1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * raid1.c : Multiple Devices driver for Linux 4 * 5 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat 6 * 7 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman 8 * 9 * RAID-1 management functions. 10 * 11 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 12 * 13 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk> 14 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> 15 * 16 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support 17 * bitmapped intelligence in resync: 18 * 19 * - bitmap marked during normal i/o 20 * - bitmap used to skip nondirty blocks during sync 21 * 22 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology: 23 * - persistent bitmap code 24 */ 25 26 #include <linux/slab.h> 27 #include <linux/delay.h> 28 #include <linux/blkdev.h> 29 #include <linux/module.h> 30 #include <linux/seq_file.h> 31 #include <linux/ratelimit.h> 32 #include <linux/interval_tree_generic.h> 33 34 #include <trace/events/block.h> 35 36 #include "md.h" 37 #include "raid1.h" 38 #include "md-bitmap.h" 39 40 #define UNSUPPORTED_MDDEV_FLAGS \ 41 ((1L << MD_HAS_JOURNAL) | \ 42 (1L << MD_JOURNAL_CLEAN) | \ 43 (1L << MD_HAS_PPL) | \ 44 (1L << MD_HAS_MULTIPLE_PPLS)) 45 46 static void allow_barrier(struct r1conf *conf, sector_t sector_nr); 47 static void lower_barrier(struct r1conf *conf, sector_t sector_nr); 48 49 #define raid1_log(md, fmt, args...) \ 50 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0) 51 52 #include "raid1-10.c" 53 54 #define START(node) ((node)->start) 55 #define LAST(node) ((node)->last) 56 INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last, 57 START, LAST, static inline, raid1_rb); 58 59 static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio, 60 struct serial_info *si, int idx) 61 { 62 unsigned long flags; 63 int ret = 0; 64 sector_t lo = r1_bio->sector; 65 sector_t hi = lo + r1_bio->sectors; 66 struct serial_in_rdev *serial = &rdev->serial[idx]; 67 68 spin_lock_irqsave(&serial->serial_lock, flags); 69 /* collision happened */ 70 if (raid1_rb_iter_first(&serial->serial_rb, lo, hi)) 71 ret = -EBUSY; 72 else { 73 si->start = lo; 74 si->last = hi; 75 raid1_rb_insert(si, &serial->serial_rb); 76 } 77 spin_unlock_irqrestore(&serial->serial_lock, flags); 78 79 return ret; 80 } 81 82 static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio) 83 { 84 struct mddev *mddev = rdev->mddev; 85 struct serial_info *si; 86 int idx = sector_to_idx(r1_bio->sector); 87 struct serial_in_rdev *serial = &rdev->serial[idx]; 88 89 if (WARN_ON(!mddev->serial_info_pool)) 90 return; 91 si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO); 92 wait_event(serial->serial_io_wait, 93 check_and_add_serial(rdev, r1_bio, si, idx) == 0); 94 } 95 96 static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi) 97 { 98 struct serial_info *si; 99 unsigned long flags; 100 int found = 0; 101 struct mddev *mddev = rdev->mddev; 102 int idx = sector_to_idx(lo); 103 struct serial_in_rdev *serial = &rdev->serial[idx]; 104 105 spin_lock_irqsave(&serial->serial_lock, flags); 106 for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi); 107 si; si = raid1_rb_iter_next(si, lo, hi)) { 108 if (si->start == lo && si->last == hi) { 109 raid1_rb_remove(si, &serial->serial_rb); 110 mempool_free(si, mddev->serial_info_pool); 111 found = 1; 112 break; 113 } 114 } 115 if (!found) 116 WARN(1, "The write IO is not recorded for serialization\n"); 117 spin_unlock_irqrestore(&serial->serial_lock, flags); 118 wake_up(&serial->serial_io_wait); 119 } 120 121 /* 122 * for resync bio, r1bio pointer can be retrieved from the per-bio 123 * 'struct resync_pages'. 124 */ 125 static inline struct r1bio *get_resync_r1bio(struct bio *bio) 126 { 127 return get_resync_pages(bio)->raid_bio; 128 } 129 130 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data) 131 { 132 struct pool_info *pi = data; 133 int size = offsetof(struct r1bio, bios[pi->raid_disks]); 134 135 /* allocate a r1bio with room for raid_disks entries in the bios array */ 136 return kzalloc(size, gfp_flags); 137 } 138 139 #define RESYNC_DEPTH 32 140 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 141 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH) 142 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9) 143 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW) 144 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9) 145 146 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) 147 { 148 struct pool_info *pi = data; 149 struct r1bio *r1_bio; 150 struct bio *bio; 151 int need_pages; 152 int j; 153 struct resync_pages *rps; 154 155 r1_bio = r1bio_pool_alloc(gfp_flags, pi); 156 if (!r1_bio) 157 return NULL; 158 159 rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages), 160 gfp_flags); 161 if (!rps) 162 goto out_free_r1bio; 163 164 /* 165 * Allocate bios : 1 for reading, n-1 for writing 166 */ 167 for (j = pi->raid_disks ; j-- ; ) { 168 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 169 if (!bio) 170 goto out_free_bio; 171 r1_bio->bios[j] = bio; 172 } 173 /* 174 * Allocate RESYNC_PAGES data pages and attach them to 175 * the first bio. 176 * If this is a user-requested check/repair, allocate 177 * RESYNC_PAGES for each bio. 178 */ 179 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) 180 need_pages = pi->raid_disks; 181 else 182 need_pages = 1; 183 for (j = 0; j < pi->raid_disks; j++) { 184 struct resync_pages *rp = &rps[j]; 185 186 bio = r1_bio->bios[j]; 187 188 if (j < need_pages) { 189 if (resync_alloc_pages(rp, gfp_flags)) 190 goto out_free_pages; 191 } else { 192 memcpy(rp, &rps[0], sizeof(*rp)); 193 resync_get_all_pages(rp); 194 } 195 196 rp->raid_bio = r1_bio; 197 bio->bi_private = rp; 198 } 199 200 r1_bio->master_bio = NULL; 201 202 return r1_bio; 203 204 out_free_pages: 205 while (--j >= 0) 206 resync_free_pages(&rps[j]); 207 208 out_free_bio: 209 while (++j < pi->raid_disks) 210 bio_put(r1_bio->bios[j]); 211 kfree(rps); 212 213 out_free_r1bio: 214 rbio_pool_free(r1_bio, data); 215 return NULL; 216 } 217 218 static void r1buf_pool_free(void *__r1_bio, void *data) 219 { 220 struct pool_info *pi = data; 221 int i; 222 struct r1bio *r1bio = __r1_bio; 223 struct resync_pages *rp = NULL; 224 225 for (i = pi->raid_disks; i--; ) { 226 rp = get_resync_pages(r1bio->bios[i]); 227 resync_free_pages(rp); 228 bio_put(r1bio->bios[i]); 229 } 230 231 /* resync pages array stored in the 1st bio's .bi_private */ 232 kfree(rp); 233 234 rbio_pool_free(r1bio, data); 235 } 236 237 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio) 238 { 239 int i; 240 241 for (i = 0; i < conf->raid_disks * 2; i++) { 242 struct bio **bio = r1_bio->bios + i; 243 if (!BIO_SPECIAL(*bio)) 244 bio_put(*bio); 245 *bio = NULL; 246 } 247 } 248 249 static void free_r1bio(struct r1bio *r1_bio) 250 { 251 struct r1conf *conf = r1_bio->mddev->private; 252 253 put_all_bios(conf, r1_bio); 254 mempool_free(r1_bio, &conf->r1bio_pool); 255 } 256 257 static void put_buf(struct r1bio *r1_bio) 258 { 259 struct r1conf *conf = r1_bio->mddev->private; 260 sector_t sect = r1_bio->sector; 261 int i; 262 263 for (i = 0; i < conf->raid_disks * 2; i++) { 264 struct bio *bio = r1_bio->bios[i]; 265 if (bio->bi_end_io) 266 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev); 267 } 268 269 mempool_free(r1_bio, &conf->r1buf_pool); 270 271 lower_barrier(conf, sect); 272 } 273 274 static void reschedule_retry(struct r1bio *r1_bio) 275 { 276 unsigned long flags; 277 struct mddev *mddev = r1_bio->mddev; 278 struct r1conf *conf = mddev->private; 279 int idx; 280 281 idx = sector_to_idx(r1_bio->sector); 282 spin_lock_irqsave(&conf->device_lock, flags); 283 list_add(&r1_bio->retry_list, &conf->retry_list); 284 atomic_inc(&conf->nr_queued[idx]); 285 spin_unlock_irqrestore(&conf->device_lock, flags); 286 287 wake_up(&conf->wait_barrier); 288 md_wakeup_thread(mddev->thread); 289 } 290 291 /* 292 * raid_end_bio_io() is called when we have finished servicing a mirrored 293 * operation and are ready to return a success/failure code to the buffer 294 * cache layer. 295 */ 296 static void call_bio_endio(struct r1bio *r1_bio) 297 { 298 struct bio *bio = r1_bio->master_bio; 299 300 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 301 bio->bi_status = BLK_STS_IOERR; 302 303 if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue)) 304 bio_end_io_acct(bio, r1_bio->start_time); 305 bio_endio(bio); 306 } 307 308 static void raid_end_bio_io(struct r1bio *r1_bio) 309 { 310 struct bio *bio = r1_bio->master_bio; 311 struct r1conf *conf = r1_bio->mddev->private; 312 313 /* if nobody has done the final endio yet, do it now */ 314 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 315 pr_debug("raid1: sync end %s on sectors %llu-%llu\n", 316 (bio_data_dir(bio) == WRITE) ? "write" : "read", 317 (unsigned long long) bio->bi_iter.bi_sector, 318 (unsigned long long) bio_end_sector(bio) - 1); 319 320 call_bio_endio(r1_bio); 321 } 322 /* 323 * Wake up any possible resync thread that waits for the device 324 * to go idle. All I/Os, even write-behind writes, are done. 325 */ 326 allow_barrier(conf, r1_bio->sector); 327 328 free_r1bio(r1_bio); 329 } 330 331 /* 332 * Update disk head position estimator based on IRQ completion info. 333 */ 334 static inline void update_head_pos(int disk, struct r1bio *r1_bio) 335 { 336 struct r1conf *conf = r1_bio->mddev->private; 337 338 conf->mirrors[disk].head_position = 339 r1_bio->sector + (r1_bio->sectors); 340 } 341 342 /* 343 * Find the disk number which triggered given bio 344 */ 345 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio) 346 { 347 int mirror; 348 struct r1conf *conf = r1_bio->mddev->private; 349 int raid_disks = conf->raid_disks; 350 351 for (mirror = 0; mirror < raid_disks * 2; mirror++) 352 if (r1_bio->bios[mirror] == bio) 353 break; 354 355 BUG_ON(mirror == raid_disks * 2); 356 update_head_pos(mirror, r1_bio); 357 358 return mirror; 359 } 360 361 static void raid1_end_read_request(struct bio *bio) 362 { 363 int uptodate = !bio->bi_status; 364 struct r1bio *r1_bio = bio->bi_private; 365 struct r1conf *conf = r1_bio->mddev->private; 366 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev; 367 368 /* 369 * this branch is our 'one mirror IO has finished' event handler: 370 */ 371 update_head_pos(r1_bio->read_disk, r1_bio); 372 373 if (uptodate) 374 set_bit(R1BIO_Uptodate, &r1_bio->state); 375 else if (test_bit(FailFast, &rdev->flags) && 376 test_bit(R1BIO_FailFast, &r1_bio->state)) 377 /* This was a fail-fast read so we definitely 378 * want to retry */ 379 ; 380 else { 381 /* If all other devices have failed, we want to return 382 * the error upwards rather than fail the last device. 383 * Here we redefine "uptodate" to mean "Don't want to retry" 384 */ 385 unsigned long flags; 386 spin_lock_irqsave(&conf->device_lock, flags); 387 if (r1_bio->mddev->degraded == conf->raid_disks || 388 (r1_bio->mddev->degraded == conf->raid_disks-1 && 389 test_bit(In_sync, &rdev->flags))) 390 uptodate = 1; 391 spin_unlock_irqrestore(&conf->device_lock, flags); 392 } 393 394 if (uptodate) { 395 raid_end_bio_io(r1_bio); 396 rdev_dec_pending(rdev, conf->mddev); 397 } else { 398 /* 399 * oops, read error: 400 */ 401 char b[BDEVNAME_SIZE]; 402 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n", 403 mdname(conf->mddev), 404 bdevname(rdev->bdev, b), 405 (unsigned long long)r1_bio->sector); 406 set_bit(R1BIO_ReadError, &r1_bio->state); 407 reschedule_retry(r1_bio); 408 /* don't drop the reference on read_disk yet */ 409 } 410 } 411 412 static void close_write(struct r1bio *r1_bio) 413 { 414 /* it really is the end of this request */ 415 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 416 bio_free_pages(r1_bio->behind_master_bio); 417 bio_put(r1_bio->behind_master_bio); 418 r1_bio->behind_master_bio = NULL; 419 } 420 /* clear the bitmap if all writes complete successfully */ 421 md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector, 422 r1_bio->sectors, 423 !test_bit(R1BIO_Degraded, &r1_bio->state), 424 test_bit(R1BIO_BehindIO, &r1_bio->state)); 425 md_write_end(r1_bio->mddev); 426 } 427 428 static void r1_bio_write_done(struct r1bio *r1_bio) 429 { 430 if (!atomic_dec_and_test(&r1_bio->remaining)) 431 return; 432 433 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 434 reschedule_retry(r1_bio); 435 else { 436 close_write(r1_bio); 437 if (test_bit(R1BIO_MadeGood, &r1_bio->state)) 438 reschedule_retry(r1_bio); 439 else 440 raid_end_bio_io(r1_bio); 441 } 442 } 443 444 static void raid1_end_write_request(struct bio *bio) 445 { 446 struct r1bio *r1_bio = bio->bi_private; 447 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state); 448 struct r1conf *conf = r1_bio->mddev->private; 449 struct bio *to_put = NULL; 450 int mirror = find_bio_disk(r1_bio, bio); 451 struct md_rdev *rdev = conf->mirrors[mirror].rdev; 452 bool discard_error; 453 sector_t lo = r1_bio->sector; 454 sector_t hi = r1_bio->sector + r1_bio->sectors; 455 456 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD; 457 458 /* 459 * 'one mirror IO has finished' event handler: 460 */ 461 if (bio->bi_status && !discard_error) { 462 set_bit(WriteErrorSeen, &rdev->flags); 463 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 464 set_bit(MD_RECOVERY_NEEDED, & 465 conf->mddev->recovery); 466 467 if (test_bit(FailFast, &rdev->flags) && 468 (bio->bi_opf & MD_FAILFAST) && 469 /* We never try FailFast to WriteMostly devices */ 470 !test_bit(WriteMostly, &rdev->flags)) { 471 md_error(r1_bio->mddev, rdev); 472 } 473 474 /* 475 * When the device is faulty, it is not necessary to 476 * handle write error. 