xref: /openbmc/linux/drivers/md/raid0.c (revision c21b37f6)
1 /*
2    raid0.c : Multiple Devices driver for Linux
3              Copyright (C) 1994-96 Marc ZYNGIER
4 	     <zyngier@ufr-info-p7.ibp.fr> or
5 	     <maz@gloups.fdn.fr>
6              Copyright (C) 1999, 2000 Ingo Molnar, Red Hat
7 
8 
9    RAID-0 management functions.
10 
11    This program is free software; you can redistribute it and/or modify
12    it under the terms of the GNU General Public License as published by
13    the Free Software Foundation; either version 2, or (at your option)
14    any later version.
15 
16    You should have received a copy of the GNU General Public License
17    (for example /usr/src/linux/COPYING); if not, write to the Free
18    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20 
21 #include <linux/module.h>
22 #include <linux/raid/raid0.h>
23 
24 #define MAJOR_NR MD_MAJOR
25 #define MD_DRIVER
26 #define MD_PERSONALITY
27 
28 static void raid0_unplug(struct request_queue *q)
29 {
30 	mddev_t *mddev = q->queuedata;
31 	raid0_conf_t *conf = mddev_to_conf(mddev);
32 	mdk_rdev_t **devlist = conf->strip_zone[0].dev;
33 	int i;
34 
35 	for (i=0; i<mddev->raid_disks; i++) {
36 		struct request_queue *r_queue = bdev_get_queue(devlist[i]->bdev);
37 
38 		if (r_queue->unplug_fn)
39 			r_queue->unplug_fn(r_queue);
40 	}
41 }
42 
43 static int raid0_issue_flush(struct request_queue *q, struct gendisk *disk,
44 			     sector_t *error_sector)
45 {
46 	mddev_t *mddev = q->queuedata;
47 	raid0_conf_t *conf = mddev_to_conf(mddev);
48 	mdk_rdev_t **devlist = conf->strip_zone[0].dev;
49 	int i, ret = 0;
50 
51 	for (i=0; i<mddev->raid_disks && ret == 0; i++) {
52 		struct block_device *bdev = devlist[i]->bdev;
53 		struct request_queue *r_queue = bdev_get_queue(bdev);
54 
55 		if (!r_queue->issue_flush_fn)
56 			ret = -EOPNOTSUPP;
57 		else
58 			ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk, error_sector);
59 	}
60 	return ret;
61 }
62 
63 static int raid0_congested(void *data, int bits)
64 {
65 	mddev_t *mddev = data;
66 	raid0_conf_t *conf = mddev_to_conf(mddev);
67 	mdk_rdev_t **devlist = conf->strip_zone[0].dev;
68 	int i, ret = 0;
69 
70 	for (i = 0; i < mddev->raid_disks && !ret ; i++) {
71 		struct request_queue *q = bdev_get_queue(devlist[i]->bdev);
72 
73 		ret |= bdi_congested(&q->backing_dev_info, bits);
74 	}
75 	return ret;
76 }
77 
78 
79 static int create_strip_zones (mddev_t *mddev)
80 {
81 	int i, c, j;
82 	sector_t current_offset, curr_zone_offset;
83 	sector_t min_spacing;
84 	raid0_conf_t *conf = mddev_to_conf(mddev);
85 	mdk_rdev_t *smallest, *rdev1, *rdev2, *rdev;
86 	struct list_head *tmp1, *tmp2;
87 	struct strip_zone *zone;
88 	int cnt;
89 	char b[BDEVNAME_SIZE];
90 
91 	/*
92 	 * The number of 'same size groups'
93 	 */
94 	conf->nr_strip_zones = 0;
95 
96 	ITERATE_RDEV(mddev,rdev1,tmp1) {
97 		printk("raid0: looking at %s\n",
98 			bdevname(rdev1->bdev,b));
99 		c = 0;
100 		ITERATE_RDEV(mddev,rdev2,tmp2) {
101 			printk("raid0:   comparing %s(%llu)",
102 			       bdevname(rdev1->bdev,b),
103 			       (unsigned long long)rdev1->size);
104 			printk(" with %s(%llu)\n",
105 			       bdevname(rdev2->bdev,b),
106 			       (unsigned long long)rdev2->size);
107 			if (rdev2 == rdev1) {
108 				printk("raid0:   END\n");
109 				break;
110 			}
111 			if (rdev2->size == rdev1->size)
112 			{
113 				/*
114 				 * Not unique, don't count it as a new
115 				 * group
116 				 */
117 				printk("raid0:   EQUAL\n");
