xref: /openbmc/linux/drivers/md/raid1.c (revision 31eeb6b0)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid1.c : Multiple Devices driver for Linux
4  *
5  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6  *
7  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8  *
9  * RAID-1 management functions.
10  *
11  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12  *
13  * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
14  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15  *
16  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
17  * bitmapped intelligence in resync:
18  *
19  *      - bitmap marked during normal i/o
20  *      - bitmap used to skip nondirty blocks during sync
21  *
22  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
23  * - persistent bitmap code
24  */
25 
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/blkdev.h>
29 #include <linux/module.h>
30 #include <linux/seq_file.h>
31 #include <linux/ratelimit.h>
32 #include <linux/interval_tree_generic.h>
33 
34 #include <trace/events/block.h>
35 
36 #include "md.h"
37 #include "raid1.h"
38 #include "md-bitmap.h"
39 
40 #define UNSUPPORTED_MDDEV_FLAGS		\
41 	((1L << MD_HAS_JOURNAL) |	\
42 	 (1L << MD_JOURNAL_CLEAN) |	\
43 	 (1L << MD_HAS_PPL) |		\
44 	 (1L << MD_HAS_MULTIPLE_PPLS))
45 
46 static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
47 static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
48 
49 #define raid1_log(md, fmt, args...)				\
50 	do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
51 
52 #include "raid1-10.c"
53 
54 #define START(node) ((node)->start)
55 #define LAST(node) ((node)->last)
56 INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last,
57 		     START, LAST, static inline, raid1_rb);
58 
59 static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio,
60 				struct serial_info *si, int idx)
61 {
62 	unsigned long flags;
63 	int ret = 0;
64 	sector_t lo = r1_bio->sector;
65 	sector_t hi = lo + r1_bio->sectors;
66 	struct serial_in_rdev *serial = &rdev->serial[idx];
67 
68 	spin_lock_irqsave(&serial->serial_lock, flags);
69 	/* collision happened */
70 	if (raid1_rb_iter_first(&serial->serial_rb, lo, hi))
71 		ret = -EBUSY;
72 	else {
73 		si->start = lo;
74 		si->last = hi;
75 		raid1_rb_insert(si, &serial->serial_rb);
76 	}
77 	spin_unlock_irqrestore(&serial->serial_lock, flags);
78 
79 	return ret;
80 }
81 
82 static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio)
83 {
84 	struct mddev *mddev = rdev->mddev;
85 	struct serial_info *si;
86 	int idx = sector_to_idx(r1_bio->sector);
87 	struct serial_in_rdev *serial = &rdev->serial[idx];
88 
89 	if (WARN_ON(!mddev->serial_info_pool))
90 		return;
91 	si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO);
92 	wait_event(serial->serial_io_wait,
93 		   check_and_add_serial(rdev, r1_bio, si, idx) == 0);
94 }
95 
96 static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi)
97 {
98 	struct serial_info *si;
99 	unsigned long flags;
100 	int found = 0;
101 	struct mddev *mddev = rdev->mddev;
102 	int idx = sector_to_idx(lo);
103 	struct serial_in_rdev *serial = &rdev->serial[idx];
104 
105 	spin_lock_irqsave(&serial->serial_lock, flags);
106 	for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi);
107 	     si; si = raid1_rb_iter_next(si, lo, hi)) {
108 		if (si->start == lo && si->last == hi) {
109 			raid1_rb_remove(si, &serial->serial_rb);
110 			mempool_free(si, mddev->serial_info_pool);
111 			found = 1;
112 			break;
113 		}
114 	}
115 	if (!found)
116 		WARN(1, "The write IO is not recorded for serialization\n");
117 	spin_unlock_irqrestore(&serial->serial_lock, flags);
118 	wake_up(&serial->serial_io_wait);
119 }
120 
121 /*
122  * for resync bio, r1bio pointer can be retrieved from the per-bio
123  * 'struct resync_pages'.
124  */
125 static inline struct r1bio *get_resync_r1bio(struct bio *bio)
126 {
127 	return get_resync_pages(bio)->raid_bio;
128 }
129 
130 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
131 {
132 	struct pool_info *pi = data;
133 	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
134 
135 	/* allocate a r1bio with room for raid_disks entries in the bios array */
136 	return kzalloc(size, gfp_flags);
137 }
138 
139 #define RESYNC_DEPTH 32
140 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
141 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
142 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
143 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
144 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
145 
146 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
147 {
148 	struct pool_info *pi = data;
149 	struct r1bio *r1_bio;
150 	struct bio *bio;
151 	int need_pages;
152 	int j;
153 	struct resync_pages *rps;
154 
155 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
156 	if (!r1_bio)
157 		return NULL;
158 
159 	rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages),
160 			    gfp_flags);
161 	if (!rps)
162 		goto out_free_r1bio;
163 
164 	/*
165 	 * Allocate bios : 1 for reading, n-1 for writing
166 	 */
167 	for (j = pi->raid_disks ; j-- ; ) {
168 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
169 		if (!bio)
170 			goto out_free_bio;
171 		r1_bio->bios[j] = bio;
172 	}
173 	/*
174 	 * Allocate RESYNC_PAGES data pages and attach them to
175 	 * the first bio.
176 	 * If this is a user-requested check/repair, allocate
177 	 * RESYNC_PAGES for each bio.
178 	 */
179 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
180 		need_pages = pi->raid_disks;
181 	else
182 		need_pages = 1;
183 	for (j = 0; j < pi->raid_disks; j++) {
184 		struct resync_pages *rp = &rps[j];
185 
186 		bio = r1_bio->bios[j];
187 
188 		if (j < need_pages) {
189 			if (resync_alloc_pages(rp, gfp_flags))
190 				goto out_free_pages;
191 		} else {
192 			memcpy(rp, &rps[0], sizeof(*rp));
193 			resync_get_all_pages(rp);
194 		}
195 
196 		rp->raid_bio = r1_bio;
197 		bio->bi_private = rp;
198 	}
199 
200 	r1_bio->master_bio = NULL;
201 
202 	return r1_bio;
203 
204 out_free_pages:
205 	while (--j >= 0)
206 		resync_free_pages(&rps[j]);
207 
208 out_free_bio:
209 	while (++j < pi->raid_disks)
210 		bio_put(r1_bio->bios[j]);
211 	kfree(rps);
212 
213 out_free_r1bio:
214 	rbio_pool_free(r1_bio, data);
215 	return NULL;
216 }
217 
218 static void r1buf_pool_free(void *__r1_bio, void *data)
219 {
220 	struct pool_info *pi = data;
221 	int i;
222 	struct r1bio *r1bio = __r1_bio;
223 	struct resync_pages *rp = NULL;
224 
225 	for (i = pi->raid_disks; i--; ) {
226 		rp = get_resync_pages(r1bio->bios[i]);
227 		resync_free_pages(rp);
228 		bio_put(r1bio->bios[i]);
229 	}
230 
231 	/* resync pages array stored in the 1st bio's .bi_private */
232 	kfree(rp);
233 
234 	rbio_pool_free(r1bio, data);
235 }
236 
237 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
238 {
239 	int i;
240 
241 	for (i = 0; i < conf->raid_disks * 2; i++) {
242 		struct bio **bio = r1_bio->bios + i;
243 		if (!BIO_SPECIAL(*bio))
244 			bio_put(*bio);
245 		*bio = NULL;
246 	}
247 }
248 
249 static void free_r1bio(struct r1bio *r1_bio)
250 {
251 	struct r1conf *conf = r1_bio->mddev->private;
252 
253 	put_all_bios(conf, r1_bio);
254 	mempool_free(r1_bio, &conf->r1bio_pool);
255 }
256 
257 static void put_buf(struct r1bio *r1_bio)
258 {
259 	struct r1conf *conf = r1_bio->mddev->private;
260 	sector_t sect = r1_bio->sector;
261 	int i;
262 
263 	for (i = 0; i < conf->raid_disks * 2; i++) {
264 		struct bio *bio = r1_bio->bios[i];
265 		if (bio->bi_end_io)
266 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
267 	}
268 
269 	mempool_free(r1_bio, &conf->r1buf_pool);
270 
271 	lower_barrier(conf, sect);
272 }
273 
274 static void reschedule_retry(struct r1bio *r1_bio)
275 {
276 	unsigned long flags;
277 	struct mddev *mddev = r1_bio->mddev;
278 	struct r1conf *conf = mddev->private;
279 	int idx;
280 
281 	idx = sector_to_idx(r1_bio->sector);
282 	spin_lock_irqsave(&conf->device_lock, flags);
283 	list_add(&r1_bio->retry_list, &conf->retry_list);
284 	atomic_inc(&conf->nr_queued[idx]);
285 	spin_unlock_irqrestore(&conf->device_lock, flags);
286 
287 	wake_up(&conf->wait_barrier);
288 	md_wakeup_thread(mddev->thread);
289 }
290 
291 /*
292  * raid_end_bio_io() is called when we have finished servicing a mirrored
293  * operation and are ready to return a success/failure code to the buffer
294  * cache layer.
295  */
296 static void call_bio_endio(struct r1bio *r1_bio)
297 {
298 	struct bio *bio = r1_bio->master_bio;
299 
300 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
301 		bio->bi_status = BLK_STS_IOERR;
302 
303 	if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
304 		bio_end_io_acct(bio, r1_bio->start_time);
305 	bio_endio(bio);
306 }
307 
308 static void raid_end_bio_io(struct r1bio *r1_bio)
309 {
310 	struct bio *bio = r1_bio->master_bio;
311 	struct r1conf *conf = r1_bio->mddev->private;
312 
313 	/* if nobody has done the final endio yet, do it now */
314 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
315 		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
316 			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
317 			 (unsigned long long) bio->bi_iter.bi_sector,
318 			 (unsigned long long) bio_end_sector(bio) - 1);
319 
320 		call_bio_endio(r1_bio);
321 	}
322 	/*
323 	 * Wake up any possible resync thread that waits for the device
324 	 * to go idle.  All I/Os, even write-behind writes, are done.
325 	 */
326 	allow_barrier(conf, r1_bio->sector);
327 
328 	free_r1bio(r1_bio);
329 }
330 
331 /*
332  * Update disk head position estimator based on IRQ completion info.
333  */
334 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
335 {
336 	struct r1conf *conf = r1_bio->mddev->private;
337 
338 	conf->mirrors[disk].head_position =
339 		r1_bio->sector + (r1_bio->sectors);
340 }
341 
342 /*
343  * Find the disk number which triggered given bio
344  */
345 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
346 {
347 	int mirror;
348 	struct r1conf *conf = r1_bio->mddev->private;
349 	int raid_disks = conf->raid_disks;
350 
351 	for (mirror = 0; mirror < raid_disks * 2; mirror++)
352 		if (r1_bio->bios[mirror] == bio)
353 			break;
354 
355 	BUG_ON(mirror == raid_disks * 2);
356 	update_head_pos(mirror, r1_bio);
357 
358 	return mirror;
359 }
360 
361 static void raid1_end_read_request(struct bio *bio)
362 {
363 	int uptodate = !bio->bi_status;
364 	struct r1bio *r1_bio = bio->bi_private;
365 	struct r1conf *conf = r1_bio->mddev->private;
366 	struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
367 
368 	/*
369 	 * this branch is our 'one mirror IO has finished' event handler:
370 	 */
371 	update_head_pos(r1_bio->read_disk, r1_bio);
372 
373 	if (uptodate)
374 		set_bit(R1BIO_Uptodate, &r1_bio->state);
375 	else if (test_bit(FailFast, &rdev->flags) &&
376 		 test_bit(R1BIO_FailFast, &r1_bio->state))
377 		/* This was a fail-fast read so we definitely
378 		 * want to retry */
379 		;
380 	else {
381 		/* If all other devices have failed, we want to return
382 		 * the error upwards rather than fail the last device.
383 		 * Here we redefine "uptodate" to mean "Don't want to retry"
384 		 */
385 		unsigned long flags;
386 		spin_lock_irqsave(&conf->device_lock, flags);
387 		if (r1_bio->mddev->degraded == conf->raid_disks ||
388 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
389 		     test_bit(In_sync, &rdev->flags)))
390 			uptodate = 1;
391 		spin_unlock_irqrestore(&conf->device_lock, flags);
392 	}
393 
394 	if (uptodate) {
395 		raid_end_bio_io(r1_bio);
396 		rdev_dec_pending(rdev, conf->mddev);
397 	} else {
398 		/*
399 		 * oops, read error:
400 		 */
401 		char b[BDEVNAME_SIZE];
402 		pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
403 				   mdname(conf->mddev),
404 				   bdevname(rdev->bdev, b),
405 				   (unsigned long long)r1_bio->sector);
406 		set_bit(R1BIO_ReadError, &r1_bio->state);
407 		reschedule_retry(r1_bio);
408 		/* don't drop the reference on read_disk yet */
409 	}
410 }
411 
412 static void close_write(struct r1bio *r1_bio)
413 {
414 	/* it really is the end of this request */
415 	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
416 		bio_free_pages(r1_bio->behind_master_bio);
417 		bio_put(r1_bio->behind_master_bio);
418 		r1_bio->behind_master_bio = NULL;
419 	}
420 	/* clear the bitmap if all writes complete successfully */
421 	md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
422 			   r1_bio->sectors,
423 			   !test_bit(R1BIO_Degraded, &r1_bio->state),
424 			   test_bit(R1BIO_BehindIO, &r1_bio->state));
425 	md_write_end(r1_bio->mddev);
426 }
427 
428 static void r1_bio_write_done(struct r1bio *r1_bio)
429 {
430 	if (!atomic_dec_and_test(&r1_bio->remaining))
431 		return;
432 
433 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
434 		reschedule_retry(r1_bio);
435 	else {
436 		close_write(r1_bio);
437 		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
438 			reschedule_retry(r1_bio);
439 		else
440 			raid_end_bio_io(r1_bio);
441 	}
442 }
443 
444 static void raid1_end_write_request(struct bio *bio)
445 {
446 	struct r1bio *r1_bio = bio->bi_private;
447 	int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
448 	struct r1conf *conf = r1_bio->mddev->private;
449 	struct bio *to_put = NULL;
450 	int mirror = find_bio_disk(r1_bio, bio);
451 	struct md_rdev *rdev = conf->mirrors[mirror].rdev;
452 	bool discard_error;
453 	sector_t lo = r1_bio->sector;
454 	sector_t hi = r1_bio->sector + r1_bio->sectors;
455 
456 	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
457 
458 	/*
459 	 * 'one mirror IO has finished' event handler:
460 	 */
461 	if (bio->bi_status && !discard_error) {
462 		set_bit(WriteErrorSeen,	&rdev->flags);
463 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
464 			set_bit(MD_RECOVERY_NEEDED, &
465 				conf->mddev->recovery);
466 
467 		if (test_bit(FailFast, &rdev->flags) &&
468 		    (bio->bi_opf & MD_FAILFAST) &&
469 		    /* We never try FailFast to WriteMostly devices */
470 		    !test_bit(WriteMostly, &rdev->flags)) {
471 			md_error(r1_bio->mddev, rdev);
472 		}
473 
474 		/*
475 		 * When the device is faulty, it is not necessary to
476 		 * handle write error.
