xref: /openbmc/linux/drivers/md/raid1.c (revision 020c5260)
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33 
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include <linux/sched/signal.h>
41 
42 #include <trace/events/block.h>
43 
44 #include "md.h"
45 #include "raid1.h"
46 #include "bitmap.h"
47 
48 #define UNSUPPORTED_MDDEV_FLAGS		\
49 	((1L << MD_HAS_JOURNAL) |	\
50 	 (1L << MD_JOURNAL_CLEAN) |	\
51 	 (1L << MD_HAS_PPL))
52 
53 /*
54  * Number of guaranteed r1bios in case of extreme VM load:
55  */
56 #define	NR_RAID1_BIOS 256
57 
58 /* when we get a read error on a read-only array, we redirect to another
59  * device without failing the first device, or trying to over-write to
60  * correct the read error.  To keep track of bad blocks on a per-bio
61  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
62  */
63 #define IO_BLOCKED ((struct bio *)1)
64 /* When we successfully write to a known bad-block, we need to remove the
65  * bad-block marking which must be done from process context.  So we record
66  * the success by setting devs[n].bio to IO_MADE_GOOD
67  */
68 #define IO_MADE_GOOD ((struct bio *)2)
69 
70 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
71 
72 /* When there are this many requests queue to be written by
73  * the raid1 thread, we become 'congested' to provide back-pressure
74  * for writeback.
75  */
76 static int max_queued_requests = 1024;
77 
78 static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
79 static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
80 
81 #define raid1_log(md, fmt, args...)				\
82 	do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
83 
84 /*
85  * 'strct resync_pages' stores actual pages used for doing the resync
86  *  IO, and it is per-bio, so make .bi_private points to it.
87  */
88 static inline struct resync_pages *get_resync_pages(struct bio *bio)
89 {
90 	return bio->bi_private;
91 }
92 
93 /*
94  * for resync bio, r1bio pointer can be retrieved from the per-bio
95  * 'struct resync_pages'.
96  */
97 static inline struct r1bio *get_resync_r1bio(struct bio *bio)
98 {
99 	return get_resync_pages(bio)->raid_bio;
100 }
101 
102 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
103 {
104 	struct pool_info *pi = data;
105 	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
106 
107 	/* allocate a r1bio with room for raid_disks entries in the bios array */
108 	return kzalloc(size, gfp_flags);
109 }
110 
111 static void r1bio_pool_free(void *r1_bio, void *data)
112 {
113 	kfree(r1_bio);
114 }
115 
116 #define RESYNC_DEPTH 32
117 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
118 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
119 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
120 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
121 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
122 
123 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
124 {
125 	struct pool_info *pi = data;
126 	struct r1bio *r1_bio;
127 	struct bio *bio;
128 	int need_pages;
129 	int j;
130 	struct resync_pages *rps;
131 
132 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
133 	if (!r1_bio)
134 		return NULL;
135 
136 	rps = kmalloc(sizeof(struct resync_pages) * pi->raid_disks,
137 		      gfp_flags);
138 	if (!rps)
139 		goto out_free_r1bio;
140 
141 	/*
142 	 * Allocate bios : 1 for reading, n-1 for writing
143 	 */
144 	for (j = pi->raid_disks ; j-- ; ) {
145 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
146 		if (!bio)
147 			goto out_free_bio;
148 		r1_bio->bios[j] = bio;
149 	}
150 	/*
151 	 * Allocate RESYNC_PAGES data pages and attach them to
152 	 * the first bio.
153 	 * If this is a user-requested check/repair, allocate
154 	 * RESYNC_PAGES for each bio.
155 	 */
156 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
157 		need_pages = pi->raid_disks;
158 	else
159 		need_pages = 1;
160 	for (j = 0; j < pi->raid_disks; j++) {
161 		struct resync_pages *rp = &rps[j];
162 
163 		bio = r1_bio->bios[j];
164 
165 		if (j < need_pages) {
166 			if (resync_alloc_pages(rp, gfp_flags))
167 				goto out_free_pages;
168 		} else {
169 			memcpy(rp, &rps[0], sizeof(*rp));
170 			resync_get_all_pages(rp);
171 		}
172 
173 		rp->idx = 0;
174 		rp->raid_bio = r1_bio;
175 		bio->bi_private = rp;
176 	}
177 
178 	r1_bio->master_bio = NULL;
179 
180 	return r1_bio;
181 
182 out_free_pages:
183 	while (--j >= 0)
184 		resync_free_pages(&rps[j]);
185 
186 out_free_bio:
187 	while (++j < pi->raid_disks)
188 		bio_put(r1_bio->bios[j]);
189 	kfree(rps);
190 
191 out_free_r1bio:
192 	r1bio_pool_free(r1_bio, data);
193 	return NULL;
194 }
195 
196 static void r1buf_pool_free(void *__r1_bio, void *data)
197 {
198 	struct pool_info *pi = data;
199 	int i;
200 	struct r1bio *r1bio = __r1_bio;
201 	struct resync_pages *rp = NULL;
202 
203 	for (i = pi->raid_disks; i--; ) {
204 		rp = get_resync_pages(r1bio->bios[i]);
205 		resync_free_pages(rp);
206 		bio_put(r1bio->bios[i]);
207 	}
208 
209 	/* resync pages array stored in the 1st bio's .bi_private */
210 	kfree(rp);
211 
212 	r1bio_pool_free(r1bio, data);
213 }
214 
215 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
216 {
217 	int i;
218 
219 	for (i = 0; i < conf->raid_disks * 2; i++) {
220 		struct bio **bio = r1_bio->bios + i;
221 		if (!BIO_SPECIAL(*bio))
222 			bio_put(*bio);
223 		*bio = NULL;
224 	}
225 }
226 
227 static void free_r1bio(struct r1bio *r1_bio)
228 {
229 	struct r1conf *conf = r1_bio->mddev->private;
230 
231 	put_all_bios(conf, r1_bio);
232 	mempool_free(r1_bio, conf->r1bio_pool);
233 }
234 
235 static void put_buf(struct r1bio *r1_bio)
236 {
237 	struct r1conf *conf = r1_bio->mddev->private;
238 	sector_t sect = r1_bio->sector;
239 	int i;
240 
241 	for (i = 0; i < conf->raid_disks * 2; i++) {
242 		struct bio *bio = r1_bio->bios[i];
243 		if (bio->bi_end_io)
244 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
245 	}
246 
247 	mempool_free(r1_bio, conf->r1buf_pool);
248 
249 	lower_barrier(conf, sect);
250 }
251 
252 static void reschedule_retry(struct r1bio *r1_bio)
253 {
254 	unsigned long flags;
255 	struct mddev *mddev = r1_bio->mddev;
256 	struct r1conf *conf = mddev->private;
257 	int idx;
258 
259 	idx = sector_to_idx(r1_bio->sector);
260 	spin_lock_irqsave(&conf->device_lock, flags);
261 	list_add(&r1_bio->retry_list, &conf->retry_list);
262 	atomic_inc(&conf->nr_queued[idx]);
263 	spin_unlock_irqrestore(&conf->device_lock, flags);
264 
265 	wake_up(&conf->wait_barrier);
266 	md_wakeup_thread(mddev->thread);
267 }
268 
269 /*
270  * raid_end_bio_io() is called when we have finished servicing a mirrored
271  * operation and are ready to return a success/failure code to the buffer
272  * cache layer.
273  */
274 static void call_bio_endio(struct r1bio *r1_bio)
275 {
276 	struct bio *bio = r1_bio->master_bio;
277 	struct r1conf *conf = r1_bio->mddev->private;
278 
279 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
280 		bio->bi_error = -EIO;
281 
282 	bio_endio(bio);
283 	/*
284 	 * Wake up any possible resync thread that waits for the device
285 	 * to go idle.
286 	 */
287 	allow_barrier(conf, r1_bio->sector);
288 }
289 
290 static void raid_end_bio_io(struct r1bio *r1_bio)
291 {
292 	struct bio *bio = r1_bio->master_bio;
293 
294 	/* if nobody has done the final endio yet, do it now */
295 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
296 		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
297 			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
298 			 (unsigned long long) bio->bi_iter.bi_sector,
299 			 (unsigned long long) bio_end_sector(bio) - 1);
300 
301 		call_bio_endio(r1_bio);
302 	}
303 	free_r1bio(r1_bio);
304 }
305 
306 /*
307  * Update disk head position estimator based on IRQ completion info.
308  */
309 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
310 {
311 	struct r1conf *conf = r1_bio->mddev->private;
312 
313 	conf->mirrors[disk].head_position =
314 		r1_bio->sector + (r1_bio->sectors);
315 }
316 
317 /*
318  * Find the disk number which triggered given bio
319  */
320 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
321 {
322 	int mirror;
323 	struct r1conf *conf = r1_bio->mddev->private;
324 	int raid_disks = conf->raid_disks;
325 
326 	for (mirror = 0; mirror < raid_disks * 2; mirror++)
327 		if (r1_bio->bios[mirror] == bio)
328 			break;
329 
330 	BUG_ON(mirror == raid_disks * 2);
331 	update_head_pos(mirror, r1_bio);
332 
333 	return mirror;
334 }
335 
336 static void raid1_end_read_request(struct bio *bio)
337 {
338 	int uptodate = !bio->bi_error;
339 	struct r1bio *r1_bio = bio->bi_private;
340 	struct r1conf *conf = r1_bio->mddev->private;
341 	struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
342 
343 	/*
344 	 * this branch is our 'one mirror IO has finished' event handler:
345 	 */
346 	update_head_pos(r1_bio->read_disk, r1_bio);
347 
348 	if (uptodate)
349 		set_bit(R1BIO_Uptodate, &r1_bio->state);
350 	else if (test_bit(FailFast, &rdev->flags) &&
351 		 test_bit(R1BIO_FailFast, &r1_bio->state))
352 		/* This was a fail-fast read so we definitely
353 		 * want to retry */
354 		;
355 	else {
356 		/* If all other devices have failed, we want to return
357 		 * the error upwards rather than fail the last device.
358 		 * Here we redefine "uptodate" to mean "Don't want to retry"
359 		 */
360 		unsigned long flags;
361 		spin_lock_irqsave(&conf->device_lock, flags);
362 		if (r1_bio->mddev->degraded == conf->raid_disks ||
363 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
364 		     test_bit(In_sync, &rdev->flags)))
365 			uptodate = 1;
366 		spin_unlock_irqrestore(&conf->device_lock, flags);
367 	}
368 
369 	if (uptodate) {
370 		raid_end_bio_io(r1_bio);
371 		rdev_dec_pending(rdev, conf->mddev);
372 	} else {
373 		/*
374 		 * oops, read error:
375 		 */
376 		char b[BDEVNAME_SIZE];
377 		pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
378 				   mdname(conf->mddev),
379 				   bdevname(rdev->bdev, b),
380 				   (unsigned long long)r1_bio->sector);
381 		set_bit(R1BIO_ReadError, &r1_bio->state);
382 		reschedule_retry(r1_bio);
383 		/* don't drop the reference on read_disk yet */
384 	}
385 }
386 
387 static void close_write(struct r1bio *r1_bio)
388 {
389 	/* it really is the end of this request */
390 	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
391 		bio_free_pages(r1_bio->behind_master_bio);
392 		bio_put(r1_bio->behind_master_bio);
393 		r1_bio->behind_master_bio = NULL;
394 	}
395 	/* clear the bitmap if all writes complete successfully */
396 	bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
397 			r1_bio->sectors,
398 			!test_bit(R1BIO_Degraded, &r1_bio->state),
399 			test_bit(R1BIO_BehindIO, &r1_bio->state));
400 	md_write_end(r1_bio->mddev);
401 }
402 
403 static void r1_bio_write_done(struct r1bio *r1_bio)
404 {
405 	if (!atomic_dec_and_test(&r1_bio->remaining))
406 		return;
407 
408 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
409 		reschedule_retry(r1_bio);
410 	else {
411 		close_write(r1_bio);
412 		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
413 			reschedule_retry(r1_bio);
414 		else
415 			raid_end_bio_io(r1_bio);
416 	}
417 }
418 
419 static void raid1_end_write_request(struct bio *bio)
420 {
421 	struct r1bio *r1_bio = bio->bi_private;
422 	int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
423 	struct r1conf *conf = r1_bio->mddev->private;
424 	struct bio *to_put = NULL;
425 	int mirror = find_bio_disk(r1_bio, bio);
426 	struct md_rdev *rdev = conf->mirrors[mirror].rdev;
427 	bool discard_error;
428 
429 	discard_error = bio->bi_error && bio_op(bio) == REQ_OP_DISCARD;
430 
431 	/*
432 	 * 'one mirror IO has finished' event handler:
433 	 */
434 	if (bio->bi_error && !discard_error) {
435 		set_bit(WriteErrorSeen,	&rdev->flags);
436 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
437 			set_bit(MD_RECOVERY_NEEDED, &
438 				conf->mddev->recovery);
439 
440 		if (test_bit(FailFast, &rdev->flags) &&
441 		    (bio->bi_opf & MD_FAILFAST) &&
442 		    /* We never try FailFast to WriteMostly devices */
443 		    !test_bit(WriteMostly, &rdev->flags)) {
444 			md_error(r1_bio->mddev, rdev);
445 			if (!test_bit(Faulty, &rdev->flags))
446 				/* This is the only remaining device,
447 				 * We need to retry the write without
448 				 * FailFast
449 				 */
450 				set_bit(R1BIO_WriteError, &r1_bio->state);
451 			else {
452 				/* Finished with this branch */
453 				r1_bio->bios[mirror] = NULL;
454 				to_put = bio;
455 			}
456 		} else
457 			set_bit(R1BIO_WriteError, &r1_bio->state);
458 	} else {
459 		/*
460 		 * Set R1BIO_Uptodate in our master bio, so that we
461 		 * will return a good error code for to the higher
462 		 * levels even if IO on some other mirrored buffer
463 		 * fails.
464 		 *
465 		 * The 'master' represents the composite IO operation
466 		 * to user-side. So if something waits for IO, then it
467 		 * will wait for the 'master' bio.
468 		 */
469 		sector_t first_bad;
470 		int bad_sectors;
471 
472 		r1_bio->bios[mirror] = NULL;
473 		to_put = bio;
474 		/*
475 		 * Do not set R1BIO_Uptodate if the current device is
476 		 * rebuilding or Faulty. This is because we cannot use
477 		 * such device for properly reading the data back (we could
478 		 * potentially use it, if the current write would have felt
479 		 * before rdev->recovery_offset, but for simplicity we don't
480 		 * check this here.
