + (r1_bio->sectors);
301 }
302 
303 /*
304  * Find the disk number which triggered given bio
305  */
306 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
307 {
308 	int mirror;
309 	struct r1conf *conf = r1_bio->mddev->private;
310 	int raid_disks = conf->raid_disks;
311 
312 	for (mirror = 0; mirror < raid_disks * 2; mirror++)
313 		if (r1_bio->bios[mirror] == bio)
314 			break;
315 
316 	BUG_ON(mirror == raid_disks * 2);
317 	update_head_pos(mirror, r1_bio);
318 
319 	return mirror;
320 }
321 
322 static void raid1_end_read_request(struct bio *bio)
323 {
324 	int uptodate = !bio->bi_error;
325 	struct r1bio *r1_bio = bio->bi_private;
326 	struct r1conf *conf = r1_bio->mddev->private;
327 	struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
328 
329 	/*
330 	 * this branch is our 'one mirror IO has finished' event handler:
331 	 */
332 	update_head_pos(r1_bio->read_disk, r1_bio);
333 
334 	if (uptodate)
335 		set_bit(R1BIO_Uptodate, &r1_bio->state);
336 	else if (test_bit(FailFast, &rdev->flags) &&
337 		 test_bit(R1BIO_FailFast, &r1_bio->state))
338 		/* This was a fail-fast read so we definitely
339 		 * want to retry */
340 		;
341 	else {
342 		/* If all other devices have failed, we want to return
343 		 * the error upwards rather than fail the last device.
344 		 * Here we redefine "uptodate" to mean "Don't want to retry"
345 		 */
346 		unsigned long flags;
347 		spin_lock_irqsave(&conf->device_lock, flags);
348 		if (r1_bio->mddev->degraded == conf->raid_disks ||
349 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
350 		     test_bit(In_sync, &rdev->flags)))
351 			uptodate = 1;
352 		spin_unlock_irqrestore(&conf->device_lock, flags);
353 	}
354 
355 	if (uptodate) {
356 		raid_end_bio_io(r1_bio);
357 		rdev_dec_pending(rdev, conf->mddev);
358 	} else {
359 		/*
360 		 * oops, read error:
361 		 */
362 		char b[BDEVNAME_SIZE];
363 		pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
364 				   mdname(conf->mddev),
365 				   bdevname(rdev->bdev, b),
366 				   (unsigned long long)r1_bio->sector);
367 		set_bit(R1BIO_ReadError, &r1_bio->state);
368 		reschedule_retry(r1_bio);
369 		/* don't drop the reference on read_disk yet */
370 	}
371 }
372 
373 static void close_write(struct r1bio *r1_bio)
374 {
375 	/* it really is the end of this request */
376 	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
377 		/* free extra copy of the data pages */
378 		int i = r1_bio->behind_page_count;
379 		while (i--)
380 			safe_put_page(r1_bio->behind_bvecs[i].bv_page);
381 		kfree(r1_bio->behind_bvecs);
382 		r1_bio->behind_bvecs = NULL;
383 	}
384 	/* clear the bitmap if all writes complete successfully */
385 	bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
386 			r1_bio->sectors,
387 			!test_bit(R1BIO_Degraded, &r1_bio->state),
388 			test_bit(R1BIO_BehindIO, &r1_bio->state));
389 	md_write_end(r1_bio->mddev);
390 }
391 
392 static void r1_bio_write_done(struct r1bio *r1_bio)
393 {
394 	if (!atomic_dec_and_test(&r1_bio->remaining))
395 		return;
396 
397 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
398 		reschedule_retry(r1_bio);
399 	else {
400 		close_write(r1_bio);
401 		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
402 			reschedule_retry(r1_bio);
403 		else
404 			raid_end_bio_io(r1_bio);
405 	}
406 }
407 
408 static void raid1_end_write_request(struct bio *bio)
409 {
410 	struct r1bio *r1_bio = bio->bi_private;
411 	int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
412 	struct r1conf *conf = r1_bio->mddev->private;
413 	struct bio *to_put = NULL;
414 	int mirror = find_bio_disk(r1_bio, bio);
415 	struct md_rdev *rdev = conf->mirrors[mirror].rdev;
416 	bool discard_error;
417 
418 	discard_error = bio->bi_error && bio_op(bio) == REQ_OP_DISCARD;
419 
420 	/*
421 	 * 'one mirror IO has finished' event handler:
422 	 */
423 	if (bio->bi_error && !discard_error) {
424 		set_bit(WriteErrorSeen,	&rdev->flags);
425 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
426 			set_bit(MD_RECOVERY_NEEDED, &
427 				conf->mddev->recovery);
428 
429 		if (test_bit(FailFast, &rdev->flags) &&
430 		    (bio->bi_opf & MD_FAILFAST) &&
431 		    /* We never try FailFast to WriteMostly devices */
432 		    !test_bit(WriteMostly, &rdev->flags)) {
433 			md_error(r1_bio->mddev, rdev);
434 			if (!test_bit(Faulty, &rdev->flags))
435 				/* This is the only remaining device,
436 				 * We need to retry the write without
437 				 * FailFast
438 				 */
439 				set_bit(R1BIO_WriteError, &r1_bio->state);
440 			else {
441 				/* Finished with this branch */
442 				r1_bio->bios[mirror] = NULL;
443 				to_put = bio;
444 			}
445 		} else
446 			set_bit(R1BIO_WriteError, &r1_bio->state);
447 	} else {
448 		/*
449 		 * Set R1BIO_Uptodate in our master bio, so that we
450 		 * will return a good error code for to the higher
451 		 * levels even if IO on some other mirrored buffer
452 		 * fails.
453 		 *
454 		 * The 'master' represents the composite IO operation
455 		 * to user-side. So if something waits for IO, then it
456 		 * will wait for the 'master' bio.
457 		 */
458 		sector_t first_bad;
459 		int bad_sectors;
460 
461 		r1_bio->bios[mirror] = NULL;
462 		to_put = bio;
463 		/*
464 		 * Do not set R1BIO_Uptodate if the current device is
465 		 * rebuilding or Faulty. This is because we cannot use
466 		 * such device for properly reading the data back (we could
467 		 * potentially use it, if the current write would have felt
468 		 * before rdev->recovery_offset, but for simplicity we don't
469 		 * check this here.
470 		 */
471 		if (test_bit(In_sync, &rdev->flags) &&
472 		    !test_bit(Faulty, &rdev->flags))
473 			set_bit(R1BIO_Uptodate, &r1_bio->state);
474 
475 		/* Maybe we can clear some bad blocks. */
476 		if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
477 				&first_bad, &bad_sectors) && !discard_error) {
478 			r1_bio->bios[mirror] = IO_MADE_GOOD;
479 			set_bit(R1BIO_MadeGood, &r1_bio->state);
480 		}
481 	}
482 
483 	if (behind) {
484 		if (test_bit(WriteMostly, &rdev->flags))
485 			atomic_dec(&r1_bio->behind_remaining);
486 
487 		/*
488 		 * In behind mode, we ACK the master bio once the I/O
489 		 * has safely reached all non-writemostly
490 		 * disks. Setting the Returned bit ensures that this
491 		 * gets done only once -- we don't ever want to return
492 		 * -EIO here, instead we'll wait
493 		 */
494 		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
495 		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
496 			/* Maybe we can return now */
497 			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
498 				struct bio *mbio = r1_bio->master_bio;
499 				pr_debug("raid1: behind end write sectors"
500 					 " %llu-%llu\n",
501 					 (unsigned long long) mbio->bi_iter.bi_sector,
502 					 (unsigned long long) bio_end_sector(mbio) - 1);
503 				call_bio_endio(r1_bio);
504 			}
505 		}
506 	}
507 	if (r1_bio->bios[mirror] == NULL)
508 		rdev_dec_pending(rdev, conf->mddev);
509 
510 	/*
511 	 * Let's see if all mirrored write operations have finished
512 	 * already.
513 	 */
514 	r1_bio_write_done(r1_bio);
515 
516 	if (to_put)
517 		bio_put(to_put);
518 }
519 
520 /*
521  * This routine returns the disk from which the requested read should
522  * be done. There is a per-array 'next expected sequential IO' sector
523  * number - if this matches on the next IO then we use the last disk.
524  * There is also a per-disk 'last know head position' sector that is
525  * maintained from IRQ contexts, both the normal and the resync IO
526  * completion handlers update this position correctly. If there is no
527  * perfect sequential match then we pick the disk whose head is closest.
528  *
529  * If there are 2 mirrors in the same 2 devices, performance degrades
530  * because position is mirror, not device based.
531  *
532  * The rdev for the device selected will have nr_pending incremented.
533  */
534 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
535 {
536 	const sector_t this_sector = r1_bio->sector;
537 	int sectors;
538 	int best_good_sectors;
539 	int best_disk, best_dist_disk, best_pending_disk;
540 	int has_nonrot_disk;
541 	int disk;
542 	sector_t best_dist;
543 	unsigned int min_pending;
544 	struct md_rdev *rdev;
545 	int choose_first;
546 	int choose_next_idle;
547 
548 	rcu_read_lock();
549 	/*
550 	 * Check if we can balance. We can balance on the whole
551 	 * device if no resync is going on, or below the resync window.
552 	 * We take the first readable disk when above the resync window.
553 	 */
554  retry:
555 	sectors = r1_bio->sectors;
556 	best_disk = -1;
557 	best_dist_disk = -1;
558 	best_dist = MaxSector;
559 	best_pending_disk = -1;
560 	min_pending = UINT_MAX;
561 	best_good_sectors = 0;
562 	has_nonrot_disk = 0;
563 	choose_next_idle = 0;
564 	clear_bit(R1BIO_FailFast, &r1_bio->state);
565 
566 	if ((conf->mddev->recovery_cp < this_sector + sectors) ||
567 	    (mddev_is_clustered(conf->mddev) &&
568 	    md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
569 		    this_sector + sectors)))
570 		choose_first = 1;
571 	else
572 		choose_first = 0;
573 
574 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
575 		sector_t dist;
576 		sector_t first_bad;
577 		int bad_sectors;
578 		unsigned int pending;
579 		bool nonrot;
580 
581 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
582 		if (r1_bio->bios[disk] == IO_BLOCKED
583 		    || rdev == NULL
584 		    || test_bit(Faulty, &rdev->flags))
585 			continue;
586 		if (!test_bit(In_sync, &rdev->flags) &&
587 		    rdev->recovery_offset < this_sector + sectors)
588 			continue;
589 		if (test_bit(WriteMostly, &rdev->flags)) {
590 			/* Don't balance among write-mostly, just
591 			 * use the first as a last resort */
592 			if (best_dist_disk < 0) {
593 				if (is_badblock(rdev, this_sector, sectors,
594 						&first_bad, &bad_sectors)) {
595 					if (first_bad <= this_sector)
596 						/* Cannot use this */
597 						continue;
598 					best_good_sectors = first_bad - this_sector;
599 				} else
600 					best_good_sectors = sectors;
601 				best_dist_disk = disk;
602 				best_pending_disk = disk;
603 			}
604 			continue;
605 		}
606 		/* This is a reasonable device to use.  It might
607 		 * even be best.
608 		 */
609 		if (is_badblock(rdev, this_sector, sectors,
610 				&first_bad, &bad_sectors)) {
611 			if (best_dist < MaxSector)
612 				/* already have a better device */
613 				continue;
614 			if (first_bad <= this_sector) {
615 				/* cannot read here. If this is the 'primary'
616 				 * device, then we must not read beyond
617 				 * bad_sectors from another device..
618 				 */
619 				bad_sectors -= (this_sector - first_bad);
620 				if (choose_first && sectors > bad_sectors)
621 					sectors = bad_sectors;
622 				if (best_good_sectors > sectors)
623 					best_good_sectors = sectors;
624 
625 			} else {
626 				sector_t good_sectors = first_bad - this_sector;
627 				if (good_sectors > best_good_sectors) {
628 					best_good_sectors = good_sectors;
629 					best_disk = disk;
630 				}
631 				if (choose_first)
632 					break;
633 			}
634 			continue;
635 		} else
636 			best_good_sectors = sectors;
637 
638 		if (best_disk >= 0)
639 			/* At least two disks to choose from so failfast is OK */
640 			set_bit(R1BIO_FailFast, &r1_bio->state);
641 
642 		nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
643 		has_nonrot_disk |= nonrot;
644 		pending = atomic_read(&rdev->nr_pending);
645 		dist = abs(this_sector - conf->mirrors[disk].head_position);
646 		if (choose_first) {
647 			best_disk = disk;
648 			break;
649 		}
650 		/* Don't change to another disk for sequential reads */
651 		if (conf->mirrors[disk].next_seq_sect == this_sector
652 		    || dist == 0) {
653 			int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
654 			struct raid1_info *mirror = &conf->mirrors[disk];
655 
656 			best_disk = disk;
657 			/*
658 			 * If buffered sequential IO size exceeds optimal
659 			 * iosize, check if there is idle disk. If yes, choose
660 			 * the idle disk. read_balance could already choose an
661 			 * idle disk before noticing it's a sequential IO in
662 			 * this disk. This doesn't matter because this disk
663 			 * will idle, next time it will be utilized after the
664 			 * first disk has IO size exceeds optimal iosize. In
665 			 * this way, iosize of the first disk will be optimal
666 			 * iosize at least. iosize of the second disk might be
667 			 * small, but not a big deal since when the second disk
668 			 * starts IO, the first disk is likely still busy.
