xref: /openbmc/linux/drivers/md/raid1.c (revision 203d27b0)
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33 
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include "md.h"
41 #include "raid1.h"
42 #include "bitmap.h"
43 
44 /*
45  * Number of guaranteed r1bios in case of extreme VM load:
46  */
47 #define	NR_RAID1_BIOS 256
48 
49 /* when we get a read error on a read-only array, we redirect to another
50  * device without failing the first device, or trying to over-write to
51  * correct the read error.  To keep track of bad blocks on a per-bio
52  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
53  */
54 #define IO_BLOCKED ((struct bio *)1)
55 /* When we successfully write to a known bad-block, we need to remove the
56  * bad-block marking which must be done from process context.  So we record
57  * the success by setting devs[n].bio to IO_MADE_GOOD
58  */
59 #define IO_MADE_GOOD ((struct bio *)2)
60 
61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
62 
63 /* When there are this many requests queue to be written by
64  * the raid1 thread, we become 'congested' to provide back-pressure
65  * for writeback.
66  */
67 static int max_queued_requests = 1024;
68 
69 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
70 			  sector_t bi_sector);
71 static void lower_barrier(struct r1conf *conf);
72 
73 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
74 {
75 	struct pool_info *pi = data;
76 	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
77 
78 	/* allocate a r1bio with room for raid_disks entries in the bios array */
79 	return kzalloc(size, gfp_flags);
80 }
81 
82 static void r1bio_pool_free(void *r1_bio, void *data)
83 {
84 	kfree(r1_bio);
85 }
86 
87 #define RESYNC_BLOCK_SIZE (64*1024)
88 #define RESYNC_DEPTH 32
89 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
90 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
91 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
92 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
93 #define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
94 
95 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
96 {
97 	struct pool_info *pi = data;
98 	struct r1bio *r1_bio;
99 	struct bio *bio;
100 	int need_pages;
101 	int i, j;
102 
103 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
104 	if (!r1_bio)
105 		return NULL;
106 
107 	/*
108 	 * Allocate bios : 1 for reading, n-1 for writing
109 	 */
110 	for (j = pi->raid_disks ; j-- ; ) {
111 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
112 		if (!bio)
113 			goto out_free_bio;
114 		r1_bio->bios[j] = bio;
115 	}
116 	/*
117 	 * Allocate RESYNC_PAGES data pages and attach them to
118 	 * the first bio.
119 	 * If this is a user-requested check/repair, allocate
120 	 * RESYNC_PAGES for each bio.
121 	 */
122 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
123 		need_pages = pi->raid_disks;
124 	else
125 		need_pages = 1;
126 	for (j = 0; j < need_pages; j++) {
127 		bio = r1_bio->bios[j];
128 		bio->bi_vcnt = RESYNC_PAGES;
129 
130 		if (bio_alloc_pages(bio, gfp_flags))
131 			goto out_free_pages;
132 	}
133 	/* If not user-requests, copy the page pointers to all bios */
134 	if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
135 		for (i=0; i<RESYNC_PAGES ; i++)
136 			for (j=1; j<pi->raid_disks; j++)
137 				r1_bio->bios[j]->bi_io_vec[i].bv_page =
138 					r1_bio->bios[0]->bi_io_vec[i].bv_page;
139 	}
140 
141 	r1_bio->master_bio = NULL;
142 
143 	return r1_bio;
144 
145 out_free_pages:
146 	while (--j >= 0) {
147 		struct bio_vec *bv;
148 
149 		bio_for_each_segment_all(bv, r1_bio->bios[j], i)
150 			__free_page(bv->bv_page);
151 	}
152 
153 out_free_bio:
154 	while (++j < pi->raid_disks)
155 		bio_put(r1_bio->bios[j]);
156 	r1bio_pool_free(r1_bio, data);
157 	return NULL;
158 }
159 
160 static void r1buf_pool_free(void *__r1_bio, void *data)
161 {
162 	struct pool_info *pi = data;
163 	int i,j;
164 	struct r1bio *r1bio = __r1_bio;
165 
166 	for (i = 0; i < RESYNC_PAGES; i++)
167 		for (j = pi->raid_disks; j-- ;) {
168 			if (j == 0 ||
169 			    r1bio->bios[j]->bi_io_vec[i].bv_page !=
170 			    r1bio->bios[0]->bi_io_vec[i].bv_page)
171 				safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
172 		}
173 	for (i=0 ; i < pi->raid_disks; i++)
174 		bio_put(r1bio->bios[i]);
175 
176 	r1bio_pool_free(r1bio, data);
177 }
178 
179 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
180 {
181 	int i;
182 
183 	for (i = 0; i < conf->raid_disks * 2; i++) {
184 		struct bio **bio = r1_bio->bios + i;
185 		if (!BIO_SPECIAL(*bio))
186 			bio_put(*bio);
187 		*bio = NULL;
188 	}
189 }
190 
191 static void free_r1bio(struct r1bio *r1_bio)
192 {
193 	struct r1conf *conf = r1_bio->mddev->private;
194 
195 	put_all_bios(conf, r1_bio);
196 	mempool_free(r1_bio, conf->r1bio_pool);
197 }
198 
199 static void put_buf(struct r1bio *r1_bio)
200 {
201 	struct r1conf *conf = r1_bio->mddev->private;
202 	int i;
203 
204 	for (i = 0; i < conf->raid_disks * 2; i++) {
205 		struct bio *bio = r1_bio->bios[i];
206 		if (bio->bi_end_io)
207 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
208 	}
209 
210 	mempool_free(r1_bio, conf->r1buf_pool);
211 
212 	lower_barrier(conf);
213 }
214 
215 static void reschedule_retry(struct r1bio *r1_bio)
216 {
217 	unsigned long flags;
218 	struct mddev *mddev = r1_bio->mddev;
219 	struct r1conf *conf = mddev->private;
220 
221 	spin_lock_irqsave(&conf->device_lock, flags);
222 	list_add(&r1_bio->retry_list, &conf->retry_list);
223 	conf->nr_queued ++;
224 	spin_unlock_irqrestore(&conf->device_lock, flags);
225 
226 	wake_up(&conf->wait_barrier);
227 	md_wakeup_thread(mddev->thread);
228 }
229 
230 /*
231  * raid_end_bio_io() is called when we have finished servicing a mirrored
232  * operation and are ready to return a success/failure code to the buffer
233  * cache layer.
234  */
235 static void call_bio_endio(struct r1bio *r1_bio)
236 {
237 	struct bio *bio = r1_bio->master_bio;
238 	int done;
239 	struct r1conf *conf = r1_bio->mddev->private;
240 	sector_t start_next_window = r1_bio->start_next_window;
241 	sector_t bi_sector = bio->bi_iter.bi_sector;
242 
243 	if (bio->bi_phys_segments) {
244 		unsigned long flags;
245 		spin_lock_irqsave(&conf->device_lock, flags);
246 		bio->bi_phys_segments--;
247 		done = (bio->bi_phys_segments == 0);
248 		spin_unlock_irqrestore(&conf->device_lock, flags);
249 		/*
250 		 * make_request() might be waiting for
251 		 * bi_phys_segments to decrease
252 		 */
253 		wake_up(&conf->wait_barrier);
254 	} else
255 		done = 1;
256 
257 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
258 		bio->bi_error = -EIO;
259 
260 	if (done) {
261 		bio_endio(bio);
262 		/*
263 		 * Wake up any possible resync thread that waits for the device
264 		 * to go idle.
265 		 */
266 		allow_barrier(conf, start_next_window, bi_sector);
267 	}
268 }
269 
270 static void raid_end_bio_io(struct r1bio *r1_bio)
271 {
272 	struct bio *bio = r1_bio->master_bio;
273 
274 	/* if nobody has done the final endio yet, do it now */
275 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
276 		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
277 			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
278 			 (unsigned long long) bio->bi_iter.bi_sector,
279 			 (unsigned long long) bio_end_sector(bio) - 1);
280 
281 		call_bio_endio(r1_bio);
282 	}
283 	free_r1bio(r1_bio);
284 }
285 
286 /*
287  * Update disk head position estimator based on IRQ completion info.
288  */
289 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
290 {
291 	struct r1conf *conf = r1_bio->mddev->private;
292 
293 	conf->mirrors[disk].head_position =
294 		r1_bio->sector + (r1_bio->sectors);
295 }
296 
297 /*
298  * Find the disk number which triggered given bio
299  */
300 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
301 {
302 	int mirror;
303 	struct r1conf *conf = r1_bio->mddev->private;
304 	int raid_disks = conf->raid_disks;
305 
306 	for (mirror = 0; mirror < raid_disks * 2; mirror++)
307 		if (r1_bio->bios[mirror] == bio)
308 			break;
309 
310 	BUG_ON(mirror == raid_disks * 2);
311 	update_head_pos(mirror, r1_bio);
312 
313 	return mirror;
314 }
315 
316 static void raid1_end_read_request(struct bio *bio)
317 {
318 	int uptodate = !bio->bi_error;
319 	struct r1bio *r1_bio = bio->bi_private;
320 	int mirror;
321 	struct r1conf *conf = r1_bio->mddev->private;
322 
323 	mirror = r1_bio->read_disk;
324 	/*
325 	 * this branch is our 'one mirror IO has finished' event handler:
326 	 */
327 	update_head_pos(mirror, r1_bio);
328 
329 	if (uptodate)
330 		set_bit(R1BIO_Uptodate, &r1_bio->state);
331 	else {
332 		/* If all other devices have failed, we want to return
333 		 * the error upwards rather than fail the last device.
334 		 * Here we redefine "uptodate" to mean "Don't want to retry"
335 		 */
336 		unsigned long flags;
337 		spin_lock_irqsave(&conf->device_lock, flags);
338 		if (r1_bio->mddev->degraded == conf->raid_disks ||
339 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
340 		     test_bit(In_sync, &conf->mirrors[mirror].rdev->flags)))
341 			uptodate = 1;
342 		spin_unlock_irqrestore(&conf->device_lock, flags);
343 	}
344 
345 	if (uptodate) {
346 		raid_end_bio_io(r1_bio);
347 		rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
348 	} else {
349 		/*
350 		 * oops, read error:
351 		 */
352 		char b[BDEVNAME_SIZE];
353 		printk_ratelimited(
354 			KERN_ERR "md/raid1:%s: %s: "
355 			"rescheduling sector %llu\n",
356 			mdname(conf->mddev),
357 			bdevname(conf->mirrors[mirror].rdev->bdev,
358 				 b),
359 			(unsigned long long)r1_bio->sector);
360 		set_bit(R1BIO_ReadError, &r1_bio->state);
361 		reschedule_retry(r1_bio);
362 		/* don't drop the reference on read_disk yet */
363 	}
364 }
365 
366 static void close_write(struct r1bio *r1_bio)
367 {
368 	/* it really is the end of this request */
369 	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
370 		/* free extra copy of the data pages */
371 		int i = r1_bio->behind_page_count;
372 		while (i--)
373 			safe_put_page(r1_bio->behind_bvecs[i].bv_page);
374 		kfree(r1_bio->behind_bvecs);
375 		r1_bio->behind_bvecs = NULL;
376 	}
377 	/* clear the bitmap if all writes complete successfully */
378 	bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
379 			r1_bio->sectors,
380 			!test_bit(R1BIO_Degraded, &r1_bio->state),
381 			test_bit(R1BIO_BehindIO, &r1_bio->state));
382 	md_write_end(r1_bio->mddev);
383 }
384 
385 static void r1_bio_write_done(struct r1bio *r1_bio)
386 {
387 	if (!atomic_dec_and_test(&r1_bio->remaining))
388 		return;
389 
390 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
391 		reschedule_retry(r1_bio);
392 	else {
393 		close_write(r1_bio);
394 		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
395 			reschedule_retry(r1_bio);
396 		else
397 			raid_end_bio_io(r1_bio);
398 	}
399 }
400 
401 static void raid1_end_write_request(struct bio *bio)
402 {
403 	struct r1bio *r1_bio = bio->bi_private;
404 	int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
405 	struct r1conf *conf = r1_bio->mddev->private;
406 	struct bio *to_put = NULL;
407 
408 	mirror = find_bio_disk(r1_bio, bio);
409 
410 	/*
411 	 * 'one mirror IO has finished' event handler:
412 	 */
413 	if (bio->bi_error) {
414 		set_bit(WriteErrorSeen,
415 			&conf->mirrors[mirror].rdev->flags);
416 		if (!test_and_set_bit(WantReplacement,
417 				      &conf->mirrors[mirror].rdev->flags))
418 			set_bit(MD_RECOVERY_NEEDED, &
419 				conf->mddev->recovery);
420 
421 		set_bit(R1BIO_WriteError, &r1_bio->state);
422 	} else {
423 		/*
424 		 * Set R1BIO_Uptodate in our master bio, so that we
425 		 * will return a good error code for to the higher
426 		 * levels even if IO on some other mirrored buffer
427 		 * fails.
428 		 *
429 		 * The 'master' represents the composite IO operation
430 		 * to user-side. So if something waits for IO, then it
431 		 * will wait for the 'master' bio.
432 		 */
433 		sector_t first_bad;
434 		int bad_sectors;
435 
436 		r1_bio->bios[mirror] = NULL;
437 		to_put = bio;
438 		/*
439 		 * Do not set R1BIO_Uptodate if the current device is
440 		 * rebuilding or Faulty. This is because we cannot use
441 		 * such device for properly reading the data back (we could
442 		 * potentially use it, if the current write would have felt
443 		 * before rdev->recovery_offset, but for simplicity we don't
444 		 * check this here.