481 		 */
482 		if (test_bit(In_sync, &rdev->flags) &&
483 		    !test_bit(Faulty, &rdev->flags))
484 			set_bit(R1BIO_Uptodate, &r1_bio->state);
485 
486 		/* Maybe we can clear some bad blocks. */
487 		if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
488 				&first_bad, &bad_sectors) && !discard_error) {
489 			r1_bio->bios[mirror] = IO_MADE_GOOD;
490 			set_bit(R1BIO_MadeGood, &r1_bio->state);
491 		}
492 	}
493 
494 	if (behind) {
495 		/* we release behind master bio when all write are done */
496 		if (r1_bio->behind_master_bio == bio)
497 			to_put = NULL;
498 
499 		if (test_bit(WriteMostly, &rdev->flags))
500 			atomic_dec(&r1_bio->behind_remaining);
501 
502 		/*
503 		 * In behind mode, we ACK the master bio once the I/O
504 		 * has safely reached all non-writemostly
505 		 * disks. Setting the Returned bit ensures that this
506 		 * gets done only once -- we don't ever want to return
507 		 * -EIO here, instead we'll wait
508 		 */
509 		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
510 		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
511 			/* Maybe we can return now */
512 			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
513 				struct bio *mbio = r1_bio->master_bio;
514 				pr_debug("raid1: behind end write sectors"
515 					 " %llu-%llu\n",
516 					 (unsigned long long) mbio->bi_iter.bi_sector,
517 					 (unsigned long long) bio_end_sector(mbio) - 1);
518 				call_bio_endio(r1_bio);
519 			}
520 		}
521 	}
522 	if (r1_bio->bios[mirror] == NULL)
523 		rdev_dec_pending(rdev, conf->mddev);
524 
525 	/*
526 	 * Let's see if all mirrored write operations have finished
527 	 * already.
528 	 */
529 	r1_bio_write_done(r1_bio);
530 
531 	if (to_put)
532 		bio_put(to_put);
533 }
534 
535 static sector_t align_to_barrier_unit_end(sector_t start_sector,
536 					  sector_t sectors)
537 {
538 	sector_t len;
539 
540 	WARN_ON(sectors == 0);
541 	/*
542 	 * len is the number of sectors from start_sector to end of the
543 	 * barrier unit which start_sector belongs to.
544 	 */
545 	len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
546 	      start_sector;
547 
548 	if (len > sectors)
549 		len = sectors;
550 
551 	return len;
552 }
553 
554 /*
555  * This routine returns the disk from which the requested read should
556  * be done. There is a per-array 'next expected sequential IO' sector
557  * number - if this matches on the next IO then we use the last disk.
558  * There is also a per-disk 'last know head position' sector that is
559  * maintained from IRQ contexts, both the normal and the resync IO
560  * completion handlers update this position correctly. If there is no
561  * perfect sequential match then we pick the disk whose head is closest.
562  *
563  * If there are 2 mirrors in the same 2 devices, performance degrades
564  * because position is mirror, not device based.
565  *
566  * The rdev for the device selected will have nr_pending incremented.
567  */
568 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
569 {
570 	const sector_t this_sector = r1_bio->sector;
571 	int sectors;
572 	int best_good_sectors;
573 	int best_disk, best_dist_disk, best_pending_disk;
574 	int has_nonrot_disk;
575 	int disk;
576 	sector_t best_dist;
577 	unsigned int min_pending;
578 	struct md_rdev *rdev;
579 	int choose_first;
580 	int choose_next_idle;
581 
582 	rcu_read_lock();
583 	/*
584 	 * Check if we can balance. We can balance on the whole
585 	 * device if no resync is going on, or below the resync window.
586 	 * We take the first readable disk when above the resync window.
587 	 */
588  retry:
589 	sectors = r1_bio->sectors;
590 	best_disk = -1;
591 	best_dist_disk = -1;
592 	best_dist = MaxSector;
593 	best_pending_disk = -1;
594 	min_pending = UINT_MAX;
595 	best_good_sectors = 0;
596 	has_nonrot_disk = 0;
597 	choose_next_idle = 0;
598 	clear_bit(R1BIO_FailFast, &r1_bio->state);
599 
600 	if ((conf->mddev->recovery_cp < this_sector + sectors) ||
601 	    (mddev_is_clustered(conf->mddev) &&
602 	    md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
603 		    this_sector + sectors)))
604 		choose_first = 1;
605 	else
606 		choose_first = 0;
607 
608 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
609 		sector_t dist;
610 		sector_t first_bad;
611 		int bad_sectors;
612 		unsigned int pending;
613 		bool nonrot;
614 
615 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
616 		if (r1_bio->bios[disk] == IO_BLOCKED
617 		    || rdev == NULL
618 		    || test_bit(Faulty, &rdev->flags))
619 			continue;
620 		if (!test_bit(In_sync, &rdev->flags) &&
621 		    rdev->recovery_offset < this_sector + sectors)
622 			continue;
623 		if (test_bit(WriteMostly, &rdev->flags)) {
624 			/* Don't balance among write-mostly, just
625 			 * use the first as a last resort */
626 			if (best_dist_disk < 0) {
627 				if (is_badblock(rdev, this_sector, sectors,
628 						&first_bad, &bad_sectors)) {
629 					if (first_bad <= this_sector)
630 						/* Cannot use this */
631 						continue;
632 					best_good_sectors = first_bad - this_sector;
633 				} else
634 					best_good_sectors = sectors;
635 				best_dist_disk = disk;
636 				best_pending_disk = disk;
637 			}
638 			continue;
639 		}
640 		/* This is a reasonable device to use.  It might
641 		 * even be best.
642 		 */
643 		if (is_badblock(rdev, this_sector, sectors,
644 				&first_bad, &bad_sectors)) {
645 			if (best_dist < MaxSector)
646 				/* already have a better device */
647 				continue;
648 			if (first_bad <= this_sector) {
649 				/* cannot read here. If this is the 'primary'
650 				 * device, then we must not read beyond
651 				 * bad_sectors from another device..
652 				 */
653 				bad_sectors -= (this_sector - first_bad);
654 				if (choose_first && sectors > bad_sectors)
655 					sectors = bad_sectors;
656 				if (best_good_sectors > sectors)
657 					best_good_sectors = sectors;
658 
659 			} else {
660 				sector_t good_sectors = first_bad - this_sector;
661 				if (good_sectors > best_good_sectors) {
662 					best_good_sectors = good_sectors;
663 					best_disk = disk;
664 				}
665 				if (choose_first)
666 					break;
667 			}
668 			continue;
669 		} else
670 			best_good_sectors = sectors;
671 
672 		if (best_disk >= 0)
673 			/* At least two disks to choose from so failfast is OK */
674 			set_bit(R1BIO_FailFast, &r1_bio->state);
675 
676 		nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
677 		has_nonrot_disk |= nonrot;
678 		pending = atomic_read(&rdev->nr_pending);
679 		dist = abs(this_sector - conf->mirrors[disk].head_position);
680 		if (choose_first) {
681 			best_disk = disk;
682 			break;
683 		}
684 		/* Don't change to another disk for sequential reads */
685 		if (conf->mirrors[disk].next_seq_sect == this_sector
686 		    || dist == 0) {
687 			int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
688 			struct raid1_info *mirror = &conf->mirrors[disk];
689 
690 			best_disk = disk;
691 			/*
692 			 * If buffered sequential IO size exceeds optimal
693 			 * iosize, check if there is idle disk. If yes, choose
694 			 * the idle disk. read_balance could already choose an
695 			 * idle disk before noticing it's a sequential IO in
696 			 * this disk. This doesn't matter because this disk
697 			 * will idle, next time it will be utilized after the
698 			 * first disk has IO size exceeds optimal iosize. In
699 			 * this way, iosize of the first disk will be optimal
700 			 * iosize at least. iosize of the second disk might be
701 			 * small, but not a big deal since when the second disk
702 			 * starts IO, the first disk is likely still busy.
703 			 */
704 			if (nonrot && opt_iosize > 0 &&
705 			    mirror->seq_start != MaxSector &&
706 			    mirror->next_seq_sect > opt_iosize &&
707 			    mirror->next_seq_sect - opt_iosize >=
708 			    mirror->seq_start) {
709 				choose_next_idle = 1;
710 				continue;
711 			}
712 			break;
713 		}
714 
715 		if (choose_next_idle)
716 			continue;
717 
718 		if (min_pending > pending) {
719 			min_pending = pending;
720 			best_pending_disk = disk;
721 		}
722 
723 		if (dist < best_dist) {
724 			best_dist = dist;
725 			best_dist_disk = disk;
726 		}
727 	}
728 
729 	/*
730 	 * If all disks are rotational, choose the closest disk. If any disk is
731 	 * non-rotational, choose the disk with less pending request even the
732 	 * disk is rotational, which might/might not be optimal for raids with
733 	 * mixed ratation/non-rotational disks depending on workload.
734 	 */
735 	if (best_disk == -1) {
736 		if (has_nonrot_disk || min_pending == 0)
737 			best_disk = best_pending_disk;
738 		else
739 			best_disk = best_dist_disk;
740 	}
741 
742 	if (best_disk >= 0) {
743 		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
744 		if (!rdev)
745 			goto retry;
746 		atomic_inc(&rdev->nr_pending);
747 		sectors = best_good_sectors;
748 
749 		if (conf->mirrors[best_disk].next_seq_sect != this_sector)
750 			conf->mirrors[best_disk].seq_start = this_sector;
751 
752 		conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
753 	}
754 	rcu_read_unlock();
755 	*max_sectors = sectors;
756 
757 	return best_disk;
758 }
759 
760 static int raid1_congested(struct mddev *mddev, int bits)
761 {
762 	struct r1conf *conf = mddev->private;
763 	int i, ret = 0;
764 
765 	if ((bits & (1 << WB_async_congested)) &&
766 	    conf->pending_count >= max_queued_requests)
767 		return 1;
768 
769 	rcu_read_lock();
770 	for (i = 0; i < conf->raid_disks * 2; i++) {
771 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
772 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
773 			struct request_queue *q = bdev_get_queue(rdev->bdev);
774 
775 			BUG_ON(!q);
776 
777 			/* Note the '|| 1' - when read_balance prefers
778 			 * non-congested targets, it can be removed
779 			 */
780 			if ((bits & (1 << WB_async_congested)) || 1)
781 				ret |= bdi_congested(q->backing_dev_info, bits);
782 			else
783 				ret &= bdi_congested(q->backing_dev_info, bits);
784 		}
785 	}
786 	rcu_read_unlock();
787 	return ret;
788 }
789 
790 static void flush_bio_list(struct r1conf *conf, struct bio *bio)
791 {
792 	/* flush any pending bitmap writes to disk before proceeding w/ I/O */
793 	bitmap_unplug(conf->mddev->bitmap);
794 	wake_up(&conf->wait_barrier);
795 
796 	while (bio) { /* submit pending writes */
797 		struct bio *next = bio->bi_next;
798 		struct md_rdev *rdev = (void*)bio->bi_bdev;
799 		bio->bi_next = NULL;
800 		bio->bi_bdev = rdev->bdev;
801 		if (test_bit(Faulty, &rdev->flags)) {
802 			bio->bi_error = -EIO;
803 			bio_endio(bio);
804 		} else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
805 				    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
806 			/* Just ignore it */
807 			bio_endio(bio);
808 		else
809 			generic_make_request(bio);
810 		bio = next;
811 	}
812 }
813 
814 static void flush_pending_writes(struct r1conf *conf)
815 {
816 	/* Any writes that have been queued but are awaiting
817 	 * bitmap updates get flushed here.
818 	 */
819 	spin_lock_irq(&conf->device_lock);
820 
821 	if (conf->pending_bio_list.head) {
822 		struct bio *bio;
823 		bio = bio_list_get(&conf->pending_bio_list);
824 		conf->pending_count = 0;
825 		spin_unlock_irq(&conf->device_lock);
826 		flush_bio_list(conf, bio);
827 	} else
828 		spin_unlock_irq(&conf->device_lock);
829 }
830 
831 /* Barriers....
832  * Sometimes we need to suspend IO while we do something else,
833  * either some resync/recovery, or reconfigure the array.
834  * To do this we raise a 'barrier'.
835  * The 'barrier' is a counter that can be raised multiple times
836  * to count how many activities are happening which preclude
837  * normal IO.
838  * We can only raise the barrier if there is no pending IO.
839  * i.e. if nr_pending == 0.
840  * We choose only to raise the barrier if no-one is waiting for the
841  * barrier to go down.  This means that as soon as an IO request
842  * is ready, no other operations which require a barrier will start
843  * until the IO request has had a chance.
844  *
845  * So: regular IO calls 'wait_barrier'.  When that returns there
846  *    is no backgroup IO happening,  It must arrange to call
847  *    allow_barrier when it has finished its IO.
848  * backgroup IO calls must call raise_barrier.  Once that returns
849  *    there is no normal IO happeing.  It must arrange to call
850  *    lower_barrier when the particular background IO completes.
851  */
852 static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
853 {
854 	int idx = sector_to_idx(sector_nr);
855 
856 	spin_lock_irq(&conf->resync_lock);
857 
858 	/* Wait until no block IO is waiting */
859 	wait_event_lock_irq(conf->wait_barrier,
860 			    !atomic_read(&conf->nr_waiting[idx]),
861 			    conf->resync_lock);
862 
863 	/* block any new IO from starting */
864 	atomic_inc(&conf->barrier[idx]);
865 	/*
866 	 * In raise_barrier() we firstly increase conf->barrier[idx] then
867 	 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
868 	 * increase conf->nr_pending[idx] then check conf->barrier[idx].
869 	 * A memory barrier here to make sure conf->nr_pending[idx] won't
870 	 * be fetched before conf->barrier[idx] is increased. Otherwise
871 	 * there will be a race between raise_barrier() and _wait_barrier().
872 	 */
873 	smp_mb__after_atomic();
874 
875 	/* For these conditions we must wait:
876 	 * A: while the array is in frozen state
877 	 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
878 	 *    existing in corresponding I/O barrier bucket.
879 	 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
880 	 *    max resync count which allowed on current I/O barrier bucket.
881 	 */
882 	wait_event_lock_irq(conf->wait_barrier,
883 			    !conf->array_frozen &&
884 			     !atomic_read(&conf->nr_pending[idx]) &&
885 			     atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH,
886 			    conf->resync_lock);
887 
888 	atomic_inc(&conf->nr_sync_pending);
889 	spin_unlock_irq(&conf->resync_lock);
890 }
891 
892 static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
893 {
894 	int idx = sector_to_idx(sector_nr);
895 
896 	BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
897 
898 	atomic_dec(&conf->barrier[idx]);
899 	atomic_dec(&conf->nr_sync_pending);
900 	wake_up(&conf->wait_barrier);
901 }
902 
903 static void _wait_barrier(struct r1conf *conf, int idx)
904 {
905 	/*
906 	 * We need to increase conf->nr_pending[idx] very early here,
907 	 * then raise_barrier() can be blocked when it waits for
908 	 * conf->nr_pending[idx] to be 0. Then we can avoid holding
909 	 * conf->resync_lock when there is no barrier raised in same
910 	 * barrier unit bucket. Also if the array is frozen, I/O
911 	 * should be blocked until array is unfrozen.
