xref: /openbmc/linux/drivers/md/raid1.c (revision 04a7279f)
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33 
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 
41 #include <trace/events/block.h>
42 
43 #include "md.h"
44 #include "raid1.h"
45 #include "md-bitmap.h"
46 
47 #define UNSUPPORTED_MDDEV_FLAGS		\
48 	((1L << MD_HAS_JOURNAL) |	\
49 	 (1L << MD_JOURNAL_CLEAN) |	\
50 	 (1L << MD_HAS_PPL) |		\
51 	 (1L << MD_HAS_MULTIPLE_PPLS))
52 
53 /*
54  * Number of guaranteed r1bios in case of extreme VM load:
55  */
56 #define	NR_RAID1_BIOS 256
57 
58 /* when we get a read error on a read-only array, we redirect to another
59  * device without failing the first device, or trying to over-write to
60  * correct the read error.  To keep track of bad blocks on a per-bio
61  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
62  */
63 #define IO_BLOCKED ((struct bio *)1)
64 /* When we successfully write to a known bad-block, we need to remove the
65  * bad-block marking which must be done from process context.  So we record
66  * the success by setting devs[n].bio to IO_MADE_GOOD
67  */
68 #define IO_MADE_GOOD ((struct bio *)2)
69 
70 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
71 
72 /* When there are this many requests queue to be written by
73  * the raid1 thread, we become 'congested' to provide back-pressure
74  * for writeback.
75  */
76 static int max_queued_requests = 1024;
77 
78 static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
79 static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
80 
81 #define raid1_log(md, fmt, args...)				\
82 	do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
83 
84 #include "raid1-10.c"
85 
86 /*
87  * for resync bio, r1bio pointer can be retrieved from the per-bio
88  * 'struct resync_pages'.
89  */
90 static inline struct r1bio *get_resync_r1bio(struct bio *bio)
91 {
92 	return get_resync_pages(bio)->raid_bio;
93 }
94 
95 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
96 {
97 	struct pool_info *pi = data;
98 	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
99 
100 	/* allocate a r1bio with room for raid_disks entries in the bios array */
101 	return kzalloc(size, gfp_flags);
102 }
103 
104 static void r1bio_pool_free(void *r1_bio, void *data)
105 {
106 	kfree(r1_bio);
107 }
108 
109 #define RESYNC_DEPTH 32
110 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
111 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
112 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
113 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
114 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
115 
116 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
117 {
118 	struct pool_info *pi = data;
119 	struct r1bio *r1_bio;
120 	struct bio *bio;
121 	int need_pages;
122 	int j;
123 	struct resync_pages *rps;
124 
125 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
126 	if (!r1_bio)
127 		return NULL;
128 
129 	rps = kmalloc(sizeof(struct resync_pages) * pi->raid_disks,
130 		      gfp_flags);
131 	if (!rps)
132 		goto out_free_r1bio;
133 
134 	/*
135 	 * Allocate bios : 1 for reading, n-1 for writing
136 	 */
137 	for (j = pi->raid_disks ; j-- ; ) {
138 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
139 		if (!bio)
140 			goto out_free_bio;
141 		r1_bio->bios[j] = bio;
142 	}
143 	/*
144 	 * Allocate RESYNC_PAGES data pages and attach them to
145 	 * the first bio.
146 	 * If this is a user-requested check/repair, allocate
147 	 * RESYNC_PAGES for each bio.
148 	 */
149 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
150 		need_pages = pi->raid_disks;
151 	else
152 		need_pages = 1;
153 	for (j = 0; j < pi->raid_disks; j++) {
154 		struct resync_pages *rp = &rps[j];
155 
156 		bio = r1_bio->bios[j];
157 
158 		if (j < need_pages) {
159 			if (resync_alloc_pages(rp, gfp_flags))
160 				goto out_free_pages;
161 		} else {
162 			memcpy(rp, &rps[0], sizeof(*rp));
163 			resync_get_all_pages(rp);
164 		}
165 
166 		rp->raid_bio = r1_bio;
167 		bio->bi_private = rp;
168 	}
169 
170 	r1_bio->master_bio = NULL;
171 
172 	return r1_bio;
173 
174 out_free_pages:
175 	while (--j >= 0)
176 		resync_free_pages(&rps[j]);
177 
178 out_free_bio:
179 	while (++j < pi->raid_disks)
180 		bio_put(r1_bio->bios[j]);
181 	kfree(rps);
182 
183 out_free_r1bio:
184 	r1bio_pool_free(r1_bio, data);
185 	return NULL;
186 }
187 
188 static void r1buf_pool_free(void *__r1_bio, void *data)
189 {
190 	struct pool_info *pi = data;
191 	int i;
192 	struct r1bio *r1bio = __r1_bio;
193 	struct resync_pages *rp = NULL;
194 
195 	for (i = pi->raid_disks; i--; ) {
196 		rp = get_resync_pages(r1bio->bios[i]);
197 		resync_free_pages(rp);
198 		bio_put(r1bio->bios[i]);
199 	}
200 
201 	/* resync pages array stored in the 1st bio's .bi_private */
202 	kfree(rp);
203 
204 	r1bio_pool_free(r1bio, data);
205 }
206 
207 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
208 {
209 	int i;
210 
211 	for (i = 0; i < conf->raid_disks * 2; i++) {
212 		struct bio **bio = r1_bio->bios + i;
213 		if (!BIO_SPECIAL(*bio))
214 			bio_put(*bio);
215 		*bio = NULL;
216 	}
217 }
218 
219 static void free_r1bio(struct r1bio *r1_bio)
220 {
221 	struct r1conf *conf = r1_bio->mddev->private;
222 
223 	put_all_bios(conf, r1_bio);
224 	mempool_free(r1_bio, conf->r1bio_pool);
225 }
226 
227 static void put_buf(struct r1bio *r1_bio)
228 {
229 	struct r1conf *conf = r1_bio->mddev->private;
230 	sector_t sect = r1_bio->sector;
231 	int i;
232 
233 	for (i = 0; i < conf->raid_disks * 2; i++) {
234 		struct bio *bio = r1_bio->bios[i];
235 		if (bio->bi_end_io)
236 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
237 	}
238 
239 	mempool_free(r1_bio, conf->r1buf_pool);
240 
241 	lower_barrier(conf, sect);
242 }
243 
244 static void reschedule_retry(struct r1bio *r1_bio)
245 {
246 	unsigned long flags;
247 	struct mddev *mddev = r1_bio->mddev;
248 	struct r1conf *conf = mddev->private;
249 	int idx;
250 
251 	idx = sector_to_idx(r1_bio->sector);
252 	spin_lock_irqsave(&conf->device_lock, flags);
253 	list_add(&r1_bio->retry_list, &conf->retry_list);
254 	atomic_inc(&conf->nr_queued[idx]);
255 	spin_unlock_irqrestore(&conf->device_lock, flags);
256 
257 	wake_up(&conf->wait_barrier);
258 	md_wakeup_thread(mddev->thread);
259 }
260 
261 /*
262  * raid_end_bio_io() is called when we have finished servicing a mirrored
263  * operation and are ready to return a success/failure code to the buffer
264  * cache layer.
265  */
266 static void call_bio_endio(struct r1bio *r1_bio)
267 {
268 	struct bio *bio = r1_bio->master_bio;
269 	struct r1conf *conf = r1_bio->mddev->private;
270 
271 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
272 		bio->bi_status = BLK_STS_IOERR;
273 
274 	bio_endio(bio);
275 	/*
276 	 * Wake up any possible resync thread that waits for the device
277 	 * to go idle.
278 	 */
279 	allow_barrier(conf, r1_bio->sector);
280 }
281 
282 static void raid_end_bio_io(struct r1bio *r1_bio)
283 {
284 	struct bio *bio = r1_bio->master_bio;
285 
286 	/* if nobody has done the final endio yet, do it now */
287 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
288 		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
289 			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
290 			 (unsigned long long) bio->bi_iter.bi_sector,
291 			 (unsigned long long) bio_end_sector(bio) - 1);
292 
293 		call_bio_endio(r1_bio);
294 	}
295 	free_r1bio(r1_bio);
296 }
297 
298 /*
299  * Update disk head position estimator based on IRQ completion info.
300  */
301 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
302 {
303 	struct r1conf *conf = r1_bio->mddev->private;
304 
305 	conf->mirrors[disk].head_position =
306 		r1_bio->sector + (r1_bio->sectors);
307 }
308 
309 /*
310  * Find the disk number which triggered given bio
311  */
312 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
313 {
314 	int mirror;
315 	struct r1conf *conf = r1_bio->mddev->private;
316 	int raid_disks = conf->raid_disks;
317 
318 	for (mirror = 0; mirror < raid_disks * 2; mirror++)
319 		if (r1_bio->bios[mirror] == bio)
320 			break;
321 
322 	BUG_ON(mirror == raid_disks * 2);
323 	update_head_pos(mirror, r1_bio);
324 
325 	return mirror;
326 }
327 
328 static void raid1_end_read_request(struct bio *bio)
329 {
330 	int uptodate = !bio->bi_status;
331 	struct r1bio *r1_bio = bio->bi_private;
332 	struct r1conf *conf = r1_bio->mddev->private;
333 	struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
334 
335 	/*
336 	 * this branch is our 'one mirror IO has finished' event handler:
337 	 */
338 	update_head_pos(r1_bio->read_disk, r1_bio);
339 
340 	if (uptodate)
341 		set_bit(R1BIO_Uptodate, &r1_bio->state);
342 	else if (test_bit(FailFast, &rdev->flags) &&
343 		 test_bit(R1BIO_FailFast, &r1_bio->state))
344 		/* This was a fail-fast read so we definitely
345 		 * want to retry */
346 		;
347 	else {
348 		/* If all other devices have failed, we want to return
349 		 * the error upwards rather than fail the last device.
350 		 * Here we redefine "uptodate" to mean "Don't want to retry"
351 		 */
352 		unsigned long flags;
353 		spin_lock_irqsave(&conf->device_lock, flags);
354 		if (r1_bio->mddev->degraded == conf->raid_disks ||
355 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
356 		     test_bit(In_sync, &rdev->flags)))
357 			uptodate = 1;
358 		spin_unlock_irqrestore(&conf->device_lock, flags);
359 	}
360 
361 	if (uptodate) {
362 		raid_end_bio_io(r1_bio);
363 		rdev_dec_pending(rdev, conf->mddev);
364 	} else {
365 		/*
366 		 * oops, read error:
367 		 */
368 		char b[BDEVNAME_SIZE];
369 		pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
370 				   mdname(conf->mddev),
371 				   bdevname(rdev->bdev, b),
372 				   (unsigned long long)r1_bio->sector);
373 		set_bit(R1BIO_ReadError, &r1_bio->state);
374 		reschedule_retry(r1_bio);
375 		/* don't drop the reference on read_disk yet */
376 	}
377 }
378 
379 static void close_write(struct r1bio *r1_bio)
380 {
381 	/* it really is the end of this request */
382 	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
383 		bio_free_pages(r1_bio->behind_master_bio);
384 		bio_put(r1_bio->behind_master_bio);
385 		r1_bio->behind_master_bio = NULL;
386 	}
387 	/* clear the bitmap if all writes complete successfully */
388 	bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
389 			r1_bio->sectors,
390 			!test_bit(R1BIO_Degraded, &r1_bio->state),
391 			test_bit(R1BIO_BehindIO, &r1_bio->state));
392 	md_write_end(r1_bio->mddev);
393 }
394 
395 static void r1_bio_write_done(struct r1bio *r1_bio)
396 {
397 	if (!atomic_dec_and_test(&r1_bio->remaining))
398 		return;
399 
400 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
401 		reschedule_retry(r1_bio);
402 	else {
403 		close_write(r1_bio);
404 		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
405 			reschedule_retry(r1_bio);
406 		else
407 			raid_end_bio_io(r1_bio);
408 	}
409 }
410 
411 static void raid1_end_write_request(struct bio *bio)
412 {
413 	struct r1bio *r1_bio = bio->bi_private;
414 	int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
415 	struct r1conf *conf = r1_bio->mddev->private;
416 	struct bio *to_put = NULL;
417 	int mirror = find_bio_disk(r1_bio, bio);
418 	struct md_rdev *rdev = conf->mirrors[mirror].rdev;
419 	bool discard_error;
420 
421 	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
422 
423 	/*
424 	 * 'one mirror IO has finished' event handler:
425 	 */
426 	if (bio->bi_status && !discard_error) {
427 		set_bit(WriteErrorSeen,	&rdev->flags);
428 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
429 			set_bit(MD_RECOVERY_NEEDED, &
430 				conf->mddev->recovery);
431 
432 		if (test_bit(FailFast, &rdev->flags) &&
433 		    (bio->bi_opf & MD_FAILFAST) &&
434 		    /* We never try FailFast to WriteMostly devices */
435 		    !test_bit(WriteMostly, &rdev->flags)) {
436 			md_error(r1_bio->mddev, rdev);
437 			if (!test_bit(Faulty, &rdev->flags))
438 				/* This is the only remaining device,
439 				 * We need to retry the write without
440 				 * FailFast
441 				 */
442 				set_bit(R1BIO_WriteError, &r1_bio->state);
443 			else {
444 				/* Finished with this branch */
445 				r1_bio->bios[mirror] = NULL;
446 				to_put = bio;
447 			}
448 		} else
449 			set_bit(R1BIO_WriteError, &r1_bio->state);
450 	} else {
451 		/*
452 		 * Set R1BIO_Uptodate in our master bio, so that we
453 		 * will return a good error code for to the higher
454 		 * levels even if IO on some other mirrored buffer
455 		 * fails.
456 		 *
457 		 * The 'master' represents the composite IO operation
458 		 * to user-side. So if something waits for IO, then it
459 		 * will wait for the 'master' bio.
460 		 */
461 		sector_t first_bad;
462 		int bad_sectors;
463 
464 		r1_bio->bios[mirror] = NULL;
465 		to_put = bio;
466 		/*
467 		 * Do not set R1BIO_Uptodate if the current device is
468 		 * rebuilding or Faulty. This is because we cannot use
469 		 * such device for properly reading the data back (we could
470 		 * potentially use it, if the current write would have felt
471 		 * before rdev->recovery_offset, but for simplicity we don't
472 		 * check this here.