669 			 */
670 			if (nonrot && opt_iosize > 0 &&
671 			    mirror->seq_start != MaxSector &&
672 			    mirror->next_seq_sect > opt_iosize &&
673 			    mirror->next_seq_sect - opt_iosize >=
674 			    mirror->seq_start) {
675 				choose_next_idle = 1;
676 				continue;
677 			}
678 			break;
679 		}
680 
681 		if (choose_next_idle)
682 			continue;
683 
684 		if (min_pending > pending) {
685 			min_pending = pending;
686 			best_pending_disk = disk;
687 		}
688 
689 		if (dist < best_dist) {
690 			best_dist = dist;
691 			best_dist_disk = disk;
692 		}
693 	}
694 
695 	/*
696 	 * If all disks are rotational, choose the closest disk. If any disk is
697 	 * non-rotational, choose the disk with less pending request even the
698 	 * disk is rotational, which might/might not be optimal for raids with
699 	 * mixed ratation/non-rotational disks depending on workload.
700 	 */
701 	if (best_disk == -1) {
702 		if (has_nonrot_disk || min_pending == 0)
703 			best_disk = best_pending_disk;
704 		else
705 			best_disk = best_dist_disk;
706 	}
707 
708 	if (best_disk >= 0) {
709 		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
710 		if (!rdev)
711 			goto retry;
712 		atomic_inc(&rdev->nr_pending);
713 		sectors = best_good_sectors;
714 
715 		if (conf->mirrors[best_disk].next_seq_sect != this_sector)
716 			conf->mirrors[best_disk].seq_start = this_sector;
717 
718 		conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
719 	}
720 	rcu_read_unlock();
721 	*max_sectors = sectors;
722 
723 	return best_disk;
724 }
725 
726 static int raid1_congested(struct mddev *mddev, int bits)
727 {
728 	struct r1conf *conf = mddev->private;
729 	int i, ret = 0;
730 
731 	if ((bits & (1 << WB_async_congested)) &&
732 	    conf->pending_count >= max_queued_requests)
733 		return 1;
734 
735 	rcu_read_lock();
736 	for (i = 0; i < conf->raid_disks * 2; i++) {
737 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
738 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
739 			struct request_queue *q = bdev_get_queue(rdev->bdev);
740 
741 			BUG_ON(!q);
742 
743 			/* Note the '|| 1' - when read_balance prefers
744 			 * non-congested targets, it can be removed
745 			 */
746 			if ((bits & (1 << WB_async_congested)) || 1)
747 				ret |= bdi_congested(&q->backing_dev_info, bits);
748 			else
749 				ret &= bdi_congested(&q->backing_dev_info, bits);
750 		}
751 	}
752 	rcu_read_unlock();
753 	return ret;
754 }
755 
756 static void flush_pending_writes(struct r1conf *conf)
757 {
758 	/* Any writes that have been queued but are awaiting
759 	 * bitmap updates get flushed here.
760 	 */
761 	spin_lock_irq(&conf->device_lock);
762 
763 	if (conf->pending_bio_list.head) {
764 		struct bio *bio;
765 		bio = bio_list_get(&conf->pending_bio_list);
766 		conf->pending_count = 0;
767 		spin_unlock_irq(&conf->device_lock);
768 		/* flush any pending bitmap writes to
769 		 * disk before proceeding w/ I/O */
770 		bitmap_unplug(conf->mddev->bitmap);
771 		wake_up(&conf->wait_barrier);
772 
773 		while (bio) { /* submit pending writes */
774 			struct bio *next = bio->bi_next;
775 			struct md_rdev *rdev = (void*)bio->bi_bdev;
776 			bio->bi_next = NULL;
777 			bio->bi_bdev = rdev->bdev;
778 			if (test_bit(Faulty, &rdev->flags)) {
779 				bio->bi_error = -EIO;
780 				bio_endio(bio);
781 			} else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
782 					    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
783 				/* Just ignore it */
784 				bio_endio(bio);
785 			else
786 				generic_make_request(bio);
787 			bio = next;
788 		}
789 	} else
790 		spin_unlock_irq(&conf->device_lock);
791 }
792 
793 /* Barriers....
794  * Sometimes we need to suspend IO while we do something else,
795  * either some resync/recovery, or reconfigure the array.
796  * To do this we raise a 'barrier'.
797  * The 'barrier' is a counter that can be raised multiple times
798  * to count how many activities are happening which preclude
799  * normal IO.
800  * We can only raise the barrier if there is no pending IO.
801  * i.e. if nr_pending == 0.
802  * We choose only to raise the barrier if no-one is waiting for the
803  * barrier to go down.  This means that as soon as an IO request
804  * is ready, no other operations which require a barrier will start
805  * until the IO request has had a chance.
806  *
807  * So: regular IO calls 'wait_barrier'.  When that returns there
808  *    is no backgroup IO happening,  It must arrange to call
809  *    allow_barrier when it has finished its IO.
810  * backgroup IO calls must call raise_barrier.  Once that returns
811  *    there is no normal IO happeing.  It must arrange to call
812  *    lower_barrier when the particular background IO completes.
813  */
814 static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
815 {
816 	spin_lock_irq(&conf->resync_lock);
817 
818 	/* Wait until no block IO is waiting */
819 	wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
820 			    conf->resync_lock);
821 
822 	/* block any new IO from starting */
823 	conf->barrier++;
824 	conf->next_resync = sector_nr;
825 
826 	/* For these conditions we must wait:
827 	 * A: while the array is in frozen state
828 	 * B: while barrier >= RESYNC_DEPTH, meaning resync reach
829 	 *    the max count which allowed.
830 	 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
831 	 *    next resync will reach to the window which normal bios are
832 	 *    handling.
833 	 * D: while there are any active requests in the current window.
834 	 */
835 	wait_event_lock_irq(conf->wait_barrier,
836 			    !conf->array_frozen &&
837 			    conf->barrier < RESYNC_DEPTH &&
838 			    conf->current_window_requests == 0 &&
839 			    (conf->start_next_window >=
840 			     conf->next_resync + RESYNC_SECTORS),
841 			    conf->resync_lock);
842 
843 	conf->nr_pending++;
844 	spin_unlock_irq(&conf->resync_lock);
845 }
846 
847 static void lower_barrier(struct r1conf *conf)
848 {
849 	unsigned long flags;
850 	BUG_ON(conf->barrier <= 0);
851 	spin_lock_irqsave(&conf->resync_lock, flags);
852 	conf->barrier--;
853 	conf->nr_pending--;
854 	spin_unlock_irqrestore(&conf->resync_lock, flags);
855 	wake_up(&conf->wait_barrier);
856 }
857 
858 static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
859 {
860 	bool wait = false;
861 
862 	if (conf->array_frozen || !bio)
863 		wait = true;
864 	else if (conf->barrier && bio_data_dir(bio) == WRITE) {
865 		if ((conf->mddev->curr_resync_completed
866 		     >= bio_end_sector(bio)) ||
867 		    (conf->start_next_window + NEXT_NORMALIO_DISTANCE
868 		     <= bio->bi_iter.bi_sector))
869 			wait = false;
870 		else
871 			wait = true;
872 	}
873 
874 	return wait;
875 }
876 
877 static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
878 {
879 	sector_t sector = 0;
880 
881 	spin_lock_irq(&conf->resync_lock);
882 	if (need_to_wait_for_sync(conf, bio)) {
883 		conf->nr_waiting++;
884 		/* Wait for the barrier to drop.
885 		 * However if there are already pending
886 		 * requests (preventing the barrier from
887 		 * rising completely), and the
888 		 * per-process bio queue isn't empty,
889 		 * then don't wait, as we need to empty
890 		 * that queue to allow conf->start_next_window
891 		 * to increase.
892 		 */
893 		raid1_log(conf->mddev, "wait barrier");
894 		wait_event_lock_irq(conf->wait_barrier,
895 				    !conf->array_frozen &&
896 				    (!conf->barrier ||
897 				     ((conf->start_next_window <
898 				       conf->next_resync + RESYNC_SECTORS) &&
899 				      current->bio_list &&
900 				      !bio_list_empty(current->bio_list))),
901 				    conf->resync_lock);
902 		conf->nr_waiting--;
903 	}
904 
905 	if (bio && bio_data_dir(bio) == WRITE) {
906 		if (bio->bi_iter.bi_sector >= conf->next_resync) {
907 			if (conf->start_next_window == MaxSector)
908 				conf->start_next_window =
909 					conf->next_resync +
910 					NEXT_NORMALIO_DISTANCE;
911 
912 			if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
913 			    <= bio->bi_iter.bi_sector)
914 				conf->next_window_requests++;
915 			else
916 				conf->current_window_requests++;
917 			sector = conf->start_next_window;
918 		}
919 	}
920 
921 	conf->nr_pending++;
922 	spin_unlock_irq(&conf->resync_lock);
923 	return sector;
924 }
925 
926 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
927 			  sector_t bi_sector)
928 {
929 	unsigned long flags;
930 
931 	spin_lock_irqsave(&conf->resync_lock, flags);
932 	conf->nr_pending--;
933 	if (start_next_window) {
934 		if (start_next_window == conf->start_next_window) {
935 			if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
936 			    <= bi_sector)
937 				conf->next_window_requests--;
938 			else
939 				conf->current_window_requests--;
940 		} else
941 			conf->current_window_requests--;
942 
943 		if (!conf->current_window_requests) {
944 			if (conf->next_window_requests) {
945 				conf->current_window_requests =
946 					conf->next_window_requests;
947 				conf->next_window_requests = 0;
948 				conf->start_next_window +=
949 					NEXT_NORMALIO_DISTANCE;
950 			} else
951 				conf->start_next_window = MaxSector;
952 		}
953 	}
954 	spin_unlock_irqrestore(&conf->resync_lock, flags);
955 	wake_up(&conf->wait_barrier);
956 }
957 
958 static void freeze_array(struct r1conf *conf, int extra)
959 {
960 	/* stop syncio and normal IO and wait for everything to
961 	 * go quite.
962 	 * We wait until nr_pending match nr_queued+extra
963 	 * This is called in the context of one normal IO request
964 	 * that has failed. Thus any sync request that might be pending
965 	 * will be blocked by nr_pending, and we need to wait for
966 	 * pending IO requests to complete or be queued for re-try.
967 	 * Thus the number queued (nr_queued) plus this request (extra)
968 	 * must match the number of pending IOs (nr_pending) before
969 	 * we continue.
970 	 */
971 	spin_lock_irq(&conf->resync_lock);
972 	conf->array_frozen = 1;
973 	raid1_log(conf->mddev, "wait freeze");
974 	wait_event_lock_irq_cmd(conf->wait_barrier,
975 				conf->nr_pending == conf->nr_queued+extra,
976 				conf->resync_lock,
977 				flush_pending_writes(conf));
978 	spin_unlock_irq(&conf->resync_lock);
979 }
980 static void unfreeze_array(struct r1conf *conf)
981 {
982 	/* reverse the effect of the freeze */
983 	spin_lock_irq(&conf->resync_lock);
984 	conf->array_frozen = 0;
985 	wake_up(&conf->wait_barrier);
986 	spin_unlock_irq(&conf->resync_lock);
987 }
988 
989 /* duplicate the data pages for behind I/O
990  */
991 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
992 {
993 	int i;
994 	struct bio_vec *bvec;
995 	struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
996 					GFP_NOIO);
997 	if (unlikely(!bvecs))
998 		return;
999 
1000 	bio_for_each_segment_all(bvec, bio, i) {
1001 		bvecs[i] = *bvec;
1002 		bvecs[i].bv_page = alloc_page(GFP_NOIO);
1003 		if (unlikely(!bvecs[i].bv_page))
1004 			goto do_sync_io;
1005 		memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
1006 		       kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
1007 		kunmap(bvecs[i].bv_page);
1008 		kunmap(bvec->bv_page);
1009 	}
1010 	r1_bio->behind_bvecs = bvecs;
1011 	r1_bio->behind_page_count = bio->bi_vcnt;
1012 	set_bit(R1BIO_BehindIO, &r1_bio->state);
1013 	return;
1014 
1015 do_sync_io:
1016 	for (i = 0; i < bio->bi_vcnt; i++)
1017 		if (bvecs[i].bv_page)
1018 			put_page(bvecs[i].bv_page);
1019 	kfree(bvecs);
1020 	pr_debug("%dB behind alloc failed, doing sync I/O\n",
1021 		 bio->bi_iter.bi_size);
1022 }
1023 
1024 struct raid1_plug_cb {
1025 	struct blk_plug_cb	cb;
1026 	struct bio_list		pending;
1027 	int			pending_cnt;
1028 };
1029 
1030 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1031 {
1032 	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1033 						  cb);
1034 	struct mddev *mddev = plug->cb.data;
1035 	struct r1conf *conf = mddev->private;
1036 	struct bio *bio;
1037 
1038 	if (from_schedule || current->bio_list) {
1039 		spin_lock_irq(&conf->device_lock);
1040 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1041 		conf->pending_count += plug->pending_cnt;
1042 		spin_unlock_irq(&conf->device_lock);
1043 		wake_up(&conf->wait_barrier);
1044 		md_wakeup_thread(mddev->thread);
1045 		kfree(plug);
1046 		return;
1047 	}
1048 
1049 	/* we aren't scheduling, so we can do the write-out directly. */
1050 	bio = bio_list_get(&plug->pending);
1051 	bitmap_unplug(mddev->bitmap);
1052 	wake_up(&conf->wait_barrier);
1053 
1054 	while (bio) { /* submit pending writes */
1055 		struct bio *next = bio->bi_next;
1056 		struct md_rdev *rdev = (void*)bio->bi_bdev;
1057 		bio->bi_next = NULL;
1058 		bio->bi_bdev = rdev->bdev;
1059 		if (test_bit(Faulty, &rdev->flags)) {
1060 			bio->bi_error = -EIO;
1061 			bio_endio(bio);
1062 		} else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
1063 				    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1064 			/* Just ignore it */
1065 			bio_endio(bio);
1066 		else
1067 			generic_make_request(bio);
1068 		bio = next;
1069 	}
1070 	kfree(plug);
1071 }
1072 
1073 static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1074 				 struct r1bio *r1_bio)
1075 {
1076 	struct r1conf *conf = mddev->private;
1077 	struct raid1_info *mirror;
1078 	struct bio *read_bio;
1079 	struct bitmap *bitmap = mddev->bitmap;
1080 	const int op = bio_op(bio);
1081 	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1082 	int sectors_handled;
1083 	int max_sectors;
1084 	int rdisk;
1085 
1086 	wait_barrier(conf, bio);
1087 
1088 read_again:
1089 	rdisk = read_balance(conf, r1_bio, &max_sectors);
1090 
1091 	if (rdisk < 0) {
1092 		/* couldn't find anywhere to read from */
1093 		raid_end_bio_io(r1_bio);
1094 		return;
1095 	}
1096 	mirror = conf->mirrors + rdisk;
1097 
1098 	if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1099 	    bitmap) {
1100 		/*
1101 		 * Reading from a write-mostly device must take care not to
1102 		 * over-take any writes that are 'behind'
1103 		 */
1104 		raid1_log(mddev, "wait behind writes");
1105 		wait_event(bitmap->behind_wait,
1106 			   atomic_read(&bitmap->behind_writes) == 0);
1107 	}
1108 	r1_bio->read_disk = rdisk;
1109 	r1_bio->start_next_window = 0;
1110 
1111 	read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1112 	bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1113 		 max_sectors);
1114 
1115 	r1_bio->bios[rdisk] = read_bio;
1116 
1117 	read_bio->bi_iter.bi_sector = r1_bio->sector +
1118 		mirror->rdev->data_offset;
1119 	read_bio->bi_bdev = mirror->rdev->bdev;
1120 	read_bio->bi_end_io = raid1_end_read_request;
1121 	bio_set_op_attrs(read_bio, op, do_sync);
1122 	if (test_bit(FailFast, &mirror->rdev->flags) &&
1123 	    test_bit(R1BIO_FailFast, &r1_bio->state))
1124 	        read_bio->bi_opf |= MD_FAILFAST;
1125 	read_bio->bi_private = r1_bio;
1126 
1127 	if (mddev->gendisk)
1128 	        trace_block_bio_remap(bdev_get_queue(read_bio->bi_bdev),
1129 	                              read_bio, disk_devt(mddev->gendisk),
1130 	                              r1_bio->sector);
1131 
1132 	if (max_sectors < r1_bio->sectors) {
1133 		/*
1134 		 * could not read all from this device, so we will need another
1135 		 * r1_bio.