912 	 */
913 	atomic_inc(&conf->nr_pending[idx]);
914 	/*
915 	 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
916 	 * check conf->barrier[idx]. In raise_barrier() we firstly increase
917 	 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
918 	 * barrier is necessary here to make sure conf->barrier[idx] won't be
919 	 * fetched before conf->nr_pending[idx] is increased. Otherwise there
920 	 * will be a race between _wait_barrier() and raise_barrier().
921 	 */
922 	smp_mb__after_atomic();
923 
924 	/*
925 	 * Don't worry about checking two atomic_t variables at same time
926 	 * here. If during we check conf->barrier[idx], the array is
927 	 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
928 	 * 0, it is safe to return and make the I/O continue. Because the
929 	 * array is frozen, all I/O returned here will eventually complete
930 	 * or be queued, no race will happen. See code comment in
931 	 * frozen_array().
932 	 */
933 	if (!READ_ONCE(conf->array_frozen) &&
934 	    !atomic_read(&conf->barrier[idx]))
935 		return;
936 
937 	/*
938 	 * After holding conf->resync_lock, conf->nr_pending[idx]
939 	 * should be decreased before waiting for barrier to drop.
940 	 * Otherwise, we may encounter a race condition because
941 	 * raise_barrer() might be waiting for conf->nr_pending[idx]
942 	 * to be 0 at same time.
943 	 */
944 	spin_lock_irq(&conf->resync_lock);
945 	atomic_inc(&conf->nr_waiting[idx]);
946 	atomic_dec(&conf->nr_pending[idx]);
947 	/*
948 	 * In case freeze_array() is waiting for
949 	 * get_unqueued_pending() == extra
950 	 */
951 	wake_up(&conf->wait_barrier);
952 	/* Wait for the barrier in same barrier unit bucket to drop. */
953 	wait_event_lock_irq(conf->wait_barrier,
954 			    !conf->array_frozen &&
955 			     !atomic_read(&conf->barrier[idx]),
956 			    conf->resync_lock);
957 	atomic_inc(&conf->nr_pending[idx]);
958 	atomic_dec(&conf->nr_waiting[idx]);
959 	spin_unlock_irq(&conf->resync_lock);
960 }
961 
962 static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
963 {
964 	int idx = sector_to_idx(sector_nr);
965 
966 	/*
967 	 * Very similar to _wait_barrier(). The difference is, for read
968 	 * I/O we don't need wait for sync I/O, but if the whole array
969 	 * is frozen, the read I/O still has to wait until the array is
970 	 * unfrozen. Since there is no ordering requirement with
971 	 * conf->barrier[idx] here, memory barrier is unnecessary as well.
972 	 */
973 	atomic_inc(&conf->nr_pending[idx]);
974 
975 	if (!READ_ONCE(conf->array_frozen))
976 		return;
977 
978 	spin_lock_irq(&conf->resync_lock);
979 	atomic_inc(&conf->nr_waiting[idx]);
980 	atomic_dec(&conf->nr_pending[idx]);
981 	/*
982 	 * In case freeze_array() is waiting for
983 	 * get_unqueued_pending() == extra
984 	 */
985 	wake_up(&conf->wait_barrier);
986 	/* Wait for array to be unfrozen */
987 	wait_event_lock_irq(conf->wait_barrier,
988 			    !conf->array_frozen,
989 			    conf->resync_lock);
990 	atomic_inc(&conf->nr_pending[idx]);
991 	atomic_dec(&conf->nr_waiting[idx]);
992 	spin_unlock_irq(&conf->resync_lock);
993 }
994 
995 static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
996 {
997 	int idx = sector_to_idx(sector_nr);
998 
999 	_wait_barrier(conf, idx);
1000 }
1001 
1002 static void wait_all_barriers(struct r1conf *conf)
1003 {
1004 	int idx;
1005 
1006 	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1007 		_wait_barrier(conf, idx);
1008 }
1009 
1010 static void _allow_barrier(struct r1conf *conf, int idx)
1011 {
1012 	atomic_dec(&conf->nr_pending[idx]);
1013 	wake_up(&conf->wait_barrier);
1014 }
1015 
1016 static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1017 {
1018 	int idx = sector_to_idx(sector_nr);
1019 
1020 	_allow_barrier(conf, idx);
1021 }
1022 
1023 static void allow_all_barriers(struct r1conf *conf)
1024 {
1025 	int idx;
1026 
1027 	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1028 		_allow_barrier(conf, idx);
1029 }
1030 
1031 /* conf->resync_lock should be held */
1032 static int get_unqueued_pending(struct r1conf *conf)
1033 {
1034 	int idx, ret;
1035 
1036 	ret = atomic_read(&conf->nr_sync_pending);
1037 	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1038 		ret += atomic_read(&conf->nr_pending[idx]) -
1039 			atomic_read(&conf->nr_queued[idx]);
1040 
1041 	return ret;
1042 }
1043 
1044 static void freeze_array(struct r1conf *conf, int extra)
1045 {
1046 	/* Stop sync I/O and normal I/O and wait for everything to
1047 	 * go quiet.
1048 	 * This is called in two situations:
1049 	 * 1) management command handlers (reshape, remove disk, quiesce).
1050 	 * 2) one normal I/O request failed.
1051 
1052 	 * After array_frozen is set to 1, new sync IO will be blocked at
1053 	 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1054 	 * or wait_read_barrier(). The flying I/Os will either complete or be
1055 	 * queued. When everything goes quite, there are only queued I/Os left.
1056 
1057 	 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1058 	 * barrier bucket index which this I/O request hits. When all sync and
1059 	 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1060 	 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1061 	 * in handle_read_error(), we may call freeze_array() before trying to
1062 	 * fix the read error. In this case, the error read I/O is not queued,
1063 	 * so get_unqueued_pending() == 1.
1064 	 *
1065 	 * Therefore before this function returns, we need to wait until
1066 	 * get_unqueued_pendings(conf) gets equal to extra. For
1067 	 * normal I/O context, extra is 1, in rested situations extra is 0.
1068 	 */
1069 	spin_lock_irq(&conf->resync_lock);
1070 	conf->array_frozen = 1;
1071 	raid1_log(conf->mddev, "wait freeze");
1072 	wait_event_lock_irq_cmd(
1073 		conf->wait_barrier,
1074 		get_unqueued_pending(conf) == extra,
1075 		conf->resync_lock,
1076 		flush_pending_writes(conf));
1077 	spin_unlock_irq(&conf->resync_lock);
1078 }
1079 static void unfreeze_array(struct r1conf *conf)
1080 {
1081 	/* reverse the effect of the freeze */
1082 	spin_lock_irq(&conf->resync_lock);
1083 	conf->array_frozen = 0;
1084 	spin_unlock_irq(&conf->resync_lock);
1085 	wake_up(&conf->wait_barrier);
1086 }
1087 
1088 static struct bio *alloc_behind_master_bio(struct r1bio *r1_bio,
1089 					   struct bio *bio)
1090 {
1091 	int size = bio->bi_iter.bi_size;
1092 	unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1093 	int i = 0;
1094 	struct bio *behind_bio = NULL;
1095 
1096 	behind_bio = bio_alloc_mddev(GFP_NOIO, vcnt, r1_bio->mddev);
1097 	if (!behind_bio)
1098 		goto fail;
1099 
1100 	/* discard op, we don't support writezero/writesame yet */
1101 	if (!bio_has_data(bio))
1102 		goto skip_copy;
1103 
1104 	while (i < vcnt && size) {
1105 		struct page *page;
1106 		int len = min_t(int, PAGE_SIZE, size);
1107 
1108 		page = alloc_page(GFP_NOIO);
1109 		if (unlikely(!page))
1110 			goto free_pages;
1111 
1112 		bio_add_page(behind_bio, page, len, 0);
1113 
1114 		size -= len;
1115 		i++;
1116 	}
1117 
1118 	bio_copy_data(behind_bio, bio);
1119 skip_copy:
1120 	r1_bio->behind_master_bio = behind_bio;;
1121 	set_bit(R1BIO_BehindIO, &r1_bio->state);
1122 
1123 	return behind_bio;
1124 
1125 free_pages:
1126 	pr_debug("%dB behind alloc failed, doing sync I/O\n",
1127 		 bio->bi_iter.bi_size);
1128 	bio_free_pages(behind_bio);
1129 fail:
1130 	return behind_bio;
1131 }
1132 
1133 struct raid1_plug_cb {
1134 	struct blk_plug_cb	cb;
1135 	struct bio_list		pending;
1136 	int			pending_cnt;
1137 };
1138 
1139 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1140 {
1141 	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1142 						  cb);
1143 	struct mddev *mddev = plug->cb.data;
1144 	struct r1conf *conf = mddev->private;
1145 	struct bio *bio;
1146 
1147 	if (from_schedule || current->bio_list) {
1148 		spin_lock_irq(&conf->device_lock);
1149 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1150 		conf->pending_count += plug->pending_cnt;
1151 		spin_unlock_irq(&conf->device_lock);
1152 		wake_up(&conf->wait_barrier);
1153 		md_wakeup_thread(mddev->thread);
1154 		kfree(plug);
1155 		return;
1156 	}
1157 
1158 	/* we aren't scheduling, so we can do the write-out directly. */
1159 	bio = bio_list_get(&plug->pending);
1160 	flush_bio_list(conf, bio);
1161 	kfree(plug);
1162 }
1163 
1164 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1165 {
1166 	r1_bio->master_bio = bio;
1167 	r1_bio->sectors = bio_sectors(bio);
1168 	r1_bio->state = 0;
1169 	r1_bio->mddev = mddev;
1170 	r1_bio->sector = bio->bi_iter.bi_sector;
1171 }
1172 
1173 static inline struct r1bio *
1174 alloc_r1bio(struct mddev *mddev, struct bio *bio)
1175 {
1176 	struct r1conf *conf = mddev->private;
1177 	struct r1bio *r1_bio;
1178 
1179 	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1180 	/* Ensure no bio records IO_BLOCKED */
1181 	memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1182 	init_r1bio(r1_bio, mddev, bio);
1183 	return r1_bio;
1184 }
1185 
1186 static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1187 			       int max_read_sectors, struct r1bio *r1_bio)
1188 {
1189 	struct r1conf *conf = mddev->private;
1190 	struct raid1_info *mirror;
1191 	struct bio *read_bio;
1192 	struct bitmap *bitmap = mddev->bitmap;
1193 	const int op = bio_op(bio);
1194 	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1195 	int max_sectors;
1196 	int rdisk;
1197 	bool print_msg = !!r1_bio;
1198 	char b[BDEVNAME_SIZE];
1199 
1200 	/*
1201 	 * If r1_bio is set, we are blocking the raid1d thread
1202 	 * so there is a tiny risk of deadlock.  So ask for
1203 	 * emergency memory if needed.
1204 	 */
1205 	gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1206 
1207 	if (print_msg) {
1208 		/* Need to get the block device name carefully */
1209 		struct md_rdev *rdev;
1210 		rcu_read_lock();
1211 		rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1212 		if (rdev)
1213 			bdevname(rdev->bdev, b);
1214 		else
1215 			strcpy(b, "???");
1216 		rcu_read_unlock();
1217 	}
1218 
1219 	/*
1220 	 * Still need barrier for READ in case that whole
1221 	 * array is frozen.
1222 	 */
1223 	wait_read_barrier(conf, bio->bi_iter.bi_sector);
1224 
1225 	if (!r1_bio)
1226 		r1_bio = alloc_r1bio(mddev, bio);
1227 	else
1228 		init_r1bio(r1_bio, mddev, bio);
1229 	r1_bio->sectors = max_read_sectors;
1230 
1231 	/*
1232 	 * make_request() can abort the operation when read-ahead is being
1233 	 * used and no empty request is available.
1234 	 */
1235 	rdisk = read_balance(conf, r1_bio, &max_sectors);
1236 
1237 	if (rdisk < 0) {
1238 		/* couldn't find anywhere to read from */
1239 		if (print_msg) {
1240 			pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1241 					    mdname(mddev),
1242 					    b,
1243 					    (unsigned long long)r1_bio->sector);
1244 		}
1245 		raid_end_bio_io(r1_bio);
1246 		return;
1247 	}
1248 	mirror = conf->mirrors + rdisk;
1249 
1250 	if (print_msg)
1251 		pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
1252 				    mdname(mddev),
1253 				    (unsigned long long)r1_bio->sector,
1254 				    bdevname(mirror->rdev->bdev, b));
1255 
1256 	if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1257 	    bitmap) {
1258 		/*
1259 		 * Reading from a write-mostly device must take care not to
1260 		 * over-take any writes that are 'behind'
1261 		 */
1262 		raid1_log(mddev, "wait behind writes");
1263 		wait_event(bitmap->behind_wait,
1264 			   atomic_read(&bitmap->behind_writes) == 0);
1265 	}
1266 
1267 	if (max_sectors < bio_sectors(bio)) {
1268 		struct bio *split = bio_split(bio, max_sectors,
1269 					      gfp, conf->bio_split);
1270 		bio_chain(split, bio);
1271 		generic_make_request(bio);
1272 		bio = split;
1273 		r1_bio->master_bio = bio;
1274 		r1_bio->sectors = max_sectors;
1275 	}
1276 
1277 	r1_bio->read_disk = rdisk;
1278 
1279 	read_bio = bio_clone_fast(bio, gfp, mddev->bio_set);
1280 
1281 	r1_bio->bios[rdisk] = read_bio;
1282 
1283 	read_bio->bi_iter.bi_sector = r1_bio->sector +
1284 		mirror->rdev->data_offset;
1285 	read_bio->bi_bdev = mirror->rdev->bdev;
1286 	read_bio->bi_end_io = raid1_end_read_request;
1287 	bio_set_op_attrs(read_bio, op, do_sync);
1288 	if (test_bit(FailFast, &mirror->rdev->flags) &&
1289 	    test_bit(R1BIO_FailFast, &r1_bio->state))
1290 	        read_bio->bi_opf |= MD_FAILFAST;
1291 	read_bio->bi_private = r1_bio;
1292 
1293 	if (mddev->gendisk)
1294 	        trace_block_bio_remap(bdev_get_queue(read_bio->bi_bdev),
1295 	                              read_bio, disk_devt(mddev->gendisk),
1296 	                              r1_bio->sector);
1297 
1298 	generic_make_request(read_bio);
1299 }
1300 
1301 static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1302 				int max_write_sectors)
1303 {
1304 	struct r1conf *conf = mddev->private;
1305 	struct r1bio *r1_bio;
1306 	int i, disks;
1307 	struct bitmap *bitmap = mddev->bitmap;
1308 	unsigned long flags;
1309 	struct md_rdev *blocked_rdev;
1310 	struct blk_plug_cb *cb;
1311 	struct raid1_plug_cb *plug = NULL;
1312 	int first_clone;
1313 	int max_sectors;
1314 
1315 	/*
1316 	 * Register the new request and wait if the reconstruction
1317 	 * thread has put up a bar for new requests.
