xref: /openbmc/linux/drivers/md/raid1.c (revision 1aee41f6)
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33 
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include "md.h"
41 #include "raid1.h"
42 #include "bitmap.h"
43 
44 /*
45  * Number of guaranteed r1bios in case of extreme VM load:
46  */
47 #define	NR_RAID1_BIOS 256
48 
49 /* when we get a read error on a read-only array, we redirect to another
50  * device without failing the first device, or trying to over-write to
51  * correct the read error.  To keep track of bad blocks on a per-bio
52  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
53  */
54 #define IO_BLOCKED ((struct bio *)1)
55 /* When we successfully write to a known bad-block, we need to remove the
56  * bad-block marking which must be done from process context.  So we record
57  * the success by setting devs[n].bio to IO_MADE_GOOD
58  */
59 #define IO_MADE_GOOD ((struct bio *)2)
60 
61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
62 
63 /* When there are this many requests queue to be written by
64  * the raid1 thread, we become 'congested' to provide back-pressure
65  * for writeback.
66  */
67 static int max_queued_requests = 1024;
68 
69 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
70 			  sector_t bi_sector);
71 static void lower_barrier(struct r1conf *conf);
72 
73 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
74 {
75 	struct pool_info *pi = data;
76 	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
77 
78 	/* allocate a r1bio with room for raid_disks entries in the bios array */
79 	return kzalloc(size, gfp_flags);
80 }
81 
82 static void r1bio_pool_free(void *r1_bio, void *data)
83 {
84 	kfree(r1_bio);
85 }
86 
87 #define RESYNC_BLOCK_SIZE (64*1024)
88 #define RESYNC_DEPTH 32
89 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
90 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
91 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
92 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
93 #define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
94 
95 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
96 {
97 	struct pool_info *pi = data;
98 	struct r1bio *r1_bio;
99 	struct bio *bio;
100 	int need_pages;
101 	int i, j;
102 
103 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
104 	if (!r1_bio)
105 		return NULL;
106 
107 	/*
108 	 * Allocate bios : 1 for reading, n-1 for writing
109 	 */
110 	for (j = pi->raid_disks ; j-- ; ) {
111 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
112 		if (!bio)
113 			goto out_free_bio;
114 		r1_bio->bios[j] = bio;
115 	}
116 	/*
117 	 * Allocate RESYNC_PAGES data pages and attach them to
118 	 * the first bio.
119 	 * If this is a user-requested check/repair, allocate
120 	 * RESYNC_PAGES for each bio.
121 	 */
122 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
123 		need_pages = pi->raid_disks;
124 	else
125 		need_pages = 1;
126 	for (j = 0; j < need_pages; j++) {
127 		bio = r1_bio->bios[j];
128 		bio->bi_vcnt = RESYNC_PAGES;
129 
130 		if (bio_alloc_pages(bio, gfp_flags))
131 			goto out_free_pages;
132 	}
133 	/* If not user-requests, copy the page pointers to all bios */
134 	if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
135 		for (i=0; i<RESYNC_PAGES ; i++)
136 			for (j=1; j<pi->raid_disks; j++)
137 				r1_bio->bios[j]->bi_io_vec[i].bv_page =
138 					r1_bio->bios[0]->bi_io_vec[i].bv_page;
139 	}
140 
141 	r1_bio->master_bio = NULL;
142 
143 	return r1_bio;
144 
145 out_free_pages:
146 	while (--j >= 0) {
147 		struct bio_vec *bv;
148 
149 		bio_for_each_segment_all(bv, r1_bio->bios[j], i)
150 			__free_page(bv->bv_page);
151 	}
152 
153 out_free_bio:
154 	while (++j < pi->raid_disks)
155 		bio_put(r1_bio->bios[j]);
156 	r1bio_pool_free(r1_bio, data);
157 	return NULL;
158 }
159 
160 static void r1buf_pool_free(void *__r1_bio, void *data)
161 {
162 	struct pool_info *pi = data;
163 	int i,j;
164 	struct r1bio *r1bio = __r1_bio;
165 
166 	for (i = 0; i < RESYNC_PAGES; i++)
167 		for (j = pi->raid_disks; j-- ;) {
168 			if (j == 0 ||
169 			    r1bio->bios[j]->bi_io_vec[i].bv_page !=
170 			    r1bio->bios[0]->bi_io_vec[i].bv_page)
171 				safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
172 		}
173 	for (i=0 ; i < pi->raid_disks; i++)
174 		bio_put(r1bio->bios[i]);
175 
176 	r1bio_pool_free(r1bio, data);
177 }
178 
179 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
180 {
181 	int i;
182 
183 	for (i = 0; i < conf->raid_disks * 2; i++) {
184 		struct bio **bio = r1_bio->bios + i;
185 		if (!BIO_SPECIAL(*bio))
186 			bio_put(*bio);
187 		*bio = NULL;
188 	}
189 }
190 
191 static void free_r1bio(struct r1bio *r1_bio)
192 {
193 	struct r1conf *conf = r1_bio->mddev->private;
194 
195 	put_all_bios(conf, r1_bio);
196 	mempool_free(r1_bio, conf->r1bio_pool);
197 }
198 
199 static void put_buf(struct r1bio *r1_bio)
200 {
201 	struct r1conf *conf = r1_bio->mddev->private;
202 	int i;
203 
204 	for (i = 0; i < conf->raid_disks * 2; i++) {
205 		struct bio *bio = r1_bio->bios[i];
206 		if (bio->bi_end_io)
207 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
208 	}
209 
210 	mempool_free(r1_bio, conf->r1buf_pool);
211 
212 	lower_barrier(conf);
213 }
214 
215 static void reschedule_retry(struct r1bio *r1_bio)
216 {
217 	unsigned long flags;
218 	struct mddev *mddev = r1_bio->mddev;
219 	struct r1conf *conf = mddev->private;
220 
221 	spin_lock_irqsave(&conf->device_lock, flags);
222 	list_add(&r1_bio->retry_list, &conf->retry_list);
223 	conf->nr_queued ++;
224 	spin_unlock_irqrestore(&conf->device_lock, flags);
225 
226 	wake_up(&conf->wait_barrier);
227 	md_wakeup_thread(mddev->thread);
228 }
229 
230 /*
231  * raid_end_bio_io() is called when we have finished servicing a mirrored
232  * operation and are ready to return a success/failure code to the buffer
233  * cache layer.
234  */
235 static void call_bio_endio(struct r1bio *r1_bio)
236 {
237 	struct bio *bio = r1_bio->master_bio;
238 	int done;
239 	struct r1conf *conf = r1_bio->mddev->private;
240 	sector_t start_next_window = r1_bio->start_next_window;
241 	sector_t bi_sector = bio->bi_iter.bi_sector;
242 
243 	if (bio->bi_phys_segments) {
244 		unsigned long flags;
245 		spin_lock_irqsave(&conf->device_lock, flags);
246 		bio->bi_phys_segments--;
247 		done = (bio->bi_phys_segments == 0);
248 		spin_unlock_irqrestore(&conf->device_lock, flags);
249 		/*
250 		 * make_request() might be waiting for
251 		 * bi_phys_segments to decrease
252 		 */
253 		wake_up(&conf->wait_barrier);
254 	} else
255 		done = 1;
256 
257 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
258 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
259 	if (done) {
260 		bio_endio(bio, 0);
261 		/*
262 		 * Wake up any possible resync thread that waits for the device
263 		 * to go idle.
264 		 */
265 		allow_barrier(conf, start_next_window, bi_sector);
266 	}
267 }
268 
269 static void raid_end_bio_io(struct r1bio *r1_bio)
270 {
271 	struct bio *bio = r1_bio->master_bio;
272 
273 	/* if nobody has done the final endio yet, do it now */
274 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
275 		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
276 			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
277 			 (unsigned long long) bio->bi_iter.bi_sector,
278 			 (unsigned long long) bio_end_sector(bio) - 1);
279 
280 		call_bio_endio(r1_bio);
281 	}
282 	free_r1bio(r1_bio);
283 }
284 
285 /*
286  * Update disk head position estimator based on IRQ completion info.
287  */
288 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
289 {
290 	struct r1conf *conf = r1_bio->mddev->private;
291 
292 	conf->mirrors[disk].head_position =
293 		r1_bio->sector + (r1_bio->sectors);
294 }
295 
296 /*
297  * Find the disk number which triggered given bio
298  */
299 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
300 {
301 	int mirror;
302 	struct r1conf *conf = r1_bio->mddev->private;
303 	int raid_disks = conf->raid_disks;
304 
305 	for (mirror = 0; mirror < raid_disks * 2; mirror++)
306 		if (r1_bio->bios[mirror] == bio)
307 			break;
308 
309 	BUG_ON(mirror == raid_disks * 2);
310 	update_head_pos(mirror, r1_bio);
311 
312 	return mirror;
313 }
314 
315 static void raid1_end_read_request(struct bio *bio, int error)
316 {
317 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
318 	struct r1bio *r1_bio = bio->bi_private;
319 	int mirror;
320 	struct r1conf *conf = r1_bio->mddev->private;
321 
322 	mirror = r1_bio->read_disk;
323 	/*
324 	 * this branch is our 'one mirror IO has finished' event handler:
325 	 */
326 	update_head_pos(mirror, r1_bio);
327 
328 	if (uptodate)
329 		set_bit(R1BIO_Uptodate, &r1_bio->state);
330 	else {
331 		/* If all other devices have failed, we want to return
332 		 * the error upwards rather than fail the last device.
333 		 * Here we redefine "uptodate" to mean "Don't want to retry"
334 		 */
335 		unsigned long flags;
336 		spin_lock_irqsave(&conf->device_lock, flags);
337 		if (r1_bio->mddev->degraded == conf->raid_disks ||
338 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
339 		     !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
340 			uptodate = 1;
341 		spin_unlock_irqrestore(&conf->device_lock, flags);
342 	}
343 
344 	if (uptodate) {
345 		raid_end_bio_io(r1_bio);
346 		rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
347 	} else {
348 		/*
349 		 * oops, read error:
350 		 */
351 		char b[BDEVNAME_SIZE];
352 		printk_ratelimited(
353 			KERN_ERR "md/raid1:%s: %s: "
354 			"rescheduling sector %llu\n",
355 			mdname(conf->mddev),
356 			bdevname(conf->mirrors[mirror].rdev->bdev,
357 				 b),
358 			(unsigned long long)r1_bio->sector);
359 		set_bit(R1BIO_ReadError, &r1_bio->state);
360 		reschedule_retry(r1_bio);
361 		/* don't drop the reference on read_disk yet */
362 	}
363 }
364 
365 static void close_write(struct r1bio *r1_bio)
366 {
367 	/* it really is the end of this request */
368 	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
369 		/* free extra copy of the data pages */
370 		int i = r1_bio->behind_page_count;
371 		while (i--)
372 			safe_put_page(r1_bio->behind_bvecs[i].bv_page);
373 		kfree(r1_bio->behind_bvecs);
374 		r1_bio->behind_bvecs = NULL;
375 	}
376 	/* clear the bitmap if all writes complete successfully */
377 	bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
378 			r1_bio->sectors,
379 			!test_bit(R1BIO_Degraded, &r1_bio->state),
380 			test_bit(R1BIO_BehindIO, &r1_bio->state));
381 	md_write_end(r1_bio->mddev);
382 }
383 
384 static void r1_bio_write_done(struct r1bio *r1_bio)
385 {
386 	if (!atomic_dec_and_test(&r1_bio->remaining))
387 		return;
388 
389 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
390 		reschedule_retry(r1_bio);
391 	else {
392 		close_write(r1_bio);
393 		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
394 			reschedule_retry(r1_bio);
395 		else
396 			raid_end_bio_io(r1_bio);
397 	}
398 }
399 
400 static void raid1_end_write_request(struct bio *bio, int error)
401 {
402 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
403 	struct r1bio *r1_bio = bio->bi_private;
404 	int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
405 	struct r1conf *conf = r1_bio->mddev->private;
406 	struct bio *to_put = NULL;
407 
408 	mirror = find_bio_disk(r1_bio, bio);
409 
410 	/*
411 	 * 'one mirror IO has finished' event handler:
412 	 */
413 	if (!uptodate) {
414 		set_bit(WriteErrorSeen,
415 			&conf->mirrors[mirror].rdev->flags);
416 		if (!test_and_set_bit(WantReplacement,
417 				      &conf->mirrors[mirror].rdev->flags))
418 			set_bit(MD_RECOVERY_NEEDED, &
419 				conf->mddev->recovery);
420 
421 		set_bit(R1BIO_WriteError, &r1_bio->state);
422 	} else {
423 		/*
424 		 * Set R1BIO_Uptodate in our master bio, so that we
425 		 * will return a good error code for to the higher
426 		 * levels even if IO on some other mirrored buffer
427 		 * fails.
428 		 *
429 		 * The 'master' represents the composite IO operation
430 		 * to user-side. So if something waits for IO, then it
431 		 * will wait for the 'master' bio.
432 		 */
433 		sector_t first_bad;
434 		int bad_sectors;
435 
436 		r1_bio->bios[mirror] = NULL;
437 		to_put = bio;
438 		/*
439 		 * Do not set R1BIO_Uptodate if the current device is
440 		 * rebuilding or Faulty. This is because we cannot use
441 		 * such device for properly reading the data back (we could
442 		 * potentially use it, if the current write would have felt
443 		 * before rdev->recovery_offset, but for simplicity we don't
444 		 * check this here.
