xref: /openbmc/linux/drivers/md/raid1.c (revision 309bd96a)
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33 
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include <trace/events/block.h>
41 #include "md.h"
42 #include "raid1.h"
43 #include "bitmap.h"
44 
45 #define UNSUPPORTED_MDDEV_FLAGS		\
46 	((1L << MD_HAS_JOURNAL) |	\
47 	 (1L << MD_JOURNAL_CLEAN))
48 
49 /*
50  * Number of guaranteed r1bios in case of extreme VM load:
51  */
52 #define	NR_RAID1_BIOS 256
53 
54 /* when we get a read error on a read-only array, we redirect to another
55  * device without failing the first device, or trying to over-write to
56  * correct the read error.  To keep track of bad blocks on a per-bio
57  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
58  */
59 #define IO_BLOCKED ((struct bio *)1)
60 /* When we successfully write to a known bad-block, we need to remove the
61  * bad-block marking which must be done from process context.  So we record
62  * the success by setting devs[n].bio to IO_MADE_GOOD
63  */
64 #define IO_MADE_GOOD ((struct bio *)2)
65 
66 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
67 
68 /* When there are this many requests queue to be written by
69  * the raid1 thread, we become 'congested' to provide back-pressure
70  * for writeback.
71  */
72 static int max_queued_requests = 1024;
73 
74 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
75 			  sector_t bi_sector);
76 static void lower_barrier(struct r1conf *conf);
77 
78 #define raid1_log(md, fmt, args...)				\
79 	do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
80 
81 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
82 {
83 	struct pool_info *pi = data;
84 	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
85 
86 	/* allocate a r1bio with room for raid_disks entries in the bios array */
87 	return kzalloc(size, gfp_flags);
88 }
89 
90 static void r1bio_pool_free(void *r1_bio, void *data)
91 {
92 	kfree(r1_bio);
93 }
94 
95 #define RESYNC_BLOCK_SIZE (64*1024)
96 #define RESYNC_DEPTH 32
97 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
98 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
99 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
100 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
101 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
102 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
103 #define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
104 
105 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
106 {
107 	struct pool_info *pi = data;
108 	struct r1bio *r1_bio;
109 	struct bio *bio;
110 	int need_pages;
111 	int i, j;
112 
113 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
114 	if (!r1_bio)
115 		return NULL;
116 
117 	/*
118 	 * Allocate bios : 1 for reading, n-1 for writing
119 	 */
120 	for (j = pi->raid_disks ; j-- ; ) {
121 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
122 		if (!bio)
123 			goto out_free_bio;
124 		r1_bio->bios[j] = bio;
125 	}
126 	/*
127 	 * Allocate RESYNC_PAGES data pages and attach them to
128 	 * the first bio.
129 	 * If this is a user-requested check/repair, allocate
130 	 * RESYNC_PAGES for each bio.
131 	 */
132 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
133 		need_pages = pi->raid_disks;
134 	else
135 		need_pages = 1;
136 	for (j = 0; j < need_pages; j++) {
137 		bio = r1_bio->bios[j];
138 		bio->bi_vcnt = RESYNC_PAGES;
139 
140 		if (bio_alloc_pages(bio, gfp_flags))
141 			goto out_free_pages;
142 	}
143 	/* If not user-requests, copy the page pointers to all bios */
144 	if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
145 		for (i=0; i<RESYNC_PAGES ; i++)
146 			for (j=1; j<pi->raid_disks; j++)
147 				r1_bio->bios[j]->bi_io_vec[i].bv_page =
148 					r1_bio->bios[0]->bi_io_vec[i].bv_page;
149 	}
150 
151 	r1_bio->master_bio = NULL;
152 
153 	return r1_bio;
154 
155 out_free_pages:
156 	while (--j >= 0)
157 		bio_free_pages(r1_bio->bios[j]);
158 
159 out_free_bio:
160 	while (++j < pi->raid_disks)
161 		bio_put(r1_bio->bios[j]);
162 	r1bio_pool_free(r1_bio, data);
163 	return NULL;
164 }
165 
166 static void r1buf_pool_free(void *__r1_bio, void *data)
167 {
168 	struct pool_info *pi = data;
169 	int i,j;
170 	struct r1bio *r1bio = __r1_bio;
171 
172 	for (i = 0; i < RESYNC_PAGES; i++)
173 		for (j = pi->raid_disks; j-- ;) {
174 			if (j == 0 ||
175 			    r1bio->bios[j]->bi_io_vec[i].bv_page !=
176 			    r1bio->bios[0]->bi_io_vec[i].bv_page)
177 				safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
178 		}
179 	for (i=0 ; i < pi->raid_disks; i++)
180 		bio_put(r1bio->bios[i]);
181 
182 	r1bio_pool_free(r1bio, data);
183 }
184 
185 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
186 {
187 	int i;
188 
189 	for (i = 0; i < conf->raid_disks * 2; i++) {
190 		struct bio **bio = r1_bio->bios + i;
191 		if (!BIO_SPECIAL(*bio))
192 			bio_put(*bio);
193 		*bio = NULL;
194 	}
195 }
196 
197 static void free_r1bio(struct r1bio *r1_bio)
198 {
199 	struct r1conf *conf = r1_bio->mddev->private;
200 
201 	put_all_bios(conf, r1_bio);
202 	mempool_free(r1_bio, conf->r1bio_pool);
203 }
204 
205 static void put_buf(struct r1bio *r1_bio)
206 {
207 	struct r1conf *conf = r1_bio->mddev->private;
208 	int i;
209 
210 	for (i = 0; i < conf->raid_disks * 2; i++) {
211 		struct bio *bio = r1_bio->bios[i];
212 		if (bio->bi_end_io)
213 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
214 	}
215 
216 	mempool_free(r1_bio, conf->r1buf_pool);
217 
218 	lower_barrier(conf);
219 }
220 
221 static void reschedule_retry(struct r1bio *r1_bio)
222 {
223 	unsigned long flags;
224 	struct mddev *mddev = r1_bio->mddev;
225 	struct r1conf *conf = mddev->private;
226 
227 	spin_lock_irqsave(&conf->device_lock, flags);
228 	list_add(&r1_bio->retry_list, &conf->retry_list);
229 	conf->nr_queued ++;
230 	spin_unlock_irqrestore(&conf->device_lock, flags);
231 
232 	wake_up(&conf->wait_barrier);
233 	md_wakeup_thread(mddev->thread);
234 }
235 
236 /*
237  * raid_end_bio_io() is called when we have finished servicing a mirrored
238  * operation and are ready to return a success/failure code to the buffer
239  * cache layer.
240  */
241 static void call_bio_endio(struct r1bio *r1_bio)
242 {
243 	struct bio *bio = r1_bio->master_bio;
244 	int done;
245 	struct r1conf *conf = r1_bio->mddev->private;
246 	sector_t start_next_window = r1_bio->start_next_window;
247 	sector_t bi_sector = bio->bi_iter.bi_sector;
248 
249 	if (bio->bi_phys_segments) {
250 		unsigned long flags;
251 		spin_lock_irqsave(&conf->device_lock, flags);
252 		bio->bi_phys_segments--;
253 		done = (bio->bi_phys_segments == 0);
254 		spin_unlock_irqrestore(&conf->device_lock, flags);
255 		/*
256 		 * make_request() might be waiting for
257 		 * bi_phys_segments to decrease
258 		 */
259 		wake_up(&conf->wait_barrier);
260 	} else
261 		done = 1;
262 
263 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
264 		bio->bi_error = -EIO;
265 
266 	if (done) {
267 		bio_endio(bio);
268 		/*
269 		 * Wake up any possible resync thread that waits for the device
270 		 * to go idle.
271 		 */
272 		allow_barrier(conf, start_next_window, bi_sector);
273 	}
274 }
275 
276 static void raid_end_bio_io(struct r1bio *r1_bio)
277 {
278 	struct bio *bio = r1_bio->master_bio;
279 
280 	/* if nobody has done the final endio yet, do it now */
281 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
282 		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
283 			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
284 			 (unsigned long long) bio->bi_iter.bi_sector,
285 			 (unsigned long long) bio_end_sector(bio) - 1);
286 
287 		call_bio_endio(r1_bio);
288 	}
289 	free_r1bio(r1_bio);
290 }
291 
292 /*
293  * Update disk head position estimator based on IRQ completion info.
294  */
295 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
296 {
297 	struct r1conf *conf = r1_bio->mddev->private;
298 
299 	conf->mirrors[disk].head_position =
300 		r1_bio->sector + (r1_bio->sectors);
301 }
302 
303 /*
304  * Find the disk number which triggered given bio
305  */
306 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
307 {
308 	int mirror;
309 	struct r1conf *conf = r1_bio->mddev->private;
310 	int raid_disks = conf->raid_disks;
311 
312 	for (mirror = 0; mirror < raid_disks * 2; mirror++)
313 		if (r1_bio->bios[mirror] == bio)
314 			break;
315 
316 	BUG_ON(mirror == raid_disks * 2);
317 	update_head_pos(mirror, r1_bio);
318 
319 	return mirror;
320 }
321 
322 static void raid1_end_read_request(struct bio *bio)
323 {
324 	int uptodate = !bio->bi_error;
325 	struct r1bio *r1_bio = bio->bi_private;
326 	struct r1conf *conf = r1_bio->mddev->private;
327 	struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
328 
329 	/*
330 	 * this branch is our 'one mirror IO has finished' event handler:
331 	 */
332 	update_head_pos(r1_bio->read_disk, r1_bio);
333 
334 	if (uptodate)
335 		set_bit(R1BIO_Uptodate, &r1_bio->state);
336 	else if (test_bit(FailFast, &rdev->flags) &&
337 		 test_bit(R1BIO_FailFast, &r1_bio->state))
338 		/* This was a fail-fast read so we definitely
339 		 * want to retry */
340 		;
341 	else {
342 		/* If all other devices have failed, we want to return
343 		 * the error upwards rather than fail the last device.
344 		 * Here we redefine "uptodate" to mean "Don't want to retry"
345 		 */
346 		unsigned long flags;
347 		spin_lock_irqsave(&conf->device_lock, flags);
348 		if (r1_bio->mddev->degraded == conf->raid_disks ||
349 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
350 		     test_bit(In_sync, &rdev->flags)))
351 			uptodate = 1;
352 		spin_unlock_irqrestore(&conf->device_lock, flags);
353 	}
354 
355 	if (uptodate) {
356 		raid_end_bio_io(r1_bio);
357 		rdev_dec_pending(rdev, conf->mddev);
358 	} else {
359 		/*
360 		 * oops, read error:
361 		 */
362 		char b[BDEVNAME_SIZE];
363 		pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
364 				   mdname(conf->mddev),
365 				   bdevname(rdev->bdev, b),
366 				   (unsigned long long)r1_bio->sector);
367 		set_bit(R1BIO_ReadError, &r1_bio->state);
368 		reschedule_retry(r1_bio);
369 		/* don't drop the reference on read_disk yet */
370 	}
371 }
372 
373 static void close_write(struct r1bio *r1_bio)
374 {
375 	/* it really is the end of this request */
376 	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
377 		/* free extra copy of the data pages */
378 		int i = r1_bio->behind_page_count;
379 		while (i--)
380 			safe_put_page(r1_bio->behind_bvecs[i].bv_page);
381 		kfree(r1_bio->behind_bvecs);
382 		r1_bio->behind_bvecs = NULL;
383 	}
384 	/* clear the bitmap if all writes complete successfully */
385 	bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
386 			r1_bio->sectors,
387 			!test_bit(R1BIO_Degraded, &r1_bio->state),
388 			test_bit(R1BIO_BehindIO, &r1_bio->state));
389 	md_write_end(r1_bio->mddev);
390 }
391 
392 static void r1_bio_write_done(struct r1bio *r1_bio)
393 {
394 	if (!atomic_dec_and_test(&r1_bio->remaining))
395 		return;
396 
397 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
398 		reschedule_retry(r1_bio);
399 	else {
400 		close_write(r1_bio);
401 		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
402 			reschedule_retry(r1_bio);
403 		else
404 			raid_end_bio_io(r1_bio);
405 	}
406 }
407 
408 static void raid1_end_write_request(struct bio *bio)
409 {
410 	struct r1bio *r1_bio = bio->bi_private;
411 	int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
412 	struct r1conf *conf = r1_bio->mddev->private;
413 	struct bio *to_put = NULL;
414 	int mirror = find_bio_disk(r1_bio, bio);
415 	struct md_rdev *rdev = conf->mirrors[mirror].rdev;
416 	bool discard_error;
417 
418 	discard_error = bio->bi_error && bio_op(bio) == REQ_OP_DISCARD;
419 
420 	/*
421 	 * 'one mirror IO has finished' event handler:
422 	 */
423 	if (bio->bi_error && !discard_error) {
424 		set_bit(WriteErrorSeen,	&rdev->flags);
425 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
426 			set_bit(MD_RECOVERY_NEEDED, &
427 				conf->mddev->recovery);
428 
429 		if (test_bit(FailFast, &rdev->flags) &&
430 		    (bio->bi_opf & MD_FAILFAST) &&
431 		    /* We never try FailFast to WriteMostly devices */
432 		    !test_bit(WriteMostly, &rdev->flags)) {
433 			md_error(r1_bio->mddev, rdev);
434 			if (!test_bit(Faulty, &rdev->flags))
435 				/* This is the only remaining device,
436 				 * We need to retry the write without
437 				 * FailFast
438 				 */
439 				set_bit(R1BIO_WriteError, &r1_bio->state);
440 			else {
441 				/* Finished with this branch */
442 				r1_bio->bios[mirror] = NULL;
443 				to_put = bio;
444 			}
445 		} else
446 			set_bit(R1BIO_WriteError, &r1_bio->state);
447 	} else {
448 		/*
449 		 * Set R1BIO_Uptodate in our master bio, so that we
450 		 * will return a good error code for to the higher
451 		 * levels even if IO on some other mirrored buffer
452 		 * fails.
453 		 *
454 		 * The 'master' represents the composite IO operation
455 		 * to user-side. So if something waits for IO, then it
456 		 * will wait for the 'master' bio.
457 		 */
458 		sector_t first_bad;
459 		int bad_sectors;
460 
461 		r1_bio->bios[mirror] = NULL;
462 		to_put = bio;
463 		/*
464 		 * Do not set R1BIO_Uptodate if the current device is
465 		 * rebuilding or Faulty. This is because we cannot use
466 		 * such device for properly reading the data back (we could
467 		 * potentially use it, if the current write would have felt
468 		 * before rdev->recovery_offset, but for simplicity we don't
469 		 * check this here.