1318 	 * Continue immediately if no resync is active currently.
1319 	 */
1320 
1321 	md_write_start(mddev, bio); /* wait on superblock update early */
1322 
1323 	if ((bio_end_sector(bio) > mddev->suspend_lo &&
1324 	    bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1325 	    (mddev_is_clustered(mddev) &&
1326 	     md_cluster_ops->area_resyncing(mddev, WRITE,
1327 		     bio->bi_iter.bi_sector, bio_end_sector(bio)))) {
1328 
1329 		/*
1330 		 * As the suspend_* range is controlled by userspace, we want
1331 		 * an interruptible wait.
1332 		 */
1333 		DEFINE_WAIT(w);
1334 		for (;;) {
1335 			flush_signals(current);
1336 			prepare_to_wait(&conf->wait_barrier,
1337 					&w, TASK_INTERRUPTIBLE);
1338 			if (bio_end_sector(bio) <= mddev->suspend_lo ||
1339 			    bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1340 			    (mddev_is_clustered(mddev) &&
1341 			     !md_cluster_ops->area_resyncing(mddev, WRITE,
1342 				     bio->bi_iter.bi_sector,
1343 				     bio_end_sector(bio))))
1344 				break;
1345 			schedule();
1346 		}
1347 		finish_wait(&conf->wait_barrier, &w);
1348 	}
1349 	wait_barrier(conf, bio->bi_iter.bi_sector);
1350 
1351 	r1_bio = alloc_r1bio(mddev, bio);
1352 	r1_bio->sectors = max_write_sectors;
1353 
1354 	if (conf->pending_count >= max_queued_requests) {
1355 		md_wakeup_thread(mddev->thread);
1356 		raid1_log(mddev, "wait queued");
1357 		wait_event(conf->wait_barrier,
1358 			   conf->pending_count < max_queued_requests);
1359 	}
1360 	/* first select target devices under rcu_lock and
1361 	 * inc refcount on their rdev.  Record them by setting
1362 	 * bios[x] to bio
1363 	 * If there are known/acknowledged bad blocks on any device on
1364 	 * which we have seen a write error, we want to avoid writing those
1365 	 * blocks.
1366 	 * This potentially requires several writes to write around
1367 	 * the bad blocks.  Each set of writes gets it's own r1bio
1368 	 * with a set of bios attached.
1369 	 */
1370 
1371 	disks = conf->raid_disks * 2;
1372  retry_write:
1373 	blocked_rdev = NULL;
1374 	rcu_read_lock();
1375 	max_sectors = r1_bio->sectors;
1376 	for (i = 0;  i < disks; i++) {
1377 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1378 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1379 			atomic_inc(&rdev->nr_pending);
1380 			blocked_rdev = rdev;
1381 			break;
1382 		}
1383 		r1_bio->bios[i] = NULL;
1384 		if (!rdev || test_bit(Faulty, &rdev->flags)) {
1385 			if (i < conf->raid_disks)
1386 				set_bit(R1BIO_Degraded, &r1_bio->state);
1387 			continue;
1388 		}
1389 
1390 		atomic_inc(&rdev->nr_pending);
1391 		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1392 			sector_t first_bad;
1393 			int bad_sectors;
1394 			int is_bad;
1395 
1396 			is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1397 					     &first_bad, &bad_sectors);
1398 			if (is_bad < 0) {
1399 				/* mustn't write here until the bad block is
1400 				 * acknowledged*/
1401 				set_bit(BlockedBadBlocks, &rdev->flags);
1402 				blocked_rdev = rdev;
1403 				break;
1404 			}
1405 			if (is_bad && first_bad <= r1_bio->sector) {
1406 				/* Cannot write here at all */
1407 				bad_sectors -= (r1_bio->sector - first_bad);
1408 				if (bad_sectors < max_sectors)
1409 					/* mustn't write more than bad_sectors
1410 					 * to other devices yet
1411 					 */
1412 					max_sectors = bad_sectors;
1413 				rdev_dec_pending(rdev, mddev);
1414 				/* We don't set R1BIO_Degraded as that
1415 				 * only applies if the disk is
1416 				 * missing, so it might be re-added,
1417 				 * and we want to know to recover this
1418 				 * chunk.
1419 				 * In this case the device is here,
1420 				 * and the fact that this chunk is not
1421 				 * in-sync is recorded in the bad
1422 				 * block log
1423 				 */
1424 				continue;
1425 			}
1426 			if (is_bad) {
1427 				int good_sectors = first_bad - r1_bio->sector;
1428 				if (good_sectors < max_sectors)
1429 					max_sectors = good_sectors;
1430 			}
1431 		}
1432 		r1_bio->bios[i] = bio;
1433 	}
1434 	rcu_read_unlock();
1435 
1436 	if (unlikely(blocked_rdev)) {
1437 		/* Wait for this device to become unblocked */
1438 		int j;
1439 
1440 		for (j = 0; j < i; j++)
1441 			if (r1_bio->bios[j])
1442 				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1443 		r1_bio->state = 0;
1444 		allow_barrier(conf, bio->bi_iter.bi_sector);
1445 		raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1446 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1447 		wait_barrier(conf, bio->bi_iter.bi_sector);
1448 		goto retry_write;
1449 	}
1450 
1451 	if (max_sectors < bio_sectors(bio)) {
1452 		struct bio *split = bio_split(bio, max_sectors,
1453 					      GFP_NOIO, conf->bio_split);
1454 		bio_chain(split, bio);
1455 		generic_make_request(bio);
1456 		bio = split;
1457 		r1_bio->master_bio = bio;
1458 		r1_bio->sectors = max_sectors;
1459 	}
1460 
1461 	atomic_set(&r1_bio->remaining, 1);
1462 	atomic_set(&r1_bio->behind_remaining, 0);
1463 
1464 	first_clone = 1;
1465 
1466 	for (i = 0; i < disks; i++) {
1467 		struct bio *mbio = NULL;
1468 		if (!r1_bio->bios[i])
1469 			continue;
1470 
1471 
1472 		if (first_clone) {
1473 			/* do behind I/O ?
1474 			 * Not if there are too many, or cannot
1475 			 * allocate memory, or a reader on WriteMostly
1476 			 * is waiting for behind writes to flush */
1477 			if (bitmap &&
1478 			    (atomic_read(&bitmap->behind_writes)
1479 			     < mddev->bitmap_info.max_write_behind) &&
1480 			    !waitqueue_active(&bitmap->behind_wait)) {
1481 				mbio = alloc_behind_master_bio(r1_bio, bio);
1482 			}
1483 
1484 			bitmap_startwrite(bitmap, r1_bio->sector,
1485 					  r1_bio->sectors,
1486 					  test_bit(R1BIO_BehindIO,
1487 						   &r1_bio->state));
1488 			first_clone = 0;
1489 		}
1490 
1491 		if (!mbio) {
1492 			if (r1_bio->behind_master_bio)
1493 				mbio = bio_clone_fast(r1_bio->behind_master_bio,
1494 						      GFP_NOIO,
1495 						      mddev->bio_set);
1496 			else
1497 				mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
1498 		}
1499 
1500 		if (r1_bio->behind_master_bio) {
1501 			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1502 				atomic_inc(&r1_bio->behind_remaining);
1503 		}
1504 
1505 		r1_bio->bios[i] = mbio;
1506 
1507 		mbio->bi_iter.bi_sector	= (r1_bio->sector +
1508 				   conf->mirrors[i].rdev->data_offset);
1509 		mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1510 		mbio->bi_end_io	= raid1_end_write_request;
1511 		mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1512 		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1513 		    !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1514 		    conf->raid_disks - mddev->degraded > 1)
1515 			mbio->bi_opf |= MD_FAILFAST;
1516 		mbio->bi_private = r1_bio;
1517 
1518 		atomic_inc(&r1_bio->remaining);
1519 
1520 		if (mddev->gendisk)
1521 			trace_block_bio_remap(bdev_get_queue(mbio->bi_bdev),
1522 					      mbio, disk_devt(mddev->gendisk),
1523 					      r1_bio->sector);
1524 		/* flush_pending_writes() needs access to the rdev so...*/
1525 		mbio->bi_bdev = (void*)conf->mirrors[i].rdev;
1526 
1527 		cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1528 		if (cb)
1529 			plug = container_of(cb, struct raid1_plug_cb, cb);
1530 		else
1531 			plug = NULL;
1532 		spin_lock_irqsave(&conf->device_lock, flags);
1533 		if (plug) {
1534 			bio_list_add(&plug->pending, mbio);
1535 			plug->pending_cnt++;
1536 		} else {
1537 			bio_list_add(&conf->pending_bio_list, mbio);
1538 			conf->pending_count++;
1539 		}
1540 		spin_unlock_irqrestore(&conf->device_lock, flags);
1541 		if (!plug)
1542 			md_wakeup_thread(mddev->thread);
1543 	}
1544 
1545 	r1_bio_write_done(r1_bio);
1546 
1547 	/* In case raid1d snuck in to freeze_array */
1548 	wake_up(&conf->wait_barrier);
1549 }
1550 
1551 static void raid1_make_request(struct mddev *mddev, struct bio *bio)
1552 {
1553 	sector_t sectors;
1554 
1555 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1556 		md_flush_request(mddev, bio);
1557 		return;
1558 	}
1559 
1560 	/*
1561 	 * There is a limit to the maximum size, but
1562 	 * the read/write handler might find a lower limit
1563 	 * due to bad blocks.  To avoid multiple splits,
1564 	 * we pass the maximum number of sectors down
1565 	 * and let the lower level perform the split.
1566 	 */
1567 	sectors = align_to_barrier_unit_end(
1568 		bio->bi_iter.bi_sector, bio_sectors(bio));
1569 
1570 	if (bio_data_dir(bio) == READ)
1571 		raid1_read_request(mddev, bio, sectors, NULL);
1572 	else
1573 		raid1_write_request(mddev, bio, sectors);
1574 }
1575 
1576 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1577 {
1578 	struct r1conf *conf = mddev->private;
1579 	int i;
1580 
1581 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1582 		   conf->raid_disks - mddev->degraded);
1583 	rcu_read_lock();
1584 	for (i = 0; i < conf->raid_disks; i++) {
1585 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1586 		seq_printf(seq, "%s",
1587 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1588 	}
1589 	rcu_read_unlock();
1590 	seq_printf(seq, "]");
1591 }
1592 
1593 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1594 {
1595 	char b[BDEVNAME_SIZE];
1596 	struct r1conf *conf = mddev->private;
1597 	unsigned long flags;
1598 
1599 	/*
1600 	 * If it is not operational, then we have already marked it as dead
1601 	 * else if it is the last working disks, ignore the error, let the
1602 	 * next level up know.
1603 	 * else mark the drive as failed
1604 	 */
1605 	spin_lock_irqsave(&conf->device_lock, flags);
1606 	if (test_bit(In_sync, &rdev->flags)
1607 	    && (conf->raid_disks - mddev->degraded) == 1) {
1608 		/*
1609 		 * Don't fail the drive, act as though we were just a
1610 		 * normal single drive.
1611 		 * However don't try a recovery from this drive as
1612 		 * it is very likely to fail.
1613 		 */
1614 		conf->recovery_disabled = mddev->recovery_disabled;
1615 		spin_unlock_irqrestore(&conf->device_lock, flags);
1616 		return;
1617 	}
1618 	set_bit(Blocked, &rdev->flags);
1619 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1620 		mddev->degraded++;
1621 		set_bit(Faulty, &rdev->flags);
1622 	} else
1623 		set_bit(Faulty, &rdev->flags);
1624 	spin_unlock_irqrestore(&conf->device_lock, flags);
1625 	/*
1626 	 * if recovery is running, make sure it aborts.
1627 	 */
1628 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1629 	set_mask_bits(&mddev->sb_flags, 0,
1630 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1631 	pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1632 		"md/raid1:%s: Operation continuing on %d devices.\n",
1633 		mdname(mddev), bdevname(rdev->bdev, b),
1634 		mdname(mddev), conf->raid_disks - mddev->degraded);
1635 }
1636 
1637 static void print_conf(struct r1conf *conf)
1638 {
1639 	int i;
1640 
1641 	pr_debug("RAID1 conf printout:\n");
1642 	if (!conf) {
1643 		pr_debug("(!conf)\n");
1644 		return;
1645 	}
1646 	pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1647 		 conf->raid_disks);
1648 
1649 	rcu_read_lock();
1650 	for (i = 0; i < conf->raid_disks; i++) {
1651 		char b[BDEVNAME_SIZE];
1652 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1653 		if (rdev)
1654 			pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1655 				 i, !test_bit(In_sync, &rdev->flags),
1656 				 !test_bit(Faulty, &rdev->flags),
1657 				 bdevname(rdev->bdev,b));
1658 	}
1659 	rcu_read_unlock();
1660 }
1661 
1662 static void close_sync(struct r1conf *conf)
1663 {
1664 	wait_all_barriers(conf);
1665 	allow_all_barriers(conf);
1666 
1667 	mempool_destroy(conf->r1buf_pool);
1668 	conf->r1buf_pool = NULL;
1669 }
1670 
1671 static int raid1_spare_active(struct mddev *mddev)
1672 {
1673 	int i;
1674 	struct r1conf *conf = mddev->private;
1675 	int count = 0;
1676 	unsigned long flags;
1677 
1678 	/*
1679 	 * Find all failed disks within the RAID1 configuration
1680 	 * and mark them readable.
1681 	 * Called under mddev lock, so rcu protection not needed.
1682 	 * device_lock used to avoid races with raid1_end_read_request
1683 	 * which expects 'In_sync' flags and ->degraded to be consistent.