477 		 */
478 		if (!test_bit(Faulty, &rdev->flags))
479 			set_bit(R1BIO_WriteError, &r1_bio->state);
480 		else {
481 			/* Fail the request */
482 			set_bit(R1BIO_Degraded, &r1_bio->state);
483 			/* Finished with this branch */
484 			r1_bio->bios[mirror] = NULL;
485 			to_put = bio;
486 		}
487 	} else {
488 		/*
489 		 * Set R1BIO_Uptodate in our master bio, so that we
490 		 * will return a good error code for to the higher
491 		 * levels even if IO on some other mirrored buffer
492 		 * fails.
493 		 *
494 		 * The 'master' represents the composite IO operation
495 		 * to user-side. So if something waits for IO, then it
496 		 * will wait for the 'master' bio.
497 		 */
498 		sector_t first_bad;
499 		int bad_sectors;
500 
501 		r1_bio->bios[mirror] = NULL;
502 		to_put = bio;
503 		/*
504 		 * Do not set R1BIO_Uptodate if the current device is
505 		 * rebuilding or Faulty. This is because we cannot use
506 		 * such device for properly reading the data back (we could
507 		 * potentially use it, if the current write would have felt
508 		 * before rdev->recovery_offset, but for simplicity we don't
509 		 * check this here.
510 		 */
511 		if (test_bit(In_sync, &rdev->flags) &&
512 		    !test_bit(Faulty, &rdev->flags))
513 			set_bit(R1BIO_Uptodate, &r1_bio->state);
514 
515 		/* Maybe we can clear some bad blocks. */
516 		if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
517 				&first_bad, &bad_sectors) && !discard_error) {
518 			r1_bio->bios[mirror] = IO_MADE_GOOD;
519 			set_bit(R1BIO_MadeGood, &r1_bio->state);
520 		}
521 	}
522 
523 	if (behind) {
524 		if (test_bit(CollisionCheck, &rdev->flags))
525 			remove_serial(rdev, lo, hi);
526 		if (test_bit(WriteMostly, &rdev->flags))
527 			atomic_dec(&r1_bio->behind_remaining);
528 
529 		/*
530 		 * In behind mode, we ACK the master bio once the I/O
531 		 * has safely reached all non-writemostly
532 		 * disks. Setting the Returned bit ensures that this
533 		 * gets done only once -- we don't ever want to return
534 		 * -EIO here, instead we'll wait
535 		 */
536 		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
537 		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
538 			/* Maybe we can return now */
539 			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
540 				struct bio *mbio = r1_bio->master_bio;
541 				pr_debug("raid1: behind end write sectors"
542 					 " %llu-%llu\n",
543 					 (unsigned long long) mbio->bi_iter.bi_sector,
544 					 (unsigned long long) bio_end_sector(mbio) - 1);
545 				call_bio_endio(r1_bio);
546 			}
547 		}
548 	} else if (rdev->mddev->serialize_policy)
549 		remove_serial(rdev, lo, hi);
550 	if (r1_bio->bios[mirror] == NULL)
551 		rdev_dec_pending(rdev, conf->mddev);
552 
553 	/*
554 	 * Let's see if all mirrored write operations have finished
555 	 * already.
556 	 */
557 	r1_bio_write_done(r1_bio);
558 
559 	if (to_put)
560 		bio_put(to_put);
561 }
562 
563 static sector_t align_to_barrier_unit_end(sector_t start_sector,
564 					  sector_t sectors)
565 {
566 	sector_t len;
567 
568 	WARN_ON(sectors == 0);
569 	/*
570 	 * len is the number of sectors from start_sector to end of the
571 	 * barrier unit which start_sector belongs to.
572 	 */
573 	len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
574 	      start_sector;
575 
576 	if (len > sectors)
577 		len = sectors;
578 
579 	return len;
580 }
581 
582 /*
583  * This routine returns the disk from which the requested read should
584  * be done. There is a per-array 'next expected sequential IO' sector
585  * number - if this matches on the next IO then we use the last disk.
586  * There is also a per-disk 'last know head position' sector that is
587  * maintained from IRQ contexts, both the normal and the resync IO
588  * completion handlers update this position correctly. If there is no
589  * perfect sequential match then we pick the disk whose head is closest.
590  *
591  * If there are 2 mirrors in the same 2 devices, performance degrades
592  * because position is mirror, not device based.
593  *
594  * The rdev for the device selected will have nr_pending incremented.
595  */
596 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
597 {
598 	const sector_t this_sector = r1_bio->sector;
599 	int sectors;
600 	int best_good_sectors;
601 	int best_disk, best_dist_disk, best_pending_disk;
602 	int has_nonrot_disk;
603 	int disk;
604 	sector_t best_dist;
605 	unsigned int min_pending;
606 	struct md_rdev *rdev;
607 	int choose_first;
608 	int choose_next_idle;
609 
610 	rcu_read_lock();
611 	/*
612 	 * Check if we can balance. We can balance on the whole
613 	 * device if no resync is going on, or below the resync window.
614 	 * We take the first readable disk when above the resync window.
615 	 */
616  retry:
617 	sectors = r1_bio->sectors;
618 	best_disk = -1;
619 	best_dist_disk = -1;
620 	best_dist = MaxSector;
621 	best_pending_disk = -1;
622 	min_pending = UINT_MAX;
623 	best_good_sectors = 0;
624 	has_nonrot_disk = 0;
625 	choose_next_idle = 0;
626 	clear_bit(R1BIO_FailFast, &r1_bio->state);
627 
628 	if ((conf->mddev->recovery_cp < this_sector + sectors) ||
629 	    (mddev_is_clustered(conf->mddev) &&
630 	    md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
631 		    this_sector + sectors)))
632 		choose_first = 1;
633 	else
634 		choose_first = 0;
635 
636 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
637 		sector_t dist;
638 		sector_t first_bad;
639 		int bad_sectors;
640 		unsigned int pending;
641 		bool nonrot;
642 
643 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
644 		if (r1_bio->bios[disk] == IO_BLOCKED
645 		    || rdev == NULL
646 		    || test_bit(Faulty, &rdev->flags))
647 			continue;
648 		if (!test_bit(In_sync, &rdev->flags) &&
649 		    rdev->recovery_offset < this_sector + sectors)
650 			continue;
651 		if (test_bit(WriteMostly, &rdev->flags)) {
652 			/* Don't balance among write-mostly, just
653 			 * use the first as a last resort */
654 			if (best_dist_disk < 0) {
655 				if (is_badblock(rdev, this_sector, sectors,
656 						&first_bad, &bad_sectors)) {
657 					if (first_bad <= this_sector)
658 						/* Cannot use this */
659 						continue;
660 					best_good_sectors = first_bad - this_sector;
661 				} else
662 					best_good_sectors = sectors;
663 				best_dist_disk = disk;
664 				best_pending_disk = disk;
665 			}
666 			continue;
667 		}
668 		/* This is a reasonable device to use.  It might
669 		 * even be best.
670 		 */
671 		if (is_badblock(rdev, this_sector, sectors,
672 				&first_bad, &bad_sectors)) {
673 			if (best_dist < MaxSector)
674 				/* already have a better device */
675 				continue;
676 			if (first_bad <= this_sector) {
677 				/* cannot read here. If this is the 'primary'
678 				 * device, then we must not read beyond
679 				 * bad_sectors from another device..
680 				 */
681 				bad_sectors -= (this_sector - first_bad);
682 				if (choose_first && sectors > bad_sectors)
683 					sectors = bad_sectors;
684 				if (best_good_sectors > sectors)
685 					best_good_sectors = sectors;
686 
687 			} else {
688 				sector_t good_sectors = first_bad - this_sector;
689 				if (good_sectors > best_good_sectors) {
690 					best_good_sectors = good_sectors;
691 					best_disk = disk;
692 				}
693 				if (choose_first)
694 					break;
695 			}
696 			continue;
697 		} else {
698 			if ((sectors > best_good_sectors) && (best_disk >= 0))
699 				best_disk = -1;
700 			best_good_sectors = sectors;
701 		}
702 
703 		if (best_disk >= 0)
704 			/* At least two disks to choose from so failfast is OK */
705 			set_bit(R1BIO_FailFast, &r1_bio->state);
706 
707 		nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
708 		has_nonrot_disk |= nonrot;
709 		pending = atomic_read(&rdev->nr_pending);
710 		dist = abs(this_sector - conf->mirrors[disk].head_position);
711 		if (choose_first) {
712 			best_disk = disk;
713 			break;
714 		}
715 		/* Don't change to another disk for sequential reads */
716 		if (conf->mirrors[disk].next_seq_sect == this_sector
717 		    || dist == 0) {
718 			int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
719 			struct raid1_info *mirror = &conf->mirrors[disk];
720 
721 			best_disk = disk;
722 			/*
723 			 * If buffered sequential IO size exceeds optimal
724 			 * iosize, check if there is idle disk. If yes, choose
725 			 * the idle disk. read_balance could already choose an
726 			 * idle disk before noticing it's a sequential IO in
727 			 * this disk. This doesn't matter because this disk
728 			 * will idle, next time it will be utilized after the
729 			 * first disk has IO size exceeds optimal iosize. In
730 			 * this way, iosize of the first disk will be optimal
731 			 * iosize at least. iosize of the second disk might be
732 			 * small, but not a big deal since when the second disk
733 			 * starts IO, the first disk is likely still busy.
734 			 */
735 			if (nonrot && opt_iosize > 0 &&
736 			    mirror->seq_start != MaxSector &&
737 			    mirror->next_seq_sect > opt_iosize &&
738 			    mirror->next_seq_sect - opt_iosize >=
739 			    mirror->seq_start) {
740 				choose_next_idle = 1;
741 				continue;
742 			}
743 			break;
744 		}
745 
746 		if (choose_next_idle)
747 			continue;
748 
749 		if (min_pending > pending) {
750 			min_pending = pending;
751 			best_pending_disk = disk;
752 		}
753 
754 		if (dist < best_dist) {
755 			best_dist = dist;
756 			best_dist_disk = disk;
757 		}
758 	}
759 
760 	/*
761 	 * If all disks are rotational, choose the closest disk. If any disk is
762 	 * non-rotational, choose the disk with less pending request even the
763 	 * disk is rotational, which might/might not be optimal for raids with
764 	 * mixed ratation/non-rotational disks depending on workload.
765 	 */
766 	if (best_disk == -1) {
767 		if (has_nonrot_disk || min_pending == 0)
768 			best_disk = best_pending_disk;
769 		else
770 			best_disk = best_dist_disk;
771 	}
772 
773 	if (best_disk >= 0) {
774 		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
775 		if (!rdev)
776 			goto retry;
777 		atomic_inc(&rdev->nr_pending);
778 		sectors = best_good_sectors;
779 
780 		if (conf->mirrors[best_disk].next_seq_sect != this_sector)
781 			conf->mirrors[best_disk].seq_start = this_sector;
782 
783 		conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
784 	}
785 	rcu_read_unlock();
786 	*max_sectors = sectors;
787 
788 	return best_disk;
789 }
790 
791 static void flush_bio_list(struct r1conf *conf, struct bio *bio)
792 {
793 	/* flush any pending bitmap writes to disk before proceeding w/ I/O */
794 	md_bitmap_unplug(conf->mddev->bitmap);
795 	wake_up(&conf->wait_barrier);
796 
797 	while (bio) { /* submit pending writes */
798 		struct bio *next = bio->bi_next;
799 		struct md_rdev *rdev = (void *)bio->bi_bdev;
800 		bio->bi_next = NULL;
801 		bio_set_dev(bio, rdev->bdev);
802 		if (test_bit(Faulty, &rdev->flags)) {
803 			bio_io_error(bio);
804 		} else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
805 				    !blk_queue_discard(bio->bi_bdev->bd_disk->queue)))
806 			/* Just ignore it */
807 			bio_endio(bio);
808 		else
809 			submit_bio_noacct(bio);
810 		bio = next;
811 		cond_resched();
812 	}
813 }
814 
815 static void flush_pending_writes(struct r1conf *conf)
816 {
817 	/* Any writes that have been queued but are awaiting
818 	 * bitmap updates get flushed here.
819 	 */
820 	spin_lock_irq(&conf->device_lock);
821 
822 	if (conf->pending_bio_list.head) {
823 		struct blk_plug plug;
824 		struct bio *bio;
825 
826 		bio = bio_list_get(&conf->pending_bio_list);
827 		conf->pending_count = 0;
828 		spin_unlock_irq(&conf->device_lock);
829 
830 		/*
831 		 * As this is called in a wait_event() loop (see freeze_array),
832 		 * current->state might be TASK_UNINTERRUPTIBLE which will
833 		 * cause a warning when we prepare to wait again.  As it is
834 		 * rare that this path is taken, it is perfectly safe to force
835 		 * us to go around the wait_event() loop again, so the warning
836 		 * is a false-positive.  Silence the warning by resetting
837 		 * thread state
838 		 */
839 		__set_current_state(TASK_RUNNING);
840 		blk_start_plug(&plug);
841 		flush_bio_list(conf, bio);
842 		blk_finish_plug(&plug);
843 	} else
844 		spin_unlock_irq(&conf->device_lock);
845 }
846 
847 /* Barriers....
848  * Sometimes we need to suspend IO while we do something else,
849  * either some resync/recovery, or reconfigure the array.
850  * To do this we raise a 'barrier'.
851  * The 'barrier' is a counter that can be raised multiple times
852  * to count how many activities are happening which preclude
853  * normal IO.
854  * We can only raise the barrier if there is no pending IO.
855  * i.e. if nr_pending == 0.
856  * We choose only to raise the barrier if no-one is waiting for the
857  * barrier to go down.  This means that as soon as an IO request
858  * is ready, no other operations which require a barrier will start
859  * until the IO request has had a chance.
860  *
861  * So: regular IO calls 'wait_barrier'.  When that returns there
862  *    is no backgroup IO happening,  It must arrange to call
863  *    allow_barrier when it has finished its IO.
864  * backgroup IO calls must call raise_barrier.  Once that returns
865  *    there is no normal IO happeing.  It must arrange to call
866  *    lower_barrier when the particular background IO completes.
867  *
868  * If resync/recovery is interrupted, returns -EINTR;
869  * Otherwise, returns 0.
870  */
871 static int raise_barrier(struct r1conf *conf, sector_t sector_nr)
872 {
873 	int idx = sector_to_idx(sector_nr);
874 
875 	spin_lock_irq(&conf->resync_lock);
876 
877 	/* Wait until no block IO is waiting */
878 	wait_event_lock_irq(conf->wait_barrier,
879 			    !atomic_read(&conf->nr_waiting[idx]),
880 			    conf->resync_lock);
881 
882 	/* block any new IO from starting */
883 	atomic_inc(&conf->barrier[idx]);
884 	/*
885 	 * In raise_barrier() we firstly increase conf->barrier[idx] then
886 	 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
887 	 * increase conf->nr_pending[idx] then check conf->barrier[idx].
888 	 * A memory barrier here to make sure conf->nr_pending[idx] won't
889 	 * be fetched before conf->barrier[idx] is increased. Otherwise
890 	 * there will be a race between raise_barrier() and _wait_barrier().
891 	 */
892 	smp_mb__after_atomic();
893 
894 	/* For these conditions we must wait:
895 	 * A: while the array is in frozen state
896 	 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
897 	 *    existing in corresponding I/O barrier bucket.
898 	 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
899 	 *    max resync count which allowed on current I/O barrier bucket.