473 		 */
474 		if (test_bit(In_sync, &rdev->flags) &&
475 		    !test_bit(Faulty, &rdev->flags))
476 			set_bit(R1BIO_Uptodate, &r1_bio->state);
477 
478 		/* Maybe we can clear some bad blocks. */
479 		if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
480 				&first_bad, &bad_sectors) && !discard_error) {
481 			r1_bio->bios[mirror] = IO_MADE_GOOD;
482 			set_bit(R1BIO_MadeGood, &r1_bio->state);
483 		}
484 	}
485 
486 	if (behind) {
487 		if (test_bit(WriteMostly, &rdev->flags))
488 			atomic_dec(&r1_bio->behind_remaining);
489 
490 		/*
491 		 * In behind mode, we ACK the master bio once the I/O
492 		 * has safely reached all non-writemostly
493 		 * disks. Setting the Returned bit ensures that this
494 		 * gets done only once -- we don't ever want to return
495 		 * -EIO here, instead we'll wait
496 		 */
497 		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
498 		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
499 			/* Maybe we can return now */
500 			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
501 				struct bio *mbio = r1_bio->master_bio;
502 				pr_debug("raid1: behind end write sectors"
503 					 " %llu-%llu\n",
504 					 (unsigned long long) mbio->bi_iter.bi_sector,
505 					 (unsigned long long) bio_end_sector(mbio) - 1);
506 				call_bio_endio(r1_bio);
507 			}
508 		}
509 	}
510 	if (r1_bio->bios[mirror] == NULL)
511 		rdev_dec_pending(rdev, conf->mddev);
512 
513 	/*
514 	 * Let's see if all mirrored write operations have finished
515 	 * already.
516 	 */
517 	r1_bio_write_done(r1_bio);
518 
519 	if (to_put)
520 		bio_put(to_put);
521 }
522 
523 static sector_t align_to_barrier_unit_end(sector_t start_sector,
524 					  sector_t sectors)
525 {
526 	sector_t len;
527 
528 	WARN_ON(sectors == 0);
529 	/*
530 	 * len is the number of sectors from start_sector to end of the
531 	 * barrier unit which start_sector belongs to.
532 	 */
533 	len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
534 	      start_sector;
535 
536 	if (len > sectors)
537 		len = sectors;
538 
539 	return len;
540 }
541 
542 /*
543  * This routine returns the disk from which the requested read should
544  * be done. There is a per-array 'next expected sequential IO' sector
545  * number - if this matches on the next IO then we use the last disk.
546  * There is also a per-disk 'last know head position' sector that is
547  * maintained from IRQ contexts, both the normal and the resync IO
548  * completion handlers update this position correctly. If there is no
549  * perfect sequential match then we pick the disk whose head is closest.
550  *
551  * If there are 2 mirrors in the same 2 devices, performance degrades
552  * because position is mirror, not device based.
553  *
554  * The rdev for the device selected will have nr_pending incremented.
555  */
556 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
557 {
558 	const sector_t this_sector = r1_bio->sector;
559 	int sectors;
560 	int best_good_sectors;
561 	int best_disk, best_dist_disk, best_pending_disk;
562 	int has_nonrot_disk;
563 	int disk;
564 	sector_t best_dist;
565 	unsigned int min_pending;
566 	struct md_rdev *rdev;
567 	int choose_first;
568 	int choose_next_idle;
569 
570 	rcu_read_lock();
571 	/*
572 	 * Check if we can balance. We can balance on the whole
573 	 * device if no resync is going on, or below the resync window.
574 	 * We take the first readable disk when above the resync window.
575 	 */
576  retry:
577 	sectors = r1_bio->sectors;
578 	best_disk = -1;
579 	best_dist_disk = -1;
580 	best_dist = MaxSector;
581 	best_pending_disk = -1;
582 	min_pending = UINT_MAX;
583 	best_good_sectors = 0;
584 	has_nonrot_disk = 0;
585 	choose_next_idle = 0;
586 	clear_bit(R1BIO_FailFast, &r1_bio->state);
587 
588 	if ((conf->mddev->recovery_cp < this_sector + sectors) ||
589 	    (mddev_is_clustered(conf->mddev) &&
590 	    md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
591 		    this_sector + sectors)))
592 		choose_first = 1;
593 	else
594 		choose_first = 0;
595 
596 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
597 		sector_t dist;
598 		sector_t first_bad;
599 		int bad_sectors;
600 		unsigned int pending;
601 		bool nonrot;
602 
603 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
604 		if (r1_bio->bios[disk] == IO_BLOCKED
605 		    || rdev == NULL
606 		    || test_bit(Faulty, &rdev->flags))
607 			continue;
608 		if (!test_bit(In_sync, &rdev->flags) &&
609 		    rdev->recovery_offset < this_sector + sectors)
610 			continue;
611 		if (test_bit(WriteMostly, &rdev->flags)) {
612 			/* Don't balance among write-mostly, just
613 			 * use the first as a last resort */
614 			if (best_dist_disk < 0) {
615 				if (is_badblock(rdev, this_sector, sectors,
616 						&first_bad, &bad_sectors)) {
617 					if (first_bad <= this_sector)
618 						/* Cannot use this */
619 						continue;
620 					best_good_sectors = first_bad - this_sector;
621 				} else
622 					best_good_sectors = sectors;
623 				best_dist_disk = disk;
624 				best_pending_disk = disk;
625 			}
626 			continue;
627 		}
628 		/* This is a reasonable device to use.  It might
629 		 * even be best.
630 		 */
631 		if (is_badblock(rdev, this_sector, sectors,
632 				&first_bad, &bad_sectors)) {
633 			if (best_dist < MaxSector)
634 				/* already have a better device */
635 				continue;
636 			if (first_bad <= this_sector) {
637 				/* cannot read here. If this is the 'primary'
638 				 * device, then we must not read beyond
639 				 * bad_sectors from another device..
640 				 */
641 				bad_sectors -= (this_sector - first_bad);
642 				if (choose_first && sectors > bad_sectors)
643 					sectors = bad_sectors;
644 				if (best_good_sectors > sectors)
645 					best_good_sectors = sectors;
646 
647 			} else {
648 				sector_t good_sectors = first_bad - this_sector;
649 				if (good_sectors > best_good_sectors) {
650 					best_good_sectors = good_sectors;
651 					best_disk = disk;
652 				}
653 				if (choose_first)
654 					break;
655 			}
656 			continue;
657 		} else {
658 			if ((sectors > best_good_sectors) && (best_disk >= 0))
659 				best_disk = -1;
660 			best_good_sectors = sectors;
661 		}
662 
663 		if (best_disk >= 0)
664 			/* At least two disks to choose from so failfast is OK */
665 			set_bit(R1BIO_FailFast, &r1_bio->state);
666 
667 		nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
668 		has_nonrot_disk |= nonrot;
669 		pending = atomic_read(&rdev->nr_pending);
670 		dist = abs(this_sector - conf->mirrors[disk].head_position);
671 		if (choose_first) {
672 			best_disk = disk;
673 			break;
674 		}
675 		/* Don't change to another disk for sequential reads */
676 		if (conf->mirrors[disk].next_seq_sect == this_sector
677 		    || dist == 0) {
678 			int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
679 			struct raid1_info *mirror = &conf->mirrors[disk];
680 
681 			best_disk = disk;
682 			/*
683 			 * If buffered sequential IO size exceeds optimal
684 			 * iosize, check if there is idle disk. If yes, choose
685 			 * the idle disk. read_balance could already choose an
686 			 * idle disk before noticing it's a sequential IO in
687 			 * this disk. This doesn't matter because this disk
688 			 * will idle, next time it will be utilized after the
689 			 * first disk has IO size exceeds optimal iosize. In
690 			 * this way, iosize of the first disk will be optimal
691 			 * iosize at least. iosize of the second disk might be
692 			 * small, but not a big deal since when the second disk
693 			 * starts IO, the first disk is likely still busy.
694 			 */
695 			if (nonrot && opt_iosize > 0 &&
696 			    mirror->seq_start != MaxSector &&
697 			    mirror->next_seq_sect > opt_iosize &&
698 			    mirror->next_seq_sect - opt_iosize >=
699 			    mirror->seq_start) {
700 				choose_next_idle = 1;
701 				continue;
702 			}
703 			break;
704 		}
705 
706 		if (choose_next_idle)
707 			continue;
708 
709 		if (min_pending > pending) {
710 			min_pending = pending;
711 			best_pending_disk = disk;
712 		}
713 
714 		if (dist < best_dist) {
715 			best_dist = dist;
716 			best_dist_disk = disk;
717 		}
718 	}
719 
720 	/*
721 	 * If all disks are rotational, choose the closest disk. If any disk is
722 	 * non-rotational, choose the disk with less pending request even the
723 	 * disk is rotational, which might/might not be optimal for raids with
724 	 * mixed ratation/non-rotational disks depending on workload.
725 	 */
726 	if (best_disk == -1) {
727 		if (has_nonrot_disk || min_pending == 0)
728 			best_disk = best_pending_disk;
729 		else
730 			best_disk = best_dist_disk;
731 	}
732 
733 	if (best_disk >= 0) {
734 		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
735 		if (!rdev)
736 			goto retry;
737 		atomic_inc(&rdev->nr_pending);
738 		sectors = best_good_sectors;
739 
740 		if (conf->mirrors[best_disk].next_seq_sect != this_sector)
741 			conf->mirrors[best_disk].seq_start = this_sector;
742 
743 		conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
744 	}
745 	rcu_read_unlock();
746 	*max_sectors = sectors;
747 
748 	return best_disk;
749 }
750 
751 static int raid1_congested(struct mddev *mddev, int bits)
752 {
753 	struct r1conf *conf = mddev->private;
754 	int i, ret = 0;
755 
756 	if ((bits & (1 << WB_async_congested)) &&
757 	    conf->pending_count >= max_queued_requests)
758 		return 1;
759 
760 	rcu_read_lock();
761 	for (i = 0; i < conf->raid_disks * 2; i++) {
762 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
763 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
764 			struct request_queue *q = bdev_get_queue(rdev->bdev);
765 
766 			BUG_ON(!q);
767 
768 			/* Note the '|| 1' - when read_balance prefers
769 			 * non-congested targets, it can be removed
770 			 */
771 			if ((bits & (1 << WB_async_congested)) || 1)
772 				ret |= bdi_congested(q->backing_dev_info, bits);
773 			else
774 				ret &= bdi_congested(q->backing_dev_info, bits);
775 		}
776 	}
777 	rcu_read_unlock();
778 	return ret;
779 }
780 
781 static void flush_bio_list(struct r1conf *conf, struct bio *bio)
782 {
783 	/* flush any pending bitmap writes to disk before proceeding w/ I/O */
784 	bitmap_unplug(conf->mddev->bitmap);
785 	wake_up(&conf->wait_barrier);
786 
787 	while (bio) { /* submit pending writes */
788 		struct bio *next = bio->bi_next;
789 		struct md_rdev *rdev = (void *)bio->bi_disk;
790 		bio->bi_next = NULL;
791 		bio_set_dev(bio, rdev->bdev);
792 		if (test_bit(Faulty, &rdev->flags)) {
793 			bio_io_error(bio);
794 		} else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
795 				    !blk_queue_discard(bio->bi_disk->queue)))
796 			/* Just ignore it */
797 			bio_endio(bio);
798 		else
799 			generic_make_request(bio);
800 		bio = next;
801 	}
802 }
803 
804 static void flush_pending_writes(struct r1conf *conf)
805 {
806 	/* Any writes that have been queued but are awaiting
807 	 * bitmap updates get flushed here.
808 	 */
809 	spin_lock_irq(&conf->device_lock);
810 
811 	if (conf->pending_bio_list.head) {
812 		struct bio *bio;
813 		bio = bio_list_get(&conf->pending_bio_list);
814 		conf->pending_count = 0;
815 		spin_unlock_irq(&conf->device_lock);
816 		flush_bio_list(conf, bio);
817 	} else
818 		spin_unlock_irq(&conf->device_lock);
819 }
820 
821 /* Barriers....
822  * Sometimes we need to suspend IO while we do something else,
823  * either some resync/recovery, or reconfigure the array.
824  * To do this we raise a 'barrier'.
825  * The 'barrier' is a counter that can be raised multiple times
826  * to count how many activities are happening which preclude
827  * normal IO.
828  * We can only raise the barrier if there is no pending IO.
829  * i.e. if nr_pending == 0.
830  * We choose only to raise the barrier if no-one is waiting for the
831  * barrier to go down.  This means that as soon as an IO request
832  * is ready, no other operations which require a barrier will start
833  * until the IO request has had a chance.
834  *
835  * So: regular IO calls 'wait_barrier'.  When that returns there
836  *    is no backgroup IO happening,  It must arrange to call
837  *    allow_barrier when it has finished its IO.
838  * backgroup IO calls must call raise_barrier.  Once that returns
839  *    there is no normal IO happeing.  It must arrange to call
840  *    lower_barrier when the particular background IO completes.
841  */
842 static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
843 {
844 	int idx = sector_to_idx(sector_nr);
845 
846 	spin_lock_irq(&conf->resync_lock);
847 
848 	/* Wait until no block IO is waiting */
849 	wait_event_lock_irq(conf->wait_barrier,
850 			    !atomic_read(&conf->nr_waiting[idx]),
851 			    conf->resync_lock);
852 
853 	/* block any new IO from starting */
854 	atomic_inc(&conf->barrier[idx]);
855 	/*
856 	 * In raise_barrier() we firstly increase conf->barrier[idx] then
857 	 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
858 	 * increase conf->nr_pending[idx] then check conf->barrier[idx].
859 	 * A memory barrier here to make sure conf->nr_pending[idx] won't
860 	 * be fetched before conf->barrier[idx] is increased. Otherwise
861 	 * there will be a race between raise_barrier() and _wait_barrier().
862 	 */
863 	smp_mb__after_atomic();
864 
865 	/* For these conditions we must wait:
866 	 * A: while the array is in frozen state
867 	 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
868 	 *    existing in corresponding I/O barrier bucket.
869 	 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
870 	 *    max resync count which allowed on current I/O barrier bucket.
871 	 */
872 	wait_event_lock_irq(conf->wait_barrier,
873 			    !conf->array_frozen &&
874 			     !atomic_read(&conf->nr_pending[idx]) &&
875 			     atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH,
876 			    conf->resync_lock);
877 
878 	atomic_inc(&conf->nr_sync_pending);
879 	spin_unlock_irq(&conf->resync_lock);
880 }
881 
882 static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
883 {
884 	int idx = sector_to_idx(sector_nr);
885 
886 	BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
887 
888 	atomic_dec(&conf->barrier[idx]);
889 	atomic_dec(&conf->nr_sync_pending);
890 	wake_up(&conf->wait_barrier);
891 }
892 
893 static void _wait_barrier(struct r1conf *conf, int idx)
894 {
895 	/*
896 	 * We need to increase conf->nr_pending[idx] very early here,
897 	 * then raise_barrier() can be blocked when it waits for
898 	 * conf->nr_pending[idx] to be 0. Then we can avoid holding
899 	 * conf->resync_lock when there is no barrier raised in same
900 	 * barrier unit bucket. Also if the array is frozen, I/O
901 	 * should be blocked until array is unfrozen.
