1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * raid1.c : Multiple Devices driver for Linux
4 *
5 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 *
7 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 *
9 * RAID-1 management functions.
10 *
11 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 *
13 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
14 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 *
16 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
17 * bitmapped intelligence in resync:
18 *
19 * - bitmap marked during normal i/o
20 * - bitmap used to skip nondirty blocks during sync
21 *
22 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
23 * - persistent bitmap code
24 */
25
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/blkdev.h>
29 #include <linux/module.h>
30 #include <linux/seq_file.h>
31 #include <linux/ratelimit.h>
32 #include <linux/interval_tree_generic.h>
33
34 #include <trace/events/block.h>
35
36 #include "md.h"
37 #include "raid1.h"
38 #include "md-bitmap.h"
39
40 #define UNSUPPORTED_MDDEV_FLAGS \
41 ((1L << MD_HAS_JOURNAL) | \
42 (1L << MD_JOURNAL_CLEAN) | \
43 (1L << MD_HAS_PPL) | \
44 (1L << MD_HAS_MULTIPLE_PPLS))
45
46 static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
47 static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
48
49 #define raid1_log(md, fmt, args...) \
50 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
51
52 #include "raid1-10.c"
53
54 #define START(node) ((node)->start)
55 #define LAST(node) ((node)->last)
56 INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last,
57 START, LAST, static inline, raid1_rb);
58
check_and_add_serial(struct md_rdev * rdev,struct r1bio * r1_bio,struct serial_info * si,int idx)59 static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio,
60 struct serial_info *si, int idx)
61 {
62 unsigned long flags;
63 int ret = 0;
64 sector_t lo = r1_bio->sector;
65 sector_t hi = lo + r1_bio->sectors;
66 struct serial_in_rdev *serial = &rdev->serial[idx];
67
68 spin_lock_irqsave(&serial->serial_lock, flags);
69 /* collision happened */
70 if (raid1_rb_iter_first(&serial->serial_rb, lo, hi))
71 ret = -EBUSY;
72 else {
73 si->start = lo;
74 si->last = hi;
75 raid1_rb_insert(si, &serial->serial_rb);
76 }
77 spin_unlock_irqrestore(&serial->serial_lock, flags);
78
79 return ret;
80 }
81
wait_for_serialization(struct md_rdev * rdev,struct r1bio * r1_bio)82 static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio)
83 {
84 struct mddev *mddev = rdev->mddev;
85 struct serial_info *si;
86 int idx = sector_to_idx(r1_bio->sector);
87 struct serial_in_rdev *serial = &rdev->serial[idx];
88
89 if (WARN_ON(!mddev->serial_info_pool))
90 return;
91 si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO);
92 wait_event(serial->serial_io_wait,
93 check_and_add_serial(rdev, r1_bio, si, idx) == 0);
94 }
95
remove_serial(struct md_rdev * rdev,sector_t lo,sector_t hi)96 static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi)
97 {
98 struct serial_info *si;
99 unsigned long flags;
100 int found = 0;
101 struct mddev *mddev = rdev->mddev;
102 int idx = sector_to_idx(lo);
103 struct serial_in_rdev *serial = &rdev->serial[idx];
104
105 spin_lock_irqsave(&serial->serial_lock, flags);
106 for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi);
107 si; si = raid1_rb_iter_next(si, lo, hi)) {
108 if (si->start == lo && si->last == hi) {
109 raid1_rb_remove(si, &serial->serial_rb);
110 mempool_free(si, mddev->serial_info_pool);
111 found = 1;
112 break;
113 }
114 }
115 if (!found)
116 WARN(1, "The write IO is not recorded for serialization\n");
117 spin_unlock_irqrestore(&serial->serial_lock, flags);
118 wake_up(&serial->serial_io_wait);
119 }
120
121 /*
122 * for resync bio, r1bio pointer can be retrieved from the per-bio
123 * 'struct resync_pages'.
124 */
get_resync_r1bio(struct bio * bio)125 static inline struct r1bio *get_resync_r1bio(struct bio *bio)
126 {
127 return get_resync_pages(bio)->raid_bio;
128 }
129
r1bio_pool_alloc(gfp_t gfp_flags,void * data)130 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
131 {
132 struct pool_info *pi = data;
133 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
134
135 /* allocate a r1bio with room for raid_disks entries in the bios array */
136 return kzalloc(size, gfp_flags);
137 }
138
139 #define RESYNC_DEPTH 32
140 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
141 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
142 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
143 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
144 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
145
r1buf_pool_alloc(gfp_t gfp_flags,void * data)146 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
147 {
148 struct pool_info *pi = data;
149 struct r1bio *r1_bio;
150 struct bio *bio;
151 int need_pages;
152 int j;
153 struct resync_pages *rps;
154
155 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
156 if (!r1_bio)
157 return NULL;
158
159 rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages),
160 gfp_flags);
161 if (!rps)
162 goto out_free_r1bio;
163
164 /*
165 * Allocate bios : 1 for reading, n-1 for writing
166 */
167 for (j = pi->raid_disks ; j-- ; ) {
168 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
169 if (!bio)
170 goto out_free_bio;
171 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
172 r1_bio->bios[j] = bio;
173 }
174 /*
175 * Allocate RESYNC_PAGES data pages and attach them to
176 * the first bio.
177 * If this is a user-requested check/repair, allocate
178 * RESYNC_PAGES for each bio.
179 */
180 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
181 need_pages = pi->raid_disks;
182 else
183 need_pages = 1;
184 for (j = 0; j < pi->raid_disks; j++) {
185 struct resync_pages *rp = &rps[j];
186
187 bio = r1_bio->bios[j];
188
189 if (j < need_pages) {
190 if (resync_alloc_pages(rp, gfp_flags))
191 goto out_free_pages;
192 } else {
193 memcpy(rp, &rps[0], sizeof(*rp));
194 resync_get_all_pages(rp);
195 }
196
197 rp->raid_bio = r1_bio;
198 bio->bi_private = rp;
199 }
200
201 r1_bio->master_bio = NULL;
202
203 return r1_bio;
204
205 out_free_pages:
206 while (--j >= 0)
207 resync_free_pages(&rps[j]);
208
209 out_free_bio:
210 while (++j < pi->raid_disks) {
211 bio_uninit(r1_bio->bios[j]);
212 kfree(r1_bio->bios[j]);
213 }
214 kfree(rps);
215
216 out_free_r1bio:
217 rbio_pool_free(r1_bio, data);
218 return NULL;
219 }
220
r1buf_pool_free(void * __r1_bio,void * data)221 static void r1buf_pool_free(void *__r1_bio, void *data)
222 {
223 struct pool_info *pi = data;
224 int i;
225 struct r1bio *r1bio = __r1_bio;
226 struct resync_pages *rp = NULL;
227
228 for (i = pi->raid_disks; i--; ) {
229 rp = get_resync_pages(r1bio->bios[i]);
230 resync_free_pages(rp);
231 bio_uninit(r1bio->bios[i]);
232 kfree(r1bio->bios[i]);
233 }
234
235 /* resync pages array stored in the 1st bio's .bi_private */
236 kfree(rp);
237
238 rbio_pool_free(r1bio, data);
239 }
240
put_all_bios(struct r1conf * conf,struct r1bio * r1_bio)241 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
242 {
243 int i;
244
245 for (i = 0; i < conf->raid_disks * 2; i++) {
246 struct bio **bio = r1_bio->bios + i;
247 if (!BIO_SPECIAL(*bio))
248 bio_put(*bio);
249 *bio = NULL;
250 }
251 }
252
free_r1bio(struct r1bio * r1_bio)253 static void free_r1bio(struct r1bio *r1_bio)
254 {
255 struct r1conf *conf = r1_bio->mddev->private;
256
257 put_all_bios(conf, r1_bio);
258 mempool_free(r1_bio, &conf->r1bio_pool);
259 }
260
put_buf(struct r1bio * r1_bio)261 static void put_buf(struct r1bio *r1_bio)
262 {
263 struct r1conf *conf = r1_bio->mddev->private;
264 sector_t sect = r1_bio->sector;
265 int i;
266
267 for (i = 0; i < conf->raid_disks * 2; i++) {
268 struct bio *bio = r1_bio->bios[i];
269 if (bio->bi_end_io)
270 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
271 }
272
273 mempool_free(r1_bio, &conf->r1buf_pool);
274
275 lower_barrier(conf, sect);
276 }
277
reschedule_retry(struct r1bio * r1_bio)278 static void reschedule_retry(struct r1bio *r1_bio)
279 {
280 unsigned long flags;
281 struct mddev *mddev = r1_bio->mddev;
282 struct r1conf *conf = mddev->private;
283 int idx;
284
285 idx = sector_to_idx(r1_bio->sector);
286 spin_lock_irqsave(&conf->device_lock, flags);
287 list_add(&r1_bio->retry_list, &conf->retry_list);
288 atomic_inc(&conf->nr_queued[idx]);
289 spin_unlock_irqrestore(&conf->device_lock, flags);
290
291 wake_up(&conf->wait_barrier);
292 md_wakeup_thread(mddev->thread);
293 }
294
295 /*
296 * raid_end_bio_io() is called when we have finished servicing a mirrored
297 * operation and are ready to return a success/failure code to the buffer
298 * cache layer.
299 */
call_bio_endio(struct r1bio * r1_bio)300 static void call_bio_endio(struct r1bio *r1_bio)
301 {
302 struct bio *bio = r1_bio->master_bio;
303
304 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
305 bio->bi_status = BLK_STS_IOERR;
306
307 bio_endio(bio);
308 }
309
raid_end_bio_io(struct r1bio * r1_bio)310 static void raid_end_bio_io(struct r1bio *r1_bio)
311 {
312 struct bio *bio = r1_bio->master_bio;
313 struct r1conf *conf = r1_bio->mddev->private;
314 sector_t sector = r1_bio->sector;
315
316 /* if nobody has done the final endio yet, do it now */
317 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
318 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
319 (bio_data_dir(bio) == WRITE) ? "write" : "read",
320 (unsigned long long) bio->bi_iter.bi_sector,
321 (unsigned long long) bio_end_sector(bio) - 1);
322
323 call_bio_endio(r1_bio);
324 }
325
326 free_r1bio(r1_bio);
327 /*
328 * Wake up any possible resync thread that waits for the device
329 * to go idle. All I/Os, even write-behind writes, are done.
330 */
331 allow_barrier(conf, sector);
332 }
333
334 /*
335 * Update disk head position estimator based on IRQ completion info.
336 */
update_head_pos(int disk,struct r1bio * r1_bio)337 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
338 {
339 struct r1conf *conf = r1_bio->mddev->private;
340
341 conf->mirrors[disk].head_position =
342 r1_bio->sector + (r1_bio->sectors);
343 }
344
345 /*
346 * Find the disk number which triggered given bio
347 */
find_bio_disk(struct r1bio * r1_bio,struct bio * bio)348 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
349 {
350 int mirror;
351 struct r1conf *conf = r1_bio->mddev->private;
352 int raid_disks = conf->raid_disks;
353
354 for (mirror = 0; mirror < raid_disks * 2; mirror++)
355 if (r1_bio->bios[mirror] == bio)
356 break;
357
358 BUG_ON(mirror == raid_disks * 2);
359 update_head_pos(mirror, r1_bio);
360
361 return mirror;
362 }
363
raid1_end_read_request(struct bio * bio)364 static void raid1_end_read_request(struct bio *bio)
365 {
366 int uptodate = !bio->bi_status;
367 struct r1bio *r1_bio = bio->bi_private;
368 struct r1conf *conf = r1_bio->mddev->private;
369 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
370
371 /*
372 * this branch is our 'one mirror IO has finished' event handler:
373 */
374 update_head_pos(r1_bio->read_disk, r1_bio);
375
376 if (uptodate)
377 set_bit(R1BIO_Uptodate, &r1_bio->state);
378 else if (test_bit(FailFast, &rdev->flags) &&
379 test_bit(R1BIO_FailFast, &r1_bio->state))
380 /* This was a fail-fast read so we definitely
381 * want to retry */
382 ;
383 else {
384 /* If all other devices have failed, we want to return
385 * the error upwards rather than fail the last device.
386 * Here we redefine "uptodate" to mean "Don't want to retry"
387 */
388 unsigned long flags;
389 spin_lock_irqsave(&conf->device_lock, flags);
390 if (r1_bio->mddev->degraded == conf->raid_disks ||
391 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
392 test_bit(In_sync, &rdev->flags)))
393 uptodate = 1;
394 spin_unlock_irqrestore(&conf->device_lock, flags);
395 }
396
397 if (uptodate) {
398 raid_end_bio_io(r1_bio);
399 rdev_dec_pending(rdev, conf->mddev);
400 } else {
401 /*
402 * oops, read error:
403 */
404 pr_err_ratelimited("md/raid1:%s: %pg: rescheduling sector %llu\n",
405 mdname(conf->mddev),
406 rdev->bdev,
407 (unsigned long long)r1_bio->sector);
408 set_bit(R1BIO_ReadError, &r1_bio->state);
409 reschedule_retry(r1_bio);
410 /* don't drop the reference on read_disk yet */
411 }
412 }
413
close_write(struct r1bio * r1_bio)414 static void close_write(struct r1bio *r1_bio)
415 {
416 /* it really is the end of this request */
417 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
418 bio_free_pages(r1_bio->behind_master_bio);
419 bio_put(r1_bio->behind_master_bio);
420 r1_bio->behind_master_bio = NULL;
421 }
422 /* clear the bitmap if all writes complete successfully */
423 md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
424 r1_bio->sectors,
425 !test_bit(R1BIO_Degraded, &r1_bio->state),
426 test_bit(R1BIO_BehindIO, &r1_bio->state));
427 md_write_end(r1_bio->mddev);
428 }
429
r1_bio_write_done(struct r1bio * r1_bio)430 static void r1_bio_write_done(struct r1bio *r1_bio)
431 {
432 if (!atomic_dec_and_test(&r1_bio->remaining))
433 return;
434
435 if (test_bit(R1BIO_WriteError, &r1_bio->state))
436 reschedule_retry(r1_bio);
437 else {
438 close_write(r1_bio);
439 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
440 reschedule_retry(r1_bio);
441 else
442 raid_end_bio_io(r1_bio);
443 }
444 }
445
raid1_end_write_request(struct bio * bio)446 static void raid1_end_write_request(struct bio *bio)
447 {
448 struct r1bio *r1_bio = bio->bi_private;
449 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
450 struct r1conf *conf = r1_bio->mddev->private;
451 struct bio *to_put = NULL;
452 int mirror = find_bio_disk(r1_bio, bio);
453 struct md_rdev *rdev = conf->mirrors[mirror].rdev;
454 bool discard_error;
455 sector_t lo = r1_bio->sector;
456 sector_t hi = r1_bio->sector + r1_bio->sectors;
457
458 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
459
460 /*
461 * 'one mirror IO has finished' event handler:
462 */
463 if (bio->bi_status && !discard_error) {
464 set_bit(WriteErrorSeen, &rdev->flags);
465 if (!test_and_set_bit(WantReplacement, &rdev->flags))
466 set_bit(MD_RECOVERY_NEEDED, &
467 conf->mddev->recovery);
468
469 if (test_bit(FailFast, &rdev->flags) &&
470 (bio->bi_opf & MD_FAILFAST) &&
471 /* We never try FailFast to WriteMostly devices */
472 !test_bit(WriteMostly, &rdev->flags)) {
473 md_error(r1_bio->mddev, rdev);
474 }
475
476 /*
477 * When the device is faulty, it is not necessary to
478 * handle write error.
