1 /* 2 * raid1.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat 5 * 6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman 7 * 8 * RAID-1 management functions. 9 * 10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 11 * 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk> 13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> 14 * 15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support 16 * bitmapped intelligence in resync: 17 * 18 * - bitmap marked during normal i/o 19 * - bitmap used to skip nondirty blocks during sync 20 * 21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology: 22 * - persistent bitmap code 23 * 24 * This program is free software; you can redistribute it and/or modify 25 * it under the terms of the GNU General Public License as published by 26 * the Free Software Foundation; either version 2, or (at your option) 27 * any later version. 28 * 29 * You should have received a copy of the GNU General Public License 30 * (for example /usr/src/linux/COPYING); if not, write to the Free 31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 32 */ 33 34 #include <linux/slab.h> 35 #include <linux/delay.h> 36 #include <linux/blkdev.h> 37 #include <linux/module.h> 38 #include <linux/seq_file.h> 39 #include <linux/ratelimit.h> 40 41 #include <trace/events/block.h> 42 43 #include "md.h" 44 #include "raid1.h" 45 #include "md-bitmap.h" 46 47 #define UNSUPPORTED_MDDEV_FLAGS \ 48 ((1L << MD_HAS_JOURNAL) | \ 49 (1L << MD_JOURNAL_CLEAN) | \ 50 (1L << MD_HAS_PPL) | \ 51 (1L << MD_HAS_MULTIPLE_PPLS)) 52 53 /* 54 * Number of guaranteed r1bios in case of extreme VM load: 55 */ 56 #define NR_RAID1_BIOS 256 57 58 /* when we get a read error on a read-only array, we redirect to another 59 * device without failing the first device, or trying to over-write to 60 * correct the read error. To keep track of bad blocks on a per-bio 61 * level, we store IO_BLOCKED in the appropriate 'bios' pointer 62 */ 63 #define IO_BLOCKED ((struct bio *)1) 64 /* When we successfully write to a known bad-block, we need to remove the 65 * bad-block marking which must be done from process context. So we record 66 * the success by setting devs[n].bio to IO_MADE_GOOD 67 */ 68 #define IO_MADE_GOOD ((struct bio *)2) 69 70 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2) 71 72 /* When there are this many requests queue to be written by 73 * the raid1 thread, we become 'congested' to provide back-pressure 74 * for writeback. 75 */ 76 static int max_queued_requests = 1024; 77 78 static void allow_barrier(struct r1conf *conf, sector_t sector_nr); 79 static void lower_barrier(struct r1conf *conf, sector_t sector_nr); 80 81 #define raid1_log(md, fmt, args...) \ 82 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0) 83 84 #include "raid1-10.c" 85 86 /* 87 * for resync bio, r1bio pointer can be retrieved from the per-bio 88 * 'struct resync_pages'. 89 */ 90 static inline struct r1bio *get_resync_r1bio(struct bio *bio) 91 { 92 return get_resync_pages(bio)->raid_bio; 93 } 94 95 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data) 96 { 97 struct pool_info *pi = data; 98 int size = offsetof(struct r1bio, bios[pi->raid_disks]); 99 100 /* allocate a r1bio with room for raid_disks entries in the bios array */ 101 return kzalloc(size, gfp_flags); 102 } 103 104 static void r1bio_pool_free(void *r1_bio, void *data) 105 { 106 kfree(r1_bio); 107 } 108 109 #define RESYNC_DEPTH 32 110 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 111 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH) 112 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9) 113 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW) 114 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9) 115 116 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) 117 { 118 struct pool_info *pi = data; 119 struct r1bio *r1_bio; 120 struct bio *bio; 121 int need_pages; 122 int j; 123 struct resync_pages *rps; 124 125 r1_bio = r1bio_pool_alloc(gfp_flags, pi); 126 if (!r1_bio) 127 return NULL; 128 129 rps = kmalloc(sizeof(struct resync_pages) * pi->raid_disks, 130 gfp_flags); 131 if (!rps) 132 goto out_free_r1bio; 133 134 /* 135 * Allocate bios : 1 for reading, n-1 for writing 136 */ 137 for (j = pi->raid_disks ; j-- ; ) { 138 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 139 if (!bio) 140 goto out_free_bio; 141 r1_bio->bios[j] = bio; 142 } 143 /* 144 * Allocate RESYNC_PAGES data pages and attach them to 145 * the first bio. 146 * If this is a user-requested check/repair, allocate 147 * RESYNC_PAGES for each bio. 148 */ 149 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) 150 need_pages = pi->raid_disks; 151 else 152 need_pages = 1; 153 for (j = 0; j < pi->raid_disks; j++) { 154 struct resync_pages *rp = &rps[j]; 155 156 bio = r1_bio->bios[j]; 157 158 if (j < need_pages) { 159 if (resync_alloc_pages(rp, gfp_flags)) 160 goto out_free_pages; 161 } else { 162 memcpy(rp, &rps[0], sizeof(*rp)); 163 resync_get_all_pages(rp); 164 } 165 166 rp->raid_bio = r1_bio; 167 bio->bi_private = rp; 168 } 169 170 r1_bio->master_bio = NULL; 171 172 return r1_bio; 173 174 out_free_pages: 175 while (--j >= 0) 176 resync_free_pages(&rps[j]); 177 178 out_free_bio: 179 while (++j < pi->raid_disks) 180 bio_put(r1_bio->bios[j]); 181 kfree(rps); 182 183 out_free_r1bio: 184 r1bio_pool_free(r1_bio, data); 185 return NULL; 186 } 187 188 static void r1buf_pool_free(void *__r1_bio, void *data) 189 { 190 struct pool_info *pi = data; 191 int i; 192 struct r1bio *r1bio = __r1_bio; 193 struct resync_pages *rp = NULL; 194 195 for (i = pi->raid_disks; i--; ) { 196 rp = get_resync_pages(r1bio->bios[i]); 197 resync_free_pages(rp); 198 bio_put(r1bio->bios[i]); 199 } 200 201 /* resync pages array stored in the 1st bio's .bi_private */ 202 kfree(rp); 203 204 r1bio_pool_free(r1bio, data); 205 } 206 207 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio) 208 { 209 int i; 210 211 for (i = 0; i < conf->raid_disks * 2; i++) { 212 struct bio **bio = r1_bio->bios + i; 213 if (!BIO_SPECIAL(*bio)) 214 bio_put(*bio); 215 *bio = NULL; 216 } 217 } 218 219 static void free_r1bio(struct r1bio *r1_bio) 220 { 221 struct r1conf *conf = r1_bio->mddev->private; 222 223 put_all_bios(conf, r1_bio); 224 mempool_free(r1_bio, conf->r1bio_pool); 225 } 226 227 static void put_buf(struct r1bio *r1_bio) 228 { 229 struct r1conf *conf = r1_bio->mddev->private; 230 sector_t sect = r1_bio->sector; 231 int i; 232 233 for (i = 0; i < conf->raid_disks * 2; i++) { 234 struct bio *bio = r1_bio->bios[i]; 235 if (bio->bi_end_io) 236 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev); 237 } 238 239 mempool_free(r1_bio, conf->r1buf_pool); 240 241 lower_barrier(conf, sect); 242 } 243 244 static void reschedule_retry(struct r1bio *r1_bio) 245 { 246 unsigned long flags; 247 struct mddev *mddev = r1_bio->mddev; 248 struct r1conf *conf = mddev->private; 249 int idx; 250 251 idx = sector_to_idx(r1_bio->sector); 252 spin_lock_irqsave(&conf->device_lock, flags); 253 list_add(&r1_bio->retry_list, &conf->retry_list); 254 atomic_inc(&conf->nr_queued[idx]); 255 spin_unlock_irqrestore(&conf->device_lock, flags); 256 257 wake_up(&conf->wait_barrier); 258 md_wakeup_thread(mddev->thread); 259 } 260 261 /* 262 * raid_end_bio_io() is called when we have finished servicing a mirrored 263 * operation and are ready to return a success/failure code to the buffer 264 * cache layer. 265 */ 266 static void call_bio_endio(struct r1bio *r1_bio) 267 { 268 struct bio *bio = r1_bio->master_bio; 269 struct r1conf *conf = r1_bio->mddev->private; 270 271 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 272 bio->bi_status = BLK_STS_IOERR; 273 274 bio_endio(bio); 275 /* 276 * Wake up any possible resync thread that waits for the device 277 * to go idle. 278 */ 279 allow_barrier(conf, r1_bio->sector); 280 } 281 282 static void raid_end_bio_io(struct r1bio *r1_bio) 283 { 284 struct bio *bio = r1_bio->master_bio; 285 286 /* if nobody has done the final endio yet, do it now */ 287 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 288 pr_debug("raid1: sync end %s on sectors %llu-%llu\n", 289 (bio_data_dir(bio) == WRITE) ? "write" : "read", 290 (unsigned long long) bio->bi_iter.bi_sector, 291 (unsigned long long) bio_end_sector(bio) - 1); 292 293 call_bio_endio(r1_bio); 294 } 295 free_r1bio(r1_bio); 296 } 297 298 /* 299 * Update disk head position estimator based on IRQ completion info. 300 */ 301 static inline void update_head_pos(int disk, struct r1bio *r1_bio) 302 { 303 struct r1conf *conf = r1_bio->mddev->private; 304 305 conf->mirrors[disk].head_position = 306 r1_bio->sector + (r1_bio->sectors); 307 } 308 309 /* 310 * Find the disk number which triggered given bio 311 */ 312 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio) 313 { 314 int mirror; 315 struct r1conf *conf = r1_bio->mddev->private; 316 int raid_disks = conf->raid_disks; 317 318 for (mirror = 0; mirror < raid_disks * 2; mirror++) 319 if (r1_bio->bios[mirror] == bio) 320 break; 321 322 BUG_ON(mirror == raid_disks * 2); 323 update_head_pos(mirror, r1_bio); 324 325 return mirror; 326 } 327 328 static void raid1_end_read_request(struct bio *bio) 329 { 330 int uptodate = !bio->bi_status; 331 struct r1bio *r1_bio = bio->bi_private; 332 struct r1conf *conf = r1_bio->mddev->private; 333 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev; 334 335 /* 336 * this branch is our 'one mirror IO has finished' event handler: 337 */ 338 update_head_pos(r1_bio->read_disk, r1_bio); 339 340 if (uptodate) 341 set_bit(R1BIO_Uptodate, &r1_bio->state); 342 else if (test_bit(FailFast, &rdev->flags) && 343 test_bit(R1BIO_FailFast, &r1_bio->state)) 344 /* This was a fail-fast read so we definitely 345 * want to retry */ 346 ; 347 else { 348 /* If all other devices have failed, we want to return 349 * the error upwards rather than fail the last device. 350 * Here we redefine "uptodate" to mean "Don't want to retry" 351 */ 352 unsigned long flags; 353 spin_lock_irqsave(&conf->device_lock, flags); 354 if (r1_bio->mddev->degraded == conf->raid_disks || 355 (r1_bio->mddev->degraded == conf->raid_disks-1 && 356 test_bit(In_sync, &rdev->flags))) 357 uptodate = 1; 358 spin_unlock_irqrestore(&conf->device_lock, flags); 359 } 360 361 if (uptodate) { 362 raid_end_bio_io(r1_bio); 363 rdev_dec_pending(rdev, conf->mddev); 364 } else { 365 /* 366 * oops, read error: 367 */ 368 char b[BDEVNAME_SIZE]; 369 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n", 370 mdname(conf->mddev), 371 bdevname(rdev->bdev, b), 372 (unsigned long long)r1_bio->sector); 373 set_bit(R1BIO_ReadError, &r1_bio->state); 374 reschedule_retry(r1_bio); 375 /* don't drop the reference on read_disk yet */ 376 } 377 } 378 379 static void close_write(struct r1bio *r1_bio) 380 { 381 /* it really is the end of this request */ 382 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 383 bio_free_pages(r1_bio->behind_master_bio); 384 bio_put(r1_bio->behind_master_bio); 385 r1_bio->behind_master_bio = NULL; 386 } 387 /* clear the bitmap if all writes complete successfully */ 388 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector, 389 r1_bio->sectors, 390 !test_bit(R1BIO_Degraded, &r1_bio->state), 391 test_bit(R1BIO_BehindIO, &r1_bio->state)); 392 md_write_end(r1_bio->mddev); 393 } 394 395 static void r1_bio_write_done(struct r1bio *r1_bio) 396 { 397 if (!atomic_dec_and_test(&r1_bio->remaining)) 398 return; 399 400 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 401 reschedule_retry(r1_bio); 402 else { 403 close_write(r1_bio); 404 if (test_bit(R1BIO_MadeGood, &r1_bio->state)) 405 reschedule_retry(r1_bio); 406 else 407 raid_end_bio_io(r1_bio); 408 } 409 } 410 411 static void raid1_end_write_request(struct bio *bio) 412 { 413 struct r1bio *r1_bio = bio->bi_private; 414 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state); 415 struct r1conf *conf = r1_bio->mddev->private; 416 struct bio *to_put = NULL; 417 int mirror = find_bio_disk(r1_bio, bio); 418 struct md_rdev *rdev = conf->mirrors[mirror].rdev; 419 bool discard_error; 420 421 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD; 422 423 /* 424 * 'one mirror IO has finished' event handler: 425 */ 426 if (bio->bi_status && !discard_error) { 427 set_bit(WriteErrorSeen, &rdev->flags); 428 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 429 set_bit(MD_RECOVERY_NEEDED, & 430 conf->mddev->recovery); 431 432 if (test_bit(FailFast, &rdev->flags) && 433 (bio->bi_opf & MD_FAILFAST) && 434 /* We never try FailFast to WriteMostly devices */ 435 !test_bit(WriteMostly, &rdev->flags)) { 436 md_error(r1_bio->mddev, rdev); 437 if (!test_bit(Faulty, &rdev->flags)) 438 /* This is the only remaining device, 439 * We need to retry the write without 440 * FailFast 441 */ 442 set_bit(R1BIO_WriteError, &r1_bio->state); 443 else { 444 /* Finished with this branch */ 445 r1_bio->bios[mirror] = NULL; 446 to_put = bio; 447 } 448 } else 449 set_bit(R1BIO_WriteError, &r1_bio->state); 450 } else { 451 /* 452 * Set R1BIO_Uptodate in our master bio, so that we 453 * will return a good error code for to the higher 454 * levels even if IO on some other mirrored buffer 455 * fails. 