470 		 */
471 		if (test_bit(In_sync, &rdev->flags) &&
472 		    !test_bit(Faulty, &rdev->flags))
473 			set_bit(R1BIO_Uptodate, &r1_bio->state);
474 
475 		/* Maybe we can clear some bad blocks. */
476 		if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
477 				&first_bad, &bad_sectors) && !discard_error) {
478 			r1_bio->bios[mirror] = IO_MADE_GOOD;
479 			set_bit(R1BIO_MadeGood, &r1_bio->state);
480 		}
481 	}
482 
483 	if (behind) {
484 		if (test_bit(WriteMostly, &rdev->flags))
485 			atomic_dec(&r1_bio->behind_remaining);
486 
487 		/*
488 		 * In behind mode, we ACK the master bio once the I/O
489 		 * has safely reached all non-writemostly
490 		 * disks. Setting the Returned bit ensures that this
491 		 * gets done only once -- we don't ever want to return
492 		 * -EIO here, instead we'll wait
493 		 */
494 		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
495 		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
496 			/* Maybe we can return now */
497 			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
498 				struct bio *mbio = r1_bio->master_bio;
499 				pr_debug("raid1: behind end write sectors"
500 					 " %llu-%llu\n",
501 					 (unsigned long long) mbio->bi_iter.bi_sector,
502 					 (unsigned long long) bio_end_sector(mbio) - 1);
503 				call_bio_endio(r1_bio);
504 			}
505 		}
506 	}
507 	if (r1_bio->bios[mirror] == NULL)
508 		rdev_dec_pending(rdev, conf->mddev);
509 
510 	/*
511 	 * Let's see if all mirrored write operations have finished
512 	 * already.
513 	 */
514 	r1_bio_write_done(r1_bio);
515 
516 	if (to_put)
517 		bio_put(to_put);
518 }
519 
520 /*
521  * This routine returns the disk from which the requested read should
522  * be done. There is a per-array 'next expected sequential IO' sector
523  * number - if this matches on the next IO then we use the last disk.
524  * There is also a per-disk 'last know head position' sector that is
525  * maintained from IRQ contexts, both the normal and the resync IO
526  * completion handlers update this position correctly. If there is no
527  * perfect sequential match then we pick the disk whose head is closest.
528  *
529  * If there are 2 mirrors in the same 2 devices, performance degrades
530  * because position is mirror, not device based.
531  *
532  * The rdev for the device selected will have nr_pending incremented.
533  */
534 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
535 {
536 	const sector_t this_sector = r1_bio->sector;
537 	int sectors;
538 	int best_good_sectors;
539 	int best_disk, best_dist_disk, best_pending_disk;
540 	int has_nonrot_disk;
541 	int disk;
542 	sector_t best_dist;
543 	unsigned int min_pending;
544 	struct md_rdev *rdev;
545 	int choose_first;
546 	int choose_next_idle;
547 
548 	rcu_read_lock();
549 	/*
550 	 * Check if we can balance. We can balance on the whole
551 	 * device if no resync is going on, or below the resync window.
552 	 * We take the first readable disk when above the resync window.
553 	 */
554  retry:
555 	sectors = r1_bio->sectors;
556 	best_disk = -1;
557 	best_dist_disk = -1;
558 	best_dist = MaxSector;
559 	best_pending_disk = -1;
560 	min_pending = UINT_MAX;
561 	best_good_sectors = 0;
562 	has_nonrot_disk = 0;
563 	choose_next_idle = 0;
564 	clear_bit(R1BIO_FailFast, &r1_bio->state);
565 
566 	if ((conf->mddev->recovery_cp < this_sector + sectors) ||
567 	    (mddev_is_clustered(conf->mddev) &&
568 	    md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
569 		    this_sector + sectors)))
570 		choose_first = 1;
571 	else
572 		choose_first = 0;
573 
574 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
575 		sector_t dist;
576 		sector_t first_bad;
577 		int bad_sectors;
578 		unsigned int pending;
579 		bool nonrot;
580 
581 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
582 		if (r1_bio->bios[disk] == IO_BLOCKED
583 		    || rdev == NULL
584 		    || test_bit(Faulty, &rdev->flags))
585 			continue;
586 		if (!test_bit(In_sync, &rdev->flags) &&
587 		    rdev->recovery_offset < this_sector + sectors)
588 			continue;
589 		if (test_bit(WriteMostly, &rdev->flags)) {
590 			/* Don't balance among write-mostly, just
591 			 * use the first as a last resort */
592 			if (best_dist_disk < 0) {
593 				if (is_badblock(rdev, this_sector, sectors,
594 						&first_bad, &bad_sectors)) {
595 					if (first_bad <= this_sector)
596 						/* Cannot use this */
597 						continue;
598 					best_good_sectors = first_bad - this_sector;
599 				} else
600 					best_good_sectors = sectors;
601 				best_dist_disk = disk;
602 				best_pending_disk = disk;
603 			}
604 			continue;
605 		}
606 		/* This is a reasonable device to use.  It might
607 		 * even be best.
608 		 */
609 		if (is_badblock(rdev, this_sector, sectors,
610 				&first_bad, &bad_sectors)) {
611 			if (best_dist < MaxSector)
612 				/* already have a better device */
613 				continue;
614 			if (first_bad <= this_sector) {
615 				/* cannot read here. If this is the 'primary'
616 				 * device, then we must not read beyond
617 				 * bad_sectors from another device..
618 				 */
619 				bad_sectors -= (this_sector - first_bad);
620 				if (choose_first && sectors > bad_sectors)
621 					sectors = bad_sectors;
622 				if (best_good_sectors > sectors)
623 					best_good_sectors = sectors;
624 
625 			} else {
626 				sector_t good_sectors = first_bad - this_sector;
627 				if (good_sectors > best_good_sectors) {
628 					best_good_sectors = good_sectors;
629 					best_disk = disk;
630 				}
631 				if (choose_first)
632 					break;
633 			}
634 			continue;
635 		} else
636 			best_good_sectors = sectors;
637 
638 		if (best_disk >= 0)
639 			/* At least two disks to choose from so failfast is OK */
640 			set_bit(R1BIO_FailFast, &r1_bio->state);
641 
642 		nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
643 		has_nonrot_disk |= nonrot;
644 		pending = atomic_read(&rdev->nr_pending);
645 		dist = abs(this_sector - conf->mirrors[disk].head_position);
646 		if (choose_first) {
647 			best_disk = disk;
648 			break;
649 		}
650 		/* Don't change to another disk for sequential reads */
651 		if (conf->mirrors[disk].next_seq_sect == this_sector
652 		    || dist == 0) {
653 			int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
654 			struct raid1_info *mirror = &conf->mirrors[disk];
655 
656 			best_disk = disk;
657 			/*
658 			 * If buffered sequential IO size exceeds optimal
659 			 * iosize, check if there is idle disk. If yes, choose
660 			 * the idle disk. read_balance could already choose an
661 			 * idle disk before noticing it's a sequential IO in
662 			 * this disk. This doesn't matter because this disk
663 			 * will idle, next time it will be utilized after the
664 			 * first disk has IO size exceeds optimal iosize. In
665 			 * this way, iosize of the first disk will be optimal
666 			 * iosize at least. iosize of the second disk might be
667 			 * small, but not a big deal since when the second disk
668 			 * starts IO, the first disk is likely still busy.
669 			 */
670 			if (nonrot && opt_iosize > 0 &&
671 			    mirror->seq_start != MaxSector &&
672 			    mirror->next_seq_sect > opt_iosize &&
673 			    mirror->next_seq_sect - opt_iosize >=
674 			    mirror->seq_start) {
675 				choose_next_idle = 1;
676 				continue;
677 			}
678 			break;
679 		}
680 
681 		if (choose_next_idle)
682 			continue;
683 
684 		if (min_pending > pending) {
685 			min_pending = pending;
686 			best_pending_disk = disk;
687 		}
688 
689 		if (dist < best_dist) {
690 			best_dist = dist;
691 			best_dist_disk = disk;
692 		}
693 	}
694 
695 	/*
696 	 * If all disks are rotational, choose the closest disk. If any disk is
697 	 * non-rotational, choose the disk with less pending request even the
698 	 * disk is rotational, which might/might not be optimal for raids with
699 	 * mixed ratation/non-rotational disks depending on workload.
700 	 */
701 	if (best_disk == -1) {
702 		if (has_nonrot_disk || min_pending == 0)
703 			best_disk = best_pending_disk;
704 		else
705 			best_disk = best_dist_disk;
706 	}
707 
708 	if (best_disk >= 0) {
709 		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
710 		if (!rdev)
711 			goto retry;
712 		atomic_inc(&rdev->nr_pending);
713 		sectors = best_good_sectors;
714 
715 		if (conf->mirrors[best_disk].next_seq_sect != this_sector)
716 			conf->mirrors[best_disk].seq_start = this_sector;
717 
718 		conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
719 	}
720 	rcu_read_unlock();
721 	*max_sectors = sectors;
722 
723 	return best_disk;
724 }
725 
726 static int raid1_congested(struct mddev *mddev, int bits)
727 {
728 	struct r1conf *conf = mddev->private;
729 	int i, ret = 0;
730 
731 	if ((bits & (1 << WB_async_congested)) &&
732 	    conf->pending_count >= max_queued_requests)
733 		return 1;
734 
735 	rcu_read_lock();
736 	for (i = 0; i < conf->raid_disks * 2; i++) {
737 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
738 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
739 			struct request_queue *q = bdev_get_queue(rdev->bdev);
740 
741 			BUG_ON(!q);
742 
743 			/* Note the '|| 1' - when read_balance prefers
744 			 * non-congested targets, it can be removed
745 			 */
746 			if ((bits & (1 << WB_async_congested)) || 1)
747 				ret |= bdi_congested(&q->backing_dev_info, bits);
748 			else
749 				ret &= bdi_congested(&q->backing_dev_info, bits);
750 		}
751 	}
752 	rcu_read_unlock();
753 	return ret;
754 }
755 
756 static void flush_pending_writes(struct r1conf *conf)
757 {
758 	/* Any writes that have been queued but are awaiting
759 	 * bitmap updates get flushed here.
760 	 */
761 	spin_lock_irq(&conf->device_lock);
762 
763 	if (conf->pending_bio_list.head) {
764 		struct bio *bio;
765 		bio = bio_list_get(&conf->pending_bio_list);
766 		conf->pending_count = 0;
767 		spin_unlock_irq(&conf->device_lock);
768 		/* flush any pending bitmap writes to
769 		 * disk before proceeding w/ I/O */
770 		bitmap_unplug(conf->mddev->bitmap);
771 		wake_up(&conf->wait_barrier);
772 
773 		while (bio) { /* submit pending writes */
774 			struct bio *next = bio->bi_next;
775 			struct md_rdev *rdev = (void*)bio->bi_bdev;
776 			bio->bi_next = NULL;
777 			bio->bi_bdev = rdev->bdev;
778 			if (test_bit(Faulty, &rdev->flags)) {
779 				bio->bi_error = -EIO;
780 				bio_endio(bio);
781 			} else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
782 					    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
783 				/* Just ignore it */
784 				bio_endio(bio);
785 			else
786 				generic_make_request(bio);
787 			bio = next;
788 		}
789 	} else
790 		spin_unlock_irq(&conf->device_lock);
791 }
792 
793 /* Barriers....
794  * Sometimes we need to suspend IO while we do something else,
795  * either some resync/recovery, or reconfigure the array.
796  * To do this we raise a 'barrier'.
797  * The 'barrier' is a counter that can be raised multiple times
798  * to count how many activities are happening which preclude
799  * normal IO.
800  * We can only raise the barrier if there is no pending IO.
801  * i.e. if nr_pending == 0.
802  * We choose only to raise the barrier if no-one is waiting for the
803  * barrier to go down.  This means that as soon as an IO request
804  * is ready, no other operations which require a barrier will start
805  * until the IO request has had a chance.
806  *
807  * So: regular IO calls 'wait_barrier'.  When that returns there
808  *    is no backgroup IO happening,  It must arrange to call
809  *    allow_barrier when it has finished its IO.
810  * backgroup IO calls must call raise_barrier.  Once that returns
811  *    there is no normal IO happeing.  It must arrange to call
812  *    lower_barrier when the particular background IO completes.
813  */
814 static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
815 {
816 	spin_lock_irq(&conf->resync_lock);
817 
818 	/* Wait until no block IO is waiting */
819 	wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
820 			    conf->resync_lock);
821 
822 	/* block any new IO from starting */
823 	conf->barrier++;
824 	conf->next_resync = sector_nr;
825 
826 	/* For these conditions we must wait:
827 	 * A: while the array is in frozen state
828 	 * B: while barrier >= RESYNC_DEPTH, meaning resync reach
829 	 *    the max count which allowed.
830 	 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
831 	 *    next resync will reach to the window which normal bios are
832 	 *    handling.
833 	 * D: while there are any active requests in the current window.
834 	 */
835 	wait_event_lock_irq(conf->wait_barrier,
836 			    !conf->array_frozen &&
837 			    conf->barrier < RESYNC_DEPTH &&
838 			    conf->current_window_requests == 0 &&
839 			    (conf->start_next_window >=
840 			     conf->next_resync + RESYNC_SECTORS),
841 			    conf->resync_lock);
842 
843 	conf->nr_pending++;
844 	spin_unlock_irq(&conf->resync_lock);
845 }
846 
847 static void lower_barrier(struct r1conf *conf)
848 {
849 	unsigned long flags;
850 	BUG_ON(conf->barrier <= 0);
851 	spin_lock_irqsave(&conf->resync_lock, flags);
852 	conf->barrier--;
853 	conf->nr_pending--;
854 	spin_unlock_irqrestore(&conf->resync_lock, flags);
855 	wake_up(&conf->wait_barrier);
856 }
857 
858 static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
859 {
860 	bool wait = false;
861 
862 	if (conf->array_frozen || !bio)
863 		wait = true;
864 	else if (conf->barrier && bio_data_dir(bio) == WRITE) {
865 		if ((conf->mddev->curr_resync_completed
866 		     >= bio_end_sector(bio)) ||
867 		    (conf->start_next_window + NEXT_NORMALIO_DISTANCE
868 		     <= bio->bi_iter.bi_sector))
869 			wait = false;
870 		else
871 			wait = true;
872 	}
873 
874 	return wait;
875 }
876 
877 static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
878 {
879 	sector_t sector = 0;
880 
881 	spin_lock_irq(&conf->resync_lock);
882 	if (need_to_wait_for_sync(conf, bio)) {
883 		conf->nr_waiting++;
884 		/* Wait for the barrier to drop.
885 		 * However if there are already pending
886 		 * requests (preventing the barrier from
887 		 * rising completely), and the
888 		 * per-process bio queue isn't empty,
889 		 * then don't wait, as we need to empty
890 		 * that queue to allow conf->start_next_window
891 		 * to increase.