477 * For failfast, this is the only remaining device, 478 * We need to retry the write without FailFast. 479 */ 480 if (!test_bit(Faulty, &rdev->flags)) 481 set_bit(R1BIO_WriteError, &r1_bio->state); 482 else { 483 /* Fail the request */ 484 set_bit(R1BIO_Degraded, &r1_bio->state); 485 /* Finished with this branch */ 486 r1_bio->bios[mirror] = NULL; 487 to_put = bio; 488 } 489 } else { 490 /* 491 * Set R1BIO_Uptodate in our master bio, so that we 492 * will return a good error code for to the higher 493 * levels even if IO on some other mirrored buffer 494 * fails. 495 * 496 * The 'master' represents the composite IO operation 497 * to user-side. So if something waits for IO, then it 498 * will wait for the 'master' bio. 499 */ 500 sector_t first_bad; 501 int bad_sectors; 502 503 r1_bio->bios[mirror] = NULL; 504 to_put = bio; 505 /* 506 * Do not set R1BIO_Uptodate if the current device is 507 * rebuilding or Faulty. This is because we cannot use 508 * such device for properly reading the data back (we could 509 * potentially use it, if the current write would have felt 510 * before rdev->recovery_offset, but for simplicity we don't 511 * check this here. 512 */ 513 if (test_bit(In_sync, &rdev->flags) && 514 !test_bit(Faulty, &rdev->flags)) 515 set_bit(R1BIO_Uptodate, &r1_bio->state); 516 517 /* Maybe we can clear some bad blocks. */ 518 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors, 519 &first_bad, &bad_sectors) && !discard_error) { 520 r1_bio->bios[mirror] = IO_MADE_GOOD; 521 set_bit(R1BIO_MadeGood, &r1_bio->state); 522 } 523 } 524 525 if (behind) { 526 if (test_bit(CollisionCheck, &rdev->flags)) 527 remove_serial(rdev, lo, hi); 528 if (test_bit(WriteMostly, &rdev->flags)) 529 atomic_dec(&r1_bio->behind_remaining); 530 531 /* 532 * In behind mode, we ACK the master bio once the I/O 533 * has safely reached all non-writemostly 534 * disks. Setting the Returned bit ensures that this 535 * gets done only once -- we don't ever want to return 536 * -EIO here, instead we'll wait 537 */ 538 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) && 539 test_bit(R1BIO_Uptodate, &r1_bio->state)) { 540 /* Maybe we can return now */ 541 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 542 struct bio *mbio = r1_bio->master_bio; 543 pr_debug("raid1: behind end write sectors" 544 " %llu-%llu\n", 545 (unsigned long long) mbio->bi_iter.bi_sector, 546 (unsigned long long) bio_end_sector(mbio) - 1); 547 call_bio_endio(r1_bio); 548 } 549 } 550 } else if (rdev->mddev->serialize_policy) 551 remove_serial(rdev, lo, hi); 552 if (r1_bio->bios[mirror] == NULL) 553 rdev_dec_pending(rdev, conf->mddev); 554 555 /* 556 * Let's see if all mirrored write operations have finished 557 * already. 558 */ 559 r1_bio_write_done(r1_bio); 560 561 if (to_put) 562 bio_put(to_put); 563 } 564 565 static sector_t align_to_barrier_unit_end(sector_t start_sector, 566 sector_t sectors) 567 { 568 sector_t len; 569 570 WARN_ON(sectors == 0); 571 /* 572 * len is the number of sectors from start_sector to end of the 573 * barrier unit which start_sector belongs to. 574 */ 575 len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) - 576 start_sector; 577 578 if (len > sectors) 579 len = sectors; 580 581 return len; 582 } 583 584 /* 585 * This routine returns the disk from which the requested read should 586 * be done. There is a per-array 'next expected sequential IO' sector 587 * number - if this matches on the next IO then we use the last disk. 588 * There is also a per-disk 'last know head position' sector that is 589 * maintained from IRQ contexts, both the normal and the resync IO 590 * completion handlers update this position correctly. If there is no 591 * perfect sequential match then we pick the disk whose head is closest. 592 * 593 * If there are 2 mirrors in the same 2 devices, performance degrades 594 * because position is mirror, not device based. 595 * 596 * The rdev for the device selected will have nr_pending incremented. 597 */ 598 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors) 599 { 600 const sector_t this_sector = r1_bio->sector; 601 int sectors; 602 int best_good_sectors; 603 int best_disk, best_dist_disk, best_pending_disk; 604 int has_nonrot_disk; 605 int disk; 606 sector_t best_dist; 607 unsigned int min_pending; 608 struct md_rdev *rdev; 609 int choose_first; 610 int choose_next_idle; 611 612 rcu_read_lock(); 613 /* 614 * Check if we can balance. We can balance on the whole 615 * device if no resync is going on, or below the resync window. 616 * We take the first readable disk when above the resync window. 617 */ 618 retry: 619 sectors = r1_bio->sectors; 620 best_disk = -1; 621 best_dist_disk = -1; 622 best_dist = MaxSector; 623 best_pending_disk = -1; 624 min_pending = UINT_MAX; 625 best_good_sectors = 0; 626 has_nonrot_disk = 0; 627 choose_next_idle = 0; 628 clear_bit(R1BIO_FailFast, &r1_bio->state); 629 630 if ((conf->mddev->recovery_cp < this_sector + sectors) || 631 (mddev_is_clustered(conf->mddev) && 632 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector, 633 this_sector + sectors))) 634 choose_first = 1; 635 else 636 choose_first = 0; 637 638 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) { 639 sector_t dist; 640 sector_t first_bad; 641 int bad_sectors; 642 unsigned int pending; 643 bool nonrot; 644 645 rdev = rcu_dereference(conf->mirrors[disk].rdev); 646 if (r1_bio->bios[disk] == IO_BLOCKED 647 || rdev == NULL 648 || test_bit(Faulty, &rdev->flags)) 649 continue; 650 if (!test_bit(In_sync, &rdev->flags) && 651 rdev->recovery_offset < this_sector + sectors) 652 continue; 653 if (test_bit(WriteMostly, &rdev->flags)) { 654 /* Don't balance among write-mostly, just 655 * use the first as a last resort */ 656 if (best_dist_disk < 0) { 657 if (is_badblock(rdev, this_sector, sectors, 658 &first_bad, &bad_sectors)) { 659 if (first_bad <= this_sector) 660 /* Cannot use this */ 661 continue; 662 best_good_sectors = first_bad - this_sector; 663 } else 664 best_good_sectors = sectors; 665 best_dist_disk = disk; 666 best_pending_disk = disk; 667 } 668 continue; 669 } 670 /* This is a reasonable device to use. It might 671 * even be best. 672 */ 673 if (is_badblock(rdev, this_sector, sectors, 674 &first_bad, &bad_sectors)) { 675 if (best_dist < MaxSector) 676 /* already have a better device */ 677 continue; 678 if (first_bad <= this_sector) { 679 /* cannot read here. If this is the 'primary' 680 * device, then we must not read beyond 681 * bad_sectors from another device.. 682 */ 683 bad_sectors -= (this_sector - first_bad); 684 if (choose_first && sectors > bad_sectors) 685 sectors = bad_sectors; 686 if (best_good_sectors > sectors) 687 best_good_sectors = sectors; 688 689 } else { 690 sector_t good_sectors = first_bad - this_sector; 691 if (good_sectors > best_good_sectors) { 692 best_good_sectors = good_sectors; 693 best_disk = disk; 694 } 695 if (choose_first) 696 break; 697 } 698 continue; 699 } else { 700 if ((sectors > best_good_sectors) && (best_disk >= 0)) 701 best_disk = -1; 702 best_good_sectors = sectors; 703 } 704 705 if (best_disk >= 0) 706 /* At least two disks to choose from so failfast is OK */ 707 set_bit(R1BIO_FailFast, &r1_bio->state); 708 709 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev)); 710 has_nonrot_disk |= nonrot; 711 pending = atomic_read(&rdev->nr_pending); 712 dist = abs(this_sector - conf->mirrors[disk].head_position); 713 if (choose_first) { 714 best_disk = disk; 715 break; 716 } 717 /* Don't change to another disk for sequential reads */ 718 if (conf->mirrors[disk].next_seq_sect == this_sector 719 || dist == 0) { 720 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9; 721 struct raid1_info *mirror = &conf->mirrors[disk]; 722 723 best_disk = disk; 724 /* 725 * If buffered sequential IO size exceeds optimal 726 * iosize, check if there is idle disk. If yes, choose 727 * the idle disk. read_balance could already choose an 728 * idle disk before noticing it's a sequential IO in 729 * this disk. This doesn't matter because this disk 730 * will idle, next time it will be utilized after the 731 * first disk has IO size exceeds optimal iosize. In 732 * this way, iosize of the first disk will be optimal 733 * iosize at least. iosize of the second disk might be 734 * small, but not a big deal since when the second disk 735 * starts IO, the first disk is likely still busy. 736 */ 737 if (nonrot && opt_iosize > 0 && 738 mirror->seq_start != MaxSector && 739 mirror->next_seq_sect > opt_iosize && 740 mirror->next_seq_sect - opt_iosize >= 741 mirror->seq_start) { 742 choose_next_idle = 1; 743 continue; 744 } 745 break; 746 } 747 748 if (choose_next_idle) 749 continue; 750 751 if (min_pending > pending) { 752 min_pending = pending; 753 best_pending_disk = disk; 754 } 755 756 if (dist < best_dist) { 757 best_dist = dist; 758 best_dist_disk = disk; 759 } 760 } 761 762 /* 763 * If all disks are rotational, choose the closest disk. If any disk is 764 * non-rotational, choose the disk with less pending request even the 765 * disk is rotational, which might/might not be optimal for raids with 766 * mixed ratation/non-rotational disks depending on workload. 767 */ 768 if (best_disk == -1) { 769 if (has_nonrot_disk || min_pending == 0) 770 best_disk = best_pending_disk; 771 else 772 best_disk = best_dist_disk; 773 } 774 775 if (best_disk >= 0) { 776 rdev = rcu_dereference(conf->mirrors[best_disk].rdev); 777 if (!rdev) 778 goto retry; 779 atomic_inc(&rdev->nr_pending); 780 sectors = best_good_sectors; 781 782 if (conf->mirrors[best_disk].next_seq_sect != this_sector) 783 conf->mirrors[best_disk].seq_start = this_sector; 784 785 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors; 786 } 787 rcu_read_unlock(); 788 *max_sectors = sectors; 789 790 return best_disk; 791 } 792 793 static void flush_bio_list(struct r1conf *conf, struct bio *bio) 794 { 795 /* flush any pending bitmap writes to disk before proceeding w/ I/O */ 796 md_bitmap_unplug(conf->mddev->bitmap); 797 wake_up(&conf->wait_barrier); 798 799 while (bio) { /* submit pending writes */ 800 struct bio *next = bio->bi_next; 801 struct md_rdev *rdev = (void *)bio->bi_bdev; 802 bio->bi_next = NULL; 803 bio_set_dev(bio, rdev->bdev); 804 if (test_bit(Faulty, &rdev->flags)) { 805 bio_io_error(bio); 806 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) && 807 !blk_queue_discard(bio->bi_bdev->bd_disk->queue))) 808 /* Just ignore it */ 809 bio_endio(bio); 810 else 811 submit_bio_noacct(bio); 812 bio = next; 813 cond_resched(); 814 } 815 } 816 817 static void flush_pending_writes(struct r1conf *conf) 818 { 819 /* Any writes that have been queued but are awaiting 820 * bitmap updates get flushed here. 821 */ 822 spin_lock_irq(&conf->device_lock); 823 824 if (conf->pending_bio_list.head) { 825 struct blk_plug plug; 826 struct bio *bio; 827 828 bio = bio_list_get(&conf->pending_bio_list); 829 conf->pending_count = 0; 830 spin_unlock_irq(&conf->device_lock); 831 832 /* 833 * As this is called in a wait_event() loop (see freeze_array), 834 * current->state might be TASK_UNINTERRUPTIBLE which will 835 * cause a warning when we prepare to wait again. As it is 836 * rare that this path is taken, it is perfectly safe to force 837 * us to go around the wait_event() loop again, so the warning 838 * is a false-positive. Silence the warning by resetting 839 * thread state 840 */ 841 __set_current_state(TASK_RUNNING); 842 blk_start_plug(&plug); 843 flush_bio_list(conf, bio); 844 blk_finish_plug(&plug); 845 } else 846 spin_unlock_irq(&conf->device_lock); 847 } 848 849 /* Barriers.... 850 * Sometimes we need to suspend IO while we do something else, 851 * either some resync/recovery, or reconfigure the array. 852 * To do this we raise a 'barrier'. 853 * The 'barrier' is a counter that can be raised multiple times 854 * to count how many activities are happening which preclude 855 * normal IO. 856 * We can only raise the barrier if there is no pending IO. 857 * i.e. if nr_pending == 0. 858 * We choose only to raise the barrier if no-one is waiting for the 859 * barrier to go down. This means that as soon as an IO request 860 * is ready, no other operations which require a barrier will start 861 * until the IO request has had a chance. 