xref: /openbmc/linux/drivers/md/raid1.c (revision 025471f9)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid1.c : Multiple Devices driver for Linux
4  *
5  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6  *
7  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8  *
9  * RAID-1 management functions.
10  *
11  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12  *
13  * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
14  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15  *
16  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
17  * bitmapped intelligence in resync:
18  *
19  *      - bitmap marked during normal i/o
20  *      - bitmap used to skip nondirty blocks during sync
21  *
22  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
23  * - persistent bitmap code
24  */
25 
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/blkdev.h>
29 #include <linux/module.h>
30 #include <linux/seq_file.h>
31 #include <linux/ratelimit.h>
32 #include <linux/interval_tree_generic.h>
33 
34 #include <trace/events/block.h>
35 
36 #include "md.h"
37 #include "raid1.h"
38 #include "md-bitmap.h"
39 
40 #define UNSUPPORTED_MDDEV_FLAGS		\
41 	((1L << MD_HAS_JOURNAL) |	\
42 	 (1L << MD_JOURNAL_CLEAN) |	\
43 	 (1L << MD_HAS_PPL) |		\
44 	 (1L << MD_HAS_MULTIPLE_PPLS))
45 
46 static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
47 static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
48 
49 #define raid1_log(md, fmt, args...)				\
50 	do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
51 
52 #include "raid1-10.c"
53 
54 #define START(node) ((node)->start)
55 #define LAST(node) ((node)->last)
56 INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last,
57 		     START, LAST, static inline, raid1_rb);
58 
59 static int check_and_add_serial(struct md_rdev *rdev, sector_t lo, sector_t hi)
60 {
61 	struct serial_info *si;
62 	unsigned long flags;
63 	int ret = 0;
64 	struct mddev *mddev = rdev->mddev;
65 	int idx = sector_to_idx(lo);
66 	struct serial_in_rdev *serial = &rdev->serial[idx];
67 
68 	si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO);
69 
70 	spin_lock_irqsave(&serial->serial_lock, flags);
71 	/* collision happened */
72 	if (raid1_rb_iter_first(&serial->serial_rb, lo, hi))
73 		ret = -EBUSY;
74 	if (!ret) {
75 		si->start = lo;
76 		si->last = hi;
77 		raid1_rb_insert(si, &serial->serial_rb);
78 	} else
79 		mempool_free(si, mddev->serial_info_pool);
80 	spin_unlock_irqrestore(&serial->serial_lock, flags);
81 
82 	return ret;
83 }
84 
85 static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi)
86 {
87 	struct serial_info *si;
88 	unsigned long flags;
89 	int found = 0;
90 	struct mddev *mddev = rdev->mddev;
91 	int idx = sector_to_idx(lo);
92 	struct serial_in_rdev *serial = &rdev->serial[idx];
93 
94 	spin_lock_irqsave(&serial->serial_lock, flags);
95 	for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi);
96 	     si; si = raid1_rb_iter_next(si, lo, hi)) {
97 		if (si->start == lo && si->last == hi) {
98 			raid1_rb_remove(si, &serial->serial_rb);
99 			mempool_free(si, mddev->serial_info_pool);
100 			found = 1;
101 			break;
102 		}
103 	}
104 	if (!found)
105 		WARN(1, "The write IO is not recorded for serialization\n");
106 	spin_unlock_irqrestore(&serial->serial_lock, flags);
107 	wake_up(&serial->serial_io_wait);
108 }
109 
110 /*
111  * for resync bio, r1bio pointer can be retrieved from the per-bio
112  * 'struct resync_pages'.
113  */
114 static inline struct r1bio *get_resync_r1bio(struct bio *bio)
115 {
116 	return get_resync_pages(bio)->raid_bio;
117 }
118 
119 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
120 {
121 	struct pool_info *pi = data;
122 	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
123 
124 	/* allocate a r1bio with room for raid_disks entries in the bios array */
125 	return kzalloc(size, gfp_flags);
126 }
127 
128 #define RESYNC_DEPTH 32
129 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
130 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
131 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
132 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
133 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
134 
135 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
136 {
137 	struct pool_info *pi = data;
138 	struct r1bio *r1_bio;
139 	struct bio *bio;
140 	int need_pages;
141 	int j;
142 	struct resync_pages *rps;
143 
144 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
145 	if (!r1_bio)
146 		return NULL;
147 
148 	rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages),
149 			    gfp_flags);
150 	if (!rps)
151 		goto out_free_r1bio;
152 
153 	/*
154 	 * Allocate bios : 1 for reading, n-1 for writing
155 	 */
156 	for (j = pi->raid_disks ; j-- ; ) {
157 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
158 		if (!bio)
159 			goto out_free_bio;
160 		r1_bio->bios[j] = bio;
161 	}
162 	/*
163 	 * Allocate RESYNC_PAGES data pages and attach them to
164 	 * the first bio.
165 	 * If this is a user-requested check/repair, allocate
166 	 * RESYNC_PAGES for each bio.
167 	 */
168 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
169 		need_pages = pi->raid_disks;
170 	else
171 		need_pages = 1;
172 	for (j = 0; j < pi->raid_disks; j++) {
173 		struct resync_pages *rp = &rps[j];
174 
175 		bio = r1_bio->bios[j];
176 
177 		if (j < need_pages) {
178 			if (resync_alloc_pages(rp, gfp_flags))
179 				goto out_free_pages;
180 		} else {
181 			memcpy(rp, &rps[0], sizeof(*rp));
182 			resync_get_all_pages(rp);
183 		}
184 
185 		rp->raid_bio = r1_bio;
186 		bio->bi_private = rp;
187 	}
188 
189 	r1_bio->master_bio = NULL;
190 
191 	return r1_bio;
192 
193 out_free_pages:
194 	while (--j >= 0)
195 		resync_free_pages(&rps[j]);
196 
197 out_free_bio:
198 	while (++j < pi->raid_disks)
199 		bio_put(r1_bio->bios[j]);
200 	kfree(rps);
201 
202 out_free_r1bio:
203 	rbio_pool_free(r1_bio, data);
204 	return NULL;
205 }
206 
207 static void r1buf_pool_free(void *__r1_bio, void *data)
208 {
209 	struct pool_info *pi = data;
210 	int i;
211 	struct r1bio *r1bio = __r1_bio;
212 	struct resync_pages *rp = NULL;
213 
214 	for (i = pi->raid_disks; i--; ) {
215 		rp = get_resync_pages(r1bio->bios[i]);
216 		resync_free_pages(rp);
217 		bio_put(r1bio->bios[i]);
218 	}
219 
220 	/* resync pages array stored in the 1st bio's .bi_private */
221 	kfree(rp);
222 
223 	rbio_pool_free(r1bio, data);
224 }
225 
226 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
227 {
228 	int i;
229 
230 	for (i = 0; i < conf->raid_disks * 2; i++) {
231 		struct bio **bio = r1_bio->bios + i;
232 		if (!BIO_SPECIAL(*bio))
233 			bio_put(*bio);
234 		*bio = NULL;
235 	}
236 }
237 
238 static void free_r1bio(struct r1bio *r1_bio)
239 {
240 	struct r1conf *conf = r1_bio->mddev->private;
241 
242 	put_all_bios(conf, r1_bio);
243 	mempool_free(r1_bio, &conf->r1bio_pool);
244 }
245 
246 static void put_buf(struct r1bio *r1_bio)
247 {
248 	struct r1conf *conf = r1_bio->mddev->private;
249 	sector_t sect = r1_bio->sector;
250 	int i;
251 
252 	for (i = 0; i < conf->raid_disks * 2; i++) {
253 		struct bio *bio = r1_bio->bios[i];
254 		if (bio->bi_end_io)
255 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
256 	}
257 
258 	mempool_free(r1_bio, &conf->r1buf_pool);
259 
260 	lower_barrier(conf, sect);
261 }
262 
263 static void reschedule_retry(struct r1bio *r1_bio)
264 {
265 	unsigned long flags;
266 	struct mddev *mddev = r1_bio->mddev;
267 	struct r1conf *conf = mddev->private;
268 	int idx;
269 
270 	idx = sector_to_idx(r1_bio->sector);
271 	spin_lock_irqsave(&conf->device_lock, flags);
272 	list_add(&r1_bio->retry_list, &conf->retry_list);
273 	atomic_inc(&conf->nr_queued[idx]);
274 	spin_unlock_irqrestore(&conf->device_lock, flags);
275 
276 	wake_up(&conf->wait_barrier);
277 	md_wakeup_thread(mddev->thread);
278 }
279 
280 /*
281  * raid_end_bio_io() is called when we have finished servicing a mirrored
282  * operation and are ready to return a success/failure code to the buffer
283  * cache layer.
284  */
285 static void call_bio_endio(struct r1bio *r1_bio)
286 {
287 	struct bio *bio = r1_bio->master_bio;
288 	struct r1conf *conf = r1_bio->mddev->private;
289 
290 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
291 		bio->bi_status = BLK_STS_IOERR;
292 
293 	bio_endio(bio);
294 	/*
295 	 * Wake up any possible resync thread that waits for the device
296 	 * to go idle.
297 	 */
298 	allow_barrier(conf, r1_bio->sector);
299 }
300 
301 static void raid_end_bio_io(struct r1bio *r1_bio)
302 {
303 	struct bio *bio = r1_bio->master_bio;
304 
305 	/* if nobody has done the final endio yet, do it now */
306 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
307 		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
308 			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
309 			 (unsigned long long) bio->bi_iter.bi_sector,
310 			 (unsigned long long) bio_end_sector(bio) - 1);
311 
312 		call_bio_endio(r1_bio);
313 	}
314 	free_r1bio(r1_bio);
315 }
316 
317 /*
318  * Update disk head position estimator based on IRQ completion info.
319  */
320 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
321 {
322 	struct r1conf *conf = r1_bio->mddev->private;
323 
324 	conf->mirrors[disk].head_position =
325 		r1_bio->sector + (r1_bio->sectors);
326 }
327 
328 /*
329  * Find the disk number which triggered given bio
330  */
331 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
332 {
333 	int mirror;
334 	struct r1conf *conf = r1_bio->mddev->private;
335 	int raid_disks = conf->raid_disks;
336 
337 	for (mirror = 0; mirror < raid_disks * 2; mirror++)
338 		if (r1_bio->bios[mirror] == bio)
339 			break;
340 
341 	BUG_ON(mirror == raid_disks * 2);
342 	update_head_pos(mirror, r1_bio);
343 
344 	return mirror;
345 }
346 
347 static void raid1_end_read_request(struct bio *bio)
348 {
349 	int uptodate = !bio->bi_status;
350 	struct r1bio *r1_bio = bio->bi_private;
351 	struct r1conf *conf = r1_bio->mddev->private;
352 	struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
353 
354 	/*
355 	 * this branch is our 'one mirror IO has finished' event handler:
356 	 */
357 	update_head_pos(r1_bio->read_disk, r1_bio);
358 
359 	if (uptodate)
360 		set_bit(R1BIO_Uptodate, &r1_bio->state);
361 	else if (test_bit(FailFast, &rdev->flags) &&
362 		 test_bit(R1BIO_FailFast, &r1_bio->state))
363 		/* This was a fail-fast read so we definitely
364 		 * want to retry */
365 		;
366 	else {
367 		/* If all other devices have failed, we want to return
368 		 * the error upwards rather than fail the last device.
369 		 * Here we redefine "uptodate" to mean "Don't want to retry"
370 		 */
371 		unsigned long flags;
372 		spin_lock_irqsave(&conf->device_lock, flags);
373 		if (r1_bio->mddev->degraded == conf->raid_disks ||
374 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
375 		     test_bit(In_sync, &rdev->flags)))
376 			uptodate = 1;
377 		spin_unlock_irqrestore(&conf->device_lock, flags);
378 	}
379 
380 	if (uptodate) {
381 		raid_end_bio_io(r1_bio);
382 		rdev_dec_pending(rdev, conf->mddev);
383 	} else {
384 		/*
385 		 * oops, read error:
386 		 */
387 		char b[BDEVNAME_SIZE];
388 		pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
389 				   mdname(conf->mddev),
390 				   bdevname(rdev->bdev, b),
391 				   (unsigned long long)r1_bio->sector);
392 		set_bit(R1BIO_ReadError, &r1_bio->state);
393 		reschedule_retry(r1_bio);
394 		/* don't drop the reference on read_disk yet */
395 	}
396 }
397 
398 static void close_write(struct r1bio *r1_bio)
399 {
400 	/* it really is the end of this request */
401 	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
402 		bio_free_pages(r1_bio->behind_master_bio);
403 		bio_put(r1_bio->behind_master_bio);
404 		r1_bio->behind_master_bio = NULL;
405 	}
406 	/* clear the bitmap if all writes complete successfully */
407 	md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
408 			   r1_bio->sectors,
409 			   !test_bit(R1BIO_Degraded, &r1_bio->state),
410 			   test_bit(R1BIO_BehindIO, &r1_bio->state));
411 	md_write_end(r1_bio->mddev);
412 }
413 
414 static void r1_bio_write_done(struct r1bio *r1_bio)
415 {
416 	if (!atomic_dec_and_test(&r1_bio->remaining))
417 		return;
418 
419 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
420 		reschedule_retry(r1_bio);
421 	else {
422 		close_write(r1_bio);
423 		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
424 			reschedule_retry(r1_bio);
425 		else
426 			raid_end_bio_io(r1_bio);
427 	}
428 }
429 
430 static void raid1_end_write_request(struct bio *bio)
431 {
432 	struct r1bio *r1_bio = bio->bi_private;
433 	int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
434 	struct r1conf *conf = r1_bio->mddev->private;
435 	struct bio *to_put = NULL;
436 	int mirror = find_bio_disk(r1_bio, bio);
437 	struct md_rdev *rdev = conf->mirrors[mirror].rdev;
438 	bool discard_error;
439 	sector_t lo = r1_bio->sector;
440 	sector_t hi = r1_bio->sector + r1_bio->sectors;
441 
442 	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
443 
444 	/*
445 	 * 'one mirror IO has finished' event handler:
446 	 */
447 	if (bio->bi_status && !discard_error) {
448 		set_bit(WriteErrorSeen,	&rdev->flags);
449 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
450 			set_bit(MD_RECOVERY_NEEDED, &
451 				conf->mddev->recovery);
452 
453 		if (test_bit(FailFast, &rdev->flags) &&
454 		    (bio->bi_opf & MD_FAILFAST) &&
455 		    /* We never try FailFast to WriteMostly devices */
456 		    !test_bit(WriteMostly, &rdev->flags)) {
457 			md_error(r1_bio->mddev, rdev);
458 		}
459 
460 		/*
461 		 * When the device is faulty, it is not necessary to
462 		 * handle write error.
463 		 * For failfast, this is the only remaining device,
464 		 * We need to retry the write without FailFast.
465 		 */
466 		if (!test_bit(Faulty, &rdev->flags))
467 			set_bit(R1BIO_WriteError, &r1_bio->state);
468 		else {
469 			/* Finished with this branch */
470 			r1_bio->bios[mirror] = NULL;
471 			to_put = bio;
472 		}
473 	} else {
474 		/*
475 		 * Set R1BIO_Uptodate in our master bio, so that we
476 		 * will return a good error code for to the higher
477 		 * levels even if IO on some other mirrored buffer
478 		 * fails.
