xref: /openbmc/linux/drivers/md/raid1.c (revision 04eb94d526423ff082efce61f4f26b0369d0bfdd)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid1.c : Multiple Devices driver for Linux
4  *
5  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6  *
7  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8  *
9  * RAID-1 management functions.
10  *
11  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12  *
13  * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
14  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15  *
16  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
17  * bitmapped intelligence in resync:
18  *
19  *      - bitmap marked during normal i/o
20  *      - bitmap used to skip nondirty blocks during sync
21  *
22  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
23  * - persistent bitmap code
24  */
25 
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/blkdev.h>
29 #include <linux/module.h>
30 #include <linux/seq_file.h>
31 #include <linux/ratelimit.h>
32 
33 #include <trace/events/block.h>
34 
35 #include "md.h"
36 #include "raid1.h"
37 #include "md-bitmap.h"
38 
39 #define UNSUPPORTED_MDDEV_FLAGS		\
40 	((1L << MD_HAS_JOURNAL) |	\
41 	 (1L << MD_JOURNAL_CLEAN) |	\
42 	 (1L << MD_HAS_PPL) |		\
43 	 (1L << MD_HAS_MULTIPLE_PPLS))
44 
45 static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
46 static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
47 
48 #define raid1_log(md, fmt, args...)				\
49 	do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
50 
51 #include "raid1-10.c"
52 
53 static int check_and_add_wb(struct md_rdev *rdev, sector_t lo, sector_t hi)
54 {
55 	struct wb_info *wi, *temp_wi;
56 	unsigned long flags;
57 	int ret = 0;
58 	struct mddev *mddev = rdev->mddev;
59 
60 	wi = mempool_alloc(mddev->wb_info_pool, GFP_NOIO);
61 
62 	spin_lock_irqsave(&rdev->wb_list_lock, flags);
63 	list_for_each_entry(temp_wi, &rdev->wb_list, list) {
64 		/* collision happened */
65 		if (hi > temp_wi->lo && lo < temp_wi->hi) {
66 			ret = -EBUSY;
67 			break;
68 		}
69 	}
70 
71 	if (!ret) {
72 		wi->lo = lo;
73 		wi->hi = hi;
74 		list_add(&wi->list, &rdev->wb_list);
75 	} else
76 		mempool_free(wi, mddev->wb_info_pool);
77 	spin_unlock_irqrestore(&rdev->wb_list_lock, flags);
78 
79 	return ret;
80 }
81 
82 static void remove_wb(struct md_rdev *rdev, sector_t lo, sector_t hi)
83 {
84 	struct wb_info *wi;
85 	unsigned long flags;
86 	int found = 0;
87 	struct mddev *mddev = rdev->mddev;
88 
89 	spin_lock_irqsave(&rdev->wb_list_lock, flags);
90 	list_for_each_entry(wi, &rdev->wb_list, list)
91 		if (hi == wi->hi && lo == wi->lo) {
92 			list_del(&wi->list);
93 			mempool_free(wi, mddev->wb_info_pool);
94 			found = 1;
95 			break;
96 		}
97 
98 	if (!found)
99 		WARN(1, "The write behind IO is not recorded\n");
100 	spin_unlock_irqrestore(&rdev->wb_list_lock, flags);
101 	wake_up(&rdev->wb_io_wait);
102 }
103 
104 /*
105  * for resync bio, r1bio pointer can be retrieved from the per-bio
106  * 'struct resync_pages'.
107  */
108 static inline struct r1bio *get_resync_r1bio(struct bio *bio)
109 {
110 	return get_resync_pages(bio)->raid_bio;
111 }
112 
113 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
114 {
115 	struct pool_info *pi = data;
116 	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
117 
118 	/* allocate a r1bio with room for raid_disks entries in the bios array */
119 	return kzalloc(size, gfp_flags);
120 }
121 
122 #define RESYNC_DEPTH 32
123 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
124 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
125 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
126 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
127 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
128 
129 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
130 {
131 	struct pool_info *pi = data;
132 	struct r1bio *r1_bio;
133 	struct bio *bio;
134 	int need_pages;
135 	int j;
136 	struct resync_pages *rps;
137 
138 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
139 	if (!r1_bio)
140 		return NULL;
141 
142 	rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages),
143 			    gfp_flags);
144 	if (!rps)
145 		goto out_free_r1bio;
146 
147 	/*
148 	 * Allocate bios : 1 for reading, n-1 for writing
149 	 */
150 	for (j = pi->raid_disks ; j-- ; ) {
151 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
152 		if (!bio)
153 			goto out_free_bio;
154 		r1_bio->bios[j] = bio;
155 	}
156 	/*
157 	 * Allocate RESYNC_PAGES data pages and attach them to
158 	 * the first bio.
159 	 * If this is a user-requested check/repair, allocate
160 	 * RESYNC_PAGES for each bio.
161 	 */
162 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
163 		need_pages = pi->raid_disks;
164 	else
165 		need_pages = 1;
166 	for (j = 0; j < pi->raid_disks; j++) {
167 		struct resync_pages *rp = &rps[j];
168 
169 		bio = r1_bio->bios[j];
170 
171 		if (j < need_pages) {
172 			if (resync_alloc_pages(rp, gfp_flags))
173 				goto out_free_pages;
174 		} else {
175 			memcpy(rp, &rps[0], sizeof(*rp));
176 			resync_get_all_pages(rp);
177 		}
178 
179 		rp->raid_bio = r1_bio;
180 		bio->bi_private = rp;
181 	}
182 
183 	r1_bio->master_bio = NULL;
184 
185 	return r1_bio;
186 
187 out_free_pages:
188 	while (--j >= 0)
189 		resync_free_pages(&rps[j]);
190 
191 out_free_bio:
192 	while (++j < pi->raid_disks)
193 		bio_put(r1_bio->bios[j]);
194 	kfree(rps);
195 
196 out_free_r1bio:
197 	rbio_pool_free(r1_bio, data);
198 	return NULL;
199 }
200 
201 static void r1buf_pool_free(void *__r1_bio, void *data)
202 {
203 	struct pool_info *pi = data;
204 	int i;
205 	struct r1bio *r1bio = __r1_bio;
206 	struct resync_pages *rp = NULL;
207 
208 	for (i = pi->raid_disks; i--; ) {
209 		rp = get_resync_pages(r1bio->bios[i]);
210 		resync_free_pages(rp);
211 		bio_put(r1bio->bios[i]);
212 	}
213 
214 	/* resync pages array stored in the 1st bio's .bi_private */
215 	kfree(rp);
216 
217 	rbio_pool_free(r1bio, data);
218 }
219 
220 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
221 {
222 	int i;
223 
224 	for (i = 0; i < conf->raid_disks * 2; i++) {
225 		struct bio **bio = r1_bio->bios + i;
226 		if (!BIO_SPECIAL(*bio))
227 			bio_put(*bio);
228 		*bio = NULL;
229 	}
230 }
231 
232 static void free_r1bio(struct r1bio *r1_bio)
233 {
234 	struct r1conf *conf = r1_bio->mddev->private;
235 
236 	put_all_bios(conf, r1_bio);
237 	mempool_free(r1_bio, &conf->r1bio_pool);
238 }
239 
240 static void put_buf(struct r1bio *r1_bio)
241 {
242 	struct r1conf *conf = r1_bio->mddev->private;
243 	sector_t sect = r1_bio->sector;
244 	int i;
245 
246 	for (i = 0; i < conf->raid_disks * 2; i++) {
247 		struct bio *bio = r1_bio->bios[i];
248 		if (bio->bi_end_io)
249 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
250 	}
251 
252 	mempool_free(r1_bio, &conf->r1buf_pool);
253 
254 	lower_barrier(conf, sect);
255 }
256 
257 static void reschedule_retry(struct r1bio *r1_bio)
258 {
259 	unsigned long flags;
260 	struct mddev *mddev = r1_bio->mddev;
261 	struct r1conf *conf = mddev->private;
262 	int idx;
263 
264 	idx = sector_to_idx(r1_bio->sector);
265 	spin_lock_irqsave(&conf->device_lock, flags);
266 	list_add(&r1_bio->retry_list, &conf->retry_list);
267 	atomic_inc(&conf->nr_queued[idx]);
268 	spin_unlock_irqrestore(&conf->device_lock, flags);
269 
270 	wake_up(&conf->wait_barrier);
271 	md_wakeup_thread(mddev->thread);
272 }
273 
274 /*
275  * raid_end_bio_io() is called when we have finished servicing a mirrored
276  * operation and are ready to return a success/failure code to the buffer
277  * cache layer.
278  */
279 static void call_bio_endio(struct r1bio *r1_bio)
280 {
281 	struct bio *bio = r1_bio->master_bio;
282 	struct r1conf *conf = r1_bio->mddev->private;
283 
284 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
285 		bio->bi_status = BLK_STS_IOERR;
286 
287 	bio_endio(bio);
288 	/*
289 	 * Wake up any possible resync thread that waits for the device
290 	 * to go idle.
291 	 */
292 	allow_barrier(conf, r1_bio->sector);
293 }
294 
295 static void raid_end_bio_io(struct r1bio *r1_bio)
296 {
297 	struct bio *bio = r1_bio->master_bio;
298 
299 	/* if nobody has done the final endio yet, do it now */
300 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
301 		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
302 			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
303 			 (unsigned long long) bio->bi_iter.bi_sector,
304 			 (unsigned long long) bio_end_sector(bio) - 1);
305 
306 		call_bio_endio(r1_bio);
307 	}
308 	free_r1bio(r1_bio);
309 }
310 
311 /*
312  * Update disk head position estimator based on IRQ completion info.
313  */
314 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
315 {
316 	struct r1conf *conf = r1_bio->mddev->private;
317 
318 	conf->mirrors[disk].head_position =
319 		r1_bio->sector + (r1_bio->sectors);
320 }
321 
322 /*
323  * Find the disk number which triggered given bio
324  */
325 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
326 {
327 	int mirror;
328 	struct r1conf *conf = r1_bio->mddev->private;
329 	int raid_disks = conf->raid_disks;
330 
331 	for (mirror = 0; mirror < raid_disks * 2; mirror++)
332 		if (r1_bio->bios[mirror] == bio)
333 			break;
334 
335 	BUG_ON(mirror == raid_disks * 2);
336 	update_head_pos(mirror, r1_bio);
337 
338 	return mirror;
339 }
340 
341 static void raid1_end_read_request(struct bio *bio)
342 {
343 	int uptodate = !bio->bi_status;
344 	struct r1bio *r1_bio = bio->bi_private;
345 	struct r1conf *conf = r1_bio->mddev->private;
346 	struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
347 
348 	/*
349 	 * this branch is our 'one mirror IO has finished' event handler:
350 	 */
351 	update_head_pos(r1_bio->read_disk, r1_bio);
352 
353 	if (uptodate)
354 		set_bit(R1BIO_Uptodate, &r1_bio->state);
355 	else if (test_bit(FailFast, &rdev->flags) &&
356 		 test_bit(R1BIO_FailFast, &r1_bio->state))
357 		/* This was a fail-fast read so we definitely
358 		 * want to retry */
359 		;
360 	else {
361 		/* If all other devices have failed, we want to return
362 		 * the error upwards rather than fail the last device.
363 		 * Here we redefine "uptodate" to mean "Don't want to retry"
364 		 */
365 		unsigned long flags;
366 		spin_lock_irqsave(&conf->device_lock, flags);
367 		if (r1_bio->mddev->degraded == conf->raid_disks ||
368 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
369 		     test_bit(In_sync, &rdev->flags)))
370 			uptodate = 1;
371 		spin_unlock_irqrestore(&conf->device_lock, flags);
372 	}
373 
374 	if (uptodate) {
375 		raid_end_bio_io(r1_bio);
376 		rdev_dec_pending(rdev, conf->mddev);
377 	} else {
378 		/*
379 		 * oops, read error:
380 		 */
381 		char b[BDEVNAME_SIZE];
382 		pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
383 				   mdname(conf->mddev),
384 				   bdevname(rdev->bdev, b),
385 				   (unsigned long long)r1_bio->sector);
386 		set_bit(R1BIO_ReadError, &r1_bio->state);
387 		reschedule_retry(r1_bio);
388 		/* don't drop the reference on read_disk yet */
389 	}
390 }
391 
392 static void close_write(struct r1bio *r1_bio)
393 {
394 	/* it really is the end of this request */
395 	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
396 		bio_free_pages(r1_bio->behind_master_bio);
397 		bio_put(r1_bio->behind_master_bio);
398 		r1_bio->behind_master_bio = NULL;
399 	}
400 	/* clear the bitmap if all writes complete successfully */
401 	md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
402 			   r1_bio->sectors,
403 			   !test_bit(R1BIO_Degraded, &r1_bio->state),
404 			   test_bit(R1BIO_BehindIO, &r1_bio->state));
405 	md_write_end(r1_bio->mddev);
406 }
407 
408 static void r1_bio_write_done(struct r1bio *r1_bio)
409 {
410 	if (!atomic_dec_and_test(&r1_bio->remaining))
411 		return;
412 
413 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
414 		reschedule_retry(r1_bio);
415 	else {
416 		close_write(r1_bio);
417 		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
418 			reschedule_retry(r1_bio);
419 		else
420 			raid_end_bio_io(r1_bio);
421 	}
422 }
423 
424 static void raid1_end_write_request(struct bio *bio)
425 {
426 	struct r1bio *r1_bio = bio->bi_private;
427 	int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
428 	struct r1conf *conf = r1_bio->mddev->private;
429 	struct bio *to_put = NULL;
430 	int mirror = find_bio_disk(r1_bio, bio);
431 	struct md_rdev *rdev = conf->mirrors[mirror].rdev;
432 	bool discard_error;
433 
434 	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
435 
436 	/*
437 	 * 'one mirror IO has finished' event handler:
438 	 */
439 	if (bio->bi_status && !discard_error) {
440 		set_bit(WriteErrorSeen,	&rdev->flags);
441 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
442 			set_bit(MD_RECOVERY_NEEDED, &
443 				conf->mddev->recovery);
444 
445 		if (test_bit(FailFast, &rdev->flags) &&
446 		    (bio->bi_opf & MD_FAILFAST) &&
447 		    /* We never try FailFast to WriteMostly devices */
448 		    !test_bit(WriteMostly, &rdev->flags)) {
449 			md_error(r1_bio->mddev, rdev);
450 			if (!test_bit(Faulty, &rdev->flags))
451 				/* This is the only remaining device,
452 				 * We need to retry the write without
453 				 * FailFast
454 				 */
455 				set_bit(R1BIO_WriteError, &r1_bio->state);
456 			else {
457 				/* Finished with this branch */
458 				r1_bio->bios[mirror] = NULL;
459 				to_put = bio;
460 			}
461 		} else
462 			set_bit(R1BIO_WriteError, &r1_bio->state);
463 	} else {
464 		/*
465 		 * Set R1BIO_Uptodate in our master bio, so that we
466 		 * will return a good error code for to the higher
467 		 * levels even if IO on some other mirrored buffer
468 		 * fails.