118 				c = 1;
119 				break;
120 			}
121 			printk("raid0:   NOT EQUAL\n");
122 		}
123 		if (!c) {
124 			printk("raid0:   ==> UNIQUE\n");
125 			conf->nr_strip_zones++;
126 			printk("raid0: %d zones\n", conf->nr_strip_zones);
127 		}
128 	}
129 	printk("raid0: FINAL %d zones\n", conf->nr_strip_zones);
130 
131 	conf->strip_zone = kzalloc(sizeof(struct strip_zone)*
132 				conf->nr_strip_zones, GFP_KERNEL);
133 	if (!conf->strip_zone)
134 		return 1;
135 	conf->devlist = kzalloc(sizeof(mdk_rdev_t*)*
136 				conf->nr_strip_zones*mddev->raid_disks,
137 				GFP_KERNEL);
138 	if (!conf->devlist)
139 		return 1;
140 
141 	/* The first zone must contain all devices, so here we check that
142 	 * there is a proper alignment of slots to devices and find them all
143 	 */
144 	zone = &conf->strip_zone[0];
145 	cnt = 0;
146 	smallest = NULL;
147 	zone->dev = conf->devlist;
148 	ITERATE_RDEV(mddev, rdev1, tmp1) {
149 		int j = rdev1->raid_disk;
150 
151 		if (j < 0 || j >= mddev->raid_disks) {
152 			printk("raid0: bad disk number %d - aborting!\n", j);
153 			goto abort;
154 		}
155 		if (zone->dev[j]) {
156 			printk("raid0: multiple devices for %d - aborting!\n",
157 				j);
158 			goto abort;
159 		}
160 		zone->dev[j] = rdev1;
161 
162 		blk_queue_stack_limits(mddev->queue,
163 				       rdev1->bdev->bd_disk->queue);
164 		/* as we don't honour merge_bvec_fn, we must never risk
165 		 * violating it, so limit ->max_sector to one PAGE, as
166 		 * a one page request is never in violation.
167 		 */
168 
169 		if (rdev1->bdev->bd_disk->queue->merge_bvec_fn &&
170 		    mddev->queue->max_sectors > (PAGE_SIZE>>9))
171 			blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
172 
173 		if (!smallest || (rdev1->size <smallest->size))
174 			smallest = rdev1;
175 		cnt++;
176 	}
177 	if (cnt != mddev->raid_disks) {
178 		printk("raid0: too few disks (%d of %d) - aborting!\n",
179 			cnt, mddev->raid_disks);
180 		goto abort;
181 	}
182 	zone->nb_dev = cnt;
183 	zone->size = smallest->size * cnt;
184 	zone->zone_offset = 0;
185 
186 	current_offset = smallest->size;
187 	curr_zone_offset = zone->size;
188 
189 	/* now do the other zones */
190 	for (i = 1; i < conf->nr_strip_zones; i++)
191 	{
192 		zone = conf->strip_zone + i;
193 		zone->dev = conf->strip_zone[i-1].dev + mddev->raid_disks;
194 
195 		printk("raid0: zone %d\n", i);
196 		zone->dev_offset = current_offset;
197 		smallest = NULL;
198 		c = 0;
199 
200 		for (j=0; j<cnt; j++) {
201 			char b[BDEVNAME_SIZE];
202 			rdev = conf->strip_zone[0].dev[j];
203 			printk("raid0: checking %s ...", bdevname(rdev->bdev,b));
204 			if (rdev->size > current_offset)
205 			{
206 				printk(" contained as device %d\n", c);
207 				zone->dev[c] = rdev;
208 				c++;
209 				if (!smallest || (rdev->size <smallest->size)) {
210 					smallest = rdev;
211 					printk("  (%llu) is smallest!.\n",
212 						(unsigned long long)rdev->size);
213 				}
214 			} else
215 				printk(" nope.\n");
216 		}
217 
218 		zone->nb_dev = c;
219 		zone->size = (smallest->size - current_offset) * c;
220 		printk("raid0: zone->nb_dev: %d, size: %llu\n",
221 			zone->nb_dev, (unsigned long long)zone->size);
222 
223 		zone->zone_offset = curr_zone_offset;
224 		curr_zone_offset += zone->size;
225 
226 		current_offset = smallest->size;
227 		printk("raid0: current zone offset: %llu\n",
228 			(unsigned long long)current_offset);
229 	}
230 
231 	/* Now find appropriate hash spacing.
