1 /* 2 * raid1.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat 5 * 6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman 7 * 8 * RAID-1 management functions. 9 * 10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 11 * 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk> 13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> 14 * 15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support 16 * bitmapped intelligence in resync: 17 * 18 * - bitmap marked during normal i/o 19 * - bitmap used to skip nondirty blocks during sync 20 * 21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology: 22 * - persistent bitmap code 23 * 24 * This program is free software; you can redistribute it and/or modify 25 * it under the terms of the GNU General Public License as published by 26 * the Free Software Foundation; either version 2, or (at your option) 27 * any later version. 28 * 29 * You should have received a copy of the GNU General Public License 30 * (for example /usr/src/linux/COPYING); if not, write to the Free 31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 32 */ 33 34 #include <linux/slab.h> 35 #include <linux/delay.h> 36 #include <linux/blkdev.h> 37 #include <linux/module.h> 38 #include <linux/seq_file.h> 39 #include <linux/ratelimit.h> 40 #include "md.h" 41 #include "raid1.h" 42 #include "bitmap.h" 43 44 /* 45 * Number of guaranteed r1bios in case of extreme VM load: 46 */ 47 #define NR_RAID1_BIOS 256 48 49 /* when we get a read error on a read-only array, we redirect to another 50 * device without failing the first device, or trying to over-write to 51 * correct the read error. To keep track of bad blocks on a per-bio 52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer 53 */ 54 #define IO_BLOCKED ((struct bio *)1) 55 /* When we successfully write to a known bad-block, we need to remove the 56 * bad-block marking which must be done from process context. So we record 57 * the success by setting devs[n].bio to IO_MADE_GOOD 58 */ 59 #define IO_MADE_GOOD ((struct bio *)2) 60 61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2) 62 63 /* When there are this many requests queue to be written by 64 * the raid1 thread, we become 'congested' to provide back-pressure 65 * for writeback. 66 */ 67 static int max_queued_requests = 1024; 68 69 static void allow_barrier(struct r1conf *conf); 70 static void lower_barrier(struct r1conf *conf); 71 72 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data) 73 { 74 struct pool_info *pi = data; 75 int size = offsetof(struct r1bio, bios[pi->raid_disks]); 76 77 /* allocate a r1bio with room for raid_disks entries in the bios array */ 78 return kzalloc(size, gfp_flags); 79 } 80 81 static void r1bio_pool_free(void *r1_bio, void *data) 82 { 83 kfree(r1_bio); 84 } 85 86 #define RESYNC_BLOCK_SIZE (64*1024) 87 //#define RESYNC_BLOCK_SIZE PAGE_SIZE 88 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 89 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 90 #define RESYNC_WINDOW (2048*1024) 91 92 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) 93 { 94 struct pool_info *pi = data; 95 struct page *page; 96 struct r1bio *r1_bio; 97 struct bio *bio; 98 int i, j; 99 100 r1_bio = r1bio_pool_alloc(gfp_flags, pi); 101 if (!r1_bio) 102 return NULL; 103 104 /* 105 * Allocate bios : 1 for reading, n-1 for writing 106 */ 107 for (j = pi->raid_disks ; j-- ; ) { 108 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 109 if (!bio) 110 goto out_free_bio; 111 r1_bio->bios[j] = bio; 112 } 113 /* 114 * Allocate RESYNC_PAGES data pages and attach them to 115 * the first bio. 116 * If this is a user-requested check/repair, allocate 117 * RESYNC_PAGES for each bio. 118 */ 119 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) 120 j = pi->raid_disks; 121 else 122 j = 1; 123 while(j--) { 124 bio = r1_bio->bios[j]; 125 for (i = 0; i < RESYNC_PAGES; i++) { 126 page = alloc_page(gfp_flags); 127 if (unlikely(!page)) 128 goto out_free_pages; 129 130 bio->bi_io_vec[i].bv_page = page; 131 bio->bi_vcnt = i+1; 132 } 133 } 134 /* If not user-requests, copy the page pointers to all bios */ 135 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) { 136 for (i=0; i<RESYNC_PAGES ; i++) 137 for (j=1; j<pi->raid_disks; j++) 138 r1_bio->bios[j]->bi_io_vec[i].bv_page = 139 r1_bio->bios[0]->bi_io_vec[i].bv_page; 140 } 141 142 r1_bio->master_bio = NULL; 143 144 return r1_bio; 145 146 out_free_pages: 147 for (j=0 ; j < pi->raid_disks; j++) 148 for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++) 149 put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page); 150 j = -1; 151 out_free_bio: 152 while (++j < pi->raid_disks) 153 bio_put(r1_bio->bios[j]); 154 r1bio_pool_free(r1_bio, data); 155 return NULL; 156 } 157 158 static void r1buf_pool_free(void *__r1_bio, void *data) 159 { 160 struct pool_info *pi = data; 161 int i,j; 162 struct r1bio *r1bio = __r1_bio; 163 164 for (i = 0; i < RESYNC_PAGES; i++) 165 for (j = pi->raid_disks; j-- ;) { 166 if (j == 0 || 167 r1bio->bios[j]->bi_io_vec[i].bv_page != 168 r1bio->bios[0]->bi_io_vec[i].bv_page) 169 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page); 170 } 171 for (i=0 ; i < pi->raid_disks; i++) 172 bio_put(r1bio->bios[i]); 173 174 r1bio_pool_free(r1bio, data); 175 } 176 177 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio) 178 { 179 int i; 180 181 for (i = 0; i < conf->raid_disks * 2; i++) { 182 struct bio **bio = r1_bio->bios + i; 183 if (!BIO_SPECIAL(*bio)) 184 bio_put(*bio); 185 *bio = NULL; 186 } 187 } 188 189 static void free_r1bio(struct r1bio *r1_bio) 190 { 191 struct r1conf *conf = r1_bio->mddev->private; 192 193 put_all_bios(conf, r1_bio); 194 mempool_free(r1_bio, conf->r1bio_pool); 195 } 196 197 static void put_buf(struct r1bio *r1_bio) 198 { 199 struct r1conf *conf = r1_bio->mddev->private; 200 int i; 201 202 for (i = 0; i < conf->raid_disks * 2; i++) { 203 struct bio *bio = r1_bio->bios[i]; 204 if (bio->bi_end_io) 205 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev); 206 } 207 208 mempool_free(r1_bio, conf->r1buf_pool); 209 210 lower_barrier(conf); 211 } 212 213 static void reschedule_retry(struct r1bio *r1_bio) 214 { 215 unsigned long flags; 216 struct mddev *mddev = r1_bio->mddev; 217 struct r1conf *conf = mddev->private; 218 219 spin_lock_irqsave(&conf->device_lock, flags); 220 list_add(&r1_bio->retry_list, &conf->retry_list); 221 conf->nr_queued ++; 222 spin_unlock_irqrestore(&conf->device_lock, flags); 223 224 wake_up(&conf->wait_barrier); 225 md_wakeup_thread(mddev->thread); 226 } 227 228 /* 229 * raid_end_bio_io() is called when we have finished servicing a mirrored 230 * operation and are ready to return a success/failure code to the buffer 231 * cache layer. 232 */ 233 static void call_bio_endio(struct r1bio *r1_bio) 234 { 235 struct bio *bio = r1_bio->master_bio; 236 int done; 237 struct r1conf *conf = r1_bio->mddev->private; 238 239 if (bio->bi_phys_segments) { 240 unsigned long flags; 241 spin_lock_irqsave(&conf->device_lock, flags); 242 bio->bi_phys_segments--; 243 done = (bio->bi_phys_segments == 0); 244 spin_unlock_irqrestore(&conf->device_lock, flags); 245 } else 246 done = 1; 247 248 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 249 clear_bit(BIO_UPTODATE, &bio->bi_flags); 250 if (done) { 251 bio_endio(bio, 0); 252 /* 253 * Wake up any possible resync thread that waits for the device 254 * to go idle. 255 */ 256 allow_barrier(conf); 257 } 258 } 259 260 static void raid_end_bio_io(struct r1bio *r1_bio) 261 { 262 struct bio *bio = r1_bio->master_bio; 263 264 /* if nobody has done the final endio yet, do it now */ 265 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 266 pr_debug("raid1: sync end %s on sectors %llu-%llu\n", 267 (bio_data_dir(bio) == WRITE) ? "write" : "read", 268 (unsigned long long) bio->bi_sector, 269 (unsigned long long) bio->bi_sector + 270 (bio->bi_size >> 9) - 1); 271 272 call_bio_endio(r1_bio); 273 } 274 free_r1bio(r1_bio); 275 } 276 277 /* 278 * Update disk head position estimator based on IRQ completion info. 279 */ 280 static inline void update_head_pos(int disk, struct r1bio *r1_bio) 281 { 282 struct r1conf *conf = r1_bio->mddev->private; 283 284 conf->mirrors[disk].head_position = 285 r1_bio->sector + (r1_bio->sectors); 286 } 287 288 /* 289 * Find the disk number which triggered given bio 290 */ 291 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio) 292 { 293 int mirror; 294 struct r1conf *conf = r1_bio->mddev->private; 295 int raid_disks = conf->raid_disks; 296 297 for (mirror = 0; mirror < raid_disks * 2; mirror++) 298 if (r1_bio->bios[mirror] == bio) 299 break; 300 301 BUG_ON(mirror == raid_disks * 2); 302 update_head_pos(mirror, r1_bio); 303 304 return mirror; 305 } 306 307 static void raid1_end_read_request(struct bio *bio, int error) 308 { 309 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 310 struct r1bio *r1_bio = bio->bi_private; 311 int mirror; 312 struct r1conf *conf = r1_bio->mddev->private; 313 314 mirror = r1_bio->read_disk; 315 /* 316 * this branch is our 'one mirror IO has finished' event handler: 317 */ 318 update_head_pos(mirror, r1_bio); 319 320 if (uptodate) 321 set_bit(R1BIO_Uptodate, &r1_bio->state); 322 else { 323 /* If all other devices have failed, we want to return 324 * the error upwards rather than fail the last device. 325 * Here we redefine "uptodate" to mean "Don't want to retry" 326 */ 327 unsigned long flags; 328 spin_lock_irqsave(&conf->device_lock, flags); 329 if (r1_bio->mddev->degraded == conf->raid_disks || 330 (r1_bio->mddev->degraded == conf->raid_disks-1 && 331 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))) 332 uptodate = 1; 333 spin_unlock_irqrestore(&conf->device_lock, flags); 334 } 335 336 if (uptodate) { 337 raid_end_bio_io(r1_bio); 338 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev); 339 } else { 340 /* 341 * oops, read error: 342 */ 343 char b[BDEVNAME_SIZE]; 344 printk_ratelimited( 345 KERN_ERR "md/raid1:%s: %s: " 346 "rescheduling sector %llu\n", 347 mdname(conf->mddev), 348 bdevname(conf->mirrors[mirror].rdev->bdev, 349 b), 350 (unsigned long long)r1_bio->sector); 351 set_bit(R1BIO_ReadError, &r1_bio->state); 352 reschedule_retry(r1_bio); 353 /* don't drop the reference on read_disk yet */ 354 } 355 } 356 357 static void close_write(struct r1bio *r1_bio) 358 { 359 /* it really is the end of this request */ 360 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 361 /* free extra copy of the data pages */ 362 int i = r1_bio->behind_page_count; 363 while (i--) 364 safe_put_page(r1_bio->behind_bvecs[i].bv_page); 365 kfree(r1_bio->behind_bvecs); 366 r1_bio->behind_bvecs = NULL; 367 } 368 /* clear the bitmap if all writes complete successfully */ 369 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector, 370 r1_bio->sectors, 371 !test_bit(R1BIO_Degraded, &r1_bio->state), 372 test_bit(R1BIO_BehindIO, &r1_bio->state)); 373 md_write_end(r1_bio->mddev); 374 } 375 376 static void r1_bio_write_done(struct r1bio *r1_bio) 377 { 378 if (!atomic_dec_and_test(&r1_bio->remaining)) 379 return; 380 381 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 382 reschedule_retry(r1_bio); 383 else { 384 close_write(r1_bio); 385 if (test_bit(R1BIO_MadeGood, &r1_bio->state)) 386 reschedule_retry(r1_bio); 387 else 388 raid_end_bio_io(r1_bio); 389 } 390 } 391 392 static void raid1_end_write_request(struct bio *bio, int error) 393 { 394 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 395 struct r1bio *r1_bio = bio->bi_private; 396 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state); 397 struct r1conf *conf = r1_bio->mddev->private; 398 struct bio *to_put = NULL; 399 400 mirror = find_bio_disk(r1_bio, bio); 401 402 /* 403 * 'one mirror IO has finished' event handler: 404 */ 405 if (!uptodate) { 406 set_bit(WriteErrorSeen, 407 &conf->mirrors[mirror].rdev->flags); 408 if (!test_and_set_bit(WantReplacement, 409 &conf->mirrors[mirror].rdev->flags)) 410 set_bit(MD_RECOVERY_NEEDED, & 411 conf->mddev->recovery); 412 413 set_bit(R1BIO_WriteError, &r1_bio->state); 414 } else { 415 /* 416 * Set R1BIO_Uptodate in our master bio, so that we 417 * will return a good error code for to the higher 418 * levels even if IO on some other mirrored buffer 419 * fails. 