1 /* 2 * raid1.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat 5 * 6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman 7 * 8 * RAID-1 management functions. 9 * 10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 11 * 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk> 13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> 14 * 15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support 16 * bitmapped intelligence in resync: 17 * 18 * - bitmap marked during normal i/o 19 * - bitmap used to skip nondirty blocks during sync 20 * 21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology: 22 * - persistent bitmap code 23 * 24 * This program is free software; you can redistribute it and/or modify 25 * it under the terms of the GNU General Public License as published by 26 * the Free Software Foundation; either version 2, or (at your option) 27 * any later version. 28 * 29 * You should have received a copy of the GNU General Public License 30 * (for example /usr/src/linux/COPYING); if not, write to the Free 31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 32 */ 33 34 #include <linux/slab.h> 35 #include <linux/delay.h> 36 #include <linux/blkdev.h> 37 #include <linux/module.h> 38 #include <linux/seq_file.h> 39 #include <linux/ratelimit.h> 40 #include <linux/sched/signal.h> 41 42 #include <trace/events/block.h> 43 44 #include "md.h" 45 #include "raid1.h" 46 #include "bitmap.h" 47 48 #define UNSUPPORTED_MDDEV_FLAGS \ 49 ((1L << MD_HAS_JOURNAL) | \ 50 (1L << MD_JOURNAL_CLEAN) | \ 51 (1L << MD_HAS_PPL)) 52 53 /* 54 * Number of guaranteed r1bios in case of extreme VM load: 55 */ 56 #define NR_RAID1_BIOS 256 57 58 /* when we get a read error on a read-only array, we redirect to another 59 * device without failing the first device, or trying to over-write to 60 * correct the read error. To keep track of bad blocks on a per-bio 61 * level, we store IO_BLOCKED in the appropriate 'bios' pointer 62 */ 63 #define IO_BLOCKED ((struct bio *)1) 64 /* When we successfully write to a known bad-block, we need to remove the 65 * bad-block marking which must be done from process context. So we record 66 * the success by setting devs[n].bio to IO_MADE_GOOD 67 */ 68 #define IO_MADE_GOOD ((struct bio *)2) 69 70 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2) 71 72 /* When there are this many requests queue to be written by 73 * the raid1 thread, we become 'congested' to provide back-pressure 74 * for writeback. 75 */ 76 static int max_queued_requests = 1024; 77 78 static void allow_barrier(struct r1conf *conf, sector_t sector_nr); 79 static void lower_barrier(struct r1conf *conf, sector_t sector_nr); 80 81 #define raid1_log(md, fmt, args...) \ 82 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0) 83 84 /* 85 * 'strct resync_pages' stores actual pages used for doing the resync 86 * IO, and it is per-bio, so make .bi_private points to it. 87 */ 88 static inline struct resync_pages *get_resync_pages(struct bio *bio) 89 { 90 return bio->bi_private; 91 } 92 93 /* 94 * for resync bio, r1bio pointer can be retrieved from the per-bio 95 * 'struct resync_pages'. 96 */ 97 static inline struct r1bio *get_resync_r1bio(struct bio *bio) 98 { 99 return get_resync_pages(bio)->raid_bio; 100 } 101 102 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data) 103 { 104 struct pool_info *pi = data; 105 int size = offsetof(struct r1bio, bios[pi->raid_disks]); 106 107 /* allocate a r1bio with room for raid_disks entries in the bios array */ 108 return kzalloc(size, gfp_flags); 109 } 110 111 static void r1bio_pool_free(void *r1_bio, void *data) 112 { 113 kfree(r1_bio); 114 } 115 116 #define RESYNC_DEPTH 32 117 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 118 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH) 119 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9) 120 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW) 121 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9) 122 123 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) 124 { 125 struct pool_info *pi = data; 126 struct r1bio *r1_bio; 127 struct bio *bio; 128 int need_pages; 129 int j; 130 struct resync_pages *rps; 131 132 r1_bio = r1bio_pool_alloc(gfp_flags, pi); 133 if (!r1_bio) 134 return NULL; 135 136 rps = kmalloc(sizeof(struct resync_pages) * pi->raid_disks, 137 gfp_flags); 138 if (!rps) 139 goto out_free_r1bio; 140 141 /* 142 * Allocate bios : 1 for reading, n-1 for writing 143 */ 144 for (j = pi->raid_disks ; j-- ; ) { 145 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 146 if (!bio) 147 goto out_free_bio; 148 r1_bio->bios[j] = bio; 149 } 150 /* 151 * Allocate RESYNC_PAGES data pages and attach them to 152 * the first bio. 153 * If this is a user-requested check/repair, allocate 154 * RESYNC_PAGES for each bio. 155 */ 156 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) 157 need_pages = pi->raid_disks; 158 else 159 need_pages = 1; 160 for (j = 0; j < pi->raid_disks; j++) { 161 struct resync_pages *rp = &rps[j]; 162 163 bio = r1_bio->bios[j]; 164 165 if (j < need_pages) { 166 if (resync_alloc_pages(rp, gfp_flags)) 167 goto out_free_pages; 168 } else { 169 memcpy(rp, &rps[0], sizeof(*rp)); 170 resync_get_all_pages(rp); 171 } 172 173 rp->idx = 0; 174 rp->raid_bio = r1_bio; 175 bio->bi_private = rp; 176 } 177 178 r1_bio->master_bio = NULL; 179 180 return r1_bio; 181 182 out_free_pages: 183 while (--j >= 0) 184 resync_free_pages(&rps[j]); 185 186 out_free_bio: 187 while (++j < pi->raid_disks) 188 bio_put(r1_bio->bios[j]); 189 kfree(rps); 190 191 out_free_r1bio: 192 r1bio_pool_free(r1_bio, data); 193 return NULL; 194 } 195 196 static void r1buf_pool_free(void *__r1_bio, void *data) 197 { 198 struct pool_info *pi = data; 199 int i; 200 struct r1bio *r1bio = __r1_bio; 201 struct resync_pages *rp = NULL; 202 203 for (i = pi->raid_disks; i--; ) { 204 rp = get_resync_pages(r1bio->bios[i]); 205 resync_free_pages(rp); 206 bio_put(r1bio->bios[i]); 207 } 208 209 /* resync pages array stored in the 1st bio's .bi_private */ 210 kfree(rp); 211 212 r1bio_pool_free(r1bio, data); 213 } 214 215 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio) 216 { 217 int i; 218 219 for (i = 0; i < conf->raid_disks * 2; i++) { 220 struct bio **bio = r1_bio->bios + i; 221 if (!BIO_SPECIAL(*bio)) 222 bio_put(*bio); 223 *bio = NULL; 224 } 225 } 226 227 static void free_r1bio(struct r1bio *r1_bio) 228 { 229 struct r1conf *conf = r1_bio->mddev->private; 230 231 put_all_bios(conf, r1_bio); 232 mempool_free(r1_bio, conf->r1bio_pool); 233 } 234 235 static void put_buf(struct r1bio *r1_bio) 236 { 237 struct r1conf *conf = r1_bio->mddev->private; 238 sector_t sect = r1_bio->sector; 239 int i; 240 241 for (i = 0; i < conf->raid_disks * 2; i++) { 242 struct bio *bio = r1_bio->bios[i]; 243 if (bio->bi_end_io) 244 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev); 245 } 246 247 mempool_free(r1_bio, conf->r1buf_pool); 248 249 lower_barrier(conf, sect); 250 } 251 252 static void reschedule_retry(struct r1bio *r1_bio) 253 { 254 unsigned long flags; 255 struct mddev *mddev = r1_bio->mddev; 256 struct r1conf *conf = mddev->private; 257 int idx; 258 259 idx = sector_to_idx(r1_bio->sector); 260 spin_lock_irqsave(&conf->device_lock, flags); 261 list_add(&r1_bio->retry_list, &conf->retry_list); 262 atomic_inc(&conf->nr_queued[idx]); 263 spin_unlock_irqrestore(&conf->device_lock, flags); 264 265 wake_up(&conf->wait_barrier); 266 md_wakeup_thread(mddev->thread); 267 } 268 269 /* 270 * raid_end_bio_io() is called when we have finished servicing a mirrored 271 * operation and are ready to return a success/failure code to the buffer 272 * cache layer. 273 */ 274 static void call_bio_endio(struct r1bio *r1_bio) 275 { 276 struct bio *bio = r1_bio->master_bio; 277 struct r1conf *conf = r1_bio->mddev->private; 278 279 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 280 bio->bi_error = -EIO; 281 282 bio_endio(bio); 283 /* 284 * Wake up any possible resync thread that waits for the device 285 * to go idle. 286 */ 287 allow_barrier(conf, r1_bio->sector); 288 } 289 290 static void raid_end_bio_io(struct r1bio *r1_bio) 291 { 292 struct bio *bio = r1_bio->master_bio; 293 294 /* if nobody has done the final endio yet, do it now */ 295 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 296 pr_debug("raid1: sync end %s on sectors %llu-%llu\n", 297 (bio_data_dir(bio) == WRITE) ? "write" : "read", 298 (unsigned long long) bio->bi_iter.bi_sector, 299 (unsigned long long) bio_end_sector(bio) - 1); 300 301 call_bio_endio(r1_bio); 302 } 303 free_r1bio(r1_bio); 304 } 305 306 /* 307 * Update disk head position estimator based on IRQ completion info. 308 */ 309 static inline void update_head_pos(int disk, struct r1bio *r1_bio) 310 { 311 struct r1conf *conf = r1_bio->mddev->private; 312 313 conf->mirrors[disk].head_position = 314 r1_bio->sector + (r1_bio->sectors); 315 } 316 317 /* 318 * Find the disk number which triggered given bio 319 */ 320 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio) 321 { 322 int mirror; 323 struct r1conf *conf = r1_bio->mddev->private; 324 int raid_disks = conf->raid_disks; 325 326 for (mirror = 0; mirror < raid_disks * 2; mirror++) 327 if (r1_bio->bios[mirror] == bio) 328 break; 329 330 BUG_ON(mirror == raid_disks * 2); 331 update_head_pos(mirror, r1_bio); 332 333 return mirror; 334 } 335 336 static void raid1_end_read_request(struct bio *bio) 337 { 338 int uptodate = !bio->bi_error; 339 struct r1bio *r1_bio = bio->bi_private; 340 struct r1conf *conf = r1_bio->mddev->private; 341 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev; 342 343 /* 344 * this branch is our 'one mirror IO has finished' event handler: 345 */ 346 update_head_pos(r1_bio->read_disk, r1_bio); 347 348 if (uptodate) 349 set_bit(R1BIO_Uptodate, &r1_bio->state); 350 else if (test_bit(FailFast, &rdev->flags) && 351 test_bit(R1BIO_FailFast, &r1_bio->state)) 352 /* This was a fail-fast read so we definitely 353 * want to retry */ 354 ; 355 else { 356 /* If all other devices have failed, we want to return 357 * the error upwards rather than fail the last device. 358 * Here we redefine "uptodate" to mean "Don't want to retry" 359 */ 360 unsigned long flags; 361 spin_lock_irqsave(&conf->device_lock, flags); 362 if (r1_bio->mddev->degraded == conf->raid_disks || 363 (r1_bio->mddev->degraded == conf->raid_disks-1 && 364 test_bit(In_sync, &rdev->flags))) 365 uptodate = 1; 366 spin_unlock_irqrestore(&conf->device_lock, flags); 367 } 368 369 if (uptodate) { 370 raid_end_bio_io(r1_bio); 371 rdev_dec_pending(rdev, conf->mddev); 372 } else { 373 /* 374 * oops, read error: 375 */ 376 char b[BDEVNAME_SIZE]; 377 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n", 378 mdname(conf->mddev), 379 bdevname(rdev->bdev, b), 380 (unsigned long long)r1_bio->sector); 381 set_bit(R1BIO_ReadError, &r1_bio->state); 382 reschedule_retry(r1_bio); 383 /* don't drop the reference on read_disk yet */ 384 } 385 } 386 387 static void close_write(struct r1bio *r1_bio) 388 { 389 /* it really is the end of this request */ 390 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 391 bio_free_pages(r1_bio->behind_master_bio); 392 bio_put(r1_bio->behind_master_bio); 393 r1_bio->behind_master_bio = NULL; 394 } 395 /* clear the bitmap if all writes complete successfully */ 396 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector, 397 r1_bio->sectors, 398 !test_bit(R1BIO_Degraded, &r1_bio->state), 399 test_bit(R1BIO_BehindIO, &r1_bio->state)); 400 md_write_end(r1_bio->mddev); 401 } 402 403 static void r1_bio_write_done(struct r1bio *r1_bio) 404 { 405 if (!atomic_dec_and_test(&r1_bio->remaining)) 406 return; 407 408 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 409 reschedule_retry(r1_bio); 410 else { 411 close_write(r1_bio); 412 if (test_bit(R1BIO_MadeGood, &r1_bio->state)) 413 reschedule_retry(r1_bio); 414 else 415 raid_end_bio_io(r1_bio); 416 } 417 } 418 419 static void raid1_end_write_request(struct bio *bio) 420 { 421 struct r1bio *r1_bio = bio->bi_private; 422 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state); 423 struct r1conf *conf = r1_bio->mddev->private; 424 struct bio *to_put = NULL; 425 int mirror = find_bio_disk(r1_bio, bio); 426 struct md_rdev *rdev = conf->mirrors[mirror].rdev; 427 bool discard_error; 428 429 discard_error = bio->bi_error && bio_op(bio) == REQ_OP_DISCARD; 430 431 /* 432 * 'one mirror IO has finished' event handler: 433 */ 434 if (bio->bi_error && !discard_error) { 435 set_bit(WriteErrorSeen, &rdev->flags); 436 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 437 set_bit(MD_RECOVERY_NEEDED, & 438 conf->mddev->recovery); 439 440 if (test_bit(FailFast, &rdev->flags) && 441 (bio->bi_opf & MD_FAILFAST) && 442 /* We never try FailFast to WriteMostly devices */ 443 !test_bit(WriteMostly, &rdev->flags)) { 444 md_error(r1_bio->mddev, rdev); 445 if (!test_bit(Faulty, &rdev->flags)) 446 /* This is the only remaining device, 447 * We need to retry the write without 448 * FailFast 449 */ 450 set_bit(R1BIO_WriteError, &r1_bio->state); 451 else { 452 /* Finished with this branch */ 453 r1_bio->bios[mirror] = NULL; 454 to_put = bio; 455 } 456 } else 457 set_bit(R1BIO_WriteError, &r1_bio->state); 458 } else { 459 /* 460 * Set R1BIO_Uptodate in our master bio, so that we 461 * will return a good error code for to the higher 462 * levels even if IO on some other mirrored buffer 463 * fails. 