1136 		 */
1137 		sectors_handled = (r1_bio->sector + max_sectors
1138 				   - bio->bi_iter.bi_sector);
1139 		r1_bio->sectors = max_sectors;
1140 		spin_lock_irq(&conf->device_lock);
1141 		if (bio->bi_phys_segments == 0)
1142 			bio->bi_phys_segments = 2;
1143 		else
1144 			bio->bi_phys_segments++;
1145 		spin_unlock_irq(&conf->device_lock);
1146 
1147 		/*
1148 		 * Cannot call generic_make_request directly as that will be
1149 		 * queued in __make_request and subsequent mempool_alloc might
1150 		 * block waiting for it.  So hand bio over to raid1d.
1151 		 */
1152 		reschedule_retry(r1_bio);
1153 
1154 		r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1155 
1156 		r1_bio->master_bio = bio;
1157 		r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1158 		r1_bio->state = 0;
1159 		r1_bio->mddev = mddev;
1160 		r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1161 		goto read_again;
1162 	} else
1163 		generic_make_request(read_bio);
1164 }
1165 
1166 static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1167 				struct r1bio *r1_bio)
1168 {
1169 	struct r1conf *conf = mddev->private;
1170 	int i, disks;
1171 	struct bitmap *bitmap = mddev->bitmap;
1172 	unsigned long flags;
1173 	const int op = bio_op(bio);
1174 	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1175 	const unsigned long do_flush_fua = (bio->bi_opf &
1176 						(REQ_PREFLUSH | REQ_FUA));
1177 	struct md_rdev *blocked_rdev;
1178 	struct blk_plug_cb *cb;
1179 	struct raid1_plug_cb *plug = NULL;
1180 	int first_clone;
1181 	int sectors_handled;
1182 	int max_sectors;
1183 	sector_t start_next_window;
1184 
1185 	/*
1186 	 * Register the new request and wait if the reconstruction
1187 	 * thread has put up a bar for new requests.
1188 	 * Continue immediately if no resync is active currently.
1189 	 */
1190 
1191 	md_write_start(mddev, bio); /* wait on superblock update early */
1192 
1193 	if ((bio_end_sector(bio) > mddev->suspend_lo &&
1194 	    bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1195 	    (mddev_is_clustered(mddev) &&
1196 	     md_cluster_ops->area_resyncing(mddev, WRITE,
1197 		     bio->bi_iter.bi_sector, bio_end_sector(bio)))) {
1198 
1199 		/*
1200 		 * As the suspend_* range is controlled by userspace, we want
1201 		 * an interruptible wait.
1202 		 */
1203 		DEFINE_WAIT(w);
1204 		for (;;) {
1205 			flush_signals(current);
1206 			prepare_to_wait(&conf->wait_barrier,
1207 					&w, TASK_INTERRUPTIBLE);
1208 			if (bio_end_sector(bio) <= mddev->suspend_lo ||
1209 			    bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1210 			    (mddev_is_clustered(mddev) &&
1211 			     !md_cluster_ops->area_resyncing(mddev, WRITE,
1212 				     bio->bi_iter.bi_sector,
1213 				     bio_end_sector(bio))))
1214 				break;
1215 			schedule();
1216 		}
1217 		finish_wait(&conf->wait_barrier, &w);
1218 	}
1219 	start_next_window = wait_barrier(conf, bio);
1220 
1221 	if (conf->pending_count >= max_queued_requests) {
1222 		md_wakeup_thread(mddev->thread);
1223 		raid1_log(mddev, "wait queued");
1224 		wait_event(conf->wait_barrier,
1225 			   conf->pending_count < max_queued_requests);
1226 	}
1227 	/* first select target devices under rcu_lock and
1228 	 * inc refcount on their rdev.  Record them by setting
1229 	 * bios[x] to bio
1230 	 * If there are known/acknowledged bad blocks on any device on
1231 	 * which we have seen a write error, we want to avoid writing those
1232 	 * blocks.
1233 	 * This potentially requires several writes to write around
1234 	 * the bad blocks.  Each set of writes gets it's own r1bio
1235 	 * with a set of bios attached.
1236 	 */
1237 
1238 	disks = conf->raid_disks * 2;
1239  retry_write:
1240 	r1_bio->start_next_window = start_next_window;
1241 	blocked_rdev = NULL;
1242 	rcu_read_lock();
1243 	max_sectors = r1_bio->sectors;
1244 	for (i = 0;  i < disks; i++) {
1245 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1246 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1247 			atomic_inc(&rdev->nr_pending);
1248 			blocked_rdev = rdev;
1249 			break;
1250 		}
1251 		r1_bio->bios[i] = NULL;
1252 		if (!rdev || test_bit(Faulty, &rdev->flags)) {
1253 			if (i < conf->raid_disks)
1254 				set_bit(R1BIO_Degraded, &r1_bio->state);
1255 			continue;
1256 		}
1257 
1258 		atomic_inc(&rdev->nr_pending);
1259 		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1260 			sector_t first_bad;
1261 			int bad_sectors;
1262 			int is_bad;
1263 
1264 			is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1265 					     &first_bad, &bad_sectors);
1266 			if (is_bad < 0) {
1267 				/* mustn't write here until the bad block is
1268 				 * acknowledged*/
1269 				set_bit(BlockedBadBlocks, &rdev->flags);
1270 				blocked_rdev = rdev;
1271 				break;
1272 			}
1273 			if (is_bad && first_bad <= r1_bio->sector) {
1274 				/* Cannot write here at all */
1275 				bad_sectors -= (r1_bio->sector - first_bad);
1276 				if (bad_sectors < max_sectors)
1277 					/* mustn't write more than bad_sectors
1278 					 * to other devices yet
1279 					 */
1280 					max_sectors = bad_sectors;
1281 				rdev_dec_pending(rdev, mddev);
1282 				/* We don't set R1BIO_Degraded as that
1283 				 * only applies if the disk is
1284 				 * missing, so it might be re-added,
1285 				 * and we want to know to recover this
1286 				 * chunk.
1287 				 * In this case the device is here,
1288 				 * and the fact that this chunk is not
1289 				 * in-sync is recorded in the bad
1290 				 * block log
1291 				 */
1292 				continue;
1293 			}
1294 			if (is_bad) {
1295 				int good_sectors = first_bad - r1_bio->sector;
1296 				if (good_sectors < max_sectors)
1297 					max_sectors = good_sectors;
1298 			}
1299 		}
1300 		r1_bio->bios[i] = bio;
1301 	}
1302 	rcu_read_unlock();
1303 
1304 	if (unlikely(blocked_rdev)) {
1305 		/* Wait for this device to become unblocked */
1306 		int j;
1307 		sector_t old = start_next_window;
1308 
1309 		for (j = 0; j < i; j++)
1310 			if (r1_bio->bios[j])
1311 				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1312 		r1_bio->state = 0;
1313 		allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
1314 		raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1315 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1316 		start_next_window = wait_barrier(conf, bio);
1317 		/*
1318 		 * We must make sure the multi r1bios of bio have
1319 		 * the same value of bi_phys_segments
1320 		 */
1321 		if (bio->bi_phys_segments && old &&
1322 		    old != start_next_window)
1323 			/* Wait for the former r1bio(s) to complete */
1324 			wait_event(conf->wait_barrier,
1325 				   bio->bi_phys_segments == 1);
1326 		goto retry_write;
1327 	}
1328 
1329 	if (max_sectors < r1_bio->sectors) {
1330 		/* We are splitting this write into multiple parts, so
1331 		 * we need to prepare for allocating another r1_bio.
1332 		 */
1333 		r1_bio->sectors = max_sectors;
1334 		spin_lock_irq(&conf->device_lock);
1335 		if (bio->bi_phys_segments == 0)
1336 			bio->bi_phys_segments = 2;
1337 		else
1338 			bio->bi_phys_segments++;
1339 		spin_unlock_irq(&conf->device_lock);
1340 	}
1341 	sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
1342 
1343 	atomic_set(&r1_bio->remaining, 1);
1344 	atomic_set(&r1_bio->behind_remaining, 0);
1345 
1346 	first_clone = 1;
1347 	for (i = 0; i < disks; i++) {
1348 		struct bio *mbio;
1349 		if (!r1_bio->bios[i])
1350 			continue;
1351 
1352 		mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1353 		bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector,
1354 			 max_sectors);
1355 
1356 		if (first_clone) {
1357 			/* do behind I/O ?
1358 			 * Not if there are too many, or cannot
1359 			 * allocate memory, or a reader on WriteMostly
1360 			 * is waiting for behind writes to flush */
1361 			if (bitmap &&
1362 			    (atomic_read(&bitmap->behind_writes)
1363 			     < mddev->bitmap_info.max_write_behind) &&
1364 			    !waitqueue_active(&bitmap->behind_wait))
1365 				alloc_behind_pages(mbio, r1_bio);
1366 
1367 			bitmap_startwrite(bitmap, r1_bio->sector,
1368 					  r1_bio->sectors,
1369 					  test_bit(R1BIO_BehindIO,
1370 						   &r1_bio->state));
1371 			first_clone = 0;
1372 		}
1373 		if (r1_bio->behind_bvecs) {
1374 			struct bio_vec *bvec;
1375 			int j;
1376 
1377 			/*
1378 			 * We trimmed the bio, so _all is legit
1379 			 */
1380 			bio_for_each_segment_all(bvec, mbio, j)
1381 				bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1382 			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1383 				atomic_inc(&r1_bio->behind_remaining);
1384 		}
1385 
1386 		r1_bio->bios[i] = mbio;
1387 
1388 		mbio->bi_iter.bi_sector	= (r1_bio->sector +
1389 				   conf->mirrors[i].rdev->data_offset);
1390 		mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1391 		mbio->bi_end_io	= raid1_end_write_request;
1392 		bio_set_op_attrs(mbio, op, do_flush_fua | do_sync);
1393 		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1394 		    !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1395 		    conf->raid_disks - mddev->degraded > 1)
1396 			mbio->bi_opf |= MD_FAILFAST;
1397 		mbio->bi_private = r1_bio;
1398 
1399 		atomic_inc(&r1_bio->remaining);
1400 
1401 		if (mddev->gendisk)
1402 			trace_block_bio_remap(bdev_get_queue(mbio->bi_bdev),
1403 					      mbio, disk_devt(mddev->gendisk),
1404 					      r1_bio->sector);
1405 		/* flush_pending_writes() needs access to the rdev so...*/
1406 		mbio->bi_bdev = (void*)conf->mirrors[i].rdev;
1407 
1408 		cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1409 		if (cb)
1410 			plug = container_of(cb, struct raid1_plug_cb, cb);
1411 		else
1412 			plug = NULL;
1413 		spin_lock_irqsave(&conf->device_lock, flags);
1414 		if (plug) {
1415 			bio_list_add(&plug->pending, mbio);
1416 			plug->pending_cnt++;
1417 		} else {
1418 			bio_list_add(&conf->pending_bio_list, mbio);
1419 			conf->pending_count++;
1420 		}
1421 		spin_unlock_irqrestore(&conf->device_lock, flags);
1422 		if (!plug)
1423 			md_wakeup_thread(mddev->thread);
1424 	}
1425 	/* Mustn't call r1_bio_write_done before this next test,
1426 	 * as it could result in the bio being freed.