902 	 */
903 	atomic_inc(&conf->nr_pending[idx]);
904 	/*
905 	 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
906 	 * check conf->barrier[idx]. In raise_barrier() we firstly increase
907 	 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
908 	 * barrier is necessary here to make sure conf->barrier[idx] won't be
909 	 * fetched before conf->nr_pending[idx] is increased. Otherwise there
910 	 * will be a race between _wait_barrier() and raise_barrier().
911 	 */
912 	smp_mb__after_atomic();
913 
914 	/*
915 	 * Don't worry about checking two atomic_t variables at same time
916 	 * here. If during we check conf->barrier[idx], the array is
917 	 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
918 	 * 0, it is safe to return and make the I/O continue. Because the
919 	 * array is frozen, all I/O returned here will eventually complete
920 	 * or be queued, no race will happen. See code comment in
921 	 * frozen_array().
922 	 */
923 	if (!READ_ONCE(conf->array_frozen) &&
924 	    !atomic_read(&conf->barrier[idx]))
925 		return;
926 
927 	/*
928 	 * After holding conf->resync_lock, conf->nr_pending[idx]
929 	 * should be decreased before waiting for barrier to drop.
930 	 * Otherwise, we may encounter a race condition because
931 	 * raise_barrer() might be waiting for conf->nr_pending[idx]
932 	 * to be 0 at same time.
933 	 */
934 	spin_lock_irq(&conf->resync_lock);
935 	atomic_inc(&conf->nr_waiting[idx]);
936 	atomic_dec(&conf->nr_pending[idx]);
937 	/*
938 	 * In case freeze_array() is waiting for
939 	 * get_unqueued_pending() == extra
940 	 */
941 	wake_up(&conf->wait_barrier);
942 	/* Wait for the barrier in same barrier unit bucket to drop. */
943 	wait_event_lock_irq(conf->wait_barrier,
944 			    !conf->array_frozen &&
945 			     !atomic_read(&conf->barrier[idx]),
946 			    conf->resync_lock);
947 	atomic_inc(&conf->nr_pending[idx]);
948 	atomic_dec(&conf->nr_waiting[idx]);
949 	spin_unlock_irq(&conf->resync_lock);
950 }
951 
952 static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
953 {
954 	int idx = sector_to_idx(sector_nr);
955 
956 	/*
957 	 * Very similar to _wait_barrier(). The difference is, for read
958 	 * I/O we don't need wait for sync I/O, but if the whole array
959 	 * is frozen, the read I/O still has to wait until the array is
960 	 * unfrozen. Since there is no ordering requirement with
961 	 * conf->barrier[idx] here, memory barrier is unnecessary as well.
962 	 */
963 	atomic_inc(&conf->nr_pending[idx]);
964 
965 	if (!READ_ONCE(conf->array_frozen))
966 		return;
967 
968 	spin_lock_irq(&conf->resync_lock);
969 	atomic_inc(&conf->nr_waiting[idx]);
970 	atomic_dec(&conf->nr_pending[idx]);
971 	/*
972 	 * In case freeze_array() is waiting for
973 	 * get_unqueued_pending() == extra
974 	 */
975 	wake_up(&conf->wait_barrier);
976 	/* Wait for array to be unfrozen */
977 	wait_event_lock_irq(conf->wait_barrier,
978 			    !conf->array_frozen,
979 			    conf->resync_lock);
980 	atomic_inc(&conf->nr_pending[idx]);
981 	atomic_dec(&conf->nr_waiting[idx]);
982 	spin_unlock_irq(&conf->resync_lock);
983 }
984 
985 static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
986 {
987 	int idx = sector_to_idx(sector_nr);
988 
989 	_wait_barrier(conf, idx);
990 }
991 
992 static void _allow_barrier(struct r1conf *conf, int idx)
993 {
994 	atomic_dec(&conf->nr_pending[idx]);
995 	wake_up(&conf->wait_barrier);
996 }
997 
998 static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
999 {
1000 	int idx = sector_to_idx(sector_nr);
1001 
1002 	_allow_barrier(conf, idx);
1003 }
1004 
1005 /* conf->resync_lock should be held */
1006 static int get_unqueued_pending(struct r1conf *conf)
1007 {
1008 	int idx, ret;
1009 
1010 	ret = atomic_read(&conf->nr_sync_pending);
1011 	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1012 		ret += atomic_read(&conf->nr_pending[idx]) -
1013 			atomic_read(&conf->nr_queued[idx]);
1014 
1015 	return ret;
1016 }
1017 
1018 static void freeze_array(struct r1conf *conf, int extra)
1019 {
1020 	/* Stop sync I/O and normal I/O and wait for everything to
1021 	 * go quiet.
1022 	 * This is called in two situations:
1023 	 * 1) management command handlers (reshape, remove disk, quiesce).
1024 	 * 2) one normal I/O request failed.
1025 
1026 	 * After array_frozen is set to 1, new sync IO will be blocked at
1027 	 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1028 	 * or wait_read_barrier(). The flying I/Os will either complete or be
1029 	 * queued. When everything goes quite, there are only queued I/Os left.
1030 
1031 	 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1032 	 * barrier bucket index which this I/O request hits. When all sync and
1033 	 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1034 	 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1035 	 * in handle_read_error(), we may call freeze_array() before trying to
1036 	 * fix the read error. In this case, the error read I/O is not queued,
1037 	 * so get_unqueued_pending() == 1.
1038 	 *
1039 	 * Therefore before this function returns, we need to wait until
1040 	 * get_unqueued_pendings(conf) gets equal to extra. For
1041 	 * normal I/O context, extra is 1, in rested situations extra is 0.
1042 	 */
1043 	spin_lock_irq(&conf->resync_lock);
1044 	conf->array_frozen = 1;
1045 	raid1_log(conf->mddev, "wait freeze");
1046 	wait_event_lock_irq_cmd(
1047 		conf->wait_barrier,
1048 		get_unqueued_pending(conf) == extra,
1049 		conf->resync_lock,
1050 		flush_pending_writes(conf));
1051 	spin_unlock_irq(&conf->resync_lock);
1052 }
1053 static void unfreeze_array(struct r1conf *conf)
1054 {
1055 	/* reverse the effect of the freeze */
1056 	spin_lock_irq(&conf->resync_lock);
1057 	conf->array_frozen = 0;
1058 	spin_unlock_irq(&conf->resync_lock);
1059 	wake_up(&conf->wait_barrier);
1060 }
1061 
1062 static void alloc_behind_master_bio(struct r1bio *r1_bio,
1063 					   struct bio *bio)
1064 {
1065 	int size = bio->bi_iter.bi_size;
1066 	unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1067 	int i = 0;
1068 	struct bio *behind_bio = NULL;
1069 
1070 	behind_bio = bio_alloc_mddev(GFP_NOIO, vcnt, r1_bio->mddev);
1071 	if (!behind_bio)
1072 		return;
1073 
1074 	/* discard op, we don't support writezero/writesame yet */
1075 	if (!bio_has_data(bio)) {
1076 		behind_bio->bi_iter.bi_size = size;
1077 		goto skip_copy;
1078 	}
1079 
1080 	while (i < vcnt && size) {
1081 		struct page *page;
1082 		int len = min_t(int, PAGE_SIZE, size);
1083 
1084 		page = alloc_page(GFP_NOIO);
1085 		if (unlikely(!page))
1086 			goto free_pages;
1087 
1088 		bio_add_page(behind_bio, page, len, 0);
1089 
1090 		size -= len;
1091 		i++;
1092 	}
1093 
1094 	bio_copy_data(behind_bio, bio);
1095 skip_copy:
1096 	r1_bio->behind_master_bio = behind_bio;;
1097 	set_bit(R1BIO_BehindIO, &r1_bio->state);
1098 
1099 	return;
1100 
1101 free_pages:
1102 	pr_debug("%dB behind alloc failed, doing sync I/O\n",
1103 		 bio->bi_iter.bi_size);
1104 	bio_free_pages(behind_bio);
1105 	bio_put(behind_bio);
1106 }
1107 
1108 struct raid1_plug_cb {
1109 	struct blk_plug_cb	cb;
1110 	struct bio_list		pending;
1111 	int			pending_cnt;
1112 };
1113 
1114 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1115 {
1116 	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1117 						  cb);
1118 	struct mddev *mddev = plug->cb.data;
1119 	struct r1conf *conf = mddev->private;
1120 	struct bio *bio;
1121 
1122 	if (from_schedule || current->bio_list) {
1123 		spin_lock_irq(&conf->device_lock);
1124 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1125 		conf->pending_count += plug->pending_cnt;
1126 		spin_unlock_irq(&conf->device_lock);
1127 		wake_up(&conf->wait_barrier);
1128 		md_wakeup_thread(mddev->thread);
1129 		kfree(plug);
1130 		return;
1131 	}
1132 
1133 	/* we aren't scheduling, so we can do the write-out directly. */
1134 	bio = bio_list_get(&plug->pending);
1135 	flush_bio_list(conf, bio);
1136 	kfree(plug);
1137 }
1138 
1139 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1140 {
1141 	r1_bio->master_bio = bio;
1142 	r1_bio->sectors = bio_sectors(bio);
1143 	r1_bio->state = 0;
1144 	r1_bio->mddev = mddev;
1145 	r1_bio->sector = bio->bi_iter.bi_sector;
1146 }
1147 
1148 static inline struct r1bio *
1149 alloc_r1bio(struct mddev *mddev, struct bio *bio)
1150 {
1151 	struct r1conf *conf = mddev->private;
1152 	struct r1bio *r1_bio;
1153 
1154 	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1155 	/* Ensure no bio records IO_BLOCKED */
1156 	memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1157 	init_r1bio(r1_bio, mddev, bio);
1158 	return r1_bio;
1159 }
1160 
1161 static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1162 			       int max_read_sectors, struct r1bio *r1_bio)
1163 {
1164 	struct r1conf *conf = mddev->private;
1165 	struct raid1_info *mirror;
1166 	struct bio *read_bio;
1167 	struct bitmap *bitmap = mddev->bitmap;
1168 	const int op = bio_op(bio);
1169 	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1170 	int max_sectors;
1171 	int rdisk;
1172 	bool print_msg = !!r1_bio;
1173 	char b[BDEVNAME_SIZE];
1174 
1175 	/*
1176 	 * If r1_bio is set, we are blocking the raid1d thread
1177 	 * so there is a tiny risk of deadlock.  So ask for
1178 	 * emergency memory if needed.
1179 	 */
1180 	gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1181 
1182 	if (print_msg) {
1183 		/* Need to get the block device name carefully */
1184 		struct md_rdev *rdev;
1185 		rcu_read_lock();
1186 		rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1187 		if (rdev)
1188 			bdevname(rdev->bdev, b);
1189 		else
1190 			strcpy(b, "???");
1191 		rcu_read_unlock();
1192 	}
1193 
1194 	/*
1195 	 * Still need barrier for READ in case that whole
1196 	 * array is frozen.
1197 	 */
1198 	wait_read_barrier(conf, bio->bi_iter.bi_sector);
1199 
1200 	if (!r1_bio)
1201 		r1_bio = alloc_r1bio(mddev, bio);
1202 	else
1203 		init_r1bio(r1_bio, mddev, bio);
1204 	r1_bio->sectors = max_read_sectors;
1205 
1206 	/*
1207 	 * make_request() can abort the operation when read-ahead is being
1208 	 * used and no empty request is available.
1209 	 */
1210 	rdisk = read_balance(conf, r1_bio, &max_sectors);
1211 
1212 	if (rdisk < 0) {
1213 		/* couldn't find anywhere to read from */
1214 		if (print_msg) {
1215 			pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1216 					    mdname(mddev),
1217 					    b,
1218 					    (unsigned long long)r1_bio->sector);
1219 		}
1220 		raid_end_bio_io(r1_bio);
1221 		return;
1222 	}
1223 	mirror = conf->mirrors + rdisk;
1224 
1225 	if (print_msg)
1226 		pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
1227 				    mdname(mddev),
1228 				    (unsigned long long)r1_bio->sector,
1229 				    bdevname(mirror->rdev->bdev, b));
1230 
1231 	if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1232 	    bitmap) {
1233 		/*
1234 		 * Reading from a write-mostly device must take care not to
1235 		 * over-take any writes that are 'behind'
1236 		 */
1237 		raid1_log(mddev, "wait behind writes");
1238 		wait_event(bitmap->behind_wait,
1239 			   atomic_read(&bitmap->behind_writes) == 0);
1240 	}
1241 
1242 	if (max_sectors < bio_sectors(bio)) {
1243 		struct bio *split = bio_split(bio, max_sectors,
1244 					      gfp, conf->bio_split);
1245 		bio_chain(split, bio);
1246 		generic_make_request(bio);
1247 		bio = split;
1248 		r1_bio->master_bio = bio;
1249 		r1_bio->sectors = max_sectors;
1250 	}
1251 
1252 	r1_bio->read_disk = rdisk;
1253 
1254 	read_bio = bio_clone_fast(bio, gfp, mddev->bio_set);
1255 
1256 	r1_bio->bios[rdisk] = read_bio;
1257 
1258 	read_bio->bi_iter.bi_sector = r1_bio->sector +
1259 		mirror->rdev->data_offset;
1260 	bio_set_dev(read_bio, mirror->rdev->bdev);
1261 	read_bio->bi_end_io = raid1_end_read_request;
1262 	bio_set_op_attrs(read_bio, op, do_sync);
1263 	if (test_bit(FailFast, &mirror->rdev->flags) &&
1264 	    test_bit(R1BIO_FailFast, &r1_bio->state))
1265 	        read_bio->bi_opf |= MD_FAILFAST;
1266 	read_bio->bi_private = r1_bio;
1267 
1268 	if (mddev->gendisk)
1269 	        trace_block_bio_remap(read_bio->bi_disk->queue, read_bio,
1270 				disk_devt(mddev->gendisk), r1_bio->sector);
1271 
1272 	generic_make_request(read_bio);
1273 }
1274 
1275 static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1276 				int max_write_sectors)
1277 {
1278 	struct r1conf *conf = mddev->private;
1279 	struct r1bio *r1_bio;
1280 	int i, disks;
1281 	struct bitmap *bitmap = mddev->bitmap;
1282 	unsigned long flags;
1283 	struct md_rdev *blocked_rdev;
1284 	struct blk_plug_cb *cb;
1285 	struct raid1_plug_cb *plug = NULL;
1286 	int first_clone;
1287 	int max_sectors;
1288 
1289 	if (mddev_is_clustered(mddev) &&
1290 	     md_cluster_ops->area_resyncing(mddev, WRITE,
1291 		     bio->bi_iter.bi_sector, bio_end_sector(bio))) {
1292 
1293 		DEFINE_WAIT(w);
1294 		for (;;) {
1295 			prepare_to_wait(&conf->wait_barrier,
1296 					&w, TASK_IDLE);
1297 			if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1298 							bio->bi_iter.bi_sector,
1299 							bio_end_sector(bio)))
1300 				break;
1301 			schedule();
1302 		}
1303 		finish_wait(&conf->wait_barrier, &w);
1304 	}
1305 
1306 	/*
1307 	 * Register the new request and wait if the reconstruction
1308 	 * thread has put up a bar for new requests.