464 * 465 * The 'master' represents the composite IO operation 466 * to user-side. So if something waits for IO, then it 467 * will wait for the 'master' bio. 468 */ 469 sector_t first_bad; 470 int bad_sectors; 471 472 r1_bio->bios[mirror] = NULL; 473 to_put = bio; 474 /* 475 * Do not set R1BIO_Uptodate if the current device is 476 * rebuilding or Faulty. This is because we cannot use 477 * such device for properly reading the data back (we could 478 * potentially use it, if the current write would have felt 479 * before rdev->recovery_offset, but for simplicity we don't 480 * check this here. 481 */ 482 if (test_bit(In_sync, &rdev->flags) && 483 !test_bit(Faulty, &rdev->flags)) 484 set_bit(R1BIO_Uptodate, &r1_bio->state); 485 486 /* Maybe we can clear some bad blocks. */ 487 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors, 488 &first_bad, &bad_sectors) && !discard_error) { 489 r1_bio->bios[mirror] = IO_MADE_GOOD; 490 set_bit(R1BIO_MadeGood, &r1_bio->state); 491 } 492 } 493 494 if (behind) { 495 /* we release behind master bio when all write are done */ 496 if (r1_bio->behind_master_bio == bio) 497 to_put = NULL; 498 499 if (test_bit(WriteMostly, &rdev->flags)) 500 atomic_dec(&r1_bio->behind_remaining); 501 502 /* 503 * In behind mode, we ACK the master bio once the I/O 504 * has safely reached all non-writemostly 505 * disks. Setting the Returned bit ensures that this 506 * gets done only once -- we don't ever want to return 507 * -EIO here, instead we'll wait 508 */ 509 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) && 510 test_bit(R1BIO_Uptodate, &r1_bio->state)) { 511 /* Maybe we can return now */ 512 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 513 struct bio *mbio = r1_bio->master_bio; 514 pr_debug("raid1: behind end write sectors" 515 " %llu-%llu\n", 516 (unsigned long long) mbio->bi_iter.bi_sector, 517 (unsigned long long) bio_end_sector(mbio) - 1); 518 call_bio_endio(r1_bio); 519 } 520 } 521 } 522 if (r1_bio->bios[mirror] == NULL) 523 rdev_dec_pending(rdev, conf->mddev); 524 525 /* 526 * Let's see if all mirrored write operations have finished 527 * already. 528 */ 529 r1_bio_write_done(r1_bio); 530 531 if (to_put) 532 bio_put(to_put); 533 } 534 535 static sector_t align_to_barrier_unit_end(sector_t start_sector, 536 sector_t sectors) 537 { 538 sector_t len; 539 540 WARN_ON(sectors == 0); 541 /* 542 * len is the number of sectors from start_sector to end of the 543 * barrier unit which start_sector belongs to. 544 */ 545 len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) - 546 start_sector; 547 548 if (len > sectors) 549 len = sectors; 550 551 return len; 552 } 553 554 /* 555 * This routine returns the disk from which the requested read should 556 * be done. There is a per-array 'next expected sequential IO' sector 557 * number - if this matches on the next IO then we use the last disk. 558 * There is also a per-disk 'last know head position' sector that is 559 * maintained from IRQ contexts, both the normal and the resync IO 560 * completion handlers update this position correctly. If there is no 561 * perfect sequential match then we pick the disk whose head is closest. 562 * 563 * If there are 2 mirrors in the same 2 devices, performance degrades 564 * because position is mirror, not device based. 565 * 566 * The rdev for the device selected will have nr_pending incremented. 567 */ 568 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors) 569 { 570 const sector_t this_sector = r1_bio->sector; 571 int sectors; 572 int best_good_sectors; 573 int best_disk, best_dist_disk, best_pending_disk; 574 int has_nonrot_disk; 575 int disk; 576 sector_t best_dist; 577 unsigned int min_pending; 578 struct md_rdev *rdev; 579 int choose_first; 580 int choose_next_idle; 581 582 rcu_read_lock(); 583 /* 584 * Check if we can balance. We can balance on the whole 585 * device if no resync is going on, or below the resync window. 586 * We take the first readable disk when above the resync window. 587 */ 588 retry: 589 sectors = r1_bio->sectors; 590 best_disk = -1; 591 best_dist_disk = -1; 592 best_dist = MaxSector; 593 best_pending_disk = -1; 594 min_pending = UINT_MAX; 595 best_good_sectors = 0; 596 has_nonrot_disk = 0; 597 choose_next_idle = 0; 598 clear_bit(R1BIO_FailFast, &r1_bio->state); 599 600 if ((conf->mddev->recovery_cp < this_sector + sectors) || 601 (mddev_is_clustered(conf->mddev) && 602 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector, 603 this_sector + sectors))) 604 choose_first = 1; 605 else 606 choose_first = 0; 607 608 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) { 609 sector_t dist; 610 sector_t first_bad; 611 int bad_sectors; 612 unsigned int pending; 613 bool nonrot; 614 615 rdev = rcu_dereference(conf->mirrors[disk].rdev); 616 if (r1_bio->bios[disk] == IO_BLOCKED 617 || rdev == NULL 618 || test_bit(Faulty, &rdev->flags)) 619 continue; 620 if (!test_bit(In_sync, &rdev->flags) && 621 rdev->recovery_offset < this_sector + sectors) 622 continue; 623 if (test_bit(WriteMostly, &rdev->flags)) { 624 /* Don't balance among write-mostly, just 625 * use the first as a last resort */ 626 if (best_dist_disk < 0) { 627 if (is_badblock(rdev, this_sector, sectors, 628 &first_bad, &bad_sectors)) { 629 if (first_bad <= this_sector) 630 /* Cannot use this */ 631 continue; 632 best_good_sectors = first_bad - this_sector; 633 } else 634 best_good_sectors = sectors; 635 best_dist_disk = disk; 636 best_pending_disk = disk; 637 } 638 continue; 639 } 640 /* This is a reasonable device to use. It might 641 * even be best. 642 */ 643 if (is_badblock(rdev, this_sector, sectors, 644 &first_bad, &bad_sectors)) { 645 if (best_dist < MaxSector) 646 /* already have a better device */ 647 continue; 648 if (first_bad <= this_sector) { 649 /* cannot read here. If this is the 'primary' 650 * device, then we must not read beyond 651 * bad_sectors from another device.. 652 */ 653 bad_sectors -= (this_sector - first_bad); 654 if (choose_first && sectors > bad_sectors) 655 sectors = bad_sectors; 656 if (best_good_sectors > sectors) 657 best_good_sectors = sectors; 658 659 } else { 660 sector_t good_sectors = first_bad - this_sector; 661 if (good_sectors > best_good_sectors) { 662 best_good_sectors = good_sectors; 663 best_disk = disk; 664 } 665 if (choose_first) 666 break; 667 } 668 continue; 669 } else 670 best_good_sectors = sectors; 671 672 if (best_disk >= 0) 673 /* At least two disks to choose from so failfast is OK */ 674 set_bit(R1BIO_FailFast, &r1_bio->state); 675 676 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev)); 677 has_nonrot_disk |= nonrot; 678 pending = atomic_read(&rdev->nr_pending); 679 dist = abs(this_sector - conf->mirrors[disk].head_position); 680 if (choose_first) { 681 best_disk = disk; 682 break; 683 } 684 /* Don't change to another disk for sequential reads */ 685 if (conf->mirrors[disk].next_seq_sect == this_sector 686 || dist == 0) { 687 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9; 688 struct raid1_info *mirror = &conf->mirrors[disk]; 689 690 best_disk = disk; 691 /* 692 * If buffered sequential IO size exceeds optimal 693 * iosize, check if there is idle disk. If yes, choose 694 * the idle disk. read_balance could already choose an 695 * idle disk before noticing it's a sequential IO in 696 * this disk. This doesn't matter because this disk 697 * will idle, next time it will be utilized after the 698 * first disk has IO size exceeds optimal iosize. In 699 * this way, iosize of the first disk will be optimal 700 * iosize at least. iosize of the second disk might be 701 * small, but not a big deal since when the second disk 702 * starts IO, the first disk is likely still busy. 703 */ 704 if (nonrot && opt_iosize > 0 && 705 mirror->seq_start != MaxSector && 706 mirror->next_seq_sect > opt_iosize && 707 mirror->next_seq_sect - opt_iosize >= 708 mirror->seq_start) { 709 choose_next_idle = 1; 710 continue; 711 } 712 break; 713 } 714 715 if (choose_next_idle) 716 continue; 717 718 if (min_pending > pending) { 719 min_pending = pending; 720 best_pending_disk = disk; 721 } 722 723 if (dist < best_dist) { 724 best_dist = dist; 725 best_dist_disk = disk; 726 } 727 } 728 729 /* 730 * If all disks are rotational, choose the closest disk. If any disk is 731 * non-rotational, choose the disk with less pending request even the 732 * disk is rotational, which might/might not be optimal for raids with 733 * mixed ratation/non-rotational disks depending on workload. 734 */ 735 if (best_disk == -1) { 736 if (has_nonrot_disk || min_pending == 0) 737 best_disk = best_pending_disk; 738 else 739 best_disk = best_dist_disk; 740 } 741 742 if (best_disk >= 0) { 743 rdev = rcu_dereference(conf->mirrors[best_disk].rdev); 744 if (!rdev) 745 goto retry; 746 atomic_inc(&rdev->nr_pending); 747 sectors = best_good_sectors; 748 749 if (conf->mirrors[best_disk].next_seq_sect != this_sector) 750 conf->mirrors[best_disk].seq_start = this_sector; 751 752 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors; 753 } 754 rcu_read_unlock(); 755 *max_sectors = sectors; 756 757 return best_disk; 758 } 759 760 static int raid1_congested(struct mddev *mddev, int bits) 761 { 762 struct r1conf *conf = mddev->private; 763 int i, ret = 0; 764 765 if ((bits & (1 << WB_async_congested)) && 766 conf->pending_count >= max_queued_requests) 767 return 1; 768 769 rcu_read_lock(); 770 for (i = 0; i < conf->raid_disks * 2; i++) { 771 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 772 if (rdev && !test_bit(Faulty, &rdev->flags)) { 773 struct request_queue *q = bdev_get_queue(rdev->bdev); 774 775 BUG_ON(!q); 776 777 /* Note the '|| 1' - when read_balance prefers 778 * non-congested targets, it can be removed 779 */ 780 if ((bits & (1 << WB_async_congested)) || 1) 781 ret |= bdi_congested(q->backing_dev_info, bits); 782 else 783 ret &= bdi_congested(q->backing_dev_info, bits); 784 } 785 } 786 rcu_read_unlock(); 787 return ret; 788 } 789 790 static void flush_bio_list(struct r1conf *conf, struct bio *bio) 791 { 792 /* flush any pending bitmap writes to disk before proceeding w/ I/O */ 793 bitmap_unplug(conf->mddev->bitmap); 794 wake_up(&conf->wait_barrier); 795 796 while (bio) { /* submit pending writes */ 797 struct bio *next = bio->bi_next; 798 struct md_rdev *rdev = (void*)bio->bi_bdev; 799 bio->bi_next = NULL; 800 bio->bi_bdev = rdev->bdev; 801 if (test_bit(Faulty, &rdev->flags)) { 802 bio->bi_error = -EIO; 803 bio_endio(bio); 804 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) && 805 !blk_queue_discard(bdev_get_queue(bio->bi_bdev)))) 806 /* Just ignore it */ 807 bio_endio(bio); 808 else 809 generic_make_request(bio); 810 bio = next; 811 } 812 } 813 814 static void flush_pending_writes(struct r1conf *conf) 815 { 816 /* Any writes that have been queued but are awaiting 817 * bitmap updates get flushed here. 818 */ 819 spin_lock_irq(&conf->device_lock); 820 821 if (conf->pending_bio_list.head) { 822 struct bio *bio; 823 bio = bio_list_get(&conf->pending_bio_list); 824 conf->pending_count = 0; 825 spin_unlock_irq(&conf->device_lock); 826 flush_bio_list(conf, bio); 827 } else 828 spin_unlock_irq(&conf->device_lock); 829 } 830 831 /* Barriers.... 832 * Sometimes we need to suspend IO while we do something else, 833 * either some resync/recovery, or reconfigure the array. 834 * To do this we raise a 'barrier'. 835 * The 'barrier' is a counter that can be raised multiple times 836 * to count how many activities are happening which preclude 837 * normal IO. 838 * We can only raise the barrier if there is no pending IO. 839 * i.e. if nr_pending == 0. 840 * We choose only to raise the barrier if no-one is waiting for the 841 * barrier to go down. This means that as soon as an IO request 842 * is ready, no other operations which require a barrier will start 843 * until the IO request has had a chance. 