456 * 457 * The 'master' represents the composite IO operation 458 * to user-side. So if something waits for IO, then it 459 * will wait for the 'master' bio. 460 */ 461 sector_t first_bad; 462 int bad_sectors; 463 464 r1_bio->bios[mirror] = NULL; 465 to_put = bio; 466 /* 467 * Do not set R1BIO_Uptodate if the current device is 468 * rebuilding or Faulty. This is because we cannot use 469 * such device for properly reading the data back (we could 470 * potentially use it, if the current write would have felt 471 * before rdev->recovery_offset, but for simplicity we don't 472 * check this here. 473 */ 474 if (test_bit(In_sync, &rdev->flags) && 475 !test_bit(Faulty, &rdev->flags)) 476 set_bit(R1BIO_Uptodate, &r1_bio->state); 477 478 /* Maybe we can clear some bad blocks. */ 479 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors, 480 &first_bad, &bad_sectors) && !discard_error) { 481 r1_bio->bios[mirror] = IO_MADE_GOOD; 482 set_bit(R1BIO_MadeGood, &r1_bio->state); 483 } 484 } 485 486 if (behind) { 487 if (test_bit(WriteMostly, &rdev->flags)) 488 atomic_dec(&r1_bio->behind_remaining); 489 490 /* 491 * In behind mode, we ACK the master bio once the I/O 492 * has safely reached all non-writemostly 493 * disks. Setting the Returned bit ensures that this 494 * gets done only once -- we don't ever want to return 495 * -EIO here, instead we'll wait 496 */ 497 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) && 498 test_bit(R1BIO_Uptodate, &r1_bio->state)) { 499 /* Maybe we can return now */ 500 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 501 struct bio *mbio = r1_bio->master_bio; 502 pr_debug("raid1: behind end write sectors" 503 " %llu-%llu\n", 504 (unsigned long long) mbio->bi_iter.bi_sector, 505 (unsigned long long) bio_end_sector(mbio) - 1); 506 call_bio_endio(r1_bio); 507 } 508 } 509 } 510 if (r1_bio->bios[mirror] == NULL) 511 rdev_dec_pending(rdev, conf->mddev); 512 513 /* 514 * Let's see if all mirrored write operations have finished 515 * already. 516 */ 517 r1_bio_write_done(r1_bio); 518 519 if (to_put) 520 bio_put(to_put); 521 } 522 523 static sector_t align_to_barrier_unit_end(sector_t start_sector, 524 sector_t sectors) 525 { 526 sector_t len; 527 528 WARN_ON(sectors == 0); 529 /* 530 * len is the number of sectors from start_sector to end of the 531 * barrier unit which start_sector belongs to. 532 */ 533 len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) - 534 start_sector; 535 536 if (len > sectors) 537 len = sectors; 538 539 return len; 540 } 541 542 /* 543 * This routine returns the disk from which the requested read should 544 * be done. There is a per-array 'next expected sequential IO' sector 545 * number - if this matches on the next IO then we use the last disk. 546 * There is also a per-disk 'last know head position' sector that is 547 * maintained from IRQ contexts, both the normal and the resync IO 548 * completion handlers update this position correctly. If there is no 549 * perfect sequential match then we pick the disk whose head is closest. 550 * 551 * If there are 2 mirrors in the same 2 devices, performance degrades 552 * because position is mirror, not device based. 553 * 554 * The rdev for the device selected will have nr_pending incremented. 555 */ 556 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors) 557 { 558 const sector_t this_sector = r1_bio->sector; 559 int sectors; 560 int best_good_sectors; 561 int best_disk, best_dist_disk, best_pending_disk; 562 int has_nonrot_disk; 563 int disk; 564 sector_t best_dist; 565 unsigned int min_pending; 566 struct md_rdev *rdev; 567 int choose_first; 568 int choose_next_idle; 569 570 rcu_read_lock(); 571 /* 572 * Check if we can balance. We can balance on the whole 573 * device if no resync is going on, or below the resync window. 574 * We take the first readable disk when above the resync window. 575 */ 576 retry: 577 sectors = r1_bio->sectors; 578 best_disk = -1; 579 best_dist_disk = -1; 580 best_dist = MaxSector; 581 best_pending_disk = -1; 582 min_pending = UINT_MAX; 583 best_good_sectors = 0; 584 has_nonrot_disk = 0; 585 choose_next_idle = 0; 586 clear_bit(R1BIO_FailFast, &r1_bio->state); 587 588 if ((conf->mddev->recovery_cp < this_sector + sectors) || 589 (mddev_is_clustered(conf->mddev) && 590 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector, 591 this_sector + sectors))) 592 choose_first = 1; 593 else 594 choose_first = 0; 595 596 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) { 597 sector_t dist; 598 sector_t first_bad; 599 int bad_sectors; 600 unsigned int pending; 601 bool nonrot; 602 603 rdev = rcu_dereference(conf->mirrors[disk].rdev); 604 if (r1_bio->bios[disk] == IO_BLOCKED 605 || rdev == NULL 606 || test_bit(Faulty, &rdev->flags)) 607 continue; 608 if (!test_bit(In_sync, &rdev->flags) && 609 rdev->recovery_offset < this_sector + sectors) 610 continue; 611 if (test_bit(WriteMostly, &rdev->flags)) { 612 /* Don't balance among write-mostly, just 613 * use the first as a last resort */ 614 if (best_dist_disk < 0) { 615 if (is_badblock(rdev, this_sector, sectors, 616 &first_bad, &bad_sectors)) { 617 if (first_bad <= this_sector) 618 /* Cannot use this */ 619 continue; 620 best_good_sectors = first_bad - this_sector; 621 } else 622 best_good_sectors = sectors; 623 best_dist_disk = disk; 624 best_pending_disk = disk; 625 } 626 continue; 627 } 628 /* This is a reasonable device to use. It might 629 * even be best. 630 */ 631 if (is_badblock(rdev, this_sector, sectors, 632 &first_bad, &bad_sectors)) { 633 if (best_dist < MaxSector) 634 /* already have a better device */ 635 continue; 636 if (first_bad <= this_sector) { 637 /* cannot read here. If this is the 'primary' 638 * device, then we must not read beyond 639 * bad_sectors from another device.. 640 */ 641 bad_sectors -= (this_sector - first_bad); 642 if (choose_first && sectors > bad_sectors) 643 sectors = bad_sectors; 644 if (best_good_sectors > sectors) 645 best_good_sectors = sectors; 646 647 } else { 648 sector_t good_sectors = first_bad - this_sector; 649 if (good_sectors > best_good_sectors) { 650 best_good_sectors = good_sectors; 651 best_disk = disk; 652 } 653 if (choose_first) 654 break; 655 } 656 continue; 657 } else { 658 if ((sectors > best_good_sectors) && (best_disk >= 0)) 659 best_disk = -1; 660 best_good_sectors = sectors; 661 } 662 663 if (best_disk >= 0) 664 /* At least two disks to choose from so failfast is OK */ 665 set_bit(R1BIO_FailFast, &r1_bio->state); 666 667 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev)); 668 has_nonrot_disk |= nonrot; 669 pending = atomic_read(&rdev->nr_pending); 670 dist = abs(this_sector - conf->mirrors[disk].head_position); 671 if (choose_first) { 672 best_disk = disk; 673 break; 674 } 675 /* Don't change to another disk for sequential reads */ 676 if (conf->mirrors[disk].next_seq_sect == this_sector 677 || dist == 0) { 678 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9; 679 struct raid1_info *mirror = &conf->mirrors[disk]; 680 681 best_disk = disk; 682 /* 683 * If buffered sequential IO size exceeds optimal 684 * iosize, check if there is idle disk. If yes, choose 685 * the idle disk. read_balance could already choose an 686 * idle disk before noticing it's a sequential IO in 687 * this disk. This doesn't matter because this disk 688 * will idle, next time it will be utilized after the 689 * first disk has IO size exceeds optimal iosize. In 690 * this way, iosize of the first disk will be optimal 691 * iosize at least. iosize of the second disk might be 692 * small, but not a big deal since when the second disk 693 * starts IO, the first disk is likely still busy. 694 */ 695 if (nonrot && opt_iosize > 0 && 696 mirror->seq_start != MaxSector && 697 mirror->next_seq_sect > opt_iosize && 698 mirror->next_seq_sect - opt_iosize >= 699 mirror->seq_start) { 700 choose_next_idle = 1; 701 continue; 702 } 703 break; 704 } 705 706 if (choose_next_idle) 707 continue; 708 709 if (min_pending > pending) { 710 min_pending = pending; 711 best_pending_disk = disk; 712 } 713 714 if (dist < best_dist) { 715 best_dist = dist; 716 best_dist_disk = disk; 717 } 718 } 719 720 /* 721 * If all disks are rotational, choose the closest disk. If any disk is 722 * non-rotational, choose the disk with less pending request even the 723 * disk is rotational, which might/might not be optimal for raids with 724 * mixed ratation/non-rotational disks depending on workload. 725 */ 726 if (best_disk == -1) { 727 if (has_nonrot_disk || min_pending == 0) 728 best_disk = best_pending_disk; 729 else 730 best_disk = best_dist_disk; 731 } 732 733 if (best_disk >= 0) { 734 rdev = rcu_dereference(conf->mirrors[best_disk].rdev); 735 if (!rdev) 736 goto retry; 737 atomic_inc(&rdev->nr_pending); 738 sectors = best_good_sectors; 739 740 if (conf->mirrors[best_disk].next_seq_sect != this_sector) 741 conf->mirrors[best_disk].seq_start = this_sector; 742 743 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors; 744 } 745 rcu_read_unlock(); 746 *max_sectors = sectors; 747 748 return best_disk; 749 } 750 751 static int raid1_congested(struct mddev *mddev, int bits) 752 { 753 struct r1conf *conf = mddev->private; 754 int i, ret = 0; 755 756 if ((bits & (1 << WB_async_congested)) && 757 conf->pending_count >= max_queued_requests) 758 return 1; 759 760 rcu_read_lock(); 761 for (i = 0; i < conf->raid_disks * 2; i++) { 762 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 763 if (rdev && !test_bit(Faulty, &rdev->flags)) { 764 struct request_queue *q = bdev_get_queue(rdev->bdev); 765 766 BUG_ON(!q); 767 768 /* Note the '|| 1' - when read_balance prefers 769 * non-congested targets, it can be removed 770 */ 771 if ((bits & (1 << WB_async_congested)) || 1) 772 ret |= bdi_congested(q->backing_dev_info, bits); 773 else 774 ret &= bdi_congested(q->backing_dev_info, bits); 775 } 776 } 777 rcu_read_unlock(); 778 return ret; 779 } 780 781 static void flush_bio_list(struct r1conf *conf, struct bio *bio) 782 { 783 /* flush any pending bitmap writes to disk before proceeding w/ I/O */ 784 bitmap_unplug(conf->mddev->bitmap); 785 wake_up(&conf->wait_barrier); 786 787 while (bio) { /* submit pending writes */ 788 struct bio *next = bio->bi_next; 789 struct md_rdev *rdev = (void *)bio->bi_disk; 790 bio->bi_next = NULL; 791 bio_set_dev(bio, rdev->bdev); 792 if (test_bit(Faulty, &rdev->flags)) { 793 bio_io_error(bio); 794 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) && 795 !blk_queue_discard(bio->bi_disk->queue))) 796 /* Just ignore it */ 797 bio_endio(bio); 798 else 799 generic_make_request(bio); 800 bio = next; 801 } 802 } 803 804 static void flush_pending_writes(struct r1conf *conf) 805 { 806 /* Any writes that have been queued but are awaiting 807 * bitmap updates get flushed here. 808 */ 809 spin_lock_irq(&conf->device_lock); 810 811 if (conf->pending_bio_list.head) { 812 struct bio *bio; 813 bio = bio_list_get(&conf->pending_bio_list); 814 conf->pending_count = 0; 815 spin_unlock_irq(&conf->device_lock); 816 flush_bio_list(conf, bio); 817 } else 818 spin_unlock_irq(&conf->device_lock); 819 } 820 821 /* Barriers.... 822 * Sometimes we need to suspend IO while we do something else, 823 * either some resync/recovery, or reconfigure the array. 824 * To do this we raise a 'barrier'. 825 * The 'barrier' is a counter that can be raised multiple times 826 * to count how many activities are happening which preclude 827 * normal IO. 828 * We can only raise the barrier if there is no pending IO. 829 * i.e. if nr_pending == 0. 830 * We choose only to raise the barrier if no-one is waiting for the 831 * barrier to go down. This means that as soon as an IO request 832 * is ready, no other operations which require a barrier will start 833 * until the IO request has had a chance. 834 * 835 * So: regular IO calls 'wait_barrier'. When that returns there 836 * is no backgroup IO happening, It must arrange to call 837 * allow_barrier when it has finished its IO. 838 * backgroup IO calls must call raise_barrier. Once that returns 839 * there is no normal IO happeing. It must arrange to call 840 * lower_barrier when the particular background IO completes. 