445 		 */
446 		if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) &&
447 		    !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))
448 			set_bit(R1BIO_Uptodate, &r1_bio->state);
449 
450 		/* Maybe we can clear some bad blocks. */
451 		if (is_badblock(conf->mirrors[mirror].rdev,
452 				r1_bio->sector, r1_bio->sectors,
453 				&first_bad, &bad_sectors)) {
454 			r1_bio->bios[mirror] = IO_MADE_GOOD;
455 			set_bit(R1BIO_MadeGood, &r1_bio->state);
456 		}
457 	}
458 
459 	if (behind) {
460 		if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
461 			atomic_dec(&r1_bio->behind_remaining);
462 
463 		/*
464 		 * In behind mode, we ACK the master bio once the I/O
465 		 * has safely reached all non-writemostly
466 		 * disks. Setting the Returned bit ensures that this
467 		 * gets done only once -- we don't ever want to return
468 		 * -EIO here, instead we'll wait
469 		 */
470 		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
471 		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
472 			/* Maybe we can return now */
473 			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
474 				struct bio *mbio = r1_bio->master_bio;
475 				pr_debug("raid1: behind end write sectors"
476 					 " %llu-%llu\n",
477 					 (unsigned long long) mbio->bi_iter.bi_sector,
478 					 (unsigned long long) bio_end_sector(mbio) - 1);
479 				call_bio_endio(r1_bio);
480 			}
481 		}
482 	}
483 	if (r1_bio->bios[mirror] == NULL)
484 		rdev_dec_pending(conf->mirrors[mirror].rdev,
485 				 conf->mddev);
486 
487 	/*
488 	 * Let's see if all mirrored write operations have finished
489 	 * already.
490 	 */
491 	r1_bio_write_done(r1_bio);
492 
493 	if (to_put)
494 		bio_put(to_put);
495 }
496 
497 /*
498  * This routine returns the disk from which the requested read should
499  * be done. There is a per-array 'next expected sequential IO' sector
500  * number - if this matches on the next IO then we use the last disk.
501  * There is also a per-disk 'last know head position' sector that is
502  * maintained from IRQ contexts, both the normal and the resync IO
503  * completion handlers update this position correctly. If there is no
504  * perfect sequential match then we pick the disk whose head is closest.
505  *
506  * If there are 2 mirrors in the same 2 devices, performance degrades
507  * because position is mirror, not device based.
508  *
509  * The rdev for the device selected will have nr_pending incremented.
510  */
511 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
512 {
513 	const sector_t this_sector = r1_bio->sector;
514 	int sectors;
515 	int best_good_sectors;
516 	int best_disk, best_dist_disk, best_pending_disk;
517 	int has_nonrot_disk;
518 	int disk;
519 	sector_t best_dist;
520 	unsigned int min_pending;
521 	struct md_rdev *rdev;
522 	int choose_first;
523 	int choose_next_idle;
524 
525 	rcu_read_lock();
526 	/*
527 	 * Check if we can balance. We can balance on the whole
528 	 * device if no resync is going on, or below the resync window.
529 	 * We take the first readable disk when above the resync window.
530 	 */
531  retry:
532 	sectors = r1_bio->sectors;
533 	best_disk = -1;
534 	best_dist_disk = -1;
535 	best_dist = MaxSector;
536 	best_pending_disk = -1;
537 	min_pending = UINT_MAX;
538 	best_good_sectors = 0;
539 	has_nonrot_disk = 0;
540 	choose_next_idle = 0;
541 
542 	if ((conf->mddev->recovery_cp < this_sector + sectors) ||
543 	    (mddev_is_clustered(conf->mddev) &&
544 	    md_cluster_ops->area_resyncing(conf->mddev, this_sector,
545 		    this_sector + sectors)))
546 		choose_first = 1;
547 	else
548 		choose_first = 0;
549 
550 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
551 		sector_t dist;
552 		sector_t first_bad;
553 		int bad_sectors;
554 		unsigned int pending;
555 		bool nonrot;
556 
557 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
558 		if (r1_bio->bios[disk] == IO_BLOCKED
559 		    || rdev == NULL
560 		    || test_bit(Unmerged, &rdev->flags)
561 		    || test_bit(Faulty, &rdev->flags))
562 			continue;
563 		if (!test_bit(In_sync, &rdev->flags) &&
564 		    rdev->recovery_offset < this_sector + sectors)
565 			continue;
566 		if (test_bit(WriteMostly, &rdev->flags)) {
567 			/* Don't balance among write-mostly, just
568 			 * use the first as a last resort */
569 			if (best_disk < 0) {
570 				if (is_badblock(rdev, this_sector, sectors,
571 						&first_bad, &bad_sectors)) {
572 					if (first_bad < this_sector)
573 						/* Cannot use this */
574 						continue;
575 					best_good_sectors = first_bad - this_sector;
576 				} else
577 					best_good_sectors = sectors;
578 				best_disk = disk;
579 			}
580 			continue;
581 		}
582 		/* This is a reasonable device to use.  It might
583 		 * even be best.
584 		 */
585 		if (is_badblock(rdev, this_sector, sectors,
586 				&first_bad, &bad_sectors)) {
587 			if (best_dist < MaxSector)
588 				/* already have a better device */
589 				continue;
590 			if (first_bad <= this_sector) {
591 				/* cannot read here. If this is the 'primary'
592 				 * device, then we must not read beyond
593 				 * bad_sectors from another device..
594 				 */
595 				bad_sectors -= (this_sector - first_bad);
596 				if (choose_first && sectors > bad_sectors)
597 					sectors = bad_sectors;
598 				if (best_good_sectors > sectors)
599 					best_good_sectors = sectors;
600 
601 			} else {
602 				sector_t good_sectors = first_bad - this_sector;
603 				if (good_sectors > best_good_sectors) {
604 					best_good_sectors = good_sectors;
605 					best_disk = disk;
606 				}
607 				if (choose_first)
608 					break;
609 			}
610 			continue;
611 		} else
612 			best_good_sectors = sectors;
613 
614 		nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
615 		has_nonrot_disk |= nonrot;
616 		pending = atomic_read(&rdev->nr_pending);
617 		dist = abs(this_sector - conf->mirrors[disk].head_position);
618 		if (choose_first) {
619 			best_disk = disk;
620 			break;
621 		}
622 		/* Don't change to another disk for sequential reads */
623 		if (conf->mirrors[disk].next_seq_sect == this_sector
624 		    || dist == 0) {
625 			int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
626 			struct raid1_info *mirror = &conf->mirrors[disk];
627 
628 			best_disk = disk;
629 			/*
630 			 * If buffered sequential IO size exceeds optimal
631 			 * iosize, check if there is idle disk. If yes, choose
632 			 * the idle disk. read_balance could already choose an
633 			 * idle disk before noticing it's a sequential IO in
634 			 * this disk. This doesn't matter because this disk
635 			 * will idle, next time it will be utilized after the
636 			 * first disk has IO size exceeds optimal iosize. In
637 			 * this way, iosize of the first disk will be optimal
638 			 * iosize at least. iosize of the second disk might be
639 			 * small, but not a big deal since when the second disk
640 			 * starts IO, the first disk is likely still busy.
641 			 */
642 			if (nonrot && opt_iosize > 0 &&
643 			    mirror->seq_start != MaxSector &&
644 			    mirror->next_seq_sect > opt_iosize &&
645 			    mirror->next_seq_sect - opt_iosize >=
646 			    mirror->seq_start) {
647 				choose_next_idle = 1;
648 				continue;
649 			}
650 			break;
651 		}
652 		/* If device is idle, use it */
653 		if (pending == 0) {
654 			best_disk = disk;
655 			break;
656 		}
657 
658 		if (choose_next_idle)
659 			continue;
660 
661 		if (min_pending > pending) {
662 			min_pending = pending;
663 			best_pending_disk = disk;
664 		}
665 
666 		if (dist < best_dist) {
667 			best_dist = dist;
668 			best_dist_disk = disk;
669 		}
670 	}
671 
672 	/*
673 	 * If all disks are rotational, choose the closest disk. If any disk is
674 	 * non-rotational, choose the disk with less pending request even the
675 	 * disk is rotational, which might/might not be optimal for raids with
676 	 * mixed ratation/non-rotational disks depending on workload.
677 	 */
678 	if (best_disk == -1) {
679 		if (has_nonrot_disk)
680 			best_disk = best_pending_disk;
681 		else
682 			best_disk = best_dist_disk;
683 	}
684 
685 	if (best_disk >= 0) {
686 		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
687 		if (!rdev)
688 			goto retry;
689 		atomic_inc(&rdev->nr_pending);
690 		if (test_bit(Faulty, &rdev->flags)) {
691 			/* cannot risk returning a device that failed
692 			 * before we inc'ed nr_pending
693 			 */
694 			rdev_dec_pending(rdev, conf->mddev);
695 			goto retry;
696 		}
697 		sectors = best_good_sectors;
698 
699 		if (conf->mirrors[best_disk].next_seq_sect != this_sector)
700 			conf->mirrors[best_disk].seq_start = this_sector;
701 
702 		conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
703 	}
704 	rcu_read_unlock();
705 	*max_sectors = sectors;
706 
707 	return best_disk;
708 }
709 
710 static int raid1_mergeable_bvec(struct mddev *mddev,
711 				struct bvec_merge_data *bvm,
712 				struct bio_vec *biovec)
713 {
714 	struct r1conf *conf = mddev->private;
715 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
716 	int max = biovec->bv_len;
717 
718 	if (mddev->merge_check_needed) {
719 		int disk;
720 		rcu_read_lock();
721 		for (disk = 0; disk < conf->raid_disks * 2; disk++) {
722 			struct md_rdev *rdev = rcu_dereference(
723 				conf->mirrors[disk].rdev);
724 			if (rdev && !test_bit(Faulty, &rdev->flags)) {
725 				struct request_queue *q =
726 					bdev_get_queue(rdev->bdev);
727 				if (q->merge_bvec_fn) {
728 					bvm->bi_sector = sector +
729 						rdev->data_offset;
730 					bvm->bi_bdev = rdev->bdev;
731 					max = min(max, q->merge_bvec_fn(
732 							  q, bvm, biovec));
733 				}
734 			}
735 		}
736 		rcu_read_unlock();
737 	}
738 	return max;
739 
740 }
741 
742 static int raid1_congested(struct mddev *mddev, int bits)
743 {
744 	struct r1conf *conf = mddev->private;
745 	int i, ret = 0;
746 
747 	if ((bits & (1 << BDI_async_congested)) &&
748 	    conf->pending_count >= max_queued_requests)
749 		return 1;
750 
751 	rcu_read_lock();
752 	for (i = 0; i < conf->raid_disks * 2; i++) {
753 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
754 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
755 			struct request_queue *q = bdev_get_queue(rdev->bdev);
756 
757 			BUG_ON(!q);
758 
759 			/* Note the '|| 1' - when read_balance prefers
760 			 * non-congested targets, it can be removed
761 			 */
762 			if ((bits & (1<<BDI_async_congested)) || 1)
763 				ret |= bdi_congested(&q->backing_dev_info, bits);
764 			else
765 				ret &= bdi_congested(&q->backing_dev_info, bits);
766 		}
767 	}
768 	rcu_read_unlock();
769 	return ret;
770 }
771 
772 static void flush_pending_writes(struct r1conf *conf)
773 {
774 	/* Any writes that have been queued but are awaiting
775 	 * bitmap updates get flushed here.
776 	 */
777 	spin_lock_irq(&conf->device_lock);
778 
779 	if (conf->pending_bio_list.head) {
780 		struct bio *bio;
781 		bio = bio_list_get(&conf->pending_bio_list);
782 		conf->pending_count = 0;
783 		spin_unlock_irq(&conf->device_lock);
784 		/* flush any pending bitmap writes to
785 		 * disk before proceeding w/ I/O */
786 		bitmap_unplug(conf->mddev->bitmap);
787 		wake_up(&conf->wait_barrier);
788 
789 		while (bio) { /* submit pending writes */
790 			struct bio *next = bio->bi_next;
791 			bio->bi_next = NULL;
792 			if (unlikely((bio->bi_rw & REQ_DISCARD) &&
793 			    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
794 				/* Just ignore it */
795 				bio_endio(bio, 0);
796 			else
797 				generic_make_request(bio);
798 			bio = next;
799 		}
800 	} else
801 		spin_unlock_irq(&conf->device_lock);
802 }
803 
804 /* Barriers....
805  * Sometimes we need to suspend IO while we do something else,
806  * either some resync/recovery, or reconfigure the array.
807  * To do this we raise a 'barrier'.
808  * The 'barrier' is a counter that can be raised multiple times
809  * to count how many activities are happening which preclude
810  * normal IO.
811  * We can only raise the barrier if there is no pending IO.
812  * i.e. if nr_pending == 0.
813  * We choose only to raise the barrier if no-one is waiting for the
814  * barrier to go down.  This means that as soon as an IO request
815  * is ready, no other operations which require a barrier will start
816  * until the IO request has had a chance.
817  *
818  * So: regular IO calls 'wait_barrier'.  When that returns there
819  *    is no backgroup IO happening,  It must arrange to call
820  *    allow_barrier when it has finished its IO.
821  * backgroup IO calls must call raise_barrier.  Once that returns
822  *    there is no normal IO happeing.  It must arrange to call
823  *    lower_barrier when the particular background IO completes.
824  */
825 static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
826 {
827 	spin_lock_irq(&conf->resync_lock);
828 
829 	/* Wait until no block IO is waiting */
830 	wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
831 			    conf->resync_lock);
832 
833 	/* block any new IO from starting */
834 	conf->barrier++;
835 	conf->next_resync = sector_nr;
836 
837 	/* For these conditions we must wait:
838 	 * A: while the array is in frozen state
839 	 * B: while barrier >= RESYNC_DEPTH, meaning resync reach
840 	 *    the max count which allowed.
841 	 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
842 	 *    next resync will reach to the window which normal bios are
843 	 *    handling.
844 	 * D: while there are any active requests in the current window.