900 	 */
901 	wait_event_lock_irq(conf->wait_barrier,
902 			    (!conf->array_frozen &&
903 			     !atomic_read(&conf->nr_pending[idx]) &&
904 			     atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
905 				test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
906 			    conf->resync_lock);
907 
908 	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
909 		atomic_dec(&conf->barrier[idx]);
910 		spin_unlock_irq(&conf->resync_lock);
911 		wake_up(&conf->wait_barrier);
912 		return -EINTR;
913 	}
914 
915 	atomic_inc(&conf->nr_sync_pending);
916 	spin_unlock_irq(&conf->resync_lock);
917 
918 	return 0;
919 }
920 
921 static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
922 {
923 	int idx = sector_to_idx(sector_nr);
924 
925 	BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
926 
927 	atomic_dec(&conf->barrier[idx]);
928 	atomic_dec(&conf->nr_sync_pending);
929 	wake_up(&conf->wait_barrier);
930 }
931 
932 static bool _wait_barrier(struct r1conf *conf, int idx, bool nowait)
933 {
934 	bool ret = true;
935 
936 	/*
937 	 * We need to increase conf->nr_pending[idx] very early here,
938 	 * then raise_barrier() can be blocked when it waits for
939 	 * conf->nr_pending[idx] to be 0. Then we can avoid holding
940 	 * conf->resync_lock when there is no barrier raised in same
941 	 * barrier unit bucket. Also if the array is frozen, I/O
942 	 * should be blocked until array is unfrozen.
943 	 */
944 	atomic_inc(&conf->nr_pending[idx]);
945 	/*
946 	 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
947 	 * check conf->barrier[idx]. In raise_barrier() we firstly increase
948 	 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
949 	 * barrier is necessary here to make sure conf->barrier[idx] won't be
950 	 * fetched before conf->nr_pending[idx] is increased. Otherwise there
951 	 * will be a race between _wait_barrier() and raise_barrier().
952 	 */
953 	smp_mb__after_atomic();
954 
955 	/*
956 	 * Don't worry about checking two atomic_t variables at same time
957 	 * here. If during we check conf->barrier[idx], the array is
958 	 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
959 	 * 0, it is safe to return and make the I/O continue. Because the
960 	 * array is frozen, all I/O returned here will eventually complete
961 	 * or be queued, no race will happen. See code comment in
962 	 * frozen_array().
963 	 */
964 	if (!READ_ONCE(conf->array_frozen) &&
965 	    !atomic_read(&conf->barrier[idx]))
966 		return ret;
967 
968 	/*
969 	 * After holding conf->resync_lock, conf->nr_pending[idx]
970 	 * should be decreased before waiting for barrier to drop.
971 	 * Otherwise, we may encounter a race condition because
972 	 * raise_barrer() might be waiting for conf->nr_pending[idx]
973 	 * to be 0 at same time.
974 	 */
975 	spin_lock_irq(&conf->resync_lock);
976 	atomic_inc(&conf->nr_waiting[idx]);
977 	atomic_dec(&conf->nr_pending[idx]);
978 	/*
979 	 * In case freeze_array() is waiting for
980 	 * get_unqueued_pending() == extra
981 	 */
982 	wake_up(&conf->wait_barrier);
983 	/* Wait for the barrier in same barrier unit bucket to drop. */
984 
985 	/* Return false when nowait flag is set */
986 	if (nowait) {
987 		ret = false;
988 	} else {
989 		wait_event_lock_irq(conf->wait_barrier,
990 				!conf->array_frozen &&
991 				!atomic_read(&conf->barrier[idx]),
992 				conf->resync_lock);
993 		atomic_inc(&conf->nr_pending[idx]);
994 	}
995 
996 	atomic_dec(&conf->nr_waiting[idx]);
997 	spin_unlock_irq(&conf->resync_lock);
998 	return ret;
999 }
1000 
1001 static bool wait_read_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
1002 {
1003 	int idx = sector_to_idx(sector_nr);
1004 	bool ret = true;
1005 
1006 	/*
1007 	 * Very similar to _wait_barrier(). The difference is, for read
1008 	 * I/O we don't need wait for sync I/O, but if the whole array
1009 	 * is frozen, the read I/O still has to wait until the array is
1010 	 * unfrozen. Since there is no ordering requirement with
1011 	 * conf->barrier[idx] here, memory barrier is unnecessary as well.
1012 	 */
1013 	atomic_inc(&conf->nr_pending[idx]);
1014 
1015 	if (!READ_ONCE(conf->array_frozen))
1016 		return ret;
1017 
1018 	spin_lock_irq(&conf->resync_lock);
1019 	atomic_inc(&conf->nr_waiting[idx]);
1020 	atomic_dec(&conf->nr_pending[idx]);
1021 	/*
1022 	 * In case freeze_array() is waiting for
1023 	 * get_unqueued_pending() == extra
1024 	 */
1025 	wake_up(&conf->wait_barrier);
1026 	/* Wait for array to be unfrozen */
1027 
1028 	/* Return false when nowait flag is set */
1029 	if (nowait) {
1030 		/* Return false when nowait flag is set */
1031 		ret = false;
1032 	} else {
1033 		wait_event_lock_irq(conf->wait_barrier,
1034 				!conf->array_frozen,
1035 				conf->resync_lock);
1036 		atomic_inc(&conf->nr_pending[idx]);
1037 	}
1038 
1039 	atomic_dec(&conf->nr_waiting[idx]);
1040 	spin_unlock_irq(&conf->resync_lock);
1041 	return ret;
1042 }
1043 
1044 static bool wait_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
1045 {
1046 	int idx = sector_to_idx(sector_nr);
1047 
1048 	return _wait_barrier(conf, idx, nowait);
1049 }
1050 
1051 static void _allow_barrier(struct r1conf *conf, int idx)
1052 {
1053 	atomic_dec(&conf->nr_pending[idx]);
1054 	wake_up(&conf->wait_barrier);
1055 }
1056 
1057 static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1058 {
1059 	int idx = sector_to_idx(sector_nr);
1060 
1061 	_allow_barrier(conf, idx);
1062 }
1063 
1064 /* conf->resync_lock should be held */
1065 static int get_unqueued_pending(struct r1conf *conf)
1066 {
1067 	int idx, ret;
1068 
1069 	ret = atomic_read(&conf->nr_sync_pending);
1070 	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1071 		ret += atomic_read(&conf->nr_pending[idx]) -
1072 			atomic_read(&conf->nr_queued[idx]);
1073 
1074 	return ret;
1075 }
1076 
1077 static void freeze_array(struct r1conf *conf, int extra)
1078 {
1079 	/* Stop sync I/O and normal I/O and wait for everything to
1080 	 * go quiet.
1081 	 * This is called in two situations:
1082 	 * 1) management command handlers (reshape, remove disk, quiesce).
1083 	 * 2) one normal I/O request failed.
1084 
1085 	 * After array_frozen is set to 1, new sync IO will be blocked at
1086 	 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1087 	 * or wait_read_barrier(). The flying I/Os will either complete or be
1088 	 * queued. When everything goes quite, there are only queued I/Os left.
1089 
1090 	 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1091 	 * barrier bucket index which this I/O request hits. When all sync and
1092 	 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1093 	 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1094 	 * in handle_read_error(), we may call freeze_array() before trying to
1095 	 * fix the read error. In this case, the error read I/O is not queued,
1096 	 * so get_unqueued_pending() == 1.
1097 	 *
1098 	 * Therefore before this function returns, we need to wait until
1099 	 * get_unqueued_pendings(conf) gets equal to extra. For
1100 	 * normal I/O context, extra is 1, in rested situations extra is 0.
1101 	 */
1102 	spin_lock_irq(&conf->resync_lock);
1103 	conf->array_frozen = 1;
1104 	raid1_log(conf->mddev, "wait freeze");
1105 	wait_event_lock_irq_cmd(
1106 		conf->wait_barrier,
1107 		get_unqueued_pending(conf) == extra,
1108 		conf->resync_lock,
1109 		flush_pending_writes(conf));
1110 	spin_unlock_irq(&conf->resync_lock);
1111 }
1112 static void unfreeze_array(struct r1conf *conf)
1113 {
1114 	/* reverse the effect of the freeze */
1115 	spin_lock_irq(&conf->resync_lock);
1116 	conf->array_frozen = 0;
1117 	spin_unlock_irq(&conf->resync_lock);
1118 	wake_up(&conf->wait_barrier);
1119 }
1120 
1121 static void alloc_behind_master_bio(struct r1bio *r1_bio,
1122 					   struct bio *bio)
1123 {
1124 	int size = bio->bi_iter.bi_size;
1125 	unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1126 	int i = 0;
1127 	struct bio *behind_bio = NULL;
1128 
1129 	behind_bio = bio_alloc_bioset(GFP_NOIO, vcnt, &r1_bio->mddev->bio_set);
1130 	if (!behind_bio)
1131 		return;
1132 
1133 	/* discard op, we don't support writezero/writesame yet */
1134 	if (!bio_has_data(bio)) {
1135 		behind_bio->bi_iter.bi_size = size;
1136 		goto skip_copy;
1137 	}
1138 
1139 	behind_bio->bi_write_hint = bio->bi_write_hint;
1140 
1141 	while (i < vcnt && size) {
1142 		struct page *page;
1143 		int len = min_t(int, PAGE_SIZE, size);
1144 
1145 		page = alloc_page(GFP_NOIO);
1146 		if (unlikely(!page))
1147 			goto free_pages;
1148 
1149 		bio_add_page(behind_bio, page, len, 0);
1150 
1151 		size -= len;
1152 		i++;
1153 	}
1154 
1155 	bio_copy_data(behind_bio, bio);
1156 skip_copy:
1157 	r1_bio->behind_master_bio = behind_bio;
1158 	set_bit(R1BIO_BehindIO, &r1_bio->state);
1159 
1160 	return;
1161 
1162 free_pages:
1163 	pr_debug("%dB behind alloc failed, doing sync I/O\n",
1164 		 bio->bi_iter.bi_size);
1165 	bio_free_pages(behind_bio);
1166 	bio_put(behind_bio);
1167 }
1168 
1169 struct raid1_plug_cb {
1170 	struct blk_plug_cb	cb;
1171 	struct bio_list		pending;
1172 	int			pending_cnt;
1173 };
1174 
1175 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1176 {
1177 	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1178 						  cb);
1179 	struct mddev *mddev = plug->cb.data;
1180 	struct r1conf *conf = mddev->private;
1181 	struct bio *bio;
1182 
1183 	if (from_schedule || current->bio_list) {
1184 		spin_lock_irq(&conf->device_lock);
1185 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1186 		conf->pending_count += plug->pending_cnt;
1187 		spin_unlock_irq(&conf->device_lock);
1188 		wake_up(&conf->wait_barrier);
1189 		md_wakeup_thread(mddev->thread);
1190 		kfree(plug);
1191 		return;
1192 	}
1193 
1194 	/* we aren't scheduling, so we can do the write-out directly. */
1195 	bio = bio_list_get(&plug->pending);
1196 	flush_bio_list(conf, bio);
1197 	kfree(plug);
1198 }
1199 
1200 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1201 {
1202 	r1_bio->master_bio = bio;
1203 	r1_bio->sectors = bio_sectors(bio);
1204 	r1_bio->state = 0;
1205 	r1_bio->mddev = mddev;
1206 	r1_bio->sector = bio->bi_iter.bi_sector;
1207 }
1208 
1209 static inline struct r1bio *
1210 alloc_r1bio(struct mddev *mddev, struct bio *bio)
1211 {
1212 	struct r1conf *conf = mddev->private;
1213 	struct r1bio *r1_bio;
1214 
1215 	r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO);
1216 	/* Ensure no bio records IO_BLOCKED */
1217 	memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1218 	init_r1bio(r1_bio, mddev, bio);
1219 	return r1_bio;
1220 }
1221 
1222 static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1223 			       int max_read_sectors, struct r1bio *r1_bio)
1224 {
1225 	struct r1conf *conf = mddev->private;
1226 	struct raid1_info *mirror;
1227 	struct bio *read_bio;
1228 	struct bitmap *bitmap = mddev->bitmap;
1229 	const int op = bio_op(bio);
1230 	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1231 	int max_sectors;
1232 	int rdisk;
1233 	bool r1bio_existed = !!r1_bio;
1234 	char b[BDEVNAME_SIZE];
1235 
1236 	/*
1237 	 * If r1_bio is set, we are blocking the raid1d thread
1238 	 * so there is a tiny risk of deadlock.  So ask for
1239 	 * emergency memory if needed.
1240 	 */
1241 	gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1242 
1243 	if (r1bio_existed) {
1244 		/* Need to get the block device name carefully */
1245 		struct md_rdev *rdev;
1246 		rcu_read_lock();
1247 		rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1248 		if (rdev)
1249 			bdevname(rdev->bdev, b);
1250 		else
1251 			strcpy(b, "???");
1252 		rcu_read_unlock();
1253 	}
1254 
1255 	/*
1256 	 * Still need barrier for READ in case that whole
1257 	 * array is frozen.
1258 	 */
1259 	if (!wait_read_barrier(conf, bio->bi_iter.bi_sector,
1260 				bio->bi_opf & REQ_NOWAIT)) {
1261 		bio_wouldblock_error(bio);
1262 		return;
1263 	}
1264 
1265 	if (!r1_bio)
1266 		r1_bio = alloc_r1bio(mddev, bio);
1267 	else
1268 		init_r1bio(r1_bio, mddev, bio);
1269 	r1_bio->sectors = max_read_sectors;
1270 
1271 	/*
1272 	 * make_request() can abort the operation when read-ahead is being
1273 	 * used and no empty request is available.