479 */
480 if (!test_bit(Faulty, &rdev->flags))
481 set_bit(R1BIO_WriteError, &r1_bio->state);
482 else {
483 /* Fail the request */
484 set_bit(R1BIO_Degraded, &r1_bio->state);
485 /* Finished with this branch */
486 r1_bio->bios[mirror] = NULL;
487 to_put = bio;
488 }
489 } else {
490 /*
491 * Set R1BIO_Uptodate in our master bio, so that we
492 * will return a good error code for to the higher
493 * levels even if IO on some other mirrored buffer
494 * fails.
495 *
496 * The 'master' represents the composite IO operation
497 * to user-side. So if something waits for IO, then it
498 * will wait for the 'master' bio.
499 */
500 sector_t first_bad;
501 int bad_sectors;
502
503 r1_bio->bios[mirror] = NULL;
504 to_put = bio;
505 /*
506 * Do not set R1BIO_Uptodate if the current device is
507 * rebuilding or Faulty. This is because we cannot use
508 * such device for properly reading the data back (we could
509 * potentially use it, if the current write would have felt
510 * before rdev->recovery_offset, but for simplicity we don't
511 * check this here.
512 */
513 if (test_bit(In_sync, &rdev->flags) &&
514 !test_bit(Faulty, &rdev->flags))
515 set_bit(R1BIO_Uptodate, &r1_bio->state);
516
517 /* Maybe we can clear some bad blocks. */
518 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
519 &first_bad, &bad_sectors) && !discard_error) {
520 r1_bio->bios[mirror] = IO_MADE_GOOD;
521 set_bit(R1BIO_MadeGood, &r1_bio->state);
522 }
523 }
524
525 if (behind) {
526 if (test_bit(CollisionCheck, &rdev->flags))
527 remove_serial(rdev, lo, hi);
528 if (test_bit(WriteMostly, &rdev->flags))
529 atomic_dec(&r1_bio->behind_remaining);
530
531 /*
532 * In behind mode, we ACK the master bio once the I/O
533 * has safely reached all non-writemostly
534 * disks. Setting the Returned bit ensures that this
535 * gets done only once -- we don't ever want to return
536 * -EIO here, instead we'll wait
537 */
538 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
539 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
540 /* Maybe we can return now */
541 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
542 struct bio *mbio = r1_bio->master_bio;
543 pr_debug("raid1: behind end write sectors"
544 " %llu-%llu\n",
545 (unsigned long long) mbio->bi_iter.bi_sector,
546 (unsigned long long) bio_end_sector(mbio) - 1);
547 call_bio_endio(r1_bio);
548 }
549 }
550 } else if (rdev->mddev->serialize_policy)
551 remove_serial(rdev, lo, hi);
552 if (r1_bio->bios[mirror] == NULL)
553 rdev_dec_pending(rdev, conf->mddev);
554
555 /*
556 * Let's see if all mirrored write operations have finished
557 * already.
558 */
559 r1_bio_write_done(r1_bio);
560
561 if (to_put)
562 bio_put(to_put);
563 }
564
align_to_barrier_unit_end(sector_t start_sector,sector_t sectors)565 static sector_t align_to_barrier_unit_end(sector_t start_sector,
566 sector_t sectors)
567 {
568 sector_t len;
569
570 WARN_ON(sectors == 0);
571 /*
572 * len is the number of sectors from start_sector to end of the
573 * barrier unit which start_sector belongs to.
574 */
575 len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
576 start_sector;
577
578 if (len > sectors)
579 len = sectors;
580
581 return len;
582 }
583
584 /*
585 * This routine returns the disk from which the requested read should
586 * be done. There is a per-array 'next expected sequential IO' sector
587 * number - if this matches on the next IO then we use the last disk.
588 * There is also a per-disk 'last know head position' sector that is
589 * maintained from IRQ contexts, both the normal and the resync IO
590 * completion handlers update this position correctly. If there is no
591 * perfect sequential match then we pick the disk whose head is closest.
592 *
593 * If there are 2 mirrors in the same 2 devices, performance degrades
594 * because position is mirror, not device based.
595 *
596 * The rdev for the device selected will have nr_pending incremented.
597 */
read_balance(struct r1conf * conf,struct r1bio * r1_bio,int * max_sectors)598 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
599 {
600 const sector_t this_sector = r1_bio->sector;
601 int sectors;
602 int best_good_sectors;
603 int best_disk, best_dist_disk, best_pending_disk;
604 int has_nonrot_disk;
605 int disk;
606 sector_t best_dist;
607 unsigned int min_pending;
608 struct md_rdev *rdev;
609 int choose_first;
610 int choose_next_idle;
611
612 rcu_read_lock();
613 /*
614 * Check if we can balance. We can balance on the whole
615 * device if no resync is going on, or below the resync window.
616 * We take the first readable disk when above the resync window.
617 */
618 retry:
619 sectors = r1_bio->sectors;
620 best_disk = -1;
621 best_dist_disk = -1;
622 best_dist = MaxSector;
623 best_pending_disk = -1;
624 min_pending = UINT_MAX;
625 best_good_sectors = 0;
626 has_nonrot_disk = 0;
627 choose_next_idle = 0;
628 clear_bit(R1BIO_FailFast, &r1_bio->state);
629
630 if ((conf->mddev->recovery_cp < this_sector + sectors) ||
631 (mddev_is_clustered(conf->mddev) &&
632 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
633 this_sector + sectors)))
634 choose_first = 1;
635 else
636 choose_first = 0;
637
638 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
639 sector_t dist;
640 sector_t first_bad;
641 int bad_sectors;
642 unsigned int pending;
643 bool nonrot;
644
645 rdev = rcu_dereference(conf->mirrors[disk].rdev);
646 if (r1_bio->bios[disk] == IO_BLOCKED
647 || rdev == NULL
648 || test_bit(Faulty, &rdev->flags))
649 continue;
650 if (!test_bit(In_sync, &rdev->flags) &&
651 rdev->recovery_offset < this_sector + sectors)
652 continue;
653 if (test_bit(WriteMostly, &rdev->flags)) {
654 /* Don't balance among write-mostly, just
655 * use the first as a last resort */
656 if (best_dist_disk < 0) {
657 if (is_badblock(rdev, this_sector, sectors,
658 &first_bad, &bad_sectors)) {
659 if (first_bad <= this_sector)
660 /* Cannot use this */
661 continue;
662 best_good_sectors = first_bad - this_sector;
663 } else
664 best_good_sectors = sectors;
665 best_dist_disk = disk;
666 best_pending_disk = disk;
667 }
668 continue;
669 }
670 /* This is a reasonable device to use. It might
671 * even be best.
672 */
673 if (is_badblock(rdev, this_sector, sectors,
674 &first_bad, &bad_sectors)) {
675 if (best_dist < MaxSector)
676 /* already have a better device */
677 continue;
678 if (first_bad <= this_sector) {
679 /* cannot read here. If this is the 'primary'
680 * device, then we must not read beyond
681 * bad_sectors from another device..
682 */
683 bad_sectors -= (this_sector - first_bad);
684 if (choose_first && sectors > bad_sectors)
685 sectors = bad_sectors;
686 if (best_good_sectors > sectors)
687 best_good_sectors = sectors;
688
689 } else {
690 sector_t good_sectors = first_bad - this_sector;
691 if (good_sectors > best_good_sectors) {
692 best_good_sectors = good_sectors;
693 best_disk = disk;
694 }
695 if (choose_first)
696 break;
697 }
698 continue;
699 } else {
700 if ((sectors > best_good_sectors) && (best_disk >= 0))
701 best_disk = -1;
702 best_good_sectors = sectors;
703 }
704
705 if (best_disk >= 0)
706 /* At least two disks to choose from so failfast is OK */
707 set_bit(R1BIO_FailFast, &r1_bio->state);
708
709 nonrot = bdev_nonrot(rdev->bdev);
710 has_nonrot_disk |= nonrot;
711 pending = atomic_read(&rdev->nr_pending);
712 dist = abs(this_sector - conf->mirrors[disk].head_position);
713 if (choose_first) {
714 best_disk = disk;
715 break;
716 }
717 /* Don't change to another disk for sequential reads */
718 if (conf->mirrors[disk].next_seq_sect == this_sector
719 || dist == 0) {
720 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
721 struct raid1_info *mirror = &conf->mirrors[disk];
722
723 best_disk = disk;
724 /*
725 * If buffered sequential IO size exceeds optimal
726 * iosize, check if there is idle disk. If yes, choose
727 * the idle disk. read_balance could already choose an
728 * idle disk before noticing it's a sequential IO in
729 * this disk. This doesn't matter because this disk
730 * will idle, next time it will be utilized after the
731 * first disk has IO size exceeds optimal iosize. In
732 * this way, iosize of the first disk will be optimal
733 * iosize at least. iosize of the second disk might be
734 * small, but not a big deal since when the second disk
735 * starts IO, the first disk is likely still busy.
736 */
737 if (nonrot && opt_iosize > 0 &&
738 mirror->seq_start != MaxSector &&
739 mirror->next_seq_sect > opt_iosize &&
740 mirror->next_seq_sect - opt_iosize >=
741 mirror->seq_start) {
742 choose_next_idle = 1;
743 continue;
744 }
745 break;
746 }
747
748 if (choose_next_idle)
749 continue;
750
751 if (min_pending > pending) {
752 min_pending = pending;
753 best_pending_disk = disk;
754 }
755
756 if (dist < best_dist) {
757 best_dist = dist;
758 best_dist_disk = disk;
759 }
760 }
761
762 /*
763 * If all disks are rotational, choose the closest disk. If any disk is
764 * non-rotational, choose the disk with less pending request even the
765 * disk is rotational, which might/might not be optimal for raids with
766 * mixed ratation/non-rotational disks depending on workload.
767 */
768 if (best_disk == -1) {
769 if (has_nonrot_disk || min_pending == 0)
770 best_disk = best_pending_disk;
771 else
772 best_disk = best_dist_disk;
773 }
774
775 if (best_disk >= 0) {
776 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
777 if (!rdev)
778 goto retry;
779 atomic_inc(&rdev->nr_pending);
780 sectors = best_good_sectors;
781
782 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
783 conf->mirrors[best_disk].seq_start = this_sector;
784
785 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
786 }
787 rcu_read_unlock();
788 *max_sectors = sectors;
789
790 return best_disk;
791 }
792
wake_up_barrier(struct r1conf * conf)793 static void wake_up_barrier(struct r1conf *conf)
794 {
795 if (wq_has_sleeper(&conf->wait_barrier))
796 wake_up(&conf->wait_barrier);
797 }
798
flush_bio_list(struct r1conf * conf,struct bio * bio)799 static void flush_bio_list(struct r1conf *conf, struct bio *bio)
800 {
801 /* flush any pending bitmap writes to disk before proceeding w/ I/O */
802 raid1_prepare_flush_writes(conf->mddev->bitmap);
803 wake_up_barrier(conf);
804
805 while (bio) { /* submit pending writes */
806 struct bio *next = bio->bi_next;
807
808 raid1_submit_write(bio);
809 bio = next;
810 cond_resched();
811 }
812 }
813
flush_pending_writes(struct r1conf * conf)814 static void flush_pending_writes(struct r1conf *conf)
815 {
816 /* Any writes that have been queued but are awaiting
817 * bitmap updates get flushed here.
818 */
819 spin_lock_irq(&conf->device_lock);
820
821 if (conf->pending_bio_list.head) {
822 struct blk_plug plug;
823 struct bio *bio;
824
825 bio = bio_list_get(&conf->pending_bio_list);
826 spin_unlock_irq(&conf->device_lock);
827
828 /*
829 * As this is called in a wait_event() loop (see freeze_array),
830 * current->state might be TASK_UNINTERRUPTIBLE which will
831 * cause a warning when we prepare to wait again. As it is
832 * rare that this path is taken, it is perfectly safe to force
833 * us to go around the wait_event() loop again, so the warning
834 * is a false-positive. Silence the warning by resetting
835 * thread state
836 */
837 __set_current_state(TASK_RUNNING);
838 blk_start_plug(&plug);
839 flush_bio_list(conf, bio);
840 blk_finish_plug(&plug);
841 } else
842 spin_unlock_irq(&conf->device_lock);
843 }
844
845 /* Barriers....
846 * Sometimes we need to suspend IO while we do something else,
847 * either some resync/recovery, or reconfigure the array.
848 * To do this we raise a 'barrier'.
849 * The 'barrier' is a counter that can be raised multiple times
850 * to count how many activities are happening which preclude
851 * normal IO.
852 * We can only raise the barrier if there is no pending IO.
853 * i.e. if nr_pending == 0.
854 * We choose only to raise the barrier if no-one is waiting for the
855 * barrier to go down. This means that as soon as an IO request
856 * is ready, no other operations which require a barrier will start
857 * until the IO request has had a chance.
858 *
859 * So: regular IO calls 'wait_barrier'. When that returns there
860 * is no backgroup IO happening, It must arrange to call
861 * allow_barrier when it has finished its IO.
862 * backgroup IO calls must call raise_barrier. Once that returns
863 * there is no normal IO happeing. It must arrange to call
864 * lower_barrier when the particular background IO completes.
865 *
866 * If resync/recovery is interrupted, returns -EINTR;
867 * Otherwise, returns 0.
868 */
raise_barrier(struct r1conf * conf,sector_t sector_nr)869 static int raise_barrier(struct r1conf *conf, sector_t sector_nr)
870 {
871 int idx = sector_to_idx(sector_nr);
872
873 spin_lock_irq(&conf->resync_lock);
874
875 /* Wait until no block IO is waiting */
876 wait_event_lock_irq(conf->wait_barrier,
877 !atomic_read(&conf->nr_waiting[idx]),
878 conf->resync_lock);
879
880 /* block any new IO from starting */
881 atomic_inc(&conf->barrier[idx]);
882 /*
883 * In raise_barrier() we firstly increase conf->barrier[idx] then
884 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
885 * increase conf->nr_pending[idx] then check conf->barrier[idx].
886 * A memory barrier here to make sure conf->nr_pending[idx] won't
887 * be fetched before conf->barrier[idx] is increased. Otherwise
888 * there will be a race between raise_barrier() and _wait_barrier().