1309 	 * Continue immediately if no resync is active currently.
1310 	 */
1311 	wait_barrier(conf, bio->bi_iter.bi_sector);
1312 
1313 	r1_bio = alloc_r1bio(mddev, bio);
1314 	r1_bio->sectors = max_write_sectors;
1315 
1316 	if (conf->pending_count >= max_queued_requests) {
1317 		md_wakeup_thread(mddev->thread);
1318 		raid1_log(mddev, "wait queued");
1319 		wait_event(conf->wait_barrier,
1320 			   conf->pending_count < max_queued_requests);
1321 	}
1322 	/* first select target devices under rcu_lock and
1323 	 * inc refcount on their rdev.  Record them by setting
1324 	 * bios[x] to bio
1325 	 * If there are known/acknowledged bad blocks on any device on
1326 	 * which we have seen a write error, we want to avoid writing those
1327 	 * blocks.
1328 	 * This potentially requires several writes to write around
1329 	 * the bad blocks.  Each set of writes gets it's own r1bio
1330 	 * with a set of bios attached.
1331 	 */
1332 
1333 	disks = conf->raid_disks * 2;
1334  retry_write:
1335 	blocked_rdev = NULL;
1336 	rcu_read_lock();
1337 	max_sectors = r1_bio->sectors;
1338 	for (i = 0;  i < disks; i++) {
1339 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1340 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1341 			atomic_inc(&rdev->nr_pending);
1342 			blocked_rdev = rdev;
1343 			break;
1344 		}
1345 		r1_bio->bios[i] = NULL;
1346 		if (!rdev || test_bit(Faulty, &rdev->flags)) {
1347 			if (i < conf->raid_disks)
1348 				set_bit(R1BIO_Degraded, &r1_bio->state);
1349 			continue;
1350 		}
1351 
1352 		atomic_inc(&rdev->nr_pending);
1353 		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1354 			sector_t first_bad;
1355 			int bad_sectors;
1356 			int is_bad;
1357 
1358 			is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1359 					     &first_bad, &bad_sectors);
1360 			if (is_bad < 0) {
1361 				/* mustn't write here until the bad block is
1362 				 * acknowledged*/
1363 				set_bit(BlockedBadBlocks, &rdev->flags);
1364 				blocked_rdev = rdev;
1365 				break;
1366 			}
1367 			if (is_bad && first_bad <= r1_bio->sector) {
1368 				/* Cannot write here at all */
1369 				bad_sectors -= (r1_bio->sector - first_bad);
1370 				if (bad_sectors < max_sectors)
1371 					/* mustn't write more than bad_sectors
1372 					 * to other devices yet
1373 					 */
1374 					max_sectors = bad_sectors;
1375 				rdev_dec_pending(rdev, mddev);
1376 				/* We don't set R1BIO_Degraded as that
1377 				 * only applies if the disk is
1378 				 * missing, so it might be re-added,
1379 				 * and we want to know to recover this
1380 				 * chunk.
1381 				 * In this case the device is here,
1382 				 * and the fact that this chunk is not
1383 				 * in-sync is recorded in the bad
1384 				 * block log
1385 				 */
1386 				continue;
1387 			}
1388 			if (is_bad) {
1389 				int good_sectors = first_bad - r1_bio->sector;
1390 				if (good_sectors < max_sectors)
1391 					max_sectors = good_sectors;
1392 			}
1393 		}
1394 		r1_bio->bios[i] = bio;
1395 	}
1396 	rcu_read_unlock();
1397 
1398 	if (unlikely(blocked_rdev)) {
1399 		/* Wait for this device to become unblocked */
1400 		int j;
1401 
1402 		for (j = 0; j < i; j++)
1403 			if (r1_bio->bios[j])
1404 				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1405 		r1_bio->state = 0;
1406 		allow_barrier(conf, bio->bi_iter.bi_sector);
1407 		raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1408 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1409 		wait_barrier(conf, bio->bi_iter.bi_sector);
1410 		goto retry_write;
1411 	}
1412 
1413 	if (max_sectors < bio_sectors(bio)) {
1414 		struct bio *split = bio_split(bio, max_sectors,
1415 					      GFP_NOIO, conf->bio_split);
1416 		bio_chain(split, bio);
1417 		generic_make_request(bio);
1418 		bio = split;
1419 		r1_bio->master_bio = bio;
1420 		r1_bio->sectors = max_sectors;
1421 	}
1422 
1423 	atomic_set(&r1_bio->remaining, 1);
1424 	atomic_set(&r1_bio->behind_remaining, 0);
1425 
1426 	first_clone = 1;
1427 
1428 	for (i = 0; i < disks; i++) {
1429 		struct bio *mbio = NULL;
1430 		if (!r1_bio->bios[i])
1431 			continue;
1432 
1433 
1434 		if (first_clone) {
1435 			/* do behind I/O ?
1436 			 * Not if there are too many, or cannot
1437 			 * allocate memory, or a reader on WriteMostly
1438 			 * is waiting for behind writes to flush */
1439 			if (bitmap &&
1440 			    (atomic_read(&bitmap->behind_writes)
1441 			     < mddev->bitmap_info.max_write_behind) &&
1442 			    !waitqueue_active(&bitmap->behind_wait)) {
1443 				alloc_behind_master_bio(r1_bio, bio);
1444 			}
1445 
1446 			bitmap_startwrite(bitmap, r1_bio->sector,
1447 					  r1_bio->sectors,
1448 					  test_bit(R1BIO_BehindIO,
1449 						   &r1_bio->state));
1450 			first_clone = 0;
1451 		}
1452 
1453 		if (r1_bio->behind_master_bio)
1454 			mbio = bio_clone_fast(r1_bio->behind_master_bio,
1455 					      GFP_NOIO, mddev->bio_set);
1456 		else
1457 			mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
1458 
1459 		if (r1_bio->behind_master_bio) {
1460 			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1461 				atomic_inc(&r1_bio->behind_remaining);
1462 		}
1463 
1464 		r1_bio->bios[i] = mbio;
1465 
1466 		mbio->bi_iter.bi_sector	= (r1_bio->sector +
1467 				   conf->mirrors[i].rdev->data_offset);
1468 		bio_set_dev(mbio, conf->mirrors[i].rdev->bdev);
1469 		mbio->bi_end_io	= raid1_end_write_request;
1470 		mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1471 		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1472 		    !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1473 		    conf->raid_disks - mddev->degraded > 1)
1474 			mbio->bi_opf |= MD_FAILFAST;
1475 		mbio->bi_private = r1_bio;
1476 
1477 		atomic_inc(&r1_bio->remaining);
1478 
1479 		if (mddev->gendisk)
1480 			trace_block_bio_remap(mbio->bi_disk->queue,
1481 					      mbio, disk_devt(mddev->gendisk),
1482 					      r1_bio->sector);
1483 		/* flush_pending_writes() needs access to the rdev so...*/
1484 		mbio->bi_disk = (void *)conf->mirrors[i].rdev;
1485 
1486 		cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1487 		if (cb)
1488 			plug = container_of(cb, struct raid1_plug_cb, cb);
1489 		else
1490 			plug = NULL;
1491 		if (plug) {
1492 			bio_list_add(&plug->pending, mbio);
1493 			plug->pending_cnt++;
1494 		} else {
1495 			spin_lock_irqsave(&conf->device_lock, flags);
1496 			bio_list_add(&conf->pending_bio_list, mbio);
1497 			conf->pending_count++;
1498 			spin_unlock_irqrestore(&conf->device_lock, flags);
1499 			md_wakeup_thread(mddev->thread);
1500 		}
1501 	}
1502 
1503 	r1_bio_write_done(r1_bio);
1504 
1505 	/* In case raid1d snuck in to freeze_array */
1506 	wake_up(&conf->wait_barrier);
1507 }
1508 
1509 static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1510 {
1511 	sector_t sectors;
1512 
1513 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1514 		md_flush_request(mddev, bio);
1515 		return true;
1516 	}
1517 
1518 	/*
1519 	 * There is a limit to the maximum size, but
1520 	 * the read/write handler might find a lower limit
1521 	 * due to bad blocks.  To avoid multiple splits,
1522 	 * we pass the maximum number of sectors down
1523 	 * and let the lower level perform the split.
1524 	 */
1525 	sectors = align_to_barrier_unit_end(
1526 		bio->bi_iter.bi_sector, bio_sectors(bio));
1527 
1528 	if (bio_data_dir(bio) == READ)
1529 		raid1_read_request(mddev, bio, sectors, NULL);
1530 	else {
1531 		if (!md_write_start(mddev,bio))
1532 			return false;
1533 		raid1_write_request(mddev, bio, sectors);
1534 	}
1535 	return true;
1536 }
1537 
1538 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1539 {
1540 	struct r1conf *conf = mddev->private;
1541 	int i;
1542 
1543 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1544 		   conf->raid_disks - mddev->degraded);
1545 	rcu_read_lock();
1546 	for (i = 0; i < conf->raid_disks; i++) {
1547 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1548 		seq_printf(seq, "%s",
1549 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1550 	}
1551 	rcu_read_unlock();
1552 	seq_printf(seq, "]");
1553 }
1554 
1555 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1556 {
1557 	char b[BDEVNAME_SIZE];
1558 	struct r1conf *conf = mddev->private;
1559 	unsigned long flags;
1560 
1561 	/*
1562 	 * If it is not operational, then we have already marked it as dead
1563 	 * else if it is the last working disks, ignore the error, let the
1564 	 * next level up know.
1565 	 * else mark the drive as failed
1566 	 */
1567 	spin_lock_irqsave(&conf->device_lock, flags);
1568 	if (test_bit(In_sync, &rdev->flags)
1569 	    && (conf->raid_disks - mddev->degraded) == 1) {
1570 		/*
1571 		 * Don't fail the drive, act as though we were just a
1572 		 * normal single drive.
1573 		 * However don't try a recovery from this drive as
1574 		 * it is very likely to fail.
1575 		 */
1576 		conf->recovery_disabled = mddev->recovery_disabled;
1577 		spin_unlock_irqrestore(&conf->device_lock, flags);
1578 		return;
1579 	}
1580 	set_bit(Blocked, &rdev->flags);
1581 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1582 		mddev->degraded++;
1583 		set_bit(Faulty, &rdev->flags);
1584 	} else
1585 		set_bit(Faulty, &rdev->flags);
1586 	spin_unlock_irqrestore(&conf->device_lock, flags);
1587 	/*
1588 	 * if recovery is running, make sure it aborts.
1589 	 */
1590 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1591 	set_mask_bits(&mddev->sb_flags, 0,
1592 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1593 	pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1594 		"md/raid1:%s: Operation continuing on %d devices.\n",
1595 		mdname(mddev), bdevname(rdev->bdev, b),
1596 		mdname(mddev), conf->raid_disks - mddev->degraded);
1597 }
1598 
1599 static void print_conf(struct r1conf *conf)
1600 {
1601 	int i;
1602 
1603 	pr_debug("RAID1 conf printout:\n");
1604 	if (!conf) {
1605 		pr_debug("(!conf)\n");
1606 		return;
1607 	}
1608 	pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1609 		 conf->raid_disks);
1610 
1611 	rcu_read_lock();
1612 	for (i = 0; i < conf->raid_disks; i++) {
1613 		char b[BDEVNAME_SIZE];
1614 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1615 		if (rdev)
1616 			pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1617 				 i, !test_bit(In_sync, &rdev->flags),
1618 				 !test_bit(Faulty, &rdev->flags),
1619 				 bdevname(rdev->bdev,b));
1620 	}
1621 	rcu_read_unlock();
1622 }
1623 
1624 static void close_sync(struct r1conf *conf)
1625 {
1626 	int idx;
1627 
1628 	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1629 		_wait_barrier(conf, idx);
1630 		_allow_barrier(conf, idx);
1631 	}
1632 
1633 	mempool_destroy(conf->r1buf_pool);
1634 	conf->r1buf_pool = NULL;
1635 }
1636 
1637 static int raid1_spare_active(struct mddev *mddev)
1638 {
1639 	int i;
1640 	struct r1conf *conf = mddev->private;
1641 	int count = 0;
1642 	unsigned long flags;
1643 
1644 	/*
1645 	 * Find all failed disks within the RAID1 configuration
1646 	 * and mark them readable.
1647 	 * Called under mddev lock, so rcu protection not needed.
1648 	 * device_lock used to avoid races with raid1_end_read_request
1649 	 * which expects 'In_sync' flags and ->degraded to be consistent.
1650 	 */
1651 	spin_lock_irqsave(&conf->device_lock, flags);
1652 	for (i = 0; i < conf->raid_disks; i++) {
1653 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1654 		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1655 		if (repl
1656 		    && !test_bit(Candidate, &repl->flags)
1657 		    && repl->recovery_offset == MaxSector
1658 		    && !test_bit(Faulty, &repl->flags)
1659 		    && !test_and_set_bit(In_sync, &repl->flags)) {
1660 			/* replacement has just become active */
1661 			if (!rdev ||
1662 			    !test_and_clear_bit(In_sync, &rdev->flags))
1663 				count++;
1664 			if (rdev) {
1665 				/* Replaced device not technically
1666 				 * faulty, but we need to be sure
1667 				 * it gets removed and never re-added
1668 				 */
1669 				set_bit(Faulty, &rdev->flags);
1670 				sysfs_notify_dirent_safe(
1671 					rdev->sysfs_state);
1672 			}
1673 		}
1674 		if (rdev
1675 		    && rdev->recovery_offset == MaxSector
1676 		    && !test_bit(Faulty, &rdev->flags)
1677 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1678 			count++;
1679 			sysfs_notify_dirent_safe(rdev->sysfs_state);
1680 		}
1681 	}
1682 	mddev->degraded -= count;
1683 	spin_unlock_irqrestore(&conf->device_lock, flags);
1684 
1685 	print_conf(conf);
1686 	return count;
1687 }
1688 
1689 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1690 {
1691 	struct r1conf *conf = mddev->private;
1692 	int err = -EEXIST;
1693 	int mirror = 0;
1694 	struct raid1_info *p;
1695 	int first = 0;
1696 	int last = conf->raid_disks - 1;
1697 
1698 	if (mddev->recovery_disabled == conf->recovery_disabled)
1699 		return -EBUSY;
1700 
1701 	if (md_integrity_add_rdev(rdev, mddev))
1702 		return -ENXIO;
1703 
1704 	if (rdev->raid_disk >= 0)
1705 		first = last = rdev->raid_disk;
1706 
1707 	/*
1708 	 * find the disk ... but prefer rdev->saved_raid_disk
1709 	 * if possible.