420 * 421 * The 'master' represents the composite IO operation 422 * to user-side. So if something waits for IO, then it 423 * will wait for the 'master' bio. 424 */ 425 sector_t first_bad; 426 int bad_sectors; 427 428 r1_bio->bios[mirror] = NULL; 429 to_put = bio; 430 set_bit(R1BIO_Uptodate, &r1_bio->state); 431 432 /* Maybe we can clear some bad blocks. */ 433 if (is_badblock(conf->mirrors[mirror].rdev, 434 r1_bio->sector, r1_bio->sectors, 435 &first_bad, &bad_sectors)) { 436 r1_bio->bios[mirror] = IO_MADE_GOOD; 437 set_bit(R1BIO_MadeGood, &r1_bio->state); 438 } 439 } 440 441 if (behind) { 442 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags)) 443 atomic_dec(&r1_bio->behind_remaining); 444 445 /* 446 * In behind mode, we ACK the master bio once the I/O 447 * has safely reached all non-writemostly 448 * disks. Setting the Returned bit ensures that this 449 * gets done only once -- we don't ever want to return 450 * -EIO here, instead we'll wait 451 */ 452 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) && 453 test_bit(R1BIO_Uptodate, &r1_bio->state)) { 454 /* Maybe we can return now */ 455 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 456 struct bio *mbio = r1_bio->master_bio; 457 pr_debug("raid1: behind end write sectors" 458 " %llu-%llu\n", 459 (unsigned long long) mbio->bi_sector, 460 (unsigned long long) mbio->bi_sector + 461 (mbio->bi_size >> 9) - 1); 462 call_bio_endio(r1_bio); 463 } 464 } 465 } 466 if (r1_bio->bios[mirror] == NULL) 467 rdev_dec_pending(conf->mirrors[mirror].rdev, 468 conf->mddev); 469 470 /* 471 * Let's see if all mirrored write operations have finished 472 * already. 473 */ 474 r1_bio_write_done(r1_bio); 475 476 if (to_put) 477 bio_put(to_put); 478 } 479 480 481 /* 482 * This routine returns the disk from which the requested read should 483 * be done. There is a per-array 'next expected sequential IO' sector 484 * number - if this matches on the next IO then we use the last disk. 485 * There is also a per-disk 'last know head position' sector that is 486 * maintained from IRQ contexts, both the normal and the resync IO 487 * completion handlers update this position correctly. If there is no 488 * perfect sequential match then we pick the disk whose head is closest. 489 * 490 * If there are 2 mirrors in the same 2 devices, performance degrades 491 * because position is mirror, not device based. 492 * 493 * The rdev for the device selected will have nr_pending incremented. 494 */ 495 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors) 496 { 497 const sector_t this_sector = r1_bio->sector; 498 int sectors; 499 int best_good_sectors; 500 int best_disk, best_dist_disk, best_pending_disk; 501 int has_nonrot_disk; 502 int disk; 503 sector_t best_dist; 504 unsigned int min_pending; 505 struct md_rdev *rdev; 506 int choose_first; 507 int choose_next_idle; 508 509 rcu_read_lock(); 510 /* 511 * Check if we can balance. We can balance on the whole 512 * device if no resync is going on, or below the resync window. 513 * We take the first readable disk when above the resync window. 514 */ 515 retry: 516 sectors = r1_bio->sectors; 517 best_disk = -1; 518 best_dist_disk = -1; 519 best_dist = MaxSector; 520 best_pending_disk = -1; 521 min_pending = UINT_MAX; 522 best_good_sectors = 0; 523 has_nonrot_disk = 0; 524 choose_next_idle = 0; 525 526 if (conf->mddev->recovery_cp < MaxSector && 527 (this_sector + sectors >= conf->next_resync)) 528 choose_first = 1; 529 else 530 choose_first = 0; 531 532 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) { 533 sector_t dist; 534 sector_t first_bad; 535 int bad_sectors; 536 unsigned int pending; 537 bool nonrot; 538 539 rdev = rcu_dereference(conf->mirrors[disk].rdev); 540 if (r1_bio->bios[disk] == IO_BLOCKED 541 || rdev == NULL 542 || test_bit(Unmerged, &rdev->flags) 543 || test_bit(Faulty, &rdev->flags)) 544 continue; 545 if (!test_bit(In_sync, &rdev->flags) && 546 rdev->recovery_offset < this_sector + sectors) 547 continue; 548 if (test_bit(WriteMostly, &rdev->flags)) { 549 /* Don't balance among write-mostly, just 550 * use the first as a last resort */ 551 if (best_disk < 0) { 552 if (is_badblock(rdev, this_sector, sectors, 553 &first_bad, &bad_sectors)) { 554 if (first_bad < this_sector) 555 /* Cannot use this */ 556 continue; 557 best_good_sectors = first_bad - this_sector; 558 } else 559 best_good_sectors = sectors; 560 best_disk = disk; 561 } 562 continue; 563 } 564 /* This is a reasonable device to use. It might 565 * even be best. 566 */ 567 if (is_badblock(rdev, this_sector, sectors, 568 &first_bad, &bad_sectors)) { 569 if (best_dist < MaxSector) 570 /* already have a better device */ 571 continue; 572 if (first_bad <= this_sector) { 573 /* cannot read here. If this is the 'primary' 574 * device, then we must not read beyond 575 * bad_sectors from another device.. 576 */ 577 bad_sectors -= (this_sector - first_bad); 578 if (choose_first && sectors > bad_sectors) 579 sectors = bad_sectors; 580 if (best_good_sectors > sectors) 581 best_good_sectors = sectors; 582 583 } else { 584 sector_t good_sectors = first_bad - this_sector; 585 if (good_sectors > best_good_sectors) { 586 best_good_sectors = good_sectors; 587 best_disk = disk; 588 } 589 if (choose_first) 590 break; 591 } 592 continue; 593 } else 594 best_good_sectors = sectors; 595 596 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev)); 597 has_nonrot_disk |= nonrot; 598 pending = atomic_read(&rdev->nr_pending); 599 dist = abs(this_sector - conf->mirrors[disk].head_position); 600 if (choose_first) { 601 best_disk = disk; 602 break; 603 } 604 /* Don't change to another disk for sequential reads */ 605 if (conf->mirrors[disk].next_seq_sect == this_sector 606 || dist == 0) { 607 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9; 608 struct raid1_info *mirror = &conf->mirrors[disk]; 609 610 best_disk = disk; 611 /* 612 * If buffered sequential IO size exceeds optimal 613 * iosize, check if there is idle disk. If yes, choose 614 * the idle disk. read_balance could already choose an 615 * idle disk before noticing it's a sequential IO in 616 * this disk. This doesn't matter because this disk 617 * will idle, next time it will be utilized after the 618 * first disk has IO size exceeds optimal iosize. In 619 * this way, iosize of the first disk will be optimal 620 * iosize at least. iosize of the second disk might be 621 * small, but not a big deal since when the second disk 622 * starts IO, the first disk is likely still busy. 623 */ 624 if (nonrot && opt_iosize > 0 && 625 mirror->seq_start != MaxSector && 626 mirror->next_seq_sect > opt_iosize && 627 mirror->next_seq_sect - opt_iosize >= 628 mirror->seq_start) { 629 choose_next_idle = 1; 630 continue; 631 } 632 break; 633 } 634 /* If device is idle, use it */ 635 if (pending == 0) { 636 best_disk = disk; 637 break; 638 } 639 640 if (choose_next_idle) 641 continue; 642 643 if (min_pending > pending) { 644 min_pending = pending; 645 best_pending_disk = disk; 646 } 647 648 if (dist < best_dist) { 649 best_dist = dist; 650 best_dist_disk = disk; 651 } 652 } 653 654 /* 655 * If all disks are rotational, choose the closest disk. If any disk is 656 * non-rotational, choose the disk with less pending request even the 657 * disk is rotational, which might/might not be optimal for raids with 658 * mixed ratation/non-rotational disks depending on workload. 659 */ 660 if (best_disk == -1) { 661 if (has_nonrot_disk) 662 best_disk = best_pending_disk; 663 else 664 best_disk = best_dist_disk; 665 } 666 667 if (best_disk >= 0) { 668 rdev = rcu_dereference(conf->mirrors[best_disk].rdev); 669 if (!rdev) 670 goto retry; 671 atomic_inc(&rdev->nr_pending); 672 if (test_bit(Faulty, &rdev->flags)) { 673 /* cannot risk returning a device that failed 674 * before we inc'ed nr_pending 675 */ 676 rdev_dec_pending(rdev, conf->mddev); 677 goto retry; 678 } 679 sectors = best_good_sectors; 680 681 if (conf->mirrors[best_disk].next_seq_sect != this_sector) 682 conf->mirrors[best_disk].seq_start = this_sector; 683 684 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors; 685 } 686 rcu_read_unlock(); 687 *max_sectors = sectors; 688 689 return best_disk; 690 } 691 692 static int raid1_mergeable_bvec(struct request_queue *q, 693 struct bvec_merge_data *bvm, 694 struct bio_vec *biovec) 695 { 696 struct mddev *mddev = q->queuedata; 697 struct r1conf *conf = mddev->private; 698 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev); 699 int max = biovec->bv_len; 700 701 if (mddev->merge_check_needed) { 702 int disk; 703 rcu_read_lock(); 704 for (disk = 0; disk < conf->raid_disks * 2; disk++) { 705 struct md_rdev *rdev = rcu_dereference( 706 conf->mirrors[disk].rdev); 707 if (rdev && !test_bit(Faulty, &rdev->flags)) { 708 struct request_queue *q = 709 bdev_get_queue(rdev->bdev); 710 if (q->merge_bvec_fn) { 711 bvm->bi_sector = sector + 712 rdev->data_offset; 713 bvm->bi_bdev = rdev->bdev; 714 max = min(max, q->merge_bvec_fn( 715 q, bvm, biovec)); 716 } 717 } 718 } 719 rcu_read_unlock(); 720 } 721 return max; 722 723 } 724 725 int md_raid1_congested(struct mddev *mddev, int bits) 726 { 727 struct r1conf *conf = mddev->private; 728 int i, ret = 0; 729 730 if ((bits & (1 << BDI_async_congested)) && 731 conf->pending_count >= max_queued_requests) 732 return 1; 733 734 rcu_read_lock(); 735 for (i = 0; i < conf->raid_disks * 2; i++) { 736 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 737 if (rdev && !test_bit(Faulty, &rdev->flags)) { 738 struct request_queue *q = bdev_get_queue(rdev->bdev); 739 740 BUG_ON(!q); 741 742 /* Note the '|| 1' - when read_balance prefers 743 * non-congested targets, it can be removed 744 */ 745 if ((bits & (1<<BDI_async_congested)) || 1) 746 ret |= bdi_congested(&q->backing_dev_info, bits); 747 else 748 ret &= bdi_congested(&q->backing_dev_info, bits); 749 } 750 } 751 rcu_read_unlock(); 752 return ret; 753 } 754 EXPORT_SYMBOL_GPL(md_raid1_congested); 755 756 static int raid1_congested(void *data, int bits) 757 { 758 struct mddev *mddev = data; 759 760 return mddev_congested(mddev, bits) || 761 md_raid1_congested(mddev, bits); 762 } 763 764 static void flush_pending_writes(struct r1conf *conf) 765 { 766 /* Any writes that have been queued but are awaiting 767 * bitmap updates get flushed here. 768 */ 769 spin_lock_irq(&conf->device_lock); 770 771 if (conf->pending_bio_list.head) { 772 struct bio *bio; 773 bio = bio_list_get(&conf->pending_bio_list); 774 conf->pending_count = 0; 775 spin_unlock_irq(&conf->device_lock); 776 /* flush any pending bitmap writes to 777 * disk before proceeding w/ I/O */ 778 bitmap_unplug(conf->mddev->bitmap); 779 wake_up(&conf->wait_barrier); 780 781 while (bio) { /* submit pending writes */ 782 struct bio *next = bio->bi_next; 783 bio->bi_next = NULL; 784 if (unlikely((bio->bi_rw & REQ_DISCARD) && 785 !blk_queue_discard(bdev_get_queue(bio->bi_bdev)))) 786 /* Just ignore it */ 787 bio_endio(bio, 0); 788 else 789 generic_make_request(bio); 790 bio = next; 791 } 792 } else 793 spin_unlock_irq(&conf->device_lock); 794 } 795 796 /* Barriers.... 