845 	 */
846 	wait_event_lock_irq(conf->wait_barrier,
847 			    !conf->array_frozen &&
848 			    conf->barrier < RESYNC_DEPTH &&
849 			    conf->current_window_requests == 0 &&
850 			    (conf->start_next_window >=
851 			     conf->next_resync + RESYNC_SECTORS),
852 			    conf->resync_lock);
853 
854 	conf->nr_pending++;
855 	spin_unlock_irq(&conf->resync_lock);
856 }
857 
858 static void lower_barrier(struct r1conf *conf)
859 {
860 	unsigned long flags;
861 	BUG_ON(conf->barrier <= 0);
862 	spin_lock_irqsave(&conf->resync_lock, flags);
863 	conf->barrier--;
864 	conf->nr_pending--;
865 	spin_unlock_irqrestore(&conf->resync_lock, flags);
866 	wake_up(&conf->wait_barrier);
867 }
868 
869 static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
870 {
871 	bool wait = false;
872 
873 	if (conf->array_frozen || !bio)
874 		wait = true;
875 	else if (conf->barrier && bio_data_dir(bio) == WRITE) {
876 		if ((conf->mddev->curr_resync_completed
877 		     >= bio_end_sector(bio)) ||
878 		    (conf->next_resync + NEXT_NORMALIO_DISTANCE
879 		     <= bio->bi_iter.bi_sector))
880 			wait = false;
881 		else
882 			wait = true;
883 	}
884 
885 	return wait;
886 }
887 
888 static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
889 {
890 	sector_t sector = 0;
891 
892 	spin_lock_irq(&conf->resync_lock);
893 	if (need_to_wait_for_sync(conf, bio)) {
894 		conf->nr_waiting++;
895 		/* Wait for the barrier to drop.
896 		 * However if there are already pending
897 		 * requests (preventing the barrier from
898 		 * rising completely), and the
899 		 * per-process bio queue isn't empty,
900 		 * then don't wait, as we need to empty
901 		 * that queue to allow conf->start_next_window
902 		 * to increase.
903 		 */
904 		wait_event_lock_irq(conf->wait_barrier,
905 				    !conf->array_frozen &&
906 				    (!conf->barrier ||
907 				     ((conf->start_next_window <
908 				       conf->next_resync + RESYNC_SECTORS) &&
909 				      current->bio_list &&
910 				      !bio_list_empty(current->bio_list))),
911 				    conf->resync_lock);
912 		conf->nr_waiting--;
913 	}
914 
915 	if (bio && bio_data_dir(bio) == WRITE) {
916 		if (bio->bi_iter.bi_sector >=
917 		    conf->mddev->curr_resync_completed) {
918 			if (conf->start_next_window == MaxSector)
919 				conf->start_next_window =
920 					conf->next_resync +
921 					NEXT_NORMALIO_DISTANCE;
922 
923 			if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
924 			    <= bio->bi_iter.bi_sector)
925 				conf->next_window_requests++;
926 			else
927 				conf->current_window_requests++;
928 			sector = conf->start_next_window;
929 		}
930 	}
931 
932 	conf->nr_pending++;
933 	spin_unlock_irq(&conf->resync_lock);
934 	return sector;
935 }
936 
937 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
938 			  sector_t bi_sector)
939 {
940 	unsigned long flags;
941 
942 	spin_lock_irqsave(&conf->resync_lock, flags);
943 	conf->nr_pending--;
944 	if (start_next_window) {
945 		if (start_next_window == conf->start_next_window) {
946 			if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
947 			    <= bi_sector)
948 				conf->next_window_requests--;
949 			else
950 				conf->current_window_requests--;
951 		} else
952 			conf->current_window_requests--;
953 
954 		if (!conf->current_window_requests) {
955 			if (conf->next_window_requests) {
956 				conf->current_window_requests =
957 					conf->next_window_requests;
958 				conf->next_window_requests = 0;
959 				conf->start_next_window +=
960 					NEXT_NORMALIO_DISTANCE;
961 			} else
962 				conf->start_next_window = MaxSector;
963 		}
964 	}
965 	spin_unlock_irqrestore(&conf->resync_lock, flags);
966 	wake_up(&conf->wait_barrier);
967 }
968 
969 static void freeze_array(struct r1conf *conf, int extra)
970 {
971 	/* stop syncio and normal IO and wait for everything to
972 	 * go quite.
973 	 * We wait until nr_pending match nr_queued+extra
974 	 * This is called in the context of one normal IO request
975 	 * that has failed. Thus any sync request that might be pending
976 	 * will be blocked by nr_pending, and we need to wait for
977 	 * pending IO requests to complete or be queued for re-try.
978 	 * Thus the number queued (nr_queued) plus this request (extra)
979 	 * must match the number of pending IOs (nr_pending) before
980 	 * we continue.
981 	 */
982 	spin_lock_irq(&conf->resync_lock);
983 	conf->array_frozen = 1;
984 	wait_event_lock_irq_cmd(conf->wait_barrier,
985 				conf->nr_pending == conf->nr_queued+extra,
986 				conf->resync_lock,
987 				flush_pending_writes(conf));
988 	spin_unlock_irq(&conf->resync_lock);
989 }
990 static void unfreeze_array(struct r1conf *conf)
991 {
992 	/* reverse the effect of the freeze */
993 	spin_lock_irq(&conf->resync_lock);
994 	conf->array_frozen = 0;
995 	wake_up(&conf->wait_barrier);
996 	spin_unlock_irq(&conf->resync_lock);
997 }
998 
999 /* duplicate the data pages for behind I/O
1000  */
1001 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
1002 {
1003 	int i;
1004 	struct bio_vec *bvec;
1005 	struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
1006 					GFP_NOIO);
1007 	if (unlikely(!bvecs))
1008 		return;
1009 
1010 	bio_for_each_segment_all(bvec, bio, i) {
1011 		bvecs[i] = *bvec;
1012 		bvecs[i].bv_page = alloc_page(GFP_NOIO);
1013 		if (unlikely(!bvecs[i].bv_page))
1014 			goto do_sync_io;
1015 		memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
1016 		       kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
1017 		kunmap(bvecs[i].bv_page);
1018 		kunmap(bvec->bv_page);
1019 	}
1020 	r1_bio->behind_bvecs = bvecs;
1021 	r1_bio->behind_page_count = bio->bi_vcnt;
1022 	set_bit(R1BIO_BehindIO, &r1_bio->state);
1023 	return;
1024 
1025 do_sync_io:
1026 	for (i = 0; i < bio->bi_vcnt; i++)
1027 		if (bvecs[i].bv_page)
1028 			put_page(bvecs[i].bv_page);
1029 	kfree(bvecs);
1030 	pr_debug("%dB behind alloc failed, doing sync I/O\n",
1031 		 bio->bi_iter.bi_size);
1032 }
1033 
1034 struct raid1_plug_cb {
1035 	struct blk_plug_cb	cb;
1036 	struct bio_list		pending;
1037 	int			pending_cnt;
1038 };
1039 
1040 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1041 {
1042 	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1043 						  cb);
1044 	struct mddev *mddev = plug->cb.data;
1045 	struct r1conf *conf = mddev->private;
1046 	struct bio *bio;
1047 
1048 	if (from_schedule || current->bio_list) {
1049 		spin_lock_irq(&conf->device_lock);
1050 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1051 		conf->pending_count += plug->pending_cnt;
1052 		spin_unlock_irq(&conf->device_lock);
1053 		wake_up(&conf->wait_barrier);
1054 		md_wakeup_thread(mddev->thread);
1055 		kfree(plug);
1056 		return;
1057 	}
1058 
1059 	/* we aren't scheduling, so we can do the write-out directly. */
1060 	bio = bio_list_get(&plug->pending);
1061 	bitmap_unplug(mddev->bitmap);
1062 	wake_up(&conf->wait_barrier);
1063 
1064 	while (bio) { /* submit pending writes */
1065 		struct bio *next = bio->bi_next;
1066 		bio->bi_next = NULL;
1067 		if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1068 		    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1069 			/* Just ignore it */
1070 			bio_endio(bio, 0);
1071 		else
1072 			generic_make_request(bio);
1073 		bio = next;
1074 	}
1075 	kfree(plug);
1076 }
1077 
1078 static void make_request(struct mddev *mddev, struct bio * bio)
1079 {
1080 	struct r1conf *conf = mddev->private;
1081 	struct raid1_info *mirror;
1082 	struct r1bio *r1_bio;
1083 	struct bio *read_bio;
1084 	int i, disks;
1085 	struct bitmap *bitmap;
1086 	unsigned long flags;
1087 	const int rw = bio_data_dir(bio);
1088 	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1089 	const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
1090 	const unsigned long do_discard = (bio->bi_rw
1091 					  & (REQ_DISCARD | REQ_SECURE));
1092 	const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1093 	struct md_rdev *blocked_rdev;
1094 	struct blk_plug_cb *cb;
1095 	struct raid1_plug_cb *plug = NULL;
1096 	int first_clone;
1097 	int sectors_handled;
1098 	int max_sectors;
1099 	sector_t start_next_window;
1100 
1101 	/*
1102 	 * Register the new request and wait if the reconstruction
1103 	 * thread has put up a bar for new requests.
1104 	 * Continue immediately if no resync is active currently.
1105 	 */
1106 
1107 	md_write_start(mddev, bio); /* wait on superblock update early */
1108 
1109 	if (bio_data_dir(bio) == WRITE &&
1110 	    ((bio_end_sector(bio) > mddev->suspend_lo &&
1111 	    bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1112 	    (mddev_is_clustered(mddev) &&
1113 	     md_cluster_ops->area_resyncing(mddev, bio->bi_iter.bi_sector, bio_end_sector(bio))))) {
1114 		/* As the suspend_* range is controlled by
1115 		 * userspace, we want an interruptible
1116 		 * wait.
1117 		 */
1118 		DEFINE_WAIT(w);
1119 		for (;;) {
1120 			flush_signals(current);
1121 			prepare_to_wait(&conf->wait_barrier,
1122 					&w, TASK_INTERRUPTIBLE);
1123 			if (bio_end_sector(bio) <= mddev->suspend_lo ||
1124 			    bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1125 			    (mddev_is_clustered(mddev) &&
1126 			     !md_cluster_ops->area_resyncing(mddev,
1127 				     bio->bi_iter.bi_sector, bio_end_sector(bio))))
1128 				break;
1129 			schedule();
1130 		}
1131 		finish_wait(&conf->wait_barrier, &w);
1132 	}
1133 
1134 	start_next_window = wait_barrier(conf, bio);
1135 
1136 	bitmap = mddev->bitmap;
1137 
1138 	/*
1139 	 * make_request() can abort the operation when READA is being
1140 	 * used and no empty request is available.
1141 	 *
1142 	 */
1143 	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1144 
1145 	r1_bio->master_bio = bio;
1146 	r1_bio->sectors = bio_sectors(bio);
1147 	r1_bio->state = 0;
1148 	r1_bio->mddev = mddev;
1149 	r1_bio->sector = bio->bi_iter.bi_sector;
1150 
1151 	/* We might need to issue multiple reads to different
1152 	 * devices if there are bad blocks around, so we keep
1153 	 * track of the number of reads in bio->bi_phys_segments.
1154 	 * If this is 0, there is only one r1_bio and no locking
1155 	 * will be needed when requests complete.  If it is
1156 	 * non-zero, then it is the number of not-completed requests.
1157 	 */
1158 	bio->bi_phys_segments = 0;
1159 	clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1160 
1161 	if (rw == READ) {
1162 		/*
1163 		 * read balancing logic:
1164 		 */
1165 		int rdisk;
1166 
1167 read_again:
1168 		rdisk = read_balance(conf, r1_bio, &max_sectors);
1169 
1170 		if (rdisk < 0) {
1171 			/* couldn't find anywhere to read from */
1172 			raid_end_bio_io(r1_bio);
1173 			return;
1174 		}
1175 		mirror = conf->mirrors + rdisk;
1176 
1177 		if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1178 		    bitmap) {
1179 			/* Reading from a write-mostly device must
1180 			 * take care not to over-take any writes
1181 			 * that are 'behind'
1182 			 */
1183 			wait_event(bitmap->behind_wait,
1184 				   atomic_read(&bitmap->behind_writes) == 0);
1185 		}
1186 		r1_bio->read_disk = rdisk;
1187 		r1_bio->start_next_window = 0;
1188 
1189 		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1190 		bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1191 			 max_sectors);
1192 
1193 		r1_bio->bios[rdisk] = read_bio;
1194 
1195 		read_bio->bi_iter.bi_sector = r1_bio->sector +
1196 			mirror->rdev->data_offset;
1197 		read_bio->bi_bdev = mirror->rdev->bdev;
1198 		read_bio->bi_end_io = raid1_end_read_request;
1199 		read_bio->bi_rw = READ | do_sync;
1200 		read_bio->bi_private = r1_bio;
1201 
1202 		if (max_sectors < r1_bio->sectors) {
1203 			/* could not read all from this device, so we will
1204 			 * need another r1_bio.
1205 			 */
1206 
1207 			sectors_handled = (r1_bio->sector + max_sectors
1208 					   - bio->bi_iter.bi_sector);
1209 			r1_bio->sectors = max_sectors;
1210 			spin_lock_irq(&conf->device_lock);
1211 			if (bio->bi_phys_segments == 0)
1212 				bio->bi_phys_segments = 2;
1213 			else
1214 				bio->bi_phys_segments++;
1215 			spin_unlock_irq(&conf->device_lock);
1216 			/* Cannot call generic_make_request directly
1217 			 * as that will be queued in __make_request
1218 			 * and subsequent mempool_alloc might block waiting
1219 			 * for it.  So hand bio over to raid1d.
1220 			 */
1221 			reschedule_retry(r1_bio);
1222 
1223 			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1224 
1225 			r1_bio->master_bio = bio;
1226 			r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1227 			r1_bio->state = 0;
1228 			r1_bio->mddev = mddev;
1229 			r1_bio->sector = bio->bi_iter.bi_sector +
1230 				sectors_handled;
1231 			goto read_again;
1232 		} else
1233 			generic_make_request(read_bio);
1234 		return;
1235 	}
1236 
1237 	/*
1238 	 * WRITE:
1239 	 */
1240 	if (conf->pending_count >= max_queued_requests) {
1241 		md_wakeup_thread(mddev->thread);
1242 		wait_event(conf->wait_barrier,
1243 			   conf->pending_count < max_queued_requests);
1244 	}
1245 	/* first select target devices under rcu_lock and
1246 	 * inc refcount on their rdev.  Record them by setting
1247 	 * bios[x] to bio
1248 	 * If there are known/acknowledged bad blocks on any device on
1249 	 * which we have seen a write error, we want to avoid writing those
1250 	 * blocks.
1251 	 * This potentially requires several writes to write around
1252 	 * the bad blocks.  Each set of writes gets it's own r1bio
1253 	 * with a set of bios attached.