1710 	 */
1711 	if (rdev->saved_raid_disk >= 0 &&
1712 	    rdev->saved_raid_disk >= first &&
1713 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1714 		first = last = rdev->saved_raid_disk;
1715 
1716 	for (mirror = first; mirror <= last; mirror++) {
1717 		p = conf->mirrors+mirror;
1718 		if (!p->rdev) {
1719 
1720 			if (mddev->gendisk)
1721 				disk_stack_limits(mddev->gendisk, rdev->bdev,
1722 						  rdev->data_offset << 9);
1723 
1724 			p->head_position = 0;
1725 			rdev->raid_disk = mirror;
1726 			err = 0;
1727 			/* As all devices are equivalent, we don't need a full recovery
1728 			 * if this was recently any drive of the array
1729 			 */
1730 			if (rdev->saved_raid_disk < 0)
1731 				conf->fullsync = 1;
1732 			rcu_assign_pointer(p->rdev, rdev);
1733 			break;
1734 		}
1735 		if (test_bit(WantReplacement, &p->rdev->flags) &&
1736 		    p[conf->raid_disks].rdev == NULL) {
1737 			/* Add this device as a replacement */
1738 			clear_bit(In_sync, &rdev->flags);
1739 			set_bit(Replacement, &rdev->flags);
1740 			rdev->raid_disk = mirror;
1741 			err = 0;
1742 			conf->fullsync = 1;
1743 			rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1744 			break;
1745 		}
1746 	}
1747 	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1748 		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1749 	print_conf(conf);
1750 	return err;
1751 }
1752 
1753 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1754 {
1755 	struct r1conf *conf = mddev->private;
1756 	int err = 0;
1757 	int number = rdev->raid_disk;
1758 	struct raid1_info *p = conf->mirrors + number;
1759 
1760 	if (rdev != p->rdev)
1761 		p = conf->mirrors + conf->raid_disks + number;
1762 
1763 	print_conf(conf);
1764 	if (rdev == p->rdev) {
1765 		if (test_bit(In_sync, &rdev->flags) ||
1766 		    atomic_read(&rdev->nr_pending)) {
1767 			err = -EBUSY;
1768 			goto abort;
1769 		}
1770 		/* Only remove non-faulty devices if recovery
1771 		 * is not possible.
1772 		 */
1773 		if (!test_bit(Faulty, &rdev->flags) &&
1774 		    mddev->recovery_disabled != conf->recovery_disabled &&
1775 		    mddev->degraded < conf->raid_disks) {
1776 			err = -EBUSY;
1777 			goto abort;
1778 		}
1779 		p->rdev = NULL;
1780 		if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1781 			synchronize_rcu();
1782 			if (atomic_read(&rdev->nr_pending)) {
1783 				/* lost the race, try later */
1784 				err = -EBUSY;
1785 				p->rdev = rdev;
1786 				goto abort;
1787 			}
1788 		}
1789 		if (conf->mirrors[conf->raid_disks + number].rdev) {
1790 			/* We just removed a device that is being replaced.
1791 			 * Move down the replacement.  We drain all IO before
1792 			 * doing this to avoid confusion.
1793 			 */
1794 			struct md_rdev *repl =
1795 				conf->mirrors[conf->raid_disks + number].rdev;
1796 			freeze_array(conf, 0);
1797 			clear_bit(Replacement, &repl->flags);
1798 			p->rdev = repl;
1799 			conf->mirrors[conf->raid_disks + number].rdev = NULL;
1800 			unfreeze_array(conf);
1801 		}
1802 
1803 		clear_bit(WantReplacement, &rdev->flags);
1804 		err = md_integrity_register(mddev);
1805 	}
1806 abort:
1807 
1808 	print_conf(conf);
1809 	return err;
1810 }
1811 
1812 static void end_sync_read(struct bio *bio)
1813 {
1814 	struct r1bio *r1_bio = get_resync_r1bio(bio);
1815 
1816 	update_head_pos(r1_bio->read_disk, r1_bio);
1817 
1818 	/*
1819 	 * we have read a block, now it needs to be re-written,
1820 	 * or re-read if the read failed.
1821 	 * We don't do much here, just schedule handling by raid1d
1822 	 */
1823 	if (!bio->bi_status)
1824 		set_bit(R1BIO_Uptodate, &r1_bio->state);
1825 
1826 	if (atomic_dec_and_test(&r1_bio->remaining))
1827 		reschedule_retry(r1_bio);
1828 }
1829 
1830 static void end_sync_write(struct bio *bio)
1831 {
1832 	int uptodate = !bio->bi_status;
1833 	struct r1bio *r1_bio = get_resync_r1bio(bio);
1834 	struct mddev *mddev = r1_bio->mddev;
1835 	struct r1conf *conf = mddev->private;
1836 	sector_t first_bad;
1837 	int bad_sectors;
1838 	struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1839 
1840 	if (!uptodate) {
1841 		sector_t sync_blocks = 0;
1842 		sector_t s = r1_bio->sector;
1843 		long sectors_to_go = r1_bio->sectors;
1844 		/* make sure these bits doesn't get cleared. */
1845 		do {
1846 			bitmap_end_sync(mddev->bitmap, s,
1847 					&sync_blocks, 1);
1848 			s += sync_blocks;
1849 			sectors_to_go -= sync_blocks;
1850 		} while (sectors_to_go > 0);
1851 		set_bit(WriteErrorSeen, &rdev->flags);
1852 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
1853 			set_bit(MD_RECOVERY_NEEDED, &
1854 				mddev->recovery);
1855 		set_bit(R1BIO_WriteError, &r1_bio->state);
1856 	} else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1857 			       &first_bad, &bad_sectors) &&
1858 		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1859 				r1_bio->sector,
1860 				r1_bio->sectors,
1861 				&first_bad, &bad_sectors)
1862 		)
1863 		set_bit(R1BIO_MadeGood, &r1_bio->state);
1864 
1865 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1866 		int s = r1_bio->sectors;
1867 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1868 		    test_bit(R1BIO_WriteError, &r1_bio->state))
1869 			reschedule_retry(r1_bio);
1870 		else {
1871 			put_buf(r1_bio);
1872 			md_done_sync(mddev, s, uptodate);
1873 		}
1874 	}
1875 }
1876 
1877 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1878 			    int sectors, struct page *page, int rw)
1879 {
1880 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1881 		/* success */
1882 		return 1;
1883 	if (rw == WRITE) {
1884 		set_bit(WriteErrorSeen, &rdev->flags);
1885 		if (!test_and_set_bit(WantReplacement,
1886 				      &rdev->flags))
1887 			set_bit(MD_RECOVERY_NEEDED, &
1888 				rdev->mddev->recovery);
1889 	}
1890 	/* need to record an error - either for the block or the device */
1891 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1892 		md_error(rdev->mddev, rdev);
1893 	return 0;
1894 }
1895 
1896 static int fix_sync_read_error(struct r1bio *r1_bio)
1897 {
1898 	/* Try some synchronous reads of other devices to get
1899 	 * good data, much like with normal read errors.  Only
1900 	 * read into the pages we already have so we don't
1901 	 * need to re-issue the read request.
1902 	 * We don't need to freeze the array, because being in an
1903 	 * active sync request, there is no normal IO, and
1904 	 * no overlapping syncs.
1905 	 * We don't need to check is_badblock() again as we
1906 	 * made sure that anything with a bad block in range
1907 	 * will have bi_end_io clear.
1908 	 */
1909 	struct mddev *mddev = r1_bio->mddev;
1910 	struct r1conf *conf = mddev->private;
1911 	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1912 	struct page **pages = get_resync_pages(bio)->pages;
1913 	sector_t sect = r1_bio->sector;
1914 	int sectors = r1_bio->sectors;
1915 	int idx = 0;
1916 	struct md_rdev *rdev;
1917 
1918 	rdev = conf->mirrors[r1_bio->read_disk].rdev;
1919 	if (test_bit(FailFast, &rdev->flags)) {
1920 		/* Don't try recovering from here - just fail it
1921 		 * ... unless it is the last working device of course */
1922 		md_error(mddev, rdev);
1923 		if (test_bit(Faulty, &rdev->flags))
1924 			/* Don't try to read from here, but make sure
1925 			 * put_buf does it's thing
1926 			 */
1927 			bio->bi_end_io = end_sync_write;
1928 	}
1929 
1930 	while(sectors) {
1931 		int s = sectors;
1932 		int d = r1_bio->read_disk;
1933 		int success = 0;
1934 		int start;
1935 
1936 		if (s > (PAGE_SIZE>>9))
1937 			s = PAGE_SIZE >> 9;
1938 		do {
1939 			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1940 				/* No rcu protection needed here devices
1941 				 * can only be removed when no resync is
1942 				 * active, and resync is currently active
1943 				 */
1944 				rdev = conf->mirrors[d].rdev;
1945 				if (sync_page_io(rdev, sect, s<<9,
1946 						 pages[idx],
1947 						 REQ_OP_READ, 0, false)) {
1948 					success = 1;
1949 					break;
1950 				}
1951 			}
1952 			d++;
1953 			if (d == conf->raid_disks * 2)
1954 				d = 0;
1955 		} while (!success && d != r1_bio->read_disk);
1956 
1957 		if (!success) {
1958 			char b[BDEVNAME_SIZE];
1959 			int abort = 0;
1960 			/* Cannot read from anywhere, this block is lost.
1961 			 * Record a bad block on each device.  If that doesn't
1962 			 * work just disable and interrupt the recovery.
1963 			 * Don't fail devices as that won't really help.
1964 			 */
1965 			pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1966 					    mdname(mddev), bio_devname(bio, b),
1967 					    (unsigned long long)r1_bio->sector);
1968 			for (d = 0; d < conf->raid_disks * 2; d++) {
1969 				rdev = conf->mirrors[d].rdev;
1970 				if (!rdev || test_bit(Faulty, &rdev->flags))
1971 					continue;
1972 				if (!rdev_set_badblocks(rdev, sect, s, 0))
1973 					abort = 1;
1974 			}
1975 			if (abort) {
1976 				conf->recovery_disabled =
1977 					mddev->recovery_disabled;
1978 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1979 				md_done_sync(mddev, r1_bio->sectors, 0);
1980 				put_buf(r1_bio);
1981 				return 0;
1982 			}
1983 			/* Try next page */
1984 			sectors -= s;
1985 			sect += s;
1986 			idx++;
1987 			continue;
1988 		}
1989 
1990 		start = d;
1991 		/* write it back and re-read */
1992 		while (d != r1_bio->read_disk) {
1993 			if (d == 0)
1994 				d = conf->raid_disks * 2;
1995 			d--;
1996 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1997 				continue;
1998 			rdev = conf->mirrors[d].rdev;
1999 			if (r1_sync_page_io(rdev, sect, s,
2000 					    pages[idx],
2001 					    WRITE) == 0) {
2002 				r1_bio->bios[d]->bi_end_io = NULL;
2003 				rdev_dec_pending(rdev, mddev);
2004 			}
2005 		}
2006 		d = start;
2007 		while (d != r1_bio->read_disk) {
2008 			if (d == 0)
2009 				d = conf->raid_disks * 2;
2010 			d--;
2011 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2012 				continue;
2013 			rdev = conf->mirrors[d].rdev;
2014 			if (r1_sync_page_io(rdev, sect, s,
2015 					    pages[idx],
2016 					    READ) != 0)
2017 				atomic_add(s, &rdev->corrected_errors);
2018 		}
2019 		sectors -= s;
2020 		sect += s;
2021 		idx ++;
2022 	}
2023 	set_bit(R1BIO_Uptodate, &r1_bio->state);
2024 	bio->bi_status = 0;
2025 	return 1;
2026 }
2027 
2028 static void process_checks(struct r1bio *r1_bio)
2029 {
2030 	/* We have read all readable devices.  If we haven't
2031 	 * got the block, then there is no hope left.
2032 	 * If we have, then we want to do a comparison
2033 	 * and skip the write if everything is the same.