797 * Sometimes we need to suspend IO while we do something else, 798 * either some resync/recovery, or reconfigure the array. 799 * To do this we raise a 'barrier'. 800 * The 'barrier' is a counter that can be raised multiple times 801 * to count how many activities are happening which preclude 802 * normal IO. 803 * We can only raise the barrier if there is no pending IO. 804 * i.e. if nr_pending == 0. 805 * We choose only to raise the barrier if no-one is waiting for the 806 * barrier to go down. This means that as soon as an IO request 807 * is ready, no other operations which require a barrier will start 808 * until the IO request has had a chance. 809 * 810 * So: regular IO calls 'wait_barrier'. When that returns there 811 * is no backgroup IO happening, It must arrange to call 812 * allow_barrier when it has finished its IO. 813 * backgroup IO calls must call raise_barrier. Once that returns 814 * there is no normal IO happeing. It must arrange to call 815 * lower_barrier when the particular background IO completes. 816 */ 817 #define RESYNC_DEPTH 32 818 819 static void raise_barrier(struct r1conf *conf) 820 { 821 spin_lock_irq(&conf->resync_lock); 822 823 /* Wait until no block IO is waiting */ 824 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting, 825 conf->resync_lock, ); 826 827 /* block any new IO from starting */ 828 conf->barrier++; 829 830 /* Now wait for all pending IO to complete */ 831 wait_event_lock_irq(conf->wait_barrier, 832 !conf->nr_pending && conf->barrier < RESYNC_DEPTH, 833 conf->resync_lock, ); 834 835 spin_unlock_irq(&conf->resync_lock); 836 } 837 838 static void lower_barrier(struct r1conf *conf) 839 { 840 unsigned long flags; 841 BUG_ON(conf->barrier <= 0); 842 spin_lock_irqsave(&conf->resync_lock, flags); 843 conf->barrier--; 844 spin_unlock_irqrestore(&conf->resync_lock, flags); 845 wake_up(&conf->wait_barrier); 846 } 847 848 static void wait_barrier(struct r1conf *conf) 849 { 850 spin_lock_irq(&conf->resync_lock); 851 if (conf->barrier) { 852 conf->nr_waiting++; 853 /* Wait for the barrier to drop. 854 * However if there are already pending 855 * requests (preventing the barrier from 856 * rising completely), and the 857 * pre-process bio queue isn't empty, 858 * then don't wait, as we need to empty 859 * that queue to get the nr_pending 860 * count down. 861 */ 862 wait_event_lock_irq(conf->wait_barrier, 863 !conf->barrier || 864 (conf->nr_pending && 865 current->bio_list && 866 !bio_list_empty(current->bio_list)), 867 conf->resync_lock, 868 ); 869 conf->nr_waiting--; 870 } 871 conf->nr_pending++; 872 spin_unlock_irq(&conf->resync_lock); 873 } 874 875 static void allow_barrier(struct r1conf *conf) 876 { 877 unsigned long flags; 878 spin_lock_irqsave(&conf->resync_lock, flags); 879 conf->nr_pending--; 880 spin_unlock_irqrestore(&conf->resync_lock, flags); 881 wake_up(&conf->wait_barrier); 882 } 883 884 static void freeze_array(struct r1conf *conf) 885 { 886 /* stop syncio and normal IO and wait for everything to 887 * go quite. 888 * We increment barrier and nr_waiting, and then 889 * wait until nr_pending match nr_queued+1 890 * This is called in the context of one normal IO request 891 * that has failed. Thus any sync request that might be pending 892 * will be blocked by nr_pending, and we need to wait for 893 * pending IO requests to complete or be queued for re-try. 894 * Thus the number queued (nr_queued) plus this request (1) 895 * must match the number of pending IOs (nr_pending) before 896 * we continue. 897 */ 898 spin_lock_irq(&conf->resync_lock); 899 conf->barrier++; 900 conf->nr_waiting++; 901 wait_event_lock_irq(conf->wait_barrier, 902 conf->nr_pending == conf->nr_queued+1, 903 conf->resync_lock, 904 flush_pending_writes(conf)); 905 spin_unlock_irq(&conf->resync_lock); 906 } 907 static void unfreeze_array(struct r1conf *conf) 908 { 909 /* reverse the effect of the freeze */ 910 spin_lock_irq(&conf->resync_lock); 911 conf->barrier--; 912 conf->nr_waiting--; 913 wake_up(&conf->wait_barrier); 914 spin_unlock_irq(&conf->resync_lock); 915 } 916 917 918 /* duplicate the data pages for behind I/O 919 */ 920 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio) 921 { 922 int i; 923 struct bio_vec *bvec; 924 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec), 925 GFP_NOIO); 926 if (unlikely(!bvecs)) 927 return; 928 929 bio_for_each_segment(bvec, bio, i) { 930 bvecs[i] = *bvec; 931 bvecs[i].bv_page = alloc_page(GFP_NOIO); 932 if (unlikely(!bvecs[i].bv_page)) 933 goto do_sync_io; 934 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset, 935 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len); 936 kunmap(bvecs[i].bv_page); 937 kunmap(bvec->bv_page); 938 } 939 r1_bio->behind_bvecs = bvecs; 940 r1_bio->behind_page_count = bio->bi_vcnt; 941 set_bit(R1BIO_BehindIO, &r1_bio->state); 942 return; 943 944 do_sync_io: 945 for (i = 0; i < bio->bi_vcnt; i++) 946 if (bvecs[i].bv_page) 947 put_page(bvecs[i].bv_page); 948 kfree(bvecs); 949 pr_debug("%dB behind alloc failed, doing sync I/O\n", bio->bi_size); 950 } 951 952 struct raid1_plug_cb { 953 struct blk_plug_cb cb; 954 struct bio_list pending; 955 int pending_cnt; 956 }; 957 958 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule) 959 { 960 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, 961 cb); 962 struct mddev *mddev = plug->cb.data; 963 struct r1conf *conf = mddev->private; 964 struct bio *bio; 965 966 if (from_schedule) { 967 spin_lock_irq(&conf->device_lock); 968 bio_list_merge(&conf->pending_bio_list, &plug->pending); 969 conf->pending_count += plug->pending_cnt; 970 spin_unlock_irq(&conf->device_lock); 971 md_wakeup_thread(mddev->thread); 972 kfree(plug); 973 return; 974 } 975 976 /* we aren't scheduling, so we can do the write-out directly. */ 977 bio = bio_list_get(&plug->pending); 978 bitmap_unplug(mddev->bitmap); 979 wake_up(&conf->wait_barrier); 980 981 while (bio) { /* submit pending writes */ 982 struct bio *next = bio->bi_next; 983 bio->bi_next = NULL; 984 generic_make_request(bio); 985 bio = next; 986 } 987 kfree(plug); 988 } 989 990 static void make_request(struct mddev *mddev, struct bio * bio) 991 { 992 struct r1conf *conf = mddev->private; 993 struct raid1_info *mirror; 994 struct r1bio *r1_bio; 995 struct bio *read_bio; 996 int i, disks; 997 struct bitmap *bitmap; 998 unsigned long flags; 999 const int rw = bio_data_dir(bio); 1000 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC); 1001 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA)); 1002 const unsigned long do_discard = (bio->bi_rw 1003 & (REQ_DISCARD | REQ_SECURE)); 1004 struct md_rdev *blocked_rdev; 1005 struct blk_plug_cb *cb; 1006 struct raid1_plug_cb *plug = NULL; 1007 int first_clone; 1008 int sectors_handled; 1009 int max_sectors; 1010 1011 /* 1012 * Register the new request and wait if the reconstruction 1013 * thread has put up a bar for new requests. 1014 * Continue immediately if no resync is active currently. 1015 */ 1016 1017 md_write_start(mddev, bio); /* wait on superblock update early */ 1018 1019 if (bio_data_dir(bio) == WRITE && 1020 bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo && 1021 bio->bi_sector < mddev->suspend_hi) { 1022 /* As the suspend_* range is controlled by 1023 * userspace, we want an interruptible 1024 * wait. 1025 */ 1026 DEFINE_WAIT(w); 1027 for (;;) { 1028 flush_signals(current); 1029 prepare_to_wait(&conf->wait_barrier, 1030 &w, TASK_INTERRUPTIBLE); 1031 if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo || 1032 bio->bi_sector >= mddev->suspend_hi) 1033 break; 1034 schedule(); 1035 } 1036 finish_wait(&conf->wait_barrier, &w); 1037 } 1038 1039 wait_barrier(conf); 1040 1041 bitmap = mddev->bitmap; 1042 1043 /* 1044 * make_request() can abort the operation when READA is being 1045 * used and no empty request is available. 1046 * 1047 */ 1048 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 1049 1050 r1_bio->master_bio = bio; 1051 r1_bio->sectors = bio->bi_size >> 9; 1052 r1_bio->state = 0; 1053 r1_bio->mddev = mddev; 1054 r1_bio->sector = bio->bi_sector; 1055 1056 /* We might need to issue multiple reads to different 1057 * devices if there are bad blocks around, so we keep 1058 * track of the number of reads in bio->bi_phys_segments. 1059 * If this is 0, there is only one r1_bio and no locking 1060 * will be needed when requests complete. If it is 1061 * non-zero, then it is the number of not-completed requests. 1062 */ 1063 bio->bi_phys_segments = 0; 1064 clear_bit(BIO_SEG_VALID, &bio->bi_flags); 1065 1066 if (rw == READ) { 1067 /* 1068 * read balancing logic: 1069 */ 1070 int rdisk; 1071 1072 read_again: 1073 rdisk = read_balance(conf, r1_bio, &max_sectors); 1074 1075 if (rdisk < 0) { 1076 /* couldn't find anywhere to read from */ 1077 raid_end_bio_io(r1_bio); 1078 return; 1079 } 1080 mirror = conf->mirrors + rdisk; 1081 1082 if (test_bit(WriteMostly, &mirror->rdev->flags) && 1083 bitmap) { 1084 /* Reading from a write-mostly device must 1085 * take care not to over-take any writes 1086 * that are 'behind' 1087 */ 1088 wait_event(bitmap->behind_wait, 1089 atomic_read(&bitmap->behind_writes) == 0); 1090 } 1091 r1_bio->read_disk = rdisk; 1092 1093 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1094 md_trim_bio(read_bio, r1_bio->sector - bio->bi_sector, 1095 max_sectors); 1096 1097 r1_bio->bios[rdisk] = read_bio; 1098 1099 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset; 1100 read_bio->bi_bdev = mirror->rdev->bdev; 1101 read_bio->bi_end_io = raid1_end_read_request; 1102 read_bio->bi_rw = READ | do_sync; 1103 read_bio->bi_private = r1_bio; 1104 1105 if (max_sectors < r1_bio->sectors) { 1106 /* could not read all from this device, so we will 1107 * need another r1_bio. 1108 */ 1109 1110 sectors_handled = (r1_bio->sector + max_sectors 1111 - bio->bi_sector); 1112 r1_bio->sectors = max_sectors; 1113 spin_lock_irq(&conf->device_lock); 1114 if (bio->bi_phys_segments == 0) 1115 bio->bi_phys_segments = 2; 1116 else 1117 bio->bi_phys_segments++; 1118 spin_unlock_irq(&conf->device_lock); 1119 /* Cannot call generic_make_request directly 1120 * as that will be queued in __make_request 1121 * and subsequent mempool_alloc might block waiting 1122 * for it. So hand bio over to raid1d. 1123 */ 1124 reschedule_retry(r1_bio); 1125 1126 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 1127 1128 r1_bio->master_bio = bio; 1129 r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled; 1130 r1_bio->state = 0; 1131 r1_bio->mddev = mddev; 1132 r1_bio->sector = bio->bi_sector + sectors_handled; 1133 goto read_again; 1134 } else 1135 generic_make_request(read_bio); 1136 return; 1137 } 1138 1139 /* 1140 * WRITE: 1141 */ 1142 if (conf->pending_count >= max_queued_requests) { 1143 md_wakeup_thread(mddev->thread); 1144 wait_event(conf->wait_barrier, 1145 conf->pending_count < max_queued_requests); 1146 } 1147 /* first select target devices under rcu_lock and 1148 * inc refcount on their rdev. Record them by setting 1149 * bios[x] to bio 1150 * If there are known/acknowledged bad blocks on any device on 1151 * which we have seen a write error, we want to avoid writing those 1152 * blocks. 1153 * This potentially requires several writes to write around 1154 * the bad blocks. Each set of writes gets it's own r1bio 1155 * with a set of bios attached. 