1 /* 2 * Copyright (C) 2011 Red Hat, Inc. 3 * 4 * This file is released under the GPL. 5 */ 6 7 #include "dm-btree-internal.h" 8 #include "dm-space-map.h" 9 #include "dm-transaction-manager.h" 10 11 #include <linux/export.h> 12 #include <linux/device-mapper.h> 13 14 #define DM_MSG_PREFIX "btree" 15 16 /*---------------------------------------------------------------- 17 * Array manipulation 18 *--------------------------------------------------------------*/ 19 static void memcpy_disk(void *dest, const void *src, size_t len) 20 __dm_written_to_disk(src) 21 { 22 memcpy(dest, src, len); 23 __dm_unbless_for_disk(src); 24 } 25 26 static void array_insert(void *base, size_t elt_size, unsigned nr_elts, 27 unsigned index, void *elt) 28 __dm_written_to_disk(elt) 29 { 30 if (index < nr_elts) 31 memmove(base + (elt_size * (index + 1)), 32 base + (elt_size * index), 33 (nr_elts - index) * elt_size); 34 35 memcpy_disk(base + (elt_size * index), elt, elt_size); 36 } 37 38 /*----------------------------------------------------------------*/ 39 40 /* makes the assumption that no two keys are the same. */ 41 static int bsearch(struct btree_node *n, uint64_t key, int want_hi) 42 { 43 int lo = -1, hi = le32_to_cpu(n->header.nr_entries); 44 45 while (hi - lo > 1) { 46 int mid = lo + ((hi - lo) / 2); 47 uint64_t mid_key = le64_to_cpu(n->keys[mid]); 48 49 if (mid_key == key) 50 return mid; 51 52 if (mid_key < key) 53 lo = mid; 54 else 55 hi = mid; 56 } 57 58 return want_hi ? hi : lo; 59 } 60 61 int lower_bound(struct btree_node *n, uint64_t key) 62 { 63 return bsearch(n, key, 0); 64 } 65 66 static int upper_bound(struct btree_node *n, uint64_t key) 67 { 68 return bsearch(n, key, 1); 69 } 70 71 void inc_children(struct dm_transaction_manager *tm, struct btree_node *n, 72 struct dm_btree_value_type *vt) 73 { 74 unsigned i; 75 uint32_t nr_entries = le32_to_cpu(n->header.nr_entries); 76 77 if (le32_to_cpu(n->header.flags) & INTERNAL_NODE) 78 for (i = 0; i < nr_entries; i++) 79 dm_tm_inc(tm, value64(n, i)); 80 else if (vt->inc) 81 for (i = 0; i < nr_entries; i++) 82 vt->inc(vt->context, value_ptr(n, i)); 83 } 84 85 static int insert_at(size_t value_size, struct btree_node *node, unsigned index, 86 uint64_t key, void *value) 87 __dm_written_to_disk(value) 88 { 89 uint32_t nr_entries = le32_to_cpu(node->header.nr_entries); 90 __le64 key_le = cpu_to_le64(key); 91 92 if (index > nr_entries || 93 index >= le32_to_cpu(node->header.max_entries)) { 94 DMERR("too many entries in btree node for insert"); 95 __dm_unbless_for_disk(value); 96 return -ENOMEM; 97 } 98 99 __dm_bless_for_disk(&key_le); 100 101 array_insert(node->keys, sizeof(*node->keys), nr_entries, index, &key_le); 102 array_insert(value_base(node), value_size, nr_entries, index, value); 103 node->header.nr_entries = cpu_to_le32(nr_entries + 1); 104 105 return 0; 106 } 107 108 /*----------------------------------------------------------------*/ 109 110 /* 111 * We want 3n entries (for some n). This works more nicely for repeated 112 * insert remove loops than (2n + 1). 