232 	 * We want a number which causes most hash entries to cover
233 	 * at most two strips, but the hash table must be at most
234 	 * 1 PAGE.  We choose the smallest strip, or contiguous collection
235 	 * of strips, that has big enough size.  We never consider the last
236 	 * strip though as it's size has no bearing on the efficacy of the hash
237 	 * table.
238 	 */
239 	conf->hash_spacing = curr_zone_offset;
240 	min_spacing = curr_zone_offset;
241 	sector_div(min_spacing, PAGE_SIZE/sizeof(struct strip_zone*));
242 	for (i=0; i < conf->nr_strip_zones-1; i++) {
243 		sector_t sz = 0;
244 		for (j=i; j<conf->nr_strip_zones-1 &&
245 			     sz < min_spacing ; j++)
246 			sz += conf->strip_zone[j].size;
247 		if (sz >= min_spacing && sz < conf->hash_spacing)
248 			conf->hash_spacing = sz;
249 	}
250 
251 	mddev->queue->unplug_fn = raid0_unplug;
252 
253 	mddev->queue->issue_flush_fn = raid0_issue_flush;
254 	mddev->queue->backing_dev_info.congested_fn = raid0_congested;
255 	mddev->queue->backing_dev_info.congested_data = mddev;
256 
257 	printk("raid0: done.\n");
258 	return 0;
259  abort:
260 	return 1;
261 }
262 
263 /**
264  *	raid0_mergeable_bvec -- tell bio layer if a two requests can be merged
265  *	@q: request queue
266  *	@bio: the buffer head that's been built up so far
267  *	@biovec: the request that could be merged to it.
268  *
269  *	Return amount of bytes we can accept at this offset
270  */
271 static int raid0_mergeable_bvec(struct request_queue *q, struct bio *bio, struct bio_vec *biovec)
272 {
273 	mddev_t *mddev = q->queuedata;
274 	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
275 	int max;
276 	unsigned int chunk_sectors = mddev->chunk_size >> 9;
277 	unsigned int bio_sectors = bio->bi_size >> 9;
278 
279 	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
280 	if (max < 0) max = 0; /* bio_add cannot handle a negative return */
281 	if (max <= biovec->bv_len && bio_sectors == 0)
282 		return biovec->bv_len;
283 	else
284 		return max;
285 }
286 
287 static int raid0_run (mddev_t *mddev)
288 {
289 	unsigned  cur=0, i=0, nb_zone;
290 	s64 size;
291 	raid0_conf_t *conf;
292 	mdk_rdev_t *rdev;
293 	struct list_head *tmp;
294 
295 	if (mddev->chunk_size == 0) {
296 		printk(KERN_ERR "md/raid0: non-zero chunk size required.\n");
297 		return -EINVAL;
298 	}
299 	printk(KERN_INFO "%s: setting max_sectors to %d, segment boundary to %d\n",
300 	       mdname(mddev),
301 	       mddev->chunk_size >> 9,
302 	       (mddev->chunk_size>>1)-1);
303 	blk_queue_max_sectors(mddev->queue, mddev->chunk_size >> 9);
304 	blk_queue_segment_boundary(mddev->queue, (mddev->chunk_size>>1) - 1);
305 
306 	conf = kmalloc(sizeof (raid0_conf_t), GFP_KERNEL);
307 	if (!conf)
308 		goto out;
309 	mddev->private = (void *)conf;
310 
311 	conf->strip_zone = NULL;
312 	conf->devlist = NULL;
313 	if (create_strip_zones (mddev))
314 		goto out_free_conf;
315 
316 	/* calculate array device size */
317 	mddev->array_size = 0;
318 	ITERATE_RDEV(mddev,rdev,tmp)
319 		mddev->array_size += rdev->size;
320 
321 	printk("raid0 : md_size is %llu blocks.\n",
322 		(unsigned long long)mddev->array_size);
323 	printk("raid0 : conf->hash_spacing is %llu blocks.\n",
324 		(unsigned long long)conf->hash_spacing);
325 	{
326 		sector_t s = mddev->array_size;
327 		sector_t space = conf->hash_spacing;
328 		int round;
329 		conf->preshift = 0;
330 		if (sizeof(sector_t) > sizeof(u32)) {
331 			/*shift down space and s so that sector_div will work */
332 			while (space > (sector_t) (~(u32)0)) {