445 		 */
446 		if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) &&
447 		    !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))
448 			set_bit(R1BIO_Uptodate, &r1_bio->state);
449 
450 		/* Maybe we can clear some bad blocks. */
451 		if (is_badblock(conf->mirrors[mirror].rdev,
452 				r1_bio->sector, r1_bio->sectors,
453 				&first_bad, &bad_sectors)) {
454 			r1_bio->bios[mirror] = IO_MADE_GOOD;
455 			set_bit(R1BIO_MadeGood, &r1_bio->state);
456 		}
457 	}
458 
459 	if (behind) {
460 		if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
461 			atomic_dec(&r1_bio->behind_remaining);
462 
463 		/*
464 		 * In behind mode, we ACK the master bio once the I/O
465 		 * has safely reached all non-writemostly
466 		 * disks. Setting the Returned bit ensures that this
467 		 * gets done only once -- we don't ever want to return
468 		 * -EIO here, instead we'll wait
469 		 */
470 		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
471 		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
472 			/* Maybe we can return now */
473 			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
474 				struct bio *mbio = r1_bio->master_bio;
475 				pr_debug("raid1: behind end write sectors"
476 					 " %llu-%llu\n",
477 					 (unsigned long long) mbio->bi_iter.bi_sector,
478 					 (unsigned long long) bio_end_sector(mbio) - 1);
479 				call_bio_endio(r1_bio);
480 			}
481 		}
482 	}
483 	if (r1_bio->bios[mirror] == NULL)
484 		rdev_dec_pending(conf->mirrors[mirror].rdev,
485 				 conf->mddev);
486 
487 	/*
488 	 * Let's see if all mirrored write operations have finished
489 	 * already.
490 	 */
491 	r1_bio_write_done(r1_bio);
492 
493 	if (to_put)
494 		bio_put(to_put);
495 }
496 
497 /*
498  * This routine returns the disk from which the requested read should
499  * be done. There is a per-array 'next expected sequential IO' sector
500  * number - if this matches on the next IO then we use the last disk.
501  * There is also a per-disk 'last know head position' sector that is
502  * maintained from IRQ contexts, both the normal and the resync IO
503  * completion handlers update this position correctly. If there is no
504  * perfect sequential match then we pick the disk whose head is closest.
505  *
506  * If there are 2 mirrors in the same 2 devices, performance degrades
507  * because position is mirror, not device based.
508  *
509  * The rdev for the device selected will have nr_pending incremented.
510  */
511 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
512 {
513 	const sector_t this_sector = r1_bio->sector;
514 	int sectors;
515 	int best_good_sectors;
516 	int best_disk, best_dist_disk, best_pending_disk;
517 	int has_nonrot_disk;
518 	int disk;
519 	sector_t best_dist;
520 	unsigned int min_pending;
521 	struct md_rdev *rdev;
522 	int choose_first;
523 	int choose_next_idle;
524 
525 	rcu_read_lock();
526 	/*
527 	 * Check if we can balance. We can balance on the whole
528 	 * device if no resync is going on, or below the resync window.
529 	 * We take the first readable disk when above the resync window.
530 	 */
531  retry:
532 	sectors = r1_bio->sectors;
533 	best_disk = -1;
534 	best_dist_disk = -1;
535 	best_dist = MaxSector;
536 	best_pending_disk = -1;
537 	min_pending = UINT_MAX;
538 	best_good_sectors = 0;
539 	has_nonrot_disk = 0;
540 	choose_next_idle = 0;
541 
542 	if ((conf->mddev->recovery_cp < this_sector + sectors) ||
543 	    (mddev_is_clustered(conf->mddev) &&
544 	    md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
545 		    this_sector + sectors)))
546 		choose_first = 1;
547 	else
548 		choose_first = 0;
549 
550 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
551 		sector_t dist;
552 		sector_t first_bad;
553 		int bad_sectors;
554 		unsigned int pending;
555 		bool nonrot;
556 
557 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
558 		if (r1_bio->bios[disk] == IO_BLOCKED
559 		    || rdev == NULL
560 		    || test_bit(Faulty, &rdev->flags))
561 			continue;
562 		if (!test_bit(In_sync, &rdev->flags) &&
563 		    rdev->recovery_offset < this_sector + sectors)
564 			continue;
565 		if (test_bit(WriteMostly, &rdev->flags)) {
566 			/* Don't balance among write-mostly, just
567 			 * use the first as a last resort */
568 			if (best_dist_disk < 0) {
569 				if (is_badblock(rdev, this_sector, sectors,
570 						&first_bad, &bad_sectors)) {
571 					if (first_bad < this_sector)
572 						/* Cannot use this */
573 						continue;
574 					best_good_sectors = first_bad - this_sector;
575 				} else
576 					best_good_sectors = sectors;
577 				best_dist_disk = disk;
578 				best_pending_disk = disk;
579 			}
580 			continue;
581 		}
582 		/* This is a reasonable device to use.  It might
583 		 * even be best.
584 		 */
585 		if (is_badblock(rdev, this_sector, sectors,
586 				&first_bad, &bad_sectors)) {
587 			if (best_dist < MaxSector)
588 				/* already have a better device */
589 				continue;
590 			if (first_bad <= this_sector) {
591 				/* cannot read here. If this is the 'primary'
592 				 * device, then we must not read beyond
593 				 * bad_sectors from another device..
594 				 */
595 				bad_sectors -= (this_sector - first_bad);
596 				if (choose_first && sectors > bad_sectors)
597 					sectors = bad_sectors;
598 				if (best_good_sectors > sectors)
599 					best_good_sectors = sectors;
600 
601 			} else {
602 				sector_t good_sectors = first_bad - this_sector;
603 				if (good_sectors > best_good_sectors) {
604 					best_good_sectors = good_sectors;
605 					best_disk = disk;
606 				}
607 				if (choose_first)
608 					break;
609 			}
610 			continue;
611 		} else
612 			best_good_sectors = sectors;
613 
614 		nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
615 		has_nonrot_disk |= nonrot;
616 		pending = atomic_read(&rdev->nr_pending);
617 		dist = abs(this_sector - conf->mirrors[disk].head_position);
618 		if (choose_first) {
619 			best_disk = disk;
620 			break;
621 		}
622 		/* Don't change to another disk for sequential reads */
623 		if (conf->mirrors[disk].next_seq_sect == this_sector
624 		    || dist == 0) {
625 			int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
626 			struct raid1_info *mirror = &conf->mirrors[disk];
627 
628 			best_disk = disk;
629 			/*
630 			 * If buffered sequential IO size exceeds optimal
631 			 * iosize, check if there is idle disk. If yes, choose
632 			 * the idle disk. read_balance could already choose an
633 			 * idle disk before noticing it's a sequential IO in
634 			 * this disk. This doesn't matter because this disk
635 			 * will idle, next time it will be utilized after the
636 			 * first disk has IO size exceeds optimal iosize. In
637 			 * this way, iosize of the first disk will be optimal
638 			 * iosize at least. iosize of the second disk might be
639 			 * small, but not a big deal since when the second disk
640 			 * starts IO, the first disk is likely still busy.
641 			 */
642 			if (nonrot && opt_iosize > 0 &&
643 			    mirror->seq_start != MaxSector &&
644 			    mirror->next_seq_sect > opt_iosize &&
645 			    mirror->next_seq_sect - opt_iosize >=
646 			    mirror->seq_start) {
647 				choose_next_idle = 1;
648 				continue;
649 			}
650 			break;
651 		}
652 		/* If device is idle, use it */
653 		if (pending == 0) {
654 			best_disk = disk;
655 			break;
656 		}
657 
658 		if (choose_next_idle)
659 			continue;
660 
661 		if (min_pending > pending) {
662 			min_pending = pending;
663 			best_pending_disk = disk;
664 		}
665 
666 		if (dist < best_dist) {
667 			best_dist = dist;
668 			best_dist_disk = disk;
669 		}
670 	}
671 
672 	/*
673 	 * If all disks are rotational, choose the closest disk. If any disk is
674 	 * non-rotational, choose the disk with less pending request even the
675 	 * disk is rotational, which might/might not be optimal for raids with
676 	 * mixed ratation/non-rotational disks depending on workload.
677 	 */
678 	if (best_disk == -1) {
679 		if (has_nonrot_disk)
680 			best_disk = best_pending_disk;
681 		else
682 			best_disk = best_dist_disk;
683 	}
684 
685 	if (best_disk >= 0) {
686 		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
687 		if (!rdev)
688 			goto retry;
689 		atomic_inc(&rdev->nr_pending);
690 		if (test_bit(Faulty, &rdev->flags)) {
691 			/* cannot risk returning a device that failed
692 			 * before we inc'ed nr_pending
693 			 */
694 			rdev_dec_pending(rdev, conf->mddev);
695 			goto retry;
696 		}
697 		sectors = best_good_sectors;
698 
699 		if (conf->mirrors[best_disk].next_seq_sect != this_sector)
700 			conf->mirrors[best_disk].seq_start = this_sector;
701 
702 		conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
703 	}
704 	rcu_read_unlock();
705 	*max_sectors = sectors;
706 
707 	return best_disk;
708 }
709 
710 static int raid1_congested(struct mddev *mddev, int bits)
711 {
712 	struct r1conf *conf = mddev->private;
713 	int i, ret = 0;
714 
715 	if ((bits & (1 << WB_async_congested)) &&
716 	    conf->pending_count >= max_queued_requests)
717 		return 1;
718 
719 	rcu_read_lock();
720 	for (i = 0; i < conf->raid_disks * 2; i++) {
721 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
722 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
723 			struct request_queue *q = bdev_get_queue(rdev->bdev);
724 
725 			BUG_ON(!q);
726 
727 			/* Note the '|| 1' - when read_balance prefers
728 			 * non-congested targets, it can be removed
729 			 */
730 			if ((bits & (1 << WB_async_congested)) || 1)
731 				ret |= bdi_congested(&q->backing_dev_info, bits);
732 			else
733 				ret &= bdi_congested(&q->backing_dev_info, bits);
734 		}
735 	}
736 	rcu_read_unlock();
737 	return ret;
738 }
739 
740 static void flush_pending_writes(struct r1conf *conf)
741 {
742 	/* Any writes that have been queued but are awaiting
743 	 * bitmap updates get flushed here.
744 	 */
745 	spin_lock_irq(&conf->device_lock);
746 
747 	if (conf->pending_bio_list.head) {
748 		struct bio *bio;
749 		bio = bio_list_get(&conf->pending_bio_list);
750 		conf->pending_count = 0;
751 		spin_unlock_irq(&conf->device_lock);
752 		/* flush any pending bitmap writes to
753 		 * disk before proceeding w/ I/O */
754 		bitmap_unplug(conf->mddev->bitmap);
755 		wake_up(&conf->wait_barrier);
756 
757 		while (bio) { /* submit pending writes */
758 			struct bio *next = bio->bi_next;
759 			bio->bi_next = NULL;
760 			if (unlikely((bio->bi_rw & REQ_DISCARD) &&
761 			    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
762 				/* Just ignore it */
763 				bio_endio(bio);
764 			else
765 				generic_make_request(bio);
766 			bio = next;
767 		}
768 	} else
769 		spin_unlock_irq(&conf->device_lock);
770 }
771 
772 /* Barriers....
773  * Sometimes we need to suspend IO while we do something else,
774  * either some resync/recovery, or reconfigure the array.
775  * To do this we raise a 'barrier'.
776  * The 'barrier' is a counter that can be raised multiple times
777  * to count how many activities are happening which preclude
778  * normal IO.
779  * We can only raise the barrier if there is no pending IO.
780  * i.e. if nr_pending == 0.
781  * We choose only to raise the barrier if no-one is waiting for the
782  * barrier to go down.  This means that as soon as an IO request
783  * is ready, no other operations which require a barrier will start
784  * until the IO request has had a chance.
785  *
786  * So: regular IO calls 'wait_barrier'.  When that returns there
787  *    is no backgroup IO happening,  It must arrange to call
788  *    allow_barrier when it has finished its IO.
789  * backgroup IO calls must call raise_barrier.  Once that returns
790  *    there is no normal IO happeing.  It must arrange to call
791  *    lower_barrier when the particular background IO completes.
792  */
793 static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
794 {
795 	spin_lock_irq(&conf->resync_lock);
796 
797 	/* Wait until no block IO is waiting */
798 	wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
799 			    conf->resync_lock);
800 
801 	/* block any new IO from starting */
802 	conf->barrier++;
803 	conf->next_resync = sector_nr;
804 
805 	/* For these conditions we must wait:
806 	 * A: while the array is in frozen state
807 	 * B: while barrier >= RESYNC_DEPTH, meaning resync reach
808 	 *    the max count which allowed.
809 	 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
810 	 *    next resync will reach to the window which normal bios are
811 	 *    handling.
812 	 * D: while there are any active requests in the current window.
813 	 */
814 	wait_event_lock_irq(conf->wait_barrier,
815 			    !conf->array_frozen &&
816 			    conf->barrier < RESYNC_DEPTH &&
817 			    conf->current_window_requests == 0 &&
818 			    (conf->start_next_window >=
819 			     conf->next_resync + RESYNC_SECTORS),
820 			    conf->resync_lock);
821 
822 	conf->nr_pending++;
823 	spin_unlock_irq(&conf->resync_lock);
824 }
825 
826 static void lower_barrier(struct r1conf *conf)
827 {
828 	unsigned long flags;
829 	BUG_ON(conf->barrier <= 0);
830 	spin_lock_irqsave(&conf->resync_lock, flags);
831 	conf->barrier--;
832 	conf->nr_pending--;
833 	spin_unlock_irqrestore(&conf->resync_lock, flags);
834 	wake_up(&conf->wait_barrier);
835 }
836 
837 static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
838 {
839 	bool wait = false;
840 
841 	if (conf->array_frozen || !bio)
842 		wait = true;
843 	else if (conf->barrier && bio_data_dir(bio) == WRITE) {
844 		if ((conf->mddev->curr_resync_completed
845 		     >= bio_end_sector(bio)) ||
846 		    (conf->next_resync + NEXT_NORMALIO_DISTANCE
847 		     <= bio->bi_iter.bi_sector))
848 			wait = false;
849 		else
850 			wait = true;
851 	}
852 
853 	return wait;
854 }
855 
856 static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
857 {
858 	sector_t sector = 0;
859 
860 	spin_lock_irq(&conf->resync_lock);
861 	if (need_to_wait_for_sync(conf, bio)) {
862 		conf->nr_waiting++;
863 		/* Wait for the barrier to drop.