844 * 845 * So: regular IO calls 'wait_barrier'. When that returns there 846 * is no backgroup IO happening, It must arrange to call 847 * allow_barrier when it has finished its IO. 848 * backgroup IO calls must call raise_barrier. Once that returns 849 * there is no normal IO happeing. It must arrange to call 850 * lower_barrier when the particular background IO completes. 851 */ 852 static void raise_barrier(struct r1conf *conf, sector_t sector_nr) 853 { 854 int idx = sector_to_idx(sector_nr); 855 856 spin_lock_irq(&conf->resync_lock); 857 858 /* Wait until no block IO is waiting */ 859 wait_event_lock_irq(conf->wait_barrier, 860 !atomic_read(&conf->nr_waiting[idx]), 861 conf->resync_lock); 862 863 /* block any new IO from starting */ 864 atomic_inc(&conf->barrier[idx]); 865 /* 866 * In raise_barrier() we firstly increase conf->barrier[idx] then 867 * check conf->nr_pending[idx]. In _wait_barrier() we firstly 868 * increase conf->nr_pending[idx] then check conf->barrier[idx]. 869 * A memory barrier here to make sure conf->nr_pending[idx] won't 870 * be fetched before conf->barrier[idx] is increased. Otherwise 871 * there will be a race between raise_barrier() and _wait_barrier(). 872 */ 873 smp_mb__after_atomic(); 874 875 /* For these conditions we must wait: 876 * A: while the array is in frozen state 877 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O 878 * existing in corresponding I/O barrier bucket. 879 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches 880 * max resync count which allowed on current I/O barrier bucket. 881 */ 882 wait_event_lock_irq(conf->wait_barrier, 883 !conf->array_frozen && 884 !atomic_read(&conf->nr_pending[idx]) && 885 atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH, 886 conf->resync_lock); 887 888 atomic_inc(&conf->nr_sync_pending); 889 spin_unlock_irq(&conf->resync_lock); 890 } 891 892 static void lower_barrier(struct r1conf *conf, sector_t sector_nr) 893 { 894 int idx = sector_to_idx(sector_nr); 895 896 BUG_ON(atomic_read(&conf->barrier[idx]) <= 0); 897 898 atomic_dec(&conf->barrier[idx]); 899 atomic_dec(&conf->nr_sync_pending); 900 wake_up(&conf->wait_barrier); 901 } 902 903 static void _wait_barrier(struct r1conf *conf, int idx) 904 { 905 /* 906 * We need to increase conf->nr_pending[idx] very early here, 907 * then raise_barrier() can be blocked when it waits for 908 * conf->nr_pending[idx] to be 0. Then we can avoid holding 909 * conf->resync_lock when there is no barrier raised in same 910 * barrier unit bucket. Also if the array is frozen, I/O 911 * should be blocked until array is unfrozen. 912 */ 913 atomic_inc(&conf->nr_pending[idx]); 914 /* 915 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then 916 * check conf->barrier[idx]. In raise_barrier() we firstly increase 917 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory 918 * barrier is necessary here to make sure conf->barrier[idx] won't be 919 * fetched before conf->nr_pending[idx] is increased. Otherwise there 920 * will be a race between _wait_barrier() and raise_barrier(). 921 */ 922 smp_mb__after_atomic(); 923 924 /* 925 * Don't worry about checking two atomic_t variables at same time 926 * here. If during we check conf->barrier[idx], the array is 927 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is 928 * 0, it is safe to return and make the I/O continue. Because the 929 * array is frozen, all I/O returned here will eventually complete 930 * or be queued, no race will happen. See code comment in 931 * frozen_array(). 932 */ 933 if (!READ_ONCE(conf->array_frozen) && 934 !atomic_read(&conf->barrier[idx])) 935 return; 936 937 /* 938 * After holding conf->resync_lock, conf->nr_pending[idx] 939 * should be decreased before waiting for barrier to drop. 940 * Otherwise, we may encounter a race condition because 941 * raise_barrer() might be waiting for conf->nr_pending[idx] 942 * to be 0 at same time. 943 */ 944 spin_lock_irq(&conf->resync_lock); 945 atomic_inc(&conf->nr_waiting[idx]); 946 atomic_dec(&conf->nr_pending[idx]); 947 /* 948 * In case freeze_array() is waiting for 949 * get_unqueued_pending() == extra 950 */ 951 wake_up(&conf->wait_barrier); 952 /* Wait for the barrier in same barrier unit bucket to drop. */ 953 wait_event_lock_irq(conf->wait_barrier, 954 !conf->array_frozen && 955 !atomic_read(&conf->barrier[idx]), 956 conf->resync_lock); 957 atomic_inc(&conf->nr_pending[idx]); 958 atomic_dec(&conf->nr_waiting[idx]); 959 spin_unlock_irq(&conf->resync_lock); 960 } 961 962 static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr) 963 { 964 int idx = sector_to_idx(sector_nr); 965 966 /* 967 * Very similar to _wait_barrier(). The difference is, for read 968 * I/O we don't need wait for sync I/O, but if the whole array 969 * is frozen, the read I/O still has to wait until the array is 970 * unfrozen. Since there is no ordering requirement with 971 * conf->barrier[idx] here, memory barrier is unnecessary as well. 972 */ 973 atomic_inc(&conf->nr_pending[idx]); 974 975 if (!READ_ONCE(conf->array_frozen)) 976 return; 977 978 spin_lock_irq(&conf->resync_lock); 979 atomic_inc(&conf->nr_waiting[idx]); 980 atomic_dec(&conf->nr_pending[idx]); 981 /* 982 * In case freeze_array() is waiting for 983 * get_unqueued_pending() == extra 984 */ 985 wake_up(&conf->wait_barrier); 986 /* Wait for array to be unfrozen */ 987 wait_event_lock_irq(conf->wait_barrier, 988 !conf->array_frozen, 989 conf->resync_lock); 990 atomic_inc(&conf->nr_pending[idx]); 991 atomic_dec(&conf->nr_waiting[idx]); 992 spin_unlock_irq(&conf->resync_lock); 993 } 994 995 static void wait_barrier(struct r1conf *conf, sector_t sector_nr) 996 { 997 int idx = sector_to_idx(sector_nr); 998 999 _wait_barrier(conf, idx); 1000 } 1001 1002 static void wait_all_barriers(struct r1conf *conf) 1003 { 1004 int idx; 1005 1006 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) 1007 _wait_barrier(conf, idx); 1008 } 1009 1010 static void _allow_barrier(struct r1conf *conf, int idx) 1011 { 1012 atomic_dec(&conf->nr_pending[idx]); 1013 wake_up(&conf->wait_barrier); 1014 } 1015 1016 static void allow_barrier(struct r1conf *conf, sector_t sector_nr) 1017 { 1018 int idx = sector_to_idx(sector_nr); 1019 1020 _allow_barrier(conf, idx); 1021 } 1022 1023 static void allow_all_barriers(struct r1conf *conf) 1024 { 1025 int idx; 1026 1027 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) 1028 _allow_barrier(conf, idx); 1029 } 1030 1031 /* conf->resync_lock should be held */ 1032 static int get_unqueued_pending(struct r1conf *conf) 1033 { 1034 int idx, ret; 1035 1036 ret = atomic_read(&conf->nr_sync_pending); 1037 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) 1038 ret += atomic_read(&conf->nr_pending[idx]) - 1039 atomic_read(&conf->nr_queued[idx]); 1040 1041 return ret; 1042 } 1043 1044 static void freeze_array(struct r1conf *conf, int extra) 1045 { 1046 /* Stop sync I/O and normal I/O and wait for everything to 1047 * go quiet. 1048 * This is called in two situations: 1049 * 1) management command handlers (reshape, remove disk, quiesce). 1050 * 2) one normal I/O request failed. 1051 1052 * After array_frozen is set to 1, new sync IO will be blocked at 1053 * raise_barrier(), and new normal I/O will blocked at _wait_barrier() 1054 * or wait_read_barrier(). The flying I/Os will either complete or be 1055 * queued. When everything goes quite, there are only queued I/Os left. 1056 1057 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the 1058 * barrier bucket index which this I/O request hits. When all sync and 1059 * normal I/O are queued, sum of all conf->nr_pending[] will match sum 1060 * of all conf->nr_queued[]. But normal I/O failure is an exception, 1061 * in handle_read_error(), we may call freeze_array() before trying to 1062 * fix the read error. In this case, the error read I/O is not queued, 1063 * so get_unqueued_pending() == 1. 1064 * 1065 * Therefore before this function returns, we need to wait until 1066 * get_unqueued_pendings(conf) gets equal to extra. For 1067 * normal I/O context, extra is 1, in rested situations extra is 0. 1068 */ 1069 spin_lock_irq(&conf->resync_lock); 1070 conf->array_frozen = 1; 1071 raid1_log(conf->mddev, "wait freeze"); 1072 wait_event_lock_irq_cmd( 1073 conf->wait_barrier, 1074 get_unqueued_pending(conf) == extra, 1075 conf->resync_lock, 1076 flush_pending_writes(conf)); 1077 spin_unlock_irq(&conf->resync_lock); 1078 } 1079 static void unfreeze_array(struct r1conf *conf) 1080 { 1081 /* reverse the effect of the freeze */ 1082 spin_lock_irq(&conf->resync_lock); 1083 conf->array_frozen = 0; 1084 spin_unlock_irq(&conf->resync_lock); 1085 wake_up(&conf->wait_barrier); 1086 } 1087 1088 static struct bio *alloc_behind_master_bio(struct r1bio *r1_bio, 1089 struct bio *bio) 1090 { 1091 int size = bio->bi_iter.bi_size; 1092 unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1093 int i = 0; 1094 struct bio *behind_bio = NULL; 1095 1096 behind_bio = bio_alloc_mddev(GFP_NOIO, vcnt, r1_bio->mddev); 1097 if (!behind_bio) 1098 goto fail; 1099 1100 /* discard op, we don't support writezero/writesame yet */ 1101 if (!bio_has_data(bio)) 1102 goto skip_copy; 1103 1104 while (i < vcnt && size) { 1105 struct page *page; 1106 int len = min_t(int, PAGE_SIZE, size); 1107 1108 page = alloc_page(GFP_NOIO); 1109 if (unlikely(!page)) 1110 goto free_pages; 1111 1112 bio_add_page(behind_bio, page, len, 0); 1113 1114 size -= len; 1115 i++; 1116 } 1117 1118 bio_copy_data(behind_bio, bio); 1119 skip_copy: 1120 r1_bio->behind_master_bio = behind_bio;; 1121 set_bit(R1BIO_BehindIO, &r1_bio->state); 1122 1123 return behind_bio; 1124 1125 free_pages: 1126 pr_debug("%dB behind alloc failed, doing sync I/O\n", 1127 bio->bi_iter.bi_size); 1128 bio_free_pages(behind_bio); 1129 fail: 1130 return behind_bio; 1131 } 1132 1133 struct raid1_plug_cb { 1134 struct blk_plug_cb cb; 1135 struct bio_list pending; 1136 int pending_cnt; 1137 }; 1138 1139 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule) 1140 { 1141 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, 1142 cb); 1143 struct mddev *mddev = plug->cb.data; 1144 struct r1conf *conf = mddev->private; 1145 struct bio *bio; 1146 1147 if (from_schedule || current->bio_list) { 1148 spin_lock_irq(&conf->device_lock); 1149 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1150 conf->pending_count += plug->pending_cnt; 1151 spin_unlock_irq(&conf->device_lock); 1152 wake_up(&conf->wait_barrier); 1153 md_wakeup_thread(mddev->thread); 1154 kfree(plug); 1155 return; 1156 } 1157 1158 /* we aren't scheduling, so we can do the write-out directly. */ 1159 bio = bio_list_get(&plug->pending); 1160 flush_bio_list(conf, bio); 1161 kfree(plug); 1162 } 1163 1164 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio) 1165 { 1166 r1_bio->master_bio = bio; 1167 r1_bio->sectors = bio_sectors(bio); 1168 r1_bio->state = 0; 1169 r1_bio->mddev = mddev; 1170 r1_bio->sector = bio->bi_iter.bi_sector; 1171 } 1172 1173 static inline struct r1bio * 1174 alloc_r1bio(struct mddev *mddev, struct bio *bio) 1175 { 1176 struct r1conf *conf = mddev->private; 1177 struct r1bio *r1_bio; 1178 1179 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 1180 /* Ensure no bio records IO_BLOCKED */ 1181 memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0])); 1182 init_r1bio(r1_bio, mddev, bio); 1183 return r1_bio; 1184 } 1185 1186 static void raid1_read_request(struct mddev *mddev, struct bio *bio, 1187 int max_read_sectors, struct r1bio *r1_bio) 1188 { 1189 struct r1conf *conf = mddev->private; 1190 struct raid1_info *mirror; 1191 struct bio *read_bio; 1192 struct bitmap *bitmap = mddev->bitmap; 1193 const int op = bio_op(bio); 1194 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC); 1195 int max_sectors; 1196 int rdisk; 1197 bool print_msg = !!r1_bio; 1198 char b[BDEVNAME_SIZE]; 1199 1200 /* 1201 * If r1_bio is set, we are blocking the raid1d thread 1202 * so there is a tiny risk of deadlock. So ask for 1203 * emergency memory if needed. 1204 */ 1205 gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO; 1206 1207 if (print_msg) { 1208 /* Need to get the block device name carefully */ 1209 struct md_rdev *rdev; 1210 rcu_read_lock(); 1211 rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev); 1212 if (rdev) 1213 bdevname(rdev->bdev, b); 1214 else 1215 strcpy(b, "???"); 1216 rcu_read_unlock(); 1217 } 1218 1219 /* 1220 * Still need barrier for READ in case that whole 1221 * array is frozen. 1222 */ 1223 wait_read_barrier(conf, bio->bi_iter.bi_sector); 1224 1225 if (!r1_bio) 1226 r1_bio = alloc_r1bio(mddev, bio); 1227 else 1228 init_r1bio(r1_bio, mddev, bio); 1229 r1_bio->sectors = max_read_sectors; 1230 1231 /* 1232 * make_request() can abort the operation when read-ahead is being 1233 * used and no empty request is available. 