889 */
890 smp_mb__after_atomic();
891
892 /* For these conditions we must wait:
893 * A: while the array is in frozen state
894 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
895 * existing in corresponding I/O barrier bucket.
896 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
897 * max resync count which allowed on current I/O barrier bucket.
898 */
899 wait_event_lock_irq(conf->wait_barrier,
900 (!conf->array_frozen &&
901 !atomic_read(&conf->nr_pending[idx]) &&
902 atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
903 test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
904 conf->resync_lock);
905
906 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
907 atomic_dec(&conf->barrier[idx]);
908 spin_unlock_irq(&conf->resync_lock);
909 wake_up(&conf->wait_barrier);
910 return -EINTR;
911 }
912
913 atomic_inc(&conf->nr_sync_pending);
914 spin_unlock_irq(&conf->resync_lock);
915
916 return 0;
917 }
918
lower_barrier(struct r1conf * conf,sector_t sector_nr)919 static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
920 {
921 int idx = sector_to_idx(sector_nr);
922
923 BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
924
925 atomic_dec(&conf->barrier[idx]);
926 atomic_dec(&conf->nr_sync_pending);
927 wake_up(&conf->wait_barrier);
928 }
929
_wait_barrier(struct r1conf * conf,int idx,bool nowait)930 static bool _wait_barrier(struct r1conf *conf, int idx, bool nowait)
931 {
932 bool ret = true;
933
934 /*
935 * We need to increase conf->nr_pending[idx] very early here,
936 * then raise_barrier() can be blocked when it waits for
937 * conf->nr_pending[idx] to be 0. Then we can avoid holding
938 * conf->resync_lock when there is no barrier raised in same
939 * barrier unit bucket. Also if the array is frozen, I/O
940 * should be blocked until array is unfrozen.
941 */
942 atomic_inc(&conf->nr_pending[idx]);
943 /*
944 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
945 * check conf->barrier[idx]. In raise_barrier() we firstly increase
946 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
947 * barrier is necessary here to make sure conf->barrier[idx] won't be
948 * fetched before conf->nr_pending[idx] is increased. Otherwise there
949 * will be a race between _wait_barrier() and raise_barrier().
950 */
951 smp_mb__after_atomic();
952
953 /*
954 * Don't worry about checking two atomic_t variables at same time
955 * here. If during we check conf->barrier[idx], the array is
956 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
957 * 0, it is safe to return and make the I/O continue. Because the
958 * array is frozen, all I/O returned here will eventually complete
959 * or be queued, no race will happen. See code comment in
960 * frozen_array().
961 */
962 if (!READ_ONCE(conf->array_frozen) &&
963 !atomic_read(&conf->barrier[idx]))
964 return ret;
965
966 /*
967 * After holding conf->resync_lock, conf->nr_pending[idx]
968 * should be decreased before waiting for barrier to drop.
969 * Otherwise, we may encounter a race condition because
970 * raise_barrer() might be waiting for conf->nr_pending[idx]
971 * to be 0 at same time.
972 */
973 spin_lock_irq(&conf->resync_lock);
974 atomic_inc(&conf->nr_waiting[idx]);
975 atomic_dec(&conf->nr_pending[idx]);
976 /*
977 * In case freeze_array() is waiting for
978 * get_unqueued_pending() == extra
979 */
980 wake_up_barrier(conf);
981 /* Wait for the barrier in same barrier unit bucket to drop. */
982
983 /* Return false when nowait flag is set */
984 if (nowait) {
985 ret = false;
986 } else {
987 wait_event_lock_irq(conf->wait_barrier,
988 !conf->array_frozen &&
989 !atomic_read(&conf->barrier[idx]),
990 conf->resync_lock);
991 atomic_inc(&conf->nr_pending[idx]);
992 }
993
994 atomic_dec(&conf->nr_waiting[idx]);
995 spin_unlock_irq(&conf->resync_lock);
996 return ret;
997 }
998
wait_read_barrier(struct r1conf * conf,sector_t sector_nr,bool nowait)999 static bool wait_read_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
1000 {
1001 int idx = sector_to_idx(sector_nr);
1002 bool ret = true;
1003
1004 /*
1005 * Very similar to _wait_barrier(). The difference is, for read
1006 * I/O we don't need wait for sync I/O, but if the whole array
1007 * is frozen, the read I/O still has to wait until the array is
1008 * unfrozen. Since there is no ordering requirement with
1009 * conf->barrier[idx] here, memory barrier is unnecessary as well.
1010 */
1011 atomic_inc(&conf->nr_pending[idx]);
1012
1013 if (!READ_ONCE(conf->array_frozen))
1014 return ret;
1015
1016 spin_lock_irq(&conf->resync_lock);
1017 atomic_inc(&conf->nr_waiting[idx]);
1018 atomic_dec(&conf->nr_pending[idx]);
1019 /*
1020 * In case freeze_array() is waiting for
1021 * get_unqueued_pending() == extra
1022 */
1023 wake_up_barrier(conf);
1024 /* Wait for array to be unfrozen */
1025
1026 /* Return false when nowait flag is set */
1027 if (nowait) {
1028 /* Return false when nowait flag is set */
1029 ret = false;
1030 } else {
1031 wait_event_lock_irq(conf->wait_barrier,
1032 !conf->array_frozen,
1033 conf->resync_lock);
1034 atomic_inc(&conf->nr_pending[idx]);
1035 }
1036
1037 atomic_dec(&conf->nr_waiting[idx]);
1038 spin_unlock_irq(&conf->resync_lock);
1039 return ret;
1040 }
1041
wait_barrier(struct r1conf * conf,sector_t sector_nr,bool nowait)1042 static bool wait_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
1043 {
1044 int idx = sector_to_idx(sector_nr);
1045
1046 return _wait_barrier(conf, idx, nowait);
1047 }
1048
_allow_barrier(struct r1conf * conf,int idx)1049 static void _allow_barrier(struct r1conf *conf, int idx)
1050 {
1051 atomic_dec(&conf->nr_pending[idx]);
1052 wake_up_barrier(conf);
1053 }
1054
allow_barrier(struct r1conf * conf,sector_t sector_nr)1055 static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1056 {
1057 int idx = sector_to_idx(sector_nr);
1058
1059 _allow_barrier(conf, idx);
1060 }
1061
1062 /* conf->resync_lock should be held */
get_unqueued_pending(struct r1conf * conf)1063 static int get_unqueued_pending(struct r1conf *conf)
1064 {
1065 int idx, ret;
1066
1067 ret = atomic_read(&conf->nr_sync_pending);
1068 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1069 ret += atomic_read(&conf->nr_pending[idx]) -
1070 atomic_read(&conf->nr_queued[idx]);
1071
1072 return ret;
1073 }
1074
freeze_array(struct r1conf * conf,int extra)1075 static void freeze_array(struct r1conf *conf, int extra)
1076 {
1077 /* Stop sync I/O and normal I/O and wait for everything to
1078 * go quiet.
1079 * This is called in two situations:
1080 * 1) management command handlers (reshape, remove disk, quiesce).
1081 * 2) one normal I/O request failed.
1082
1083 * After array_frozen is set to 1, new sync IO will be blocked at
1084 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1085 * or wait_read_barrier(). The flying I/Os will either complete or be
1086 * queued. When everything goes quite, there are only queued I/Os left.
1087
1088 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1089 * barrier bucket index which this I/O request hits. When all sync and
1090 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1091 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1092 * in handle_read_error(), we may call freeze_array() before trying to
1093 * fix the read error. In this case, the error read I/O is not queued,
1094 * so get_unqueued_pending() == 1.
1095 *
1096 * Therefore before this function returns, we need to wait until
1097 * get_unqueued_pendings(conf) gets equal to extra. For
1098 * normal I/O context, extra is 1, in rested situations extra is 0.
1099 */
1100 spin_lock_irq(&conf->resync_lock);
1101 conf->array_frozen = 1;
1102 raid1_log(conf->mddev, "wait freeze");
1103 wait_event_lock_irq_cmd(
1104 conf->wait_barrier,
1105 get_unqueued_pending(conf) == extra,
1106 conf->resync_lock,
1107 flush_pending_writes(conf));
1108 spin_unlock_irq(&conf->resync_lock);
1109 }
unfreeze_array(struct r1conf * conf)1110 static void unfreeze_array(struct r1conf *conf)
1111 {
1112 /* reverse the effect of the freeze */
1113 spin_lock_irq(&conf->resync_lock);
1114 conf->array_frozen = 0;
1115 spin_unlock_irq(&conf->resync_lock);
1116 wake_up(&conf->wait_barrier);
1117 }
1118
alloc_behind_master_bio(struct r1bio * r1_bio,struct bio * bio)1119 static void alloc_behind_master_bio(struct r1bio *r1_bio,
1120 struct bio *bio)
1121 {
1122 int size = bio->bi_iter.bi_size;
1123 unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1124 int i = 0;
1125 struct bio *behind_bio = NULL;
1126
1127 behind_bio = bio_alloc_bioset(NULL, vcnt, 0, GFP_NOIO,
1128 &r1_bio->mddev->bio_set);
1129 if (!behind_bio)
1130 return;
1131
1132 /* discard op, we don't support writezero/writesame yet */
1133 if (!bio_has_data(bio)) {
1134 behind_bio->bi_iter.bi_size = size;
1135 goto skip_copy;
1136 }
1137
1138 while (i < vcnt && size) {
1139 struct page *page;
1140 int len = min_t(int, PAGE_SIZE, size);
1141
1142 page = alloc_page(GFP_NOIO);
1143 if (unlikely(!page))
1144 goto free_pages;
1145
1146 if (!bio_add_page(behind_bio, page, len, 0)) {
1147 put_page(page);
1148 goto free_pages;
1149 }
1150
1151 size -= len;
1152 i++;
1153 }
1154
1155 bio_copy_data(behind_bio, bio);
1156 skip_copy:
1157 r1_bio->behind_master_bio = behind_bio;
1158 set_bit(R1BIO_BehindIO, &r1_bio->state);
1159
1160 return;
1161
1162 free_pages:
1163 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1164 bio->bi_iter.bi_size);
1165 bio_free_pages(behind_bio);
1166 bio_put(behind_bio);
1167 }
1168
raid1_unplug(struct blk_plug_cb * cb,bool from_schedule)1169 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1170 {
1171 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1172 cb);
1173 struct mddev *mddev = plug->cb.data;
1174 struct r1conf *conf = mddev->private;
1175 struct bio *bio;
1176
1177 if (from_schedule) {
1178 spin_lock_irq(&conf->device_lock);
1179 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1180 spin_unlock_irq(&conf->device_lock);
1181 wake_up_barrier(conf);
1182 md_wakeup_thread(mddev->thread);
1183 kfree(plug);
1184 return;
1185 }
1186
1187 /* we aren't scheduling, so we can do the write-out directly. */
1188 bio = bio_list_get(&plug->pending);
1189 flush_bio_list(conf, bio);
1190 kfree(plug);
1191 }
1192
init_r1bio(struct r1bio * r1_bio,struct mddev * mddev,struct bio * bio)1193 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1194 {
1195 r1_bio->master_bio = bio;
1196 r1_bio->sectors = bio_sectors(bio);
1197 r1_bio->state = 0;
1198 r1_bio->mddev = mddev;
1199 r1_bio->sector = bio->bi_iter.bi_sector;
1200 }
1201
1202 static inline struct r1bio *
alloc_r1bio(struct mddev * mddev,struct bio * bio)1203 alloc_r1bio(struct mddev *mddev, struct bio *bio)
1204 {
1205 struct r1conf *conf = mddev->private;
1206 struct r1bio *r1_bio;
1207
1208 r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO);
1209 /* Ensure no bio records IO_BLOCKED */
1210 memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1211 init_r1bio(r1_bio, mddev, bio);
1212 return r1_bio;
1213 }
1214
raid1_read_request(struct mddev * mddev,struct bio * bio,int max_read_sectors,struct r1bio * r1_bio)1215 static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1216 int max_read_sectors, struct r1bio *r1_bio)
1217 {
1218 struct r1conf *conf = mddev->private;
1219 struct raid1_info *mirror;
1220 struct bio *read_bio;
1221 struct bitmap *bitmap = mddev->bitmap;
1222 const enum req_op op = bio_op(bio);
1223 const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
1224 int max_sectors;
1225 int rdisk;
1226 bool r1bio_existed = !!r1_bio;
1227 char b[BDEVNAME_SIZE];
1228
1229 /*
1230 * If r1_bio is set, we are blocking the raid1d thread
1231 * so there is a tiny risk of deadlock. So ask for
1232 * emergency memory if needed.
1233 */
1234 gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1235
1236 if (r1bio_existed) {
1237 /* Need to get the block device name carefully */
1238 struct md_rdev *rdev;
1239 rcu_read_lock();
1240 rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1241 if (rdev)
1242 snprintf(b, sizeof(b), "%pg", rdev->bdev);
1243 else
1244 strcpy(b, "???");
1245 rcu_read_unlock();
1246 }
1247
1248 /*
1249 * Still need barrier for READ in case that whole
1250 * array is frozen.
1251 */
1252 if (!wait_read_barrier(conf, bio->bi_iter.bi_sector,
1253 bio->bi_opf & REQ_NOWAIT)) {
1254 bio_wouldblock_error(bio);
1255 return;
1256 }
1257
1258 if (!r1_bio)
1259 r1_bio = alloc_r1bio(mddev, bio);
1260 else
1261 init_r1bio(r1_bio, mddev, bio);
1262 r1_bio->sectors = max_read_sectors;
1263
1264 /*
1265 * make_request() can abort the operation when read-ahead is being
1266 * used and no empty request is available.