1274 	 */
1275 	rdisk = read_balance(conf, r1_bio, &max_sectors);
1276 
1277 	if (rdisk < 0) {
1278 		/* couldn't find anywhere to read from */
1279 		if (r1bio_existed) {
1280 			pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1281 					    mdname(mddev),
1282 					    b,
1283 					    (unsigned long long)r1_bio->sector);
1284 		}
1285 		raid_end_bio_io(r1_bio);
1286 		return;
1287 	}
1288 	mirror = conf->mirrors + rdisk;
1289 
1290 	if (r1bio_existed)
1291 		pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
1292 				    mdname(mddev),
1293 				    (unsigned long long)r1_bio->sector,
1294 				    bdevname(mirror->rdev->bdev, b));
1295 
1296 	if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1297 	    bitmap) {
1298 		/*
1299 		 * Reading from a write-mostly device must take care not to
1300 		 * over-take any writes that are 'behind'
1301 		 */
1302 		raid1_log(mddev, "wait behind writes");
1303 		wait_event(bitmap->behind_wait,
1304 			   atomic_read(&bitmap->behind_writes) == 0);
1305 	}
1306 
1307 	if (max_sectors < bio_sectors(bio)) {
1308 		struct bio *split = bio_split(bio, max_sectors,
1309 					      gfp, &conf->bio_split);
1310 		bio_chain(split, bio);
1311 		submit_bio_noacct(bio);
1312 		bio = split;
1313 		r1_bio->master_bio = bio;
1314 		r1_bio->sectors = max_sectors;
1315 	}
1316 
1317 	r1_bio->read_disk = rdisk;
1318 
1319 	if (!r1bio_existed && blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
1320 		r1_bio->start_time = bio_start_io_acct(bio);
1321 
1322 	read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
1323 
1324 	r1_bio->bios[rdisk] = read_bio;
1325 
1326 	read_bio->bi_iter.bi_sector = r1_bio->sector +
1327 		mirror->rdev->data_offset;
1328 	bio_set_dev(read_bio, mirror->rdev->bdev);
1329 	read_bio->bi_end_io = raid1_end_read_request;
1330 	bio_set_op_attrs(read_bio, op, do_sync);
1331 	if (test_bit(FailFast, &mirror->rdev->flags) &&
1332 	    test_bit(R1BIO_FailFast, &r1_bio->state))
1333 	        read_bio->bi_opf |= MD_FAILFAST;
1334 	read_bio->bi_private = r1_bio;
1335 
1336 	if (mddev->gendisk)
1337 	        trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk),
1338 				      r1_bio->sector);
1339 
1340 	submit_bio_noacct(read_bio);
1341 }
1342 
1343 static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1344 				int max_write_sectors)
1345 {
1346 	struct r1conf *conf = mddev->private;
1347 	struct r1bio *r1_bio;
1348 	int i, disks;
1349 	struct bitmap *bitmap = mddev->bitmap;
1350 	unsigned long flags;
1351 	struct md_rdev *blocked_rdev;
1352 	struct blk_plug_cb *cb;
1353 	struct raid1_plug_cb *plug = NULL;
1354 	int first_clone;
1355 	int max_sectors;
1356 	bool write_behind = false;
1357 
1358 	if (mddev_is_clustered(mddev) &&
1359 	     md_cluster_ops->area_resyncing(mddev, WRITE,
1360 		     bio->bi_iter.bi_sector, bio_end_sector(bio))) {
1361 
1362 		DEFINE_WAIT(w);
1363 		if (bio->bi_opf & REQ_NOWAIT) {
1364 			bio_wouldblock_error(bio);
1365 			return;
1366 		}
1367 		for (;;) {
1368 			prepare_to_wait(&conf->wait_barrier,
1369 					&w, TASK_IDLE);
1370 			if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1371 							bio->bi_iter.bi_sector,
1372 							bio_end_sector(bio)))
1373 				break;
1374 			schedule();
1375 		}
1376 		finish_wait(&conf->wait_barrier, &w);
1377 	}
1378 
1379 	/*
1380 	 * Register the new request and wait if the reconstruction
1381 	 * thread has put up a bar for new requests.
1382 	 * Continue immediately if no resync is active currently.
1383 	 */
1384 	if (!wait_barrier(conf, bio->bi_iter.bi_sector,
1385 				bio->bi_opf & REQ_NOWAIT)) {
1386 		bio_wouldblock_error(bio);
1387 		return;
1388 	}
1389 
1390 	r1_bio = alloc_r1bio(mddev, bio);
1391 	r1_bio->sectors = max_write_sectors;
1392 
1393 	/* first select target devices under rcu_lock and
1394 	 * inc refcount on their rdev.  Record them by setting
1395 	 * bios[x] to bio
1396 	 * If there are known/acknowledged bad blocks on any device on
1397 	 * which we have seen a write error, we want to avoid writing those
1398 	 * blocks.
1399 	 * This potentially requires several writes to write around
1400 	 * the bad blocks.  Each set of writes gets it's own r1bio
1401 	 * with a set of bios attached.
1402 	 */
1403 
1404 	disks = conf->raid_disks * 2;
1405  retry_write:
1406 	blocked_rdev = NULL;
1407 	rcu_read_lock();
1408 	max_sectors = r1_bio->sectors;
1409 	for (i = 0;  i < disks; i++) {
1410 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1411 
1412 		/*
1413 		 * The write-behind io is only attempted on drives marked as
1414 		 * write-mostly, which means we could allocate write behind
1415 		 * bio later.
1416 		 */
1417 		if (rdev && test_bit(WriteMostly, &rdev->flags))
1418 			write_behind = true;
1419 
1420 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1421 			atomic_inc(&rdev->nr_pending);
1422 			blocked_rdev = rdev;
1423 			break;
1424 		}
1425 		r1_bio->bios[i] = NULL;
1426 		if (!rdev || test_bit(Faulty, &rdev->flags)) {
1427 			if (i < conf->raid_disks)
1428 				set_bit(R1BIO_Degraded, &r1_bio->state);
1429 			continue;
1430 		}
1431 
1432 		atomic_inc(&rdev->nr_pending);
1433 		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1434 			sector_t first_bad;
1435 			int bad_sectors;
1436 			int is_bad;
1437 
1438 			is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1439 					     &first_bad, &bad_sectors);
1440 			if (is_bad < 0) {
1441 				/* mustn't write here until the bad block is
1442 				 * acknowledged*/
1443 				set_bit(BlockedBadBlocks, &rdev->flags);
1444 				blocked_rdev = rdev;
1445 				break;
1446 			}
1447 			if (is_bad && first_bad <= r1_bio->sector) {
1448 				/* Cannot write here at all */
1449 				bad_sectors -= (r1_bio->sector - first_bad);
1450 				if (bad_sectors < max_sectors)
1451 					/* mustn't write more than bad_sectors
1452 					 * to other devices yet
1453 					 */
1454 					max_sectors = bad_sectors;
1455 				rdev_dec_pending(rdev, mddev);
1456 				/* We don't set R1BIO_Degraded as that
1457 				 * only applies if the disk is
1458 				 * missing, so it might be re-added,
1459 				 * and we want to know to recover this
1460 				 * chunk.
1461 				 * In this case the device is here,
1462 				 * and the fact that this chunk is not
1463 				 * in-sync is recorded in the bad
1464 				 * block log
1465 				 */
1466 				continue;
1467 			}
1468 			if (is_bad) {
1469 				int good_sectors = first_bad - r1_bio->sector;
1470 				if (good_sectors < max_sectors)
1471 					max_sectors = good_sectors;
1472 			}
1473 		}
1474 		r1_bio->bios[i] = bio;
1475 	}
1476 	rcu_read_unlock();
1477 
1478 	if (unlikely(blocked_rdev)) {
1479 		/* Wait for this device to become unblocked */
1480 		int j;
1481 
1482 		for (j = 0; j < i; j++)
1483 			if (r1_bio->bios[j])
1484 				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1485 		r1_bio->state = 0;
1486 		allow_barrier(conf, bio->bi_iter.bi_sector);
1487 
1488 		if (bio->bi_opf & REQ_NOWAIT) {
1489 			bio_wouldblock_error(bio);
1490 			return;
1491 		}
1492 		raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1493 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1494 		wait_barrier(conf, bio->bi_iter.bi_sector, false);
1495 		goto retry_write;
1496 	}
1497 
1498 	/*
1499 	 * When using a bitmap, we may call alloc_behind_master_bio below.
1500 	 * alloc_behind_master_bio allocates a copy of the data payload a page
1501 	 * at a time and thus needs a new bio that can fit the whole payload
1502 	 * this bio in page sized chunks.
1503 	 */
1504 	if (write_behind && bitmap)
1505 		max_sectors = min_t(int, max_sectors,
1506 				    BIO_MAX_VECS * (PAGE_SIZE >> 9));
1507 	if (max_sectors < bio_sectors(bio)) {
1508 		struct bio *split = bio_split(bio, max_sectors,
1509 					      GFP_NOIO, &conf->bio_split);
1510 		bio_chain(split, bio);
1511 		submit_bio_noacct(bio);
1512 		bio = split;
1513 		r1_bio->master_bio = bio;
1514 		r1_bio->sectors = max_sectors;
1515 	}
1516 
1517 	if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
1518 		r1_bio->start_time = bio_start_io_acct(bio);
1519 	atomic_set(&r1_bio->remaining, 1);
1520 	atomic_set(&r1_bio->behind_remaining, 0);
1521 
1522 	first_clone = 1;
1523 
1524 	for (i = 0; i < disks; i++) {
1525 		struct bio *mbio = NULL;
1526 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1527 		if (!r1_bio->bios[i])
1528 			continue;
1529 
1530 		if (first_clone) {
1531 			/* do behind I/O ?
1532 			 * Not if there are too many, or cannot
1533 			 * allocate memory, or a reader on WriteMostly
1534 			 * is waiting for behind writes to flush */
1535 			if (bitmap &&
1536 			    test_bit(WriteMostly, &rdev->flags) &&
1537 			    (atomic_read(&bitmap->behind_writes)
1538 			     < mddev->bitmap_info.max_write_behind) &&
1539 			    !waitqueue_active(&bitmap->behind_wait)) {
1540 				alloc_behind_master_bio(r1_bio, bio);
1541 			}
1542 
1543 			md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors,
1544 					     test_bit(R1BIO_BehindIO, &r1_bio->state));
1545 			first_clone = 0;
1546 		}
1547 
1548 		if (r1_bio->behind_master_bio)
1549 			mbio = bio_clone_fast(r1_bio->behind_master_bio,
1550 					      GFP_NOIO, &mddev->bio_set);
1551 		else
1552 			mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1553 
1554 		if (r1_bio->behind_master_bio) {
1555 			if (test_bit(CollisionCheck, &rdev->flags))
1556 				wait_for_serialization(rdev, r1_bio);
1557 			if (test_bit(WriteMostly, &rdev->flags))
1558 				atomic_inc(&r1_bio->behind_remaining);
1559 		} else if (mddev->serialize_policy)
1560 			wait_for_serialization(rdev, r1_bio);
1561 
1562 		r1_bio->bios[i] = mbio;
1563 
1564 		mbio->bi_iter.bi_sector	= (r1_bio->sector + rdev->data_offset);
1565 		bio_set_dev(mbio, rdev->bdev);
1566 		mbio->bi_end_io	= raid1_end_write_request;
1567 		mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1568 		if (test_bit(FailFast, &rdev->flags) &&
1569 		    !test_bit(WriteMostly, &rdev->flags) &&
1570 		    conf->raid_disks - mddev->degraded > 1)
1571 			mbio->bi_opf |= MD_FAILFAST;
1572 		mbio->bi_private = r1_bio;
1573 
1574 		atomic_inc(&r1_bio->remaining);
1575 
1576 		if (mddev->gendisk)
1577 			trace_block_bio_remap(mbio, disk_devt(mddev->gendisk),
1578 					      r1_bio->sector);
1579 		/* flush_pending_writes() needs access to the rdev so...*/
1580 		mbio->bi_bdev = (void *)rdev;
1581 
1582 		cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1583 		if (cb)
1584 			plug = container_of(cb, struct raid1_plug_cb, cb);
1585 		else
1586 			plug = NULL;
1587 		if (plug) {
1588 			bio_list_add(&plug->pending, mbio);
1589 			plug->pending_cnt++;
1590 		} else {
1591 			spin_lock_irqsave(&conf->device_lock, flags);
1592 			bio_list_add(&conf->pending_bio_list, mbio);
1593 			conf->pending_count++;
1594 			spin_unlock_irqrestore(&conf->device_lock, flags);
1595 			md_wakeup_thread(mddev->thread);
1596 		}
1597 	}
1598 
1599 	r1_bio_write_done(r1_bio);
1600 
1601 	/* In case raid1d snuck in to freeze_array */
1602 	wake_up(&conf->wait_barrier);
1603 }
1604 
1605 static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1606 {
1607 	sector_t sectors;
1608 
1609 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1610 	    && md_flush_request(mddev, bio))
1611 		return true;
1612 
1613 	/*
1614 	 * There is a limit to the maximum size, but
1615 	 * the read/write handler might find a lower limit
1616 	 * due to bad blocks.  To avoid multiple splits,
1617 	 * we pass the maximum number of sectors down
1618 	 * and let the lower level perform the split.
1619 	 */
1620 	sectors = align_to_barrier_unit_end(
1621 		bio->bi_iter.bi_sector, bio_sectors(bio));
1622 
1623 	if (bio_data_dir(bio) == READ)
1624 		raid1_read_request(mddev, bio, sectors, NULL);
1625 	else {
1626 		if (!md_write_start(mddev,bio))
1627 			return false;
1628 		raid1_write_request(mddev, bio, sectors);
1629 	}
1630 	return true;
1631 }
1632 
1633 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1634 {
1635 	struct r1conf *conf = mddev->private;
1636 	int i;
1637 
1638 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1639 		   conf->raid_disks - mddev->degraded);
1640 	rcu_read_lock();
1641 	for (i = 0; i < conf->raid_disks; i++) {
1642 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1643 		seq_printf(seq, "%s",
1644 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1645 	}
1646 	rcu_read_unlock();
1647 	seq_printf(seq, "]");
1648 }
1649 
1650 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1651 {
1652 	char b[BDEVNAME_SIZE];
1653 	struct r1conf *conf = mddev->private;
1654 	unsigned long flags;
1655 
1656 	/*
1657 	 * If it is not operational, then we have already marked it as dead
1658 	 * else if it is the last working disks with "fail_last_dev == false",
1659 	 * ignore the error, let the next level up know.
1660 	 * else mark the drive as failed
1661 	 */
1662 	spin_lock_irqsave(&conf->device_lock, flags);
1663 	if (test_bit(In_sync, &rdev->flags) && !mddev->fail_last_dev
1664 	    && (conf->raid_disks - mddev->degraded) == 1) {
1665 		/*
1666 		 * Don't fail the drive, act as though we were just a
1667 		 * normal single drive.
1668 		 * However don't try a recovery from this drive as
1669 		 * it is very likely to fail.
1670 		 */
1671 		conf->recovery_disabled = mddev->recovery_disabled;
1672 		spin_unlock_irqrestore(&conf->device_lock, flags);
1673 		return;
1674 	}
1675 	set_bit(Blocked, &rdev->flags);
1676 	if (test_and_clear_bit(In_sync, &rdev->flags))
1677 		mddev->degraded++;
1678 	set_bit(Faulty, &rdev->flags);
1679 	spin_unlock_irqrestore(&conf->device_lock, flags);
1680 	/*
1681 	 * if recovery is running, make sure it aborts.
1682 	 */
1683 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1684 	set_mask_bits(&mddev->sb_flags, 0,
1685 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1686 	pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1687 		"md/raid1:%s: Operation continuing on %d devices.\n",
1688 		mdname(mddev), bdevname(rdev->bdev, b),
1689 		mdname(mddev), conf->raid_disks - mddev->degraded);
1690 }
1691 
1692 static void print_conf(struct r1conf *conf)
1693 {
1694 	int i;
1695 
1696 	pr_debug("RAID1 conf printout:\n");
1697 	if (!conf) {
1698 		pr_debug("(!conf)\n");
1699 		return;
1700 	}
1701 	pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1702 		 conf->raid_disks);
1703 
1704 	rcu_read_lock();
1705 	for (i = 0; i < conf->raid_disks; i++) {
1706 		char b[BDEVNAME_SIZE];
1707 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1708 		if (rdev)
1709 			pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1710 				 i, !test_bit(In_sync, &rdev->flags),
1711 				 !test_bit(Faulty, &rdev->flags),
1712 				 bdevname(rdev->bdev,b));
1713 	}
1714 	rcu_read_unlock();
1715 }
1716 
1717 static void close_sync(struct r1conf *conf)
1718 {
1719 	int idx;
1720 
1721 	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1722 		_wait_barrier(conf, idx, false);
1723 		_allow_barrier(conf, idx);
1724 	}
1725 
1726 	mempool_exit(&conf->r1buf_pool);
1727 }
1728 
1729 static int raid1_spare_active(struct mddev *mddev)
1730 {
1731 	int i;
1732 	struct r1conf *conf = mddev->private;
1733 	int count = 0;
1734 	unsigned long flags;
1735 
1736 	/*
1737 	 * Find all failed disks within the RAID1 configuration
1738 	 * and mark them readable.