864 		 * However if there are already pending
865 		 * requests (preventing the barrier from
866 		 * rising completely), and the
867 		 * per-process bio queue isn't empty,
868 		 * then don't wait, as we need to empty
869 		 * that queue to allow conf->start_next_window
870 		 * to increase.
871 		 */
872 		wait_event_lock_irq(conf->wait_barrier,
873 				    !conf->array_frozen &&
874 				    (!conf->barrier ||
875 				     ((conf->start_next_window <
876 				       conf->next_resync + RESYNC_SECTORS) &&
877 				      current->bio_list &&
878 				      !bio_list_empty(current->bio_list))),
879 				    conf->resync_lock);
880 		conf->nr_waiting--;
881 	}
882 
883 	if (bio && bio_data_dir(bio) == WRITE) {
884 		if (bio->bi_iter.bi_sector >= conf->next_resync) {
885 			if (conf->start_next_window == MaxSector)
886 				conf->start_next_window =
887 					conf->next_resync +
888 					NEXT_NORMALIO_DISTANCE;
889 
890 			if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
891 			    <= bio->bi_iter.bi_sector)
892 				conf->next_window_requests++;
893 			else
894 				conf->current_window_requests++;
895 			sector = conf->start_next_window;
896 		}
897 	}
898 
899 	conf->nr_pending++;
900 	spin_unlock_irq(&conf->resync_lock);
901 	return sector;
902 }
903 
904 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
905 			  sector_t bi_sector)
906 {
907 	unsigned long flags;
908 
909 	spin_lock_irqsave(&conf->resync_lock, flags);
910 	conf->nr_pending--;
911 	if (start_next_window) {
912 		if (start_next_window == conf->start_next_window) {
913 			if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
914 			    <= bi_sector)
915 				conf->next_window_requests--;
916 			else
917 				conf->current_window_requests--;
918 		} else
919 			conf->current_window_requests--;
920 
921 		if (!conf->current_window_requests) {
922 			if (conf->next_window_requests) {
923 				conf->current_window_requests =
924 					conf->next_window_requests;
925 				conf->next_window_requests = 0;
926 				conf->start_next_window +=
927 					NEXT_NORMALIO_DISTANCE;
928 			} else
929 				conf->start_next_window = MaxSector;
930 		}
931 	}
932 	spin_unlock_irqrestore(&conf->resync_lock, flags);
933 	wake_up(&conf->wait_barrier);
934 }
935 
936 static void freeze_array(struct r1conf *conf, int extra)
937 {
938 	/* stop syncio and normal IO and wait for everything to
939 	 * go quite.
940 	 * We wait until nr_pending match nr_queued+extra
941 	 * This is called in the context of one normal IO request
942 	 * that has failed. Thus any sync request that might be pending
943 	 * will be blocked by nr_pending, and we need to wait for
944 	 * pending IO requests to complete or be queued for re-try.
945 	 * Thus the number queued (nr_queued) plus this request (extra)
946 	 * must match the number of pending IOs (nr_pending) before
947 	 * we continue.
948 	 */
949 	spin_lock_irq(&conf->resync_lock);
950 	conf->array_frozen = 1;
951 	wait_event_lock_irq_cmd(conf->wait_barrier,
952 				conf->nr_pending == conf->nr_queued+extra,
953 				conf->resync_lock,
954 				flush_pending_writes(conf));
955 	spin_unlock_irq(&conf->resync_lock);
956 }
957 static void unfreeze_array(struct r1conf *conf)
958 {
959 	/* reverse the effect of the freeze */
960 	spin_lock_irq(&conf->resync_lock);
961 	conf->array_frozen = 0;
962 	wake_up(&conf->wait_barrier);
963 	spin_unlock_irq(&conf->resync_lock);
964 }
965 
966 /* duplicate the data pages for behind I/O
967  */
968 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
969 {
970 	int i;
971 	struct bio_vec *bvec;
972 	struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
973 					GFP_NOIO);
974 	if (unlikely(!bvecs))
975 		return;
976 
977 	bio_for_each_segment_all(bvec, bio, i) {
978 		bvecs[i] = *bvec;
979 		bvecs[i].bv_page = alloc_page(GFP_NOIO);
980 		if (unlikely(!bvecs[i].bv_page))
981 			goto do_sync_io;
982 		memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
983 		       kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
984 		kunmap(bvecs[i].bv_page);
985 		kunmap(bvec->bv_page);
986 	}
987 	r1_bio->behind_bvecs = bvecs;
988 	r1_bio->behind_page_count = bio->bi_vcnt;
989 	set_bit(R1BIO_BehindIO, &r1_bio->state);
990 	return;
991 
992 do_sync_io:
993 	for (i = 0; i < bio->bi_vcnt; i++)
994 		if (bvecs[i].bv_page)
995 			put_page(bvecs[i].bv_page);
996 	kfree(bvecs);
997 	pr_debug("%dB behind alloc failed, doing sync I/O\n",
998 		 bio->bi_iter.bi_size);
999 }
1000 
1001 struct raid1_plug_cb {
1002 	struct blk_plug_cb	cb;
1003 	struct bio_list		pending;
1004 	int			pending_cnt;
1005 };
1006 
1007 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1008 {
1009 	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1010 						  cb);
1011 	struct mddev *mddev = plug->cb.data;
1012 	struct r1conf *conf = mddev->private;
1013 	struct bio *bio;
1014 
1015 	if (from_schedule || current->bio_list) {
1016 		spin_lock_irq(&conf->device_lock);
1017 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1018 		conf->pending_count += plug->pending_cnt;
1019 		spin_unlock_irq(&conf->device_lock);
1020 		wake_up(&conf->wait_barrier);
1021 		md_wakeup_thread(mddev->thread);
1022 		kfree(plug);
1023 		return;
1024 	}
1025 
1026 	/* we aren't scheduling, so we can do the write-out directly. */
1027 	bio = bio_list_get(&plug->pending);
1028 	bitmap_unplug(mddev->bitmap);
1029 	wake_up(&conf->wait_barrier);
1030 
1031 	while (bio) { /* submit pending writes */
1032 		struct bio *next = bio->bi_next;
1033 		bio->bi_next = NULL;
1034 		if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1035 		    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1036 			/* Just ignore it */
1037 			bio_endio(bio);
1038 		else
1039 			generic_make_request(bio);
1040 		bio = next;
1041 	}
1042 	kfree(plug);
1043 }
1044 
1045 static void make_request(struct mddev *mddev, struct bio * bio)
1046 {
1047 	struct r1conf *conf = mddev->private;
1048 	struct raid1_info *mirror;
1049 	struct r1bio *r1_bio;
1050 	struct bio *read_bio;
1051 	int i, disks;
1052 	struct bitmap *bitmap;
1053 	unsigned long flags;
1054 	const int rw = bio_data_dir(bio);
1055 	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1056 	const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
1057 	const unsigned long do_discard = (bio->bi_rw
1058 					  & (REQ_DISCARD | REQ_SECURE));
1059 	const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1060 	struct md_rdev *blocked_rdev;
1061 	struct blk_plug_cb *cb;
1062 	struct raid1_plug_cb *plug = NULL;
1063 	int first_clone;
1064 	int sectors_handled;
1065 	int max_sectors;
1066 	sector_t start_next_window;
1067 
1068 	/*
1069 	 * Register the new request and wait if the reconstruction
1070 	 * thread has put up a bar for new requests.
1071 	 * Continue immediately if no resync is active currently.
1072 	 */
1073 
1074 	md_write_start(mddev, bio); /* wait on superblock update early */
1075 
1076 	if (bio_data_dir(bio) == WRITE &&
1077 	    ((bio_end_sector(bio) > mddev->suspend_lo &&
1078 	    bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1079 	    (mddev_is_clustered(mddev) &&
1080 	     md_cluster_ops->area_resyncing(mddev, WRITE,
1081 		     bio->bi_iter.bi_sector, bio_end_sector(bio))))) {
1082 		/* As the suspend_* range is controlled by
1083 		 * userspace, we want an interruptible
1084 		 * wait.
1085 		 */
1086 		DEFINE_WAIT(w);
1087 		for (;;) {
1088 			flush_signals(current);
1089 			prepare_to_wait(&conf->wait_barrier,
1090 					&w, TASK_INTERRUPTIBLE);
1091 			if (bio_end_sector(bio) <= mddev->suspend_lo ||
1092 			    bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1093 			    (mddev_is_clustered(mddev) &&
1094 			     !md_cluster_ops->area_resyncing(mddev, WRITE,
1095 				     bio->bi_iter.bi_sector, bio_end_sector(bio))))
1096 				break;
1097 			schedule();
1098 		}
1099 		finish_wait(&conf->wait_barrier, &w);
1100 	}
1101 
1102 	start_next_window = wait_barrier(conf, bio);
1103 
1104 	bitmap = mddev->bitmap;
1105 
1106 	/*
1107 	 * make_request() can abort the operation when READA is being
1108 	 * used and no empty request is available.
1109 	 *
1110 	 */
1111 	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1112 
1113 	r1_bio->master_bio = bio;
1114 	r1_bio->sectors = bio_sectors(bio);
1115 	r1_bio->state = 0;
1116 	r1_bio->mddev = mddev;
1117 	r1_bio->sector = bio->bi_iter.bi_sector;
1118 
1119 	/* We might need to issue multiple reads to different
1120 	 * devices if there are bad blocks around, so we keep
1121 	 * track of the number of reads in bio->bi_phys_segments.
1122 	 * If this is 0, there is only one r1_bio and no locking
1123 	 * will be needed when requests complete.  If it is
1124 	 * non-zero, then it is the number of not-completed requests.
1125 	 */
1126 	bio->bi_phys_segments = 0;
1127 	bio_clear_flag(bio, BIO_SEG_VALID);
1128 
1129 	if (rw == READ) {
1130 		/*
1131 		 * read balancing logic:
1132 		 */
1133 		int rdisk;
1134 
1135 read_again:
1136 		rdisk = read_balance(conf, r1_bio, &max_sectors);
1137 
1138 		if (rdisk < 0) {
1139 			/* couldn't find anywhere to read from */
1140 			raid_end_bio_io(r1_bio);
1141 			return;
1142 		}
1143 		mirror = conf->mirrors + rdisk;
1144 
1145 		if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1146 		    bitmap) {
1147 			/* Reading from a write-mostly device must
1148 			 * take care not to over-take any writes
1149 			 * that are 'behind'
1150 			 */
1151 			wait_event(bitmap->behind_wait,
1152 				   atomic_read(&bitmap->behind_writes) == 0);
1153 		}
1154 		r1_bio->read_disk = rdisk;
1155 		r1_bio->start_next_window = 0;
1156 
1157 		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1158 		bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1159 			 max_sectors);
1160 
1161 		r1_bio->bios[rdisk] = read_bio;
1162 
1163 		read_bio->bi_iter.bi_sector = r1_bio->sector +
1164 			mirror->rdev->data_offset;
1165 		read_bio->bi_bdev = mirror->rdev->bdev;
1166 		read_bio->bi_end_io = raid1_end_read_request;
1167 		read_bio->bi_rw = READ | do_sync;
1168 		read_bio->bi_private = r1_bio;
1169 
1170 		if (max_sectors < r1_bio->sectors) {
1171 			/* could not read all from this device, so we will
1172 			 * need another r1_bio.
1173 			 */
1174 
1175 			sectors_handled = (r1_bio->sector + max_sectors
1176 					   - bio->bi_iter.bi_sector);
1177 			r1_bio->sectors = max_sectors;
1178 			spin_lock_irq(&conf->device_lock);
1179 			if (bio->bi_phys_segments == 0)
1180 				bio->bi_phys_segments = 2;
1181 			else
1182 				bio->bi_phys_segments++;
1183 			spin_unlock_irq(&conf->device_lock);
1184 			/* Cannot call generic_make_request directly
1185 			 * as that will be queued in __make_request
1186 			 * and subsequent mempool_alloc might block waiting
1187 			 * for it.  So hand bio over to raid1d.
1188 			 */
1189 			reschedule_retry(r1_bio);
1190 
1191 			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1192 
1193 			r1_bio->master_bio = bio;
1194 			r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1195 			r1_bio->state = 0;
1196 			r1_bio->mddev = mddev;
1197 			r1_bio->sector = bio->bi_iter.bi_sector +
1198 				sectors_handled;
1199 			goto read_again;
1200 		} else
1201 			generic_make_request(read_bio);
1202 		return;
1203 	}
1204 
1205 	/*
1206 	 * WRITE:
1207 	 */
1208 	if (conf->pending_count >= max_queued_requests) {
1209 		md_wakeup_thread(mddev->thread);
1210 		wait_event(conf->wait_barrier,
1211 			   conf->pending_count < max_queued_requests);
1212 	}
1213 	/* first select target devices under rcu_lock and
1214 	 * inc refcount on their rdev.  Record them by setting
1215 	 * bios[x] to bio
1216 	 * If there are known/acknowledged bad blocks on any device on
1217 	 * which we have seen a write error, we want to avoid writing those
1218 	 * blocks.
1219 	 * This potentially requires several writes to write around
1220 	 * the bad blocks.  Each set of writes gets it's own r1bio
1221 	 * with a set of bios attached.