1684 	 */
1685 	spin_lock_irqsave(&conf->device_lock, flags);
1686 	for (i = 0; i < conf->raid_disks; i++) {
1687 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1688 		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1689 		if (repl
1690 		    && !test_bit(Candidate, &repl->flags)
1691 		    && repl->recovery_offset == MaxSector
1692 		    && !test_bit(Faulty, &repl->flags)
1693 		    && !test_and_set_bit(In_sync, &repl->flags)) {
1694 			/* replacement has just become active */
1695 			if (!rdev ||
1696 			    !test_and_clear_bit(In_sync, &rdev->flags))
1697 				count++;
1698 			if (rdev) {
1699 				/* Replaced device not technically
1700 				 * faulty, but we need to be sure
1701 				 * it gets removed and never re-added
1702 				 */
1703 				set_bit(Faulty, &rdev->flags);
1704 				sysfs_notify_dirent_safe(
1705 					rdev->sysfs_state);
1706 			}
1707 		}
1708 		if (rdev
1709 		    && rdev->recovery_offset == MaxSector
1710 		    && !test_bit(Faulty, &rdev->flags)
1711 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1712 			count++;
1713 			sysfs_notify_dirent_safe(rdev->sysfs_state);
1714 		}
1715 	}
1716 	mddev->degraded -= count;
1717 	spin_unlock_irqrestore(&conf->device_lock, flags);
1718 
1719 	print_conf(conf);
1720 	return count;
1721 }
1722 
1723 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1724 {
1725 	struct r1conf *conf = mddev->private;
1726 	int err = -EEXIST;
1727 	int mirror = 0;
1728 	struct raid1_info *p;
1729 	int first = 0;
1730 	int last = conf->raid_disks - 1;
1731 
1732 	if (mddev->recovery_disabled == conf->recovery_disabled)
1733 		return -EBUSY;
1734 
1735 	if (md_integrity_add_rdev(rdev, mddev))
1736 		return -ENXIO;
1737 
1738 	if (rdev->raid_disk >= 0)
1739 		first = last = rdev->raid_disk;
1740 
1741 	/*
1742 	 * find the disk ... but prefer rdev->saved_raid_disk
1743 	 * if possible.
1744 	 */
1745 	if (rdev->saved_raid_disk >= 0 &&
1746 	    rdev->saved_raid_disk >= first &&
1747 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1748 		first = last = rdev->saved_raid_disk;
1749 
1750 	for (mirror = first; mirror <= last; mirror++) {
1751 		p = conf->mirrors+mirror;
1752 		if (!p->rdev) {
1753 
1754 			if (mddev->gendisk)
1755 				disk_stack_limits(mddev->gendisk, rdev->bdev,
1756 						  rdev->data_offset << 9);
1757 
1758 			p->head_position = 0;
1759 			rdev->raid_disk = mirror;
1760 			err = 0;
1761 			/* As all devices are equivalent, we don't need a full recovery
1762 			 * if this was recently any drive of the array
1763 			 */
1764 			if (rdev->saved_raid_disk < 0)
1765 				conf->fullsync = 1;
1766 			rcu_assign_pointer(p->rdev, rdev);
1767 			break;
1768 		}
1769 		if (test_bit(WantReplacement, &p->rdev->flags) &&
1770 		    p[conf->raid_disks].rdev == NULL) {
1771 			/* Add this device as a replacement */
1772 			clear_bit(In_sync, &rdev->flags);
1773 			set_bit(Replacement, &rdev->flags);
1774 			rdev->raid_disk = mirror;
1775 			err = 0;
1776 			conf->fullsync = 1;
1777 			rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1778 			break;
1779 		}
1780 	}
1781 	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1782 		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1783 	print_conf(conf);
1784 	return err;
1785 }
1786 
1787 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1788 {
1789 	struct r1conf *conf = mddev->private;
1790 	int err = 0;
1791 	int number = rdev->raid_disk;
1792 	struct raid1_info *p = conf->mirrors + number;
1793 
1794 	if (rdev != p->rdev)
1795 		p = conf->mirrors + conf->raid_disks + number;
1796 
1797 	print_conf(conf);
1798 	if (rdev == p->rdev) {
1799 		if (test_bit(In_sync, &rdev->flags) ||
1800 		    atomic_read(&rdev->nr_pending)) {
1801 			err = -EBUSY;
1802 			goto abort;
1803 		}
1804 		/* Only remove non-faulty devices if recovery
1805 		 * is not possible.
1806 		 */
1807 		if (!test_bit(Faulty, &rdev->flags) &&
1808 		    mddev->recovery_disabled != conf->recovery_disabled &&
1809 		    mddev->degraded < conf->raid_disks) {
1810 			err = -EBUSY;
1811 			goto abort;
1812 		}
1813 		p->rdev = NULL;
1814 		if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1815 			synchronize_rcu();
1816 			if (atomic_read(&rdev->nr_pending)) {
1817 				/* lost the race, try later */
1818 				err = -EBUSY;
1819 				p->rdev = rdev;
1820 				goto abort;
1821 			}
1822 		}
1823 		if (conf->mirrors[conf->raid_disks + number].rdev) {
1824 			/* We just removed a device that is being replaced.
1825 			 * Move down the replacement.  We drain all IO before
1826 			 * doing this to avoid confusion.
1827 			 */
1828 			struct md_rdev *repl =
1829 				conf->mirrors[conf->raid_disks + number].rdev;
1830 			freeze_array(conf, 0);
1831 			clear_bit(Replacement, &repl->flags);
1832 			p->rdev = repl;
1833 			conf->mirrors[conf->raid_disks + number].rdev = NULL;
1834 			unfreeze_array(conf);
1835 		}
1836 
1837 		clear_bit(WantReplacement, &rdev->flags);
1838 		err = md_integrity_register(mddev);
1839 	}
1840 abort:
1841 
1842 	print_conf(conf);
1843 	return err;
1844 }
1845 
1846 static void end_sync_read(struct bio *bio)
1847 {
1848 	struct r1bio *r1_bio = get_resync_r1bio(bio);
1849 
1850 	update_head_pos(r1_bio->read_disk, r1_bio);
1851 
1852 	/*
1853 	 * we have read a block, now it needs to be re-written,
1854 	 * or re-read if the read failed.
1855 	 * We don't do much here, just schedule handling by raid1d
1856 	 */
1857 	if (!bio->bi_error)
1858 		set_bit(R1BIO_Uptodate, &r1_bio->state);
1859 
1860 	if (atomic_dec_and_test(&r1_bio->remaining))
1861 		reschedule_retry(r1_bio);
1862 }
1863 
1864 static void end_sync_write(struct bio *bio)
1865 {
1866 	int uptodate = !bio->bi_error;
1867 	struct r1bio *r1_bio = get_resync_r1bio(bio);
1868 	struct mddev *mddev = r1_bio->mddev;
1869 	struct r1conf *conf = mddev->private;
1870 	sector_t first_bad;
1871 	int bad_sectors;
1872 	struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1873 
1874 	if (!uptodate) {
1875 		sector_t sync_blocks = 0;
1876 		sector_t s = r1_bio->sector;
1877 		long sectors_to_go = r1_bio->sectors;
1878 		/* make sure these bits doesn't get cleared. */
1879 		do {
1880 			bitmap_end_sync(mddev->bitmap, s,
1881 					&sync_blocks, 1);
1882 			s += sync_blocks;
1883 			sectors_to_go -= sync_blocks;
1884 		} while (sectors_to_go > 0);
1885 		set_bit(WriteErrorSeen, &rdev->flags);
1886 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
1887 			set_bit(MD_RECOVERY_NEEDED, &
1888 				mddev->recovery);
1889 		set_bit(R1BIO_WriteError, &r1_bio->state);
1890 	} else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1891 			       &first_bad, &bad_sectors) &&
1892 		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1893 				r1_bio->sector,
1894 				r1_bio->sectors,
1895 				&first_bad, &bad_sectors)
1896 		)
1897 		set_bit(R1BIO_MadeGood, &r1_bio->state);
1898 
1899 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1900 		int s = r1_bio->sectors;
1901 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1902 		    test_bit(R1BIO_WriteError, &r1_bio->state))
1903 			reschedule_retry(r1_bio);
1904 		else {
1905 			put_buf(r1_bio);
1906 			md_done_sync(mddev, s, uptodate);
1907 		}
1908 	}
1909 }
1910 
1911 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1912 			    int sectors, struct page *page, int rw)
1913 {
1914 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1915 		/* success */
1916 		return 1;
1917 	if (rw == WRITE) {
1918 		set_bit(WriteErrorSeen, &rdev->flags);
1919 		if (!test_and_set_bit(WantReplacement,
1920 				      &rdev->flags))
1921 			set_bit(MD_RECOVERY_NEEDED, &
1922 				rdev->mddev->recovery);
1923 	}
1924 	/* need to record an error - either for the block or the device */
1925 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1926 		md_error(rdev->mddev, rdev);
1927 	return 0;
1928 }
1929 
1930 static int fix_sync_read_error(struct r1bio *r1_bio)
1931 {
1932 	/* Try some synchronous reads of other devices to get
1933 	 * good data, much like with normal read errors.  Only
1934 	 * read into the pages we already have so we don't
1935 	 * need to re-issue the read request.
1936 	 * We don't need to freeze the array, because being in an
1937 	 * active sync request, there is no normal IO, and
1938 	 * no overlapping syncs.
1939 	 * We don't need to check is_badblock() again as we
1940 	 * made sure that anything with a bad block in range
1941 	 * will have bi_end_io clear.
1942 	 */
1943 	struct mddev *mddev = r1_bio->mddev;
1944 	struct r1conf *conf = mddev->private;
1945 	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1946 	struct page **pages = get_resync_pages(bio)->pages;
1947 	sector_t sect = r1_bio->sector;
1948 	int sectors = r1_bio->sectors;
1949 	int idx = 0;
1950 	struct md_rdev *rdev;
1951 
1952 	rdev = conf->mirrors[r1_bio->read_disk].rdev;
1953 	if (test_bit(FailFast, &rdev->flags)) {
1954 		/* Don't try recovering from here - just fail it
1955 		 * ... unless it is the last working device of course */
1956 		md_error(mddev, rdev);
1957 		if (test_bit(Faulty, &rdev->flags))
1958 			/* Don't try to read from here, but make sure
1959 			 * put_buf does it's thing
1960 			 */
1961 			bio->bi_end_io = end_sync_write;
1962 	}
1963 
1964 	while(sectors) {
1965 		int s = sectors;
1966 		int d = r1_bio->read_disk;
1967 		int success = 0;
1968 		int start;
1969 
1970 		if (s > (PAGE_SIZE>>9))
1971 			s = PAGE_SIZE >> 9;
1972 		do {
1973 			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1974 				/* No rcu protection needed here devices
1975 				 * can only be removed when no resync is
1976 				 * active, and resync is currently active
1977 				 */
1978 				rdev = conf->mirrors[d].rdev;
1979 				if (sync_page_io(rdev, sect, s<<9,
1980 						 pages[idx],
1981 						 REQ_OP_READ, 0, false)) {
1982 					success = 1;
1983 					break;
1984 				}
1985 			}
1986 			d++;
1987 			if (d == conf->raid_disks * 2)
1988 				d = 0;
1989 		} while (!success && d != r1_bio->read_disk);
1990 
1991 		if (!success) {
1992 			char b[BDEVNAME_SIZE];
1993 			int abort = 0;
1994 			/* Cannot read from anywhere, this block is lost.
1995 			 * Record a bad block on each device.  If that doesn't
1996 			 * work just disable and interrupt the recovery.
1997 			 * Don't fail devices as that won't really help.
1998 			 */
1999 			pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2000 					    mdname(mddev),
2001 					    bdevname(bio->bi_bdev, b),
2002 					    (unsigned long long)r1_bio->sector);
2003 			for (d = 0; d < conf->raid_disks * 2; d++) {
2004 				rdev = conf->mirrors[d].rdev;
2005 				if (!rdev || test_bit(Faulty, &rdev->flags))
2006 					continue;
2007 				if (!rdev_set_badblocks(rdev, sect, s, 0))
2008 					abort = 1;
2009 			}
2010 			if (abort) {
2011 				conf->recovery_disabled =
2012 					mddev->recovery_disabled;
2013 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2014 				md_done_sync(mddev, r1_bio->sectors, 0);
2015 				put_buf(r1_bio);
2016 				return 0;
2017 			}
2018 			/* Try next page */
2019 			sectors -= s;
2020 			sect += s;
2021 			idx++;
2022 			continue;
2023 		}
2024 
2025 		start = d;
2026 		/* write it back and re-read */
2027 		while (d != r1_bio->read_disk) {
2028 			if (d == 0)
2029 				d = conf->raid_disks * 2;
2030 			d--;
2031 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2032 				continue;
2033 			rdev = conf->mirrors[d].rdev;
2034 			if (r1_sync_page_io(rdev, sect, s,
2035 					    pages[idx],
2036 					    WRITE) == 0) {
2037 				r1_bio->bios[d]->bi_end_io = NULL;
2038 				rdev_dec_pending(rdev, mddev);
2039 			}
2040 		}
2041 		d = start;
2042 		while (d != r1_bio->read_disk) {
2043 			if (d == 0)
2044 				d = conf->raid_disks * 2;
2045 			d--;
2046 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2047 				continue;
2048 			rdev = conf->mirrors[d].rdev;
2049 			if (r1_sync_page_io(rdev, sect, s,
2050 					    pages[idx],
2051 					    READ) != 0)
2052 				atomic_add(s, &rdev->corrected_errors);
2053 		}
2054 		sectors -= s;
2055 		sect += s;
2056 		idx ++;
2057 	}
2058 	set_bit(R1BIO_Uptodate, &r1_bio->state);
2059 	bio->bi_error = 0;
2060 	return 1;
2061 }
2062 
2063 static void process_checks(struct r1bio *r1_bio)
2064 {
2065 	/* We have read all readable devices.  If we haven't
2066 	 * got the block, then there is no hope left.
2067 	 * If we have, then we want to do a comparison
2068 	 * and skip the write if everything is the same.