1739 	 * Called under mddev lock, so rcu protection not needed.
1740 	 * device_lock used to avoid races with raid1_end_read_request
1741 	 * which expects 'In_sync' flags and ->degraded to be consistent.
1742 	 */
1743 	spin_lock_irqsave(&conf->device_lock, flags);
1744 	for (i = 0; i < conf->raid_disks; i++) {
1745 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1746 		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1747 		if (repl
1748 		    && !test_bit(Candidate, &repl->flags)
1749 		    && repl->recovery_offset == MaxSector
1750 		    && !test_bit(Faulty, &repl->flags)
1751 		    && !test_and_set_bit(In_sync, &repl->flags)) {
1752 			/* replacement has just become active */
1753 			if (!rdev ||
1754 			    !test_and_clear_bit(In_sync, &rdev->flags))
1755 				count++;
1756 			if (rdev) {
1757 				/* Replaced device not technically
1758 				 * faulty, but we need to be sure
1759 				 * it gets removed and never re-added
1760 				 */
1761 				set_bit(Faulty, &rdev->flags);
1762 				sysfs_notify_dirent_safe(
1763 					rdev->sysfs_state);
1764 			}
1765 		}
1766 		if (rdev
1767 		    && rdev->recovery_offset == MaxSector
1768 		    && !test_bit(Faulty, &rdev->flags)
1769 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1770 			count++;
1771 			sysfs_notify_dirent_safe(rdev->sysfs_state);
1772 		}
1773 	}
1774 	mddev->degraded -= count;
1775 	spin_unlock_irqrestore(&conf->device_lock, flags);
1776 
1777 	print_conf(conf);
1778 	return count;
1779 }
1780 
1781 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1782 {
1783 	struct r1conf *conf = mddev->private;
1784 	int err = -EEXIST;
1785 	int mirror = 0;
1786 	struct raid1_info *p;
1787 	int first = 0;
1788 	int last = conf->raid_disks - 1;
1789 
1790 	if (mddev->recovery_disabled == conf->recovery_disabled)
1791 		return -EBUSY;
1792 
1793 	if (md_integrity_add_rdev(rdev, mddev))
1794 		return -ENXIO;
1795 
1796 	if (rdev->raid_disk >= 0)
1797 		first = last = rdev->raid_disk;
1798 
1799 	/*
1800 	 * find the disk ... but prefer rdev->saved_raid_disk
1801 	 * if possible.
1802 	 */
1803 	if (rdev->saved_raid_disk >= 0 &&
1804 	    rdev->saved_raid_disk >= first &&
1805 	    rdev->saved_raid_disk < conf->raid_disks &&
1806 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1807 		first = last = rdev->saved_raid_disk;
1808 
1809 	for (mirror = first; mirror <= last; mirror++) {
1810 		p = conf->mirrors + mirror;
1811 		if (!p->rdev) {
1812 			if (mddev->gendisk)
1813 				disk_stack_limits(mddev->gendisk, rdev->bdev,
1814 						  rdev->data_offset << 9);
1815 
1816 			p->head_position = 0;
1817 			rdev->raid_disk = mirror;
1818 			err = 0;
1819 			/* As all devices are equivalent, we don't need a full recovery
1820 			 * if this was recently any drive of the array
1821 			 */
1822 			if (rdev->saved_raid_disk < 0)
1823 				conf->fullsync = 1;
1824 			rcu_assign_pointer(p->rdev, rdev);
1825 			break;
1826 		}
1827 		if (test_bit(WantReplacement, &p->rdev->flags) &&
1828 		    p[conf->raid_disks].rdev == NULL) {
1829 			/* Add this device as a replacement */
1830 			clear_bit(In_sync, &rdev->flags);
1831 			set_bit(Replacement, &rdev->flags);
1832 			rdev->raid_disk = mirror;
1833 			err = 0;
1834 			conf->fullsync = 1;
1835 			rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1836 			break;
1837 		}
1838 	}
1839 	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1840 		blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
1841 	print_conf(conf);
1842 	return err;
1843 }
1844 
1845 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1846 {
1847 	struct r1conf *conf = mddev->private;
1848 	int err = 0;
1849 	int number = rdev->raid_disk;
1850 	struct raid1_info *p = conf->mirrors + number;
1851 
1852 	if (rdev != p->rdev)
1853 		p = conf->mirrors + conf->raid_disks + number;
1854 
1855 	print_conf(conf);
1856 	if (rdev == p->rdev) {
1857 		if (test_bit(In_sync, &rdev->flags) ||
1858 		    atomic_read(&rdev->nr_pending)) {
1859 			err = -EBUSY;
1860 			goto abort;
1861 		}
1862 		/* Only remove non-faulty devices if recovery
1863 		 * is not possible.
1864 		 */
1865 		if (!test_bit(Faulty, &rdev->flags) &&
1866 		    mddev->recovery_disabled != conf->recovery_disabled &&
1867 		    mddev->degraded < conf->raid_disks) {
1868 			err = -EBUSY;
1869 			goto abort;
1870 		}
1871 		p->rdev = NULL;
1872 		if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1873 			synchronize_rcu();
1874 			if (atomic_read(&rdev->nr_pending)) {
1875 				/* lost the race, try later */
1876 				err = -EBUSY;
1877 				p->rdev = rdev;
1878 				goto abort;
1879 			}
1880 		}
1881 		if (conf->mirrors[conf->raid_disks + number].rdev) {
1882 			/* We just removed a device that is being replaced.
1883 			 * Move down the replacement.  We drain all IO before
1884 			 * doing this to avoid confusion.
1885 			 */
1886 			struct md_rdev *repl =
1887 				conf->mirrors[conf->raid_disks + number].rdev;
1888 			freeze_array(conf, 0);
1889 			if (atomic_read(&repl->nr_pending)) {
1890 				/* It means that some queued IO of retry_list
1891 				 * hold repl. Thus, we cannot set replacement
1892 				 * as NULL, avoiding rdev NULL pointer
1893 				 * dereference in sync_request_write and
1894 				 * handle_write_finished.
1895 				 */
1896 				err = -EBUSY;
1897 				unfreeze_array(conf);
1898 				goto abort;
1899 			}
1900 			clear_bit(Replacement, &repl->flags);
1901 			p->rdev = repl;
1902 			conf->mirrors[conf->raid_disks + number].rdev = NULL;
1903 			unfreeze_array(conf);
1904 		}
1905 
1906 		clear_bit(WantReplacement, &rdev->flags);
1907 		err = md_integrity_register(mddev);
1908 	}
1909 abort:
1910 
1911 	print_conf(conf);
1912 	return err;
1913 }
1914 
1915 static void end_sync_read(struct bio *bio)
1916 {
1917 	struct r1bio *r1_bio = get_resync_r1bio(bio);
1918 
1919 	update_head_pos(r1_bio->read_disk, r1_bio);
1920 
1921 	/*
1922 	 * we have read a block, now it needs to be re-written,
1923 	 * or re-read if the read failed.
1924 	 * We don't do much here, just schedule handling by raid1d
1925 	 */
1926 	if (!bio->bi_status)
1927 		set_bit(R1BIO_Uptodate, &r1_bio->state);
1928 
1929 	if (atomic_dec_and_test(&r1_bio->remaining))
1930 		reschedule_retry(r1_bio);
1931 }
1932 
1933 static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
1934 {
1935 	sector_t sync_blocks = 0;
1936 	sector_t s = r1_bio->sector;
1937 	long sectors_to_go = r1_bio->sectors;
1938 
1939 	/* make sure these bits don't get cleared. */
1940 	do {
1941 		md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1);
1942 		s += sync_blocks;
1943 		sectors_to_go -= sync_blocks;
1944 	} while (sectors_to_go > 0);
1945 }
1946 
1947 static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate)
1948 {
1949 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1950 		struct mddev *mddev = r1_bio->mddev;
1951 		int s = r1_bio->sectors;
1952 
1953 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1954 		    test_bit(R1BIO_WriteError, &r1_bio->state))
1955 			reschedule_retry(r1_bio);
1956 		else {
1957 			put_buf(r1_bio);
1958 			md_done_sync(mddev, s, uptodate);
1959 		}
1960 	}
1961 }
1962 
1963 static void end_sync_write(struct bio *bio)
1964 {
1965 	int uptodate = !bio->bi_status;
1966 	struct r1bio *r1_bio = get_resync_r1bio(bio);
1967 	struct mddev *mddev = r1_bio->mddev;
1968 	struct r1conf *conf = mddev->private;
1969 	sector_t first_bad;
1970 	int bad_sectors;
1971 	struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1972 
1973 	if (!uptodate) {
1974 		abort_sync_write(mddev, r1_bio);
1975 		set_bit(WriteErrorSeen, &rdev->flags);
1976 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
1977 			set_bit(MD_RECOVERY_NEEDED, &
1978 				mddev->recovery);
1979 		set_bit(R1BIO_WriteError, &r1_bio->state);
1980 	} else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1981 			       &first_bad, &bad_sectors) &&
1982 		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1983 				r1_bio->sector,
1984 				r1_bio->sectors,
1985 				&first_bad, &bad_sectors)
1986 		)
1987 		set_bit(R1BIO_MadeGood, &r1_bio->state);
1988 
1989 	put_sync_write_buf(r1_bio, uptodate);
1990 }
1991 
1992 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1993 			    int sectors, struct page *page, int rw)
1994 {
1995 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1996 		/* success */
1997 		return 1;
1998 	if (rw == WRITE) {
1999 		set_bit(WriteErrorSeen, &rdev->flags);
2000 		if (!test_and_set_bit(WantReplacement,
2001 				      &rdev->flags))
2002 			set_bit(MD_RECOVERY_NEEDED, &
2003 				rdev->mddev->recovery);
2004 	}
2005 	/* need to record an error - either for the block or the device */
2006 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2007 		md_error(rdev->mddev, rdev);
2008 	return 0;
2009 }
2010 
2011 static int fix_sync_read_error(struct r1bio *r1_bio)
2012 {
2013 	/* Try some synchronous reads of other devices to get
2014 	 * good data, much like with normal read errors.  Only
2015 	 * read into the pages we already have so we don't
2016 	 * need to re-issue the read request.
2017 	 * We don't need to freeze the array, because being in an
2018 	 * active sync request, there is no normal IO, and
2019 	 * no overlapping syncs.
2020 	 * We don't need to check is_badblock() again as we
2021 	 * made sure that anything with a bad block in range
2022 	 * will have bi_end_io clear.
2023 	 */
2024 	struct mddev *mddev = r1_bio->mddev;
2025 	struct r1conf *conf = mddev->private;
2026 	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
2027 	struct page **pages = get_resync_pages(bio)->pages;
2028 	sector_t sect = r1_bio->sector;
2029 	int sectors = r1_bio->sectors;
2030 	int idx = 0;
2031 	struct md_rdev *rdev;
2032 
2033 	rdev = conf->mirrors[r1_bio->read_disk].rdev;
2034 	if (test_bit(FailFast, &rdev->flags)) {
2035 		/* Don't try recovering from here - just fail it
2036 		 * ... unless it is the last working device of course */
2037 		md_error(mddev, rdev);
2038 		if (test_bit(Faulty, &rdev->flags))
2039 			/* Don't try to read from here, but make sure
2040 			 * put_buf does it's thing
2041 			 */
2042 			bio->bi_end_io = end_sync_write;
2043 	}
2044 
2045 	while(sectors) {
2046 		int s = sectors;
2047 		int d = r1_bio->read_disk;
2048 		int success = 0;
2049 		int start;
2050 
2051 		if (s > (PAGE_SIZE>>9))
2052 			s = PAGE_SIZE >> 9;
2053 		do {
2054 			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
2055 				/* No rcu protection needed here devices
2056 				 * can only be removed when no resync is
2057 				 * active, and resync is currently active
2058 				 */
2059 				rdev = conf->mirrors[d].rdev;
2060 				if (sync_page_io(rdev, sect, s<<9,
2061 						 pages[idx],
2062 						 REQ_OP_READ, 0, false)) {
2063 					success = 1;
2064 					break;
2065 				}
2066 			}
2067 			d++;
2068 			if (d == conf->raid_disks * 2)
2069 				d = 0;
2070 		} while (!success && d != r1_bio->read_disk);
2071 
2072 		if (!success) {
2073 			char b[BDEVNAME_SIZE];
2074 			int abort = 0;
2075 			/* Cannot read from anywhere, this block is lost.
2076 			 * Record a bad block on each device.  If that doesn't
2077 			 * work just disable and interrupt the recovery.
2078 			 * Don't fail devices as that won't really help.
2079 			 */
2080 			pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2081 					    mdname(mddev), bio_devname(bio, b),
2082 					    (unsigned long long)r1_bio->sector);
2083 			for (d = 0; d < conf->raid_disks * 2; d++) {
2084 				rdev = conf->mirrors[d].rdev;
2085 				if (!rdev || test_bit(Faulty, &rdev->flags))
2086 					continue;
2087 				if (!rdev_set_badblocks(rdev, sect, s, 0))
2088 					abort = 1;
2089 			}
2090 			if (abort) {
2091 				conf->recovery_disabled =
2092 					mddev->recovery_disabled;
2093 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2094 				md_done_sync(mddev, r1_bio->sectors, 0);
2095 				put_buf(r1_bio);
2096 				return 0;
2097 			}
2098 			/* Try next page */
2099 			sectors -= s;
2100 			sect += s;
2101 			idx++;
2102 			continue;
2103 		}
2104 
2105 		start = d;
2106 		/* write it back and re-read */
2107 		while (d != r1_bio->read_disk) {
2108 			if (d == 0)
2109 				d = conf->raid_disks * 2;
2110 			d--;
2111 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2112 				continue;
2113 			rdev = conf->mirrors[d].rdev;
2114 			if (r1_sync_page_io(rdev, sect, s,
2115 					    pages[idx],
2116 					    WRITE) == 0) {
2117 				r1_bio->bios[d]->bi_end_io = NULL;
2118 				rdev_dec_pending(rdev, mddev);
2119 			}
2120 		}
2121 		d = start;
2122 		while (d != r1_bio->read_disk) {
2123 			if (d == 0)
2124 				d = conf->raid_disks * 2;
2125 			d--;
2126 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2127 				continue;
2128 			rdev = conf->mirrors[d].rdev;
2129 			if (r1_sync_page_io(rdev, sect, s,
2130 					    pages[idx],
2131 					    READ) != 0)
2132 				atomic_add(s, &rdev->corrected_errors);
2133 		}
2134 		sectors -= s;
2135 		sect += s;
2136 		idx ++;
2137 	}
2138 	set_bit(R1BIO_Uptodate, &r1_bio->state);
2139 	bio->bi_status = 0;
2140 	return 1;
2141 }
2142 
2143 static void process_checks(struct r1bio *r1_bio)
2144 {
2145 	/* We have read all readable devices.  If we haven't
2146 	 * got the block, then there is no hope left.