841 */ 842 static void raise_barrier(struct r1conf *conf, sector_t sector_nr) 843 { 844 int idx = sector_to_idx(sector_nr); 845 846 spin_lock_irq(&conf->resync_lock); 847 848 /* Wait until no block IO is waiting */ 849 wait_event_lock_irq(conf->wait_barrier, 850 !atomic_read(&conf->nr_waiting[idx]), 851 conf->resync_lock); 852 853 /* block any new IO from starting */ 854 atomic_inc(&conf->barrier[idx]); 855 /* 856 * In raise_barrier() we firstly increase conf->barrier[idx] then 857 * check conf->nr_pending[idx]. In _wait_barrier() we firstly 858 * increase conf->nr_pending[idx] then check conf->barrier[idx]. 859 * A memory barrier here to make sure conf->nr_pending[idx] won't 860 * be fetched before conf->barrier[idx] is increased. Otherwise 861 * there will be a race between raise_barrier() and _wait_barrier(). 862 */ 863 smp_mb__after_atomic(); 864 865 /* For these conditions we must wait: 866 * A: while the array is in frozen state 867 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O 868 * existing in corresponding I/O barrier bucket. 869 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches 870 * max resync count which allowed on current I/O barrier bucket. 871 */ 872 wait_event_lock_irq(conf->wait_barrier, 873 !conf->array_frozen && 874 !atomic_read(&conf->nr_pending[idx]) && 875 atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH, 876 conf->resync_lock); 877 878 atomic_inc(&conf->nr_sync_pending); 879 spin_unlock_irq(&conf->resync_lock); 880 } 881 882 static void lower_barrier(struct r1conf *conf, sector_t sector_nr) 883 { 884 int idx = sector_to_idx(sector_nr); 885 886 BUG_ON(atomic_read(&conf->barrier[idx]) <= 0); 887 888 atomic_dec(&conf->barrier[idx]); 889 atomic_dec(&conf->nr_sync_pending); 890 wake_up(&conf->wait_barrier); 891 } 892 893 static void _wait_barrier(struct r1conf *conf, int idx) 894 { 895 /* 896 * We need to increase conf->nr_pending[idx] very early here, 897 * then raise_barrier() can be blocked when it waits for 898 * conf->nr_pending[idx] to be 0. Then we can avoid holding 899 * conf->resync_lock when there is no barrier raised in same 900 * barrier unit bucket. Also if the array is frozen, I/O 901 * should be blocked until array is unfrozen. 902 */ 903 atomic_inc(&conf->nr_pending[idx]); 904 /* 905 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then 906 * check conf->barrier[idx]. In raise_barrier() we firstly increase 907 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory 908 * barrier is necessary here to make sure conf->barrier[idx] won't be 909 * fetched before conf->nr_pending[idx] is increased. Otherwise there 910 * will be a race between _wait_barrier() and raise_barrier(). 911 */ 912 smp_mb__after_atomic(); 913 914 /* 915 * Don't worry about checking two atomic_t variables at same time 916 * here. If during we check conf->barrier[idx], the array is 917 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is 918 * 0, it is safe to return and make the I/O continue. Because the 919 * array is frozen, all I/O returned here will eventually complete 920 * or be queued, no race will happen. See code comment in 921 * frozen_array(). 922 */ 923 if (!READ_ONCE(conf->array_frozen) && 924 !atomic_read(&conf->barrier[idx])) 925 return; 926 927 /* 928 * After holding conf->resync_lock, conf->nr_pending[idx] 929 * should be decreased before waiting for barrier to drop. 930 * Otherwise, we may encounter a race condition because 931 * raise_barrer() might be waiting for conf->nr_pending[idx] 932 * to be 0 at same time. 933 */ 934 spin_lock_irq(&conf->resync_lock); 935 atomic_inc(&conf->nr_waiting[idx]); 936 atomic_dec(&conf->nr_pending[idx]); 937 /* 938 * In case freeze_array() is waiting for 939 * get_unqueued_pending() == extra 940 */ 941 wake_up(&conf->wait_barrier); 942 /* Wait for the barrier in same barrier unit bucket to drop. */ 943 wait_event_lock_irq(conf->wait_barrier, 944 !conf->array_frozen && 945 !atomic_read(&conf->barrier[idx]), 946 conf->resync_lock); 947 atomic_inc(&conf->nr_pending[idx]); 948 atomic_dec(&conf->nr_waiting[idx]); 949 spin_unlock_irq(&conf->resync_lock); 950 } 951 952 static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr) 953 { 954 int idx = sector_to_idx(sector_nr); 955 956 /* 957 * Very similar to _wait_barrier(). The difference is, for read 958 * I/O we don't need wait for sync I/O, but if the whole array 959 * is frozen, the read I/O still has to wait until the array is 960 * unfrozen. Since there is no ordering requirement with 961 * conf->barrier[idx] here, memory barrier is unnecessary as well. 962 */ 963 atomic_inc(&conf->nr_pending[idx]); 964 965 if (!READ_ONCE(conf->array_frozen)) 966 return; 967 968 spin_lock_irq(&conf->resync_lock); 969 atomic_inc(&conf->nr_waiting[idx]); 970 atomic_dec(&conf->nr_pending[idx]); 971 /* 972 * In case freeze_array() is waiting for 973 * get_unqueued_pending() == extra 974 */ 975 wake_up(&conf->wait_barrier); 976 /* Wait for array to be unfrozen */ 977 wait_event_lock_irq(conf->wait_barrier, 978 !conf->array_frozen, 979 conf->resync_lock); 980 atomic_inc(&conf->nr_pending[idx]); 981 atomic_dec(&conf->nr_waiting[idx]); 982 spin_unlock_irq(&conf->resync_lock); 983 } 984 985 static void wait_barrier(struct r1conf *conf, sector_t sector_nr) 986 { 987 int idx = sector_to_idx(sector_nr); 988 989 _wait_barrier(conf, idx); 990 } 991 992 static void _allow_barrier(struct r1conf *conf, int idx) 993 { 994 atomic_dec(&conf->nr_pending[idx]); 995 wake_up(&conf->wait_barrier); 996 } 997 998 static void allow_barrier(struct r1conf *conf, sector_t sector_nr) 999 { 1000 int idx = sector_to_idx(sector_nr); 1001 1002 _allow_barrier(conf, idx); 1003 } 1004 1005 /* conf->resync_lock should be held */ 1006 static int get_unqueued_pending(struct r1conf *conf) 1007 { 1008 int idx, ret; 1009 1010 ret = atomic_read(&conf->nr_sync_pending); 1011 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) 1012 ret += atomic_read(&conf->nr_pending[idx]) - 1013 atomic_read(&conf->nr_queued[idx]); 1014 1015 return ret; 1016 } 1017 1018 static void freeze_array(struct r1conf *conf, int extra) 1019 { 1020 /* Stop sync I/O and normal I/O and wait for everything to 1021 * go quiet. 1022 * This is called in two situations: 1023 * 1) management command handlers (reshape, remove disk, quiesce). 1024 * 2) one normal I/O request failed. 1025 1026 * After array_frozen is set to 1, new sync IO will be blocked at 1027 * raise_barrier(), and new normal I/O will blocked at _wait_barrier() 1028 * or wait_read_barrier(). The flying I/Os will either complete or be 1029 * queued. When everything goes quite, there are only queued I/Os left. 1030 1031 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the 1032 * barrier bucket index which this I/O request hits. When all sync and 1033 * normal I/O are queued, sum of all conf->nr_pending[] will match sum 1034 * of all conf->nr_queued[]. But normal I/O failure is an exception, 1035 * in handle_read_error(), we may call freeze_array() before trying to 1036 * fix the read error. In this case, the error read I/O is not queued, 1037 * so get_unqueued_pending() == 1. 1038 * 1039 * Therefore before this function returns, we need to wait until 1040 * get_unqueued_pendings(conf) gets equal to extra. For 1041 * normal I/O context, extra is 1, in rested situations extra is 0. 1042 */ 1043 spin_lock_irq(&conf->resync_lock); 1044 conf->array_frozen = 1; 1045 raid1_log(conf->mddev, "wait freeze"); 1046 wait_event_lock_irq_cmd( 1047 conf->wait_barrier, 1048 get_unqueued_pending(conf) == extra, 1049 conf->resync_lock, 1050 flush_pending_writes(conf)); 1051 spin_unlock_irq(&conf->resync_lock); 1052 } 1053 static void unfreeze_array(struct r1conf *conf) 1054 { 1055 /* reverse the effect of the freeze */ 1056 spin_lock_irq(&conf->resync_lock); 1057 conf->array_frozen = 0; 1058 spin_unlock_irq(&conf->resync_lock); 1059 wake_up(&conf->wait_barrier); 1060 } 1061 1062 static void alloc_behind_master_bio(struct r1bio *r1_bio, 1063 struct bio *bio) 1064 { 1065 int size = bio->bi_iter.bi_size; 1066 unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1067 int i = 0; 1068 struct bio *behind_bio = NULL; 1069 1070 behind_bio = bio_alloc_mddev(GFP_NOIO, vcnt, r1_bio->mddev); 1071 if (!behind_bio) 1072 return; 1073 1074 /* discard op, we don't support writezero/writesame yet */ 1075 if (!bio_has_data(bio)) { 1076 behind_bio->bi_iter.bi_size = size; 1077 goto skip_copy; 1078 } 1079 1080 while (i < vcnt && size) { 1081 struct page *page; 1082 int len = min_t(int, PAGE_SIZE, size); 1083 1084 page = alloc_page(GFP_NOIO); 1085 if (unlikely(!page)) 1086 goto free_pages; 1087 1088 bio_add_page(behind_bio, page, len, 0); 1089 1090 size -= len; 1091 i++; 1092 } 1093 1094 bio_copy_data(behind_bio, bio); 1095 skip_copy: 1096 r1_bio->behind_master_bio = behind_bio;; 1097 set_bit(R1BIO_BehindIO, &r1_bio->state); 1098 1099 return; 1100 1101 free_pages: 1102 pr_debug("%dB behind alloc failed, doing sync I/O\n", 1103 bio->bi_iter.bi_size); 1104 bio_free_pages(behind_bio); 1105 bio_put(behind_bio); 1106 } 1107 1108 struct raid1_plug_cb { 1109 struct blk_plug_cb cb; 1110 struct bio_list pending; 1111 int pending_cnt; 1112 }; 1113 1114 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule) 1115 { 1116 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, 1117 cb); 1118 struct mddev *mddev = plug->cb.data; 1119 struct r1conf *conf = mddev->private; 1120 struct bio *bio; 1121 1122 if (from_schedule || current->bio_list) { 1123 spin_lock_irq(&conf->device_lock); 1124 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1125 conf->pending_count += plug->pending_cnt; 1126 spin_unlock_irq(&conf->device_lock); 1127 wake_up(&conf->wait_barrier); 1128 md_wakeup_thread(mddev->thread); 1129 kfree(plug); 1130 return; 1131 } 1132 1133 /* we aren't scheduling, so we can do the write-out directly. */ 1134 bio = bio_list_get(&plug->pending); 1135 flush_bio_list(conf, bio); 1136 kfree(plug); 1137 } 1138 1139 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio) 1140 { 1141 r1_bio->master_bio = bio; 1142 r1_bio->sectors = bio_sectors(bio); 1143 r1_bio->state = 0; 1144 r1_bio->mddev = mddev; 1145 r1_bio->sector = bio->bi_iter.bi_sector; 1146 } 1147 1148 static inline struct r1bio * 1149 alloc_r1bio(struct mddev *mddev, struct bio *bio) 1150 { 1151 struct r1conf *conf = mddev->private; 1152 struct r1bio *r1_bio; 1153 1154 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 1155 /* Ensure no bio records IO_BLOCKED */ 1156 memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0])); 1157 init_r1bio(r1_bio, mddev, bio); 1158 return r1_bio; 1159 } 1160 1161 static void raid1_read_request(struct mddev *mddev, struct bio *bio, 1162 int max_read_sectors, struct r1bio *r1_bio) 1163 { 1164 struct r1conf *conf = mddev->private; 1165 struct raid1_info *mirror; 1166 struct bio *read_bio; 1167 struct bitmap *bitmap = mddev->bitmap; 1168 const int op = bio_op(bio); 1169 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC); 1170 int max_sectors; 1171 int rdisk; 1172 bool print_msg = !!r1_bio; 1173 char b[BDEVNAME_SIZE]; 1174 1175 /* 1176 * If r1_bio is set, we are blocking the raid1d thread 1177 * so there is a tiny risk of deadlock. So ask for 1178 * emergency memory if needed. 1179 */ 1180 gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO; 1181 1182 if (print_msg) { 1183 /* Need to get the block device name carefully */ 1184 struct md_rdev *rdev; 1185 rcu_read_lock(); 1186 rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev); 1187 if (rdev) 1188 bdevname(rdev->bdev, b); 1189 else 1190 strcpy(b, "???"); 1191 rcu_read_unlock(); 1192 } 1193 1194 /* 1195 * Still need barrier for READ in case that whole 1196 * array is frozen. 1197 */ 1198 wait_read_barrier(conf, bio->bi_iter.bi_sector); 1199 1200 if (!r1_bio) 1201 r1_bio = alloc_r1bio(mddev, bio); 1202 else 1203 init_r1bio(r1_bio, mddev, bio); 1204 r1_bio->sectors = max_read_sectors; 1205 1206 /* 1207 * make_request() can abort the operation when read-ahead is being 1208 * used and no empty request is available. 