1427 	 */
1428 	if (sectors_handled < bio_sectors(bio)) {
1429 		r1_bio_write_done(r1_bio);
1430 		/* We need another r1_bio.  It has already been counted
1431 		 * in bio->bi_phys_segments
1432 		 */
1433 		r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1434 		r1_bio->master_bio = bio;
1435 		r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1436 		r1_bio->state = 0;
1437 		r1_bio->mddev = mddev;
1438 		r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1439 		goto retry_write;
1440 	}
1441 
1442 	r1_bio_write_done(r1_bio);
1443 
1444 	/* In case raid1d snuck in to freeze_array */
1445 	wake_up(&conf->wait_barrier);
1446 }
1447 
1448 static void raid1_make_request(struct mddev *mddev, struct bio *bio)
1449 {
1450 	struct r1conf *conf = mddev->private;
1451 	struct r1bio *r1_bio;
1452 
1453 	/*
1454 	 * make_request() can abort the operation when read-ahead is being
1455 	 * used and no empty request is available.
1456 	 *
1457 	 */
1458 	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1459 
1460 	r1_bio->master_bio = bio;
1461 	r1_bio->sectors = bio_sectors(bio);
1462 	r1_bio->state = 0;
1463 	r1_bio->mddev = mddev;
1464 	r1_bio->sector = bio->bi_iter.bi_sector;
1465 
1466 	/*
1467 	 * We might need to issue multiple reads to different devices if there
1468 	 * are bad blocks around, so we keep track of the number of reads in
1469 	 * bio->bi_phys_segments.  If this is 0, there is only one r1_bio and
1470 	 * no locking will be needed when requests complete.  If it is
1471 	 * non-zero, then it is the number of not-completed requests.
1472 	 */
1473 	bio->bi_phys_segments = 0;
1474 	bio_clear_flag(bio, BIO_SEG_VALID);
1475 
1476 	if (bio_data_dir(bio) == READ)
1477 		raid1_read_request(mddev, bio, r1_bio);
1478 	else
1479 		raid1_write_request(mddev, bio, r1_bio);
1480 }
1481 
1482 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1483 {
1484 	struct r1conf *conf = mddev->private;
1485 	int i;
1486 
1487 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1488 		   conf->raid_disks - mddev->degraded);
1489 	rcu_read_lock();
1490 	for (i = 0; i < conf->raid_disks; i++) {
1491 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1492 		seq_printf(seq, "%s",
1493 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1494 	}
1495 	rcu_read_unlock();
1496 	seq_printf(seq, "]");
1497 }
1498 
1499 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1500 {
1501 	char b[BDEVNAME_SIZE];
1502 	struct r1conf *conf = mddev->private;
1503 	unsigned long flags;
1504 
1505 	/*
1506 	 * If it is not operational, then we have already marked it as dead
1507 	 * else if it is the last working disks, ignore the error, let the
1508 	 * next level up know.
1509 	 * else mark the drive as failed
1510 	 */
1511 	spin_lock_irqsave(&conf->device_lock, flags);
1512 	if (test_bit(In_sync, &rdev->flags)
1513 	    && (conf->raid_disks - mddev->degraded) == 1) {
1514 		/*
1515 		 * Don't fail the drive, act as though we were just a
1516 		 * normal single drive.
1517 		 * However don't try a recovery from this drive as
1518 		 * it is very likely to fail.
1519 		 */
1520 		conf->recovery_disabled = mddev->recovery_disabled;
1521 		spin_unlock_irqrestore(&conf->device_lock, flags);
1522 		return;
1523 	}
1524 	set_bit(Blocked, &rdev->flags);
1525 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1526 		mddev->degraded++;
1527 		set_bit(Faulty, &rdev->flags);
1528 	} else
1529 		set_bit(Faulty, &rdev->flags);
1530 	spin_unlock_irqrestore(&conf->device_lock, flags);
1531 	/*
1532 	 * if recovery is running, make sure it aborts.
1533 	 */
1534 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1535 	set_mask_bits(&mddev->sb_flags, 0,
1536 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1537 	pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1538 		"md/raid1:%s: Operation continuing on %d devices.\n",
1539 		mdname(mddev), bdevname(rdev->bdev, b),
1540 		mdname(mddev), conf->raid_disks - mddev->degraded);
1541 }
1542 
1543 static void print_conf(struct r1conf *conf)
1544 {
1545 	int i;
1546 
1547 	pr_debug("RAID1 conf printout:\n");
1548 	if (!conf) {
1549 		pr_debug("(!conf)\n");
1550 		return;
1551 	}
1552 	pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1553 		 conf->raid_disks);
1554 
1555 	rcu_read_lock();
1556 	for (i = 0; i < conf->raid_disks; i++) {
1557 		char b[BDEVNAME_SIZE];
1558 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1559 		if (rdev)
1560 			pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1561 				 i, !test_bit(In_sync, &rdev->flags),
1562 				 !test_bit(Faulty, &rdev->flags),
1563 				 bdevname(rdev->bdev,b));
1564 	}
1565 	rcu_read_unlock();
1566 }
1567 
1568 static void close_sync(struct r1conf *conf)
1569 {
1570 	wait_barrier(conf, NULL);
1571 	allow_barrier(conf, 0, 0);
1572 
1573 	mempool_destroy(conf->r1buf_pool);
1574 	conf->r1buf_pool = NULL;
1575 
1576 	spin_lock_irq(&conf->resync_lock);
1577 	conf->next_resync = MaxSector - 2 * NEXT_NORMALIO_DISTANCE;
1578 	conf->start_next_window = MaxSector;
1579 	conf->current_window_requests +=
1580 		conf->next_window_requests;
1581 	conf->next_window_requests = 0;
1582 	spin_unlock_irq(&conf->resync_lock);
1583 }
1584 
1585 static int raid1_spare_active(struct mddev *mddev)
1586 {
1587 	int i;
1588 	struct r1conf *conf = mddev->private;
1589 	int count = 0;
1590 	unsigned long flags;
1591 
1592 	/*
1593 	 * Find all failed disks within the RAID1 configuration
1594 	 * and mark them readable.
1595 	 * Called under mddev lock, so rcu protection not needed.
1596 	 * device_lock used to avoid races with raid1_end_read_request
1597 	 * which expects 'In_sync' flags and ->degraded to be consistent.
1598 	 */
1599 	spin_lock_irqsave(&conf->device_lock, flags);
1600 	for (i = 0; i < conf->raid_disks; i++) {
1601 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1602 		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1603 		if (repl
1604 		    && !test_bit(Candidate, &repl->flags)
1605 		    && repl->recovery_offset == MaxSector
1606 		    && !test_bit(Faulty, &repl->flags)
1607 		    && !test_and_set_bit(In_sync, &repl->flags)) {
1608 			/* replacement has just become active */
1609 			if (!rdev ||
1610 			    !test_and_clear_bit(In_sync, &rdev->flags))
1611 				count++;
1612 			if (rdev) {
1613 				/* Replaced device not technically
1614 				 * faulty, but we need to be sure
1615 				 * it gets removed and never re-added
1616 				 */
1617 				set_bit(Faulty, &rdev->flags);
1618 				sysfs_notify_dirent_safe(
1619 					rdev->sysfs_state);
1620 			}
1621 		}
1622 		if (rdev
1623 		    && rdev->recovery_offset == MaxSector
1624 		    && !test_bit(Faulty, &rdev->flags)
1625 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1626 			count++;
1627 			sysfs_notify_dirent_safe(rdev->sysfs_state);
1628 		}
1629 	}
1630 	mddev->degraded -= count;
1631 	spin_unlock_irqrestore(&conf->device_lock, flags);
1632 
1633 	print_conf(conf);
1634 	return count;
1635 }
1636 
1637 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1638 {
1639 	struct r1conf *conf = mddev->private;
1640 	int err = -EEXIST;
1641 	int mirror = 0;
1642 	struct raid1_info *p;
1643 	int first = 0;
1644 	int last = conf->raid_disks - 1;
1645 
1646 	if (mddev->recovery_disabled == conf->recovery_disabled)
1647 		return -EBUSY;
1648 
1649 	if (md_integrity_add_rdev(rdev, mddev))
1650 		return -ENXIO;
1651 
1652 	if (rdev->raid_disk >= 0)
1653 		first = last = rdev->raid_disk;
1654 
1655 	/*
1656 	 * find the disk ... but prefer rdev->saved_raid_disk
1657 	 * if possible.
1658 	 */
1659 	if (rdev->saved_raid_disk >= 0 &&
1660 	    rdev->saved_raid_disk >= first &&
1661 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1662 		first = last = rdev->saved_raid_disk;
1663 
1664 	for (mirror = first; mirror <= last; mirror++) {
1665 		p = conf->mirrors+mirror;
1666 		if (!p->rdev) {
1667 
1668 			if (mddev->gendisk)
1669 				disk_stack_limits(mddev->gendisk, rdev->bdev,
1670 						  rdev->data_offset << 9);
1671 
1672 			p->head_position = 0;
1673 			rdev->raid_disk = mirror;
1674 			err = 0;
1675 			/* As all devices are equivalent, we don't need a full recovery
1676 			 * if this was recently any drive of the array
1677 			 */
1678 			if (rdev->saved_raid_disk < 0)
1679 				conf->fullsync = 1;
1680 			rcu_assign_pointer(p->rdev, rdev);
1681 			break;
1682 		}
1683 		if (test_bit(WantReplacement, &p->rdev->flags) &&
1684 		    p[conf->raid_disks].rdev == NULL) {
1685 			/* Add this device as a replacement */
1686 			clear_bit(In_sync, &rdev->flags);
1687 			set_bit(Replacement, &rdev->flags);
1688 			rdev->raid_disk = mirror;
1689 			err = 0;
1690 			conf->fullsync = 1;
1691 			rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1692 			break;
1693 		}
1694 	}
1695 	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1696 		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1697 	print_conf(conf);
1698 	return err;
1699 }
1700 
1701 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1702 {
1703 	struct r1conf *conf = mddev->private;
1704 	int err = 0;
1705 	int number = rdev->raid_disk;
1706 	struct raid1_info *p = conf->mirrors + number;
1707 
1708 	if (rdev != p->rdev)
1709 		p = conf->mirrors + conf->raid_disks + number;
1710 
1711 	print_conf(conf);
1712 	if (rdev == p->rdev) {
1713 		if (test_bit(In_sync, &rdev->flags) ||
1714 		    atomic_read(&rdev->nr_pending)) {
1715 			err = -EBUSY;
1716 			goto abort;
1717 		}
1718 		/* Only remove non-faulty devices if recovery
1719 		 * is not possible.
1720 		 */
1721 		if (!test_bit(Faulty, &rdev->flags) &&
1722 		    mddev->recovery_disabled != conf->recovery_disabled &&
1723 		    mddev->degraded < conf->raid_disks) {
1724 			err = -EBUSY;
1725 			goto abort;
1726 		}
1727 		p->rdev = NULL;
1728 		if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1729 			synchronize_rcu();
1730 			if (atomic_read(&rdev->nr_pending)) {
1731 				/* lost the race, try later */
1732 				err = -EBUSY;
1733 				p->rdev = rdev;
1734 				goto abort;
1735 			}
1736 		}
1737 		if (conf->mirrors[conf->raid_disks + number].rdev) {
1738 			/* We just removed a device that is being replaced.
1739 			 * Move down the replacement.  We drain all IO before
1740 			 * doing this to avoid confusion.
1741 			 */
1742 			struct md_rdev *repl =
1743 				conf->mirrors[conf->raid_disks + number].rdev;
1744 			freeze_array(conf, 0);
1745 			clear_bit(Replacement, &repl->flags);
1746 			p->rdev = repl;
1747 			conf->mirrors[conf->raid_disks + number].rdev = NULL;
1748 			unfreeze_array(conf);
1749 			clear_bit(WantReplacement, &rdev->flags);
1750 		} else
1751 			clear_bit(WantReplacement, &rdev->flags);
1752 		err = md_integrity_register(mddev);
1753 	}
1754 abort:
1755 
1756 	print_conf(conf);
1757 	return err;
1758 }
1759 
1760 static void end_sync_read(struct bio *bio)
1761 {
1762 	struct r1bio *r1_bio = bio->bi_private;
1763 
1764 	update_head_pos(r1_bio->read_disk, r1_bio);
1765 
1766 	/*
1767 	 * we have read a block, now it needs to be re-written,
1768 	 * or re-read if the read failed.