469 		 *
470 		 * The 'master' represents the composite IO operation
471 		 * to user-side. So if something waits for IO, then it
472 		 * will wait for the 'master' bio.
473 		 */
474 		sector_t first_bad;
475 		int bad_sectors;
476 
477 		r1_bio->bios[mirror] = NULL;
478 		to_put = bio;
479 		/*
480 		 * Do not set R1BIO_Uptodate if the current device is
481 		 * rebuilding or Faulty. This is because we cannot use
482 		 * such device for properly reading the data back (we could
483 		 * potentially use it, if the current write would have felt
484 		 * before rdev->recovery_offset, but for simplicity we don't
485 		 * check this here.
486 		 */
487 		if (test_bit(In_sync, &rdev->flags) &&
488 		    !test_bit(Faulty, &rdev->flags))
489 			set_bit(R1BIO_Uptodate, &r1_bio->state);
490 
491 		/* Maybe we can clear some bad blocks. */
492 		if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
493 				&first_bad, &bad_sectors) && !discard_error) {
494 			r1_bio->bios[mirror] = IO_MADE_GOOD;
495 			set_bit(R1BIO_MadeGood, &r1_bio->state);
496 		}
497 	}
498 
499 	if (behind) {
500 		if (test_bit(WBCollisionCheck, &rdev->flags)) {
501 			sector_t lo = r1_bio->sector;
502 			sector_t hi = r1_bio->sector + r1_bio->sectors;
503 
504 			remove_wb(rdev, lo, hi);
505 		}
506 		if (test_bit(WriteMostly, &rdev->flags))
507 			atomic_dec(&r1_bio->behind_remaining);
508 
509 		/*
510 		 * In behind mode, we ACK the master bio once the I/O
511 		 * has safely reached all non-writemostly
512 		 * disks. Setting the Returned bit ensures that this
513 		 * gets done only once -- we don't ever want to return
514 		 * -EIO here, instead we'll wait
515 		 */
516 		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
517 		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
518 			/* Maybe we can return now */
519 			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
520 				struct bio *mbio = r1_bio->master_bio;
521 				pr_debug("raid1: behind end write sectors"
522 					 " %llu-%llu\n",
523 					 (unsigned long long) mbio->bi_iter.bi_sector,
524 					 (unsigned long long) bio_end_sector(mbio) - 1);
525 				call_bio_endio(r1_bio);
526 			}
527 		}
528 	}
529 	if (r1_bio->bios[mirror] == NULL)
530 		rdev_dec_pending(rdev, conf->mddev);
531 
532 	/*
533 	 * Let's see if all mirrored write operations have finished
534 	 * already.
535 	 */
536 	r1_bio_write_done(r1_bio);
537 
538 	if (to_put)
539 		bio_put(to_put);
540 }
541 
542 static sector_t align_to_barrier_unit_end(sector_t start_sector,
543 					  sector_t sectors)
544 {
545 	sector_t len;
546 
547 	WARN_ON(sectors == 0);
548 	/*
549 	 * len is the number of sectors from start_sector to end of the
550 	 * barrier unit which start_sector belongs to.
551 	 */
552 	len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
553 	      start_sector;
554 
555 	if (len > sectors)
556 		len = sectors;
557 
558 	return len;
559 }
560 
561 /*
562  * This routine returns the disk from which the requested read should
563  * be done. There is a per-array 'next expected sequential IO' sector
564  * number - if this matches on the next IO then we use the last disk.
565  * There is also a per-disk 'last know head position' sector that is
566  * maintained from IRQ contexts, both the normal and the resync IO
567  * completion handlers update this position correctly. If there is no
568  * perfect sequential match then we pick the disk whose head is closest.
569  *
570  * If there are 2 mirrors in the same 2 devices, performance degrades
571  * because position is mirror, not device based.
572  *
573  * The rdev for the device selected will have nr_pending incremented.
574  */
575 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
576 {
577 	const sector_t this_sector = r1_bio->sector;
578 	int sectors;
579 	int best_good_sectors;
580 	int best_disk, best_dist_disk, best_pending_disk;
581 	int has_nonrot_disk;
582 	int disk;
583 	sector_t best_dist;
584 	unsigned int min_pending;
585 	struct md_rdev *rdev;
586 	int choose_first;
587 	int choose_next_idle;
588 
589 	rcu_read_lock();
590 	/*
591 	 * Check if we can balance. We can balance on the whole
592 	 * device if no resync is going on, or below the resync window.
593 	 * We take the first readable disk when above the resync window.
594 	 */
595  retry:
596 	sectors = r1_bio->sectors;
597 	best_disk = -1;
598 	best_dist_disk = -1;
599 	best_dist = MaxSector;
600 	best_pending_disk = -1;
601 	min_pending = UINT_MAX;
602 	best_good_sectors = 0;
603 	has_nonrot_disk = 0;
604 	choose_next_idle = 0;
605 	clear_bit(R1BIO_FailFast, &r1_bio->state);
606 
607 	if ((conf->mddev->recovery_cp < this_sector + sectors) ||
608 	    (mddev_is_clustered(conf->mddev) &&
609 	    md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
610 		    this_sector + sectors)))
611 		choose_first = 1;
612 	else
613 		choose_first = 0;
614 
615 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
616 		sector_t dist;
617 		sector_t first_bad;
618 		int bad_sectors;
619 		unsigned int pending;
620 		bool nonrot;
621 
622 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
623 		if (r1_bio->bios[disk] == IO_BLOCKED
624 		    || rdev == NULL
625 		    || test_bit(Faulty, &rdev->flags))
626 			continue;
627 		if (!test_bit(In_sync, &rdev->flags) &&
628 		    rdev->recovery_offset < this_sector + sectors)
629 			continue;
630 		if (test_bit(WriteMostly, &rdev->flags)) {
631 			/* Don't balance among write-mostly, just
632 			 * use the first as a last resort */
633 			if (best_dist_disk < 0) {
634 				if (is_badblock(rdev, this_sector, sectors,
635 						&first_bad, &bad_sectors)) {
636 					if (first_bad <= this_sector)
637 						/* Cannot use this */
638 						continue;
639 					best_good_sectors = first_bad - this_sector;
640 				} else
641 					best_good_sectors = sectors;
642 				best_dist_disk = disk;
643 				best_pending_disk = disk;
644 			}
645 			continue;
646 		}
647 		/* This is a reasonable device to use.  It might
648 		 * even be best.
649 		 */
650 		if (is_badblock(rdev, this_sector, sectors,
651 				&first_bad, &bad_sectors)) {
652 			if (best_dist < MaxSector)
653 				/* already have a better device */
654 				continue;
655 			if (first_bad <= this_sector) {
656 				/* cannot read here. If this is the 'primary'
657 				 * device, then we must not read beyond
658 				 * bad_sectors from another device..
659 				 */
660 				bad_sectors -= (this_sector - first_bad);
661 				if (choose_first && sectors > bad_sectors)
662 					sectors = bad_sectors;
663 				if (best_good_sectors > sectors)
664 					best_good_sectors = sectors;
665 
666 			} else {
667 				sector_t good_sectors = first_bad - this_sector;
668 				if (good_sectors > best_good_sectors) {
669 					best_good_sectors = good_sectors;
670 					best_disk = disk;
671 				}
672 				if (choose_first)
673 					break;
674 			}
675 			continue;
676 		} else {
677 			if ((sectors > best_good_sectors) && (best_disk >= 0))
678 				best_disk = -1;
679 			best_good_sectors = sectors;
680 		}
681 
682 		if (best_disk >= 0)
683 			/* At least two disks to choose from so failfast is OK */
684 			set_bit(R1BIO_FailFast, &r1_bio->state);
685 
686 		nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
687 		has_nonrot_disk |= nonrot;
688 		pending = atomic_read(&rdev->nr_pending);
689 		dist = abs(this_sector - conf->mirrors[disk].head_position);
690 		if (choose_first) {
691 			best_disk = disk;
692 			break;
693 		}
694 		/* Don't change to another disk for sequential reads */
695 		if (conf->mirrors[disk].next_seq_sect == this_sector
696 		    || dist == 0) {
697 			int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
698 			struct raid1_info *mirror = &conf->mirrors[disk];
699 
700 			best_disk = disk;
701 			/*
702 			 * If buffered sequential IO size exceeds optimal
703 			 * iosize, check if there is idle disk. If yes, choose
704 			 * the idle disk. read_balance could already choose an
705 			 * idle disk before noticing it's a sequential IO in
706 			 * this disk. This doesn't matter because this disk
707 			 * will idle, next time it will be utilized after the
708 			 * first disk has IO size exceeds optimal iosize. In
709 			 * this way, iosize of the first disk will be optimal
710 			 * iosize at least. iosize of the second disk might be
711 			 * small, but not a big deal since when the second disk
712 			 * starts IO, the first disk is likely still busy.
713 			 */
714 			if (nonrot && opt_iosize > 0 &&
715 			    mirror->seq_start != MaxSector &&
716 			    mirror->next_seq_sect > opt_iosize &&
717 			    mirror->next_seq_sect - opt_iosize >=
718 			    mirror->seq_start) {
719 				choose_next_idle = 1;
720 				continue;
721 			}
722 			break;
723 		}
724 
725 		if (choose_next_idle)
726 			continue;
727 
728 		if (min_pending > pending) {
729 			min_pending = pending;
730 			best_pending_disk = disk;
731 		}
732 
733 		if (dist < best_dist) {
734 			best_dist = dist;
735 			best_dist_disk = disk;
736 		}
737 	}
738 
739 	/*
740 	 * If all disks are rotational, choose the closest disk. If any disk is
741 	 * non-rotational, choose the disk with less pending request even the
742 	 * disk is rotational, which might/might not be optimal for raids with
743 	 * mixed ratation/non-rotational disks depending on workload.
744 	 */
745 	if (best_disk == -1) {
746 		if (has_nonrot_disk || min_pending == 0)
747 			best_disk = best_pending_disk;
748 		else
749 			best_disk = best_dist_disk;
750 	}
751 
752 	if (best_disk >= 0) {
753 		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
754 		if (!rdev)
755 			goto retry;
756 		atomic_inc(&rdev->nr_pending);
757 		sectors = best_good_sectors;
758 
759 		if (conf->mirrors[best_disk].next_seq_sect != this_sector)
760 			conf->mirrors[best_disk].seq_start = this_sector;
761 
762 		conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
763 	}
764 	rcu_read_unlock();
765 	*max_sectors = sectors;
766 
767 	return best_disk;
768 }
769 
770 static int raid1_congested(struct mddev *mddev, int bits)
771 {
772 	struct r1conf *conf = mddev->private;
773 	int i, ret = 0;
774 
775 	if ((bits & (1 << WB_async_congested)) &&
776 	    conf->pending_count >= max_queued_requests)
777 		return 1;
778 
779 	rcu_read_lock();
780 	for (i = 0; i < conf->raid_disks * 2; i++) {
781 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
782 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
783 			struct request_queue *q = bdev_get_queue(rdev->bdev);
784 
785 			BUG_ON(!q);
786 
787 			/* Note the '|| 1' - when read_balance prefers
788 			 * non-congested targets, it can be removed
789 			 */
790 			if ((bits & (1 << WB_async_congested)) || 1)
791 				ret |= bdi_congested(q->backing_dev_info, bits);
792 			else
793 				ret &= bdi_congested(q->backing_dev_info, bits);
794 		}
795 	}
796 	rcu_read_unlock();
797 	return ret;
798 }
799 
800 static void flush_bio_list(struct r1conf *conf, struct bio *bio)
801 {
802 	/* flush any pending bitmap writes to disk before proceeding w/ I/O */
803 	md_bitmap_unplug(conf->mddev->bitmap);
804 	wake_up(&conf->wait_barrier);
805 
806 	while (bio) { /* submit pending writes */
807 		struct bio *next = bio->bi_next;
808 		struct md_rdev *rdev = (void *)bio->bi_disk;
809 		bio->bi_next = NULL;
810 		bio_set_dev(bio, rdev->bdev);
811 		if (test_bit(Faulty, &rdev->flags)) {
812 			bio_io_error(bio);
813 		} else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
814 				    !blk_queue_discard(bio->bi_disk->queue)))
815 			/* Just ignore it */
816 			bio_endio(bio);
817 		else
818 			generic_make_request(bio);
819 		bio = next;
820 	}
821 }
822 
823 static void flush_pending_writes(struct r1conf *conf)
824 {
825 	/* Any writes that have been queued but are awaiting
826 	 * bitmap updates get flushed here.
827 	 */
828 	spin_lock_irq(&conf->device_lock);
829 
830 	if (conf->pending_bio_list.head) {
831 		struct blk_plug plug;
832 		struct bio *bio;
833 
834 		bio = bio_list_get(&conf->pending_bio_list);
835 		conf->pending_count = 0;
836 		spin_unlock_irq(&conf->device_lock);
837 
838 		/*
839 		 * As this is called in a wait_event() loop (see freeze_array),
840 		 * current->state might be TASK_UNINTERRUPTIBLE which will
841 		 * cause a warning when we prepare to wait again.  As it is
842 		 * rare that this path is taken, it is perfectly safe to force
843 		 * us to go around the wait_event() loop again, so the warning
844 		 * is a false-positive.  Silence the warning by resetting
845 		 * thread state
846 		 */
847 		__set_current_state(TASK_RUNNING);
848 		blk_start_plug(&plug);
849 		flush_bio_list(conf, bio);
850 		blk_finish_plug(&plug);
851 	} else
852 		spin_unlock_irq(&conf->device_lock);
853 }
854 
855 /* Barriers....
856  * Sometimes we need to suspend IO while we do something else,
857  * either some resync/recovery, or reconfigure the array.
858  * To do this we raise a 'barrier'.
859  * The 'barrier' is a counter that can be raised multiple times
860  * to count how many activities are happening which preclude
861  * normal IO.
862  * We can only raise the barrier if there is no pending IO.
863  * i.e. if nr_pending == 0.
864  * We choose only to raise the barrier if no-one is waiting for the
865  * barrier to go down.  This means that as soon as an IO request
866  * is ready, no other operations which require a barrier will start
867  * until the IO request has had a chance.
868  *
869  * So: regular IO calls 'wait_barrier'.  When that returns there
870  *    is no backgroup IO happening,  It must arrange to call
871  *    allow_barrier when it has finished its IO.
872  * backgroup IO calls must call raise_barrier.  Once that returns
873  *    there is no normal IO happeing.  It must arrange to call
874  *    lower_barrier when the particular background IO completes.
875  */
876 static sector_t raise_barrier(struct r1conf *conf, sector_t sector_nr)
877 {
878 	int idx = sector_to_idx(sector_nr);
879 
880 	spin_lock_irq(&conf->resync_lock);
881 
882 	/* Wait until no block IO is waiting */
883 	wait_event_lock_irq(conf->wait_barrier,
884 			    !atomic_read(&conf->nr_waiting[idx]),
885 			    conf->resync_lock);
886 
887 	/* block any new IO from starting */
888 	atomic_inc(&conf->barrier[idx]);
889 	/*
890 	 * In raise_barrier() we firstly increase conf->barrier[idx] then
891 	 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
892 	 * increase conf->nr_pending[idx] then check conf->barrier[idx].