1267 */
1268 rdisk = read_balance(conf, r1_bio, &max_sectors);
1269
1270 if (rdisk < 0) {
1271 /* couldn't find anywhere to read from */
1272 if (r1bio_existed) {
1273 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1274 mdname(mddev),
1275 b,
1276 (unsigned long long)r1_bio->sector);
1277 }
1278 raid_end_bio_io(r1_bio);
1279 return;
1280 }
1281 mirror = conf->mirrors + rdisk;
1282
1283 if (r1bio_existed)
1284 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %pg\n",
1285 mdname(mddev),
1286 (unsigned long long)r1_bio->sector,
1287 mirror->rdev->bdev);
1288
1289 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1290 bitmap) {
1291 /*
1292 * Reading from a write-mostly device must take care not to
1293 * over-take any writes that are 'behind'
1294 */
1295 raid1_log(mddev, "wait behind writes");
1296 wait_event(bitmap->behind_wait,
1297 atomic_read(&bitmap->behind_writes) == 0);
1298 }
1299
1300 if (max_sectors < bio_sectors(bio)) {
1301 struct bio *split = bio_split(bio, max_sectors,
1302 gfp, &conf->bio_split);
1303 bio_chain(split, bio);
1304 submit_bio_noacct(bio);
1305 bio = split;
1306 r1_bio->master_bio = bio;
1307 r1_bio->sectors = max_sectors;
1308 }
1309
1310 r1_bio->read_disk = rdisk;
1311 if (!r1bio_existed) {
1312 md_account_bio(mddev, &bio);
1313 r1_bio->master_bio = bio;
1314 }
1315 read_bio = bio_alloc_clone(mirror->rdev->bdev, bio, gfp,
1316 &mddev->bio_set);
1317
1318 r1_bio->bios[rdisk] = read_bio;
1319
1320 read_bio->bi_iter.bi_sector = r1_bio->sector +
1321 mirror->rdev->data_offset;
1322 read_bio->bi_end_io = raid1_end_read_request;
1323 read_bio->bi_opf = op | do_sync;
1324 if (test_bit(FailFast, &mirror->rdev->flags) &&
1325 test_bit(R1BIO_FailFast, &r1_bio->state))
1326 read_bio->bi_opf |= MD_FAILFAST;
1327 read_bio->bi_private = r1_bio;
1328
1329 if (mddev->gendisk)
1330 trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk),
1331 r1_bio->sector);
1332
1333 submit_bio_noacct(read_bio);
1334 }
1335
raid1_write_request(struct mddev * mddev,struct bio * bio,int max_write_sectors)1336 static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1337 int max_write_sectors)
1338 {
1339 struct r1conf *conf = mddev->private;
1340 struct r1bio *r1_bio;
1341 int i, disks;
1342 struct bitmap *bitmap = mddev->bitmap;
1343 unsigned long flags;
1344 struct md_rdev *blocked_rdev;
1345 int first_clone;
1346 int max_sectors;
1347 bool write_behind = false;
1348
1349 if (mddev_is_clustered(mddev) &&
1350 md_cluster_ops->area_resyncing(mddev, WRITE,
1351 bio->bi_iter.bi_sector, bio_end_sector(bio))) {
1352
1353 DEFINE_WAIT(w);
1354 if (bio->bi_opf & REQ_NOWAIT) {
1355 bio_wouldblock_error(bio);
1356 return;
1357 }
1358 for (;;) {
1359 prepare_to_wait(&conf->wait_barrier,
1360 &w, TASK_IDLE);
1361 if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1362 bio->bi_iter.bi_sector,
1363 bio_end_sector(bio)))
1364 break;
1365 schedule();
1366 }
1367 finish_wait(&conf->wait_barrier, &w);
1368 }
1369
1370 /*
1371 * Register the new request and wait if the reconstruction
1372 * thread has put up a bar for new requests.
1373 * Continue immediately if no resync is active currently.
1374 */
1375 if (!wait_barrier(conf, bio->bi_iter.bi_sector,
1376 bio->bi_opf & REQ_NOWAIT)) {
1377 bio_wouldblock_error(bio);
1378 return;
1379 }
1380
1381 retry_write:
1382 r1_bio = alloc_r1bio(mddev, bio);
1383 r1_bio->sectors = max_write_sectors;
1384
1385 /* first select target devices under rcu_lock and
1386 * inc refcount on their rdev. Record them by setting
1387 * bios[x] to bio
1388 * If there are known/acknowledged bad blocks on any device on
1389 * which we have seen a write error, we want to avoid writing those
1390 * blocks.
1391 * This potentially requires several writes to write around
1392 * the bad blocks. Each set of writes gets it's own r1bio
1393 * with a set of bios attached.
1394 */
1395
1396 disks = conf->raid_disks * 2;
1397 blocked_rdev = NULL;
1398 rcu_read_lock();
1399 max_sectors = r1_bio->sectors;
1400 for (i = 0; i < disks; i++) {
1401 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1402
1403 /*
1404 * The write-behind io is only attempted on drives marked as
1405 * write-mostly, which means we could allocate write behind
1406 * bio later.
1407 */
1408 if (rdev && test_bit(WriteMostly, &rdev->flags))
1409 write_behind = true;
1410
1411 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1412 atomic_inc(&rdev->nr_pending);
1413 blocked_rdev = rdev;
1414 break;
1415 }
1416 r1_bio->bios[i] = NULL;
1417 if (!rdev || test_bit(Faulty, &rdev->flags)) {
1418 if (i < conf->raid_disks)
1419 set_bit(R1BIO_Degraded, &r1_bio->state);
1420 continue;
1421 }
1422
1423 atomic_inc(&rdev->nr_pending);
1424 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1425 sector_t first_bad;
1426 int bad_sectors;
1427 int is_bad;
1428
1429 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1430 &first_bad, &bad_sectors);
1431 if (is_bad < 0) {
1432 /* mustn't write here until the bad block is
1433 * acknowledged*/
1434 set_bit(BlockedBadBlocks, &rdev->flags);
1435 blocked_rdev = rdev;
1436 break;
1437 }
1438 if (is_bad && first_bad <= r1_bio->sector) {
1439 /* Cannot write here at all */
1440 bad_sectors -= (r1_bio->sector - first_bad);
1441 if (bad_sectors < max_sectors)
1442 /* mustn't write more than bad_sectors
1443 * to other devices yet
1444 */
1445 max_sectors = bad_sectors;
1446 rdev_dec_pending(rdev, mddev);
1447 /* We don't set R1BIO_Degraded as that
1448 * only applies if the disk is
1449 * missing, so it might be re-added,
1450 * and we want to know to recover this
1451 * chunk.
1452 * In this case the device is here,
1453 * and the fact that this chunk is not
1454 * in-sync is recorded in the bad
1455 * block log
1456 */
1457 continue;
1458 }
1459 if (is_bad) {
1460 int good_sectors = first_bad - r1_bio->sector;
1461 if (good_sectors < max_sectors)
1462 max_sectors = good_sectors;
1463 }
1464 }
1465 r1_bio->bios[i] = bio;
1466 }
1467 rcu_read_unlock();
1468
1469 if (unlikely(blocked_rdev)) {
1470 /* Wait for this device to become unblocked */
1471 int j;
1472
1473 for (j = 0; j < i; j++)
1474 if (r1_bio->bios[j])
1475 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1476 mempool_free(r1_bio, &conf->r1bio_pool);
1477 allow_barrier(conf, bio->bi_iter.bi_sector);
1478
1479 if (bio->bi_opf & REQ_NOWAIT) {
1480 bio_wouldblock_error(bio);
1481 return;
1482 }
1483 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1484 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1485 wait_barrier(conf, bio->bi_iter.bi_sector, false);
1486 goto retry_write;
1487 }
1488
1489 /*
1490 * When using a bitmap, we may call alloc_behind_master_bio below.
1491 * alloc_behind_master_bio allocates a copy of the data payload a page
1492 * at a time and thus needs a new bio that can fit the whole payload
1493 * this bio in page sized chunks.
1494 */
1495 if (write_behind && bitmap)
1496 max_sectors = min_t(int, max_sectors,
1497 BIO_MAX_VECS * (PAGE_SIZE >> 9));
1498 if (max_sectors < bio_sectors(bio)) {
1499 struct bio *split = bio_split(bio, max_sectors,
1500 GFP_NOIO, &conf->bio_split);
1501 bio_chain(split, bio);
1502 submit_bio_noacct(bio);
1503 bio = split;
1504 r1_bio->master_bio = bio;
1505 r1_bio->sectors = max_sectors;
1506 }
1507
1508 md_account_bio(mddev, &bio);
1509 r1_bio->master_bio = bio;
1510 atomic_set(&r1_bio->remaining, 1);
1511 atomic_set(&r1_bio->behind_remaining, 0);
1512
1513 first_clone = 1;
1514
1515 for (i = 0; i < disks; i++) {
1516 struct bio *mbio = NULL;
1517 struct md_rdev *rdev = conf->mirrors[i].rdev;
1518 if (!r1_bio->bios[i])
1519 continue;
1520
1521 if (first_clone) {
1522 /* do behind I/O ?
1523 * Not if there are too many, or cannot
1524 * allocate memory, or a reader on WriteMostly
1525 * is waiting for behind writes to flush */
1526 if (bitmap && write_behind &&
1527 (atomic_read(&bitmap->behind_writes)
1528 < mddev->bitmap_info.max_write_behind) &&
1529 !waitqueue_active(&bitmap->behind_wait)) {
1530 alloc_behind_master_bio(r1_bio, bio);
1531 }
1532
1533 md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors,
1534 test_bit(R1BIO_BehindIO, &r1_bio->state));
1535 first_clone = 0;
1536 }
1537
1538 if (r1_bio->behind_master_bio) {
1539 mbio = bio_alloc_clone(rdev->bdev,
1540 r1_bio->behind_master_bio,
1541 GFP_NOIO, &mddev->bio_set);
1542 if (test_bit(CollisionCheck, &rdev->flags))
1543 wait_for_serialization(rdev, r1_bio);
1544 if (test_bit(WriteMostly, &rdev->flags))
1545 atomic_inc(&r1_bio->behind_remaining);
1546 } else {
1547 mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO,
1548 &mddev->bio_set);
1549
1550 if (mddev->serialize_policy)
1551 wait_for_serialization(rdev, r1_bio);
1552 }
1553
1554 r1_bio->bios[i] = mbio;
1555
1556 mbio->bi_iter.bi_sector = (r1_bio->sector + rdev->data_offset);
1557 mbio->bi_end_io = raid1_end_write_request;
1558 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1559 if (test_bit(FailFast, &rdev->flags) &&
1560 !test_bit(WriteMostly, &rdev->flags) &&
1561 conf->raid_disks - mddev->degraded > 1)
1562 mbio->bi_opf |= MD_FAILFAST;
1563 mbio->bi_private = r1_bio;
1564
1565 atomic_inc(&r1_bio->remaining);
1566
1567 if (mddev->gendisk)
1568 trace_block_bio_remap(mbio, disk_devt(mddev->gendisk),
1569 r1_bio->sector);
1570 /* flush_pending_writes() needs access to the rdev so...*/
1571 mbio->bi_bdev = (void *)rdev;
1572 if (!raid1_add_bio_to_plug(mddev, mbio, raid1_unplug, disks)) {
1573 spin_lock_irqsave(&conf->device_lock, flags);
1574 bio_list_add(&conf->pending_bio_list, mbio);
1575 spin_unlock_irqrestore(&conf->device_lock, flags);
1576 md_wakeup_thread(mddev->thread);
1577 }
1578 }
1579
1580 r1_bio_write_done(r1_bio);
1581
1582 /* In case raid1d snuck in to freeze_array */
1583 wake_up_barrier(conf);
1584 }
1585
raid1_make_request(struct mddev * mddev,struct bio * bio)1586 static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1587 {
1588 sector_t sectors;
1589
1590 if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1591 && md_flush_request(mddev, bio))
1592 return true;
1593
1594 /*
1595 * There is a limit to the maximum size, but
1596 * the read/write handler might find a lower limit
1597 * due to bad blocks. To avoid multiple splits,
1598 * we pass the maximum number of sectors down
1599 * and let the lower level perform the split.
1600 */
1601 sectors = align_to_barrier_unit_end(
1602 bio->bi_iter.bi_sector, bio_sectors(bio));
1603
1604 if (bio_data_dir(bio) == READ)
1605 raid1_read_request(mddev, bio, sectors, NULL);
1606 else {
1607 if (!md_write_start(mddev,bio))
1608 return false;
1609 raid1_write_request(mddev, bio, sectors);
1610 }
1611 return true;
1612 }
1613
raid1_status(struct seq_file * seq,struct mddev * mddev)1614 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1615 {
1616 struct r1conf *conf = mddev->private;
1617 int i;
1618
1619 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1620 conf->raid_disks - mddev->degraded);
1621 rcu_read_lock();
1622 for (i = 0; i < conf->raid_disks; i++) {
1623 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1624 seq_printf(seq, "%s",
1625 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1626 }
1627 rcu_read_unlock();
1628 seq_printf(seq, "]");
1629 }
1630
1631 /**
1632 * raid1_error() - RAID1 error handler.
1633 * @mddev: affected md device.
1634 * @rdev: member device to fail.
1635 *
1636 * The routine acknowledges &rdev failure and determines new @mddev state.
1637 * If it failed, then:
1638 * - &MD_BROKEN flag is set in &mddev->flags.
1639 * - recovery is disabled.
1640 * Otherwise, it must be degraded:
1641 * - recovery is interrupted.
1642 * - &mddev->degraded is bumped.
1643 *
1644 * @rdev is marked as &Faulty excluding case when array is failed and
1645 * &mddev->fail_last_dev is off.
1646 */
raid1_error(struct mddev * mddev,struct md_rdev * rdev)1647 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1648 {
1649 struct r1conf *conf = mddev->private;
1650 unsigned long flags;
1651
1652 spin_lock_irqsave(&conf->device_lock, flags);
1653
1654 if (test_bit(In_sync, &rdev->flags) &&
1655 (conf->raid_disks - mddev->degraded) == 1) {
1656 set_bit(MD_BROKEN, &mddev->flags);
1657
1658 if (!mddev->fail_last_dev) {
1659 conf->recovery_disabled = mddev->recovery_disabled;
1660 spin_unlock_irqrestore(&conf->device_lock, flags);
1661 return;
1662 }
1663 }
1664 set_bit(Blocked, &rdev->flags);
1665 if (test_and_clear_bit(In_sync, &rdev->flags))
1666 mddev->degraded++;
1667 set_bit(Faulty, &rdev->flags);
1668 spin_unlock_irqrestore(&conf->device_lock, flags);
1669 /*
1670 * if recovery is running, make sure it aborts.
1671 */
1672 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1673 set_mask_bits(&mddev->sb_flags, 0,
1674 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1675 pr_crit("md/raid1:%s: Disk failure on %pg, disabling device.\n"
1676 "md/raid1:%s: Operation continuing on %d devices.\n",
1677 mdname(mddev), rdev->bdev,
1678 mdname(mddev), conf->raid_disks - mddev->degraded);
1679 }
1680
print_conf(struct r1conf * conf)1681 static void print_conf(struct r1conf *conf)
1682 {
1683 int i;
1684
1685 pr_debug("RAID1 conf printout:\n");
1686 if (!conf) {
1687 pr_debug("(!conf)\n");
1688 return;
1689 }
1690 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1691 conf->raid_disks);
1692
1693 rcu_read_lock();
1694 for (i = 0; i < conf->raid_disks; i++) {
1695 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1696 if (rdev)
1697 pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n",
1698 i, !test_bit(In_sync, &rdev->flags),
1699 !test_bit(Faulty, &rdev->flags),
1700 rdev->bdev);
1701 }
1702 rcu_read_unlock();
1703 }
1704
close_sync(struct r1conf * conf)1705 static void close_sync(struct r1conf *conf)
1706 {
1707 int idx;
1708
1709 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1710 _wait_barrier(conf, idx, false);
1711 _allow_barrier(conf, idx);
1712 }
1713
1714 mempool_exit(&conf->r1buf_pool);
1715 }
1716
raid1_spare_active(struct mddev * mddev)1717 static int raid1_spare_active(struct mddev *mddev)
1718 {
1719 int i;
1720 struct r1conf *conf = mddev->private;
1721 int count = 0;
1722 unsigned long flags;
1723
1724 /*
1725 * Find all failed disks within the RAID1 configuration
1726 * and mark them readable.