892 		 */
893 		raid1_log(conf->mddev, "wait barrier");
894 		wait_event_lock_irq(conf->wait_barrier,
895 				    !conf->array_frozen &&
896 				    (!conf->barrier ||
897 				     ((conf->start_next_window <
898 				       conf->next_resync + RESYNC_SECTORS) &&
899 				      current->bio_list &&
900 				      !bio_list_empty(current->bio_list))),
901 				    conf->resync_lock);
902 		conf->nr_waiting--;
903 	}
904 
905 	if (bio && bio_data_dir(bio) == WRITE) {
906 		if (bio->bi_iter.bi_sector >= conf->next_resync) {
907 			if (conf->start_next_window == MaxSector)
908 				conf->start_next_window =
909 					conf->next_resync +
910 					NEXT_NORMALIO_DISTANCE;
911 
912 			if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
913 			    <= bio->bi_iter.bi_sector)
914 				conf->next_window_requests++;
915 			else
916 				conf->current_window_requests++;
917 			sector = conf->start_next_window;
918 		}
919 	}
920 
921 	conf->nr_pending++;
922 	spin_unlock_irq(&conf->resync_lock);
923 	return sector;
924 }
925 
926 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
927 			  sector_t bi_sector)
928 {
929 	unsigned long flags;
930 
931 	spin_lock_irqsave(&conf->resync_lock, flags);
932 	conf->nr_pending--;
933 	if (start_next_window) {
934 		if (start_next_window == conf->start_next_window) {
935 			if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
936 			    <= bi_sector)
937 				conf->next_window_requests--;
938 			else
939 				conf->current_window_requests--;
940 		} else
941 			conf->current_window_requests--;
942 
943 		if (!conf->current_window_requests) {
944 			if (conf->next_window_requests) {
945 				conf->current_window_requests =
946 					conf->next_window_requests;
947 				conf->next_window_requests = 0;
948 				conf->start_next_window +=
949 					NEXT_NORMALIO_DISTANCE;
950 			} else
951 				conf->start_next_window = MaxSector;
952 		}
953 	}
954 	spin_unlock_irqrestore(&conf->resync_lock, flags);
955 	wake_up(&conf->wait_barrier);
956 }
957 
958 static void freeze_array(struct r1conf *conf, int extra)
959 {
960 	/* stop syncio and normal IO and wait for everything to
961 	 * go quite.
962 	 * We wait until nr_pending match nr_queued+extra
963 	 * This is called in the context of one normal IO request
964 	 * that has failed. Thus any sync request that might be pending
965 	 * will be blocked by nr_pending, and we need to wait for
966 	 * pending IO requests to complete or be queued for re-try.
967 	 * Thus the number queued (nr_queued) plus this request (extra)
968 	 * must match the number of pending IOs (nr_pending) before
969 	 * we continue.
970 	 */
971 	spin_lock_irq(&conf->resync_lock);
972 	conf->array_frozen = 1;
973 	raid1_log(conf->mddev, "wait freeze");
974 	wait_event_lock_irq_cmd(conf->wait_barrier,
975 				conf->nr_pending == conf->nr_queued+extra,
976 				conf->resync_lock,
977 				flush_pending_writes(conf));
978 	spin_unlock_irq(&conf->resync_lock);
979 }
980 static void unfreeze_array(struct r1conf *conf)
981 {
982 	/* reverse the effect of the freeze */
983 	spin_lock_irq(&conf->resync_lock);
984 	conf->array_frozen = 0;
985 	wake_up(&conf->wait_barrier);
986 	spin_unlock_irq(&conf->resync_lock);
987 }
988 
989 /* duplicate the data pages for behind I/O
990  */
991 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
992 {
993 	int i;
994 	struct bio_vec *bvec;
995 	struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
996 					GFP_NOIO);
997 	if (unlikely(!bvecs))
998 		return;
999 
1000 	bio_for_each_segment_all(bvec, bio, i) {
1001 		bvecs[i] = *bvec;
1002 		bvecs[i].bv_page = alloc_page(GFP_NOIO);
1003 		if (unlikely(!bvecs[i].bv_page))
1004 			goto do_sync_io;
1005 		memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
1006 		       kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
1007 		kunmap(bvecs[i].bv_page);
1008 		kunmap(bvec->bv_page);
1009 	}
1010 	r1_bio->behind_bvecs = bvecs;
1011 	r1_bio->behind_page_count = bio->bi_vcnt;
1012 	set_bit(R1BIO_BehindIO, &r1_bio->state);
1013 	return;
1014 
1015 do_sync_io:
1016 	for (i = 0; i < bio->bi_vcnt; i++)
1017 		if (bvecs[i].bv_page)
1018 			put_page(bvecs[i].bv_page);
1019 	kfree(bvecs);
1020 	pr_debug("%dB behind alloc failed, doing sync I/O\n",
1021 		 bio->bi_iter.bi_size);
1022 }
1023 
1024 struct raid1_plug_cb {
1025 	struct blk_plug_cb	cb;
1026 	struct bio_list		pending;
1027 	int			pending_cnt;
1028 };
1029 
1030 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1031 {
1032 	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1033 						  cb);
1034 	struct mddev *mddev = plug->cb.data;
1035 	struct r1conf *conf = mddev->private;
1036 	struct bio *bio;
1037 
1038 	if (from_schedule || current->bio_list) {
1039 		spin_lock_irq(&conf->device_lock);
1040 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1041 		conf->pending_count += plug->pending_cnt;
1042 		spin_unlock_irq(&conf->device_lock);
1043 		wake_up(&conf->wait_barrier);
1044 		md_wakeup_thread(mddev->thread);
1045 		kfree(plug);
1046 		return;
1047 	}
1048 
1049 	/* we aren't scheduling, so we can do the write-out directly. */
1050 	bio = bio_list_get(&plug->pending);
1051 	bitmap_unplug(mddev->bitmap);
1052 	wake_up(&conf->wait_barrier);
1053 
1054 	while (bio) { /* submit pending writes */
1055 		struct bio *next = bio->bi_next;
1056 		struct md_rdev *rdev = (void*)bio->bi_bdev;
1057 		bio->bi_next = NULL;
1058 		bio->bi_bdev = rdev->bdev;
1059 		if (test_bit(Faulty, &rdev->flags)) {
1060 			bio->bi_error = -EIO;
1061 			bio_endio(bio);
1062 		} else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
1063 				    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1064 			/* Just ignore it */
1065 			bio_endio(bio);
1066 		else
1067 			generic_make_request(bio);
1068 		bio = next;
1069 	}
1070 	kfree(plug);
1071 }
1072 
1073 static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1074 				 struct r1bio *r1_bio)
1075 {
1076 	struct r1conf *conf = mddev->private;
1077 	struct raid1_info *mirror;
1078 	struct bio *read_bio;
1079 	struct bitmap *bitmap = mddev->bitmap;
1080 	const int op = bio_op(bio);
1081 	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1082 	int sectors_handled;
1083 	int max_sectors;
1084 	int rdisk;
1085 
1086 	wait_barrier(conf, bio);
1087 
1088 read_again:
1089 	rdisk = read_balance(conf, r1_bio, &max_sectors);
1090 
1091 	if (rdisk < 0) {
1092 		/* couldn't find anywhere to read from */
1093 		raid_end_bio_io(r1_bio);
1094 		return;
1095 	}
1096 	mirror = conf->mirrors + rdisk;
1097 
1098 	if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1099 	    bitmap) {
1100 		/*
1101 		 * Reading from a write-mostly device must take care not to
1102 		 * over-take any writes that are 'behind'
1103 		 */
1104 		raid1_log(mddev, "wait behind writes");
1105 		wait_event(bitmap->behind_wait,
1106 			   atomic_read(&bitmap->behind_writes) == 0);
1107 	}
1108 	r1_bio->read_disk = rdisk;
1109 	r1_bio->start_next_window = 0;
1110 
1111 	read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1112 	bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1113 		 max_sectors);
1114 
1115 	r1_bio->bios[rdisk] = read_bio;
1116 
1117 	read_bio->bi_iter.bi_sector = r1_bio->sector +
1118 		mirror->rdev->data_offset;
1119 	read_bio->bi_bdev = mirror->rdev->bdev;
1120 	read_bio->bi_end_io = raid1_end_read_request;
1121 	bio_set_op_attrs(read_bio, op, do_sync);
1122 	if (test_bit(FailFast, &mirror->rdev->flags) &&
1123 	    test_bit(R1BIO_FailFast, &r1_bio->state))
1124 	        read_bio->bi_opf |= MD_FAILFAST;
1125 	read_bio->bi_private = r1_bio;
1126 
1127 	if (mddev->gendisk)
1128 	        trace_block_bio_remap(bdev_get_queue(read_bio->bi_bdev),
1129 	                              read_bio, disk_devt(mddev->gendisk),
1130 	                              r1_bio->sector);
1131 
1132 	if (max_sectors < r1_bio->sectors) {
1133 		/*
1134 		 * could not read all from this device, so we will need another
1135 		 * r1_bio.
1136 		 */
1137 		sectors_handled = (r1_bio->sector + max_sectors
1138 				   - bio->bi_iter.bi_sector);
1139 		r1_bio->sectors = max_sectors;
1140 		spin_lock_irq(&conf->device_lock);
1141 		if (bio->bi_phys_segments == 0)
1142 			bio->bi_phys_segments = 2;
1143 		else
1144 			bio->bi_phys_segments++;
1145 		spin_unlock_irq(&conf->device_lock);
1146 
1147 		/*
1148 		 * Cannot call generic_make_request directly as that will be
1149 		 * queued in __make_request and subsequent mempool_alloc might
1150 		 * block waiting for it.  So hand bio over to raid1d.
1151 		 */
1152 		reschedule_retry(r1_bio);
1153 
1154 		r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1155 
1156 		r1_bio->master_bio = bio;
1157 		r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1158 		r1_bio->state = 0;
1159 		r1_bio->mddev = mddev;
1160 		r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1161 		goto read_again;
1162 	} else
1163 		generic_make_request(read_bio);
1164 }
1165 
1166 static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1167 				struct r1bio *r1_bio)
1168 {
1169 	struct r1conf *conf = mddev->private;
1170 	int i, disks;
1171 	struct bitmap *bitmap = mddev->bitmap;
1172 	unsigned long flags;
1173 	struct md_rdev *blocked_rdev;
1174 	struct blk_plug_cb *cb;
1175 	struct raid1_plug_cb *plug = NULL;
1176 	int first_clone;
1177 	int sectors_handled;
1178 	int max_sectors;
1179 	sector_t start_next_window;
1180 
1181 	/*
1182 	 * Register the new request and wait if the reconstruction
1183 	 * thread has put up a bar for new requests.
1184 	 * Continue immediately if no resync is active currently.
1185 	 */
1186 
1187 	md_write_start(mddev, bio); /* wait on superblock update early */
1188 
1189 	if ((bio_end_sector(bio) > mddev->suspend_lo &&
1190 	    bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1191 	    (mddev_is_clustered(mddev) &&
1192 	     md_cluster_ops->area_resyncing(mddev, WRITE,
1193 		     bio->bi_iter.bi_sector, bio_end_sector(bio)))) {
1194 
1195 		/*
1196 		 * As the suspend_* range is controlled by userspace, we want
1197 		 * an interruptible wait.
1198 		 */
1199 		DEFINE_WAIT(w);
1200 		for (;;) {
1201 			flush_signals(current);
1202 			prepare_to_wait(&conf->wait_barrier,
1203 					&w, TASK_INTERRUPTIBLE);
1204 			if (bio_end_sector(bio) <= mddev->suspend_lo ||
1205 			    bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1206 			    (mddev_is_clustered(mddev) &&
1207 			     !md_cluster_ops->area_resyncing(mddev, WRITE,
1208 				     bio->bi_iter.bi_sector,
1209 				     bio_end_sector(bio))))
1210 				break;
1211 			schedule();
1212 		}
1213 		finish_wait(&conf->wait_barrier, &w);
1214 	}
1215 	start_next_window = wait_barrier(conf, bio);
1216 
1217 	if (conf->pending_count >= max_queued_requests) {
1218 		md_wakeup_thread(mddev->thread);
1219 		raid1_log(mddev, "wait queued");
1220 		wait_event(conf->wait_barrier,
1221 			   conf->pending_count < max_queued_requests);
1222 	}
1223 	/* first select target devices under rcu_lock and
1224 	 * inc refcount on their rdev.  Record them by setting
1225 	 * bios[x] to bio
1226 	 * If there are known/acknowledged bad blocks on any device on
1227 	 * which we have seen a write error, we want to avoid writing those
1228 	 * blocks.
1229 	 * This potentially requires several writes to write around
1230 	 * the bad blocks.  Each set of writes gets it's own r1bio
1231 	 * with a set of bios attached.
1232 	 */
1233 
1234 	disks = conf->raid_disks * 2;
1235  retry_write:
1236 	r1_bio->start_next_window = start_next_window;
1237 	blocked_rdev = NULL;
1238 	rcu_read_lock();
1239 	max_sectors = r1_bio->sectors;
1240 	for (i = 0;  i < disks; i++) {
1241 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1242 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1243 			atomic_inc(&rdev->nr_pending);
1244 			blocked_rdev = rdev;
1245 			break;
1246 		}
1247 		r1_bio->bios[i] = NULL;
1248 		if (!rdev || test_bit(Faulty, &rdev->flags)) {
1249 			if (i < conf->raid_disks)
1250 				set_bit(R1BIO_Degraded, &r1_bio->state);
1251 			continue;
1252 		}
1253 
1254 		atomic_inc(&rdev->nr_pending);
1255 		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1256 			sector_t first_bad;
1257 			int bad_sectors;
1258 			int is_bad;
1259 
1260 			is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1261 					     &first_bad, &bad_sectors);
1262 			if (is_bad < 0) {
1263 				/* mustn't write here until the bad block is
1264 				 * acknowledged*/
1265 				set_bit(BlockedBadBlocks, &rdev->flags);
1266 				blocked_rdev = rdev;
1267 				break;
1268 			}
1269 			if (is_bad && first_bad <= r1_bio->sector) {
1270 				/* Cannot write here at all */
1271 				bad_sectors -= (r1_bio->sector - first_bad);
1272 				if (bad_sectors < max_sectors)
1273 					/* mustn't write more than bad_sectors
1274 					 * to other devices yet
1275 					 */
1276 					max_sectors = bad_sectors;
1277 				rdev_dec_pending(rdev, mddev);
1278 				/* We don't set R1BIO_Degraded as that
1279 				 * only applies if the disk is
1280 				 * missing, so it might be re-added,
1281 				 * and we want to know to recover this
1282 				 * chunk.