893 	 * A memory barrier here to make sure conf->nr_pending[idx] won't
894 	 * be fetched before conf->barrier[idx] is increased. Otherwise
895 	 * there will be a race between raise_barrier() and _wait_barrier().
896 	 */
897 	smp_mb__after_atomic();
898 
899 	/* For these conditions we must wait:
900 	 * A: while the array is in frozen state
901 	 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
902 	 *    existing in corresponding I/O barrier bucket.
903 	 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
904 	 *    max resync count which allowed on current I/O barrier bucket.
905 	 */
906 	wait_event_lock_irq(conf->wait_barrier,
907 			    (!conf->array_frozen &&
908 			     !atomic_read(&conf->nr_pending[idx]) &&
909 			     atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
910 				test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
911 			    conf->resync_lock);
912 
913 	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
914 		atomic_dec(&conf->barrier[idx]);
915 		spin_unlock_irq(&conf->resync_lock);
916 		wake_up(&conf->wait_barrier);
917 		return -EINTR;
918 	}
919 
920 	atomic_inc(&conf->nr_sync_pending);
921 	spin_unlock_irq(&conf->resync_lock);
922 
923 	return 0;
924 }
925 
926 static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
927 {
928 	int idx = sector_to_idx(sector_nr);
929 
930 	BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
931 
932 	atomic_dec(&conf->barrier[idx]);
933 	atomic_dec(&conf->nr_sync_pending);
934 	wake_up(&conf->wait_barrier);
935 }
936 
937 static void _wait_barrier(struct r1conf *conf, int idx)
938 {
939 	/*
940 	 * We need to increase conf->nr_pending[idx] very early here,
941 	 * then raise_barrier() can be blocked when it waits for
942 	 * conf->nr_pending[idx] to be 0. Then we can avoid holding
943 	 * conf->resync_lock when there is no barrier raised in same
944 	 * barrier unit bucket. Also if the array is frozen, I/O
945 	 * should be blocked until array is unfrozen.
946 	 */
947 	atomic_inc(&conf->nr_pending[idx]);
948 	/*
949 	 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
950 	 * check conf->barrier[idx]. In raise_barrier() we firstly increase
951 	 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
952 	 * barrier is necessary here to make sure conf->barrier[idx] won't be
953 	 * fetched before conf->nr_pending[idx] is increased. Otherwise there
954 	 * will be a race between _wait_barrier() and raise_barrier().
955 	 */
956 	smp_mb__after_atomic();
957 
958 	/*
959 	 * Don't worry about checking two atomic_t variables at same time
960 	 * here. If during we check conf->barrier[idx], the array is
961 	 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
962 	 * 0, it is safe to return and make the I/O continue. Because the
963 	 * array is frozen, all I/O returned here will eventually complete
964 	 * or be queued, no race will happen. See code comment in
965 	 * frozen_array().
966 	 */
967 	if (!READ_ONCE(conf->array_frozen) &&
968 	    !atomic_read(&conf->barrier[idx]))
969 		return;
970 
971 	/*
972 	 * After holding conf->resync_lock, conf->nr_pending[idx]
973 	 * should be decreased before waiting for barrier to drop.
974 	 * Otherwise, we may encounter a race condition because
975 	 * raise_barrer() might be waiting for conf->nr_pending[idx]
976 	 * to be 0 at same time.
977 	 */
978 	spin_lock_irq(&conf->resync_lock);
979 	atomic_inc(&conf->nr_waiting[idx]);
980 	atomic_dec(&conf->nr_pending[idx]);
981 	/*
982 	 * In case freeze_array() is waiting for
983 	 * get_unqueued_pending() == extra
984 	 */
985 	wake_up(&conf->wait_barrier);
986 	/* Wait for the barrier in same barrier unit bucket to drop. */
987 	wait_event_lock_irq(conf->wait_barrier,
988 			    !conf->array_frozen &&
989 			     !atomic_read(&conf->barrier[idx]),
990 			    conf->resync_lock);
991 	atomic_inc(&conf->nr_pending[idx]);
992 	atomic_dec(&conf->nr_waiting[idx]);
993 	spin_unlock_irq(&conf->resync_lock);
994 }
995 
996 static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
997 {
998 	int idx = sector_to_idx(sector_nr);
999 
1000 	/*
1001 	 * Very similar to _wait_barrier(). The difference is, for read
1002 	 * I/O we don't need wait for sync I/O, but if the whole array
1003 	 * is frozen, the read I/O still has to wait until the array is
1004 	 * unfrozen. Since there is no ordering requirement with
1005 	 * conf->barrier[idx] here, memory barrier is unnecessary as well.
1006 	 */
1007 	atomic_inc(&conf->nr_pending[idx]);
1008 
1009 	if (!READ_ONCE(conf->array_frozen))
1010 		return;
1011 
1012 	spin_lock_irq(&conf->resync_lock);
1013 	atomic_inc(&conf->nr_waiting[idx]);
1014 	atomic_dec(&conf->nr_pending[idx]);
1015 	/*
1016 	 * In case freeze_array() is waiting for
1017 	 * get_unqueued_pending() == extra
1018 	 */
1019 	wake_up(&conf->wait_barrier);
1020 	/* Wait for array to be unfrozen */
1021 	wait_event_lock_irq(conf->wait_barrier,
1022 			    !conf->array_frozen,
1023 			    conf->resync_lock);
1024 	atomic_inc(&conf->nr_pending[idx]);
1025 	atomic_dec(&conf->nr_waiting[idx]);
1026 	spin_unlock_irq(&conf->resync_lock);
1027 }
1028 
1029 static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
1030 {
1031 	int idx = sector_to_idx(sector_nr);
1032 
1033 	_wait_barrier(conf, idx);
1034 }
1035 
1036 static void _allow_barrier(struct r1conf *conf, int idx)
1037 {
1038 	atomic_dec(&conf->nr_pending[idx]);
1039 	wake_up(&conf->wait_barrier);
1040 }
1041 
1042 static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1043 {
1044 	int idx = sector_to_idx(sector_nr);
1045 
1046 	_allow_barrier(conf, idx);
1047 }
1048 
1049 /* conf->resync_lock should be held */
1050 static int get_unqueued_pending(struct r1conf *conf)
1051 {
1052 	int idx, ret;
1053 
1054 	ret = atomic_read(&conf->nr_sync_pending);
1055 	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1056 		ret += atomic_read(&conf->nr_pending[idx]) -
1057 			atomic_read(&conf->nr_queued[idx]);
1058 
1059 	return ret;
1060 }
1061 
1062 static void freeze_array(struct r1conf *conf, int extra)
1063 {
1064 	/* Stop sync I/O and normal I/O and wait for everything to
1065 	 * go quiet.
1066 	 * This is called in two situations:
1067 	 * 1) management command handlers (reshape, remove disk, quiesce).
1068 	 * 2) one normal I/O request failed.
1069 
1070 	 * After array_frozen is set to 1, new sync IO will be blocked at
1071 	 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1072 	 * or wait_read_barrier(). The flying I/Os will either complete or be
1073 	 * queued. When everything goes quite, there are only queued I/Os left.
1074 
1075 	 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1076 	 * barrier bucket index which this I/O request hits. When all sync and
1077 	 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1078 	 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1079 	 * in handle_read_error(), we may call freeze_array() before trying to
1080 	 * fix the read error. In this case, the error read I/O is not queued,
1081 	 * so get_unqueued_pending() == 1.
1082 	 *
1083 	 * Therefore before this function returns, we need to wait until
1084 	 * get_unqueued_pendings(conf) gets equal to extra. For
1085 	 * normal I/O context, extra is 1, in rested situations extra is 0.
1086 	 */
1087 	spin_lock_irq(&conf->resync_lock);
1088 	conf->array_frozen = 1;
1089 	raid1_log(conf->mddev, "wait freeze");
1090 	wait_event_lock_irq_cmd(
1091 		conf->wait_barrier,
1092 		get_unqueued_pending(conf) == extra,
1093 		conf->resync_lock,
1094 		flush_pending_writes(conf));
1095 	spin_unlock_irq(&conf->resync_lock);
1096 }
1097 static void unfreeze_array(struct r1conf *conf)
1098 {
1099 	/* reverse the effect of the freeze */
1100 	spin_lock_irq(&conf->resync_lock);
1101 	conf->array_frozen = 0;
1102 	spin_unlock_irq(&conf->resync_lock);
1103 	wake_up(&conf->wait_barrier);
1104 }
1105 
1106 static void alloc_behind_master_bio(struct r1bio *r1_bio,
1107 					   struct bio *bio)
1108 {
1109 	int size = bio->bi_iter.bi_size;
1110 	unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1111 	int i = 0;
1112 	struct bio *behind_bio = NULL;
1113 
1114 	behind_bio = bio_alloc_mddev(GFP_NOIO, vcnt, r1_bio->mddev);
1115 	if (!behind_bio)
1116 		return;
1117 
1118 	/* discard op, we don't support writezero/writesame yet */
1119 	if (!bio_has_data(bio)) {
1120 		behind_bio->bi_iter.bi_size = size;
1121 		goto skip_copy;
1122 	}
1123 
1124 	behind_bio->bi_write_hint = bio->bi_write_hint;
1125 
1126 	while (i < vcnt && size) {
1127 		struct page *page;
1128 		int len = min_t(int, PAGE_SIZE, size);
1129 
1130 		page = alloc_page(GFP_NOIO);
1131 		if (unlikely(!page))
1132 			goto free_pages;
1133 
1134 		bio_add_page(behind_bio, page, len, 0);
1135 
1136 		size -= len;
1137 		i++;
1138 	}
1139 
1140 	bio_copy_data(behind_bio, bio);
1141 skip_copy:
1142 	r1_bio->behind_master_bio = behind_bio;
1143 	set_bit(R1BIO_BehindIO, &r1_bio->state);
1144 
1145 	return;
1146 
1147 free_pages:
1148 	pr_debug("%dB behind alloc failed, doing sync I/O\n",
1149 		 bio->bi_iter.bi_size);
1150 	bio_free_pages(behind_bio);
1151 	bio_put(behind_bio);
1152 }
1153 
1154 struct raid1_plug_cb {
1155 	struct blk_plug_cb	cb;
1156 	struct bio_list		pending;
1157 	int			pending_cnt;
1158 };
1159 
1160 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1161 {
1162 	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1163 						  cb);
1164 	struct mddev *mddev = plug->cb.data;
1165 	struct r1conf *conf = mddev->private;
1166 	struct bio *bio;
1167 
1168 	if (from_schedule || current->bio_list) {
1169 		spin_lock_irq(&conf->device_lock);
1170 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1171 		conf->pending_count += plug->pending_cnt;
1172 		spin_unlock_irq(&conf->device_lock);
1173 		wake_up(&conf->wait_barrier);
1174 		md_wakeup_thread(mddev->thread);
1175 		kfree(plug);
1176 		return;
1177 	}
1178 
1179 	/* we aren't scheduling, so we can do the write-out directly. */
1180 	bio = bio_list_get(&plug->pending);
1181 	flush_bio_list(conf, bio);
1182 	kfree(plug);
1183 }
1184 
1185 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1186 {
1187 	r1_bio->master_bio = bio;
1188 	r1_bio->sectors = bio_sectors(bio);
1189 	r1_bio->state = 0;
1190 	r1_bio->mddev = mddev;
1191 	r1_bio->sector = bio->bi_iter.bi_sector;
1192 }
1193 
1194 static inline struct r1bio *
1195 alloc_r1bio(struct mddev *mddev, struct bio *bio)
1196 {
1197 	struct r1conf *conf = mddev->private;
1198 	struct r1bio *r1_bio;
1199 
1200 	r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO);
1201 	/* Ensure no bio records IO_BLOCKED */
1202 	memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1203 	init_r1bio(r1_bio, mddev, bio);
1204 	return r1_bio;
1205 }
1206 
1207 static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1208 			       int max_read_sectors, struct r1bio *r1_bio)
1209 {
1210 	struct r1conf *conf = mddev->private;
1211 	struct raid1_info *mirror;
1212 	struct bio *read_bio;
1213 	struct bitmap *bitmap = mddev->bitmap;
1214 	const int op = bio_op(bio);
1215 	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1216 	int max_sectors;
1217 	int rdisk;
1218 	bool print_msg = !!r1_bio;
1219 	char b[BDEVNAME_SIZE];
1220 
1221 	/*
1222 	 * If r1_bio is set, we are blocking the raid1d thread
1223 	 * so there is a tiny risk of deadlock.  So ask for
1224 	 * emergency memory if needed.
1225 	 */
1226 	gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1227 
1228 	if (print_msg) {
1229 		/* Need to get the block device name carefully */
1230 		struct md_rdev *rdev;
1231 		rcu_read_lock();
1232 		rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1233 		if (rdev)
1234 			bdevname(rdev->bdev, b);
1235 		else
1236 			strcpy(b, "???");
1237 		rcu_read_unlock();
1238 	}
1239 
1240 	/*
1241 	 * Still need barrier for READ in case that whole
1242 	 * array is frozen.
1243 	 */
1244 	wait_read_barrier(conf, bio->bi_iter.bi_sector);
1245 
1246 	if (!r1_bio)
1247 		r1_bio = alloc_r1bio(mddev, bio);
1248 	else
1249 		init_r1bio(r1_bio, mddev, bio);
1250 	r1_bio->sectors = max_read_sectors;
1251 
1252 	/*
1253 	 * make_request() can abort the operation when read-ahead is being
1254 	 * used and no empty request is available.