1209 */ 1210 rdisk = read_balance(conf, r1_bio, &max_sectors); 1211 1212 if (rdisk < 0) { 1213 /* couldn't find anywhere to read from */ 1214 if (print_msg) { 1215 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n", 1216 mdname(mddev), 1217 b, 1218 (unsigned long long)r1_bio->sector); 1219 } 1220 raid_end_bio_io(r1_bio); 1221 return; 1222 } 1223 mirror = conf->mirrors + rdisk; 1224 1225 if (print_msg) 1226 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n", 1227 mdname(mddev), 1228 (unsigned long long)r1_bio->sector, 1229 bdevname(mirror->rdev->bdev, b)); 1230 1231 if (test_bit(WriteMostly, &mirror->rdev->flags) && 1232 bitmap) { 1233 /* 1234 * Reading from a write-mostly device must take care not to 1235 * over-take any writes that are 'behind' 1236 */ 1237 raid1_log(mddev, "wait behind writes"); 1238 wait_event(bitmap->behind_wait, 1239 atomic_read(&bitmap->behind_writes) == 0); 1240 } 1241 1242 if (max_sectors < bio_sectors(bio)) { 1243 struct bio *split = bio_split(bio, max_sectors, 1244 gfp, conf->bio_split); 1245 bio_chain(split, bio); 1246 generic_make_request(bio); 1247 bio = split; 1248 r1_bio->master_bio = bio; 1249 r1_bio->sectors = max_sectors; 1250 } 1251 1252 r1_bio->read_disk = rdisk; 1253 1254 read_bio = bio_clone_fast(bio, gfp, mddev->bio_set); 1255 1256 r1_bio->bios[rdisk] = read_bio; 1257 1258 read_bio->bi_iter.bi_sector = r1_bio->sector + 1259 mirror->rdev->data_offset; 1260 bio_set_dev(read_bio, mirror->rdev->bdev); 1261 read_bio->bi_end_io = raid1_end_read_request; 1262 bio_set_op_attrs(read_bio, op, do_sync); 1263 if (test_bit(FailFast, &mirror->rdev->flags) && 1264 test_bit(R1BIO_FailFast, &r1_bio->state)) 1265 read_bio->bi_opf |= MD_FAILFAST; 1266 read_bio->bi_private = r1_bio; 1267 1268 if (mddev->gendisk) 1269 trace_block_bio_remap(read_bio->bi_disk->queue, read_bio, 1270 disk_devt(mddev->gendisk), r1_bio->sector); 1271 1272 generic_make_request(read_bio); 1273 } 1274 1275 static void raid1_write_request(struct mddev *mddev, struct bio *bio, 1276 int max_write_sectors) 1277 { 1278 struct r1conf *conf = mddev->private; 1279 struct r1bio *r1_bio; 1280 int i, disks; 1281 struct bitmap *bitmap = mddev->bitmap; 1282 unsigned long flags; 1283 struct md_rdev *blocked_rdev; 1284 struct blk_plug_cb *cb; 1285 struct raid1_plug_cb *plug = NULL; 1286 int first_clone; 1287 int max_sectors; 1288 1289 if (mddev_is_clustered(mddev) && 1290 md_cluster_ops->area_resyncing(mddev, WRITE, 1291 bio->bi_iter.bi_sector, bio_end_sector(bio))) { 1292 1293 DEFINE_WAIT(w); 1294 for (;;) { 1295 prepare_to_wait(&conf->wait_barrier, 1296 &w, TASK_IDLE); 1297 if (!md_cluster_ops->area_resyncing(mddev, WRITE, 1298 bio->bi_iter.bi_sector, 1299 bio_end_sector(bio))) 1300 break; 1301 schedule(); 1302 } 1303 finish_wait(&conf->wait_barrier, &w); 1304 } 1305 1306 /* 1307 * Register the new request and wait if the reconstruction 1308 * thread has put up a bar for new requests. 1309 * Continue immediately if no resync is active currently. 1310 */ 1311 wait_barrier(conf, bio->bi_iter.bi_sector); 1312 1313 r1_bio = alloc_r1bio(mddev, bio); 1314 r1_bio->sectors = max_write_sectors; 1315 1316 if (conf->pending_count >= max_queued_requests) { 1317 md_wakeup_thread(mddev->thread); 1318 raid1_log(mddev, "wait queued"); 1319 wait_event(conf->wait_barrier, 1320 conf->pending_count < max_queued_requests); 1321 } 1322 /* first select target devices under rcu_lock and 1323 * inc refcount on their rdev. Record them by setting 1324 * bios[x] to bio 1325 * If there are known/acknowledged bad blocks on any device on 1326 * which we have seen a write error, we want to avoid writing those 1327 * blocks. 1328 * This potentially requires several writes to write around 1329 * the bad blocks. Each set of writes gets it's own r1bio 1330 * with a set of bios attached. 1331 */ 1332 1333 disks = conf->raid_disks * 2; 1334 retry_write: 1335 blocked_rdev = NULL; 1336 rcu_read_lock(); 1337 max_sectors = r1_bio->sectors; 1338 for (i = 0; i < disks; i++) { 1339 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1340 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1341 atomic_inc(&rdev->nr_pending); 1342 blocked_rdev = rdev; 1343 break; 1344 } 1345 r1_bio->bios[i] = NULL; 1346 if (!rdev || test_bit(Faulty, &rdev->flags)) { 1347 if (i < conf->raid_disks) 1348 set_bit(R1BIO_Degraded, &r1_bio->state); 1349 continue; 1350 } 1351 1352 atomic_inc(&rdev->nr_pending); 1353 if (test_bit(WriteErrorSeen, &rdev->flags)) { 1354 sector_t first_bad; 1355 int bad_sectors; 1356 int is_bad; 1357 1358 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors, 1359 &first_bad, &bad_sectors); 1360 if (is_bad < 0) { 1361 /* mustn't write here until the bad block is 1362 * acknowledged*/ 1363 set_bit(BlockedBadBlocks, &rdev->flags); 1364 blocked_rdev = rdev; 1365 break; 1366 } 1367 if (is_bad && first_bad <= r1_bio->sector) { 1368 /* Cannot write here at all */ 1369 bad_sectors -= (r1_bio->sector - first_bad); 1370 if (bad_sectors < max_sectors) 1371 /* mustn't write more than bad_sectors 1372 * to other devices yet 1373 */ 1374 max_sectors = bad_sectors; 1375 rdev_dec_pending(rdev, mddev); 1376 /* We don't set R1BIO_Degraded as that 1377 * only applies if the disk is 1378 * missing, so it might be re-added, 1379 * and we want to know to recover this 1380 * chunk. 1381 * In this case the device is here, 1382 * and the fact that this chunk is not 1383 * in-sync is recorded in the bad 1384 * block log 1385 */ 1386 continue; 1387 } 1388 if (is_bad) { 1389 int good_sectors = first_bad - r1_bio->sector; 1390 if (good_sectors < max_sectors) 1391 max_sectors = good_sectors; 1392 } 1393 } 1394 r1_bio->bios[i] = bio; 1395 } 1396 rcu_read_unlock(); 1397 1398 if (unlikely(blocked_rdev)) { 1399 /* Wait for this device to become unblocked */ 1400 int j; 1401 1402 for (j = 0; j < i; j++) 1403 if (r1_bio->bios[j]) 1404 rdev_dec_pending(conf->mirrors[j].rdev, mddev); 1405 r1_bio->state = 0; 1406 allow_barrier(conf, bio->bi_iter.bi_sector); 1407 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk); 1408 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1409 wait_barrier(conf, bio->bi_iter.bi_sector); 1410 goto retry_write; 1411 } 1412 1413 if (max_sectors < bio_sectors(bio)) { 1414 struct bio *split = bio_split(bio, max_sectors, 1415 GFP_NOIO, conf->bio_split); 1416 bio_chain(split, bio); 1417 generic_make_request(bio); 1418 bio = split; 1419 r1_bio->master_bio = bio; 1420 r1_bio->sectors = max_sectors; 1421 } 1422 1423 atomic_set(&r1_bio->remaining, 1); 1424 atomic_set(&r1_bio->behind_remaining, 0); 1425 1426 first_clone = 1; 1427 1428 for (i = 0; i < disks; i++) { 1429 struct bio *mbio = NULL; 1430 if (!r1_bio->bios[i]) 1431 continue; 1432 1433 1434 if (first_clone) { 1435 /* do behind I/O ? 1436 * Not if there are too many, or cannot 1437 * allocate memory, or a reader on WriteMostly 1438 * is waiting for behind writes to flush */ 1439 if (bitmap && 1440 (atomic_read(&bitmap->behind_writes) 1441 < mddev->bitmap_info.max_write_behind) && 1442 !waitqueue_active(&bitmap->behind_wait)) { 1443 alloc_behind_master_bio(r1_bio, bio); 1444 } 1445 1446 bitmap_startwrite(bitmap, r1_bio->sector, 1447 r1_bio->sectors, 1448 test_bit(R1BIO_BehindIO, 1449 &r1_bio->state)); 1450 first_clone = 0; 1451 } 1452 1453 if (r1_bio->behind_master_bio) 1454 mbio = bio_clone_fast(r1_bio->behind_master_bio, 1455 GFP_NOIO, mddev->bio_set); 1456 else 1457 mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set); 1458 1459 if (r1_bio->behind_master_bio) { 1460 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags)) 1461 atomic_inc(&r1_bio->behind_remaining); 1462 } 1463 1464 r1_bio->bios[i] = mbio; 1465 1466 mbio->bi_iter.bi_sector = (r1_bio->sector + 1467 conf->mirrors[i].rdev->data_offset); 1468 bio_set_dev(mbio, conf->mirrors[i].rdev->bdev); 1469 mbio->bi_end_io = raid1_end_write_request; 1470 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA)); 1471 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) && 1472 !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) && 1473 conf->raid_disks - mddev->degraded > 1) 1474 mbio->bi_opf |= MD_FAILFAST; 1475 mbio->bi_private = r1_bio; 1476 1477 atomic_inc(&r1_bio->remaining); 1478 1479 if (mddev->gendisk) 1480 trace_block_bio_remap(mbio->bi_disk->queue, 1481 mbio, disk_devt(mddev->gendisk), 1482 r1_bio->sector); 1483 /* flush_pending_writes() needs access to the rdev so...*/ 1484 mbio->bi_disk = (void *)conf->mirrors[i].rdev; 1485 1486 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug)); 1487 if (cb) 1488 plug = container_of(cb, struct raid1_plug_cb, cb); 1489 else 1490 plug = NULL; 1491 if (plug) { 1492 bio_list_add(&plug->pending, mbio); 1493 plug->pending_cnt++; 1494 } else { 1495 spin_lock_irqsave(&conf->device_lock, flags); 1496 bio_list_add(&conf->pending_bio_list, mbio); 1497 conf->pending_count++; 1498 spin_unlock_irqrestore(&conf->device_lock, flags); 1499 md_wakeup_thread(mddev->thread); 1500 } 1501 } 1502 1503 r1_bio_write_done(r1_bio); 1504 1505 /* In case raid1d snuck in to freeze_array */ 1506 wake_up(&conf->wait_barrier); 1507 } 1508 1509 static bool raid1_make_request(struct mddev *mddev, struct bio *bio) 1510 { 1511 sector_t sectors; 1512 1513 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) { 1514 md_flush_request(mddev, bio); 1515 return true; 1516 } 1517 1518 /* 1519 * There is a limit to the maximum size, but 1520 * the read/write handler might find a lower limit 1521 * due to bad blocks. To avoid multiple splits, 1522 * we pass the maximum number of sectors down 1523 * and let the lower level perform the split. 1524 */ 1525 sectors = align_to_barrier_unit_end( 1526 bio->bi_iter.bi_sector, bio_sectors(bio)); 1527 1528 if (bio_data_dir(bio) == READ) 1529 raid1_read_request(mddev, bio, sectors, NULL); 1530 else { 1531 if (!md_write_start(mddev,bio)) 1532 return false; 1533 raid1_write_request(mddev, bio, sectors); 1534 } 1535 return true; 1536 } 1537 1538 static void raid1_status(struct seq_file *seq, struct mddev *mddev) 1539 { 1540 struct r1conf *conf = mddev->private; 1541 int i; 1542 1543 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 1544 conf->raid_disks - mddev->degraded); 1545 rcu_read_lock(); 1546 for (i = 0; i < conf->raid_disks; i++) { 1547 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1548 seq_printf(seq, "%s", 1549 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1550 } 1551 rcu_read_unlock(); 1552 seq_printf(seq, "]"); 1553 } 1554 1555 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev) 1556 { 1557 char b[BDEVNAME_SIZE]; 1558 struct r1conf *conf = mddev->private; 1559 unsigned long flags; 1560 1561 /* 1562 * If it is not operational, then we have already marked it as dead 1563 * else if it is the last working disks, ignore the error, let the 1564 * next level up know. 1565 * else mark the drive as failed 1566 */ 1567 spin_lock_irqsave(&conf->device_lock, flags); 1568 if (test_bit(In_sync, &rdev->flags) 1569 && (conf->raid_disks - mddev->degraded) == 1) { 1570 /* 1571 * Don't fail the drive, act as though we were just a 1572 * normal single drive. 1573 * However don't try a recovery from this drive as 1574 * it is very likely to fail. 1575 */ 1576 conf->recovery_disabled = mddev->recovery_disabled; 1577 spin_unlock_irqrestore(&conf->device_lock, flags); 1578 return; 1579 } 1580 set_bit(Blocked, &rdev->flags); 1581 if (test_and_clear_bit(In_sync, &rdev->flags)) { 1582 mddev->degraded++; 1583 set_bit(Faulty, &rdev->flags); 1584 } else 1585 set_bit(Faulty, &rdev->flags); 1586 spin_unlock_irqrestore(&conf->device_lock, flags); 1587 /* 1588 * if recovery is running, make sure it aborts. 1589 */ 1590 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1591 set_mask_bits(&mddev->sb_flags, 0, 1592 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1593 pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n" 1594 "md/raid1:%s: Operation continuing on %d devices.\n", 1595 mdname(mddev), bdevname(rdev->bdev, b), 1596 mdname(mddev), conf->raid_disks - mddev->degraded); 1597 } 1598 1599 static void print_conf(struct r1conf *conf) 1600 { 1601 int i; 1602 1603 pr_debug("RAID1 conf printout:\n"); 1604 if (!conf) { 1605 pr_debug("(!conf)\n"); 1606 return; 1607 } 1608 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1609 conf->raid_disks); 1610 1611 rcu_read_lock(); 1612 for (i = 0; i < conf->raid_disks; i++) { 1613 char b[BDEVNAME_SIZE]; 1614 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1615 if (rdev) 1616 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n", 1617 i, !test_bit(In_sync, &rdev->flags), 1618 !test_bit(Faulty, &rdev->flags), 1619 bdevname(rdev->bdev,b)); 1620 } 1621 rcu_read_unlock(); 1622 } 1623 1624 static void close_sync(struct r1conf *conf) 1625 { 1626 int idx; 1627 1628 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) { 1629 _wait_barrier(conf, idx); 1630 _allow_barrier(conf, idx); 1631 } 1632 1633 mempool_destroy(conf->r1buf_pool); 1634 conf->r1buf_pool = NULL; 1635 } 1636 1637 static int raid1_spare_active(struct mddev *mddev) 1638 { 1639 int i; 1640 struct r1conf *conf = mddev->private; 1641 int count = 0; 1642 unsigned long flags; 1643 1644 /* 1645 * Find all failed disks within the RAID1 configuration 1646 * and mark them readable. 