1222 	 */
1223 
1224 	disks = conf->raid_disks * 2;
1225  retry_write:
1226 	r1_bio->start_next_window = start_next_window;
1227 	blocked_rdev = NULL;
1228 	rcu_read_lock();
1229 	max_sectors = r1_bio->sectors;
1230 	for (i = 0;  i < disks; i++) {
1231 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1232 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1233 			atomic_inc(&rdev->nr_pending);
1234 			blocked_rdev = rdev;
1235 			break;
1236 		}
1237 		r1_bio->bios[i] = NULL;
1238 		if (!rdev || test_bit(Faulty, &rdev->flags)) {
1239 			if (i < conf->raid_disks)
1240 				set_bit(R1BIO_Degraded, &r1_bio->state);
1241 			continue;
1242 		}
1243 
1244 		atomic_inc(&rdev->nr_pending);
1245 		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1246 			sector_t first_bad;
1247 			int bad_sectors;
1248 			int is_bad;
1249 
1250 			is_bad = is_badblock(rdev, r1_bio->sector,
1251 					     max_sectors,
1252 					     &first_bad, &bad_sectors);
1253 			if (is_bad < 0) {
1254 				/* mustn't write here until the bad block is
1255 				 * acknowledged*/
1256 				set_bit(BlockedBadBlocks, &rdev->flags);
1257 				blocked_rdev = rdev;
1258 				break;
1259 			}
1260 			if (is_bad && first_bad <= r1_bio->sector) {
1261 				/* Cannot write here at all */
1262 				bad_sectors -= (r1_bio->sector - first_bad);
1263 				if (bad_sectors < max_sectors)
1264 					/* mustn't write more than bad_sectors
1265 					 * to other devices yet
1266 					 */
1267 					max_sectors = bad_sectors;
1268 				rdev_dec_pending(rdev, mddev);
1269 				/* We don't set R1BIO_Degraded as that
1270 				 * only applies if the disk is
1271 				 * missing, so it might be re-added,
1272 				 * and we want to know to recover this
1273 				 * chunk.
1274 				 * In this case the device is here,
1275 				 * and the fact that this chunk is not
1276 				 * in-sync is recorded in the bad
1277 				 * block log
1278 				 */
1279 				continue;
1280 			}
1281 			if (is_bad) {
1282 				int good_sectors = first_bad - r1_bio->sector;
1283 				if (good_sectors < max_sectors)
1284 					max_sectors = good_sectors;
1285 			}
1286 		}
1287 		r1_bio->bios[i] = bio;
1288 	}
1289 	rcu_read_unlock();
1290 
1291 	if (unlikely(blocked_rdev)) {
1292 		/* Wait for this device to become unblocked */
1293 		int j;
1294 		sector_t old = start_next_window;
1295 
1296 		for (j = 0; j < i; j++)
1297 			if (r1_bio->bios[j])
1298 				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1299 		r1_bio->state = 0;
1300 		allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
1301 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1302 		start_next_window = wait_barrier(conf, bio);
1303 		/*
1304 		 * We must make sure the multi r1bios of bio have
1305 		 * the same value of bi_phys_segments
1306 		 */
1307 		if (bio->bi_phys_segments && old &&
1308 		    old != start_next_window)
1309 			/* Wait for the former r1bio(s) to complete */
1310 			wait_event(conf->wait_barrier,
1311 				   bio->bi_phys_segments == 1);
1312 		goto retry_write;
1313 	}
1314 
1315 	if (max_sectors < r1_bio->sectors) {
1316 		/* We are splitting this write into multiple parts, so
1317 		 * we need to prepare for allocating another r1_bio.
1318 		 */
1319 		r1_bio->sectors = max_sectors;
1320 		spin_lock_irq(&conf->device_lock);
1321 		if (bio->bi_phys_segments == 0)
1322 			bio->bi_phys_segments = 2;
1323 		else
1324 			bio->bi_phys_segments++;
1325 		spin_unlock_irq(&conf->device_lock);
1326 	}
1327 	sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
1328 
1329 	atomic_set(&r1_bio->remaining, 1);
1330 	atomic_set(&r1_bio->behind_remaining, 0);
1331 
1332 	first_clone = 1;
1333 	for (i = 0; i < disks; i++) {
1334 		struct bio *mbio;
1335 		if (!r1_bio->bios[i])
1336 			continue;
1337 
1338 		mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1339 		bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors);
1340 
1341 		if (first_clone) {
1342 			/* do behind I/O ?
1343 			 * Not if there are too many, or cannot
1344 			 * allocate memory, or a reader on WriteMostly
1345 			 * is waiting for behind writes to flush */
1346 			if (bitmap &&
1347 			    (atomic_read(&bitmap->behind_writes)
1348 			     < mddev->bitmap_info.max_write_behind) &&
1349 			    !waitqueue_active(&bitmap->behind_wait))
1350 				alloc_behind_pages(mbio, r1_bio);
1351 
1352 			bitmap_startwrite(bitmap, r1_bio->sector,
1353 					  r1_bio->sectors,
1354 					  test_bit(R1BIO_BehindIO,
1355 						   &r1_bio->state));
1356 			first_clone = 0;
1357 		}
1358 		if (r1_bio->behind_bvecs) {
1359 			struct bio_vec *bvec;
1360 			int j;
1361 
1362 			/*
1363 			 * We trimmed the bio, so _all is legit
1364 			 */
1365 			bio_for_each_segment_all(bvec, mbio, j)
1366 				bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1367 			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1368 				atomic_inc(&r1_bio->behind_remaining);
1369 		}
1370 
1371 		r1_bio->bios[i] = mbio;
1372 
1373 		mbio->bi_iter.bi_sector	= (r1_bio->sector +
1374 				   conf->mirrors[i].rdev->data_offset);
1375 		mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1376 		mbio->bi_end_io	= raid1_end_write_request;
1377 		mbio->bi_rw =
1378 			WRITE | do_flush_fua | do_sync | do_discard | do_same;
1379 		mbio->bi_private = r1_bio;
1380 
1381 		atomic_inc(&r1_bio->remaining);
1382 
1383 		cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1384 		if (cb)
1385 			plug = container_of(cb, struct raid1_plug_cb, cb);
1386 		else
1387 			plug = NULL;
1388 		spin_lock_irqsave(&conf->device_lock, flags);
1389 		if (plug) {
1390 			bio_list_add(&plug->pending, mbio);
1391 			plug->pending_cnt++;
1392 		} else {
1393 			bio_list_add(&conf->pending_bio_list, mbio);
1394 			conf->pending_count++;
1395 		}
1396 		spin_unlock_irqrestore(&conf->device_lock, flags);
1397 		if (!plug)
1398 			md_wakeup_thread(mddev->thread);
1399 	}
1400 	/* Mustn't call r1_bio_write_done before this next test,
1401 	 * as it could result in the bio being freed.
1402 	 */
1403 	if (sectors_handled < bio_sectors(bio)) {
1404 		r1_bio_write_done(r1_bio);
1405 		/* We need another r1_bio.  It has already been counted
1406 		 * in bio->bi_phys_segments
1407 		 */
1408 		r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1409 		r1_bio->master_bio = bio;
1410 		r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1411 		r1_bio->state = 0;
1412 		r1_bio->mddev = mddev;
1413 		r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1414 		goto retry_write;
1415 	}
1416 
1417 	r1_bio_write_done(r1_bio);
1418 
1419 	/* In case raid1d snuck in to freeze_array */
1420 	wake_up(&conf->wait_barrier);
1421 }
1422 
1423 static void status(struct seq_file *seq, struct mddev *mddev)
1424 {
1425 	struct r1conf *conf = mddev->private;
1426 	int i;
1427 
1428 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1429 		   conf->raid_disks - mddev->degraded);
1430 	rcu_read_lock();
1431 	for (i = 0; i < conf->raid_disks; i++) {
1432 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1433 		seq_printf(seq, "%s",
1434 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1435 	}
1436 	rcu_read_unlock();
1437 	seq_printf(seq, "]");
1438 }
1439 
1440 static void error(struct mddev *mddev, struct md_rdev *rdev)
1441 {
1442 	char b[BDEVNAME_SIZE];
1443 	struct r1conf *conf = mddev->private;
1444 	unsigned long flags;
1445 
1446 	/*
1447 	 * If it is not operational, then we have already marked it as dead
1448 	 * else if it is the last working disks, ignore the error, let the
1449 	 * next level up know.
1450 	 * else mark the drive as failed
1451 	 */
1452 	if (test_bit(In_sync, &rdev->flags)
1453 	    && (conf->raid_disks - mddev->degraded) == 1) {
1454 		/*
1455 		 * Don't fail the drive, act as though we were just a
1456 		 * normal single drive.
1457 		 * However don't try a recovery from this drive as
1458 		 * it is very likely to fail.
1459 		 */
1460 		conf->recovery_disabled = mddev->recovery_disabled;
1461 		return;
1462 	}
1463 	set_bit(Blocked, &rdev->flags);
1464 	spin_lock_irqsave(&conf->device_lock, flags);
1465 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1466 		mddev->degraded++;
1467 		set_bit(Faulty, &rdev->flags);
1468 	} else
1469 		set_bit(Faulty, &rdev->flags);
1470 	spin_unlock_irqrestore(&conf->device_lock, flags);
1471 	/*
1472 	 * if recovery is running, make sure it aborts.
1473 	 */
1474 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1475 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1476 	set_bit(MD_CHANGE_PENDING, &mddev->flags);
1477 	printk(KERN_ALERT
1478 	       "md/raid1:%s: Disk failure on %s, disabling device.\n"
1479 	       "md/raid1:%s: Operation continuing on %d devices.\n",
1480 	       mdname(mddev), bdevname(rdev->bdev, b),
1481 	       mdname(mddev), conf->raid_disks - mddev->degraded);
1482 }
1483 
1484 static void print_conf(struct r1conf *conf)
1485 {
1486 	int i;
1487 
1488 	printk(KERN_DEBUG "RAID1 conf printout:\n");
1489 	if (!conf) {
1490 		printk(KERN_DEBUG "(!conf)\n");
1491 		return;
1492 	}
1493 	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1494 		conf->raid_disks);
1495 
1496 	rcu_read_lock();
1497 	for (i = 0; i < conf->raid_disks; i++) {
1498 		char b[BDEVNAME_SIZE];
1499 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1500 		if (rdev)
1501 			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1502 			       i, !test_bit(In_sync, &rdev->flags),
1503 			       !test_bit(Faulty, &rdev->flags),
1504 			       bdevname(rdev->bdev,b));
1505 	}
1506 	rcu_read_unlock();
1507 }
1508 
1509 static void close_sync(struct r1conf *conf)
1510 {
1511 	wait_barrier(conf, NULL);
1512 	allow_barrier(conf, 0, 0);
1513 
1514 	mempool_destroy(conf->r1buf_pool);
1515 	conf->r1buf_pool = NULL;
1516 
1517 	spin_lock_irq(&conf->resync_lock);
1518 	conf->next_resync = MaxSector - 2 * NEXT_NORMALIO_DISTANCE;
1519 	conf->start_next_window = MaxSector;
1520 	conf->current_window_requests +=
1521 		conf->next_window_requests;
1522 	conf->next_window_requests = 0;
1523 	spin_unlock_irq(&conf->resync_lock);
1524 }
1525 
1526 static int raid1_spare_active(struct mddev *mddev)
1527 {
1528 	int i;
1529 	struct r1conf *conf = mddev->private;
1530 	int count = 0;
1531 	unsigned long flags;
1532 
1533 	/*
1534 	 * Find all failed disks within the RAID1 configuration
1535 	 * and mark them readable.
1536 	 * Called under mddev lock, so rcu protection not needed.
1537 	 * device_lock used to avoid races with raid1_end_read_request
1538 	 * which expects 'In_sync' flags and ->degraded to be consistent.
1539 	 */
1540 	spin_lock_irqsave(&conf->device_lock, flags);
1541 	for (i = 0; i < conf->raid_disks; i++) {
1542 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1543 		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1544 		if (repl
1545 		    && !test_bit(Candidate, &repl->flags)
1546 		    && repl->recovery_offset == MaxSector
1547 		    && !test_bit(Faulty, &repl->flags)
1548 		    && !test_and_set_bit(In_sync, &repl->flags)) {
1549 			/* replacement has just become active */
1550 			if (!rdev ||
1551 			    !test_and_clear_bit(In_sync, &rdev->flags))
1552 				count++;
1553 			if (rdev) {
1554 				/* Replaced device not technically
1555 				 * faulty, but we need to be sure
1556 				 * it gets removed and never re-added
1557 				 */
1558 				set_bit(Faulty, &rdev->flags);
1559 				sysfs_notify_dirent_safe(
1560 					rdev->sysfs_state);
1561 			}
1562 		}
1563 		if (rdev
1564 		    && rdev->recovery_offset == MaxSector
1565 		    && !test_bit(Faulty, &rdev->flags)
1566 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1567 			count++;
1568 			sysfs_notify_dirent_safe(rdev->sysfs_state);
1569 		}
1570 	}
1571 	mddev->degraded -= count;
1572 	spin_unlock_irqrestore(&conf->device_lock, flags);
1573 
1574 	print_conf(conf);
1575 	return count;
1576 }
1577 
1578 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1579 {
1580 	struct r1conf *conf = mddev->private;
1581 	int err = -EEXIST;
1582 	int mirror = 0;
1583 	struct raid1_info *p;
1584 	int first = 0;
1585 	int last = conf->raid_disks - 1;
1586 
1587 	if (mddev->recovery_disabled == conf->recovery_disabled)
1588 		return -EBUSY;
1589 
1590 	if (rdev->raid_disk >= 0)
1591 		first = last = rdev->raid_disk;
1592 
1593 	for (mirror = first; mirror <= last; mirror++) {
1594 		p = conf->mirrors+mirror;
1595 		if (!p->rdev) {
1596 
1597 			if (mddev->gendisk)
1598 				disk_stack_limits(mddev->gendisk, rdev->bdev,
1599 						  rdev->data_offset << 9);
1600 
1601 			p->head_position = 0;
1602 			rdev->raid_disk = mirror;
1603 			err = 0;
1604 			/* As all devices are equivalent, we don't need a full recovery
1605 			 * if this was recently any drive of the array
1606 			 */
1607 			if (rdev->saved_raid_disk < 0)
1608 				conf->fullsync = 1;
1609 			rcu_assign_pointer(p->rdev, rdev);
1610 			break;
1611 		}
1612 		if (test_bit(WantReplacement, &p->rdev->flags) &&
1613 		    p[conf->raid_disks].rdev == NULL) {
1614 			/* Add this device as a replacement */
1615 			clear_bit(In_sync, &rdev->flags);
1616 			set_bit(Replacement, &rdev->flags);
1617 			rdev->raid_disk = mirror;
1618 			err = 0;
1619 			conf->fullsync = 1;
1620 			rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1621 			break;
1622 		}
1623 	}
1624 	md_integrity_add_rdev(rdev, mddev);
1625 	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1626 		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1627 	print_conf(conf);
1628 	return err;
1629 }
1630 
1631 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1632 {
1633 	struct r1conf *conf = mddev->private;
1634 	int err = 0;
1635 	int number = rdev->raid_disk;
1636 	struct raid1_info *p = conf->mirrors + number;
1637 
1638 	if (rdev != p->rdev)
1639 		p = conf->mirrors + conf->raid_disks + number;
1640 
1641 	print_conf(conf);
1642 	if (rdev == p->rdev) {
1643 		if (test_bit(In_sync, &rdev->flags) ||
1644 		    atomic_read(&rdev->nr_pending)) {
1645 			err = -EBUSY;
1646 			goto abort;
1647 		}
1648 		/* Only remove non-faulty devices if recovery
1649 		 * is not possible.