1283 				 * In this case the device is here,
1284 				 * and the fact that this chunk is not
1285 				 * in-sync is recorded in the bad
1286 				 * block log
1287 				 */
1288 				continue;
1289 			}
1290 			if (is_bad) {
1291 				int good_sectors = first_bad - r1_bio->sector;
1292 				if (good_sectors < max_sectors)
1293 					max_sectors = good_sectors;
1294 			}
1295 		}
1296 		r1_bio->bios[i] = bio;
1297 	}
1298 	rcu_read_unlock();
1299 
1300 	if (unlikely(blocked_rdev)) {
1301 		/* Wait for this device to become unblocked */
1302 		int j;
1303 		sector_t old = start_next_window;
1304 
1305 		for (j = 0; j < i; j++)
1306 			if (r1_bio->bios[j])
1307 				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1308 		r1_bio->state = 0;
1309 		allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
1310 		raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1311 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1312 		start_next_window = wait_barrier(conf, bio);
1313 		/*
1314 		 * We must make sure the multi r1bios of bio have
1315 		 * the same value of bi_phys_segments
1316 		 */
1317 		if (bio->bi_phys_segments && old &&
1318 		    old != start_next_window)
1319 			/* Wait for the former r1bio(s) to complete */
1320 			wait_event(conf->wait_barrier,
1321 				   bio->bi_phys_segments == 1);
1322 		goto retry_write;
1323 	}
1324 
1325 	if (max_sectors < r1_bio->sectors) {
1326 		/* We are splitting this write into multiple parts, so
1327 		 * we need to prepare for allocating another r1_bio.
1328 		 */
1329 		r1_bio->sectors = max_sectors;
1330 		spin_lock_irq(&conf->device_lock);
1331 		if (bio->bi_phys_segments == 0)
1332 			bio->bi_phys_segments = 2;
1333 		else
1334 			bio->bi_phys_segments++;
1335 		spin_unlock_irq(&conf->device_lock);
1336 	}
1337 	sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
1338 
1339 	atomic_set(&r1_bio->remaining, 1);
1340 	atomic_set(&r1_bio->behind_remaining, 0);
1341 
1342 	first_clone = 1;
1343 	for (i = 0; i < disks; i++) {
1344 		struct bio *mbio;
1345 		if (!r1_bio->bios[i])
1346 			continue;
1347 
1348 		mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1349 		bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector,
1350 			 max_sectors);
1351 
1352 		if (first_clone) {
1353 			/* do behind I/O ?
1354 			 * Not if there are too many, or cannot
1355 			 * allocate memory, or a reader on WriteMostly
1356 			 * is waiting for behind writes to flush */
1357 			if (bitmap &&
1358 			    (atomic_read(&bitmap->behind_writes)
1359 			     < mddev->bitmap_info.max_write_behind) &&
1360 			    !waitqueue_active(&bitmap->behind_wait))
1361 				alloc_behind_pages(mbio, r1_bio);
1362 
1363 			bitmap_startwrite(bitmap, r1_bio->sector,
1364 					  r1_bio->sectors,
1365 					  test_bit(R1BIO_BehindIO,
1366 						   &r1_bio->state));
1367 			first_clone = 0;
1368 		}
1369 		if (r1_bio->behind_bvecs) {
1370 			struct bio_vec *bvec;
1371 			int j;
1372 
1373 			/*
1374 			 * We trimmed the bio, so _all is legit
1375 			 */
1376 			bio_for_each_segment_all(bvec, mbio, j)
1377 				bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1378 			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1379 				atomic_inc(&r1_bio->behind_remaining);
1380 		}
1381 
1382 		r1_bio->bios[i] = mbio;
1383 
1384 		mbio->bi_iter.bi_sector	= (r1_bio->sector +
1385 				   conf->mirrors[i].rdev->data_offset);
1386 		mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1387 		mbio->bi_end_io	= raid1_end_write_request;
1388 		mbio->bi_opf = bio_op(bio) |
1389 			(bio->bi_opf & (REQ_SYNC | REQ_PREFLUSH | REQ_FUA));
1390 		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1391 		    !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1392 		    conf->raid_disks - mddev->degraded > 1)
1393 			mbio->bi_opf |= MD_FAILFAST;
1394 		mbio->bi_private = r1_bio;
1395 
1396 		atomic_inc(&r1_bio->remaining);
1397 
1398 		if (mddev->gendisk)
1399 			trace_block_bio_remap(bdev_get_queue(mbio->bi_bdev),
1400 					      mbio, disk_devt(mddev->gendisk),
1401 					      r1_bio->sector);
1402 		/* flush_pending_writes() needs access to the rdev so...*/
1403 		mbio->bi_bdev = (void*)conf->mirrors[i].rdev;
1404 
1405 		cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1406 		if (cb)
1407 			plug = container_of(cb, struct raid1_plug_cb, cb);
1408 		else
1409 			plug = NULL;
1410 		spin_lock_irqsave(&conf->device_lock, flags);
1411 		if (plug) {
1412 			bio_list_add(&plug->pending, mbio);
1413 			plug->pending_cnt++;
1414 		} else {
1415 			bio_list_add(&conf->pending_bio_list, mbio);
1416 			conf->pending_count++;
1417 		}
1418 		spin_unlock_irqrestore(&conf->device_lock, flags);
1419 		if (!plug)
1420 			md_wakeup_thread(mddev->thread);
1421 	}
1422 	/* Mustn't call r1_bio_write_done before this next test,
1423 	 * as it could result in the bio being freed.
1424 	 */
1425 	if (sectors_handled < bio_sectors(bio)) {
1426 		r1_bio_write_done(r1_bio);
1427 		/* We need another r1_bio.  It has already been counted
1428 		 * in bio->bi_phys_segments
1429 		 */
1430 		r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1431 		r1_bio->master_bio = bio;
1432 		r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1433 		r1_bio->state = 0;
1434 		r1_bio->mddev = mddev;
1435 		r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1436 		goto retry_write;
1437 	}
1438 
1439 	r1_bio_write_done(r1_bio);
1440 
1441 	/* In case raid1d snuck in to freeze_array */
1442 	wake_up(&conf->wait_barrier);
1443 }
1444 
1445 static void raid1_make_request(struct mddev *mddev, struct bio *bio)
1446 {
1447 	struct r1conf *conf = mddev->private;
1448 	struct r1bio *r1_bio;
1449 
1450 	/*
1451 	 * make_request() can abort the operation when read-ahead is being
1452 	 * used and no empty request is available.
1453 	 *
1454 	 */
1455 	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1456 
1457 	r1_bio->master_bio = bio;
1458 	r1_bio->sectors = bio_sectors(bio);
1459 	r1_bio->state = 0;
1460 	r1_bio->mddev = mddev;
1461 	r1_bio->sector = bio->bi_iter.bi_sector;
1462 
1463 	/*
1464 	 * We might need to issue multiple reads to different devices if there
1465 	 * are bad blocks around, so we keep track of the number of reads in
1466 	 * bio->bi_phys_segments.  If this is 0, there is only one r1_bio and
1467 	 * no locking will be needed when requests complete.  If it is
1468 	 * non-zero, then it is the number of not-completed requests.
1469 	 */
1470 	bio->bi_phys_segments = 0;
1471 	bio_clear_flag(bio, BIO_SEG_VALID);
1472 
1473 	if (bio_data_dir(bio) == READ)
1474 		raid1_read_request(mddev, bio, r1_bio);
1475 	else
1476 		raid1_write_request(mddev, bio, r1_bio);
1477 }
1478 
1479 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1480 {
1481 	struct r1conf *conf = mddev->private;
1482 	int i;
1483 
1484 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1485 		   conf->raid_disks - mddev->degraded);
1486 	rcu_read_lock();
1487 	for (i = 0; i < conf->raid_disks; i++) {
1488 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1489 		seq_printf(seq, "%s",
1490 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1491 	}
1492 	rcu_read_unlock();
1493 	seq_printf(seq, "]");
1494 }
1495 
1496 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1497 {
1498 	char b[BDEVNAME_SIZE];
1499 	struct r1conf *conf = mddev->private;
1500 	unsigned long flags;
1501 
1502 	/*
1503 	 * If it is not operational, then we have already marked it as dead
1504 	 * else if it is the last working disks, ignore the error, let the
1505 	 * next level up know.
1506 	 * else mark the drive as failed
1507 	 */
1508 	spin_lock_irqsave(&conf->device_lock, flags);
1509 	if (test_bit(In_sync, &rdev->flags)
1510 	    && (conf->raid_disks - mddev->degraded) == 1) {
1511 		/*
1512 		 * Don't fail the drive, act as though we were just a
1513 		 * normal single drive.
1514 		 * However don't try a recovery from this drive as
1515 		 * it is very likely to fail.
1516 		 */
1517 		conf->recovery_disabled = mddev->recovery_disabled;
1518 		spin_unlock_irqrestore(&conf->device_lock, flags);
1519 		return;
1520 	}
1521 	set_bit(Blocked, &rdev->flags);
1522 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1523 		mddev->degraded++;
1524 		set_bit(Faulty, &rdev->flags);
1525 	} else
1526 		set_bit(Faulty, &rdev->flags);
1527 	spin_unlock_irqrestore(&conf->device_lock, flags);
1528 	/*
1529 	 * if recovery is running, make sure it aborts.
1530 	 */
1531 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1532 	set_mask_bits(&mddev->sb_flags, 0,
1533 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1534 	pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1535 		"md/raid1:%s: Operation continuing on %d devices.\n",
1536 		mdname(mddev), bdevname(rdev->bdev, b),
1537 		mdname(mddev), conf->raid_disks - mddev->degraded);
1538 }
1539 
1540 static void print_conf(struct r1conf *conf)
1541 {
1542 	int i;
1543 
1544 	pr_debug("RAID1 conf printout:\n");
1545 	if (!conf) {
1546 		pr_debug("(!conf)\n");
1547 		return;
1548 	}
1549 	pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1550 		 conf->raid_disks);
1551 
1552 	rcu_read_lock();
1553 	for (i = 0; i < conf->raid_disks; i++) {
1554 		char b[BDEVNAME_SIZE];
1555 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1556 		if (rdev)
1557 			pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1558 				 i, !test_bit(In_sync, &rdev->flags),
1559 				 !test_bit(Faulty, &rdev->flags),
1560 				 bdevname(rdev->bdev,b));
1561 	}
1562 	rcu_read_unlock();
1563 }
1564 
1565 static void close_sync(struct r1conf *conf)
1566 {
1567 	wait_barrier(conf, NULL);
1568 	allow_barrier(conf, 0, 0);
1569 
1570 	mempool_destroy(conf->r1buf_pool);
1571 	conf->r1buf_pool = NULL;
1572 
1573 	spin_lock_irq(&conf->resync_lock);
1574 	conf->next_resync = MaxSector - 2 * NEXT_NORMALIO_DISTANCE;
1575 	conf->start_next_window = MaxSector;
1576 	conf->current_window_requests +=
1577 		conf->next_window_requests;
1578 	conf->next_window_requests = 0;
1579 	spin_unlock_irq(&conf->resync_lock);
1580 }
1581 
1582 static int raid1_spare_active(struct mddev *mddev)
1583 {
1584 	int i;
1585 	struct r1conf *conf = mddev->private;
1586 	int count = 0;
1587 	unsigned long flags;
1588 
1589 	/*
1590 	 * Find all failed disks within the RAID1 configuration
1591 	 * and mark them readable.
1592 	 * Called under mddev lock, so rcu protection not needed.
1593 	 * device_lock used to avoid races with raid1_end_read_request
1594 	 * which expects 'In_sync' flags and ->degraded to be consistent.
1595 	 */
1596 	spin_lock_irqsave(&conf->device_lock, flags);
1597 	for (i = 0; i < conf->raid_disks; i++) {
1598 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1599 		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1600 		if (repl
1601 		    && !test_bit(Candidate, &repl->flags)
1602 		    && repl->recovery_offset == MaxSector
1603 		    && !test_bit(Faulty, &repl->flags)
1604 		    && !test_and_set_bit(In_sync, &repl->flags)) {
1605 			/* replacement has just become active */
1606 			if (!rdev ||
1607 			    !test_and_clear_bit(In_sync, &rdev->flags))
1608 				count++;
1609 			if (rdev) {
1610 				/* Replaced device not technically
1611 				 * faulty, but we need to be sure
1612 				 * it gets removed and never re-added
1613 				 */
1614 				set_bit(Faulty, &rdev->flags);
1615 				sysfs_notify_dirent_safe(
1616 					rdev->sysfs_state);
1617 			}
1618 		}
1619 		if (rdev
1620 		    && rdev->recovery_offset == MaxSector
1621 		    && !test_bit(Faulty, &rdev->flags)
1622 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1623 			count++;
1624 			sysfs_notify_dirent_safe(rdev->sysfs_state);
1625 		}
1626 	}
1627 	mddev->degraded -= count;
1628 	spin_unlock_irqrestore(&conf->device_lock, flags);
1629 
1630 	print_conf(conf);
1631 	return count;
1632 }
1633 
1634 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1635 {
1636 	struct r1conf *conf = mddev->private;
1637 	int err = -EEXIST;
1638 	int mirror = 0;
1639 	struct raid1_info *p;
1640 	int first = 0;
1641 	int last = conf->raid_disks - 1;
1642 
1643 	if (mddev->recovery_disabled == conf->recovery_disabled)
1644 		return -EBUSY;
1645 
1646 	if (md_integrity_add_rdev(rdev, mddev))
1647 		return -ENXIO;
1648 
1649 	if (rdev->raid_disk >= 0)
1650 		first = last = rdev->raid_disk;
1651 
1652 	/*
1653 	 * find the disk ... but prefer rdev->saved_raid_disk
1654 	 * if possible.