1156 */ 1157 1158 disks = conf->raid_disks * 2; 1159 retry_write: 1160 blocked_rdev = NULL; 1161 rcu_read_lock(); 1162 max_sectors = r1_bio->sectors; 1163 for (i = 0; i < disks; i++) { 1164 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1165 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1166 atomic_inc(&rdev->nr_pending); 1167 blocked_rdev = rdev; 1168 break; 1169 } 1170 r1_bio->bios[i] = NULL; 1171 if (!rdev || test_bit(Faulty, &rdev->flags) 1172 || test_bit(Unmerged, &rdev->flags)) { 1173 if (i < conf->raid_disks) 1174 set_bit(R1BIO_Degraded, &r1_bio->state); 1175 continue; 1176 } 1177 1178 atomic_inc(&rdev->nr_pending); 1179 if (test_bit(WriteErrorSeen, &rdev->flags)) { 1180 sector_t first_bad; 1181 int bad_sectors; 1182 int is_bad; 1183 1184 is_bad = is_badblock(rdev, r1_bio->sector, 1185 max_sectors, 1186 &first_bad, &bad_sectors); 1187 if (is_bad < 0) { 1188 /* mustn't write here until the bad block is 1189 * acknowledged*/ 1190 set_bit(BlockedBadBlocks, &rdev->flags); 1191 blocked_rdev = rdev; 1192 break; 1193 } 1194 if (is_bad && first_bad <= r1_bio->sector) { 1195 /* Cannot write here at all */ 1196 bad_sectors -= (r1_bio->sector - first_bad); 1197 if (bad_sectors < max_sectors) 1198 /* mustn't write more than bad_sectors 1199 * to other devices yet 1200 */ 1201 max_sectors = bad_sectors; 1202 rdev_dec_pending(rdev, mddev); 1203 /* We don't set R1BIO_Degraded as that 1204 * only applies if the disk is 1205 * missing, so it might be re-added, 1206 * and we want to know to recover this 1207 * chunk. 1208 * In this case the device is here, 1209 * and the fact that this chunk is not 1210 * in-sync is recorded in the bad 1211 * block log 1212 */ 1213 continue; 1214 } 1215 if (is_bad) { 1216 int good_sectors = first_bad - r1_bio->sector; 1217 if (good_sectors < max_sectors) 1218 max_sectors = good_sectors; 1219 } 1220 } 1221 r1_bio->bios[i] = bio; 1222 } 1223 rcu_read_unlock(); 1224 1225 if (unlikely(blocked_rdev)) { 1226 /* Wait for this device to become unblocked */ 1227 int j; 1228 1229 for (j = 0; j < i; j++) 1230 if (r1_bio->bios[j]) 1231 rdev_dec_pending(conf->mirrors[j].rdev, mddev); 1232 r1_bio->state = 0; 1233 allow_barrier(conf); 1234 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1235 wait_barrier(conf); 1236 goto retry_write; 1237 } 1238 1239 if (max_sectors < r1_bio->sectors) { 1240 /* We are splitting this write into multiple parts, so 1241 * we need to prepare for allocating another r1_bio. 1242 */ 1243 r1_bio->sectors = max_sectors; 1244 spin_lock_irq(&conf->device_lock); 1245 if (bio->bi_phys_segments == 0) 1246 bio->bi_phys_segments = 2; 1247 else 1248 bio->bi_phys_segments++; 1249 spin_unlock_irq(&conf->device_lock); 1250 } 1251 sectors_handled = r1_bio->sector + max_sectors - bio->bi_sector; 1252 1253 atomic_set(&r1_bio->remaining, 1); 1254 atomic_set(&r1_bio->behind_remaining, 0); 1255 1256 first_clone = 1; 1257 for (i = 0; i < disks; i++) { 1258 struct bio *mbio; 1259 if (!r1_bio->bios[i]) 1260 continue; 1261 1262 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1263 md_trim_bio(mbio, r1_bio->sector - bio->bi_sector, max_sectors); 1264 1265 if (first_clone) { 1266 /* do behind I/O ? 1267 * Not if there are too many, or cannot 1268 * allocate memory, or a reader on WriteMostly 1269 * is waiting for behind writes to flush */ 1270 if (bitmap && 1271 (atomic_read(&bitmap->behind_writes) 1272 < mddev->bitmap_info.max_write_behind) && 1273 !waitqueue_active(&bitmap->behind_wait)) 1274 alloc_behind_pages(mbio, r1_bio); 1275 1276 bitmap_startwrite(bitmap, r1_bio->sector, 1277 r1_bio->sectors, 1278 test_bit(R1BIO_BehindIO, 1279 &r1_bio->state)); 1280 first_clone = 0; 1281 } 1282 if (r1_bio->behind_bvecs) { 1283 struct bio_vec *bvec; 1284 int j; 1285 1286 /* Yes, I really want the '__' version so that 1287 * we clear any unused pointer in the io_vec, rather 1288 * than leave them unchanged. This is important 1289 * because when we come to free the pages, we won't 1290 * know the original bi_idx, so we just free 1291 * them all 1292 */ 1293 __bio_for_each_segment(bvec, mbio, j, 0) 1294 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page; 1295 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags)) 1296 atomic_inc(&r1_bio->behind_remaining); 1297 } 1298 1299 r1_bio->bios[i] = mbio; 1300 1301 mbio->bi_sector = (r1_bio->sector + 1302 conf->mirrors[i].rdev->data_offset); 1303 mbio->bi_bdev = conf->mirrors[i].rdev->bdev; 1304 mbio->bi_end_io = raid1_end_write_request; 1305 mbio->bi_rw = WRITE | do_flush_fua | do_sync | do_discard; 1306 mbio->bi_private = r1_bio; 1307 1308 atomic_inc(&r1_bio->remaining); 1309 1310 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug)); 1311 if (cb) 1312 plug = container_of(cb, struct raid1_plug_cb, cb); 1313 else 1314 plug = NULL; 1315 spin_lock_irqsave(&conf->device_lock, flags); 1316 if (plug) { 1317 bio_list_add(&plug->pending, mbio); 1318 plug->pending_cnt++; 1319 } else { 1320 bio_list_add(&conf->pending_bio_list, mbio); 1321 conf->pending_count++; 1322 } 1323 spin_unlock_irqrestore(&conf->device_lock, flags); 1324 if (!plug) 1325 md_wakeup_thread(mddev->thread); 1326 } 1327 /* Mustn't call r1_bio_write_done before this next test, 1328 * as it could result in the bio being freed. 1329 */ 1330 if (sectors_handled < (bio->bi_size >> 9)) { 1331 r1_bio_write_done(r1_bio); 1332 /* We need another r1_bio. It has already been counted 1333 * in bio->bi_phys_segments 1334 */ 1335 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 1336 r1_bio->master_bio = bio; 1337 r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled; 1338 r1_bio->state = 0; 1339 r1_bio->mddev = mddev; 1340 r1_bio->sector = bio->bi_sector + sectors_handled; 1341 goto retry_write; 1342 } 1343 1344 r1_bio_write_done(r1_bio); 1345 1346 /* In case raid1d snuck in to freeze_array */ 1347 wake_up(&conf->wait_barrier); 1348 } 1349 1350 static void status(struct seq_file *seq, struct mddev *mddev) 1351 { 1352 struct r1conf *conf = mddev->private; 1353 int i; 1354 1355 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 1356 conf->raid_disks - mddev->degraded); 1357 rcu_read_lock(); 1358 for (i = 0; i < conf->raid_disks; i++) { 1359 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1360 seq_printf(seq, "%s", 1361 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1362 } 1363 rcu_read_unlock(); 1364 seq_printf(seq, "]"); 1365 } 1366 1367 1368 static void error(struct mddev *mddev, struct md_rdev *rdev) 1369 { 1370 char b[BDEVNAME_SIZE]; 1371 struct r1conf *conf = mddev->private; 1372 1373 /* 1374 * If it is not operational, then we have already marked it as dead 1375 * else if it is the last working disks, ignore the error, let the 1376 * next level up know. 1377 * else mark the drive as failed 1378 */ 1379 if (test_bit(In_sync, &rdev->flags) 1380 && (conf->raid_disks - mddev->degraded) == 1) { 1381 /* 1382 * Don't fail the drive, act as though we were just a 1383 * normal single drive. 1384 * However don't try a recovery from this drive as 1385 * it is very likely to fail. 1386 */ 1387 conf->recovery_disabled = mddev->recovery_disabled; 1388 return; 1389 } 1390 set_bit(Blocked, &rdev->flags); 1391 if (test_and_clear_bit(In_sync, &rdev->flags)) { 1392 unsigned long flags; 1393 spin_lock_irqsave(&conf->device_lock, flags); 1394 mddev->degraded++; 1395 set_bit(Faulty, &rdev->flags); 1396 spin_unlock_irqrestore(&conf->device_lock, flags); 1397 /* 1398 * if recovery is running, make sure it aborts. 1399 */ 1400 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1401 } else 1402 set_bit(Faulty, &rdev->flags); 1403 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1404 printk(KERN_ALERT 1405 "md/raid1:%s: Disk failure on %s, disabling device.\n" 1406 "md/raid1:%s: Operation continuing on %d devices.\n", 1407 mdname(mddev), bdevname(rdev->bdev, b), 1408 mdname(mddev), conf->raid_disks - mddev->degraded); 1409 } 1410 1411 static void print_conf(struct r1conf *conf) 1412 { 1413 int i; 1414 1415 printk(KERN_DEBUG "RAID1 conf printout:\n"); 1416 if (!conf) { 1417 printk(KERN_DEBUG "(!conf)\n"); 1418 return; 1419 } 1420 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1421 conf->raid_disks); 1422 1423 rcu_read_lock(); 1424 for (i = 0; i < conf->raid_disks; i++) { 1425 char b[BDEVNAME_SIZE]; 1426 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1427 if (rdev) 1428 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n", 1429 i, !test_bit(In_sync, &rdev->flags), 1430 !test_bit(Faulty, &rdev->flags), 1431 bdevname(rdev->bdev,b)); 1432 } 1433 rcu_read_unlock(); 1434 } 1435 1436 static void close_sync(struct r1conf *conf) 1437 { 1438 wait_barrier(conf); 1439 allow_barrier(conf); 1440 1441 mempool_destroy(conf->r1buf_pool); 1442 conf->r1buf_pool = NULL; 1443 } 1444 1445 static int raid1_spare_active(struct mddev *mddev) 1446 { 1447 int i; 1448 struct r1conf *conf = mddev->private; 1449 int count = 0; 1450 unsigned long flags; 1451 1452 /* 1453 * Find all failed disks within the RAID1 configuration 1454 * and mark them readable. 1455 * Called under mddev lock, so rcu protection not needed. 1456 */ 1457 for (i = 0; i < conf->raid_disks; i++) { 1458 struct md_rdev *rdev = conf->mirrors[i].rdev; 1459 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev; 1460 if (repl 1461 && repl->recovery_offset == MaxSector 1462 && !test_bit(Faulty, &repl->flags) 1463 && !test_and_set_bit(In_sync, &repl->flags)) { 1464 /* replacement has just become active */ 1465 if (!rdev || 1466 !test_and_clear_bit(In_sync, &rdev->flags)) 1467 count++; 1468 if (rdev) { 1469 /* Replaced device not technically 1470 * faulty, but we need to be sure 1471 * it gets removed and never re-added 1472 */ 1473 set_bit(Faulty, &rdev->flags); 1474 sysfs_notify_dirent_safe( 1475 rdev->sysfs_state); 1476 } 1477 } 1478 if (rdev 1479 && !test_bit(Faulty, &rdev->flags) 1480 && !test_and_set_bit(In_sync, &rdev->flags)) { 1481 count++; 1482 sysfs_notify_dirent_safe(rdev->sysfs_state); 1483 } 1484 } 1485 spin_lock_irqsave(&conf->device_lock, flags); 1486 mddev->degraded -= count; 1487 spin_unlock_irqrestore(&conf->device_lock, flags); 1488 1489 print_conf(conf); 1490 return count; 1491 } 1492 1493 1494 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1495 { 1496 struct r1conf *conf = mddev->private; 1497 int err = -EEXIST; 1498 int mirror = 0; 1499 struct raid1_info *p; 1500 int first = 0; 1501 int last = conf->raid_disks - 1; 1502 struct request_queue *q = bdev_get_queue(rdev->bdev); 1503 1504 if (mddev->recovery_disabled == conf->recovery_disabled) 1505 return -EBUSY; 1506 1507 if (rdev->raid_disk >= 0) 1508 first = last = rdev->raid_disk; 1509 1510 if (q->merge_bvec_fn) { 1511 set_bit(Unmerged, &rdev->flags); 1512 mddev->merge_check_needed = 1; 1513 } 1514 1515 for (mirror = first; mirror <= last; mirror++) { 1516 p = conf->mirrors+mirror; 1517 if (!p->rdev) { 1518 1519 disk_stack_limits(mddev->gendisk, rdev->bdev, 1520 rdev->data_offset << 9); 1521 1522 p->head_position = 0; 1523 rdev->raid_disk = mirror; 1524 err = 0; 1525 /* As all devices are equivalent, we don't need a full recovery 1526 * if this was recently any drive of the array 1527 */ 1528 if (rdev->saved_raid_disk < 0) 1529 conf->fullsync = 1; 1530 rcu_assign_pointer(p->rdev, rdev); 1531 break; 1532 } 1533 if (test_bit(WantReplacement, &p->rdev->flags) && 1534 p[conf->raid_disks].rdev == NULL) { 1535 /* Add this device as a replacement */ 1536 clear_bit(In_sync, &rdev->flags); 1537 set_bit(Replacement, &rdev->flags); 1538 rdev->raid_disk = mirror; 1539 err = 0; 1540 conf->fullsync = 1; 1541 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev); 1542 break; 1543 } 1544 } 1545 if (err == 0 && test_bit(Unmerged, &rdev->flags)) { 1546 /* Some requests might not have seen this new 1547 * merge_bvec_fn. We must wait for them to complete 1548 * before merging the device fully. 