862 * 863 * So: regular IO calls 'wait_barrier'. When that returns there 864 * is no backgroup IO happening, It must arrange to call 865 * allow_barrier when it has finished its IO. 866 * backgroup IO calls must call raise_barrier. Once that returns 867 * there is no normal IO happeing. It must arrange to call 868 * lower_barrier when the particular background IO completes. 869 * 870 * If resync/recovery is interrupted, returns -EINTR; 871 * Otherwise, returns 0. 872 */ 873 static int raise_barrier(struct r1conf *conf, sector_t sector_nr) 874 { 875 int idx = sector_to_idx(sector_nr); 876 877 spin_lock_irq(&conf->resync_lock); 878 879 /* Wait until no block IO is waiting */ 880 wait_event_lock_irq(conf->wait_barrier, 881 !atomic_read(&conf->nr_waiting[idx]), 882 conf->resync_lock); 883 884 /* block any new IO from starting */ 885 atomic_inc(&conf->barrier[idx]); 886 /* 887 * In raise_barrier() we firstly increase conf->barrier[idx] then 888 * check conf->nr_pending[idx]. In _wait_barrier() we firstly 889 * increase conf->nr_pending[idx] then check conf->barrier[idx]. 890 * A memory barrier here to make sure conf->nr_pending[idx] won't 891 * be fetched before conf->barrier[idx] is increased. Otherwise 892 * there will be a race between raise_barrier() and _wait_barrier(). 893 */ 894 smp_mb__after_atomic(); 895 896 /* For these conditions we must wait: 897 * A: while the array is in frozen state 898 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O 899 * existing in corresponding I/O barrier bucket. 900 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches 901 * max resync count which allowed on current I/O barrier bucket. 902 */ 903 wait_event_lock_irq(conf->wait_barrier, 904 (!conf->array_frozen && 905 !atomic_read(&conf->nr_pending[idx]) && 906 atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) || 907 test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery), 908 conf->resync_lock); 909 910 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) { 911 atomic_dec(&conf->barrier[idx]); 912 spin_unlock_irq(&conf->resync_lock); 913 wake_up(&conf->wait_barrier); 914 return -EINTR; 915 } 916 917 atomic_inc(&conf->nr_sync_pending); 918 spin_unlock_irq(&conf->resync_lock); 919 920 return 0; 921 } 922 923 static void lower_barrier(struct r1conf *conf, sector_t sector_nr) 924 { 925 int idx = sector_to_idx(sector_nr); 926 927 BUG_ON(atomic_read(&conf->barrier[idx]) <= 0); 928 929 atomic_dec(&conf->barrier[idx]); 930 atomic_dec(&conf->nr_sync_pending); 931 wake_up(&conf->wait_barrier); 932 } 933 934 static void _wait_barrier(struct r1conf *conf, int idx) 935 { 936 /* 937 * We need to increase conf->nr_pending[idx] very early here, 938 * then raise_barrier() can be blocked when it waits for 939 * conf->nr_pending[idx] to be 0. Then we can avoid holding 940 * conf->resync_lock when there is no barrier raised in same 941 * barrier unit bucket. Also if the array is frozen, I/O 942 * should be blocked until array is unfrozen. 943 */ 944 atomic_inc(&conf->nr_pending[idx]); 945 /* 946 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then 947 * check conf->barrier[idx]. In raise_barrier() we firstly increase 948 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory 949 * barrier is necessary here to make sure conf->barrier[idx] won't be 950 * fetched before conf->nr_pending[idx] is increased. Otherwise there 951 * will be a race between _wait_barrier() and raise_barrier(). 952 */ 953 smp_mb__after_atomic(); 954 955 /* 956 * Don't worry about checking two atomic_t variables at same time 957 * here. If during we check conf->barrier[idx], the array is 958 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is 959 * 0, it is safe to return and make the I/O continue. Because the 960 * array is frozen, all I/O returned here will eventually complete 961 * or be queued, no race will happen. See code comment in 962 * frozen_array(). 963 */ 964 if (!READ_ONCE(conf->array_frozen) && 965 !atomic_read(&conf->barrier[idx])) 966 return; 967 968 /* 969 * After holding conf->resync_lock, conf->nr_pending[idx] 970 * should be decreased before waiting for barrier to drop. 971 * Otherwise, we may encounter a race condition because 972 * raise_barrer() might be waiting for conf->nr_pending[idx] 973 * to be 0 at same time. 974 */ 975 spin_lock_irq(&conf->resync_lock); 976 atomic_inc(&conf->nr_waiting[idx]); 977 atomic_dec(&conf->nr_pending[idx]); 978 /* 979 * In case freeze_array() is waiting for 980 * get_unqueued_pending() == extra 981 */ 982 wake_up(&conf->wait_barrier); 983 /* Wait for the barrier in same barrier unit bucket to drop. */ 984 wait_event_lock_irq(conf->wait_barrier, 985 !conf->array_frozen && 986 !atomic_read(&conf->barrier[idx]), 987 conf->resync_lock); 988 atomic_inc(&conf->nr_pending[idx]); 989 atomic_dec(&conf->nr_waiting[idx]); 990 spin_unlock_irq(&conf->resync_lock); 991 } 992 993 static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr) 994 { 995 int idx = sector_to_idx(sector_nr); 996 997 /* 998 * Very similar to _wait_barrier(). The difference is, for read 999 * I/O we don't need wait for sync I/O, but if the whole array 1000 * is frozen, the read I/O still has to wait until the array is 1001 * unfrozen. Since there is no ordering requirement with 1002 * conf->barrier[idx] here, memory barrier is unnecessary as well. 1003 */ 1004 atomic_inc(&conf->nr_pending[idx]); 1005 1006 if (!READ_ONCE(conf->array_frozen)) 1007 return; 1008 1009 spin_lock_irq(&conf->resync_lock); 1010 atomic_inc(&conf->nr_waiting[idx]); 1011 atomic_dec(&conf->nr_pending[idx]); 1012 /* 1013 * In case freeze_array() is waiting for 1014 * get_unqueued_pending() == extra 1015 */ 1016 wake_up(&conf->wait_barrier); 1017 /* Wait for array to be unfrozen */ 1018 wait_event_lock_irq(conf->wait_barrier, 1019 !conf->array_frozen, 1020 conf->resync_lock); 1021 atomic_inc(&conf->nr_pending[idx]); 1022 atomic_dec(&conf->nr_waiting[idx]); 1023 spin_unlock_irq(&conf->resync_lock); 1024 } 1025 1026 static void wait_barrier(struct r1conf *conf, sector_t sector_nr) 1027 { 1028 int idx = sector_to_idx(sector_nr); 1029 1030 _wait_barrier(conf, idx); 1031 } 1032 1033 static void _allow_barrier(struct r1conf *conf, int idx) 1034 { 1035 atomic_dec(&conf->nr_pending[idx]); 1036 wake_up(&conf->wait_barrier); 1037 } 1038 1039 static void allow_barrier(struct r1conf *conf, sector_t sector_nr) 1040 { 1041 int idx = sector_to_idx(sector_nr); 1042 1043 _allow_barrier(conf, idx); 1044 } 1045 1046 /* conf->resync_lock should be held */ 1047 static int get_unqueued_pending(struct r1conf *conf) 1048 { 1049 int idx, ret; 1050 1051 ret = atomic_read(&conf->nr_sync_pending); 1052 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) 1053 ret += atomic_read(&conf->nr_pending[idx]) - 1054 atomic_read(&conf->nr_queued[idx]); 1055 1056 return ret; 1057 } 1058 1059 static void freeze_array(struct r1conf *conf, int extra) 1060 { 1061 /* Stop sync I/O and normal I/O and wait for everything to 1062 * go quiet. 1063 * This is called in two situations: 1064 * 1) management command handlers (reshape, remove disk, quiesce). 1065 * 2) one normal I/O request failed. 1066 1067 * After array_frozen is set to 1, new sync IO will be blocked at 1068 * raise_barrier(), and new normal I/O will blocked at _wait_barrier() 1069 * or wait_read_barrier(). The flying I/Os will either complete or be 1070 * queued. When everything goes quite, there are only queued I/Os left. 1071 1072 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the 1073 * barrier bucket index which this I/O request hits. When all sync and 1074 * normal I/O are queued, sum of all conf->nr_pending[] will match sum 1075 * of all conf->nr_queued[]. But normal I/O failure is an exception, 1076 * in handle_read_error(), we may call freeze_array() before trying to 1077 * fix the read error. In this case, the error read I/O is not queued, 1078 * so get_unqueued_pending() == 1. 1079 * 1080 * Therefore before this function returns, we need to wait until 1081 * get_unqueued_pendings(conf) gets equal to extra. For 1082 * normal I/O context, extra is 1, in rested situations extra is 0. 1083 */ 1084 spin_lock_irq(&conf->resync_lock); 1085 conf->array_frozen = 1; 1086 raid1_log(conf->mddev, "wait freeze"); 1087 wait_event_lock_irq_cmd( 1088 conf->wait_barrier, 1089 get_unqueued_pending(conf) == extra, 1090 conf->resync_lock, 1091 flush_pending_writes(conf)); 1092 spin_unlock_irq(&conf->resync_lock); 1093 } 1094 static void unfreeze_array(struct r1conf *conf) 1095 { 1096 /* reverse the effect of the freeze */ 1097 spin_lock_irq(&conf->resync_lock); 1098 conf->array_frozen = 0; 1099 spin_unlock_irq(&conf->resync_lock); 1100 wake_up(&conf->wait_barrier); 1101 } 1102 1103 static void alloc_behind_master_bio(struct r1bio *r1_bio, 1104 struct bio *bio) 1105 { 1106 int size = bio->bi_iter.bi_size; 1107 unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1108 int i = 0; 1109 struct bio *behind_bio = NULL; 1110 1111 behind_bio = bio_alloc_bioset(GFP_NOIO, vcnt, &r1_bio->mddev->bio_set); 1112 if (!behind_bio) 1113 return; 1114 1115 /* discard op, we don't support writezero/writesame yet */ 1116 if (!bio_has_data(bio)) { 1117 behind_bio->bi_iter.bi_size = size; 1118 goto skip_copy; 1119 } 1120 1121 behind_bio->bi_write_hint = bio->bi_write_hint; 1122 1123 while (i < vcnt && size) { 1124 struct page *page; 1125 int len = min_t(int, PAGE_SIZE, size); 1126 1127 page = alloc_page(GFP_NOIO); 1128 if (unlikely(!page)) 1129 goto free_pages; 1130 1131 bio_add_page(behind_bio, page, len, 0); 1132 1133 size -= len; 1134 i++; 1135 } 1136 1137 bio_copy_data(behind_bio, bio); 1138 skip_copy: 1139 r1_bio->behind_master_bio = behind_bio; 1140 set_bit(R1BIO_BehindIO, &r1_bio->state); 1141 1142 return; 1143 1144 free_pages: 1145 pr_debug("%dB behind alloc failed, doing sync I/O\n", 1146 bio->bi_iter.bi_size); 1147 bio_free_pages(behind_bio); 1148 bio_put(behind_bio); 1149 } 1150 1151 struct raid1_plug_cb { 1152 struct blk_plug_cb cb; 1153 struct bio_list pending; 1154 int pending_cnt; 1155 }; 1156 1157 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule) 1158 { 1159 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, 1160 cb); 1161 struct mddev *mddev = plug->cb.data; 1162 struct r1conf *conf = mddev->private; 1163 struct bio *bio; 1164 1165 if (from_schedule || current->bio_list) { 1166 spin_lock_irq(&conf->device_lock); 1167 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1168 conf->pending_count += plug->pending_cnt; 1169 spin_unlock_irq(&conf->device_lock); 1170 wake_up(&conf->wait_barrier); 1171 md_wakeup_thread(mddev->thread); 1172 kfree(plug); 1173 return; 1174 } 1175 1176 /* we aren't scheduling, so we can do the write-out directly. */ 1177 bio = bio_list_get(&plug->pending); 1178 flush_bio_list(conf, bio); 1179 kfree(plug); 1180 } 1181 1182 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio) 1183 { 1184 r1_bio->master_bio = bio; 1185 r1_bio->sectors = bio_sectors(bio); 1186 r1_bio->state = 0; 1187 r1_bio->mddev = mddev; 1188 r1_bio->sector = bio->bi_iter.bi_sector; 1189 } 1190 1191 static inline struct r1bio * 1192 alloc_r1bio(struct mddev *mddev, struct bio *bio) 1193 { 1194 struct r1conf *conf = mddev->private; 1195 struct r1bio *r1_bio; 1196 1197 r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO); 1198 /* Ensure no bio records IO_BLOCKED */ 1199 memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0])); 1200 init_r1bio(r1_bio, mddev, bio); 1201 return r1_bio; 1202 } 1203 1204 static void raid1_read_request(struct mddev *mddev, struct bio *bio, 1205 int max_read_sectors, struct r1bio *r1_bio) 1206 { 1207 struct r1conf *conf = mddev->private; 1208 struct raid1_info *mirror; 1209 struct bio *read_bio; 1210 struct bitmap *bitmap = mddev->bitmap; 1211 const int op = bio_op(bio); 1212 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC); 1213 int max_sectors; 1214 int rdisk; 1215 bool r1bio_existed = !!r1_bio; 1216 char b[BDEVNAME_SIZE]; 1217 1218 /* 1219 * If r1_bio is set, we are blocking the raid1d thread 1220 * so there is a tiny risk of deadlock. So ask for 1221 * emergency memory if needed. 1222 */ 1223 gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO; 1224 1225 if (r1bio_existed) { 1226 /* Need to get the block device name carefully */ 1227 struct md_rdev *rdev; 1228 rcu_read_lock(); 1229 rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev); 1230 if (rdev) 1231 bdevname(rdev->bdev, b); 1232 else 1233 strcpy(b, "???"); 1234 rcu_read_unlock(); 1235 } 1236 1237 /* 1238 * Still need barrier for READ in case that whole 1239 * array is frozen. 