1655 	 */
1656 	if (rdev->saved_raid_disk >= 0 &&
1657 	    rdev->saved_raid_disk >= first &&
1658 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1659 		first = last = rdev->saved_raid_disk;
1660 
1661 	for (mirror = first; mirror <= last; mirror++) {
1662 		p = conf->mirrors+mirror;
1663 		if (!p->rdev) {
1664 
1665 			if (mddev->gendisk)
1666 				disk_stack_limits(mddev->gendisk, rdev->bdev,
1667 						  rdev->data_offset << 9);
1668 
1669 			p->head_position = 0;
1670 			rdev->raid_disk = mirror;
1671 			err = 0;
1672 			/* As all devices are equivalent, we don't need a full recovery
1673 			 * if this was recently any drive of the array
1674 			 */
1675 			if (rdev->saved_raid_disk < 0)
1676 				conf->fullsync = 1;
1677 			rcu_assign_pointer(p->rdev, rdev);
1678 			break;
1679 		}
1680 		if (test_bit(WantReplacement, &p->rdev->flags) &&
1681 		    p[conf->raid_disks].rdev == NULL) {
1682 			/* Add this device as a replacement */
1683 			clear_bit(In_sync, &rdev->flags);
1684 			set_bit(Replacement, &rdev->flags);
1685 			rdev->raid_disk = mirror;
1686 			err = 0;
1687 			conf->fullsync = 1;
1688 			rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1689 			break;
1690 		}
1691 	}
1692 	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1693 		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1694 	print_conf(conf);
1695 	return err;
1696 }
1697 
1698 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1699 {
1700 	struct r1conf *conf = mddev->private;
1701 	int err = 0;
1702 	int number = rdev->raid_disk;
1703 	struct raid1_info *p = conf->mirrors + number;
1704 
1705 	if (rdev != p->rdev)
1706 		p = conf->mirrors + conf->raid_disks + number;
1707 
1708 	print_conf(conf);
1709 	if (rdev == p->rdev) {
1710 		if (test_bit(In_sync, &rdev->flags) ||
1711 		    atomic_read(&rdev->nr_pending)) {
1712 			err = -EBUSY;
1713 			goto abort;
1714 		}
1715 		/* Only remove non-faulty devices if recovery
1716 		 * is not possible.
1717 		 */
1718 		if (!test_bit(Faulty, &rdev->flags) &&
1719 		    mddev->recovery_disabled != conf->recovery_disabled &&
1720 		    mddev->degraded < conf->raid_disks) {
1721 			err = -EBUSY;
1722 			goto abort;
1723 		}
1724 		p->rdev = NULL;
1725 		if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1726 			synchronize_rcu();
1727 			if (atomic_read(&rdev->nr_pending)) {
1728 				/* lost the race, try later */
1729 				err = -EBUSY;
1730 				p->rdev = rdev;
1731 				goto abort;
1732 			}
1733 		}
1734 		if (conf->mirrors[conf->raid_disks + number].rdev) {
1735 			/* We just removed a device that is being replaced.
1736 			 * Move down the replacement.  We drain all IO before
1737 			 * doing this to avoid confusion.
1738 			 */
1739 			struct md_rdev *repl =
1740 				conf->mirrors[conf->raid_disks + number].rdev;
1741 			freeze_array(conf, 0);
1742 			clear_bit(Replacement, &repl->flags);
1743 			p->rdev = repl;
1744 			conf->mirrors[conf->raid_disks + number].rdev = NULL;
1745 			unfreeze_array(conf);
1746 			clear_bit(WantReplacement, &rdev->flags);
1747 		} else
1748 			clear_bit(WantReplacement, &rdev->flags);
1749 		err = md_integrity_register(mddev);
1750 	}
1751 abort:
1752 
1753 	print_conf(conf);
1754 	return err;
1755 }
1756 
1757 static void end_sync_read(struct bio *bio)
1758 {
1759 	struct r1bio *r1_bio = bio->bi_private;
1760 
1761 	update_head_pos(r1_bio->read_disk, r1_bio);
1762 
1763 	/*
1764 	 * we have read a block, now it needs to be re-written,
1765 	 * or re-read if the read failed.
1766 	 * We don't do much here, just schedule handling by raid1d
1767 	 */
1768 	if (!bio->bi_error)
1769 		set_bit(R1BIO_Uptodate, &r1_bio->state);
1770 
1771 	if (atomic_dec_and_test(&r1_bio->remaining))
1772 		reschedule_retry(r1_bio);
1773 }
1774 
1775 static void end_sync_write(struct bio *bio)
1776 {
1777 	int uptodate = !bio->bi_error;
1778 	struct r1bio *r1_bio = bio->bi_private;
1779 	struct mddev *mddev = r1_bio->mddev;
1780 	struct r1conf *conf = mddev->private;
1781 	sector_t first_bad;
1782 	int bad_sectors;
1783 	struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1784 
1785 	if (!uptodate) {
1786 		sector_t sync_blocks = 0;
1787 		sector_t s = r1_bio->sector;
1788 		long sectors_to_go = r1_bio->sectors;
1789 		/* make sure these bits doesn't get cleared. */
1790 		do {
1791 			bitmap_end_sync(mddev->bitmap, s,
1792 					&sync_blocks, 1);
1793 			s += sync_blocks;
1794 			sectors_to_go -= sync_blocks;
1795 		} while (sectors_to_go > 0);
1796 		set_bit(WriteErrorSeen, &rdev->flags);
1797 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
1798 			set_bit(MD_RECOVERY_NEEDED, &
1799 				mddev->recovery);
1800 		set_bit(R1BIO_WriteError, &r1_bio->state);
1801 	} else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1802 			       &first_bad, &bad_sectors) &&
1803 		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1804 				r1_bio->sector,
1805 				r1_bio->sectors,
1806 				&first_bad, &bad_sectors)
1807 		)
1808 		set_bit(R1BIO_MadeGood, &r1_bio->state);
1809 
1810 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1811 		int s = r1_bio->sectors;
1812 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1813 		    test_bit(R1BIO_WriteError, &r1_bio->state))
1814 			reschedule_retry(r1_bio);
1815 		else {
1816 			put_buf(r1_bio);
1817 			md_done_sync(mddev, s, uptodate);
1818 		}
1819 	}
1820 }
1821 
1822 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1823 			    int sectors, struct page *page, int rw)
1824 {
1825 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1826 		/* success */
1827 		return 1;
1828 	if (rw == WRITE) {
1829 		set_bit(WriteErrorSeen, &rdev->flags);
1830 		if (!test_and_set_bit(WantReplacement,
1831 				      &rdev->flags))
1832 			set_bit(MD_RECOVERY_NEEDED, &
1833 				rdev->mddev->recovery);
1834 	}
1835 	/* need to record an error - either for the block or the device */
1836 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1837 		md_error(rdev->mddev, rdev);
1838 	return 0;
1839 }
1840 
1841 static int fix_sync_read_error(struct r1bio *r1_bio)
1842 {
1843 	/* Try some synchronous reads of other devices to get
1844 	 * good data, much like with normal read errors.  Only
1845 	 * read into the pages we already have so we don't
1846 	 * need to re-issue the read request.
1847 	 * We don't need to freeze the array, because being in an
1848 	 * active sync request, there is no normal IO, and
1849 	 * no overlapping syncs.
1850 	 * We don't need to check is_badblock() again as we
1851 	 * made sure that anything with a bad block in range
1852 	 * will have bi_end_io clear.
1853 	 */
1854 	struct mddev *mddev = r1_bio->mddev;
1855 	struct r1conf *conf = mddev->private;
1856 	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1857 	sector_t sect = r1_bio->sector;
1858 	int sectors = r1_bio->sectors;
1859 	int idx = 0;
1860 	struct md_rdev *rdev;
1861 
1862 	rdev = conf->mirrors[r1_bio->read_disk].rdev;
1863 	if (test_bit(FailFast, &rdev->flags)) {
1864 		/* Don't try recovering from here - just fail it
1865 		 * ... unless it is the last working device of course */
1866 		md_error(mddev, rdev);
1867 		if (test_bit(Faulty, &rdev->flags))
1868 			/* Don't try to read from here, but make sure
1869 			 * put_buf does it's thing
1870 			 */
1871 			bio->bi_end_io = end_sync_write;
1872 	}
1873 
1874 	while(sectors) {
1875 		int s = sectors;
1876 		int d = r1_bio->read_disk;
1877 		int success = 0;
1878 		int start;
1879 
1880 		if (s > (PAGE_SIZE>>9))
1881 			s = PAGE_SIZE >> 9;
1882 		do {
1883 			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1884 				/* No rcu protection needed here devices
1885 				 * can only be removed when no resync is
1886 				 * active, and resync is currently active
1887 				 */
1888 				rdev = conf->mirrors[d].rdev;
1889 				if (sync_page_io(rdev, sect, s<<9,
1890 						 bio->bi_io_vec[idx].bv_page,
1891 						 REQ_OP_READ, 0, false)) {
1892 					success = 1;
1893 					break;
1894 				}
1895 			}
1896 			d++;
1897 			if (d == conf->raid_disks * 2)
1898 				d = 0;
1899 		} while (!success && d != r1_bio->read_disk);
1900 
1901 		if (!success) {
1902 			char b[BDEVNAME_SIZE];
1903 			int abort = 0;
1904 			/* Cannot read from anywhere, this block is lost.
1905 			 * Record a bad block on each device.  If that doesn't
1906 			 * work just disable and interrupt the recovery.
1907 			 * Don't fail devices as that won't really help.
1908 			 */
1909 			pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1910 					    mdname(mddev),
1911 					    bdevname(bio->bi_bdev, b),
1912 					    (unsigned long long)r1_bio->sector);
1913 			for (d = 0; d < conf->raid_disks * 2; d++) {
1914 				rdev = conf->mirrors[d].rdev;
1915 				if (!rdev || test_bit(Faulty, &rdev->flags))
1916 					continue;
1917 				if (!rdev_set_badblocks(rdev, sect, s, 0))
1918 					abort = 1;
1919 			}
1920 			if (abort) {
1921 				conf->recovery_disabled =
1922 					mddev->recovery_disabled;
1923 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1924 				md_done_sync(mddev, r1_bio->sectors, 0);
1925 				put_buf(r1_bio);
1926 				return 0;
1927 			}
1928 			/* Try next page */
1929 			sectors -= s;
1930 			sect += s;
1931 			idx++;
1932 			continue;
1933 		}
1934 
1935 		start = d;
1936 		/* write it back and re-read */
1937 		while (d != r1_bio->read_disk) {
1938 			if (d == 0)
1939 				d = conf->raid_disks * 2;
1940 			d--;
1941 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1942 				continue;
1943 			rdev = conf->mirrors[d].rdev;
1944 			if (r1_sync_page_io(rdev, sect, s,
1945 					    bio->bi_io_vec[idx].bv_page,
1946 					    WRITE) == 0) {
1947 				r1_bio->bios[d]->bi_end_io = NULL;
1948 				rdev_dec_pending(rdev, mddev);
1949 			}
1950 		}
1951 		d = start;
1952 		while (d != r1_bio->read_disk) {
1953 			if (d == 0)
1954 				d = conf->raid_disks * 2;
1955 			d--;
1956 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1957 				continue;
1958 			rdev = conf->mirrors[d].rdev;
1959 			if (r1_sync_page_io(rdev, sect, s,
1960 					    bio->bi_io_vec[idx].bv_page,
1961 					    READ) != 0)
1962 				atomic_add(s, &rdev->corrected_errors);
1963 		}
1964 		sectors -= s;
1965 		sect += s;
1966 		idx ++;
1967 	}
1968 	set_bit(R1BIO_Uptodate, &r1_bio->state);
1969 	bio->bi_error = 0;
1970 	return 1;
1971 }
1972 
1973 static void process_checks(struct r1bio *r1_bio)
1974 {
1975 	/* We have read all readable devices.  If we haven't
1976 	 * got the block, then there is no hope left.
1977 	 * If we have, then we want to do a comparison
1978 	 * and skip the write if everything is the same.
1979 	 * If any blocks failed to read, then we need to
1980 	 * attempt an over-write
1981 	 */
1982 	struct mddev *mddev = r1_bio->mddev;
1983 	struct r1conf *conf = mddev->private;
1984 	int primary;
1985 	int i;
1986 	int vcnt;
1987 
1988 	/* Fix variable parts of all bios */
1989 	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1990 	for (i = 0; i < conf->raid_disks * 2; i++) {
1991 		int j;
1992 		int size;
1993 		int error;
1994 		struct bio *b = r1_bio->bios[i];
1995 		if (b->bi_end_io != end_sync_read)
1996 			continue;
1997 		/* fixup the bio for reuse, but preserve errno */
1998 		error = b->bi_error;
1999 		bio_reset(b);
2000 		b->bi_error = error;
2001 		b->bi_vcnt = vcnt;
2002 		b->bi_iter.bi_size = r1_bio->sectors << 9;
2003 		b->bi_iter.bi_sector = r1_bio->sector +
2004 			conf->mirrors[i].rdev->data_offset;
2005 		b->bi_bdev = conf->mirrors[i].rdev->bdev;
2006 		b->bi_end_io = end_sync_read;
2007 		b->bi_private = r1_bio;
2008 
2009 		size = b->bi_iter.bi_size;
2010 		for (j = 0; j < vcnt ; j++) {
2011 			struct bio_vec *bi;
2012 			bi = &b->bi_io_vec[j];
2013 			bi->bv_offset = 0;
2014 			if (size > PAGE_SIZE)
2015 				bi->bv_len = PAGE_SIZE;
2016 			else
2017 				bi->bv_len = size;
2018 			size -= PAGE_SIZE;
2019 		}
2020 	}
2021 	for (primary = 0; primary < conf->raid_disks * 2; primary++)
2022 		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2023 		    !r1_bio->bios[primary]->bi_error) {
2024 			r1_bio->bios[primary]->bi_end_io = NULL;
2025 			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2026 			break;
2027 		}
2028 	r1_bio->read_disk = primary;
2029 	for (i = 0; i < conf->raid_disks * 2; i++) {
2030 		int j;
2031 		struct bio *pbio = r1_bio->bios[primary];
2032 		struct bio *sbio = r1_bio->bios[i];
2033 		int error = sbio->bi_error;
2034 
2035 		if (sbio->bi_end_io != end_sync_read)
2036 			continue;
2037 		/* Now we can 'fixup' the error value */
2038 		sbio->bi_error = 0;
2039 
2040 		if (!error) {
2041 			for (j = vcnt; j-- ; ) {
2042 				struct page *p, *s;
2043 				p = pbio->bi_io_vec[j].bv_page;
2044 				s = sbio->bi_io_vec[j].bv_page;
2045 				if (memcmp(page_address(p),
2046 					   page_address(s),
2047 					   sbio->bi_io_vec[j].bv_len))
2048 					break;
2049 			}
2050 		} else
2051 			j = 0;
2052 		if (j >= 0)
2053 			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2054 		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2055 			      && !error)) {
2056 			/* No need to write to this device. */
2057 			sbio->bi_end_io = NULL;
2058 			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2059 			continue;
2060 		}
2061 
2062 		bio_copy_data(sbio, pbio);
2063 	}
2064 }
2065 
2066 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2067 {
2068 	struct r1conf *conf = mddev->private;
2069 	int i;
2070 	int disks = conf->raid_disks * 2;
2071 	struct bio *bio, *wbio;
2072 
2073 	bio = r1_bio->bios[r1_bio->read_disk];
2074 
2075 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2076 		/* ouch - failed to read all of that. */
2077 		if (!fix_sync_read_error(r1_bio))
2078 			return;
2079 
2080 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2081 		process_checks(r1_bio);
2082 
2083 	/*
2084 	 * schedule writes
2085 	 */
2086 	atomic_set(&r1_bio->remaining, 1);
2087 	for (i = 0; i < disks ; i++) {
2088 		wbio = r1_bio->bios[i];
2089 		if (wbio->bi_end_io == NULL ||
2090 		    (wbio->bi_end_io == end_sync_read &&
2091 		     (i == r1_bio->read_disk ||
2092 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2093 			continue;
2094 
2095 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2096 		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2097 			wbio->bi_opf |= MD_FAILFAST;
2098 
2099 		wbio->bi_end_io = end_sync_write;
2100 		atomic_inc(&r1_bio->remaining);
2101 		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2102 
2103 		generic_make_request(wbio);
2104 	}
2105 
2106 	if (atomic_dec_and_test(&r1_bio->remaining)) {
2107 		/* if we're here, all write(s) have completed, so clean up */
2108 		int s = r1_bio->sectors;
2109 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2110 		    test_bit(R1BIO_WriteError, &r1_bio->state))
2111 			reschedule_retry(r1_bio);
2112 		else {
2113 			put_buf(r1_bio);
2114 			md_done_sync(mddev, s, 1);
2115 		}
2116 	}
2117 }
2118 
2119 /*
2120  * This is a kernel thread which:
2121  *
2122  *	1.	Retries failed read operations on working mirrors.