479 		 *
480 		 * The 'master' represents the composite IO operation
481 		 * to user-side. So if something waits for IO, then it
482 		 * will wait for the 'master' bio.
483 		 */
484 		sector_t first_bad;
485 		int bad_sectors;
486 
487 		r1_bio->bios[mirror] = NULL;
488 		to_put = bio;
489 		/*
490 		 * Do not set R1BIO_Uptodate if the current device is
491 		 * rebuilding or Faulty. This is because we cannot use
492 		 * such device for properly reading the data back (we could
493 		 * potentially use it, if the current write would have felt
494 		 * before rdev->recovery_offset, but for simplicity we don't
495 		 * check this here.
496 		 */
497 		if (test_bit(In_sync, &rdev->flags) &&
498 		    !test_bit(Faulty, &rdev->flags))
499 			set_bit(R1BIO_Uptodate, &r1_bio->state);
500 
501 		/* Maybe we can clear some bad blocks. */
502 		if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
503 				&first_bad, &bad_sectors) && !discard_error) {
504 			r1_bio->bios[mirror] = IO_MADE_GOOD;
505 			set_bit(R1BIO_MadeGood, &r1_bio->state);
506 		}
507 	}
508 
509 	if (behind) {
510 		if (test_bit(CollisionCheck, &rdev->flags))
511 			remove_serial(rdev, lo, hi);
512 		if (test_bit(WriteMostly, &rdev->flags))
513 			atomic_dec(&r1_bio->behind_remaining);
514 
515 		/*
516 		 * In behind mode, we ACK the master bio once the I/O
517 		 * has safely reached all non-writemostly
518 		 * disks. Setting the Returned bit ensures that this
519 		 * gets done only once -- we don't ever want to return
520 		 * -EIO here, instead we'll wait
521 		 */
522 		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
523 		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
524 			/* Maybe we can return now */
525 			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
526 				struct bio *mbio = r1_bio->master_bio;
527 				pr_debug("raid1: behind end write sectors"
528 					 " %llu-%llu\n",
529 					 (unsigned long long) mbio->bi_iter.bi_sector,
530 					 (unsigned long long) bio_end_sector(mbio) - 1);
531 				call_bio_endio(r1_bio);
532 			}
533 		}
534 	} else if (rdev->mddev->serialize_policy)
535 		remove_serial(rdev, lo, hi);
536 	if (r1_bio->bios[mirror] == NULL)
537 		rdev_dec_pending(rdev, conf->mddev);
538 
539 	/*
540 	 * Let's see if all mirrored write operations have finished
541 	 * already.
542 	 */
543 	r1_bio_write_done(r1_bio);
544 
545 	if (to_put)
546 		bio_put(to_put);
547 }
548 
549 static sector_t align_to_barrier_unit_end(sector_t start_sector,
550 					  sector_t sectors)
551 {
552 	sector_t len;
553 
554 	WARN_ON(sectors == 0);
555 	/*
556 	 * len is the number of sectors from start_sector to end of the
557 	 * barrier unit which start_sector belongs to.
558 	 */
559 	len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
560 	      start_sector;
561 
562 	if (len > sectors)
563 		len = sectors;
564 
565 	return len;
566 }
567 
568 /*
569  * This routine returns the disk from which the requested read should
570  * be done. There is a per-array 'next expected sequential IO' sector
571  * number - if this matches on the next IO then we use the last disk.
572  * There is also a per-disk 'last know head position' sector that is
573  * maintained from IRQ contexts, both the normal and the resync IO
574  * completion handlers update this position correctly. If there is no
575  * perfect sequential match then we pick the disk whose head is closest.
576  *
577  * If there are 2 mirrors in the same 2 devices, performance degrades
578  * because position is mirror, not device based.
579  *
580  * The rdev for the device selected will have nr_pending incremented.
581  */
582 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
583 {
584 	const sector_t this_sector = r1_bio->sector;
585 	int sectors;
586 	int best_good_sectors;
587 	int best_disk, best_dist_disk, best_pending_disk;
588 	int has_nonrot_disk;
589 	int disk;
590 	sector_t best_dist;
591 	unsigned int min_pending;
592 	struct md_rdev *rdev;
593 	int choose_first;
594 	int choose_next_idle;
595 
596 	rcu_read_lock();
597 	/*
598 	 * Check if we can balance. We can balance on the whole
599 	 * device if no resync is going on, or below the resync window.
600 	 * We take the first readable disk when above the resync window.
601 	 */
602  retry:
603 	sectors = r1_bio->sectors;
604 	best_disk = -1;
605 	best_dist_disk = -1;
606 	best_dist = MaxSector;
607 	best_pending_disk = -1;
608 	min_pending = UINT_MAX;
609 	best_good_sectors = 0;
610 	has_nonrot_disk = 0;
611 	choose_next_idle = 0;
612 	clear_bit(R1BIO_FailFast, &r1_bio->state);
613 
614 	if ((conf->mddev->recovery_cp < this_sector + sectors) ||
615 	    (mddev_is_clustered(conf->mddev) &&
616 	    md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
617 		    this_sector + sectors)))
618 		choose_first = 1;
619 	else
620 		choose_first = 0;
621 
622 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
623 		sector_t dist;
624 		sector_t first_bad;
625 		int bad_sectors;
626 		unsigned int pending;
627 		bool nonrot;
628 
629 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
630 		if (r1_bio->bios[disk] == IO_BLOCKED
631 		    || rdev == NULL
632 		    || test_bit(Faulty, &rdev->flags))
633 			continue;
634 		if (!test_bit(In_sync, &rdev->flags) &&
635 		    rdev->recovery_offset < this_sector + sectors)
636 			continue;
637 		if (test_bit(WriteMostly, &rdev->flags)) {
638 			/* Don't balance among write-mostly, just
639 			 * use the first as a last resort */
640 			if (best_dist_disk < 0) {
641 				if (is_badblock(rdev, this_sector, sectors,
642 						&first_bad, &bad_sectors)) {
643 					if (first_bad <= this_sector)
644 						/* Cannot use this */
645 						continue;
646 					best_good_sectors = first_bad - this_sector;
647 				} else
648 					best_good_sectors = sectors;
649 				best_dist_disk = disk;
650 				best_pending_disk = disk;
651 			}
652 			continue;
653 		}
654 		/* This is a reasonable device to use.  It might
655 		 * even be best.
656 		 */
657 		if (is_badblock(rdev, this_sector, sectors,
658 				&first_bad, &bad_sectors)) {
659 			if (best_dist < MaxSector)
660 				/* already have a better device */
661 				continue;
662 			if (first_bad <= this_sector) {
663 				/* cannot read here. If this is the 'primary'
664 				 * device, then we must not read beyond
665 				 * bad_sectors from another device..
666 				 */
667 				bad_sectors -= (this_sector - first_bad);
668 				if (choose_first && sectors > bad_sectors)
669 					sectors = bad_sectors;
670 				if (best_good_sectors > sectors)
671 					best_good_sectors = sectors;
672 
673 			} else {
674 				sector_t good_sectors = first_bad - this_sector;
675 				if (good_sectors > best_good_sectors) {
676 					best_good_sectors = good_sectors;
677 					best_disk = disk;
678 				}
679 				if (choose_first)
680 					break;
681 			}
682 			continue;
683 		} else {
684 			if ((sectors > best_good_sectors) && (best_disk >= 0))
685 				best_disk = -1;
686 			best_good_sectors = sectors;
687 		}
688 
689 		if (best_disk >= 0)
690 			/* At least two disks to choose from so failfast is OK */
691 			set_bit(R1BIO_FailFast, &r1_bio->state);
692 
693 		nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
694 		has_nonrot_disk |= nonrot;
695 		pending = atomic_read(&rdev->nr_pending);
696 		dist = abs(this_sector - conf->mirrors[disk].head_position);
697 		if (choose_first) {
698 			best_disk = disk;
699 			break;
700 		}
701 		/* Don't change to another disk for sequential reads */
702 		if (conf->mirrors[disk].next_seq_sect == this_sector
703 		    || dist == 0) {
704 			int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
705 			struct raid1_info *mirror = &conf->mirrors[disk];
706 
707 			best_disk = disk;
708 			/*
709 			 * If buffered sequential IO size exceeds optimal
710 			 * iosize, check if there is idle disk. If yes, choose
711 			 * the idle disk. read_balance could already choose an
712 			 * idle disk before noticing it's a sequential IO in
713 			 * this disk. This doesn't matter because this disk
714 			 * will idle, next time it will be utilized after the
715 			 * first disk has IO size exceeds optimal iosize. In
716 			 * this way, iosize of the first disk will be optimal
717 			 * iosize at least. iosize of the second disk might be
718 			 * small, but not a big deal since when the second disk
719 			 * starts IO, the first disk is likely still busy.
720 			 */
721 			if (nonrot && opt_iosize > 0 &&
722 			    mirror->seq_start != MaxSector &&
723 			    mirror->next_seq_sect > opt_iosize &&
724 			    mirror->next_seq_sect - opt_iosize >=
725 			    mirror->seq_start) {
726 				choose_next_idle = 1;
727 				continue;
728 			}
729 			break;
730 		}
731 
732 		if (choose_next_idle)
733 			continue;
734 
735 		if (min_pending > pending) {
736 			min_pending = pending;
737 			best_pending_disk = disk;
738 		}
739 
740 		if (dist < best_dist) {
741 			best_dist = dist;
742 			best_dist_disk = disk;
743 		}
744 	}
745 
746 	/*
747 	 * If all disks are rotational, choose the closest disk. If any disk is
748 	 * non-rotational, choose the disk with less pending request even the
749 	 * disk is rotational, which might/might not be optimal for raids with
750 	 * mixed ratation/non-rotational disks depending on workload.
751 	 */
752 	if (best_disk == -1) {
753 		if (has_nonrot_disk || min_pending == 0)
754 			best_disk = best_pending_disk;
755 		else
756 			best_disk = best_dist_disk;
757 	}
758 
759 	if (best_disk >= 0) {
760 		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
761 		if (!rdev)
762 			goto retry;
763 		atomic_inc(&rdev->nr_pending);
764 		sectors = best_good_sectors;
765 
766 		if (conf->mirrors[best_disk].next_seq_sect != this_sector)
767 			conf->mirrors[best_disk].seq_start = this_sector;
768 
769 		conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
770 	}
771 	rcu_read_unlock();
772 	*max_sectors = sectors;
773 
774 	return best_disk;
775 }
776 
777 static int raid1_congested(struct mddev *mddev, int bits)
778 {
779 	struct r1conf *conf = mddev->private;
780 	int i, ret = 0;
781 
782 	if ((bits & (1 << WB_async_congested)) &&
783 	    conf->pending_count >= max_queued_requests)
784 		return 1;
785 
786 	rcu_read_lock();
787 	for (i = 0; i < conf->raid_disks * 2; i++) {
788 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
789 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
790 			struct request_queue *q = bdev_get_queue(rdev->bdev);
791 
792 			BUG_ON(!q);
793 
794 			/* Note the '|| 1' - when read_balance prefers
795 			 * non-congested targets, it can be removed
796 			 */
797 			if ((bits & (1 << WB_async_congested)) || 1)
798 				ret |= bdi_congested(q->backing_dev_info, bits);
799 			else
800 				ret &= bdi_congested(q->backing_dev_info, bits);
801 		}
802 	}
803 	rcu_read_unlock();
804 	return ret;
805 }
806 
807 static void flush_bio_list(struct r1conf *conf, struct bio *bio)
808 {
809 	/* flush any pending bitmap writes to disk before proceeding w/ I/O */
810 	md_bitmap_unplug(conf->mddev->bitmap);
811 	wake_up(&conf->wait_barrier);
812 
813 	while (bio) { /* submit pending writes */
814 		struct bio *next = bio->bi_next;
815 		struct md_rdev *rdev = (void *)bio->bi_disk;
816 		bio->bi_next = NULL;
817 		bio_set_dev(bio, rdev->bdev);
818 		if (test_bit(Faulty, &rdev->flags)) {
819 			bio_io_error(bio);
820 		} else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
821 				    !blk_queue_discard(bio->bi_disk->queue)))
822 			/* Just ignore it */
823 			bio_endio(bio);
824 		else
825 			generic_make_request(bio);
826 		bio = next;
827 		cond_resched();
828 	}
829 }
830 
831 static void flush_pending_writes(struct r1conf *conf)
832 {
833 	/* Any writes that have been queued but are awaiting
834 	 * bitmap updates get flushed here.
835 	 */
836 	spin_lock_irq(&conf->device_lock);
837 
838 	if (conf->pending_bio_list.head) {
839 		struct blk_plug plug;
840 		struct bio *bio;
841 
842 		bio = bio_list_get(&conf->pending_bio_list);
843 		conf->pending_count = 0;
844 		spin_unlock_irq(&conf->device_lock);
845 
846 		/*
847 		 * As this is called in a wait_event() loop (see freeze_array),
848 		 * current->state might be TASK_UNINTERRUPTIBLE which will
849 		 * cause a warning when we prepare to wait again.  As it is
850 		 * rare that this path is taken, it is perfectly safe to force
851 		 * us to go around the wait_event() loop again, so the warning
852 		 * is a false-positive.  Silence the warning by resetting
853 		 * thread state
854 		 */
855 		__set_current_state(TASK_RUNNING);
856 		blk_start_plug(&plug);
857 		flush_bio_list(conf, bio);
858 		blk_finish_plug(&plug);
859 	} else
860 		spin_unlock_irq(&conf->device_lock);
861 }
862 
863 /* Barriers....
864  * Sometimes we need to suspend IO while we do something else,
865  * either some resync/recovery, or reconfigure the array.
866  * To do this we raise a 'barrier'.
867  * The 'barrier' is a counter that can be raised multiple times
868  * to count how many activities are happening which preclude
869  * normal IO.
870  * We can only raise the barrier if there is no pending IO.
871  * i.e. if nr_pending == 0.
872  * We choose only to raise the barrier if no-one is waiting for the
873  * barrier to go down.  This means that as soon as an IO request
874  * is ready, no other operations which require a barrier will start
875  * until the IO request has had a chance.
876  *
877  * So: regular IO calls 'wait_barrier'.  When that returns there
878  *    is no backgroup IO happening,  It must arrange to call
879  *    allow_barrier when it has finished its IO.
880  * backgroup IO calls must call raise_barrier.  Once that returns
881  *    there is no normal IO happeing.  It must arrange to call
882  *    lower_barrier when the particular background IO completes.
883  *
884  * If resync/recovery is interrupted, returns -EINTR;
885  * Otherwise, returns 0.
886  */
887 static int raise_barrier(struct r1conf *conf, sector_t sector_nr)
888 {
889 	int idx = sector_to_idx(sector_nr);
890 
891 	spin_lock_irq(&conf->resync_lock);
892 
893 	/* Wait until no block IO is waiting */
894 	wait_event_lock_irq(conf->wait_barrier,
895 			    !atomic_read(&conf->nr_waiting[idx]),
896 			    conf->resync_lock);
897 
898 	/* block any new IO from starting */
899 	atomic_inc(&conf->barrier[idx]);
900 	/*
901 	 * In raise_barrier() we firstly increase conf->barrier[idx] then
902 	 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
903 	 * increase conf->nr_pending[idx] then check conf->barrier[idx].