2034 	 * If any blocks failed to read, then we need to
2035 	 * attempt an over-write
2036 	 */
2037 	struct mddev *mddev = r1_bio->mddev;
2038 	struct r1conf *conf = mddev->private;
2039 	int primary;
2040 	int i;
2041 	int vcnt;
2042 
2043 	/* Fix variable parts of all bios */
2044 	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2045 	for (i = 0; i < conf->raid_disks * 2; i++) {
2046 		blk_status_t status;
2047 		struct bio *b = r1_bio->bios[i];
2048 		struct resync_pages *rp = get_resync_pages(b);
2049 		if (b->bi_end_io != end_sync_read)
2050 			continue;
2051 		/* fixup the bio for reuse, but preserve errno */
2052 		status = b->bi_status;
2053 		bio_reset(b);
2054 		b->bi_status = status;
2055 		b->bi_iter.bi_sector = r1_bio->sector +
2056 			conf->mirrors[i].rdev->data_offset;
2057 		bio_set_dev(b, conf->mirrors[i].rdev->bdev);
2058 		b->bi_end_io = end_sync_read;
2059 		rp->raid_bio = r1_bio;
2060 		b->bi_private = rp;
2061 
2062 		/* initialize bvec table again */
2063 		md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2064 	}
2065 	for (primary = 0; primary < conf->raid_disks * 2; primary++)
2066 		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2067 		    !r1_bio->bios[primary]->bi_status) {
2068 			r1_bio->bios[primary]->bi_end_io = NULL;
2069 			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2070 			break;
2071 		}
2072 	r1_bio->read_disk = primary;
2073 	for (i = 0; i < conf->raid_disks * 2; i++) {
2074 		int j;
2075 		struct bio *pbio = r1_bio->bios[primary];
2076 		struct bio *sbio = r1_bio->bios[i];
2077 		blk_status_t status = sbio->bi_status;
2078 		struct page **ppages = get_resync_pages(pbio)->pages;
2079 		struct page **spages = get_resync_pages(sbio)->pages;
2080 		struct bio_vec *bi;
2081 		int page_len[RESYNC_PAGES] = { 0 };
2082 
2083 		if (sbio->bi_end_io != end_sync_read)
2084 			continue;
2085 		/* Now we can 'fixup' the error value */
2086 		sbio->bi_status = 0;
2087 
2088 		bio_for_each_segment_all(bi, sbio, j)
2089 			page_len[j] = bi->bv_len;
2090 
2091 		if (!status) {
2092 			for (j = vcnt; j-- ; ) {
2093 				if (memcmp(page_address(ppages[j]),
2094 					   page_address(spages[j]),
2095 					   page_len[j]))
2096 					break;
2097 			}
2098 		} else
2099 			j = 0;
2100 		if (j >= 0)
2101 			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2102 		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2103 			      && !status)) {
2104 			/* No need to write to this device. */
2105 			sbio->bi_end_io = NULL;
2106 			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2107 			continue;
2108 		}
2109 
2110 		bio_copy_data(sbio, pbio);
2111 	}
2112 }
2113 
2114 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2115 {
2116 	struct r1conf *conf = mddev->private;
2117 	int i;
2118 	int disks = conf->raid_disks * 2;
2119 	struct bio *wbio;
2120 
2121 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2122 		/* ouch - failed to read all of that. */
2123 		if (!fix_sync_read_error(r1_bio))
2124 			return;
2125 
2126 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2127 		process_checks(r1_bio);
2128 
2129 	/*
2130 	 * schedule writes
2131 	 */
2132 	atomic_set(&r1_bio->remaining, 1);
2133 	for (i = 0; i < disks ; i++) {
2134 		wbio = r1_bio->bios[i];
2135 		if (wbio->bi_end_io == NULL ||
2136 		    (wbio->bi_end_io == end_sync_read &&
2137 		     (i == r1_bio->read_disk ||
2138 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2139 			continue;
2140 		if (test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2141 			continue;
2142 
2143 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2144 		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2145 			wbio->bi_opf |= MD_FAILFAST;
2146 
2147 		wbio->bi_end_io = end_sync_write;
2148 		atomic_inc(&r1_bio->remaining);
2149 		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2150 
2151 		generic_make_request(wbio);
2152 	}
2153 
2154 	if (atomic_dec_and_test(&r1_bio->remaining)) {
2155 		/* if we're here, all write(s) have completed, so clean up */
2156 		int s = r1_bio->sectors;
2157 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2158 		    test_bit(R1BIO_WriteError, &r1_bio->state))
2159 			reschedule_retry(r1_bio);
2160 		else {
2161 			put_buf(r1_bio);
2162 			md_done_sync(mddev, s, 1);
2163 		}
2164 	}
2165 }
2166 
2167 /*
2168  * This is a kernel thread which:
2169  *
2170  *	1.	Retries failed read operations on working mirrors.
2171  *	2.	Updates the raid superblock when problems encounter.
2172  *	3.	Performs writes following reads for array synchronising.
2173  */
2174 
2175 static void fix_read_error(struct r1conf *conf, int read_disk,
2176 			   sector_t sect, int sectors)
2177 {
2178 	struct mddev *mddev = conf->mddev;
2179 	while(sectors) {
2180 		int s = sectors;
2181 		int d = read_disk;
2182 		int success = 0;
2183 		int start;
2184 		struct md_rdev *rdev;
2185 
2186 		if (s > (PAGE_SIZE>>9))
2187 			s = PAGE_SIZE >> 9;
2188 
2189 		do {
2190 			sector_t first_bad;
2191 			int bad_sectors;
2192 
2193 			rcu_read_lock();
2194 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2195 			if (rdev &&
2196 			    (test_bit(In_sync, &rdev->flags) ||
2197 			     (!test_bit(Faulty, &rdev->flags) &&
2198 			      rdev->recovery_offset >= sect + s)) &&
2199 			    is_badblock(rdev, sect, s,
2200 					&first_bad, &bad_sectors) == 0) {
2201 				atomic_inc(&rdev->nr_pending);
2202 				rcu_read_unlock();
2203 				if (sync_page_io(rdev, sect, s<<9,
2204 					 conf->tmppage, REQ_OP_READ, 0, false))
2205 					success = 1;
2206 				rdev_dec_pending(rdev, mddev);
2207 				if (success)
2208 					break;
2209 			} else
2210 				rcu_read_unlock();
2211 			d++;
2212 			if (d == conf->raid_disks * 2)
2213 				d = 0;
2214 		} while (!success && d != read_disk);
2215 
2216 		if (!success) {
2217 			/* Cannot read from anywhere - mark it bad */
2218 			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2219 			if (!rdev_set_badblocks(rdev, sect, s, 0))
2220 				md_error(mddev, rdev);
2221 			break;
2222 		}
2223 		/* write it back and re-read */
2224 		start = d;
2225 		while (d != read_disk) {
2226 			if (d==0)
2227 				d = conf->raid_disks * 2;
2228 			d--;
2229 			rcu_read_lock();
2230 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2231 			if (rdev &&
2232 			    !test_bit(Faulty, &rdev->flags)) {
2233 				atomic_inc(&rdev->nr_pending);
2234 				rcu_read_unlock();
2235 				r1_sync_page_io(rdev, sect, s,
2236 						conf->tmppage, WRITE);
2237 				rdev_dec_pending(rdev, mddev);
2238 			} else
2239 				rcu_read_unlock();
2240 		}
2241 		d = start;
2242 		while (d != read_disk) {
2243 			char b[BDEVNAME_SIZE];
2244 			if (d==0)
2245 				d = conf->raid_disks * 2;
2246 			d--;
2247 			rcu_read_lock();
2248 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2249 			if (rdev &&
2250 			    !test_bit(Faulty, &rdev->flags)) {
2251 				atomic_inc(&rdev->nr_pending);
2252 				rcu_read_unlock();
2253 				if (r1_sync_page_io(rdev, sect, s,
2254 						    conf->tmppage, READ)) {
2255 					atomic_add(s, &rdev->corrected_errors);
2256 					pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2257 						mdname(mddev), s,
2258 						(unsigned long long)(sect +
2259 								     rdev->data_offset),
2260 						bdevname(rdev->bdev, b));
2261 				}
2262 				rdev_dec_pending(rdev, mddev);
2263 			} else
2264 				rcu_read_unlock();
2265 		}
2266 		sectors -= s;
2267 		sect += s;
2268 	}
2269 }
2270 
2271 static int narrow_write_error(struct r1bio *r1_bio, int i)
2272 {
2273 	struct mddev *mddev = r1_bio->mddev;
2274 	struct r1conf *conf = mddev->private;
2275 	struct md_rdev *rdev = conf->mirrors[i].rdev;
2276 
2277 	/* bio has the data to be written to device 'i' where
2278 	 * we just recently had a write error.
2279 	 * We repeatedly clone the bio and trim down to one block,
2280 	 * then try the write.  Where the write fails we record
2281 	 * a bad block.
2282 	 * It is conceivable that the bio doesn't exactly align with
2283 	 * blocks.  We must handle this somehow.
2284 	 *
2285 	 * We currently own a reference on the rdev.
2286 	 */
2287 
2288 	int block_sectors;
2289 	sector_t sector;
2290 	int sectors;
2291 	int sect_to_write = r1_bio->sectors;
2292 	int ok = 1;
2293 
2294 	if (rdev->badblocks.shift < 0)
2295 		return 0;
2296 
2297 	block_sectors = roundup(1 << rdev->badblocks.shift,
2298 				bdev_logical_block_size(rdev->bdev) >> 9);
2299 	sector = r1_bio->sector;
2300 	sectors = ((sector + block_sectors)
2301 		   & ~(sector_t)(block_sectors - 1))
2302 		- sector;
2303 
2304 	while (sect_to_write) {
2305 		struct bio *wbio;
2306 		if (sectors > sect_to_write)
2307 			sectors = sect_to_write;
2308 		/* Write at 'sector' for 'sectors'*/
2309 
2310 		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2311 			wbio = bio_clone_fast(r1_bio->behind_master_bio,
2312 					      GFP_NOIO,
2313 					      mddev->bio_set);
2314 		} else {
2315 			wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2316 					      mddev->bio_set);
2317 		}
2318 
2319 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2320 		wbio->bi_iter.bi_sector = r1_bio->sector;
2321 		wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2322 
2323 		bio_trim(wbio, sector - r1_bio->sector, sectors);
2324 		wbio->bi_iter.bi_sector += rdev->data_offset;
2325 		bio_set_dev(wbio, rdev->bdev);
2326 
2327 		if (submit_bio_wait(wbio) < 0)
2328 			/* failure! */
2329 			ok = rdev_set_badblocks(rdev, sector,
2330 						sectors, 0)
2331 				&& ok;
2332 
2333 		bio_put(wbio);
2334 		sect_to_write -= sectors;
2335 		sector += sectors;
2336 		sectors = block_sectors;
2337 	}
2338 	return ok;
2339 }
2340 
2341 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2342 {
2343 	int m;
2344 	int s = r1_bio->sectors;
2345 	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2346 		struct md_rdev *rdev = conf->mirrors[m].rdev;
2347 		struct bio *bio = r1_bio->bios[m];
2348 		if (bio->bi_end_io == NULL)
2349 			continue;
2350 		if (!bio->bi_status &&
2351 		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2352 			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2353 		}
2354 		if (bio->bi_status &&
2355 		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2356 			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2357 				md_error(conf->mddev, rdev);
2358 		}
2359 	}
2360 	put_buf(r1_bio);
2361 	md_done_sync(conf->mddev, s, 1);
2362 }
2363 
2364 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2365 {
2366 	int m, idx;
2367 	bool fail = false;
2368 
2369 	for (m = 0; m < conf->raid_disks * 2 ; m++)
2370 		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2371 			struct md_rdev *rdev = conf->mirrors[m].rdev;
2372 			rdev_clear_badblocks(rdev,
2373 					     r1_bio->sector,
2374 					     r1_bio->sectors, 0);
2375 			rdev_dec_pending(rdev, conf->mddev);
2376 		} else if (r1_bio->bios[m] != NULL) {
2377 			/* This drive got a write error.  We need to
2378 			 * narrow down and record precise write
2379 			 * errors.
2380 			 */
2381 			fail = true;
2382 			if (!narrow_write_error(r1_bio, m)) {
2383 				md_error(conf->mddev,
2384 					 conf->mirrors[m].rdev);
2385 				/* an I/O failed, we can't clear the bitmap */
2386 				set_bit(R1BIO_Degraded, &r1_bio->state);
2387 			}
2388 			rdev_dec_pending(conf->mirrors[m].rdev,
2389 					 conf->mddev);
2390 		}
2391 	if (fail) {
2392 		spin_lock_irq(&conf->device_lock);
2393 		list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2394 		idx = sector_to_idx(r1_bio->sector);
2395 		atomic_inc(&conf->nr_queued[idx]);
2396 		spin_unlock_irq(&conf->device_lock);
2397 		/*
2398 		 * In case freeze_array() is waiting for condition
2399 		 * get_unqueued_pending() == extra to be true.
2400 		 */
2401 		wake_up(&conf->wait_barrier);
2402 		md_wakeup_thread(conf->mddev->thread);
2403 	} else {
2404 		if (test_bit(R1BIO_WriteError, &r1_bio->state))
2405 			close_write(r1_bio);
2406 		raid_end_bio_io(r1_bio);
2407 	}
2408 }
2409 
2410 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2411 {
2412 	struct mddev *mddev = conf->mddev;
2413 	struct bio *bio;
2414 	struct md_rdev *rdev;
2415 	sector_t bio_sector;
2416 
2417 	clear_bit(R1BIO_ReadError, &r1_bio->state);
2418 	/* we got a read error. Maybe the drive is bad.  Maybe just
2419 	 * the block and we can fix it.
2420 	 * We freeze all other IO, and try reading the block from
2421 	 * other devices.  When we find one, we re-write
2422 	 * and check it that fixes the read error.
2423 	 * This is all done synchronously while the array is
2424 	 * frozen
2425 	 */
2426 
2427 	bio = r1_bio->bios[r1_bio->read_disk];
2428 	bio_sector = conf->mirrors[r1_bio->read_disk].rdev->data_offset + r1_bio->sector;
2429 	bio_put(bio);
2430 	r1_bio->bios[r1_bio->read_disk] = NULL;
2431 
2432 	rdev = conf->mirrors[r1_bio->read_disk].rdev;
2433 	if (mddev->ro == 0
2434 	    && !test_bit(FailFast, &rdev->flags)) {
2435 		freeze_array(conf, 1);
2436 		fix_read_error(conf, r1_bio->read_disk,
2437 			       r1_bio->sector, r1_bio->sectors);
2438 		unfreeze_array(conf);
2439 	} else {
2440 		r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2441 	}
2442 
2443 	rdev_dec_pending(rdev, conf->mddev);
2444 	allow_barrier(conf, r1_bio->sector);
2445 	bio = r1_bio->master_bio;
2446 
2447 	/* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2448 	r1_bio->state = 0;
2449 	raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2450 }
2451 
2452 static void raid1d(struct md_thread *thread)
2453 {
2454 	struct mddev *mddev = thread->mddev;
2455 	struct r1bio *r1_bio;
2456 	unsigned long flags;
2457 	struct r1conf *conf = mddev->private;
2458 	struct list_head *head = &conf->retry_list;
2459 	struct blk_plug plug;
2460 	int idx;
2461 
2462 	md_check_recovery(mddev);
2463 
2464 	if (!list_empty_careful(&conf->bio_end_io_list) &&
2465 	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2466 		LIST_HEAD(tmp);
2467 		spin_lock_irqsave(&conf->device_lock, flags);
2468 		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2469 			list_splice_init(&conf->bio_end_io_list, &tmp);
2470 		spin_unlock_irqrestore(&conf->device_lock, flags);
2471 		while (!list_empty(&tmp)) {
2472 			r1_bio = list_first_entry(&tmp, struct r1bio,
2473 						  retry_list);
2474 			list_del(&r1_bio->retry_list);
2475 			idx = sector_to_idx(r1_bio->sector);
2476 			atomic_dec(&conf->nr_queued[idx]);
2477 			if (mddev->degraded)
2478 				set_bit(R1BIO_Degraded, &r1_bio->state);
2479 			if (test_bit(R1BIO_WriteError, &r1_bio->state))
2480 				close_write(r1_bio);
2481 			raid_end_bio_io(r1_bio);
2482 		}
2483 	}
2484 
2485 	blk_start_plug(&plug);
2486 	for (;;) {
2487 
2488 		flush_pending_writes(conf);
2489 
2490 		spin_lock_irqsave(&conf->device_lock, flags);
2491 		if (list_empty(head)) {
2492 			spin_unlock_irqrestore(&conf->device_lock, flags);
2493 			break;
2494 		}
2495 		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2496 		list_del(head->prev);
2497 		idx = sector_to_idx(r1_bio->sector);
2498 		atomic_dec(&conf->nr_queued[idx]);
2499 		spin_unlock_irqrestore(&conf->device_lock, flags);
2500 
2501 		mddev = r1_bio->mddev;
2502 		conf = mddev->private;
2503 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2504 			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2505 			    test_bit(R1BIO_WriteError, &r1_bio->state))
2506 				handle_sync_write_finished(conf, r1_bio);
2507 			else
2508 				sync_request_write(mddev, r1_bio);
2509 		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2510 			   test_bit(R1BIO_WriteError, &r1_bio->state))
2511 			handle_write_finished(conf, r1_bio);
2512 		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2513 			handle_read_error(conf, r1_bio);
2514 		else
2515 			WARN_ON_ONCE(1);
2516 
2517 		cond_resched();
2518 		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2519 			md_check_recovery(mddev);
2520 	}
2521 	blk_finish_plug(&plug);
2522 }
2523 
2524 static int init_resync(struct r1conf *conf)
2525 {
2526 	int buffs;
2527 
2528 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2529 	BUG_ON(conf->r1buf_pool);
2530 	conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2531 					  conf->poolinfo);
2532 	if (!conf->r1buf_pool)
2533 		return -ENOMEM;
2534 	return 0;
2535 }
2536 
2537 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2538 {
2539 	struct r1bio *r1bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2540 	struct resync_pages *rps;
2541 	struct bio *bio;
2542 	int i;
2543 
2544 	for (i = conf->poolinfo->raid_disks; i--; ) {
2545 		bio = r1bio->bios[i];
2546 		rps = bio->bi_private;
2547 		bio_reset(bio);
2548 		bio->bi_private = rps;
2549 	}
2550 	r1bio->master_bio = NULL;
2551 	return r1bio;
2552 }
2553 
2554 /*
2555  * perform a "sync" on one "block"
2556  *
2557  * We need to make sure that no normal I/O request - particularly write
2558  * requests - conflict with active sync requests.