1234 */ 1235 rdisk = read_balance(conf, r1_bio, &max_sectors); 1236 1237 if (rdisk < 0) { 1238 /* couldn't find anywhere to read from */ 1239 if (print_msg) { 1240 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n", 1241 mdname(mddev), 1242 b, 1243 (unsigned long long)r1_bio->sector); 1244 } 1245 raid_end_bio_io(r1_bio); 1246 return; 1247 } 1248 mirror = conf->mirrors + rdisk; 1249 1250 if (print_msg) 1251 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n", 1252 mdname(mddev), 1253 (unsigned long long)r1_bio->sector, 1254 bdevname(mirror->rdev->bdev, b)); 1255 1256 if (test_bit(WriteMostly, &mirror->rdev->flags) && 1257 bitmap) { 1258 /* 1259 * Reading from a write-mostly device must take care not to 1260 * over-take any writes that are 'behind' 1261 */ 1262 raid1_log(mddev, "wait behind writes"); 1263 wait_event(bitmap->behind_wait, 1264 atomic_read(&bitmap->behind_writes) == 0); 1265 } 1266 1267 if (max_sectors < bio_sectors(bio)) { 1268 struct bio *split = bio_split(bio, max_sectors, 1269 gfp, conf->bio_split); 1270 bio_chain(split, bio); 1271 generic_make_request(bio); 1272 bio = split; 1273 r1_bio->master_bio = bio; 1274 r1_bio->sectors = max_sectors; 1275 } 1276 1277 r1_bio->read_disk = rdisk; 1278 1279 read_bio = bio_clone_fast(bio, gfp, mddev->bio_set); 1280 1281 r1_bio->bios[rdisk] = read_bio; 1282 1283 read_bio->bi_iter.bi_sector = r1_bio->sector + 1284 mirror->rdev->data_offset; 1285 read_bio->bi_bdev = mirror->rdev->bdev; 1286 read_bio->bi_end_io = raid1_end_read_request; 1287 bio_set_op_attrs(read_bio, op, do_sync); 1288 if (test_bit(FailFast, &mirror->rdev->flags) && 1289 test_bit(R1BIO_FailFast, &r1_bio->state)) 1290 read_bio->bi_opf |= MD_FAILFAST; 1291 read_bio->bi_private = r1_bio; 1292 1293 if (mddev->gendisk) 1294 trace_block_bio_remap(bdev_get_queue(read_bio->bi_bdev), 1295 read_bio, disk_devt(mddev->gendisk), 1296 r1_bio->sector); 1297 1298 generic_make_request(read_bio); 1299 } 1300 1301 static void raid1_write_request(struct mddev *mddev, struct bio *bio, 1302 int max_write_sectors) 1303 { 1304 struct r1conf *conf = mddev->private; 1305 struct r1bio *r1_bio; 1306 int i, disks; 1307 struct bitmap *bitmap = mddev->bitmap; 1308 unsigned long flags; 1309 struct md_rdev *blocked_rdev; 1310 struct blk_plug_cb *cb; 1311 struct raid1_plug_cb *plug = NULL; 1312 int first_clone; 1313 int max_sectors; 1314 1315 /* 1316 * Register the new request and wait if the reconstruction 1317 * thread has put up a bar for new requests. 1318 * Continue immediately if no resync is active currently. 1319 */ 1320 1321 md_write_start(mddev, bio); /* wait on superblock update early */ 1322 1323 if ((bio_end_sector(bio) > mddev->suspend_lo && 1324 bio->bi_iter.bi_sector < mddev->suspend_hi) || 1325 (mddev_is_clustered(mddev) && 1326 md_cluster_ops->area_resyncing(mddev, WRITE, 1327 bio->bi_iter.bi_sector, bio_end_sector(bio)))) { 1328 1329 /* 1330 * As the suspend_* range is controlled by userspace, we want 1331 * an interruptible wait. 1332 */ 1333 DEFINE_WAIT(w); 1334 for (;;) { 1335 flush_signals(current); 1336 prepare_to_wait(&conf->wait_barrier, 1337 &w, TASK_INTERRUPTIBLE); 1338 if (bio_end_sector(bio) <= mddev->suspend_lo || 1339 bio->bi_iter.bi_sector >= mddev->suspend_hi || 1340 (mddev_is_clustered(mddev) && 1341 !md_cluster_ops->area_resyncing(mddev, WRITE, 1342 bio->bi_iter.bi_sector, 1343 bio_end_sector(bio)))) 1344 break; 1345 schedule(); 1346 } 1347 finish_wait(&conf->wait_barrier, &w); 1348 } 1349 wait_barrier(conf, bio->bi_iter.bi_sector); 1350 1351 r1_bio = alloc_r1bio(mddev, bio); 1352 r1_bio->sectors = max_write_sectors; 1353 1354 if (conf->pending_count >= max_queued_requests) { 1355 md_wakeup_thread(mddev->thread); 1356 raid1_log(mddev, "wait queued"); 1357 wait_event(conf->wait_barrier, 1358 conf->pending_count < max_queued_requests); 1359 } 1360 /* first select target devices under rcu_lock and 1361 * inc refcount on their rdev. Record them by setting 1362 * bios[x] to bio 1363 * If there are known/acknowledged bad blocks on any device on 1364 * which we have seen a write error, we want to avoid writing those 1365 * blocks. 1366 * This potentially requires several writes to write around 1367 * the bad blocks. Each set of writes gets it's own r1bio 1368 * with a set of bios attached. 1369 */ 1370 1371 disks = conf->raid_disks * 2; 1372 retry_write: 1373 blocked_rdev = NULL; 1374 rcu_read_lock(); 1375 max_sectors = r1_bio->sectors; 1376 for (i = 0; i < disks; i++) { 1377 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1378 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1379 atomic_inc(&rdev->nr_pending); 1380 blocked_rdev = rdev; 1381 break; 1382 } 1383 r1_bio->bios[i] = NULL; 1384 if (!rdev || test_bit(Faulty, &rdev->flags)) { 1385 if (i < conf->raid_disks) 1386 set_bit(R1BIO_Degraded, &r1_bio->state); 1387 continue; 1388 } 1389 1390 atomic_inc(&rdev->nr_pending); 1391 if (test_bit(WriteErrorSeen, &rdev->flags)) { 1392 sector_t first_bad; 1393 int bad_sectors; 1394 int is_bad; 1395 1396 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors, 1397 &first_bad, &bad_sectors); 1398 if (is_bad < 0) { 1399 /* mustn't write here until the bad block is 1400 * acknowledged*/ 1401 set_bit(BlockedBadBlocks, &rdev->flags); 1402 blocked_rdev = rdev; 1403 break; 1404 } 1405 if (is_bad && first_bad <= r1_bio->sector) { 1406 /* Cannot write here at all */ 1407 bad_sectors -= (r1_bio->sector - first_bad); 1408 if (bad_sectors < max_sectors) 1409 /* mustn't write more than bad_sectors 1410 * to other devices yet 1411 */ 1412 max_sectors = bad_sectors; 1413 rdev_dec_pending(rdev, mddev); 1414 /* We don't set R1BIO_Degraded as that 1415 * only applies if the disk is 1416 * missing, so it might be re-added, 1417 * and we want to know to recover this 1418 * chunk. 1419 * In this case the device is here, 1420 * and the fact that this chunk is not 1421 * in-sync is recorded in the bad 1422 * block log 1423 */ 1424 continue; 1425 } 1426 if (is_bad) { 1427 int good_sectors = first_bad - r1_bio->sector; 1428 if (good_sectors < max_sectors) 1429 max_sectors = good_sectors; 1430 } 1431 } 1432 r1_bio->bios[i] = bio; 1433 } 1434 rcu_read_unlock(); 1435 1436 if (unlikely(blocked_rdev)) { 1437 /* Wait for this device to become unblocked */ 1438 int j; 1439 1440 for (j = 0; j < i; j++) 1441 if (r1_bio->bios[j]) 1442 rdev_dec_pending(conf->mirrors[j].rdev, mddev); 1443 r1_bio->state = 0; 1444 allow_barrier(conf, bio->bi_iter.bi_sector); 1445 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk); 1446 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1447 wait_barrier(conf, bio->bi_iter.bi_sector); 1448 goto retry_write; 1449 } 1450 1451 if (max_sectors < bio_sectors(bio)) { 1452 struct bio *split = bio_split(bio, max_sectors, 1453 GFP_NOIO, conf->bio_split); 1454 bio_chain(split, bio); 1455 generic_make_request(bio); 1456 bio = split; 1457 r1_bio->master_bio = bio; 1458 r1_bio->sectors = max_sectors; 1459 } 1460 1461 atomic_set(&r1_bio->remaining, 1); 1462 atomic_set(&r1_bio->behind_remaining, 0); 1463 1464 first_clone = 1; 1465 1466 for (i = 0; i < disks; i++) { 1467 struct bio *mbio = NULL; 1468 if (!r1_bio->bios[i]) 1469 continue; 1470 1471 1472 if (first_clone) { 1473 /* do behind I/O ? 1474 * Not if there are too many, or cannot 1475 * allocate memory, or a reader on WriteMostly 1476 * is waiting for behind writes to flush */ 1477 if (bitmap && 1478 (atomic_read(&bitmap->behind_writes) 1479 < mddev->bitmap_info.max_write_behind) && 1480 !waitqueue_active(&bitmap->behind_wait)) { 1481 mbio = alloc_behind_master_bio(r1_bio, bio); 1482 } 1483 1484 bitmap_startwrite(bitmap, r1_bio->sector, 1485 r1_bio->sectors, 1486 test_bit(R1BIO_BehindIO, 1487 &r1_bio->state)); 1488 first_clone = 0; 1489 } 1490 1491 if (!mbio) { 1492 if (r1_bio->behind_master_bio) 1493 mbio = bio_clone_fast(r1_bio->behind_master_bio, 1494 GFP_NOIO, 1495 mddev->bio_set); 1496 else 1497 mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set); 1498 } 1499 1500 if (r1_bio->behind_master_bio) { 1501 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags)) 1502 atomic_inc(&r1_bio->behind_remaining); 1503 } 1504 1505 r1_bio->bios[i] = mbio; 1506 1507 mbio->bi_iter.bi_sector = (r1_bio->sector + 1508 conf->mirrors[i].rdev->data_offset); 1509 mbio->bi_bdev = conf->mirrors[i].rdev->bdev; 1510 mbio->bi_end_io = raid1_end_write_request; 1511 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA)); 1512 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) && 1513 !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) && 1514 conf->raid_disks - mddev->degraded > 1) 1515 mbio->bi_opf |= MD_FAILFAST; 1516 mbio->bi_private = r1_bio; 1517 1518 atomic_inc(&r1_bio->remaining); 1519 1520 if (mddev->gendisk) 1521 trace_block_bio_remap(bdev_get_queue(mbio->bi_bdev), 1522 mbio, disk_devt(mddev->gendisk), 1523 r1_bio->sector); 1524 /* flush_pending_writes() needs access to the rdev so...*/ 1525 mbio->bi_bdev = (void*)conf->mirrors[i].rdev; 1526 1527 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug)); 1528 if (cb) 1529 plug = container_of(cb, struct raid1_plug_cb, cb); 1530 else 1531 plug = NULL; 1532 spin_lock_irqsave(&conf->device_lock, flags); 1533 if (plug) { 1534 bio_list_add(&plug->pending, mbio); 1535 plug->pending_cnt++; 1536 } else { 1537 bio_list_add(&conf->pending_bio_list, mbio); 1538 conf->pending_count++; 1539 } 1540 spin_unlock_irqrestore(&conf->device_lock, flags); 1541 if (!plug) 1542 md_wakeup_thread(mddev->thread); 1543 } 1544 1545 r1_bio_write_done(r1_bio); 1546 1547 /* In case raid1d snuck in to freeze_array */ 1548 wake_up(&conf->wait_barrier); 1549 } 1550 1551 static void raid1_make_request(struct mddev *mddev, struct bio *bio) 1552 { 1553 sector_t sectors; 1554 1555 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) { 1556 md_flush_request(mddev, bio); 1557 return; 1558 } 1559 1560 /* 1561 * There is a limit to the maximum size, but 1562 * the read/write handler might find a lower limit 1563 * due to bad blocks. To avoid multiple splits, 1564 * we pass the maximum number of sectors down 1565 * and let the lower level perform the split. 1566 */ 1567 sectors = align_to_barrier_unit_end( 1568 bio->bi_iter.bi_sector, bio_sectors(bio)); 1569 1570 if (bio_data_dir(bio) == READ) 1571 raid1_read_request(mddev, bio, sectors, NULL); 1572 else 1573 raid1_write_request(mddev, bio, sectors); 1574 } 1575 1576 static void raid1_status(struct seq_file *seq, struct mddev *mddev) 1577 { 1578 struct r1conf *conf = mddev->private; 1579 int i; 1580 1581 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 1582 conf->raid_disks - mddev->degraded); 1583 rcu_read_lock(); 1584 for (i = 0; i < conf->raid_disks; i++) { 1585 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1586 seq_printf(seq, "%s", 1587 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1588 } 1589 rcu_read_unlock(); 1590 seq_printf(seq, "]"); 1591 } 1592 1593 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev) 1594 { 1595 char b[BDEVNAME_SIZE]; 1596 struct r1conf *conf = mddev->private; 1597 unsigned long flags; 1598 1599 /* 1600 * If it is not operational, then we have already marked it as dead 1601 * else if it is the last working disks, ignore the error, let the 1602 * next level up know. 1603 * else mark the drive as failed 1604 */ 1605 spin_lock_irqsave(&conf->device_lock, flags); 1606 if (test_bit(In_sync, &rdev->flags) 1607 && (conf->raid_disks - mddev->degraded) == 1) { 1608 /* 1609 * Don't fail the drive, act as though we were just a 1610 * normal single drive. 1611 * However don't try a recovery from this drive as 1612 * it is very likely to fail. 1613 */ 1614 conf->recovery_disabled = mddev->recovery_disabled; 1615 spin_unlock_irqrestore(&conf->device_lock, flags); 1616 return; 1617 } 1618 set_bit(Blocked, &rdev->flags); 1619 if (test_and_clear_bit(In_sync, &rdev->flags)) { 1620 mddev->degraded++; 1621 set_bit(Faulty, &rdev->flags); 1622 } else 1623 set_bit(Faulty, &rdev->flags); 1624 spin_unlock_irqrestore(&conf->device_lock, flags); 1625 /* 1626 * if recovery is running, make sure it aborts. 1627 */ 1628 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1629 set_mask_bits(&mddev->sb_flags, 0, 1630 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1631 pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n" 1632 "md/raid1:%s: Operation continuing on %d devices.