2123  *	2.	Updates the raid superblock when problems encounter.
2124  *	3.	Performs writes following reads for array synchronising.
2125  */
2126 
2127 static void fix_read_error(struct r1conf *conf, int read_disk,
2128 			   sector_t sect, int sectors)
2129 {
2130 	struct mddev *mddev = conf->mddev;
2131 	while(sectors) {
2132 		int s = sectors;
2133 		int d = read_disk;
2134 		int success = 0;
2135 		int start;
2136 		struct md_rdev *rdev;
2137 
2138 		if (s > (PAGE_SIZE>>9))
2139 			s = PAGE_SIZE >> 9;
2140 
2141 		do {
2142 			sector_t first_bad;
2143 			int bad_sectors;
2144 
2145 			rcu_read_lock();
2146 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2147 			if (rdev &&
2148 			    (test_bit(In_sync, &rdev->flags) ||
2149 			     (!test_bit(Faulty, &rdev->flags) &&
2150 			      rdev->recovery_offset >= sect + s)) &&
2151 			    is_badblock(rdev, sect, s,
2152 					&first_bad, &bad_sectors) == 0) {
2153 				atomic_inc(&rdev->nr_pending);
2154 				rcu_read_unlock();
2155 				if (sync_page_io(rdev, sect, s<<9,
2156 					 conf->tmppage, REQ_OP_READ, 0, false))
2157 					success = 1;
2158 				rdev_dec_pending(rdev, mddev);
2159 				if (success)
2160 					break;
2161 			} else
2162 				rcu_read_unlock();
2163 			d++;
2164 			if (d == conf->raid_disks * 2)
2165 				d = 0;
2166 		} while (!success && d != read_disk);
2167 
2168 		if (!success) {
2169 			/* Cannot read from anywhere - mark it bad */
2170 			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2171 			if (!rdev_set_badblocks(rdev, sect, s, 0))
2172 				md_error(mddev, rdev);
2173 			break;
2174 		}
2175 		/* write it back and re-read */
2176 		start = d;
2177 		while (d != read_disk) {
2178 			if (d==0)
2179 				d = conf->raid_disks * 2;
2180 			d--;
2181 			rcu_read_lock();
2182 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2183 			if (rdev &&
2184 			    !test_bit(Faulty, &rdev->flags)) {
2185 				atomic_inc(&rdev->nr_pending);
2186 				rcu_read_unlock();
2187 				r1_sync_page_io(rdev, sect, s,
2188 						conf->tmppage, WRITE);
2189 				rdev_dec_pending(rdev, mddev);
2190 			} else
2191 				rcu_read_unlock();
2192 		}
2193 		d = start;
2194 		while (d != read_disk) {
2195 			char b[BDEVNAME_SIZE];
2196 			if (d==0)
2197 				d = conf->raid_disks * 2;
2198 			d--;
2199 			rcu_read_lock();
2200 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2201 			if (rdev &&
2202 			    !test_bit(Faulty, &rdev->flags)) {
2203 				atomic_inc(&rdev->nr_pending);
2204 				rcu_read_unlock();
2205 				if (r1_sync_page_io(rdev, sect, s,
2206 						    conf->tmppage, READ)) {
2207 					atomic_add(s, &rdev->corrected_errors);
2208 					pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2209 						mdname(mddev), s,
2210 						(unsigned long long)(sect +
2211 								     rdev->data_offset),
2212 						bdevname(rdev->bdev, b));
2213 				}
2214 				rdev_dec_pending(rdev, mddev);
2215 			} else
2216 				rcu_read_unlock();
2217 		}
2218 		sectors -= s;
2219 		sect += s;
2220 	}
2221 }
2222 
2223 static int narrow_write_error(struct r1bio *r1_bio, int i)
2224 {
2225 	struct mddev *mddev = r1_bio->mddev;
2226 	struct r1conf *conf = mddev->private;
2227 	struct md_rdev *rdev = conf->mirrors[i].rdev;
2228 
2229 	/* bio has the data to be written to device 'i' where
2230 	 * we just recently had a write error.
2231 	 * We repeatedly clone the bio and trim down to one block,
2232 	 * then try the write.  Where the write fails we record
2233 	 * a bad block.
2234 	 * It is conceivable that the bio doesn't exactly align with
2235 	 * blocks.  We must handle this somehow.
2236 	 *
2237 	 * We currently own a reference on the rdev.
2238 	 */
2239 
2240 	int block_sectors;
2241 	sector_t sector;
2242 	int sectors;
2243 	int sect_to_write = r1_bio->sectors;
2244 	int ok = 1;
2245 
2246 	if (rdev->badblocks.shift < 0)
2247 		return 0;
2248 
2249 	block_sectors = roundup(1 << rdev->badblocks.shift,
2250 				bdev_logical_block_size(rdev->bdev) >> 9);
2251 	sector = r1_bio->sector;
2252 	sectors = ((sector + block_sectors)
2253 		   & ~(sector_t)(block_sectors - 1))
2254 		- sector;
2255 
2256 	while (sect_to_write) {
2257 		struct bio *wbio;
2258 		if (sectors > sect_to_write)
2259 			sectors = sect_to_write;
2260 		/* Write at 'sector' for 'sectors'*/
2261 
2262 		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2263 			unsigned vcnt = r1_bio->behind_page_count;
2264 			struct bio_vec *vec = r1_bio->behind_bvecs;
2265 
2266 			while (!vec->bv_page) {
2267 				vec++;
2268 				vcnt--;
2269 			}
2270 
2271 			wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2272 			memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2273 
2274 			wbio->bi_vcnt = vcnt;
2275 		} else {
2276 			wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2277 		}
2278 
2279 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2280 		wbio->bi_iter.bi_sector = r1_bio->sector;
2281 		wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2282 
2283 		bio_trim(wbio, sector - r1_bio->sector, sectors);
2284 		wbio->bi_iter.bi_sector += rdev->data_offset;
2285 		wbio->bi_bdev = rdev->bdev;
2286 
2287 		if (submit_bio_wait(wbio) < 0)
2288 			/* failure! */
2289 			ok = rdev_set_badblocks(rdev, sector,
2290 						sectors, 0)
2291 				&& ok;
2292 
2293 		bio_put(wbio);
2294 		sect_to_write -= sectors;
2295 		sector += sectors;
2296 		sectors = block_sectors;
2297 	}
2298 	return ok;
2299 }
2300 
2301 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2302 {
2303 	int m;
2304 	int s = r1_bio->sectors;
2305 	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2306 		struct md_rdev *rdev = conf->mirrors[m].rdev;
2307 		struct bio *bio = r1_bio->bios[m];
2308 		if (bio->bi_end_io == NULL)
2309 			continue;
2310 		if (!bio->bi_error &&
2311 		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2312 			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2313 		}
2314 		if (bio->bi_error &&
2315 		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2316 			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2317 				md_error(conf->mddev, rdev);
2318 		}
2319 	}
2320 	put_buf(r1_bio);
2321 	md_done_sync(conf->mddev, s, 1);
2322 }
2323 
2324 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2325 {
2326 	int m;
2327 	bool fail = false;
2328 	for (m = 0; m < conf->raid_disks * 2 ; m++)
2329 		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2330 			struct md_rdev *rdev = conf->mirrors[m].rdev;
2331 			rdev_clear_badblocks(rdev,
2332 					     r1_bio->sector,
2333 					     r1_bio->sectors, 0);
2334 			rdev_dec_pending(rdev, conf->mddev);
2335 		} else if (r1_bio->bios[m] != NULL) {
2336 			/* This drive got a write error.  We need to
2337 			 * narrow down and record precise write
2338 			 * errors.
2339 			 */
2340 			fail = true;
2341 			if (!narrow_write_error(r1_bio, m)) {
2342 				md_error(conf->mddev,
2343 					 conf->mirrors[m].rdev);
2344 				/* an I/O failed, we can't clear the bitmap */
2345 				set_bit(R1BIO_Degraded, &r1_bio->state);
2346 			}
2347 			rdev_dec_pending(conf->mirrors[m].rdev,
2348 					 conf->mddev);
2349 		}
2350 	if (fail) {
2351 		spin_lock_irq(&conf->device_lock);
2352 		list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2353 		conf->nr_queued++;
2354 		spin_unlock_irq(&conf->device_lock);
2355 		md_wakeup_thread(conf->mddev->thread);
2356 	} else {
2357 		if (test_bit(R1BIO_WriteError, &r1_bio->state))
2358 			close_write(r1_bio);
2359 		raid_end_bio_io(r1_bio);
2360 	}
2361 }
2362 
2363 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2364 {
2365 	int disk;
2366 	int max_sectors;
2367 	struct mddev *mddev = conf->mddev;
2368 	struct bio *bio;
2369 	char b[BDEVNAME_SIZE];
2370 	struct md_rdev *rdev;
2371 	dev_t bio_dev;
2372 	sector_t bio_sector;
2373 
2374 	clear_bit(R1BIO_ReadError, &r1_bio->state);
2375 	/* we got a read error. Maybe the drive is bad.  Maybe just
2376 	 * the block and we can fix it.
2377 	 * We freeze all other IO, and try reading the block from
2378 	 * other devices.  When we find one, we re-write
2379 	 * and check it that fixes the read error.
2380 	 * This is all done synchronously while the array is
2381 	 * frozen
2382 	 */
2383 
2384 	bio = r1_bio->bios[r1_bio->read_disk];
2385 	bdevname(bio->bi_bdev, b);
2386 	bio_dev = bio->bi_bdev->bd_dev;
2387 	bio_sector = conf->mirrors[r1_bio->read_disk].rdev->data_offset + r1_bio->sector;
2388 	bio_put(bio);
2389 	r1_bio->bios[r1_bio->read_disk] = NULL;
2390 
2391 	rdev = conf->mirrors[r1_bio->read_disk].rdev;
2392 	if (mddev->ro == 0
2393 	    && !test_bit(FailFast, &rdev->flags)) {
2394 		freeze_array(conf, 1);
2395 		fix_read_error(conf, r1_bio->read_disk,
2396 			       r1_bio->sector, r1_bio->sectors);
2397 		unfreeze_array(conf);
2398 	} else {
2399 		r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2400 	}
2401 
2402 	rdev_dec_pending(rdev, conf->mddev);
2403 
2404 read_more:
2405 	disk = read_balance(conf, r1_bio, &max_sectors);
2406 	if (disk == -1) {
2407 		pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2408 				    mdname(mddev), b, (unsigned long long)r1_bio->sector);
2409 		raid_end_bio_io(r1_bio);
2410 	} else {
2411 		const unsigned long do_sync
2412 			= r1_bio->master_bio->bi_opf & REQ_SYNC;
2413 		r1_bio->read_disk = disk;
2414 		bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2415 		bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2416 			 max_sectors);
2417 		r1_bio->bios[r1_bio->read_disk] = bio;
2418 		rdev = conf->mirrors[disk].rdev;
2419 		pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
2420 				    mdname(mddev),
2421 				    (unsigned long long)r1_bio->sector,
2422 				    bdevname(rdev->bdev, b));
2423 		bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
2424 		bio->bi_bdev = rdev->bdev;
2425 		bio->bi_end_io = raid1_end_read_request;
2426 		bio_set_op_attrs(bio, REQ_OP_READ, do_sync);
2427 		if (test_bit(FailFast, &rdev->flags) &&
2428 		    test_bit(R1BIO_FailFast, &r1_bio->state))
2429 			bio->bi_opf |= MD_FAILFAST;
2430 		bio->bi_private = r1_bio;
2431 		if (max_sectors < r1_bio->sectors) {
2432 			/* Drat - have to split this up more */
2433 			struct bio *mbio = r1_bio->master_bio;
2434 			int sectors_handled = (r1_bio->sector + max_sectors
2435 					       - mbio->bi_iter.bi_sector);
2436 			r1_bio->sectors = max_sectors;
2437 			spin_lock_irq(&conf->device_lock);
2438 			if (mbio->bi_phys_segments == 0)
2439 				mbio->bi_phys_segments = 2;
2440 			else
2441 				mbio->bi_phys_segments++;
2442 			spin_unlock_irq(&conf->device_lock);
2443 			trace_block_bio_remap(bdev_get_queue(bio->bi_bdev),
2444 					      bio, bio_dev, bio_sector);
2445 			generic_make_request(bio);
2446 			bio = NULL;
2447 
2448 			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2449 
2450 			r1_bio->master_bio = mbio;
2451 			r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
2452 			r1_bio->state = 0;
2453 			set_bit(R1BIO_ReadError, &r1_bio->state);
2454 			r1_bio->mddev = mddev;
2455 			r1_bio->sector = mbio->bi_iter.bi_sector +
2456 				sectors_handled;
2457 
2458 			goto read_more;
2459 		} else {
2460 			trace_block_bio_remap(bdev_get_queue(bio->bi_bdev),
2461 					      bio, bio_dev, bio_sector);
2462 			generic_make_request(bio);
2463 		}
2464 	}
2465 }
2466 
2467 static void raid1d(struct md_thread *thread)
2468 {
2469 	struct mddev *mddev = thread->mddev;
2470 	struct r1bio *r1_bio;
2471 	unsigned long flags;
2472 	struct r1conf *conf = mddev->private;
2473 	struct list_head *head = &conf->retry_list;
2474 	struct blk_plug plug;
2475 
2476 	md_check_recovery(mddev);
2477 
2478 	if (!list_empty_careful(&conf->bio_end_io_list) &&
2479 	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2480 		LIST_HEAD(tmp);
2481 		spin_lock_irqsave(&conf->device_lock, flags);
2482 		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2483 			while (!list_empty(&conf->bio_end_io_list)) {
2484 				list_move(conf->bio_end_io_list.prev, &tmp);
2485 				conf->nr_queued--;
2486 			}
2487 		}
2488 		spin_unlock_irqrestore(&conf->device_lock, flags);
2489 		while (!list_empty(&tmp)) {
2490 			r1_bio = list_first_entry(&tmp, struct r1bio,
2491 						  retry_list);
2492 			list_del(&r1_bio->retry_list);
2493 			if (mddev->degraded)
2494 				set_bit(R1BIO_Degraded, &r1_bio->state);
2495 			if (test_bit(R1BIO_WriteError, &r1_bio->state))
2496 				close_write(r1_bio);
2497 			raid_end_bio_io(r1_bio);
2498 		}
2499 	}
2500 
2501 	blk_start_plug(&plug);
2502 	for (;;) {
2503 
2504 		flush_pending_writes(conf);
2505 
2506 		spin_lock_irqsave(&conf->device_lock, flags);
2507 		if (list_empty(head)) {
2508 			spin_unlock_irqrestore(&conf->device_lock, flags);
2509 			break;
2510 		}
2511 		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2512 		list_del(head->prev);
2513 		conf->nr_queued--;
2514 		spin_unlock_irqrestore(&conf->device_lock, flags);
2515 
2516 		mddev = r1_bio->mddev;
2517 		conf = mddev->private;
2518 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2519 			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2520 			    test_bit(R1BIO_WriteError, &r1_bio->state))
2521 				handle_sync_write_finished(conf, r1_bio);
2522 			else
2523 				sync_request_write(mddev, r1_bio);
2524 		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2525 			   test_bit(R1BIO_WriteError, &r1_bio->state))
2526 			handle_write_finished(conf, r1_bio);
2527 		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2528 			handle_read_error(conf, r1_bio);
2529 		else
2530 			/* just a partial read to be scheduled from separate
2531 			 * context
2532 			 */
2533 			generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2534 
2535 		cond_resched();
2536 		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2537 			md_check_recovery(mddev);
2538 	}
2539 	blk_finish_plug(&plug);
2540 }
2541 
2542 static int init_resync(struct r1conf *conf)
2543 {
2544 	int buffs;
2545 
2546 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2547 	BUG_ON(conf->r1buf_pool);
2548 	conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2549 					  conf->poolinfo);
2550 	if (!conf->r1buf_pool)
2551 		return -ENOMEM;
2552 	conf->next_resync = 0;
2553 	return 0;
2554 }
2555 
2556 /*
2557  * perform a "sync" on one "block"
2558  *
2559  * We need to make sure that no normal I/O request - particularly write
2560  * requests - conflict with active sync requests.