1769 	 * We don't do much here, just schedule handling by raid1d
1770 	 */
1771 	if (!bio->bi_error)
1772 		set_bit(R1BIO_Uptodate, &r1_bio->state);
1773 
1774 	if (atomic_dec_and_test(&r1_bio->remaining))
1775 		reschedule_retry(r1_bio);
1776 }
1777 
1778 static void end_sync_write(struct bio *bio)
1779 {
1780 	int uptodate = !bio->bi_error;
1781 	struct r1bio *r1_bio = bio->bi_private;
1782 	struct mddev *mddev = r1_bio->mddev;
1783 	struct r1conf *conf = mddev->private;
1784 	sector_t first_bad;
1785 	int bad_sectors;
1786 	struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1787 
1788 	if (!uptodate) {
1789 		sector_t sync_blocks = 0;
1790 		sector_t s = r1_bio->sector;
1791 		long sectors_to_go = r1_bio->sectors;
1792 		/* make sure these bits doesn't get cleared. */
1793 		do {
1794 			bitmap_end_sync(mddev->bitmap, s,
1795 					&sync_blocks, 1);
1796 			s += sync_blocks;
1797 			sectors_to_go -= sync_blocks;
1798 		} while (sectors_to_go > 0);
1799 		set_bit(WriteErrorSeen, &rdev->flags);
1800 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
1801 			set_bit(MD_RECOVERY_NEEDED, &
1802 				mddev->recovery);
1803 		set_bit(R1BIO_WriteError, &r1_bio->state);
1804 	} else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1805 			       &first_bad, &bad_sectors) &&
1806 		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1807 				r1_bio->sector,
1808 				r1_bio->sectors,
1809 				&first_bad, &bad_sectors)
1810 		)
1811 		set_bit(R1BIO_MadeGood, &r1_bio->state);
1812 
1813 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1814 		int s = r1_bio->sectors;
1815 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1816 		    test_bit(R1BIO_WriteError, &r1_bio->state))
1817 			reschedule_retry(r1_bio);
1818 		else {
1819 			put_buf(r1_bio);
1820 			md_done_sync(mddev, s, uptodate);
1821 		}
1822 	}
1823 }
1824 
1825 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1826 			    int sectors, struct page *page, int rw)
1827 {
1828 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1829 		/* success */
1830 		return 1;
1831 	if (rw == WRITE) {
1832 		set_bit(WriteErrorSeen, &rdev->flags);
1833 		if (!test_and_set_bit(WantReplacement,
1834 				      &rdev->flags))
1835 			set_bit(MD_RECOVERY_NEEDED, &
1836 				rdev->mddev->recovery);
1837 	}
1838 	/* need to record an error - either for the block or the device */
1839 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1840 		md_error(rdev->mddev, rdev);
1841 	return 0;
1842 }
1843 
1844 static int fix_sync_read_error(struct r1bio *r1_bio)
1845 {
1846 	/* Try some synchronous reads of other devices to get
1847 	 * good data, much like with normal read errors.  Only
1848 	 * read into the pages we already have so we don't
1849 	 * need to re-issue the read request.
1850 	 * We don't need to freeze the array, because being in an
1851 	 * active sync request, there is no normal IO, and
1852 	 * no overlapping syncs.
1853 	 * We don't need to check is_badblock() again as we
1854 	 * made sure that anything with a bad block in range
1855 	 * will have bi_end_io clear.
1856 	 */
1857 	struct mddev *mddev = r1_bio->mddev;
1858 	struct r1conf *conf = mddev->private;
1859 	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1860 	sector_t sect = r1_bio->sector;
1861 	int sectors = r1_bio->sectors;
1862 	int idx = 0;
1863 	struct md_rdev *rdev;
1864 
1865 	rdev = conf->mirrors[r1_bio->read_disk].rdev;
1866 	if (test_bit(FailFast, &rdev->flags)) {
1867 		/* Don't try recovering from here - just fail it
1868 		 * ... unless it is the last working device of course */
1869 		md_error(mddev, rdev);
1870 		if (test_bit(Faulty, &rdev->flags))
1871 			/* Don't try to read from here, but make sure
1872 			 * put_buf does it's thing
1873 			 */
1874 			bio->bi_end_io = end_sync_write;
1875 	}
1876 
1877 	while(sectors) {
1878 		int s = sectors;
1879 		int d = r1_bio->read_disk;
1880 		int success = 0;
1881 		int start;
1882 
1883 		if (s > (PAGE_SIZE>>9))
1884 			s = PAGE_SIZE >> 9;
1885 		do {
1886 			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1887 				/* No rcu protection needed here devices
1888 				 * can only be removed when no resync is
1889 				 * active, and resync is currently active
1890 				 */
1891 				rdev = conf->mirrors[d].rdev;
1892 				if (sync_page_io(rdev, sect, s<<9,
1893 						 bio->bi_io_vec[idx].bv_page,
1894 						 REQ_OP_READ, 0, false)) {
1895 					success = 1;
1896 					break;
1897 				}
1898 			}
1899 			d++;
1900 			if (d == conf->raid_disks * 2)
1901 				d = 0;
1902 		} while (!success && d != r1_bio->read_disk);
1903 
1904 		if (!success) {
1905 			char b[BDEVNAME_SIZE];
1906 			int abort = 0;
1907 			/* Cannot read from anywhere, this block is lost.
1908 			 * Record a bad block on each device.  If that doesn't
1909 			 * work just disable and interrupt the recovery.
1910 			 * Don't fail devices as that won't really help.
1911 			 */
1912 			pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1913 					    mdname(mddev),
1914 					    bdevname(bio->bi_bdev, b),
1915 					    (unsigned long long)r1_bio->sector);
1916 			for (d = 0; d < conf->raid_disks * 2; d++) {
1917 				rdev = conf->mirrors[d].rdev;
1918 				if (!rdev || test_bit(Faulty, &rdev->flags))
1919 					continue;
1920 				if (!rdev_set_badblocks(rdev, sect, s, 0))
1921 					abort = 1;
1922 			}
1923 			if (abort) {
1924 				conf->recovery_disabled =
1925 					mddev->recovery_disabled;
1926 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1927 				md_done_sync(mddev, r1_bio->sectors, 0);
1928 				put_buf(r1_bio);
1929 				return 0;
1930 			}
1931 			/* Try next page */
1932 			sectors -= s;
1933 			sect += s;
1934 			idx++;
1935 			continue;
1936 		}
1937 
1938 		start = d;
1939 		/* write it back and re-read */
1940 		while (d != r1_bio->read_disk) {
1941 			if (d == 0)
1942 				d = conf->raid_disks * 2;
1943 			d--;
1944 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1945 				continue;
1946 			rdev = conf->mirrors[d].rdev;
1947 			if (r1_sync_page_io(rdev, sect, s,
1948 					    bio->bi_io_vec[idx].bv_page,
1949 					    WRITE) == 0) {
1950 				r1_bio->bios[d]->bi_end_io = NULL;
1951 				rdev_dec_pending(rdev, mddev);
1952 			}
1953 		}
1954 		d = start;
1955 		while (d != r1_bio->read_disk) {
1956 			if (d == 0)
1957 				d = conf->raid_disks * 2;
1958 			d--;
1959 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1960 				continue;
1961 			rdev = conf->mirrors[d].rdev;
1962 			if (r1_sync_page_io(rdev, sect, s,
1963 					    bio->bi_io_vec[idx].bv_page,
1964 					    READ) != 0)
1965 				atomic_add(s, &rdev->corrected_errors);
1966 		}
1967 		sectors -= s;
1968 		sect += s;
1969 		idx ++;
1970 	}
1971 	set_bit(R1BIO_Uptodate, &r1_bio->state);
1972 	bio->bi_error = 0;
1973 	return 1;
1974 }
1975 
1976 static void process_checks(struct r1bio *r1_bio)
1977 {
1978 	/* We have read all readable devices.  If we haven't
1979 	 * got the block, then there is no hope left.
1980 	 * If we have, then we want to do a comparison
1981 	 * and skip the write if everything is the same.
1982 	 * If any blocks failed to read, then we need to
1983 	 * attempt an over-write
1984 	 */
1985 	struct mddev *mddev = r1_bio->mddev;
1986 	struct r1conf *conf = mddev->private;
1987 	int primary;
1988 	int i;
1989 	int vcnt;
1990 
1991 	/* Fix variable parts of all bios */
1992 	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1993 	for (i = 0; i < conf->raid_disks * 2; i++) {
1994 		int j;
1995 		int size;
1996 		int error;
1997 		struct bio *b = r1_bio->bios[i];
1998 		if (b->bi_end_io != end_sync_read)
1999 			continue;
2000 		/* fixup the bio for reuse, but preserve errno */
2001 		error = b->bi_error;
2002 		bio_reset(b);
2003 		b->bi_error = error;
2004 		b->bi_vcnt = vcnt;
2005 		b->bi_iter.bi_size = r1_bio->sectors << 9;
2006 		b->bi_iter.bi_sector = r1_bio->sector +
2007 			conf->mirrors[i].rdev->data_offset;
2008 		b->bi_bdev = conf->mirrors[i].rdev->bdev;
2009 		b->bi_end_io = end_sync_read;
2010 		b->bi_private = r1_bio;
2011 
2012 		size = b->bi_iter.bi_size;
2013 		for (j = 0; j < vcnt ; j++) {
2014 			struct bio_vec *bi;
2015 			bi = &b->bi_io_vec[j];
2016 			bi->bv_offset = 0;
2017 			if (size > PAGE_SIZE)
2018 				bi->bv_len = PAGE_SIZE;
2019 			else
2020 				bi->bv_len = size;
2021 			size -= PAGE_SIZE;
2022 		}
2023 	}
2024 	for (primary = 0; primary < conf->raid_disks * 2; primary++)
2025 		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2026 		    !r1_bio->bios[primary]->bi_error) {
2027 			r1_bio->bios[primary]->bi_end_io = NULL;
2028 			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2029 			break;
2030 		}
2031 	r1_bio->read_disk = primary;
2032 	for (i = 0; i < conf->raid_disks * 2; i++) {
2033 		int j;
2034 		struct bio *pbio = r1_bio->bios[primary];
2035 		struct bio *sbio = r1_bio->bios[i];
2036 		int error = sbio->bi_error;
2037 
2038 		if (sbio->bi_end_io != end_sync_read)
2039 			continue;
2040 		/* Now we can 'fixup' the error value */
2041 		sbio->bi_error = 0;
2042 
2043 		if (!error) {
2044 			for (j = vcnt; j-- ; ) {
2045 				struct page *p, *s;
2046 				p = pbio->bi_io_vec[j].bv_page;
2047 				s = sbio->bi_io_vec[j].bv_page;
2048 				if (memcmp(page_address(p),
2049 					   page_address(s),
2050 					   sbio->bi_io_vec[j].bv_len))
2051 					break;
2052 			}
2053 		} else
2054 			j = 0;
2055 		if (j >= 0)
2056 			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2057 		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2058 			      && !error)) {
2059 			/* No need to write to this device. */
2060 			sbio->bi_end_io = NULL;
2061 			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2062 			continue;
2063 		}
2064 
2065 		bio_copy_data(sbio, pbio);
2066 	}
2067 }
2068 
2069 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2070 {
2071 	struct r1conf *conf = mddev->private;
2072 	int i;
2073 	int disks = conf->raid_disks * 2;
2074 	struct bio *bio, *wbio;
2075 
2076 	bio = r1_bio->bios[r1_bio->read_disk];
2077 
2078 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2079 		/* ouch - failed to read all of that. */
2080 		if (!fix_sync_read_error(r1_bio))
2081 			return;
2082 
2083 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2084 		process_checks(r1_bio);
2085 
2086 	/*
2087 	 * schedule writes
2088 	 */
2089 	atomic_set(&r1_bio->remaining, 1);
2090 	for (i = 0; i < disks ; i++) {
2091 		wbio = r1_bio->bios[i];
2092 		if (wbio->bi_end_io == NULL ||
2093 		    (wbio->bi_end_io == end_sync_read &&
2094 		     (i == r1_bio->read_disk ||
2095 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2096 			continue;
2097 
2098 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2099 		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2100 			wbio->bi_opf |= MD_FAILFAST;
2101 
2102 		wbio->bi_end_io = end_sync_write;
2103 		atomic_inc(&r1_bio->remaining);
2104 		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2105 
2106 		generic_make_request(wbio);
2107 	}
2108 
2109 	if (atomic_dec_and_test(&r1_bio->remaining)) {
2110 		/* if we're here, all write(s) have completed, so clean up */
2111 		int s = r1_bio->sectors;
2112 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2113 		    test_bit(R1BIO_WriteError, &r1_bio->state))
2114 			reschedule_retry(r1_bio);
2115 		else {
2116 			put_buf(r1_bio);
2117 			md_done_sync(mddev, s, 1);
2118 		}
2119 	}
2120 }
2121 
2122 /*
2123  * This is a kernel thread which:
2124  *
2125  *	1.	Retries failed read operations on working mirrors.
2126  *	2.	Updates the raid superblock when problems encounter.
2127  *	3.	Performs writes following reads for array synchronising.