1549 * First we make sure any code which has tested 1550 * our function has submitted the request, then 1551 * we wait for all outstanding requests to complete. 1552 */ 1553 synchronize_sched(); 1554 raise_barrier(conf); 1555 lower_barrier(conf); 1556 clear_bit(Unmerged, &rdev->flags); 1557 } 1558 md_integrity_add_rdev(rdev, mddev); 1559 if (blk_queue_discard(bdev_get_queue(rdev->bdev))) 1560 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue); 1561 print_conf(conf); 1562 return err; 1563 } 1564 1565 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1566 { 1567 struct r1conf *conf = mddev->private; 1568 int err = 0; 1569 int number = rdev->raid_disk; 1570 struct raid1_info *p = conf->mirrors + number; 1571 1572 if (rdev != p->rdev) 1573 p = conf->mirrors + conf->raid_disks + number; 1574 1575 print_conf(conf); 1576 if (rdev == p->rdev) { 1577 if (test_bit(In_sync, &rdev->flags) || 1578 atomic_read(&rdev->nr_pending)) { 1579 err = -EBUSY; 1580 goto abort; 1581 } 1582 /* Only remove non-faulty devices if recovery 1583 * is not possible. 1584 */ 1585 if (!test_bit(Faulty, &rdev->flags) && 1586 mddev->recovery_disabled != conf->recovery_disabled && 1587 mddev->degraded < conf->raid_disks) { 1588 err = -EBUSY; 1589 goto abort; 1590 } 1591 p->rdev = NULL; 1592 synchronize_rcu(); 1593 if (atomic_read(&rdev->nr_pending)) { 1594 /* lost the race, try later */ 1595 err = -EBUSY; 1596 p->rdev = rdev; 1597 goto abort; 1598 } else if (conf->mirrors[conf->raid_disks + number].rdev) { 1599 /* We just removed a device that is being replaced. 1600 * Move down the replacement. We drain all IO before 1601 * doing this to avoid confusion. 1602 */ 1603 struct md_rdev *repl = 1604 conf->mirrors[conf->raid_disks + number].rdev; 1605 raise_barrier(conf); 1606 clear_bit(Replacement, &repl->flags); 1607 p->rdev = repl; 1608 conf->mirrors[conf->raid_disks + number].rdev = NULL; 1609 lower_barrier(conf); 1610 clear_bit(WantReplacement, &rdev->flags); 1611 } else 1612 clear_bit(WantReplacement, &rdev->flags); 1613 err = md_integrity_register(mddev); 1614 } 1615 abort: 1616 1617 print_conf(conf); 1618 return err; 1619 } 1620 1621 1622 static void end_sync_read(struct bio *bio, int error) 1623 { 1624 struct r1bio *r1_bio = bio->bi_private; 1625 1626 update_head_pos(r1_bio->read_disk, r1_bio); 1627 1628 /* 1629 * we have read a block, now it needs to be re-written, 1630 * or re-read if the read failed. 1631 * We don't do much here, just schedule handling by raid1d 1632 */ 1633 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 1634 set_bit(R1BIO_Uptodate, &r1_bio->state); 1635 1636 if (atomic_dec_and_test(&r1_bio->remaining)) 1637 reschedule_retry(r1_bio); 1638 } 1639 1640 static void end_sync_write(struct bio *bio, int error) 1641 { 1642 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1643 struct r1bio *r1_bio = bio->bi_private; 1644 struct mddev *mddev = r1_bio->mddev; 1645 struct r1conf *conf = mddev->private; 1646 int mirror=0; 1647 sector_t first_bad; 1648 int bad_sectors; 1649 1650 mirror = find_bio_disk(r1_bio, bio); 1651 1652 if (!uptodate) { 1653 sector_t sync_blocks = 0; 1654 sector_t s = r1_bio->sector; 1655 long sectors_to_go = r1_bio->sectors; 1656 /* make sure these bits doesn't get cleared. */ 1657 do { 1658 bitmap_end_sync(mddev->bitmap, s, 1659 &sync_blocks, 1); 1660 s += sync_blocks; 1661 sectors_to_go -= sync_blocks; 1662 } while (sectors_to_go > 0); 1663 set_bit(WriteErrorSeen, 1664 &conf->mirrors[mirror].rdev->flags); 1665 if (!test_and_set_bit(WantReplacement, 1666 &conf->mirrors[mirror].rdev->flags)) 1667 set_bit(MD_RECOVERY_NEEDED, & 1668 mddev->recovery); 1669 set_bit(R1BIO_WriteError, &r1_bio->state); 1670 } else if (is_badblock(conf->mirrors[mirror].rdev, 1671 r1_bio->sector, 1672 r1_bio->sectors, 1673 &first_bad, &bad_sectors) && 1674 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev, 1675 r1_bio->sector, 1676 r1_bio->sectors, 1677 &first_bad, &bad_sectors) 1678 ) 1679 set_bit(R1BIO_MadeGood, &r1_bio->state); 1680 1681 if (atomic_dec_and_test(&r1_bio->remaining)) { 1682 int s = r1_bio->sectors; 1683 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 1684 test_bit(R1BIO_WriteError, &r1_bio->state)) 1685 reschedule_retry(r1_bio); 1686 else { 1687 put_buf(r1_bio); 1688 md_done_sync(mddev, s, uptodate); 1689 } 1690 } 1691 } 1692 1693 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector, 1694 int sectors, struct page *page, int rw) 1695 { 1696 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false)) 1697 /* success */ 1698 return 1; 1699 if (rw == WRITE) { 1700 set_bit(WriteErrorSeen, &rdev->flags); 1701 if (!test_and_set_bit(WantReplacement, 1702 &rdev->flags)) 1703 set_bit(MD_RECOVERY_NEEDED, & 1704 rdev->mddev->recovery); 1705 } 1706 /* need to record an error - either for the block or the device */ 1707 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 1708 md_error(rdev->mddev, rdev); 1709 return 0; 1710 } 1711 1712 static int fix_sync_read_error(struct r1bio *r1_bio) 1713 { 1714 /* Try some synchronous reads of other devices to get 1715 * good data, much like with normal read errors. Only 1716 * read into the pages we already have so we don't 1717 * need to re-issue the read request. 1718 * We don't need to freeze the array, because being in an 1719 * active sync request, there is no normal IO, and 1720 * no overlapping syncs. 1721 * We don't need to check is_badblock() again as we 1722 * made sure that anything with a bad block in range 1723 * will have bi_end_io clear. 1724 */ 1725 struct mddev *mddev = r1_bio->mddev; 1726 struct r1conf *conf = mddev->private; 1727 struct bio *bio = r1_bio->bios[r1_bio->read_disk]; 1728 sector_t sect = r1_bio->sector; 1729 int sectors = r1_bio->sectors; 1730 int idx = 0; 1731 1732 while(sectors) { 1733 int s = sectors; 1734 int d = r1_bio->read_disk; 1735 int success = 0; 1736 struct md_rdev *rdev; 1737 int start; 1738 1739 if (s > (PAGE_SIZE>>9)) 1740 s = PAGE_SIZE >> 9; 1741 do { 1742 if (r1_bio->bios[d]->bi_end_io == end_sync_read) { 1743 /* No rcu protection needed here devices 1744 * can only be removed when no resync is 1745 * active, and resync is currently active 1746 */ 1747 rdev = conf->mirrors[d].rdev; 1748 if (sync_page_io(rdev, sect, s<<9, 1749 bio->bi_io_vec[idx].bv_page, 1750 READ, false)) { 1751 success = 1; 1752 break; 1753 } 1754 } 1755 d++; 1756 if (d == conf->raid_disks * 2) 1757 d = 0; 1758 } while (!success && d != r1_bio->read_disk); 1759 1760 if (!success) { 1761 char b[BDEVNAME_SIZE]; 1762 int abort = 0; 1763 /* Cannot read from anywhere, this block is lost. 1764 * Record a bad block on each device. If that doesn't 1765 * work just disable and interrupt the recovery. 1766 * Don't fail devices as that won't really help. 1767 */ 1768 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error" 1769 " for block %llu\n", 1770 mdname(mddev), 1771 bdevname(bio->bi_bdev, b), 1772 (unsigned long long)r1_bio->sector); 1773 for (d = 0; d < conf->raid_disks * 2; d++) { 1774 rdev = conf->mirrors[d].rdev; 1775 if (!rdev || test_bit(Faulty, &rdev->flags)) 1776 continue; 1777 if (!rdev_set_badblocks(rdev, sect, s, 0)) 1778 abort = 1; 1779 } 1780 if (abort) { 1781 conf->recovery_disabled = 1782 mddev->recovery_disabled; 1783 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1784 md_done_sync(mddev, r1_bio->sectors, 0); 1785 put_buf(r1_bio); 1786 return 0; 1787 } 1788 /* Try next page */ 1789 sectors -= s; 1790 sect += s; 1791 idx++; 1792 continue; 1793 } 1794 1795 start = d; 1796 /* write it back and re-read */ 1797 while (d != r1_bio->read_disk) { 1798 if (d == 0) 1799 d = conf->raid_disks * 2; 1800 d--; 1801 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1802 continue; 1803 rdev = conf->mirrors[d].rdev; 1804 if (r1_sync_page_io(rdev, sect, s, 1805 bio->bi_io_vec[idx].bv_page, 1806 WRITE) == 0) { 1807 r1_bio->bios[d]->bi_end_io = NULL; 1808 rdev_dec_pending(rdev, mddev); 1809 } 1810 } 1811 d = start; 1812 while (d != r1_bio->read_disk) { 1813 if (d == 0) 1814 d = conf->raid_disks * 2; 1815 d--; 1816 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1817 continue; 1818 rdev = conf->mirrors[d].rdev; 1819 if (r1_sync_page_io(rdev, sect, s, 1820 bio->bi_io_vec[idx].bv_page, 1821 READ) != 0) 1822 atomic_add(s, &rdev->corrected_errors); 1823 } 1824 sectors -= s; 1825 sect += s; 1826 idx ++; 1827 } 1828 set_bit(R1BIO_Uptodate, &r1_bio->state); 1829 set_bit(BIO_UPTODATE, &bio->bi_flags); 1830 return 1; 1831 } 1832 1833 static int process_checks(struct r1bio *r1_bio) 1834 { 1835 /* We have read all readable devices. If we haven't 1836 * got the block, then there is no hope left. 1837 * If we have, then we want to do a comparison 1838 * and skip the write if everything is the same. 1839 * If any blocks failed to read, then we need to 1840 * attempt an over-write 1841 */ 1842 struct mddev *mddev = r1_bio->mddev; 1843 struct r1conf *conf = mddev->private; 1844 int primary; 1845 int i; 1846 int vcnt; 1847 1848 for (primary = 0; primary < conf->raid_disks * 2; primary++) 1849 if (r1_bio->bios[primary]->bi_end_io == end_sync_read && 1850 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) { 1851 r1_bio->bios[primary]->bi_end_io = NULL; 1852 rdev_dec_pending(conf->mirrors[primary].rdev, mddev); 1853 break; 1854 } 1855 r1_bio->read_disk = primary; 1856 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9); 1857 for (i = 0; i < conf->raid_disks * 2; i++) { 1858 int j; 1859 struct bio *pbio = r1_bio->bios[primary]; 1860 struct bio *sbio = r1_bio->bios[i]; 1861 int size; 1862 1863 if (r1_bio->bios[i]->bi_end_io != end_sync_read) 1864 continue; 1865 1866 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) { 1867 for (j = vcnt; j-- ; ) { 1868 struct page *p, *s; 1869 p = pbio->bi_io_vec[j].bv_page; 1870 s = sbio->bi_io_vec[j].bv_page; 1871 if (memcmp(page_address(p), 1872 page_address(s), 1873 sbio->bi_io_vec[j].bv_len)) 1874 break; 1875 } 1876 } else 1877 j = 0; 1878 if (j >= 0) 1879 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches); 1880 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery) 1881 && test_bit(BIO_UPTODATE, &sbio->bi_flags))) { 1882 /* No need to write to this device. */ 1883 sbio->bi_end_io = NULL; 1884 rdev_dec_pending(conf->mirrors[i].rdev, mddev); 1885 continue; 1886 } 1887 /* fixup the bio for reuse */ 1888 sbio->bi_vcnt = vcnt; 1889 sbio->bi_size = r1_bio->sectors << 9; 1890 sbio->bi_idx = 0; 1891 sbio->bi_phys_segments = 0; 1892 sbio->bi_flags &= ~(BIO_POOL_MASK - 1); 1893 sbio->bi_flags |= 1 << BIO_UPTODATE; 1894 sbio->bi_next = NULL; 1895 sbio->bi_sector = r1_bio->sector + 1896 conf->mirrors[i].rdev->data_offset; 1897 sbio->bi_bdev = conf->mirrors[i].rdev->bdev; 1898 size = sbio->bi_size; 1899 for (j = 0; j < vcnt ; j++) { 1900 struct bio_vec *bi; 1901 bi = &sbio->bi_io_vec[j]; 1902 bi->bv_offset = 0; 1903 if (size > PAGE_SIZE) 1904 bi->bv_len = PAGE_SIZE; 1905 else 1906 bi->bv_len = size; 1907 size -= PAGE_SIZE; 1908 memcpy(page_address(bi->bv_page), 1909 page_address(pbio->bi_io_vec[j].bv_page), 1910 PAGE_SIZE); 1911 } 1912 } 1913 return 0; 1914 } 1915 1916 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio) 1917 { 1918 struct r1conf *conf = mddev->private; 1919 int i; 1920 int disks = conf->raid_disks * 2; 1921 struct bio *bio, *wbio; 1922 1923 bio = r1_bio->bios[r1_bio->read_disk]; 1924 1925 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 1926 /* ouch - failed to read all of that. */ 1927 if (!fix_sync_read_error(r1_bio)) 1928 return; 1929 1930 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 1931 if (process_checks(r1_bio) < 0) 1932 return; 1933 /* 1934 * schedule writes 1935 */ 1936 atomic_set(&r1_bio->remaining, 1); 1937 for (i = 0; i < disks ; i++) { 1938 wbio = r1_bio->bios[i]; 1939 if (wbio->bi_end_io == NULL || 1940 (wbio->bi_end_io == end_sync_read && 1941 (i == r1_bio->read_disk || 1942 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)))) 1943 continue; 1944 1945 wbio->bi_rw = WRITE; 1946 wbio->bi_end_io = end_sync_write; 1947 atomic_inc(&r1_bio->remaining); 1948 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9); 1949 1950 generic_make_request(wbio); 1951 } 1952 1953 if (atomic_dec_and_test(&r1_bio->remaining)) { 1954 /* if we're here, all write(s) have completed, so clean up */ 1955 int s = r1_bio->sectors; 1956 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 1957 test_bit(R1BIO_WriteError, &r1_bio->state)) 1958 reschedule_retry(r1_bio); 1959 else { 1960 put_buf(r1_bio); 1961 md_done_sync(mddev, s, 1); 1962 } 1963 } 1964 } 1965 1966 /* 1967 * This is a kernel thread which: 1968 * 1969 * 1. Retries failed read operations on working mirrors. 