1255 	 */
1256 	rdisk = read_balance(conf, r1_bio, &max_sectors);
1257 
1258 	if (rdisk < 0) {
1259 		/* couldn't find anywhere to read from */
1260 		if (print_msg) {
1261 			pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1262 					    mdname(mddev),
1263 					    b,
1264 					    (unsigned long long)r1_bio->sector);
1265 		}
1266 		raid_end_bio_io(r1_bio);
1267 		return;
1268 	}
1269 	mirror = conf->mirrors + rdisk;
1270 
1271 	if (print_msg)
1272 		pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
1273 				    mdname(mddev),
1274 				    (unsigned long long)r1_bio->sector,
1275 				    bdevname(mirror->rdev->bdev, b));
1276 
1277 	if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1278 	    bitmap) {
1279 		/*
1280 		 * Reading from a write-mostly device must take care not to
1281 		 * over-take any writes that are 'behind'
1282 		 */
1283 		raid1_log(mddev, "wait behind writes");
1284 		wait_event(bitmap->behind_wait,
1285 			   atomic_read(&bitmap->behind_writes) == 0);
1286 	}
1287 
1288 	if (max_sectors < bio_sectors(bio)) {
1289 		struct bio *split = bio_split(bio, max_sectors,
1290 					      gfp, &conf->bio_split);
1291 		bio_chain(split, bio);
1292 		generic_make_request(bio);
1293 		bio = split;
1294 		r1_bio->master_bio = bio;
1295 		r1_bio->sectors = max_sectors;
1296 	}
1297 
1298 	r1_bio->read_disk = rdisk;
1299 
1300 	read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
1301 
1302 	r1_bio->bios[rdisk] = read_bio;
1303 
1304 	read_bio->bi_iter.bi_sector = r1_bio->sector +
1305 		mirror->rdev->data_offset;
1306 	bio_set_dev(read_bio, mirror->rdev->bdev);
1307 	read_bio->bi_end_io = raid1_end_read_request;
1308 	bio_set_op_attrs(read_bio, op, do_sync);
1309 	if (test_bit(FailFast, &mirror->rdev->flags) &&
1310 	    test_bit(R1BIO_FailFast, &r1_bio->state))
1311 	        read_bio->bi_opf |= MD_FAILFAST;
1312 	read_bio->bi_private = r1_bio;
1313 
1314 	if (mddev->gendisk)
1315 	        trace_block_bio_remap(read_bio->bi_disk->queue, read_bio,
1316 				disk_devt(mddev->gendisk), r1_bio->sector);
1317 
1318 	generic_make_request(read_bio);
1319 }
1320 
1321 static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1322 				int max_write_sectors)
1323 {
1324 	struct r1conf *conf = mddev->private;
1325 	struct r1bio *r1_bio;
1326 	int i, disks;
1327 	struct bitmap *bitmap = mddev->bitmap;
1328 	unsigned long flags;
1329 	struct md_rdev *blocked_rdev;
1330 	struct blk_plug_cb *cb;
1331 	struct raid1_plug_cb *plug = NULL;
1332 	int first_clone;
1333 	int max_sectors;
1334 
1335 	if (mddev_is_clustered(mddev) &&
1336 	     md_cluster_ops->area_resyncing(mddev, WRITE,
1337 		     bio->bi_iter.bi_sector, bio_end_sector(bio))) {
1338 
1339 		DEFINE_WAIT(w);
1340 		for (;;) {
1341 			prepare_to_wait(&conf->wait_barrier,
1342 					&w, TASK_IDLE);
1343 			if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1344 							bio->bi_iter.bi_sector,
1345 							bio_end_sector(bio)))
1346 				break;
1347 			schedule();
1348 		}
1349 		finish_wait(&conf->wait_barrier, &w);
1350 	}
1351 
1352 	/*
1353 	 * Register the new request and wait if the reconstruction
1354 	 * thread has put up a bar for new requests.
1355 	 * Continue immediately if no resync is active currently.
1356 	 */
1357 	wait_barrier(conf, bio->bi_iter.bi_sector);
1358 
1359 	r1_bio = alloc_r1bio(mddev, bio);
1360 	r1_bio->sectors = max_write_sectors;
1361 
1362 	if (conf->pending_count >= max_queued_requests) {
1363 		md_wakeup_thread(mddev->thread);
1364 		raid1_log(mddev, "wait queued");
1365 		wait_event(conf->wait_barrier,
1366 			   conf->pending_count < max_queued_requests);
1367 	}
1368 	/* first select target devices under rcu_lock and
1369 	 * inc refcount on their rdev.  Record them by setting
1370 	 * bios[x] to bio
1371 	 * If there are known/acknowledged bad blocks on any device on
1372 	 * which we have seen a write error, we want to avoid writing those
1373 	 * blocks.
1374 	 * This potentially requires several writes to write around
1375 	 * the bad blocks.  Each set of writes gets it's own r1bio
1376 	 * with a set of bios attached.
1377 	 */
1378 
1379 	disks = conf->raid_disks * 2;
1380  retry_write:
1381 	blocked_rdev = NULL;
1382 	rcu_read_lock();
1383 	max_sectors = r1_bio->sectors;
1384 	for (i = 0;  i < disks; i++) {
1385 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1386 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1387 			atomic_inc(&rdev->nr_pending);
1388 			blocked_rdev = rdev;
1389 			break;
1390 		}
1391 		r1_bio->bios[i] = NULL;
1392 		if (!rdev || test_bit(Faulty, &rdev->flags)) {
1393 			if (i < conf->raid_disks)
1394 				set_bit(R1BIO_Degraded, &r1_bio->state);
1395 			continue;
1396 		}
1397 
1398 		atomic_inc(&rdev->nr_pending);
1399 		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1400 			sector_t first_bad;
1401 			int bad_sectors;
1402 			int is_bad;
1403 
1404 			is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1405 					     &first_bad, &bad_sectors);
1406 			if (is_bad < 0) {
1407 				/* mustn't write here until the bad block is
1408 				 * acknowledged*/
1409 				set_bit(BlockedBadBlocks, &rdev->flags);
1410 				blocked_rdev = rdev;
1411 				break;
1412 			}
1413 			if (is_bad && first_bad <= r1_bio->sector) {
1414 				/* Cannot write here at all */
1415 				bad_sectors -= (r1_bio->sector - first_bad);
1416 				if (bad_sectors < max_sectors)
1417 					/* mustn't write more than bad_sectors
1418 					 * to other devices yet
1419 					 */
1420 					max_sectors = bad_sectors;
1421 				rdev_dec_pending(rdev, mddev);
1422 				/* We don't set R1BIO_Degraded as that
1423 				 * only applies if the disk is
1424 				 * missing, so it might be re-added,
1425 				 * and we want to know to recover this
1426 				 * chunk.
1427 				 * In this case the device is here,
1428 				 * and the fact that this chunk is not
1429 				 * in-sync is recorded in the bad
1430 				 * block log
1431 				 */
1432 				continue;
1433 			}
1434 			if (is_bad) {
1435 				int good_sectors = first_bad - r1_bio->sector;
1436 				if (good_sectors < max_sectors)
1437 					max_sectors = good_sectors;
1438 			}
1439 		}
1440 		r1_bio->bios[i] = bio;
1441 	}
1442 	rcu_read_unlock();
1443 
1444 	if (unlikely(blocked_rdev)) {
1445 		/* Wait for this device to become unblocked */
1446 		int j;
1447 
1448 		for (j = 0; j < i; j++)
1449 			if (r1_bio->bios[j])
1450 				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1451 		r1_bio->state = 0;
1452 		allow_barrier(conf, bio->bi_iter.bi_sector);
1453 		raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1454 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1455 		wait_barrier(conf, bio->bi_iter.bi_sector);
1456 		goto retry_write;
1457 	}
1458 
1459 	if (max_sectors < bio_sectors(bio)) {
1460 		struct bio *split = bio_split(bio, max_sectors,
1461 					      GFP_NOIO, &conf->bio_split);
1462 		bio_chain(split, bio);
1463 		generic_make_request(bio);
1464 		bio = split;
1465 		r1_bio->master_bio = bio;
1466 		r1_bio->sectors = max_sectors;
1467 	}
1468 
1469 	atomic_set(&r1_bio->remaining, 1);
1470 	atomic_set(&r1_bio->behind_remaining, 0);
1471 
1472 	first_clone = 1;
1473 
1474 	for (i = 0; i < disks; i++) {
1475 		struct bio *mbio = NULL;
1476 		if (!r1_bio->bios[i])
1477 			continue;
1478 
1479 		if (first_clone) {
1480 			/* do behind I/O ?
1481 			 * Not if there are too many, or cannot
1482 			 * allocate memory, or a reader on WriteMostly
1483 			 * is waiting for behind writes to flush */
1484 			if (bitmap &&
1485 			    (atomic_read(&bitmap->behind_writes)
1486 			     < mddev->bitmap_info.max_write_behind) &&
1487 			    !waitqueue_active(&bitmap->behind_wait)) {
1488 				alloc_behind_master_bio(r1_bio, bio);
1489 			}
1490 
1491 			md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors,
1492 					     test_bit(R1BIO_BehindIO, &r1_bio->state));
1493 			first_clone = 0;
1494 		}
1495 
1496 		if (r1_bio->behind_master_bio)
1497 			mbio = bio_clone_fast(r1_bio->behind_master_bio,
1498 					      GFP_NOIO, &mddev->bio_set);
1499 		else
1500 			mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1501 
1502 		if (r1_bio->behind_master_bio) {
1503 			struct md_rdev *rdev = conf->mirrors[i].rdev;
1504 
1505 			if (test_bit(WBCollisionCheck, &rdev->flags)) {
1506 				sector_t lo = r1_bio->sector;
1507 				sector_t hi = r1_bio->sector + r1_bio->sectors;
1508 
1509 				wait_event(rdev->wb_io_wait,
1510 					   check_and_add_wb(rdev, lo, hi) == 0);
1511 			}
1512 			if (test_bit(WriteMostly, &rdev->flags))
1513 				atomic_inc(&r1_bio->behind_remaining);
1514 		}
1515 
1516 		r1_bio->bios[i] = mbio;
1517 
1518 		mbio->bi_iter.bi_sector	= (r1_bio->sector +
1519 				   conf->mirrors[i].rdev->data_offset);
1520 		bio_set_dev(mbio, conf->mirrors[i].rdev->bdev);
1521 		mbio->bi_end_io	= raid1_end_write_request;
1522 		mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1523 		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1524 		    !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1525 		    conf->raid_disks - mddev->degraded > 1)
1526 			mbio->bi_opf |= MD_FAILFAST;
1527 		mbio->bi_private = r1_bio;
1528 
1529 		atomic_inc(&r1_bio->remaining);
1530 
1531 		if (mddev->gendisk)
1532 			trace_block_bio_remap(mbio->bi_disk->queue,
1533 					      mbio, disk_devt(mddev->gendisk),
1534 					      r1_bio->sector);
1535 		/* flush_pending_writes() needs access to the rdev so...*/
1536 		mbio->bi_disk = (void *)conf->mirrors[i].rdev;
1537 
1538 		cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1539 		if (cb)
1540 			plug = container_of(cb, struct raid1_plug_cb, cb);
1541 		else
1542 			plug = NULL;
1543 		if (plug) {
1544 			bio_list_add(&plug->pending, mbio);
1545 			plug->pending_cnt++;
1546 		} else {
1547 			spin_lock_irqsave(&conf->device_lock, flags);
1548 			bio_list_add(&conf->pending_bio_list, mbio);
1549 			conf->pending_count++;
1550 			spin_unlock_irqrestore(&conf->device_lock, flags);
1551 			md_wakeup_thread(mddev->thread);
1552 		}
1553 	}
1554 
1555 	r1_bio_write_done(r1_bio);
1556 
1557 	/* In case raid1d snuck in to freeze_array */
1558 	wake_up(&conf->wait_barrier);
1559 }
1560 
1561 static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1562 {
1563 	sector_t sectors;
1564 
1565 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1566 		md_flush_request(mddev, bio);
1567 		return true;
1568 	}
1569 
1570 	/*
1571 	 * There is a limit to the maximum size, but
1572 	 * the read/write handler might find a lower limit
1573 	 * due to bad blocks.  To avoid multiple splits,
1574 	 * we pass the maximum number of sectors down
1575 	 * and let the lower level perform the split.
1576 	 */
1577 	sectors = align_to_barrier_unit_end(
1578 		bio->bi_iter.bi_sector, bio_sectors(bio));
1579 
1580 	if (bio_data_dir(bio) == READ)
1581 		raid1_read_request(mddev, bio, sectors, NULL);
1582 	else {
1583 		if (!md_write_start(mddev,bio))
1584 			return false;
1585 		raid1_write_request(mddev, bio, sectors);
1586 	}
1587 	return true;
1588 }
1589 
1590 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1591 {
1592 	struct r1conf *conf = mddev->private;
1593 	int i;
1594 
1595 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1596 		   conf->raid_disks - mddev->degraded);
1597 	rcu_read_lock();
1598 	for (i = 0; i < conf->raid_disks; i++) {
1599 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1600 		seq_printf(seq, "%s",
1601 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1602 	}
1603 	rcu_read_unlock();
1604 	seq_printf(seq, "]");
1605 }
1606 
1607 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1608 {
1609 	char b[BDEVNAME_SIZE];
1610 	struct r1conf *conf = mddev->private;
1611 	unsigned long flags;
1612 
1613 	/*
1614 	 * If it is not operational, then we have already marked it as dead
1615 	 * else if it is the last working disks, ignore the error, let the
1616 	 * next level up know.
1617 	 * else mark the drive as failed
1618 	 */
1619 	spin_lock_irqsave(&conf->device_lock, flags);
1620 	if (test_bit(In_sync, &rdev->flags)
1621 	    && (conf->raid_disks - mddev->degraded) == 1) {
1622 		/*
1623 		 * Don't fail the drive, act as though we were just a
1624 		 * normal single drive.
1625 		 * However don't try a recovery from this drive as
1626 		 * it is very likely to fail.
1627 		 */
1628 		conf->recovery_disabled = mddev->recovery_disabled;
1629 		spin_unlock_irqrestore(&conf->device_lock, flags);
1630 		return;
1631 	}
1632 	set_bit(Blocked, &rdev->flags);
1633 	if (test_and_clear_bit(In_sync, &rdev->flags))
1634 		mddev->degraded++;
1635 	set_bit(Faulty, &rdev->flags);
1636 	spin_unlock_irqrestore(&conf->device_lock, flags);
1637 	/*
1638 	 * if recovery is running, make sure it aborts.
1639 	 */
1640 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1641 	set_mask_bits(&mddev->sb_flags, 0,
1642 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1643 	pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1644 		"md/raid1:%s: Operation continuing on %d devices.\n",
1645 		mdname(mddev), bdevname(rdev->bdev, b),
1646 		mdname(mddev), conf->raid_disks - mddev->degraded);
1647 }
1648 
1649 static void print_conf(struct r1conf *conf)
1650 {
1651 	int i;
1652 
1653 	pr_debug("RAID1 conf printout:\n");
1654 	if (!conf) {
1655 		pr_debug("(!conf)\n");
1656 		return;
1657 	}
1658 	pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1659 		 conf->raid_disks);
1660 
1661 	rcu_read_lock();
1662 	for (i = 0; i < conf->raid_disks; i++) {
1663 		char b[BDEVNAME_SIZE];
1664 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1665 		if (rdev)
1666 			pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1667 				 i, !test_bit(In_sync, &rdev->flags),
1668 				 !test_bit(Faulty, &rdev->flags),
1669 				 bdevname(rdev->bdev,b));
1670 	}
1671 	rcu_read_unlock();
1672 }
1673 
1674 static void close_sync(struct r1conf *conf)
1675 {
1676 	int idx;
1677 
1678 	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1679 		_wait_barrier(conf, idx);
1680 		_allow_barrier(conf, idx);
1681 	}
1682 
1683 	mempool_exit(&conf->r1buf_pool);
1684 }
1685 
1686 static int raid1_spare_active(struct mddev *mddev)
1687 {
1688 	int i;
1689 	struct r1conf *conf = mddev->private;
1690 	int count = 0;
1691 	unsigned long flags;
1692 
1693 	/*
1694 	 * Find all failed disks within the RAID1 configuration
1695 	 * and mark them readable.
1696 	 * Called under mddev lock, so rcu protection not needed.
1697 	 * device_lock used to avoid races with raid1_end_read_request
1698 	 * which expects 'In_sync' flags and ->degraded to be consistent.