2069 	 * If any blocks failed to read, then we need to
2070 	 * attempt an over-write
2071 	 */
2072 	struct mddev *mddev = r1_bio->mddev;
2073 	struct r1conf *conf = mddev->private;
2074 	int primary;
2075 	int i;
2076 	int vcnt;
2077 
2078 	/* Fix variable parts of all bios */
2079 	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2080 	for (i = 0; i < conf->raid_disks * 2; i++) {
2081 		int j;
2082 		int size;
2083 		int error;
2084 		struct bio_vec *bi;
2085 		struct bio *b = r1_bio->bios[i];
2086 		struct resync_pages *rp = get_resync_pages(b);
2087 		if (b->bi_end_io != end_sync_read)
2088 			continue;
2089 		/* fixup the bio for reuse, but preserve errno */
2090 		error = b->bi_error;
2091 		bio_reset(b);
2092 		b->bi_error = error;
2093 		b->bi_vcnt = vcnt;
2094 		b->bi_iter.bi_size = r1_bio->sectors << 9;
2095 		b->bi_iter.bi_sector = r1_bio->sector +
2096 			conf->mirrors[i].rdev->data_offset;
2097 		b->bi_bdev = conf->mirrors[i].rdev->bdev;
2098 		b->bi_end_io = end_sync_read;
2099 		rp->raid_bio = r1_bio;
2100 		b->bi_private = rp;
2101 
2102 		size = b->bi_iter.bi_size;
2103 		bio_for_each_segment_all(bi, b, j) {
2104 			bi->bv_offset = 0;
2105 			if (size > PAGE_SIZE)
2106 				bi->bv_len = PAGE_SIZE;
2107 			else
2108 				bi->bv_len = size;
2109 			size -= PAGE_SIZE;
2110 		}
2111 	}
2112 	for (primary = 0; primary < conf->raid_disks * 2; primary++)
2113 		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2114 		    !r1_bio->bios[primary]->bi_error) {
2115 			r1_bio->bios[primary]->bi_end_io = NULL;
2116 			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2117 			break;
2118 		}
2119 	r1_bio->read_disk = primary;
2120 	for (i = 0; i < conf->raid_disks * 2; i++) {
2121 		int j;
2122 		struct bio *pbio = r1_bio->bios[primary];
2123 		struct bio *sbio = r1_bio->bios[i];
2124 		int error = sbio->bi_error;
2125 		struct page **ppages = get_resync_pages(pbio)->pages;
2126 		struct page **spages = get_resync_pages(sbio)->pages;
2127 		struct bio_vec *bi;
2128 		int page_len[RESYNC_PAGES] = { 0 };
2129 
2130 		if (sbio->bi_end_io != end_sync_read)
2131 			continue;
2132 		/* Now we can 'fixup' the error value */
2133 		sbio->bi_error = 0;
2134 
2135 		bio_for_each_segment_all(bi, sbio, j)
2136 			page_len[j] = bi->bv_len;
2137 
2138 		if (!error) {
2139 			for (j = vcnt; j-- ; ) {
2140 				if (memcmp(page_address(ppages[j]),
2141 					   page_address(spages[j]),
2142 					   page_len[j]))
2143 					break;
2144 			}
2145 		} else
2146 			j = 0;
2147 		if (j >= 0)
2148 			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2149 		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2150 			      && !error)) {
2151 			/* No need to write to this device. */
2152 			sbio->bi_end_io = NULL;
2153 			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2154 			continue;
2155 		}
2156 
2157 		bio_copy_data(sbio, pbio);
2158 	}
2159 }
2160 
2161 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2162 {
2163 	struct r1conf *conf = mddev->private;
2164 	int i;
2165 	int disks = conf->raid_disks * 2;
2166 	struct bio *bio, *wbio;
2167 
2168 	bio = r1_bio->bios[r1_bio->read_disk];
2169 
2170 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2171 		/* ouch - failed to read all of that. */
2172 		if (!fix_sync_read_error(r1_bio))
2173 			return;
2174 
2175 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2176 		process_checks(r1_bio);
2177 
2178 	/*
2179 	 * schedule writes
2180 	 */
2181 	atomic_set(&r1_bio->remaining, 1);
2182 	for (i = 0; i < disks ; i++) {
2183 		wbio = r1_bio->bios[i];
2184 		if (wbio->bi_end_io == NULL ||
2185 		    (wbio->bi_end_io == end_sync_read &&
2186 		     (i == r1_bio->read_disk ||
2187 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2188 			continue;
2189 		if (test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2190 			continue;
2191 
2192 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2193 		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2194 			wbio->bi_opf |= MD_FAILFAST;
2195 
2196 		wbio->bi_end_io = end_sync_write;
2197 		atomic_inc(&r1_bio->remaining);
2198 		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2199 
2200 		generic_make_request(wbio);
2201 	}
2202 
2203 	if (atomic_dec_and_test(&r1_bio->remaining)) {
2204 		/* if we're here, all write(s) have completed, so clean up */
2205 		int s = r1_bio->sectors;
2206 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2207 		    test_bit(R1BIO_WriteError, &r1_bio->state))
2208 			reschedule_retry(r1_bio);
2209 		else {
2210 			put_buf(r1_bio);
2211 			md_done_sync(mddev, s, 1);
2212 		}
2213 	}
2214 }
2215 
2216 /*
2217  * This is a kernel thread which:
2218  *
2219  *	1.	Retries failed read operations on working mirrors.
2220  *	2.	Updates the raid superblock when problems encounter.
2221  *	3.	Performs writes following reads for array synchronising.
2222  */
2223 
2224 static void fix_read_error(struct r1conf *conf, int read_disk,
2225 			   sector_t sect, int sectors)
2226 {
2227 	struct mddev *mddev = conf->mddev;
2228 	while(sectors) {
2229 		int s = sectors;
2230 		int d = read_disk;
2231 		int success = 0;
2232 		int start;
2233 		struct md_rdev *rdev;
2234 
2235 		if (s > (PAGE_SIZE>>9))
2236 			s = PAGE_SIZE >> 9;
2237 
2238 		do {
2239 			sector_t first_bad;
2240 			int bad_sectors;
2241 
2242 			rcu_read_lock();
2243 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2244 			if (rdev &&
2245 			    (test_bit(In_sync, &rdev->flags) ||
2246 			     (!test_bit(Faulty, &rdev->flags) &&
2247 			      rdev->recovery_offset >= sect + s)) &&
2248 			    is_badblock(rdev, sect, s,
2249 					&first_bad, &bad_sectors) == 0) {
2250 				atomic_inc(&rdev->nr_pending);
2251 				rcu_read_unlock();
2252 				if (sync_page_io(rdev, sect, s<<9,
2253 					 conf->tmppage, REQ_OP_READ, 0, false))
2254 					success = 1;
2255 				rdev_dec_pending(rdev, mddev);
2256 				if (success)
2257 					break;
2258 			} else
2259 				rcu_read_unlock();
2260 			d++;
2261 			if (d == conf->raid_disks * 2)
2262 				d = 0;
2263 		} while (!success && d != read_disk);
2264 
2265 		if (!success) {
2266 			/* Cannot read from anywhere - mark it bad */
2267 			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2268 			if (!rdev_set_badblocks(rdev, sect, s, 0))
2269 				md_error(mddev, rdev);
2270 			break;
2271 		}
2272 		/* write it back and re-read */
2273 		start = d;
2274 		while (d != read_disk) {
2275 			if (d==0)
2276 				d = conf->raid_disks * 2;
2277 			d--;
2278 			rcu_read_lock();
2279 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2280 			if (rdev &&
2281 			    !test_bit(Faulty, &rdev->flags)) {
2282 				atomic_inc(&rdev->nr_pending);
2283 				rcu_read_unlock();
2284 				r1_sync_page_io(rdev, sect, s,
2285 						conf->tmppage, WRITE);
2286 				rdev_dec_pending(rdev, mddev);
2287 			} else
2288 				rcu_read_unlock();
2289 		}
2290 		d = start;
2291 		while (d != read_disk) {
2292 			char b[BDEVNAME_SIZE];
2293 			if (d==0)
2294 				d = conf->raid_disks * 2;
2295 			d--;
2296 			rcu_read_lock();
2297 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2298 			if (rdev &&
2299 			    !test_bit(Faulty, &rdev->flags)) {
2300 				atomic_inc(&rdev->nr_pending);
2301 				rcu_read_unlock();
2302 				if (r1_sync_page_io(rdev, sect, s,
2303 						    conf->tmppage, READ)) {
2304 					atomic_add(s, &rdev->corrected_errors);
2305 					pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2306 						mdname(mddev), s,
2307 						(unsigned long long)(sect +
2308 								     rdev->data_offset),
2309 						bdevname(rdev->bdev, b));
2310 				}
2311 				rdev_dec_pending(rdev, mddev);
2312 			} else
2313 				rcu_read_unlock();
2314 		}
2315 		sectors -= s;
2316 		sect += s;
2317 	}
2318 }
2319 
2320 static int narrow_write_error(struct r1bio *r1_bio, int i)
2321 {
2322 	struct mddev *mddev = r1_bio->mddev;
2323 	struct r1conf *conf = mddev->private;
2324 	struct md_rdev *rdev = conf->mirrors[i].rdev;
2325 
2326 	/* bio has the data to be written to device 'i' where
2327 	 * we just recently had a write error.
2328 	 * We repeatedly clone the bio and trim down to one block,
2329 	 * then try the write.  Where the write fails we record
2330 	 * a bad block.
2331 	 * It is conceivable that the bio doesn't exactly align with
2332 	 * blocks.  We must handle this somehow.
2333 	 *
2334 	 * We currently own a reference on the rdev.
2335 	 */
2336 
2337 	int block_sectors;
2338 	sector_t sector;
2339 	int sectors;
2340 	int sect_to_write = r1_bio->sectors;
2341 	int ok = 1;
2342 
2343 	if (rdev->badblocks.shift < 0)
2344 		return 0;
2345 
2346 	block_sectors = roundup(1 << rdev->badblocks.shift,
2347 				bdev_logical_block_size(rdev->bdev) >> 9);
2348 	sector = r1_bio->sector;
2349 	sectors = ((sector + block_sectors)
2350 		   & ~(sector_t)(block_sectors - 1))
2351 		- sector;
2352 
2353 	while (sect_to_write) {
2354 		struct bio *wbio;
2355 		if (sectors > sect_to_write)
2356 			sectors = sect_to_write;
2357 		/* Write at 'sector' for 'sectors'*/
2358 
2359 		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2360 			wbio = bio_clone_fast(r1_bio->behind_master_bio,
2361 					      GFP_NOIO,
2362 					      mddev->bio_set);
2363 			/* We really need a _all clone */
2364 			wbio->bi_iter = (struct bvec_iter){ 0 };
2365 		} else {
2366 			wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2367 					      mddev->bio_set);
2368 		}
2369 
2370 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2371 		wbio->bi_iter.bi_sector = r1_bio->sector;
2372 		wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2373 
2374 		bio_trim(wbio, sector - r1_bio->sector, sectors);
2375 		wbio->bi_iter.bi_sector += rdev->data_offset;
2376 		wbio->bi_bdev = rdev->bdev;
2377 
2378 		if (submit_bio_wait(wbio) < 0)
2379 			/* failure! */
2380 			ok = rdev_set_badblocks(rdev, sector,
2381 						sectors, 0)
2382 				&& ok;
2383 
2384 		bio_put(wbio);
2385 		sect_to_write -= sectors;
2386 		sector += sectors;
2387 		sectors = block_sectors;
2388 	}
2389 	return ok;
2390 }
2391 
2392 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2393 {
2394 	int m;
2395 	int s = r1_bio->sectors;
2396 	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2397 		struct md_rdev *rdev = conf->mirrors[m].rdev;
2398 		struct bio *bio = r1_bio->bios[m];
2399 		if (bio->bi_end_io == NULL)
2400 			continue;
2401 		if (!bio->bi_error &&
2402 		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2403 			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2404 		}
2405 		if (bio->bi_error &&
2406 		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2407 			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2408 				md_error(conf->mddev, rdev);
2409 		}
2410 	}
2411 	put_buf(r1_bio);
2412 	md_done_sync(conf->mddev, s, 1);
2413 }
2414 
2415 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2416 {
2417 	int m, idx;
2418 	bool fail = false;
2419 
2420 	for (m = 0; m < conf->raid_disks * 2 ; m++)
2421 		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2422 			struct md_rdev *rdev = conf->mirrors[m].rdev;
2423 			rdev_clear_badblocks(rdev,
2424 					     r1_bio->sector,
2425 					     r1_bio->sectors, 0);
2426 			rdev_dec_pending(rdev, conf->mddev);
2427 		} else if (r1_bio->bios[m] != NULL) {
2428 			/* This drive got a write error.  We need to
2429 			 * narrow down and record precise write
2430 			 * errors.
2431 			 */
2432 			fail = true;
2433 			if (!narrow_write_error(r1_bio, m)) {
2434 				md_error(conf->mddev,
2435 					 conf->mirrors[m].rdev);
2436 				/* an I/O failed, we can't clear the bitmap */
2437 				set_bit(R1BIO_Degraded, &r1_bio->state);
2438 			}
2439 			rdev_dec_pending(conf->mirrors[m].rdev,
2440 					 conf->mddev);
2441 		}
2442 	if (fail) {
2443 		spin_lock_irq(&conf->device_lock);
2444 		list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2445 		idx = sector_to_idx(r1_bio->sector);
2446 		atomic_inc(&conf->nr_queued[idx]);
2447 		spin_unlock_irq(&conf->device_lock);
2448 		/*
2449 		 * In case freeze_array() is waiting for condition
2450 		 * get_unqueued_pending() == extra to be true.
2451 		 */
2452 		wake_up(&conf->wait_barrier);
2453 		md_wakeup_thread(conf->mddev->thread);
2454 	} else {
2455 		if (test_bit(R1BIO_WriteError, &r1_bio->state))
2456 			close_write(r1_bio);
2457 		raid_end_bio_io(r1_bio);
2458 	}
2459 }
2460 
2461 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2462 {
2463 	struct mddev *mddev = conf->mddev;
2464 	struct bio *bio;
2465 	struct md_rdev *rdev;
2466 	dev_t bio_dev;
2467 	sector_t bio_sector;
2468 
2469 	clear_bit(R1BIO_ReadError, &r1_bio->state);
2470 	/* we got a read error. Maybe the drive is bad.  Maybe just
2471 	 * the block and we can fix it.
2472 	 * We freeze all other IO, and try reading the block from
2473 	 * other devices.  When we find one, we re-write
2474 	 * and check it that fixes the read error.