1647 * Called under mddev lock, so rcu protection not needed. 1648 * device_lock used to avoid races with raid1_end_read_request 1649 * which expects 'In_sync' flags and ->degraded to be consistent. 1650 */ 1651 spin_lock_irqsave(&conf->device_lock, flags); 1652 for (i = 0; i < conf->raid_disks; i++) { 1653 struct md_rdev *rdev = conf->mirrors[i].rdev; 1654 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev; 1655 if (repl 1656 && !test_bit(Candidate, &repl->flags) 1657 && repl->recovery_offset == MaxSector 1658 && !test_bit(Faulty, &repl->flags) 1659 && !test_and_set_bit(In_sync, &repl->flags)) { 1660 /* replacement has just become active */ 1661 if (!rdev || 1662 !test_and_clear_bit(In_sync, &rdev->flags)) 1663 count++; 1664 if (rdev) { 1665 /* Replaced device not technically 1666 * faulty, but we need to be sure 1667 * it gets removed and never re-added 1668 */ 1669 set_bit(Faulty, &rdev->flags); 1670 sysfs_notify_dirent_safe( 1671 rdev->sysfs_state); 1672 } 1673 } 1674 if (rdev 1675 && rdev->recovery_offset == MaxSector 1676 && !test_bit(Faulty, &rdev->flags) 1677 && !test_and_set_bit(In_sync, &rdev->flags)) { 1678 count++; 1679 sysfs_notify_dirent_safe(rdev->sysfs_state); 1680 } 1681 } 1682 mddev->degraded -= count; 1683 spin_unlock_irqrestore(&conf->device_lock, flags); 1684 1685 print_conf(conf); 1686 return count; 1687 } 1688 1689 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1690 { 1691 struct r1conf *conf = mddev->private; 1692 int err = -EEXIST; 1693 int mirror = 0; 1694 struct raid1_info *p; 1695 int first = 0; 1696 int last = conf->raid_disks - 1; 1697 1698 if (mddev->recovery_disabled == conf->recovery_disabled) 1699 return -EBUSY; 1700 1701 if (md_integrity_add_rdev(rdev, mddev)) 1702 return -ENXIO; 1703 1704 if (rdev->raid_disk >= 0) 1705 first = last = rdev->raid_disk; 1706 1707 /* 1708 * find the disk ... but prefer rdev->saved_raid_disk 1709 * if possible. 1710 */ 1711 if (rdev->saved_raid_disk >= 0 && 1712 rdev->saved_raid_disk >= first && 1713 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1714 first = last = rdev->saved_raid_disk; 1715 1716 for (mirror = first; mirror <= last; mirror++) { 1717 p = conf->mirrors+mirror; 1718 if (!p->rdev) { 1719 1720 if (mddev->gendisk) 1721 disk_stack_limits(mddev->gendisk, rdev->bdev, 1722 rdev->data_offset << 9); 1723 1724 p->head_position = 0; 1725 rdev->raid_disk = mirror; 1726 err = 0; 1727 /* As all devices are equivalent, we don't need a full recovery 1728 * if this was recently any drive of the array 1729 */ 1730 if (rdev->saved_raid_disk < 0) 1731 conf->fullsync = 1; 1732 rcu_assign_pointer(p->rdev, rdev); 1733 break; 1734 } 1735 if (test_bit(WantReplacement, &p->rdev->flags) && 1736 p[conf->raid_disks].rdev == NULL) { 1737 /* Add this device as a replacement */ 1738 clear_bit(In_sync, &rdev->flags); 1739 set_bit(Replacement, &rdev->flags); 1740 rdev->raid_disk = mirror; 1741 err = 0; 1742 conf->fullsync = 1; 1743 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev); 1744 break; 1745 } 1746 } 1747 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev))) 1748 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue); 1749 print_conf(conf); 1750 return err; 1751 } 1752 1753 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1754 { 1755 struct r1conf *conf = mddev->private; 1756 int err = 0; 1757 int number = rdev->raid_disk; 1758 struct raid1_info *p = conf->mirrors + number; 1759 1760 if (rdev != p->rdev) 1761 p = conf->mirrors + conf->raid_disks + number; 1762 1763 print_conf(conf); 1764 if (rdev == p->rdev) { 1765 if (test_bit(In_sync, &rdev->flags) || 1766 atomic_read(&rdev->nr_pending)) { 1767 err = -EBUSY; 1768 goto abort; 1769 } 1770 /* Only remove non-faulty devices if recovery 1771 * is not possible. 1772 */ 1773 if (!test_bit(Faulty, &rdev->flags) && 1774 mddev->recovery_disabled != conf->recovery_disabled && 1775 mddev->degraded < conf->raid_disks) { 1776 err = -EBUSY; 1777 goto abort; 1778 } 1779 p->rdev = NULL; 1780 if (!test_bit(RemoveSynchronized, &rdev->flags)) { 1781 synchronize_rcu(); 1782 if (atomic_read(&rdev->nr_pending)) { 1783 /* lost the race, try later */ 1784 err = -EBUSY; 1785 p->rdev = rdev; 1786 goto abort; 1787 } 1788 } 1789 if (conf->mirrors[conf->raid_disks + number].rdev) { 1790 /* We just removed a device that is being replaced. 1791 * Move down the replacement. We drain all IO before 1792 * doing this to avoid confusion. 1793 */ 1794 struct md_rdev *repl = 1795 conf->mirrors[conf->raid_disks + number].rdev; 1796 freeze_array(conf, 0); 1797 clear_bit(Replacement, &repl->flags); 1798 p->rdev = repl; 1799 conf->mirrors[conf->raid_disks + number].rdev = NULL; 1800 unfreeze_array(conf); 1801 } 1802 1803 clear_bit(WantReplacement, &rdev->flags); 1804 err = md_integrity_register(mddev); 1805 } 1806 abort: 1807 1808 print_conf(conf); 1809 return err; 1810 } 1811 1812 static void end_sync_read(struct bio *bio) 1813 { 1814 struct r1bio *r1_bio = get_resync_r1bio(bio); 1815 1816 update_head_pos(r1_bio->read_disk, r1_bio); 1817 1818 /* 1819 * we have read a block, now it needs to be re-written, 1820 * or re-read if the read failed. 1821 * We don't do much here, just schedule handling by raid1d 1822 */ 1823 if (!bio->bi_status) 1824 set_bit(R1BIO_Uptodate, &r1_bio->state); 1825 1826 if (atomic_dec_and_test(&r1_bio->remaining)) 1827 reschedule_retry(r1_bio); 1828 } 1829 1830 static void end_sync_write(struct bio *bio) 1831 { 1832 int uptodate = !bio->bi_status; 1833 struct r1bio *r1_bio = get_resync_r1bio(bio); 1834 struct mddev *mddev = r1_bio->mddev; 1835 struct r1conf *conf = mddev->private; 1836 sector_t first_bad; 1837 int bad_sectors; 1838 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev; 1839 1840 if (!uptodate) { 1841 sector_t sync_blocks = 0; 1842 sector_t s = r1_bio->sector; 1843 long sectors_to_go = r1_bio->sectors; 1844 /* make sure these bits doesn't get cleared. */ 1845 do { 1846 bitmap_end_sync(mddev->bitmap, s, 1847 &sync_blocks, 1); 1848 s += sync_blocks; 1849 sectors_to_go -= sync_blocks; 1850 } while (sectors_to_go > 0); 1851 set_bit(WriteErrorSeen, &rdev->flags); 1852 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 1853 set_bit(MD_RECOVERY_NEEDED, & 1854 mddev->recovery); 1855 set_bit(R1BIO_WriteError, &r1_bio->state); 1856 } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors, 1857 &first_bad, &bad_sectors) && 1858 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev, 1859 r1_bio->sector, 1860 r1_bio->sectors, 1861 &first_bad, &bad_sectors) 1862 ) 1863 set_bit(R1BIO_MadeGood, &r1_bio->state); 1864 1865 if (atomic_dec_and_test(&r1_bio->remaining)) { 1866 int s = r1_bio->sectors; 1867 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 1868 test_bit(R1BIO_WriteError, &r1_bio->state)) 1869 reschedule_retry(r1_bio); 1870 else { 1871 put_buf(r1_bio); 1872 md_done_sync(mddev, s, uptodate); 1873 } 1874 } 1875 } 1876 1877 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector, 1878 int sectors, struct page *page, int rw) 1879 { 1880 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false)) 1881 /* success */ 1882 return 1; 1883 if (rw == WRITE) { 1884 set_bit(WriteErrorSeen, &rdev->flags); 1885 if (!test_and_set_bit(WantReplacement, 1886 &rdev->flags)) 1887 set_bit(MD_RECOVERY_NEEDED, & 1888 rdev->mddev->recovery); 1889 } 1890 /* need to record an error - either for the block or the device */ 1891 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 1892 md_error(rdev->mddev, rdev); 1893 return 0; 1894 } 1895 1896 static int fix_sync_read_error(struct r1bio *r1_bio) 1897 { 1898 /* Try some synchronous reads of other devices to get 1899 * good data, much like with normal read errors. Only 1900 * read into the pages we already have so we don't 1901 * need to re-issue the read request. 1902 * We don't need to freeze the array, because being in an 1903 * active sync request, there is no normal IO, and 1904 * no overlapping syncs. 1905 * We don't need to check is_badblock() again as we 1906 * made sure that anything with a bad block in range 1907 * will have bi_end_io clear. 1908 */ 1909 struct mddev *mddev = r1_bio->mddev; 1910 struct r1conf *conf = mddev->private; 1911 struct bio *bio = r1_bio->bios[r1_bio->read_disk]; 1912 struct page **pages = get_resync_pages(bio)->pages; 1913 sector_t sect = r1_bio->sector; 1914 int sectors = r1_bio->sectors; 1915 int idx = 0; 1916 struct md_rdev *rdev; 1917 1918 rdev = conf->mirrors[r1_bio->read_disk].rdev; 1919 if (test_bit(FailFast, &rdev->flags)) { 1920 /* Don't try recovering from here - just fail it 1921 * ... unless it is the last working device of course */ 1922 md_error(mddev, rdev); 1923 if (test_bit(Faulty, &rdev->flags)) 1924 /* Don't try to read from here, but make sure 1925 * put_buf does it's thing 1926 */ 1927 bio->bi_end_io = end_sync_write; 1928 } 1929 1930 while(sectors) { 1931 int s = sectors; 1932 int d = r1_bio->read_disk; 1933 int success = 0; 1934 int start; 1935 1936 if (s > (PAGE_SIZE>>9)) 1937 s = PAGE_SIZE >> 9; 1938 do { 1939 if (r1_bio->bios[d]->bi_end_io == end_sync_read) { 1940 /* No rcu protection needed here devices 1941 * can only be removed when no resync is 1942 * active, and resync is currently active 1943 */ 1944 rdev = conf->mirrors[d].rdev; 1945 if (sync_page_io(rdev, sect, s<<9, 1946 pages[idx], 1947 REQ_OP_READ, 0, false)) { 1948 success = 1; 1949 break; 1950 } 1951 } 1952 d++; 1953 if (d == conf->raid_disks * 2) 1954 d = 0; 1955 } while (!success && d != r1_bio->read_disk); 1956 1957 if (!success) { 1958 char b[BDEVNAME_SIZE]; 1959 int abort = 0; 1960 /* Cannot read from anywhere, this block is lost. 1961 * Record a bad block on each device. If that doesn't 1962 * work just disable and interrupt the recovery. 1963 * Don't fail devices as that won't really help. 1964 */ 1965 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n", 1966 mdname(mddev), bio_devname(bio, b), 1967 (unsigned long long)r1_bio->sector); 1968 for (d = 0; d < conf->raid_disks * 2; d++) { 1969 rdev = conf->mirrors[d].rdev; 1970 if (!rdev || test_bit(Faulty, &rdev->flags)) 1971 continue; 1972 if (!rdev_set_badblocks(rdev, sect, s, 0)) 1973 abort = 1; 1974 } 1975 if (abort) { 1976 conf->recovery_disabled = 1977 mddev->recovery_disabled; 1978 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1979 md_done_sync(mddev, r1_bio->sectors, 0); 1980 put_buf(r1_bio); 1981 return 0; 1982 } 1983 /* Try next page */ 1984 sectors -= s; 1985 sect += s; 1986 idx++; 1987 continue; 1988 } 1989 1990 start = d; 1991 /* write it back and re-read */ 1992 while (d != r1_bio->read_disk) { 1993 if (d == 0) 1994 d = conf->raid_disks * 2; 1995 d--; 1996 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1997 continue; 1998 rdev = conf->mirrors[d].rdev; 1999 if (r1_sync_page_io(rdev, sect, s, 2000 pages[idx], 2001 WRITE) == 0) { 2002 r1_bio->bios[d]->bi_end_io = NULL; 2003 rdev_dec_pending(rdev, mddev); 2004 } 2005 } 2006 d = start; 2007 while (d != r1_bio->read_disk) { 2008 if (d == 0) 2009 d = conf->raid_disks * 2; 2010 d--; 2011 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 2012 continue; 2013 rdev = conf->mirrors[d].rdev; 2014 if (r1_sync_page_io(rdev, sect, s, 2015 pages[idx], 2016 READ) != 0) 2017 atomic_add(s, &rdev->corrected_errors); 2018 } 2019 sectors -= s; 2020 sect += s; 2021 idx ++; 2022 } 2023 set_bit(R1BIO_Uptodate, &r1_bio->state); 2024 bio->bi_status = 0; 2025 return 1; 2026 } 2027 2028 static void process_checks(struct r1bio *r1_bio) 2029 { 2030 /* We have read all readable devices. If we haven't 2031 * got the block, then there is no hope left. 2032 * If we have, then we want to do a comparison 2033 * and skip the write if everything is the same. 2034 * If any blocks failed to read, then we need to 2035 * attempt an over-write 2036 */ 2037 struct mddev *mddev = r1_bio->mddev; 2038 struct r1conf *conf = mddev->private; 2039 int primary; 2040 int i; 2041 int vcnt; 2042 2043 /* Fix variable parts of all bios */ 2044 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9); 2045 for (i = 0; i < conf->raid_disks * 2; i++) { 2046 blk_status_t status; 2047 struct bio *b = r1_bio->bios[i]; 2048 struct resync_pages *rp = get_resync_pages(b); 2049 if (b->bi_end_io != end_sync_read) 2050 continue; 2051 /* fixup the