\n", 1633 mdname(mddev), bdevname(rdev->bdev, b), 1634 mdname(mddev), conf->raid_disks - mddev->degraded); 1635 } 1636 1637 static void print_conf(struct r1conf *conf) 1638 { 1639 int i; 1640 1641 pr_debug("RAID1 conf printout:\n"); 1642 if (!conf) { 1643 pr_debug("(!conf)\n"); 1644 return; 1645 } 1646 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1647 conf->raid_disks); 1648 1649 rcu_read_lock(); 1650 for (i = 0; i < conf->raid_disks; i++) { 1651 char b[BDEVNAME_SIZE]; 1652 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1653 if (rdev) 1654 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n", 1655 i, !test_bit(In_sync, &rdev->flags), 1656 !test_bit(Faulty, &rdev->flags), 1657 bdevname(rdev->bdev,b)); 1658 } 1659 rcu_read_unlock(); 1660 } 1661 1662 static void close_sync(struct r1conf *conf) 1663 { 1664 wait_all_barriers(conf); 1665 allow_all_barriers(conf); 1666 1667 mempool_destroy(conf->r1buf_pool); 1668 conf->r1buf_pool = NULL; 1669 } 1670 1671 static int raid1_spare_active(struct mddev *mddev) 1672 { 1673 int i; 1674 struct r1conf *conf = mddev->private; 1675 int count = 0; 1676 unsigned long flags; 1677 1678 /* 1679 * Find all failed disks within the RAID1 configuration 1680 * and mark them readable. 1681 * Called under mddev lock, so rcu protection not needed. 1682 * device_lock used to avoid races with raid1_end_read_request 1683 * which expects 'In_sync' flags and ->degraded to be consistent. 1684 */ 1685 spin_lock_irqsave(&conf->device_lock, flags); 1686 for (i = 0; i < conf->raid_disks; i++) { 1687 struct md_rdev *rdev = conf->mirrors[i].rdev; 1688 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev; 1689 if (repl 1690 && !test_bit(Candidate, &repl->flags) 1691 && repl->recovery_offset == MaxSector 1692 && !test_bit(Faulty, &repl->flags) 1693 && !test_and_set_bit(In_sync, &repl->flags)) { 1694 /* replacement has just become active */ 1695 if (!rdev || 1696 !test_and_clear_bit(In_sync, &rdev->flags)) 1697 count++; 1698 if (rdev) { 1699 /* Replaced device not technically 1700 * faulty, but we need to be sure 1701 * it gets removed and never re-added 1702 */ 1703 set_bit(Faulty, &rdev->flags); 1704 sysfs_notify_dirent_safe( 1705 rdev->sysfs_state); 1706 } 1707 } 1708 if (rdev 1709 && rdev->recovery_offset == MaxSector 1710 && !test_bit(Faulty, &rdev->flags) 1711 && !test_and_set_bit(In_sync, &rdev->flags)) { 1712 count++; 1713 sysfs_notify_dirent_safe(rdev->sysfs_state); 1714 } 1715 } 1716 mddev->degraded -= count; 1717 spin_unlock_irqrestore(&conf->device_lock, flags); 1718 1719 print_conf(conf); 1720 return count; 1721 } 1722 1723 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1724 { 1725 struct r1conf *conf = mddev->private; 1726 int err = -EEXIST; 1727 int mirror = 0; 1728 struct raid1_info *p; 1729 int first = 0; 1730 int last = conf->raid_disks - 1; 1731 1732 if (mddev->recovery_disabled == conf->recovery_disabled) 1733 return -EBUSY; 1734 1735 if (md_integrity_add_rdev(rdev, mddev)) 1736 return -ENXIO; 1737 1738 if (rdev->raid_disk >= 0) 1739 first = last = rdev->raid_disk; 1740 1741 /* 1742 * find the disk ... but prefer rdev->saved_raid_disk 1743 * if possible. 1744 */ 1745 if (rdev->saved_raid_disk >= 0 && 1746 rdev->saved_raid_disk >= first && 1747 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1748 first = last = rdev->saved_raid_disk; 1749 1750 for (mirror = first; mirror <= last; mirror++) { 1751 p = conf->mirrors+mirror; 1752 if (!p->rdev) { 1753 1754 if (mddev->gendisk) 1755 disk_stack_limits(mddev->gendisk, rdev->bdev, 1756 rdev->data_offset << 9); 1757 1758 p->head_position = 0; 1759 rdev->raid_disk = mirror; 1760 err = 0; 1761 /* As all devices are equivalent, we don't need a full recovery 1762 * if this was recently any drive of the array 1763 */ 1764 if (rdev->saved_raid_disk < 0) 1765 conf->fullsync = 1; 1766 rcu_assign_pointer(p->rdev, rdev); 1767 break; 1768 } 1769 if (test_bit(WantReplacement, &p->rdev->flags) && 1770 p[conf->raid_disks].rdev == NULL) { 1771 /* Add this device as a replacement */ 1772 clear_bit(In_sync, &rdev->flags); 1773 set_bit(Replacement, &rdev->flags); 1774 rdev->raid_disk = mirror; 1775 err = 0; 1776 conf->fullsync = 1; 1777 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev); 1778 break; 1779 } 1780 } 1781 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev))) 1782 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue); 1783 print_conf(conf); 1784 return err; 1785 } 1786 1787 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1788 { 1789 struct r1conf *conf = mddev->private; 1790 int err = 0; 1791 int number = rdev->raid_disk; 1792 struct raid1_info *p = conf->mirrors + number; 1793 1794 if (rdev != p->rdev) 1795 p = conf->mirrors + conf->raid_disks + number; 1796 1797 print_conf(conf); 1798 if (rdev == p->rdev) { 1799 if (test_bit(In_sync, &rdev->flags) || 1800 atomic_read(&rdev->nr_pending)) { 1801 err = -EBUSY; 1802 goto abort; 1803 } 1804 /* Only remove non-faulty devices if recovery 1805 * is not possible. 1806 */ 1807 if (!test_bit(Faulty, &rdev->flags) && 1808 mddev->recovery_disabled != conf->recovery_disabled && 1809 mddev->degraded < conf->raid_disks) { 1810 err = -EBUSY; 1811 goto abort; 1812 } 1813 p->rdev = NULL; 1814 if (!test_bit(RemoveSynchronized, &rdev->flags)) { 1815 synchronize_rcu(); 1816 if (atomic_read(&rdev->nr_pending)) { 1817 /* lost the race, try later */ 1818 err = -EBUSY; 1819 p->rdev = rdev; 1820 goto abort; 1821 } 1822 } 1823 if (conf->mirrors[conf->raid_disks + number].rdev) { 1824 /* We just removed a device that is being replaced. 1825 * Move down the replacement. We drain all IO before 1826 * doing this to avoid confusion. 1827 */ 1828 struct md_rdev *repl = 1829 conf->mirrors[conf->raid_disks + number].rdev; 1830 freeze_array(conf, 0); 1831 clear_bit(Replacement, &repl->flags); 1832 p->rdev = repl; 1833 conf->mirrors[conf->raid_disks + number].rdev = NULL; 1834 unfreeze_array(conf); 1835 } 1836 1837 clear_bit(WantReplacement, &rdev->flags); 1838 err = md_integrity_register(mddev); 1839 } 1840 abort: 1841 1842 print_conf(conf); 1843 return err; 1844 } 1845 1846 static void end_sync_read(struct bio *bio) 1847 { 1848 struct r1bio *r1_bio = get_resync_r1bio(bio); 1849 1850 update_head_pos(r1_bio->read_disk, r1_bio); 1851 1852 /* 1853 * we have read a block, now it needs to be re-written, 1854 * or re-read if the read failed. 1855 * We don't do much here, just schedule handling by raid1d 1856 */ 1857 if (!bio->bi_error) 1858 set_bit(R1BIO_Uptodate, &r1_bio->state); 1859 1860 if (atomic_dec_and_test(&r1_bio->remaining)) 1861 reschedule_retry(r1_bio); 1862 } 1863 1864 static void end_sync_write(struct bio *bio) 1865 { 1866 int uptodate = !bio->bi_error; 1867 struct r1bio *r1_bio = get_resync_r1bio(bio); 1868 struct mddev *mddev = r1_bio->mddev; 1869 struct r1conf *conf = mddev->private; 1870 sector_t first_bad; 1871 int bad_sectors; 1872 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev; 1873 1874 if (!uptodate) { 1875 sector_t sync_blocks = 0; 1876 sector_t s = r1_bio->sector; 1877 long sectors_to_go = r1_bio->sectors; 1878 /* make sure these bits doesn't get cleared. */ 1879 do { 1880 bitmap_end_sync(mddev->bitmap, s, 1881 &sync_blocks, 1); 1882 s += sync_blocks; 1883 sectors_to_go -= sync_blocks; 1884 } while (sectors_to_go > 0); 1885 set_bit(WriteErrorSeen, &rdev->flags); 1886 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 1887 set_bit(MD_RECOVERY_NEEDED, & 1888 mddev->recovery); 1889 set_bit(R1BIO_WriteError, &r1_bio->state); 1890 } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors, 1891 &first_bad, &bad_sectors) && 1892 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev, 1893 r1_bio->sector, 1894 r1_bio->sectors, 1895 &first_bad, &bad_sectors) 1896 ) 1897 set_bit(R1BIO_MadeGood, &r1_bio->state); 1898 1899 if (atomic_dec_and_test(&r1_bio->remaining)) { 1900 int s = r1_bio->sectors; 1901 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 1902 test_bit(R1BIO_WriteError, &r1_bio->state)) 1903 reschedule_retry(r1_bio); 1904 else { 1905 put_buf(r1_bio); 1906 md_done_sync(mddev, s, uptodate); 1907 } 1908 } 1909 } 1910 1911 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector, 1912 int sectors, struct page *page, int rw) 1913 { 1914 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false)) 1915 /* success */ 1916 return 1; 1917 if (rw == WRITE) { 1918 set_bit(WriteErrorSeen, &rdev->flags); 1919 if (!test_and_set_bit(WantReplacement, 1920 &rdev->flags)) 1921 set_bit(MD_RECOVERY_NEEDED, & 1922 rdev->mddev->recovery); 1923 } 1924 /* need to record an error - either for the block or the device */ 1925 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 1926 md_error(rdev->mddev, rdev); 1927 return 0; 1928 } 1929 1930 static int fix_sync_read_error(struct r1bio *r1_bio) 1931 { 1932 /* Try some synchronous reads of other devices to get 1933 * good data, much like with normal read errors. Only 1934 * read into the pages we already have so we don't 1935 * need to re-issue the read request. 1936 * We don't need to freeze the array, because being in an 1937 * active sync request, there is no normal IO, and 1938 * no overlapping syncs. 1939 * We don't need to check is_badblock() again as we 1940 * made sure that anything with a bad block in range 1941 * will have bi_end_io clear. 1942 */ 1943 struct mddev *mddev = r1_bio->mddev; 1944 struct r1conf *conf = mddev->private; 1945 struct bio *bio = r1_bio->bios[r1_bio->read_disk]; 1946 struct page **pages = get_resync_pages(bio)->pages; 1947 sector_t sect = r1_bio->sector; 1948 int sectors = r1_bio->sectors; 1949 int idx = 0; 1950 struct md_rdev *rdev; 1951 1952 rdev = conf->mirrors[r1_bio->read_disk].rdev; 1953 if (test_bit(FailFast, &rdev->flags)) { 1954 /* Don't try recovering from here - just fail it 1955 * ... unless it is the last working device of course */ 1956 md_error(mddev, rdev); 1957 if (test_bit(Faulty, &rdev->flags)) 1958 /* Don't try to read from here, but make sure 1959 * put_buf does it's thing 1960 */ 1961 bio->bi_end_io = end_sync_write; 1962 } 1963 1964 while(sectors) { 1965 int s = sectors; 1966 int d = r1_bio->read_disk; 1967 int success = 0; 1968 int start; 1969 1970 if (s > (PAGE_SIZE>>9)) 1971 s = PAGE_SIZE >> 9; 1972 do { 1973 if (r1_bio->bios[d]->bi_end_io == end_sync_read) { 1974 /* No rcu protection needed here devices 1975 * can only be removed when no resync is 1976 * active, and resync is currently active 1977 */ 1978 rdev = conf->mirrors[d].rdev; 1979 if (sync_page_io(rdev, sect, s<<9, 1980 pages[idx], 1981 REQ_OP_READ, 0, false)) { 1982 success = 1; 1983 break; 1984 } 1985 } 1986 d++; 1987 if (d == conf->raid_disks * 2) 1988 d = 0; 1989 } while (!success && d != r1_bio->read_disk); 1990 1991 if (!success) { 1992 char b[BDEVNAME_SIZE]; 1993 int abort = 0; 1994 /* Cannot read from anywhere, this block is lost. 1995 * Record a bad block on each device. If that doesn't 1996 * work just disable and interrupt the recovery. 1997 * Don't fail devices as that won't really help. 1998 */ 1999 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n", 2000 mdname(mddev), 2001 bdevname(bio->bi_bdev, b), 2002 (unsigned long long)r1_bio->sector); 2003 for (d = 0; d < conf->raid_disks * 2; d++) { 2004 rdev = conf->mirrors[d].rdev; 2005 if (!rdev || test_bit(Faulty, &rdev->flags)) 2006 continue; 2007 if (!rdev_set_badblocks(rdev, sect, s, 0)) 2008 abort = 1; 2009 } 2010 if (abort) { 2011 conf->recovery_disabled = 2012 mddev->recovery_disabled; 2013 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2014 md_done_sync(mddev, r1_bio->sectors, 0); 2015 put_buf(r1_bio); 2016 return 0; 2017 } 2018 /* Try next page */ 2019 sectors -= s; 2020 sect += s; 2021 idx++; 2022 continue; 2023 } 2024 2025 start = d; 2026 /* write it back and re-read */ 2027 while (d != r1_bio->read_disk) { 2028 if (d == 0) 2029 d = conf->raid_disks * 2; 2030 d--; 2031 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 2032 continue; 2033 rdev = conf->mirrors[d].rdev; 2034 if (r1_sync_page_io(rdev, sect, s, 2035 pages[idx], 2036 WRITE) == 0) { 2037 r1_bio->bios[d]->bi_end_io = NULL; 2038 rdev_dec_pending(rdev, mddev); 2039 } 2040 } 2041 d = start; 2042 while (d != r1_bio->read_disk) { 2043 if (d == 0) 2044 d = conf->raid_disks * 2; 2045 d--; 2046 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 2047 continue; 2048 rdev = conf->mirrors[d].rdev; 2049 if (r1_sync_page_io(rdev, sect, s, 2050 pages[idx], 2051 READ) != 0) 2052 atomic_add(s, &rdev->corrected_errors); 2053 } 2054 sectors -= s; 2055 sect += s; 2056 idx ++; 2057 } 2058 set_bit(R1BIO_Uptodate, &r1_bio->state); 2059 bio->bi_error = 0; 2060 return 1; 2061 } 2062 2063 static void process_checks(struct r1bio *r1_bio) 2064 { 2065 /* We have read all readable devices. If we haven't 2066 * got the block, then there is no hope left. 2067 * If we have, then we want to do a comparison 2068 * and skip the write if everything is the same. 2069 * If any blocks failed to read, then we need to 2070 * attempt an over-write 2071 */ 2072 struct mddev *mddev = r1_bio->mddev; 2073 struct r1conf *conf = mddev->private; 2074 int primary; 2075 int i; 2076 int vcnt; 2077 2078 /* Fix variable