2559  *
2560  * This is achieved by tracking pending requests and a 'barrier' concept
2561  * that can be installed to exclude normal IO requests.
2562  */
2563 
2564 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2565 				   int *skipped)
2566 {
2567 	struct r1conf *conf = mddev->private;
2568 	struct r1bio *r1_bio;
2569 	struct bio *bio;
2570 	sector_t max_sector, nr_sectors;
2571 	int disk = -1;
2572 	int i;
2573 	int wonly = -1;
2574 	int write_targets = 0, read_targets = 0;
2575 	sector_t sync_blocks;
2576 	int still_degraded = 0;
2577 	int good_sectors = RESYNC_SECTORS;
2578 	int min_bad = 0; /* number of sectors that are bad in all devices */
2579 	int idx = sector_to_idx(sector_nr);
2580 	int page_idx = 0;
2581 
2582 	if (!conf->r1buf_pool)
2583 		if (init_resync(conf))
2584 			return 0;
2585 
2586 	max_sector = mddev->dev_sectors;
2587 	if (sector_nr >= max_sector) {
2588 		/* If we aborted, we need to abort the
2589 		 * sync on the 'current' bitmap chunk (there will
2590 		 * only be one in raid1 resync.
2591 		 * We can find the current addess in mddev->curr_resync
2592 		 */
2593 		if (mddev->curr_resync < max_sector) /* aborted */
2594 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2595 						&sync_blocks, 1);
2596 		else /* completed sync */
2597 			conf->fullsync = 0;
2598 
2599 		bitmap_close_sync(mddev->bitmap);
2600 		close_sync(conf);
2601 
2602 		if (mddev_is_clustered(mddev)) {
2603 			conf->cluster_sync_low = 0;
2604 			conf->cluster_sync_high = 0;
2605 		}
2606 		return 0;
2607 	}
2608 
2609 	if (mddev->bitmap == NULL &&
2610 	    mddev->recovery_cp == MaxSector &&
2611 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2612 	    conf->fullsync == 0) {
2613 		*skipped = 1;
2614 		return max_sector - sector_nr;
2615 	}
2616 	/* before building a request, check if we can skip these blocks..
2617 	 * This call the bitmap_start_sync doesn't actually record anything
2618 	 */
2619 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2620 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2621 		/* We can skip this block, and probably several more */
2622 		*skipped = 1;
2623 		return sync_blocks;
2624 	}
2625 
2626 	/*
2627 	 * If there is non-resync activity waiting for a turn, then let it
2628 	 * though before starting on this new sync request.
2629 	 */
2630 	if (atomic_read(&conf->nr_waiting[idx]))
2631 		schedule_timeout_uninterruptible(1);
2632 
2633 	/* we are incrementing sector_nr below. To be safe, we check against
2634 	 * sector_nr + two times RESYNC_SECTORS
2635 	 */
2636 
2637 	bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2638 		mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2639 	r1_bio = raid1_alloc_init_r1buf(conf);
2640 
2641 	raise_barrier(conf, sector_nr);
2642 
2643 	rcu_read_lock();
2644 	/*
2645 	 * If we get a correctably read error during resync or recovery,
2646 	 * we might want to read from a different device.  So we
2647 	 * flag all drives that could conceivably be read from for READ,
2648 	 * and any others (which will be non-In_sync devices) for WRITE.
2649 	 * If a read fails, we try reading from something else for which READ
2650 	 * is OK.
2651 	 */
2652 
2653 	r1_bio->mddev = mddev;
2654 	r1_bio->sector = sector_nr;
2655 	r1_bio->state = 0;
2656 	set_bit(R1BIO_IsSync, &r1_bio->state);
2657 	/* make sure good_sectors won't go across barrier unit boundary */
2658 	good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2659 
2660 	for (i = 0; i < conf->raid_disks * 2; i++) {
2661 		struct md_rdev *rdev;
2662 		bio = r1_bio->bios[i];
2663 
2664 		rdev = rcu_dereference(conf->mirrors[i].rdev);
2665 		if (rdev == NULL ||
2666 		    test_bit(Faulty, &rdev->flags)) {
2667 			if (i < conf->raid_disks)
2668 				still_degraded = 1;
2669 		} else if (!test_bit(In_sync, &rdev->flags)) {
2670 			bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2671 			bio->bi_end_io = end_sync_write;
2672 			write_targets ++;
2673 		} else {
2674 			/* may need to read from here */
2675 			sector_t first_bad = MaxSector;
2676 			int bad_sectors;
2677 
2678 			if (is_badblock(rdev, sector_nr, good_sectors,
2679 					&first_bad, &bad_sectors)) {
2680 				if (first_bad > sector_nr)
2681 					good_sectors = first_bad - sector_nr;
2682 				else {
2683 					bad_sectors -= (sector_nr - first_bad);
2684 					if (min_bad == 0 ||
2685 					    min_bad > bad_sectors)
2686 						min_bad = bad_sectors;
2687 				}
2688 			}
2689 			if (sector_nr < first_bad) {
2690 				if (test_bit(WriteMostly, &rdev->flags)) {
2691 					if (wonly < 0)
2692 						wonly = i;
2693 				} else {
2694 					if (disk < 0)
2695 						disk = i;
2696 				}
2697 				bio_set_op_attrs(bio, REQ_OP_READ, 0);
2698 				bio->bi_end_io = end_sync_read;
2699 				read_targets++;
2700 			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2701 				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2702 				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2703 				/*
2704 				 * The device is suitable for reading (InSync),
2705 				 * but has bad block(s) here. Let's try to correct them,
2706 				 * if we are doing resync or repair. Otherwise, leave
2707 				 * this device alone for this sync request.
2708 				 */
2709 				bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2710 				bio->bi_end_io = end_sync_write;
2711 				write_targets++;
2712 			}
2713 		}
2714 		if (bio->bi_end_io) {
2715 			atomic_inc(&rdev->nr_pending);
2716 			bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2717 			bio_set_dev(bio, rdev->bdev);
2718 			if (test_bit(FailFast, &rdev->flags))
2719 				bio->bi_opf |= MD_FAILFAST;
2720 		}
2721 	}
2722 	rcu_read_unlock();
2723 	if (disk < 0)
2724 		disk = wonly;
2725 	r1_bio->read_disk = disk;
2726 
2727 	if (read_targets == 0 && min_bad > 0) {
2728 		/* These sectors are bad on all InSync devices, so we
2729 		 * need to mark them bad on all write targets
2730 		 */
2731 		int ok = 1;
2732 		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2733 			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2734 				struct md_rdev *rdev = conf->mirrors[i].rdev;
2735 				ok = rdev_set_badblocks(rdev, sector_nr,
2736 							min_bad, 0
2737 					) && ok;
2738 			}
2739 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2740 		*skipped = 1;
2741 		put_buf(r1_bio);
2742 
2743 		if (!ok) {
2744 			/* Cannot record the badblocks, so need to
2745 			 * abort the resync.
2746 			 * If there are multiple read targets, could just
2747 			 * fail the really bad ones ???
2748 			 */
2749 			conf->recovery_disabled = mddev->recovery_disabled;
2750 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2751 			return 0;
2752 		} else
2753 			return min_bad;
2754 
2755 	}
2756 	if (min_bad > 0 && min_bad < good_sectors) {
2757 		/* only resync enough to reach the next bad->good
2758 		 * transition */
2759 		good_sectors = min_bad;
2760 	}
2761 
2762 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2763 		/* extra read targets are also write targets */
2764 		write_targets += read_targets-1;
2765 
2766 	if (write_targets == 0 || read_targets == 0) {
2767 		/* There is nowhere to write, so all non-sync
2768 		 * drives must be failed - so we are finished
2769 		 */
2770 		sector_t rv;
2771 		if (min_bad > 0)
2772 			max_sector = sector_nr + min_bad;
2773 		rv = max_sector - sector_nr;
2774 		*skipped = 1;
2775 		put_buf(r1_bio);
2776 		return rv;
2777 	}
2778 
2779 	if (max_sector > mddev->resync_max)
2780 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2781 	if (max_sector > sector_nr + good_sectors)
2782 		max_sector = sector_nr + good_sectors;
2783 	nr_sectors = 0;
2784 	sync_blocks = 0;
2785 	do {
2786 		struct page *page;
2787 		int len = PAGE_SIZE;
2788 		if (sector_nr + (len>>9) > max_sector)
2789 			len = (max_sector - sector_nr) << 9;
2790 		if (len == 0)
2791 			break;
2792 		if (sync_blocks == 0) {
2793 			if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2794 					       &sync_blocks, still_degraded) &&
2795 			    !conf->fullsync &&
2796 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2797 				break;
2798 			if ((len >> 9) > sync_blocks)
2799 				len = sync_blocks<<9;
2800 		}
2801 
2802 		for (i = 0 ; i < conf->raid_disks * 2; i++) {
2803 			struct resync_pages *rp;
2804 
2805 			bio = r1_bio->bios[i];
2806 			rp = get_resync_pages(bio);
2807 			if (bio->bi_end_io) {
2808 				page = resync_fetch_page(rp, page_idx);
2809 
2810 				/*
2811 				 * won't fail because the vec table is big
2812 				 * enough to hold all these pages
2813 				 */
2814 				bio_add_page(bio, page, len, 0);
2815 			}
2816 		}
2817 		nr_sectors += len>>9;
2818 		sector_nr += len>>9;
2819 		sync_blocks -= (len>>9);
2820 	} while (++page_idx < RESYNC_PAGES);
2821 
2822 	r1_bio->sectors = nr_sectors;
2823 
2824 	if (mddev_is_clustered(mddev) &&
2825 			conf->cluster_sync_high < sector_nr + nr_sectors) {
2826 		conf->cluster_sync_low = mddev->curr_resync_completed;
2827 		conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2828 		/* Send resync message */
2829 		md_cluster_ops->resync_info_update(mddev,
2830 				conf->cluster_sync_low,
2831 				conf->cluster_sync_high);
2832 	}
2833 
2834 	/* For a user-requested sync, we read all readable devices and do a
2835 	 * compare
2836 	 */
2837 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2838 		atomic_set(&r1_bio->remaining, read_targets);
2839 		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2840 			bio = r1_bio->bios[i];
2841 			if (bio->bi_end_io == end_sync_read) {
2842 				read_targets--;
2843 				md_sync_acct_bio(bio, nr_sectors);
2844 				if (read_targets == 1)
2845 					bio->bi_opf &= ~MD_FAILFAST;
2846 				generic_make_request(bio);
2847 			}
2848 		}
2849 	} else {
2850 		atomic_set(&r1_bio->remaining, 1);
2851 		bio = r1_bio->bios[r1_bio->read_disk];
2852 		md_sync_acct_bio(bio, nr_sectors);
2853 		if (read_targets == 1)
2854 			bio->bi_opf &= ~MD_FAILFAST;
2855 		generic_make_request(bio);
2856 
2857 	}
2858 	return nr_sectors;
2859 }
2860 
2861 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2862 {
2863 	if (sectors)
2864 		return sectors;
2865 
2866 	return mddev->dev_sectors;
2867 }
2868 
2869 static struct r1conf *setup_conf(struct mddev *mddev)
2870 {
2871 	struct r1conf *conf;
2872 	int i;
2873 	struct raid1_info *disk;
2874 	struct md_rdev *rdev;
2875 	int err = -ENOMEM;
2876 
2877 	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2878 	if (!conf)
2879 		goto abort;
2880 
2881 	conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
2882 				   sizeof(atomic_t), GFP_KERNEL);
2883 	if (!conf->nr_pending)
2884 		goto abort;
2885 
2886 	conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
2887 				   sizeof(atomic_t), GFP_KERNEL);
2888 	if (!conf->nr_waiting)
2889 		goto abort;
2890 
2891 	conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
2892 				  sizeof(atomic_t), GFP_KERNEL);
2893 	if (!conf->nr_queued)
2894 		goto abort;
2895 
2896 	conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
2897 				sizeof(atomic_t), GFP_KERNEL);
2898 	if (!conf->barrier)
2899 		goto abort;
2900 
2901 	conf->mirrors = kzalloc(sizeof(struct raid1_info)
2902 				* mddev->raid_disks * 2,
2903 				 GFP_KERNEL);
2904 	if (!conf->mirrors)
2905 		goto abort;
2906 
2907 	conf->tmppage = alloc_page(GFP_KERNEL);
2908 	if (!conf->tmppage)
2909 		goto abort;
2910 
2911 	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2912 	if (!conf->poolinfo)
2913 		goto abort;
2914 	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2915 	conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2916 					  r1bio_pool_free,
2917 					  conf->poolinfo);
2918 	if (!conf->r1bio_pool)
2919 		goto abort;
2920 
2921 	conf->bio_split = bioset_create(BIO_POOL_SIZE, 0, 0);
2922 	if (!conf->bio_split)
2923 		goto abort;
2924 
2925 	conf->poolinfo->mddev = mddev;
2926 
2927 	err = -EINVAL;
2928 	spin_lock_init(&conf->device_lock);
2929 	rdev_for_each(rdev, mddev) {