113 */ 114 static uint32_t calc_max_entries(size_t value_size, size_t block_size) 115 { 116 uint32_t total, n; 117 size_t elt_size = sizeof(uint64_t) + value_size; /* key + value */ 118 119 block_size -= sizeof(struct node_header); 120 total = block_size / elt_size; 121 n = total / 3; /* rounds down */ 122 123 return 3 * n; 124 } 125 126 int dm_btree_empty(struct dm_btree_info *info, dm_block_t *root) 127 { 128 int r; 129 struct dm_block *b; 130 struct btree_node *n; 131 size_t block_size; 132 uint32_t max_entries; 133 134 r = new_block(info, &b); 135 if (r < 0) 136 return r; 137 138 block_size = dm_bm_block_size(dm_tm_get_bm(info->tm)); 139 max_entries = calc_max_entries(info->value_type.size, block_size); 140 141 n = dm_block_data(b); 142 memset(n, 0, block_size); 143 n->header.flags = cpu_to_le32(LEAF_NODE); 144 n->header.nr_entries = cpu_to_le32(0); 145 n->header.max_entries = cpu_to_le32(max_entries); 146 n->header.value_size = cpu_to_le32(info->value_type.size); 147 148 *root = dm_block_location(b); 149 unlock_block(info, b); 150 151 return 0; 152 } 153 EXPORT_SYMBOL_GPL(dm_btree_empty); 154 155 /*----------------------------------------------------------------*/ 156 157 /* 158 * Deletion uses a recursive algorithm, since we have limited stack space 159 * we explicitly manage our own stack on the heap. 160 */ 161 #define MAX_SPINE_DEPTH 64 162 struct frame { 163 struct dm_block *b; 164 struct btree_node *n; 165 unsigned level; 166 unsigned nr_children; 167 unsigned current_child; 168 }; 169 170 struct del_stack { 171 struct dm_btree_info *info; 172 struct dm_transaction_manager *tm; 173 int top; 174 struct frame spine[MAX_SPINE_DEPTH]; 175 }; 176 177 static int top_frame(struct del_stack *s, struct frame **f) 178 { 179 if (s->top < 0) { 180 DMERR("btree deletion stack empty"); 181 return -EINVAL; 182 } 183 184 *f = s->spine + s->top; 185 186 return 0; 187 } 188 189 static int unprocessed_frames(struct del_stack *s) 190 { 191 return s->top >= 0; 192 } 193 194 static void prefetch_children(struct del_stack *s, struct frame *f) 195 { 196 unsigned i; 197 struct dm_block_manager *bm = dm_tm_get_bm(s->tm); 198 199 for (i = 0; i < f->nr_children; i++) 200 dm_bm_prefetch(bm, value64(f->n, i)); 201 } 202 203 static bool is_internal_level(struct dm_btree_info *info, struct frame *f) 204 { 205 return f->level < (info->levels - 1); 206 } 207 208 static int push_frame(struct del_stack *s, dm_block_t b, unsigned level) 209 { 210 int r; 211 uint32_t ref_count; 212 213 if (s->top >= MAX_SPINE_DEPTH - 1) { 214 DMERR("btree deletion stack out of memory"); 215 return -ENOMEM; 216 } 217 218 r = dm_tm_ref(s->tm, b, &ref_count); 219 if (r) 220 return r; 221 222 if (ref_count > 1) 223 /* 224 * This is a shared node, so we can just decrement it's 225 * reference counter and leave the children. 226 */ 227 dm_tm_dec(s->tm, b); 228 229 else { 230 uint32_t flags; 231 struct frame *f = s->spine + ++s->top; 232 233 r = dm_tm_read_lock(s->tm, b, &btree_node_validator, &f->b); 234 if (r) { 235 s->top--; 236 return r; 237 } 238 239 f->n = dm_block_data(f->b); 240 f->level = level; 241 f->nr_children = le32_to_cpu(f->n->header.nr_entries); 242 f->current_child = 0; 243 244 flags = le32_to_cpu(f->n->header.flags); 245 if (flags & INTERNAL_NODE || is_internal_level(s->info, f)) 246 prefetch_children(s, f); 247 } 248 249 return 0; 250 } 251 252 static void pop_frame(struct del_stack *s) 253 { 254 struct frame *f = s->spine + s->top--; 255 256 dm_tm_dec(s->tm, dm_block_location(f->b)); 257 dm_tm_unlock(s->tm, f->b); 258 } 259 260 static void unlock_all_frames(struct del_stack *s) 261 { 262 struct frame *f; 263 264 while (unprocessed_frames(s)) { 265 f = s->spine + s->top--; 266 dm_tm_unlock(s->tm, f->b); 267 } 268 } 269 270 int dm_btree_del(struct dm_btree_info *info, dm_block_t root) 271 { 272 int r; 273 struct del_stack *s; 