1699 	 */
1700 	spin_lock_irqsave(&conf->device_lock, flags);
1701 	for (i = 0; i < conf->raid_disks; i++) {
1702 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1703 		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1704 		if (repl
1705 		    && !test_bit(Candidate, &repl->flags)
1706 		    && repl->recovery_offset == MaxSector
1707 		    && !test_bit(Faulty, &repl->flags)
1708 		    && !test_and_set_bit(In_sync, &repl->flags)) {
1709 			/* replacement has just become active */
1710 			if (!rdev ||
1711 			    !test_and_clear_bit(In_sync, &rdev->flags))
1712 				count++;
1713 			if (rdev) {
1714 				/* Replaced device not technically
1715 				 * faulty, but we need to be sure
1716 				 * it gets removed and never re-added
1717 				 */
1718 				set_bit(Faulty, &rdev->flags);
1719 				sysfs_notify_dirent_safe(
1720 					rdev->sysfs_state);
1721 			}
1722 		}
1723 		if (rdev
1724 		    && rdev->recovery_offset == MaxSector
1725 		    && !test_bit(Faulty, &rdev->flags)
1726 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1727 			count++;
1728 			sysfs_notify_dirent_safe(rdev->sysfs_state);
1729 		}
1730 	}
1731 	mddev->degraded -= count;
1732 	spin_unlock_irqrestore(&conf->device_lock, flags);
1733 
1734 	print_conf(conf);
1735 	return count;
1736 }
1737 
1738 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1739 {
1740 	struct r1conf *conf = mddev->private;
1741 	int err = -EEXIST;
1742 	int mirror = 0;
1743 	struct raid1_info *p;
1744 	int first = 0;
1745 	int last = conf->raid_disks - 1;
1746 
1747 	if (mddev->recovery_disabled == conf->recovery_disabled)
1748 		return -EBUSY;
1749 
1750 	if (md_integrity_add_rdev(rdev, mddev))
1751 		return -ENXIO;
1752 
1753 	if (rdev->raid_disk >= 0)
1754 		first = last = rdev->raid_disk;
1755 
1756 	/*
1757 	 * find the disk ... but prefer rdev->saved_raid_disk
1758 	 * if possible.
1759 	 */
1760 	if (rdev->saved_raid_disk >= 0 &&
1761 	    rdev->saved_raid_disk >= first &&
1762 	    rdev->saved_raid_disk < conf->raid_disks &&
1763 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1764 		first = last = rdev->saved_raid_disk;
1765 
1766 	for (mirror = first; mirror <= last; mirror++) {
1767 		p = conf->mirrors + mirror;
1768 		if (!p->rdev) {
1769 			if (mddev->gendisk)
1770 				disk_stack_limits(mddev->gendisk, rdev->bdev,
1771 						  rdev->data_offset << 9);
1772 
1773 			p->head_position = 0;
1774 			rdev->raid_disk = mirror;
1775 			err = 0;
1776 			/* As all devices are equivalent, we don't need a full recovery
1777 			 * if this was recently any drive of the array
1778 			 */
1779 			if (rdev->saved_raid_disk < 0)
1780 				conf->fullsync = 1;
1781 			rcu_assign_pointer(p->rdev, rdev);
1782 			break;
1783 		}
1784 		if (test_bit(WantReplacement, &p->rdev->flags) &&
1785 		    p[conf->raid_disks].rdev == NULL) {
1786 			/* Add this device as a replacement */
1787 			clear_bit(In_sync, &rdev->flags);
1788 			set_bit(Replacement, &rdev->flags);
1789 			rdev->raid_disk = mirror;
1790 			err = 0;
1791 			conf->fullsync = 1;
1792 			rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1793 			break;
1794 		}
1795 	}
1796 	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1797 		blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
1798 	print_conf(conf);
1799 	return err;
1800 }
1801 
1802 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1803 {
1804 	struct r1conf *conf = mddev->private;
1805 	int err = 0;
1806 	int number = rdev->raid_disk;
1807 	struct raid1_info *p = conf->mirrors + number;
1808 
1809 	if (rdev != p->rdev)
1810 		p = conf->mirrors + conf->raid_disks + number;
1811 
1812 	print_conf(conf);
1813 	if (rdev == p->rdev) {
1814 		if (test_bit(In_sync, &rdev->flags) ||
1815 		    atomic_read(&rdev->nr_pending)) {
1816 			err = -EBUSY;
1817 			goto abort;
1818 		}
1819 		/* Only remove non-faulty devices if recovery
1820 		 * is not possible.
1821 		 */
1822 		if (!test_bit(Faulty, &rdev->flags) &&
1823 		    mddev->recovery_disabled != conf->recovery_disabled &&
1824 		    mddev->degraded < conf->raid_disks) {
1825 			err = -EBUSY;
1826 			goto abort;
1827 		}
1828 		p->rdev = NULL;
1829 		if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1830 			synchronize_rcu();
1831 			if (atomic_read(&rdev->nr_pending)) {
1832 				/* lost the race, try later */
1833 				err = -EBUSY;
1834 				p->rdev = rdev;
1835 				goto abort;
1836 			}
1837 		}
1838 		if (conf->mirrors[conf->raid_disks + number].rdev) {
1839 			/* We just removed a device that is being replaced.
1840 			 * Move down the replacement.  We drain all IO before
1841 			 * doing this to avoid confusion.
1842 			 */
1843 			struct md_rdev *repl =
1844 				conf->mirrors[conf->raid_disks + number].rdev;
1845 			freeze_array(conf, 0);
1846 			if (atomic_read(&repl->nr_pending)) {
1847 				/* It means that some queued IO of retry_list
1848 				 * hold repl. Thus, we cannot set replacement
1849 				 * as NULL, avoiding rdev NULL pointer
1850 				 * dereference in sync_request_write and
1851 				 * handle_write_finished.
1852 				 */
1853 				err = -EBUSY;
1854 				unfreeze_array(conf);
1855 				goto abort;
1856 			}
1857 			clear_bit(Replacement, &repl->flags);
1858 			p->rdev = repl;
1859 			conf->mirrors[conf->raid_disks + number].rdev = NULL;
1860 			unfreeze_array(conf);
1861 		}
1862 
1863 		clear_bit(WantReplacement, &rdev->flags);
1864 		err = md_integrity_register(mddev);
1865 	}
1866 abort:
1867 
1868 	print_conf(conf);
1869 	return err;
1870 }
1871 
1872 static void end_sync_read(struct bio *bio)
1873 {
1874 	struct r1bio *r1_bio = get_resync_r1bio(bio);
1875 
1876 	update_head_pos(r1_bio->read_disk, r1_bio);
1877 
1878 	/*
1879 	 * we have read a block, now it needs to be re-written,
1880 	 * or re-read if the read failed.
1881 	 * We don't do much here, just schedule handling by raid1d
1882 	 */
1883 	if (!bio->bi_status)
1884 		set_bit(R1BIO_Uptodate, &r1_bio->state);
1885 
1886 	if (atomic_dec_and_test(&r1_bio->remaining))
1887 		reschedule_retry(r1_bio);
1888 }
1889 
1890 static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
1891 {
1892 	sector_t sync_blocks = 0;
1893 	sector_t s = r1_bio->sector;
1894 	long sectors_to_go = r1_bio->sectors;
1895 
1896 	/* make sure these bits don't get cleared. */
1897 	do {
1898 		md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1);
1899 		s += sync_blocks;
1900 		sectors_to_go -= sync_blocks;
1901 	} while (sectors_to_go > 0);
1902 }
1903 
1904 static void end_sync_write(struct bio *bio)
1905 {
1906 	int uptodate = !bio->bi_status;
1907 	struct r1bio *r1_bio = get_resync_r1bio(bio);
1908 	struct mddev *mddev = r1_bio->mddev;
1909 	struct r1conf *conf = mddev->private;
1910 	sector_t first_bad;
1911 	int bad_sectors;
1912 	struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1913 
1914 	if (!uptodate) {
1915 		abort_sync_write(mddev, r1_bio);
1916 		set_bit(WriteErrorSeen, &rdev->flags);
1917 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
1918 			set_bit(MD_RECOVERY_NEEDED, &
1919 				mddev->recovery);
1920 		set_bit(R1BIO_WriteError, &r1_bio->state);
1921 	} else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1922 			       &first_bad, &bad_sectors) &&
1923 		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1924 				r1_bio->sector,
1925 				r1_bio->sectors,
1926 				&first_bad, &bad_sectors)
1927 		)
1928 		set_bit(R1BIO_MadeGood, &r1_bio->state);
1929 
1930 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1931 		int s = r1_bio->sectors;
1932 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1933 		    test_bit(R1BIO_WriteError, &r1_bio->state))
1934 			reschedule_retry(r1_bio);
1935 		else {
1936 			put_buf(r1_bio);
1937 			md_done_sync(mddev, s, uptodate);
1938 		}
1939 	}
1940 }
1941 
1942 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1943 			    int sectors, struct page *page, int rw)
1944 {
1945 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1946 		/* success */
1947 		return 1;
1948 	if (rw == WRITE) {
1949 		set_bit(WriteErrorSeen, &rdev->flags);
1950 		if (!test_and_set_bit(WantReplacement,
1951 				      &rdev->flags))
1952 			set_bit(MD_RECOVERY_NEEDED, &
1953 				rdev->mddev->recovery);
1954 	}
1955 	/* need to record an error - either for the block or the device */
1956 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1957 		md_error(rdev->mddev, rdev);
1958 	return 0;
1959 }
1960 
1961 static int fix_sync_read_error(struct r1bio *r1_bio)
1962 {
1963 	/* Try some synchronous reads of other devices to get
1964 	 * good data, much like with normal read errors.  Only
1965 	 * read into the pages we already have so we don't
1966 	 * need to re-issue the read request.
1967 	 * We don't need to freeze the array, because being in an
1968 	 * active sync request, there is no normal IO, and
1969 	 * no overlapping syncs.
1970 	 * We don't need to check is_badblock() again as we
1971 	 * made sure that anything with a bad block in range
1972 	 * will have bi_end_io clear.
1973 	 */
1974 	struct mddev *mddev = r1_bio->mddev;
1975 	struct r1conf *conf = mddev->private;
1976 	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1977 	struct page **pages = get_resync_pages(bio)->pages;
1978 	sector_t sect = r1_bio->sector;
1979 	int sectors = r1_bio->sectors;
1980 	int idx = 0;
1981 	struct md_rdev *rdev;
1982 
1983 	rdev = conf->mirrors[r1_bio->read_disk].rdev;
1984 	if (test_bit(FailFast, &rdev->flags)) {
1985 		/* Don't try recovering from here - just fail it
1986 		 * ... unless it is the last working device of course */
1987 		md_error(mddev, rdev);
1988 		if (test_bit(Faulty, &rdev->flags))
1989 			/* Don't try to read from here, but make sure
1990 			 * put_buf does it's thing
1991 			 */
1992 			bio->bi_end_io = end_sync_write;
1993 	}
1994 
1995 	while(sectors) {
1996 		int s = sectors;
1997 		int d = r1_bio->read_disk;
1998 		int success = 0;
1999 		int start;
2000 
2001 		if (s > (PAGE_SIZE>>9))
2002 			s = PAGE_SIZE >> 9;
2003 		do {
2004 			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
2005 				/* No rcu protection needed here devices
2006 				 * can only be removed when no resync is
2007 				 * active, and resync is currently active
2008 				 */
2009 				rdev = conf->mirrors[d].rdev;
2010 				if (sync_page_io(rdev, sect, s<<9,
2011 						 pages[idx],
2012 						 REQ_OP_READ, 0, false)) {
2013 					success = 1;
2014 					break;
2015 				}
2016 			}
2017 			d++;
2018 			if (d == conf->raid_disks * 2)
2019 				d = 0;
2020 		} while (!success && d != r1_bio->read_disk);
2021 
2022 		if (!success) {
2023 			char b[BDEVNAME_SIZE];
2024 			int abort = 0;
2025 			/* Cannot read from anywhere, this block is lost.
2026 			 * Record a bad block on each device.  If that doesn't
2027 			 * work just disable and interrupt the recovery.
2028 			 * Don't fail devices as that won't really help.
2029 			 */
2030 			pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2031 					    mdname(mddev), bio_devname(bio, b),
2032 					    (unsigned long long)r1_bio->sector);
2033 			for (d = 0; d < conf->raid_disks * 2; d++) {
2034 				rdev = conf->mirrors[d].rdev;
2035 				if (!rdev || test_bit(Faulty, &rdev->flags))
2036 					continue;
2037 				if (!rdev_set_badblocks(rdev, sect, s, 0))
2038 					abort = 1;
2039 			}
2040 			if (abort) {
2041 				conf->recovery_disabled =
2042 					mddev->recovery_disabled;
2043 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2044 				md_done_sync(mddev, r1_bio->sectors, 0);
2045 				put_buf(r1_bio);
2046 				return 0;
2047 			}
2048 			/* Try next page */
2049 			sectors -= s;
2050 			sect += s;
2051 			idx++;
2052 			continue;
2053 		}
2054 
2055 		start = d;
2056 		/* write it back and re-read */
2057 		while (d != r1_bio->read_disk) {
2058 			if (d == 0)
2059 				d = conf->raid_disks * 2;
2060 			d--;
2061 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2062 				continue;
2063 			rdev = conf->mirrors[d].rdev;
2064 			if (r1_sync_page_io(rdev, sect, s,
2065 					    pages[idx],
2066 					    WRITE) == 0) {
2067 				r1_bio->bios[d]->bi_end_io = NULL;
2068 				rdev_dec_pending(rdev, mddev);
2069 			}
2070 		}
2071 		d = start;
2072 		while (d != r1_bio->read_disk) {
2073 			if (d == 0)
2074 				d = conf->raid_disks * 2;
2075 			d--;
2076 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2077 				continue;
2078 			rdev = conf->mirrors[d].rdev;
2079 			if (r1_sync_page_io(rdev, sect, s,
2080 					    pages[idx],
2081 					    READ) != 0)
2082 				atomic_add(s, &rdev->corrected_errors);
2083 		}
2084 		sectors -= s;
2085 		sect += s;
2086 		idx ++;
2087 	}
2088 	set_bit(R1BIO_Uptodate, &r1_bio->state);
2089 	bio->bi_status = 0;
2090 	return 1;
2091 }
2092 
2093 static void process_checks(struct r1bio *r1_bio)
2094 {
2095 	/* We have read all readable devices.  If we haven't
2096 	 * got the block, then there is no hope left.
2097 	 * If we have, then we want to do a comparison
2098 	 * and skip the write if everything is the same.