1970 * 2. Updates the raid superblock when problems encounter. 1971 * 3. Performs writes following reads for array synchronising. 1972 */ 1973 1974 static void fix_read_error(struct r1conf *conf, int read_disk, 1975 sector_t sect, int sectors) 1976 { 1977 struct mddev *mddev = conf->mddev; 1978 while(sectors) { 1979 int s = sectors; 1980 int d = read_disk; 1981 int success = 0; 1982 int start; 1983 struct md_rdev *rdev; 1984 1985 if (s > (PAGE_SIZE>>9)) 1986 s = PAGE_SIZE >> 9; 1987 1988 do { 1989 /* Note: no rcu protection needed here 1990 * as this is synchronous in the raid1d thread 1991 * which is the thread that might remove 1992 * a device. If raid1d ever becomes multi-threaded.... 1993 */ 1994 sector_t first_bad; 1995 int bad_sectors; 1996 1997 rdev = conf->mirrors[d].rdev; 1998 if (rdev && 1999 (test_bit(In_sync, &rdev->flags) || 2000 (!test_bit(Faulty, &rdev->flags) && 2001 rdev->recovery_offset >= sect + s)) && 2002 is_badblock(rdev, sect, s, 2003 &first_bad, &bad_sectors) == 0 && 2004 sync_page_io(rdev, sect, s<<9, 2005 conf->tmppage, READ, false)) 2006 success = 1; 2007 else { 2008 d++; 2009 if (d == conf->raid_disks * 2) 2010 d = 0; 2011 } 2012 } while (!success && d != read_disk); 2013 2014 if (!success) { 2015 /* Cannot read from anywhere - mark it bad */ 2016 struct md_rdev *rdev = conf->mirrors[read_disk].rdev; 2017 if (!rdev_set_badblocks(rdev, sect, s, 0)) 2018 md_error(mddev, rdev); 2019 break; 2020 } 2021 /* write it back and re-read */ 2022 start = d; 2023 while (d != read_disk) { 2024 if (d==0) 2025 d = conf->raid_disks * 2; 2026 d--; 2027 rdev = conf->mirrors[d].rdev; 2028 if (rdev && 2029 test_bit(In_sync, &rdev->flags)) 2030 r1_sync_page_io(rdev, sect, s, 2031 conf->tmppage, WRITE); 2032 } 2033 d = start; 2034 while (d != read_disk) { 2035 char b[BDEVNAME_SIZE]; 2036 if (d==0) 2037 d = conf->raid_disks * 2; 2038 d--; 2039 rdev = conf->mirrors[d].rdev; 2040 if (rdev && 2041 test_bit(In_sync, &rdev->flags)) { 2042 if (r1_sync_page_io(rdev, sect, s, 2043 conf->tmppage, READ)) { 2044 atomic_add(s, &rdev->corrected_errors); 2045 printk(KERN_INFO 2046 "md/raid1:%s: read error corrected " 2047 "(%d sectors at %llu on %s)\n", 2048 mdname(mddev), s, 2049 (unsigned long long)(sect + 2050 rdev->data_offset), 2051 bdevname(rdev->bdev, b)); 2052 } 2053 } 2054 } 2055 sectors -= s; 2056 sect += s; 2057 } 2058 } 2059 2060 static void bi_complete(struct bio *bio, int error) 2061 { 2062 complete((struct completion *)bio->bi_private); 2063 } 2064 2065 static int submit_bio_wait(int rw, struct bio *bio) 2066 { 2067 struct completion event; 2068 rw |= REQ_SYNC; 2069 2070 init_completion(&event); 2071 bio->bi_private = &event; 2072 bio->bi_end_io = bi_complete; 2073 submit_bio(rw, bio); 2074 wait_for_completion(&event); 2075 2076 return test_bit(BIO_UPTODATE, &bio->bi_flags); 2077 } 2078 2079 static int narrow_write_error(struct r1bio *r1_bio, int i) 2080 { 2081 struct mddev *mddev = r1_bio->mddev; 2082 struct r1conf *conf = mddev->private; 2083 struct md_rdev *rdev = conf->mirrors[i].rdev; 2084 int vcnt, idx; 2085 struct bio_vec *vec; 2086 2087 /* bio has the data to be written to device 'i' where 2088 * we just recently had a write error. 2089 * We repeatedly clone the bio and trim down to one block, 2090 * then try the write. Where the write fails we record 2091 * a bad block. 2092 * It is conceivable that the bio doesn't exactly align with 2093 * blocks. We must handle this somehow. 2094 * 2095 * We currently own a reference on the rdev. 2096 */ 2097 2098 int block_sectors; 2099 sector_t sector; 2100 int sectors; 2101 int sect_to_write = r1_bio->sectors; 2102 int ok = 1; 2103 2104 if (rdev->badblocks.shift < 0) 2105 return 0; 2106 2107 block_sectors = 1 << rdev->badblocks.shift; 2108 sector = r1_bio->sector; 2109 sectors = ((sector + block_sectors) 2110 & ~(sector_t)(block_sectors - 1)) 2111 - sector; 2112 2113 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 2114 vcnt = r1_bio->behind_page_count; 2115 vec = r1_bio->behind_bvecs; 2116 idx = 0; 2117 while (vec[idx].bv_page == NULL) 2118 idx++; 2119 } else { 2120 vcnt = r1_bio->master_bio->bi_vcnt; 2121 vec = r1_bio->master_bio->bi_io_vec; 2122 idx = r1_bio->master_bio->bi_idx; 2123 } 2124 while (sect_to_write) { 2125 struct bio *wbio; 2126 if (sectors > sect_to_write) 2127 sectors = sect_to_write; 2128 /* Write at 'sector' for 'sectors'*/ 2129 2130 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev); 2131 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec)); 2132 wbio->bi_sector = r1_bio->sector; 2133 wbio->bi_rw = WRITE; 2134 wbio->bi_vcnt = vcnt; 2135 wbio->bi_size = r1_bio->sectors << 9; 2136 wbio->bi_idx = idx; 2137 2138 md_trim_bio(wbio, sector - r1_bio->sector, sectors); 2139 wbio->bi_sector += rdev->data_offset; 2140 wbio->bi_bdev = rdev->bdev; 2141 if (submit_bio_wait(WRITE, wbio) == 0) 2142 /* failure! */ 2143 ok = rdev_set_badblocks(rdev, sector, 2144 sectors, 0) 2145 && ok; 2146 2147 bio_put(wbio); 2148 sect_to_write -= sectors; 2149 sector += sectors; 2150 sectors = block_sectors; 2151 } 2152 return ok; 2153 } 2154 2155 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2156 { 2157 int m; 2158 int s = r1_bio->sectors; 2159 for (m = 0; m < conf->raid_disks * 2 ; m++) { 2160 struct md_rdev *rdev = conf->mirrors[m].rdev; 2161 struct bio *bio = r1_bio->bios[m]; 2162 if (bio->bi_end_io == NULL) 2163 continue; 2164 if (test_bit(BIO_UPTODATE, &bio->bi_flags) && 2165 test_bit(R1BIO_MadeGood, &r1_bio->state)) { 2166 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0); 2167 } 2168 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) && 2169 test_bit(R1BIO_WriteError, &r1_bio->state)) { 2170 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0)) 2171 md_error(conf->mddev, rdev); 2172 } 2173 } 2174 put_buf(r1_bio); 2175 md_done_sync(conf->mddev, s, 1); 2176 } 2177 2178 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2179 { 2180 int m; 2181 for (m = 0; m < conf->raid_disks * 2 ; m++) 2182 if (r1_bio->bios[m] == IO_MADE_GOOD) { 2183 struct md_rdev *rdev = conf->mirrors[m].rdev; 2184 rdev_clear_badblocks(rdev, 2185 r1_bio->sector, 2186 r1_bio->sectors, 0); 2187 rdev_dec_pending(rdev, conf->mddev); 2188 } else if (r1_bio->bios[m] != NULL) { 2189 /* This drive got a write error. We need to 2190 * narrow down and record precise write 2191 * errors. 2192 */ 2193 if (!narrow_write_error(r1_bio, m)) { 2194 md_error(conf->mddev, 2195 conf->mirrors[m].rdev); 2196 /* an I/O failed, we can't clear the bitmap */ 2197 set_bit(R1BIO_Degraded, &r1_bio->state); 2198 } 2199 rdev_dec_pending(conf->mirrors[m].rdev, 2200 conf->mddev); 2201 } 2202 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2203 close_write(r1_bio); 2204 raid_end_bio_io(r1_bio); 2205 } 2206 2207 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio) 2208 { 2209 int disk; 2210 int max_sectors; 2211 struct mddev *mddev = conf->mddev; 2212 struct bio *bio; 2213 char b[BDEVNAME_SIZE]; 2214 struct md_rdev *rdev; 2215 2216 clear_bit(R1BIO_ReadError, &r1_bio->state); 2217 /* we got a read error. Maybe the drive is bad. Maybe just 2218 * the block and we can fix it. 2219 * We freeze all other IO, and try reading the block from 2220 * other devices. When we find one, we re-write 2221 * and check it that fixes the read error. 2222 * This is all done synchronously while the array is 2223 * frozen 2224 */ 2225 if (mddev->ro == 0) { 2226 freeze_array(conf); 2227 fix_read_error(conf, r1_bio->read_disk, 2228 r1_bio->sector, r1_bio->sectors); 2229 unfreeze_array(conf); 2230 } else 2231 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev); 2232 rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev); 2233 2234 bio = r1_bio->bios[r1_bio->read_disk]; 2235 bdevname(bio->bi_bdev, b); 2236 read_more: 2237 disk = read_balance(conf, r1_bio, &max_sectors); 2238 if (disk == -1) { 2239 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O" 2240 " read error for block %llu\n", 2241 mdname(mddev), b, (unsigned long long)r1_bio->sector); 2242 raid_end_bio_io(r1_bio); 2243 } else { 2244 const unsigned long do_sync 2245 = r1_bio->master_bio->bi_rw & REQ_SYNC; 2246 if (bio) { 2247 r1_bio->bios[r1_bio->read_disk] = 2248 mddev->ro ? IO_BLOCKED : NULL; 2249 bio_put(bio); 2250 } 2251 r1_bio->read_disk = disk; 2252 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev); 2253 md_trim_bio(bio, r1_bio->sector - bio->bi_sector, max_sectors); 2254 r1_bio->bios[r1_bio->read_disk] = bio; 2255 rdev = conf->mirrors[disk].rdev; 2256 printk_ratelimited(KERN_ERR 2257 "md/raid1:%s: redirecting sector %llu" 2258 " to other mirror: %s\n", 2259 mdname(mddev), 2260 (unsigned long long)r1_bio->sector, 2261 bdevname(rdev->bdev, b)); 2262 bio->bi_sector = r1_bio->sector + rdev->data_offset; 2263 bio->bi_bdev = rdev->bdev; 2264 bio->bi_end_io = raid1_end_read_request; 2265 bio->bi_rw = READ | do_sync; 2266 bio->bi_private = r1_bio; 2267 if (max_sectors < r1_bio->sectors) { 2268 /* Drat - have to split this up more */ 2269 struct bio *mbio = r1_bio->master_bio; 2270 int sectors_handled = (r1_bio->sector + max_sectors 2271 - mbio->bi_sector); 2272 r1_bio->sectors = max_sectors; 2273 spin_lock_irq(&conf->device_lock); 2274 if (mbio->bi_phys_segments == 0) 2275 mbio->bi_phys_segments = 2; 2276 else 2277 mbio->bi_phys_segments++; 2278 spin_unlock_irq(&conf->device_lock); 2279 generic_make_request(bio); 2280 bio = NULL; 2281 2282 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 2283 2284 r1_bio->master_bio = mbio; 2285 r1_bio->sectors = (mbio->bi_size >> 9) 2286 - sectors_handled; 2287 r1_bio->state = 0; 2288 set_bit(R1BIO_ReadError, &r1_bio->state); 2289 r1_bio->mddev = mddev; 2290 r1_bio->sector = mbio->bi_sector + sectors_handled; 2291 2292 goto read_more; 2293 } else 2294 generic_make_request(bio); 2295 } 2296 } 2297 2298 static void raid1d(struct md_thread *thread) 2299 { 2300 struct mddev *mddev = thread->mddev; 2301 struct r1bio *r1_bio; 2302 unsigned long flags; 2303 struct r1conf *conf = mddev->private; 2304 struct list_head *head = &conf->retry_list; 2305 struct blk_plug plug; 2306 2307 md_check_recovery(mddev); 2308 2309 blk_start_plug(&plug); 2310 for (;;) { 2311 2312 flush_pending_writes(conf); 2313 2314 spin_lock_irqsave(&conf->device_lock, flags); 2315 if (list_empty(head)) { 2316 spin_unlock_irqrestore(&conf->device_lock, flags); 2317 break; 2318 } 2319 r1_bio = list_entry(head->prev, struct r1bio, retry_list); 2320 list_del(head->prev); 2321 conf->nr_queued--; 2322 spin_unlock_irqrestore(&conf->device_lock, flags); 2323 2324 mddev = r1_bio->mddev; 2325 conf = mddev->private; 2326 if (test_bit(R1BIO_IsSync, &r1_bio->state)) { 2327 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2328 test_bit(R1BIO_WriteError, &r1_bio->state)) 2329 handle_sync_write_finished(conf, r1_bio); 2330 else 2331 sync_request_write(mddev, r1_bio); 2332 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2333 test_bit(R1BIO_WriteError, &r1_bio->state)) 2334 handle_write_finished(conf, r1_bio); 2335 else if (test_bit(R1BIO_ReadError, &r1_bio->state)) 2336 handle_read_error(conf, r1_bio); 2337 else 2338 /* just a partial read to be scheduled from separate 2339 * context 2340 */ 2341 generic_make_request(r1_bio->bios[r1_bio->read_disk]); 2342 2343 cond_resched(); 2344 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) 2345 md_check_recovery(mddev); 2346 } 2347 blk_finish_plug(&plug); 2348 } 2349 2350 2351 static int init_resync(struct r1conf *conf) 2352 { 2353 int buffs; 2354 2355 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2356 BUG_ON(conf->r1buf_pool); 2357 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free, 2358 conf->poolinfo); 2359 if (!conf->r1buf_pool) 2360 return -ENOMEM; 2361 conf->next_resync = 0; 2362 return 0; 2363 } 2364 2365 /* 2366 * perform a "sync" on one "block" 2367 * 2368 * We need to make sure that no normal I/O request - particularly write 2369 * requests - conflict with active sync requests. 