1650 		 */
1651 		if (!test_bit(Faulty, &rdev->flags) &&
1652 		    mddev->recovery_disabled != conf->recovery_disabled &&
1653 		    mddev->degraded < conf->raid_disks) {
1654 			err = -EBUSY;
1655 			goto abort;
1656 		}
1657 		p->rdev = NULL;
1658 		synchronize_rcu();
1659 		if (atomic_read(&rdev->nr_pending)) {
1660 			/* lost the race, try later */
1661 			err = -EBUSY;
1662 			p->rdev = rdev;
1663 			goto abort;
1664 		} else if (conf->mirrors[conf->raid_disks + number].rdev) {
1665 			/* We just removed a device that is being replaced.
1666 			 * Move down the replacement.  We drain all IO before
1667 			 * doing this to avoid confusion.
1668 			 */
1669 			struct md_rdev *repl =
1670 				conf->mirrors[conf->raid_disks + number].rdev;
1671 			freeze_array(conf, 0);
1672 			clear_bit(Replacement, &repl->flags);
1673 			p->rdev = repl;
1674 			conf->mirrors[conf->raid_disks + number].rdev = NULL;
1675 			unfreeze_array(conf);
1676 			clear_bit(WantReplacement, &rdev->flags);
1677 		} else
1678 			clear_bit(WantReplacement, &rdev->flags);
1679 		err = md_integrity_register(mddev);
1680 	}
1681 abort:
1682 
1683 	print_conf(conf);
1684 	return err;
1685 }
1686 
1687 static void end_sync_read(struct bio *bio)
1688 {
1689 	struct r1bio *r1_bio = bio->bi_private;
1690 
1691 	update_head_pos(r1_bio->read_disk, r1_bio);
1692 
1693 	/*
1694 	 * we have read a block, now it needs to be re-written,
1695 	 * or re-read if the read failed.
1696 	 * We don't do much here, just schedule handling by raid1d
1697 	 */
1698 	if (!bio->bi_error)
1699 		set_bit(R1BIO_Uptodate, &r1_bio->state);
1700 
1701 	if (atomic_dec_and_test(&r1_bio->remaining))
1702 		reschedule_retry(r1_bio);
1703 }
1704 
1705 static void end_sync_write(struct bio *bio)
1706 {
1707 	int uptodate = !bio->bi_error;
1708 	struct r1bio *r1_bio = bio->bi_private;
1709 	struct mddev *mddev = r1_bio->mddev;
1710 	struct r1conf *conf = mddev->private;
1711 	int mirror=0;
1712 	sector_t first_bad;
1713 	int bad_sectors;
1714 
1715 	mirror = find_bio_disk(r1_bio, bio);
1716 
1717 	if (!uptodate) {
1718 		sector_t sync_blocks = 0;
1719 		sector_t s = r1_bio->sector;
1720 		long sectors_to_go = r1_bio->sectors;
1721 		/* make sure these bits doesn't get cleared. */
1722 		do {
1723 			bitmap_end_sync(mddev->bitmap, s,
1724 					&sync_blocks, 1);
1725 			s += sync_blocks;
1726 			sectors_to_go -= sync_blocks;
1727 		} while (sectors_to_go > 0);
1728 		set_bit(WriteErrorSeen,
1729 			&conf->mirrors[mirror].rdev->flags);
1730 		if (!test_and_set_bit(WantReplacement,
1731 				      &conf->mirrors[mirror].rdev->flags))
1732 			set_bit(MD_RECOVERY_NEEDED, &
1733 				mddev->recovery);
1734 		set_bit(R1BIO_WriteError, &r1_bio->state);
1735 	} else if (is_badblock(conf->mirrors[mirror].rdev,
1736 			       r1_bio->sector,
1737 			       r1_bio->sectors,
1738 			       &first_bad, &bad_sectors) &&
1739 		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1740 				r1_bio->sector,
1741 				r1_bio->sectors,
1742 				&first_bad, &bad_sectors)
1743 		)
1744 		set_bit(R1BIO_MadeGood, &r1_bio->state);
1745 
1746 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1747 		int s = r1_bio->sectors;
1748 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1749 		    test_bit(R1BIO_WriteError, &r1_bio->state))
1750 			reschedule_retry(r1_bio);
1751 		else {
1752 			put_buf(r1_bio);
1753 			md_done_sync(mddev, s, uptodate);
1754 		}
1755 	}
1756 }
1757 
1758 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1759 			    int sectors, struct page *page, int rw)
1760 {
1761 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1762 		/* success */
1763 		return 1;
1764 	if (rw == WRITE) {
1765 		set_bit(WriteErrorSeen, &rdev->flags);
1766 		if (!test_and_set_bit(WantReplacement,
1767 				      &rdev->flags))
1768 			set_bit(MD_RECOVERY_NEEDED, &
1769 				rdev->mddev->recovery);
1770 	}
1771 	/* need to record an error - either for the block or the device */
1772 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1773 		md_error(rdev->mddev, rdev);
1774 	return 0;
1775 }
1776 
1777 static int fix_sync_read_error(struct r1bio *r1_bio)
1778 {
1779 	/* Try some synchronous reads of other devices to get
1780 	 * good data, much like with normal read errors.  Only
1781 	 * read into the pages we already have so we don't
1782 	 * need to re-issue the read request.
1783 	 * We don't need to freeze the array, because being in an
1784 	 * active sync request, there is no normal IO, and
1785 	 * no overlapping syncs.
1786 	 * We don't need to check is_badblock() again as we
1787 	 * made sure that anything with a bad block in range
1788 	 * will have bi_end_io clear.
1789 	 */
1790 	struct mddev *mddev = r1_bio->mddev;
1791 	struct r1conf *conf = mddev->private;
1792 	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1793 	sector_t sect = r1_bio->sector;
1794 	int sectors = r1_bio->sectors;
1795 	int idx = 0;
1796 
1797 	while(sectors) {
1798 		int s = sectors;
1799 		int d = r1_bio->read_disk;
1800 		int success = 0;
1801 		struct md_rdev *rdev;
1802 		int start;
1803 
1804 		if (s > (PAGE_SIZE>>9))
1805 			s = PAGE_SIZE >> 9;
1806 		do {
1807 			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1808 				/* No rcu protection needed here devices
1809 				 * can only be removed when no resync is
1810 				 * active, and resync is currently active
1811 				 */
1812 				rdev = conf->mirrors[d].rdev;
1813 				if (sync_page_io(rdev, sect, s<<9,
1814 						 bio->bi_io_vec[idx].bv_page,
1815 						 READ, false)) {
1816 					success = 1;
1817 					break;
1818 				}
1819 			}
1820 			d++;
1821 			if (d == conf->raid_disks * 2)
1822 				d = 0;
1823 		} while (!success && d != r1_bio->read_disk);
1824 
1825 		if (!success) {
1826 			char b[BDEVNAME_SIZE];
1827 			int abort = 0;
1828 			/* Cannot read from anywhere, this block is lost.
1829 			 * Record a bad block on each device.  If that doesn't
1830 			 * work just disable and interrupt the recovery.
1831 			 * Don't fail devices as that won't really help.
1832 			 */
1833 			printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1834 			       " for block %llu\n",
1835 			       mdname(mddev),
1836 			       bdevname(bio->bi_bdev, b),
1837 			       (unsigned long long)r1_bio->sector);
1838 			for (d = 0; d < conf->raid_disks * 2; d++) {
1839 				rdev = conf->mirrors[d].rdev;
1840 				if (!rdev || test_bit(Faulty, &rdev->flags))
1841 					continue;
1842 				if (!rdev_set_badblocks(rdev, sect, s, 0))
1843 					abort = 1;
1844 			}
1845 			if (abort) {
1846 				conf->recovery_disabled =
1847 					mddev->recovery_disabled;
1848 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1849 				md_done_sync(mddev, r1_bio->sectors, 0);
1850 				put_buf(r1_bio);
1851 				return 0;
1852 			}
1853 			/* Try next page */
1854 			sectors -= s;
1855 			sect += s;
1856 			idx++;
1857 			continue;
1858 		}
1859 
1860 		start = d;
1861 		/* write it back and re-read */
1862 		while (d != r1_bio->read_disk) {
1863 			if (d == 0)
1864 				d = conf->raid_disks * 2;
1865 			d--;
1866 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1867 				continue;
1868 			rdev = conf->mirrors[d].rdev;
1869 			if (r1_sync_page_io(rdev, sect, s,
1870 					    bio->bi_io_vec[idx].bv_page,
1871 					    WRITE) == 0) {
1872 				r1_bio->bios[d]->bi_end_io = NULL;
1873 				rdev_dec_pending(rdev, mddev);
1874 			}
1875 		}
1876 		d = start;
1877 		while (d != r1_bio->read_disk) {
1878 			if (d == 0)
1879 				d = conf->raid_disks * 2;
1880 			d--;
1881 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1882 				continue;
1883 			rdev = conf->mirrors[d].rdev;
1884 			if (r1_sync_page_io(rdev, sect, s,
1885 					    bio->bi_io_vec[idx].bv_page,
1886 					    READ) != 0)
1887 				atomic_add(s, &rdev->corrected_errors);
1888 		}
1889 		sectors -= s;
1890 		sect += s;
1891 		idx ++;
1892 	}
1893 	set_bit(R1BIO_Uptodate, &r1_bio->state);
1894 	bio->bi_error = 0;
1895 	return 1;
1896 }
1897 
1898 static void process_checks(struct r1bio *r1_bio)
1899 {
1900 	/* We have read all readable devices.  If we haven't
1901 	 * got the block, then there is no hope left.
1902 	 * If we have, then we want to do a comparison
1903 	 * and skip the write if everything is the same.
1904 	 * If any blocks failed to read, then we need to
1905 	 * attempt an over-write
1906 	 */
1907 	struct mddev *mddev = r1_bio->mddev;
1908 	struct r1conf *conf = mddev->private;
1909 	int primary;
1910 	int i;
1911 	int vcnt;
1912 
1913 	/* Fix variable parts of all bios */
1914 	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1915 	for (i = 0; i < conf->raid_disks * 2; i++) {
1916 		int j;
1917 		int size;
1918 		int error;
1919 		struct bio *b = r1_bio->bios[i];
1920 		if (b->bi_end_io != end_sync_read)
1921 			continue;
1922 		/* fixup the bio for reuse, but preserve errno */
1923 		error = b->bi_error;
1924 		bio_reset(b);
1925 		b->bi_error = error;
1926 		b->bi_vcnt = vcnt;
1927 		b->bi_iter.bi_size = r1_bio->sectors << 9;
1928 		b->bi_iter.bi_sector = r1_bio->sector +
1929 			conf->mirrors[i].rdev->data_offset;
1930 		b->bi_bdev = conf->mirrors[i].rdev->bdev;
1931 		b->bi_end_io = end_sync_read;
1932 		b->bi_private = r1_bio;
1933 
1934 		size = b->bi_iter.bi_size;
1935 		for (j = 0; j < vcnt ; j++) {
1936 			struct bio_vec *bi;
1937 			bi = &b->bi_io_vec[j];
1938 			bi->bv_offset = 0;
1939 			if (size > PAGE_SIZE)
1940 				bi->bv_len = PAGE_SIZE;
1941 			else
1942 				bi->bv_len = size;
1943 			size -= PAGE_SIZE;
1944 		}
1945 	}
1946 	for (primary = 0; primary < conf->raid_disks * 2; primary++)
1947 		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1948 		    !r1_bio->bios[primary]->bi_error) {
1949 			r1_bio->bios[primary]->bi_end_io = NULL;
1950 			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1951 			break;
1952 		}
1953 	r1_bio->read_disk = primary;
1954 	for (i = 0; i < conf->raid_disks * 2; i++) {
1955 		int j;
1956 		struct bio *pbio = r1_bio->bios[primary];
1957 		struct bio *sbio = r1_bio->bios[i];
1958 		int error = sbio->bi_error;
1959 
1960 		if (sbio->bi_end_io != end_sync_read)
1961 			continue;
1962 		/* Now we can 'fixup' the error value */
1963 		sbio->bi_error = 0;
1964 
1965 		if (!error) {
1966 			for (j = vcnt; j-- ; ) {
1967 				struct page *p, *s;
1968 				p = pbio->bi_io_vec[j].bv_page;
1969 				s = sbio->bi_io_vec[j].bv_page;
1970 				if (memcmp(page_address(p),
1971 					   page_address(s),
1972 					   sbio->bi_io_vec[j].bv_len))
1973 					break;
1974 			}
1975 		} else
1976 			j = 0;
1977 		if (j >= 0)
1978 			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
1979 		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1980 			      && !error)) {
1981 			/* No need to write to this device. */
1982 			sbio->bi_end_io = NULL;
1983 			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1984 			continue;
1985 		}
1986 
1987 		bio_copy_data(sbio, pbio);
1988 	}
1989 }
1990 
1991 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
1992 {
1993 	struct r1conf *conf = mddev->private;
1994 	int i;
1995 	int disks = conf->raid_disks * 2;
1996 	struct bio *bio, *wbio;
1997 
1998 	bio = r1_bio->bios[r1_bio->read_disk];
1999 
2000 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2001 		/* ouch - failed to read all of that. */
2002 		if (!fix_sync_read_error(r1_bio))
2003 			return;
2004 
2005 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2006 		process_checks(r1_bio);
2007 
2008 	/*
2009 	 * schedule writes
2010 	 */
2011 	atomic_set(&r1_bio->remaining, 1);
2012 	for (i = 0; i < disks ; i++) {
2013 		wbio = r1_bio->bios[i];
2014 		if (wbio->bi_end_io == NULL ||
2015 		    (wbio->bi_end_io == end_sync_read &&
2016 		     (i == r1_bio->read_disk ||
2017 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2018 			continue;
2019 
2020 		wbio->bi_rw = WRITE;
2021 		wbio->bi_end_io = end_sync_write;
2022 		atomic_inc(&r1_bio->remaining);
2023 		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2024 
2025 		generic_make_request(wbio);
2026 	}
2027 
2028 	if (atomic_dec_and_test(&r1_bio->remaining)) {
2029 		/* if we're here, all write(s) have completed, so clean up */
2030 		int s = r1_bio->sectors;
2031 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2032 		    test_bit(R1BIO_WriteError, &r1_bio->state))
2033 			reschedule_retry(r1_bio);
2034 		else {
2035 			put_buf(r1_bio);
2036 			md_done_sync(mddev, s, 1);
2037 		}
2038 	}
2039 }
2040 
2041 /*
2042  * This is a kernel thread which:
2043  *
2044  *	1.	Retries failed read operations on working mirrors.