parts of all bios */ 2079 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9); 2080 for (i = 0; i < conf->raid_disks * 2; i++) { 2081 int j; 2082 int size; 2083 int error; 2084 struct bio_vec *bi; 2085 struct bio *b = r1_bio->bios[i]; 2086 struct resync_pages *rp = get_resync_pages(b); 2087 if (b->bi_end_io != end_sync_read) 2088 continue; 2089 /* fixup the bio for reuse, but preserve errno */ 2090 error = b->bi_error; 2091 bio_reset(b); 2092 b->bi_error = error; 2093 b->bi_vcnt = vcnt; 2094 b->bi_iter.bi_size = r1_bio->sectors << 9; 2095 b->bi_iter.bi_sector = r1_bio->sector + 2096 conf->mirrors[i].rdev->data_offset; 2097 b->bi_bdev = conf->mirrors[i].rdev->bdev; 2098 b->bi_end_io = end_sync_read; 2099 rp->raid_bio = r1_bio; 2100 b->bi_private = rp; 2101 2102 size = b->bi_iter.bi_size; 2103 bio_for_each_segment_all(bi, b, j) { 2104 bi->bv_offset = 0; 2105 if (size > PAGE_SIZE) 2106 bi->bv_len = PAGE_SIZE; 2107 else 2108 bi->bv_len = size; 2109 size -= PAGE_SIZE; 2110 } 2111 } 2112 for (primary = 0; primary < conf->raid_disks * 2; primary++) 2113 if (r1_bio->bios[primary]->bi_end_io == end_sync_read && 2114 !r1_bio->bios[primary]->bi_error) { 2115 r1_bio->bios[primary]->bi_end_io = NULL; 2116 rdev_dec_pending(conf->mirrors[primary].rdev, mddev); 2117 break; 2118 } 2119 r1_bio->read_disk = primary; 2120 for (i = 0; i < conf->raid_disks * 2; i++) { 2121 int j; 2122 struct bio *pbio = r1_bio->bios[primary]; 2123 struct bio *sbio = r1_bio->bios[i]; 2124 int error = sbio->bi_error; 2125 struct page **ppages = get_resync_pages(pbio)->pages; 2126 struct page **spages = get_resync_pages(sbio)->pages; 2127 struct bio_vec *bi; 2128 int page_len[RESYNC_PAGES] = { 0 }; 2129 2130 if (sbio->bi_end_io != end_sync_read) 2131 continue; 2132 /* Now we can 'fixup' the error value */ 2133 sbio->bi_error = 0; 2134 2135 bio_for_each_segment_all(bi, sbio, j) 2136 page_len[j] = bi->bv_len; 2137 2138 if (!error) { 2139 for (j = vcnt; j-- ; ) { 2140 if (memcmp(page_address(ppages[j]), 2141 page_address(spages[j]), 2142 page_len[j])) 2143 break; 2144 } 2145 } else 2146 j = 0; 2147 if (j >= 0) 2148 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches); 2149 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery) 2150 && !error)) { 2151 /* No need to write to this device. */ 2152 sbio->bi_end_io = NULL; 2153 rdev_dec_pending(conf->mirrors[i].rdev, mddev); 2154 continue; 2155 } 2156 2157 bio_copy_data(sbio, pbio); 2158 } 2159 } 2160 2161 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio) 2162 { 2163 struct r1conf *conf = mddev->private; 2164 int i; 2165 int disks = conf->raid_disks * 2; 2166 struct bio *bio, *wbio; 2167 2168 bio = r1_bio->bios[r1_bio->read_disk]; 2169 2170 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 2171 /* ouch - failed to read all of that. */ 2172 if (!fix_sync_read_error(r1_bio)) 2173 return; 2174 2175 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2176 process_checks(r1_bio); 2177 2178 /* 2179 * schedule writes 2180 */ 2181 atomic_set(&r1_bio->remaining, 1); 2182 for (i = 0; i < disks ; i++) { 2183 wbio = r1_bio->bios[i]; 2184 if (wbio->bi_end_io == NULL || 2185 (wbio->bi_end_io == end_sync_read && 2186 (i == r1_bio->read_disk || 2187 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)))) 2188 continue; 2189 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) 2190 continue; 2191 2192 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0); 2193 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags)) 2194 wbio->bi_opf |= MD_FAILFAST; 2195 2196 wbio->bi_end_io = end_sync_write; 2197 atomic_inc(&r1_bio->remaining); 2198 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio)); 2199 2200 generic_make_request(wbio); 2201 } 2202 2203 if (atomic_dec_and_test(&r1_bio->remaining)) { 2204 /* if we're here, all write(s) have completed, so clean up */ 2205 int s = r1_bio->sectors; 2206 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2207 test_bit(R1BIO_WriteError, &r1_bio->state)) 2208 reschedule_retry(r1_bio); 2209 else { 2210 put_buf(r1_bio); 2211 md_done_sync(mddev, s, 1); 2212 } 2213 } 2214 } 2215 2216 /* 2217 * This is a kernel thread which: 2218 * 2219 * 1. Retries failed read operations on working mirrors. 2220 * 2. Updates the raid superblock when problems encounter. 2221 * 3. Performs writes following reads for array synchronising. 2222 */ 2223 2224 static void fix_read_error(struct r1conf *conf, int read_disk, 2225 sector_t sect, int sectors) 2226 { 2227 struct mddev *mddev = conf->mddev; 2228 while(sectors) { 2229 int s = sectors; 2230 int d = read_disk; 2231 int success = 0; 2232 int start; 2233 struct md_rdev *rdev; 2234 2235 if (s > (PAGE_SIZE>>9)) 2236 s = PAGE_SIZE >> 9; 2237 2238 do { 2239 sector_t first_bad; 2240 int bad_sectors; 2241 2242 rcu_read_lock(); 2243 rdev = rcu_dereference(conf->mirrors[d].rdev); 2244 if (rdev && 2245 (test_bit(In_sync, &rdev->flags) || 2246 (!test_bit(Faulty, &rdev->flags) && 2247 rdev->recovery_offset >= sect + s)) && 2248 is_badblock(rdev, sect, s, 2249 &first_bad, &bad_sectors) == 0) { 2250 atomic_inc(&rdev->nr_pending); 2251 rcu_read_unlock(); 2252 if (sync_page_io(rdev, sect, s<<9, 2253 conf->tmppage, REQ_OP_READ, 0, false)) 2254 success = 1; 2255 rdev_dec_pending(rdev, mddev); 2256 if (success) 2257 break; 2258 } else 2259 rcu_read_unlock(); 2260 d++; 2261 if (d == conf->raid_disks * 2) 2262 d = 0; 2263 } while (!success && d != read_disk); 2264 2265 if (!success) { 2266 /* Cannot read from anywhere - mark it bad */ 2267 struct md_rdev *rdev = conf->mirrors[read_disk].rdev; 2268 if (!rdev_set_badblocks(rdev, sect, s, 0)) 2269 md_error(mddev, rdev); 2270 break; 2271 } 2272 /* write it back and re-read */ 2273 start = d; 2274 while (d != read_disk) { 2275 if (d==0) 2276 d = conf->raid_disks * 2; 2277 d--; 2278 rcu_read_lock(); 2279 rdev = rcu_dereference(conf->mirrors[d].rdev); 2280 if (rdev && 2281 !test_bit(Faulty, &rdev->flags)) { 2282 atomic_inc(&rdev->nr_pending); 2283 rcu_read_unlock(); 2284 r1_sync_page_io(rdev, sect, s, 2285 conf->tmppage, WRITE); 2286 rdev_dec_pending(rdev, mddev); 2287 } else 2288 rcu_read_unlock(); 2289 } 2290 d = start; 2291 while (d != read_disk) { 2292 char b[BDEVNAME_SIZE]; 2293 if (d==0) 2294 d = conf->raid_disks * 2; 2295 d--; 2296 rcu_read_lock(); 2297 rdev = rcu_dereference(conf->mirrors[d].rdev); 2298 if (rdev && 2299 !test_bit(Faulty, &rdev->flags)) { 2300 atomic_inc(&rdev->nr_pending); 2301 rcu_read_unlock(); 2302 if (r1_sync_page_io(rdev, sect, s, 2303 conf->tmppage, READ)) { 2304 atomic_add(s, &rdev->corrected_errors); 2305 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n", 2306 mdname(mddev), s, 2307 (unsigned long long)(sect + 2308 rdev->data_offset), 2309 bdevname(rdev->bdev, b)); 2310 } 2311 rdev_dec_pending(rdev, mddev); 2312 } else 2313 rcu_read_unlock(); 2314 } 2315 sectors -= s; 2316 sect += s; 2317 } 2318 } 2319 2320 static int narrow_write_error(struct r1bio *r1_bio, int i) 2321 { 2322 struct mddev *mddev = r1_bio->mddev; 2323 struct r1conf *conf = mddev->private; 2324 struct md_rdev *rdev = conf->mirrors[i].rdev; 2325 2326 /* bio has the data to be written to device 'i' where 2327 * we just recently had a write error. 2328 * We repeatedly clone the bio and trim down to one block, 2329 * then try the write. Where the write fails we record 2330 * a bad block. 2331 * It is conceivable that the bio doesn't exactly align with 2332 * blocks. We must handle this somehow. 2333 * 2334 * We currently own a reference on the rdev. 2335 */ 2336 2337 int block_sectors; 2338 sector_t sector; 2339 int sectors; 2340 int sect_to_write = r1_bio->sectors; 2341 int ok = 1; 2342 2343 if (rdev->badblocks.shift < 0) 2344 return 0; 2345 2346 block_sectors = roundup(1 << rdev->badblocks.shift, 2347 bdev_logical_block_size(rdev->bdev) >> 9); 2348 sector = r1_bio->sector; 2349 sectors = ((sector + block_sectors) 2350 & ~(sector_t)(block_sectors - 1)) 2351 - sector; 2352 2353 while (sect_to_write) { 2354 struct bio *wbio; 2355 if (sectors > sect_to_write) 2356 sectors = sect_to_write; 2357 /* Write at 'sector' for 'sectors'*/ 2358 2359 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 2360 wbio = bio_clone_fast(r1_bio->behind_master_bio, 2361 GFP_NOIO, 2362 mddev->bio_set); 2363 /* We really need a _all clone */ 2364 wbio->bi_iter = (struct bvec_iter){ 0 }; 2365 } else { 2366 wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO, 2367 mddev->bio_set); 2368 } 2369 2370 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0); 2371 wbio->bi_iter.bi_sector = r1_bio->sector; 2372 wbio->bi_iter.bi_size = r1_bio->sectors << 9; 2373 2374 bio_trim(wbio, sector - r1_bio->sector, sectors); 2375 wbio->bi_iter.bi_sector += rdev->data_offset; 2376 wbio->bi_bdev = rdev->bdev; 2377 2378 if (submit_bio_wait(wbio) < 0) 2379 /* failure! */ 2380 ok = rdev_set_badblocks(rdev, sector, 2381 sectors, 0) 2382 && ok; 2383 2384 bio_put(wbio); 2385 sect_to_write -= sectors; 2386 sector += sectors; 2387 sectors = block_sectors; 2388 } 2389 return ok; 2390 } 2391 2392 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2393 { 2394 int m; 2395 int s = r1_bio->sectors; 2396 for (m = 0; m < conf->raid_disks * 2 ; m++) { 2397 struct md_rdev *rdev = conf->mirrors[m].rdev; 2398 struct bio *bio = r1_bio->bios[m]; 2399 if (bio->bi_end_io == NULL) 2400 continue; 2401 if (!bio->bi_error && 2402 test_bit(R1BIO_MadeGood, &r1_bio->state)) { 2403 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0); 2404 } 2405 if (bio->bi_error && 2406 test_bit(R1BIO_WriteError, &r1_bio->state)) { 2407 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0)) 2408 md_error(conf->mddev, rdev); 2409 } 2410 } 2411 put_buf(r1_bio); 2412 md_done_sync(conf->mddev, s, 1); 2413 } 2414 2415 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2416 { 2417 int m, idx; 2418 bool fail = false; 2419 2420 for (m = 0; m < conf->raid_disks * 2 ; m++) 2421 if (r1_bio->bios[m] == IO_MADE_GOOD) { 2422 struct md_rdev *rdev = conf->mirrors[m].rdev; 2423 rdev_clear_badblocks(rdev, 2424 r1_bio->sector, 2425 r1_bio->sectors, 0); 2426 rdev_dec_pending(rdev, conf->mddev); 2427 } else if (r1_bio->bios[m] != NULL) { 2428 /* This drive got a write error. We need to 2429 * narrow down and record precise write 2430 * errors. 2431 */ 2432 fail = true; 2433 if (!narrow_write_error(r1_bio, m)) { 2434 md_error(conf->mddev, 2435 conf->mirrors[m].rdev); 2436 /* an I/O failed, we can't clear the bitmap */ 2437 set_bit(R1BIO_Degraded, &r1_bio->state); 2438 } 2439 rdev_dec_pending(conf->mirrors[m].rdev, 2440 conf->mddev); 2441 } 2442 if (fail) { 2443 spin_lock_irq(&conf->device_lock); 2444 list_add(&r1_bio->retry_list, &conf->bio_end_io_list); 2445 idx = sector_to_idx(r1_bio->sector); 2446 atomic_inc(&conf->nr_queued[idx]); 2447 spin_unlock_irq(&conf->device_lock); 2448 /* 2449 * In case freeze_array() is waiting for condition 2450 * get_unqueued_pending() == extra to be true. 2451 */ 2452 wake_up(&conf->wait_barrier); 2453 md_wakeup_thread(conf->mddev->thread); 2454 } else { 2455 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2456 close_write(r1_bio); 2457 raid_end_bio_io(r1_bio); 2458 } 2459 } 2460 2461 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio) 2462 { 2463 struct mddev *mddev = conf->mddev; 2464 struct bio *bio; 2465 struct md_rdev *rdev; 2466 dev_t bio_dev; 2467 sector_t bio_sector; 2468 2469 clear_bit(R1BIO_ReadError, &r1_bio->state); 2470 /* we got a read error. Maybe the drive is bad. Maybe just 2471 * the block and we can fix it. 2472 * We freeze all other IO, and try reading the block from 2473 * other devices. When we find one, we re-write 2474 * and check it that fixes the read error. 