2475 	 * This is all done synchronously while the array is
2476 	 * frozen
2477 	 */
2478 
2479 	bio = r1_bio->bios[r1_bio->read_disk];
2480 	bio_dev = bio->bi_bdev->bd_dev;
2481 	bio_sector = conf->mirrors[r1_bio->read_disk].rdev->data_offset + r1_bio->sector;
2482 	bio_put(bio);
2483 	r1_bio->bios[r1_bio->read_disk] = NULL;
2484 
2485 	rdev = conf->mirrors[r1_bio->read_disk].rdev;
2486 	if (mddev->ro == 0
2487 	    && !test_bit(FailFast, &rdev->flags)) {
2488 		freeze_array(conf, 1);
2489 		fix_read_error(conf, r1_bio->read_disk,
2490 			       r1_bio->sector, r1_bio->sectors);
2491 		unfreeze_array(conf);
2492 	} else {
2493 		r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2494 	}
2495 
2496 	rdev_dec_pending(rdev, conf->mddev);
2497 	allow_barrier(conf, r1_bio->sector);
2498 	bio = r1_bio->master_bio;
2499 
2500 	/* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2501 	r1_bio->state = 0;
2502 	raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2503 }
2504 
2505 static void raid1d(struct md_thread *thread)
2506 {
2507 	struct mddev *mddev = thread->mddev;
2508 	struct r1bio *r1_bio;
2509 	unsigned long flags;
2510 	struct r1conf *conf = mddev->private;
2511 	struct list_head *head = &conf->retry_list;
2512 	struct blk_plug plug;
2513 	int idx;
2514 
2515 	md_check_recovery(mddev);
2516 
2517 	if (!list_empty_careful(&conf->bio_end_io_list) &&
2518 	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2519 		LIST_HEAD(tmp);
2520 		spin_lock_irqsave(&conf->device_lock, flags);
2521 		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2522 			list_splice_init(&conf->bio_end_io_list, &tmp);
2523 		spin_unlock_irqrestore(&conf->device_lock, flags);
2524 		while (!list_empty(&tmp)) {
2525 			r1_bio = list_first_entry(&tmp, struct r1bio,
2526 						  retry_list);
2527 			list_del(&r1_bio->retry_list);
2528 			idx = sector_to_idx(r1_bio->sector);
2529 			atomic_dec(&conf->nr_queued[idx]);
2530 			if (mddev->degraded)
2531 				set_bit(R1BIO_Degraded, &r1_bio->state);
2532 			if (test_bit(R1BIO_WriteError, &r1_bio->state))
2533 				close_write(r1_bio);
2534 			raid_end_bio_io(r1_bio);
2535 		}
2536 	}
2537 
2538 	blk_start_plug(&plug);
2539 	for (;;) {
2540 
2541 		flush_pending_writes(conf);
2542 
2543 		spin_lock_irqsave(&conf->device_lock, flags);
2544 		if (list_empty(head)) {
2545 			spin_unlock_irqrestore(&conf->device_lock, flags);
2546 			break;
2547 		}
2548 		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2549 		list_del(head->prev);
2550 		idx = sector_to_idx(r1_bio->sector);
2551 		atomic_dec(&conf->nr_queued[idx]);
2552 		spin_unlock_irqrestore(&conf->device_lock, flags);
2553 
2554 		mddev = r1_bio->mddev;
2555 		conf = mddev->private;
2556 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2557 			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2558 			    test_bit(R1BIO_WriteError, &r1_bio->state))
2559 				handle_sync_write_finished(conf, r1_bio);
2560 			else
2561 				sync_request_write(mddev, r1_bio);
2562 		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2563 			   test_bit(R1BIO_WriteError, &r1_bio->state))
2564 			handle_write_finished(conf, r1_bio);
2565 		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2566 			handle_read_error(conf, r1_bio);
2567 		else
2568 			WARN_ON_ONCE(1);
2569 
2570 		cond_resched();
2571 		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2572 			md_check_recovery(mddev);
2573 	}
2574 	blk_finish_plug(&plug);
2575 }
2576 
2577 static int init_resync(struct r1conf *conf)
2578 {
2579 	int buffs;
2580 
2581 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2582 	BUG_ON(conf->r1buf_pool);
2583 	conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2584 					  conf->poolinfo);
2585 	if (!conf->r1buf_pool)
2586 		return -ENOMEM;
2587 	return 0;
2588 }
2589 
2590 /*
2591  * perform a "sync" on one "block"
2592  *
2593  * We need to make sure that no normal I/O request - particularly write
2594  * requests - conflict with active sync requests.
2595  *
2596  * This is achieved by tracking pending requests and a 'barrier' concept
2597  * that can be installed to exclude normal IO requests.
2598  */
2599 
2600 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2601 				   int *skipped)
2602 {
2603 	struct r1conf *conf = mddev->private;
2604 	struct r1bio *r1_bio;
2605 	struct bio *bio;
2606 	sector_t max_sector, nr_sectors;
2607 	int disk = -1;
2608 	int i;
2609 	int wonly = -1;
2610 	int write_targets = 0, read_targets = 0;
2611 	sector_t sync_blocks;
2612 	int still_degraded = 0;
2613 	int good_sectors = RESYNC_SECTORS;
2614 	int min_bad = 0; /* number of sectors that are bad in all devices */
2615 	int idx = sector_to_idx(sector_nr);
2616 
2617 	if (!conf->r1buf_pool)
2618 		if (init_resync(conf))
2619 			return 0;
2620 
2621 	max_sector = mddev->dev_sectors;
2622 	if (sector_nr >= max_sector) {
2623 		/* If we aborted, we need to abort the
2624 		 * sync on the 'current' bitmap chunk (there will
2625 		 * only be one in raid1 resync.
2626 		 * We can find the current addess in mddev->curr_resync
2627 		 */
2628 		if (mddev->curr_resync < max_sector) /* aborted */
2629 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2630 						&sync_blocks, 1);
2631 		else /* completed sync */
2632 			conf->fullsync = 0;
2633 
2634 		bitmap_close_sync(mddev->bitmap);
2635 		close_sync(conf);
2636 
2637 		if (mddev_is_clustered(mddev)) {
2638 			conf->cluster_sync_low = 0;
2639 			conf->cluster_sync_high = 0;
2640 		}
2641 		return 0;
2642 	}
2643 
2644 	if (mddev->bitmap == NULL &&
2645 	    mddev->recovery_cp == MaxSector &&
2646 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2647 	    conf->fullsync == 0) {
2648 		*skipped = 1;
2649 		return max_sector - sector_nr;
2650 	}
2651 	/* before building a request, check if we can skip these blocks..
2652 	 * This call the bitmap_start_sync doesn't actually record anything
2653 	 */
2654 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2655 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2656 		/* We can skip this block, and probably several more */
2657 		*skipped = 1;
2658 		return sync_blocks;
2659 	}
2660 
2661 	/*
2662 	 * If there is non-resync activity waiting for a turn, then let it
2663 	 * though before starting on this new sync request.
2664 	 */
2665 	if (atomic_read(&conf->nr_waiting[idx]))
2666 		schedule_timeout_uninterruptible(1);
2667 
2668 	/* we are incrementing sector_nr below. To be safe, we check against
2669 	 * sector_nr + two times RESYNC_SECTORS
2670 	 */
2671 
2672 	bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2673 		mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2674 	r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2675 
2676 	raise_barrier(conf, sector_nr);
2677 
2678 	rcu_read_lock();
2679 	/*
2680 	 * If we get a correctably read error during resync or recovery,
2681 	 * we might want to read from a different device.  So we
2682 	 * flag all drives that could conceivably be read from for READ,
2683 	 * and any others (which will be non-In_sync devices) for WRITE.
2684 	 * If a read fails, we try reading from something else for which READ
2685 	 * is OK.
2686 	 */
2687 
2688 	r1_bio->mddev = mddev;
2689 	r1_bio->sector = sector_nr;
2690 	r1_bio->state = 0;
2691 	set_bit(R1BIO_IsSync, &r1_bio->state);
2692 	/* make sure good_sectors won't go across barrier unit boundary */
2693 	good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2694 
2695 	for (i = 0; i < conf->raid_disks * 2; i++) {
2696 		struct md_rdev *rdev;
2697 		bio = r1_bio->bios[i];
2698 
2699 		rdev = rcu_dereference(conf->mirrors[i].rdev);
2700 		if (rdev == NULL ||
2701 		    test_bit(Faulty, &rdev->flags)) {
2702 			if (i < conf->raid_disks)
2703 				still_degraded = 1;
2704 		} else if (!test_bit(In_sync, &rdev->flags)) {
2705 			bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2706 			bio->bi_end_io = end_sync_write;
2707 			write_targets ++;
2708 		} else {
2709 			/* may need to read from here */
2710 			sector_t first_bad = MaxSector;
2711 			int bad_sectors;
2712 
2713 			if (is_badblock(rdev, sector_nr, good_sectors,
2714 					&first_bad, &bad_sectors)) {
2715 				if (first_bad > sector_nr)
2716 					good_sectors = first_bad - sector_nr;
2717 				else {
2718 					bad_sectors -= (sector_nr - first_bad);
2719 					if (min_bad == 0 ||
2720 					    min_bad > bad_sectors)
2721 						min_bad = bad_sectors;
2722 				}
2723 			}
2724 			if (sector_nr < first_bad) {
2725 				if (test_bit(WriteMostly, &rdev->flags)) {
2726 					if (wonly < 0)
2727 						wonly = i;
2728 				} else {
2729 					if (disk < 0)
2730 						disk = i;
2731 				}
2732 				bio_set_op_attrs(bio, REQ_OP_READ, 0);
2733 				bio->bi_end_io = end_sync_read;
2734 				read_targets++;
2735 			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2736 				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2737 				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2738 				/*
2739 				 * The device is suitable for reading (InSync),
2740 				 * but has bad block(s) here. Let's try to correct them,
2741 				 * if we are doing resync or repair. Otherwise, leave
2742 				 * this device alone for this sync request.
2743 				 */
2744 				bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2745 				bio->bi_end_io = end_sync_write;
2746 				write_targets++;
2747 			}
2748 		}
2749 		if (bio->bi_end_io) {
2750 			atomic_inc(&rdev->nr_pending);
2751 			bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2752 			bio->bi_bdev = rdev->bdev;
2753 			if (test_bit(FailFast, &rdev->flags))
2754 				bio->bi_opf |= MD_FAILFAST;
2755 		}
2756 	}
2757 	rcu_read_unlock();
2758 	if (disk < 0)
2759 		disk = wonly;
2760 	r1_bio->read_disk = disk;
2761 
2762 	if (read_targets == 0 && min_bad > 0) {
2763 		/* These sectors are bad on all InSync devices, so we
2764 		 * need to mark them bad on all write targets
2765 		 */
2766 		int ok = 1;
2767 		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2768 			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2769 				struct md_rdev *rdev = conf->mirrors[i].rdev;
2770 				ok = rdev_set_badblocks(rdev, sector_nr,
2771 							min_bad, 0
2772 					) && ok;
2773 			}
2774 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2775 		*skipped = 1;
2776 		put_buf(r1_bio);
2777 
2778 		if (!ok) {
2779 			/* Cannot record the badblocks, so need to
2780 			 * abort the resync.
2781 			 * If there are multiple read targets, could just
2782 			 * fail the really bad ones ???
2783 			 */
2784 			conf->recovery_disabled = mddev->recovery_disabled;
2785 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2786 			return 0;
2787 		} else
2788 			return min_bad;
2789 
2790 	}
2791 	if (min_bad > 0 && min_bad < good_sectors) {
2792 		/* only resync enough to reach the next bad->good
2793 		 * transition */
2794 		good_sectors = min_bad;
2795 	}
2796 
2797 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2798 		/* extra read targets are also write targets */
2799 		write_targets += read_targets-1;
2800 
2801 	if (write_targets == 0 || read_targets == 0) {
2802 		/* There is nowhere to write, so all non-sync
2803 		 * drives must be failed - so we are finished
2804 		 */
2805 		sector_t rv;
2806 		if (min_bad > 0)
2807 			max_sector = sector_nr + min_bad;
2808 		rv = max_sector - sector_nr;
2809 		*skipped = 1;
2810 		put_buf(r1_bio);
2811 		return rv;
2812 	}
2813 
2814 	if (max_sector > mddev->resync_max)
2815 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2816 	if (max_sector > sector_nr + good_sectors)
2817 		max_sector = sector_nr + good_sectors;
2818 	nr_sectors = 0;
2819 	sync_blocks = 0;
2820 	do {
2821 		struct page *page;
2822 		int len = PAGE_SIZE;
2823 		if (sector_nr + (len>>9) > max_sector)
2824 			len = (max_sector - sector_nr) << 9;
2825 		if (len == 0)
2826 			break;
2827 		if (sync_blocks == 0) {
2828 			if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2829 					       &sync_blocks, still_degraded) &&
2830 			    !conf->fullsync &&
2831 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2832 				break;
2833 			if ((len >> 9) > sync_blocks)
2834 				len = sync_blocks<<9;
2835 		}
2836 
2837 		for (i = 0 ; i < conf->raid_disks * 2; i++) {
2838 			struct resync_pages *rp;
2839 
2840 			bio = r1_bio->bios[i];
2841 			rp = get_resync_pages(bio);
2842 			if (bio->bi_end_io) {
2843 				page = resync_fetch_page(rp, rp->idx++);
2844 
2845 				/*
2846 				 * won't fail because the vec table is big
2847 				 * enough to hold all these pages
2848 				 */
2849 				bio_add_page(bio, page, len, 0);
2850 			}
2851 		}
2852 		nr_sectors += len>>9;
2853 		sector_nr += len>>9;
2854 		sync_blocks -= (len>>9);
2855 	} while (get_resync_pages(r1_bio->bios[disk]->bi_private)->idx < RESYNC_PAGES);
2856 
2857 	r1_bio->sectors = nr_sectors;
2858 
2859 	if (mddev_is_clustered(mddev) &&
2860 			conf->cluster_sync_high < sector_nr + nr_sectors) {
2861 		conf->cluster_sync_low = mddev->curr_resync_completed;
2862 		conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2863 		/* Send resync message */
2864 		md_cluster_ops->resync_info_update(mddev,
2865 				conf->cluster_sync_low,
2866 				conf->cluster_sync_high);
2867 	}
2868 
2869 	/* For a user-requested sync, we read all readable devices and do a
2870 	 * compare
2871 	 */
2872 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2873 		atomic_set(&r1_bio->remaining, read_targets);
2874 		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2875 			bio = r1_bio->bios[i];
2876 			if (bio->bi_end_io == end_sync_read) {
2877 				read_targets--;
2878 				md_sync_acct(bio->bi_bdev, nr_sectors);
2879 				if (read_targets == 1)
2880 					bio->bi_opf &= ~MD_FAILFAST;
2881 				generic_make_request(bio);
2882 			}
2883 		}
2884 	} else {
2885 		atomic_set(&r1_bio->remaining, 1);
2886 		bio = r1_bio->bios[r1_bio->read_disk];
2887 		md_sync_acct(bio->bi_bdev, nr_sectors);
2888 		if (read_targets == 1)
2889 			bio->bi_opf &= ~MD_FAILFAST;
2890 		generic_make_request(bio);
2891 
2892 	}
2893 	return nr_sectors;