2045  *	2.	Updates the raid superblock when problems encounter.
2046  *	3.	Performs writes following reads for array synchronising.
2047  */
2048 
2049 static void fix_read_error(struct r1conf *conf, int read_disk,
2050 			   sector_t sect, int sectors)
2051 {
2052 	struct mddev *mddev = conf->mddev;
2053 	while(sectors) {
2054 		int s = sectors;
2055 		int d = read_disk;
2056 		int success = 0;
2057 		int start;
2058 		struct md_rdev *rdev;
2059 
2060 		if (s > (PAGE_SIZE>>9))
2061 			s = PAGE_SIZE >> 9;
2062 
2063 		do {
2064 			/* Note: no rcu protection needed here
2065 			 * as this is synchronous in the raid1d thread
2066 			 * which is the thread that might remove
2067 			 * a device.  If raid1d ever becomes multi-threaded....
2068 			 */
2069 			sector_t first_bad;
2070 			int bad_sectors;
2071 
2072 			rdev = conf->mirrors[d].rdev;
2073 			if (rdev &&
2074 			    (test_bit(In_sync, &rdev->flags) ||
2075 			     (!test_bit(Faulty, &rdev->flags) &&
2076 			      rdev->recovery_offset >= sect + s)) &&
2077 			    is_badblock(rdev, sect, s,
2078 					&first_bad, &bad_sectors) == 0 &&
2079 			    sync_page_io(rdev, sect, s<<9,
2080 					 conf->tmppage, READ, false))
2081 				success = 1;
2082 			else {
2083 				d++;
2084 				if (d == conf->raid_disks * 2)
2085 					d = 0;
2086 			}
2087 		} while (!success && d != read_disk);
2088 
2089 		if (!success) {
2090 			/* Cannot read from anywhere - mark it bad */
2091 			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2092 			if (!rdev_set_badblocks(rdev, sect, s, 0))
2093 				md_error(mddev, rdev);
2094 			break;
2095 		}
2096 		/* write it back and re-read */
2097 		start = d;
2098 		while (d != read_disk) {
2099 			if (d==0)
2100 				d = conf->raid_disks * 2;
2101 			d--;
2102 			rdev = conf->mirrors[d].rdev;
2103 			if (rdev &&
2104 			    !test_bit(Faulty, &rdev->flags))
2105 				r1_sync_page_io(rdev, sect, s,
2106 						conf->tmppage, WRITE);
2107 		}
2108 		d = start;
2109 		while (d != read_disk) {
2110 			char b[BDEVNAME_SIZE];
2111 			if (d==0)
2112 				d = conf->raid_disks * 2;
2113 			d--;
2114 			rdev = conf->mirrors[d].rdev;
2115 			if (rdev &&
2116 			    !test_bit(Faulty, &rdev->flags)) {
2117 				if (r1_sync_page_io(rdev, sect, s,
2118 						    conf->tmppage, READ)) {
2119 					atomic_add(s, &rdev->corrected_errors);
2120 					printk(KERN_INFO
2121 					       "md/raid1:%s: read error corrected "
2122 					       "(%d sectors at %llu on %s)\n",
2123 					       mdname(mddev), s,
2124 					       (unsigned long long)(sect +
2125 					           rdev->data_offset),
2126 					       bdevname(rdev->bdev, b));
2127 				}
2128 			}
2129 		}
2130 		sectors -= s;
2131 		sect += s;
2132 	}
2133 }
2134 
2135 static int narrow_write_error(struct r1bio *r1_bio, int i)
2136 {
2137 	struct mddev *mddev = r1_bio->mddev;
2138 	struct r1conf *conf = mddev->private;
2139 	struct md_rdev *rdev = conf->mirrors[i].rdev;
2140 
2141 	/* bio has the data to be written to device 'i' where
2142 	 * we just recently had a write error.
2143 	 * We repeatedly clone the bio and trim down to one block,
2144 	 * then try the write.  Where the write fails we record
2145 	 * a bad block.
2146 	 * It is conceivable that the bio doesn't exactly align with
2147 	 * blocks.  We must handle this somehow.
2148 	 *
2149 	 * We currently own a reference on the rdev.
2150 	 */
2151 
2152 	int block_sectors;
2153 	sector_t sector;
2154 	int sectors;
2155 	int sect_to_write = r1_bio->sectors;
2156 	int ok = 1;
2157 
2158 	if (rdev->badblocks.shift < 0)
2159 		return 0;
2160 
2161 	block_sectors = roundup(1 << rdev->badblocks.shift,
2162 				bdev_logical_block_size(rdev->bdev) >> 9);
2163 	sector = r1_bio->sector;
2164 	sectors = ((sector + block_sectors)
2165 		   & ~(sector_t)(block_sectors - 1))
2166 		- sector;
2167 
2168 	while (sect_to_write) {
2169 		struct bio *wbio;
2170 		if (sectors > sect_to_write)
2171 			sectors = sect_to_write;
2172 		/* Write at 'sector' for 'sectors'*/
2173 
2174 		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2175 			unsigned vcnt = r1_bio->behind_page_count;
2176 			struct bio_vec *vec = r1_bio->behind_bvecs;
2177 
2178 			while (!vec->bv_page) {
2179 				vec++;
2180 				vcnt--;
2181 			}
2182 
2183 			wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2184 			memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2185 
2186 			wbio->bi_vcnt = vcnt;
2187 		} else {
2188 			wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2189 		}
2190 
2191 		wbio->bi_rw = WRITE;
2192 		wbio->bi_iter.bi_sector = r1_bio->sector;
2193 		wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2194 
2195 		bio_trim(wbio, sector - r1_bio->sector, sectors);
2196 		wbio->bi_iter.bi_sector += rdev->data_offset;
2197 		wbio->bi_bdev = rdev->bdev;
2198 		if (submit_bio_wait(WRITE, wbio) < 0)
2199 			/* failure! */
2200 			ok = rdev_set_badblocks(rdev, sector,
2201 						sectors, 0)
2202 				&& ok;
2203 
2204 		bio_put(wbio);
2205 		sect_to_write -= sectors;
2206 		sector += sectors;
2207 		sectors = block_sectors;
2208 	}
2209 	return ok;
2210 }
2211 
2212 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2213 {
2214 	int m;
2215 	int s = r1_bio->sectors;
2216 	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2217 		struct md_rdev *rdev = conf->mirrors[m].rdev;
2218 		struct bio *bio = r1_bio->bios[m];
2219 		if (bio->bi_end_io == NULL)
2220 			continue;
2221 		if (!bio->bi_error &&
2222 		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2223 			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2224 		}
2225 		if (bio->bi_error &&
2226 		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2227 			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2228 				md_error(conf->mddev, rdev);
2229 		}
2230 	}
2231 	put_buf(r1_bio);
2232 	md_done_sync(conf->mddev, s, 1);
2233 }
2234 
2235 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2236 {
2237 	int m;
2238 	bool fail = false;
2239 	for (m = 0; m < conf->raid_disks * 2 ; m++)
2240 		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2241 			struct md_rdev *rdev = conf->mirrors[m].rdev;
2242 			rdev_clear_badblocks(rdev,
2243 					     r1_bio->sector,
2244 					     r1_bio->sectors, 0);
2245 			rdev_dec_pending(rdev, conf->mddev);
2246 		} else if (r1_bio->bios[m] != NULL) {
2247 			/* This drive got a write error.  We need to
2248 			 * narrow down and record precise write
2249 			 * errors.
2250 			 */
2251 			fail = true;
2252 			if (!narrow_write_error(r1_bio, m)) {
2253 				md_error(conf->mddev,
2254 					 conf->mirrors[m].rdev);
2255 				/* an I/O failed, we can't clear the bitmap */
2256 				set_bit(R1BIO_Degraded, &r1_bio->state);
2257 			}
2258 			rdev_dec_pending(conf->mirrors[m].rdev,
2259 					 conf->mddev);
2260 		}
2261 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
2262 		close_write(r1_bio);
2263 	if (fail) {
2264 		spin_lock_irq(&conf->device_lock);
2265 		list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2266 		spin_unlock_irq(&conf->device_lock);
2267 		md_wakeup_thread(conf->mddev->thread);
2268 	} else
2269 		raid_end_bio_io(r1_bio);
2270 }
2271 
2272 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2273 {
2274 	int disk;
2275 	int max_sectors;
2276 	struct mddev *mddev = conf->mddev;
2277 	struct bio *bio;
2278 	char b[BDEVNAME_SIZE];
2279 	struct md_rdev *rdev;
2280 
2281 	clear_bit(R1BIO_ReadError, &r1_bio->state);
2282 	/* we got a read error. Maybe the drive is bad.  Maybe just
2283 	 * the block and we can fix it.
2284 	 * We freeze all other IO, and try reading the block from
2285 	 * other devices.  When we find one, we re-write
2286 	 * and check it that fixes the read error.
2287 	 * This is all done synchronously while the array is
2288 	 * frozen
2289 	 */
2290 	if (mddev->ro == 0) {
2291 		freeze_array(conf, 1);
2292 		fix_read_error(conf, r1_bio->read_disk,
2293 			       r1_bio->sector, r1_bio->sectors);
2294 		unfreeze_array(conf);
2295 	} else
2296 		md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2297 	rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
2298 
2299 	bio = r1_bio->bios[r1_bio->read_disk];
2300 	bdevname(bio->bi_bdev, b);
2301 read_more:
2302 	disk = read_balance(conf, r1_bio, &max_sectors);
2303 	if (disk == -1) {
2304 		printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2305 		       " read error for block %llu\n",
2306 		       mdname(mddev), b, (unsigned long long)r1_bio->sector);
2307 		raid_end_bio_io(r1_bio);
2308 	} else {
2309 		const unsigned long do_sync
2310 			= r1_bio->master_bio->bi_rw & REQ_SYNC;
2311 		if (bio) {
2312 			r1_bio->bios[r1_bio->read_disk] =
2313 				mddev->ro ? IO_BLOCKED : NULL;
2314 			bio_put(bio);
2315 		}
2316 		r1_bio->read_disk = disk;
2317 		bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2318 		bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2319 			 max_sectors);
2320 		r1_bio->bios[r1_bio->read_disk] = bio;
2321 		rdev = conf->mirrors[disk].rdev;
2322 		printk_ratelimited(KERN_ERR
2323 				   "md/raid1:%s: redirecting sector %llu"
2324 				   " to other mirror: %s\n",
2325 				   mdname(mddev),
2326 				   (unsigned long long)r1_bio->sector,
2327 				   bdevname(rdev->bdev, b));
2328 		bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
2329 		bio->bi_bdev = rdev->bdev;
2330 		bio->bi_end_io = raid1_end_read_request;
2331 		bio->bi_rw = READ | do_sync;
2332 		bio->bi_private = r1_bio;
2333 		if (max_sectors < r1_bio->sectors) {
2334 			/* Drat - have to split this up more */
2335 			struct bio *mbio = r1_bio->master_bio;
2336 			int sectors_handled = (r1_bio->sector + max_sectors
2337 					       - mbio->bi_iter.bi_sector);
2338 			r1_bio->sectors = max_sectors;
2339 			spin_lock_irq(&conf->device_lock);
2340 			if (mbio->bi_phys_segments == 0)
2341 				mbio->bi_phys_segments = 2;
2342 			else
2343 				mbio->bi_phys_segments++;
2344 			spin_unlock_irq(&conf->device_lock);
2345 			generic_make_request(bio);
2346 			bio = NULL;
2347 
2348 			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2349 
2350 			r1_bio->master_bio = mbio;
2351 			r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
2352 			r1_bio->state = 0;
2353 			set_bit(R1BIO_ReadError, &r1_bio->state);
2354 			r1_bio->mddev = mddev;
2355 			r1_bio->sector = mbio->bi_iter.bi_sector +
2356 				sectors_handled;
2357 
2358 			goto read_more;
2359 		} else
2360 			generic_make_request(bio);
2361 	}
2362 }
2363 
2364 static void raid1d(struct md_thread *thread)
2365 {
2366 	struct mddev *mddev = thread->mddev;
2367 	struct r1bio *r1_bio;
2368 	unsigned long flags;
2369 	struct r1conf *conf = mddev->private;
2370 	struct list_head *head = &conf->retry_list;
2371 	struct blk_plug plug;
2372 
2373 	md_check_recovery(mddev);
2374 
2375 	if (!list_empty_careful(&conf->bio_end_io_list) &&
2376 	    !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2377 		LIST_HEAD(tmp);
2378 		spin_lock_irqsave(&conf->device_lock, flags);
2379 		if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2380 			list_add(&tmp, &conf->bio_end_io_list);
2381 			list_del_init(&conf->bio_end_io_list);
2382 		}
2383 		spin_unlock_irqrestore(&conf->device_lock, flags);
2384 		while (!list_empty(&tmp)) {
2385 			r1_bio = list_first_entry(&tmp, struct r1bio,
2386 						  retry_list);
2387 			list_del(&r1_bio->retry_list);
2388 			raid_end_bio_io(r1_bio);
2389 		}
2390 	}
2391 
2392 	blk_start_plug(&plug);
2393 	for (;;) {
2394 
2395 		flush_pending_writes(conf);
2396 
2397 		spin_lock_irqsave(&conf->device_lock, flags);
2398 		if (list_empty(head)) {
2399 			spin_unlock_irqrestore(&conf->device_lock, flags);
2400 			break;
2401 		}
2402 		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2403 		list_del(head->prev);
2404 		conf->nr_queued--;
2405 		spin_unlock_irqrestore(&conf->device_lock, flags);
2406 
2407 		mddev = r1_bio->mddev;
2408 		conf = mddev->private;
2409 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2410 			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2411 			    test_bit(R1BIO_WriteError, &r1_bio->state))
2412 				handle_sync_write_finished(conf, r1_bio);
2413 			else
2414 				sync_request_write(mddev, r1_bio);
2415 		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2416 			   test_bit(R1BIO_WriteError, &r1_bio->state))
2417 			handle_write_finished(conf, r1_bio);
2418 		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2419 			handle_read_error(conf, r1_bio);
2420 		else
2421 			/* just a partial read to be scheduled from separate
2422 			 * context
2423 			 */
2424 			generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2425 
2426 		cond_resched();
2427 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2428 			md_check_recovery(mddev);
2429 	}
2430 	blk_finish_plug(&plug);
2431 }
2432 
2433 static int init_resync(struct r1conf *conf)
2434 {
2435 	int buffs;
2436 
2437 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2438 	BUG_ON(conf->r1buf_pool);
2439 	conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2440 					  conf->poolinfo);
2441 	if (!conf->r1buf_pool)
2442 		return -ENOMEM;
2443 	conf->next_resync = 0;
2444 	return 0;
2445 }
2446 
2447 /*
2448  * perform a "sync" on one "block"
2449  *
2450  * We need to make sure that no normal I/O request - particularly write
2451  * requests - conflict with active sync requests.