1240 */ 1241 wait_read_barrier(conf, bio->bi_iter.bi_sector); 1242 1243 if (!r1_bio) 1244 r1_bio = alloc_r1bio(mddev, bio); 1245 else 1246 init_r1bio(r1_bio, mddev, bio); 1247 r1_bio->sectors = max_read_sectors; 1248 1249 /* 1250 * make_request() can abort the operation when read-ahead is being 1251 * used and no empty request is available. 1252 */ 1253 rdisk = read_balance(conf, r1_bio, &max_sectors); 1254 1255 if (rdisk < 0) { 1256 /* couldn't find anywhere to read from */ 1257 if (r1bio_existed) { 1258 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n", 1259 mdname(mddev), 1260 b, 1261 (unsigned long long)r1_bio->sector); 1262 } 1263 raid_end_bio_io(r1_bio); 1264 return; 1265 } 1266 mirror = conf->mirrors + rdisk; 1267 1268 if (r1bio_existed) 1269 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n", 1270 mdname(mddev), 1271 (unsigned long long)r1_bio->sector, 1272 bdevname(mirror->rdev->bdev, b)); 1273 1274 if (test_bit(WriteMostly, &mirror->rdev->flags) && 1275 bitmap) { 1276 /* 1277 * Reading from a write-mostly device must take care not to 1278 * over-take any writes that are 'behind' 1279 */ 1280 raid1_log(mddev, "wait behind writes"); 1281 wait_event(bitmap->behind_wait, 1282 atomic_read(&bitmap->behind_writes) == 0); 1283 } 1284 1285 if (max_sectors < bio_sectors(bio)) { 1286 struct bio *split = bio_split(bio, max_sectors, 1287 gfp, &conf->bio_split); 1288 bio_chain(split, bio); 1289 submit_bio_noacct(bio); 1290 bio = split; 1291 r1_bio->master_bio = bio; 1292 r1_bio->sectors = max_sectors; 1293 } 1294 1295 r1_bio->read_disk = rdisk; 1296 1297 if (!r1bio_existed && blk_queue_io_stat(bio->bi_bdev->bd_disk->queue)) 1298 r1_bio->start_time = bio_start_io_acct(bio); 1299 1300 read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set); 1301 1302 r1_bio->bios[rdisk] = read_bio; 1303 1304 read_bio->bi_iter.bi_sector = r1_bio->sector + 1305 mirror->rdev->data_offset; 1306 bio_set_dev(read_bio, mirror->rdev->bdev); 1307 read_bio->bi_end_io = raid1_end_read_request; 1308 bio_set_op_attrs(read_bio, op, do_sync); 1309 if (test_bit(FailFast, &mirror->rdev->flags) && 1310 test_bit(R1BIO_FailFast, &r1_bio->state)) 1311 read_bio->bi_opf |= MD_FAILFAST; 1312 read_bio->bi_private = r1_bio; 1313 1314 if (mddev->gendisk) 1315 trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk), 1316 r1_bio->sector); 1317 1318 submit_bio_noacct(read_bio); 1319 } 1320 1321 static void raid1_write_request(struct mddev *mddev, struct bio *bio, 1322 int max_write_sectors) 1323 { 1324 struct r1conf *conf = mddev->private; 1325 struct r1bio *r1_bio; 1326 int i, disks; 1327 struct bitmap *bitmap = mddev->bitmap; 1328 unsigned long flags; 1329 struct md_rdev *blocked_rdev; 1330 struct blk_plug_cb *cb; 1331 struct raid1_plug_cb *plug = NULL; 1332 int first_clone; 1333 int max_sectors; 1334 1335 if (mddev_is_clustered(mddev) && 1336 md_cluster_ops->area_resyncing(mddev, WRITE, 1337 bio->bi_iter.bi_sector, bio_end_sector(bio))) { 1338 1339 DEFINE_WAIT(w); 1340 for (;;) { 1341 prepare_to_wait(&conf->wait_barrier, 1342 &w, TASK_IDLE); 1343 if (!md_cluster_ops->area_resyncing(mddev, WRITE, 1344 bio->bi_iter.bi_sector, 1345 bio_end_sector(bio))) 1346 break; 1347 schedule(); 1348 } 1349 finish_wait(&conf->wait_barrier, &w); 1350 } 1351 1352 /* 1353 * Register the new request and wait if the reconstruction 1354 * thread has put up a bar for new requests. 1355 * Continue immediately if no resync is active currently. 1356 */ 1357 wait_barrier(conf, bio->bi_iter.bi_sector); 1358 1359 r1_bio = alloc_r1bio(mddev, bio); 1360 r1_bio->sectors = max_write_sectors; 1361 1362 if (conf->pending_count >= max_queued_requests) { 1363 md_wakeup_thread(mddev->thread); 1364 raid1_log(mddev, "wait queued"); 1365 wait_event(conf->wait_barrier, 1366 conf->pending_count < max_queued_requests); 1367 } 1368 /* first select target devices under rcu_lock and 1369 * inc refcount on their rdev. Record them by setting 1370 * bios[x] to bio 1371 * If there are known/acknowledged bad blocks on any device on 1372 * which we have seen a write error, we want to avoid writing those 1373 * blocks. 1374 * This potentially requires several writes to write around 1375 * the bad blocks. Each set of writes gets it's own r1bio 1376 * with a set of bios attached. 1377 */ 1378 1379 disks = conf->raid_disks * 2; 1380 retry_write: 1381 blocked_rdev = NULL; 1382 rcu_read_lock(); 1383 max_sectors = r1_bio->sectors; 1384 for (i = 0; i < disks; i++) { 1385 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1386 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1387 atomic_inc(&rdev->nr_pending); 1388 blocked_rdev = rdev; 1389 break; 1390 } 1391 r1_bio->bios[i] = NULL; 1392 if (!rdev || test_bit(Faulty, &rdev->flags)) { 1393 if (i < conf->raid_disks) 1394 set_bit(R1BIO_Degraded, &r1_bio->state); 1395 continue; 1396 } 1397 1398 atomic_inc(&rdev->nr_pending); 1399 if (test_bit(WriteErrorSeen, &rdev->flags)) { 1400 sector_t first_bad; 1401 int bad_sectors; 1402 int is_bad; 1403 1404 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors, 1405 &first_bad, &bad_sectors); 1406 if (is_bad < 0) { 1407 /* mustn't write here until the bad block is 1408 * acknowledged*/ 1409 set_bit(BlockedBadBlocks, &rdev->flags); 1410 blocked_rdev = rdev; 1411 break; 1412 } 1413 if (is_bad && first_bad <= r1_bio->sector) { 1414 /* Cannot write here at all */ 1415 bad_sectors -= (r1_bio->sector - first_bad); 1416 if (bad_sectors < max_sectors) 1417 /* mustn't write more than bad_sectors 1418 * to other devices yet 1419 */ 1420 max_sectors = bad_sectors; 1421 rdev_dec_pending(rdev, mddev); 1422 /* We don't set R1BIO_Degraded as that 1423 * only applies if the disk is 1424 * missing, so it might be re-added, 1425 * and we want to know to recover this 1426 * chunk. 1427 * In this case the device is here, 1428 * and the fact that this chunk is not 1429 * in-sync is recorded in the bad 1430 * block log 1431 */ 1432 continue; 1433 } 1434 if (is_bad) { 1435 int good_sectors = first_bad - r1_bio->sector; 1436 if (good_sectors < max_sectors) 1437 max_sectors = good_sectors; 1438 } 1439 } 1440 r1_bio->bios[i] = bio; 1441 } 1442 rcu_read_unlock(); 1443 1444 if (unlikely(blocked_rdev)) { 1445 /* Wait for this device to become unblocked */ 1446 int j; 1447 1448 for (j = 0; j < i; j++) 1449 if (r1_bio->bios[j]) 1450 rdev_dec_pending(conf->mirrors[j].rdev, mddev); 1451 r1_bio->state = 0; 1452 allow_barrier(conf, bio->bi_iter.bi_sector); 1453 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk); 1454 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1455 wait_barrier(conf, bio->bi_iter.bi_sector); 1456 goto retry_write; 1457 } 1458 1459 if (max_sectors < bio_sectors(bio)) { 1460 struct bio *split = bio_split(bio, max_sectors, 1461 GFP_NOIO, &conf->bio_split); 1462 bio_chain(split, bio); 1463 submit_bio_noacct(bio); 1464 bio = split; 1465 r1_bio->master_bio = bio; 1466 r1_bio->sectors = max_sectors; 1467 } 1468 1469 if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue)) 1470 r1_bio->start_time = bio_start_io_acct(bio); 1471 atomic_set(&r1_bio->remaining, 1); 1472 atomic_set(&r1_bio->behind_remaining, 0); 1473 1474 first_clone = 1; 1475 1476 for (i = 0; i < disks; i++) { 1477 struct bio *mbio = NULL; 1478 struct md_rdev *rdev = conf->mirrors[i].rdev; 1479 if (!r1_bio->bios[i]) 1480 continue; 1481 1482 if (first_clone) { 1483 /* do behind I/O ? 1484 * Not if there are too many, or cannot 1485 * allocate memory, or a reader on WriteMostly 1486 * is waiting for behind writes to flush */ 1487 if (bitmap && 1488 (atomic_read(&bitmap->behind_writes) 1489 < mddev->bitmap_info.max_write_behind) && 1490 !waitqueue_active(&bitmap->behind_wait)) { 1491 alloc_behind_master_bio(r1_bio, bio); 1492 } 1493 1494 md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors, 1495 test_bit(R1BIO_BehindIO, &r1_bio->state)); 1496 first_clone = 0; 1497 } 1498 1499 if (r1_bio->behind_master_bio) 1500 mbio = bio_clone_fast(r1_bio->behind_master_bio, 1501 GFP_NOIO, &mddev->bio_set); 1502 else 1503 mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set); 1504 1505 if (r1_bio->behind_master_bio) { 1506 if (test_bit(CollisionCheck, &rdev->flags)) 1507 wait_for_serialization(rdev, r1_bio); 1508 if (test_bit(WriteMostly, &rdev->flags)) 1509 atomic_inc(&r1_bio->behind_remaining); 1510 } else if (mddev->serialize_policy) 1511 wait_for_serialization(rdev, r1_bio); 1512 1513 r1_bio->bios[i] = mbio; 1514 1515 mbio->bi_iter.bi_sector = (r1_bio->sector + 1516 conf->mirrors[i].rdev->data_offset); 1517 bio_set_dev(mbio, conf->mirrors[i].rdev->bdev); 1518 mbio->bi_end_io = raid1_end_write_request; 1519 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA)); 1520 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) && 1521 !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) && 1522 conf->raid_disks - mddev->degraded > 1) 1523 mbio->bi_opf |= MD_FAILFAST; 1524 mbio->bi_private = r1_bio; 1525 1526 atomic_inc(&r1_bio->remaining); 1527 1528 if (mddev->gendisk) 1529 trace_block_bio_remap(mbio, disk_devt(mddev->gendisk), 1530 r1_bio->sector); 1531 /* flush_pending_writes() needs access to the rdev so...*/ 1532 mbio->bi_bdev = (void *)conf->mirrors[i].rdev; 1533 1534 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug)); 1535 if (cb) 1536 plug = container_of(cb, struct raid1_plug_cb, cb); 1537 else 1538 plug = NULL; 1539 if (plug) { 1540 bio_list_add(&plug->pending, mbio); 1541 plug->pending_cnt++; 1542 } else { 1543 spin_lock_irqsave(&conf->device_lock, flags); 1544 bio_list_add(&conf->pending_bio_list, mbio); 1545 conf->pending_count++; 1546 spin_unlock_irqrestore(&conf->device_lock, flags); 1547 md_wakeup_thread(mddev->thread); 1548 } 1549 } 1550 1551 r1_bio_write_done(r1_bio); 1552 1553 /* In case raid1d snuck in to freeze_array */ 1554 wake_up(&conf->wait_barrier); 1555 } 1556 1557 static bool raid1_make_request(struct mddev *mddev, struct bio *bio) 1558 { 1559 sector_t sectors; 1560 1561 if (unlikely(bio->bi_opf & REQ_PREFLUSH) 1562 && md_flush_request(mddev, bio)) 1563 return true; 1564 1565 /* 1566 * There is a limit to the maximum size, but 1567 * the read/write handler might find a lower limit 1568 * due to bad blocks. To avoid multiple splits, 1569 * we pass the maximum number of sectors down 1570 * and let the lower level perform the split. 1571 */ 1572 sectors = align_to_barrier_unit_end( 1573 bio->bi_iter.bi_sector, bio_sectors(bio)); 1574 1575 if (bio_data_dir(bio) == READ) 1576 raid1_read_request(mddev, bio, sectors, NULL); 1577 else { 1578 if (!md_write_start(mddev,bio)) 1579 return false; 1580 raid1_write_request(mddev, bio, sectors); 1581 } 1582 return true; 1583 } 1584 1585 static void raid1_status(struct seq_file *seq, struct mddev *mddev) 1586 { 1587 struct r1conf *conf = mddev->private; 1588 int i; 1589 1590 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 1591 conf->raid_disks - mddev->degraded); 1592 rcu_read_lock(); 1593 for (i = 0; i < conf->raid_disks; i++) { 1594 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1595 seq_printf(seq, "%s", 1596 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1597 } 1598 rcu_read_unlock(); 1599 seq_printf(seq, "]"); 1600 } 1601 1602 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev) 1603 { 1604 char b[BDEVNAME_SIZE]; 1605 struct r1conf *conf = mddev->private; 1606 unsigned long flags; 1607 1608 /* 1609 * If it is not operational, then we have already marked it as dead 1610 * else if it is the last working disks with "fail_last_dev == false", 1611 * ignore the error, let the next level up know. 1612 * else mark the drive as failed 1613 */ 1614 spin_lock_irqsave(&conf->device_lock, flags); 1615 if (test_bit(In_sync, &rdev->flags) && !mddev->fail_last_dev 1616 && (conf->raid_disks - mddev->degraded) == 1) { 1617 /* 1618 * Don't fail the drive, act as though we were just a 1619 * normal single drive. 1620 * However don't try a recovery from this drive as 1621 * it is very likely to fail. 1622 */ 1623 conf->recovery_disabled = mddev->recovery_disabled; 1624 spin_unlock_irqrestore(&conf->device_lock, flags); 1625 return; 1626 } 1627 set_bit(Blocked, &rdev->flags); 1628 if (test_and_clear_bit(In_sync, &rdev->flags)) 1629 mddev->degraded++; 1630 set_bit(Faulty, &rdev->flags); 1631 spin_unlock_irqrestore(&conf->device_lock, flags); 1632 /* 1633 * if recovery is running, make sure it aborts. 1634 */ 1635 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1636 set_mask_bits(&mddev->sb_flags, 0, 1637 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1638 pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n" 1639 "md/raid1:%s: Operation continuing on %d devices.