bio for reuse, but preserve errno */ 2052 status = b->bi_status; 2053 bio_reset(b); 2054 b->bi_status = status; 2055 b->bi_iter.bi_sector = r1_bio->sector + 2056 conf->mirrors[i].rdev->data_offset; 2057 bio_set_dev(b, conf->mirrors[i].rdev->bdev); 2058 b->bi_end_io = end_sync_read; 2059 rp->raid_bio = r1_bio; 2060 b->bi_private = rp; 2061 2062 /* initialize bvec table again */ 2063 md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9); 2064 } 2065 for (primary = 0; primary < conf->raid_disks * 2; primary++) 2066 if (r1_bio->bios[primary]->bi_end_io == end_sync_read && 2067 !r1_bio->bios[primary]->bi_status) { 2068 r1_bio->bios[primary]->bi_end_io = NULL; 2069 rdev_dec_pending(conf->mirrors[primary].rdev, mddev); 2070 break; 2071 } 2072 r1_bio->read_disk = primary; 2073 for (i = 0; i < conf->raid_disks * 2; i++) { 2074 int j; 2075 struct bio *pbio = r1_bio->bios[primary]; 2076 struct bio *sbio = r1_bio->bios[i]; 2077 blk_status_t status = sbio->bi_status; 2078 struct page **ppages = get_resync_pages(pbio)->pages; 2079 struct page **spages = get_resync_pages(sbio)->pages; 2080 struct bio_vec *bi; 2081 int page_len[RESYNC_PAGES] = { 0 }; 2082 2083 if (sbio->bi_end_io != end_sync_read) 2084 continue; 2085 /* Now we can 'fixup' the error value */ 2086 sbio->bi_status = 0; 2087 2088 bio_for_each_segment_all(bi, sbio, j) 2089 page_len[j] = bi->bv_len; 2090 2091 if (!status) { 2092 for (j = vcnt; j-- ; ) { 2093 if (memcmp(page_address(ppages[j]), 2094 page_address(spages[j]), 2095 page_len[j])) 2096 break; 2097 } 2098 } else 2099 j = 0; 2100 if (j >= 0) 2101 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches); 2102 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery) 2103 && !status)) { 2104 /* No need to write to this device. */ 2105 sbio->bi_end_io = NULL; 2106 rdev_dec_pending(conf->mirrors[i].rdev, mddev); 2107 continue; 2108 } 2109 2110 bio_copy_data(sbio, pbio); 2111 } 2112 } 2113 2114 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio) 2115 { 2116 struct r1conf *conf = mddev->private; 2117 int i; 2118 int disks = conf->raid_disks * 2; 2119 struct bio *wbio; 2120 2121 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 2122 /* ouch - failed to read all of that. */ 2123 if (!fix_sync_read_error(r1_bio)) 2124 return; 2125 2126 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2127 process_checks(r1_bio); 2128 2129 /* 2130 * schedule writes 2131 */ 2132 atomic_set(&r1_bio->remaining, 1); 2133 for (i = 0; i < disks ; i++) { 2134 wbio = r1_bio->bios[i]; 2135 if (wbio->bi_end_io == NULL || 2136 (wbio->bi_end_io == end_sync_read && 2137 (i == r1_bio->read_disk || 2138 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)))) 2139 continue; 2140 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) 2141 continue; 2142 2143 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0); 2144 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags)) 2145 wbio->bi_opf |= MD_FAILFAST; 2146 2147 wbio->bi_end_io = end_sync_write; 2148 atomic_inc(&r1_bio->remaining); 2149 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio)); 2150 2151 generic_make_request(wbio); 2152 } 2153 2154 if (atomic_dec_and_test(&r1_bio->remaining)) { 2155 /* if we're here, all write(s) have completed, so clean up */ 2156 int s = r1_bio->sectors; 2157 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2158 test_bit(R1BIO_WriteError, &r1_bio->state)) 2159 reschedule_retry(r1_bio); 2160 else { 2161 put_buf(r1_bio); 2162 md_done_sync(mddev, s, 1); 2163 } 2164 } 2165 } 2166 2167 /* 2168 * This is a kernel thread which: 2169 * 2170 * 1. Retries failed read operations on working mirrors. 2171 * 2. Updates the raid superblock when problems encounter. 2172 * 3. Performs writes following reads for array synchronising. 2173 */ 2174 2175 static void fix_read_error(struct r1conf *conf, int read_disk, 2176 sector_t sect, int sectors) 2177 { 2178 struct mddev *mddev = conf->mddev; 2179 while(sectors) { 2180 int s = sectors; 2181 int d = read_disk; 2182 int success = 0; 2183 int start; 2184 struct md_rdev *rdev; 2185 2186 if (s > (PAGE_SIZE>>9)) 2187 s = PAGE_SIZE >> 9; 2188 2189 do { 2190 sector_t first_bad; 2191 int bad_sectors; 2192 2193 rcu_read_lock(); 2194 rdev = rcu_dereference(conf->mirrors[d].rdev); 2195 if (rdev && 2196 (test_bit(In_sync, &rdev->flags) || 2197 (!test_bit(Faulty, &rdev->flags) && 2198 rdev->recovery_offset >= sect + s)) && 2199 is_badblock(rdev, sect, s, 2200 &first_bad, &bad_sectors) == 0) { 2201 atomic_inc(&rdev->nr_pending); 2202 rcu_read_unlock(); 2203 if (sync_page_io(rdev, sect, s<<9, 2204 conf->tmppage, REQ_OP_READ, 0, false)) 2205 success = 1; 2206 rdev_dec_pending(rdev, mddev); 2207 if (success) 2208 break; 2209 } else 2210 rcu_read_unlock(); 2211 d++; 2212 if (d == conf->raid_disks * 2) 2213 d = 0; 2214 } while (!success && d != read_disk); 2215 2216 if (!success) { 2217 /* Cannot read from anywhere - mark it bad */ 2218 struct md_rdev *rdev = conf->mirrors[read_disk].rdev; 2219 if (!rdev_set_badblocks(rdev, sect, s, 0)) 2220 md_error(mddev, rdev); 2221 break; 2222 } 2223 /* write it back and re-read */ 2224 start = d; 2225 while (d != read_disk) { 2226 if (d==0) 2227 d = conf->raid_disks * 2; 2228 d--; 2229 rcu_read_lock(); 2230 rdev = rcu_dereference(conf->mirrors[d].rdev); 2231 if (rdev && 2232 !test_bit(Faulty, &rdev->flags)) { 2233 atomic_inc(&rdev->nr_pending); 2234 rcu_read_unlock(); 2235 r1_sync_page_io(rdev, sect, s, 2236 conf->tmppage, WRITE); 2237 rdev_dec_pending(rdev, mddev); 2238 } else 2239 rcu_read_unlock(); 2240 } 2241 d = start; 2242 while (d != read_disk) { 2243 char b[BDEVNAME_SIZE]; 2244 if (d==0) 2245 d = conf->raid_disks * 2; 2246 d--; 2247 rcu_read_lock(); 2248 rdev = rcu_dereference(conf->mirrors[d].rdev); 2249 if (rdev && 2250 !test_bit(Faulty, &rdev->flags)) { 2251 atomic_inc(&rdev->nr_pending); 2252 rcu_read_unlock(); 2253 if (r1_sync_page_io(rdev, sect, s, 2254 conf->tmppage, READ)) { 2255 atomic_add(s, &rdev->corrected_errors); 2256 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n", 2257 mdname(mddev), s, 2258 (unsigned long long)(sect + 2259 rdev->data_offset), 2260 bdevname(rdev->bdev, b)); 2261 } 2262 rdev_dec_pending(rdev, mddev); 2263 } else 2264 rcu_read_unlock(); 2265 } 2266 sectors -= s; 2267 sect += s; 2268 } 2269 } 2270 2271 static int narrow_write_error(struct r1bio *r1_bio, int i) 2272 { 2273 struct mddev *mddev = r1_bio->mddev; 2274 struct r1conf *conf = mddev->private; 2275 struct md_rdev *rdev = conf->mirrors[i].rdev; 2276 2277 /* bio has the data to be written to device 'i' where 2278 * we just recently had a write error. 2279 * We repeatedly clone the bio and trim down to one block, 2280 * then try the write. Where the write fails we record 2281 * a bad block. 2282 * It is conceivable that the bio doesn't exactly align with 2283 * blocks. We must handle this somehow. 2284 * 2285 * We currently own a reference on the rdev. 2286 */ 2287 2288 int block_sectors; 2289 sector_t sector; 2290 int sectors; 2291 int sect_to_write = r1_bio->sectors; 2292 int ok = 1; 2293 2294 if (rdev->badblocks.shift < 0) 2295 return 0; 2296 2297 block_sectors = roundup(1 << rdev->badblocks.shift, 2298 bdev_logical_block_size(rdev->bdev) >> 9); 2299 sector = r1_bio->sector; 2300 sectors = ((sector + block_sectors) 2301 & ~(sector_t)(block_sectors - 1)) 2302 - sector; 2303 2304 while (sect_to_write) { 2305 struct bio *wbio; 2306 if (sectors > sect_to_write) 2307 sectors = sect_to_write; 2308 /* Write at 'sector' for 'sectors'*/ 2309 2310 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 2311 wbio = bio_clone_fast(r1_bio->behind_master_bio, 2312 GFP_NOIO, 2313 mddev->bio_set); 2314 } else { 2315 wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO, 2316 mddev->bio_set); 2317 } 2318 2319 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0); 2320 wbio->bi_iter.bi_sector = r1_bio->sector; 2321 wbio->bi_iter.bi_size = r1_bio->sectors << 9; 2322 2323 bio_trim(wbio, sector - r1_bio->sector, sectors); 2324 wbio->bi_iter.bi_sector += rdev->data_offset; 2325 bio_set_dev(wbio, rdev->bdev); 2326 2327 if (submit_bio_wait(wbio) < 0) 2328 /* failure! */ 2329 ok = rdev_set_badblocks(rdev, sector, 2330 sectors, 0) 2331 && ok; 2332 2333 bio_put(wbio); 2334 sect_to_write -= sectors; 2335 sector += sectors; 2336 sectors = block_sectors; 2337 } 2338 return ok; 2339 } 2340 2341 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2342 { 2343 int m; 2344 int s = r1_bio->sectors; 2345 for (m = 0; m < conf->raid_disks * 2 ; m++) { 2346 struct md_rdev *rdev = conf->mirrors[m].rdev; 2347 struct bio *bio = r1_bio->bios[m]; 2348 if (bio->bi_end_io == NULL) 2349 continue; 2350 if (!bio->bi_status && 2351 test_bit(R1BIO_MadeGood, &r1_bio->state)) { 2352 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0); 2353 } 2354 if (bio->bi_status && 2355 test_bit(R1BIO_WriteError, &r1_bio->state)) { 2356 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0)) 2357 md_error(conf->mddev, rdev); 2358 } 2359 } 2360 put_buf(r1_bio); 2361 md_done_sync(conf->mddev, s, 1); 2362 } 2363 2364 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2365 { 2366 int m, idx; 2367 bool fail = false; 2368 2369 for (m = 0; m < conf->raid_disks * 2 ; m++) 2370 if (r1_bio->bios[m] == IO_MADE_GOOD) { 2371 struct md_rdev *rdev = conf->mirrors[m].rdev; 2372 rdev_clear_badblocks(rdev, 2373 r1_bio->sector, 2374 r1_bio->sectors, 0); 2375 rdev_dec_pending(rdev, conf->mddev); 2376 } else if (r1_bio->bios[m] != NULL) { 2377 /* This drive got a write error. We need to 2378 * narrow down and record precise write 2379 * errors. 2380 */ 2381 fail = true; 2382 if (!narrow_write_error(r1_bio, m)) { 2383 md_error(conf->mddev, 2384 conf->mirrors[m].rdev); 2385 /* an I/O failed, we can't clear the bitmap */ 2386 set_bit(R1BIO_Degraded, &r1_bio->state); 2387 } 2388 rdev_dec_pending(conf->mirrors[m].rdev, 2389 conf->mddev); 2390 } 2391 if (fail) { 2392 spin_lock_irq(&conf->device_lock); 2393 list_add(&r1_bio->retry_list, &conf->bio_end_io_list); 2394 idx = sector_to_idx(r1_bio->sector); 2395 atomic_inc(&conf->nr_queued[idx]); 2396 spin_unlock_irq(&conf->device_lock); 2397 /* 2398 * In case freeze_array() is waiting for condition 2399 * get_unqueued_pending() == extra to be true. 2400 */ 2401 wake_up(&conf->wait_barrier); 2402 md_wakeup_thread(conf->mddev->thread); 2403 } else { 2404 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2405 close_write(r1_bio); 2406 raid_end_bio_io(r1_bio); 2407 } 2408 } 2409 2410 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio) 2411 { 2412 struct mddev *mddev = conf->mddev; 2413 struct bio *bio; 2414 struct md_rdev *rdev; 2415 sector_t bio_sector; 2416 2417 clear_bit(R1BIO_ReadError, &r1_bio->state); 2418 /* we got a read error. Maybe the drive is bad. Maybe just 2419 * the block and we can fix it. 2420 * We freeze all other IO, and try reading the block from 2421 * other devices. When we find one, we re-write 2422 * and check it that fixes the read error. 