2099 	 * If any blocks failed to read, then we need to
2100 	 * attempt an over-write
2101 	 */
2102 	struct mddev *mddev = r1_bio->mddev;
2103 	struct r1conf *conf = mddev->private;
2104 	int primary;
2105 	int i;
2106 	int vcnt;
2107 
2108 	/* Fix variable parts of all bios */
2109 	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2110 	for (i = 0; i < conf->raid_disks * 2; i++) {
2111 		blk_status_t status;
2112 		struct bio *b = r1_bio->bios[i];
2113 		struct resync_pages *rp = get_resync_pages(b);
2114 		if (b->bi_end_io != end_sync_read)
2115 			continue;
2116 		/* fixup the bio for reuse, but preserve errno */
2117 		status = b->bi_status;
2118 		bio_reset(b);
2119 		b->bi_status = status;
2120 		b->bi_iter.bi_sector = r1_bio->sector +
2121 			conf->mirrors[i].rdev->data_offset;
2122 		bio_set_dev(b, conf->mirrors[i].rdev->bdev);
2123 		b->bi_end_io = end_sync_read;
2124 		rp->raid_bio = r1_bio;
2125 		b->bi_private = rp;
2126 
2127 		/* initialize bvec table again */
2128 		md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2129 	}
2130 	for (primary = 0; primary < conf->raid_disks * 2; primary++)
2131 		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2132 		    !r1_bio->bios[primary]->bi_status) {
2133 			r1_bio->bios[primary]->bi_end_io = NULL;
2134 			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2135 			break;
2136 		}
2137 	r1_bio->read_disk = primary;
2138 	for (i = 0; i < conf->raid_disks * 2; i++) {
2139 		int j = 0;
2140 		struct bio *pbio = r1_bio->bios[primary];
2141 		struct bio *sbio = r1_bio->bios[i];
2142 		blk_status_t status = sbio->bi_status;
2143 		struct page **ppages = get_resync_pages(pbio)->pages;
2144 		struct page **spages = get_resync_pages(sbio)->pages;
2145 		struct bio_vec *bi;
2146 		int page_len[RESYNC_PAGES] = { 0 };
2147 		struct bvec_iter_all iter_all;
2148 
2149 		if (sbio->bi_end_io != end_sync_read)
2150 			continue;
2151 		/* Now we can 'fixup' the error value */
2152 		sbio->bi_status = 0;
2153 
2154 		bio_for_each_segment_all(bi, sbio, iter_all)
2155 			page_len[j++] = bi->bv_len;
2156 
2157 		if (!status) {
2158 			for (j = vcnt; j-- ; ) {
2159 				if (memcmp(page_address(ppages[j]),
2160 					   page_address(spages[j]),
2161 					   page_len[j]))
2162 					break;
2163 			}
2164 		} else
2165 			j = 0;
2166 		if (j >= 0)
2167 			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2168 		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2169 			      && !status)) {
2170 			/* No need to write to this device. */
2171 			sbio->bi_end_io = NULL;
2172 			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2173 			continue;
2174 		}
2175 
2176 		bio_copy_data(sbio, pbio);
2177 	}
2178 }
2179 
2180 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2181 {
2182 	struct r1conf *conf = mddev->private;
2183 	int i;
2184 	int disks = conf->raid_disks * 2;
2185 	struct bio *wbio;
2186 
2187 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2188 		/* ouch - failed to read all of that. */
2189 		if (!fix_sync_read_error(r1_bio))
2190 			return;
2191 
2192 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2193 		process_checks(r1_bio);
2194 
2195 	/*
2196 	 * schedule writes
2197 	 */
2198 	atomic_set(&r1_bio->remaining, 1);
2199 	for (i = 0; i < disks ; i++) {
2200 		wbio = r1_bio->bios[i];
2201 		if (wbio->bi_end_io == NULL ||
2202 		    (wbio->bi_end_io == end_sync_read &&
2203 		     (i == r1_bio->read_disk ||
2204 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2205 			continue;
2206 		if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
2207 			abort_sync_write(mddev, r1_bio);
2208 			continue;
2209 		}
2210 
2211 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2212 		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2213 			wbio->bi_opf |= MD_FAILFAST;
2214 
2215 		wbio->bi_end_io = end_sync_write;
2216 		atomic_inc(&r1_bio->remaining);
2217 		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2218 
2219 		generic_make_request(wbio);
2220 	}
2221 
2222 	if (atomic_dec_and_test(&r1_bio->remaining)) {
2223 		/* if we're here, all write(s) have completed, so clean up */
2224 		int s = r1_bio->sectors;
2225 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2226 		    test_bit(R1BIO_WriteError, &r1_bio->state))
2227 			reschedule_retry(r1_bio);
2228 		else {
2229 			put_buf(r1_bio);
2230 			md_done_sync(mddev, s, 1);
2231 		}
2232 	}
2233 }
2234 
2235 /*
2236  * This is a kernel thread which:
2237  *
2238  *	1.	Retries failed read operations on working mirrors.
2239  *	2.	Updates the raid superblock when problems encounter.
2240  *	3.	Performs writes following reads for array synchronising.
2241  */
2242 
2243 static void fix_read_error(struct r1conf *conf, int read_disk,
2244 			   sector_t sect, int sectors)
2245 {
2246 	struct mddev *mddev = conf->mddev;
2247 	while(sectors) {
2248 		int s = sectors;
2249 		int d = read_disk;
2250 		int success = 0;
2251 		int start;
2252 		struct md_rdev *rdev;
2253 
2254 		if (s > (PAGE_SIZE>>9))
2255 			s = PAGE_SIZE >> 9;
2256 
2257 		do {
2258 			sector_t first_bad;
2259 			int bad_sectors;
2260 
2261 			rcu_read_lock();
2262 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2263 			if (rdev &&
2264 			    (test_bit(In_sync, &rdev->flags) ||
2265 			     (!test_bit(Faulty, &rdev->flags) &&
2266 			      rdev->recovery_offset >= sect + s)) &&
2267 			    is_badblock(rdev, sect, s,
2268 					&first_bad, &bad_sectors) == 0) {
2269 				atomic_inc(&rdev->nr_pending);
2270 				rcu_read_unlock();
2271 				if (sync_page_io(rdev, sect, s<<9,
2272 					 conf->tmppage, REQ_OP_READ, 0, false))
2273 					success = 1;
2274 				rdev_dec_pending(rdev, mddev);
2275 				if (success)
2276 					break;
2277 			} else
2278 				rcu_read_unlock();
2279 			d++;
2280 			if (d == conf->raid_disks * 2)
2281 				d = 0;
2282 		} while (!success && d != read_disk);
2283 
2284 		if (!success) {
2285 			/* Cannot read from anywhere - mark it bad */
2286 			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2287 			if (!rdev_set_badblocks(rdev, sect, s, 0))
2288 				md_error(mddev, rdev);
2289 			break;
2290 		}
2291 		/* write it back and re-read */
2292 		start = d;
2293 		while (d != read_disk) {
2294 			if (d==0)
2295 				d = conf->raid_disks * 2;
2296 			d--;
2297 			rcu_read_lock();
2298 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2299 			if (rdev &&
2300 			    !test_bit(Faulty, &rdev->flags)) {
2301 				atomic_inc(&rdev->nr_pending);
2302 				rcu_read_unlock();
2303 				r1_sync_page_io(rdev, sect, s,
2304 						conf->tmppage, WRITE);
2305 				rdev_dec_pending(rdev, mddev);
2306 			} else
2307 				rcu_read_unlock();
2308 		}
2309 		d = start;
2310 		while (d != read_disk) {
2311 			char b[BDEVNAME_SIZE];
2312 			if (d==0)
2313 				d = conf->raid_disks * 2;
2314 			d--;
2315 			rcu_read_lock();
2316 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2317 			if (rdev &&
2318 			    !test_bit(Faulty, &rdev->flags)) {
2319 				atomic_inc(&rdev->nr_pending);
2320 				rcu_read_unlock();
2321 				if (r1_sync_page_io(rdev, sect, s,
2322 						    conf->tmppage, READ)) {
2323 					atomic_add(s, &rdev->corrected_errors);
2324 					pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2325 						mdname(mddev), s,
2326 						(unsigned long long)(sect +
2327 								     rdev->data_offset),
2328 						bdevname(rdev->bdev, b));
2329 				}
2330 				rdev_dec_pending(rdev, mddev);
2331 			} else
2332 				rcu_read_unlock();
2333 		}
2334 		sectors -= s;
2335 		sect += s;
2336 	}
2337 }
2338 
2339 static int narrow_write_error(struct r1bio *r1_bio, int i)
2340 {
2341 	struct mddev *mddev = r1_bio->mddev;
2342 	struct r1conf *conf = mddev->private;
2343 	struct md_rdev *rdev = conf->mirrors[i].rdev;
2344 
2345 	/* bio has the data to be written to device 'i' where
2346 	 * we just recently had a write error.
2347 	 * We repeatedly clone the bio and trim down to one block,
2348 	 * then try the write.  Where the write fails we record
2349 	 * a bad block.
2350 	 * It is conceivable that the bio doesn't exactly align with
2351 	 * blocks.  We must handle this somehow.
2352 	 *
2353 	 * We currently own a reference on the rdev.
2354 	 */
2355 
2356 	int block_sectors;
2357 	sector_t sector;
2358 	int sectors;
2359 	int sect_to_write = r1_bio->sectors;
2360 	int ok = 1;
2361 
2362 	if (rdev->badblocks.shift < 0)
2363 		return 0;
2364 
2365 	block_sectors = roundup(1 << rdev->badblocks.shift,
2366 				bdev_logical_block_size(rdev->bdev) >> 9);
2367 	sector = r1_bio->sector;
2368 	sectors = ((sector + block_sectors)
2369 		   & ~(sector_t)(block_sectors - 1))
2370 		- sector;
2371 
2372 	while (sect_to_write) {
2373 		struct bio *wbio;
2374 		if (sectors > sect_to_write)
2375 			sectors = sect_to_write;
2376 		/* Write at 'sector' for 'sectors'*/
2377 
2378 		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2379 			wbio = bio_clone_fast(r1_bio->behind_master_bio,
2380 					      GFP_NOIO,
2381 					      &mddev->bio_set);
2382 		} else {
2383 			wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2384 					      &mddev->bio_set);
2385 		}
2386 
2387 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2388 		wbio->bi_iter.bi_sector = r1_bio->sector;
2389 		wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2390 
2391 		bio_trim(wbio, sector - r1_bio->sector, sectors);
2392 		wbio->bi_iter.bi_sector += rdev->data_offset;
2393 		bio_set_dev(wbio, rdev->bdev);
2394 
2395 		if (submit_bio_wait(wbio) < 0)
2396 			/* failure! */
2397 			ok = rdev_set_badblocks(rdev, sector,
2398 						sectors, 0)
2399 				&& ok;
2400 
2401 		bio_put(wbio);
2402 		sect_to_write -= sectors;
2403 		sector += sectors;
2404 		sectors = block_sectors;
2405 	}
2406 	return ok;
2407 }
2408 
2409 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2410 {
2411 	int m;
2412 	int s = r1_bio->sectors;
2413 	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2414 		struct md_rdev *rdev = conf->mirrors[m].rdev;
2415 		struct bio *bio = r1_bio->bios[m];
2416 		if (bio->bi_end_io == NULL)
2417 			continue;
2418 		if (!bio->bi_status &&
2419 		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2420 			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2421 		}
2422 		if (bio->bi_status &&
2423 		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2424 			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2425 				md_error(conf->mddev, rdev);
2426 		}
2427 	}
2428 	put_buf(r1_bio);
2429 	md_done_sync(conf->mddev, s, 1);
2430 }
2431 
2432 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2433 {
2434 	int m, idx;
2435 	bool fail = false;
2436 
2437 	for (m = 0; m < conf->raid_disks * 2 ; m++)
2438 		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2439 			struct md_rdev *rdev = conf->mirrors[m].rdev;
2440 			rdev_clear_badblocks(rdev,
2441 					     r1_bio->sector,
2442 					     r1_bio->sectors, 0);
2443 			rdev_dec_pending(rdev, conf->mddev);
2444 		} else if (r1_bio->bios[m] != NULL) {
2445 			/* This drive got a write error.  We need to
2446 			 * narrow down and record precise write
2447 			 * errors.
2448 			 */
2449 			fail = true;
2450 			if (!narrow_write_error(r1_bio, m)) {
2451 				md_error(conf->mddev,
2452 					 conf->mirrors[m].rdev);
2453 				/* an I/O failed, we can't clear the bitmap */
2454 				set_bit(R1BIO_Degraded, &r1_bio->state);
2455 			}
2456 			rdev_dec_pending(conf->mirrors[m].rdev,
2457 					 conf->mddev);
2458 		}
2459 	if (fail) {
2460 		spin_lock_irq(&conf->device_lock);
2461 		list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2462 		idx = sector_to_idx(r1_bio->sector);
2463 		atomic_inc(&conf->nr_queued[idx]);
2464 		spin_unlock_irq(&conf->device_lock);
2465 		/*
2466 		 * In case freeze_array() is waiting for condition
2467 		 * get_unqueued_pending() == extra to be true.
2468 		 */
2469 		wake_up(&conf->wait_barrier);
2470 		md_wakeup_thread(conf->mddev->thread);
2471 	} else {
2472 		if (test_bit(R1BIO_WriteError, &r1_bio->state))
2473 			close_write(r1_bio);
2474 		raid_end_bio_io(r1_bio);
2475 	}
2476 }
2477 
2478 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2479 {
2480 	struct mddev *mddev = conf->mddev;
2481 	struct bio *bio;
2482 	struct md_rdev *rdev;
2483 
2484 	clear_bit(R1BIO_ReadError, &r1_bio->state);
2485 	/* we got a read error. Maybe the drive is bad.  Maybe just
2486 	 * the block and we can fix it.
2487 	 * We freeze all other IO, and try reading the block from
2488 	 * other devices.  When we find one, we re-write
2489 	 * and check it that fixes the read error.