2128  */
2129 
2130 static void fix_read_error(struct r1conf *conf, int read_disk,
2131 			   sector_t sect, int sectors)
2132 {
2133 	struct mddev *mddev = conf->mddev;
2134 	while(sectors) {
2135 		int s = sectors;
2136 		int d = read_disk;
2137 		int success = 0;
2138 		int start;
2139 		struct md_rdev *rdev;
2140 
2141 		if (s > (PAGE_SIZE>>9))
2142 			s = PAGE_SIZE >> 9;
2143 
2144 		do {
2145 			sector_t first_bad;
2146 			int bad_sectors;
2147 
2148 			rcu_read_lock();
2149 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2150 			if (rdev &&
2151 			    (test_bit(In_sync, &rdev->flags) ||
2152 			     (!test_bit(Faulty, &rdev->flags) &&
2153 			      rdev->recovery_offset >= sect + s)) &&
2154 			    is_badblock(rdev, sect, s,
2155 					&first_bad, &bad_sectors) == 0) {
2156 				atomic_inc(&rdev->nr_pending);
2157 				rcu_read_unlock();
2158 				if (sync_page_io(rdev, sect, s<<9,
2159 					 conf->tmppage, REQ_OP_READ, 0, false))
2160 					success = 1;
2161 				rdev_dec_pending(rdev, mddev);
2162 				if (success)
2163 					break;
2164 			} else
2165 				rcu_read_unlock();
2166 			d++;
2167 			if (d == conf->raid_disks * 2)
2168 				d = 0;
2169 		} while (!success && d != read_disk);
2170 
2171 		if (!success) {
2172 			/* Cannot read from anywhere - mark it bad */
2173 			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2174 			if (!rdev_set_badblocks(rdev, sect, s, 0))
2175 				md_error(mddev, rdev);
2176 			break;
2177 		}
2178 		/* write it back and re-read */
2179 		start = d;
2180 		while (d != read_disk) {
2181 			if (d==0)
2182 				d = conf->raid_disks * 2;
2183 			d--;
2184 			rcu_read_lock();
2185 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2186 			if (rdev &&
2187 			    !test_bit(Faulty, &rdev->flags)) {
2188 				atomic_inc(&rdev->nr_pending);
2189 				rcu_read_unlock();
2190 				r1_sync_page_io(rdev, sect, s,
2191 						conf->tmppage, WRITE);
2192 				rdev_dec_pending(rdev, mddev);
2193 			} else
2194 				rcu_read_unlock();
2195 		}
2196 		d = start;
2197 		while (d != read_disk) {
2198 			char b[BDEVNAME_SIZE];
2199 			if (d==0)
2200 				d = conf->raid_disks * 2;
2201 			d--;
2202 			rcu_read_lock();
2203 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2204 			if (rdev &&
2205 			    !test_bit(Faulty, &rdev->flags)) {
2206 				atomic_inc(&rdev->nr_pending);
2207 				rcu_read_unlock();
2208 				if (r1_sync_page_io(rdev, sect, s,
2209 						    conf->tmppage, READ)) {
2210 					atomic_add(s, &rdev->corrected_errors);
2211 					pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2212 						mdname(mddev), s,
2213 						(unsigned long long)(sect +
2214 								     rdev->data_offset),
2215 						bdevname(rdev->bdev, b));
2216 				}
2217 				rdev_dec_pending(rdev, mddev);
2218 			} else
2219 				rcu_read_unlock();
2220 		}
2221 		sectors -= s;
2222 		sect += s;
2223 	}
2224 }
2225 
2226 static int narrow_write_error(struct r1bio *r1_bio, int i)
2227 {
2228 	struct mddev *mddev = r1_bio->mddev;
2229 	struct r1conf *conf = mddev->private;
2230 	struct md_rdev *rdev = conf->mirrors[i].rdev;
2231 
2232 	/* bio has the data to be written to device 'i' where
2233 	 * we just recently had a write error.
2234 	 * We repeatedly clone the bio and trim down to one block,
2235 	 * then try the write.  Where the write fails we record
2236 	 * a bad block.
2237 	 * It is conceivable that the bio doesn't exactly align with
2238 	 * blocks.  We must handle this somehow.
2239 	 *
2240 	 * We currently own a reference on the rdev.
2241 	 */
2242 
2243 	int block_sectors;
2244 	sector_t sector;
2245 	int sectors;
2246 	int sect_to_write = r1_bio->sectors;
2247 	int ok = 1;
2248 
2249 	if (rdev->badblocks.shift < 0)
2250 		return 0;
2251 
2252 	block_sectors = roundup(1 << rdev->badblocks.shift,
2253 				bdev_logical_block_size(rdev->bdev) >> 9);
2254 	sector = r1_bio->sector;
2255 	sectors = ((sector + block_sectors)
2256 		   & ~(sector_t)(block_sectors - 1))
2257 		- sector;
2258 
2259 	while (sect_to_write) {
2260 		struct bio *wbio;
2261 		if (sectors > sect_to_write)
2262 			sectors = sect_to_write;
2263 		/* Write at 'sector' for 'sectors'*/
2264 
2265 		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2266 			unsigned vcnt = r1_bio->behind_page_count;
2267 			struct bio_vec *vec = r1_bio->behind_bvecs;
2268 
2269 			while (!vec->bv_page) {
2270 				vec++;
2271 				vcnt--;
2272 			}
2273 
2274 			wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2275 			memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2276 
2277 			wbio->bi_vcnt = vcnt;
2278 		} else {
2279 			wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2280 		}
2281 
2282 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2283 		wbio->bi_iter.bi_sector = r1_bio->sector;
2284 		wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2285 
2286 		bio_trim(wbio, sector - r1_bio->sector, sectors);
2287 		wbio->bi_iter.bi_sector += rdev->data_offset;
2288 		wbio->bi_bdev = rdev->bdev;
2289 
2290 		if (submit_bio_wait(wbio) < 0)
2291 			/* failure! */
2292 			ok = rdev_set_badblocks(rdev, sector,
2293 						sectors, 0)
2294 				&& ok;
2295 
2296 		bio_put(wbio);
2297 		sect_to_write -= sectors;
2298 		sector += sectors;
2299 		sectors = block_sectors;
2300 	}
2301 	return ok;
2302 }
2303 
2304 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2305 {
2306 	int m;
2307 	int s = r1_bio->sectors;
2308 	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2309 		struct md_rdev *rdev = conf->mirrors[m].rdev;
2310 		struct bio *bio = r1_bio->bios[m];
2311 		if (bio->bi_end_io == NULL)
2312 			continue;
2313 		if (!bio->bi_error &&
2314 		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2315 			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2316 		}
2317 		if (bio->bi_error &&
2318 		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2319 			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2320 				md_error(conf->mddev, rdev);
2321 		}
2322 	}
2323 	put_buf(r1_bio);
2324 	md_done_sync(conf->mddev, s, 1);
2325 }
2326 
2327 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2328 {
2329 	int m;
2330 	bool fail = false;
2331 	for (m = 0; m < conf->raid_disks * 2 ; m++)
2332 		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2333 			struct md_rdev *rdev = conf->mirrors[m].rdev;
2334 			rdev_clear_badblocks(rdev,
2335 					     r1_bio->sector,
2336 					     r1_bio->sectors, 0);
2337 			rdev_dec_pending(rdev, conf->mddev);
2338 		} else if (r1_bio->bios[m] != NULL) {
2339 			/* This drive got a write error.  We need to
2340 			 * narrow down and record precise write
2341 			 * errors.
2342 			 */
2343 			fail = true;
2344 			if (!narrow_write_error(r1_bio, m)) {
2345 				md_error(conf->mddev,
2346 					 conf->mirrors[m].rdev);
2347 				/* an I/O failed, we can't clear the bitmap */
2348 				set_bit(R1BIO_Degraded, &r1_bio->state);
2349 			}
2350 			rdev_dec_pending(conf->mirrors[m].rdev,
2351 					 conf->mddev);
2352 		}
2353 	if (fail) {
2354 		spin_lock_irq(&conf->device_lock);
2355 		list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2356 		conf->nr_queued++;
2357 		spin_unlock_irq(&conf->device_lock);
2358 		md_wakeup_thread(conf->mddev->thread);
2359 	} else {
2360 		if (test_bit(R1BIO_WriteError, &r1_bio->state))
2361 			close_write(r1_bio);
2362 		raid_end_bio_io(r1_bio);
2363 	}
2364 }
2365 
2366 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2367 {
2368 	int disk;
2369 	int max_sectors;
2370 	struct mddev *mddev = conf->mddev;
2371 	struct bio *bio;
2372 	char b[BDEVNAME_SIZE];
2373 	struct md_rdev *rdev;
2374 	dev_t bio_dev;
2375 	sector_t bio_sector;
2376 
2377 	clear_bit(R1BIO_ReadError, &r1_bio->state);
2378 	/* we got a read error. Maybe the drive is bad.  Maybe just
2379 	 * the block and we can fix it.
2380 	 * We freeze all other IO, and try reading the block from
2381 	 * other devices.  When we find one, we re-write
2382 	 * and check it that fixes the read error.
2383 	 * This is all done synchronously while the array is
2384 	 * frozen
2385 	 */
2386 
2387 	bio = r1_bio->bios[r1_bio->read_disk];
2388 	bdevname(bio->bi_bdev, b);
2389 	bio_dev = bio->bi_bdev->bd_dev;
2390 	bio_sector = conf->mirrors[r1_bio->read_disk].rdev->data_offset + r1_bio->sector;
2391 	bio_put(bio);
2392 	r1_bio->bios[r1_bio->read_disk] = NULL;
2393 
2394 	rdev = conf->mirrors[r1_bio->read_disk].rdev;
2395 	if (mddev->ro == 0
2396 	    && !test_bit(FailFast, &rdev->flags)) {
2397 		freeze_array(conf, 1);
2398 		fix_read_error(conf, r1_bio->read_disk,
2399 			       r1_bio->sector, r1_bio->sectors);
2400 		unfreeze_array(conf);
2401 	} else {
2402 		r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2403 	}
2404 
2405 	rdev_dec_pending(rdev, conf->mddev);
2406 
2407 read_more:
2408 	disk = read_balance(conf, r1_bio, &max_sectors);
2409 	if (disk == -1) {
2410 		pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2411 				    mdname(mddev), b, (unsigned long long)r1_bio->sector);
2412 		raid_end_bio_io(r1_bio);
2413 	} else {
2414 		const unsigned long do_sync
2415 			= r1_bio->master_bio->bi_opf & REQ_SYNC;
2416 		r1_bio->read_disk = disk;
2417 		bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2418 		bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2419 			 max_sectors);
2420 		r1_bio->bios[r1_bio->read_disk] = bio;
2421 		rdev = conf->mirrors[disk].rdev;
2422 		pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
2423 				    mdname(mddev),
2424 				    (unsigned long long)r1_bio->sector,
2425 				    bdevname(rdev->bdev, b));
2426 		bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
2427 		bio->bi_bdev = rdev->bdev;
2428 		bio->bi_end_io = raid1_end_read_request;
2429 		bio_set_op_attrs(bio, REQ_OP_READ, do_sync);
2430 		if (test_bit(FailFast, &rdev->flags) &&
2431 		    test_bit(R1BIO_FailFast, &r1_bio->state))
2432 			bio->bi_opf |= MD_FAILFAST;
2433 		bio->bi_private = r1_bio;
2434 		if (max_sectors < r1_bio->sectors) {
2435 			/* Drat - have to split this up more */
2436 			struct bio *mbio = r1_bio->master_bio;
2437 			int sectors_handled = (r1_bio->sector + max_sectors
2438 					       - mbio->bi_iter.bi_sector);
2439 			r1_bio->sectors = max_sectors;
2440 			spin_lock_irq(&conf->device_lock);
2441 			if (mbio->bi_phys_segments == 0)
2442 				mbio->bi_phys_segments = 2;
2443 			else
2444 				mbio->bi_phys_segments++;
2445 			spin_unlock_irq(&conf->device_lock);
2446 			trace_block_bio_remap(bdev_get_queue(bio->bi_bdev),
2447 					      bio, bio_dev, bio_sector);
2448 			generic_make_request(bio);
2449 			bio = NULL;
2450 
2451 			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2452 
2453 			r1_bio->master_bio = mbio;
2454 			r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
2455 			r1_bio->state = 0;
2456 			set_bit(R1BIO_ReadError, &r1_bio->state);
2457 			r1_bio->mddev = mddev;
2458 			r1_bio->sector = mbio->bi_iter.bi_sector +
2459 				sectors_handled;
2460 
2461 			goto read_more;
2462 		} else {
2463 			trace_block_bio_remap(bdev_get_queue(bio->bi_bdev),
2464 					      bio, bio_dev, bio_sector);
2465 			generic_make_request(bio);
2466 		}
2467 	}
2468 }
2469 
2470 static void raid1d(struct md_thread *thread)
2471 {
2472 	struct mddev *mddev = thread->mddev;
2473 	struct r1bio *r1_bio;
2474 	unsigned long flags;
2475 	struct r1conf *conf = mddev->private;
2476 	struct list_head *head = &conf->retry_list;
2477 	struct blk_plug plug;
2478 
2479 	md_check_recovery(mddev);
2480 
2481 	if (!list_empty_careful(&conf->bio_end_io_list) &&
2482 	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2483 		LIST_HEAD(tmp);
2484 		spin_lock_irqsave(&conf->device_lock, flags);
2485 		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2486 			while (!list_empty(&conf->bio_end_io_list)) {
2487 				list_move(conf->bio_end_io_list.prev, &tmp);
2488 				conf->nr_queued--;
2489 			}
2490 		}
2491 		spin_unlock_irqrestore(&conf->device_lock, flags);
2492 		while (!list_empty(&tmp)) {
2493 			r1_bio = list_first_entry(&tmp, struct r1bio,
2494 						  retry_list);
2495 			list_del(&r1_bio->retry_list);
2496 			if (mddev->degraded)
2497 				set_bit(R1BIO_Degraded, &r1_bio->state);
2498 			if (test_bit(R1BIO_WriteError, &r1_bio->state))
2499 				close_write(r1_bio);
2500 			raid_end_bio_io(r1_bio);
2501 		}
2502 	}
2503 
2504 	blk_start_plug(&plug);
2505 	for (;;) {
2506 
2507 		flush_pending_writes(conf);
2508 
2509 		spin_lock_irqsave(&conf->device_lock, flags);
2510 		if (list_empty(head)) {
2511 			spin_unlock_irqrestore(&conf->device_lock, flags);
2512 			break;
2513 		}
2514 		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2515 		list_del(head->prev);
2516 		conf->nr_queued--;
2517 		spin_unlock_irqrestore(&conf->device_lock, flags);
2518 
2519 		mddev = r1_bio->mddev;
2520 		conf = mddev->private;
2521 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2522 			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2523 			    test_bit(R1BIO_WriteError, &r1_bio->state))
2524 				handle_sync_write_finished(conf, r1_bio);
2525 			else
2526 				sync_request_write(mddev, r1_bio);
2527 		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2528 			   test_bit(R1BIO_WriteError, &r1_bio->state))
2529 			handle_write_finished(conf, r1_bio);
2530 		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2531 			handle_read_error(conf, r1_bio);
2532 		else
2533 			/* just a partial read to be scheduled from separate
2534 			 * context
2535 			 */
2536 			generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2537 
2538 		cond_resched();
2539 		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2540 			md_check_recovery(mddev);
2541 	}
2542 	blk_finish_plug(&plug);
2543 }
2544 
2545 static int init_resync(struct r1conf *conf)
2546 {
2547 	int buffs;
2548 
2549 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2550 	BUG_ON(conf->r1buf_pool);
2551 	conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2552 					  conf->poolinfo);
2553 	if (!conf->r1buf_pool)
2554 		return -ENOMEM;
2555 	conf->next_resync = 0;
2556 	return 0;
2557 }
2558 
2559 /*
2560  * perform a "sync" on one "block"
2561  *
2562  * We need to make sure that no normal I/O request - particularly write
2563  * requests - conflict with active sync requests.