1727 * Called under mddev lock, so rcu protection not needed.
1728 * device_lock used to avoid races with raid1_end_read_request
1729 * which expects 'In_sync' flags and ->degraded to be consistent.
1730 */
1731 spin_lock_irqsave(&conf->device_lock, flags);
1732 for (i = 0; i < conf->raid_disks; i++) {
1733 struct md_rdev *rdev = conf->mirrors[i].rdev;
1734 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1735 if (repl
1736 && !test_bit(Candidate, &repl->flags)
1737 && repl->recovery_offset == MaxSector
1738 && !test_bit(Faulty, &repl->flags)
1739 && !test_and_set_bit(In_sync, &repl->flags)) {
1740 /* replacement has just become active */
1741 if (!rdev ||
1742 !test_and_clear_bit(In_sync, &rdev->flags))
1743 count++;
1744 if (rdev) {
1745 /* Replaced device not technically
1746 * faulty, but we need to be sure
1747 * it gets removed and never re-added
1748 */
1749 set_bit(Faulty, &rdev->flags);
1750 sysfs_notify_dirent_safe(
1751 rdev->sysfs_state);
1752 }
1753 }
1754 if (rdev
1755 && rdev->recovery_offset == MaxSector
1756 && !test_bit(Faulty, &rdev->flags)
1757 && !test_and_set_bit(In_sync, &rdev->flags)) {
1758 count++;
1759 sysfs_notify_dirent_safe(rdev->sysfs_state);
1760 }
1761 }
1762 mddev->degraded -= count;
1763 spin_unlock_irqrestore(&conf->device_lock, flags);
1764
1765 print_conf(conf);
1766 return count;
1767 }
1768
raid1_add_disk(struct mddev * mddev,struct md_rdev * rdev)1769 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1770 {
1771 struct r1conf *conf = mddev->private;
1772 int err = -EEXIST;
1773 int mirror = 0, repl_slot = -1;
1774 struct raid1_info *p;
1775 int first = 0;
1776 int last = conf->raid_disks - 1;
1777
1778 if (mddev->recovery_disabled == conf->recovery_disabled)
1779 return -EBUSY;
1780
1781 if (md_integrity_add_rdev(rdev, mddev))
1782 return -ENXIO;
1783
1784 if (rdev->raid_disk >= 0)
1785 first = last = rdev->raid_disk;
1786
1787 /*
1788 * find the disk ... but prefer rdev->saved_raid_disk
1789 * if possible.
1790 */
1791 if (rdev->saved_raid_disk >= 0 &&
1792 rdev->saved_raid_disk >= first &&
1793 rdev->saved_raid_disk < conf->raid_disks &&
1794 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1795 first = last = rdev->saved_raid_disk;
1796
1797 for (mirror = first; mirror <= last; mirror++) {
1798 p = conf->mirrors + mirror;
1799 if (!p->rdev) {
1800 if (mddev->gendisk)
1801 disk_stack_limits(mddev->gendisk, rdev->bdev,
1802 rdev->data_offset << 9);
1803
1804 p->head_position = 0;
1805 rdev->raid_disk = mirror;
1806 err = 0;
1807 /* As all devices are equivalent, we don't need a full recovery
1808 * if this was recently any drive of the array
1809 */
1810 if (rdev->saved_raid_disk < 0)
1811 conf->fullsync = 1;
1812 rcu_assign_pointer(p->rdev, rdev);
1813 break;
1814 }
1815 if (test_bit(WantReplacement, &p->rdev->flags) &&
1816 p[conf->raid_disks].rdev == NULL && repl_slot < 0)
1817 repl_slot = mirror;
1818 }
1819
1820 if (err && repl_slot >= 0) {
1821 /* Add this device as a replacement */
1822 p = conf->mirrors + repl_slot;
1823 clear_bit(In_sync, &rdev->flags);
1824 set_bit(Replacement, &rdev->flags);
1825 rdev->raid_disk = repl_slot;
1826 err = 0;
1827 conf->fullsync = 1;
1828 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1829 }
1830
1831 print_conf(conf);
1832 return err;
1833 }
1834
raid1_remove_disk(struct mddev * mddev,struct md_rdev * rdev)1835 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1836 {
1837 struct r1conf *conf = mddev->private;
1838 int err = 0;
1839 int number = rdev->raid_disk;
1840 struct raid1_info *p = conf->mirrors + number;
1841
1842 if (unlikely(number >= conf->raid_disks))
1843 goto abort;
1844
1845 if (rdev != p->rdev)
1846 p = conf->mirrors + conf->raid_disks + number;
1847
1848 print_conf(conf);
1849 if (rdev == p->rdev) {
1850 if (test_bit(In_sync, &rdev->flags) ||
1851 atomic_read(&rdev->nr_pending)) {
1852 err = -EBUSY;
1853 goto abort;
1854 }
1855 /* Only remove non-faulty devices if recovery
1856 * is not possible.
1857 */
1858 if (!test_bit(Faulty, &rdev->flags) &&
1859 mddev->recovery_disabled != conf->recovery_disabled &&
1860 mddev->degraded < conf->raid_disks) {
1861 err = -EBUSY;
1862 goto abort;
1863 }
1864 p->rdev = NULL;
1865 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1866 synchronize_rcu();
1867 if (atomic_read(&rdev->nr_pending)) {
1868 /* lost the race, try later */
1869 err = -EBUSY;
1870 p->rdev = rdev;
1871 goto abort;
1872 }
1873 }
1874 if (conf->mirrors[conf->raid_disks + number].rdev) {
1875 /* We just removed a device that is being replaced.
1876 * Move down the replacement. We drain all IO before
1877 * doing this to avoid confusion.
1878 */
1879 struct md_rdev *repl =
1880 conf->mirrors[conf->raid_disks + number].rdev;
1881 freeze_array(conf, 0);
1882 if (atomic_read(&repl->nr_pending)) {
1883 /* It means that some queued IO of retry_list
1884 * hold repl. Thus, we cannot set replacement
1885 * as NULL, avoiding rdev NULL pointer
1886 * dereference in sync_request_write and
1887 * handle_write_finished.
1888 */
1889 err = -EBUSY;
1890 unfreeze_array(conf);
1891 goto abort;
1892 }
1893 clear_bit(Replacement, &repl->flags);
1894 p->rdev = repl;
1895 conf->mirrors[conf->raid_disks + number].rdev = NULL;
1896 unfreeze_array(conf);
1897 }
1898
1899 clear_bit(WantReplacement, &rdev->flags);
1900 err = md_integrity_register(mddev);
1901 }
1902 abort:
1903
1904 print_conf(conf);
1905 return err;
1906 }
1907
end_sync_read(struct bio * bio)1908 static void end_sync_read(struct bio *bio)
1909 {
1910 struct r1bio *r1_bio = get_resync_r1bio(bio);
1911
1912 update_head_pos(r1_bio->read_disk, r1_bio);
1913
1914 /*
1915 * we have read a block, now it needs to be re-written,
1916 * or re-read if the read failed.
1917 * We don't do much here, just schedule handling by raid1d
1918 */
1919 if (!bio->bi_status)
1920 set_bit(R1BIO_Uptodate, &r1_bio->state);
1921
1922 if (atomic_dec_and_test(&r1_bio->remaining))
1923 reschedule_retry(r1_bio);
1924 }
1925
abort_sync_write(struct mddev * mddev,struct r1bio * r1_bio)1926 static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
1927 {
1928 sector_t sync_blocks = 0;
1929 sector_t s = r1_bio->sector;
1930 long sectors_to_go = r1_bio->sectors;
1931
1932 /* make sure these bits don't get cleared. */
1933 do {
1934 md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1);
1935 s += sync_blocks;
1936 sectors_to_go -= sync_blocks;
1937 } while (sectors_to_go > 0);
1938 }
1939
put_sync_write_buf(struct r1bio * r1_bio,int uptodate)1940 static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate)
1941 {
1942 if (atomic_dec_and_test(&r1_bio->remaining)) {
1943 struct mddev *mddev = r1_bio->mddev;
1944 int s = r1_bio->sectors;
1945
1946 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1947 test_bit(R1BIO_WriteError, &r1_bio->state))
1948 reschedule_retry(r1_bio);
1949 else {
1950 put_buf(r1_bio);
1951 md_done_sync(mddev, s, uptodate);
1952 }
1953 }
1954 }
1955
end_sync_write(struct bio * bio)1956 static void end_sync_write(struct bio *bio)
1957 {
1958 int uptodate = !bio->bi_status;
1959 struct r1bio *r1_bio = get_resync_r1bio(bio);
1960 struct mddev *mddev = r1_bio->mddev;
1961 struct r1conf *conf = mddev->private;
1962 sector_t first_bad;
1963 int bad_sectors;
1964 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1965
1966 if (!uptodate) {
1967 abort_sync_write(mddev, r1_bio);
1968 set_bit(WriteErrorSeen, &rdev->flags);
1969 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1970 set_bit(MD_RECOVERY_NEEDED, &
1971 mddev->recovery);
1972 set_bit(R1BIO_WriteError, &r1_bio->state);
1973 } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1974 &first_bad, &bad_sectors) &&
1975 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1976 r1_bio->sector,
1977 r1_bio->sectors,
1978 &first_bad, &bad_sectors)
1979 )
1980 set_bit(R1BIO_MadeGood, &r1_bio->state);
1981
1982 put_sync_write_buf(r1_bio, uptodate);
1983 }
1984
r1_sync_page_io(struct md_rdev * rdev,sector_t sector,int sectors,struct page * page,blk_opf_t rw)1985 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1986 int sectors, struct page *page, blk_opf_t rw)
1987 {
1988 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1989 /* success */
1990 return 1;
1991 if (rw == REQ_OP_WRITE) {
1992 set_bit(WriteErrorSeen, &rdev->flags);
1993 if (!test_and_set_bit(WantReplacement,
1994 &rdev->flags))
1995 set_bit(MD_RECOVERY_NEEDED, &
1996 rdev->mddev->recovery);
1997 }
1998 /* need to record an error - either for the block or the device */
1999 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2000 md_error(rdev->mddev, rdev);
2001 return 0;
2002 }
2003
fix_sync_read_error(struct r1bio * r1_bio)2004 static int fix_sync_read_error(struct r1bio *r1_bio)
2005 {
2006 /* Try some synchronous reads of other devices to get
2007 * good data, much like with normal read errors. Only
2008 * read into the pages we already have so we don't
2009 * need to re-issue the read request.
2010 * We don't need to freeze the array, because being in an
2011 * active sync request, there is no normal IO, and
2012 * no overlapping syncs.
2013 * We don't need to check is_badblock() again as we
2014 * made sure that anything with a bad block in range
2015 * will have bi_end_io clear.
2016 */
2017 struct mddev *mddev = r1_bio->mddev;
2018 struct r1conf *conf = mddev->private;
2019 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
2020 struct page **pages = get_resync_pages(bio)->pages;
2021 sector_t sect = r1_bio->sector;
2022 int sectors = r1_bio->sectors;
2023 int idx = 0;
2024 struct md_rdev *rdev;
2025
2026 rdev = conf->mirrors[r1_bio->read_disk].rdev;
2027 if (test_bit(FailFast, &rdev->flags)) {
2028 /* Don't try recovering from here - just fail it
2029 * ... unless it is the last working device of course */
2030 md_error(mddev, rdev);
2031 if (test_bit(Faulty, &rdev->flags))
2032 /* Don't try to read from here, but make sure
2033 * put_buf does it's thing
2034 */
2035 bio->bi_end_io = end_sync_write;
2036 }
2037
2038 while(sectors) {
2039 int s = sectors;
2040 int d = r1_bio->read_disk;
2041 int success = 0;
2042 int start;
2043
2044 if (s > (PAGE_SIZE>>9))
2045 s = PAGE_SIZE >> 9;
2046 do {
2047 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
2048 /* No rcu protection needed here devices
2049 * can only be removed when no resync is
2050 * active, and resync is currently active
2051 */
2052 rdev = conf->mirrors[d].rdev;
2053 if (sync_page_io(rdev, sect, s<<9,
2054 pages[idx],
2055 REQ_OP_READ, false)) {
2056 success = 1;
2057 break;
2058 }
2059 }
2060 d++;
2061 if (d == conf->raid_disks * 2)
2062 d = 0;
2063 } while (!success && d != r1_bio->read_disk);
2064
2065 if (!success) {
2066 int abort = 0;
2067 /* Cannot read from anywhere, this block is lost.
2068 * Record a bad block on each device. If that doesn't
2069 * work just disable and interrupt the recovery.
2070 * Don't fail devices as that won't really help.
2071 */
2072 pr_crit_ratelimited("md/raid1:%s: %pg: unrecoverable I/O read error for block %llu\n",
2073 mdname(mddev), bio->bi_bdev,
2074 (unsigned long long)r1_bio->sector);
2075 for (d = 0; d < conf->raid_disks * 2; d++) {
2076 rdev = conf->mirrors[d].rdev;
2077 if (!rdev || test_bit(Faulty, &rdev->flags))
2078 continue;
2079 if (!rdev_set_badblocks(rdev, sect, s, 0))
2080 abort = 1;
2081 }
2082 if (abort) {
2083 conf->recovery_disabled =
2084 mddev->recovery_disabled;
2085 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2086 md_done_sync(mddev, r1_bio->sectors, 0);
2087 put_buf(r1_bio);
2088 return 0;
2089 }
2090 /* Try next page */
2091 sectors -= s;
2092 sect += s;
2093 idx++;
2094 continue;
2095 }
2096
2097 start = d;
2098 /* write it back and re-read */
2099 while (d != r1_bio->read_disk) {
2100 if (d == 0)
2101 d = conf->raid_disks * 2;
2102 d--;
2103 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2104 continue;
2105 rdev = conf->mirrors[d].rdev;
2106 if (r1_sync_page_io(rdev, sect, s,
2107 pages[idx],
2108 REQ_OP_WRITE) == 0) {
2109 r1_bio->bios[d]->bi_end_io = NULL;
2110 rdev_dec_pending(rdev, mddev);
2111 }
2112 }
2113 d = start;
2114 while (d != r1_bio->read_disk) {
2115 if (d == 0)
2116 d = conf->raid_disks * 2;
2117 d--;
2118 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2119 continue;
2120 rdev = conf->mirrors[d].rdev;
2121 if (r1_sync_page_io(rdev, sect, s,
2122 pages[idx],
2123 REQ_OP_READ) != 0)
2124 atomic_add(s, &rdev->corrected_errors);
2125 }
2126 sectors -= s;
2127 sect += s;
2128 idx ++;
2129 }
2130 set_bit(R1BIO_Uptodate, &r1_bio->state);
2131 bio->bi_status = 0;
2132 return 1;
2133 }
2134
process_checks(struct r1bio * r1_bio)2135 static void process_checks(struct r1bio *r1_bio)
2136 {
2137 /* We have read all readable devices. If we haven't
2138 * got the block, then there is no hope left.