1254 	 */
1255 
1256 	disks = conf->raid_disks * 2;
1257  retry_write:
1258 	r1_bio->start_next_window = start_next_window;
1259 	blocked_rdev = NULL;
1260 	rcu_read_lock();
1261 	max_sectors = r1_bio->sectors;
1262 	for (i = 0;  i < disks; i++) {
1263 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1264 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1265 			atomic_inc(&rdev->nr_pending);
1266 			blocked_rdev = rdev;
1267 			break;
1268 		}
1269 		r1_bio->bios[i] = NULL;
1270 		if (!rdev || test_bit(Faulty, &rdev->flags)
1271 		    || test_bit(Unmerged, &rdev->flags)) {
1272 			if (i < conf->raid_disks)
1273 				set_bit(R1BIO_Degraded, &r1_bio->state);
1274 			continue;
1275 		}
1276 
1277 		atomic_inc(&rdev->nr_pending);
1278 		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1279 			sector_t first_bad;
1280 			int bad_sectors;
1281 			int is_bad;
1282 
1283 			is_bad = is_badblock(rdev, r1_bio->sector,
1284 					     max_sectors,
1285 					     &first_bad, &bad_sectors);
1286 			if (is_bad < 0) {
1287 				/* mustn't write here until the bad block is
1288 				 * acknowledged*/
1289 				set_bit(BlockedBadBlocks, &rdev->flags);
1290 				blocked_rdev = rdev;
1291 				break;
1292 			}
1293 			if (is_bad && first_bad <= r1_bio->sector) {
1294 				/* Cannot write here at all */
1295 				bad_sectors -= (r1_bio->sector - first_bad);
1296 				if (bad_sectors < max_sectors)
1297 					/* mustn't write more than bad_sectors
1298 					 * to other devices yet
1299 					 */
1300 					max_sectors = bad_sectors;
1301 				rdev_dec_pending(rdev, mddev);
1302 				/* We don't set R1BIO_Degraded as that
1303 				 * only applies if the disk is
1304 				 * missing, so it might be re-added,
1305 				 * and we want to know to recover this
1306 				 * chunk.
1307 				 * In this case the device is here,
1308 				 * and the fact that this chunk is not
1309 				 * in-sync is recorded in the bad
1310 				 * block log
1311 				 */
1312 				continue;
1313 			}
1314 			if (is_bad) {
1315 				int good_sectors = first_bad - r1_bio->sector;
1316 				if (good_sectors < max_sectors)
1317 					max_sectors = good_sectors;
1318 			}
1319 		}
1320 		r1_bio->bios[i] = bio;
1321 	}
1322 	rcu_read_unlock();
1323 
1324 	if (unlikely(blocked_rdev)) {
1325 		/* Wait for this device to become unblocked */
1326 		int j;
1327 		sector_t old = start_next_window;
1328 
1329 		for (j = 0; j < i; j++)
1330 			if (r1_bio->bios[j])
1331 				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1332 		r1_bio->state = 0;
1333 		allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
1334 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1335 		start_next_window = wait_barrier(conf, bio);
1336 		/*
1337 		 * We must make sure the multi r1bios of bio have
1338 		 * the same value of bi_phys_segments
1339 		 */
1340 		if (bio->bi_phys_segments && old &&
1341 		    old != start_next_window)
1342 			/* Wait for the former r1bio(s) to complete */
1343 			wait_event(conf->wait_barrier,
1344 				   bio->bi_phys_segments == 1);
1345 		goto retry_write;
1346 	}
1347 
1348 	if (max_sectors < r1_bio->sectors) {
1349 		/* We are splitting this write into multiple parts, so
1350 		 * we need to prepare for allocating another r1_bio.
1351 		 */
1352 		r1_bio->sectors = max_sectors;
1353 		spin_lock_irq(&conf->device_lock);
1354 		if (bio->bi_phys_segments == 0)
1355 			bio->bi_phys_segments = 2;
1356 		else
1357 			bio->bi_phys_segments++;
1358 		spin_unlock_irq(&conf->device_lock);
1359 	}
1360 	sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
1361 
1362 	atomic_set(&r1_bio->remaining, 1);
1363 	atomic_set(&r1_bio->behind_remaining, 0);
1364 
1365 	first_clone = 1;
1366 	for (i = 0; i < disks; i++) {
1367 		struct bio *mbio;
1368 		if (!r1_bio->bios[i])
1369 			continue;
1370 
1371 		mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1372 		bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors);
1373 
1374 		if (first_clone) {
1375 			/* do behind I/O ?
1376 			 * Not if there are too many, or cannot
1377 			 * allocate memory, or a reader on WriteMostly
1378 			 * is waiting for behind writes to flush */
1379 			if (bitmap &&
1380 			    (atomic_read(&bitmap->behind_writes)
1381 			     < mddev->bitmap_info.max_write_behind) &&
1382 			    !waitqueue_active(&bitmap->behind_wait))
1383 				alloc_behind_pages(mbio, r1_bio);
1384 
1385 			bitmap_startwrite(bitmap, r1_bio->sector,
1386 					  r1_bio->sectors,
1387 					  test_bit(R1BIO_BehindIO,
1388 						   &r1_bio->state));
1389 			first_clone = 0;
1390 		}
1391 		if (r1_bio->behind_bvecs) {
1392 			struct bio_vec *bvec;
1393 			int j;
1394 
1395 			/*
1396 			 * We trimmed the bio, so _all is legit
1397 			 */
1398 			bio_for_each_segment_all(bvec, mbio, j)
1399 				bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1400 			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1401 				atomic_inc(&r1_bio->behind_remaining);
1402 		}
1403 
1404 		r1_bio->bios[i] = mbio;
1405 
1406 		mbio->bi_iter.bi_sector	= (r1_bio->sector +
1407 				   conf->mirrors[i].rdev->data_offset);
1408 		mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1409 		mbio->bi_end_io	= raid1_end_write_request;
1410 		mbio->bi_rw =
1411 			WRITE | do_flush_fua | do_sync | do_discard | do_same;
1412 		mbio->bi_private = r1_bio;
1413 
1414 		atomic_inc(&r1_bio->remaining);
1415 
1416 		cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1417 		if (cb)
1418 			plug = container_of(cb, struct raid1_plug_cb, cb);
1419 		else
1420 			plug = NULL;
1421 		spin_lock_irqsave(&conf->device_lock, flags);
1422 		if (plug) {
1423 			bio_list_add(&plug->pending, mbio);
1424 			plug->pending_cnt++;
1425 		} else {
1426 			bio_list_add(&conf->pending_bio_list, mbio);
1427 			conf->pending_count++;
1428 		}
1429 		spin_unlock_irqrestore(&conf->device_lock, flags);
1430 		if (!plug)
1431 			md_wakeup_thread(mddev->thread);
1432 	}
1433 	/* Mustn't call r1_bio_write_done before this next test,
1434 	 * as it could result in the bio being freed.
1435 	 */
1436 	if (sectors_handled < bio_sectors(bio)) {
1437 		r1_bio_write_done(r1_bio);
1438 		/* We need another r1_bio.  It has already been counted
1439 		 * in bio->bi_phys_segments
1440 		 */
1441 		r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1442 		r1_bio->master_bio = bio;
1443 		r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1444 		r1_bio->state = 0;
1445 		r1_bio->mddev = mddev;
1446 		r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1447 		goto retry_write;
1448 	}
1449 
1450 	r1_bio_write_done(r1_bio);
1451 
1452 	/* In case raid1d snuck in to freeze_array */
1453 	wake_up(&conf->wait_barrier);
1454 }
1455 
1456 static void status(struct seq_file *seq, struct mddev *mddev)
1457 {
1458 	struct r1conf *conf = mddev->private;
1459 	int i;
1460 
1461 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1462 		   conf->raid_disks - mddev->degraded);
1463 	rcu_read_lock();
1464 	for (i = 0; i < conf->raid_disks; i++) {
1465 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1466 		seq_printf(seq, "%s",
1467 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1468 	}
1469 	rcu_read_unlock();
1470 	seq_printf(seq, "]");
1471 }
1472 
1473 static void error(struct mddev *mddev, struct md_rdev *rdev)
1474 {
1475 	char b[BDEVNAME_SIZE];
1476 	struct r1conf *conf = mddev->private;
1477 
1478 	/*
1479 	 * If it is not operational, then we have already marked it as dead
1480 	 * else if it is the last working disks, ignore the error, let the
1481 	 * next level up know.
1482 	 * else mark the drive as failed
1483 	 */
1484 	if (test_bit(In_sync, &rdev->flags)
1485 	    && (conf->raid_disks - mddev->degraded) == 1) {
1486 		/*
1487 		 * Don't fail the drive, act as though we were just a
1488 		 * normal single drive.
1489 		 * However don't try a recovery from this drive as
1490 		 * it is very likely to fail.
1491 		 */
1492 		conf->recovery_disabled = mddev->recovery_disabled;
1493 		return;
1494 	}
1495 	set_bit(Blocked, &rdev->flags);
1496 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1497 		unsigned long flags;
1498 		spin_lock_irqsave(&conf->device_lock, flags);
1499 		mddev->degraded++;
1500 		set_bit(Faulty, &rdev->flags);
1501 		spin_unlock_irqrestore(&conf->device_lock, flags);
1502 	} else
1503 		set_bit(Faulty, &rdev->flags);
1504 	/*
1505 	 * if recovery is running, make sure it aborts.
1506 	 */
1507 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1508 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1509 	printk(KERN_ALERT
1510 	       "md/raid1:%s: Disk failure on %s, disabling device.\n"
1511 	       "md/raid1:%s: Operation continuing on %d devices.\n",
1512 	       mdname(mddev), bdevname(rdev->bdev, b),
1513 	       mdname(mddev), conf->raid_disks - mddev->degraded);
1514 }
1515 
1516 static void print_conf(struct r1conf *conf)
1517 {
1518 	int i;
1519 
1520 	printk(KERN_DEBUG "RAID1 conf printout:\n");
1521 	if (!conf) {
1522 		printk(KERN_DEBUG "(!conf)\n");
1523 		return;
1524 	}
1525 	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1526 		conf->raid_disks);
1527 
1528 	rcu_read_lock();
1529 	for (i = 0; i < conf->raid_disks; i++) {
1530 		char b[BDEVNAME_SIZE];
1531 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1532 		if (rdev)
1533 			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1534 			       i, !test_bit(In_sync, &rdev->flags),
1535 			       !test_bit(Faulty, &rdev->flags),
1536 			       bdevname(rdev->bdev,b));
1537 	}
1538 	rcu_read_unlock();
1539 }
1540 
1541 static void close_sync(struct r1conf *conf)
1542 {
1543 	wait_barrier(conf, NULL);
1544 	allow_barrier(conf, 0, 0);
1545 
1546 	mempool_destroy(conf->r1buf_pool);
1547 	conf->r1buf_pool = NULL;
1548 
1549 	spin_lock_irq(&conf->resync_lock);
1550 	conf->next_resync = 0;
1551 	conf->start_next_window = MaxSector;
1552 	conf->current_window_requests +=
1553 		conf->next_window_requests;
1554 	conf->next_window_requests = 0;
1555 	spin_unlock_irq(&conf->resync_lock);
1556 }
1557 
1558 static int raid1_spare_active(struct mddev *mddev)
1559 {
1560 	int i;
1561 	struct r1conf *conf = mddev->private;
1562 	int count = 0;
1563 	unsigned long flags;
1564 
1565 	/*
1566 	 * Find all failed disks within the RAID1 configuration
1567 	 * and mark them readable.
1568 	 * Called under mddev lock, so rcu protection not needed.
1569 	 */
1570 	for (i = 0; i < conf->raid_disks; i++) {
1571 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1572 		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1573 		if (repl
1574 		    && !test_bit(Candidate, &repl->flags)
1575 		    && repl->recovery_offset == MaxSector
1576 		    && !test_bit(Faulty, &repl->flags)
1577 		    && !test_and_set_bit(In_sync, &repl->flags)) {
1578 			/* replacement has just become active */
1579 			if (!rdev ||
1580 			    !test_and_clear_bit(In_sync, &rdev->flags))
1581 				count++;
1582 			if (rdev) {
1583 				/* Replaced device not technically
1584 				 * faulty, but we need to be sure
1585 				 * it gets removed and never re-added
1586 				 */
1587 				set_bit(Faulty, &rdev->flags);
1588 				sysfs_notify_dirent_safe(
1589 					rdev->sysfs_state);
1590 			}
1591 		}
1592 		if (rdev
1593 		    && rdev->recovery_offset == MaxSector
1594 		    && !test_bit(Faulty, &rdev->flags)
1595 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1596 			count++;
1597 			sysfs_notify_dirent_safe(rdev->sysfs_state);
1598 		}
1599 	}
1600 	spin_lock_irqsave(&conf->device_lock, flags);
1601 	mddev->degraded -= count;
1602 	spin_unlock_irqrestore(&conf->device_lock, flags);
1603 
1604 	print_conf(conf);
1605 	return count;
1606 }
1607 
1608 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1609 {
1610 	struct r1conf *conf = mddev->private;
1611 	int err = -EEXIST;
1612 	int mirror = 0;
1613 	struct raid1_info *p;
1614 	int first = 0;
1615 	int last = conf->raid_disks - 1;
1616 	struct request_queue *q = bdev_get_queue(rdev->bdev);
1617 
1618 	if (mddev->recovery_disabled == conf->recovery_disabled)
1619 		return -EBUSY;
1620 
1621 	if (rdev->raid_disk >= 0)
1622 		first = last = rdev->raid_disk;
1623 
1624 	if (q->merge_bvec_fn) {
1625 		set_bit(Unmerged, &rdev->flags);
1626 		mddev->merge_check_needed = 1;
1627 	}
1628 
1629 	for (mirror = first; mirror <= last; mirror++) {
1630 		p = conf->mirrors+mirror;
1631 		if (!p->rdev) {
1632 
1633 			if (mddev->gendisk)
1634 				disk_stack_limits(mddev->gendisk, rdev->bdev,
1635 						  rdev->data_offset << 9);
1636 
1637 			p->head_position = 0;
1638 			rdev->raid_disk = mirror;
1639 			err = 0;
1640 			/* As all devices are equivalent, we don't need a full recovery
1641 			 * if this was recently any drive of the array
1642 			 */
1643 			if (rdev->saved_raid_disk < 0)
1644 				conf->fullsync = 1;
1645 			rcu_assign_pointer(p->rdev, rdev);
1646 			break;
1647 		}
1648 		if (test_bit(WantReplacement, &p->rdev->flags) &&
1649 		    p[conf->raid_disks].rdev == NULL) {
1650 			/* Add this device as a replacement */
1651 			clear_bit(In_sync, &rdev->flags);
1652 			set_bit(Replacement, &rdev->flags);
1653 			rdev->raid_disk = mirror;
1654 			err = 0;
1655 			conf->fullsync = 1;
1656 			rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1657 			break;
1658 		}
1659 	}
1660 	if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1661 		/* Some requests might not have seen this new
1662 		 * merge_bvec_fn.  We must wait for them to complete
1663 		 * before merging the device fully.