2475 * This is all done synchronously while the array is 2476 * frozen 2477 */ 2478 2479 bio = r1_bio->bios[r1_bio->read_disk]; 2480 bio_dev = bio->bi_bdev->bd_dev; 2481 bio_sector = conf->mirrors[r1_bio->read_disk].rdev->data_offset + r1_bio->sector; 2482 bio_put(bio); 2483 r1_bio->bios[r1_bio->read_disk] = NULL; 2484 2485 rdev = conf->mirrors[r1_bio->read_disk].rdev; 2486 if (mddev->ro == 0 2487 && !test_bit(FailFast, &rdev->flags)) { 2488 freeze_array(conf, 1); 2489 fix_read_error(conf, r1_bio->read_disk, 2490 r1_bio->sector, r1_bio->sectors); 2491 unfreeze_array(conf); 2492 } else { 2493 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED; 2494 } 2495 2496 rdev_dec_pending(rdev, conf->mddev); 2497 allow_barrier(conf, r1_bio->sector); 2498 bio = r1_bio->master_bio; 2499 2500 /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */ 2501 r1_bio->state = 0; 2502 raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio); 2503 } 2504 2505 static void raid1d(struct md_thread *thread) 2506 { 2507 struct mddev *mddev = thread->mddev; 2508 struct r1bio *r1_bio; 2509 unsigned long flags; 2510 struct r1conf *conf = mddev->private; 2511 struct list_head *head = &conf->retry_list; 2512 struct blk_plug plug; 2513 int idx; 2514 2515 md_check_recovery(mddev); 2516 2517 if (!list_empty_careful(&conf->bio_end_io_list) && 2518 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 2519 LIST_HEAD(tmp); 2520 spin_lock_irqsave(&conf->device_lock, flags); 2521 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 2522 list_splice_init(&conf->bio_end_io_list, &tmp); 2523 spin_unlock_irqrestore(&conf->device_lock, flags); 2524 while (!list_empty(&tmp)) { 2525 r1_bio = list_first_entry(&tmp, struct r1bio, 2526 retry_list); 2527 list_del(&r1_bio->retry_list); 2528 idx = sector_to_idx(r1_bio->sector); 2529 atomic_dec(&conf->nr_queued[idx]); 2530 if (mddev->degraded) 2531 set_bit(R1BIO_Degraded, &r1_bio->state); 2532 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2533 close_write(r1_bio); 2534 raid_end_bio_io(r1_bio); 2535 } 2536 } 2537 2538 blk_start_plug(&plug); 2539 for (;;) { 2540 2541 flush_pending_writes(conf); 2542 2543 spin_lock_irqsave(&conf->device_lock, flags); 2544 if (list_empty(head)) { 2545 spin_unlock_irqrestore(&conf->device_lock, flags); 2546 break; 2547 } 2548 r1_bio = list_entry(head->prev, struct r1bio, retry_list); 2549 list_del(head->prev); 2550 idx = sector_to_idx(r1_bio->sector); 2551 atomic_dec(&conf->nr_queued[idx]); 2552 spin_unlock_irqrestore(&conf->device_lock, flags); 2553 2554 mddev = r1_bio->mddev; 2555 conf = mddev->private; 2556 if (test_bit(R1BIO_IsSync, &r1_bio->state)) { 2557 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2558 test_bit(R1BIO_WriteError, &r1_bio->state)) 2559 handle_sync_write_finished(conf, r1_bio); 2560 else 2561 sync_request_write(mddev, r1_bio); 2562 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2563 test_bit(R1BIO_WriteError, &r1_bio->state)) 2564 handle_write_finished(conf, r1_bio); 2565 else if (test_bit(R1BIO_ReadError, &r1_bio->state)) 2566 handle_read_error(conf, r1_bio); 2567 else 2568 WARN_ON_ONCE(1); 2569 2570 cond_resched(); 2571 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING)) 2572 md_check_recovery(mddev); 2573 } 2574 blk_finish_plug(&plug); 2575 } 2576 2577 static int init_resync(struct r1conf *conf) 2578 { 2579 int buffs; 2580 2581 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2582 BUG_ON(conf->r1buf_pool); 2583 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free, 2584 conf->poolinfo); 2585 if (!conf->r1buf_pool) 2586 return -ENOMEM; 2587 return 0; 2588 } 2589 2590 /* 2591 * perform a "sync" on one "block" 2592 * 2593 * We need to make sure that no normal I/O request - particularly write 2594 * requests - conflict with active sync requests. 2595 * 2596 * This is achieved by tracking pending requests and a 'barrier' concept 2597 * that can be installed to exclude normal IO requests. 2598 */ 2599 2600 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr, 2601 int *skipped) 2602 { 2603 struct r1conf *conf = mddev->private; 2604 struct r1bio *r1_bio; 2605 struct bio *bio; 2606 sector_t max_sector, nr_sectors; 2607 int disk = -1; 2608 int i; 2609 int wonly = -1; 2610 int write_targets = 0, read_targets = 0; 2611 sector_t sync_blocks; 2612 int still_degraded = 0; 2613 int good_sectors = RESYNC_SECTORS; 2614 int min_bad = 0; /* number of sectors that are bad in all devices */ 2615 int idx = sector_to_idx(sector_nr); 2616 2617 if (!conf->r1buf_pool) 2618 if (init_resync(conf)) 2619 return 0; 2620 2621 max_sector = mddev->dev_sectors; 2622 if (sector_nr >= max_sector) { 2623 /* If we aborted, we need to abort the 2624 * sync on the 'current' bitmap chunk (there will 2625 * only be one in raid1 resync. 2626 * We can find the current addess in mddev->curr_resync 2627 */ 2628 if (mddev->curr_resync < max_sector) /* aborted */ 2629 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2630 &sync_blocks, 1); 2631 else /* completed sync */ 2632 conf->fullsync = 0; 2633 2634 bitmap_close_sync(mddev->bitmap); 2635 close_sync(conf); 2636 2637 if (mddev_is_clustered(mddev)) { 2638 conf->cluster_sync_low = 0; 2639 conf->cluster_sync_high = 0; 2640 } 2641 return 0; 2642 } 2643 2644 if (mddev->bitmap == NULL && 2645 mddev->recovery_cp == MaxSector && 2646 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 2647 conf->fullsync == 0) { 2648 *skipped = 1; 2649 return max_sector - sector_nr; 2650 } 2651 /* before building a request, check if we can skip these blocks.. 2652 * This call the bitmap_start_sync doesn't actually record anything 2653 */ 2654 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 2655 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2656 /* We can skip this block, and probably several more */ 2657 *skipped = 1; 2658 return sync_blocks; 2659 } 2660 2661 /* 2662 * If there is non-resync activity waiting for a turn, then let it 2663 * though before starting on this new sync request. 2664 */ 2665 if (atomic_read(&conf->nr_waiting[idx])) 2666 schedule_timeout_uninterruptible(1); 2667 2668 /* we are incrementing sector_nr below. To be safe, we check against 2669 * sector_nr + two times RESYNC_SECTORS 2670 */ 2671 2672 bitmap_cond_end_sync(mddev->bitmap, sector_nr, 2673 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high)); 2674 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO); 2675 2676 raise_barrier(conf, sector_nr); 2677 2678 rcu_read_lock(); 2679 /* 2680 * If we get a correctably read error during resync or recovery, 2681 * we might want to read from a different device. So we 2682 * flag all drives that could conceivably be read from for READ, 2683 * and any others (which will be non-In_sync devices) for WRITE. 2684 * If a read fails, we try reading from something else for which READ 2685 * is OK. 2686 */ 2687 2688 r1_bio->mddev = mddev; 2689 r1_bio->sector = sector_nr; 2690 r1_bio->state = 0; 2691 set_bit(R1BIO_IsSync, &r1_bio->state); 2692 /* make sure good_sectors won't go across barrier unit boundary */ 2693 good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors); 2694 2695 for (i = 0; i < conf->raid_disks * 2; i++) { 2696 struct md_rdev *rdev; 2697 bio = r1_bio->bios[i]; 2698 2699 rdev = rcu_dereference(conf->mirrors[i].rdev); 2700 if (rdev == NULL || 2701 test_bit(Faulty, &rdev->flags)) { 2702 if (i < conf->raid_disks) 2703 still_degraded = 1; 2704 } else if (!test_bit(In_sync, &rdev->flags)) { 2705 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 2706 bio->bi_end_io = end_sync_write; 2707 write_targets ++; 2708 } else { 2709 /* may need to read from here */ 2710 sector_t first_bad = MaxSector; 2711 int bad_sectors; 2712 2713 if (is_badblock(rdev, sector_nr, good_sectors, 2714 &first_bad, &bad_sectors)) { 2715 if (first_bad > sector_nr) 2716 good_sectors = first_bad - sector_nr; 2717 else { 2718 bad_sectors -= (sector_nr - first_bad); 2719 if (min_bad == 0 || 2720 min_bad > bad_sectors) 2721 min_bad = bad_sectors; 2722 } 2723 } 2724 if (sector_nr < first_bad) { 2725 if (test_bit(WriteMostly, &rdev->flags)) { 2726 if (wonly < 0) 2727 wonly = i; 2728 } else { 2729 if (disk < 0) 2730 disk = i; 2731 } 2732 bio_set_op_attrs(bio, REQ_OP_READ, 0); 2733 bio->bi_end_io = end_sync_read; 2734 read_targets++; 2735 } else if (!test_bit(WriteErrorSeen, &rdev->flags) && 2736 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 2737 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 2738 /* 2739 * The device is suitable for reading (InSync), 2740 * but has bad block(s) here. Let's try to correct them, 2741 * if we are doing resync or repair. Otherwise, leave 2742 * this device alone for this sync request. 2743 */ 2744 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 2745 bio->bi_end_io = end_sync_write; 2746 write_targets++; 2747 } 2748 } 2749 if (bio->bi_end_io) { 2750 atomic_inc(&rdev->nr_pending); 2751 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset; 2752 bio->bi_bdev = rdev->bdev; 2753 if (test_bit(FailFast, &rdev->flags)) 2754 bio->bi_opf |= MD_FAILFAST; 2755 } 2756 } 2757 rcu_read_unlock(); 2758 if (disk < 0) 2759 disk = wonly; 2760 r1_bio->read_disk = disk; 2761 2762 if (read_targets == 0 && min_bad > 0) { 2763 /* These sectors are bad on all InSync devices, so we 2764 * need to mark them bad on all write targets 2765 */ 2766 int ok = 1; 2767 for (i = 0 ; i < conf->raid_disks * 2 ; i++) 2768 if (r1_bio->bios[i]->bi_end_io == end_sync_write) { 2769 struct md_rdev *rdev = conf->mirrors[i].rdev; 2770 ok = rdev_set_badblocks(rdev, sector_nr, 2771 min_bad, 0 2772 ) && ok; 2773 } 2774 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2775 *skipped = 1; 2776 put_buf(r1_bio); 2777 2778 if (!ok) { 2779 /* Cannot record the badblocks, so need to 2780 * abort the resync. 2781 * If there are multiple read targets, could just 2782 * fail the really bad ones ??? 2783 */ 2784 conf->recovery_disabled = mddev->recovery_disabled; 2785 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2786 return 0; 2787 } else 2788 return min_bad; 2789 2790 } 2791 if (min_bad > 0 && min_bad < good_sectors) { 2792 /* only resync enough to reach the next bad->good 2793 * transition */ 2794 good_sectors = min_bad; 2795 } 2796 2797 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0) 2798 /* extra read targets are also write targets */ 2799 write_targets += read_targets-1; 2800 2801 if (write_targets == 0 || read_targets == 0) { 2802 /* There is nowhere to write, so all non-sync 2803 * drives must be failed - so we are finished 2804 */ 2805 sector_t rv; 2806 if (min_bad > 0) 2807 max_sector = sector_nr + min_bad; 2808 rv = max_sector - sector_nr; 2809 *skipped = 1; 2810 put_buf(r1_bio); 2811 return rv; 2812 } 2813 2814 if (max_sector > mddev->resync_max) 2815 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 2816 if (max_sector > sector_nr + good_sectors) 2817 max_sector = sector_nr + good_sectors; 2818 nr_sectors = 0; 2819 sync_blocks = 0; 2820 do { 2821 struct page *page; 2822 int len = PAGE_SIZE; 2823 if (sector_nr + (len>>9) > max_sector) 2824 len = (max_sector - sector_nr) << 9; 2825 if (len == 0) 2826 break; 2827 if (sync_blocks == 0) { 2828 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 2829 &sync_blocks, still_degraded) && 2830 !conf->fullsync && 2831 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2832 break; 2833 if ((len >> 9) > sync_blocks) 2834 len = sync_blocks<<9; 2835 } 2836 2837 for (i = 0 ; i < conf->raid_disks * 2; i++) { 2838 struct resync_pages *rp; 2839 2840 bio = r1_bio->bios[i]; 2841 rp = get_resync_pages(bio); 2842 if (bio->bi_end_io) { 2843 page = resync_fetch_page(rp, rp->idx++); 2844 2845 /* 2846 * won't fail because the vec table is big 2847 * enough to hold all these pages 2848 */ 2849 bio_add_page(bio, page, len, 0); 2850 } 2851 } 2852 nr_sectors += len>>9; 2853 sector_nr += len>>9; 2854 sync_blocks -= (len>>9); 2855 } while (get_resync_pages(r1_bio->bios[disk]->bi_private)->idx < RESYNC_PAGES); 2856 2857 r1_bio->sectors = nr_sectors; 2858 2859 if (mddev_is_clustered(mddev) && 2860 conf->cluster_sync_high < sector_nr + nr_sectors) { 2861 conf->cluster_sync_low = mddev->curr_resync_completed; 2862 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS; 2863 /* Send resync message */ 2864 md_cluster_ops->resync_info_update(mddev, 2865 conf->cluster_sync_low, 2866 conf->cluster_sync_high); 2867 } 2868 2869 /* For a user-requested sync, we read all readable devices and do a 2870 * compare 2871 */ 2872 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2873 atomic_set(&r1_bio->remaining, read_targets); 2874 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) { 2875 bio = r1_bio->bios[i]; 2876 if (bio->bi_end_io == end_sync_read) { 2877 read_targets--; 2878 md_sync_acct(bio->bi_bdev, nr_sectors); 2879 if (read_targets == 1) 2880 bio->bi_opf &= ~MD_FAILFAST; 2881 generic_make_request(bio); 2882 } 2883 } 2884 } else { 2885 atomic_set(&r1_bio->remaining, 1); 2886 bio = r1_bio->bios[r1_bio->read_disk]; 2887 md_sync_acct(bio->bi_bdev, nr_sectors); 2888 if (read_targets == 1) 2889 bio->bi_opf &= ~MD_FAILFAST; 2890 generic_make_request(bio); 2891 2892 } 2893 return nr_sectors; 2894 } 2895 2896 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks) 2897 { 2898 if (sectors) 2899 return sectors; 2900 2901 return mddev->dev_sectors; 2902 } 2903 2904 static struct r1conf *setup_conf(struct mddev *mddev) 2905 { 2906 struct r1conf *conf; 2907 int i; 2908 struct raid1_info *disk; 2909 struct md_rdev *rdev; 2910 int err = -ENOMEM; 2911 2912 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL); 2913 if (!conf) 2914 goto abort; 2915 2916 conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR, 2917 sizeof(atomic_t), GFP_KERNEL); 2918 if (!conf->nr_pending) 2919 goto abort; 2920 