333 				s >>= 1;
334 				space >>= 1;
335 				s += 1; /* force round-up */
336 				conf->preshift++;
337 			}
338 		}
339 		round = sector_div(s, (u32)space) ? 1 : 0;
340 		nb_zone = s + round;
341 	}
342 	printk("raid0 : nb_zone is %d.\n", nb_zone);
343 
344 	printk("raid0 : Allocating %Zd bytes for hash.\n",
345 				nb_zone*sizeof(struct strip_zone*));
346 	conf->hash_table = kmalloc (sizeof (struct strip_zone *)*nb_zone, GFP_KERNEL);
347 	if (!conf->hash_table)
348 		goto out_free_conf;
349 	size = conf->strip_zone[cur].size;
350 
351 	conf->hash_table[0] = conf->strip_zone + cur;
352 	for (i=1; i< nb_zone; i++) {
353 		while (size <= conf->hash_spacing) {
354 			cur++;
355 			size += conf->strip_zone[cur].size;
356 		}
357 		size -= conf->hash_spacing;
358 		conf->hash_table[i] = conf->strip_zone + cur;
359 	}
360 	if (conf->preshift) {
361 		conf->hash_spacing >>= conf->preshift;
362 		/* round hash_spacing up so when we divide by it, we
363 		 * err on the side of too-low, which is safest
364 		 */
365 		conf->hash_spacing++;
366 	}
367 
368 	/* calculate the max read-ahead size.
369 	 * For read-ahead of large files to be effective, we need to
370 	 * readahead at least twice a whole stripe. i.e. number of devices
371 	 * multiplied by chunk size times 2.
372 	 * If an individual device has an ra_pages greater than the
373 	 * chunk size, then we will not drive that device as hard as it
374 	 * wants.  We consider this a configuration error: a larger
375 	 * chunksize should be used in that case.
376 	 */
377 	{
378 		int stripe = mddev->raid_disks * mddev->chunk_size / PAGE_SIZE;
379 		if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
380 			mddev->queue->backing_dev_info.ra_pages = 2* stripe;
381 	}
382 
383 
384 	blk_queue_merge_bvec(mddev->queue, raid0_mergeable_bvec);
385 	return 0;
386 
387 out_free_conf:
388 	kfree(conf->strip_zone);
389 	kfree(conf->devlist);
390 	kfree(conf);
391 	mddev->private = NULL;
392 out:
393 	return -ENOMEM;
394 }
395 
396 static int raid0_stop (mddev_t *mddev)
397 {
398 	raid0_conf_t *conf = mddev_to_conf(mddev);
399 
400 	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
401 	kfree(conf->hash_table);
402 	conf->hash_table = NULL;
403 	kfree(conf->strip_zone);
404 	conf->strip_zone = NULL;
405 	kfree(conf);
406 	mddev->private = NULL;
407 
408 	return 0;
409 }
410 
411 static int raid0_make_request (struct request_queue *q, struct bio *bio)
412 {
413 	mddev_t *mddev = q->queuedata;
414 	unsigned int sect_in_chunk, chunksize_bits,  chunk_size, chunk_sects;
415 	raid0_conf_t *conf = mddev_to_conf(mddev);
416 	struct strip_zone *zone;
417 	mdk_rdev_t *tmp_dev;
418 	sector_t chunk;
419 	sector_t block, rsect;
420 	const int rw = bio_data_dir(bio);
421 
422 	if (unlikely(bio_barrier(bio))) {
423 		bio_endio(bio, bio->bi_size, -EOPNOTSUPP);
424 		return 0;
425 	}
426 
427 	disk_stat_inc(mddev->gendisk, ios[rw]);
428 	disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bio));
429 
430 	chunk_size = mddev->chunk_size >> 10;
431 	chunk_sects = mddev->chunk_size >> 9;
432 	chunksize_bits = ffz(~chunk_size);
433 	block = bio->bi_sector >> 1;
434 
435 
436 	if (unlikely(chunk_sects < (bio->bi_sector & (chunk_sects - 1)) + (bio->bi_size >> 9))) {
437 		struct bio_pair *bp;
438 		/* Sanity check -- queue functions should prevent this happening */
439 		if (bio->bi_vcnt != 1 ||
440 		    bio->bi_idx != 0)
441 			goto bad_map;
442 		/* This is a one page bio that upper layers
443 		 * refuse to split for us, so we need to split it.