\n", 1640 mdname(mddev), bdevname(rdev->bdev, b), 1641 mdname(mddev), conf->raid_disks - mddev->degraded); 1642 } 1643 1644 static void print_conf(struct r1conf *conf) 1645 { 1646 int i; 1647 1648 pr_debug("RAID1 conf printout:\n"); 1649 if (!conf) { 1650 pr_debug("(!conf)\n"); 1651 return; 1652 } 1653 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1654 conf->raid_disks); 1655 1656 rcu_read_lock(); 1657 for (i = 0; i < conf->raid_disks; i++) { 1658 char b[BDEVNAME_SIZE]; 1659 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1660 if (rdev) 1661 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n", 1662 i, !test_bit(In_sync, &rdev->flags), 1663 !test_bit(Faulty, &rdev->flags), 1664 bdevname(rdev->bdev,b)); 1665 } 1666 rcu_read_unlock(); 1667 } 1668 1669 static void close_sync(struct r1conf *conf) 1670 { 1671 int idx; 1672 1673 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) { 1674 _wait_barrier(conf, idx); 1675 _allow_barrier(conf, idx); 1676 } 1677 1678 mempool_exit(&conf->r1buf_pool); 1679 } 1680 1681 static int raid1_spare_active(struct mddev *mddev) 1682 { 1683 int i; 1684 struct r1conf *conf = mddev->private; 1685 int count = 0; 1686 unsigned long flags; 1687 1688 /* 1689 * Find all failed disks within the RAID1 configuration 1690 * and mark them readable. 1691 * Called under mddev lock, so rcu protection not needed. 1692 * device_lock used to avoid races with raid1_end_read_request 1693 * which expects 'In_sync' flags and ->degraded to be consistent. 1694 */ 1695 spin_lock_irqsave(&conf->device_lock, flags); 1696 for (i = 0; i < conf->raid_disks; i++) { 1697 struct md_rdev *rdev = conf->mirrors[i].rdev; 1698 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev; 1699 if (repl 1700 && !test_bit(Candidate, &repl->flags) 1701 && repl->recovery_offset == MaxSector 1702 && !test_bit(Faulty, &repl->flags) 1703 && !test_and_set_bit(In_sync, &repl->flags)) { 1704 /* replacement has just become active */ 1705 if (!rdev || 1706 !test_and_clear_bit(In_sync, &rdev->flags)) 1707 count++; 1708 if (rdev) { 1709 /* Replaced device not technically 1710 * faulty, but we need to be sure 1711 * it gets removed and never re-added 1712 */ 1713 set_bit(Faulty, &rdev->flags); 1714 sysfs_notify_dirent_safe( 1715 rdev->sysfs_state); 1716 } 1717 } 1718 if (rdev 1719 && rdev->recovery_offset == MaxSector 1720 && !test_bit(Faulty, &rdev->flags) 1721 && !test_and_set_bit(In_sync, &rdev->flags)) { 1722 count++; 1723 sysfs_notify_dirent_safe(rdev->sysfs_state); 1724 } 1725 } 1726 mddev->degraded -= count; 1727 spin_unlock_irqrestore(&conf->device_lock, flags); 1728 1729 print_conf(conf); 1730 return count; 1731 } 1732 1733 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1734 { 1735 struct r1conf *conf = mddev->private; 1736 int err = -EEXIST; 1737 int mirror = 0; 1738 struct raid1_info *p; 1739 int first = 0; 1740 int last = conf->raid_disks - 1; 1741 1742 if (mddev->recovery_disabled == conf->recovery_disabled) 1743 return -EBUSY; 1744 1745 if (md_integrity_add_rdev(rdev, mddev)) 1746 return -ENXIO; 1747 1748 if (rdev->raid_disk >= 0) 1749 first = last = rdev->raid_disk; 1750 1751 /* 1752 * find the disk ... but prefer rdev->saved_raid_disk 1753 * if possible. 1754 */ 1755 if (rdev->saved_raid_disk >= 0 && 1756 rdev->saved_raid_disk >= first && 1757 rdev->saved_raid_disk < conf->raid_disks && 1758 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1759 first = last = rdev->saved_raid_disk; 1760 1761 for (mirror = first; mirror <= last; mirror++) { 1762 p = conf->mirrors + mirror; 1763 if (!p->rdev) { 1764 if (mddev->gendisk) 1765 disk_stack_limits(mddev->gendisk, rdev->bdev, 1766 rdev->data_offset << 9); 1767 1768 p->head_position = 0; 1769 rdev->raid_disk = mirror; 1770 err = 0; 1771 /* As all devices are equivalent, we don't need a full recovery 1772 * if this was recently any drive of the array 1773 */ 1774 if (rdev->saved_raid_disk < 0) 1775 conf->fullsync = 1; 1776 rcu_assign_pointer(p->rdev, rdev); 1777 break; 1778 } 1779 if (test_bit(WantReplacement, &p->rdev->flags) && 1780 p[conf->raid_disks].rdev == NULL) { 1781 /* Add this device as a replacement */ 1782 clear_bit(In_sync, &rdev->flags); 1783 set_bit(Replacement, &rdev->flags); 1784 rdev->raid_disk = mirror; 1785 err = 0; 1786 conf->fullsync = 1; 1787 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev); 1788 break; 1789 } 1790 } 1791 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev))) 1792 blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue); 1793 print_conf(conf); 1794 return err; 1795 } 1796 1797 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1798 { 1799 struct r1conf *conf = mddev->private; 1800 int err = 0; 1801 int number = rdev->raid_disk; 1802 struct raid1_info *p = conf->mirrors + number; 1803 1804 if (rdev != p->rdev) 1805 p = conf->mirrors + conf->raid_disks + number; 1806 1807 print_conf(conf); 1808 if (rdev == p->rdev) { 1809 if (test_bit(In_sync, &rdev->flags) || 1810 atomic_read(&rdev->nr_pending)) { 1811 err = -EBUSY; 1812 goto abort; 1813 } 1814 /* Only remove non-faulty devices if recovery 1815 * is not possible. 1816 */ 1817 if (!test_bit(Faulty, &rdev->flags) && 1818 mddev->recovery_disabled != conf->recovery_disabled && 1819 mddev->degraded < conf->raid_disks) { 1820 err = -EBUSY; 1821 goto abort; 1822 } 1823 p->rdev = NULL; 1824 if (!test_bit(RemoveSynchronized, &rdev->flags)) { 1825 synchronize_rcu(); 1826 if (atomic_read(&rdev->nr_pending)) { 1827 /* lost the race, try later */ 1828 err = -EBUSY; 1829 p->rdev = rdev; 1830 goto abort; 1831 } 1832 } 1833 if (conf->mirrors[conf->raid_disks + number].rdev) { 1834 /* We just removed a device that is being replaced. 1835 * Move down the replacement. We drain all IO before 1836 * doing this to avoid confusion. 1837 */ 1838 struct md_rdev *repl = 1839 conf->mirrors[conf->raid_disks + number].rdev; 1840 freeze_array(conf, 0); 1841 if (atomic_read(&repl->nr_pending)) { 1842 /* It means that some queued IO of retry_list 1843 * hold repl. Thus, we cannot set replacement 1844 * as NULL, avoiding rdev NULL pointer 1845 * dereference in sync_request_write and 1846 * handle_write_finished. 1847 */ 1848 err = -EBUSY; 1849 unfreeze_array(conf); 1850 goto abort; 1851 } 1852 clear_bit(Replacement, &repl->flags); 1853 p->rdev = repl; 1854 conf->mirrors[conf->raid_disks + number].rdev = NULL; 1855 unfreeze_array(conf); 1856 } 1857 1858 clear_bit(WantReplacement, &rdev->flags); 1859 err = md_integrity_register(mddev); 1860 } 1861 abort: 1862 1863 print_conf(conf); 1864 return err; 1865 } 1866 1867 static void end_sync_read(struct bio *bio) 1868 { 1869 struct r1bio *r1_bio = get_resync_r1bio(bio); 1870 1871 update_head_pos(r1_bio->read_disk, r1_bio); 1872 1873 /* 1874 * we have read a block, now it needs to be re-written, 1875 * or re-read if the read failed. 1876 * We don't do much here, just schedule handling by raid1d 1877 */ 1878 if (!bio->bi_status) 1879 set_bit(R1BIO_Uptodate, &r1_bio->state); 1880 1881 if (atomic_dec_and_test(&r1_bio->remaining)) 1882 reschedule_retry(r1_bio); 1883 } 1884 1885 static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio) 1886 { 1887 sector_t sync_blocks = 0; 1888 sector_t s = r1_bio->sector; 1889 long sectors_to_go = r1_bio->sectors; 1890 1891 /* make sure these bits don't get cleared. */ 1892 do { 1893 md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1); 1894 s += sync_blocks; 1895 sectors_to_go -= sync_blocks; 1896 } while (sectors_to_go > 0); 1897 } 1898 1899 static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate) 1900 { 1901 if (atomic_dec_and_test(&r1_bio->remaining)) { 1902 struct mddev *mddev = r1_bio->mddev; 1903 int s = r1_bio->sectors; 1904 1905 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 1906 test_bit(R1BIO_WriteError, &r1_bio->state)) 1907 reschedule_retry(r1_bio); 1908 else { 1909 put_buf(r1_bio); 1910 md_done_sync(mddev, s, uptodate); 1911 } 1912 } 1913 } 1914 1915 static void end_sync_write(struct bio *bio) 1916 { 1917 int uptodate = !bio->bi_status; 1918 struct r1bio *r1_bio = get_resync_r1bio(bio); 1919 struct mddev *mddev = r1_bio->mddev; 1920 struct r1conf *conf = mddev->private; 1921 sector_t first_bad; 1922 int bad_sectors; 1923 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev; 1924 1925 if (!uptodate) { 1926 abort_sync_write(mddev, r1_bio); 1927 set_bit(WriteErrorSeen, &rdev->flags); 1928 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 1929 set_bit(MD_RECOVERY_NEEDED, & 1930 mddev->recovery); 1931 set_bit(R1BIO_WriteError, &r1_bio->state); 1932 } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors, 1933 &first_bad, &bad_sectors) && 1934 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev, 1935 r1_bio->sector, 1936 r1_bio->sectors, 1937 &first_bad, &bad_sectors) 1938 ) 1939 set_bit(R1BIO_MadeGood, &r1_bio->state); 1940 1941 put_sync_write_buf(r1_bio, uptodate); 1942 } 1943 1944 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector, 1945 int sectors, struct page *page, int rw) 1946 { 1947 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false)) 1948 /* success */ 1949 return 1; 1950 if (rw == WRITE) { 1951 set_bit(WriteErrorSeen, &rdev->flags); 1952 if (!test_and_set_bit(WantReplacement, 1953 &rdev->flags)) 1954 set_bit(MD_RECOVERY_NEEDED, & 1955 rdev->mddev->recovery); 1956 } 1957 /* need to record an error - either for the block or the device */ 1958 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 1959 md_error(rdev->mddev, rdev); 1960 return 0; 1961 } 1962 1963 static int fix_sync_read_error(struct r1bio *r1_bio) 1964 { 1965 /* Try some synchronous reads of other devices to get 1966 * good data, much like with normal read errors. Only 1967 * read into the pages we already have so we don't 1968 * need to re-issue the read request. 1969 * We don't need to freeze the array, because being in an 1970 * active sync request, there is no normal IO, and 1971 * no overlapping syncs. 1972 * We don't need to check is_badblock() again as we 1973 * made sure that anything with a bad block in range 1974 * will have bi_end_io clear. 1975 */ 1976 struct mddev *mddev = r1_bio->mddev; 1977 struct r1conf *conf = mddev->private; 1978 struct bio *bio = r1_bio->bios[r1_bio->read_disk]; 1979 struct page **pages = get_resync_pages(bio)->pages; 1980 sector_t sect = r1_bio->sector; 1981 int sectors = r1_bio->sectors; 1982 int idx = 0; 1983 struct md_rdev *rdev; 1984 1985 rdev = conf->mirrors[r1_bio->read_disk].rdev; 1986 if (test_bit(FailFast, &rdev->flags)) { 1987 /* Don't try recovering from here - just fail it 1988 * ... unless it is the last working device of course */ 1989 md_error(mddev, rdev); 1990 if (test_bit(Faulty, &rdev->flags)) 1991 /* Don't try to read from here, but make sure 1992 * put_buf does it's thing 1993 */ 1994 bio->bi_end_io = end_sync_write; 1995 } 1996 1997 while(sectors) { 1998 int s = sectors; 1999 int d = r1_bio->read_disk; 2000 int success = 0; 2001 int start; 2002 2003 if (s > (PAGE_SIZE>>9)) 2004 s = PAGE_SIZE >> 9; 2005 do { 2006 if (r1_bio->bios[d]->bi_end_io == end_sync_read) { 2007 /* No rcu protection needed here devices 2008 * can only be removed when no resync is 2009 * active, and resync is currently active 2010 */ 2011 rdev = conf->mirrors[d].rdev; 2012 if (sync_page_io(rdev, sect, s<<9, 2013 pages[idx], 2014 REQ_OP_READ, 0, false)) { 2015 success = 1; 2016 break; 2017 } 2018 } 2019 d++; 2020 if (d == conf->raid_disks * 2) 2021 d = 0; 2022 } while (!success && d != r1_bio->read_disk); 2023 2024 if (!success) { 2025 char b[BDEVNAME_SIZE]; 2026 int abort = 0; 2027 /* Cannot read from anywhere, this block is lost. 2028 * Record a bad block on each device. If that doesn't 2029 * work just disable and interrupt the recovery. 