2370 * 2371 * This is achieved by tracking pending requests and a 'barrier' concept 2372 * that can be installed to exclude normal IO requests. 2373 */ 2374 2375 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster) 2376 { 2377 struct r1conf *conf = mddev->private; 2378 struct r1bio *r1_bio; 2379 struct bio *bio; 2380 sector_t max_sector, nr_sectors; 2381 int disk = -1; 2382 int i; 2383 int wonly = -1; 2384 int write_targets = 0, read_targets = 0; 2385 sector_t sync_blocks; 2386 int still_degraded = 0; 2387 int good_sectors = RESYNC_SECTORS; 2388 int min_bad = 0; /* number of sectors that are bad in all devices */ 2389 2390 if (!conf->r1buf_pool) 2391 if (init_resync(conf)) 2392 return 0; 2393 2394 max_sector = mddev->dev_sectors; 2395 if (sector_nr >= max_sector) { 2396 /* If we aborted, we need to abort the 2397 * sync on the 'current' bitmap chunk (there will 2398 * only be one in raid1 resync. 2399 * We can find the current addess in mddev->curr_resync 2400 */ 2401 if (mddev->curr_resync < max_sector) /* aborted */ 2402 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2403 &sync_blocks, 1); 2404 else /* completed sync */ 2405 conf->fullsync = 0; 2406 2407 bitmap_close_sync(mddev->bitmap); 2408 close_sync(conf); 2409 return 0; 2410 } 2411 2412 if (mddev->bitmap == NULL && 2413 mddev->recovery_cp == MaxSector && 2414 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 2415 conf->fullsync == 0) { 2416 *skipped = 1; 2417 return max_sector - sector_nr; 2418 } 2419 /* before building a request, check if we can skip these blocks.. 2420 * This call the bitmap_start_sync doesn't actually record anything 2421 */ 2422 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 2423 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2424 /* We can skip this block, and probably several more */ 2425 *skipped = 1; 2426 return sync_blocks; 2427 } 2428 /* 2429 * If there is non-resync activity waiting for a turn, 2430 * and resync is going fast enough, 2431 * then let it though before starting on this new sync request. 2432 */ 2433 if (!go_faster && conf->nr_waiting) 2434 msleep_interruptible(1000); 2435 2436 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 2437 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO); 2438 raise_barrier(conf); 2439 2440 conf->next_resync = sector_nr; 2441 2442 rcu_read_lock(); 2443 /* 2444 * If we get a correctably read error during resync or recovery, 2445 * we might want to read from a different device. So we 2446 * flag all drives that could conceivably be read from for READ, 2447 * and any others (which will be non-In_sync devices) for WRITE. 2448 * If a read fails, we try reading from something else for which READ 2449 * is OK. 2450 */ 2451 2452 r1_bio->mddev = mddev; 2453 r1_bio->sector = sector_nr; 2454 r1_bio->state = 0; 2455 set_bit(R1BIO_IsSync, &r1_bio->state); 2456 2457 for (i = 0; i < conf->raid_disks * 2; i++) { 2458 struct md_rdev *rdev; 2459 bio = r1_bio->bios[i]; 2460 2461 /* take from bio_init */ 2462 bio->bi_next = NULL; 2463 bio->bi_flags &= ~(BIO_POOL_MASK-1); 2464 bio->bi_flags |= 1 << BIO_UPTODATE; 2465 bio->bi_rw = READ; 2466 bio->bi_vcnt = 0; 2467 bio->bi_idx = 0; 2468 bio->bi_phys_segments = 0; 2469 bio->bi_size = 0; 2470 bio->bi_end_io = NULL; 2471 bio->bi_private = NULL; 2472 2473 rdev = rcu_dereference(conf->mirrors[i].rdev); 2474 if (rdev == NULL || 2475 test_bit(Faulty, &rdev->flags)) { 2476 if (i < conf->raid_disks) 2477 still_degraded = 1; 2478 } else if (!test_bit(In_sync, &rdev->flags)) { 2479 bio->bi_rw = WRITE; 2480 bio->bi_end_io = end_sync_write; 2481 write_targets ++; 2482 } else { 2483 /* may need to read from here */ 2484 sector_t first_bad = MaxSector; 2485 int bad_sectors; 2486 2487 if (is_badblock(rdev, sector_nr, good_sectors, 2488 &first_bad, &bad_sectors)) { 2489 if (first_bad > sector_nr) 2490 good_sectors = first_bad - sector_nr; 2491 else { 2492 bad_sectors -= (sector_nr - first_bad); 2493 if (min_bad == 0 || 2494 min_bad > bad_sectors) 2495 min_bad = bad_sectors; 2496 } 2497 } 2498 if (sector_nr < first_bad) { 2499 if (test_bit(WriteMostly, &rdev->flags)) { 2500 if (wonly < 0) 2501 wonly = i; 2502 } else { 2503 if (disk < 0) 2504 disk = i; 2505 } 2506 bio->bi_rw = READ; 2507 bio->bi_end_io = end_sync_read; 2508 read_targets++; 2509 } else if (!test_bit(WriteErrorSeen, &rdev->flags) && 2510 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 2511 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 2512 /* 2513 * The device is suitable for reading (InSync), 2514 * but has bad block(s) here. Let's try to correct them, 2515 * if we are doing resync or repair. Otherwise, leave 2516 * this device alone for this sync request. 2517 */ 2518 bio->bi_rw = WRITE; 2519 bio->bi_end_io = end_sync_write; 2520 write_targets++; 2521 } 2522 } 2523 if (bio->bi_end_io) { 2524 atomic_inc(&rdev->nr_pending); 2525 bio->bi_sector = sector_nr + rdev->data_offset; 2526 bio->bi_bdev = rdev->bdev; 2527 bio->bi_private = r1_bio; 2528 } 2529 } 2530 rcu_read_unlock(); 2531 if (disk < 0) 2532 disk = wonly; 2533 r1_bio->read_disk = disk; 2534 2535 if (read_targets == 0 && min_bad > 0) { 2536 /* These sectors are bad on all InSync devices, so we 2537 * need to mark them bad on all write targets 2538 */ 2539 int ok = 1; 2540 for (i = 0 ; i < conf->raid_disks * 2 ; i++) 2541 if (r1_bio->bios[i]->bi_end_io == end_sync_write) { 2542 struct md_rdev *rdev = conf->mirrors[i].rdev; 2543 ok = rdev_set_badblocks(rdev, sector_nr, 2544 min_bad, 0 2545 ) && ok; 2546 } 2547 set_bit(MD_CHANGE_DEVS, &mddev->flags); 2548 *skipped = 1; 2549 put_buf(r1_bio); 2550 2551 if (!ok) { 2552 /* Cannot record the badblocks, so need to 2553 * abort the resync. 2554 * If there are multiple read targets, could just 2555 * fail the really bad ones ??? 2556 */ 2557 conf->recovery_disabled = mddev->recovery_disabled; 2558 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2559 return 0; 2560 } else 2561 return min_bad; 2562 2563 } 2564 if (min_bad > 0 && min_bad < good_sectors) { 2565 /* only resync enough to reach the next bad->good 2566 * transition */ 2567 good_sectors = min_bad; 2568 } 2569 2570 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0) 2571 /* extra read targets are also write targets */ 2572 write_targets += read_targets-1; 2573 2574 if (write_targets == 0 || read_targets == 0) { 2575 /* There is nowhere to write, so all non-sync 2576 * drives must be failed - so we are finished 2577 */ 2578 sector_t rv; 2579 if (min_bad > 0) 2580 max_sector = sector_nr + min_bad; 2581 rv = max_sector - sector_nr; 2582 *skipped = 1; 2583 put_buf(r1_bio); 2584 return rv; 2585 } 2586 2587 if (max_sector > mddev->resync_max) 2588 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 2589 if (max_sector > sector_nr + good_sectors) 2590 max_sector = sector_nr + good_sectors; 2591 nr_sectors = 0; 2592 sync_blocks = 0; 2593 do { 2594 struct page *page; 2595 int len = PAGE_SIZE; 2596 if (sector_nr + (len>>9) > max_sector) 2597 len = (max_sector - sector_nr) << 9; 2598 if (len == 0) 2599 break; 2600 if (sync_blocks == 0) { 2601 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 2602 &sync_blocks, still_degraded) && 2603 !conf->fullsync && 2604 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2605 break; 2606 BUG_ON(sync_blocks < (PAGE_SIZE>>9)); 2607 if ((len >> 9) > sync_blocks) 2608 len = sync_blocks<<9; 2609 } 2610 2611 for (i = 0 ; i < conf->raid_disks * 2; i++) { 2612 bio = r1_bio->bios[i]; 2613 if (bio->bi_end_io) { 2614 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 2615 if (bio_add_page(bio, page, len, 0) == 0) { 2616 /* stop here */ 2617 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 2618 while (i > 0) { 2619 i--; 2620 bio = r1_bio->bios[i]; 2621 if (bio->bi_end_io==NULL) 2622 continue; 2623 /* remove last page from this bio */ 2624 bio->bi_vcnt--; 2625 bio->bi_size -= len; 2626 bio->bi_flags &= ~(1<< BIO_SEG_VALID); 2627 } 2628 goto bio_full; 2629 } 2630 } 2631 } 2632 nr_sectors += len>>9; 2633 sector_nr += len>>9; 2634 sync_blocks -= (len>>9); 2635 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES); 2636 bio_full: 2637 r1_bio->sectors = nr_sectors; 2638 2639 /* For a user-requested sync, we read all readable devices and do a 2640 * compare 2641 */ 2642 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2643 atomic_set(&r1_bio->remaining, read_targets); 2644 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) { 2645 bio = r1_bio->bios[i]; 2646 if (bio->bi_end_io == end_sync_read) { 2647 read_targets--; 2648 md_sync_acct(bio->bi_bdev, nr_sectors); 2649 generic_make_request(bio); 2650 } 2651 } 2652 } else { 2653 atomic_set(&r1_bio->remaining, 1); 2654 bio = r1_bio->bios[r1_bio->read_disk]; 2655 md_sync_acct(bio->bi_bdev, nr_sectors); 2656 generic_make_request(bio); 2657 2658 } 2659 return nr_sectors; 2660 } 2661 2662 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks) 2663 { 2664 if (sectors) 2665 return sectors; 2666 2667 return mddev->dev_sectors; 2668 } 2669 2670 static struct r1conf *setup_conf(struct mddev *mddev) 2671 { 2672 struct r1conf *conf; 2673 int i; 2674 struct raid1_info *disk; 2675 struct md_rdev *rdev; 2676 int err = -ENOMEM; 2677 2678 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL); 2679 if (!conf) 2680 goto abort; 2681 2682 conf->mirrors = kzalloc(sizeof(struct raid1_info) 2683 * mddev->raid_disks * 2, 2684 GFP_KERNEL); 2685 if (!conf->mirrors) 2686 goto abort; 2687 2688 conf->tmppage = alloc_page(GFP_KERNEL); 2689 if (!conf->tmppage) 2690 goto abort; 2691 2692 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL); 2693 if (!conf->poolinfo) 2694 goto abort; 2695 conf->poolinfo->raid_disks = mddev->raid_disks * 2; 2696 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 2697 r1bio_pool_free, 2698 conf->poolinfo); 2699 if (!conf->r1bio_pool) 2700 goto abort; 2701 2702 conf->poolinfo->mddev = mddev; 2703 2704 err = -EINVAL; 2705 spin_lock_init(&conf->device_lock); 2706 rdev_for_each(rdev, mddev) { 2707 struct request_queue *q; 2708 int disk_idx = rdev->raid_disk; 2709 if (disk_idx >= mddev->raid_disks 2710 || disk_idx < 0) 2711 continue; 2712 if (test_bit(Replacement, &rdev->flags)) 2713 disk = conf->mirrors + mddev->raid_disks + disk_idx; 2714 else 2715 disk = conf->mirrors + disk_idx; 2716 2717 if (disk->rdev) 2718 goto abort; 2719 disk->rdev = rdev; 2720 q = bdev_get_queue(rdev->bdev); 2721 if (q->merge_bvec_fn) 2722 mddev->merge_check_needed = 1; 2723 2724 disk->head_position = 0; 2725 disk->seq_start = MaxSector; 2726 } 2727 conf->raid_disks = mddev->raid_disks; 2728 conf->mddev = mddev; 2729 INIT_LIST_HEAD(&conf->retry_list); 2730 2731 spin_lock_init(&conf->resync_lock); 2732 init_waitqueue_head(&conf->wait_barrier); 2733 2734 bio_list_init(&conf->pending_bio_list); 2735 conf->pending_count = 0; 2736 conf->recovery_disabled = mddev->recovery_disabled - 1; 2737 2738 err = -EIO; 2739 for (i = 0; i < conf->raid_disks * 2; i++) { 2740 2741 disk = conf->mirrors + i; 2742 2743 if (i < conf->raid_disks && 2744 disk[conf->raid_disks].rdev) { 2745 /* This slot has a replacement. */ 2746 if (!disk->rdev) { 2747 /* No original, just make the replacement 2748 * a recovering spare 2749 */ 2750 disk->rdev = 2751 disk[conf->raid_disks].rdev; 2752 disk[conf->raid_disks].rdev = NULL; 2753 } else if (!test_bit(In_sync, &disk->rdev->flags)) 2754 /* Original is not in_sync - bad */ 2755 goto abort; 2756 } 2757 2758 if (!disk->rdev || 2759 !test_bit(In_sync, &disk->rdev->flags)) { 2760 disk->head_position = 0; 2761 if (disk->rdev && 2762 (disk->rdev->saved_raid_disk < 0)) 2763 conf->fullsync = 1; 2764 } 2765 } 2766 2767 err = -ENOMEM; 2768 conf->thread = md_register_thread(raid1d, mddev, "raid1"); 2769 if (!conf->thread) { 2770 printk(KERN_ERR 2771 "md/raid1:%s: couldn't allocate thread\n", 2772 mdname(mddev)); 2773 goto abort; 2774 } 2775 2776 return conf; 2777 2778 abort: 2779 if (conf) { 2780 if (conf->r1bio_pool) 2781 mempool_destroy(conf->r1bio_pool); 2782 kfree(conf->mirrors); 2783 safe_put_page(conf->tmppage); 2784 kfree(conf->poolinfo); 2785 kfree(conf); 2786 } 2787 return ERR_PTR(err); 2788 } 2789 2790 static int stop(struct mddev *mddev); 2791 static int run(struct mddev *mddev) 2792 { 2793 struct r1conf *conf; 2794 int i; 2795 struct md_rdev *rdev; 2796 int ret; 2797 bool discard_supported = false; 2798 2799 if (mddev->level != 1) { 2800 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n", 2801 mdname(mddev), mddev->level); 2802 return -EIO; 2803 } 2804 if (mddev->reshape_position != MaxSector) { 2805 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n", 2806 mdname(mddev)); 2807 return -EIO; 2808 } 2809 /* 2810 * copy the already verified devices into our private RAID1 2811 * bookkeeping area. [whatever we allocate in run(), 2812 * should be freed in stop()] 2813 */ 2814 if (mddev->private == NULL) 2815 conf = setup_conf(mddev); 2816 else 2817 conf = mddev->private; 2818 2819 if (IS_ERR(conf)) 2820 return PTR_ERR(conf); 2821 2822 rdev_for_each(rdev, mddev) { 2823 if (!mddev->gendisk) 2824 continue; 2825 disk_stack_limits(mddev->gendisk, rdev->bdev, 2826 rdev->data_offset << 9); 2827 if (blk_queue_discard(bdev_get_queue(rdev->bdev))) 2828 discard_supported = true; 2829 } 2830 2831 mddev->degraded = 0; 2832 for (i=0; i < conf->raid_disks; i++) 2833 if (conf->mirrors[i].rdev == NULL || 2834 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) || 2835 test_bit(Faulty, &conf->mirrors[i].rdev->flags)) 2836 mddev->degraded++; 2837 2838 if (conf->raid_disks - mddev->degraded == 1) 2839 mddev->recovery_cp = MaxSector; 2840 2841 if (mddev->recovery_cp != MaxSector) 2842 printk(KERN_NOTICE "md/raid1:%s: not clean" 2843 " -- starting background reconstruction\n", 2844 mdname(mddev)); 2845 printk(KERN_INFO 2846 "md/raid1:%s: active with %d out of %d mirrors\n", 2847 mdname(mddev), mddev->raid_disks - mddev->degraded, 2848 mddev->raid_disks); 2849 2850 /* 2851 * Ok, everything is just fine now 2852 */ 2853 mddev->thread = conf->thread; 2854 conf->thread = NULL; 2855 mddev->private = conf; 2856 2857 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0)); 2858 2859 if (mddev->queue) { 2860 mddev->queue->backing_dev_info.congested_fn = raid1_congested; 2861 mddev->queue->backing_dev_info.congested_data = mddev; 2862 blk_queue_merge_bvec(mddev->queue, raid1_mergeable_bvec); 2863 2864 if (discard_supported) 2865 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, 2866 mddev->queue); 2867 else 2868 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, 2869 mddev->queue); 2870 } 2871 2872 ret = md_integrity_register(mddev); 2873 if (ret) 2874 stop(mddev); 2875 return ret; 2876 } 2877 2878 static int stop(struct mddev *mddev) 2879 { 2880 struct r1conf *conf = mddev->private; 2881 struct bitmap *bitmap = mddev->bitmap; 2882 2883 /* wait for behind writes to complete */ 2884 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) { 2885 printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n", 2886 mdname(mddev)); 2887 /* need to kick something here to make sure I/O goes? */ 2888 wait_event(bitmap->behind_wait, 2889 atomic_read(&bitmap->behind_writes) == 0); 2890 } 2891 2892 raise_barrier(conf); 2893 lower_barrier(conf); 2894 2895 md_unregister_thread(&mddev->thread); 2896 if (conf->r1bio_pool) 2897 mempool_destroy(conf->r1bio_pool); 2898 kfree(conf->mirrors); 2899 kfree(conf->poolinfo); 2900 kfree(conf); 2901 mddev->private = NULL; 2902 return 0; 2903 } 2904 2905 static int raid1_resize(struct mddev *mddev, sector_t sectors) 2906 { 2907 /* no resync is happening, and there is enough space 2908 * on all devices, so we can resize. 2909 * We need to make sure resync covers any new space. 2910 * If the array is shrinking we should possibly wait until 2911 * any io in the removed space completes, but it hardly seems 2912 * worth it. 2913 */ 2914 sector_t newsize = raid1_size(mddev, sectors, 0); 2915 if (mddev->external_size && 2916 mddev->array_sectors > newsize) 2917 return -EINVAL; 2918 if (mddev->bitmap) { 2919 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0); 2920 if (ret) 2921 return ret; 2922 } 2923 md_set_array_sectors(mddev, newsize); 2924 set_capacity(mddev->gendisk, mddev->array_sectors); 2925 revalidate_disk(mddev->gendisk); 2926 if (sectors > mddev->dev_sectors && 2927 mddev->recovery_cp > mddev->dev_sectors) { 2928 mddev->recovery_cp = mddev->dev_sectors; 2929 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2930 } 2931 mddev->dev_sectors = sectors; 2932 mddev->resync_max_sectors = sectors; 2933 return 0; 2934 } 2935 2936 static int raid1_reshape(struct mddev *mddev) 2937 { 2938 /* We need to: 2939 * 1/ resize the r1bio_pool 2940 * 2/ resize conf->mirrors 2941 * 2942 * We allocate a new r1bio_pool if we can. 2943 * Then raise a device barrier and wait until all IO stops. 2944 * Then resize conf->mirrors and swap in the new r1bio pool. 2945 * 2946 * At the same time, we "pack" the devices so that all the missing 2947 * devices have the higher raid_disk numbers. 2948 */ 2949 mempool_t *newpool, *oldpool; 2950 struct pool_info *newpoolinfo; 2951 struct raid1_info *newmirrors; 2952 struct r1conf *conf = mddev->private; 2953 int cnt, raid_disks; 2954 unsigned long flags; 2955 int d, d2, err; 2956 2957 /* Cannot change chunk_size, layout, or level */ 2958 if (mddev->chunk_sectors != mddev->new_chunk_sectors || 2959 mddev->layout != mddev->new_layout || 2960 mddev->level != mddev->new_level) { 2961 mddev->new_chunk_sectors = mddev->chunk_sectors; 2962 mddev->new_layout = mddev->layout; 2963 mddev->new_level = mddev->level; 2964 return -EINVAL; 2965 } 2966 2967 err = md_allow_write(mddev); 2968 if (err) 2969 return err; 2970 2971 raid_disks = mddev->raid_disks + mddev->delta_disks; 2972 2973 if (raid_disks < conf->raid_disks) { 2974 cnt=0; 2975 for (d= 0; d < conf->raid_disks; d++) 2976 if (conf->mirrors[d].rdev) 2977 cnt++; 2978 if (cnt > raid_disks) 2979 return -EBUSY; 2980 } 2981 2982 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL); 2983 if (!newpoolinfo) 2984 return -ENOMEM; 2985 newpoolinfo->mddev = mddev; 2986 newpoolinfo->raid_disks = raid_disks * 2; 2987 2988 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 2989 r1bio_pool_free, newpoolinfo); 2990 if (!newpool) { 2991 kfree(newpoolinfo); 2992 return -ENOMEM; 2993 } 2994 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2, 2995 GFP_KERNEL); 2996 if (!newmirrors) { 2997 kfree(newpoolinfo); 2998 mempool_destroy(newpool); 2999 return -ENOMEM; 3000 } 3001 3002 raise_barrier(conf); 3003 3004 /* ok, everything is stopped */ 3005 oldpool = conf->r1bio_pool; 3006 conf->r1bio_pool = newpool; 3007 3008 for (d = d2 = 0; d < conf->raid_disks; d++) { 3009 struct md_rdev *rdev = conf->mirrors[d].rdev; 3010 if (rdev && rdev->raid_disk != d2) { 3011 sysfs_unlink_rdev(mddev, rdev); 3012 rdev->raid_disk = d2; 3013 sysfs_unlink_rdev(mddev, rdev); 3014 if (sysfs_link_rdev(mddev, rdev)) 3015 printk(KERN_WARNING 3016 "md/raid1:%s: cannot register rd%d\n", 3017 mdname(mddev), rdev->raid_disk); 3018 } 3019 if (rdev) 3020 newmirrors[d2++].rdev = rdev; 3021 } 3022 kfree(conf->mirrors); 3023 conf->mirrors = newmirrors; 3024 kfree(conf->poolinfo); 3025 conf->poolinfo = newpoolinfo; 3026 3027 spin_lock_irqsave(&conf->device_lock, flags); 3028 mddev->degraded += (raid_disks - conf->raid_disks); 3029 spin_unlock_irqrestore(&conf->device_lock, flags); 3030 conf->raid_disks = mddev->raid_disks = raid_disks; 3031 mddev->delta_disks = 0; 3032 3033 lower_barrier(conf); 3034 3035 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3036 md_wakeup_thread(mddev->thread); 3037 3038 mempool_destroy(oldpool); 3039 return 0; 3040 } 3041 3042 static void raid1_quiesce(struct mddev *mddev, int state) 3043 { 3044 struct r1conf *conf = mddev->private; 3045 3046 switch(state) { 3047 case 2: /* wake for suspend */ 3048 wake_up(&conf->wait_barrier); 3049 break; 3050 case 1: 3051 raise_barrier(conf); 3052 break; 3053 case 0: 3054 lower_barrier(conf); 3055 break; 3056 } 3057 } 3058 3059 static void *raid1_takeover(struct mddev *mddev) 3060 { 3061 /* raid1 can take over: 3062 * raid5 with 2 devices, any layout or chunk size 3063 */ 3064 if (mddev->level == 5 && mddev->raid_disks == 2) { 3065 struct r1conf *conf; 3066 mddev->new_level = 1; 3067 mddev->new_layout = 0; 3068 mddev->new_chunk_sectors = 0; 3069 conf = setup_conf(mddev); 3070 if (!IS_ERR(conf)) 3071 conf->barrier = 1; 3072 return conf; 3073 } 3074 return ERR_PTR(-EINVAL); 3075 } 3076 3077 static struct md_personality raid1_personality = 3078 { 3079 .name = "raid1", 3080 .level = 1, 3081 .owner = THIS_MODULE, 3082 .make_request = make_request, 3083 .run = run, 3084 .stop = stop, 3085 .status = status, 3086 .error_handler = error, 3087 .hot_add_disk = raid1_add_disk, 3088 .hot_remove_disk= raid1_remove_disk, 3089 .spare_active = raid1_spare_active, 3090 .sync_request = sync_request, 3091 .resize = raid1_resize, 3092 .size = raid1_size, 3093 .check_reshape = raid1_reshape, 3094 .quiesce = raid1_quiesce, 3095 .takeover = raid1_takeover, 3096 }; 3097 3098 static int __init raid_init(void) 3099 { 3100 return register_md_personality(&raid1_personality); 3101 } 3102 3103 static void raid_exit(void) 3104 { 3105 unregister_md_personality(&raid1_personality); 3106 } 3107 3108 module_init(raid_init); 3109 module_exit(raid_exit); 3110 MODULE_LICENSE("GPL"); 3111 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD"); 3112 MODULE_ALIAS("md-personality-3"); /* RAID1 */ 3113 MODULE_ALIAS("md-raid1"); 3114 MODULE_ALIAS("md-level-1"); 3115 3116 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); 3117