2139 * If we have, then we want to do a comparison
2140 * and skip the write if everything is the same.
2141 * If any blocks failed to read, then we need to
2142 * attempt an over-write
2143 */
2144 struct mddev *mddev = r1_bio->mddev;
2145 struct r1conf *conf = mddev->private;
2146 int primary;
2147 int i;
2148 int vcnt;
2149
2150 /* Fix variable parts of all bios */
2151 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2152 for (i = 0; i < conf->raid_disks * 2; i++) {
2153 blk_status_t status;
2154 struct bio *b = r1_bio->bios[i];
2155 struct resync_pages *rp = get_resync_pages(b);
2156 if (b->bi_end_io != end_sync_read)
2157 continue;
2158 /* fixup the bio for reuse, but preserve errno */
2159 status = b->bi_status;
2160 bio_reset(b, conf->mirrors[i].rdev->bdev, REQ_OP_READ);
2161 b->bi_status = status;
2162 b->bi_iter.bi_sector = r1_bio->sector +
2163 conf->mirrors[i].rdev->data_offset;
2164 b->bi_end_io = end_sync_read;
2165 rp->raid_bio = r1_bio;
2166 b->bi_private = rp;
2167
2168 /* initialize bvec table again */
2169 md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2170 }
2171 for (primary = 0; primary < conf->raid_disks * 2; primary++)
2172 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2173 !r1_bio->bios[primary]->bi_status) {
2174 r1_bio->bios[primary]->bi_end_io = NULL;
2175 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2176 break;
2177 }
2178 r1_bio->read_disk = primary;
2179 for (i = 0; i < conf->raid_disks * 2; i++) {
2180 int j = 0;
2181 struct bio *pbio = r1_bio->bios[primary];
2182 struct bio *sbio = r1_bio->bios[i];
2183 blk_status_t status = sbio->bi_status;
2184 struct page **ppages = get_resync_pages(pbio)->pages;
2185 struct page **spages = get_resync_pages(sbio)->pages;
2186 struct bio_vec *bi;
2187 int page_len[RESYNC_PAGES] = { 0 };
2188 struct bvec_iter_all iter_all;
2189
2190 if (sbio->bi_end_io != end_sync_read)
2191 continue;
2192 /* Now we can 'fixup' the error value */
2193 sbio->bi_status = 0;
2194
2195 bio_for_each_segment_all(bi, sbio, iter_all)
2196 page_len[j++] = bi->bv_len;
2197
2198 if (!status) {
2199 for (j = vcnt; j-- ; ) {
2200 if (memcmp(page_address(ppages[j]),
2201 page_address(spages[j]),
2202 page_len[j]))
2203 break;
2204 }
2205 } else
2206 j = 0;
2207 if (j >= 0)
2208 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2209 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2210 && !status)) {
2211 /* No need to write to this device. */
2212 sbio->bi_end_io = NULL;
2213 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2214 continue;
2215 }
2216
2217 bio_copy_data(sbio, pbio);
2218 }
2219 }
2220
sync_request_write(struct mddev * mddev,struct r1bio * r1_bio)2221 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2222 {
2223 struct r1conf *conf = mddev->private;
2224 int i;
2225 int disks = conf->raid_disks * 2;
2226 struct bio *wbio;
2227
2228 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2229 /* ouch - failed to read all of that. */
2230 if (!fix_sync_read_error(r1_bio))
2231 return;
2232
2233 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2234 process_checks(r1_bio);
2235
2236 /*
2237 * schedule writes
2238 */
2239 atomic_set(&r1_bio->remaining, 1);
2240 for (i = 0; i < disks ; i++) {
2241 wbio = r1_bio->bios[i];
2242 if (wbio->bi_end_io == NULL ||
2243 (wbio->bi_end_io == end_sync_read &&
2244 (i == r1_bio->read_disk ||
2245 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2246 continue;
2247 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
2248 abort_sync_write(mddev, r1_bio);
2249 continue;
2250 }
2251
2252 wbio->bi_opf = REQ_OP_WRITE;
2253 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2254 wbio->bi_opf |= MD_FAILFAST;
2255
2256 wbio->bi_end_io = end_sync_write;
2257 atomic_inc(&r1_bio->remaining);
2258 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2259
2260 submit_bio_noacct(wbio);
2261 }
2262
2263 put_sync_write_buf(r1_bio, 1);
2264 }
2265
2266 /*
2267 * This is a kernel thread which:
2268 *
2269 * 1. Retries failed read operations on working mirrors.
2270 * 2. Updates the raid superblock when problems encounter.
2271 * 3. Performs writes following reads for array synchronising.
2272 */
2273
fix_read_error(struct r1conf * conf,int read_disk,sector_t sect,int sectors)2274 static void fix_read_error(struct r1conf *conf, int read_disk,
2275 sector_t sect, int sectors)
2276 {
2277 struct mddev *mddev = conf->mddev;
2278 while(sectors) {
2279 int s = sectors;
2280 int d = read_disk;
2281 int success = 0;
2282 int start;
2283 struct md_rdev *rdev;
2284
2285 if (s > (PAGE_SIZE>>9))
2286 s = PAGE_SIZE >> 9;
2287
2288 do {
2289 sector_t first_bad;
2290 int bad_sectors;
2291
2292 rcu_read_lock();
2293 rdev = rcu_dereference(conf->mirrors[d].rdev);
2294 if (rdev &&
2295 (test_bit(In_sync, &rdev->flags) ||
2296 (!test_bit(Faulty, &rdev->flags) &&
2297 rdev->recovery_offset >= sect + s)) &&
2298 is_badblock(rdev, sect, s,
2299 &first_bad, &bad_sectors) == 0) {
2300 atomic_inc(&rdev->nr_pending);
2301 rcu_read_unlock();
2302 if (sync_page_io(rdev, sect, s<<9,
2303 conf->tmppage, REQ_OP_READ, false))
2304 success = 1;
2305 rdev_dec_pending(rdev, mddev);
2306 if (success)
2307 break;
2308 } else
2309 rcu_read_unlock();
2310 d++;
2311 if (d == conf->raid_disks * 2)
2312 d = 0;
2313 } while (d != read_disk);
2314
2315 if (!success) {
2316 /* Cannot read from anywhere - mark it bad */
2317 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2318 if (!rdev_set_badblocks(rdev, sect, s, 0))
2319 md_error(mddev, rdev);
2320 break;
2321 }
2322 /* write it back and re-read */
2323 start = d;
2324 while (d != read_disk) {
2325 if (d==0)
2326 d = conf->raid_disks * 2;
2327 d--;
2328 rcu_read_lock();
2329 rdev = rcu_dereference(conf->mirrors[d].rdev);
2330 if (rdev &&
2331 !test_bit(Faulty, &rdev->flags)) {
2332 atomic_inc(&rdev->nr_pending);
2333 rcu_read_unlock();
2334 r1_sync_page_io(rdev, sect, s,
2335 conf->tmppage, REQ_OP_WRITE);
2336 rdev_dec_pending(rdev, mddev);
2337 } else
2338 rcu_read_unlock();
2339 }
2340 d = start;
2341 while (d != read_disk) {
2342 if (d==0)
2343 d = conf->raid_disks * 2;
2344 d--;
2345 rcu_read_lock();
2346 rdev = rcu_dereference(conf->mirrors[d].rdev);
2347 if (rdev &&
2348 !test_bit(Faulty, &rdev->flags)) {
2349 atomic_inc(&rdev->nr_pending);
2350 rcu_read_unlock();
2351 if (r1_sync_page_io(rdev, sect, s,
2352 conf->tmppage, REQ_OP_READ)) {
2353 atomic_add(s, &rdev->corrected_errors);
2354 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %pg)\n",
2355 mdname(mddev), s,
2356 (unsigned long long)(sect +
2357 rdev->data_offset),
2358 rdev->bdev);
2359 }
2360 rdev_dec_pending(rdev, mddev);
2361 } else
2362 rcu_read_unlock();
2363 }
2364 sectors -= s;
2365 sect += s;
2366 }
2367 }
2368
narrow_write_error(struct r1bio * r1_bio,int i)2369 static int narrow_write_error(struct r1bio *r1_bio, int i)
2370 {
2371 struct mddev *mddev = r1_bio->mddev;
2372 struct r1conf *conf = mddev->private;
2373 struct md_rdev *rdev = conf->mirrors[i].rdev;
2374
2375 /* bio has the data to be written to device 'i' where
2376 * we just recently had a write error.
2377 * We repeatedly clone the bio and trim down to one block,
2378 * then try the write. Where the write fails we record
2379 * a bad block.
2380 * It is conceivable that the bio doesn't exactly align with
2381 * blocks. We must handle this somehow.
2382 *
2383 * We currently own a reference on the rdev.
2384 */
2385
2386 int block_sectors;
2387 sector_t sector;
2388 int sectors;
2389 int sect_to_write = r1_bio->sectors;
2390 int ok = 1;
2391
2392 if (rdev->badblocks.shift < 0)
2393 return 0;
2394
2395 block_sectors = roundup(1 << rdev->badblocks.shift,
2396 bdev_logical_block_size(rdev->bdev) >> 9);
2397 sector = r1_bio->sector;
2398 sectors = ((sector + block_sectors)
2399 & ~(sector_t)(block_sectors - 1))
2400 - sector;
2401
2402 while (sect_to_write) {
2403 struct bio *wbio;
2404 if (sectors > sect_to_write)
2405 sectors = sect_to_write;
2406 /* Write at 'sector' for 'sectors'*/
2407
2408 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2409 wbio = bio_alloc_clone(rdev->bdev,
2410 r1_bio->behind_master_bio,
2411 GFP_NOIO, &mddev->bio_set);
2412 } else {
2413 wbio = bio_alloc_clone(rdev->bdev, r1_bio->master_bio,
2414 GFP_NOIO, &mddev->bio_set);
2415 }
2416
2417 wbio->bi_opf = REQ_OP_WRITE;
2418 wbio->bi_iter.bi_sector = r1_bio->sector;
2419 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2420
2421 bio_trim(wbio, sector - r1_bio->sector, sectors);
2422 wbio->bi_iter.bi_sector += rdev->data_offset;
2423
2424 if (submit_bio_wait(wbio) < 0)
2425 /* failure! */
2426 ok = rdev_set_badblocks(rdev, sector,
2427 sectors, 0)
2428 && ok;
2429
2430 bio_put(wbio);
2431 sect_to_write -= sectors;
2432 sector += sectors;
2433 sectors = block_sectors;
2434 }
2435 return ok;
2436 }
2437
handle_sync_write_finished(struct r1conf * conf,struct r1bio * r1_bio)2438 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2439 {
2440 int m;
2441 int s = r1_bio->sectors;
2442 for (m = 0; m < conf->raid_disks * 2 ; m++) {
2443 struct md_rdev *rdev = conf->mirrors[m].rdev;
2444 struct bio *bio = r1_bio->bios[m];
2445 if (bio->bi_end_io == NULL)
2446 continue;
2447 if (!bio->bi_status &&
2448 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2449 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2450 }
2451 if (bio->bi_status &&
2452 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2453 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2454 md_error(conf->mddev, rdev);
2455 }
2456 }
2457 put_buf(r1_bio);
2458 md_done_sync(conf->mddev, s, 1);
2459 }
2460
handle_write_finished(struct r1conf * conf,struct r1bio * r1_bio)2461 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2462 {
2463 int m, idx;
2464 bool fail = false;
2465
2466 for (m = 0; m < conf->raid_disks * 2 ; m++)
2467 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2468 struct md_rdev *rdev = conf->mirrors[m].rdev;
2469 rdev_clear_badblocks(rdev,
2470 r1_bio->sector,
2471 r1_bio->sectors, 0);
2472 rdev_dec_pending(rdev, conf->mddev);
2473 } else if (r1_bio->bios[m] != NULL) {
2474 /* This drive got a write error. We need to
2475 * narrow down and record precise write
2476 * errors.
2477 */
2478 fail = true;
2479 if (!narrow_write_error(r1_bio, m)) {
2480 md_error(conf->mddev,
2481 conf->mirrors[m].rdev);
2482 /* an I/O failed, we can't clear the bitmap */
2483 set_bit(R1BIO_Degraded, &r1_bio->state);
2484 }
2485 rdev_dec_pending(conf->mirrors[m].rdev,
2486 conf->mddev);
2487 }
2488 if (fail) {
2489 spin_lock_irq(&conf->device_lock);
2490 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2491 idx = sector_to_idx(r1_bio->sector);
2492 atomic_inc(&conf->nr_queued[idx]);
2493 spin_unlock_irq(&conf->device_lock);
2494 /*
2495 * In case freeze_array() is waiting for condition
2496 * get_unqueued_pending() == extra to be true.
2497 */
2498 wake_up(&conf->wait_barrier);
2499 md_wakeup_thread(conf->mddev->thread);
2500 } else {
2501 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2502 close_write(r1_bio);
2503 raid_end_bio_io(r1_bio);
2504 }
2505 }
2506
handle_read_error(struct r1conf * conf,struct r1bio * r1_bio)2507 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2508 {
2509 struct mddev *mddev = conf->mddev;
2510 struct bio *bio;
2511 struct md_rdev *rdev;
2512 sector_t sector;
2513
2514 clear_bit(R1BIO_ReadError, &r1_bio->state);
2515 /* we got a read error. Maybe the drive is bad. Maybe just
2516 * the block and we can fix it.
2517 * We freeze all other IO, and try reading the block from
2518 * other devices. When we find one, we re-write
2519 * and check it that fixes the read error.