1664 		 * First we make sure any code which has tested
1665 		 * our function has submitted the request, then
1666 		 * we wait for all outstanding requests to complete.
1667 		 */
1668 		synchronize_sched();
1669 		freeze_array(conf, 0);
1670 		unfreeze_array(conf);
1671 		clear_bit(Unmerged, &rdev->flags);
1672 	}
1673 	md_integrity_add_rdev(rdev, mddev);
1674 	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1675 		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1676 	print_conf(conf);
1677 	return err;
1678 }
1679 
1680 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1681 {
1682 	struct r1conf *conf = mddev->private;
1683 	int err = 0;
1684 	int number = rdev->raid_disk;
1685 	struct raid1_info *p = conf->mirrors + number;
1686 
1687 	if (rdev != p->rdev)
1688 		p = conf->mirrors + conf->raid_disks + number;
1689 
1690 	print_conf(conf);
1691 	if (rdev == p->rdev) {
1692 		if (test_bit(In_sync, &rdev->flags) ||
1693 		    atomic_read(&rdev->nr_pending)) {
1694 			err = -EBUSY;
1695 			goto abort;
1696 		}
1697 		/* Only remove non-faulty devices if recovery
1698 		 * is not possible.
1699 		 */
1700 		if (!test_bit(Faulty, &rdev->flags) &&
1701 		    mddev->recovery_disabled != conf->recovery_disabled &&
1702 		    mddev->degraded < conf->raid_disks) {
1703 			err = -EBUSY;
1704 			goto abort;
1705 		}
1706 		p->rdev = NULL;
1707 		synchronize_rcu();
1708 		if (atomic_read(&rdev->nr_pending)) {
1709 			/* lost the race, try later */
1710 			err = -EBUSY;
1711 			p->rdev = rdev;
1712 			goto abort;
1713 		} else if (conf->mirrors[conf->raid_disks + number].rdev) {
1714 			/* We just removed a device that is being replaced.
1715 			 * Move down the replacement.  We drain all IO before
1716 			 * doing this to avoid confusion.
1717 			 */
1718 			struct md_rdev *repl =
1719 				conf->mirrors[conf->raid_disks + number].rdev;
1720 			freeze_array(conf, 0);
1721 			clear_bit(Replacement, &repl->flags);
1722 			p->rdev = repl;
1723 			conf->mirrors[conf->raid_disks + number].rdev = NULL;
1724 			unfreeze_array(conf);
1725 			clear_bit(WantReplacement, &rdev->flags);
1726 		} else
1727 			clear_bit(WantReplacement, &rdev->flags);
1728 		err = md_integrity_register(mddev);
1729 	}
1730 abort:
1731 
1732 	print_conf(conf);
1733 	return err;
1734 }
1735 
1736 static void end_sync_read(struct bio *bio, int error)
1737 {
1738 	struct r1bio *r1_bio = bio->bi_private;
1739 
1740 	update_head_pos(r1_bio->read_disk, r1_bio);
1741 
1742 	/*
1743 	 * we have read a block, now it needs to be re-written,
1744 	 * or re-read if the read failed.
1745 	 * We don't do much here, just schedule handling by raid1d
1746 	 */
1747 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1748 		set_bit(R1BIO_Uptodate, &r1_bio->state);
1749 
1750 	if (atomic_dec_and_test(&r1_bio->remaining))
1751 		reschedule_retry(r1_bio);
1752 }
1753 
1754 static void end_sync_write(struct bio *bio, int error)
1755 {
1756 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1757 	struct r1bio *r1_bio = bio->bi_private;
1758 	struct mddev *mddev = r1_bio->mddev;
1759 	struct r1conf *conf = mddev->private;
1760 	int mirror=0;
1761 	sector_t first_bad;
1762 	int bad_sectors;
1763 
1764 	mirror = find_bio_disk(r1_bio, bio);
1765 
1766 	if (!uptodate) {
1767 		sector_t sync_blocks = 0;
1768 		sector_t s = r1_bio->sector;
1769 		long sectors_to_go = r1_bio->sectors;
1770 		/* make sure these bits doesn't get cleared. */
1771 		do {
1772 			bitmap_end_sync(mddev->bitmap, s,
1773 					&sync_blocks, 1);
1774 			s += sync_blocks;
1775 			sectors_to_go -= sync_blocks;
1776 		} while (sectors_to_go > 0);
1777 		set_bit(WriteErrorSeen,
1778 			&conf->mirrors[mirror].rdev->flags);
1779 		if (!test_and_set_bit(WantReplacement,
1780 				      &conf->mirrors[mirror].rdev->flags))
1781 			set_bit(MD_RECOVERY_NEEDED, &
1782 				mddev->recovery);
1783 		set_bit(R1BIO_WriteError, &r1_bio->state);
1784 	} else if (is_badblock(conf->mirrors[mirror].rdev,
1785 			       r1_bio->sector,
1786 			       r1_bio->sectors,
1787 			       &first_bad, &bad_sectors) &&
1788 		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1789 				r1_bio->sector,
1790 				r1_bio->sectors,
1791 				&first_bad, &bad_sectors)
1792 		)
1793 		set_bit(R1BIO_MadeGood, &r1_bio->state);
1794 
1795 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1796 		int s = r1_bio->sectors;
1797 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1798 		    test_bit(R1BIO_WriteError, &r1_bio->state))
1799 			reschedule_retry(r1_bio);
1800 		else {
1801 			put_buf(r1_bio);
1802 			md_done_sync(mddev, s, uptodate);
1803 		}
1804 	}
1805 }
1806 
1807 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1808 			    int sectors, struct page *page, int rw)
1809 {
1810 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1811 		/* success */
1812 		return 1;
1813 	if (rw == WRITE) {
1814 		set_bit(WriteErrorSeen, &rdev->flags);
1815 		if (!test_and_set_bit(WantReplacement,
1816 				      &rdev->flags))
1817 			set_bit(MD_RECOVERY_NEEDED, &
1818 				rdev->mddev->recovery);
1819 	}
1820 	/* need to record an error - either for the block or the device */
1821 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1822 		md_error(rdev->mddev, rdev);
1823 	return 0;
1824 }
1825 
1826 static int fix_sync_read_error(struct r1bio *r1_bio)
1827 {
1828 	/* Try some synchronous reads of other devices to get
1829 	 * good data, much like with normal read errors.  Only
1830 	 * read into the pages we already have so we don't
1831 	 * need to re-issue the read request.
1832 	 * We don't need to freeze the array, because being in an
1833 	 * active sync request, there is no normal IO, and
1834 	 * no overlapping syncs.
1835 	 * We don't need to check is_badblock() again as we
1836 	 * made sure that anything with a bad block in range
1837 	 * will have bi_end_io clear.
1838 	 */
1839 	struct mddev *mddev = r1_bio->mddev;
1840 	struct r1conf *conf = mddev->private;
1841 	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1842 	sector_t sect = r1_bio->sector;
1843 	int sectors = r1_bio->sectors;
1844 	int idx = 0;
1845 
1846 	while(sectors) {
1847 		int s = sectors;
1848 		int d = r1_bio->read_disk;
1849 		int success = 0;
1850 		struct md_rdev *rdev;
1851 		int start;
1852 
1853 		if (s > (PAGE_SIZE>>9))
1854 			s = PAGE_SIZE >> 9;
1855 		do {
1856 			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1857 				/* No rcu protection needed here devices
1858 				 * can only be removed when no resync is
1859 				 * active, and resync is currently active
1860 				 */
1861 				rdev = conf->mirrors[d].rdev;
1862 				if (sync_page_io(rdev, sect, s<<9,
1863 						 bio->bi_io_vec[idx].bv_page,
1864 						 READ, false)) {
1865 					success = 1;
1866 					break;
1867 				}
1868 			}
1869 			d++;
1870 			if (d == conf->raid_disks * 2)
1871 				d = 0;
1872 		} while (!success && d != r1_bio->read_disk);
1873 
1874 		if (!success) {
1875 			char b[BDEVNAME_SIZE];
1876 			int abort = 0;
1877 			/* Cannot read from anywhere, this block is lost.
1878 			 * Record a bad block on each device.  If that doesn't
1879 			 * work just disable and interrupt the recovery.
1880 			 * Don't fail devices as that won't really help.
1881 			 */
1882 			printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1883 			       " for block %llu\n",
1884 			       mdname(mddev),
1885 			       bdevname(bio->bi_bdev, b),
1886 			       (unsigned long long)r1_bio->sector);
1887 			for (d = 0; d < conf->raid_disks * 2; d++) {
1888 				rdev = conf->mirrors[d].rdev;
1889 				if (!rdev || test_bit(Faulty, &rdev->flags))
1890 					continue;
1891 				if (!rdev_set_badblocks(rdev, sect, s, 0))
1892 					abort = 1;
1893 			}
1894 			if (abort) {
1895 				conf->recovery_disabled =
1896 					mddev->recovery_disabled;
1897 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1898 				md_done_sync(mddev, r1_bio->sectors, 0);
1899 				put_buf(r1_bio);
1900 				return 0;
1901 			}
1902 			/* Try next page */
1903 			sectors -= s;
1904 			sect += s;
1905 			idx++;
1906 			continue;
1907 		}
1908 
1909 		start = d;
1910 		/* write it back and re-read */
1911 		while (d != r1_bio->read_disk) {
1912 			if (d == 0)
1913 				d = conf->raid_disks * 2;
1914 			d--;
1915 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1916 				continue;
1917 			rdev = conf->mirrors[d].rdev;
1918 			if (r1_sync_page_io(rdev, sect, s,
1919 					    bio->bi_io_vec[idx].bv_page,
1920 					    WRITE) == 0) {
1921 				r1_bio->bios[d]->bi_end_io = NULL;
1922 				rdev_dec_pending(rdev, mddev);
1923 			}
1924 		}
1925 		d = start;
1926 		while (d != r1_bio->read_disk) {
1927 			if (d == 0)
1928 				d = conf->raid_disks * 2;
1929 			d--;
1930 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1931 				continue;
1932 			rdev = conf->mirrors[d].rdev;
1933 			if (r1_sync_page_io(rdev, sect, s,
1934 					    bio->bi_io_vec[idx].bv_page,
1935 					    READ) != 0)
1936 				atomic_add(s, &rdev->corrected_errors);
1937 		}
1938 		sectors -= s;
1939 		sect += s;
1940 		idx ++;
1941 	}
1942 	set_bit(R1BIO_Uptodate, &r1_bio->state);
1943 	set_bit(BIO_UPTODATE, &bio->bi_flags);
1944 	return 1;
1945 }
1946 
1947 static void process_checks(struct r1bio *r1_bio)
1948 {
1949 	/* We have read all readable devices.  If we haven't
1950 	 * got the block, then there is no hope left.
1951 	 * If we have, then we want to do a comparison
1952 	 * and skip the write if everything is the same.