2490 	 * This is all done synchronously while the array is
2491 	 * frozen
2492 	 */
2493 
2494 	bio = r1_bio->bios[r1_bio->read_disk];
2495 	bio_put(bio);
2496 	r1_bio->bios[r1_bio->read_disk] = NULL;
2497 
2498 	rdev = conf->mirrors[r1_bio->read_disk].rdev;
2499 	if (mddev->ro == 0
2500 	    && !test_bit(FailFast, &rdev->flags)) {
2501 		freeze_array(conf, 1);
2502 		fix_read_error(conf, r1_bio->read_disk,
2503 			       r1_bio->sector, r1_bio->sectors);
2504 		unfreeze_array(conf);
2505 	} else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
2506 		md_error(mddev, rdev);
2507 	} else {
2508 		r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2509 	}
2510 
2511 	rdev_dec_pending(rdev, conf->mddev);
2512 	allow_barrier(conf, r1_bio->sector);
2513 	bio = r1_bio->master_bio;
2514 
2515 	/* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2516 	r1_bio->state = 0;
2517 	raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2518 }
2519 
2520 static void raid1d(struct md_thread *thread)
2521 {
2522 	struct mddev *mddev = thread->mddev;
2523 	struct r1bio *r1_bio;
2524 	unsigned long flags;
2525 	struct r1conf *conf = mddev->private;
2526 	struct list_head *head = &conf->retry_list;
2527 	struct blk_plug plug;
2528 	int idx;
2529 
2530 	md_check_recovery(mddev);
2531 
2532 	if (!list_empty_careful(&conf->bio_end_io_list) &&
2533 	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2534 		LIST_HEAD(tmp);
2535 		spin_lock_irqsave(&conf->device_lock, flags);
2536 		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2537 			list_splice_init(&conf->bio_end_io_list, &tmp);
2538 		spin_unlock_irqrestore(&conf->device_lock, flags);
2539 		while (!list_empty(&tmp)) {
2540 			r1_bio = list_first_entry(&tmp, struct r1bio,
2541 						  retry_list);
2542 			list_del(&r1_bio->retry_list);
2543 			idx = sector_to_idx(r1_bio->sector);
2544 			atomic_dec(&conf->nr_queued[idx]);
2545 			if (mddev->degraded)
2546 				set_bit(R1BIO_Degraded, &r1_bio->state);
2547 			if (test_bit(R1BIO_WriteError, &r1_bio->state))
2548 				close_write(r1_bio);
2549 			raid_end_bio_io(r1_bio);
2550 		}
2551 	}
2552 
2553 	blk_start_plug(&plug);
2554 	for (;;) {
2555 
2556 		flush_pending_writes(conf);
2557 
2558 		spin_lock_irqsave(&conf->device_lock, flags);
2559 		if (list_empty(head)) {
2560 			spin_unlock_irqrestore(&conf->device_lock, flags);
2561 			break;
2562 		}
2563 		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2564 		list_del(head->prev);
2565 		idx = sector_to_idx(r1_bio->sector);
2566 		atomic_dec(&conf->nr_queued[idx]);
2567 		spin_unlock_irqrestore(&conf->device_lock, flags);
2568 
2569 		mddev = r1_bio->mddev;
2570 		conf = mddev->private;
2571 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2572 			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2573 			    test_bit(R1BIO_WriteError, &r1_bio->state))
2574 				handle_sync_write_finished(conf, r1_bio);
2575 			else
2576 				sync_request_write(mddev, r1_bio);
2577 		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2578 			   test_bit(R1BIO_WriteError, &r1_bio->state))
2579 			handle_write_finished(conf, r1_bio);
2580 		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2581 			handle_read_error(conf, r1_bio);
2582 		else
2583 			WARN_ON_ONCE(1);
2584 
2585 		cond_resched();
2586 		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2587 			md_check_recovery(mddev);
2588 	}
2589 	blk_finish_plug(&plug);
2590 }
2591 
2592 static int init_resync(struct r1conf *conf)
2593 {
2594 	int buffs;
2595 
2596 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2597 	BUG_ON(mempool_initialized(&conf->r1buf_pool));
2598 
2599 	return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
2600 			    r1buf_pool_free, conf->poolinfo);
2601 }
2602 
2603 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2604 {
2605 	struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
2606 	struct resync_pages *rps;
2607 	struct bio *bio;
2608 	int i;
2609 
2610 	for (i = conf->poolinfo->raid_disks; i--; ) {
2611 		bio = r1bio->bios[i];
2612 		rps = bio->bi_private;
2613 		bio_reset(bio);
2614 		bio->bi_private = rps;
2615 	}
2616 	r1bio->master_bio = NULL;
2617 	return r1bio;
2618 }
2619 
2620 /*
2621  * perform a "sync" on one "block"
2622  *
2623  * We need to make sure that no normal I/O request - particularly write
2624  * requests - conflict with active sync requests.
2625  *
2626  * This is achieved by tracking pending requests and a 'barrier' concept
2627  * that can be installed to exclude normal IO requests.
2628  */
2629 
2630 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2631 				   int *skipped)
2632 {
2633 	struct r1conf *conf = mddev->private;
2634 	struct r1bio *r1_bio;
2635 	struct bio *bio;
2636 	sector_t max_sector, nr_sectors;
2637 	int disk = -1;
2638 	int i;
2639 	int wonly = -1;
2640 	int write_targets = 0, read_targets = 0;
2641 	sector_t sync_blocks;
2642 	int still_degraded = 0;
2643 	int good_sectors = RESYNC_SECTORS;
2644 	int min_bad = 0; /* number of sectors that are bad in all devices */
2645 	int idx = sector_to_idx(sector_nr);
2646 	int page_idx = 0;
2647 
2648 	if (!mempool_initialized(&conf->r1buf_pool))
2649 		if (init_resync(conf))
2650 			return 0;
2651 
2652 	max_sector = mddev->dev_sectors;
2653 	if (sector_nr >= max_sector) {
2654 		/* If we aborted, we need to abort the
2655 		 * sync on the 'current' bitmap chunk (there will
2656 		 * only be one in raid1 resync.
2657 		 * We can find the current addess in mddev->curr_resync
2658 		 */
2659 		if (mddev->curr_resync < max_sector) /* aborted */
2660 			md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2661 					   &sync_blocks, 1);
2662 		else /* completed sync */
2663 			conf->fullsync = 0;
2664 
2665 		md_bitmap_close_sync(mddev->bitmap);
2666 		close_sync(conf);
2667 
2668 		if (mddev_is_clustered(mddev)) {
2669 			conf->cluster_sync_low = 0;
2670 			conf->cluster_sync_high = 0;
2671 		}
2672 		return 0;
2673 	}
2674 
2675 	if (mddev->bitmap == NULL &&
2676 	    mddev->recovery_cp == MaxSector &&
2677 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2678 	    conf->fullsync == 0) {
2679 		*skipped = 1;
2680 		return max_sector - sector_nr;
2681 	}
2682 	/* before building a request, check if we can skip these blocks..
2683 	 * This call the bitmap_start_sync doesn't actually record anything
2684 	 */
2685 	if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2686 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2687 		/* We can skip this block, and probably several more */
2688 		*skipped = 1;
2689 		return sync_blocks;
2690 	}
2691 
2692 	/*
2693 	 * If there is non-resync activity waiting for a turn, then let it
2694 	 * though before starting on this new sync request.
2695 	 */
2696 	if (atomic_read(&conf->nr_waiting[idx]))
2697 		schedule_timeout_uninterruptible(1);
2698 
2699 	/* we are incrementing sector_nr below. To be safe, we check against
2700 	 * sector_nr + two times RESYNC_SECTORS
2701 	 */
2702 
2703 	md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2704 		mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2705 
2706 
2707 	if (raise_barrier(conf, sector_nr))
2708 		return 0;
2709 
2710 	r1_bio = raid1_alloc_init_r1buf(conf);
2711 
2712 	rcu_read_lock();
2713 	/*
2714 	 * If we get a correctably read error during resync or recovery,
2715 	 * we might want to read from a different device.  So we
2716 	 * flag all drives that could conceivably be read from for READ,
2717 	 * and any others (which will be non-In_sync devices) for WRITE.
2718 	 * If a read fails, we try reading from something else for which READ
2719 	 * is OK.
2720 	 */
2721 
2722 	r1_bio->mddev = mddev;
2723 	r1_bio->sector = sector_nr;
2724 	r1_bio->state = 0;
2725 	set_bit(R1BIO_IsSync, &r1_bio->state);
2726 	/* make sure good_sectors won't go across barrier unit boundary */
2727 	good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2728 
2729 	for (i = 0; i < conf->raid_disks * 2; i++) {
2730 		struct md_rdev *rdev;
2731 		bio = r1_bio->bios[i];
2732 
2733 		rdev = rcu_dereference(conf->mirrors[i].rdev);
2734 		if (rdev == NULL ||
2735 		    test_bit(Faulty, &rdev->flags)) {
2736 			if (i < conf->raid_disks)
2737 				still_degraded = 1;
2738 		} else if (!test_bit(In_sync, &rdev->flags)) {
2739 			bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2740 			bio->bi_end_io = end_sync_write;
2741 			write_targets ++;
2742 		} else {
2743 			/* may need to read from here */
2744 			sector_t first_bad = MaxSector;
2745 			int bad_sectors;
2746 
2747 			if (is_badblock(rdev, sector_nr, good_sectors,
2748 					&first_bad, &bad_sectors)) {
2749 				if (first_bad > sector_nr)
2750 					good_sectors = first_bad - sector_nr;
2751 				else {
2752 					bad_sectors -= (sector_nr - first_bad);
2753 					if (min_bad == 0 ||
2754 					    min_bad > bad_sectors)
2755 						min_bad = bad_sectors;
2756 				}
2757 			}
2758 			if (sector_nr < first_bad) {
2759 				if (test_bit(WriteMostly, &rdev->flags)) {
2760 					if (wonly < 0)
2761 						wonly = i;
2762 				} else {
2763 					if (disk < 0)
2764 						disk = i;
2765 				}
2766 				bio_set_op_attrs(bio, REQ_OP_READ, 0);
2767 				bio->bi_end_io = end_sync_read;
2768 				read_targets++;
2769 			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2770 				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2771 				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2772 				/*
2773 				 * The device is suitable for reading (InSync),
2774 				 * but has bad block(s) here. Let's try to correct them,
2775 				 * if we are doing resync or repair. Otherwise, leave
2776 				 * this device alone for this sync request.
2777 				 */
2778 				bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2779 				bio->bi_end_io = end_sync_write;
2780 				write_targets++;
2781 			}
2782 		}
2783 		if (bio->bi_end_io) {
2784 			atomic_inc(&rdev->nr_pending);
2785 			bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2786 			bio_set_dev(bio, rdev->bdev);
2787 			if (test_bit(FailFast, &rdev->flags))
2788 				bio->bi_opf |= MD_FAILFAST;
2789 		}
2790 	}
2791 	rcu_read_unlock();
2792 	if (disk < 0)
2793 		disk = wonly;
2794 	r1_bio->read_disk = disk;
2795 
2796 	if (read_targets == 0 && min_bad > 0) {
2797 		/* These sectors are bad on all InSync devices, so we
2798 		 * need to mark them bad on all write targets
2799 		 */
2800 		int ok = 1;
2801 		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2802 			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2803 				struct md_rdev *rdev = conf->mirrors[i].rdev;
2804 				ok = rdev_set_badblocks(rdev, sector_nr,
2805 							min_bad, 0
2806 					) && ok;
2807 			}
2808 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2809 		*skipped = 1;
2810 		put_buf(r1_bio);
2811 
2812 		if (!ok) {
2813 			/* Cannot record the badblocks, so need to
2814 			 * abort the resync.
2815 			 * If there are multiple read targets, could just
2816 			 * fail the really bad ones ???
2817 			 */
2818 			conf->recovery_disabled = mddev->recovery_disabled;
2819 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2820 			return 0;
2821 		} else
2822 			return min_bad;
2823 
2824 	}
2825 	if (min_bad > 0 && min_bad < good_sectors) {
2826 		/* only resync enough to reach the next bad->good
2827 		 * transition */
2828 		good_sectors = min_bad;
2829 	}
2830 
2831 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2832 		/* extra read targets are also write targets */
2833 		write_targets += read_targets-1;
2834 
2835 	if (write_targets == 0 || read_targets == 0) {
2836 		/* There is nowhere to write, so all non-sync
2837 		 * drives must be failed - so we are finished
2838 		 */
2839 		sector_t rv;
2840 		if (min_bad > 0)
2841 			max_sector = sector_nr + min_bad;
2842 		rv = max_sector - sector_nr;
2843 		*skipped = 1;
2844 		put_buf(r1_bio);
2845 		return rv;
2846 	}
2847 
2848 	if (max_sector > mddev->resync_max)
2849 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2850 	if (max_sector > sector_nr + good_sectors)
2851 		max_sector = sector_nr + good_sectors;
2852 	nr_sectors = 0;
2853 	sync_blocks = 0;
2854 	do {
2855 		struct page *page;
2856 		int len = PAGE_SIZE;
2857 		if (sector_nr + (len>>9) > max_sector)
2858 			len = (max_sector - sector_nr) << 9;
2859 		if (len == 0)
2860 			break;
2861 		if (sync_blocks == 0) {
2862 			if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
2863 						  &sync_blocks, still_degraded) &&
2864 			    !conf->fullsync &&
2865 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2866 				break;
2867 			if ((len >> 9) > sync_blocks)
2868 				len = sync_blocks<<9;
2869 		}
2870 
2871 		for (i = 0 ; i < conf->raid_disks * 2; i++) {
2872 			struct resync_pages *rp;
2873 
2874 			bio = r1_bio->bios[i];
2875 			rp = get_resync_pages(bio);
2876 			if (bio->bi_end_io) {
2877 				page = resync_fetch_page(rp, page_idx);
2878 
2879 				/*
2880 				 * won't fail because the vec table is big
2881 				 * enough to hold all these pages
2882 				 */
2883 				bio_add_page(bio, page, len, 0);
2884 			}
2885 		}
2886 		nr_sectors += len>>9;
2887 		sector_nr += len>>9;
2888 		sync_blocks -= (len>>9);
2889 	} while (++page_idx < RESYNC_PAGES);
2890 
2891 	r1_bio->sectors = nr_sectors;
2892 
2893 	if (mddev_is_clustered(mddev) &&
2894 			conf->cluster_sync_high < sector_nr + nr_sectors) {
2895 		conf->cluster_sync_low = mddev->curr_resync_completed;
2896 		conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2897 		/* Send resync message */
2898 		md_cluster_ops->resync_info_update(mddev,
2899 				conf->cluster_sync_low,
2900 				conf->cluster_sync_high);
2901 	}
2902 
2903 	/* For a user-requested sync, we read all readable devices and do a
2904 	 * compare
2905 	 */
2906 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2907 		atomic_set(&r1_bio->remaining, read_targets);
2908 		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2909 			bio = r1_bio->bios[i];
2910 			if (bio->bi_end_io == end_sync_read) {
2911 				read_targets--;
2912 				md_sync_acct_bio(bio, nr_sectors);
2913 				if (read_targets == 1)
2914 					bio->bi_opf &= ~MD_FAILFAST;
2915 				generic_make_request(bio);
2916 			}
2917 		}
2918 	} else {