2561  *
2562  * This is achieved by tracking pending requests and a 'barrier' concept
2563  * that can be installed to exclude normal IO requests.
2564  */
2565 
2566 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2567 				   int *skipped)
2568 {
2569 	struct r1conf *conf = mddev->private;
2570 	struct r1bio *r1_bio;
2571 	struct bio *bio;
2572 	sector_t max_sector, nr_sectors;
2573 	int disk = -1;
2574 	int i;
2575 	int wonly = -1;
2576 	int write_targets = 0, read_targets = 0;
2577 	sector_t sync_blocks;
2578 	int still_degraded = 0;
2579 	int good_sectors = RESYNC_SECTORS;
2580 	int min_bad = 0; /* number of sectors that are bad in all devices */
2581 
2582 	if (!conf->r1buf_pool)
2583 		if (init_resync(conf))
2584 			return 0;
2585 
2586 	max_sector = mddev->dev_sectors;
2587 	if (sector_nr >= max_sector) {
2588 		/* If we aborted, we need to abort the
2589 		 * sync on the 'current' bitmap chunk (there will
2590 		 * only be one in raid1 resync.
2591 		 * We can find the current addess in mddev->curr_resync
2592 		 */
2593 		if (mddev->curr_resync < max_sector) /* aborted */
2594 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2595 						&sync_blocks, 1);
2596 		else /* completed sync */
2597 			conf->fullsync = 0;
2598 
2599 		bitmap_close_sync(mddev->bitmap);
2600 		close_sync(conf);
2601 
2602 		if (mddev_is_clustered(mddev)) {
2603 			conf->cluster_sync_low = 0;
2604 			conf->cluster_sync_high = 0;
2605 		}
2606 		return 0;
2607 	}
2608 
2609 	if (mddev->bitmap == NULL &&
2610 	    mddev->recovery_cp == MaxSector &&
2611 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2612 	    conf->fullsync == 0) {
2613 		*skipped = 1;
2614 		return max_sector - sector_nr;
2615 	}
2616 	/* before building a request, check if we can skip these blocks..
2617 	 * This call the bitmap_start_sync doesn't actually record anything
2618 	 */
2619 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2620 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2621 		/* We can skip this block, and probably several more */
2622 		*skipped = 1;
2623 		return sync_blocks;
2624 	}
2625 
2626 	/*
2627 	 * If there is non-resync activity waiting for a turn, then let it
2628 	 * though before starting on this new sync request.
2629 	 */
2630 	if (conf->nr_waiting)
2631 		schedule_timeout_uninterruptible(1);
2632 
2633 	/* we are incrementing sector_nr below. To be safe, we check against
2634 	 * sector_nr + two times RESYNC_SECTORS
2635 	 */
2636 
2637 	bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2638 		mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2639 	r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2640 
2641 	raise_barrier(conf, sector_nr);
2642 
2643 	rcu_read_lock();
2644 	/*
2645 	 * If we get a correctably read error during resync or recovery,
2646 	 * we might want to read from a different device.  So we
2647 	 * flag all drives that could conceivably be read from for READ,
2648 	 * and any others (which will be non-In_sync devices) for WRITE.
2649 	 * If a read fails, we try reading from something else for which READ
2650 	 * is OK.
2651 	 */
2652 
2653 	r1_bio->mddev = mddev;
2654 	r1_bio->sector = sector_nr;
2655 	r1_bio->state = 0;
2656 	set_bit(R1BIO_IsSync, &r1_bio->state);
2657 
2658 	for (i = 0; i < conf->raid_disks * 2; i++) {
2659 		struct md_rdev *rdev;
2660 		bio = r1_bio->bios[i];
2661 		bio_reset(bio);
2662 
2663 		rdev = rcu_dereference(conf->mirrors[i].rdev);
2664 		if (rdev == NULL ||
2665 		    test_bit(Faulty, &rdev->flags)) {
2666 			if (i < conf->raid_disks)
2667 				still_degraded = 1;
2668 		} else if (!test_bit(In_sync, &rdev->flags)) {
2669 			bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2670 			bio->bi_end_io = end_sync_write;
2671 			write_targets ++;
2672 		} else {
2673 			/* may need to read from here */
2674 			sector_t first_bad = MaxSector;
2675 			int bad_sectors;
2676 
2677 			if (is_badblock(rdev, sector_nr, good_sectors,
2678 					&first_bad, &bad_sectors)) {
2679 				if (first_bad > sector_nr)
2680 					good_sectors = first_bad - sector_nr;
2681 				else {
2682 					bad_sectors -= (sector_nr - first_bad);
2683 					if (min_bad == 0 ||
2684 					    min_bad > bad_sectors)
2685 						min_bad = bad_sectors;
2686 				}
2687 			}
2688 			if (sector_nr < first_bad) {
2689 				if (test_bit(WriteMostly, &rdev->flags)) {
2690 					if (wonly < 0)
2691 						wonly = i;
2692 				} else {
2693 					if (disk < 0)
2694 						disk = i;
2695 				}
2696 				bio_set_op_attrs(bio, REQ_OP_READ, 0);
2697 				bio->bi_end_io = end_sync_read;
2698 				read_targets++;
2699 			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2700 				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2701 				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2702 				/*
2703 				 * The device is suitable for reading (InSync),
2704 				 * but has bad block(s) here. Let's try to correct them,
2705 				 * if we are doing resync or repair. Otherwise, leave
2706 				 * this device alone for this sync request.
2707 				 */
2708 				bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2709 				bio->bi_end_io = end_sync_write;
2710 				write_targets++;
2711 			}
2712 		}
2713 		if (bio->bi_end_io) {
2714 			atomic_inc(&rdev->nr_pending);
2715 			bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2716 			bio->bi_bdev = rdev->bdev;
2717 			bio->bi_private = r1_bio;
2718 			if (test_bit(FailFast, &rdev->flags))
2719 				bio->bi_opf |= MD_FAILFAST;
2720 		}
2721 	}
2722 	rcu_read_unlock();
2723 	if (disk < 0)
2724 		disk = wonly;
2725 	r1_bio->read_disk = disk;
2726 
2727 	if (read_targets == 0 && min_bad > 0) {
2728 		/* These sectors are bad on all InSync devices, so we
2729 		 * need to mark them bad on all write targets
2730 		 */
2731 		int ok = 1;
2732 		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2733 			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2734 				struct md_rdev *rdev = conf->mirrors[i].rdev;
2735 				ok = rdev_set_badblocks(rdev, sector_nr,
2736 							min_bad, 0
2737 					) && ok;
2738 			}
2739 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2740 		*skipped = 1;
2741 		put_buf(r1_bio);
2742 
2743 		if (!ok) {
2744 			/* Cannot record the badblocks, so need to
2745 			 * abort the resync.
2746 			 * If there are multiple read targets, could just
2747 			 * fail the really bad ones ???
2748 			 */
2749 			conf->recovery_disabled = mddev->recovery_disabled;
2750 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2751 			return 0;
2752 		} else
2753 			return min_bad;
2754 
2755 	}
2756 	if (min_bad > 0 && min_bad < good_sectors) {
2757 		/* only resync enough to reach the next bad->good
2758 		 * transition */
2759 		good_sectors = min_bad;
2760 	}
2761 
2762 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2763 		/* extra read targets are also write targets */
2764 		write_targets += read_targets-1;
2765 
2766 	if (write_targets == 0 || read_targets == 0) {
2767 		/* There is nowhere to write, so all non-sync
2768 		 * drives must be failed - so we are finished
2769 		 */
2770 		sector_t rv;
2771 		if (min_bad > 0)
2772 			max_sector = sector_nr + min_bad;
2773 		rv = max_sector - sector_nr;
2774 		*skipped = 1;
2775 		put_buf(r1_bio);
2776 		return rv;
2777 	}
2778 
2779 	if (max_sector > mddev->resync_max)
2780 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2781 	if (max_sector > sector_nr + good_sectors)
2782 		max_sector = sector_nr + good_sectors;
2783 	nr_sectors = 0;
2784 	sync_blocks = 0;
2785 	do {
2786 		struct page *page;
2787 		int len = PAGE_SIZE;
2788 		if (sector_nr + (len>>9) > max_sector)
2789 			len = (max_sector - sector_nr) << 9;
2790 		if (len == 0)
2791 			break;
2792 		if (sync_blocks == 0) {
2793 			if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2794 					       &sync_blocks, still_degraded) &&
2795 			    !conf->fullsync &&
2796 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2797 				break;
2798 			if ((len >> 9) > sync_blocks)
2799 				len = sync_blocks<<9;
2800 		}
2801 
2802 		for (i = 0 ; i < conf->raid_disks * 2; i++) {
2803 			bio = r1_bio->bios[i];
2804 			if (bio->bi_end_io) {
2805 				page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2806 				if (bio_add_page(bio, page, len, 0) == 0) {
2807 					/* stop here */
2808 					bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2809 					while (i > 0) {
2810 						i--;
2811 						bio = r1_bio->bios[i];
2812 						if (bio->bi_end_io==NULL)
2813 							continue;
2814 						/* remove last page from this bio */
2815 						bio->bi_vcnt--;
2816 						bio->bi_iter.bi_size -= len;
2817 						bio_clear_flag(bio, BIO_SEG_VALID);
2818 					}
2819 					goto bio_full;
2820 				}
2821 			}
2822 		}
2823 		nr_sectors += len>>9;
2824 		sector_nr += len>>9;
2825 		sync_blocks -= (len>>9);
2826 	} while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2827  bio_full:
2828 	r1_bio->sectors = nr_sectors;
2829 
2830 	if (mddev_is_clustered(mddev) &&
2831 			conf->cluster_sync_high < sector_nr + nr_sectors) {
2832 		conf->cluster_sync_low = mddev->curr_resync_completed;
2833 		conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2834 		/* Send resync message */
2835 		md_cluster_ops->resync_info_update(mddev,
2836 				conf->cluster_sync_low,
2837 				conf->cluster_sync_high);
2838 	}
2839 
2840 	/* For a user-requested sync, we read all readable devices and do a
2841 	 * compare
2842 	 */
2843 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2844 		atomic_set(&r1_bio->remaining, read_targets);
2845 		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2846 			bio = r1_bio->bios[i];
2847 			if (bio->bi_end_io == end_sync_read) {
2848 				read_targets--;
2849 				md_sync_acct(bio->bi_bdev, nr_sectors);
2850 				if (read_targets == 1)
2851 					bio->bi_opf &= ~MD_FAILFAST;
2852 				generic_make_request(bio);
2853 			}
2854 		}
2855 	} else {
2856 		atomic_set(&r1_bio->remaining, 1);
2857 		bio = r1_bio->bios[r1_bio->read_disk];
2858 		md_sync_acct(bio->bi_bdev, nr_sectors);
2859 		if (read_targets == 1)
2860 			bio->bi_opf &= ~MD_FAILFAST;
2861 		generic_make_request(bio);
2862 
2863 	}
2864 	return nr_sectors;
2865 }
2866 
2867 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2868 {
2869 	if (sectors)
2870 		return sectors;
2871 
2872 	return mddev->dev_sectors;
2873 }
2874 
2875 static struct r1conf *setup_conf(struct mddev *mddev)
2876 {
2877 	struct r1conf *conf;
2878 	int i;
2879 	struct raid1_info *disk;
2880 	struct md_rdev *rdev;
2881 	int err = -ENOMEM;
2882 
2883 	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2884 	if (!conf)
2885 		goto abort;
2886 
2887 	conf->mirrors = kzalloc(sizeof(struct raid1_info)
2888 				* mddev->raid_disks * 2,
2889 				 GFP_KERNEL);
2890 	if (!conf->mirrors)
2891 		goto abort;
2892 
2893 	conf->tmppage = alloc_page(GFP_KERNEL);
2894 	if (!conf->tmppage)
2895 		goto abort;
2896 
2897 	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2898 	if (!conf->poolinfo)
2899 		goto abort;
2900 	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2901 	conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2902 					  r1bio_pool_free,
2903 					  conf->poolinfo);
2904 	if (!conf->r1bio_pool)
2905 		goto abort;
2906 
2907 	conf->poolinfo->mddev = mddev;
2908 
2909 	err = -EINVAL;
2910 	spin_lock_init(&conf->device_lock);
2911 	rdev_for_each(rdev, mddev) {
2912 		struct request_queue *q;
2913 		int disk_idx = rdev->raid_disk;
2914 		if (disk_idx >= mddev->raid_disks
2915 		    || disk_idx < 0)
2916 			continue;
2917 		if (test_bit(Replacement, &rdev->flags))
2918 			disk = conf->mirrors + mddev->raid_disks + disk_idx;
2919 		else