1953 	 * If any blocks failed to read, then we need to
1954 	 * attempt an over-write
1955 	 */
1956 	struct mddev *mddev = r1_bio->mddev;
1957 	struct r1conf *conf = mddev->private;
1958 	int primary;
1959 	int i;
1960 	int vcnt;
1961 
1962 	/* Fix variable parts of all bios */
1963 	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1964 	for (i = 0; i < conf->raid_disks * 2; i++) {
1965 		int j;
1966 		int size;
1967 		int uptodate;
1968 		struct bio *b = r1_bio->bios[i];
1969 		if (b->bi_end_io != end_sync_read)
1970 			continue;
1971 		/* fixup the bio for reuse, but preserve BIO_UPTODATE */
1972 		uptodate = test_bit(BIO_UPTODATE, &b->bi_flags);
1973 		bio_reset(b);
1974 		if (!uptodate)
1975 			clear_bit(BIO_UPTODATE, &b->bi_flags);
1976 		b->bi_vcnt = vcnt;
1977 		b->bi_iter.bi_size = r1_bio->sectors << 9;
1978 		b->bi_iter.bi_sector = r1_bio->sector +
1979 			conf->mirrors[i].rdev->data_offset;
1980 		b->bi_bdev = conf->mirrors[i].rdev->bdev;
1981 		b->bi_end_io = end_sync_read;
1982 		b->bi_private = r1_bio;
1983 
1984 		size = b->bi_iter.bi_size;
1985 		for (j = 0; j < vcnt ; j++) {
1986 			struct bio_vec *bi;
1987 			bi = &b->bi_io_vec[j];
1988 			bi->bv_offset = 0;
1989 			if (size > PAGE_SIZE)
1990 				bi->bv_len = PAGE_SIZE;
1991 			else
1992 				bi->bv_len = size;
1993 			size -= PAGE_SIZE;
1994 		}
1995 	}
1996 	for (primary = 0; primary < conf->raid_disks * 2; primary++)
1997 		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1998 		    test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1999 			r1_bio->bios[primary]->bi_end_io = NULL;
2000 			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2001 			break;
2002 		}
2003 	r1_bio->read_disk = primary;
2004 	for (i = 0; i < conf->raid_disks * 2; i++) {
2005 		int j;
2006 		struct bio *pbio = r1_bio->bios[primary];
2007 		struct bio *sbio = r1_bio->bios[i];
2008 		int uptodate = test_bit(BIO_UPTODATE, &sbio->bi_flags);
2009 
2010 		if (sbio->bi_end_io != end_sync_read)
2011 			continue;
2012 		/* Now we can 'fixup' the BIO_UPTODATE flag */
2013 		set_bit(BIO_UPTODATE, &sbio->bi_flags);
2014 
2015 		if (uptodate) {
2016 			for (j = vcnt; j-- ; ) {
2017 				struct page *p, *s;
2018 				p = pbio->bi_io_vec[j].bv_page;
2019 				s = sbio->bi_io_vec[j].bv_page;
2020 				if (memcmp(page_address(p),
2021 					   page_address(s),
2022 					   sbio->bi_io_vec[j].bv_len))
2023 					break;
2024 			}
2025 		} else
2026 			j = 0;
2027 		if (j >= 0)
2028 			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2029 		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2030 			      && uptodate)) {
2031 			/* No need to write to this device. */
2032 			sbio->bi_end_io = NULL;
2033 			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2034 			continue;
2035 		}
2036 
2037 		bio_copy_data(sbio, pbio);
2038 	}
2039 }
2040 
2041 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2042 {
2043 	struct r1conf *conf = mddev->private;
2044 	int i;
2045 	int disks = conf->raid_disks * 2;
2046 	struct bio *bio, *wbio;
2047 
2048 	bio = r1_bio->bios[r1_bio->read_disk];
2049 
2050 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2051 		/* ouch - failed to read all of that. */
2052 		if (!fix_sync_read_error(r1_bio))
2053 			return;
2054 
2055 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2056 		process_checks(r1_bio);
2057 
2058 	/*
2059 	 * schedule writes
2060 	 */
2061 	atomic_set(&r1_bio->remaining, 1);
2062 	for (i = 0; i < disks ; i++) {
2063 		wbio = r1_bio->bios[i];
2064 		if (wbio->bi_end_io == NULL ||
2065 		    (wbio->bi_end_io == end_sync_read &&
2066 		     (i == r1_bio->read_disk ||
2067 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2068 			continue;
2069 
2070 		wbio->bi_rw = WRITE;
2071 		wbio->bi_end_io = end_sync_write;
2072 		atomic_inc(&r1_bio->remaining);
2073 		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2074 
2075 		generic_make_request(wbio);
2076 	}
2077 
2078 	if (atomic_dec_and_test(&r1_bio->remaining)) {
2079 		/* if we're here, all write(s) have completed, so clean up */
2080 		int s = r1_bio->sectors;
2081 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2082 		    test_bit(R1BIO_WriteError, &r1_bio->state))
2083 			reschedule_retry(r1_bio);
2084 		else {
2085 			put_buf(r1_bio);
2086 			md_done_sync(mddev, s, 1);
2087 		}
2088 	}
2089 }
2090 
2091 /*
2092  * This is a kernel thread which:
2093  *
2094  *	1.	Retries failed read operations on working mirrors.
2095  *	2.	Updates the raid superblock when problems encounter.
2096  *	3.	Performs writes following reads for array synchronising.
2097  */
2098 
2099 static void fix_read_error(struct r1conf *conf, int read_disk,
2100 			   sector_t sect, int sectors)
2101 {
2102 	struct mddev *mddev = conf->mddev;
2103 	while(sectors) {
2104 		int s = sectors;
2105 		int d = read_disk;
2106 		int success = 0;
2107 		int start;
2108 		struct md_rdev *rdev;
2109 
2110 		if (s > (PAGE_SIZE>>9))
2111 			s = PAGE_SIZE >> 9;
2112 
2113 		do {
2114 			/* Note: no rcu protection needed here
2115 			 * as this is synchronous in the raid1d thread
2116 			 * which is the thread that might remove
2117 			 * a device.  If raid1d ever becomes multi-threaded....
2118 			 */
2119 			sector_t first_bad;
2120 			int bad_sectors;
2121 
2122 			rdev = conf->mirrors[d].rdev;
2123 			if (rdev &&
2124 			    (test_bit(In_sync, &rdev->flags) ||
2125 			     (!test_bit(Faulty, &rdev->flags) &&
2126 			      rdev->recovery_offset >= sect + s)) &&
2127 			    is_badblock(rdev, sect, s,
2128 					&first_bad, &bad_sectors) == 0 &&
2129 			    sync_page_io(rdev, sect, s<<9,
2130 					 conf->tmppage, READ, false))
2131 				success = 1;
2132 			else {
2133 				d++;
2134 				if (d == conf->raid_disks * 2)
2135 					d = 0;
2136 			}
2137 		} while (!success && d != read_disk);
2138 
2139 		if (!success) {
2140 			/* Cannot read from anywhere - mark it bad */
2141 			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2142 			if (!rdev_set_badblocks(rdev, sect, s, 0))
2143 				md_error(mddev, rdev);
2144 			break;
2145 		}
2146 		/* write it back and re-read */
2147 		start = d;
2148 		while (d != read_disk) {
2149 			if (d==0)
2150 				d = conf->raid_disks * 2;
2151 			d--;
2152 			rdev = conf->mirrors[d].rdev;
2153 			if (rdev &&
2154 			    !test_bit(Faulty, &rdev->flags))
2155 				r1_sync_page_io(rdev, sect, s,
2156 						conf->tmppage, WRITE);
2157 		}
2158 		d = start;
2159 		while (d != read_disk) {
2160 			char b[BDEVNAME_SIZE];
2161 			if (d==0)
2162 				d = conf->raid_disks * 2;
2163 			d--;
2164 			rdev = conf->mirrors[d].rdev;
2165 			if (rdev &&
2166 			    !test_bit(Faulty, &rdev->flags)) {
2167 				if (r1_sync_page_io(rdev, sect, s,
2168 						    conf->tmppage, READ)) {
2169 					atomic_add(s, &rdev->corrected_errors);
2170 					printk(KERN_INFO
2171 					       "md/raid1:%s: read error corrected "
2172 					       "(%d sectors at %llu on %s)\n",
2173 					       mdname(mddev), s,
2174 					       (unsigned long long)(sect +
2175 					           rdev->data_offset),
2176 					       bdevname(rdev->bdev, b));
2177 				}
2178 			}
2179 		}
2180 		sectors -= s;
2181 		sect += s;
2182 	}
2183 }
2184 
2185 static int narrow_write_error(struct r1bio *r1_bio, int i)
2186 {
2187 	struct mddev *mddev = r1_bio->mddev;
2188 	struct r1conf *conf = mddev->private;
2189 	struct md_rdev *rdev = conf->mirrors[i].rdev;
2190 
2191 	/* bio has the data to be written to device 'i' where
2192 	 * we just recently had a write error.
2193 	 * We repeatedly clone the bio and trim down to one block,
2194 	 * then try the write.  Where the write fails we record
2195 	 * a bad block.
2196 	 * It is conceivable that the bio doesn't exactly align with
2197 	 * blocks.  We must handle this somehow.
2198 	 *
2199 	 * We currently own a reference on the rdev.
2200 	 */
2201 
2202 	int block_sectors;
2203 	sector_t sector;
2204 	int sectors;
2205 	int sect_to_write = r1_bio->sectors;
2206 	int ok = 1;
2207 
2208 	if (rdev->badblocks.shift < 0)
2209 		return 0;
2210 
2211 	block_sectors = roundup(1 << rdev->badblocks.shift,
2212 				bdev_logical_block_size(rdev->bdev) >> 9);
2213 	sector = r1_bio->sector;
2214 	sectors = ((sector + block_sectors)
2215 		   & ~(sector_t)(block_sectors - 1))
2216 		- sector;
2217 
2218 	while (sect_to_write) {
2219 		struct bio *wbio;
2220 		if (sectors > sect_to_write)
2221 			sectors = sect_to_write;
2222 		/* Write at 'sector' for 'sectors'*/
2223 
2224 		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2225 			unsigned vcnt = r1_bio->behind_page_count;
2226 			struct bio_vec *vec = r1_bio->behind_bvecs;
2227 
2228 			while (!vec->bv_page) {
2229 				vec++;
2230 				vcnt--;
2231 			}
2232 
2233 			wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2234 			memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2235 
2236 			wbio->bi_vcnt = vcnt;
2237 		} else {
2238 			wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2239 		}
2240 
2241 		wbio->bi_rw = WRITE;
2242 		wbio->bi_iter.bi_sector = r1_bio->sector;
2243 		wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2244 
2245 		bio_trim(wbio, sector - r1_bio->sector, sectors);
2246 		wbio->bi_iter.bi_sector += rdev->data_offset;
2247 		wbio->bi_bdev = rdev->bdev;
2248 		if (submit_bio_wait(WRITE, wbio) == 0)
2249 			/* failure! */
2250 			ok = rdev_set_badblocks(rdev, sector,
2251 						sectors, 0)
2252 				&& ok;
2253 
2254 		bio_put(wbio);
2255 		sect_to_write -= sectors;
2256 		sector += sectors;
2257 		sectors = block_sectors;
2258 	}
2259 	return ok;
2260 }
2261 
2262 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2263 {
2264 	int m;
2265 	int s = r1_bio->sectors;
2266 	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2267 		struct md_rdev *rdev = conf->mirrors[m].rdev;
2268 		struct bio *bio = r1_bio->bios[m];
2269 		if (bio->bi_end_io == NULL)
2270 			continue;
2271 		if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2272 		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2273 			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2274 		}
2275 		if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2276 		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2277 			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2278 				md_error(conf->mddev, rdev);
2279 		}
2280 	}
2281 	put_buf(r1_bio);
2282 	md_done_sync(conf->mddev, s, 1);
2283 }
2284 
2285 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2286 {
2287 	int m;
2288 	for (m = 0; m < conf->raid_disks * 2 ; m++)
2289 		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2290 			struct md_rdev *rdev = conf->mirrors[m].rdev;
2291 			rdev_clear_badblocks(rdev,
2292 					     r1_bio->sector,
2293 					     r1_bio->sectors, 0);
2294 			rdev_dec_pending(rdev, conf->mddev);
2295 		} else if (r1_bio->bios[m] != NULL) {
2296 			/* This drive got a write error.  We need to
2297 			 * narrow down and record precise write
2298 			 * errors.
2299 			 */
2300 			if (!narrow_write_error(r1_bio, m)) {
2301 				md_error(conf->mddev,
2302 					 conf->mirrors[m].rdev);
2303 				/* an I/O failed, we can't clear the bitmap */
2304 				set_bit(R1BIO_Degraded, &r1_bio->state);
2305 			}
2306 			rdev_dec_pending(conf->mirrors[m].rdev,
2307 					 conf->mddev);
2308 		}
2309 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
2310 		close_write(r1_bio);
2311 	raid_end_bio_io(r1_bio);
2312 }
2313 
2314 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2315 {
2316 	int disk;
2317 	int max_sectors;
2318 	struct mddev *mddev = conf->mddev;
2319 	struct bio *bio;
2320 	char b[BDEVNAME_SIZE];
2321 	struct md_rdev *rdev;
2322 
2323 	clear_bit(R1BIO_ReadError, &r1_bio->state);
2324 	/* we got a read error. Maybe the drive is bad.  Maybe just
2325 	 * the block and we can fix it.
2326 	 * We freeze all other IO, and try reading the block from
2327 	 * other devices.  When we find one, we re-write
2328 	 * and check it that fixes the read error.
2329 	 * This is all done synchronously while the array is
2330 	 * frozen
2331 	 */
2332 	if (mddev->ro == 0) {
2333 		freeze_array(conf, 1);
2334 		fix_read_error(conf, r1_bio->read_disk,
2335 			       r1_bio->sector, r1_bio->sectors);
2336 		unfreeze_array(conf);
2337 	} else
2338 		md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2339 	rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
2340 
2341 	bio = r1_bio->bios[r1_bio->read_disk];
2342 	bdevname(bio->bi_bdev, b);
2343 read_more:
2344 	disk = read_balance(conf, r1_bio, &max_sectors);
2345 	if (disk == -1) {
2346 		printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2347 		       " read error for block %llu\n",
2348 		       mdname(mddev), b, (unsigned long long)r1_bio->sector);
2349 		raid_end_bio_io(r1_bio);
2350 	} else {
2351 		const unsigned long do_sync
2352 			= r1_bio->master_bio->bi_rw & REQ_SYNC;
2353 		if (bio) {
2354 			r1_bio->bios[r1_bio->read_disk] =
2355 				mddev->ro ? IO_BLOCKED : NULL;
2356 			bio_put(bio);
2357 		}
2358 		r1_bio->read_disk = disk;
2359 		bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2360 		bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2361 			 max_sectors);
2362 		r1_bio->bios[r1_bio->read_disk] = bio;
2363 		rdev = conf->mirrors[disk].rdev;
2364 		printk_ratelimited(KERN_ERR
2365 				   "md/raid1:%s: redirecting sector %llu"
2366 				   " to other mirror: %s\n",
2367 				   mdname(mddev),
2368 				   (unsigned long long)r1_bio->sector,
2369 				   bdevname(rdev->bdev, b));
2370 		bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
2371 		bio->bi_bdev = rdev->bdev;
2372 		bio->bi_end_io = raid1_end_read_request;
2373 		bio->bi_rw = READ | do_sync;
2374 		bio->bi_private = r1_bio;
2375 		if (max_sectors < r1_bio->sectors) {
2376 			/* Drat - have to split this up more */
2377 			struct bio *mbio = r1_bio->master_bio;
2378 			int sectors_handled = (r1_bio->sector + max_sectors
2379 					       - mbio->bi_iter.bi_sector);
2380 			r1_bio->sectors = max_sectors;
2381 			spin_lock_irq(&conf->device_lock);
2382 			if (mbio->bi_phys_segments == 0)
2383 				mbio->bi_phys_segments = 2;
2384 			else
2385 				mbio->bi_phys_segments++;
2386 			spin_unlock_irq(&conf->device_lock);
2387 			generic_make_request(bio);
2388 			bio = NULL;
2389 
2390 			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2391 
2392 			r1_bio->master_bio = mbio;
2393 			r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
2394 			r1_bio->state = 0;
2395 			set_bit(R1BIO_ReadError, &r1_bio->state);
2396 			r1_bio->mddev = mddev;
2397 			r1_bio->sector = mbio->bi_iter.bi_sector +
2398 				sectors_handled;
2399 
2400 			goto read_more;
2401 		} else
2402 			generic_make_request(bio);
2403 	}
2404 }
2405 
2406 static void raid1d(struct md_thread *thread)
2407 {
2408 	struct mddev *mddev = thread->mddev;
2409 	struct r1bio *r1_bio;
2410 	unsigned long flags;
2411 	struct r1conf *conf = mddev->private;
2412 	struct list_head *head = &conf->retry_list;
2413 	struct blk_plug plug;
2414 
2415 	md_check_recovery(mddev);
2416 
2417 	blk_start_plug(&plug);
2418 	for (;;) {
2419 
2420 		flush_pending_writes(conf);
2421 
2422 		spin_lock_irqsave(&conf->device_lock, flags);
2423 		if (list_empty(head)) {
2424 			spin_unlock_irqrestore(&conf->device_lock, flags);
2425 			break;
2426 		}
2427 		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2428 		list_del(head->prev);
2429 		conf->nr_queued--;
2430 		spin_unlock_irqrestore(&conf->device_lock, flags);
2431 
2432 		mddev = r1_bio->mddev;
2433 		conf = mddev->private;
2434 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2435 			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2436 			    test_bit(R1BIO_WriteError, &r1_bio->state))
2437 				handle_sync_write_finished(conf, r1_bio);
2438 			else
2439 				sync_request_write(mddev, r1_bio);
2440 		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2441 			   test_bit(R1BIO_WriteError, &r1_bio->state))
2442 			handle_write_finished(conf, r1_bio);
2443 		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2444 			handle_read_error(conf, r1_bio);
2445 		else
2446 			/* just a partial read to be scheduled from separate
2447 			 * context
2448 			 */
2449 			generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2450 
2451 		cond_resched();
2452 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2453 			md_check_recovery(mddev);
2454 	}
2455 	blk_finish_plug(&plug);
2456 }
2457 
2458 static int init_resync(struct r1conf *conf)
2459 {
2460 	int buffs;
2461 
2462 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2463 	BUG_ON(conf->r1buf_pool);
2464 	conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2465 					  conf->poolinfo);
2466 	if (!conf->r1buf_pool)
2467 		return -ENOMEM;
2468 	conf->next_resync = 0;
2469 	return 0;
2470 }
2471 
2472 /*
2473  * perform a "sync" on one "block"
2474  *
2475  * We need to make sure that no normal I/O request - particularly write
2476  * requests - conflict with active sync requests.