904 	 * A memory barrier here to make sure conf->nr_pending[idx] won't
905 	 * be fetched before conf->barrier[idx] is increased. Otherwise
906 	 * there will be a race between raise_barrier() and _wait_barrier().
907 	 */
908 	smp_mb__after_atomic();
909 
910 	/* For these conditions we must wait:
911 	 * A: while the array is in frozen state
912 	 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
913 	 *    existing in corresponding I/O barrier bucket.
914 	 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
915 	 *    max resync count which allowed on current I/O barrier bucket.
916 	 */
917 	wait_event_lock_irq(conf->wait_barrier,
918 			    (!conf->array_frozen &&
919 			     !atomic_read(&conf->nr_pending[idx]) &&
920 			     atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
921 				test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
922 			    conf->resync_lock);
923 
924 	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
925 		atomic_dec(&conf->barrier[idx]);
926 		spin_unlock_irq(&conf->resync_lock);
927 		wake_up(&conf->wait_barrier);
928 		return -EINTR;
929 	}
930 
931 	atomic_inc(&conf->nr_sync_pending);
932 	spin_unlock_irq(&conf->resync_lock);
933 
934 	return 0;
935 }
936 
937 static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
938 {
939 	int idx = sector_to_idx(sector_nr);
940 
941 	BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
942 
943 	atomic_dec(&conf->barrier[idx]);
944 	atomic_dec(&conf->nr_sync_pending);
945 	wake_up(&conf->wait_barrier);
946 }
947 
948 static void _wait_barrier(struct r1conf *conf, int idx)
949 {
950 	/*
951 	 * We need to increase conf->nr_pending[idx] very early here,
952 	 * then raise_barrier() can be blocked when it waits for
953 	 * conf->nr_pending[idx] to be 0. Then we can avoid holding
954 	 * conf->resync_lock when there is no barrier raised in same
955 	 * barrier unit bucket. Also if the array is frozen, I/O
956 	 * should be blocked until array is unfrozen.
957 	 */
958 	atomic_inc(&conf->nr_pending[idx]);
959 	/*
960 	 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
961 	 * check conf->barrier[idx]. In raise_barrier() we firstly increase
962 	 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
963 	 * barrier is necessary here to make sure conf->barrier[idx] won't be
964 	 * fetched before conf->nr_pending[idx] is increased. Otherwise there
965 	 * will be a race between _wait_barrier() and raise_barrier().
966 	 */
967 	smp_mb__after_atomic();
968 
969 	/*
970 	 * Don't worry about checking two atomic_t variables at same time
971 	 * here. If during we check conf->barrier[idx], the array is
972 	 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
973 	 * 0, it is safe to return and make the I/O continue. Because the
974 	 * array is frozen, all I/O returned here will eventually complete
975 	 * or be queued, no race will happen. See code comment in
976 	 * frozen_array().
977 	 */
978 	if (!READ_ONCE(conf->array_frozen) &&
979 	    !atomic_read(&conf->barrier[idx]))
980 		return;
981 
982 	/*
983 	 * After holding conf->resync_lock, conf->nr_pending[idx]
984 	 * should be decreased before waiting for barrier to drop.
985 	 * Otherwise, we may encounter a race condition because
986 	 * raise_barrer() might be waiting for conf->nr_pending[idx]
987 	 * to be 0 at same time.
988 	 */
989 	spin_lock_irq(&conf->resync_lock);
990 	atomic_inc(&conf->nr_waiting[idx]);
991 	atomic_dec(&conf->nr_pending[idx]);
992 	/*
993 	 * In case freeze_array() is waiting for
994 	 * get_unqueued_pending() == extra
995 	 */
996 	wake_up(&conf->wait_barrier);
997 	/* Wait for the barrier in same barrier unit bucket to drop. */
998 	wait_event_lock_irq(conf->wait_barrier,
999 			    !conf->array_frozen &&
1000 			     !atomic_read(&conf->barrier[idx]),
1001 			    conf->resync_lock);
1002 	atomic_inc(&conf->nr_pending[idx]);
1003 	atomic_dec(&conf->nr_waiting[idx]);
1004 	spin_unlock_irq(&conf->resync_lock);
1005 }
1006 
1007 static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
1008 {
1009 	int idx = sector_to_idx(sector_nr);
1010 
1011 	/*
1012 	 * Very similar to _wait_barrier(). The difference is, for read
1013 	 * I/O we don't need wait for sync I/O, but if the whole array
1014 	 * is frozen, the read I/O still has to wait until the array is
1015 	 * unfrozen. Since there is no ordering requirement with
1016 	 * conf->barrier[idx] here, memory barrier is unnecessary as well.
1017 	 */
1018 	atomic_inc(&conf->nr_pending[idx]);
1019 
1020 	if (!READ_ONCE(conf->array_frozen))
1021 		return;
1022 
1023 	spin_lock_irq(&conf->resync_lock);
1024 	atomic_inc(&conf->nr_waiting[idx]);
1025 	atomic_dec(&conf->nr_pending[idx]);
1026 	/*
1027 	 * In case freeze_array() is waiting for
1028 	 * get_unqueued_pending() == extra
1029 	 */
1030 	wake_up(&conf->wait_barrier);
1031 	/* Wait for array to be unfrozen */
1032 	wait_event_lock_irq(conf->wait_barrier,
1033 			    !conf->array_frozen,
1034 			    conf->resync_lock);
1035 	atomic_inc(&conf->nr_pending[idx]);
1036 	atomic_dec(&conf->nr_waiting[idx]);
1037 	spin_unlock_irq(&conf->resync_lock);
1038 }
1039 
1040 static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
1041 {
1042 	int idx = sector_to_idx(sector_nr);
1043 
1044 	_wait_barrier(conf, idx);
1045 }
1046 
1047 static void _allow_barrier(struct r1conf *conf, int idx)
1048 {
1049 	atomic_dec(&conf->nr_pending[idx]);
1050 	wake_up(&conf->wait_barrier);
1051 }
1052 
1053 static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1054 {
1055 	int idx = sector_to_idx(sector_nr);
1056 
1057 	_allow_barrier(conf, idx);
1058 }
1059 
1060 /* conf->resync_lock should be held */
1061 static int get_unqueued_pending(struct r1conf *conf)
1062 {
1063 	int idx, ret;
1064 
1065 	ret = atomic_read(&conf->nr_sync_pending);
1066 	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1067 		ret += atomic_read(&conf->nr_pending[idx]) -
1068 			atomic_read(&conf->nr_queued[idx]);
1069 
1070 	return ret;
1071 }
1072 
1073 static void freeze_array(struct r1conf *conf, int extra)
1074 {
1075 	/* Stop sync I/O and normal I/O and wait for everything to
1076 	 * go quiet.
1077 	 * This is called in two situations:
1078 	 * 1) management command handlers (reshape, remove disk, quiesce).
1079 	 * 2) one normal I/O request failed.
1080 
1081 	 * After array_frozen is set to 1, new sync IO will be blocked at
1082 	 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1083 	 * or wait_read_barrier(). The flying I/Os will either complete or be
1084 	 * queued. When everything goes quite, there are only queued I/Os left.
1085 
1086 	 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1087 	 * barrier bucket index which this I/O request hits. When all sync and
1088 	 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1089 	 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1090 	 * in handle_read_error(), we may call freeze_array() before trying to
1091 	 * fix the read error. In this case, the error read I/O is not queued,
1092 	 * so get_unqueued_pending() == 1.
1093 	 *
1094 	 * Therefore before this function returns, we need to wait until
1095 	 * get_unqueued_pendings(conf) gets equal to extra. For
1096 	 * normal I/O context, extra is 1, in rested situations extra is 0.
1097 	 */
1098 	spin_lock_irq(&conf->resync_lock);
1099 	conf->array_frozen = 1;
1100 	raid1_log(conf->mddev, "wait freeze");
1101 	wait_event_lock_irq_cmd(
1102 		conf->wait_barrier,
1103 		get_unqueued_pending(conf) == extra,
1104 		conf->resync_lock,
1105 		flush_pending_writes(conf));
1106 	spin_unlock_irq(&conf->resync_lock);
1107 }
1108 static void unfreeze_array(struct r1conf *conf)
1109 {
1110 	/* reverse the effect of the freeze */
1111 	spin_lock_irq(&conf->resync_lock);
1112 	conf->array_frozen = 0;
1113 	spin_unlock_irq(&conf->resync_lock);
1114 	wake_up(&conf->wait_barrier);
1115 }
1116 
1117 static void alloc_behind_master_bio(struct r1bio *r1_bio,
1118 					   struct bio *bio)
1119 {
1120 	int size = bio->bi_iter.bi_size;
1121 	unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1122 	int i = 0;
1123 	struct bio *behind_bio = NULL;
1124 
1125 	behind_bio = bio_alloc_mddev(GFP_NOIO, vcnt, r1_bio->mddev);
1126 	if (!behind_bio)
1127 		return;
1128 
1129 	/* discard op, we don't support writezero/writesame yet */
1130 	if (!bio_has_data(bio)) {
1131 		behind_bio->bi_iter.bi_size = size;
1132 		goto skip_copy;
1133 	}
1134 
1135 	behind_bio->bi_write_hint = bio->bi_write_hint;
1136 
1137 	while (i < vcnt && size) {
1138 		struct page *page;
1139 		int len = min_t(int, PAGE_SIZE, size);
1140 
1141 		page = alloc_page(GFP_NOIO);
1142 		if (unlikely(!page))
1143 			goto free_pages;
1144 
1145 		bio_add_page(behind_bio, page, len, 0);
1146 
1147 		size -= len;
1148 		i++;
1149 	}
1150 
1151 	bio_copy_data(behind_bio, bio);
1152 skip_copy:
1153 	r1_bio->behind_master_bio = behind_bio;
1154 	set_bit(R1BIO_BehindIO, &r1_bio->state);
1155 
1156 	return;
1157 
1158 free_pages:
1159 	pr_debug("%dB behind alloc failed, doing sync I/O\n",
1160 		 bio->bi_iter.bi_size);
1161 	bio_free_pages(behind_bio);
1162 	bio_put(behind_bio);
1163 }
1164 
1165 struct raid1_plug_cb {
1166 	struct blk_plug_cb	cb;
1167 	struct bio_list		pending;
1168 	int			pending_cnt;
1169 };
1170 
1171 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1172 {
1173 	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1174 						  cb);
1175 	struct mddev *mddev = plug->cb.data;
1176 	struct r1conf *conf = mddev->private;
1177 	struct bio *bio;
1178 
1179 	if (from_schedule || current->bio_list) {
1180 		spin_lock_irq(&conf->device_lock);
1181 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1182 		conf->pending_count += plug->pending_cnt;
1183 		spin_unlock_irq(&conf->device_lock);
1184 		wake_up(&conf->wait_barrier);
1185 		md_wakeup_thread(mddev->thread);
1186 		kfree(plug);
1187 		return;
1188 	}
1189 
1190 	/* we aren't scheduling, so we can do the write-out directly. */
1191 	bio = bio_list_get(&plug->pending);
1192 	flush_bio_list(conf, bio);
1193 	kfree(plug);
1194 }
1195 
1196 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1197 {
1198 	r1_bio->master_bio = bio;
1199 	r1_bio->sectors = bio_sectors(bio);
1200 	r1_bio->state = 0;
1201 	r1_bio->mddev = mddev;
1202 	r1_bio->sector = bio->bi_iter.bi_sector;
1203 }
1204 
1205 static inline struct r1bio *
1206 alloc_r1bio(struct mddev *mddev, struct bio *bio)
1207 {
1208 	struct r1conf *conf = mddev->private;
1209 	struct r1bio *r1_bio;
1210 
1211 	r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO);
1212 	/* Ensure no bio records IO_BLOCKED */
1213 	memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1214 	init_r1bio(r1_bio, mddev, bio);
1215 	return r1_bio;
1216 }
1217 
1218 static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1219 			       int max_read_sectors, struct r1bio *r1_bio)
1220 {
1221 	struct r1conf *conf = mddev->private;
1222 	struct raid1_info *mirror;
1223 	struct bio *read_bio;
1224 	struct bitmap *bitmap = mddev->bitmap;
1225 	const int op = bio_op(bio);
1226 	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1227 	int max_sectors;
1228 	int rdisk;
1229 	bool print_msg = !!r1_bio;
1230 	char b[BDEVNAME_SIZE];
1231 
1232 	/*
1233 	 * If r1_bio is set, we are blocking the raid1d thread
1234 	 * so there is a tiny risk of deadlock.  So ask for
1235 	 * emergency memory if needed.
1236 	 */
1237 	gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1238 
1239 	if (print_msg) {
1240 		/* Need to get the block device name carefully */
1241 		struct md_rdev *rdev;
1242 		rcu_read_lock();
1243 		rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1244 		if (rdev)
1245 			bdevname(rdev->bdev, b);
1246 		else
1247 			strcpy(b, "???");
1248 		rcu_read_unlock();
1249 	}
1250 
1251 	/*
1252 	 * Still need barrier for READ in case that whole
1253 	 * array is frozen.
1254 	 */
1255 	wait_read_barrier(conf, bio->bi_iter.bi_sector);
1256 
1257 	if (!r1_bio)
1258 		r1_bio = alloc_r1bio(mddev, bio);
1259 	else
1260 		init_r1bio(r1_bio, mddev, bio);
1261 	r1_bio->sectors = max_read_sectors;
1262 
1263 	/*
1264 	 * make_request() can abort the operation when read-ahead is being
1265 	 * used and no empty request is available.