444 		 */
445 		bp = bio_split(bio, bio_split_pool, chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
446 		if (raid0_make_request(q, &bp->bio1))
447 			generic_make_request(&bp->bio1);
448 		if (raid0_make_request(q, &bp->bio2))
449 			generic_make_request(&bp->bio2);
450 
451 		bio_pair_release(bp);
452 		return 0;
453 	}
454 
455 
456 	{
457 		sector_t x = block >> conf->preshift;
458 		sector_div(x, (u32)conf->hash_spacing);
459 		zone = conf->hash_table[x];
460 	}
461 
462 	while (block >= (zone->zone_offset + zone->size))
463 		zone++;
464 
465 	sect_in_chunk = bio->bi_sector & ((chunk_size<<1) -1);
466 
467 
468 	{
469 		sector_t x =  (block - zone->zone_offset) >> chunksize_bits;
470 
471 		sector_div(x, zone->nb_dev);
472 		chunk = x;
473 
474 		x = block >> chunksize_bits;
475 		tmp_dev = zone->dev[sector_div(x, zone->nb_dev)];
476 	}
477 	rsect = (((chunk << chunksize_bits) + zone->dev_offset)<<1)
478 		+ sect_in_chunk;
479 
480 	bio->bi_bdev = tmp_dev->bdev;
481 	bio->bi_sector = rsect + tmp_dev->data_offset;
482 
483 	/*
484 	 * Let the main block layer submit the IO and resolve recursion:
485 	 */
486 	return 1;
487 
488 bad_map:
489 	printk("raid0_make_request bug: can't convert block across chunks"
490 		" or bigger than %dk %llu %d\n", chunk_size,
491 		(unsigned long long)bio->bi_sector, bio->bi_size >> 10);
492 
493 	bio_io_error(bio, bio->bi_size);
494 	return 0;
495 }
496 
497 static void raid0_status (struct seq_file *seq, mddev_t *mddev)
498 {
499 #undef MD_DEBUG
500 #ifdef MD_DEBUG
501 	int j, k, h;
502 	char b[BDEVNAME_SIZE];
503 	raid0_conf_t *conf = mddev_to_conf(mddev);
504 
505 	h = 0;
506 	for (j = 0; j < conf->nr_strip_zones; j++) {
507 		seq_printf(seq, "      z%d", j);
508 		if (conf->hash_table[h] == conf->strip_zone+j)
509 			seq_printf("(h%d)", h++);
510 		seq_printf(seq, "=[");
511 		for (k = 0; k < conf->strip_zone[j].nb_dev; k++)
512 			seq_printf (seq, "%s/", bdevname(
513 				conf->strip_zone[j].dev[k]->bdev,b));
514 
515 		seq_printf (seq, "] zo=%d do=%d s=%d\n",
516 				conf->strip_zone[j].zone_offset,
517 				conf->strip_zone[j].dev_offset,
518 				conf->strip_zone[j].size);
519 	}
520 #endif
521 	seq_printf(seq, " %dk chunks", mddev->chunk_size/1024);
522 	return;
523 }
524 
525 static struct mdk_personality raid0_personality=
526 {
527 	.name		= "raid0",
528 	.level		= 0,
529 	.owner		= THIS_MODULE,
530 	.make_request	= raid0_make_request,
531 	.run		= raid0_run,
532 	.stop		= raid0_stop,
533 	.status		= raid0_status,
534 };
535 
536 static int __init raid0_init (void)
537 {
538 	return register_md_personality (&raid0_personality);
539 }
540 
541 static void raid0_exit (void)
542 {
543 	unregister_md_personality (&raid0_personality);
544 }
545 
546 module_init(raid0_init);
547 module_exit(raid0_exit);
548 MODULE_LICENSE("GPL");
549 MODULE_ALIAS("md-personality-2"); /* RAID0 */
550 MODULE_ALIAS("md-raid0");
551 MODULE_ALIAS("md-level-0");
552