2477  *
2478  * This is achieved by tracking pending requests and a 'barrier' concept
2479  * that can be installed to exclude normal IO requests.
2480  */
2481 
2482 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
2483 {
2484 	struct r1conf *conf = mddev->private;
2485 	struct r1bio *r1_bio;
2486 	struct bio *bio;
2487 	sector_t max_sector, nr_sectors;
2488 	int disk = -1;
2489 	int i;
2490 	int wonly = -1;
2491 	int write_targets = 0, read_targets = 0;
2492 	sector_t sync_blocks;
2493 	int still_degraded = 0;
2494 	int good_sectors = RESYNC_SECTORS;
2495 	int min_bad = 0; /* number of sectors that are bad in all devices */
2496 
2497 	if (!conf->r1buf_pool)
2498 		if (init_resync(conf))
2499 			return 0;
2500 
2501 	max_sector = mddev->dev_sectors;
2502 	if (sector_nr >= max_sector) {
2503 		/* If we aborted, we need to abort the
2504 		 * sync on the 'current' bitmap chunk (there will
2505 		 * only be one in raid1 resync.
2506 		 * We can find the current addess in mddev->curr_resync
2507 		 */
2508 		if (mddev->curr_resync < max_sector) /* aborted */
2509 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2510 						&sync_blocks, 1);
2511 		else /* completed sync */
2512 			conf->fullsync = 0;
2513 
2514 		bitmap_close_sync(mddev->bitmap);
2515 		close_sync(conf);
2516 		return 0;
2517 	}
2518 
2519 	if (mddev->bitmap == NULL &&
2520 	    mddev->recovery_cp == MaxSector &&
2521 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2522 	    conf->fullsync == 0) {
2523 		*skipped = 1;
2524 		return max_sector - sector_nr;
2525 	}
2526 	/* before building a request, check if we can skip these blocks..
2527 	 * This call the bitmap_start_sync doesn't actually record anything
2528 	 */
2529 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2530 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2531 		/* We can skip this block, and probably several more */
2532 		*skipped = 1;
2533 		return sync_blocks;
2534 	}
2535 	/*
2536 	 * If there is non-resync activity waiting for a turn,
2537 	 * and resync is going fast enough,
2538 	 * then let it though before starting on this new sync request.
2539 	 */
2540 	if (!go_faster && conf->nr_waiting)
2541 		msleep_interruptible(1000);
2542 
2543 	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2544 	r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2545 
2546 	raise_barrier(conf, sector_nr);
2547 
2548 	rcu_read_lock();
2549 	/*
2550 	 * If we get a correctably read error during resync or recovery,
2551 	 * we might want to read from a different device.  So we
2552 	 * flag all drives that could conceivably be read from for READ,
2553 	 * and any others (which will be non-In_sync devices) for WRITE.
2554 	 * If a read fails, we try reading from something else for which READ
2555 	 * is OK.
2556 	 */
2557 
2558 	r1_bio->mddev = mddev;
2559 	r1_bio->sector = sector_nr;
2560 	r1_bio->state = 0;
2561 	set_bit(R1BIO_IsSync, &r1_bio->state);
2562 
2563 	for (i = 0; i < conf->raid_disks * 2; i++) {
2564 		struct md_rdev *rdev;
2565 		bio = r1_bio->bios[i];
2566 		bio_reset(bio);
2567 
2568 		rdev = rcu_dereference(conf->mirrors[i].rdev);
2569 		if (rdev == NULL ||
2570 		    test_bit(Faulty, &rdev->flags)) {
2571 			if (i < conf->raid_disks)
2572 				still_degraded = 1;
2573 		} else if (!test_bit(In_sync, &rdev->flags)) {
2574 			bio->bi_rw = WRITE;
2575 			bio->bi_end_io = end_sync_write;
2576 			write_targets ++;
2577 		} else {
2578 			/* may need to read from here */
2579 			sector_t first_bad = MaxSector;
2580 			int bad_sectors;
2581 
2582 			if (is_badblock(rdev, sector_nr, good_sectors,
2583 					&first_bad, &bad_sectors)) {
2584 				if (first_bad > sector_nr)
2585 					good_sectors = first_bad - sector_nr;
2586 				else {
2587 					bad_sectors -= (sector_nr - first_bad);
2588 					if (min_bad == 0 ||
2589 					    min_bad > bad_sectors)
2590 						min_bad = bad_sectors;
2591 				}
2592 			}
2593 			if (sector_nr < first_bad) {
2594 				if (test_bit(WriteMostly, &rdev->flags)) {
2595 					if (wonly < 0)
2596 						wonly = i;
2597 				} else {
2598 					if (disk < 0)
2599 						disk = i;
2600 				}
2601 				bio->bi_rw = READ;
2602 				bio->bi_end_io = end_sync_read;
2603 				read_targets++;
2604 			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2605 				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2606 				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2607 				/*
2608 				 * The device is suitable for reading (InSync),
2609 				 * but has bad block(s) here. Let's try to correct them,
2610 				 * if we are doing resync or repair. Otherwise, leave
2611 				 * this device alone for this sync request.
2612 				 */
2613 				bio->bi_rw = WRITE;
2614 				bio->bi_end_io = end_sync_write;
2615 				write_targets++;
2616 			}
2617 		}
2618 		if (bio->bi_end_io) {
2619 			atomic_inc(&rdev->nr_pending);
2620 			bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2621 			bio->bi_bdev = rdev->bdev;
2622 			bio->bi_private = r1_bio;
2623 		}
2624 	}
2625 	rcu_read_unlock();
2626 	if (disk < 0)
2627 		disk = wonly;
2628 	r1_bio->read_disk = disk;
2629 
2630 	if (read_targets == 0 && min_bad > 0) {
2631 		/* These sectors are bad on all InSync devices, so we
2632 		 * need to mark them bad on all write targets
2633 		 */
2634 		int ok = 1;
2635 		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2636 			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2637 				struct md_rdev *rdev = conf->mirrors[i].rdev;
2638 				ok = rdev_set_badblocks(rdev, sector_nr,
2639 							min_bad, 0
2640 					) && ok;
2641 			}
2642 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
2643 		*skipped = 1;
2644 		put_buf(r1_bio);
2645 
2646 		if (!ok) {
2647 			/* Cannot record the badblocks, so need to
2648 			 * abort the resync.
2649 			 * If there are multiple read targets, could just
2650 			 * fail the really bad ones ???
2651 			 */
2652 			conf->recovery_disabled = mddev->recovery_disabled;
2653 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2654 			return 0;
2655 		} else
2656 			return min_bad;
2657 
2658 	}
2659 	if (min_bad > 0 && min_bad < good_sectors) {
2660 		/* only resync enough to reach the next bad->good
2661 		 * transition */
2662 		good_sectors = min_bad;
2663 	}
2664 
2665 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2666 		/* extra read targets are also write targets */
2667 		write_targets += read_targets-1;
2668 
2669 	if (write_targets == 0 || read_targets == 0) {
2670 		/* There is nowhere to write, so all non-sync
2671 		 * drives must be failed - so we are finished
2672 		 */
2673 		sector_t rv;
2674 		if (min_bad > 0)
2675 			max_sector = sector_nr + min_bad;
2676 		rv = max_sector - sector_nr;
2677 		*skipped = 1;
2678 		put_buf(r1_bio);
2679 		return rv;
2680 	}
2681 
2682 	if (max_sector > mddev->resync_max)
2683 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2684 	if (max_sector > sector_nr + good_sectors)
2685 		max_sector = sector_nr + good_sectors;
2686 	nr_sectors = 0;
2687 	sync_blocks = 0;
2688 	do {
2689 		struct page *page;
2690 		int len = PAGE_SIZE;
2691 		if (sector_nr + (len>>9) > max_sector)
2692 			len = (max_sector - sector_nr) << 9;
2693 		if (len == 0)
2694 			break;
2695 		if (sync_blocks == 0) {
2696 			if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2697 					       &sync_blocks, still_degraded) &&
2698 			    !conf->fullsync &&
2699 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2700 				break;
2701 			BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2702 			if ((len >> 9) > sync_blocks)
2703 				len = sync_blocks<<9;
2704 		}
2705 
2706 		for (i = 0 ; i < conf->raid_disks * 2; i++) {
2707 			bio = r1_bio->bios[i];
2708 			if (bio->bi_end_io) {
2709 				page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2710 				if (bio_add_page(bio, page, len, 0) == 0) {
2711 					/* stop here */
2712 					bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2713 					while (i > 0) {
2714 						i--;
2715 						bio = r1_bio->bios[i];
2716 						if (bio->bi_end_io==NULL)
2717 							continue;
2718 						/* remove last page from this bio */
2719 						bio->bi_vcnt--;
2720 						bio->bi_iter.bi_size -= len;
2721 						__clear_bit(BIO_SEG_VALID, &bio->bi_flags);
2722 					}
2723 					goto bio_full;
2724 				}
2725 			}
2726 		}
2727 		nr_sectors += len>>9;
2728 		sector_nr += len>>9;
2729 		sync_blocks -= (len>>9);
2730 	} while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2731  bio_full:
2732 	r1_bio->sectors = nr_sectors;
2733 
2734 	/* For a user-requested sync, we read all readable devices and do a
2735 	 * compare
2736 	 */
2737 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2738 		atomic_set(&r1_bio->remaining, read_targets);
2739 		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2740 			bio = r1_bio->bios[i];
2741 			if (bio->bi_end_io == end_sync_read) {
2742 				read_targets--;
2743 				md_sync_acct(bio->bi_bdev, nr_sectors);
2744 				generic_make_request(bio);
2745 			}
2746 		}
2747 	} else {
2748 		atomic_set(&r1_bio->remaining, 1);
2749 		bio = r1_bio->bios[r1_bio->read_disk];
2750 		md_sync_acct(bio->bi_bdev, nr_sectors);
2751 		generic_make_request(bio);
2752 
2753 	}
2754 	return nr_sectors;
2755 }
2756 
2757 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2758 {
2759 	if (sectors)
2760 		return sectors;
2761 
2762 	return mddev->dev_sectors;
2763 }
2764 
2765 static struct r1conf *setup_conf(struct mddev *mddev)
2766 {
2767 	struct r1conf *conf;
2768 	int i;
2769 	struct raid1_info *disk;
2770 	struct md_rdev *rdev;
2771 	int err = -ENOMEM;
2772 
2773 	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2774 	if (!conf)
2775 		goto abort;
2776 
2777 	conf->mirrors = kzalloc(sizeof(struct raid1_info)
2778 				* mddev->raid_disks * 2,
2779 				 GFP_KERNEL);
2780 	if (!conf->mirrors)
2781 		goto abort;
2782 
2783 	conf->tmppage = alloc_page(GFP_KERNEL);
2784 	if (!conf->tmppage)
2785 		goto abort;
2786 
2787 	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2788 	if (!conf->poolinfo)
2789 		goto abort;
2790 	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2791 	conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2792 					  r1bio_pool_free,
2793 					  conf->poolinfo);
2794 	if (!conf->r1bio_pool)
2795 		goto abort;
2796 
2797 	conf->poolinfo->mddev = mddev;
2798 
2799 	err = -EINVAL;
2800 	spin_lock_init(&conf->device_lock);
2801 	rdev_for_each(rdev, mddev) {
2802 		struct request_queue *q;
2803 		int disk_idx = rdev->raid_disk;
2804 		if (disk_idx >= mddev->raid_disks
2805 		    || disk_idx < 0)
2806 			continue;
2807 		if (test_bit(Replacement, &rdev->flags))
2808 			disk = conf->mirrors + mddev->raid_disks + disk_idx;
2809 		else
2810 			disk = conf->mirrors + disk_idx;
2811 
2812 		if (disk->rdev)
2813 			goto abort;
2814 		disk->rdev = rdev;
2815 		q = bdev_get_queue(rdev->bdev);
2816 		if (q->merge_bvec_fn)
2817 			mddev->merge_check_needed = 1;
2818 
2819 		disk->head_position = 0;
2820 		disk->seq_start = MaxSector;
2821 	}
2822 	conf->raid_disks = mddev->raid_disks;
2823 	conf->mddev = mddev;
2824 	INIT_LIST_HEAD(&conf->retry_list);
2825 
2826 	spin_lock_init(&conf->resync_lock);
2827 	init_waitqueue_head(&conf->wait_barrier);