1266 	 */
1267 	rdisk = read_balance(conf, r1_bio, &max_sectors);
1268 
1269 	if (rdisk < 0) {
1270 		/* couldn't find anywhere to read from */
1271 		if (print_msg) {
1272 			pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1273 					    mdname(mddev),
1274 					    b,
1275 					    (unsigned long long)r1_bio->sector);
1276 		}
1277 		raid_end_bio_io(r1_bio);
1278 		return;
1279 	}
1280 	mirror = conf->mirrors + rdisk;
1281 
1282 	if (print_msg)
1283 		pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
1284 				    mdname(mddev),
1285 				    (unsigned long long)r1_bio->sector,
1286 				    bdevname(mirror->rdev->bdev, b));
1287 
1288 	if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1289 	    bitmap) {
1290 		/*
1291 		 * Reading from a write-mostly device must take care not to
1292 		 * over-take any writes that are 'behind'
1293 		 */
1294 		raid1_log(mddev, "wait behind writes");
1295 		wait_event(bitmap->behind_wait,
1296 			   atomic_read(&bitmap->behind_writes) == 0);
1297 	}
1298 
1299 	if (max_sectors < bio_sectors(bio)) {
1300 		struct bio *split = bio_split(bio, max_sectors,
1301 					      gfp, &conf->bio_split);
1302 		bio_chain(split, bio);
1303 		generic_make_request(bio);
1304 		bio = split;
1305 		r1_bio->master_bio = bio;
1306 		r1_bio->sectors = max_sectors;
1307 	}
1308 
1309 	r1_bio->read_disk = rdisk;
1310 
1311 	read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
1312 
1313 	r1_bio->bios[rdisk] = read_bio;
1314 
1315 	read_bio->bi_iter.bi_sector = r1_bio->sector +
1316 		mirror->rdev->data_offset;
1317 	bio_set_dev(read_bio, mirror->rdev->bdev);
1318 	read_bio->bi_end_io = raid1_end_read_request;
1319 	bio_set_op_attrs(read_bio, op, do_sync);
1320 	if (test_bit(FailFast, &mirror->rdev->flags) &&
1321 	    test_bit(R1BIO_FailFast, &r1_bio->state))
1322 	        read_bio->bi_opf |= MD_FAILFAST;
1323 	read_bio->bi_private = r1_bio;
1324 
1325 	if (mddev->gendisk)
1326 	        trace_block_bio_remap(read_bio->bi_disk->queue, read_bio,
1327 				disk_devt(mddev->gendisk), r1_bio->sector);
1328 
1329 	generic_make_request(read_bio);
1330 }
1331 
1332 static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1333 				int max_write_sectors)
1334 {
1335 	struct r1conf *conf = mddev->private;
1336 	struct r1bio *r1_bio;
1337 	int i, disks;
1338 	struct bitmap *bitmap = mddev->bitmap;
1339 	unsigned long flags;
1340 	struct md_rdev *blocked_rdev;
1341 	struct blk_plug_cb *cb;
1342 	struct raid1_plug_cb *plug = NULL;
1343 	int first_clone;
1344 	int max_sectors;
1345 	sector_t lo, hi;
1346 
1347 	if (mddev_is_clustered(mddev) &&
1348 	     md_cluster_ops->area_resyncing(mddev, WRITE,
1349 		     bio->bi_iter.bi_sector, bio_end_sector(bio))) {
1350 
1351 		DEFINE_WAIT(w);
1352 		for (;;) {
1353 			prepare_to_wait(&conf->wait_barrier,
1354 					&w, TASK_IDLE);
1355 			if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1356 							bio->bi_iter.bi_sector,
1357 							bio_end_sector(bio)))
1358 				break;
1359 			schedule();
1360 		}
1361 		finish_wait(&conf->wait_barrier, &w);
1362 	}
1363 
1364 	/*
1365 	 * Register the new request and wait if the reconstruction
1366 	 * thread has put up a bar for new requests.
1367 	 * Continue immediately if no resync is active currently.
1368 	 */
1369 	wait_barrier(conf, bio->bi_iter.bi_sector);
1370 
1371 	r1_bio = alloc_r1bio(mddev, bio);
1372 	r1_bio->sectors = max_write_sectors;
1373 	lo = r1_bio->sector;
1374 	hi = r1_bio->sector + r1_bio->sectors;
1375 
1376 	if (conf->pending_count >= max_queued_requests) {
1377 		md_wakeup_thread(mddev->thread);
1378 		raid1_log(mddev, "wait queued");
1379 		wait_event(conf->wait_barrier,
1380 			   conf->pending_count < max_queued_requests);
1381 	}
1382 	/* first select target devices under rcu_lock and
1383 	 * inc refcount on their rdev.  Record them by setting
1384 	 * bios[x] to bio
1385 	 * If there are known/acknowledged bad blocks on any device on
1386 	 * which we have seen a write error, we want to avoid writing those
1387 	 * blocks.
1388 	 * This potentially requires several writes to write around
1389 	 * the bad blocks.  Each set of writes gets it's own r1bio
1390 	 * with a set of bios attached.
1391 	 */
1392 
1393 	disks = conf->raid_disks * 2;
1394  retry_write:
1395 	blocked_rdev = NULL;
1396 	rcu_read_lock();
1397 	max_sectors = r1_bio->sectors;
1398 	for (i = 0;  i < disks; i++) {
1399 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1400 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1401 			atomic_inc(&rdev->nr_pending);
1402 			blocked_rdev = rdev;
1403 			break;
1404 		}
1405 		r1_bio->bios[i] = NULL;
1406 		if (!rdev || test_bit(Faulty, &rdev->flags)) {
1407 			if (i < conf->raid_disks)
1408 				set_bit(R1BIO_Degraded, &r1_bio->state);
1409 			continue;
1410 		}
1411 
1412 		atomic_inc(&rdev->nr_pending);
1413 		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1414 			sector_t first_bad;
1415 			int bad_sectors;
1416 			int is_bad;
1417 
1418 			is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1419 					     &first_bad, &bad_sectors);
1420 			if (is_bad < 0) {
1421 				/* mustn't write here until the bad block is
1422 				 * acknowledged*/
1423 				set_bit(BlockedBadBlocks, &rdev->flags);
1424 				blocked_rdev = rdev;
1425 				break;
1426 			}
1427 			if (is_bad && first_bad <= r1_bio->sector) {
1428 				/* Cannot write here at all */
1429 				bad_sectors -= (r1_bio->sector - first_bad);
1430 				if (bad_sectors < max_sectors)
1431 					/* mustn't write more than bad_sectors
1432 					 * to other devices yet
1433 					 */
1434 					max_sectors = bad_sectors;
1435 				rdev_dec_pending(rdev, mddev);
1436 				/* We don't set R1BIO_Degraded as that
1437 				 * only applies if the disk is
1438 				 * missing, so it might be re-added,
1439 				 * and we want to know to recover this
1440 				 * chunk.
1441 				 * In this case the device is here,
1442 				 * and the fact that this chunk is not
1443 				 * in-sync is recorded in the bad
1444 				 * block log
1445 				 */
1446 				continue;
1447 			}
1448 			if (is_bad) {
1449 				int good_sectors = first_bad - r1_bio->sector;
1450 				if (good_sectors < max_sectors)
1451 					max_sectors = good_sectors;
1452 			}
1453 		}
1454 		r1_bio->bios[i] = bio;
1455 	}
1456 	rcu_read_unlock();
1457 
1458 	if (unlikely(blocked_rdev)) {
1459 		/* Wait for this device to become unblocked */
1460 		int j;
1461 
1462 		for (j = 0; j < i; j++)
1463 			if (r1_bio->bios[j])
1464 				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1465 		r1_bio->state = 0;
1466 		allow_barrier(conf, bio->bi_iter.bi_sector);
1467 		raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1468 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1469 		wait_barrier(conf, bio->bi_iter.bi_sector);
1470 		goto retry_write;
1471 	}
1472 
1473 	if (max_sectors < bio_sectors(bio)) {
1474 		struct bio *split = bio_split(bio, max_sectors,
1475 					      GFP_NOIO, &conf->bio_split);
1476 		bio_chain(split, bio);
1477 		generic_make_request(bio);
1478 		bio = split;
1479 		r1_bio->master_bio = bio;
1480 		r1_bio->sectors = max_sectors;
1481 	}
1482 
1483 	atomic_set(&r1_bio->remaining, 1);
1484 	atomic_set(&r1_bio->behind_remaining, 0);
1485 
1486 	first_clone = 1;
1487 
1488 	for (i = 0; i < disks; i++) {
1489 		struct bio *mbio = NULL;
1490 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1491 		int idx = sector_to_idx(lo);
1492 		struct serial_in_rdev *serial = &rdev->serial[idx];
1493 		if (!r1_bio->bios[i])
1494 			continue;
1495 
1496 		if (first_clone) {
1497 			/* do behind I/O ?
1498 			 * Not if there are too many, or cannot
1499 			 * allocate memory, or a reader on WriteMostly
1500 			 * is waiting for behind writes to flush */
1501 			if (bitmap &&
1502 			    (atomic_read(&bitmap->behind_writes)
1503 			     < mddev->bitmap_info.max_write_behind) &&
1504 			    !waitqueue_active(&bitmap->behind_wait)) {
1505 				alloc_behind_master_bio(r1_bio, bio);
1506 			}
1507 
1508 			md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors,
1509 					     test_bit(R1BIO_BehindIO, &r1_bio->state));
1510 			first_clone = 0;
1511 		}
1512 
1513 		if (r1_bio->behind_master_bio)
1514 			mbio = bio_clone_fast(r1_bio->behind_master_bio,
1515 					      GFP_NOIO, &mddev->bio_set);
1516 		else
1517 			mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1518 
1519 		if (r1_bio->behind_master_bio) {
1520 			if (test_bit(CollisionCheck, &rdev->flags))
1521 				wait_event(serial->serial_io_wait,
1522 					   check_and_add_serial(rdev, lo, hi)
1523 					   == 0);
1524 			if (test_bit(WriteMostly, &rdev->flags))
1525 				atomic_inc(&r1_bio->behind_remaining);
1526 		} else if (mddev->serialize_policy)
1527 			wait_event(serial->serial_io_wait,
1528 				   check_and_add_serial(rdev, lo, hi) == 0);
1529 
1530 		r1_bio->bios[i] = mbio;
1531 
1532 		mbio->bi_iter.bi_sector	= (r1_bio->sector +
1533 				   conf->mirrors[i].rdev->data_offset);
1534 		bio_set_dev(mbio, conf->mirrors[i].rdev->bdev);
1535 		mbio->bi_end_io	= raid1_end_write_request;
1536 		mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1537 		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1538 		    !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1539 		    conf->raid_disks - mddev->degraded > 1)
1540 			mbio->bi_opf |= MD_FAILFAST;
1541 		mbio->bi_private = r1_bio;
1542 
1543 		atomic_inc(&r1_bio->remaining);
1544 
1545 		if (mddev->gendisk)
1546 			trace_block_bio_remap(mbio->bi_disk->queue,
1547 					      mbio, disk_devt(mddev->gendisk),
1548 					      r1_bio->sector);
1549 		/* flush_pending_writes() needs access to the rdev so...*/
1550 		mbio->bi_disk = (void *)conf->mirrors[i].rdev;
1551 
1552 		cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1553 		if (cb)
1554 			plug = container_of(cb, struct raid1_plug_cb, cb);
1555 		else
1556 			plug = NULL;
1557 		if (plug) {
1558 			bio_list_add(&plug->pending, mbio);
1559 			plug->pending_cnt++;
1560 		} else {
1561 			spin_lock_irqsave(&conf->device_lock, flags);
1562 			bio_list_add(&conf->pending_bio_list, mbio);
1563 			conf->pending_count++;
1564 			spin_unlock_irqrestore(&conf->device_lock, flags);
1565 			md_wakeup_thread(mddev->thread);
1566 		}
1567 	}
1568 
1569 	r1_bio_write_done(r1_bio);
1570 
1571 	/* In case raid1d snuck in to freeze_array */
1572 	wake_up(&conf->wait_barrier);
1573 }
1574 
1575 static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1576 {
1577 	sector_t sectors;
1578 
1579 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1580 	    && md_flush_request(mddev, bio))
1581 		return true;
1582 
1583 	/*
1584 	 * There is a limit to the maximum size, but
1585 	 * the read/write handler might find a lower limit
1586 	 * due to bad blocks.  To avoid multiple splits,
1587 	 * we pass the maximum number of sectors down
1588 	 * and let the lower level perform the split.
1589 	 */
1590 	sectors = align_to_barrier_unit_end(
1591 		bio->bi_iter.bi_sector, bio_sectors(bio));
1592 
1593 	if (bio_data_dir(bio) == READ)
1594 		raid1_read_request(mddev, bio, sectors, NULL);
1595 	else {
1596 		if (!md_write_start(mddev,bio))
1597 			return false;
1598 		raid1_write_request(mddev, bio, sectors);
1599 	}
1600 	return true;
1601 }
1602 
1603 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1604 {
1605 	struct r1conf *conf = mddev->private;
1606 	int i;
1607 
1608 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1609 		   conf->raid_disks - mddev->degraded);
1610 	rcu_read_lock();
1611 	for (i = 0; i < conf->raid_disks; i++) {
1612 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1613 		seq_printf(seq, "%s",
1614 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1615 	}
1616 	rcu_read_unlock();
1617 	seq_printf(seq, "]");
1618 }
1619 
1620 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1621 {
1622 	char b[BDEVNAME_SIZE];
1623 	struct r1conf *conf = mddev->private;
1624 	unsigned long flags;
1625 
1626 	/*
1627 	 * If it is not operational, then we have already marked it as dead
1628 	 * else if it is the last working disks with "fail_last_dev == false",
1629 	 * ignore the error, let the next level up know.
1630 	 * else mark the drive as failed
1631 	 */
1632 	spin_lock_irqsave(&conf->device_lock, flags);
1633 	if (test_bit(In_sync, &rdev->flags) && !mddev->fail_last_dev
1634 	    && (conf->raid_disks - mddev->degraded) == 1) {
1635 		/*
1636 		 * Don't fail the drive, act as though we were just a
1637 		 * normal single drive.
1638 		 * However don't try a recovery from this drive as
1639 		 * it is very likely to fail.
1640 		 */
1641 		conf->recovery_disabled = mddev->recovery_disabled;
1642 		spin_unlock_irqrestore(&conf->device_lock, flags);
1643 		return;
1644 	}
1645 	set_bit(Blocked, &rdev->flags);
1646 	if (test_and_clear_bit(In_sync, &rdev->flags))
1647 		mddev->degraded++;
1648 	set_bit(Faulty, &rdev->flags);
1649 	spin_unlock_irqrestore(&conf->device_lock, flags);
1650 	/*
1651 	 * if recovery is running, make sure it aborts.
1652 	 */
1653 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1654 	set_mask_bits(&mddev->sb_flags, 0,
1655 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1656 	pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1657 		"md/raid1:%s: Operation continuing on %d devices.\n",
1658 		mdname(mddev), bdevname(rdev->bdev, b),
1659 		mdname(mddev), conf->raid_disks - mddev->degraded);
1660 }
1661 
1662 static void print_conf(struct r1conf *conf)
1663 {
1664 	int i;
1665 
1666 	pr_debug("RAID1 conf printout:\n");
1667 	if (!conf) {
1668 		pr_debug("(!conf)\n");
1669 		return;
1670 	}
1671 	pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1672 		 conf->raid_disks);
1673 
1674 	rcu_read_lock();
1675 	for (i = 0; i < conf->raid_disks; i++) {
1676 		char b[BDEVNAME_SIZE];
1677 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1678 		if (rdev)
1679 			pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1680 				 i, !test_bit(In_sync, &rdev->flags),
1681 				 !test_bit(Faulty, &rdev->flags),
1682 				 bdevname(rdev->bdev,b));
1683 	}
1684 	rcu_read_unlock();
1685 }
1686 
1687 static void close_sync(struct r1conf *conf)
1688 {
1689 	int idx;
1690 
1691 	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1692 		_wait_barrier(conf, idx);
1693 		_allow_barrier(conf, idx);
1694 	}
1695 
1696 	mempool_exit(&conf->r1buf_pool);
1697 }
1698 
1699 static int raid1_spare_active(struct mddev *mddev)
1700 {
1701 	int i;
1702 	struct r1conf *conf = mddev->private;
1703 	int count = 0;
1704 	unsigned long flags;
1705 
1706 	/*
1707 	 * Find all failed disks within the RAID1 configuration
1708 	 * and mark them readable.
1709 	 * Called under mddev lock, so rcu protection not needed.