2920 			disk = conf->mirrors + disk_idx;
2921 
2922 		if (disk->rdev)
2923 			goto abort;
2924 		disk->rdev = rdev;
2925 		q = bdev_get_queue(rdev->bdev);
2926 
2927 		disk->head_position = 0;
2928 		disk->seq_start = MaxSector;
2929 	}
2930 	conf->raid_disks = mddev->raid_disks;
2931 	conf->mddev = mddev;
2932 	INIT_LIST_HEAD(&conf->retry_list);
2933 	INIT_LIST_HEAD(&conf->bio_end_io_list);
2934 
2935 	spin_lock_init(&conf->resync_lock);
2936 	init_waitqueue_head(&conf->wait_barrier);
2937 
2938 	bio_list_init(&conf->pending_bio_list);
2939 	conf->pending_count = 0;
2940 	conf->recovery_disabled = mddev->recovery_disabled - 1;
2941 
2942 	conf->start_next_window = MaxSector;
2943 	conf->current_window_requests = conf->next_window_requests = 0;
2944 
2945 	err = -EIO;
2946 	for (i = 0; i < conf->raid_disks * 2; i++) {
2947 
2948 		disk = conf->mirrors + i;
2949 
2950 		if (i < conf->raid_disks &&
2951 		    disk[conf->raid_disks].rdev) {
2952 			/* This slot has a replacement. */
2953 			if (!disk->rdev) {
2954 				/* No original, just make the replacement
2955 				 * a recovering spare
2956 				 */
2957 				disk->rdev =
2958 					disk[conf->raid_disks].rdev;
2959 				disk[conf->raid_disks].rdev = NULL;
2960 			} else if (!test_bit(In_sync, &disk->rdev->flags))
2961 				/* Original is not in_sync - bad */
2962 				goto abort;
2963 		}
2964 
2965 		if (!disk->rdev ||
2966 		    !test_bit(In_sync, &disk->rdev->flags)) {
2967 			disk->head_position = 0;
2968 			if (disk->rdev &&
2969 			    (disk->rdev->saved_raid_disk < 0))
2970 				conf->fullsync = 1;
2971 		}
2972 	}
2973 
2974 	err = -ENOMEM;
2975 	conf->thread = md_register_thread(raid1d, mddev, "raid1");
2976 	if (!conf->thread)
2977 		goto abort;
2978 
2979 	return conf;
2980 
2981  abort:
2982 	if (conf) {
2983 		mempool_destroy(conf->r1bio_pool);
2984 		kfree(conf->mirrors);
2985 		safe_put_page(conf->tmppage);
2986 		kfree(conf->poolinfo);
2987 		kfree(conf);
2988 	}
2989 	return ERR_PTR(err);
2990 }
2991 
2992 static void raid1_free(struct mddev *mddev, void *priv);
2993 static int raid1_run(struct mddev *mddev)
2994 {
2995 	struct r1conf *conf;
2996 	int i;
2997 	struct md_rdev *rdev;
2998 	int ret;
2999 	bool discard_supported = false;
3000 
3001 	if (mddev->level != 1) {
3002 		pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3003 			mdname(mddev), mddev->level);
3004 		return -EIO;
3005 	}
3006 	if (mddev->reshape_position != MaxSector) {
3007 		pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3008 			mdname(mddev));
3009 		return -EIO;
3010 	}
3011 	/*
3012 	 * copy the already verified devices into our private RAID1
3013 	 * bookkeeping area. [whatever we allocate in run(),
3014 	 * should be freed in raid1_free()]
3015 	 */
3016 	if (mddev->private == NULL)
3017 		conf = setup_conf(mddev);
3018 	else
3019 		conf = mddev->private;
3020 
3021 	if (IS_ERR(conf))
3022 		return PTR_ERR(conf);
3023 
3024 	if (mddev->queue)
3025 		blk_queue_max_write_same_sectors(mddev->queue, 0);
3026 
3027 	rdev_for_each(rdev, mddev) {
3028 		if (!mddev->gendisk)
3029 			continue;
3030 		disk_stack_limits(mddev->gendisk, rdev->bdev,
3031 				  rdev->data_offset << 9);
3032 		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3033 			discard_supported = true;
3034 	}
3035 
3036 	mddev->degraded = 0;
3037 	for (i=0; i < conf->raid_disks; i++)
3038 		if (conf->mirrors[i].rdev == NULL ||
3039 		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3040 		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3041 			mddev->degraded++;
3042 
3043 	if (conf->raid_disks - mddev->degraded == 1)
3044 		mddev->recovery_cp = MaxSector;
3045 
3046 	if (mddev->recovery_cp != MaxSector)
3047 		pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3048 			mdname(mddev));
3049 	pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3050 		mdname(mddev), mddev->raid_disks - mddev->degraded,
3051 		mddev->raid_disks);
3052 
3053 	/*
3054 	 * Ok, everything is just fine now
3055 	 */
3056 	mddev->thread = conf->thread;
3057 	conf->thread = NULL;
3058 	mddev->private = conf;
3059 	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3060 
3061 	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3062 
3063 	if (mddev->queue) {
3064 		if (discard_supported)
3065 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3066 						mddev->queue);
3067 		else
3068 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3069 						  mddev->queue);
3070 	}
3071 
3072 	ret =  md_integrity_register(mddev);
3073 	if (ret) {
3074 		md_unregister_thread(&mddev->thread);
3075 		raid1_free(mddev, conf);
3076 	}
3077 	return ret;
3078 }
3079 
3080 static void raid1_free(struct mddev *mddev, void *priv)
3081 {
3082 	struct r1conf *conf = priv;
3083 
3084 	mempool_destroy(conf->r1bio_pool);
3085 	kfree(conf->mirrors);
3086 	safe_put_page(conf->tmppage);
3087 	kfree(conf->poolinfo);
3088 	kfree(conf);
3089 }
3090 
3091 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3092 {
3093 	/* no resync is happening, and there is enough space
3094 	 * on all devices, so we can resize.
3095 	 * We need to make sure resync covers any new space.
3096 	 * If the array is shrinking we should possibly wait until
3097 	 * any io in the removed space completes, but it hardly seems
3098 	 * worth it.
3099 	 */
3100 	sector_t newsize = raid1_size(mddev, sectors, 0);
3101 	if (mddev->external_size &&
3102 	    mddev->array_sectors > newsize)
3103 		return -EINVAL;
3104 	if (mddev->bitmap) {
3105 		int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3106 		if (ret)
3107 			return ret;
3108 	}
3109 	md_set_array_sectors(mddev, newsize);
3110 	set_capacity(mddev->gendisk, mddev->array_sectors);
3111 	revalidate_disk(mddev->gendisk);
3112 	if (sectors > mddev->dev_sectors &&
3113 	    mddev->recovery_cp > mddev->dev_sectors) {
3114 		mddev->recovery_cp = mddev->dev_sectors;
3115 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3116 	}
3117 	mddev->dev_sectors = sectors;
3118 	mddev->resync_max_sectors = sectors;
3119 	return 0;
3120 }
3121 
3122 static int raid1_reshape(struct mddev *mddev)
3123 {
3124 	/* We need to:
3125 	 * 1/ resize the r1bio_pool
3126 	 * 2/ resize conf->mirrors
3127 	 *
3128 	 * We allocate a new r1bio_pool if we can.
3129 	 * Then raise a device barrier and wait until all IO stops.
3130 	 * Then resize conf->mirrors and swap in the new r1bio pool.
3131 	 *
3132 	 * At the same time, we "pack" the devices so that all the missing
3133 	 * devices have the higher raid_disk numbers.
3134 	 */
3135 	mempool_t *newpool, *oldpool;
3136 	struct pool_info *newpoolinfo;
3137 	struct raid1_info *newmirrors;
3138 	struct r1conf *conf = mddev->private;
3139 	int cnt, raid_disks;
3140 	unsigned long flags;
3141 	int d, d2, err;
3142 
3143 	/* Cannot change chunk_size, layout, or level */
3144 	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3145 	    mddev->layout != mddev->new_layout ||
3146 	    mddev->level != mddev->new_level) {
3147 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3148 		mddev->new_layout = mddev->layout;
3149 		mddev->new_level = mddev->level;
3150 		return -EINVAL;
3151 	}
3152 
3153 	if (!mddev_is_clustered(mddev)) {
3154 		err = md_allow_write(mddev);
3155 		if (err)
3156 			return err;
3157 	}
3158 
3159 	raid_disks = mddev->raid_disks + mddev->delta_disks;
3160 
3161 	if (raid_disks < conf->raid_disks) {
3162 		cnt=0;
3163 		for (d= 0; d < conf->raid_disks; d++)
3164 			if (conf->mirrors[d].rdev)
3165 				cnt++;
3166 		if (cnt > raid_disks)
3167 			return -EBUSY;
3168 	}
3169 
3170 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3171 	if (!newpoolinfo)
3172 		return -ENOMEM;
3173 	newpoolinfo->mddev = mddev;
3174 	newpoolinfo->raid_disks = raid_disks * 2;
3175 
3176 	newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3177 				 r1bio_pool_free, newpoolinfo);
3178 	if (!newpool) {
3179 		kfree(newpoolinfo);
3180 		return -ENOMEM;
3181 	}
3182 	newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3183 			     GFP_KERNEL);
3184 	if (!newmirrors) {
3185 		kfree(newpoolinfo);
3186 		mempool_destroy(newpool);
3187 		return -ENOMEM;
3188 	}
3189 
3190 	freeze_array(conf, 0);
3191 
3192 	/* ok, everything is stopped */
3193 	oldpool = conf->r1bio_pool;
3194 	conf->r1bio_pool = newpool;
3195 
3196 	for (d = d2 = 0; d < conf->raid_disks; d++) {
3197 		struct md_rdev *rdev = conf->mirrors[d].rdev;
3198 		if (rdev && rdev->raid_disk != d2) {
3199 			sysfs_unlink_rdev(mddev, rdev);
3200 			rdev->raid_disk = d2;
3201 			sysfs_unlink_rdev(mddev, rdev);
3202 			if (sysfs_link_rdev(mddev, rdev))
3203 				pr_warn("md/raid1:%s: cannot register rd%d\n",
3204 					mdname(mddev), rdev->raid_disk);
3205 		}
3206 		if (rdev)
3207 			newmirrors[d2++].rdev = rdev;
3208 	}
3209 	kfree(conf->mirrors);
3210 	conf->mirrors = newmirrors;
3211 	kfree(conf->poolinfo);
3212 	conf->poolinfo = newpoolinfo;
3213 
3214 	spin_lock_irqsave(&conf->device_lock, flags);
3215 	mddev->degraded += (raid_disks - conf->raid_disks);
3216 	spin_unlock_irqrestore(&conf->device_lock, flags);
3217 	conf->raid_disks = mddev->raid_disks = raid_disks;
3218 	mddev->delta_disks = 0;
3219 
3220 	unfreeze_array(conf);
3221 
3222 	set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3223 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3224 	md_wakeup_thread(mddev->thread);
3225 
3226 	mempool_destroy(oldpool);
3227 	return 0;
3228 }
3229 
3230 static void raid1_quiesce(struct mddev *mddev, int state)
3231 {
3232 	struct r1conf *conf = mddev->private;
3233 
3234 	switch(state) {
3235 	case 2: /* wake for suspend */
3236 		wake_up(&conf->wait_barrier);
3237 		break;
3238 	case 1:
3239 		freeze_array(conf, 0);
3240 		break;
3241 	case 0:
3242 		unfreeze_array(conf);
3243 		break;
3244 	}
3245 }
3246 
3247 static void *raid1_takeover(struct mddev *mddev)
3248 {
3249 	/* raid1 can take over:
3250 	 *  raid5 with 2 devices, any layout or chunk size
3251 	 */
3252 	if (mddev->level == 5 && mddev->raid_disks == 2) {
3253 		struct r1conf *conf;
3254 		mddev->new_level = 1;
3255 		mddev->new_layout = 0;
3256 		mddev->new_chunk_sectors = 0;
3257 		conf = setup_conf(mddev);
3258 		if (!IS_ERR(conf)) {
3259 			/* Array must appear to be quiesced */
3260 			conf->array_frozen = 1;
3261 			mddev_clear_unsupported_flags(mddev,
3262 				UNSUPPORTED_MDDEV_FLAGS);
3263 		}
3264 		return conf;
3265 	}
3266 	return ERR_PTR(-EINVAL);
3267 }
3268 
3269 static struct md_personality raid1_personality =
3270 {
3271 	.name		= "raid1",
3272 	.level		= 1,
3273 	.owner		= THIS_MODULE,
3274 	.make_request	= raid1_make_request,
3275 	.run		= raid1_run,
3276 	.free		= raid1_free,
3277 	.status		= raid1_status,
3278 	.error_handler	= raid1_error,
3279 	.hot_add_disk	= raid1_add_disk,
3280 	.hot_remove_disk= raid1_remove_disk,
3281 	.spare_active	= raid1_spare_active,
3282 	.sync_request	= raid1_sync_request,
3283 	.resize		= raid1_resize,
3284 	.size		= raid1_size,
3285 	.check_reshape	= raid1_reshape,
3286 	.quiesce	= raid1_quiesce,
3287 	.takeover	= raid1_takeover,
3288 	.congested	= raid1_congested,
3289 };
3290 
3291 static int __init raid_init(void)
3292 {
3293 	return register_md_personality(&raid1_personality);
3294 }
3295 
3296 static void raid_exit(void)
3297 {
3298 	unregister_md_personality(&raid1_personality);
3299 }
3300 
3301 module_init(raid_init);
3302 module_exit(raid_exit);
3303 MODULE_LICENSE("GPL");
3304 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3305 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3306 MODULE_ALIAS("md-raid1");
3307 MODULE_ALIAS("md-level-1");
3308 
3309 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
3310