2930 		int disk_idx = rdev->raid_disk;
2931 		if (disk_idx >= mddev->raid_disks
2932 		    || disk_idx < 0)
2933 			continue;
2934 		if (test_bit(Replacement, &rdev->flags))
2935 			disk = conf->mirrors + mddev->raid_disks + disk_idx;
2936 		else
2937 			disk = conf->mirrors + disk_idx;
2938 
2939 		if (disk->rdev)
2940 			goto abort;
2941 		disk->rdev = rdev;
2942 		disk->head_position = 0;
2943 		disk->seq_start = MaxSector;
2944 	}
2945 	conf->raid_disks = mddev->raid_disks;
2946 	conf->mddev = mddev;
2947 	INIT_LIST_HEAD(&conf->retry_list);
2948 	INIT_LIST_HEAD(&conf->bio_end_io_list);
2949 
2950 	spin_lock_init(&conf->resync_lock);
2951 	init_waitqueue_head(&conf->wait_barrier);
2952 
2953 	bio_list_init(&conf->pending_bio_list);
2954 	conf->pending_count = 0;
2955 	conf->recovery_disabled = mddev->recovery_disabled - 1;
2956 
2957 	err = -EIO;
2958 	for (i = 0; i < conf->raid_disks * 2; i++) {
2959 
2960 		disk = conf->mirrors + i;
2961 
2962 		if (i < conf->raid_disks &&
2963 		    disk[conf->raid_disks].rdev) {
2964 			/* This slot has a replacement. */
2965 			if (!disk->rdev) {
2966 				/* No original, just make the replacement
2967 				 * a recovering spare
2968 				 */
2969 				disk->rdev =
2970 					disk[conf->raid_disks].rdev;
2971 				disk[conf->raid_disks].rdev = NULL;
2972 			} else if (!test_bit(In_sync, &disk->rdev->flags))
2973 				/* Original is not in_sync - bad */
2974 				goto abort;
2975 		}
2976 
2977 		if (!disk->rdev ||
2978 		    !test_bit(In_sync, &disk->rdev->flags)) {
2979 			disk->head_position = 0;
2980 			if (disk->rdev &&
2981 			    (disk->rdev->saved_raid_disk < 0))
2982 				conf->fullsync = 1;
2983 		}
2984 	}
2985 
2986 	err = -ENOMEM;
2987 	conf->thread = md_register_thread(raid1d, mddev, "raid1");
2988 	if (!conf->thread)
2989 		goto abort;
2990 
2991 	return conf;
2992 
2993  abort:
2994 	if (conf) {
2995 		mempool_destroy(conf->r1bio_pool);
2996 		kfree(conf->mirrors);
2997 		safe_put_page(conf->tmppage);
2998 		kfree(conf->poolinfo);
2999 		kfree(conf->nr_pending);
3000 		kfree(conf->nr_waiting);
3001 		kfree(conf->nr_queued);
3002 		kfree(conf->barrier);
3003 		if (conf->bio_split)
3004 			bioset_free(conf->bio_split);
3005 		kfree(conf);
3006 	}
3007 	return ERR_PTR(err);
3008 }
3009 
3010 static void raid1_free(struct mddev *mddev, void *priv);
3011 static int raid1_run(struct mddev *mddev)
3012 {
3013 	struct r1conf *conf;
3014 	int i;
3015 	struct md_rdev *rdev;
3016 	int ret;
3017 	bool discard_supported = false;
3018 
3019 	if (mddev->level != 1) {
3020 		pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3021 			mdname(mddev), mddev->level);
3022 		return -EIO;
3023 	}
3024 	if (mddev->reshape_position != MaxSector) {
3025 		pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3026 			mdname(mddev));
3027 		return -EIO;
3028 	}
3029 	if (mddev_init_writes_pending(mddev) < 0)
3030 		return -ENOMEM;
3031 	/*
3032 	 * copy the already verified devices into our private RAID1
3033 	 * bookkeeping area. [whatever we allocate in run(),
3034 	 * should be freed in raid1_free()]
3035 	 */
3036 	if (mddev->private == NULL)
3037 		conf = setup_conf(mddev);
3038 	else
3039 		conf = mddev->private;
3040 
3041 	if (IS_ERR(conf))
3042 		return PTR_ERR(conf);
3043 
3044 	if (mddev->queue) {
3045 		blk_queue_max_write_same_sectors(mddev->queue, 0);
3046 		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3047 	}
3048 
3049 	rdev_for_each(rdev, mddev) {
3050 		if (!mddev->gendisk)
3051 			continue;
3052 		disk_stack_limits(mddev->gendisk, rdev->bdev,
3053 				  rdev->data_offset << 9);
3054 		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3055 			discard_supported = true;
3056 	}
3057 
3058 	mddev->degraded = 0;
3059 	for (i=0; i < conf->raid_disks; i++)
3060 		if (conf->mirrors[i].rdev == NULL ||
3061 		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3062 		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3063 			mddev->degraded++;
3064 
3065 	if (conf->raid_disks - mddev->degraded == 1)
3066 		mddev->recovery_cp = MaxSector;
3067 
3068 	if (mddev->recovery_cp != MaxSector)
3069 		pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3070 			mdname(mddev));
3071 	pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3072 		mdname(mddev), mddev->raid_disks - mddev->degraded,
3073 		mddev->raid_disks);
3074 
3075 	/*
3076 	 * Ok, everything is just fine now
3077 	 */
3078 	mddev->thread = conf->thread;
3079 	conf->thread = NULL;
3080 	mddev->private = conf;
3081 	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3082 
3083 	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3084 
3085 	if (mddev->queue) {
3086 		if (discard_supported)
3087 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3088 						mddev->queue);
3089 		else
3090 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3091 						  mddev->queue);
3092 	}
3093 
3094 	ret =  md_integrity_register(mddev);
3095 	if (ret) {
3096 		md_unregister_thread(&mddev->thread);
3097 		raid1_free(mddev, conf);
3098 	}
3099 	return ret;
3100 }
3101 
3102 static void raid1_free(struct mddev *mddev, void *priv)
3103 {
3104 	struct r1conf *conf = priv;
3105 
3106 	mempool_destroy(conf->r1bio_pool);
3107 	kfree(conf->mirrors);
3108 	safe_put_page(conf->tmppage);
3109 	kfree(conf->poolinfo);
3110 	kfree(conf->nr_pending);
3111 	kfree(conf->nr_waiting);
3112 	kfree(conf->nr_queued);
3113 	kfree(conf->barrier);
3114 	if (conf->bio_split)
3115 		bioset_free(conf->bio_split);
3116 	kfree(conf);
3117 }
3118 
3119 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3120 {
3121 	/* no resync is happening, and there is enough space
3122 	 * on all devices, so we can resize.
3123 	 * We need to make sure resync covers any new space.
3124 	 * If the array is shrinking we should possibly wait until
3125 	 * any io in the removed space completes, but it hardly seems
3126 	 * worth it.
3127 	 */
3128 	sector_t newsize = raid1_size(mddev, sectors, 0);
3129 	if (mddev->external_size &&
3130 	    mddev->array_sectors > newsize)
3131 		return -EINVAL;
3132 	if (mddev->bitmap) {
3133 		int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3134 		if (ret)
3135 			return ret;
3136 	}
3137 	md_set_array_sectors(mddev, newsize);
3138 	if (sectors > mddev->dev_sectors &&
3139 	    mddev->recovery_cp > mddev->dev_sectors) {
3140 		mddev->recovery_cp = mddev->dev_sectors;
3141 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3142 	}
3143 	mddev->dev_sectors = sectors;
3144 	mddev->resync_max_sectors = sectors;
3145 	return 0;
3146 }
3147 
3148 static int raid1_reshape(struct mddev *mddev)
3149 {
3150 	/* We need to:
3151 	 * 1/ resize the r1bio_pool
3152 	 * 2/ resize conf->mirrors
3153 	 *
3154 	 * We allocate a new r1bio_pool if we can.
3155 	 * Then raise a device barrier and wait until all IO stops.
3156 	 * Then resize conf->mirrors and swap in the new r1bio pool.
3157 	 *
3158 	 * At the same time, we "pack" the devices so that all the missing
3159 	 * devices have the higher raid_disk numbers.
3160 	 */
3161 	mempool_t *newpool, *oldpool;
3162 	struct pool_info *newpoolinfo;
3163 	struct raid1_info *newmirrors;
3164 	struct r1conf *conf = mddev->private;
3165 	int cnt, raid_disks;
3166 	unsigned long flags;
3167 	int d, d2;
3168 
3169 	/* Cannot change chunk_size, layout, or level */
3170 	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3171 	    mddev->layout != mddev->new_layout ||
3172 	    mddev->level != mddev->new_level) {
3173 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3174 		mddev->new_layout = mddev->layout;
3175 		mddev->new_level = mddev->level;
3176 		return -EINVAL;
3177 	}
3178 
3179 	if (!mddev_is_clustered(mddev))
3180 		md_allow_write(mddev);
3181 
3182 	raid_disks = mddev->raid_disks + mddev->delta_disks;
3183 
3184 	if (raid_disks < conf->raid_disks) {
3185 		cnt=0;
3186 		for (d= 0; d < conf->raid_disks; d++)
3187 			if (conf->mirrors[d].rdev)
3188 				cnt++;
3189 		if (cnt > raid_disks)
3190 			return -EBUSY;
3191 	}
3192 
3193 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3194 	if (!newpoolinfo)
3195 		return -ENOMEM;
3196 	newpoolinfo->mddev = mddev;
3197 	newpoolinfo->raid_disks = raid_disks * 2;
3198 
3199 	newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3200 				 r1bio_pool_free, newpoolinfo);
3201 	if (!newpool) {
3202 		kfree(newpoolinfo);
3203 		return -ENOMEM;
3204 	}
3205 	newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3206 			     GFP_KERNEL);
3207 	if (!newmirrors) {
3208 		kfree(newpoolinfo);
3209 		mempool_destroy(newpool);
3210 		return -ENOMEM;
3211 	}
3212 
3213 	freeze_array(conf, 0);
3214 
3215 	/* ok, everything is stopped */
3216 	oldpool = conf->r1bio_pool;
3217 	conf->r1bio_pool = newpool;
3218 
3219 	for (d = d2 = 0; d < conf->raid_disks; d++) {
3220 		struct md_rdev *rdev = conf->mirrors[d].rdev;
3221 		if (rdev && rdev->raid_disk != d2) {
3222 			sysfs_unlink_rdev(mddev, rdev);
3223 			rdev->raid_disk = d2;
3224 			sysfs_unlink_rdev(mddev, rdev);
3225 			if (sysfs_link_rdev(mddev, rdev))
3226 				pr_warn("md/raid1:%s: cannot register rd%d\n",
3227 					mdname(mddev), rdev->raid_disk);
3228 		}
3229 		if (rdev)
3230 			newmirrors[d2++].rdev = rdev;
3231 	}
3232 	kfree(conf->mirrors);
3233 	conf->mirrors = newmirrors;
3234 	kfree(conf->poolinfo);
3235 	conf->poolinfo = newpoolinfo;
3236 
3237 	spin_lock_irqsave(&conf->device_lock, flags);
3238 	mddev->degraded += (raid_disks - conf->raid_disks);
3239 	spin_unlock_irqrestore(&conf->device_lock, flags);
3240 	conf->raid_disks = mddev->raid_disks = raid_disks;
3241 	mddev->delta_disks = 0;
3242 
3243 	unfreeze_array(conf);
3244 
3245 	set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3246 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3247 	md_wakeup_thread(mddev->thread);
3248 
3249 	mempool_destroy(oldpool);
3250 	return 0;
3251 }
3252 
3253 static void raid1_quiesce(struct mddev *mddev, int quiesce)
3254 {
3255 	struct r1conf *conf = mddev->private;
3256 
3257 	if (quiesce)
3258 		freeze_array(conf, 0);
3259 	else
3260 		unfreeze_array(conf);
3261 }
3262 
3263 static void *raid1_takeover(struct mddev *mddev)
3264 {
3265 	/* raid1 can take over:
3266 	 *  raid5 with 2 devices, any layout or chunk size
3267 	 */
3268 	if (mddev->level == 5 && mddev->raid_disks == 2) {
3269 		struct r1conf *conf;
3270 		mddev->new_level = 1;
3271 		mddev->new_layout = 0;
3272 		mddev->new_chunk_sectors = 0;
3273 		conf = setup_conf(mddev);
3274 		if (!IS_ERR(conf)) {
3275 			/* Array must appear to be quiesced */
3276 			conf->array_frozen = 1;
3277 			mddev_clear_unsupported_flags(mddev,
3278 				UNSUPPORTED_MDDEV_FLAGS);
3279 		}
3280 		return conf;
3281 	}
3282 	return ERR_PTR(-EINVAL);
3283 }
3284 
3285 static struct md_personality raid1_personality =
3286 {
3287 	.name		= "raid1",
3288 	.level		= 1,
3289 	.owner		= THIS_MODULE,
3290 	.make_request	= raid1_make_request,
3291 	.run		= raid1_run,
3292 	.free		= raid1_free,
3293 	.status		= raid1_status,
3294 	.error_handler	= raid1_error,
3295 	.hot_add_disk	= raid1_add_disk,
3296 	.hot_remove_disk= raid1_remove_disk,
3297 	.spare_active	= raid1_spare_active,
3298 	.sync_request	= raid1_sync_request,
3299 	.resize		= raid1_resize,
3300 	.size		= raid1_size,
3301 	.check_reshape	= raid1_reshape,
3302 	.quiesce	= raid1_quiesce,
3303 	.takeover	= raid1_takeover,
3304 	.congested	= raid1_congested,
3305 };
3306 
3307 static int __init raid_init(void)
3308 {
3309 	return register_md_personality(&raid1_personality);
3310 }
3311 
3312 static void raid_exit(void)
3313 {
3314 	unregister_md_personality(&raid1_personality);
3315 }
3316 
3317 module_init(raid_init);
3318 module_exit(raid_exit);
3319 MODULE_LICENSE("GPL");
3320 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3321 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3322 MODULE_ALIAS("md-raid1");
3323 MODULE_ALIAS("md-level-1");
3324 
3325 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
3326