1710 	 * device_lock used to avoid races with raid1_end_read_request
1711 	 * which expects 'In_sync' flags and ->degraded to be consistent.
1712 	 */
1713 	spin_lock_irqsave(&conf->device_lock, flags);
1714 	for (i = 0; i < conf->raid_disks; i++) {
1715 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1716 		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1717 		if (repl
1718 		    && !test_bit(Candidate, &repl->flags)
1719 		    && repl->recovery_offset == MaxSector
1720 		    && !test_bit(Faulty, &repl->flags)
1721 		    && !test_and_set_bit(In_sync, &repl->flags)) {
1722 			/* replacement has just become active */
1723 			if (!rdev ||
1724 			    !test_and_clear_bit(In_sync, &rdev->flags))
1725 				count++;
1726 			if (rdev) {
1727 				/* Replaced device not technically
1728 				 * faulty, but we need to be sure
1729 				 * it gets removed and never re-added
1730 				 */
1731 				set_bit(Faulty, &rdev->flags);
1732 				sysfs_notify_dirent_safe(
1733 					rdev->sysfs_state);
1734 			}
1735 		}
1736 		if (rdev
1737 		    && rdev->recovery_offset == MaxSector
1738 		    && !test_bit(Faulty, &rdev->flags)
1739 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1740 			count++;
1741 			sysfs_notify_dirent_safe(rdev->sysfs_state);
1742 		}
1743 	}
1744 	mddev->degraded -= count;
1745 	spin_unlock_irqrestore(&conf->device_lock, flags);
1746 
1747 	print_conf(conf);
1748 	return count;
1749 }
1750 
1751 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1752 {
1753 	struct r1conf *conf = mddev->private;
1754 	int err = -EEXIST;
1755 	int mirror = 0;
1756 	struct raid1_info *p;
1757 	int first = 0;
1758 	int last = conf->raid_disks - 1;
1759 
1760 	if (mddev->recovery_disabled == conf->recovery_disabled)
1761 		return -EBUSY;
1762 
1763 	if (md_integrity_add_rdev(rdev, mddev))
1764 		return -ENXIO;
1765 
1766 	if (rdev->raid_disk >= 0)
1767 		first = last = rdev->raid_disk;
1768 
1769 	/*
1770 	 * find the disk ... but prefer rdev->saved_raid_disk
1771 	 * if possible.
1772 	 */
1773 	if (rdev->saved_raid_disk >= 0 &&
1774 	    rdev->saved_raid_disk >= first &&
1775 	    rdev->saved_raid_disk < conf->raid_disks &&
1776 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1777 		first = last = rdev->saved_raid_disk;
1778 
1779 	for (mirror = first; mirror <= last; mirror++) {
1780 		p = conf->mirrors + mirror;
1781 		if (!p->rdev) {
1782 			if (mddev->gendisk)
1783 				disk_stack_limits(mddev->gendisk, rdev->bdev,
1784 						  rdev->data_offset << 9);
1785 
1786 			p->head_position = 0;
1787 			rdev->raid_disk = mirror;
1788 			err = 0;
1789 			/* As all devices are equivalent, we don't need a full recovery
1790 			 * if this was recently any drive of the array
1791 			 */
1792 			if (rdev->saved_raid_disk < 0)
1793 				conf->fullsync = 1;
1794 			rcu_assign_pointer(p->rdev, rdev);
1795 			break;
1796 		}
1797 		if (test_bit(WantReplacement, &p->rdev->flags) &&
1798 		    p[conf->raid_disks].rdev == NULL) {
1799 			/* Add this device as a replacement */
1800 			clear_bit(In_sync, &rdev->flags);
1801 			set_bit(Replacement, &rdev->flags);
1802 			rdev->raid_disk = mirror;
1803 			err = 0;
1804 			conf->fullsync = 1;
1805 			rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1806 			break;
1807 		}
1808 	}
1809 	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1810 		blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
1811 	print_conf(conf);
1812 	return err;
1813 }
1814 
1815 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1816 {
1817 	struct r1conf *conf = mddev->private;
1818 	int err = 0;
1819 	int number = rdev->raid_disk;
1820 	struct raid1_info *p = conf->mirrors + number;
1821 
1822 	if (rdev != p->rdev)
1823 		p = conf->mirrors + conf->raid_disks + number;
1824 
1825 	print_conf(conf);
1826 	if (rdev == p->rdev) {
1827 		if (test_bit(In_sync, &rdev->flags) ||
1828 		    atomic_read(&rdev->nr_pending)) {
1829 			err = -EBUSY;
1830 			goto abort;
1831 		}
1832 		/* Only remove non-faulty devices if recovery
1833 		 * is not possible.
1834 		 */
1835 		if (!test_bit(Faulty, &rdev->flags) &&
1836 		    mddev->recovery_disabled != conf->recovery_disabled &&
1837 		    mddev->degraded < conf->raid_disks) {
1838 			err = -EBUSY;
1839 			goto abort;
1840 		}
1841 		p->rdev = NULL;
1842 		if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1843 			synchronize_rcu();
1844 			if (atomic_read(&rdev->nr_pending)) {
1845 				/* lost the race, try later */
1846 				err = -EBUSY;
1847 				p->rdev = rdev;
1848 				goto abort;
1849 			}
1850 		}
1851 		if (conf->mirrors[conf->raid_disks + number].rdev) {
1852 			/* We just removed a device that is being replaced.
1853 			 * Move down the replacement.  We drain all IO before
1854 			 * doing this to avoid confusion.
1855 			 */
1856 			struct md_rdev *repl =
1857 				conf->mirrors[conf->raid_disks + number].rdev;
1858 			freeze_array(conf, 0);
1859 			if (atomic_read(&repl->nr_pending)) {
1860 				/* It means that some queued IO of retry_list
1861 				 * hold repl. Thus, we cannot set replacement
1862 				 * as NULL, avoiding rdev NULL pointer
1863 				 * dereference in sync_request_write and
1864 				 * handle_write_finished.
1865 				 */
1866 				err = -EBUSY;
1867 				unfreeze_array(conf);
1868 				goto abort;
1869 			}
1870 			clear_bit(Replacement, &repl->flags);
1871 			p->rdev = repl;
1872 			conf->mirrors[conf->raid_disks + number].rdev = NULL;
1873 			unfreeze_array(conf);
1874 		}
1875 
1876 		clear_bit(WantReplacement, &rdev->flags);
1877 		err = md_integrity_register(mddev);
1878 	}
1879 abort:
1880 
1881 	print_conf(conf);
1882 	return err;
1883 }
1884 
1885 static void end_sync_read(struct bio *bio)
1886 {
1887 	struct r1bio *r1_bio = get_resync_r1bio(bio);
1888 
1889 	update_head_pos(r1_bio->read_disk, r1_bio);
1890 
1891 	/*
1892 	 * we have read a block, now it needs to be re-written,
1893 	 * or re-read if the read failed.
1894 	 * We don't do much here, just schedule handling by raid1d
1895 	 */
1896 	if (!bio->bi_status)
1897 		set_bit(R1BIO_Uptodate, &r1_bio->state);
1898 
1899 	if (atomic_dec_and_test(&r1_bio->remaining))
1900 		reschedule_retry(r1_bio);
1901 }
1902 
1903 static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
1904 {
1905 	sector_t sync_blocks = 0;
1906 	sector_t s = r1_bio->sector;
1907 	long sectors_to_go = r1_bio->sectors;
1908 
1909 	/* make sure these bits don't get cleared. */
1910 	do {
1911 		md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1);
1912 		s += sync_blocks;
1913 		sectors_to_go -= sync_blocks;
1914 	} while (sectors_to_go > 0);
1915 }
1916 
1917 static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate)
1918 {
1919 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1920 		struct mddev *mddev = r1_bio->mddev;
1921 		int s = r1_bio->sectors;
1922 
1923 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1924 		    test_bit(R1BIO_WriteError, &r1_bio->state))
1925 			reschedule_retry(r1_bio);
1926 		else {
1927 			put_buf(r1_bio);
1928 			md_done_sync(mddev, s, uptodate);
1929 		}
1930 	}
1931 }
1932 
1933 static void end_sync_write(struct bio *bio)
1934 {
1935 	int uptodate = !bio->bi_status;
1936 	struct r1bio *r1_bio = get_resync_r1bio(bio);
1937 	struct mddev *mddev = r1_bio->mddev;
1938 	struct r1conf *conf = mddev->private;
1939 	sector_t first_bad;
1940 	int bad_sectors;
1941 	struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1942 
1943 	if (!uptodate) {
1944 		abort_sync_write(mddev, r1_bio);
1945 		set_bit(WriteErrorSeen, &rdev->flags);
1946 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
1947 			set_bit(MD_RECOVERY_NEEDED, &
1948 				mddev->recovery);
1949 		set_bit(R1BIO_WriteError, &r1_bio->state);
1950 	} else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1951 			       &first_bad, &bad_sectors) &&
1952 		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1953 				r1_bio->sector,
1954 				r1_bio->sectors,
1955 				&first_bad, &bad_sectors)
1956 		)
1957 		set_bit(R1BIO_MadeGood, &r1_bio->state);
1958 
1959 	put_sync_write_buf(r1_bio, uptodate);
1960 }
1961 
1962 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1963 			    int sectors, struct page *page, int rw)
1964 {
1965 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1966 		/* success */
1967 		return 1;
1968 	if (rw == WRITE) {
1969 		set_bit(WriteErrorSeen, &rdev->flags);
1970 		if (!test_and_set_bit(WantReplacement,
1971 				      &rdev->flags))
1972 			set_bit(MD_RECOVERY_NEEDED, &
1973 				rdev->mddev->recovery);
1974 	}
1975 	/* need to record an error - either for the block or the device */
1976 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1977 		md_error(rdev->mddev, rdev);
1978 	return 0;
1979 }
1980 
1981 static int fix_sync_read_error(struct r1bio *r1_bio)
1982 {
1983 	/* Try some synchronous reads of other devices to get
1984 	 * good data, much like with normal read errors.  Only
1985 	 * read into the pages we already have so we don't
1986 	 * need to re-issue the read request.
1987 	 * We don't need to freeze the array, because being in an
1988 	 * active sync request, there is no normal IO, and
1989 	 * no overlapping syncs.
1990 	 * We don't need to check is_badblock() again as we
1991 	 * made sure that anything with a bad block in range
1992 	 * will have bi_end_io clear.
1993 	 */
1994 	struct mddev *mddev = r1_bio->mddev;
1995 	struct r1conf *conf = mddev->private;
1996 	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1997 	struct page **pages = get_resync_pages(bio)->pages;
1998 	sector_t sect = r1_bio->sector;
1999 	int sectors = r1_bio->sectors;
2000 	int idx = 0;
2001 	struct md_rdev *rdev;
2002 
2003 	rdev = conf->mirrors[r1_bio->read_disk].rdev;
2004 	if (test_bit(FailFast, &rdev->flags)) {
2005 		/* Don't try recovering from here - just fail it
2006 		 * ... unless it is the last working device of course */
2007 		md_error(mddev, rdev);
2008 		if (test_bit(Faulty, &rdev->flags))
2009 			/* Don't try to read from here, but make sure
2010 			 * put_buf does it's thing
2011 			 */
2012 			bio->bi_end_io = end_sync_write;
2013 	}
2014 
2015 	while(sectors) {
2016 		int s = sectors;
2017 		int d = r1_bio->read_disk;
2018 		int success = 0;
2019 		int start;
2020 
2021 		if (s > (PAGE_SIZE>>9))
2022 			s = PAGE_SIZE >> 9;
2023 		do {
2024 			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
2025 				/* No rcu protection needed here devices
2026 				 * can only be removed when no resync is
2027 				 * active, and resync is currently active
2028 				 */
2029 				rdev = conf->mirrors[d].rdev;
2030 				if (sync_page_io(rdev, sect, s<<9,
2031 						 pages[idx],
2032 						 REQ_OP_READ, 0, false)) {
2033 					success = 1;
2034 					break;
2035 				}
2036 			}
2037 			d++;
2038 			if (d == conf->raid_disks * 2)
2039 				d = 0;
2040 		} while (!success && d != r1_bio->read_disk);
2041 
2042 		if (!success) {
2043 			char b[BDEVNAME_SIZE];
2044 			int abort = 0;
2045 			/* Cannot read from anywhere, this block is lost.
2046 			 * Record a bad block on each device.  If that doesn't
2047 			 * work just disable and interrupt the recovery.
2048 			 * Don't fail devices as that won't really help.
2049 			 */
2050 			pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2051 					    mdname(mddev), bio_devname(bio, b),
2052 					    (unsigned long long)r1_bio->sector);
2053 			for (d = 0; d < conf->raid_disks * 2; d++) {
2054 				rdev = conf->mirrors[d].rdev;
2055 				if (!rdev || test_bit(Faulty, &rdev->flags))
2056 					continue;
2057 				if (!rdev_set_badblocks(rdev, sect, s, 0))
2058 					abort = 1;
2059 			}
2060 			if (abort) {
2061 				conf->recovery_disabled =
2062 					mddev->recovery_disabled;
2063 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2064 				md_done_sync(mddev, r1_bio->sectors, 0);
2065 				put_buf(r1_bio);
2066 				return 0;
2067 			}
2068 			/* Try next page */
2069 			sectors -= s;
2070 			sect += s;
2071 			idx++;
2072 			continue;
2073 		}
2074 
2075 		start = d;
2076 		/* write it back and re-read */
2077 		while (d != r1_bio->read_disk) {
2078 			if (d == 0)
2079 				d = conf->raid_disks * 2;
2080 			d--;
2081 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2082 				continue;
2083 			rdev = conf->mirrors[d].rdev;
2084 			if (r1_sync_page_io(rdev, sect, s,
2085 					    pages[idx],
2086 					    WRITE) == 0) {
2087 				r1_bio->bios[d]->bi_end_io = NULL;
2088 				rdev_dec_pending(rdev, mddev);
2089 			}
2090 		}
2091 		d = start;
2092 		while (d != r1_bio->read_disk) {
2093 			if (d == 0)
2094 				d = conf->raid_disks * 2;
2095 			d--;
2096 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2097 				continue;
2098 			rdev = conf->mirrors[d].rdev;
2099 			if (r1_sync_page_io(rdev, sect, s,
2100 					    pages[idx],
2101 					    READ) != 0)
2102 				atomic_add(s, &rdev->corrected_errors);
2103 		}
2104 		sectors -= s;
2105 		sect += s;
2106 		idx ++;
2107 	}
2108 	set_bit(R1BIO_Uptodate, &r1_bio->state);
2109 	bio->bi_status = 0;
2110 	return 1;
2111 }
2112 
2113 static void process_checks(struct r1bio *r1_bio)
2114 {
2115 	/* We have read all readable devices.  If we haven't
2116 	 * got the block, then there is no hope left.
2117 	 * If we have, then we want to do a comparison
2118 	 * and skip the write if everything is the same.