274 275 /* 276 * dm_btree_del() is called via an ioctl, as such should be 277 * considered an FS op. We can't recurse back into the FS, so we 278 * allocate GFP_NOFS. 279 */ 280 s = kmalloc(sizeof(*s), GFP_NOFS); 281 if (!s) 282 return -ENOMEM; 283 s->info = info; 284 s->tm = info->tm; 285 s->top = -1; 286 287 r = push_frame(s, root, 0); 288 if (r) 289 goto out; 290 291 while (unprocessed_frames(s)) { 292 uint32_t flags; 293 struct frame *f; 294 dm_block_t b; 295 296 r = top_frame(s, &f); 297 if (r) 298 goto out; 299 300 if (f->current_child >= f->nr_children) { 301 pop_frame(s); 302 continue; 303 } 304 305 flags = le32_to_cpu(f->n->header.flags); 306 if (flags & INTERNAL_NODE) { 307 b = value64(f->n, f->current_child); 308 f->current_child++; 309 r = push_frame(s, b, f->level); 310 if (r) 311 goto out; 312 313 } else if (is_internal_level(info, f)) { 314 b = value64(f->n, f->current_child); 315 f->current_child++; 316 r = push_frame(s, b, f->level + 1); 317 if (r) 318 goto out; 319 320 } else { 321 if (info->value_type.dec) { 322 unsigned i; 323 324 for (i = 0; i < f->nr_children; i++) 325 info->value_type.dec(info->value_type.context, 326 value_ptr(f->n, i)); 327 } 328 pop_frame(s); 329 } 330 } 331 out: 332 if (r) { 333 /* cleanup all frames of del_stack */ 334 unlock_all_frames(s); 335 } 336 kfree(s); 337 338 return r; 339 } 340 EXPORT_SYMBOL_GPL(dm_btree_del); 341 342 /*----------------------------------------------------------------*/ 343 344 static int btree_lookup_raw(struct ro_spine *s, dm_block_t block, uint64_t key, 345 int (*search_fn)(struct btree_node *, uint64_t), 346 uint64_t *result_key, void *v, size_t value_size) 347 { 348 int i, r; 349 uint32_t flags, nr_entries; 350 351 do { 352 r = ro_step(s, block); 353 if (r < 0) 354 return r; 355 356 i = search_fn(ro_node(s), key); 357 358 flags = le32_to_cpu(ro_node(s)->header.flags); 359 nr_entries = le32_to_cpu(ro_node(s)->header.nr_entries); 360 if (i < 0 || i >= nr_entries) 361 return -ENODATA; 362 363 if (flags & INTERNAL_NODE) 364 block = value64(ro_node(s), i); 365 366 } while (!(flags & LEAF_NODE)); 367 368 *result_key = le64_to_cpu(ro_node(s)->keys[i]); 369 memcpy(v, value_ptr(ro_node(s), i), value_size); 370 371 return 0; 372 } 373 374 int dm_btree_lookup(struct dm_btree_info *info, dm_block_t root, 375 uint64_t *keys, void *value_le) 376 { 377 unsigned level, last_level = info->levels - 1; 378 int r = -ENODATA; 379 uint64_t rkey; 380 __le64 internal_value_le; 381 struct ro_spine spine; 382 383 init_ro_spine(&spine, info); 384 for (level = 0; level < info->levels; level++) { 385 size_t size; 386 void *value_p; 387 388 if (level == last_level) { 389 value_p = value_le; 390 size = info->value_type.size; 391 392 } else { 393 value_p = &internal_value_le; 394 size = sizeof(uint64_t); 395 } 396 397 r = btree_lookup_raw(&spine, root, keys[level], 398 lower_bound, &rkey, 399 value_p, size); 400 401 if (!r) { 402 if (rkey != keys[level]) { 403 exit_ro_spine(&spine); 404 return -ENODATA; 405 } 406 } else { 407 exit_ro_spine(&spine); 408 return r; 409 } 410 411 root = le64_to_cpu(internal_value_le); 412 } 413 exit_ro_spine(&spine); 414 415 return r; 416 } 417 EXPORT_SYMBOL_GPL(dm_btree_lookup); 418 419 static int dm_btree_lookup_next_single(struct dm_btree_info *info, dm_block_t root, 420 uint64_t key, uint64_t *rkey, void *value_le) 421 { 422 int r, i; 423 uint32_t flags, nr_entries; 424 struct dm_block *node; 425 struct btree_node *n; 426 