2520 * This is all done synchronously while the array is
2521 * frozen
2522 */
2523
2524 bio = r1_bio->bios[r1_bio->read_disk];
2525 bio_put(bio);
2526 r1_bio->bios[r1_bio->read_disk] = NULL;
2527
2528 rdev = conf->mirrors[r1_bio->read_disk].rdev;
2529 if (mddev->ro == 0
2530 && !test_bit(FailFast, &rdev->flags)) {
2531 freeze_array(conf, 1);
2532 fix_read_error(conf, r1_bio->read_disk,
2533 r1_bio->sector, r1_bio->sectors);
2534 unfreeze_array(conf);
2535 } else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
2536 md_error(mddev, rdev);
2537 } else {
2538 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2539 }
2540
2541 rdev_dec_pending(rdev, conf->mddev);
2542 sector = r1_bio->sector;
2543 bio = r1_bio->master_bio;
2544
2545 /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2546 r1_bio->state = 0;
2547 raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2548 allow_barrier(conf, sector);
2549 }
2550
raid1d(struct md_thread * thread)2551 static void raid1d(struct md_thread *thread)
2552 {
2553 struct mddev *mddev = thread->mddev;
2554 struct r1bio *r1_bio;
2555 unsigned long flags;
2556 struct r1conf *conf = mddev->private;
2557 struct list_head *head = &conf->retry_list;
2558 struct blk_plug plug;
2559 int idx;
2560
2561 md_check_recovery(mddev);
2562
2563 if (!list_empty_careful(&conf->bio_end_io_list) &&
2564 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2565 LIST_HEAD(tmp);
2566 spin_lock_irqsave(&conf->device_lock, flags);
2567 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2568 list_splice_init(&conf->bio_end_io_list, &tmp);
2569 spin_unlock_irqrestore(&conf->device_lock, flags);
2570 while (!list_empty(&tmp)) {
2571 r1_bio = list_first_entry(&tmp, struct r1bio,
2572 retry_list);
2573 list_del(&r1_bio->retry_list);
2574 idx = sector_to_idx(r1_bio->sector);
2575 atomic_dec(&conf->nr_queued[idx]);
2576 if (mddev->degraded)
2577 set_bit(R1BIO_Degraded, &r1_bio->state);
2578 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2579 close_write(r1_bio);
2580 raid_end_bio_io(r1_bio);
2581 }
2582 }
2583
2584 blk_start_plug(&plug);
2585 for (;;) {
2586
2587 flush_pending_writes(conf);
2588
2589 spin_lock_irqsave(&conf->device_lock, flags);
2590 if (list_empty(head)) {
2591 spin_unlock_irqrestore(&conf->device_lock, flags);
2592 break;
2593 }
2594 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2595 list_del(head->prev);
2596 idx = sector_to_idx(r1_bio->sector);
2597 atomic_dec(&conf->nr_queued[idx]);
2598 spin_unlock_irqrestore(&conf->device_lock, flags);
2599
2600 mddev = r1_bio->mddev;
2601 conf = mddev->private;
2602 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2603 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2604 test_bit(R1BIO_WriteError, &r1_bio->state))
2605 handle_sync_write_finished(conf, r1_bio);
2606 else
2607 sync_request_write(mddev, r1_bio);
2608 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2609 test_bit(R1BIO_WriteError, &r1_bio->state))
2610 handle_write_finished(conf, r1_bio);
2611 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2612 handle_read_error(conf, r1_bio);
2613 else
2614 WARN_ON_ONCE(1);
2615
2616 cond_resched();
2617 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2618 md_check_recovery(mddev);
2619 }
2620 blk_finish_plug(&plug);
2621 }
2622
init_resync(struct r1conf * conf)2623 static int init_resync(struct r1conf *conf)
2624 {
2625 int buffs;
2626
2627 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2628 BUG_ON(mempool_initialized(&conf->r1buf_pool));
2629
2630 return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
2631 r1buf_pool_free, conf->poolinfo);
2632 }
2633
raid1_alloc_init_r1buf(struct r1conf * conf)2634 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2635 {
2636 struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
2637 struct resync_pages *rps;
2638 struct bio *bio;
2639 int i;
2640
2641 for (i = conf->poolinfo->raid_disks; i--; ) {
2642 bio = r1bio->bios[i];
2643 rps = bio->bi_private;
2644 bio_reset(bio, NULL, 0);
2645 bio->bi_private = rps;
2646 }
2647 r1bio->master_bio = NULL;
2648 return r1bio;
2649 }
2650
2651 /*
2652 * perform a "sync" on one "block"
2653 *
2654 * We need to make sure that no normal I/O request - particularly write
2655 * requests - conflict with active sync requests.
2656 *
2657 * This is achieved by tracking pending requests and a 'barrier' concept
2658 * that can be installed to exclude normal IO requests.
2659 */
2660
raid1_sync_request(struct mddev * mddev,sector_t sector_nr,int * skipped)2661 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2662 int *skipped)
2663 {
2664 struct r1conf *conf = mddev->private;
2665 struct r1bio *r1_bio;
2666 struct bio *bio;
2667 sector_t max_sector, nr_sectors;
2668 int disk = -1;
2669 int i;
2670 int wonly = -1;
2671 int write_targets = 0, read_targets = 0;
2672 sector_t sync_blocks;
2673 int still_degraded = 0;
2674 int good_sectors = RESYNC_SECTORS;
2675 int min_bad = 0; /* number of sectors that are bad in all devices */
2676 int idx = sector_to_idx(sector_nr);
2677 int page_idx = 0;
2678
2679 if (!mempool_initialized(&conf->r1buf_pool))
2680 if (init_resync(conf))
2681 return 0;
2682
2683 max_sector = mddev->dev_sectors;
2684 if (sector_nr >= max_sector) {
2685 /* If we aborted, we need to abort the
2686 * sync on the 'current' bitmap chunk (there will
2687 * only be one in raid1 resync.
2688 * We can find the current addess in mddev->curr_resync
2689 */
2690 if (mddev->curr_resync < max_sector) /* aborted */
2691 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2692 &sync_blocks, 1);
2693 else /* completed sync */
2694 conf->fullsync = 0;
2695
2696 md_bitmap_close_sync(mddev->bitmap);
2697 close_sync(conf);
2698
2699 if (mddev_is_clustered(mddev)) {
2700 conf->cluster_sync_low = 0;
2701 conf->cluster_sync_high = 0;
2702 }
2703 return 0;
2704 }
2705
2706 if (mddev->bitmap == NULL &&
2707 mddev->recovery_cp == MaxSector &&
2708 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2709 conf->fullsync == 0) {
2710 *skipped = 1;
2711 return max_sector - sector_nr;
2712 }
2713 /* before building a request, check if we can skip these blocks..
2714 * This call the bitmap_start_sync doesn't actually record anything
2715 */
2716 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2717 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2718 /* We can skip this block, and probably several more */
2719 *skipped = 1;
2720 return sync_blocks;
2721 }
2722
2723 /*
2724 * If there is non-resync activity waiting for a turn, then let it
2725 * though before starting on this new sync request.
2726 */
2727 if (atomic_read(&conf->nr_waiting[idx]))
2728 schedule_timeout_uninterruptible(1);
2729
2730 /* we are incrementing sector_nr below. To be safe, we check against
2731 * sector_nr + two times RESYNC_SECTORS
2732 */
2733
2734 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2735 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2736
2737
2738 if (raise_barrier(conf, sector_nr))
2739 return 0;
2740
2741 r1_bio = raid1_alloc_init_r1buf(conf);
2742
2743 rcu_read_lock();
2744 /*
2745 * If we get a correctably read error during resync or recovery,
2746 * we might want to read from a different device. So we
2747 * flag all drives that could conceivably be read from for READ,
2748 * and any others (which will be non-In_sync devices) for WRITE.
2749 * If a read fails, we try reading from something else for which READ
2750 * is OK.
2751 */
2752
2753 r1_bio->mddev = mddev;
2754 r1_bio->sector = sector_nr;
2755 r1_bio->state = 0;
2756 set_bit(R1BIO_IsSync, &r1_bio->state);
2757 /* make sure good_sectors won't go across barrier unit boundary */
2758 good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2759
2760 for (i = 0; i < conf->raid_disks * 2; i++) {
2761 struct md_rdev *rdev;
2762 bio = r1_bio->bios[i];
2763
2764 rdev = rcu_dereference(conf->mirrors[i].rdev);
2765 if (rdev == NULL ||
2766 test_bit(Faulty, &rdev->flags)) {
2767 if (i < conf->raid_disks)
2768 still_degraded = 1;
2769 } else if (!test_bit(In_sync, &rdev->flags)) {
2770 bio->bi_opf = REQ_OP_WRITE;
2771 bio->bi_end_io = end_sync_write;
2772 write_targets ++;
2773 } else {
2774 /* may need to read from here */
2775 sector_t first_bad = MaxSector;
2776 int bad_sectors;
2777
2778 if (is_badblock(rdev, sector_nr, good_sectors,
2779 &first_bad, &bad_sectors)) {
2780 if (first_bad > sector_nr)
2781 good_sectors = first_bad - sector_nr;
2782 else {
2783 bad_sectors -= (sector_nr - first_bad);
2784 if (min_bad == 0 ||
2785 min_bad > bad_sectors)
2786 min_bad = bad_sectors;
2787 }
2788 }
2789 if (sector_nr < first_bad) {
2790 if (test_bit(WriteMostly, &rdev->flags)) {
2791 if (wonly < 0)
2792 wonly = i;
2793 } else {
2794 if (disk < 0)
2795 disk = i;
2796 }
2797 bio->bi_opf = REQ_OP_READ;
2798 bio->bi_end_io = end_sync_read;
2799 read_targets++;
2800 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2801 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2802 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2803 /*
2804 * The device is suitable for reading (InSync),
2805 * but has bad block(s) here. Let's try to correct them,
2806 * if we are doing resync or repair. Otherwise, leave
2807 * this device alone for this sync request.
2808 */
2809 bio->bi_opf = REQ_OP_WRITE;
2810 bio->bi_end_io = end_sync_write;
2811 write_targets++;
2812 }
2813 }
2814 if (rdev && bio->bi_end_io) {
2815 atomic_inc(&rdev->nr_pending);
2816 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2817 bio_set_dev(bio, rdev->bdev);
2818 if (test_bit(FailFast, &rdev->flags))
2819 bio->bi_opf |= MD_FAILFAST;
2820 }
2821 }
2822 rcu_read_unlock();
2823 if (disk < 0)
2824 disk = wonly;
2825 r1_bio->read_disk = disk;
2826
2827 if (read_targets == 0 && min_bad > 0) {
2828 /* These sectors are bad on all InSync devices, so we
2829 * need to mark them bad on all write targets
2830 */
2831 int ok = 1;
2832 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2833 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2834 struct md_rdev *rdev = conf->mirrors[i].rdev;
2835 ok = rdev_set_badblocks(rdev, sector_nr,
2836 min_bad, 0
2837 ) && ok;
2838 }
2839 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2840 *skipped = 1;
2841 put_buf(r1_bio);
2842
2843 if (!ok) {
2844 /* Cannot record the badblocks, so need to
2845 * abort the resync.
2846 * If there are multiple read targets, could just
2847 * fail the really bad ones ???