2119 	 * If any blocks failed to read, then we need to
2120 	 * attempt an over-write
2121 	 */
2122 	struct mddev *mddev = r1_bio->mddev;
2123 	struct r1conf *conf = mddev->private;
2124 	int primary;
2125 	int i;
2126 	int vcnt;
2127 
2128 	/* Fix variable parts of all bios */
2129 	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2130 	for (i = 0; i < conf->raid_disks * 2; i++) {
2131 		blk_status_t status;
2132 		struct bio *b = r1_bio->bios[i];
2133 		struct resync_pages *rp = get_resync_pages(b);
2134 		if (b->bi_end_io != end_sync_read)
2135 			continue;
2136 		/* fixup the bio for reuse, but preserve errno */
2137 		status = b->bi_status;
2138 		bio_reset(b);
2139 		b->bi_status = status;
2140 		b->bi_iter.bi_sector = r1_bio->sector +
2141 			conf->mirrors[i].rdev->data_offset;
2142 		bio_set_dev(b, conf->mirrors[i].rdev->bdev);
2143 		b->bi_end_io = end_sync_read;
2144 		rp->raid_bio = r1_bio;
2145 		b->bi_private = rp;
2146 
2147 		/* initialize bvec table again */
2148 		md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2149 	}
2150 	for (primary = 0; primary < conf->raid_disks * 2; primary++)
2151 		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2152 		    !r1_bio->bios[primary]->bi_status) {
2153 			r1_bio->bios[primary]->bi_end_io = NULL;
2154 			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2155 			break;
2156 		}
2157 	r1_bio->read_disk = primary;
2158 	for (i = 0; i < conf->raid_disks * 2; i++) {
2159 		int j = 0;
2160 		struct bio *pbio = r1_bio->bios[primary];
2161 		struct bio *sbio = r1_bio->bios[i];
2162 		blk_status_t status = sbio->bi_status;
2163 		struct page **ppages = get_resync_pages(pbio)->pages;
2164 		struct page **spages = get_resync_pages(sbio)->pages;
2165 		struct bio_vec *bi;
2166 		int page_len[RESYNC_PAGES] = { 0 };
2167 		struct bvec_iter_all iter_all;
2168 
2169 		if (sbio->bi_end_io != end_sync_read)
2170 			continue;
2171 		/* Now we can 'fixup' the error value */
2172 		sbio->bi_status = 0;
2173 
2174 		bio_for_each_segment_all(bi, sbio, iter_all)
2175 			page_len[j++] = bi->bv_len;
2176 
2177 		if (!status) {
2178 			for (j = vcnt; j-- ; ) {
2179 				if (memcmp(page_address(ppages[j]),
2180 					   page_address(spages[j]),
2181 					   page_len[j]))
2182 					break;
2183 			}
2184 		} else
2185 			j = 0;
2186 		if (j >= 0)
2187 			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2188 		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2189 			      && !status)) {
2190 			/* No need to write to this device. */
2191 			sbio->bi_end_io = NULL;
2192 			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2193 			continue;
2194 		}
2195 
2196 		bio_copy_data(sbio, pbio);
2197 	}
2198 }
2199 
2200 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2201 {
2202 	struct r1conf *conf = mddev->private;
2203 	int i;
2204 	int disks = conf->raid_disks * 2;
2205 	struct bio *wbio;
2206 
2207 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2208 		/* ouch - failed to read all of that. */
2209 		if (!fix_sync_read_error(r1_bio))
2210 			return;
2211 
2212 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2213 		process_checks(r1_bio);
2214 
2215 	/*
2216 	 * schedule writes
2217 	 */
2218 	atomic_set(&r1_bio->remaining, 1);
2219 	for (i = 0; i < disks ; i++) {
2220 		wbio = r1_bio->bios[i];
2221 		if (wbio->bi_end_io == NULL ||
2222 		    (wbio->bi_end_io == end_sync_read &&
2223 		     (i == r1_bio->read_disk ||
2224 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2225 			continue;
2226 		if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
2227 			abort_sync_write(mddev, r1_bio);
2228 			continue;
2229 		}
2230 
2231 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2232 		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2233 			wbio->bi_opf |= MD_FAILFAST;
2234 
2235 		wbio->bi_end_io = end_sync_write;
2236 		atomic_inc(&r1_bio->remaining);
2237 		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2238 
2239 		generic_make_request(wbio);
2240 	}
2241 
2242 	put_sync_write_buf(r1_bio, 1);
2243 }
2244 
2245 /*
2246  * This is a kernel thread which:
2247  *
2248  *	1.	Retries failed read operations on working mirrors.
2249  *	2.	Updates the raid superblock when problems encounter.
2250  *	3.	Performs writes following reads for array synchronising.
2251  */
2252 
2253 static void fix_read_error(struct r1conf *conf, int read_disk,
2254 			   sector_t sect, int sectors)
2255 {
2256 	struct mddev *mddev = conf->mddev;
2257 	while(sectors) {
2258 		int s = sectors;
2259 		int d = read_disk;
2260 		int success = 0;
2261 		int start;
2262 		struct md_rdev *rdev;
2263 
2264 		if (s > (PAGE_SIZE>>9))
2265 			s = PAGE_SIZE >> 9;
2266 
2267 		do {
2268 			sector_t first_bad;
2269 			int bad_sectors;
2270 
2271 			rcu_read_lock();
2272 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2273 			if (rdev &&
2274 			    (test_bit(In_sync, &rdev->flags) ||
2275 			     (!test_bit(Faulty, &rdev->flags) &&
2276 			      rdev->recovery_offset >= sect + s)) &&
2277 			    is_badblock(rdev, sect, s,
2278 					&first_bad, &bad_sectors) == 0) {
2279 				atomic_inc(&rdev->nr_pending);
2280 				rcu_read_unlock();
2281 				if (sync_page_io(rdev, sect, s<<9,
2282 					 conf->tmppage, REQ_OP_READ, 0, false))
2283 					success = 1;
2284 				rdev_dec_pending(rdev, mddev);
2285 				if (success)
2286 					break;
2287 			} else
2288 				rcu_read_unlock();
2289 			d++;
2290 			if (d == conf->raid_disks * 2)
2291 				d = 0;
2292 		} while (!success && d != read_disk);
2293 
2294 		if (!success) {
2295 			/* Cannot read from anywhere - mark it bad */
2296 			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2297 			if (!rdev_set_badblocks(rdev, sect, s, 0))
2298 				md_error(mddev, rdev);
2299 			break;
2300 		}
2301 		/* write it back and re-read */
2302 		start = d;
2303 		while (d != read_disk) {
2304 			if (d==0)
2305 				d = conf->raid_disks * 2;
2306 			d--;
2307 			rcu_read_lock();
2308 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2309 			if (rdev &&
2310 			    !test_bit(Faulty, &rdev->flags)) {
2311 				atomic_inc(&rdev->nr_pending);
2312 				rcu_read_unlock();
2313 				r1_sync_page_io(rdev, sect, s,
2314 						conf->tmppage, WRITE);
2315 				rdev_dec_pending(rdev, mddev);
2316 			} else
2317 				rcu_read_unlock();
2318 		}
2319 		d = start;
2320 		while (d != read_disk) {
2321 			char b[BDEVNAME_SIZE];
2322 			if (d==0)
2323 				d = conf->raid_disks * 2;
2324 			d--;
2325 			rcu_read_lock();
2326 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2327 			if (rdev &&
2328 			    !test_bit(Faulty, &rdev->flags)) {
2329 				atomic_inc(&rdev->nr_pending);
2330 				rcu_read_unlock();
2331 				if (r1_sync_page_io(rdev, sect, s,
2332 						    conf->tmppage, READ)) {
2333 					atomic_add(s, &rdev->corrected_errors);
2334 					pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2335 						mdname(mddev), s,
2336 						(unsigned long long)(sect +
2337 								     rdev->data_offset),
2338 						bdevname(rdev->bdev, b));
2339 				}
2340 				rdev_dec_pending(rdev, mddev);
2341 			} else
2342 				rcu_read_unlock();
2343 		}
2344 		sectors -= s;
2345 		sect += s;
2346 	}
2347 }
2348 
2349 static int narrow_write_error(struct r1bio *r1_bio, int i)
2350 {
2351 	struct mddev *mddev = r1_bio->mddev;
2352 	struct r1conf *conf = mddev->private;
2353 	struct md_rdev *rdev = conf->mirrors[i].rdev;
2354 
2355 	/* bio has the data to be written to device 'i' where
2356 	 * we just recently had a write error.
2357 	 * We repeatedly clone the bio and trim down to one block,
2358 	 * then try the write.  Where the write fails we record
2359 	 * a bad block.
2360 	 * It is conceivable that the bio doesn't exactly align with
2361 	 * blocks.  We must handle this somehow.
2362 	 *
2363 	 * We currently own a reference on the rdev.
2364 	 */
2365 
2366 	int block_sectors;
2367 	sector_t sector;
2368 	int sectors;
2369 	int sect_to_write = r1_bio->sectors;
2370 	int ok = 1;
2371 
2372 	if (rdev->badblocks.shift < 0)
2373 		return 0;
2374 
2375 	block_sectors = roundup(1 << rdev->badblocks.shift,
2376 				bdev_logical_block_size(rdev->bdev) >> 9);
2377 	sector = r1_bio->sector;
2378 	sectors = ((sector + block_sectors)
2379 		   & ~(sector_t)(block_sectors - 1))
2380 		- sector;
2381 
2382 	while (sect_to_write) {
2383 		struct bio *wbio;
2384 		if (sectors > sect_to_write)
2385 			sectors = sect_to_write;
2386 		/* Write at 'sector' for 'sectors'*/
2387 
2388 		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2389 			wbio = bio_clone_fast(r1_bio->behind_master_bio,
2390 					      GFP_NOIO,
2391 					      &mddev->bio_set);
2392 		} else {
2393 			wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2394 					      &mddev->bio_set);
2395 		}
2396 
2397 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2398 		wbio->bi_iter.bi_sector = r1_bio->sector;
2399 		wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2400 
2401 		bio_trim(wbio, sector - r1_bio->sector, sectors);
2402 		wbio->bi_iter.bi_sector += rdev->data_offset;
2403 		bio_set_dev(wbio, rdev->bdev);
2404 
2405 		if (submit_bio_wait(wbio) < 0)
2406 			/* failure! */
2407 			ok = rdev_set_badblocks(rdev, sector,
2408 						sectors, 0)
2409 				&& ok;
2410 
2411 		bio_put(wbio);
2412 		sect_to_write -= sectors;
2413 		sector += sectors;
2414 		sectors = block_sectors;
2415 	}
2416 	return ok;
2417 }
2418 
2419 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2420 {
2421 	int m;
2422 	int s = r1_bio->sectors;
2423 	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2424 		struct md_rdev *rdev = conf->mirrors[m].rdev;
2425 		struct bio *bio = r1_bio->bios[m];
2426 		if (bio->bi_end_io == NULL)
2427 			continue;
2428 		if (!bio->bi_status &&
2429 		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2430 			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2431 		}
2432 		if (bio->bi_status &&
2433 		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2434 			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2435 				md_error(conf->mddev, rdev);
2436 		}
2437 	}
2438 	put_buf(r1_bio);
2439 	md_done_sync(conf->mddev, s, 1);
2440 }
2441 
2442 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2443 {
2444 	int m, idx;
2445 	bool fail = false;
2446 
2447 	for (m = 0; m < conf->raid_disks * 2 ; m++)
2448 		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2449 			struct md_rdev *rdev = conf->mirrors[m].rdev;
2450 			rdev_clear_badblocks(rdev,
2451 					     r1_bio->sector,
2452 					     r1_bio->sectors, 0);
2453 			rdev_dec_pending(rdev, conf->mddev);
2454 		} else if (r1_bio->bios[m] != NULL) {
2455 			/* This drive got a write error.  We need to
2456 			 * narrow down and record precise write
2457 			 * errors.
2458 			 */
2459 			fail = true;
2460 			if (!narrow_write_error(r1_bio, m)) {
2461 				md_error(conf->mddev,
2462 					 conf->mirrors[m].rdev);
2463 				/* an I/O failed, we can't clear the bitmap */
2464 				set_bit(R1BIO_Degraded, &r1_bio->state);
2465 			}
2466 			rdev_dec_pending(conf->mirrors[m].rdev,
2467 					 conf->mddev);
2468 		}
2469 	if (fail) {
2470 		spin_lock_irq(&conf->device_lock);
2471 		list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2472 		idx = sector_to_idx(r1_bio->sector);
2473 		atomic_inc(&conf->nr_queued[idx]);
2474 		spin_unlock_irq(&conf->device_lock);
2475 		/*
2476 		 * In case freeze_array() is waiting for condition
2477 		 * get_unqueued_pending() == extra to be true.
2478 		 */
2479 		wake_up(&conf->wait_barrier);
2480 		md_wakeup_thread(conf->mddev->thread);
2481 	} else {
2482 		if (test_bit(R1BIO_WriteError, &r1_bio->state))
2483 			close_write(r1_bio);
2484 		raid_end_bio_io(r1_bio);
2485 	}
2486 }
2487 
2488 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2489 {
2490 	struct mddev *mddev = conf->mddev;
2491 	struct bio *bio;
2492 	struct md_rdev *rdev;
2493 
2494 	clear_bit(R1BIO_ReadError, &r1_bio->state);
2495 	/* we got a read error. Maybe the drive is bad.  Maybe just
2496 	 * the block and we can fix it.
2497 	 * We freeze all other IO, and try reading the block from
2498 	 * other devices.  When we find one, we re-write
2499 	 * and check it that fixes the read error.