427 r = bn_read_lock(info, root, &node); 428 if (r) 429 return r; 430 431 n = dm_block_data(node); 432 flags = le32_to_cpu(n->header.flags); 433 nr_entries = le32_to_cpu(n->header.nr_entries); 434 435 if (flags & INTERNAL_NODE) { 436 i = lower_bound(n, key); 437 if (i < 0) { 438 /* 439 * avoid early -ENODATA return when all entries are 440 * higher than the search @key. 441 */ 442 i = 0; 443 } 444 if (i >= nr_entries) { 445 r = -ENODATA; 446 goto out; 447 } 448 449 r = dm_btree_lookup_next_single(info, value64(n, i), key, rkey, value_le); 450 if (r == -ENODATA && i < (nr_entries - 1)) { 451 i++; 452 r = dm_btree_lookup_next_single(info, value64(n, i), key, rkey, value_le); 453 } 454 455 } else { 456 i = upper_bound(n, key); 457 if (i < 0 || i >= nr_entries) { 458 r = -ENODATA; 459 goto out; 460 } 461 462 *rkey = le64_to_cpu(n->keys[i]); 463 memcpy(value_le, value_ptr(n, i), info->value_type.size); 464 } 465 out: 466 dm_tm_unlock(info->tm, node); 467 return r; 468 } 469 470 int dm_btree_lookup_next(struct dm_btree_info *info, dm_block_t root, 471 uint64_t *keys, uint64_t *rkey, void *value_le) 472 { 473 unsigned level; 474 int r = -ENODATA; 475 __le64 internal_value_le; 476 struct ro_spine spine; 477 478 init_ro_spine(&spine, info); 479 for (level = 0; level < info->levels - 1u; level++) { 480 r = btree_lookup_raw(&spine, root, keys[level], 481 lower_bound, rkey, 482 &internal_value_le, sizeof(uint64_t)); 483 if (r) 484 goto out; 485 486 if (*rkey != keys[level]) { 487 r = -ENODATA; 488 goto out; 489 } 490 491 root = le64_to_cpu(internal_value_le); 492 } 493 494 r = dm_btree_lookup_next_single(info, root, keys[level], rkey, value_le); 495 out: 496 exit_ro_spine(&spine); 497 return r; 498 } 499 500 EXPORT_SYMBOL_GPL(dm_btree_lookup_next); 501 502 /* 503 * Splits a node by creating a sibling node and shifting half the nodes 504 * contents across. Assumes there is a parent node, and it has room for 505 * another child. 506 * 507 * Before: 508 * +--------+ 509 * | Parent | 510 * +--------+ 511 * | 512 * v 513 * +----------+ 514 * | A ++++++ | 515 * +----------+ 516 * 517 * 518 * After: 519 * +--------+ 520 * | Parent | 521 * +--------+ 522 * | | 523 * v +------+ 524 * +---------+ | 525 * | A* +++ | v 526 * +---------+ +-------+ 527 * | B +++ | 528 * +-------+ 529 * 530 * Where A* is a shadow of A. 531 */ 532 static int btree_split_sibling(struct shadow_spine *s, unsigned parent_index, 533 uint64_t key) 534 { 535 int r; 536 size_t size; 537 unsigned nr_left, nr_right; 538 struct dm_block *left, *right, *parent; 539 struct btree_node *ln, *rn, *pn; 540 __le64 location; 541 542 left = shadow_current(s); 543 544 r = new_block(s->info, &right); 545 if (r < 0) 546 return r; 547 548 ln = dm_block_data(left); 549 rn = dm_block_data(right); 550 551 nr_left = le32_to_cpu(ln->header.nr_entries) / 2; 552 nr_right = le32_to_cpu(ln->header.nr_entries) - nr_left; 553 554 ln->header.nr_entries = cpu_to_le32(nr_left); 555 556 rn->header.flags = ln->header.flags; 557 rn->header.nr_entries = cpu_to_le32(nr_right); 558 rn->header.max_entries = ln->header.max_entries; 559 rn->header.value_size = ln->header.value_size; 560 memcpy(rn->keys, ln->keys + nr_left, nr_right * sizeof(rn->keys[0])); 561 562 size = le32_to_cpu(ln->header.flags) & INTERNAL_NODE ? 