2452  *
2453  * This is achieved by tracking pending requests and a 'barrier' concept
2454  * that can be installed to exclude normal IO requests.
2455  */
2456 
2457 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
2458 {
2459 	struct r1conf *conf = mddev->private;
2460 	struct r1bio *r1_bio;
2461 	struct bio *bio;
2462 	sector_t max_sector, nr_sectors;
2463 	int disk = -1;
2464 	int i;
2465 	int wonly = -1;
2466 	int write_targets = 0, read_targets = 0;
2467 	sector_t sync_blocks;
2468 	int still_degraded = 0;
2469 	int good_sectors = RESYNC_SECTORS;
2470 	int min_bad = 0; /* number of sectors that are bad in all devices */
2471 
2472 	if (!conf->r1buf_pool)
2473 		if (init_resync(conf))
2474 			return 0;
2475 
2476 	max_sector = mddev->dev_sectors;
2477 	if (sector_nr >= max_sector) {
2478 		/* If we aborted, we need to abort the
2479 		 * sync on the 'current' bitmap chunk (there will
2480 		 * only be one in raid1 resync.
2481 		 * We can find the current addess in mddev->curr_resync
2482 		 */
2483 		if (mddev->curr_resync < max_sector) /* aborted */
2484 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2485 						&sync_blocks, 1);
2486 		else /* completed sync */
2487 			conf->fullsync = 0;
2488 
2489 		bitmap_close_sync(mddev->bitmap);
2490 		close_sync(conf);
2491 		return 0;
2492 	}
2493 
2494 	if (mddev->bitmap == NULL &&
2495 	    mddev->recovery_cp == MaxSector &&
2496 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2497 	    conf->fullsync == 0) {
2498 		*skipped = 1;
2499 		return max_sector - sector_nr;
2500 	}
2501 	/* before building a request, check if we can skip these blocks..
2502 	 * This call the bitmap_start_sync doesn't actually record anything
2503 	 */
2504 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2505 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2506 		/* We can skip this block, and probably several more */
2507 		*skipped = 1;
2508 		return sync_blocks;
2509 	}
2510 
2511 	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2512 	r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2513 
2514 	raise_barrier(conf, sector_nr);
2515 
2516 	rcu_read_lock();
2517 	/*
2518 	 * If we get a correctably read error during resync or recovery,
2519 	 * we might want to read from a different device.  So we
2520 	 * flag all drives that could conceivably be read from for READ,
2521 	 * and any others (which will be non-In_sync devices) for WRITE.
2522 	 * If a read fails, we try reading from something else for which READ
2523 	 * is OK.
2524 	 */
2525 
2526 	r1_bio->mddev = mddev;
2527 	r1_bio->sector = sector_nr;
2528 	r1_bio->state = 0;
2529 	set_bit(R1BIO_IsSync, &r1_bio->state);
2530 
2531 	for (i = 0; i < conf->raid_disks * 2; i++) {
2532 		struct md_rdev *rdev;
2533 		bio = r1_bio->bios[i];
2534 		bio_reset(bio);
2535 
2536 		rdev = rcu_dereference(conf->mirrors[i].rdev);
2537 		if (rdev == NULL ||
2538 		    test_bit(Faulty, &rdev->flags)) {
2539 			if (i < conf->raid_disks)
2540 				still_degraded = 1;
2541 		} else if (!test_bit(In_sync, &rdev->flags)) {
2542 			bio->bi_rw = WRITE;
2543 			bio->bi_end_io = end_sync_write;
2544 			write_targets ++;
2545 		} else {
2546 			/* may need to read from here */
2547 			sector_t first_bad = MaxSector;
2548 			int bad_sectors;
2549 
2550 			if (is_badblock(rdev, sector_nr, good_sectors,
2551 					&first_bad, &bad_sectors)) {
2552 				if (first_bad > sector_nr)
2553 					good_sectors = first_bad - sector_nr;
2554 				else {
2555 					bad_sectors -= (sector_nr - first_bad);
2556 					if (min_bad == 0 ||
2557 					    min_bad > bad_sectors)
2558 						min_bad = bad_sectors;
2559 				}
2560 			}
2561 			if (sector_nr < first_bad) {
2562 				if (test_bit(WriteMostly, &rdev->flags)) {
2563 					if (wonly < 0)
2564 						wonly = i;
2565 				} else {
2566 					if (disk < 0)
2567 						disk = i;
2568 				}
2569 				bio->bi_rw = READ;
2570 				bio->bi_end_io = end_sync_read;
2571 				read_targets++;
2572 			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2573 				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2574 				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2575 				/*
2576 				 * The device is suitable for reading (InSync),
2577 				 * but has bad block(s) here. Let's try to correct them,
2578 				 * if we are doing resync or repair. Otherwise, leave
2579 				 * this device alone for this sync request.
2580 				 */
2581 				bio->bi_rw = WRITE;
2582 				bio->bi_end_io = end_sync_write;
2583 				write_targets++;
2584 			}
2585 		}
2586 		if (bio->bi_end_io) {
2587 			atomic_inc(&rdev->nr_pending);
2588 			bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2589 			bio->bi_bdev = rdev->bdev;
2590 			bio->bi_private = r1_bio;
2591 		}
2592 	}
2593 	rcu_read_unlock();
2594 	if (disk < 0)
2595 		disk = wonly;
2596 	r1_bio->read_disk = disk;
2597 
2598 	if (read_targets == 0 && min_bad > 0) {
2599 		/* These sectors are bad on all InSync devices, so we
2600 		 * need to mark them bad on all write targets
2601 		 */
2602 		int ok = 1;
2603 		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2604 			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2605 				struct md_rdev *rdev = conf->mirrors[i].rdev;
2606 				ok = rdev_set_badblocks(rdev, sector_nr,
2607 							min_bad, 0
2608 					) && ok;
2609 			}
2610 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
2611 		*skipped = 1;
2612 		put_buf(r1_bio);
2613 
2614 		if (!ok) {
2615 			/* Cannot record the badblocks, so need to
2616 			 * abort the resync.
2617 			 * If there are multiple read targets, could just
2618 			 * fail the really bad ones ???
2619 			 */
2620 			conf->recovery_disabled = mddev->recovery_disabled;
2621 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2622 			return 0;
2623 		} else
2624 			return min_bad;
2625 
2626 	}
2627 	if (min_bad > 0 && min_bad < good_sectors) {
2628 		/* only resync enough to reach the next bad->good
2629 		 * transition */
2630 		good_sectors = min_bad;
2631 	}
2632 
2633 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2634 		/* extra read targets are also write targets */
2635 		write_targets += read_targets-1;
2636 
2637 	if (write_targets == 0 || read_targets == 0) {
2638 		/* There is nowhere to write, so all non-sync
2639 		 * drives must be failed - so we are finished
2640 		 */
2641 		sector_t rv;
2642 		if (min_bad > 0)
2643 			max_sector = sector_nr + min_bad;
2644 		rv = max_sector - sector_nr;
2645 		*skipped = 1;
2646 		put_buf(r1_bio);
2647 		return rv;
2648 	}
2649 
2650 	if (max_sector > mddev->resync_max)
2651 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2652 	if (max_sector > sector_nr + good_sectors)
2653 		max_sector = sector_nr + good_sectors;
2654 	nr_sectors = 0;
2655 	sync_blocks = 0;
2656 	do {
2657 		struct page *page;
2658 		int len = PAGE_SIZE;
2659 		if (sector_nr + (len>>9) > max_sector)
2660 			len = (max_sector - sector_nr) << 9;
2661 		if (len == 0)
2662 			break;
2663 		if (sync_blocks == 0) {
2664 			if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2665 					       &sync_blocks, still_degraded) &&
2666 			    !conf->fullsync &&
2667 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2668 				break;
2669 			BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2670 			if ((len >> 9) > sync_blocks)
2671 				len = sync_blocks<<9;
2672 		}
2673 
2674 		for (i = 0 ; i < conf->raid_disks * 2; i++) {
2675 			bio = r1_bio->bios[i];
2676 			if (bio->bi_end_io) {
2677 				page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2678 				if (bio_add_page(bio, page, len, 0) == 0) {
2679 					/* stop here */
2680 					bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2681 					while (i > 0) {
2682 						i--;
2683 						bio = r1_bio->bios[i];
2684 						if (bio->bi_end_io==NULL)
2685 							continue;
2686 						/* remove last page from this bio */
2687 						bio->bi_vcnt--;
2688 						bio->bi_iter.bi_size -= len;
2689 						bio_clear_flag(bio, BIO_SEG_VALID);
2690 					}
2691 					goto bio_full;
2692 				}
2693 			}
2694 		}
2695 		nr_sectors += len>>9;
2696 		sector_nr += len>>9;
2697 		sync_blocks -= (len>>9);
2698 	} while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2699  bio_full:
2700 	r1_bio->sectors = nr_sectors;
2701 
2702 	/* For a user-requested sync, we read all readable devices and do a
2703 	 * compare
2704 	 */
2705 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2706 		atomic_set(&r1_bio->remaining, read_targets);
2707 		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2708 			bio = r1_bio->bios[i];
2709 			if (bio->bi_end_io == end_sync_read) {
2710 				read_targets--;
2711 				md_sync_acct(bio->bi_bdev, nr_sectors);
2712 				generic_make_request(bio);
2713 			}
2714 		}
2715 	} else {
2716 		atomic_set(&r1_bio->remaining, 1);
2717 		bio = r1_bio->bios[r1_bio->read_disk];
2718 		md_sync_acct(bio->bi_bdev, nr_sectors);
2719 		generic_make_request(bio);
2720 
2721 	}
2722 	return nr_sectors;
2723 }
2724 
2725 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2726 {
2727 	if (sectors)
2728 		return sectors;
2729 
2730 	return mddev->dev_sectors;
2731 }
2732 
2733 static struct r1conf *setup_conf(struct mddev *mddev)
2734 {
2735 	struct r1conf *conf;
2736 	int i;
2737 	struct raid1_info *disk;
2738 	struct md_rdev *rdev;
2739 	int err = -ENOMEM;
2740 
2741 	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2742 	if (!conf)
2743 		goto abort;
2744 
2745 	conf->mirrors = kzalloc(sizeof(struct raid1_info)
2746 				* mddev->raid_disks * 2,
2747 				 GFP_KERNEL);
2748 	if (!conf->mirrors)
2749 		goto abort;
2750 
2751 	conf->tmppage = alloc_page(GFP_KERNEL);
2752 	if (!conf->tmppage)
2753 		goto abort;
2754 
2755 	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2756 	if (!conf->poolinfo)
2757 		goto abort;
2758 	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2759 	conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2760 					  r1bio_pool_free,
2761 					  conf->poolinfo);
2762 	if (!conf->r1bio_pool)
2763 		goto abort;
2764 
2765 	conf->poolinfo->mddev = mddev;
2766 
2767 	err = -EINVAL;
2768 	spin_lock_init(&conf->device_lock);
2769 	rdev_for_each(rdev, mddev) {
2770 		struct request_queue *q;
2771 		int disk_idx = rdev->raid_disk;
2772 		if (disk_idx >= mddev->raid_disks
2773 		    || disk_idx < 0)
2774 			continue;
2775 		if (test_bit(Replacement, &rdev->flags))
2776 			disk = conf->mirrors + mddev->raid_disks + disk_idx;
2777 		else
2778 			disk = conf->mirrors + disk_idx;
2779 
2780 		if (disk->rdev)
2781 			goto abort;
2782 		disk->rdev = rdev;
2783 		q = bdev_get_queue(rdev->bdev);
2784 
2785 		disk->head_position = 0;
2786 		disk->seq_start = MaxSector;
2787 	}
2788 	conf->raid_disks = mddev->raid_disks;
2789 	conf->mddev = mddev;
2790 	INIT_LIST_HEAD(&conf->retry_list);
2791 	INIT_LIST_HEAD(&conf->bio_end_io_list);
2792 
2793 	spin_lock_init(&conf->resync_lock);
2794 	init_waitqueue_head(&conf->wait_barrier);
2795 
2796 	bio_list_init(&conf->pending_bio_list);
2797 	conf->pending_count = 0;
2798 	conf->recovery_disabled = mddev->recovery_disabled - 1;