2564  *
2565  * This is achieved by tracking pending requests and a 'barrier' concept
2566  * that can be installed to exclude normal IO requests.
2567  */
2568 
2569 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2570 				   int *skipped)
2571 {
2572 	struct r1conf *conf = mddev->private;
2573 	struct r1bio *r1_bio;
2574 	struct bio *bio;
2575 	sector_t max_sector, nr_sectors;
2576 	int disk = -1;
2577 	int i;
2578 	int wonly = -1;
2579 	int write_targets = 0, read_targets = 0;
2580 	sector_t sync_blocks;
2581 	int still_degraded = 0;
2582 	int good_sectors = RESYNC_SECTORS;
2583 	int min_bad = 0; /* number of sectors that are bad in all devices */
2584 
2585 	if (!conf->r1buf_pool)
2586 		if (init_resync(conf))
2587 			return 0;
2588 
2589 	max_sector = mddev->dev_sectors;
2590 	if (sector_nr >= max_sector) {
2591 		/* If we aborted, we need to abort the
2592 		 * sync on the 'current' bitmap chunk (there will
2593 		 * only be one in raid1 resync.
2594 		 * We can find the current addess in mddev->curr_resync
2595 		 */
2596 		if (mddev->curr_resync < max_sector) /* aborted */
2597 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2598 						&sync_blocks, 1);
2599 		else /* completed sync */
2600 			conf->fullsync = 0;
2601 
2602 		bitmap_close_sync(mddev->bitmap);
2603 		close_sync(conf);
2604 
2605 		if (mddev_is_clustered(mddev)) {
2606 			conf->cluster_sync_low = 0;
2607 			conf->cluster_sync_high = 0;
2608 		}
2609 		return 0;
2610 	}
2611 
2612 	if (mddev->bitmap == NULL &&
2613 	    mddev->recovery_cp == MaxSector &&
2614 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2615 	    conf->fullsync == 0) {
2616 		*skipped = 1;
2617 		return max_sector - sector_nr;
2618 	}
2619 	/* before building a request, check if we can skip these blocks..
2620 	 * This call the bitmap_start_sync doesn't actually record anything
2621 	 */
2622 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2623 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2624 		/* We can skip this block, and probably several more */
2625 		*skipped = 1;
2626 		return sync_blocks;
2627 	}
2628 
2629 	/*
2630 	 * If there is non-resync activity waiting for a turn, then let it
2631 	 * though before starting on this new sync request.
2632 	 */
2633 	if (conf->nr_waiting)
2634 		schedule_timeout_uninterruptible(1);
2635 
2636 	/* we are incrementing sector_nr below. To be safe, we check against
2637 	 * sector_nr + two times RESYNC_SECTORS
2638 	 */
2639 
2640 	bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2641 		mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2642 	r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2643 
2644 	raise_barrier(conf, sector_nr);
2645 
2646 	rcu_read_lock();
2647 	/*
2648 	 * If we get a correctably read error during resync or recovery,
2649 	 * we might want to read from a different device.  So we
2650 	 * flag all drives that could conceivably be read from for READ,
2651 	 * and any others (which will be non-In_sync devices) for WRITE.
2652 	 * If a read fails, we try reading from something else for which READ
2653 	 * is OK.
2654 	 */
2655 
2656 	r1_bio->mddev = mddev;
2657 	r1_bio->sector = sector_nr;
2658 	r1_bio->state = 0;
2659 	set_bit(R1BIO_IsSync, &r1_bio->state);
2660 
2661 	for (i = 0; i < conf->raid_disks * 2; i++) {
2662 		struct md_rdev *rdev;
2663 		bio = r1_bio->bios[i];
2664 		bio_reset(bio);
2665 
2666 		rdev = rcu_dereference(conf->mirrors[i].rdev);
2667 		if (rdev == NULL ||
2668 		    test_bit(Faulty, &rdev->flags)) {
2669 			if (i < conf->raid_disks)
2670 				still_degraded = 1;
2671 		} else if (!test_bit(In_sync, &rdev->flags)) {
2672 			bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2673 			bio->bi_end_io = end_sync_write;
2674 			write_targets ++;
2675 		} else {
2676 			/* may need to read from here */
2677 			sector_t first_bad = MaxSector;
2678 			int bad_sectors;
2679 
2680 			if (is_badblock(rdev, sector_nr, good_sectors,
2681 					&first_bad, &bad_sectors)) {
2682 				if (first_bad > sector_nr)
2683 					good_sectors = first_bad - sector_nr;
2684 				else {
2685 					bad_sectors -= (sector_nr - first_bad);
2686 					if (min_bad == 0 ||
2687 					    min_bad > bad_sectors)
2688 						min_bad = bad_sectors;
2689 				}
2690 			}
2691 			if (sector_nr < first_bad) {
2692 				if (test_bit(WriteMostly, &rdev->flags)) {
2693 					if (wonly < 0)
2694 						wonly = i;
2695 				} else {
2696 					if (disk < 0)
2697 						disk = i;
2698 				}
2699 				bio_set_op_attrs(bio, REQ_OP_READ, 0);
2700 				bio->bi_end_io = end_sync_read;
2701 				read_targets++;
2702 			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2703 				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2704 				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2705 				/*
2706 				 * The device is suitable for reading (InSync),
2707 				 * but has bad block(s) here. Let's try to correct them,
2708 				 * if we are doing resync or repair. Otherwise, leave
2709 				 * this device alone for this sync request.
2710 				 */
2711 				bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2712 				bio->bi_end_io = end_sync_write;
2713 				write_targets++;
2714 			}
2715 		}
2716 		if (bio->bi_end_io) {
2717 			atomic_inc(&rdev->nr_pending);
2718 			bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2719 			bio->bi_bdev = rdev->bdev;
2720 			bio->bi_private = r1_bio;
2721 			if (test_bit(FailFast, &rdev->flags))
2722 				bio->bi_opf |= MD_FAILFAST;
2723 		}
2724 	}
2725 	rcu_read_unlock();
2726 	if (disk < 0)
2727 		disk = wonly;
2728 	r1_bio->read_disk = disk;
2729 
2730 	if (read_targets == 0 && min_bad > 0) {
2731 		/* These sectors are bad on all InSync devices, so we
2732 		 * need to mark them bad on all write targets
2733 		 */
2734 		int ok = 1;
2735 		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2736 			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2737 				struct md_rdev *rdev = conf->mirrors[i].rdev;
2738 				ok = rdev_set_badblocks(rdev, sector_nr,
2739 							min_bad, 0
2740 					) && ok;
2741 			}
2742 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2743 		*skipped = 1;
2744 		put_buf(r1_bio);
2745 
2746 		if (!ok) {
2747 			/* Cannot record the badblocks, so need to
2748 			 * abort the resync.
2749 			 * If there are multiple read targets, could just
2750 			 * fail the really bad ones ???
2751 			 */
2752 			conf->recovery_disabled = mddev->recovery_disabled;
2753 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2754 			return 0;
2755 		} else
2756 			return min_bad;
2757 
2758 	}
2759 	if (min_bad > 0 && min_bad < good_sectors) {
2760 		/* only resync enough to reach the next bad->good
2761 		 * transition */
2762 		good_sectors = min_bad;
2763 	}
2764 
2765 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2766 		/* extra read targets are also write targets */
2767 		write_targets += read_targets-1;
2768 
2769 	if (write_targets == 0 || read_targets == 0) {
2770 		/* There is nowhere to write, so all non-sync
2771 		 * drives must be failed - so we are finished
2772 		 */
2773 		sector_t rv;
2774 		if (min_bad > 0)
2775 			max_sector = sector_nr + min_bad;
2776 		rv = max_sector - sector_nr;
2777 		*skipped = 1;
2778 		put_buf(r1_bio);
2779 		return rv;
2780 	}
2781 
2782 	if (max_sector > mddev->resync_max)
2783 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2784 	if (max_sector > sector_nr + good_sectors)
2785 		max_sector = sector_nr + good_sectors;
2786 	nr_sectors = 0;
2787 	sync_blocks = 0;
2788 	do {
2789 		struct page *page;
2790 		int len = PAGE_SIZE;
2791 		if (sector_nr + (len>>9) > max_sector)
2792 			len = (max_sector - sector_nr) << 9;
2793 		if (len == 0)
2794 			break;
2795 		if (sync_blocks == 0) {
2796 			if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2797 					       &sync_blocks, still_degraded) &&
2798 			    !conf->fullsync &&
2799 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2800 				break;
2801 			if ((len >> 9) > sync_blocks)
2802 				len = sync_blocks<<9;
2803 		}
2804 
2805 		for (i = 0 ; i < conf->raid_disks * 2; i++) {
2806 			bio = r1_bio->bios[i];
2807 			if (bio->bi_end_io) {
2808 				page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2809 				if (bio_add_page(bio, page, len, 0) == 0) {
2810 					/* stop here */
2811 					bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2812 					while (i > 0) {
2813 						i--;
2814 						bio = r1_bio->bios[i];
2815 						if (bio->bi_end_io==NULL)
2816 							continue;
2817 						/* remove last page from this bio */
2818 						bio->bi_vcnt--;
2819 						bio->bi_iter.bi_size -= len;
2820 						bio_clear_flag(bio, BIO_SEG_VALID);
2821 					}
2822 					goto bio_full;
2823 				}
2824 			}
2825 		}
2826 		nr_sectors += len>>9;
2827 		sector_nr += len>>9;
2828 		sync_blocks -= (len>>9);
2829 	} while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2830  bio_full:
2831 	r1_bio->sectors = nr_sectors;
2832 
2833 	if (mddev_is_clustered(mddev) &&
2834 			conf->cluster_sync_high < sector_nr + nr_sectors) {
2835 		conf->cluster_sync_low = mddev->curr_resync_completed;
2836 		conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2837 		/* Send resync message */
2838 		md_cluster_ops->resync_info_update(mddev,
2839 				conf->cluster_sync_low,
2840 				conf->cluster_sync_high);
2841 	}
2842 
2843 	/* For a user-requested sync, we read all readable devices and do a
2844 	 * compare
2845 	 */
2846 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2847 		atomic_set(&r1_bio->remaining, read_targets);
2848 		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2849 			bio = r1_bio->bios[i];
2850 			if (bio->bi_end_io == end_sync_read) {
2851 				read_targets--;
2852 				md_sync_acct(bio->bi_bdev, nr_sectors);
2853 				if (read_targets == 1)
2854 					bio->bi_opf &= ~MD_FAILFAST;
2855 				generic_make_request(bio);
2856 			}
2857 		}
2858 	} else {
2859 		atomic_set(&r1_bio->remaining, 1);
2860 		bio = r1_bio->bios[r1_bio->read_disk];
2861 		md_sync_acct(bio->bi_bdev, nr_sectors);
2862 		if (read_targets == 1)
2863 			bio->bi_opf &= ~MD_FAILFAST;
2864 		generic_make_request(bio);
2865 
2866 	}
2867 	return nr_sectors;
2868 }
2869 
2870 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2871 {
2872 	if (sectors)
2873 		return sectors;
2874 
2875 	return mddev->dev_sectors;
2876 }
2877 
2878 static struct r1conf *setup_conf(struct mddev *mddev)
2879 {
2880 	struct r1conf *conf;
2881 	int i;
2882 	struct raid1_info *disk;
2883 	struct md_rdev *rdev;
2884 	int err = -ENOMEM;
2885 
2886 	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2887 	if (!conf)
2888 		goto abort;
2889 
2890 	conf->mirrors = kzalloc(sizeof(struct raid1_info)
2891 				* mddev->raid_disks * 2,
2892 				 GFP_KERNEL);
2893 	if (!conf->mirrors)
2894 		goto abort;
2895 
2896 	conf->tmppage = alloc_page(GFP_KERNEL);
2897 	if (!conf->tmppage)
2898 		goto abort;
2899 
2900 	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2901 	if (!conf->poolinfo)
2902 		goto abort;
2903 	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2904 	conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2905 					  r1bio_pool_free,
2906 					  conf->poolinfo);
2907 	if (!conf->r1bio_pool)
2908 		goto abort;
2909 
2910 	conf->poolinfo->mddev = mddev;
2911 
2912 	err = -EINVAL;
2913 	spin_lock_init(&conf->device_lock);
2914 	rdev_for_each(rdev, mddev) {
2915 		struct request_queue *q;
2916 		int disk_idx = rdev->raid_disk;
2917 		if (disk_idx >= mddev->raid_disks
2918 		    || disk_idx < 0)
2919 			continue;
2920 		if (test_bit(Replacement, &rdev->flags))
2921 			disk = conf->mirrors + mddev->raid_disks + disk_idx;
2922 		else