563 sizeof(uint64_t) : s->info->value_type.size; 564 memcpy(value_ptr(rn, 0), value_ptr(ln, nr_left), 565 size * nr_right); 566 567 /* 568 * Patch up the parent 569 */ 570 parent = shadow_parent(s); 571 572 pn = dm_block_data(parent); 573 location = cpu_to_le64(dm_block_location(left)); 574 __dm_bless_for_disk(&location); 575 memcpy_disk(value_ptr(pn, parent_index), 576 &location, sizeof(__le64)); 577 578 location = cpu_to_le64(dm_block_location(right)); 579 __dm_bless_for_disk(&location); 580 581 r = insert_at(sizeof(__le64), pn, parent_index + 1, 582 le64_to_cpu(rn->keys[0]), &location); 583 if (r) { 584 unlock_block(s->info, right); 585 return r; 586 } 587 588 if (key < le64_to_cpu(rn->keys[0])) { 589 unlock_block(s->info, right); 590 s->nodes[1] = left; 591 } else { 592 unlock_block(s->info, left); 593 s->nodes[1] = right; 594 } 595 596 return 0; 597 } 598 599 /* 600 * Splits a node by creating two new children beneath the given node. 601 * 602 * Before: 603 * +----------+ 604 * | A ++++++ | 605 * +----------+ 606 * 607 * 608 * After: 609 * +------------+ 610 * | A (shadow) | 611 * +------------+ 612 * | | 613 * +------+ +----+ 614 * | | 615 * v v 616 * +-------+ +-------+ 617 * | B +++ | | C +++ | 618 * +-------+ +-------+ 619 */ 620 static int btree_split_beneath(struct shadow_spine *s, uint64_t key) 621 { 622 int r; 623 size_t size; 624 unsigned nr_left, nr_right; 625 struct dm_block *left, *right, *new_parent; 626 struct btree_node *pn, *ln, *rn; 627 __le64 val; 628 629 new_parent = shadow_current(s); 630 631 r = new_block(s->info, &left); 632 if (r < 0) 633 return r; 634 635 r = new_block(s->info, &right); 636 if (r < 0) { 637 unlock_block(s->info, left); 638 return r; 639 } 640 641 pn = dm_block_data(new_parent); 642 ln = dm_block_data(left); 643 rn = dm_block_data(right); 644 645 nr_left = le32_to_cpu(pn->header.nr_entries) / 2; 646 nr_right = le32_to_cpu(pn->header.nr_entries) - nr_left; 647 648 ln->header.flags = pn->header.flags; 649 ln->header.nr_entries = cpu_to_le32(nr_left); 650 ln->header.max_entries = pn->header.max_entries; 651 ln->header.value_size = pn->header.value_size; 652 653 rn->header.flags = pn->header.flags; 654 rn->header.nr_entries = cpu_to_le32(nr_right); 655 rn->header.max_entries = pn->header.max_entries; 656 rn->header.value_size = pn->header.value_size; 657 658 memcpy(ln->keys, pn->keys, nr_left * sizeof(pn->keys[0])); 659 memcpy(rn->keys, pn->keys + nr_left, nr_right * sizeof(pn->keys[0])); 660 661 size = le32_to_cpu(pn->header.flags) & INTERNAL_NODE ? 662 sizeof(__le64) : s->info->value_type.size; 663 memcpy(value_ptr(ln, 0), value_ptr(pn, 0), nr_left * size); 664 memcpy(value_ptr(rn, 0), value_ptr(pn, nr_left), 665 nr_right * size); 666 667 /* new_parent should just point to l and r now */ 668 pn->header.flags = cpu_to_le32(INTERNAL_NODE); 669 pn->header.nr_entries = cpu_to_le32(2); 670 pn->header.max_entries = cpu_to_le32( 671 calc_max_entries(sizeof(__le64), 672 dm_bm_block_size( 673 dm_tm_get_bm(s->info->tm)))); 674 pn->header.value_size = cpu_to_le32(sizeof(__le64)); 675 676 val = cpu_to_le64(dm_block_location(left)); 677 __dm_bless_for_disk(&val); 678 pn->keys[0] = ln->keys[0]; 679 memcpy_disk(value_ptr(pn, 0), &val, sizeof(__le64)); 680 681 val = cpu_to_le64(dm_block_location(right)); 682 __dm_bless_for_disk(&val); 683 pn->keys[1] = rn->keys[0]; 684 memcpy_disk(value_ptr(pn, 1), &val, sizeof(__le64)); 685 686 unlock_block(s->info, left); 687 unlock_block(s->info, right); 688 return 0; 689 } 690 691 static int btree_insert_raw(struct shadow_spine *s, dm_block_t root, 692 struct dm_btree_value_type *vt, 693 uint64_t