2030 * Don't fail devices as that won't really help. 2031 */ 2032 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n", 2033 mdname(mddev), bio_devname(bio, b), 2034 (unsigned long long)r1_bio->sector); 2035 for (d = 0; d < conf->raid_disks * 2; d++) { 2036 rdev = conf->mirrors[d].rdev; 2037 if (!rdev || test_bit(Faulty, &rdev->flags)) 2038 continue; 2039 if (!rdev_set_badblocks(rdev, sect, s, 0)) 2040 abort = 1; 2041 } 2042 if (abort) { 2043 conf->recovery_disabled = 2044 mddev->recovery_disabled; 2045 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2046 md_done_sync(mddev, r1_bio->sectors, 0); 2047 put_buf(r1_bio); 2048 return 0; 2049 } 2050 /* Try next page */ 2051 sectors -= s; 2052 sect += s; 2053 idx++; 2054 continue; 2055 } 2056 2057 start = d; 2058 /* write it back and re-read */ 2059 while (d != r1_bio->read_disk) { 2060 if (d == 0) 2061 d = conf->raid_disks * 2; 2062 d--; 2063 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 2064 continue; 2065 rdev = conf->mirrors[d].rdev; 2066 if (r1_sync_page_io(rdev, sect, s, 2067 pages[idx], 2068 WRITE) == 0) { 2069 r1_bio->bios[d]->bi_end_io = NULL; 2070 rdev_dec_pending(rdev, mddev); 2071 } 2072 } 2073 d = start; 2074 while (d != r1_bio->read_disk) { 2075 if (d == 0) 2076 d = conf->raid_disks * 2; 2077 d--; 2078 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 2079 continue; 2080 rdev = conf->mirrors[d].rdev; 2081 if (r1_sync_page_io(rdev, sect, s, 2082 pages[idx], 2083 READ) != 0) 2084 atomic_add(s, &rdev->corrected_errors); 2085 } 2086 sectors -= s; 2087 sect += s; 2088 idx ++; 2089 } 2090 set_bit(R1BIO_Uptodate, &r1_bio->state); 2091 bio->bi_status = 0; 2092 return 1; 2093 } 2094 2095 static void process_checks(struct r1bio *r1_bio) 2096 { 2097 /* We have read all readable devices. If we haven't 2098 * got the block, then there is no hope left. 2099 * If we have, then we want to do a comparison 2100 * and skip the write if everything is the same. 2101 * If any blocks failed to read, then we need to 2102 * attempt an over-write 2103 */ 2104 struct mddev *mddev = r1_bio->mddev; 2105 struct r1conf *conf = mddev->private; 2106 int primary; 2107 int i; 2108 int vcnt; 2109 2110 /* Fix variable parts of all bios */ 2111 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9); 2112 for (i = 0; i < conf->raid_disks * 2; i++) { 2113 blk_status_t status; 2114 struct bio *b = r1_bio->bios[i]; 2115 struct resync_pages *rp = get_resync_pages(b); 2116 if (b->bi_end_io != end_sync_read) 2117 continue; 2118 /* fixup the bio for reuse, but preserve errno */ 2119 status = b->bi_status; 2120 bio_reset(b); 2121 b->bi_status = status; 2122 b->bi_iter.bi_sector = r1_bio->sector + 2123 conf->mirrors[i].rdev->data_offset; 2124 bio_set_dev(b, conf->mirrors[i].rdev->bdev); 2125 b->bi_end_io = end_sync_read; 2126 rp->raid_bio = r1_bio; 2127 b->bi_private = rp; 2128 2129 /* initialize bvec table again */ 2130 md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9); 2131 } 2132 for (primary = 0; primary < conf->raid_disks * 2; primary++) 2133 if (r1_bio->bios[primary]->bi_end_io == end_sync_read && 2134 !r1_bio->bios[primary]->bi_status) { 2135 r1_bio->bios[primary]->bi_end_io = NULL; 2136 rdev_dec_pending(conf->mirrors[primary].rdev, mddev); 2137 break; 2138 } 2139 r1_bio->read_disk = primary; 2140 for (i = 0; i < conf->raid_disks * 2; i++) { 2141 int j = 0; 2142 struct bio *pbio = r1_bio->bios[primary]; 2143 struct bio *sbio = r1_bio->bios[i]; 2144 blk_status_t status = sbio->bi_status; 2145 struct page **ppages = get_resync_pages(pbio)->pages; 2146 struct page **spages = get_resync_pages(sbio)->pages; 2147 struct bio_vec *bi; 2148 int page_len[RESYNC_PAGES] = { 0 }; 2149 struct bvec_iter_all iter_all; 2150 2151 if (sbio->bi_end_io != end_sync_read) 2152 continue; 2153 /* Now we can 'fixup' the error value */ 2154 sbio->bi_status = 0; 2155 2156 bio_for_each_segment_all(bi, sbio, iter_all) 2157 page_len[j++] = bi->bv_len; 2158 2159 if (!status) { 2160 for (j = vcnt; j-- ; ) { 2161 if (memcmp(page_address(ppages[j]), 2162 page_address(spages[j]), 2163 page_len[j])) 2164 break; 2165 } 2166 } else 2167 j = 0; 2168 if (j >= 0) 2169 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches); 2170 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery) 2171 && !status)) { 2172 /* No need to write to this device. */ 2173 sbio->bi_end_io = NULL; 2174 rdev_dec_pending(conf->mirrors[i].rdev, mddev); 2175 continue; 2176 } 2177 2178 bio_copy_data(sbio, pbio); 2179 } 2180 } 2181 2182 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio) 2183 { 2184 struct r1conf *conf = mddev->private; 2185 int i; 2186 int disks = conf->raid_disks * 2; 2187 struct bio *wbio; 2188 2189 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 2190 /* ouch - failed to read all of that. */ 2191 if (!fix_sync_read_error(r1_bio)) 2192 return; 2193 2194 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2195 process_checks(r1_bio); 2196 2197 /* 2198 * schedule writes 2199 */ 2200 atomic_set(&r1_bio->remaining, 1); 2201 for (i = 0; i < disks ; i++) { 2202 wbio = r1_bio->bios[i]; 2203 if (wbio->bi_end_io == NULL || 2204 (wbio->bi_end_io == end_sync_read && 2205 (i == r1_bio->read_disk || 2206 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)))) 2207 continue; 2208 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) { 2209 abort_sync_write(mddev, r1_bio); 2210 continue; 2211 } 2212 2213 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0); 2214 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags)) 2215 wbio->bi_opf |= MD_FAILFAST; 2216 2217 wbio->bi_end_io = end_sync_write; 2218 atomic_inc(&r1_bio->remaining); 2219 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio)); 2220 2221 submit_bio_noacct(wbio); 2222 } 2223 2224 put_sync_write_buf(r1_bio, 1); 2225 } 2226 2227 /* 2228 * This is a kernel thread which: 2229 * 2230 * 1. Retries failed read operations on working mirrors. 2231 * 2. Updates the raid superblock when problems encounter. 2232 * 3. Performs writes following reads for array synchronising. 2233 */ 2234 2235 static void fix_read_error(struct r1conf *conf, int read_disk, 2236 sector_t sect, int sectors) 2237 { 2238 struct mddev *mddev = conf->mddev; 2239 while(sectors) { 2240 int s = sectors; 2241 int d = read_disk; 2242 int success = 0; 2243 int start; 2244 struct md_rdev *rdev; 2245 2246 if (s > (PAGE_SIZE>>9)) 2247 s = PAGE_SIZE >> 9; 2248 2249 do { 2250 sector_t first_bad; 2251 int bad_sectors; 2252 2253 rcu_read_lock(); 2254 rdev = rcu_dereference(conf->mirrors[d].rdev); 2255 if (rdev && 2256 (test_bit(In_sync, &rdev->flags) || 2257 (!test_bit(Faulty, &rdev->flags) && 2258 rdev->recovery_offset >= sect + s)) && 2259 is_badblock(rdev, sect, s, 2260 &first_bad, &bad_sectors) == 0) { 2261 atomic_inc(&rdev->nr_pending); 2262 rcu_read_unlock(); 2263 if (sync_page_io(rdev, sect, s<<9, 2264 conf->tmppage, REQ_OP_READ, 0, false)) 2265 success = 1; 2266 rdev_dec_pending(rdev, mddev); 2267 if (success) 2268 break; 2269 } else 2270 rcu_read_unlock(); 2271 d++; 2272 if (d == conf->raid_disks * 2) 2273 d = 0; 2274 } while (!success && d != read_disk); 2275 2276 if (!success) { 2277 /* Cannot read from anywhere - mark it bad */ 2278 struct md_rdev *rdev = conf->mirrors[read_disk].rdev; 2279 if (!rdev_set_badblocks(rdev, sect, s, 0)) 2280 md_error(mddev, rdev); 2281 break; 2282 } 2283 /* write it back and re-read */ 2284 start = d; 2285 while (d != read_disk) { 2286 if (d==0) 2287 d = conf->raid_disks * 2; 2288 d--; 2289 rcu_read_lock(); 2290 rdev = rcu_dereference(conf->mirrors[d].rdev); 2291 if (rdev && 2292 !test_bit(Faulty, &rdev->flags)) { 2293 atomic_inc(&rdev->nr_pending); 2294 rcu_read_unlock(); 2295 r1_sync_page_io(rdev, sect, s, 2296 conf->tmppage, WRITE); 2297 rdev_dec_pending(rdev, mddev); 2298 } else 2299 rcu_read_unlock(); 2300 } 2301 d = start; 2302 while (d != read_disk) { 2303 char b[BDEVNAME_SIZE]; 2304 if (d==0) 2305 d = conf->raid_disks * 2; 2306 d--; 2307 rcu_read_lock(); 2308 rdev = rcu_dereference(conf->mirrors[d].rdev); 2309 if (rdev && 2310 !test_bit(Faulty, &rdev->flags)) { 2311 atomic_inc(&rdev->nr_pending); 2312 rcu_read_unlock(); 2313 if (r1_sync_page_io(rdev, sect, s, 2314 conf->tmppage, READ)) { 2315 atomic_add(s, &rdev->corrected_errors); 2316 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n", 2317 mdname(mddev), s, 2318 (unsigned long long)(sect + 2319 rdev->data_offset), 2320 bdevname(rdev->bdev, b)); 2321 } 2322 rdev_dec_pending(rdev, mddev); 2323 } else 2324 rcu_read_unlock(); 2325 } 2326 sectors -= s; 2327 sect += s; 2328 } 2329 } 2330 2331 static int narrow_write_error(struct r1bio *r1_bio, int i) 2332 { 2333 struct mddev *mddev = r1_bio->mddev; 2334 struct r1conf *conf = mddev->private; 2335 struct md_rdev *rdev = conf->mirrors[i].rdev; 2336 2337 /* bio has the data to be written to device 'i' where 2338 * we just recently had a write error. 2339 * We repeatedly clone the bio and trim down to one block, 2340 * then try the write. Where the write fails we record 2341 * a bad block. 2342 * It is conceivable that the bio doesn't exactly align with 2343 * blocks. We must handle this somehow. 2344 * 2345 * We currently own a reference on the rdev. 2346 */ 2347 2348 int block_sectors; 2349 sector_t sector; 2350 int sectors; 2351 int sect_to_write = r1_bio->sectors; 2352 int ok = 1; 2353 2354 if (rdev->badblocks.shift < 0) 2355 return 0; 2356 2357 block_sectors = roundup(1 << rdev->badblocks.shift, 2358 bdev_logical_block_size(rdev->bdev) >> 9); 2359 sector = r1_bio->sector; 2360 sectors = ((sector + block_sectors) 2361 & ~(sector_t)(block_sectors - 1)) 2362 - sector; 2363 2364 while (sect_to_write) { 2365 struct bio *wbio; 2366 if (sectors > sect_to_write) 2367 sectors = sect_to_write; 2368 /* Write at 'sector' for 'sectors'*/ 2369 2370 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 2371 wbio = bio_clone_fast(r1_bio->behind_master_bio, 2372 GFP_NOIO, 2373 &mddev->bio_set); 2374 } else { 2375 wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO, 2376 &mddev->bio_set); 2377 } 2378 2379 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0); 2380 wbio->bi_iter.bi_sector = r1_bio->sector; 2381 wbio->bi_iter.bi_size = r1_bio->sectors << 9; 2382 2383 bio_trim(wbio, sector - r1_bio->sector, sectors); 2384 wbio->bi_iter.bi_sector += rdev->data_offset; 2385 bio_set_dev(wbio, rdev->bdev); 2386 2387 if (submit_bio_wait(wbio) < 0) 2388 /* failure! */ 2389 ok = rdev_set_badblocks(rdev, sector, 2390 sectors, 0) 2391 && ok; 2392 2393 bio_put(wbio); 2394 sect_to_write -= sectors; 2395 sector += sectors; 2396 sectors = block_sectors; 2397 } 2398 return ok; 2399 } 2400 2401 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2402 { 2403 int m; 2404 int s = r1_bio->sectors; 2405 for (m = 0; m < conf->raid_disks * 2 ; m++) { 2406 struct md_rdev *rdev = conf->mirrors[m].rdev; 2407 struct bio *bio = r1_bio->bios[m]; 2408 if (bio->bi_end_io == NULL) 2409 continue; 2410 if (!bio->bi_status && 2411 test_bit(R1BIO_MadeGood, &r1_bio->state)) { 2412 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0); 2413 } 2414 if (bio->bi_status && 2415 test_bit(R1BIO_WriteError, &r1_bio->state)) { 2416 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0)) 2417 md_error(conf->mddev, rdev); 2418 } 2419 } 2420 put_buf(r1_bio); 2421 md_done_sync(conf->mddev, s, 1); 2422 } 2423 2424 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2425 { 2426 int m, idx; 2427 bool fail = false; 2428 2429 for (m = 0; m < conf->raid_disks * 2 ; m++) 2430 if (r1_bio->bios[m] == IO_MADE_GOOD) { 2431 struct md_rdev *rdev = conf->mirrors[m].rdev; 2432 rdev_clear_badblocks(rdev, 2433 r1_bio->sector, 2434 r1_bio->sectors, 0); 2435 rdev_dec_pending(rdev, conf->mddev); 2436 } else if (r1_bio->bios[m] != NULL) { 2437 /* This drive got a write error. We need to 2438 * narrow down and record precise write 2439 * errors. 2440 */ 2441 fail = true; 2442 if (!narrow_write_error(r1_bio, m)) { 2443 md_error(conf->mddev, 2444 conf->mirrors[m].rdev); 2445 /* an I/O failed, we can't clear the bitmap */ 2446 set_bit(R1BIO_Degraded, &r1_bio->state); 2447 } 2448 rdev_dec_pending(conf->mirrors[m].rdev, 2449 conf->mddev); 2450 } 2451 if (fail) { 2452 spin_lock_irq(&conf->device_lock); 2453 list_add(&r1_bio->retry_list, &conf->bio_end_io_list); 2454 idx = sector_to_idx(r1_bio->sector); 2455 atomic_inc(&conf->nr_queued[idx]); 2456 spin_unlock_irq(&conf->device_lock); 2457 /* 2458 * In case freeze_array() is waiting for condition 2459 * get_unqueued_pending() == extra to be true. 2460 */ 2461 wake_up(&conf->wait_barrier); 2462 md_wakeup_thread(conf->mddev->thread); 2463 } else { 2464 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2465 close_write(r1_bio); 2466 raid_end_bio_io(r1_bio); 2467 } 2468 } 2469 2470 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio) 2471 { 2472 struct mddev *mddev = conf->mddev; 2473 struct bio *bio; 2474 struct md_rdev *rdev; 2475 2476 clear_bit(R1BIO_ReadError, &r1_bio->state); 2477 /* we got a read error. Maybe the drive is bad. Maybe just 2478 * the block and we can fix it. 2479 * We freeze all other IO, and try reading the block from 2480 * other devices. When we find one, we re-write 2481 * and check it that fixes the read error. 