2921 conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR, 2922 sizeof(atomic_t), GFP_KERNEL); 2923 if (!conf->nr_waiting) 2924 goto abort; 2925 2926 conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR, 2927 sizeof(atomic_t), GFP_KERNEL); 2928 if (!conf->nr_queued) 2929 goto abort; 2930 2931 conf->barrier = kcalloc(BARRIER_BUCKETS_NR, 2932 sizeof(atomic_t), GFP_KERNEL); 2933 if (!conf->barrier) 2934 goto abort; 2935 2936 conf->mirrors = kzalloc(sizeof(struct raid1_info) 2937 * mddev->raid_disks * 2, 2938 GFP_KERNEL); 2939 if (!conf->mirrors) 2940 goto abort; 2941 2942 conf->tmppage = alloc_page(GFP_KERNEL); 2943 if (!conf->tmppage) 2944 goto abort; 2945 2946 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL); 2947 if (!conf->poolinfo) 2948 goto abort; 2949 conf->poolinfo->raid_disks = mddev->raid_disks * 2; 2950 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 2951 r1bio_pool_free, 2952 conf->poolinfo); 2953 if (!conf->r1bio_pool) 2954 goto abort; 2955 2956 conf->bio_split = bioset_create(BIO_POOL_SIZE, 0); 2957 if (!conf->bio_split) 2958 goto abort; 2959 2960 conf->poolinfo->mddev = mddev; 2961 2962 err = -EINVAL; 2963 spin_lock_init(&conf->device_lock); 2964 rdev_for_each(rdev, mddev) { 2965 int disk_idx = rdev->raid_disk; 2966 if (disk_idx >= mddev->raid_disks 2967 || disk_idx < 0) 2968 continue; 2969 if (test_bit(Replacement, &rdev->flags)) 2970 disk = conf->mirrors + mddev->raid_disks + disk_idx; 2971 else 2972 disk = conf->mirrors + disk_idx; 2973 2974 if (disk->rdev) 2975 goto abort; 2976 disk->rdev = rdev; 2977 disk->head_position = 0; 2978 disk->seq_start = MaxSector; 2979 } 2980 conf->raid_disks = mddev->raid_disks; 2981 conf->mddev = mddev; 2982 INIT_LIST_HEAD(&conf->retry_list); 2983 INIT_LIST_HEAD(&conf->bio_end_io_list); 2984 2985 spin_lock_init(&conf->resync_lock); 2986 init_waitqueue_head(&conf->wait_barrier); 2987 2988 bio_list_init(&conf->pending_bio_list); 2989 conf->pending_count = 0; 2990 conf->recovery_disabled = mddev->recovery_disabled - 1; 2991 2992 err = -EIO; 2993 for (i = 0; i < conf->raid_disks * 2; i++) { 2994 2995 disk = conf->mirrors + i; 2996 2997 if (i < conf->raid_disks && 2998 disk[conf->raid_disks].rdev) { 2999 /* This slot has a replacement. */ 3000 if (!disk->rdev) { 3001 /* No original, just make the replacement 3002 * a recovering spare 3003 */ 3004 disk->rdev = 3005 disk[conf->raid_disks].rdev; 3006 disk[conf->raid_disks].rdev = NULL; 3007 } else if (!test_bit(In_sync, &disk->rdev->flags)) 3008 /* Original is not in_sync - bad */ 3009 goto abort; 3010 } 3011 3012 if (!disk->rdev || 3013 !test_bit(In_sync, &disk->rdev->flags)) { 3014 disk->head_position = 0; 3015 if (disk->rdev && 3016 (disk->rdev->saved_raid_disk < 0)) 3017 conf->fullsync = 1; 3018 } 3019 } 3020 3021 err = -ENOMEM; 3022 conf->thread = md_register_thread(raid1d, mddev, "raid1"); 3023 if (!conf->thread) 3024 goto abort; 3025 3026 return conf; 3027 3028 abort: 3029 if (conf) { 3030 mempool_destroy(conf->r1bio_pool); 3031 kfree(conf->mirrors); 3032 safe_put_page(conf->tmppage); 3033 kfree(conf->poolinfo); 3034 kfree(conf->nr_pending); 3035 kfree(conf->nr_waiting); 3036 kfree(conf->nr_queued); 3037 kfree(conf->barrier); 3038 if (conf->bio_split) 3039 bioset_free(conf->bio_split); 3040 kfree(conf); 3041 } 3042 return ERR_PTR(err); 3043 } 3044 3045 static void raid1_free(struct mddev *mddev, void *priv); 3046 static int raid1_run(struct mddev *mddev) 3047 { 3048 struct r1conf *conf; 3049 int i; 3050 struct md_rdev *rdev; 3051 int ret; 3052 bool discard_supported = false; 3053 3054 if (mddev->level != 1) { 3055 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n", 3056 mdname(mddev), mddev->level); 3057 return -EIO; 3058 } 3059 if (mddev->reshape_position != MaxSector) { 3060 pr_warn("md/raid1:%s: reshape_position set but not supported\n", 3061 mdname(mddev)); 3062 return -EIO; 3063 } 3064 /* 3065 * copy the already verified devices into our private RAID1 3066 * bookkeeping area. [whatever we allocate in run(), 3067 * should be freed in raid1_free()] 3068 */ 3069 if (mddev->private == NULL) 3070 conf = setup_conf(mddev); 3071 else 3072 conf = mddev->private; 3073 3074 if (IS_ERR(conf)) 3075 return PTR_ERR(conf); 3076 3077 if (mddev->queue) { 3078 blk_queue_max_write_same_sectors(mddev->queue, 0); 3079 blk_queue_max_write_zeroes_sectors(mddev->queue, 0); 3080 } 3081 3082 rdev_for_each(rdev, mddev) { 3083 if (!mddev->gendisk) 3084 continue; 3085 disk_stack_limits(mddev->gendisk, rdev->bdev, 3086 rdev->data_offset << 9); 3087 if (blk_queue_discard(bdev_get_queue(rdev->bdev))) 3088 discard_supported = true; 3089 } 3090 3091 mddev->degraded = 0; 3092 for (i=0; i < conf->raid_disks; i++) 3093 if (conf->mirrors[i].rdev == NULL || 3094 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) || 3095 test_bit(Faulty, &conf->mirrors[i].rdev->flags)) 3096 mddev->degraded++; 3097 3098 if (conf->raid_disks - mddev->degraded == 1) 3099 mddev->recovery_cp = MaxSector; 3100 3101 if (mddev->recovery_cp != MaxSector) 3102 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n", 3103 mdname(mddev)); 3104 pr_info("md/raid1:%s: active with %d out of %d mirrors\n", 3105 mdname(mddev), mddev->raid_disks - mddev->degraded, 3106 mddev->raid_disks); 3107 3108 /* 3109 * Ok, everything is just fine now 3110 */ 3111 mddev->thread = conf->thread; 3112 conf->thread = NULL; 3113 mddev->private = conf; 3114 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags); 3115 3116 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0)); 3117 3118 if (mddev->queue) { 3119 if (discard_supported) 3120 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, 3121 mddev->queue); 3122 else 3123 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, 3124 mddev->queue); 3125 } 3126 3127 ret = md_integrity_register(mddev); 3128 if (ret) { 3129 md_unregister_thread(&mddev->thread); 3130 raid1_free(mddev, conf); 3131 } 3132 return ret; 3133 } 3134 3135 static void raid1_free(struct mddev *mddev, void *priv) 3136 { 3137 struct r1conf *conf = priv; 3138 3139 mempool_destroy(conf->r1bio_pool); 3140 kfree(conf->mirrors); 3141 safe_put_page(conf->tmppage); 3142 kfree(conf->poolinfo); 3143 kfree(conf->nr_pending); 3144 kfree(conf->nr_waiting); 3145 kfree(conf->nr_queued); 3146 kfree(conf->barrier); 3147 if (conf->bio_split) 3148 bioset_free(conf->bio_split); 3149 kfree(conf); 3150 } 3151 3152 static int raid1_resize(struct mddev *mddev, sector_t sectors) 3153 { 3154 /* no resync is happening, and there is enough space 3155 * on all devices, so we can resize. 3156 * We need to make sure resync covers any new space. 3157 * If the array is shrinking we should possibly wait until 3158 * any io in the removed space completes, but it hardly seems 3159 * worth it. 3160 */ 3161 sector_t newsize = raid1_size(mddev, sectors, 0); 3162 if (mddev->external_size && 3163 mddev->array_sectors > newsize) 3164 return -EINVAL; 3165 if (mddev->bitmap) { 3166 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0); 3167 if (ret) 3168 return ret; 3169 } 3170 md_set_array_sectors(mddev, newsize); 3171 if (sectors > mddev->dev_sectors && 3172 mddev->recovery_cp > mddev->dev_sectors) { 3173 mddev->recovery_cp = mddev->dev_sectors; 3174 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3175 } 3176 mddev->dev_sectors = sectors; 3177 mddev->resync_max_sectors = sectors; 3178 return 0; 3179 } 3180 3181 static int raid1_reshape(struct mddev *mddev) 3182 { 3183 /* We need to: 3184 * 1/ resize the r1bio_pool 3185 * 2/ resize conf->mirrors 3186 * 3187 * We allocate a new r1bio_pool if we can. 3188 * Then raise a device barrier and wait until all IO stops. 3189 * Then resize conf->mirrors and swap in the new r1bio pool. 3190 * 3191 * At the same time, we "pack" the devices so that all the missing 3192 * devices have the higher raid_disk numbers. 3193 */ 3194 mempool_t *newpool, *oldpool; 3195 struct pool_info *newpoolinfo; 3196 struct raid1_info *newmirrors; 3197 struct r1conf *conf = mddev->private; 3198 int cnt, raid_disks; 3199 unsigned long flags; 3200 int d, d2, err; 3201 3202 /* Cannot change chunk_size, layout, or level */ 3203 if (mddev->chunk_sectors != mddev->new_chunk_sectors || 3204 mddev->layout != mddev->new_layout || 3205 mddev->level != mddev->new_level) { 3206 mddev->new_chunk_sectors = mddev->chunk_sectors; 3207 mddev->new_layout = mddev->layout; 3208 mddev->new_level = mddev->level; 3209 return -EINVAL; 3210 } 3211 3212 if (!mddev_is_clustered(mddev)) { 3213 err = md_allow_write(mddev); 3214 if (err) 3215 return err; 3216 } 3217 3218 raid_disks = mddev->raid_disks + mddev->delta_disks; 3219 3220 if (raid_disks < conf->raid_disks) { 3221 cnt=0; 3222 for (d= 0; d < conf->raid_disks; d++) 3223 if (conf->mirrors[d].rdev) 3224 cnt++; 3225 if (cnt > raid_disks) 3226 return -EBUSY; 3227 } 3228 3229 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL); 3230 if (!newpoolinfo) 3231 return -ENOMEM; 3232 newpoolinfo->mddev = mddev; 3233 newpoolinfo->raid_disks = raid_disks * 2; 3234 3235 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 3236 r1bio_pool_free, newpoolinfo); 3237 if (!newpool) { 3238 kfree(newpoolinfo); 3239 return -ENOMEM; 3240 } 3241 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2, 3242 GFP_KERNEL); 3243 if (!newmirrors) { 3244 kfree(newpoolinfo); 3245 mempool_destroy(newpool); 3246 return -ENOMEM; 3247 } 3248 3249 freeze_array(conf, 0); 3250 3251 /* ok, everything is stopped */ 3252 oldpool = conf->r1bio_pool; 3253 conf->r1bio_pool = newpool; 3254 3255 for (d = d2 = 0; d < conf->raid_disks; d++) { 3256 struct md_rdev *rdev = conf->mirrors[d].rdev; 3257 if (rdev && rdev->raid_disk != d2) { 3258 sysfs_unlink_rdev(mddev, rdev); 3259 rdev->raid_disk = d2; 3260 sysfs_unlink_rdev(mddev, rdev); 3261 if (sysfs_link_rdev(mddev, rdev)) 3262 pr_warn("md/raid1:%s: cannot register rd%d\n", 3263 mdname(mddev), rdev->raid_disk); 3264 } 3265 if (rdev) 3266 newmirrors[d2++].rdev = rdev; 3267 } 3268 kfree(conf->mirrors); 3269 conf->mirrors = newmirrors; 3270 kfree(conf->poolinfo); 3271 conf->poolinfo = newpoolinfo; 3272 3273 spin_lock_irqsave(&conf->device_lock, flags); 3274 mddev->degraded += (raid_disks - conf->raid_disks); 3275 spin_unlock_irqrestore(&conf->device_lock, flags); 3276 conf->raid_disks = mddev->raid_disks = raid_disks; 3277 mddev->delta_disks = 0; 3278 3279 unfreeze_array(conf); 3280 3281 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 3282 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3283 md_wakeup_thread(mddev->thread); 3284 3285 mempool_destroy(oldpool); 3286 return 0; 3287 } 3288 3289 static void raid1_quiesce(struct mddev *mddev, int state) 3290 { 3291 struct r1conf *conf = mddev->private; 3292 3293 switch(state) { 3294 case 2: /* wake for suspend */ 3295 wake_up(&conf->wait_barrier); 3296 break; 3297 case 1: 3298 freeze_array(conf, 0); 3299 break; 3300 case 0: 3301 unfreeze_array(conf); 3302 break; 3303 } 3304 } 3305 3306 static void *raid1_takeover(struct mddev *mddev) 3307 { 3308 /* raid1 can take over: 3309 * raid5 with 2 devices, any layout or chunk size 3310 */ 3311 if (mddev->level == 5 && mddev->raid_disks == 2) { 3312 struct r1conf *conf; 3313 mddev->new_level = 1; 3314 mddev->new_layout = 0; 3315 mddev->new_chunk_sectors = 0; 3316 conf = setup_conf(mddev); 3317 if (!IS_ERR(conf)) { 3318 /* Array must appear to be quiesced */ 3319 conf->array_frozen = 1; 3320 mddev_clear_unsupported_flags(mddev, 3321 UNSUPPORTED_MDDEV_FLAGS); 3322 } 3323 return conf; 3324 } 3325 return ERR_PTR(-EINVAL); 3326 } 3327 3328 static struct md_personality raid1_personality = 3329 { 3330 .name = "raid1", 3331 .level = 1, 3332 .owner = THIS_MODULE, 3333 .make_request = raid1_make_request, 3334 .run = raid1_run, 3335 .free = raid1_free, 3336 .status = raid1_status, 3337 .error_handler = raid1_error, 3338 .hot_add_disk = raid1_add_disk, 3339 .hot_remove_disk= raid1_remove_disk, 3340 .spare_active = raid1_spare_active, 3341 .sync_request = raid1_sync_request, 3342 .resize = raid1_resize, 3343 .size = raid1_size, 3344 .check_reshape = raid1_reshape, 3345 .quiesce = raid1_quiesce, 3346 .takeover = raid1_takeover, 3347 .congested = raid1_congested, 3348 }; 3349 3350 static int __init raid_init(void) 3351 { 3352 return register_md_personality(&raid1_personality); 3353 } 3354 3355 static void raid_exit(void) 3356 { 3357 unregister_md_personality(&raid1_personality); 3358 } 3359 3360 module_init(raid_init); 3361 module_exit(raid_exit); 3362 MODULE_LICENSE("GPL"); 3363 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD"); 3364 MODULE_ALIAS("md-personality-3"); /* RAID1 */ 3365 MODULE_ALIAS("md-raid1"); 3366 MODULE_ALIAS("md-level-1"); 3367 3368 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); 3369