2894 }
2895 
2896 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2897 {
2898 	if (sectors)
2899 		return sectors;
2900 
2901 	return mddev->dev_sectors;
2902 }
2903 
2904 static struct r1conf *setup_conf(struct mddev *mddev)
2905 {
2906 	struct r1conf *conf;
2907 	int i;
2908 	struct raid1_info *disk;
2909 	struct md_rdev *rdev;
2910 	int err = -ENOMEM;
2911 
2912 	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2913 	if (!conf)
2914 		goto abort;
2915 
2916 	conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
2917 				   sizeof(atomic_t), GFP_KERNEL);
2918 	if (!conf->nr_pending)
2919 		goto abort;
2920 
2921 	conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
2922 				   sizeof(atomic_t), GFP_KERNEL);
2923 	if (!conf->nr_waiting)
2924 		goto abort;
2925 
2926 	conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
2927 				  sizeof(atomic_t), GFP_KERNEL);
2928 	if (!conf->nr_queued)
2929 		goto abort;
2930 
2931 	conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
2932 				sizeof(atomic_t), GFP_KERNEL);
2933 	if (!conf->barrier)
2934 		goto abort;
2935 
2936 	conf->mirrors = kzalloc(sizeof(struct raid1_info)
2937 				* mddev->raid_disks * 2,
2938 				 GFP_KERNEL);
2939 	if (!conf->mirrors)
2940 		goto abort;
2941 
2942 	conf->tmppage = alloc_page(GFP_KERNEL);
2943 	if (!conf->tmppage)
2944 		goto abort;
2945 
2946 	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2947 	if (!conf->poolinfo)
2948 		goto abort;
2949 	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2950 	conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2951 					  r1bio_pool_free,
2952 					  conf->poolinfo);
2953 	if (!conf->r1bio_pool)
2954 		goto abort;
2955 
2956 	conf->bio_split = bioset_create(BIO_POOL_SIZE, 0);
2957 	if (!conf->bio_split)
2958 		goto abort;
2959 
2960 	conf->poolinfo->mddev = mddev;
2961 
2962 	err = -EINVAL;
2963 	spin_lock_init(&conf->device_lock);
2964 	rdev_for_each(rdev, mddev) {
2965 		int disk_idx = rdev->raid_disk;
2966 		if (disk_idx >= mddev->raid_disks
2967 		    || disk_idx < 0)
2968 			continue;
2969 		if (test_bit(Replacement, &rdev->flags))
2970 			disk = conf->mirrors + mddev->raid_disks + disk_idx;
2971 		else
2972 			disk = conf->mirrors + disk_idx;
2973 
2974 		if (disk->rdev)
2975 			goto abort;
2976 		disk->rdev = rdev;
2977 		disk->head_position = 0;
2978 		disk->seq_start = MaxSector;
2979 	}
2980 	conf->raid_disks = mddev->raid_disks;
2981 	conf->mddev = mddev;
2982 	INIT_LIST_HEAD(&conf->retry_list);
2983 	INIT_LIST_HEAD(&conf->bio_end_io_list);
2984 
2985 	spin_lock_init(&conf->resync_lock);
2986 	init_waitqueue_head(&conf->wait_barrier);
2987 
2988 	bio_list_init(&conf->pending_bio_list);
2989 	conf->pending_count = 0;
2990 	conf->recovery_disabled = mddev->recovery_disabled - 1;
2991 
2992 	err = -EIO;
2993 	for (i = 0; i < conf->raid_disks * 2; i++) {
2994 
2995 		disk = conf->mirrors + i;
2996 
2997 		if (i < conf->raid_disks &&
2998 		    disk[conf->raid_disks].rdev) {
2999 			/* This slot has a replacement. */
3000 			if (!disk->rdev) {
3001 				/* No original, just make the replacement
3002 				 * a recovering spare
3003 				 */
3004 				disk->rdev =
3005 					disk[conf->raid_disks].rdev;
3006 				disk[conf->raid_disks].rdev = NULL;
3007 			} else if (!test_bit(In_sync, &disk->rdev->flags))
3008 				/* Original is not in_sync - bad */
3009 				goto abort;
3010 		}
3011 
3012 		if (!disk->rdev ||
3013 		    !test_bit(In_sync, &disk->rdev->flags)) {
3014 			disk->head_position = 0;
3015 			if (disk->rdev &&
3016 			    (disk->rdev->saved_raid_disk < 0))
3017 				conf->fullsync = 1;
3018 		}
3019 	}
3020 
3021 	err = -ENOMEM;
3022 	conf->thread = md_register_thread(raid1d, mddev, "raid1");
3023 	if (!conf->thread)
3024 		goto abort;
3025 
3026 	return conf;
3027 
3028  abort:
3029 	if (conf) {
3030 		mempool_destroy(conf->r1bio_pool);
3031 		kfree(conf->mirrors);
3032 		safe_put_page(conf->tmppage);
3033 		kfree(conf->poolinfo);
3034 		kfree(conf->nr_pending);
3035 		kfree(conf->nr_waiting);
3036 		kfree(conf->nr_queued);
3037 		kfree(conf->barrier);
3038 		if (conf->bio_split)
3039 			bioset_free(conf->bio_split);
3040 		kfree(conf);
3041 	}
3042 	return ERR_PTR(err);
3043 }
3044 
3045 static void raid1_free(struct mddev *mddev, void *priv);
3046 static int raid1_run(struct mddev *mddev)
3047 {
3048 	struct r1conf *conf;
3049 	int i;
3050 	struct md_rdev *rdev;
3051 	int ret;
3052 	bool discard_supported = false;
3053 
3054 	if (mddev->level != 1) {
3055 		pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3056 			mdname(mddev), mddev->level);
3057 		return -EIO;
3058 	}
3059 	if (mddev->reshape_position != MaxSector) {
3060 		pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3061 			mdname(mddev));
3062 		return -EIO;
3063 	}
3064 	/*
3065 	 * copy the already verified devices into our private RAID1
3066 	 * bookkeeping area. [whatever we allocate in run(),
3067 	 * should be freed in raid1_free()]
3068 	 */
3069 	if (mddev->private == NULL)
3070 		conf = setup_conf(mddev);
3071 	else
3072 		conf = mddev->private;
3073 
3074 	if (IS_ERR(conf))
3075 		return PTR_ERR(conf);
3076 
3077 	if (mddev->queue) {
3078 		blk_queue_max_write_same_sectors(mddev->queue, 0);
3079 		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3080 	}
3081 
3082 	rdev_for_each(rdev, mddev) {
3083 		if (!mddev->gendisk)
3084 			continue;
3085 		disk_stack_limits(mddev->gendisk, rdev->bdev,
3086 				  rdev->data_offset << 9);
3087 		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3088 			discard_supported = true;
3089 	}
3090 
3091 	mddev->degraded = 0;
3092 	for (i=0; i < conf->raid_disks; i++)
3093 		if (conf->mirrors[i].rdev == NULL ||
3094 		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3095 		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3096 			mddev->degraded++;
3097 
3098 	if (conf->raid_disks - mddev->degraded == 1)
3099 		mddev->recovery_cp = MaxSector;
3100 
3101 	if (mddev->recovery_cp != MaxSector)
3102 		pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3103 			mdname(mddev));
3104 	pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3105 		mdname(mddev), mddev->raid_disks - mddev->degraded,
3106 		mddev->raid_disks);
3107 
3108 	/*
3109 	 * Ok, everything is just fine now
3110 	 */
3111 	mddev->thread = conf->thread;
3112 	conf->thread = NULL;
3113 	mddev->private = conf;
3114 	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3115 
3116 	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3117 
3118 	if (mddev->queue) {
3119 		if (discard_supported)
3120 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3121 						mddev->queue);
3122 		else
3123 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3124 						  mddev->queue);
3125 	}
3126 
3127 	ret =  md_integrity_register(mddev);
3128 	if (ret) {
3129 		md_unregister_thread(&mddev->thread);
3130 		raid1_free(mddev, conf);
3131 	}
3132 	return ret;
3133 }
3134 
3135 static void raid1_free(struct mddev *mddev, void *priv)
3136 {
3137 	struct r1conf *conf = priv;
3138 
3139 	mempool_destroy(conf->r1bio_pool);
3140 	kfree(conf->mirrors);
3141 	safe_put_page(conf->tmppage);
3142 	kfree(conf->poolinfo);
3143 	kfree(conf->nr_pending);
3144 	kfree(conf->nr_waiting);
3145 	kfree(conf->nr_queued);
3146 	kfree(conf->barrier);
3147 	if (conf->bio_split)
3148 		bioset_free(conf->bio_split);
3149 	kfree(conf);
3150 }
3151 
3152 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3153 {
3154 	/* no resync is happening, and there is enough space
3155 	 * on all devices, so we can resize.
3156 	 * We need to make sure resync covers any new space.
3157 	 * If the array is shrinking we should possibly wait until
3158 	 * any io in the removed space completes, but it hardly seems
3159 	 * worth it.
3160 	 */
3161 	sector_t newsize = raid1_size(mddev, sectors, 0);
3162 	if (mddev->external_size &&
3163 	    mddev->array_sectors > newsize)
3164 		return -EINVAL;
3165 	if (mddev->bitmap) {
3166 		int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3167 		if (ret)
3168 			return ret;
3169 	}
3170 	md_set_array_sectors(mddev, newsize);
3171 	if (sectors > mddev->dev_sectors &&
3172 	    mddev->recovery_cp > mddev->dev_sectors) {
3173 		mddev->recovery_cp = mddev->dev_sectors;
3174 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3175 	}
3176 	mddev->dev_sectors = sectors;
3177 	mddev->resync_max_sectors = sectors;
3178 	return 0;
3179 }
3180 
3181 static int raid1_reshape(struct mddev *mddev)
3182 {
3183 	/* We need to:
3184 	 * 1/ resize the r1bio_pool
3185 	 * 2/ resize conf->mirrors
3186 	 *
3187 	 * We allocate a new r1bio_pool if we can.
3188 	 * Then raise a device barrier and wait until all IO stops.
3189 	 * Then resize conf->mirrors and swap in the new r1bio pool.
3190 	 *
3191 	 * At the same time, we "pack" the devices so that all the missing
3192 	 * devices have the higher raid_disk numbers.
3193 	 */
3194 	mempool_t *newpool, *oldpool;
3195 	struct pool_info *newpoolinfo;
3196 	struct raid1_info *newmirrors;
3197 	struct r1conf *conf = mddev->private;
3198 	int cnt, raid_disks;
3199 	unsigned long flags;
3200 	int d, d2, err;
3201 
3202 	/* Cannot change chunk_size, layout, or level */
3203 	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3204 	    mddev->layout != mddev->new_layout ||
3205 	    mddev->level != mddev->new_level) {
3206 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3207 		mddev->new_layout = mddev->layout;
3208 		mddev->new_level = mddev->level;
3209 		return -EINVAL;
3210 	}
3211 
3212 	if (!mddev_is_clustered(mddev)) {
3213 		err = md_allow_write(mddev);
3214 		if (err)
3215 			return err;
3216 	}
3217 
3218 	raid_disks = mddev->raid_disks + mddev->delta_disks;
3219 
3220 	if (raid_disks < conf->raid_disks) {
3221 		cnt=0;
3222 		for (d= 0; d < conf->raid_disks; d++)
3223 			if (conf->mirrors[d].rdev)
3224 				cnt++;
3225 		if (cnt > raid_disks)
3226 			return -EBUSY;
3227 	}
3228 
3229 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3230 	if (!newpoolinfo)
3231 		return -ENOMEM;
3232 	newpoolinfo->mddev = mddev;
3233 	newpoolinfo->raid_disks = raid_disks * 2;
3234 
3235 	newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3236 				 r1bio_pool_free, newpoolinfo);
3237 	if (!newpool) {
3238 		kfree(newpoolinfo);
3239 		return -ENOMEM;
3240 	}
3241 	newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3242 			     GFP_KERNEL);
3243 	if (!newmirrors) {
3244 		kfree(newpoolinfo);
3245 		mempool_destroy(newpool);
3246 		return -ENOMEM;
3247 	}
3248 
3249 	freeze_array(conf, 0);
3250 
3251 	/* ok, everything is stopped */
3252 	oldpool = conf->r1bio_pool;
3253 	conf->r1bio_pool = newpool;
3254 
3255 	for (d = d2 = 0; d < conf->raid_disks; d++) {
3256 		struct md_rdev *rdev = conf->mirrors[d].rdev;
3257 		if (rdev && rdev->raid_disk != d2) {
3258 			sysfs_unlink_rdev(mddev, rdev);
3259 			rdev->raid_disk = d2;
3260 			sysfs_unlink_rdev(mddev, rdev);
3261 			if (sysfs_link_rdev(mddev, rdev))
3262 				pr_warn("md/raid1:%s: cannot register rd%d\n",
3263 					mdname(mddev), rdev->raid_disk);
3264 		}
3265 		if (rdev)
3266 			newmirrors[d2++].rdev = rdev;
3267 	}
3268 	kfree(conf->mirrors);
3269 	conf->mirrors = newmirrors;
3270 	kfree(conf->poolinfo);
3271 	conf->poolinfo = newpoolinfo;
3272 
3273 	spin_lock_irqsave(&conf->device_lock, flags);
3274 	mddev->degraded += (raid_disks - conf->raid_disks);
3275 	spin_unlock_irqrestore(&conf->device_lock, flags);
3276 	conf->raid_disks = mddev->raid_disks = raid_disks;
3277 	mddev->delta_disks = 0;
3278 
3279 	unfreeze_array(conf);
3280 
3281 	set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3282 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3283 	md_wakeup_thread(mddev->thread);
3284 
3285 	mempool_destroy(oldpool);
3286 	return 0;
3287 }
3288 
3289 static void raid1_quiesce(struct mddev *mddev, int state)
3290 {
3291 	struct r1conf *conf = mddev->private;
3292 
3293 	switch(state) {
3294 	case 2: /* wake for suspend */
3295 		wake_up(&conf->wait_barrier);
3296 		break;
3297 	case 1:
3298 		freeze_array(conf, 0);
3299 		break;
3300 	case 0:
3301 		unfreeze_array(conf);
3302 		break;
3303 	}
3304 }
3305 
3306 static void *raid1_takeover(struct mddev *mddev)
3307 {
3308 	/* raid1 can take over:
3309 	 *  raid5 with 2 devices, any layout or chunk size
3310 	 */
3311 	if (mddev->level == 5 && mddev->raid_disks == 2) {
3312 		struct r1conf *conf;
3313 		mddev->new_level = 1;
3314 		mddev->new_layout = 0;
3315 		mddev->new_chunk_sectors = 0;
3316 		conf = setup_conf(mddev);
3317 		if (!IS_ERR(conf)) {
3318 			/* Array must appear to be quiesced */
3319 			conf->array_frozen = 1;
3320 			mddev_clear_unsupported_flags(mddev,
3321 				UNSUPPORTED_MDDEV_FLAGS);
3322 		}
3323 		return conf;
3324 	}
3325 	return ERR_PTR(-EINVAL);
3326 }
3327 
3328 static struct md_personality raid1_personality =
3329 {
3330 	.name		= "raid1",
3331 	.level		= 1,
3332 	.owner		= THIS_MODULE,
3333 	.make_request	= raid1_make_request,
3334 	.run		= raid1_run,
3335 	.free		= raid1_free,
3336 	.status		= raid1_status,
3337 	.error_handler	= raid1_error,
3338 	.hot_add_disk	= raid1_add_disk,
3339 	.hot_remove_disk= raid1_remove_disk,
3340 	.spare_active	= raid1_spare_active,
3341 	.sync_request	= raid1_sync_request,
3342 	.resize		= raid1_resize,
3343 	.size		= raid1_size,
3344 	.check_reshape	= raid1_reshape,
3345 	.quiesce	= raid1_quiesce,
3346 	.takeover	= raid1_takeover,
3347 	.congested	= raid1_congested,
3348 };
3349 
3350 static int __init raid_init(void)
3351 {
3352 	return register_md_personality(&raid1_personality);
3353 }
3354 
3355 static void raid_exit(void)
3356 {
3357 	unregister_md_personality(&raid1_personality);
3358 }
3359 
3360 module_init(raid_init);
3361 module_exit(raid_exit);
3362 MODULE_LICENSE("GPL");
3363 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3364 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3365 MODULE_ALIAS("md-raid1");
3366 MODULE_ALIAS("md-level-1");
3367 
3368 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
3369