2147 	 * If we have, then we want to do a comparison
2148 	 * and skip the write if everything is the same.
2149 	 * If any blocks failed to read, then we need to
2150 	 * attempt an over-write
2151 	 */
2152 	struct mddev *mddev = r1_bio->mddev;
2153 	struct r1conf *conf = mddev->private;
2154 	int primary;
2155 	int i;
2156 	int vcnt;
2157 
2158 	/* Fix variable parts of all bios */
2159 	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2160 	for (i = 0; i < conf->raid_disks * 2; i++) {
2161 		blk_status_t status;
2162 		struct bio *b = r1_bio->bios[i];
2163 		struct resync_pages *rp = get_resync_pages(b);
2164 		if (b->bi_end_io != end_sync_read)
2165 			continue;
2166 		/* fixup the bio for reuse, but preserve errno */
2167 		status = b->bi_status;
2168 		bio_reset(b);
2169 		b->bi_status = status;
2170 		b->bi_iter.bi_sector = r1_bio->sector +
2171 			conf->mirrors[i].rdev->data_offset;
2172 		bio_set_dev(b, conf->mirrors[i].rdev->bdev);
2173 		b->bi_end_io = end_sync_read;
2174 		rp->raid_bio = r1_bio;
2175 		b->bi_private = rp;
2176 
2177 		/* initialize bvec table again */
2178 		md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2179 	}
2180 	for (primary = 0; primary < conf->raid_disks * 2; primary++)
2181 		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2182 		    !r1_bio->bios[primary]->bi_status) {
2183 			r1_bio->bios[primary]->bi_end_io = NULL;
2184 			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2185 			break;
2186 		}
2187 	r1_bio->read_disk = primary;
2188 	for (i = 0; i < conf->raid_disks * 2; i++) {
2189 		int j = 0;
2190 		struct bio *pbio = r1_bio->bios[primary];
2191 		struct bio *sbio = r1_bio->bios[i];
2192 		blk_status_t status = sbio->bi_status;
2193 		struct page **ppages = get_resync_pages(pbio)->pages;
2194 		struct page **spages = get_resync_pages(sbio)->pages;
2195 		struct bio_vec *bi;
2196 		int page_len[RESYNC_PAGES] = { 0 };
2197 		struct bvec_iter_all iter_all;
2198 
2199 		if (sbio->bi_end_io != end_sync_read)
2200 			continue;
2201 		/* Now we can 'fixup' the error value */
2202 		sbio->bi_status = 0;
2203 
2204 		bio_for_each_segment_all(bi, sbio, iter_all)
2205 			page_len[j++] = bi->bv_len;
2206 
2207 		if (!status) {
2208 			for (j = vcnt; j-- ; ) {
2209 				if (memcmp(page_address(ppages[j]),
2210 					   page_address(spages[j]),
2211 					   page_len[j]))
2212 					break;
2213 			}
2214 		} else
2215 			j = 0;
2216 		if (j >= 0)
2217 			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2218 		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2219 			      && !status)) {
2220 			/* No need to write to this device. */
2221 			sbio->bi_end_io = NULL;
2222 			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2223 			continue;
2224 		}
2225 
2226 		bio_copy_data(sbio, pbio);
2227 	}
2228 }
2229 
2230 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2231 {
2232 	struct r1conf *conf = mddev->private;
2233 	int i;
2234 	int disks = conf->raid_disks * 2;
2235 	struct bio *wbio;
2236 
2237 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2238 		/* ouch - failed to read all of that. */
2239 		if (!fix_sync_read_error(r1_bio))
2240 			return;
2241 
2242 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2243 		process_checks(r1_bio);
2244 
2245 	/*
2246 	 * schedule writes
2247 	 */
2248 	atomic_set(&r1_bio->remaining, 1);
2249 	for (i = 0; i < disks ; i++) {
2250 		wbio = r1_bio->bios[i];
2251 		if (wbio->bi_end_io == NULL ||
2252 		    (wbio->bi_end_io == end_sync_read &&
2253 		     (i == r1_bio->read_disk ||
2254 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2255 			continue;
2256 		if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
2257 			abort_sync_write(mddev, r1_bio);
2258 			continue;
2259 		}
2260 
2261 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2262 		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2263 			wbio->bi_opf |= MD_FAILFAST;
2264 
2265 		wbio->bi_end_io = end_sync_write;
2266 		atomic_inc(&r1_bio->remaining);
2267 		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2268 
2269 		submit_bio_noacct(wbio);
2270 	}
2271 
2272 	put_sync_write_buf(r1_bio, 1);
2273 }
2274 
2275 /*
2276  * This is a kernel thread which:
2277  *
2278  *	1.	Retries failed read operations on working mirrors.
2279  *	2.	Updates the raid superblock when problems encounter.
2280  *	3.	Performs writes following reads for array synchronising.
2281  */
2282 
2283 static void fix_read_error(struct r1conf *conf, int read_disk,
2284 			   sector_t sect, int sectors)
2285 {
2286 	struct mddev *mddev = conf->mddev;
2287 	while(sectors) {
2288 		int s = sectors;
2289 		int d = read_disk;
2290 		int success = 0;
2291 		int start;
2292 		struct md_rdev *rdev;
2293 
2294 		if (s > (PAGE_SIZE>>9))
2295 			s = PAGE_SIZE >> 9;
2296 
2297 		do {
2298 			sector_t first_bad;
2299 			int bad_sectors;
2300 
2301 			rcu_read_lock();
2302 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2303 			if (rdev &&
2304 			    (test_bit(In_sync, &rdev->flags) ||
2305 			     (!test_bit(Faulty, &rdev->flags) &&
2306 			      rdev->recovery_offset >= sect + s)) &&
2307 			    is_badblock(rdev, sect, s,
2308 					&first_bad, &bad_sectors) == 0) {
2309 				atomic_inc(&rdev->nr_pending);
2310 				rcu_read_unlock();
2311 				if (sync_page_io(rdev, sect, s<<9,
2312 					 conf->tmppage, REQ_OP_READ, 0, false))
2313 					success = 1;
2314 				rdev_dec_pending(rdev, mddev);
2315 				if (success)
2316 					break;
2317 			} else
2318 				rcu_read_unlock();
2319 			d++;
2320 			if (d == conf->raid_disks * 2)
2321 				d = 0;
2322 		} while (!success && d != read_disk);
2323 
2324 		if (!success) {
2325 			/* Cannot read from anywhere - mark it bad */
2326 			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2327 			if (!rdev_set_badblocks(rdev, sect, s, 0))
2328 				md_error(mddev, rdev);
2329 			break;
2330 		}
2331 		/* write it back and re-read */
2332 		start = d;
2333 		while (d != read_disk) {
2334 			if (d==0)
2335 				d = conf->raid_disks * 2;
2336 			d--;
2337 			rcu_read_lock();
2338 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2339 			if (rdev &&
2340 			    !test_bit(Faulty, &rdev->flags)) {
2341 				atomic_inc(&rdev->nr_pending);
2342 				rcu_read_unlock();
2343 				r1_sync_page_io(rdev, sect, s,
2344 						conf->tmppage, WRITE);
2345 				rdev_dec_pending(rdev, mddev);
2346 			} else
2347 				rcu_read_unlock();
2348 		}
2349 		d = start;
2350 		while (d != read_disk) {
2351 			char b[BDEVNAME_SIZE];
2352 			if (d==0)
2353 				d = conf->raid_disks * 2;
2354 			d--;
2355 			rcu_read_lock();
2356 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2357 			if (rdev &&
2358 			    !test_bit(Faulty, &rdev->flags)) {
2359 				atomic_inc(&rdev->nr_pending);
2360 				rcu_read_unlock();
2361 				if (r1_sync_page_io(rdev, sect, s,
2362 						    conf->tmppage, READ)) {
2363 					atomic_add(s, &rdev->corrected_errors);
2364 					pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2365 						mdname(mddev), s,
2366 						(unsigned long long)(sect +
2367 								     rdev->data_offset),
2368 						bdevname(rdev->bdev, b));
2369 				}
2370 				rdev_dec_pending(rdev, mddev);
2371 			} else
2372 				rcu_read_unlock();
2373 		}
2374 		sectors -= s;
2375 		sect += s;
2376 	}
2377 }
2378 
2379 static int narrow_write_error(struct r1bio *r1_bio, int i)
2380 {
2381 	struct mddev *mddev = r1_bio->mddev;
2382 	struct r1conf *conf = mddev->private;
2383 	struct md_rdev *rdev = conf->mirrors[i].rdev;
2384 
2385 	/* bio has the data to be written to device 'i' where
2386 	 * we just recently had a write error.
2387 	 * We repeatedly clone the bio and trim down to one block,
2388 	 * then try the write.  Where the write fails we record
2389 	 * a bad block.
2390 	 * It is conceivable that the bio doesn't exactly align with
2391 	 * blocks.  We must handle this somehow.
2392 	 *
2393 	 * We currently own a reference on the rdev.
2394 	 */
2395 
2396 	int block_sectors;
2397 	sector_t sector;
2398 	int sectors;
2399 	int sect_to_write = r1_bio->sectors;
2400 	int ok = 1;
2401 
2402 	if (rdev->badblocks.shift < 0)
2403 		return 0;
2404 
2405 	block_sectors = roundup(1 << rdev->badblocks.shift,
2406 				bdev_logical_block_size(rdev->bdev) >> 9);
2407 	sector = r1_bio->sector;
2408 	sectors = ((sector + block_sectors)
2409 		   & ~(sector_t)(block_sectors - 1))
2410 		- sector;
2411 
2412 	while (sect_to_write) {
2413 		struct bio *wbio;
2414 		if (sectors > sect_to_write)
2415 			sectors = sect_to_write;
2416 		/* Write at 'sector' for 'sectors'*/
2417 
2418 		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2419 			wbio = bio_clone_fast(r1_bio->behind_master_bio,
2420 					      GFP_NOIO,
2421 					      &mddev->bio_set);
2422 		} else {
2423 			wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2424 					      &mddev->bio_set);
2425 		}
2426 
2427 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2428 		wbio->bi_iter.bi_sector = r1_bio->sector;
2429 		wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2430 
2431 		bio_trim(wbio, sector - r1_bio->sector, sectors);
2432 		wbio->bi_iter.bi_sector += rdev->data_offset;
2433 		bio_set_dev(wbio, rdev->bdev);
2434 
2435 		if (submit_bio_wait(wbio) < 0)
2436 			/* failure! */
2437 			ok = rdev_set_badblocks(rdev, sector,
2438 						sectors, 0)
2439 				&& ok;
2440 
2441 		bio_put(wbio);
2442 		sect_to_write -= sectors;
2443 		sector += sectors;
2444 		sectors = block_sectors;
2445 	}
2446 	return ok;
2447 }
2448 
2449 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2450 {
2451 	int m;
2452 	int s = r1_bio->sectors;
2453 	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2454 		struct md_rdev *rdev = conf->mirrors[m].rdev;
2455 		struct bio *bio = r1_bio->bios[m];
2456 		if (bio->bi_end_io == NULL)
2457 			continue;
2458 		if (!bio->bi_status &&
2459 		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2460 			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2461 		}
2462 		if (bio->bi_status &&
2463 		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2464 			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2465 				md_error(conf->mddev, rdev);
2466 		}
2467 	}
2468 	put_buf(r1_bio);
2469 	md_done_sync(conf->mddev, s, 1);
2470 }
2471 
2472 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2473 {
2474 	int m, idx;
2475 	bool fail = false;
2476 
2477 	for (m = 0; m < conf->raid_disks * 2 ; m++)
2478 		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2479 			struct md_rdev *rdev = conf->mirrors[m].rdev;
2480 			rdev_clear_badblocks(rdev,
2481 					     r1_bio->sector,
2482 					     r1_bio->sectors, 0);
2483 			rdev_dec_pending(rdev, conf->mddev);
2484 		} else if (r1_bio->bios[m] != NULL) {
2485 			/* This drive got a write error.  We need to
2486 			 * narrow down and record precise write
2487 			 * errors.
2488 			 */
2489 			fail = true;
2490 			if (!narrow_write_error(r1_bio, m)) {
2491 				md_error(conf->mddev,
2492 					 conf->mirrors[m].rdev);
2493 				/* an I/O failed, we can't clear the bitmap */
2494 				set_bit(R1BIO_Degraded, &r1_bio->state);
2495 			}
2496 			rdev_dec_pending(conf->mirrors[m].rdev,
2497 					 conf->mddev);
2498 		}
2499 	if (fail) {
2500 		spin_lock_irq(&conf->device_lock);
2501 		list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2502 		idx = sector_to_idx(r1_bio->sector);
2503 		atomic_inc(&conf->nr_queued[idx]);
2504 		spin_unlock_irq(&conf->device_lock);
2505 		/*
2506 		 * In case freeze_array() is waiting for condition
2507 		 * get_unqueued_pending() == extra to be true.
2508 		 */
2509 		wake_up(&conf->wait_barrier);
2510 		md_wakeup_thread(conf->mddev->thread);
2511 	} else {
2512 		if (test_bit(R1BIO_WriteError, &r1_bio->state))
2513 			close_write(r1_bio);
2514 		raid_end_bio_io(r1_bio);
2515 	}
2516 }
2517 
2518 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2519 {
2520 	struct mddev *mddev = conf->mddev;
2521 	struct bio *bio;
2522 	struct md_rdev *rdev;
2523 
2524 	clear_bit(R1BIO_ReadError, &r1_bio->state);
2525 	/* we got a read error. Maybe the drive is bad.  Maybe just
2526 	 * the block and we can fix it.
2527 	 * We freeze all other IO, and try reading the block from
2528 	 * other devices.  When we find one, we re-write
2529 	 * and check it that fixes the read error.