2848 */
2849 conf->recovery_disabled = mddev->recovery_disabled;
2850 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2851 return 0;
2852 } else
2853 return min_bad;
2854
2855 }
2856 if (min_bad > 0 && min_bad < good_sectors) {
2857 /* only resync enough to reach the next bad->good
2858 * transition */
2859 good_sectors = min_bad;
2860 }
2861
2862 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2863 /* extra read targets are also write targets */
2864 write_targets += read_targets-1;
2865
2866 if (write_targets == 0 || read_targets == 0) {
2867 /* There is nowhere to write, so all non-sync
2868 * drives must be failed - so we are finished
2869 */
2870 sector_t rv;
2871 if (min_bad > 0)
2872 max_sector = sector_nr + min_bad;
2873 rv = max_sector - sector_nr;
2874 *skipped = 1;
2875 put_buf(r1_bio);
2876 return rv;
2877 }
2878
2879 if (max_sector > mddev->resync_max)
2880 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2881 if (max_sector > sector_nr + good_sectors)
2882 max_sector = sector_nr + good_sectors;
2883 nr_sectors = 0;
2884 sync_blocks = 0;
2885 do {
2886 struct page *page;
2887 int len = PAGE_SIZE;
2888 if (sector_nr + (len>>9) > max_sector)
2889 len = (max_sector - sector_nr) << 9;
2890 if (len == 0)
2891 break;
2892 if (sync_blocks == 0) {
2893 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
2894 &sync_blocks, still_degraded) &&
2895 !conf->fullsync &&
2896 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2897 break;
2898 if ((len >> 9) > sync_blocks)
2899 len = sync_blocks<<9;
2900 }
2901
2902 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2903 struct resync_pages *rp;
2904
2905 bio = r1_bio->bios[i];
2906 rp = get_resync_pages(bio);
2907 if (bio->bi_end_io) {
2908 page = resync_fetch_page(rp, page_idx);
2909
2910 /*
2911 * won't fail because the vec table is big
2912 * enough to hold all these pages
2913 */
2914 __bio_add_page(bio, page, len, 0);
2915 }
2916 }
2917 nr_sectors += len>>9;
2918 sector_nr += len>>9;
2919 sync_blocks -= (len>>9);
2920 } while (++page_idx < RESYNC_PAGES);
2921
2922 r1_bio->sectors = nr_sectors;
2923
2924 if (mddev_is_clustered(mddev) &&
2925 conf->cluster_sync_high < sector_nr + nr_sectors) {
2926 conf->cluster_sync_low = mddev->curr_resync_completed;
2927 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2928 /* Send resync message */
2929 md_cluster_ops->resync_info_update(mddev,
2930 conf->cluster_sync_low,
2931 conf->cluster_sync_high);
2932 }
2933
2934 /* For a user-requested sync, we read all readable devices and do a
2935 * compare
2936 */
2937 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2938 atomic_set(&r1_bio->remaining, read_targets);
2939 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2940 bio = r1_bio->bios[i];
2941 if (bio->bi_end_io == end_sync_read) {
2942 read_targets--;
2943 md_sync_acct_bio(bio, nr_sectors);
2944 if (read_targets == 1)
2945 bio->bi_opf &= ~MD_FAILFAST;
2946 submit_bio_noacct(bio);
2947 }
2948 }
2949 } else {
2950 atomic_set(&r1_bio->remaining, 1);
2951 bio = r1_bio->bios[r1_bio->read_disk];
2952 md_sync_acct_bio(bio, nr_sectors);
2953 if (read_targets == 1)
2954 bio->bi_opf &= ~MD_FAILFAST;
2955 submit_bio_noacct(bio);
2956 }
2957 return nr_sectors;
2958 }
2959
raid1_size(struct mddev * mddev,sector_t sectors,int raid_disks)2960 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2961 {
2962 if (sectors)
2963 return sectors;
2964
2965 return mddev->dev_sectors;
2966 }
2967
setup_conf(struct mddev * mddev)2968 static struct r1conf *setup_conf(struct mddev *mddev)
2969 {
2970 struct r1conf *conf;
2971 int i;
2972 struct raid1_info *disk;
2973 struct md_rdev *rdev;
2974 int err = -ENOMEM;
2975
2976 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2977 if (!conf)
2978 goto abort;
2979
2980 conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
2981 sizeof(atomic_t), GFP_KERNEL);
2982 if (!conf->nr_pending)
2983 goto abort;
2984
2985 conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
2986 sizeof(atomic_t), GFP_KERNEL);
2987 if (!conf->nr_waiting)
2988 goto abort;
2989
2990 conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
2991 sizeof(atomic_t), GFP_KERNEL);
2992 if (!conf->nr_queued)
2993 goto abort;
2994
2995 conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
2996 sizeof(atomic_t), GFP_KERNEL);
2997 if (!conf->barrier)
2998 goto abort;
2999
3000 conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3001 mddev->raid_disks, 2),
3002 GFP_KERNEL);
3003 if (!conf->mirrors)
3004 goto abort;
3005
3006 conf->tmppage = alloc_page(GFP_KERNEL);
3007 if (!conf->tmppage)
3008 goto abort;
3009
3010 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
3011 if (!conf->poolinfo)
3012 goto abort;
3013 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
3014 err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc,
3015 rbio_pool_free, conf->poolinfo);
3016 if (err)
3017 goto abort;
3018
3019 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3020 if (err)
3021 goto abort;
3022
3023 conf->poolinfo->mddev = mddev;
3024
3025 err = -EINVAL;
3026 spin_lock_init(&conf->device_lock);
3027 rdev_for_each(rdev, mddev) {
3028 int disk_idx = rdev->raid_disk;
3029 if (disk_idx >= mddev->raid_disks
3030 || disk_idx < 0)
3031 continue;
3032 if (test_bit(Replacement, &rdev->flags))
3033 disk = conf->mirrors + mddev->raid_disks + disk_idx;
3034 else
3035 disk = conf->mirrors + disk_idx;
3036
3037 if (disk->rdev)
3038 goto abort;
3039 disk->rdev = rdev;
3040 disk->head_position = 0;
3041 disk->seq_start = MaxSector;
3042 }
3043 conf->raid_disks = mddev->raid_disks;
3044 conf->mddev = mddev;
3045 INIT_LIST_HEAD(&conf->retry_list);
3046 INIT_LIST_HEAD(&conf->bio_end_io_list);
3047
3048 spin_lock_init(&conf->resync_lock);
3049 init_waitqueue_head(&conf->wait_barrier);
3050
3051 bio_list_init(&conf->pending_bio_list);
3052 conf->recovery_disabled = mddev->recovery_disabled - 1;
3053
3054 err = -EIO;
3055 for (i = 0; i < conf->raid_disks * 2; i++) {
3056
3057 disk = conf->mirrors + i;
3058
3059 if (i < conf->raid_disks &&
3060 disk[conf->raid_disks].rdev) {
3061 /* This slot has a replacement. */
3062 if (!disk->rdev) {
3063 /* No original, just make the replacement
3064 * a recovering spare
3065 */
3066 disk->rdev =
3067 disk[conf->raid_disks].rdev;
3068 disk[conf->raid_disks].rdev = NULL;
3069 } else if (!test_bit(In_sync, &disk->rdev->flags))
3070 /* Original is not in_sync - bad */
3071 goto abort;
3072 }
3073
3074 if (!disk->rdev ||
3075 !test_bit(In_sync, &disk->rdev->flags)) {
3076 disk->head_position = 0;
3077 if (disk->rdev &&
3078 (disk->rdev->saved_raid_disk < 0))
3079 conf->fullsync = 1;
3080 }
3081 }
3082
3083 err = -ENOMEM;
3084 rcu_assign_pointer(conf->thread,
3085 md_register_thread(raid1d, mddev, "raid1"));
3086 if (!conf->thread)
3087 goto abort;
3088
3089 return conf;
3090
3091 abort:
3092 if (conf) {
3093 mempool_exit(&conf->r1bio_pool);
3094 kfree(conf->mirrors);
3095 safe_put_page(conf->tmppage);
3096 kfree(conf->poolinfo);
3097 kfree(conf->nr_pending);
3098 kfree(conf->nr_waiting);
3099 kfree(conf->nr_queued);
3100 kfree(conf->barrier);
3101 bioset_exit(&conf->bio_split);
3102 kfree(conf);
3103 }
3104 return ERR_PTR(err);
3105 }
3106
3107 static void raid1_free(struct mddev *mddev, void *priv);
raid1_run(struct mddev * mddev)3108 static int raid1_run(struct mddev *mddev)
3109 {
3110 struct r1conf *conf;
3111 int i;
3112 struct md_rdev *rdev;
3113 int ret;
3114
3115 if (mddev->level != 1) {
3116 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3117 mdname(mddev), mddev->level);
3118 return -EIO;
3119 }
3120 if (mddev->reshape_position != MaxSector) {
3121 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3122 mdname(mddev));
3123 return -EIO;
3124 }
3125 if (mddev_init_writes_pending(mddev) < 0)
3126 return -ENOMEM;
3127 /*
3128 * copy the already verified devices into our private RAID1
3129 * bookkeeping area. [whatever we allocate in run(),
3130 * should be freed in raid1_free()]
3131 */
3132 if (mddev->private == NULL)
3133 conf = setup_conf(mddev);
3134 else
3135 conf = mddev->private;
3136
3137 if (IS_ERR(conf))
3138 return PTR_ERR(conf);
3139
3140 if (mddev->queue)
3141 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3142
3143 rdev_for_each(rdev, mddev) {
3144 if (!mddev->gendisk)
3145 continue;
3146 disk_stack_limits(mddev->gendisk, rdev->bdev,
3147 rdev->data_offset << 9);
3148 }
3149
3150 mddev->degraded = 0;
3151 for (i = 0; i < conf->raid_disks; i++)
3152 if (conf->mirrors[i].rdev == NULL ||
3153 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3154 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3155 mddev->degraded++;
3156 /*
3157 * RAID1 needs at least one disk in active
3158 */
3159 if (conf->raid_disks - mddev->degraded < 1) {
3160 md_unregister_thread(mddev, &conf->thread);
3161 ret = -EINVAL;
3162 goto abort;
3163 }
3164
3165 if (conf->raid_disks - mddev->degraded == 1)
3166 mddev->recovery_cp = MaxSector;
3167
3168 if (mddev->recovery_cp != MaxSector)
3169 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3170 mdname(mddev));
3171 pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3172 mdname(mddev), mddev->raid_disks - mddev->degraded,
3173 mddev->raid_disks);
3174
3175 /*
3176 * Ok, everything is just fine now
3177 */
3178 rcu_assign_pointer(mddev->thread, conf->thread);
3179 rcu_assign_pointer(conf->thread, NULL);
3180 mddev->private = conf;
3181 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3182
3183 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3184
3185 ret = md_integrity_register(mddev);
3186 if (ret) {
3187 md_unregister_thread(mddev, &mddev->thread);
3188 goto abort;
3189 }
3190 return 0;
3191
3192 abort:
3193 raid1_free(mddev, conf);
3194 return ret;
3195 }
3196
raid1_free(struct mddev * mddev,void * priv)3197 static void raid1_free(struct mddev *mddev, void *priv)
3198 {
3199 struct r1conf *conf = priv;
3200
3201 mempool_exit(&conf->r1bio_pool);
3202 kfree(conf->mirrors);
3203 safe_put_page(conf->tmppage);
3204 kfree(conf->poolinfo);
3205 kfree(conf->nr_pending);
3206 kfree(conf->nr_waiting);
3207 kfree(conf->nr_queued);
3208 kfree(conf->barrier);
3209 bioset_exit(&conf->bio_split);
3210 kfree(conf);
3211 }
3212
raid1_resize(struct mddev * mddev,sector_t sectors)3213 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3214 {
3215 /* no resync is happening, and there is enough space
3216 * on all devices, so we can resize.
3217 * We need to make sure resync covers any new space.
3218 * If the array is shrinking we should possibly wait until
3219 * any io in the removed space completes, but it hardly seems
3220 * worth it.
3221 */
3222 sector_t newsize = raid1_size(mddev, sectors, 0);
3223 if (mddev->external_size &&
3224 mddev->array_sectors > newsize)
3225 return -EINVAL;
3226 if (mddev->bitmap) {
3227 int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
3228 if (ret)
3229 return ret;
3230 }
3231 md_set_array_sectors(mddev, newsize);
3232 if (sectors > mddev->dev_sectors &&
3233 mddev->recovery_cp > mddev->dev_sectors) {
3234 mddev->recovery_cp = mddev->dev_sectors;
3235 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3236 }
3237 mddev->dev_sectors = sectors;
3238 mddev->resync_max_sectors = sectors;
3239 return 0;
3240 }
3241
raid1_reshape(struct mddev * mddev)3242 static int raid1_reshape(struct mddev *mddev)
3243 {
3244 /* We need to:
3245 * 1/ resize the r1bio_pool
3246 * 2/ resize conf->mirrors
3247 *
3248 * We allocate a new r1bio_pool if we can.
3249 * Then raise a device barrier and wait until all IO stops.
3250 * Then resize conf->mirrors and swap in the new r1bio pool.
3251 *
3252 * At the same time, we "pack" the devices so that all the missing
3253 * devices have the higher raid_disk numbers.
3254 */
3255 mempool_t newpool, oldpool;
3256 struct pool_info *newpoolinfo;
3257 struct raid1_info *newmirrors;
3258 struct r1conf *conf = mddev->private;
3259 int cnt, raid_disks;
3260 unsigned long flags;
3261 int d, d2;
3262 int ret;
3263
3264 memset(&newpool, 0, sizeof(newpool));
3265 memset(&oldpool, 0, sizeof(oldpool));
3266
3267 /* Cannot change chunk_size, layout, or level */
3268 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3269 mddev->layout != mddev->new_layout ||
3270 mddev->level != mddev->new_level) {
3271 mddev->new_chunk_sectors = mddev->chunk_sectors;
3272 mddev->new_layout = mddev->layout;
3273 mddev->new_level = mddev->level;
3274 return -EINVAL;
3275 }
3276
3277 if (!mddev_is_clustered(mddev))
3278 md_allow_write(mddev);
3279
3280 raid_disks = mddev->raid_disks + mddev->delta_disks;
3281
3282 if (raid_disks < conf->raid_disks) {
3283 cnt=0;
3284 for (d= 0; d < conf->raid_disks; d++)
3285 if (conf->mirrors[d].rdev)
3286 cnt++;
3287 if (cnt > raid_disks)
3288 return -EBUSY;
3289 }
3290
3291 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3292 if (!newpoolinfo)
3293 return -ENOMEM;
3294 newpoolinfo->mddev = mddev;
3295 newpoolinfo->raid_disks = raid_disks * 2;
3296
3297 ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc,
3298 rbio_pool_free, newpoolinfo);
3299 if (ret) {
3300 kfree(newpoolinfo);
3301 return ret;
3302 }
3303 newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3304 raid_disks, 2),
3305 GFP_KERNEL);
3306 if (!newmirrors) {
3307 kfree(newpoolinfo);
3308 mempool_exit(&newpool);
3309 return -ENOMEM;
3310 }
3311
3312 freeze_array(conf, 0);
3313
3314 /* ok, everything is stopped */
3315 oldpool = conf->r1bio_pool;
3316 conf->r1bio_pool = newpool;
3317
3318 for (d = d2 = 0; d < conf->raid_disks; d++) {
3319 struct md_rdev *rdev = conf->mirrors[d].rdev;
3320 if (rdev && rdev->raid_disk != d2) {
3321 sysfs_unlink_rdev(mddev, rdev);
3322 rdev->raid_disk = d2;
3323 sysfs_unlink_rdev(mddev, rdev);
3324 if (sysfs_link_rdev(mddev, rdev))
3325 pr_warn("md/raid1:%s: cannot register rd%d\n",
3326 mdname(mddev), rdev->raid_disk);
3327 }
3328 if (rdev)
3329 newmirrors[d2++].rdev = rdev;
3330 }
3331 kfree(conf->mirrors);
3332 conf->mirrors = newmirrors;
3333 kfree(conf->poolinfo);
3334 conf->poolinfo = newpoolinfo;
3335
3336 spin_lock_irqsave(&conf->device_lock, flags);
3337 mddev->degraded += (raid_disks - conf->raid_disks);
3338 spin_unlock_irqrestore(&conf->device_lock, flags);
3339 conf->raid_disks = mddev->raid_disks = raid_disks;
3340 mddev->delta_disks = 0;
3341
3342 unfreeze_array(conf);
3343
3344 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3345 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3346 md_wakeup_thread(mddev->thread);
3347
3348 mempool_exit(&oldpool);
3349 return 0;
3350 }
3351
raid1_quiesce(struct mddev * mddev,int quiesce)3352 static void raid1_quiesce(struct mddev *mddev, int quiesce)
3353 {
3354 struct r1conf *conf = mddev->private;
3355
3356 if (quiesce)
3357 freeze_array(conf, 0);
3358 else
3359 unfreeze_array(conf);
3360 }
3361
raid1_takeover(struct mddev * mddev)3362 static void *raid1_takeover(struct mddev *mddev)
3363 {
3364 /* raid1 can take over:
3365 * raid5 with 2 devices, any layout or chunk size
3366 */
3367 if (mddev->level == 5 && mddev->raid_disks == 2) {
3368 struct r1conf *conf;
3369 mddev->new_level = 1;
3370 mddev->new_layout = 0;
3371 mddev->new_chunk_sectors = 0;
3372 conf = setup_conf(mddev);
3373 if (!IS_ERR(conf)) {
3374 /* Array must appear to be quiesced */
3375 conf->array_frozen = 1;
3376 mddev_clear_unsupported_flags(mddev,
3377 UNSUPPORTED_MDDEV_FLAGS);
3378 }
3379 return conf;
3380 }
3381 return ERR_PTR(-EINVAL);
3382 }
3383
3384 static struct md_personality raid1_personality =
3385 {
3386 .name = "raid1",
3387 .level = 1,
3388 .owner = THIS_MODULE,
3389 .make_request = raid1_make_request,
3390 .run = raid1_run,
3391 .free = raid1_free,
3392 .status = raid1_status,
3393 .error_handler = raid1_error,
3394 .hot_add_disk = raid1_add_disk,
3395 .hot_remove_disk= raid1_remove_disk,
3396 .spare_active = raid1_spare_active,
3397 .sync_request = raid1_sync_request,
3398 .resize = raid1_resize,
3399 .size = raid1_size,
3400 .check_reshape = raid1_reshape,
3401 .quiesce = raid1_quiesce,
3402 .takeover = raid1_takeover,
3403 };
3404
raid_init(void)3405 static int __init raid_init(void)
3406 {
3407 return register_md_personality(&raid1_personality);
3408 }
3409
raid_exit(void)3410 static void raid_exit(void)
3411 {
3412 unregister_md_personality(&raid1_personality);
3413 }
3414
3415 module_init(raid_init);
3416 module_exit(raid_exit);
3417 MODULE_LICENSE("GPL");
3418 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3419 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3420 MODULE_ALIAS("md-raid1");
3421 MODULE_ALIAS("md-level-1");
3422