2923 			disk = conf->mirrors + disk_idx;
2924 
2925 		if (disk->rdev)
2926 			goto abort;
2927 		disk->rdev = rdev;
2928 		q = bdev_get_queue(rdev->bdev);
2929 
2930 		disk->head_position = 0;
2931 		disk->seq_start = MaxSector;
2932 	}
2933 	conf->raid_disks = mddev->raid_disks;
2934 	conf->mddev = mddev;
2935 	INIT_LIST_HEAD(&conf->retry_list);
2936 	INIT_LIST_HEAD(&conf->bio_end_io_list);
2937 
2938 	spin_lock_init(&conf->resync_lock);
2939 	init_waitqueue_head(&conf->wait_barrier);
2940 
2941 	bio_list_init(&conf->pending_bio_list);
2942 	conf->pending_count = 0;
2943 	conf->recovery_disabled = mddev->recovery_disabled - 1;
2944 
2945 	conf->start_next_window = MaxSector;
2946 	conf->current_window_requests = conf->next_window_requests = 0;
2947 
2948 	err = -EIO;
2949 	for (i = 0; i < conf->raid_disks * 2; i++) {
2950 
2951 		disk = conf->mirrors + i;
2952 
2953 		if (i < conf->raid_disks &&
2954 		    disk[conf->raid_disks].rdev) {
2955 			/* This slot has a replacement. */
2956 			if (!disk->rdev) {
2957 				/* No original, just make the replacement
2958 				 * a recovering spare
2959 				 */
2960 				disk->rdev =
2961 					disk[conf->raid_disks].rdev;
2962 				disk[conf->raid_disks].rdev = NULL;
2963 			} else if (!test_bit(In_sync, &disk->rdev->flags))
2964 				/* Original is not in_sync - bad */
2965 				goto abort;
2966 		}
2967 
2968 		if (!disk->rdev ||
2969 		    !test_bit(In_sync, &disk->rdev->flags)) {
2970 			disk->head_position = 0;
2971 			if (disk->rdev &&
2972 			    (disk->rdev->saved_raid_disk < 0))
2973 				conf->fullsync = 1;
2974 		}
2975 	}
2976 
2977 	err = -ENOMEM;
2978 	conf->thread = md_register_thread(raid1d, mddev, "raid1");
2979 	if (!conf->thread)
2980 		goto abort;
2981 
2982 	return conf;
2983 
2984  abort:
2985 	if (conf) {
2986 		mempool_destroy(conf->r1bio_pool);
2987 		kfree(conf->mirrors);
2988 		safe_put_page(conf->tmppage);
2989 		kfree(conf->poolinfo);
2990 		kfree(conf);
2991 	}
2992 	return ERR_PTR(err);
2993 }
2994 
2995 static void raid1_free(struct mddev *mddev, void *priv);
2996 static int raid1_run(struct mddev *mddev)
2997 {
2998 	struct r1conf *conf;
2999 	int i;
3000 	struct md_rdev *rdev;
3001 	int ret;
3002 	bool discard_supported = false;
3003 
3004 	if (mddev->level != 1) {
3005 		pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3006 			mdname(mddev), mddev->level);
3007 		return -EIO;
3008 	}
3009 	if (mddev->reshape_position != MaxSector) {
3010 		pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3011 			mdname(mddev));
3012 		return -EIO;
3013 	}
3014 	/*
3015 	 * copy the already verified devices into our private RAID1
3016 	 * bookkeeping area. [whatever we allocate in run(),
3017 	 * should be freed in raid1_free()]
3018 	 */
3019 	if (mddev->private == NULL)
3020 		conf = setup_conf(mddev);
3021 	else
3022 		conf = mddev->private;
3023 
3024 	if (IS_ERR(conf))
3025 		return PTR_ERR(conf);
3026 
3027 	if (mddev->queue)
3028 		blk_queue_max_write_same_sectors(mddev->queue, 0);
3029 
3030 	rdev_for_each(rdev, mddev) {
3031 		if (!mddev->gendisk)
3032 			continue;
3033 		disk_stack_limits(mddev->gendisk, rdev->bdev,
3034 				  rdev->data_offset << 9);
3035 		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3036 			discard_supported = true;
3037 	}
3038 
3039 	mddev->degraded = 0;
3040 	for (i=0; i < conf->raid_disks; i++)
3041 		if (conf->mirrors[i].rdev == NULL ||
3042 		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3043 		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3044 			mddev->degraded++;
3045 
3046 	if (conf->raid_disks - mddev->degraded == 1)
3047 		mddev->recovery_cp = MaxSector;
3048 
3049 	if (mddev->recovery_cp != MaxSector)
3050 		pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3051 			mdname(mddev));
3052 	pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3053 		mdname(mddev), mddev->raid_disks - mddev->degraded,
3054 		mddev->raid_disks);
3055 
3056 	/*
3057 	 * Ok, everything is just fine now
3058 	 */
3059 	mddev->thread = conf->thread;
3060 	conf->thread = NULL;
3061 	mddev->private = conf;
3062 	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3063 
3064 	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3065 
3066 	if (mddev->queue) {
3067 		if (discard_supported)
3068 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3069 						mddev->queue);
3070 		else
3071 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3072 						  mddev->queue);
3073 	}
3074 
3075 	ret =  md_integrity_register(mddev);
3076 	if (ret) {
3077 		md_unregister_thread(&mddev->thread);
3078 		raid1_free(mddev, conf);
3079 	}
3080 	return ret;
3081 }
3082 
3083 static void raid1_free(struct mddev *mddev, void *priv)
3084 {
3085 	struct r1conf *conf = priv;
3086 
3087 	mempool_destroy(conf->r1bio_pool);
3088 	kfree(conf->mirrors);
3089 	safe_put_page(conf->tmppage);
3090 	kfree(conf->poolinfo);
3091 	kfree(conf);
3092 }
3093 
3094 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3095 {
3096 	/* no resync is happening, and there is enough space
3097 	 * on all devices, so we can resize.
3098 	 * We need to make sure resync covers any new space.
3099 	 * If the array is shrinking we should possibly wait until
3100 	 * any io in the removed space completes, but it hardly seems
3101 	 * worth it.
3102 	 */
3103 	sector_t newsize = raid1_size(mddev, sectors, 0);
3104 	if (mddev->external_size &&
3105 	    mddev->array_sectors > newsize)
3106 		return -EINVAL;
3107 	if (mddev->bitmap) {
3108 		int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3109 		if (ret)
3110 			return ret;
3111 	}
3112 	md_set_array_sectors(mddev, newsize);
3113 	set_capacity(mddev->gendisk, mddev->array_sectors);
3114 	revalidate_disk(mddev->gendisk);
3115 	if (sectors > mddev->dev_sectors &&
3116 	    mddev->recovery_cp > mddev->dev_sectors) {
3117 		mddev->recovery_cp = mddev->dev_sectors;
3118 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3119 	}
3120 	mddev->dev_sectors = sectors;
3121 	mddev->resync_max_sectors = sectors;
3122 	return 0;
3123 }
3124 
3125 static int raid1_reshape(struct mddev *mddev)
3126 {
3127 	/* We need to:
3128 	 * 1/ resize the r1bio_pool
3129 	 * 2/ resize conf->mirrors
3130 	 *
3131 	 * We allocate a new r1bio_pool if we can.
3132 	 * Then raise a device barrier and wait until all IO stops.
3133 	 * Then resize conf->mirrors and swap in the new r1bio pool.
3134 	 *
3135 	 * At the same time, we "pack" the devices so that all the missing
3136 	 * devices have the higher raid_disk numbers.
3137 	 */
3138 	mempool_t *newpool, *oldpool;
3139 	struct pool_info *newpoolinfo;
3140 	struct raid1_info *newmirrors;
3141 	struct r1conf *conf = mddev->private;
3142 	int cnt, raid_disks;
3143 	unsigned long flags;
3144 	int d, d2, err;
3145 
3146 	/* Cannot change chunk_size, layout, or level */
3147 	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3148 	    mddev->layout != mddev->new_layout ||
3149 	    mddev->level != mddev->new_level) {
3150 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3151 		mddev->new_layout = mddev->layout;
3152 		mddev->new_level = mddev->level;
3153 		return -EINVAL;
3154 	}
3155 
3156 	if (!mddev_is_clustered(mddev)) {
3157 		err = md_allow_write(mddev);
3158 		if (err)
3159 			return err;
3160 	}
3161 
3162 	raid_disks = mddev->raid_disks + mddev->delta_disks;
3163 
3164 	if (raid_disks < conf->raid_disks) {
3165 		cnt=0;
3166 		for (d= 0; d < conf->raid_disks; d++)
3167 			if (conf->mirrors[d].rdev)
3168 				cnt++;
3169 		if (cnt > raid_disks)
3170 			return -EBUSY;
3171 	}
3172 
3173 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3174 	if (!newpoolinfo)
3175 		return -ENOMEM;
3176 	newpoolinfo->mddev = mddev;
3177 	newpoolinfo->raid_disks = raid_disks * 2;
3178 
3179 	newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3180 				 r1bio_pool_free, newpoolinfo);
3181 	if (!newpool) {
3182 		kfree(newpoolinfo);
3183 		return -ENOMEM;
3184 	}
3185 	newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3186 			     GFP_KERNEL);
3187 	if (!newmirrors) {
3188 		kfree(newpoolinfo);
3189 		mempool_destroy(newpool);
3190 		return -ENOMEM;
3191 	}
3192 
3193 	freeze_array(conf, 0);
3194 
3195 	/* ok, everything is stopped */
3196 	oldpool = conf->r1bio_pool;
3197 	conf->r1bio_pool = newpool;
3198 
3199 	for (d = d2 = 0; d < conf->raid_disks; d++) {
3200 		struct md_rdev *rdev = conf->mirrors[d].rdev;
3201 		if (rdev && rdev->raid_disk != d2) {
3202 			sysfs_unlink_rdev(mddev, rdev);
3203 			rdev->raid_disk = d2;
3204 			sysfs_unlink_rdev(mddev, rdev);
3205 			if (sysfs_link_rdev(mddev, rdev))
3206 				pr_warn("md/raid1:%s: cannot register rd%d\n",
3207 					mdname(mddev), rdev->raid_disk);
3208 		}
3209 		if (rdev)
3210 			newmirrors[d2++].rdev = rdev;
3211 	}
3212 	kfree(conf->mirrors);
3213 	conf->mirrors = newmirrors;
3214 	kfree(conf->poolinfo);
3215 	conf->poolinfo = newpoolinfo;
3216 
3217 	spin_lock_irqsave(&conf->device_lock, flags);
3218 	mddev->degraded += (raid_disks - conf->raid_disks);
3219 	spin_unlock_irqrestore(&conf->device_lock, flags);
3220 	conf->raid_disks = mddev->raid_disks = raid_disks;
3221 	mddev->delta_disks = 0;
3222 
3223 	unfreeze_array(conf);
3224 
3225 	set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3226 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3227 	md_wakeup_thread(mddev->thread);
3228 
3229 	mempool_destroy(oldpool);
3230 	return 0;
3231 }
3232 
3233 static void raid1_quiesce(struct mddev *mddev, int state)
3234 {
3235 	struct r1conf *conf = mddev->private;
3236 
3237 	switch(state) {
3238 	case 2: /* wake for suspend */
3239 		wake_up(&conf->wait_barrier);
3240 		break;
3241 	case 1:
3242 		freeze_array(conf, 0);
3243 		break;
3244 	case 0:
3245 		unfreeze_array(conf);
3246 		break;
3247 	}
3248 }
3249 
3250 static void *raid1_takeover(struct mddev *mddev)
3251 {
3252 	/* raid1 can take over:
3253 	 *  raid5 with 2 devices, any layout or chunk size
3254 	 */
3255 	if (mddev->level == 5 && mddev->raid_disks == 2) {
3256 		struct r1conf *conf;
3257 		mddev->new_level = 1;
3258 		mddev->new_layout = 0;
3259 		mddev->new_chunk_sectors = 0;
3260 		conf = setup_conf(mddev);
3261 		if (!IS_ERR(conf)) {
3262 			/* Array must appear to be quiesced */
3263 			conf->array_frozen = 1;
3264 			mddev_clear_unsupported_flags(mddev,
3265 				UNSUPPORTED_MDDEV_FLAGS);
3266 		}
3267 		return conf;
3268 	}
3269 	return ERR_PTR(-EINVAL);
3270 }
3271 
3272 static struct md_personality raid1_personality =
3273 {
3274 	.name		= "raid1",
3275 	.level		= 1,
3276 	.owner		= THIS_MODULE,
3277 	.make_request	= raid1_make_request,
3278 	.run		= raid1_run,
3279 	.free		= raid1_free,
3280 	.status		= raid1_status,
3281 	.error_handler	= raid1_error,
3282 	.hot_add_disk	= raid1_add_disk,
3283 	.hot_remove_disk= raid1_remove_disk,
3284 	.spare_active	= raid1_spare_active,
3285 	.sync_request	= raid1_sync_request,
3286 	.resize		= raid1_resize,
3287 	.size		= raid1_size,
3288 	.check_reshape	= raid1_reshape,
3289 	.quiesce	= raid1_quiesce,
3290 	.takeover	= raid1_takeover,
3291 	.congested	= raid1_congested,
3292 };
3293 
3294 static int __init raid_init(void)
3295 {
3296 	return register_md_personality(&raid1_personality);
3297 }
3298 
3299 static void raid_exit(void)
3300 {
3301 	unregister_md_personality(&raid1_personality);
3302 }
3303 
3304 module_init(raid_init);
3305 module_exit(raid_exit);
3306 MODULE_LICENSE("GPL");
3307 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3308 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3309 MODULE_ALIAS("md-raid1");
3310 MODULE_ALIAS("md-level-1");
3311 
3312 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
3313