2530 	 * This is all done synchronously while the array is
2531 	 * frozen
2532 	 */
2533 
2534 	bio = r1_bio->bios[r1_bio->read_disk];
2535 	bio_put(bio);
2536 	r1_bio->bios[r1_bio->read_disk] = NULL;
2537 
2538 	rdev = conf->mirrors[r1_bio->read_disk].rdev;
2539 	if (mddev->ro == 0
2540 	    && !test_bit(FailFast, &rdev->flags)) {
2541 		freeze_array(conf, 1);
2542 		fix_read_error(conf, r1_bio->read_disk,
2543 			       r1_bio->sector, r1_bio->sectors);
2544 		unfreeze_array(conf);
2545 	} else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
2546 		md_error(mddev, rdev);
2547 	} else {
2548 		r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2549 	}
2550 
2551 	rdev_dec_pending(rdev, conf->mddev);
2552 	allow_barrier(conf, r1_bio->sector);
2553 	bio = r1_bio->master_bio;
2554 
2555 	/* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2556 	r1_bio->state = 0;
2557 	raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2558 }
2559 
2560 static void raid1d(struct md_thread *thread)
2561 {
2562 	struct mddev *mddev = thread->mddev;
2563 	struct r1bio *r1_bio;
2564 	unsigned long flags;
2565 	struct r1conf *conf = mddev->private;
2566 	struct list_head *head = &conf->retry_list;
2567 	struct blk_plug plug;
2568 	int idx;
2569 
2570 	md_check_recovery(mddev);
2571 
2572 	if (!list_empty_careful(&conf->bio_end_io_list) &&
2573 	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2574 		LIST_HEAD(tmp);
2575 		spin_lock_irqsave(&conf->device_lock, flags);
2576 		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2577 			list_splice_init(&conf->bio_end_io_list, &tmp);
2578 		spin_unlock_irqrestore(&conf->device_lock, flags);
2579 		while (!list_empty(&tmp)) {
2580 			r1_bio = list_first_entry(&tmp, struct r1bio,
2581 						  retry_list);
2582 			list_del(&r1_bio->retry_list);
2583 			idx = sector_to_idx(r1_bio->sector);
2584 			atomic_dec(&conf->nr_queued[idx]);
2585 			if (mddev->degraded)
2586 				set_bit(R1BIO_Degraded, &r1_bio->state);
2587 			if (test_bit(R1BIO_WriteError, &r1_bio->state))
2588 				close_write(r1_bio);
2589 			raid_end_bio_io(r1_bio);
2590 		}
2591 	}
2592 
2593 	blk_start_plug(&plug);
2594 	for (;;) {
2595 
2596 		flush_pending_writes(conf);
2597 
2598 		spin_lock_irqsave(&conf->device_lock, flags);
2599 		if (list_empty(head)) {
2600 			spin_unlock_irqrestore(&conf->device_lock, flags);
2601 			break;
2602 		}
2603 		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2604 		list_del(head->prev);
2605 		idx = sector_to_idx(r1_bio->sector);
2606 		atomic_dec(&conf->nr_queued[idx]);
2607 		spin_unlock_irqrestore(&conf->device_lock, flags);
2608 
2609 		mddev = r1_bio->mddev;
2610 		conf = mddev->private;
2611 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2612 			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2613 			    test_bit(R1BIO_WriteError, &r1_bio->state))
2614 				handle_sync_write_finished(conf, r1_bio);
2615 			else
2616 				sync_request_write(mddev, r1_bio);
2617 		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2618 			   test_bit(R1BIO_WriteError, &r1_bio->state))
2619 			handle_write_finished(conf, r1_bio);
2620 		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2621 			handle_read_error(conf, r1_bio);
2622 		else
2623 			WARN_ON_ONCE(1);
2624 
2625 		cond_resched();
2626 		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2627 			md_check_recovery(mddev);
2628 	}
2629 	blk_finish_plug(&plug);
2630 }
2631 
2632 static int init_resync(struct r1conf *conf)
2633 {
2634 	int buffs;
2635 
2636 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2637 	BUG_ON(mempool_initialized(&conf->r1buf_pool));
2638 
2639 	return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
2640 			    r1buf_pool_free, conf->poolinfo);
2641 }
2642 
2643 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2644 {
2645 	struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
2646 	struct resync_pages *rps;
2647 	struct bio *bio;
2648 	int i;
2649 
2650 	for (i = conf->poolinfo->raid_disks; i--; ) {
2651 		bio = r1bio->bios[i];
2652 		rps = bio->bi_private;
2653 		bio_reset(bio);
2654 		bio->bi_private = rps;
2655 	}
2656 	r1bio->master_bio = NULL;
2657 	return r1bio;
2658 }
2659 
2660 /*
2661  * perform a "sync" on one "block"
2662  *
2663  * We need to make sure that no normal I/O request - particularly write
2664  * requests - conflict with active sync requests.
2665  *
2666  * This is achieved by tracking pending requests and a 'barrier' concept
2667  * that can be installed to exclude normal IO requests.
2668  */
2669 
2670 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2671 				   int *skipped)
2672 {
2673 	struct r1conf *conf = mddev->private;
2674 	struct r1bio *r1_bio;
2675 	struct bio *bio;
2676 	sector_t max_sector, nr_sectors;
2677 	int disk = -1;
2678 	int i;
2679 	int wonly = -1;
2680 	int write_targets = 0, read_targets = 0;
2681 	sector_t sync_blocks;
2682 	int still_degraded = 0;
2683 	int good_sectors = RESYNC_SECTORS;
2684 	int min_bad = 0; /* number of sectors that are bad in all devices */
2685 	int idx = sector_to_idx(sector_nr);
2686 	int page_idx = 0;
2687 
2688 	if (!mempool_initialized(&conf->r1buf_pool))
2689 		if (init_resync(conf))
2690 			return 0;
2691 
2692 	max_sector = mddev->dev_sectors;
2693 	if (sector_nr >= max_sector) {
2694 		/* If we aborted, we need to abort the
2695 		 * sync on the 'current' bitmap chunk (there will
2696 		 * only be one in raid1 resync.
2697 		 * We can find the current addess in mddev->curr_resync
2698 		 */
2699 		if (mddev->curr_resync < max_sector) /* aborted */
2700 			md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2701 					   &sync_blocks, 1);
2702 		else /* completed sync */
2703 			conf->fullsync = 0;
2704 
2705 		md_bitmap_close_sync(mddev->bitmap);
2706 		close_sync(conf);
2707 
2708 		if (mddev_is_clustered(mddev)) {
2709 			conf->cluster_sync_low = 0;
2710 			conf->cluster_sync_high = 0;
2711 		}
2712 		return 0;
2713 	}
2714 
2715 	if (mddev->bitmap == NULL &&
2716 	    mddev->recovery_cp == MaxSector &&
2717 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2718 	    conf->fullsync == 0) {
2719 		*skipped = 1;
2720 		return max_sector - sector_nr;
2721 	}
2722 	/* before building a request, check if we can skip these blocks..
2723 	 * This call the bitmap_start_sync doesn't actually record anything
2724 	 */
2725 	if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2726 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2727 		/* We can skip this block, and probably several more */
2728 		*skipped = 1;
2729 		return sync_blocks;
2730 	}
2731 
2732 	/*
2733 	 * If there is non-resync activity waiting for a turn, then let it
2734 	 * though before starting on this new sync request.
2735 	 */
2736 	if (atomic_read(&conf->nr_waiting[idx]))
2737 		schedule_timeout_uninterruptible(1);
2738 
2739 	/* we are incrementing sector_nr below. To be safe, we check against
2740 	 * sector_nr + two times RESYNC_SECTORS
2741 	 */
2742 
2743 	md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2744 		mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2745 
2746 
2747 	if (raise_barrier(conf, sector_nr))
2748 		return 0;
2749 
2750 	r1_bio = raid1_alloc_init_r1buf(conf);
2751 
2752 	rcu_read_lock();
2753 	/*
2754 	 * If we get a correctably read error during resync or recovery,
2755 	 * we might want to read from a different device.  So we
2756 	 * flag all drives that could conceivably be read from for READ,
2757 	 * and any others (which will be non-In_sync devices) for WRITE.
2758 	 * If a read fails, we try reading from something else for which READ
2759 	 * is OK.
2760 	 */
2761 
2762 	r1_bio->mddev = mddev;
2763 	r1_bio->sector = sector_nr;
2764 	r1_bio->state = 0;
2765 	set_bit(R1BIO_IsSync, &r1_bio->state);
2766 	/* make sure good_sectors won't go across barrier unit boundary */
2767 	good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2768 
2769 	for (i = 0; i < conf->raid_disks * 2; i++) {
2770 		struct md_rdev *rdev;
2771 		bio = r1_bio->bios[i];
2772 
2773 		rdev = rcu_dereference(conf->mirrors[i].rdev);
2774 		if (rdev == NULL ||
2775 		    test_bit(Faulty, &rdev->flags)) {
2776 			if (i < conf->raid_disks)
2777 				still_degraded = 1;
2778 		} else if (!test_bit(In_sync, &rdev->flags)) {
2779 			bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2780 			bio->bi_end_io = end_sync_write;
2781 			write_targets ++;
2782 		} else {
2783 			/* may need to read from here */
2784 			sector_t first_bad = MaxSector;
2785 			int bad_sectors;
2786 
2787 			if (is_badblock(rdev, sector_nr, good_sectors,
2788 					&first_bad, &bad_sectors)) {
2789 				if (first_bad > sector_nr)
2790 					good_sectors = first_bad - sector_nr;
2791 				else {
2792 					bad_sectors -= (sector_nr - first_bad);
2793 					if (min_bad == 0 ||
2794 					    min_bad > bad_sectors)
2795 						min_bad = bad_sectors;
2796 				}
2797 			}
2798 			if (sector_nr < first_bad) {
2799 				if (test_bit(WriteMostly, &rdev->flags)) {
2800 					if (wonly < 0)
2801 						wonly = i;
2802 				} else {
2803 					if (disk < 0)
2804 						disk = i;
2805 				}
2806 				bio_set_op_attrs(bio, REQ_OP_READ, 0);
2807 				bio->bi_end_io = end_sync_read;
2808 				read_targets++;
2809 			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2810 				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2811 				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2812 				/*
2813 				 * The device is suitable for reading (InSync),
2814 				 * but has bad block(s) here. Let's try to correct them,
2815 				 * if we are doing resync or repair. Otherwise, leave
2816 				 * this device alone for this sync request.
2817 				 */
2818 				bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2819 				bio->bi_end_io = end_sync_write;
2820 				write_targets++;
2821 			}
2822 		}
2823 		if (rdev && bio->bi_end_io) {
2824 			atomic_inc(&rdev->nr_pending);
2825 			bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2826 			bio_set_dev(bio, rdev->bdev);
2827 			if (test_bit(FailFast, &rdev->flags))
2828 				bio->bi_opf |= MD_FAILFAST;
2829 		}
2830 	}
2831 	rcu_read_unlock();
2832 	if (disk < 0)
2833 		disk = wonly;
2834 	r1_bio->read_disk = disk;
2835 
2836 	if (read_targets == 0 && min_bad > 0) {
2837 		/* These sectors are bad on all InSync devices, so we
2838 		 * need to mark them bad on all write targets
2839 		 */
2840 		int ok = 1;
2841 		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2842 			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2843 				struct md_rdev *rdev = conf->mirrors[i].rdev;
2844 				ok = rdev_set_badblocks(rdev, sector_nr,
2845 							min_bad, 0
2846 					) && ok;
2847 			}
2848 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2849 		*skipped = 1;
2850 		put_buf(r1_bio);
2851 
2852 		if (!ok) {
2853 			/* Cannot record the badblocks, so need to
2854 			 * abort the resync.
2855 			 * If there are multiple read targets, could just
2856 			 * fail the really bad ones ???
2857 			 */
2858 			conf->recovery_disabled = mddev->recovery_disabled;
2859 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2860 			return 0;
2861 		} else
2862 			return min_bad;
2863 
2864 	}
2865 	if (min_bad > 0 && min_bad < good_sectors) {
2866 		/* only resync enough to reach the next bad->good
2867 		 * transition */
2868 		good_sectors = min_bad;
2869 	}
2870 
2871 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2872 		/* extra read targets are also write targets */
2873 		write_targets += read_targets-1;
2874 
2875 	if (write_targets == 0 || read_targets == 0) {
2876 		/* There is nowhere to write, so all non-sync
2877 		 * drives must be failed - so we are finished
2878 		 */
2879 		sector_t rv;
2880 		if (min_bad > 0)
2881 			max_sector = sector_nr + min_bad;
2882 		rv = max_sector - sector_nr;
2883 		*skipped = 1;
2884 		put_buf(r1_bio);
2885 		return rv;
2886 	}
2887 
2888 	if (max_sector > mddev->resync_max)
2889 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2890 	if (max_sector > sector_nr + good_sectors)
2891 		max_sector = sector_nr + good_sectors;
2892 	nr_sectors = 0;
2893 	sync_blocks = 0;
2894 	do {
2895 		struct page *page;
2896 		int len = PAGE_SIZE;
2897 		if (sector_nr + (len>>9) > max_sector)
2898 			len = (max_sector - sector_nr) << 9;
2899 		if (len == 0)
2900 			break;
2901 		if (sync_blocks == 0) {
2902 			if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
2903 						  &sync_blocks, still_degraded) &&
2904 			    !conf->fullsync &&
2905 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2906 				break;
2907 			if ((len >> 9) > sync_blocks)
2908 				len = sync_blocks<<9;
2909 		}
2910 
2911 		for (i = 0 ; i < conf->raid_disks * 2; i++) {
2912 			struct resync_pages *rp;
2913 
2914 			bio = r1_bio->bios[i];
2915 			rp = get_resync_pages(bio);
2916 			if (bio->bi_end_io) {
2917 				page = resync_fetch_page(rp, page_idx);
2918 
2919 				/*
2920 				 * won't fail because the vec table is big
2921 				 * enough to hold all these pages
2922 				 */
2923 				bio_add_page(bio, page, len, 0);
2924 			}
2925 		}
2926 		nr_sectors += len>>9;
2927 		sector_nr += len>>9;
2928 		sync_blocks -= (len>>9);
2929 	} while (++page_idx < RESYNC_PAGES);
2930 
2931 	r1_bio->sectors = nr_sectors;
2932 
2933 	if (mddev_is_clustered(mddev) &&
2934 			conf->cluster_sync_high < sector_nr + nr_sectors) {
2935 		conf->cluster_sync_low = mddev->curr_resync_completed;
2936 		conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2937 		/* Send resync message */
2938 		md_cluster_ops->resync_info_update(mddev,
2939 				conf->cluster_sync_low,
2940 				conf->cluster_sync_high);
2941 	}
2942 
2943 	/* For a user-requested sync, we read all readable devices and do a
2944 	 * compare
2945 	 */
2946 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2947 		atomic_set(&r1_bio->remaining, read_targets);
2948 		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2949 			bio = r1_bio->bios[i];
2950 			if (bio->bi_end_io == end_sync_read) {
2951 				read_targets--;
2952 				md_sync_acct_bio(bio, nr_sectors);
2953 				if (read_targets == 1)
2954 					bio->bi_opf &= ~MD_FAILFAST;
2955 				submit_bio_noacct(bio);
2956 			}
2957 		}
2958 	} else {
2959 		atomic_set(&r1_bio->remaining, 1);