2919 		atomic_set(&r1_bio->remaining, 1);
2920 		bio = r1_bio->bios[r1_bio->read_disk];
2921 		md_sync_acct_bio(bio, nr_sectors);
2922 		if (read_targets == 1)
2923 			bio->bi_opf &= ~MD_FAILFAST;
2924 		generic_make_request(bio);
2925 	}
2926 	return nr_sectors;
2927 }
2928 
2929 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2930 {
2931 	if (sectors)
2932 		return sectors;
2933 
2934 	return mddev->dev_sectors;
2935 }
2936 
2937 static struct r1conf *setup_conf(struct mddev *mddev)
2938 {
2939 	struct r1conf *conf;
2940 	int i;
2941 	struct raid1_info *disk;
2942 	struct md_rdev *rdev;
2943 	int err = -ENOMEM;
2944 
2945 	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2946 	if (!conf)
2947 		goto abort;
2948 
2949 	conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
2950 				   sizeof(atomic_t), GFP_KERNEL);
2951 	if (!conf->nr_pending)
2952 		goto abort;
2953 
2954 	conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
2955 				   sizeof(atomic_t), GFP_KERNEL);
2956 	if (!conf->nr_waiting)
2957 		goto abort;
2958 
2959 	conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
2960 				  sizeof(atomic_t), GFP_KERNEL);
2961 	if (!conf->nr_queued)
2962 		goto abort;
2963 
2964 	conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
2965 				sizeof(atomic_t), GFP_KERNEL);
2966 	if (!conf->barrier)
2967 		goto abort;
2968 
2969 	conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
2970 					    mddev->raid_disks, 2),
2971 				GFP_KERNEL);
2972 	if (!conf->mirrors)
2973 		goto abort;
2974 
2975 	conf->tmppage = alloc_page(GFP_KERNEL);
2976 	if (!conf->tmppage)
2977 		goto abort;
2978 
2979 	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2980 	if (!conf->poolinfo)
2981 		goto abort;
2982 	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2983 	err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc,
2984 			   rbio_pool_free, conf->poolinfo);
2985 	if (err)
2986 		goto abort;
2987 
2988 	err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
2989 	if (err)
2990 		goto abort;
2991 
2992 	conf->poolinfo->mddev = mddev;
2993 
2994 	err = -EINVAL;
2995 	spin_lock_init(&conf->device_lock);
2996 	rdev_for_each(rdev, mddev) {
2997 		int disk_idx = rdev->raid_disk;
2998 		if (disk_idx >= mddev->raid_disks
2999 		    || disk_idx < 0)
3000 			continue;
3001 		if (test_bit(Replacement, &rdev->flags))
3002 			disk = conf->mirrors + mddev->raid_disks + disk_idx;
3003 		else
3004 			disk = conf->mirrors + disk_idx;
3005 
3006 		if (disk->rdev)
3007 			goto abort;
3008 		disk->rdev = rdev;
3009 		disk->head_position = 0;
3010 		disk->seq_start = MaxSector;
3011 	}
3012 	conf->raid_disks = mddev->raid_disks;
3013 	conf->mddev = mddev;
3014 	INIT_LIST_HEAD(&conf->retry_list);
3015 	INIT_LIST_HEAD(&conf->bio_end_io_list);
3016 
3017 	spin_lock_init(&conf->resync_lock);
3018 	init_waitqueue_head(&conf->wait_barrier);
3019 
3020 	bio_list_init(&conf->pending_bio_list);
3021 	conf->pending_count = 0;
3022 	conf->recovery_disabled = mddev->recovery_disabled - 1;
3023 
3024 	err = -EIO;
3025 	for (i = 0; i < conf->raid_disks * 2; i++) {
3026 
3027 		disk = conf->mirrors + i;
3028 
3029 		if (i < conf->raid_disks &&
3030 		    disk[conf->raid_disks].rdev) {
3031 			/* This slot has a replacement. */
3032 			if (!disk->rdev) {
3033 				/* No original, just make the replacement
3034 				 * a recovering spare
3035 				 */
3036 				disk->rdev =
3037 					disk[conf->raid_disks].rdev;
3038 				disk[conf->raid_disks].rdev = NULL;
3039 			} else if (!test_bit(In_sync, &disk->rdev->flags))
3040 				/* Original is not in_sync - bad */
3041 				goto abort;
3042 		}
3043 
3044 		if (!disk->rdev ||
3045 		    !test_bit(In_sync, &disk->rdev->flags)) {
3046 			disk->head_position = 0;
3047 			if (disk->rdev &&
3048 			    (disk->rdev->saved_raid_disk < 0))
3049 				conf->fullsync = 1;
3050 		}
3051 	}
3052 
3053 	err = -ENOMEM;
3054 	conf->thread = md_register_thread(raid1d, mddev, "raid1");
3055 	if (!conf->thread)
3056 		goto abort;
3057 
3058 	return conf;
3059 
3060  abort:
3061 	if (conf) {
3062 		mempool_exit(&conf->r1bio_pool);
3063 		kfree(conf->mirrors);
3064 		safe_put_page(conf->tmppage);
3065 		kfree(conf->poolinfo);
3066 		kfree(conf->nr_pending);
3067 		kfree(conf->nr_waiting);
3068 		kfree(conf->nr_queued);
3069 		kfree(conf->barrier);
3070 		bioset_exit(&conf->bio_split);
3071 		kfree(conf);
3072 	}
3073 	return ERR_PTR(err);
3074 }
3075 
3076 static void raid1_free(struct mddev *mddev, void *priv);
3077 static int raid1_run(struct mddev *mddev)
3078 {
3079 	struct r1conf *conf;
3080 	int i;
3081 	struct md_rdev *rdev;
3082 	int ret;
3083 	bool discard_supported = false;
3084 
3085 	if (mddev->level != 1) {
3086 		pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3087 			mdname(mddev), mddev->level);
3088 		return -EIO;
3089 	}
3090 	if (mddev->reshape_position != MaxSector) {
3091 		pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3092 			mdname(mddev));
3093 		return -EIO;
3094 	}
3095 	if (mddev_init_writes_pending(mddev) < 0)
3096 		return -ENOMEM;
3097 	/*
3098 	 * copy the already verified devices into our private RAID1
3099 	 * bookkeeping area. [whatever we allocate in run(),
3100 	 * should be freed in raid1_free()]
3101 	 */
3102 	if (mddev->private == NULL)
3103 		conf = setup_conf(mddev);
3104 	else
3105 		conf = mddev->private;
3106 
3107 	if (IS_ERR(conf))
3108 		return PTR_ERR(conf);
3109 
3110 	if (mddev->queue) {
3111 		blk_queue_max_write_same_sectors(mddev->queue, 0);
3112 		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3113 	}
3114 
3115 	rdev_for_each(rdev, mddev) {
3116 		if (!mddev->gendisk)
3117 			continue;
3118 		disk_stack_limits(mddev->gendisk, rdev->bdev,
3119 				  rdev->data_offset << 9);
3120 		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3121 			discard_supported = true;
3122 	}
3123 
3124 	mddev->degraded = 0;
3125 	for (i = 0; i < conf->raid_disks; i++)
3126 		if (conf->mirrors[i].rdev == NULL ||
3127 		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3128 		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3129 			mddev->degraded++;
3130 
3131 	if (conf->raid_disks - mddev->degraded == 1)
3132 		mddev->recovery_cp = MaxSector;
3133 
3134 	if (mddev->recovery_cp != MaxSector)
3135 		pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3136 			mdname(mddev));
3137 	pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3138 		mdname(mddev), mddev->raid_disks - mddev->degraded,
3139 		mddev->raid_disks);
3140 
3141 	/*
3142 	 * Ok, everything is just fine now
3143 	 */
3144 	mddev->thread = conf->thread;
3145 	conf->thread = NULL;
3146 	mddev->private = conf;
3147 	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3148 
3149 	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3150 
3151 	if (mddev->queue) {
3152 		if (discard_supported)
3153 			blk_queue_flag_set(QUEUE_FLAG_DISCARD,
3154 						mddev->queue);
3155 		else
3156 			blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
3157 						  mddev->queue);
3158 	}
3159 
3160 	ret = md_integrity_register(mddev);
3161 	if (ret) {
3162 		md_unregister_thread(&mddev->thread);
3163 		raid1_free(mddev, conf);
3164 	}
3165 	return ret;
3166 }
3167 
3168 static void raid1_free(struct mddev *mddev, void *priv)
3169 {
3170 	struct r1conf *conf = priv;
3171 
3172 	mempool_exit(&conf->r1bio_pool);
3173 	kfree(conf->mirrors);
3174 	safe_put_page(conf->tmppage);
3175 	kfree(conf->poolinfo);
3176 	kfree(conf->nr_pending);
3177 	kfree(conf->nr_waiting);
3178 	kfree(conf->nr_queued);
3179 	kfree(conf->barrier);
3180 	bioset_exit(&conf->bio_split);
3181 	kfree(conf);
3182 }
3183 
3184 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3185 {
3186 	/* no resync is happening, and there is enough space
3187 	 * on all devices, so we can resize.
3188 	 * We need to make sure resync covers any new space.
3189 	 * If the array is shrinking we should possibly wait until
3190 	 * any io in the removed space completes, but it hardly seems
3191 	 * worth it.
3192 	 */
3193 	sector_t newsize = raid1_size(mddev, sectors, 0);
3194 	if (mddev->external_size &&
3195 	    mddev->array_sectors > newsize)
3196 		return -EINVAL;
3197 	if (mddev->bitmap) {
3198 		int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
3199 		if (ret)
3200 			return ret;
3201 	}
3202 	md_set_array_sectors(mddev, newsize);
3203 	if (sectors > mddev->dev_sectors &&
3204 	    mddev->recovery_cp > mddev->dev_sectors) {
3205 		mddev->recovery_cp = mddev->dev_sectors;
3206 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3207 	}
3208 	mddev->dev_sectors = sectors;
3209 	mddev->resync_max_sectors = sectors;
3210 	return 0;
3211 }
3212 
3213 static int raid1_reshape(struct mddev *mddev)
3214 {
3215 	/* We need to:
3216 	 * 1/ resize the r1bio_pool
3217 	 * 2/ resize conf->mirrors
3218 	 *
3219 	 * We allocate a new r1bio_pool if we can.
3220 	 * Then raise a device barrier and wait until all IO stops.
3221 	 * Then resize conf->mirrors and swap in the new r1bio pool.
3222 	 *
3223 	 * At the same time, we "pack" the devices so that all the missing
3224 	 * devices have the higher raid_disk numbers.
3225 	 */
3226 	mempool_t newpool, oldpool;
3227 	struct pool_info *newpoolinfo;
3228 	struct raid1_info *newmirrors;
3229 	struct r1conf *conf = mddev->private;
3230 	int cnt, raid_disks;
3231 	unsigned long flags;
3232 	int d, d2;
3233 	int ret;
3234 
3235 	memset(&newpool, 0, sizeof(newpool));
3236 	memset(&oldpool, 0, sizeof(oldpool));
3237 
3238 	/* Cannot change chunk_size, layout, or level */
3239 	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3240 	    mddev->layout != mddev->new_layout ||
3241 	    mddev->level != mddev->new_level) {
3242 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3243 		mddev->new_layout = mddev->layout;
3244 		mddev->new_level = mddev->level;
3245 		return -EINVAL;
3246 	}
3247 
3248 	if (!mddev_is_clustered(mddev))
3249 		md_allow_write(mddev);
3250 
3251 	raid_disks = mddev->raid_disks + mddev->delta_disks;
3252 
3253 	if (raid_disks < conf->raid_disks) {
3254 		cnt=0;
3255 		for (d= 0; d < conf->raid_disks; d++)
3256 			if (conf->mirrors[d].rdev)
3257 				cnt++;
3258 		if (cnt > raid_disks)
3259 			return -EBUSY;
3260 	}
3261 
3262 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3263 	if (!newpoolinfo)
3264 		return -ENOMEM;
3265 	newpoolinfo->mddev = mddev;
3266 	newpoolinfo->raid_disks = raid_disks * 2;
3267 
3268 	ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc,
3269 			   rbio_pool_free, newpoolinfo);
3270 	if (ret) {
3271 		kfree(newpoolinfo);
3272 		return ret;
3273 	}
3274 	newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3275 					 raid_disks, 2),
3276 			     GFP_KERNEL);
3277 	if (!newmirrors) {
3278 		kfree(newpoolinfo);
3279 		mempool_exit(&newpool);
3280 		return -ENOMEM;
3281 	}
3282 
3283 	freeze_array(conf, 0);
3284 
3285 	/* ok, everything is stopped */
3286 	oldpool = conf->r1bio_pool;
3287 	conf->r1bio_pool = newpool;
3288 
3289 	for (d = d2 = 0; d < conf->raid_disks; d++) {
3290 		struct md_rdev *rdev = conf->mirrors[d].rdev;
3291 		if (rdev && rdev->raid_disk != d2) {
3292 			sysfs_unlink_rdev(mddev, rdev);
3293 			rdev->raid_disk = d2;
3294 			sysfs_unlink_rdev(mddev, rdev);
3295 			if (sysfs_link_rdev(mddev, rdev))
3296 				pr_warn("md/raid1:%s: cannot register rd%d\n",
3297 					mdname(mddev), rdev->raid_disk);
3298 		}
3299 		if (rdev)
3300 			newmirrors[d2++].rdev = rdev;
3301 	}
3302 	kfree(conf->mirrors);
3303 	conf->mirrors = newmirrors;
3304 	kfree(conf->poolinfo);
3305 	conf->poolinfo = newpoolinfo;
3306 
3307 	spin_lock_irqsave(&conf->device_lock, flags);
3308 	mddev->degraded += (raid_disks - conf->raid_disks);
3309 	spin_unlock_irqrestore(&conf->device_lock, flags);
3310 	conf->raid_disks = mddev->raid_disks = raid_disks;
3311 	mddev->delta_disks = 0;
3312 
3313 	unfreeze_array(conf);
3314 
3315 	set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3316 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3317 	md_wakeup_thread(mddev->thread);
3318 
3319 	mempool_exit(&oldpool);
3320 	return 0;
3321 }
3322 
3323 static void raid1_quiesce(struct mddev *mddev, int quiesce)
3324 {
3325 	struct r1conf *conf = mddev->private;
3326 
3327 	if (quiesce)
3328 		freeze_array(conf, 0);
3329 	else
3330 		unfreeze_array(conf);
3331 }
3332 
3333 static void *raid1_takeover(struct mddev *mddev)
3334 {
3335 	/* raid1 can take over:
3336 	 *  raid5 with 2 devices, any layout or chunk size
3337 	 */
3338 	if (mddev->level == 5 && mddev->raid_disks == 2) {
3339 		struct r1conf *conf;
3340 		mddev->new_level = 1;
3341 		mddev->new_layout = 0;
3342 		mddev->new_chunk_sectors = 0;
3343 		conf = setup_conf(mddev);
3344 		if (!IS_ERR(conf)) {
3345 			/* Array must appear to be quiesced */
3346 			conf->array_frozen = 1;
3347 			mddev_clear_unsupported_flags(mddev,
3348 				UNSUPPORTED_MDDEV_FLAGS);
3349 		}
3350 		return conf;
3351 	}
3352 	return ERR_PTR(-EINVAL);
3353 }
3354 
3355 static struct md_personality raid1_personality =
3356 {
3357 	.name		= "raid1",
3358 	.level		= 1,
3359 	.owner		= THIS_MODULE,
3360 	.make_request	= raid1_make_request,
3361 	.run		= raid1_run,
3362 	.free		= raid1_free,
3363 	.status		= raid1_status,
3364 	.error_handler	= raid1_error,
3365 	.hot_add_disk	= raid1_add_disk,
3366 	.hot_remove_disk= raid1_remove_disk,
3367 	.spare_active	= raid1_spare_active,
3368 	.sync_request	= raid1_sync_request,
3369 	.resize		= raid1_resize,
3370 	.size		= raid1_size,
3371 	.check_reshape	= raid1_reshape,
3372 	.quiesce	= raid1_quiesce,
3373 	.takeover	= raid1_takeover,
3374 	.congested	= raid1_congested,
3375 };
3376 
3377 static int __init raid_init(void)
3378 {
3379 	return register_md_personality(&raid1_personality);
3380 }
3381 
3382 static void raid_exit(void)
3383 {
3384 	unregister_md_personality(&raid1_personality);
3385 }
3386 
3387 module_init(raid_init);
3388 module_exit(raid_exit);
3389 MODULE_LICENSE("GPL");
3390 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3391 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3392 MODULE_ALIAS("md-raid1");
3393 MODULE_ALIAS("md-level-1");
3394 
3395 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
3396