2423 * This is all done synchronously while the array is 2424 * frozen 2425 */ 2426 2427 bio = r1_bio->bios[r1_bio->read_disk]; 2428 bio_sector = conf->mirrors[r1_bio->read_disk].rdev->data_offset + r1_bio->sector; 2429 bio_put(bio); 2430 r1_bio->bios[r1_bio->read_disk] = NULL; 2431 2432 rdev = conf->mirrors[r1_bio->read_disk].rdev; 2433 if (mddev->ro == 0 2434 && !test_bit(FailFast, &rdev->flags)) { 2435 freeze_array(conf, 1); 2436 fix_read_error(conf, r1_bio->read_disk, 2437 r1_bio->sector, r1_bio->sectors); 2438 unfreeze_array(conf); 2439 } else { 2440 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED; 2441 } 2442 2443 rdev_dec_pending(rdev, conf->mddev); 2444 allow_barrier(conf, r1_bio->sector); 2445 bio = r1_bio->master_bio; 2446 2447 /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */ 2448 r1_bio->state = 0; 2449 raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio); 2450 } 2451 2452 static void raid1d(struct md_thread *thread) 2453 { 2454 struct mddev *mddev = thread->mddev; 2455 struct r1bio *r1_bio; 2456 unsigned long flags; 2457 struct r1conf *conf = mddev->private; 2458 struct list_head *head = &conf->retry_list; 2459 struct blk_plug plug; 2460 int idx; 2461 2462 md_check_recovery(mddev); 2463 2464 if (!list_empty_careful(&conf->bio_end_io_list) && 2465 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 2466 LIST_HEAD(tmp); 2467 spin_lock_irqsave(&conf->device_lock, flags); 2468 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 2469 list_splice_init(&conf->bio_end_io_list, &tmp); 2470 spin_unlock_irqrestore(&conf->device_lock, flags); 2471 while (!list_empty(&tmp)) { 2472 r1_bio = list_first_entry(&tmp, struct r1bio, 2473 retry_list); 2474 list_del(&r1_bio->retry_list); 2475 idx = sector_to_idx(r1_bio->sector); 2476 atomic_dec(&conf->nr_queued[idx]); 2477 if (mddev->degraded) 2478 set_bit(R1BIO_Degraded, &r1_bio->state); 2479 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2480 close_write(r1_bio); 2481 raid_end_bio_io(r1_bio); 2482 } 2483 } 2484 2485 blk_start_plug(&plug); 2486 for (;;) { 2487 2488 flush_pending_writes(conf); 2489 2490 spin_lock_irqsave(&conf->device_lock, flags); 2491 if (list_empty(head)) { 2492 spin_unlock_irqrestore(&conf->device_lock, flags); 2493 break; 2494 } 2495 r1_bio = list_entry(head->prev, struct r1bio, retry_list); 2496 list_del(head->prev); 2497 idx = sector_to_idx(r1_bio->sector); 2498 atomic_dec(&conf->nr_queued[idx]); 2499 spin_unlock_irqrestore(&conf->device_lock, flags); 2500 2501 mddev = r1_bio->mddev; 2502 conf = mddev->private; 2503 if (test_bit(R1BIO_IsSync, &r1_bio->state)) { 2504 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2505 test_bit(R1BIO_WriteError, &r1_bio->state)) 2506 handle_sync_write_finished(conf, r1_bio); 2507 else 2508 sync_request_write(mddev, r1_bio); 2509 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2510 test_bit(R1BIO_WriteError, &r1_bio->state)) 2511 handle_write_finished(conf, r1_bio); 2512 else if (test_bit(R1BIO_ReadError, &r1_bio->state)) 2513 handle_read_error(conf, r1_bio); 2514 else 2515 WARN_ON_ONCE(1); 2516 2517 cond_resched(); 2518 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING)) 2519 md_check_recovery(mddev); 2520 } 2521 blk_finish_plug(&plug); 2522 } 2523 2524 static int init_resync(struct r1conf *conf) 2525 { 2526 int buffs; 2527 2528 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2529 BUG_ON(conf->r1buf_pool); 2530 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free, 2531 conf->poolinfo); 2532 if (!conf->r1buf_pool) 2533 return -ENOMEM; 2534 return 0; 2535 } 2536 2537 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf) 2538 { 2539 struct r1bio *r1bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO); 2540 struct resync_pages *rps; 2541 struct bio *bio; 2542 int i; 2543 2544 for (i = conf->poolinfo->raid_disks; i--; ) { 2545 bio = r1bio->bios[i]; 2546 rps = bio->bi_private; 2547 bio_reset(bio); 2548 bio->bi_private = rps; 2549 } 2550 r1bio->master_bio = NULL; 2551 return r1bio; 2552 } 2553 2554 /* 2555 * perform a "sync" on one "block" 2556 * 2557 * We need to make sure that no normal I/O request - particularly write 2558 * requests - conflict with active sync requests. 2559 * 2560 * This is achieved by tracking pending requests and a 'barrier' concept 2561 * that can be installed to exclude normal IO requests. 2562 */ 2563 2564 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr, 2565 int *skipped) 2566 { 2567 struct r1conf *conf = mddev->private; 2568 struct r1bio *r1_bio; 2569 struct bio *bio; 2570 sector_t max_sector, nr_sectors; 2571 int disk = -1; 2572 int i; 2573 int wonly = -1; 2574 int write_targets = 0, read_targets = 0; 2575 sector_t sync_blocks; 2576 int still_degraded = 0; 2577 int good_sectors = RESYNC_SECTORS; 2578 int min_bad = 0; /* number of sectors that are bad in all devices */ 2579 int idx = sector_to_idx(sector_nr); 2580 int page_idx = 0; 2581 2582 if (!conf->r1buf_pool) 2583 if (init_resync(conf)) 2584 return 0; 2585 2586 max_sector = mddev->dev_sectors; 2587 if (sector_nr >= max_sector) { 2588 /* If we aborted, we need to abort the 2589 * sync on the 'current' bitmap chunk (there will 2590 * only be one in raid1 resync. 2591 * We can find the current addess in mddev->curr_resync 2592 */ 2593 if (mddev->curr_resync < max_sector) /* aborted */ 2594 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2595 &sync_blocks, 1); 2596 else /* completed sync */ 2597 conf->fullsync = 0; 2598 2599 bitmap_close_sync(mddev->bitmap); 2600 close_sync(conf); 2601 2602 if (mddev_is_clustered(mddev)) { 2603 conf->cluster_sync_low = 0; 2604 conf->cluster_sync_high = 0; 2605 } 2606 return 0; 2607 } 2608 2609 if (mddev->bitmap == NULL && 2610 mddev->recovery_cp == MaxSector && 2611 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 2612 conf->fullsync == 0) { 2613 *skipped = 1; 2614 return max_sector - sector_nr; 2615 } 2616 /* before building a request, check if we can skip these blocks.. 2617 * This call the bitmap_start_sync doesn't actually record anything 2618 */ 2619 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 2620 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2621 /* We can skip this block, and probably several more */ 2622 *skipped = 1; 2623 return sync_blocks; 2624 } 2625 2626 /* 2627 * If there is non-resync activity waiting for a turn, then let it 2628 * though before starting on this new sync request. 2629 */ 2630 if (atomic_read(&conf->nr_waiting[idx])) 2631 schedule_timeout_uninterruptible(1); 2632 2633 /* we are incrementing sector_nr below. To be safe, we check against 2634 * sector_nr + two times RESYNC_SECTORS 2635 */ 2636 2637 bitmap_cond_end_sync(mddev->bitmap, sector_nr, 2638 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high)); 2639 r1_bio = raid1_alloc_init_r1buf(conf); 2640 2641 raise_barrier(conf, sector_nr); 2642 2643 rcu_read_lock(); 2644 /* 2645 * If we get a correctably read error during resync or recovery, 2646 * we might want to read from a different device. So we 2647 * flag all drives that could conceivably be read from for READ, 2648 * and any others (which will be non-In_sync devices) for WRITE. 2649 * If a read fails, we try reading from something else for which READ 2650 * is OK. 2651 */ 2652 2653 r1_bio->mddev = mddev; 2654 r1_bio->sector = sector_nr; 2655 r1_bio->state = 0; 2656 set_bit(R1BIO_IsSync, &r1_bio->state); 2657 /* make sure good_sectors won't go across barrier unit boundary */ 2658 good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors); 2659 2660 for (i = 0; i < conf->raid_disks * 2; i++) { 2661 struct md_rdev *rdev; 2662 bio = r1_bio->bios[i]; 2663 2664 rdev = rcu_dereference(conf->mirrors[i].rdev); 2665 if (rdev == NULL || 2666 test_bit(Faulty, &rdev->flags)) { 2667 if (i < conf->raid_disks) 2668 still_degraded = 1; 2669 } else if (!test_bit(In_sync, &rdev->flags)) { 2670 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 2671 bio->bi_end_io = end_sync_write; 2672 write_targets ++; 2673 } else { 2674 /* may need to read from here */ 2675 sector_t first_bad = MaxSector; 2676 int bad_sectors; 2677 2678 if (is_badblock(rdev, sector_nr, good_sectors, 2679 &first_bad, &bad_sectors)) { 2680 if (first_bad > sector_nr) 2681 good_sectors = first_bad - sector_nr; 2682 else { 2683 bad_sectors -= (sector_nr - first_bad); 2684 if (min_bad == 0 || 2685 min_bad > bad_sectors) 2686 min_bad = bad_sectors; 2687 } 2688 } 2689 if (sector_nr < first_bad) { 2690 if (test_bit(WriteMostly, &rdev->flags)) { 2691 if (wonly < 0) 2692 wonly = i; 2693 } else { 2694 if (disk < 0) 2695 disk = i; 2696 } 2697 bio_set_op_attrs(bio, REQ_OP_READ, 0); 2698 bio->bi_end_io = end_sync_read; 2699 read_targets++; 2700 } else if (!test_bit(WriteErrorSeen, &rdev->flags) && 2701 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 2702 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 2703 /* 2704 * The device is suitable for reading (InSync), 2705 * but has bad block(s) here. Let's try to correct them, 2706 * if we are doing resync or repair. Otherwise, leave 2707 * this device alone for this sync request. 2708 */ 2709 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 2710 bio->bi_end_io = end_sync_write; 2711 write_targets++; 2712 } 2713 } 2714 if (bio->bi_end_io) { 2715 atomic_inc(&rdev->nr_pending); 2716 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset; 2717 bio_set_dev(bio, rdev->bdev); 2718 if (test_bit(FailFast, &rdev->flags)) 2719 bio->bi_opf |= MD_FAILFAST; 2720 } 2721 } 2722 rcu_read_unlock(); 2723 if (disk < 0) 2724 disk = wonly; 2725 r1_bio->read_disk = disk; 2726 2727 if (read_targets == 0 && min_bad > 0) { 2728 /* These sectors are bad on all InSync devices, so we 2729 * need to mark them bad on all write targets 2730 */ 2731 int ok = 1; 2732 for (i = 0 ; i < conf->raid_disks * 2 ; i++) 2733 if (r1_bio->bios[i]->bi_end_io == end_sync_write) { 2734 struct md_rdev *rdev = conf->mirrors[i].rdev; 2735 ok = rdev_set_badblocks(rdev, sector_nr, 2736 min_bad, 0 2737 ) && ok; 2738 } 2739 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2740 *skipped = 1; 2741 put_buf(r1_bio); 2742 2743 if (!ok) { 2744 /* Cannot record the badblocks, so need to 2745 * abort the resync. 2746 * If there are multiple read targets, could just 2747 * fail the really bad ones ??? 2748 */ 2749 conf->recovery_disabled = mddev->recovery_disabled; 2750 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2751 return 0; 2752 } else 2753 return min_bad; 2754 2755 } 2756 if (min_bad > 0 && min_bad < good_sectors) { 2757 /* only resync enough to reach the next bad->good 2758 * transition */ 2759 good_sectors = min_bad; 2760 } 2761 2762 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0) 2763 /* extra read targets are also write targets */ 2764 write_targets += read_targets-1; 2765 2766 if (write_targets == 0 || read_targets == 0) { 2767 /* There is nowhere to write, so all non-sync 2768 * drives must be failed - so we are finished 2769 */ 2770 sector_t rv; 2771 if (min_bad > 0) 2772 max_sector = sector_nr + min_bad; 2773 rv = max_sector - sector_nr; 2774 *skipped = 1; 2775 put_buf(r1_bio); 2776 return rv; 2777 } 2778 2779 if (max_sector > mddev->resync_max) 2780 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 2781 if (max_sector > sector_nr + good_sectors) 2782 max_sector = sector_nr + good_sectors; 2783 nr_sectors = 0; 2784 sync_blocks = 0; 2785 do { 2786 struct page *page; 2787 int len = PAGE_SIZE; 2788 if (sector_nr + (len>>9) > max_sector) 2789 len = (max_sector - sector_nr) << 9; 2790 if (len == 0) 2791 break; 2792 if (sync_blocks == 0) { 2793 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 2794 &sync_blocks, still_degraded) && 2795 !conf->fullsync && 2796 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2797 break; 2798 if ((len >> 9) > sync_blocks) 2799 len = sync_blocks<<9; 2800 } 2801 2802 for (i = 0 ; i < conf->raid_disks * 2; i++) { 2803 struct resync_pages *rp; 2804 2805 bio = r1_bio->bios[i]; 2806 rp = get_resync_pages(bio); 2807 if (bio->bi_end_io) { 2808 page = resync_fetch_page(rp, page_idx); 2809 2810 /* 2811 * won't fail because the vec table is big 2812 * enough to hold all these pages 2813 */ 2814 bio_add_page(bio, page, len, 0); 2815 } 2816 } 2817 nr_sectors += len>>9; 2818 sector_nr += len>>9; 2819 sync_blocks -= (len>>9); 2820 } while (++page_idx < RESYNC_PAGES); 2821 2822 r1_bio->sectors = nr_sectors; 2823 2824 if (mddev_is_clustered(mddev) && 2825 conf->cluster_sync_high < sector_nr + nr_sectors) { 2826 conf->cluster_sync_low = mddev->curr_resync_completed; 2827 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS; 2828 /* Send resync message */ 2829 md_cluster_ops->resync_info_update(mddev, 2830 conf->cluster_sync_low, 2831 conf->cluster_sync_high); 2832 } 2833 2834 /* For a user-requested sync, we read all readable devices and do a 2835 * compare 2836 */ 2837 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2838 atomic_set(&r1_bio->remaining, read_targets); 2839 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) { 2840 bio = r1_bio->bios[i]; 2841 if (bio->bi_end_io == end_sync_read) { 2842 read_targets--; 2843 md_sync_acct_bio(bio, nr_sectors); 2844 if (read_targets == 1) 2845 bio->bi_opf &= ~MD_FAILFAST; 2846 generic_make_request(bio); 2847 } 2848 } 2849 } else { 2850 atomic_set(&r1_bio->remaining, 1); 2851 bio = r1_bio->bios[r1_bio->read_disk]; 2852 md_sync_acct_bio(bio, nr_sectors); 2853 if (read_targets == 1) 2854 bio->bi_opf &= ~MD_FAILFAST; 2855 generic_make_request(bio); 2856 2857 } 2858 return nr_sectors; 2859 } 2860 2861 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks) 2862 { 2863 if (sectors) 2864 return sectors; 2865 2866 return mddev->dev_sectors; 2867 } 2868 2869 static struct r1conf *setup_conf(struct mddev *mddev) 2870 { 2871 struct r1conf *conf; 2872 int i; 2873 struct raid1_info *disk; 2874 struct md_rdev *rdev; 2875 int err = -ENOMEM; 2876 2877 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL); 2878 if (!conf) 2879 goto abort; 2880 2881 conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR, 2882 sizeof(atomic_t), GFP_KERNEL); 2883 if (!conf->nr_pending) 2884 goto abort; 2885 2886 conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR, 2887 sizeof(atomic_t), GFP_KERNEL); 2888 if (!conf->nr_waiting) 2889 goto abort; 2890 2891 conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR, 2892 sizeof(atomic_t), GFP_KERNEL); 2893 if (!conf->nr_queued) 2894 goto abort; 2895 2896 conf->barrier = kcalloc(BARRIER_BUCKETS_NR, 2897 sizeof(atomic_t), GFP_KERNEL); 2898 if (!conf->barrier) 2899 goto abort; 2900 2901 conf->mirrors = kzalloc(sizeof(struct raid1_info) 2902 * mddev->raid_disks * 2, 2903 GFP_KERNEL); 2904 if (!conf->mirrors) 2905 goto abort; 2906 2907 conf->tmppage = alloc_page(GFP_KERNEL); 2908 if (!conf->tmppage) 2909 goto abort; 2910 2911 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL); 2912 if (!conf->poolinfo) 2913 goto abort; 2914 conf->poolinfo->raid_disks = mddev->raid_disks * 2; 2915 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 2916 r1bio_pool_free, 2917 conf->poolinfo); 2918 if (!conf->r1bio_pool) 2919 goto abort; 2920 2921 conf->bio_split = bioset_create(BIO_POOL_SIZE, 0, 0); 2922 if (!conf->bio_split) 2923 goto abort; 2924 2925 conf->poolinfo->mddev = mddev; 2926 2927 err = -EINVAL; 2928 spin_lock_init(&conf->device_lock); 2929 rdev_for_each(rdev, mddev) { 2930 int disk_idx = rdev->raid_disk; 2931 if (disk_idx >= mddev->raid_disks 2932 || disk_idx < 0) 2933 continue; 2934 if (test_bit(Replacement, &rdev->flags)) 2935 disk = conf->mirrors + mddev->raid_disks + disk_idx; 2936 else 2937 disk = conf->mirrors + disk_idx; 2938 2939 if (disk->rdev) 2940 goto abort; 2941 disk->rdev = rdev; 2942 disk->head_position = 0; 2943 disk->seq_start = MaxSector; 2944 } 2945 conf->raid_disks = mddev->raid_disks; 2946 conf->mddev = mddev; 2947 INIT_LIST_HEAD(&conf->retry_list); 2948 INIT_LIST_HEAD(&conf->bio_end_io_list); 2949 2950 spin_lock_init(&conf->resync_lock); 2951 init_waitqueue_head(&conf->wait_barrier); 2952 2953 bio_list_init(&conf->pending_bio_list); 2954 conf->pending_count = 0; 2955 conf->recovery_disabled = mddev->recovery_disabled - 1; 2956 2957 err = -EIO; 2958 for (i = 0; i < conf->raid_disks * 2; i++) { 2959 2960 disk = conf->mirrors + i; 2961 2962 if (i < conf->raid_disks && 2963 disk[conf->raid_disks].rdev) { 2964 /* This slot has a replacement. */ 2965 if (!disk->rdev) { 2966 /* No original, just make the replacement 2967 * a recovering spare 2968 */ 2969 disk->rdev = 2970 disk[conf->raid_disks].rdev; 2971 disk[conf->raid_disks].rdev = NULL; 2972 } else if (!test_bit(In_sync, &disk->rdev->flags)) 2973 /* Original is not in_sync - bad */ 2974 goto abort; 2975 } 2976 2977 if (!disk->rdev || 2978 !test_bit(In_sync, &disk->rdev->flags)) { 2979 disk->head_position = 0; 2980 if (disk->rdev && 2981 (disk->rdev->saved_raid_disk < 0)) 2982 conf->fullsync = 1; 2983 } 2984 } 2985 2986 err = -ENOMEM; 2987 conf->thread = md_register_thread(raid1d, mddev, "raid1"); 2988 if (!conf->thread) 2989 goto abort; 2990 2991 return conf; 2992 2993 abort: 2994 if (conf) { 2995 mempool_destroy(conf->r1bio_pool); 2996 kfree(conf->mirrors); 2997 safe_put_page(conf->tmppage); 2998 kfree(conf->poolinfo); 2999 kfree(conf->nr_pending); 3000 kfree(conf->nr_waiting); 3001 kfree(conf->nr_queued); 3002 kfree(conf->barrier); 3003 if (conf->bio_split) 3004 bioset_free(conf->bio_split); 3005 kfree(conf); 3006 } 3007 return ERR_PTR(err); 3008 } 3009 3010 static void raid1_free(struct mddev *mddev, void *priv); 3011 static int raid1_run(struct mddev *mddev) 3012 { 3013 struct r1conf *conf; 3014 int i; 3015 struct md_rdev *rdev; 3016 int ret; 3017 bool discard_supported = false; 3018 3019 if (mddev->level != 1) { 3020 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n", 3021 mdname(mddev), mddev->level); 3022 return -EIO; 3023 } 3024 if (mddev->reshape_position != MaxSector) { 3025 pr_warn("md/raid1:%s: reshape_position set but not supported\n", 3026 mdname(mddev)); 3027 return -EIO; 3028 } 3029 if (mddev_init_writes_pending(mddev) < 0) 3030 return -ENOMEM; 3031 /* 3032 * copy the already verified devices into our private RAID1 3033 * bookkeeping area. [whatever we allocate in run(), 3034 * should be freed in raid1_free()] 3035 */ 3036 if (mddev->private == NULL) 3037 conf = setup_conf(mddev); 3038 else 3039 conf = mddev->private; 3040 3041 if (IS_ERR(conf)) 3042 return PTR_ERR(conf); 3043 3044 if (mddev->queue) { 3045 blk_queue_max_write_same_sectors(mddev->queue, 0); 3046 blk_queue_max_write_zeroes_sectors(mddev->queue, 0); 3047 } 3048 3049 rdev_for_each(rdev, mddev) { 3050 if (!mddev->gendisk) 3051 continue; 3052 disk_stack_limits(mddev->gendisk, rdev->bdev, 3053 rdev->data_offset << 9); 3054 if (blk_queue_discard(bdev_get_queue(rdev->bdev))) 3055 discard_supported = true; 3056 } 3057 3058 mddev->degraded = 0; 3059 for (i=0; i < conf->raid_disks; i++) 3060 if (conf->mirrors[i].rdev == NULL || 3061 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) || 3062 test_bit(Faulty, &conf->mirrors[i].rdev->flags)) 3063 mddev->degraded++; 3064 3065 if (conf->raid_disks - mddev->degraded == 1) 3066 mddev->recovery_cp = MaxSector; 3067 3068 if (mddev->recovery_cp != MaxSector) 3069 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n", 3070 mdname(mddev)); 3071 pr_info("md/raid1:%s: active with %d out of %d mirrors\n", 3072 mdname(mddev), mddev->raid_disks - mddev->degraded, 3073 mddev->raid_disks); 3074 3075 /* 3076 * Ok, everything is just fine now 3077 */ 3078 mddev->thread = conf->thread; 3079 conf->thread = NULL; 3080 mddev->private = conf; 3081 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags); 3082 3083 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0)); 3084 3085 if (mddev->queue) { 3086 if (discard_supported) 3087 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, 3088 mddev->queue); 3089 else 3090 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, 3091 mddev->queue); 3092 } 3093 3094 ret = md_integrity_register(mddev); 3095 if (ret) { 3096 md_unregister_thread(&mddev->thread); 3097 raid1_free(mddev, conf); 3098 } 3099 return ret; 3100 } 3101 3102 static void raid1_free(struct mddev *mddev, void *priv) 3103 { 3104 struct r1conf *conf = priv; 3105 3106 mempool_destroy(conf->r1bio_pool); 3107 kfree(conf->mirrors); 3108 safe_put_page(conf->tmppage); 3109 kfree(conf->poolinfo); 3110 kfree(conf->nr_pending); 3111 kfree(conf->nr_waiting); 3112 kfree(conf->nr_queued); 3113 kfree(conf->barrier); 3114 if (conf->bio_split) 3115 bioset_free(conf->bio_split); 3116 kfree(conf); 3117 } 3118 3119 static int raid1_resize(struct mddev *mddev, sector_t sectors) 3120 { 3121 /* no resync is happening, and there is enough space 3122 * on all devices, so we can resize. 3123 * We need to make sure resync covers any new space. 3124 * If the array is shrinking we should possibly wait until 3125 * any io in the removed space completes, but it hardly seems 3126 * worth it. 3127 */ 3128 sector_t newsize = raid1_size(mddev, sectors, 0); 3129 if (mddev->external_size && 3130 mddev->array_sectors > newsize) 3131 return -EINVAL; 3132 if (mddev->bitmap) { 3133 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0); 3134 if (ret) 3135 return ret; 3136 } 3137 md_set_array_sectors(mddev, newsize); 3138 if (sectors > mddev->dev_sectors && 3139 mddev->recovery_cp > mddev->dev_sectors) { 3140 mddev->recovery_cp = mddev->dev_sectors; 3141 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3142 } 3143 mddev->dev_sectors = sectors; 3144 mddev->resync_max_sectors = sectors; 3145 return 0; 3146 } 3147 3148 static int raid1_reshape(struct mddev *mddev) 3149 { 3150 /* We need to: 3151 * 1/ resize the r1bio_pool 3152 * 2/ resize conf->mirrors 3153 * 3154 * We allocate a new r1bio_pool if we can. 3155 * Then raise a device barrier and wait until all IO stops. 3156 * Then resize conf->mirrors and swap in the new r1bio pool. 3157 * 3158 * At the same time, we "pack" the devices so that all the missing 3159 * devices have the higher raid_disk numbers. 3160 */ 3161 mempool_t *newpool, *oldpool; 3162 struct pool_info *newpoolinfo; 3163 struct raid1_info *newmirrors; 3164 struct r1conf *conf = mddev->private; 3165 int cnt, raid_disks; 3166 unsigned long flags; 3167 int d, d2; 3168 3169 /* Cannot change chunk_size, layout, or level */ 3170 if (mddev->chunk_sectors != mddev->new_chunk_sectors || 3171 mddev->layout != mddev->new_layout || 3172 mddev->level != mddev->new_level) { 3173 mddev->new_chunk_sectors = mddev->chunk_sectors; 3174 mddev->new_layout = mddev->layout; 3175 mddev->new_level = mddev->level; 3176 return -EINVAL; 3177 } 3178 3179 if (!mddev_is_clustered(mddev)) 3180 md_allow_write(mddev); 3181 3182 raid_disks = mddev->raid_disks + mddev->delta_disks; 3183 3184 if (raid_disks < conf->raid_disks) { 3185 cnt=0; 3186 for (d= 0; d < conf->raid_disks; d++) 3187 if (conf->mirrors[d].rdev) 3188 cnt++; 3189 if (cnt > raid_disks) 3190 return -EBUSY; 3191 } 3192 3193 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL); 3194 if (!newpoolinfo) 3195 return -ENOMEM; 3196 newpoolinfo->mddev = mddev; 3197 newpoolinfo->raid_disks = raid_disks * 2; 3198 3199 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 3200 r1bio_pool_free, newpoolinfo); 3201 if (!newpool) { 3202 kfree(newpoolinfo); 3203 return -ENOMEM; 3204 } 3205 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2, 3206 GFP_KERNEL); 3207 if (!newmirrors) { 3208 kfree(newpoolinfo); 3209 mempool_destroy(newpool); 3210 return -ENOMEM; 3211 } 3212 3213 freeze_array(conf, 0); 3214 3215 /* ok, everything is stopped */ 3216 oldpool = conf->r1bio_pool; 3217 conf->r1bio_pool = newpool; 3218 3219 for (d = d2 = 0; d < conf->raid_disks; d++) { 3220 struct md_rdev *rdev = conf->mirrors[d].rdev; 3221 if (rdev && rdev->raid_disk != d2) { 3222 sysfs_unlink_rdev(mddev, rdev); 3223 rdev->raid_disk = d2; 3224 sysfs_unlink_rdev(mddev, rdev); 3225 if (sysfs_link_rdev(mddev, rdev)) 3226 pr_warn("md/raid1:%s: cannot register rd%d\n", 3227 mdname(mddev), rdev->raid_disk); 3228 } 3229 if (rdev) 3230 newmirrors[d2++].rdev = rdev; 3231 } 3232 kfree(conf->mirrors); 3233 conf->mirrors = newmirrors; 3234 kfree(conf->poolinfo); 3235 conf->poolinfo = newpoolinfo; 3236 3237 spin_lock_irqsave(&conf->device_lock, flags); 3238 mddev->degraded += (raid_disks - conf->raid_disks); 3239 spin_unlock_irqrestore(&conf->device_lock, flags); 3240 conf->raid_disks = mddev->raid_disks = raid_disks; 3241 mddev->delta_disks = 0; 3242 3243 unfreeze_array(conf); 3244 3245 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 3246 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3247 md_wakeup_thread(mddev->thread); 3248 3249 mempool_destroy(oldpool); 3250 return 0; 3251 } 3252 3253 static void raid1_quiesce(struct mddev *mddev, int quiesce) 3254 { 3255 struct r1conf *conf = mddev->private; 3256 3257 if (quiesce) 3258 freeze_array(conf, 0); 3259 else 3260 unfreeze_array(conf); 3261 } 3262 3263 static void *raid1_takeover(struct mddev *mddev) 3264 { 3265 /* raid1 can take over: 3266 * raid5 with 2 devices, any layout or chunk size 3267 */ 3268 if (mddev->level == 5 && mddev->raid_disks == 2) { 3269 struct r1conf *conf; 3270 mddev->new_level = 1; 3271 mddev->new_layout = 0; 3272 mddev->new_chunk_sectors = 0; 3273 conf = setup_conf(mddev); 3274 if (!IS_ERR(conf)) { 3275 /* Array must appear to be quiesced */ 3276 conf->array_frozen = 1; 3277 mddev_clear_unsupported_flags(mddev, 3278 UNSUPPORTED_MDDEV_FLAGS); 3279 } 3280 return conf; 3281 } 3282 return ERR_PTR(-EINVAL); 3283 } 3284 3285 static struct md_personality raid1_personality = 3286 { 3287 .name = "raid1", 3288 .level = 1, 3289 .owner = THIS_MODULE, 3290 .make_request = raid1_make_request, 3291 .run = raid1_run, 3292 .free = raid1_free, 3293 .status = raid1_status, 3294 .error_handler = raid1_error, 3295 .hot_add_disk = raid1_add_disk, 3296 .hot_remove_disk= raid1_remove_disk, 3297 .spare_active = raid1_spare_active, 3298 .sync_request = raid1_sync_request, 3299 .resize = raid1_resize, 3300 .size = raid1_size, 3301 .check_reshape = raid1_reshape, 3302 .quiesce = raid1_quiesce, 3303 .takeover = raid1_takeover, 3304 .congested = raid1_congested, 3305 }; 3306 3307 static int __init raid_init(void) 3308 { 3309 return register_md_personality(&raid1_personality); 3310 } 3311 3312 static void raid_exit(void) 3313 { 3314 unregister_md_personality(&raid1_personality); 3315 } 3316 3317 module_init(raid_init); 3318 module_exit(raid_exit); 3319 MODULE_LICENSE("GPL"); 3320 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD"); 3321 MODULE_ALIAS("md-personality-3"); /* RAID1 */ 3322 MODULE_ALIAS("md-raid1"); 3323 MODULE_ALIAS("md-level-1"); 3324 3325 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); 3326