2500 	 * This is all done synchronously while the array is
2501 	 * frozen
2502 	 */
2503 
2504 	bio = r1_bio->bios[r1_bio->read_disk];
2505 	bio_put(bio);
2506 	r1_bio->bios[r1_bio->read_disk] = NULL;
2507 
2508 	rdev = conf->mirrors[r1_bio->read_disk].rdev;
2509 	if (mddev->ro == 0
2510 	    && !test_bit(FailFast, &rdev->flags)) {
2511 		freeze_array(conf, 1);
2512 		fix_read_error(conf, r1_bio->read_disk,
2513 			       r1_bio->sector, r1_bio->sectors);
2514 		unfreeze_array(conf);
2515 	} else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
2516 		md_error(mddev, rdev);
2517 	} else {
2518 		r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2519 	}
2520 
2521 	rdev_dec_pending(rdev, conf->mddev);
2522 	allow_barrier(conf, r1_bio->sector);
2523 	bio = r1_bio->master_bio;
2524 
2525 	/* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2526 	r1_bio->state = 0;
2527 	raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2528 }
2529 
2530 static void raid1d(struct md_thread *thread)
2531 {
2532 	struct mddev *mddev = thread->mddev;
2533 	struct r1bio *r1_bio;
2534 	unsigned long flags;
2535 	struct r1conf *conf = mddev->private;
2536 	struct list_head *head = &conf->retry_list;
2537 	struct blk_plug plug;
2538 	int idx;
2539 
2540 	md_check_recovery(mddev);
2541 
2542 	if (!list_empty_careful(&conf->bio_end_io_list) &&
2543 	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2544 		LIST_HEAD(tmp);
2545 		spin_lock_irqsave(&conf->device_lock, flags);
2546 		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2547 			list_splice_init(&conf->bio_end_io_list, &tmp);
2548 		spin_unlock_irqrestore(&conf->device_lock, flags);
2549 		while (!list_empty(&tmp)) {
2550 			r1_bio = list_first_entry(&tmp, struct r1bio,
2551 						  retry_list);
2552 			list_del(&r1_bio->retry_list);
2553 			idx = sector_to_idx(r1_bio->sector);
2554 			atomic_dec(&conf->nr_queued[idx]);
2555 			if (mddev->degraded)
2556 				set_bit(R1BIO_Degraded, &r1_bio->state);
2557 			if (test_bit(R1BIO_WriteError, &r1_bio->state))
2558 				close_write(r1_bio);
2559 			raid_end_bio_io(r1_bio);
2560 		}
2561 	}
2562 
2563 	blk_start_plug(&plug);
2564 	for (;;) {
2565 
2566 		flush_pending_writes(conf);
2567 
2568 		spin_lock_irqsave(&conf->device_lock, flags);
2569 		if (list_empty(head)) {
2570 			spin_unlock_irqrestore(&conf->device_lock, flags);
2571 			break;
2572 		}
2573 		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2574 		list_del(head->prev);
2575 		idx = sector_to_idx(r1_bio->sector);
2576 		atomic_dec(&conf->nr_queued[idx]);
2577 		spin_unlock_irqrestore(&conf->device_lock, flags);
2578 
2579 		mddev = r1_bio->mddev;
2580 		conf = mddev->private;
2581 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2582 			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2583 			    test_bit(R1BIO_WriteError, &r1_bio->state))
2584 				handle_sync_write_finished(conf, r1_bio);
2585 			else
2586 				sync_request_write(mddev, r1_bio);
2587 		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2588 			   test_bit(R1BIO_WriteError, &r1_bio->state))
2589 			handle_write_finished(conf, r1_bio);
2590 		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2591 			handle_read_error(conf, r1_bio);
2592 		else
2593 			WARN_ON_ONCE(1);
2594 
2595 		cond_resched();
2596 		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2597 			md_check_recovery(mddev);
2598 	}
2599 	blk_finish_plug(&plug);
2600 }
2601 
2602 static int init_resync(struct r1conf *conf)
2603 {
2604 	int buffs;
2605 
2606 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2607 	BUG_ON(mempool_initialized(&conf->r1buf_pool));
2608 
2609 	return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
2610 			    r1buf_pool_free, conf->poolinfo);
2611 }
2612 
2613 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2614 {
2615 	struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
2616 	struct resync_pages *rps;
2617 	struct bio *bio;
2618 	int i;
2619 
2620 	for (i = conf->poolinfo->raid_disks; i--; ) {
2621 		bio = r1bio->bios[i];
2622 		rps = bio->bi_private;
2623 		bio_reset(bio);
2624 		bio->bi_private = rps;
2625 	}
2626 	r1bio->master_bio = NULL;
2627 	return r1bio;
2628 }
2629 
2630 /*
2631  * perform a "sync" on one "block"
2632  *
2633  * We need to make sure that no normal I/O request - particularly write
2634  * requests - conflict with active sync requests.
2635  *
2636  * This is achieved by tracking pending requests and a 'barrier' concept
2637  * that can be installed to exclude normal IO requests.
2638  */
2639 
2640 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2641 				   int *skipped)
2642 {
2643 	struct r1conf *conf = mddev->private;
2644 	struct r1bio *r1_bio;
2645 	struct bio *bio;
2646 	sector_t max_sector, nr_sectors;
2647 	int disk = -1;
2648 	int i;
2649 	int wonly = -1;
2650 	int write_targets = 0, read_targets = 0;
2651 	sector_t sync_blocks;
2652 	int still_degraded = 0;
2653 	int good_sectors = RESYNC_SECTORS;
2654 	int min_bad = 0; /* number of sectors that are bad in all devices */
2655 	int idx = sector_to_idx(sector_nr);
2656 	int page_idx = 0;
2657 
2658 	if (!mempool_initialized(&conf->r1buf_pool))
2659 		if (init_resync(conf))
2660 			return 0;
2661 
2662 	max_sector = mddev->dev_sectors;
2663 	if (sector_nr >= max_sector) {
2664 		/* If we aborted, we need to abort the
2665 		 * sync on the 'current' bitmap chunk (there will
2666 		 * only be one in raid1 resync.
2667 		 * We can find the current addess in mddev->curr_resync
2668 		 */
2669 		if (mddev->curr_resync < max_sector) /* aborted */
2670 			md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2671 					   &sync_blocks, 1);
2672 		else /* completed sync */
2673 			conf->fullsync = 0;
2674 
2675 		md_bitmap_close_sync(mddev->bitmap);
2676 		close_sync(conf);
2677 
2678 		if (mddev_is_clustered(mddev)) {
2679 			conf->cluster_sync_low = 0;
2680 			conf->cluster_sync_high = 0;
2681 		}
2682 		return 0;
2683 	}
2684 
2685 	if (mddev->bitmap == NULL &&
2686 	    mddev->recovery_cp == MaxSector &&
2687 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2688 	    conf->fullsync == 0) {
2689 		*skipped = 1;
2690 		return max_sector - sector_nr;
2691 	}
2692 	/* before building a request, check if we can skip these blocks..
2693 	 * This call the bitmap_start_sync doesn't actually record anything
2694 	 */
2695 	if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2696 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2697 		/* We can skip this block, and probably several more */
2698 		*skipped = 1;
2699 		return sync_blocks;
2700 	}
2701 
2702 	/*
2703 	 * If there is non-resync activity waiting for a turn, then let it
2704 	 * though before starting on this new sync request.
2705 	 */
2706 	if (atomic_read(&conf->nr_waiting[idx]))
2707 		schedule_timeout_uninterruptible(1);
2708 
2709 	/* we are incrementing sector_nr below. To be safe, we check against
2710 	 * sector_nr + two times RESYNC_SECTORS
2711 	 */
2712 
2713 	md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2714 		mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2715 
2716 
2717 	if (raise_barrier(conf, sector_nr))
2718 		return 0;
2719 
2720 	r1_bio = raid1_alloc_init_r1buf(conf);
2721 
2722 	rcu_read_lock();
2723 	/*
2724 	 * If we get a correctably read error during resync or recovery,
2725 	 * we might want to read from a different device.  So we
2726 	 * flag all drives that could conceivably be read from for READ,
2727 	 * and any others (which will be non-In_sync devices) for WRITE.
2728 	 * If a read fails, we try reading from something else for which READ
2729 	 * is OK.
2730 	 */
2731 
2732 	r1_bio->mddev = mddev;
2733 	r1_bio->sector = sector_nr;
2734 	r1_bio->state = 0;
2735 	set_bit(R1BIO_IsSync, &r1_bio->state);
2736 	/* make sure good_sectors won't go across barrier unit boundary */
2737 	good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2738 
2739 	for (i = 0; i < conf->raid_disks * 2; i++) {
2740 		struct md_rdev *rdev;
2741 		bio = r1_bio->bios[i];
2742 
2743 		rdev = rcu_dereference(conf->mirrors[i].rdev);
2744 		if (rdev == NULL ||
2745 		    test_bit(Faulty, &rdev->flags)) {
2746 			if (i < conf->raid_disks)
2747 				still_degraded = 1;
2748 		} else if (!test_bit(In_sync, &rdev->flags)) {
2749 			bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2750 			bio->bi_end_io = end_sync_write;
2751 			write_targets ++;
2752 		} else {
2753 			/* may need to read from here */
2754 			sector_t first_bad = MaxSector;
2755 			int bad_sectors;
2756 
2757 			if (is_badblock(rdev, sector_nr, good_sectors,
2758 					&first_bad, &bad_sectors)) {
2759 				if (first_bad > sector_nr)
2760 					good_sectors = first_bad - sector_nr;
2761 				else {
2762 					bad_sectors -= (sector_nr - first_bad);
2763 					if (min_bad == 0 ||
2764 					    min_bad > bad_sectors)
2765 						min_bad = bad_sectors;
2766 				}
2767 			}
2768 			if (sector_nr < first_bad) {
2769 				if (test_bit(WriteMostly, &rdev->flags)) {
2770 					if (wonly < 0)
2771 						wonly = i;
2772 				} else {
2773 					if (disk < 0)
2774 						disk = i;
2775 				}
2776 				bio_set_op_attrs(bio, REQ_OP_READ, 0);
2777 				bio->bi_end_io = end_sync_read;
2778 				read_targets++;
2779 			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2780 				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2781 				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2782 				/*
2783 				 * The device is suitable for reading (InSync),
2784 				 * but has bad block(s) here. Let's try to correct them,
2785 				 * if we are doing resync or repair. Otherwise, leave
2786 				 * this device alone for this sync request.
2787 				 */
2788 				bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2789 				bio->bi_end_io = end_sync_write;
2790 				write_targets++;
2791 			}
2792 		}
2793 		if (rdev && bio->bi_end_io) {
2794 			atomic_inc(&rdev->nr_pending);
2795 			bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2796 			bio_set_dev(bio, rdev->bdev);
2797 			if (test_bit(FailFast, &rdev->flags))
2798 				bio->bi_opf |= MD_FAILFAST;
2799 		}
2800 	}
2801 	rcu_read_unlock();
2802 	if (disk < 0)
2803 		disk = wonly;
2804 	r1_bio->read_disk = disk;
2805 
2806 	if (read_targets == 0 && min_bad > 0) {
2807 		/* These sectors are bad on all InSync devices, so we
2808 		 * need to mark them bad on all write targets
2809 		 */
2810 		int ok = 1;
2811 		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2812 			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2813 				struct md_rdev *rdev = conf->mirrors[i].rdev;
2814 				ok = rdev_set_badblocks(rdev, sector_nr,
2815 							min_bad, 0
2816 					) && ok;
2817 			}
2818 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2819 		*skipped = 1;
2820 		put_buf(r1_bio);
2821 
2822 		if (!ok) {
2823 			/* Cannot record the badblocks, so need to
2824 			 * abort the resync.
2825 			 * If there are multiple read targets, could just
2826 			 * fail the really bad ones ???
2827 			 */
2828 			conf->recovery_disabled = mddev->recovery_disabled;
2829 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2830 			return 0;
2831 		} else
2832 			return min_bad;
2833 
2834 	}
2835 	if (min_bad > 0 && min_bad < good_sectors) {
2836 		/* only resync enough to reach the next bad->good
2837 		 * transition */
2838 		good_sectors = min_bad;
2839 	}
2840 
2841 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2842 		/* extra read targets are also write targets */
2843 		write_targets += read_targets-1;
2844 
2845 	if (write_targets == 0 || read_targets == 0) {
2846 		/* There is nowhere to write, so all non-sync
2847 		 * drives must be failed - so we are finished
2848 		 */
2849 		sector_t rv;
2850 		if (min_bad > 0)
2851 			max_sector = sector_nr + min_bad;
2852 		rv = max_sector - sector_nr;
2853 		*skipped = 1;
2854 		put_buf(r1_bio);
2855 		return rv;
2856 	}
2857 
2858 	if (max_sector > mddev->resync_max)
2859 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2860 	if (max_sector > sector_nr + good_sectors)
2861 		max_sector = sector_nr + good_sectors;
2862 	nr_sectors = 0;
2863 	sync_blocks = 0;
2864 	do {
2865 		struct page *page;
2866 		int len = PAGE_SIZE;
2867 		if (sector_nr + (len>>9) > max_sector)
2868 			len = (max_sector - sector_nr) << 9;
2869 		if (len == 0)
2870 			break;
2871 		if (sync_blocks == 0) {
2872 			if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
2873 						  &sync_blocks, still_degraded) &&
2874 			    !conf->fullsync &&
2875 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2876 				break;
2877 			if ((len >> 9) > sync_blocks)
2878 				len = sync_blocks<<9;
2879 		}
2880 
2881 		for (i = 0 ; i < conf->raid_disks * 2; i++) {
2882 			struct resync_pages *rp;
2883 
2884 			bio = r1_bio->bios[i];
2885 			rp = get_resync_pages(bio);
2886 			if (bio->bi_end_io) {
2887 				page = resync_fetch_page(rp, page_idx);
2888 
2889 				/*
2890 				 * won't fail because the vec table is big
2891 				 * enough to hold all these pages
2892 				 */
2893 				bio_add_page(bio, page, len, 0);
2894 			}
2895 		}
2896 		nr_sectors += len>>9;
2897 		sector_nr += len>>9;
2898 		sync_blocks -= (len>>9);
2899 	} while (++page_idx < RESYNC_PAGES);
2900 
2901 	r1_bio->sectors = nr_sectors;
2902 
2903 	if (mddev_is_clustered(mddev) &&
2904 			conf->cluster_sync_high < sector_nr + nr_sectors) {
2905 		conf->cluster_sync_low = mddev->curr_resync_completed;
2906 		conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2907 		/* Send resync message */
2908 		md_cluster_ops->resync_info_update(mddev,
2909 				conf->cluster_sync_low,
2910 				conf->cluster_sync_high);
2911 	}
2912 
2913 	/* For a user-requested sync, we read all readable devices and do a
2914 	 * compare
2915 	 */
2916 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2917 		atomic_set(&r1_bio->remaining, read_targets);
2918 		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2919 			bio = r1_bio->bios[i];
2920 			if (bio->bi_end_io == end_sync_read) {
2921 				read_targets--;
2922 				md_sync_acct_bio(bio, nr_sectors);
2923 				if (read_targets == 1)
2924 					bio->bi_opf &= ~MD_FAILFAST;
2925 				generic_make_request(bio);
2926 			}
2927 		}
2928 	} else {
2929 		atomic_set(&r1_bio->remaining, 1);
2930 		bio = r1_bio->bios[r1_bio->read_disk];