2482 * This is all done synchronously while the array is 2483 * frozen 2484 */ 2485 2486 bio = r1_bio->bios[r1_bio->read_disk]; 2487 bio_put(bio); 2488 r1_bio->bios[r1_bio->read_disk] = NULL; 2489 2490 rdev = conf->mirrors[r1_bio->read_disk].rdev; 2491 if (mddev->ro == 0 2492 && !test_bit(FailFast, &rdev->flags)) { 2493 freeze_array(conf, 1); 2494 fix_read_error(conf, r1_bio->read_disk, 2495 r1_bio->sector, r1_bio->sectors); 2496 unfreeze_array(conf); 2497 } else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) { 2498 md_error(mddev, rdev); 2499 } else { 2500 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED; 2501 } 2502 2503 rdev_dec_pending(rdev, conf->mddev); 2504 allow_barrier(conf, r1_bio->sector); 2505 bio = r1_bio->master_bio; 2506 2507 /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */ 2508 r1_bio->state = 0; 2509 raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio); 2510 } 2511 2512 static void raid1d(struct md_thread *thread) 2513 { 2514 struct mddev *mddev = thread->mddev; 2515 struct r1bio *r1_bio; 2516 unsigned long flags; 2517 struct r1conf *conf = mddev->private; 2518 struct list_head *head = &conf->retry_list; 2519 struct blk_plug plug; 2520 int idx; 2521 2522 md_check_recovery(mddev); 2523 2524 if (!list_empty_careful(&conf->bio_end_io_list) && 2525 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 2526 LIST_HEAD(tmp); 2527 spin_lock_irqsave(&conf->device_lock, flags); 2528 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 2529 list_splice_init(&conf->bio_end_io_list, &tmp); 2530 spin_unlock_irqrestore(&conf->device_lock, flags); 2531 while (!list_empty(&tmp)) { 2532 r1_bio = list_first_entry(&tmp, struct r1bio, 2533 retry_list); 2534 list_del(&r1_bio->retry_list); 2535 idx = sector_to_idx(r1_bio->sector); 2536 atomic_dec(&conf->nr_queued[idx]); 2537 if (mddev->degraded) 2538 set_bit(R1BIO_Degraded, &r1_bio->state); 2539 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2540 close_write(r1_bio); 2541 raid_end_bio_io(r1_bio); 2542 } 2543 } 2544 2545 blk_start_plug(&plug); 2546 for (;;) { 2547 2548 flush_pending_writes(conf); 2549 2550 spin_lock_irqsave(&conf->device_lock, flags); 2551 if (list_empty(head)) { 2552 spin_unlock_irqrestore(&conf->device_lock, flags); 2553 break; 2554 } 2555 r1_bio = list_entry(head->prev, struct r1bio, retry_list); 2556 list_del(head->prev); 2557 idx = sector_to_idx(r1_bio->sector); 2558 atomic_dec(&conf->nr_queued[idx]); 2559 spin_unlock_irqrestore(&conf->device_lock, flags); 2560 2561 mddev = r1_bio->mddev; 2562 conf = mddev->private; 2563 if (test_bit(R1BIO_IsSync, &r1_bio->state)) { 2564 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2565 test_bit(R1BIO_WriteError, &r1_bio->state)) 2566 handle_sync_write_finished(conf, r1_bio); 2567 else 2568 sync_request_write(mddev, r1_bio); 2569 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2570 test_bit(R1BIO_WriteError, &r1_bio->state)) 2571 handle_write_finished(conf, r1_bio); 2572 else if (test_bit(R1BIO_ReadError, &r1_bio->state)) 2573 handle_read_error(conf, r1_bio); 2574 else 2575 WARN_ON_ONCE(1); 2576 2577 cond_resched(); 2578 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING)) 2579 md_check_recovery(mddev); 2580 } 2581 blk_finish_plug(&plug); 2582 } 2583 2584 static int init_resync(struct r1conf *conf) 2585 { 2586 int buffs; 2587 2588 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2589 BUG_ON(mempool_initialized(&conf->r1buf_pool)); 2590 2591 return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc, 2592 r1buf_pool_free, conf->poolinfo); 2593 } 2594 2595 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf) 2596 { 2597 struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO); 2598 struct resync_pages *rps; 2599 struct bio *bio; 2600 int i; 2601 2602 for (i = conf->poolinfo->raid_disks; i--; ) { 2603 bio = r1bio->bios[i]; 2604 rps = bio->bi_private; 2605 bio_reset(bio); 2606 bio->bi_private = rps; 2607 } 2608 r1bio->master_bio = NULL; 2609 return r1bio; 2610 } 2611 2612 /* 2613 * perform a "sync" on one "block" 2614 * 2615 * We need to make sure that no normal I/O request - particularly write 2616 * requests - conflict with active sync requests. 2617 * 2618 * This is achieved by tracking pending requests and a 'barrier' concept 2619 * that can be installed to exclude normal IO requests. 2620 */ 2621 2622 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr, 2623 int *skipped) 2624 { 2625 struct r1conf *conf = mddev->private; 2626 struct r1bio *r1_bio; 2627 struct bio *bio; 2628 sector_t max_sector, nr_sectors; 2629 int disk = -1; 2630 int i; 2631 int wonly = -1; 2632 int write_targets = 0, read_targets = 0; 2633 sector_t sync_blocks; 2634 int still_degraded = 0; 2635 int good_sectors = RESYNC_SECTORS; 2636 int min_bad = 0; /* number of sectors that are bad in all devices */ 2637 int idx = sector_to_idx(sector_nr); 2638 int page_idx = 0; 2639 2640 if (!mempool_initialized(&conf->r1buf_pool)) 2641 if (init_resync(conf)) 2642 return 0; 2643 2644 max_sector = mddev->dev_sectors; 2645 if (sector_nr >= max_sector) { 2646 /* If we aborted, we need to abort the 2647 * sync on the 'current' bitmap chunk (there will 2648 * only be one in raid1 resync. 2649 * We can find the current addess in mddev->curr_resync 2650 */ 2651 if (mddev->curr_resync < max_sector) /* aborted */ 2652 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2653 &sync_blocks, 1); 2654 else /* completed sync */ 2655 conf->fullsync = 0; 2656 2657 md_bitmap_close_sync(mddev->bitmap); 2658 close_sync(conf); 2659 2660 if (mddev_is_clustered(mddev)) { 2661 conf->cluster_sync_low = 0; 2662 conf->cluster_sync_high = 0; 2663 } 2664 return 0; 2665 } 2666 2667 if (mddev->bitmap == NULL && 2668 mddev->recovery_cp == MaxSector && 2669 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 2670 conf->fullsync == 0) { 2671 *skipped = 1; 2672 return max_sector - sector_nr; 2673 } 2674 /* before building a request, check if we can skip these blocks.. 2675 * This call the bitmap_start_sync doesn't actually record anything 2676 */ 2677 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 2678 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2679 /* We can skip this block, and probably several more */ 2680 *skipped = 1; 2681 return sync_blocks; 2682 } 2683 2684 /* 2685 * If there is non-resync activity waiting for a turn, then let it 2686 * though before starting on this new sync request. 2687 */ 2688 if (atomic_read(&conf->nr_waiting[idx])) 2689 schedule_timeout_uninterruptible(1); 2690 2691 /* we are incrementing sector_nr below. To be safe, we check against 2692 * sector_nr + two times RESYNC_SECTORS 2693 */ 2694 2695 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, 2696 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high)); 2697 2698 2699 if (raise_barrier(conf, sector_nr)) 2700 return 0; 2701 2702 r1_bio = raid1_alloc_init_r1buf(conf); 2703 2704 rcu_read_lock(); 2705 /* 2706 * If we get a correctably read error during resync or recovery, 2707 * we might want to read from a different device. So we 2708 * flag all drives that could conceivably be read from for READ, 2709 * and any others (which will be non-In_sync devices) for WRITE. 2710 * If a read fails, we try reading from something else for which READ 2711 * is OK. 2712 */ 2713 2714 r1_bio->mddev = mddev; 2715 r1_bio->sector = sector_nr; 2716 r1_bio->state = 0; 2717 set_bit(R1BIO_IsSync, &r1_bio->state); 2718 /* make sure good_sectors won't go across barrier unit boundary */ 2719 good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors); 2720 2721 for (i = 0; i < conf->raid_disks * 2; i++) { 2722 struct md_rdev *rdev; 2723 bio = r1_bio->bios[i]; 2724 2725 rdev = rcu_dereference(conf->mirrors[i].rdev); 2726 if (rdev == NULL || 2727 test_bit(Faulty, &rdev->flags)) { 2728 if (i < conf->raid_disks) 2729 still_degraded = 1; 2730 } else if (!test_bit(In_sync, &rdev->flags)) { 2731 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 2732 bio->bi_end_io = end_sync_write; 2733 write_targets ++; 2734 } else { 2735 /* may need to read from here */ 2736 sector_t first_bad = MaxSector; 2737 int bad_sectors; 2738 2739 if (is_badblock(rdev, sector_nr, good_sectors, 2740 &first_bad, &bad_sectors)) { 2741 if (first_bad > sector_nr) 2742 good_sectors = first_bad - sector_nr; 2743 else { 2744 bad_sectors -= (sector_nr - first_bad); 2745 if (min_bad == 0 || 2746 min_bad > bad_sectors) 2747 min_bad = bad_sectors; 2748 } 2749 } 2750 if (sector_nr < first_bad) { 2751 if (test_bit(WriteMostly, &rdev->flags)) { 2752 if (wonly < 0) 2753 wonly = i; 2754 } else { 2755 if (disk < 0) 2756 disk = i; 2757 } 2758 bio_set_op_attrs(bio, REQ_OP_READ, 0); 2759 bio->bi_end_io = end_sync_read; 2760 read_targets++; 2761 } else if (!test_bit(WriteErrorSeen, &rdev->flags) && 2762 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 2763 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 2764 /* 2765 * The device is suitable for reading (InSync), 2766 * but has bad block(s) here. Let's try to correct them, 2767 * if we are doing resync or repair. Otherwise, leave 2768 * this device alone for this sync request. 2769 */ 2770 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 2771 bio->bi_end_io = end_sync_write; 2772 write_targets++; 2773 } 2774 } 2775 if (rdev && bio->bi_end_io) { 2776 atomic_inc(&rdev->nr_pending); 2777 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset; 2778 bio_set_dev(bio, rdev->bdev); 2779 if (test_bit(FailFast, &rdev->flags)) 2780 bio->bi_opf |= MD_FAILFAST; 2781 } 2782 } 2783 rcu_read_unlock(); 2784 if (disk < 0) 2785 disk = wonly; 2786 r1_bio->read_disk = disk; 2787 2788 if (read_targets == 0 && min_bad > 0) { 2789 /* These sectors are bad on all InSync devices, so we 2790 * need to mark them bad on all write targets 2791 */ 2792 int ok = 1; 2793 for (i = 0 ; i < conf->raid_disks * 2 ; i++) 2794 if (r1_bio->bios[i]->bi_end_io == end_sync_write) { 2795 struct md_rdev *rdev = conf->mirrors[i].rdev; 2796 ok = rdev_set_badblocks(rdev, sector_nr, 2797 min_bad, 0 2798 ) && ok; 2799 } 2800 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2801 *skipped = 1; 2802 put_buf(r1_bio); 2803 2804 if (!ok) { 2805 /* Cannot record the badblocks, so need to 2806 * abort the resync. 2807 * If there are multiple read targets, could just 2808 * fail the really bad ones ??? 2809 */ 2810 conf->recovery_disabled = mddev->recovery_disabled; 2811 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2812 return 0; 2813 } else 2814 return min_bad; 2815 2816 } 2817 if (min_bad > 0 && min_bad < good_sectors) { 2818 /* only resync enough to reach the next bad->good 2819 * transition */ 2820 good_sectors = min_bad; 2821 } 2822 2823 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0) 2824 /* extra read targets are also write targets */ 2825 write_targets += read_targets-1; 2826 2827 if (write_targets == 0 || read_targets == 0) { 2828 /* There is nowhere to write, so all non-sync 2829 * drives must be failed - so we are finished 2830 */ 2831 sector_t rv; 2832 if (min_bad > 0) 2833 max_sector = sector_nr + min_bad; 2834 rv = max_sector - sector_nr; 2835 *skipped = 1; 2836 put_buf(r1_bio); 2837 return rv; 2838 } 2839 2840 if (max_sector > mddev->resync_max) 2841 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 2842 if (max_sector > sector_nr + good_sectors) 2843 max_sector = sector_nr + good_sectors; 2844 nr_sectors = 0; 2845 sync_blocks = 0; 2846 do { 2847 struct page *page; 2848 int len = PAGE_SIZE; 2849 if (sector_nr + (len>>9) > max_sector) 2850 len = (max_sector - sector_nr) << 9; 2851 if (len == 0) 2852 break; 2853 if (sync_blocks == 0) { 2854 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, 2855 &sync_blocks, still_degraded) && 2856 !conf->fullsync && 2857 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2858 break; 2859 if ((len >> 9) > sync_blocks) 2860 len = sync_blocks<<9; 2861 } 2862 2863 for (i = 0 ; i < conf->raid_disks * 2; i++) { 2864 struct resync_pages *rp; 2865 2866 bio = r1_bio->bios[i]; 2867 rp = get_resync_pages(bio); 2868 if (bio->bi_end_io) { 2869 page = resync_fetch_page(rp, page_idx); 2870 2871 /* 2872 * won't fail because the vec table is big 2873 * enough to hold all these pages 2874 */ 2875 bio_add_page(bio, page, len, 0); 2876 } 2877 } 2878 nr_sectors += len>>9; 2879 sector_nr += len>>9; 2880 sync_blocks -= (len>>9); 2881 } while (++page_idx < RESYNC_PAGES); 2882 2883 r1_bio->sectors = nr_sectors; 2884 2885 if (mddev_is_clustered(mddev) && 2886 conf->cluster_sync_high < sector_nr + nr_sectors) { 2887 conf->cluster_sync_low = mddev->curr_resync_completed; 2888 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS; 2889 /* Send resync message */ 2890 md_cluster_ops->resync_info_update(mddev, 2891 conf->cluster_sync_low, 2892 conf->cluster_sync_high); 2893 } 2894 2895 /* For a user-requested sync, we read all readable devices and do a 2896 * compare 2897 */ 2898 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2899 atomic_set(&r1_bio->remaining, read_targets); 2900 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) { 2901 bio = r1_bio->bios[i]; 2902 if (bio->bi_end_io == end_sync_read) { 2903 read_targets--; 2904 md_sync_acct_bio(bio, nr_sectors); 2905 if (read_targets == 1) 2906 bio->bi_opf &= ~MD_FAILFAST; 2907 submit_bio_noacct(bio); 2908 } 2909 } 2910 } else { 2911 atomic_set(&r1_bio->remaining, 1); 2912 bio = r1_bio->bios[r1_bio->read_disk]; 2913 md_sync_acct_bio(bio, nr_sectors); 2914 if (read_targets == 1) 2915 bio->bi_opf &= ~MD_FAILFAST; 2916 submit_bio_noacct(bio); 2917 } 2918 return nr_sectors; 2919 } 2920 2921 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks) 2922 { 2923 if (sectors) 2924 return sectors; 2925 2926 return mddev->dev_sectors; 2927 } 2928 2929 static struct r1conf *setup_conf(struct mddev *mddev) 2930 { 2931 struct r1conf *conf; 2932 int i; 2933 struct raid1_info *disk; 2934 struct md_rdev *rdev; 2935 int err = -ENOMEM; 2936 2937 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL); 2938 if (!conf) 2939 goto abort; 2940 2941 conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR, 2942 