key, unsigned *index) 694 { 695 int r, i = *index, top = 1; 696 struct btree_node *node; 697 698 for (;;) { 699 r = shadow_step(s, root, vt); 700 if (r < 0) 701 return r; 702 703 node = dm_block_data(shadow_current(s)); 704 705 /* 706 * We have to patch up the parent node, ugly, but I don't 707 * see a way to do this automatically as part of the spine 708 * op. 709 */ 710 if (shadow_has_parent(s) && i >= 0) { /* FIXME: second clause unness. */ 711 __le64 location = cpu_to_le64(dm_block_location(shadow_current(s))); 712 713 __dm_bless_for_disk(&location); 714 memcpy_disk(value_ptr(dm_block_data(shadow_parent(s)), i), 715 &location, sizeof(__le64)); 716 } 717 718 node = dm_block_data(shadow_current(s)); 719 720 if (node->header.nr_entries == node->header.max_entries) { 721 if (top) 722 r = btree_split_beneath(s, key); 723 else 724 r = btree_split_sibling(s, i, key); 725 726 if (r < 0) 727 return r; 728 } 729 730 node = dm_block_data(shadow_current(s)); 731 732 i = lower_bound(node, key); 733 734 if (le32_to_cpu(node->header.flags) & LEAF_NODE) 735 break; 736 737 if (i < 0) { 738 /* change the bounds on the lowest key */ 739 node->keys[0] = cpu_to_le64(key); 740 i = 0; 741 } 742 743 root = value64(node, i); 744 top = 0; 745 } 746 747 if (i < 0 || le64_to_cpu(node->keys[i]) != key) 748 i++; 749 750 *index = i; 751 return 0; 752 } 753 754 static bool need_insert(struct btree_node *node, uint64_t *keys, 755 unsigned level, unsigned index) 756 { 757 return ((index >= le32_to_cpu(node->header.nr_entries)) || 758 (le64_to_cpu(node->keys[index]) != keys[level])); 759 } 760 761 static int insert(struct dm_btree_info *info, dm_block_t root, 762 uint64_t *keys, void *value, dm_block_t *new_root, 763 int *inserted) 764 __dm_written_to_disk(value) 765 { 766 int r; 767 unsigned level, index = -1, last_level = info->levels - 1; 768 dm_block_t block = root; 769 struct shadow_spine spine; 770 struct btree_node *n; 771 struct dm_btree_value_type le64_type; 772 773 init_le64_type(info->tm, &le64_type); 774 init_shadow_spine(&spine, info); 775 776 for (level = 0; level < (info->levels - 1); level++) { 777 r = btree_insert_raw(&spine, block, &le64_type, keys[level], &index); 778 if (r < 0) 779 goto bad; 780 781 n = dm_block_data(shadow_current(&spine)); 782 783 if (need_insert(n, keys, level, index)) { 784 dm_block_t new_tree; 785 __le64 new_le; 786 787 r = dm_btree_empty(info, &new_tree); 788 if (r < 0) 789 goto bad; 790 791 new_le = cpu_to_le64(new_tree); 792 __dm_bless_for_disk(&new_le); 793 794 r = insert_at(sizeof(uint64_t), n, index, 795 keys[level], &new_le); 796 if (r) 797 goto bad; 798 } 799 800 if (level < last_level) 801 block = value64(n, index); 802 } 803 804 r = btree_insert_raw(&spine, block, &info->value_type, 805 keys[level], &index); 806 if (r < 0) 807 goto bad; 808 809 n = dm_block_data(shadow_current(&spine)); 810 811 if (need_insert(n, keys, level, index)) { 812 if (inserted) 813 *inserted = 1; 814 815 r = insert_at(info->value_type.size, n, index, 816 keys[level], value); 817 if (r) 818 goto bad_unblessed; 819 } else { 820 if (inserted) 821 *inserted = 0; 822 823 if (info->value_type.dec && 824 (!info->value_type.equal || 825 !info->value_type.equal( 826 info->value_type.context, 827 value_ptr(n, index), 828 value))) { 829 info->value_type.dec(info->value_type.context, 830 value_ptr(n, index)); 831 } 832 memcpy_disk(value_ptr(n, index), 833 value, info->value_type.size); 834 } 835 836 *new_root = shadow_root(&spine); 837 exit_shadow_spine(&spine); 838 839 return 0; 840 841 bad: 842 __dm_unbless_for_disk(value); 843 bad_unblessed: 844 exit_shadow_spine(&spine); 845 return r; 846 } 847 848 int dm_btree_insert(struct dm_btree_info *info, dm_block_t root, 849 uint64_t *keys, void *value, dm_block_t *new_root) 850 __dm_written_to_disk(value) 851 { 852 return insert(info, root, keys, value, new_root, NULL); 853 } 854 EXPORT_SYMBOL_GPL(dm_btree_insert); 855 856 int dm_btree_insert_notify(struct dm_btree_info *info, dm_block_t root, 857 uint64_t *keys, void *value, dm_block_t *new_root, 858 int *inserted) 859 __dm_written_to_disk(value) 860 { 861 return insert(info, root, keys, value, new_root, inserted); 862 } 863 EXPORT_SYMBOL_GPL(dm_btree_insert_notify); 864 865 /*----------------------------------------------------------------*/ 866 867 static int find_key(struct ro_spine *s, dm_block_t block, bool find_highest, 868 uint64_t *result_key, dm_block_t *next_block) 869 { 870 int i, r; 871 uint32_t flags; 872 873 do { 874 r = ro_step(s, block); 875 if (r < 0) 876 return r; 877 878 flags = le32_to_cpu(ro_node(s)->header.flags); 879 i = le32_to_cpu(ro_node(s)->header.nr_entries); 880 if (!i) 881 return -ENODATA; 882 else 883 i--; 884 885 if (find_highest) 886 *result_key = le64_to_cpu(ro_node(s)->keys[i]); 887 else 888 *result_key = le64_to_cpu(ro_node(s)->keys[0]); 889 890 if (next_block || flags & INTERNAL_NODE) { 891 if (find_highest) 892 block = value64(ro_node(s), i); 893 else 894 block = value64(ro_node(s), 0); 895 } 896 897 } while (flags & INTERNAL_NODE); 898 899 if (next_block) 900 *next_block = block; 901 return 0; 902 } 903 904 static int dm_btree_find_key(struct dm_btree_info *info, dm_block_t root, 905 bool find_highest, uint64_t *result_keys) 906 { 907 int r = 0, count = 0, level; 908 struct ro_spine spine; 909 910 init_ro_spine(&spine, info); 911 for (level = 0; level < info->levels; level++) { 912 r = find_key(&spine, root, find_highest, result_keys + level, 913 level == info->levels - 1 ? NULL : &root); 914 if (r == -ENODATA) { 915 r = 0; 916 break; 917 918 } else if (r) 919 break; 920 921 count++; 922 } 923 exit_ro_spine(&spine); 924 925 return r ? r : count; 926 } 927 928 int dm_btree_find_highest_key(struct dm_btree_info *info, dm_block_t root, 929 uint64_t *result_keys) 930 { 931 return dm_btree_find_key(info, root, true, result_keys); 932 } 933 EXPORT_SYMBOL_GPL(dm_btree_find_highest_key); 934 935 int dm_btree_find_lowest_key(struct dm_btree_info *info, dm_block_t root, 936 uint64_t *result_keys) 937 { 938 return dm_btree_find_key(info, root, false, result_keys); 939 } 940 EXPORT_SYMBOL_GPL(dm_btree_find_lowest_key); 941 942 /*----------------------------------------------------------------*/ 943 944 /* 945 * FIXME: We shouldn't use a recursive algorithm when we have limited stack 946 * space. Also this only works for single level trees. 947 */ 948 static int walk_node(struct dm_btree_info *info, dm_block_t block, 949 int (*fn)(void *context, uint64_t *keys, void *leaf), 950 void *context) 951 { 952 int r; 953 unsigned i, nr; 954 struct dm_block *node; 955 struct btree_node *n; 956 uint64_t keys; 957 958 r = bn_read_lock(info, block, &node); 959 if (r) 960 return r; 961 962 n = dm_block_data(node); 963 964 nr = le32_to_cpu(n->header.nr_entries); 965 for (i = 0; i < nr; i++) { 966 if (le32_to_cpu(n->header.flags) & INTERNAL_NODE) { 967 r = walk_node(info, value64(n, i), fn, context); 