2799 
2800 	conf->start_next_window = MaxSector;
2801 	conf->current_window_requests = conf->next_window_requests = 0;
2802 
2803 	err = -EIO;
2804 	for (i = 0; i < conf->raid_disks * 2; i++) {
2805 
2806 		disk = conf->mirrors + i;
2807 
2808 		if (i < conf->raid_disks &&
2809 		    disk[conf->raid_disks].rdev) {
2810 			/* This slot has a replacement. */
2811 			if (!disk->rdev) {
2812 				/* No original, just make the replacement
2813 				 * a recovering spare
2814 				 */
2815 				disk->rdev =
2816 					disk[conf->raid_disks].rdev;
2817 				disk[conf->raid_disks].rdev = NULL;
2818 			} else if (!test_bit(In_sync, &disk->rdev->flags))
2819 				/* Original is not in_sync - bad */
2820 				goto abort;
2821 		}
2822 
2823 		if (!disk->rdev ||
2824 		    !test_bit(In_sync, &disk->rdev->flags)) {
2825 			disk->head_position = 0;
2826 			if (disk->rdev &&
2827 			    (disk->rdev->saved_raid_disk < 0))
2828 				conf->fullsync = 1;
2829 		}
2830 	}
2831 
2832 	err = -ENOMEM;
2833 	conf->thread = md_register_thread(raid1d, mddev, "raid1");
2834 	if (!conf->thread) {
2835 		printk(KERN_ERR
2836 		       "md/raid1:%s: couldn't allocate thread\n",
2837 		       mdname(mddev));
2838 		goto abort;
2839 	}
2840 
2841 	return conf;
2842 
2843  abort:
2844 	if (conf) {
2845 		mempool_destroy(conf->r1bio_pool);
2846 		kfree(conf->mirrors);
2847 		safe_put_page(conf->tmppage);
2848 		kfree(conf->poolinfo);
2849 		kfree(conf);
2850 	}
2851 	return ERR_PTR(err);
2852 }
2853 
2854 static void raid1_free(struct mddev *mddev, void *priv);
2855 static int run(struct mddev *mddev)
2856 {
2857 	struct r1conf *conf;
2858 	int i;
2859 	struct md_rdev *rdev;
2860 	int ret;
2861 	bool discard_supported = false;
2862 
2863 	if (mddev->level != 1) {
2864 		printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2865 		       mdname(mddev), mddev->level);
2866 		return -EIO;
2867 	}
2868 	if (mddev->reshape_position != MaxSector) {
2869 		printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2870 		       mdname(mddev));
2871 		return -EIO;
2872 	}
2873 	/*
2874 	 * copy the already verified devices into our private RAID1
2875 	 * bookkeeping area. [whatever we allocate in run(),
2876 	 * should be freed in raid1_free()]
2877 	 */
2878 	if (mddev->private == NULL)
2879 		conf = setup_conf(mddev);
2880 	else
2881 		conf = mddev->private;
2882 
2883 	if (IS_ERR(conf))
2884 		return PTR_ERR(conf);
2885 
2886 	if (mddev->queue)
2887 		blk_queue_max_write_same_sectors(mddev->queue, 0);
2888 
2889 	rdev_for_each(rdev, mddev) {
2890 		if (!mddev->gendisk)
2891 			continue;
2892 		disk_stack_limits(mddev->gendisk, rdev->bdev,
2893 				  rdev->data_offset << 9);
2894 		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2895 			discard_supported = true;
2896 	}
2897 
2898 	mddev->degraded = 0;
2899 	for (i=0; i < conf->raid_disks; i++)
2900 		if (conf->mirrors[i].rdev == NULL ||
2901 		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2902 		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2903 			mddev->degraded++;
2904 
2905 	if (conf->raid_disks - mddev->degraded == 1)
2906 		mddev->recovery_cp = MaxSector;
2907 
2908 	if (mddev->recovery_cp != MaxSector)
2909 		printk(KERN_NOTICE "md/raid1:%s: not clean"
2910 		       " -- starting background reconstruction\n",
2911 		       mdname(mddev));
2912 	printk(KERN_INFO
2913 		"md/raid1:%s: active with %d out of %d mirrors\n",
2914 		mdname(mddev), mddev->raid_disks - mddev->degraded,
2915 		mddev->raid_disks);
2916 
2917 	/*
2918 	 * Ok, everything is just fine now
2919 	 */
2920 	mddev->thread = conf->thread;
2921 	conf->thread = NULL;
2922 	mddev->private = conf;
2923 
2924 	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2925 
2926 	if (mddev->queue) {
2927 		if (discard_supported)
2928 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2929 						mddev->queue);
2930 		else
2931 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2932 						  mddev->queue);
2933 	}
2934 
2935 	ret =  md_integrity_register(mddev);
2936 	if (ret) {
2937 		md_unregister_thread(&mddev->thread);
2938 		raid1_free(mddev, conf);
2939 	}
2940 	return ret;
2941 }
2942 
2943 static void raid1_free(struct mddev *mddev, void *priv)
2944 {
2945 	struct r1conf *conf = priv;
2946 
2947 	mempool_destroy(conf->r1bio_pool);
2948 	kfree(conf->mirrors);
2949 	safe_put_page(conf->tmppage);
2950 	kfree(conf->poolinfo);
2951 	kfree(conf);
2952 }
2953 
2954 static int raid1_resize(struct mddev *mddev, sector_t sectors)
2955 {
2956 	/* no resync is happening, and there is enough space
2957 	 * on all devices, so we can resize.
2958 	 * We need to make sure resync covers any new space.
2959 	 * If the array is shrinking we should possibly wait until
2960 	 * any io in the removed space completes, but it hardly seems
2961 	 * worth it.
2962 	 */
2963 	sector_t newsize = raid1_size(mddev, sectors, 0);
2964 	if (mddev->external_size &&
2965 	    mddev->array_sectors > newsize)
2966 		return -EINVAL;
2967 	if (mddev->bitmap) {
2968 		int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
2969 		if (ret)
2970 			return ret;
2971 	}
2972 	md_set_array_sectors(mddev, newsize);
2973 	set_capacity(mddev->gendisk, mddev->array_sectors);
2974 	revalidate_disk(mddev->gendisk);
2975 	if (sectors > mddev->dev_sectors &&
2976 	    mddev->recovery_cp > mddev->dev_sectors) {
2977 		mddev->recovery_cp = mddev->dev_sectors;
2978 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2979 	}
2980 	mddev->dev_sectors = sectors;
2981 	mddev->resync_max_sectors = sectors;
2982 	return 0;
2983 }
2984 
2985 static int raid1_reshape(struct mddev *mddev)
2986 {
2987 	/* We need to:
2988 	 * 1/ resize the r1bio_pool
2989 	 * 2/ resize conf->mirrors
2990 	 *
2991 	 * We allocate a new r1bio_pool if we can.
2992 	 * Then raise a device barrier and wait until all IO stops.
2993 	 * Then resize conf->mirrors and swap in the new r1bio pool.
2994 	 *
2995 	 * At the same time, we "pack" the devices so that all the missing
2996 	 * devices have the higher raid_disk numbers.
2997 	 */
2998 	mempool_t *newpool, *oldpool;
2999 	struct pool_info *newpoolinfo;
3000 	struct raid1_info *newmirrors;
3001 	struct r1conf *conf = mddev->private;
3002 	int cnt, raid_disks;
3003 	unsigned long flags;
3004 	int d, d2, err;
3005 
3006 	/* Cannot change chunk_size, layout, or level */
3007 	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3008 	    mddev->layout != mddev->new_layout ||
3009 	    mddev->level != mddev->new_level) {
3010 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3011 		mddev->new_layout = mddev->layout;
3012 		mddev->new_level = mddev->level;
3013 		return -EINVAL;
3014 	}
3015 
3016 	err = md_allow_write(mddev);
3017 	if (err)
3018 		return err;
3019 
3020 	raid_disks = mddev->raid_disks + mddev->delta_disks;
3021 
3022 	if (raid_disks < conf->raid_disks) {
3023 		cnt=0;
3024 		for (d= 0; d < conf->raid_disks; d++)
3025 			if (conf->mirrors[d].rdev)
3026 				cnt++;
3027 		if (cnt > raid_disks)
3028 			return -EBUSY;
3029 	}
3030 
3031 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3032 	if (!newpoolinfo)
3033 		return -ENOMEM;
3034 	newpoolinfo->mddev = mddev;
3035 	newpoolinfo->raid_disks = raid_disks * 2;
3036 
3037 	newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3038 				 r1bio_pool_free, newpoolinfo);
3039 	if (!newpool) {
3040 		kfree(newpoolinfo);
3041 		return -ENOMEM;
3042 	}
3043 	newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3044 			     GFP_KERNEL);
3045 	if (!newmirrors) {
3046 		kfree(newpoolinfo);
3047 		mempool_destroy(newpool);
3048 		return -ENOMEM;
3049 	}
3050 
3051 	freeze_array(conf, 0);
3052 
3053 	/* ok, everything is stopped */
3054 	oldpool = conf->r1bio_pool;
3055 	conf->r1bio_pool = newpool;
3056 
3057 	for (d = d2 = 0; d < conf->raid_disks; d++) {
3058 		struct md_rdev *rdev = conf->mirrors[d].rdev;
3059 		if (rdev && rdev->raid_disk != d2) {
3060 			sysfs_unlink_rdev(mddev, rdev);
3061 			rdev->raid_disk = d2;
3062 			sysfs_unlink_rdev(mddev, rdev);
3063 			if (sysfs_link_rdev(mddev, rdev))
3064 				printk(KERN_WARNING
3065 				       "md/raid1:%s: cannot register rd%d\n",
3066 				       mdname(mddev), rdev->raid_disk);
3067 		}
3068 		if (rdev)
3069 			newmirrors[d2++].rdev = rdev;
3070 	}
3071 	kfree(conf->mirrors);
3072 	conf->mirrors = newmirrors;
3073 	kfree(conf->poolinfo);
3074 	conf->poolinfo = newpoolinfo;
3075 
3076 	spin_lock_irqsave(&conf->device_lock, flags);
3077 	mddev->degraded += (raid_disks - conf->raid_disks);
3078 	spin_unlock_irqrestore(&conf->device_lock, flags);
3079 	conf->raid_disks = mddev->raid_disks = raid_disks;
3080 	mddev->delta_disks = 0;
3081 
3082 	unfreeze_array(conf);
3083 
3084 	set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3085 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3086 	md_wakeup_thread(mddev->thread);
3087 
3088 	mempool_destroy(oldpool);
3089 	return 0;
3090 }
3091 
3092 static void raid1_quiesce(struct mddev *mddev, int state)
3093 {
3094 	struct r1conf *conf = mddev->private;
3095 
3096 	switch(state) {
3097 	case 2: /* wake for suspend */
3098 		wake_up(&conf->wait_barrier);
3099 		break;
3100 	case 1:
3101 		freeze_array(conf, 0);
3102 		break;
3103 	case 0:
3104 		unfreeze_array(conf);
3105 		break;
3106 	}
3107 }
3108 
3109 static void *raid1_takeover(struct mddev *mddev)
3110 {
3111 	/* raid1 can take over:
3112 	 *  raid5 with 2 devices, any layout or chunk size
3113 	 */
3114 	if (mddev->level == 5 && mddev->raid_disks == 2) {
3115 		struct r1conf *conf;
3116 		mddev->new_level = 1;
3117 		mddev->new_layout = 0;
3118 		mddev->new_chunk_sectors = 0;
3119 		conf = setup_conf(mddev);
3120 		if (!IS_ERR(conf))
3121 			/* Array must appear to be quiesced */
3122 			conf->array_frozen = 1;
3123 		return conf;
3124 	}
3125 	return ERR_PTR(-EINVAL);
3126 }
3127 
3128 static struct md_personality raid1_personality =
3129 {
3130 	.name		= "raid1",
3131 	.level		= 1,
3132 	.owner		= THIS_MODULE,
3133 	.make_request	= make_request,
3134 	.run		= run,
3135 	.free		= raid1_free,
3136 	.status		= status,
3137 	.error_handler	= error,
3138 	.hot_add_disk	= raid1_add_disk,
3139 	.hot_remove_disk= raid1_remove_disk,
3140 	.spare_active	= raid1_spare_active,
3141 	.sync_request	= sync_request,
3142 	.resize		= raid1_resize,
3143 	.size		= raid1_size,
3144 	.check_reshape	= raid1_reshape,
3145 	.quiesce	= raid1_quiesce,
3146 	.takeover	= raid1_takeover,
3147 	.congested	= raid1_congested,
3148 };
3149 
3150 static int __init raid_init(void)
3151 {
3152 	return register_md_personality(&raid1_personality);
3153 }
3154 
3155 static void raid_exit(void)
3156 {
3157 	unregister_md_personality(&raid1_personality);
3158 }
3159 
3160 module_init(raid_init);
3161 module_exit(raid_exit);
3162 MODULE_LICENSE("GPL");
3163 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3164 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3165 MODULE_ALIAS("md-raid1");
3166 MODULE_ALIAS("md-level-1");
3167 
3168 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
3169