sizeof(atomic_t), GFP_KERNEL); 2943 if (!conf->nr_pending) 2944 goto abort; 2945 2946 conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR, 2947 sizeof(atomic_t), GFP_KERNEL); 2948 if (!conf->nr_waiting) 2949 goto abort; 2950 2951 conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR, 2952 sizeof(atomic_t), GFP_KERNEL); 2953 if (!conf->nr_queued) 2954 goto abort; 2955 2956 conf->barrier = kcalloc(BARRIER_BUCKETS_NR, 2957 sizeof(atomic_t), GFP_KERNEL); 2958 if (!conf->barrier) 2959 goto abort; 2960 2961 conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info), 2962 mddev->raid_disks, 2), 2963 GFP_KERNEL); 2964 if (!conf->mirrors) 2965 goto abort; 2966 2967 conf->tmppage = alloc_page(GFP_KERNEL); 2968 if (!conf->tmppage) 2969 goto abort; 2970 2971 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL); 2972 if (!conf->poolinfo) 2973 goto abort; 2974 conf->poolinfo->raid_disks = mddev->raid_disks * 2; 2975 err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc, 2976 rbio_pool_free, conf->poolinfo); 2977 if (err) 2978 goto abort; 2979 2980 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0); 2981 if (err) 2982 goto abort; 2983 2984 conf->poolinfo->mddev = mddev; 2985 2986 err = -EINVAL; 2987 spin_lock_init(&conf->device_lock); 2988 rdev_for_each(rdev, mddev) { 2989 int disk_idx = rdev->raid_disk; 2990 if (disk_idx >= mddev->raid_disks 2991 || disk_idx < 0) 2992 continue; 2993 if (test_bit(Replacement, &rdev->flags)) 2994 disk = conf->mirrors + mddev->raid_disks + disk_idx; 2995 else 2996 disk = conf->mirrors + disk_idx; 2997 2998 if (disk->rdev) 2999 goto abort; 3000 disk->rdev = rdev; 3001 disk->head_position = 0; 3002 disk->seq_start = MaxSector; 3003 } 3004 conf->raid_disks = mddev->raid_disks; 3005 conf->mddev = mddev; 3006 INIT_LIST_HEAD(&conf->retry_list); 3007 INIT_LIST_HEAD(&conf->bio_end_io_list); 3008 3009 spin_lock_init(&conf->resync_lock); 3010 init_waitqueue_head(&conf->wait_barrier); 3011 3012 bio_list_init(&conf->pending_bio_list); 3013 conf->pending_count = 0; 3014 conf->recovery_disabled = mddev->recovery_disabled - 1; 3015 3016 err = -EIO; 3017 for (i = 0; i < conf->raid_disks * 2; i++) { 3018 3019 disk = conf->mirrors + i; 3020 3021 if (i < conf->raid_disks && 3022 disk[conf->raid_disks].rdev) { 3023 /* This slot has a replacement. */ 3024 if (!disk->rdev) { 3025 /* No original, just make the replacement 3026 * a recovering spare 3027 */ 3028 disk->rdev = 3029 disk[conf->raid_disks].rdev; 3030 disk[conf->raid_disks].rdev = NULL; 3031 } else if (!test_bit(In_sync, &disk->rdev->flags)) 3032 /* Original is not in_sync - bad */ 3033 goto abort; 3034 } 3035 3036 if (!disk->rdev || 3037 !test_bit(In_sync, &disk->rdev->flags)) { 3038 disk->head_position = 0; 3039 if (disk->rdev && 3040 (disk->rdev->saved_raid_disk < 0)) 3041 conf->fullsync = 1; 3042 } 3043 } 3044 3045 err = -ENOMEM; 3046 conf->thread = md_register_thread(raid1d, mddev, "raid1"); 3047 if (!conf->thread) 3048 goto abort; 3049 3050 return conf; 3051 3052 abort: 3053 if (conf) { 3054 mempool_exit(&conf->r1bio_pool); 3055 kfree(conf->mirrors); 3056 safe_put_page(conf->tmppage); 3057 kfree(conf->poolinfo); 3058 kfree(conf->nr_pending); 3059 kfree(conf->nr_waiting); 3060 kfree(conf->nr_queued); 3061 kfree(conf->barrier); 3062 bioset_exit(&conf->bio_split); 3063 kfree(conf); 3064 } 3065 return ERR_PTR(err); 3066 } 3067 3068 static void raid1_free(struct mddev *mddev, void *priv); 3069 static int raid1_run(struct mddev *mddev) 3070 { 3071 struct r1conf *conf; 3072 int i; 3073 struct md_rdev *rdev; 3074 int ret; 3075 bool discard_supported = false; 3076 3077 if (mddev->level != 1) { 3078 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n", 3079 mdname(mddev), mddev->level); 3080 return -EIO; 3081 } 3082 if (mddev->reshape_position != MaxSector) { 3083 pr_warn("md/raid1:%s: reshape_position set but not supported\n", 3084 mdname(mddev)); 3085 return -EIO; 3086 } 3087 if (mddev_init_writes_pending(mddev) < 0) 3088 return -ENOMEM; 3089 /* 3090 * copy the already verified devices into our private RAID1 3091 * bookkeeping area. [whatever we allocate in run(), 3092 * should be freed in raid1_free()] 3093 */ 3094 if (mddev->private == NULL) 3095 conf = setup_conf(mddev); 3096 else 3097 conf = mddev->private; 3098 3099 if (IS_ERR(conf)) 3100 return PTR_ERR(conf); 3101 3102 if (mddev->queue) { 3103 blk_queue_max_write_same_sectors(mddev->queue, 0); 3104 blk_queue_max_write_zeroes_sectors(mddev->queue, 0); 3105 } 3106 3107 rdev_for_each(rdev, mddev) { 3108 if (!mddev->gendisk) 3109 continue; 3110 disk_stack_limits(mddev->gendisk, rdev->bdev, 3111 rdev->data_offset << 9); 3112 if (blk_queue_discard(bdev_get_queue(rdev->bdev))) 3113 discard_supported = true; 3114 } 3115 3116 mddev->degraded = 0; 3117 for (i = 0; i < conf->raid_disks; i++) 3118 if (conf->mirrors[i].rdev == NULL || 3119 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) || 3120 test_bit(Faulty, &conf->mirrors[i].rdev->flags)) 3121 mddev->degraded++; 3122 /* 3123 * RAID1 needs at least one disk in active 3124 */ 3125 if (conf->raid_disks - mddev->degraded < 1) { 3126 ret = -EINVAL; 3127 goto abort; 3128 } 3129 3130 if (conf->raid_disks - mddev->degraded == 1) 3131 mddev->recovery_cp = MaxSector; 3132 3133 if (mddev->recovery_cp != MaxSector) 3134 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n", 3135 mdname(mddev)); 3136 pr_info("md/raid1:%s: active with %d out of %d mirrors\n", 3137 mdname(mddev), mddev->raid_disks - mddev->degraded, 3138 mddev->raid_disks); 3139 3140 /* 3141 * Ok, everything is just fine now 3142 */ 3143 mddev->thread = conf->thread; 3144 conf->thread = NULL; 3145 mddev->private = conf; 3146 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags); 3147 3148 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0)); 3149 3150 if (mddev->queue) { 3151 if (discard_supported) 3152 blk_queue_flag_set(QUEUE_FLAG_DISCARD, 3153 mddev->queue); 3154 else 3155 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, 3156 mddev->queue); 3157 } 3158 3159 ret = md_integrity_register(mddev); 3160 if (ret) { 3161 md_unregister_thread(&mddev->thread); 3162 goto abort; 3163 } 3164 return 0; 3165 3166 abort: 3167 raid1_free(mddev, conf); 3168 return ret; 3169 } 3170 3171 static void raid1_free(struct mddev *mddev, void *priv) 3172 { 3173 struct r1conf *conf = priv; 3174 3175 mempool_exit(&conf->r1bio_pool); 3176 kfree(conf->mirrors); 3177 safe_put_page(conf->tmppage); 3178 kfree(conf->poolinfo); 3179 kfree(conf->nr_pending); 3180 kfree(conf->nr_waiting); 3181 kfree(conf->nr_queued); 3182 kfree(conf->barrier); 3183 bioset_exit(&conf->bio_split); 3184 kfree(conf); 3185 } 3186 3187 static int raid1_resize(struct mddev *mddev, sector_t sectors) 3188 { 3189 /* no resync is happening, and there is enough space 3190 * on all devices, so we can resize. 3191 * We need to make sure resync covers any new space. 3192 * If the array is shrinking we should possibly wait until 3193 * any io in the removed space completes, but it hardly seems 3194 * worth it. 3195 */ 3196 sector_t newsize = raid1_size(mddev, sectors, 0); 3197 if (mddev->external_size && 3198 mddev->array_sectors > newsize) 3199 return -EINVAL; 3200 if (mddev->bitmap) { 3201 int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0); 3202 if (ret) 3203 return ret; 3204 } 3205 md_set_array_sectors(mddev, newsize); 3206 if (sectors > mddev->dev_sectors && 3207 mddev->recovery_cp > mddev->dev_sectors) { 3208 mddev->recovery_cp = mddev->dev_sectors; 3209 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3210 } 3211 mddev->dev_sectors = sectors; 3212 mddev->resync_max_sectors = sectors; 3213 return 0; 3214 } 3215 3216 static int raid1_reshape(struct mddev *mddev) 3217 { 3218 /* We need to: 3219 * 1/ resize the r1bio_pool 3220 * 2/ resize conf->mirrors 3221 * 3222 * We allocate a new r1bio_pool if we can. 3223 * Then raise a device barrier and wait until all IO stops. 3224 * Then resize conf->mirrors and swap in the new r1bio pool. 3225 * 3226 * At the same time, we "pack" the devices so that all the missing 3227 * devices have the higher raid_disk numbers. 3228 */ 3229 mempool_t newpool, oldpool; 3230 struct pool_info *newpoolinfo; 3231 struct raid1_info *newmirrors; 3232 struct r1conf *conf = mddev->private; 3233 int cnt, raid_disks; 3234 unsigned long flags; 3235 int d, d2; 3236 int ret; 3237 3238 memset(&newpool, 0, sizeof(newpool)); 3239 memset(&oldpool, 0, sizeof(oldpool)); 3240 3241 /* Cannot change chunk_size, layout, or level */ 3242 if (mddev->chunk_sectors != mddev->new_chunk_sectors || 3243 mddev->layout != mddev->new_layout || 3244 mddev->level != mddev->new_level) { 3245 mddev->new_chunk_sectors = mddev->chunk_sectors; 3246 mddev->new_layout = mddev->layout; 3247 mddev->new_level = mddev->level; 3248 return -EINVAL; 3249 } 3250 3251 if (!mddev_is_clustered(mddev)) 3252 md_allow_write(mddev); 3253 3254 raid_disks = mddev->raid_disks + mddev->delta_disks; 3255 3256 if (raid_disks < conf->raid_disks) { 3257 cnt=0; 3258 for (d= 0; d < conf->raid_disks; d++) 3259 if (conf->mirrors[d].rdev) 3260 cnt++; 3261 if (cnt > raid_disks) 3262 return -EBUSY; 3263 } 3264 3265 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL); 3266 if (!newpoolinfo) 3267 return -ENOMEM; 3268 newpoolinfo->mddev = mddev; 3269 newpoolinfo->raid_disks = raid_disks * 2; 3270 3271 ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc, 3272 rbio_pool_free, newpoolinfo); 3273 if (ret) { 3274 kfree(newpoolinfo); 3275 return ret; 3276 } 3277 newmirrors = kzalloc(array3_size(sizeof(struct raid1_info), 3278 raid_disks, 2), 3279 GFP_KERNEL); 3280 if (!newmirrors) { 3281 kfree(newpoolinfo); 3282 mempool_exit(&newpool); 3283 return -ENOMEM; 3284 } 3285 3286 freeze_array(conf, 0); 3287 3288 /* ok, everything is stopped */ 3289 oldpool = conf->r1bio_pool; 3290 conf->r1bio_pool = newpool; 3291 3292 for (d = d2 = 0; d < conf->raid_disks; d++) { 3293 struct md_rdev *rdev = conf->mirrors[d].rdev; 3294 if (rdev && rdev->raid_disk != d2) { 3295 sysfs_unlink_rdev(mddev, rdev); 3296 rdev->raid_disk = d2; 3297 sysfs_unlink_rdev(mddev, rdev); 3298 if (sysfs_link_rdev(mddev, rdev)) 3299 pr_warn("md/raid1:%s: cannot register rd%d\n", 3300 mdname(mddev), rdev->raid_disk); 3301 } 3302 if (rdev) 3303 newmirrors[d2++].rdev = rdev; 3304 } 3305 kfree(conf->mirrors); 3306 conf->mirrors = newmirrors; 3307 kfree(conf->poolinfo); 3308 conf->poolinfo = newpoolinfo; 3309 3310 spin_lock_irqsave(&conf->device_lock, flags); 3311 mddev->degraded += (raid_disks - conf->raid_disks); 3312 spin_unlock_irqrestore(&conf->device_lock, flags); 3313 conf->raid_disks = mddev->raid_disks = raid_disks; 3314 mddev->delta_disks = 0; 3315 3316 unfreeze_array(conf); 3317 3318 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 3319 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3320 md_wakeup_thread(mddev->thread); 3321 3322 mempool_exit(&oldpool); 3323 return 0; 3324 } 3325 3326 static void raid1_quiesce(struct mddev *mddev, int quiesce) 3327 { 3328 struct r1conf *conf = mddev->private; 3329 3330 if (quiesce) 3331 freeze_array(conf, 0); 3332 else 3333 unfreeze_array(conf); 3334 } 3335 3336 static void *raid1_takeover(struct mddev *mddev) 3337 { 3338 /* raid1 can take over: 3339 * raid5 with 2 devices, any layout or chunk size 3340 */ 3341 if (mddev->level == 5 && mddev->raid_disks == 2) { 3342 struct r1conf *conf; 3343 mddev->new_level = 1; 3344 mddev->new_layout = 0; 3345 mddev->new_chunk_sectors = 0; 3346 conf = setup_conf(mddev); 3347 if (!IS_ERR(conf)) { 3348 /* Array must appear to be quiesced */ 3349 conf->array_frozen = 1; 3350 mddev_clear_unsupported_flags(mddev, 3351 UNSUPPORTED_MDDEV_FLAGS); 3352 } 3353 return conf; 3354 } 3355 return ERR_PTR(-EINVAL); 3356 } 3357 3358 static struct md_personality raid1_personality = 3359 { 3360 .name = "raid1", 3361 .level = 1, 3362 .owner = THIS_MODULE, 3363 .make_request = raid1_make_request, 3364 .run = raid1_run, 3365 .free = raid1_free, 3366 .status = raid1_status, 3367 .error_handler = raid1_error, 3368 .hot_add_disk = raid1_add_disk, 3369 .hot_remove_disk= raid1_remove_disk, 3370 .spare_active = raid1_spare_active, 3371 .sync_request = raid1_sync_request, 3372 .resize = raid1_resize, 3373 .size = raid1_size, 3374 .check_reshape = raid1_reshape, 3375 .quiesce = raid1_quiesce, 3376 .takeover = raid1_takeover, 3377 }; 3378 3379 static int __init raid_init(void) 3380 { 3381 return register_md_personality(&raid1_personality); 3382 } 3383 3384 static void raid_exit(void) 3385 { 3386 unregister_md_personality(&raid1_personality); 3387 } 3388 3389 module_init(raid_init); 3390 module_exit(raid_exit); 3391 MODULE_LICENSE("GPL"); 3392 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD"); 3393 MODULE_ALIAS("md-personality-3"); /* RAID1 */ 3394 MODULE_ALIAS("md-raid1"); 3395 MODULE_ALIAS("md-level-1"); 3396 3397 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); 3398