2960 		bio = r1_bio->bios[r1_bio->read_disk];
2961 		md_sync_acct_bio(bio, nr_sectors);
2962 		if (read_targets == 1)
2963 			bio->bi_opf &= ~MD_FAILFAST;
2964 		submit_bio_noacct(bio);
2965 	}
2966 	return nr_sectors;
2967 }
2968 
2969 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2970 {
2971 	if (sectors)
2972 		return sectors;
2973 
2974 	return mddev->dev_sectors;
2975 }
2976 
2977 static struct r1conf *setup_conf(struct mddev *mddev)
2978 {
2979 	struct r1conf *conf;
2980 	int i;
2981 	struct raid1_info *disk;
2982 	struct md_rdev *rdev;
2983 	int err = -ENOMEM;
2984 
2985 	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2986 	if (!conf)
2987 		goto abort;
2988 
2989 	conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
2990 				   sizeof(atomic_t), GFP_KERNEL);
2991 	if (!conf->nr_pending)
2992 		goto abort;
2993 
2994 	conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
2995 				   sizeof(atomic_t), GFP_KERNEL);
2996 	if (!conf->nr_waiting)
2997 		goto abort;
2998 
2999 	conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
3000 				  sizeof(atomic_t), GFP_KERNEL);
3001 	if (!conf->nr_queued)
3002 		goto abort;
3003 
3004 	conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
3005 				sizeof(atomic_t), GFP_KERNEL);
3006 	if (!conf->barrier)
3007 		goto abort;
3008 
3009 	conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3010 					    mddev->raid_disks, 2),
3011 				GFP_KERNEL);
3012 	if (!conf->mirrors)
3013 		goto abort;
3014 
3015 	conf->tmppage = alloc_page(GFP_KERNEL);
3016 	if (!conf->tmppage)
3017 		goto abort;
3018 
3019 	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
3020 	if (!conf->poolinfo)
3021 		goto abort;
3022 	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
3023 	err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc,
3024 			   rbio_pool_free, conf->poolinfo);
3025 	if (err)
3026 		goto abort;
3027 
3028 	err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3029 	if (err)
3030 		goto abort;
3031 
3032 	conf->poolinfo->mddev = mddev;
3033 
3034 	err = -EINVAL;
3035 	spin_lock_init(&conf->device_lock);
3036 	rdev_for_each(rdev, mddev) {
3037 		int disk_idx = rdev->raid_disk;
3038 		if (disk_idx >= mddev->raid_disks
3039 		    || disk_idx < 0)
3040 			continue;
3041 		if (test_bit(Replacement, &rdev->flags))
3042 			disk = conf->mirrors + mddev->raid_disks + disk_idx;
3043 		else
3044 			disk = conf->mirrors + disk_idx;
3045 
3046 		if (disk->rdev)
3047 			goto abort;
3048 		disk->rdev = rdev;
3049 		disk->head_position = 0;
3050 		disk->seq_start = MaxSector;
3051 	}
3052 	conf->raid_disks = mddev->raid_disks;
3053 	conf->mddev = mddev;
3054 	INIT_LIST_HEAD(&conf->retry_list);
3055 	INIT_LIST_HEAD(&conf->bio_end_io_list);
3056 
3057 	spin_lock_init(&conf->resync_lock);
3058 	init_waitqueue_head(&conf->wait_barrier);
3059 
3060 	bio_list_init(&conf->pending_bio_list);
3061 	conf->pending_count = 0;
3062 	conf->recovery_disabled = mddev->recovery_disabled - 1;
3063 
3064 	err = -EIO;
3065 	for (i = 0; i < conf->raid_disks * 2; i++) {
3066 
3067 		disk = conf->mirrors + i;
3068 
3069 		if (i < conf->raid_disks &&
3070 		    disk[conf->raid_disks].rdev) {
3071 			/* This slot has a replacement. */
3072 			if (!disk->rdev) {
3073 				/* No original, just make the replacement
3074 				 * a recovering spare
3075 				 */
3076 				disk->rdev =
3077 					disk[conf->raid_disks].rdev;
3078 				disk[conf->raid_disks].rdev = NULL;
3079 			} else if (!test_bit(In_sync, &disk->rdev->flags))
3080 				/* Original is not in_sync - bad */
3081 				goto abort;
3082 		}
3083 
3084 		if (!disk->rdev ||
3085 		    !test_bit(In_sync, &disk->rdev->flags)) {
3086 			disk->head_position = 0;
3087 			if (disk->rdev &&
3088 			    (disk->rdev->saved_raid_disk < 0))
3089 				conf->fullsync = 1;
3090 		}
3091 	}
3092 
3093 	err = -ENOMEM;
3094 	conf->thread = md_register_thread(raid1d, mddev, "raid1");
3095 	if (!conf->thread)
3096 		goto abort;
3097 
3098 	return conf;
3099 
3100  abort:
3101 	if (conf) {
3102 		mempool_exit(&conf->r1bio_pool);
3103 		kfree(conf->mirrors);
3104 		safe_put_page(conf->tmppage);
3105 		kfree(conf->poolinfo);
3106 		kfree(conf->nr_pending);
3107 		kfree(conf->nr_waiting);
3108 		kfree(conf->nr_queued);
3109 		kfree(conf->barrier);
3110 		bioset_exit(&conf->bio_split);
3111 		kfree(conf);
3112 	}
3113 	return ERR_PTR(err);
3114 }
3115 
3116 static void raid1_free(struct mddev *mddev, void *priv);
3117 static int raid1_run(struct mddev *mddev)
3118 {
3119 	struct r1conf *conf;
3120 	int i;
3121 	struct md_rdev *rdev;
3122 	int ret;
3123 	bool discard_supported = false;
3124 
3125 	if (mddev->level != 1) {
3126 		pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3127 			mdname(mddev), mddev->level);
3128 		return -EIO;
3129 	}
3130 	if (mddev->reshape_position != MaxSector) {
3131 		pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3132 			mdname(mddev));
3133 		return -EIO;
3134 	}
3135 	if (mddev_init_writes_pending(mddev) < 0)
3136 		return -ENOMEM;
3137 	/*
3138 	 * copy the already verified devices into our private RAID1
3139 	 * bookkeeping area. [whatever we allocate in run(),
3140 	 * should be freed in raid1_free()]
3141 	 */
3142 	if (mddev->private == NULL)
3143 		conf = setup_conf(mddev);
3144 	else
3145 		conf = mddev->private;
3146 
3147 	if (IS_ERR(conf))
3148 		return PTR_ERR(conf);
3149 
3150 	if (mddev->queue) {
3151 		blk_queue_max_write_same_sectors(mddev->queue, 0);
3152 		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3153 	}
3154 
3155 	rdev_for_each(rdev, mddev) {
3156 		if (!mddev->gendisk)
3157 			continue;
3158 		disk_stack_limits(mddev->gendisk, rdev->bdev,
3159 				  rdev->data_offset << 9);
3160 		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3161 			discard_supported = true;
3162 	}
3163 
3164 	mddev->degraded = 0;
3165 	for (i = 0; i < conf->raid_disks; i++)
3166 		if (conf->mirrors[i].rdev == NULL ||
3167 		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3168 		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3169 			mddev->degraded++;
3170 	/*
3171 	 * RAID1 needs at least one disk in active
3172 	 */
3173 	if (conf->raid_disks - mddev->degraded < 1) {
3174 		ret = -EINVAL;
3175 		goto abort;
3176 	}
3177 
3178 	if (conf->raid_disks - mddev->degraded == 1)
3179 		mddev->recovery_cp = MaxSector;
3180 
3181 	if (mddev->recovery_cp != MaxSector)
3182 		pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3183 			mdname(mddev));
3184 	pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3185 		mdname(mddev), mddev->raid_disks - mddev->degraded,
3186 		mddev->raid_disks);
3187 
3188 	/*
3189 	 * Ok, everything is just fine now
3190 	 */
3191 	mddev->thread = conf->thread;
3192 	conf->thread = NULL;
3193 	mddev->private = conf;
3194 	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3195 
3196 	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3197 
3198 	if (mddev->queue) {
3199 		if (discard_supported)
3200 			blk_queue_flag_set(QUEUE_FLAG_DISCARD,
3201 						mddev->queue);
3202 		else
3203 			blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
3204 						  mddev->queue);
3205 	}
3206 
3207 	ret = md_integrity_register(mddev);
3208 	if (ret) {
3209 		md_unregister_thread(&mddev->thread);
3210 		goto abort;
3211 	}
3212 	return 0;
3213 
3214 abort:
3215 	raid1_free(mddev, conf);
3216 	return ret;
3217 }
3218 
3219 static void raid1_free(struct mddev *mddev, void *priv)
3220 {
3221 	struct r1conf *conf = priv;
3222 
3223 	mempool_exit(&conf->r1bio_pool);
3224 	kfree(conf->mirrors);
3225 	safe_put_page(conf->tmppage);
3226 	kfree(conf->poolinfo);
3227 	kfree(conf->nr_pending);
3228 	kfree(conf->nr_waiting);
3229 	kfree(conf->nr_queued);
3230 	kfree(conf->barrier);
3231 	bioset_exit(&conf->bio_split);
3232 	kfree(conf);
3233 }
3234 
3235 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3236 {
3237 	/* no resync is happening, and there is enough space
3238 	 * on all devices, so we can resize.
3239 	 * We need to make sure resync covers any new space.
3240 	 * If the array is shrinking we should possibly wait until
3241 	 * any io in the removed space completes, but it hardly seems
3242 	 * worth it.
3243 	 */
3244 	sector_t newsize = raid1_size(mddev, sectors, 0);
3245 	if (mddev->external_size &&
3246 	    mddev->array_sectors > newsize)
3247 		return -EINVAL;
3248 	if (mddev->bitmap) {
3249 		int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
3250 		if (ret)
3251 			return ret;
3252 	}
3253 	md_set_array_sectors(mddev, newsize);
3254 	if (sectors > mddev->dev_sectors &&
3255 	    mddev->recovery_cp > mddev->dev_sectors) {
3256 		mddev->recovery_cp = mddev->dev_sectors;
3257 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3258 	}
3259 	mddev->dev_sectors = sectors;
3260 	mddev->resync_max_sectors = sectors;
3261 	return 0;
3262 }
3263 
3264 static int raid1_reshape(struct mddev *mddev)
3265 {
3266 	/* We need to:
3267 	 * 1/ resize the r1bio_pool
3268 	 * 2/ resize conf->mirrors
3269 	 *
3270 	 * We allocate a new r1bio_pool if we can.
3271 	 * Then raise a device barrier and wait until all IO stops.
3272 	 * Then resize conf->mirrors and swap in the new r1bio pool.
3273 	 *
3274 	 * At the same time, we "pack" the devices so that all the missing
3275 	 * devices have the higher raid_disk numbers.
3276 	 */
3277 	mempool_t newpool, oldpool;
3278 	struct pool_info *newpoolinfo;
3279 	struct raid1_info *newmirrors;
3280 	struct r1conf *conf = mddev->private;
3281 	int cnt, raid_disks;
3282 	unsigned long flags;
3283 	int d, d2;
3284 	int ret;
3285 
3286 	memset(&newpool, 0, sizeof(newpool));
3287 	memset(&oldpool, 0, sizeof(oldpool));
3288 
3289 	/* Cannot change chunk_size, layout, or level */
3290 	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3291 	    mddev->layout != mddev->new_layout ||
3292 	    mddev->level != mddev->new_level) {
3293 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3294 		mddev->new_layout = mddev->layout;
3295 		mddev->new_level = mddev->level;
3296 		return -EINVAL;
3297 	}
3298 
3299 	if (!mddev_is_clustered(mddev))
3300 		md_allow_write(mddev);
3301 
3302 	raid_disks = mddev->raid_disks + mddev->delta_disks;
3303 
3304 	if (raid_disks < conf->raid_disks) {
3305 		cnt=0;
3306 		for (d= 0; d < conf->raid_disks; d++)
3307 			if (conf->mirrors[d].rdev)
3308 				cnt++;
3309 		if (cnt > raid_disks)
3310 			return -EBUSY;
3311 	}
3312 
3313 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3314 	if (!newpoolinfo)
3315 		return -ENOMEM;
3316 	newpoolinfo->mddev = mddev;
3317 	newpoolinfo->raid_disks = raid_disks * 2;
3318 
3319 	ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc,
3320 			   rbio_pool_free, newpoolinfo);
3321 	if (ret) {
3322 		kfree(newpoolinfo);
3323 		return ret;
3324 	}
3325 	newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3326 					 raid_disks, 2),
3327 			     GFP_KERNEL);
3328 	if (!newmirrors) {
3329 		kfree(newpoolinfo);
3330 		mempool_exit(&newpool);
3331 		return -ENOMEM;
3332 	}
3333 
3334 	freeze_array(conf, 0);
3335 
3336 	/* ok, everything is stopped */
3337 	oldpool = conf->r1bio_pool;
3338 	conf->r1bio_pool = newpool;
3339 
3340 	for (d = d2 = 0; d < conf->raid_disks; d++) {
3341 		struct md_rdev *rdev = conf->mirrors[d].rdev;
3342 		if (rdev && rdev->raid_disk != d2) {
3343 			sysfs_unlink_rdev(mddev, rdev);
3344 			rdev->raid_disk = d2;
3345 			sysfs_unlink_rdev(mddev, rdev);
3346 			if (sysfs_link_rdev(mddev, rdev))
3347 				pr_warn("md/raid1:%s: cannot register rd%d\n",
3348 					mdname(mddev), rdev->raid_disk);
3349 		}
3350 		if (rdev)
3351 			newmirrors[d2++].rdev = rdev;
3352 	}
3353 	kfree(conf->mirrors);
3354 	conf->mirrors = newmirrors;
3355 	kfree(conf->poolinfo);
3356 	conf->poolinfo = newpoolinfo;
3357 
3358 	spin_lock_irqsave(&conf->device_lock, flags);
3359 	mddev->degraded += (raid_disks - conf->raid_disks);
3360 	spin_unlock_irqrestore(&conf->device_lock, flags);
3361 	conf->raid_disks = mddev->raid_disks = raid_disks;
3362 	mddev->delta_disks = 0;
3363 
3364 	unfreeze_array(conf);
3365 
3366 	set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3367 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3368 	md_wakeup_thread(mddev->thread);
3369 
3370 	mempool_exit(&oldpool);
3371 	return 0;
3372 }
3373 
3374 static void raid1_quiesce(struct mddev *mddev, int quiesce)
3375 {
3376 	struct r1conf *conf = mddev->private;
3377 
3378 	if (quiesce)
3379 		freeze_array(conf, 0);
3380 	else
3381 		unfreeze_array(conf);
3382 }
3383 
3384 static void *raid1_takeover(struct mddev *mddev)
3385 {
3386 	/* raid1 can take over:
3387 	 *  raid5 with 2 devices, any layout or chunk size
3388 	 */
3389 	if (mddev->level == 5 && mddev->raid_disks == 2) {
3390 		struct r1conf *conf;
3391 		mddev->new_level = 1;
3392 		mddev->new_layout = 0;
3393 		mddev->new_chunk_sectors = 0;
3394 		conf = setup_conf(mddev);
3395 		if (!IS_ERR(conf)) {
3396 			/* Array must appear to be quiesced */
3397 			conf->array_frozen = 1;
3398 			mddev_clear_unsupported_flags(mddev,
3399 				UNSUPPORTED_MDDEV_FLAGS);
3400 		}
3401 		return conf;
3402 	}
3403 	return ERR_PTR(-EINVAL);
3404 }
3405 
3406 static struct md_personality raid1_personality =
3407 {
3408 	.name		= "raid1",
3409 	.level		= 1,
3410 	.owner		= THIS_MODULE,
3411 	.make_request	= raid1_make_request,
3412 	.run		= raid1_run,
3413 	.free		= raid1_free,
3414 	.status		= raid1_status,
3415 	.error_handler	= raid1_error,
3416 	.hot_add_disk	= raid1_add_disk,
3417 	.hot_remove_disk= raid1_remove_disk,
3418 	.spare_active	= raid1_spare_active,
3419 	.sync_request	= raid1_sync_request,
3420 	.resize		= raid1_resize,
3421 	.size		= raid1_size,
3422 	.check_reshape	= raid1_reshape,
3423 	.quiesce	= raid1_quiesce,
3424 	.takeover	= raid1_takeover,
3425 };
3426 
3427 static int __init raid_init(void)
3428 {
3429 	return register_md_personality(&raid1_personality);
3430 }
3431 
3432 static void raid_exit(void)
3433 {
3434 	unregister_md_personality(&raid1_personality);
3435 }
3436 
3437 module_init(raid_init);
3438 module_exit(raid_exit);
3439 MODULE_LICENSE("GPL");
3440 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3441 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3442 MODULE_ALIAS("md-raid1");
3443 MODULE_ALIAS("md-level-1");
3444