2828 
2829 	bio_list_init(&conf->pending_bio_list);
2830 	conf->pending_count = 0;
2831 	conf->recovery_disabled = mddev->recovery_disabled - 1;
2832 
2833 	conf->start_next_window = MaxSector;
2834 	conf->current_window_requests = conf->next_window_requests = 0;
2835 
2836 	err = -EIO;
2837 	for (i = 0; i < conf->raid_disks * 2; i++) {
2838 
2839 		disk = conf->mirrors + i;
2840 
2841 		if (i < conf->raid_disks &&
2842 		    disk[conf->raid_disks].rdev) {
2843 			/* This slot has a replacement. */
2844 			if (!disk->rdev) {
2845 				/* No original, just make the replacement
2846 				 * a recovering spare
2847 				 */
2848 				disk->rdev =
2849 					disk[conf->raid_disks].rdev;
2850 				disk[conf->raid_disks].rdev = NULL;
2851 			} else if (!test_bit(In_sync, &disk->rdev->flags))
2852 				/* Original is not in_sync - bad */
2853 				goto abort;
2854 		}
2855 
2856 		if (!disk->rdev ||
2857 		    !test_bit(In_sync, &disk->rdev->flags)) {
2858 			disk->head_position = 0;
2859 			if (disk->rdev &&
2860 			    (disk->rdev->saved_raid_disk < 0))
2861 				conf->fullsync = 1;
2862 		}
2863 	}
2864 
2865 	err = -ENOMEM;
2866 	conf->thread = md_register_thread(raid1d, mddev, "raid1");
2867 	if (!conf->thread) {
2868 		printk(KERN_ERR
2869 		       "md/raid1:%s: couldn't allocate thread\n",
2870 		       mdname(mddev));
2871 		goto abort;
2872 	}
2873 
2874 	return conf;
2875 
2876  abort:
2877 	if (conf) {
2878 		if (conf->r1bio_pool)
2879 			mempool_destroy(conf->r1bio_pool);
2880 		kfree(conf->mirrors);
2881 		safe_put_page(conf->tmppage);
2882 		kfree(conf->poolinfo);
2883 		kfree(conf);
2884 	}
2885 	return ERR_PTR(err);
2886 }
2887 
2888 static void raid1_free(struct mddev *mddev, void *priv);
2889 static int run(struct mddev *mddev)
2890 {
2891 	struct r1conf *conf;
2892 	int i;
2893 	struct md_rdev *rdev;
2894 	int ret;
2895 	bool discard_supported = false;
2896 
2897 	if (mddev->level != 1) {
2898 		printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2899 		       mdname(mddev), mddev->level);
2900 		return -EIO;
2901 	}
2902 	if (mddev->reshape_position != MaxSector) {
2903 		printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2904 		       mdname(mddev));
2905 		return -EIO;
2906 	}
2907 	/*
2908 	 * copy the already verified devices into our private RAID1
2909 	 * bookkeeping area. [whatever we allocate in run(),
2910 	 * should be freed in raid1_free()]
2911 	 */
2912 	if (mddev->private == NULL)
2913 		conf = setup_conf(mddev);
2914 	else
2915 		conf = mddev->private;
2916 
2917 	if (IS_ERR(conf))
2918 		return PTR_ERR(conf);
2919 
2920 	if (mddev->queue)
2921 		blk_queue_max_write_same_sectors(mddev->queue, 0);
2922 
2923 	rdev_for_each(rdev, mddev) {
2924 		if (!mddev->gendisk)
2925 			continue;
2926 		disk_stack_limits(mddev->gendisk, rdev->bdev,
2927 				  rdev->data_offset << 9);
2928 		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2929 			discard_supported = true;
2930 	}
2931 
2932 	mddev->degraded = 0;
2933 	for (i=0; i < conf->raid_disks; i++)
2934 		if (conf->mirrors[i].rdev == NULL ||
2935 		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2936 		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2937 			mddev->degraded++;
2938 
2939 	if (conf->raid_disks - mddev->degraded == 1)
2940 		mddev->recovery_cp = MaxSector;
2941 
2942 	if (mddev->recovery_cp != MaxSector)
2943 		printk(KERN_NOTICE "md/raid1:%s: not clean"
2944 		       " -- starting background reconstruction\n",
2945 		       mdname(mddev));
2946 	printk(KERN_INFO
2947 		"md/raid1:%s: active with %d out of %d mirrors\n",
2948 		mdname(mddev), mddev->raid_disks - mddev->degraded,
2949 		mddev->raid_disks);
2950 
2951 	/*
2952 	 * Ok, everything is just fine now
2953 	 */
2954 	mddev->thread = conf->thread;
2955 	conf->thread = NULL;
2956 	mddev->private = conf;
2957 
2958 	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2959 
2960 	if (mddev->queue) {
2961 		if (discard_supported)
2962 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2963 						mddev->queue);
2964 		else
2965 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2966 						  mddev->queue);
2967 	}
2968 
2969 	ret =  md_integrity_register(mddev);
2970 	if (ret) {
2971 		md_unregister_thread(&mddev->thread);
2972 		raid1_free(mddev, conf);
2973 	}
2974 	return ret;
2975 }
2976 
2977 static void raid1_free(struct mddev *mddev, void *priv)
2978 {
2979 	struct r1conf *conf = priv;
2980 
2981 	if (conf->r1bio_pool)
2982 		mempool_destroy(conf->r1bio_pool);
2983 	kfree(conf->mirrors);
2984 	safe_put_page(conf->tmppage);
2985 	kfree(conf->poolinfo);
2986 	kfree(conf);
2987 }
2988 
2989 static int raid1_resize(struct mddev *mddev, sector_t sectors)
2990 {
2991 	/* no resync is happening, and there is enough space
2992 	 * on all devices, so we can resize.
2993 	 * We need to make sure resync covers any new space.
2994 	 * If the array is shrinking we should possibly wait until
2995 	 * any io in the removed space completes, but it hardly seems
2996 	 * worth it.
2997 	 */
2998 	sector_t newsize = raid1_size(mddev, sectors, 0);
2999 	if (mddev->external_size &&
3000 	    mddev->array_sectors > newsize)
3001 		return -EINVAL;
3002 	if (mddev->bitmap) {
3003 		int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3004 		if (ret)
3005 			return ret;
3006 	}
3007 	md_set_array_sectors(mddev, newsize);
3008 	set_capacity(mddev->gendisk, mddev->array_sectors);
3009 	revalidate_disk(mddev->gendisk);
3010 	if (sectors > mddev->dev_sectors &&
3011 	    mddev->recovery_cp > mddev->dev_sectors) {
3012 		mddev->recovery_cp = mddev->dev_sectors;
3013 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3014 	}
3015 	mddev->dev_sectors = sectors;
3016 	mddev->resync_max_sectors = sectors;
3017 	return 0;
3018 }
3019 
3020 static int raid1_reshape(struct mddev *mddev)
3021 {
3022 	/* We need to:
3023 	 * 1/ resize the r1bio_pool
3024 	 * 2/ resize conf->mirrors
3025 	 *
3026 	 * We allocate a new r1bio_pool if we can.
3027 	 * Then raise a device barrier and wait until all IO stops.
3028 	 * Then resize conf->mirrors and swap in the new r1bio pool.
3029 	 *
3030 	 * At the same time, we "pack" the devices so that all the missing
3031 	 * devices have the higher raid_disk numbers.
3032 	 */
3033 	mempool_t *newpool, *oldpool;
3034 	struct pool_info *newpoolinfo;
3035 	struct raid1_info *newmirrors;
3036 	struct r1conf *conf = mddev->private;
3037 	int cnt, raid_disks;
3038 	unsigned long flags;
3039 	int d, d2, err;
3040 
3041 	/* Cannot change chunk_size, layout, or level */
3042 	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3043 	    mddev->layout != mddev->new_layout ||
3044 	    mddev->level != mddev->new_level) {
3045 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3046 		mddev->new_layout = mddev->layout;
3047 		mddev->new_level = mddev->level;
3048 		return -EINVAL;
3049 	}
3050 
3051 	err = md_allow_write(mddev);
3052 	if (err)
3053 		return err;
3054 
3055 	raid_disks = mddev->raid_disks + mddev->delta_disks;
3056 
3057 	if (raid_disks < conf->raid_disks) {
3058 		cnt=0;
3059 		for (d= 0; d < conf->raid_disks; d++)
3060 			if (conf->mirrors[d].rdev)
3061 				cnt++;
3062 		if (cnt > raid_disks)
3063 			return -EBUSY;
3064 	}
3065 
3066 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3067 	if (!newpoolinfo)
3068 		return -ENOMEM;
3069 	newpoolinfo->mddev = mddev;
3070 	newpoolinfo->raid_disks = raid_disks * 2;
3071 
3072 	newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3073 				 r1bio_pool_free, newpoolinfo);
3074 	if (!newpool) {
3075 		kfree(newpoolinfo);
3076 		return -ENOMEM;
3077 	}
3078 	newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3079 			     GFP_KERNEL);
3080 	if (!newmirrors) {
3081 		kfree(newpoolinfo);
3082 		mempool_destroy(newpool);
3083 		return -ENOMEM;
3084 	}
3085 
3086 	freeze_array(conf, 0);
3087 
3088 	/* ok, everything is stopped */
3089 	oldpool = conf->r1bio_pool;
3090 	conf->r1bio_pool = newpool;
3091 
3092 	for (d = d2 = 0; d < conf->raid_disks; d++) {
3093 		struct md_rdev *rdev = conf->mirrors[d].rdev;
3094 		if (rdev && rdev->raid_disk != d2) {
3095 			sysfs_unlink_rdev(mddev, rdev);
3096 			rdev->raid_disk = d2;
3097 			sysfs_unlink_rdev(mddev, rdev);
3098 			if (sysfs_link_rdev(mddev, rdev))
3099 				printk(KERN_WARNING
3100 				       "md/raid1:%s: cannot register rd%d\n",
3101 				       mdname(mddev), rdev->raid_disk);
3102 		}
3103 		if (rdev)
3104 			newmirrors[d2++].rdev = rdev;
3105 	}
3106 	kfree(conf->mirrors);
3107 	conf->mirrors = newmirrors;
3108 	kfree(conf->poolinfo);
3109 	conf->poolinfo = newpoolinfo;
3110 
3111 	spin_lock_irqsave(&conf->device_lock, flags);
3112 	mddev->degraded += (raid_disks - conf->raid_disks);
3113 	spin_unlock_irqrestore(&conf->device_lock, flags);
3114 	conf->raid_disks = mddev->raid_disks = raid_disks;
3115 	mddev->delta_disks = 0;
3116 
3117 	unfreeze_array(conf);
3118 
3119 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3120 	md_wakeup_thread(mddev->thread);
3121 
3122 	mempool_destroy(oldpool);
3123 	return 0;
3124 }
3125 
3126 static void raid1_quiesce(struct mddev *mddev, int state)
3127 {
3128 	struct r1conf *conf = mddev->private;
3129 
3130 	switch(state) {
3131 	case 2: /* wake for suspend */
3132 		wake_up(&conf->wait_barrier);
3133 		break;
3134 	case 1:
3135 		freeze_array(conf, 0);
3136 		break;
3137 	case 0:
3138 		unfreeze_array(conf);
3139 		break;
3140 	}
3141 }
3142 
3143 static void *raid1_takeover(struct mddev *mddev)
3144 {
3145 	/* raid1 can take over:
3146 	 *  raid5 with 2 devices, any layout or chunk size
3147 	 */
3148 	if (mddev->level == 5 && mddev->raid_disks == 2) {
3149 		struct r1conf *conf;
3150 		mddev->new_level = 1;
3151 		mddev->new_layout = 0;
3152 		mddev->new_chunk_sectors = 0;
3153 		conf = setup_conf(mddev);
3154 		if (!IS_ERR(conf))
3155 			/* Array must appear to be quiesced */
3156 			conf->array_frozen = 1;
3157 		return conf;
3158 	}
3159 	return ERR_PTR(-EINVAL);
3160 }
3161 
3162 static struct md_personality raid1_personality =
3163 {
3164 	.name		= "raid1",
3165 	.level		= 1,
3166 	.owner		= THIS_MODULE,
3167 	.make_request	= make_request,
3168 	.run		= run,
3169 	.free		= raid1_free,
3170 	.status		= status,
3171 	.error_handler	= error,
3172 	.hot_add_disk	= raid1_add_disk,
3173 	.hot_remove_disk= raid1_remove_disk,
3174 	.spare_active	= raid1_spare_active,
3175 	.sync_request	= sync_request,
3176 	.resize		= raid1_resize,
3177 	.size		= raid1_size,
3178 	.check_reshape	= raid1_reshape,
3179 	.quiesce	= raid1_quiesce,
3180 	.takeover	= raid1_takeover,
3181 	.congested	= raid1_congested,
3182 	.mergeable_bvec	= raid1_mergeable_bvec,
3183 };
3184 
3185 static int __init raid_init(void)
3186 {
3187 	return register_md_personality(&raid1_personality);
3188 }
3189 
3190 static void raid_exit(void)
3191 {
3192 	unregister_md_personality(&raid1_personality);
3193 }
3194 
3195 module_init(raid_init);
3196 module_exit(raid_exit);
3197 MODULE_LICENSE("GPL");
3198 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3199 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3200 MODULE_ALIAS("md-raid1");
3201 MODULE_ALIAS("md-level-1");
3202 
3203 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
3204