2931 		md_sync_acct_bio(bio, nr_sectors);
2932 		if (read_targets == 1)
2933 			bio->bi_opf &= ~MD_FAILFAST;
2934 		generic_make_request(bio);
2935 	}
2936 	return nr_sectors;
2937 }
2938 
2939 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2940 {
2941 	if (sectors)
2942 		return sectors;
2943 
2944 	return mddev->dev_sectors;
2945 }
2946 
2947 static struct r1conf *setup_conf(struct mddev *mddev)
2948 {
2949 	struct r1conf *conf;
2950 	int i;
2951 	struct raid1_info *disk;
2952 	struct md_rdev *rdev;
2953 	int err = -ENOMEM;
2954 
2955 	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2956 	if (!conf)
2957 		goto abort;
2958 
2959 	conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
2960 				   sizeof(atomic_t), GFP_KERNEL);
2961 	if (!conf->nr_pending)
2962 		goto abort;
2963 
2964 	conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
2965 				   sizeof(atomic_t), GFP_KERNEL);
2966 	if (!conf->nr_waiting)
2967 		goto abort;
2968 
2969 	conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
2970 				  sizeof(atomic_t), GFP_KERNEL);
2971 	if (!conf->nr_queued)
2972 		goto abort;
2973 
2974 	conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
2975 				sizeof(atomic_t), GFP_KERNEL);
2976 	if (!conf->barrier)
2977 		goto abort;
2978 
2979 	conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
2980 					    mddev->raid_disks, 2),
2981 				GFP_KERNEL);
2982 	if (!conf->mirrors)
2983 		goto abort;
2984 
2985 	conf->tmppage = alloc_page(GFP_KERNEL);
2986 	if (!conf->tmppage)
2987 		goto abort;
2988 
2989 	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2990 	if (!conf->poolinfo)
2991 		goto abort;
2992 	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2993 	err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc,
2994 			   rbio_pool_free, conf->poolinfo);
2995 	if (err)
2996 		goto abort;
2997 
2998 	err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
2999 	if (err)
3000 		goto abort;
3001 
3002 	conf->poolinfo->mddev = mddev;
3003 
3004 	err = -EINVAL;
3005 	spin_lock_init(&conf->device_lock);
3006 	rdev_for_each(rdev, mddev) {
3007 		int disk_idx = rdev->raid_disk;
3008 		if (disk_idx >= mddev->raid_disks
3009 		    || disk_idx < 0)
3010 			continue;
3011 		if (test_bit(Replacement, &rdev->flags))
3012 			disk = conf->mirrors + mddev->raid_disks + disk_idx;
3013 		else
3014 			disk = conf->mirrors + disk_idx;
3015 
3016 		if (disk->rdev)
3017 			goto abort;
3018 		disk->rdev = rdev;
3019 		disk->head_position = 0;
3020 		disk->seq_start = MaxSector;
3021 	}
3022 	conf->raid_disks = mddev->raid_disks;
3023 	conf->mddev = mddev;
3024 	INIT_LIST_HEAD(&conf->retry_list);
3025 	INIT_LIST_HEAD(&conf->bio_end_io_list);
3026 
3027 	spin_lock_init(&conf->resync_lock);
3028 	init_waitqueue_head(&conf->wait_barrier);
3029 
3030 	bio_list_init(&conf->pending_bio_list);
3031 	conf->pending_count = 0;
3032 	conf->recovery_disabled = mddev->recovery_disabled - 1;
3033 
3034 	err = -EIO;
3035 	for (i = 0; i < conf->raid_disks * 2; i++) {
3036 
3037 		disk = conf->mirrors + i;
3038 
3039 		if (i < conf->raid_disks &&
3040 		    disk[conf->raid_disks].rdev) {
3041 			/* This slot has a replacement. */
3042 			if (!disk->rdev) {
3043 				/* No original, just make the replacement
3044 				 * a recovering spare
3045 				 */
3046 				disk->rdev =
3047 					disk[conf->raid_disks].rdev;
3048 				disk[conf->raid_disks].rdev = NULL;
3049 			} else if (!test_bit(In_sync, &disk->rdev->flags))
3050 				/* Original is not in_sync - bad */
3051 				goto abort;
3052 		}
3053 
3054 		if (!disk->rdev ||
3055 		    !test_bit(In_sync, &disk->rdev->flags)) {
3056 			disk->head_position = 0;
3057 			if (disk->rdev &&
3058 			    (disk->rdev->saved_raid_disk < 0))
3059 				conf->fullsync = 1;
3060 		}
3061 	}
3062 
3063 	err = -ENOMEM;
3064 	conf->thread = md_register_thread(raid1d, mddev, "raid1");
3065 	if (!conf->thread)
3066 		goto abort;
3067 
3068 	return conf;
3069 
3070  abort:
3071 	if (conf) {
3072 		mempool_exit(&conf->r1bio_pool);
3073 		kfree(conf->mirrors);
3074 		safe_put_page(conf->tmppage);
3075 		kfree(conf->poolinfo);
3076 		kfree(conf->nr_pending);
3077 		kfree(conf->nr_waiting);
3078 		kfree(conf->nr_queued);
3079 		kfree(conf->barrier);
3080 		bioset_exit(&conf->bio_split);
3081 		kfree(conf);
3082 	}
3083 	return ERR_PTR(err);
3084 }
3085 
3086 static void raid1_free(struct mddev *mddev, void *priv);
3087 static int raid1_run(struct mddev *mddev)
3088 {
3089 	struct r1conf *conf;
3090 	int i;
3091 	struct md_rdev *rdev;
3092 	int ret;
3093 	bool discard_supported = false;
3094 
3095 	if (mddev->level != 1) {
3096 		pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3097 			mdname(mddev), mddev->level);
3098 		return -EIO;
3099 	}
3100 	if (mddev->reshape_position != MaxSector) {
3101 		pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3102 			mdname(mddev));
3103 		return -EIO;
3104 	}
3105 	if (mddev_init_writes_pending(mddev) < 0)
3106 		return -ENOMEM;
3107 	/*
3108 	 * copy the already verified devices into our private RAID1
3109 	 * bookkeeping area. [whatever we allocate in run(),
3110 	 * should be freed in raid1_free()]
3111 	 */
3112 	if (mddev->private == NULL)
3113 		conf = setup_conf(mddev);
3114 	else
3115 		conf = mddev->private;
3116 
3117 	if (IS_ERR(conf))
3118 		return PTR_ERR(conf);
3119 
3120 	if (mddev->queue) {
3121 		blk_queue_max_write_same_sectors(mddev->queue, 0);
3122 		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3123 	}
3124 
3125 	rdev_for_each(rdev, mddev) {
3126 		if (!mddev->gendisk)
3127 			continue;
3128 		disk_stack_limits(mddev->gendisk, rdev->bdev,
3129 				  rdev->data_offset << 9);
3130 		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3131 			discard_supported = true;
3132 	}
3133 
3134 	mddev->degraded = 0;
3135 	for (i = 0; i < conf->raid_disks; i++)
3136 		if (conf->mirrors[i].rdev == NULL ||
3137 		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3138 		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3139 			mddev->degraded++;
3140 	/*
3141 	 * RAID1 needs at least one disk in active
3142 	 */
3143 	if (conf->raid_disks - mddev->degraded < 1) {
3144 		ret = -EINVAL;
3145 		goto abort;
3146 	}
3147 
3148 	if (conf->raid_disks - mddev->degraded == 1)
3149 		mddev->recovery_cp = MaxSector;
3150 
3151 	if (mddev->recovery_cp != MaxSector)
3152 		pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3153 			mdname(mddev));
3154 	pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3155 		mdname(mddev), mddev->raid_disks - mddev->degraded,
3156 		mddev->raid_disks);
3157 
3158 	/*
3159 	 * Ok, everything is just fine now
3160 	 */
3161 	mddev->thread = conf->thread;
3162 	conf->thread = NULL;
3163 	mddev->private = conf;
3164 	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3165 
3166 	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3167 
3168 	if (mddev->queue) {
3169 		if (discard_supported)
3170 			blk_queue_flag_set(QUEUE_FLAG_DISCARD,
3171 						mddev->queue);
3172 		else
3173 			blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
3174 						  mddev->queue);
3175 	}
3176 
3177 	ret = md_integrity_register(mddev);
3178 	if (ret) {
3179 		md_unregister_thread(&mddev->thread);
3180 		goto abort;
3181 	}
3182 	return 0;
3183 
3184 abort:
3185 	raid1_free(mddev, conf);
3186 	return ret;
3187 }
3188 
3189 static void raid1_free(struct mddev *mddev, void *priv)
3190 {
3191 	struct r1conf *conf = priv;
3192 
3193 	mempool_exit(&conf->r1bio_pool);
3194 	kfree(conf->mirrors);
3195 	safe_put_page(conf->tmppage);
3196 	kfree(conf->poolinfo);
3197 	kfree(conf->nr_pending);
3198 	kfree(conf->nr_waiting);
3199 	kfree(conf->nr_queued);
3200 	kfree(conf->barrier);
3201 	bioset_exit(&conf->bio_split);
3202 	kfree(conf);
3203 }
3204 
3205 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3206 {
3207 	/* no resync is happening, and there is enough space
3208 	 * on all devices, so we can resize.
3209 	 * We need to make sure resync covers any new space.
3210 	 * If the array is shrinking we should possibly wait until
3211 	 * any io in the removed space completes, but it hardly seems
3212 	 * worth it.
3213 	 */
3214 	sector_t newsize = raid1_size(mddev, sectors, 0);
3215 	if (mddev->external_size &&
3216 	    mddev->array_sectors > newsize)
3217 		return -EINVAL;
3218 	if (mddev->bitmap) {
3219 		int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
3220 		if (ret)
3221 			return ret;
3222 	}
3223 	md_set_array_sectors(mddev, newsize);
3224 	if (sectors > mddev->dev_sectors &&
3225 	    mddev->recovery_cp > mddev->dev_sectors) {
3226 		mddev->recovery_cp = mddev->dev_sectors;
3227 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3228 	}
3229 	mddev->dev_sectors = sectors;
3230 	mddev->resync_max_sectors = sectors;
3231 	return 0;
3232 }
3233 
3234 static int raid1_reshape(struct mddev *mddev)
3235 {
3236 	/* We need to:
3237 	 * 1/ resize the r1bio_pool
3238 	 * 2/ resize conf->mirrors
3239 	 *
3240 	 * We allocate a new r1bio_pool if we can.
3241 	 * Then raise a device barrier and wait until all IO stops.
3242 	 * Then resize conf->mirrors and swap in the new r1bio pool.
3243 	 *
3244 	 * At the same time, we "pack" the devices so that all the missing
3245 	 * devices have the higher raid_disk numbers.
3246 	 */
3247 	mempool_t newpool, oldpool;
3248 	struct pool_info *newpoolinfo;
3249 	struct raid1_info *newmirrors;
3250 	struct r1conf *conf = mddev->private;
3251 	int cnt, raid_disks;
3252 	unsigned long flags;
3253 	int d, d2;
3254 	int ret;
3255 
3256 	memset(&newpool, 0, sizeof(newpool));
3257 	memset(&oldpool, 0, sizeof(oldpool));
3258 
3259 	/* Cannot change chunk_size, layout, or level */
3260 	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3261 	    mddev->layout != mddev->new_layout ||
3262 	    mddev->level != mddev->new_level) {
3263 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3264 		mddev->new_layout = mddev->layout;
3265 		mddev->new_level = mddev->level;
3266 		return -EINVAL;
3267 	}
3268 
3269 	if (!mddev_is_clustered(mddev))
3270 		md_allow_write(mddev);
3271 
3272 	raid_disks = mddev->raid_disks + mddev->delta_disks;
3273 
3274 	if (raid_disks < conf->raid_disks) {
3275 		cnt=0;
3276 		for (d= 0; d < conf->raid_disks; d++)
3277 			if (conf->mirrors[d].rdev)
3278 				cnt++;
3279 		if (cnt > raid_disks)
3280 			return -EBUSY;
3281 	}
3282 
3283 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3284 	if (!newpoolinfo)
3285 		return -ENOMEM;
3286 	newpoolinfo->mddev = mddev;
3287 	newpoolinfo->raid_disks = raid_disks * 2;
3288 
3289 	ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc,
3290 			   rbio_pool_free, newpoolinfo);
3291 	if (ret) {
3292 		kfree(newpoolinfo);
3293 		return ret;
3294 	}
3295 	newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3296 					 raid_disks, 2),
3297 			     GFP_KERNEL);
3298 	if (!newmirrors) {
3299 		kfree(newpoolinfo);
3300 		mempool_exit(&newpool);
3301 		return -ENOMEM;
3302 	}
3303 
3304 	freeze_array(conf, 0);
3305 
3306 	/* ok, everything is stopped */
3307 	oldpool = conf->r1bio_pool;
3308 	conf->r1bio_pool = newpool;
3309 
3310 	for (d = d2 = 0; d < conf->raid_disks; d++) {
3311 		struct md_rdev *rdev = conf->mirrors[d].rdev;
3312 		if (rdev && rdev->raid_disk != d2) {
3313 			sysfs_unlink_rdev(mddev, rdev);
3314 			rdev->raid_disk = d2;
3315 			sysfs_unlink_rdev(mddev, rdev);
3316 			if (sysfs_link_rdev(mddev, rdev))
3317 				pr_warn("md/raid1:%s: cannot register rd%d\n",
3318 					mdname(mddev), rdev->raid_disk);
3319 		}
3320 		if (rdev)
3321 			newmirrors[d2++].rdev = rdev;
3322 	}
3323 	kfree(conf->mirrors);
3324 	conf->mirrors = newmirrors;
3325 	kfree(conf->poolinfo);
3326 	conf->poolinfo = newpoolinfo;
3327 
3328 	spin_lock_irqsave(&conf->device_lock, flags);
3329 	mddev->degraded += (raid_disks - conf->raid_disks);
3330 	spin_unlock_irqrestore(&conf->device_lock, flags);
3331 	conf->raid_disks = mddev->raid_disks = raid_disks;
3332 	mddev->delta_disks = 0;
3333 
3334 	unfreeze_array(conf);
3335 
3336 	set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3337 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3338 	md_wakeup_thread(mddev->thread);
3339 
3340 	mempool_exit(&oldpool);
3341 	return 0;
3342 }
3343 
3344 static void raid1_quiesce(struct mddev *mddev, int quiesce)
3345 {
3346 	struct r1conf *conf = mddev->private;
3347 
3348 	if (quiesce)
3349 		freeze_array(conf, 0);
3350 	else
3351 		unfreeze_array(conf);
3352 }
3353 
3354 static void *raid1_takeover(struct mddev *mddev)
3355 {
3356 	/* raid1 can take over:
3357 	 *  raid5 with 2 devices, any layout or chunk size
3358 	 */
3359 	if (mddev->level == 5 && mddev->raid_disks == 2) {
3360 		struct r1conf *conf;
3361 		mddev->new_level = 1;
3362 		mddev->new_layout = 0;
3363 		mddev->new_chunk_sectors = 0;
3364 		conf = setup_conf(mddev);
3365 		if (!IS_ERR(conf)) {
3366 			/* Array must appear to be quiesced */
3367 			conf->array_frozen = 1;
3368 			mddev_clear_unsupported_flags(mddev,
3369 				UNSUPPORTED_MDDEV_FLAGS);
3370 		}
3371 		return conf;
3372 	}
3373 	return ERR_PTR(-EINVAL);
3374 }
3375 
3376 static struct md_personality raid1_personality =
3377 {
3378 	.name		= "raid1",
3379 	.level		= 1,
3380 	.owner		= THIS_MODULE,
3381 	.make_request	= raid1_make_request,
3382 	.run		= raid1_run,
3383 	.free		= raid1_free,
3384 	.status		= raid1_status,
3385 	.error_handler	= raid1_error,
3386 	.hot_add_disk	= raid1_add_disk,
3387 	.hot_remove_disk= raid1_remove_disk,
3388 	.spare_active	= raid1_spare_active,
3389 	.sync_request	= raid1_sync_request,
3390 	.resize		= raid1_resize,
3391 	.size		= raid1_size,
3392 	.check_reshape	= raid1_reshape,
3393 	.quiesce	= raid1_quiesce,
3394 	.takeover	= raid1_takeover,
3395 	.congested	= raid1_congested,
3396 };
3397 
3398 static int __init raid_init(void)
3399 {
3400 	return register_md_personality(&raid1_personality);
3401 }
3402 
3403 static void raid_exit(void)
3404 {
3405 	unregister_md_personality(&raid1_personality);
3406 }
3407 
3408 module_init(raid_init);
3409 module_exit(raid_exit);
3410 MODULE_LICENSE("GPL");
3411 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3412 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3413 MODULE_ALIAS("md-raid1");
3414 MODULE_ALIAS("md-level-1");
3415 
3416 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
3417