968 if (r) 969 goto out; 970 } else { 971 keys = le64_to_cpu(*key_ptr(n, i)); 972 r = fn(context, &keys, value_ptr(n, i)); 973 if (r) 974 goto out; 975 } 976 } 977 978 out: 979 dm_tm_unlock(info->tm, node); 980 return r; 981 } 982 983 int dm_btree_walk(struct dm_btree_info *info, dm_block_t root, 984 int (*fn)(void *context, uint64_t *keys, void *leaf), 985 void *context) 986 { 987 BUG_ON(info->levels > 1); 988 return walk_node(info, root, fn, context); 989 } 990 EXPORT_SYMBOL_GPL(dm_btree_walk); 991 992 /*----------------------------------------------------------------*/ 993 994 static void prefetch_values(struct dm_btree_cursor *c) 995 { 996 unsigned i, nr; 997 __le64 value_le; 998 struct cursor_node *n = c->nodes + c->depth - 1; 999 struct btree_node *bn = dm_block_data(n->b); 1000 struct dm_block_manager *bm = dm_tm_get_bm(c->info->tm); 1001 1002 BUG_ON(c->info->value_type.size != sizeof(value_le)); 1003 1004 nr = le32_to_cpu(bn->header.nr_entries); 1005 for (i = 0; i < nr; i++) { 1006 memcpy(&value_le, value_ptr(bn, i), sizeof(value_le)); 1007 dm_bm_prefetch(bm, le64_to_cpu(value_le)); 1008 } 1009 } 1010 1011 static bool leaf_node(struct dm_btree_cursor *c) 1012 { 1013 struct cursor_node *n = c->nodes + c->depth - 1; 1014 struct btree_node *bn = dm_block_data(n->b); 1015 1016 return le32_to_cpu(bn->header.flags) & LEAF_NODE; 1017 } 1018 1019 static int push_node(struct dm_btree_cursor *c, dm_block_t b) 1020 { 1021 int r; 1022 struct cursor_node *n = c->nodes + c->depth; 1023 1024 if (c->depth >= DM_BTREE_CURSOR_MAX_DEPTH - 1) { 1025 DMERR("couldn't push cursor node, stack depth too high"); 1026 return -EINVAL; 1027 } 1028 1029 r = bn_read_lock(c->info, b, &n->b); 1030 if (r) 1031 return r; 1032 1033 n->index = 0; 1034 c->depth++; 1035 1036 if (c->prefetch_leaves || !leaf_node(c)) 1037 prefetch_values(c); 1038 1039 return 0; 1040 } 1041 1042 static void pop_node(struct dm_btree_cursor *c) 1043 { 1044 c->depth--; 1045 unlock_block(c->info, c->nodes[c->depth].b); 1046 } 1047 1048 static int inc_or_backtrack(struct dm_btree_cursor *c) 1049 { 1050 struct cursor_node *n; 1051 struct btree_node *bn; 1052 1053 for (;;) { 1054 if (!c->depth) 1055 return -ENODATA; 1056 1057 n = c->nodes + c->depth - 1; 1058 bn = dm_block_data(n->b); 1059 1060 n->index++; 1061 if (n->index < le32_to_cpu(bn->header.nr_entries)) 1062 break; 1063 1064 pop_node(c); 1065 } 1066 1067 return 0; 1068 } 1069 1070 static int find_leaf(struct dm_btree_cursor *c) 1071 { 1072 int r = 0; 1073 struct cursor_node *n; 1074 struct btree_node *bn; 1075 __le64 value_le; 1076 1077 for (;;) { 1078 n = c->nodes + c->depth - 1; 1079 bn = dm_block_data(n->b); 1080 1081 if (le32_to_cpu(bn->header.flags) & LEAF_NODE) 1082 break; 1083 1084 memcpy(&value_le, value_ptr(bn, n->index), sizeof(value_le)); 1085 r = push_node(c, le64_to_cpu(value_le)); 1086 if (r) { 1087 DMERR("push_node failed"); 1088 break; 1089 } 1090 } 1091 1092 if (!r && (le32_to_cpu(bn->header.nr_entries) == 0)) 1093 return -ENODATA; 1094 1095 return r; 1096 } 1097 1098 int dm_btree_cursor_begin(struct dm_btree_info *info, dm_block_t root, 1099 bool prefetch_leaves, struct dm_btree_cursor *c) 1100 { 1101 int r; 1102 1103 c->info = info; 1104 c->root = root; 1105 c->depth = 0; 1106 c->prefetch_leaves = prefetch_leaves; 1107 1108 r = push_node(c, root); 1109 if (r) 1110 return r; 1111 1112 return find_leaf(c); 1113 } 1114 EXPORT_SYMBOL_GPL(dm_btree_cursor_begin); 1115 1116 void dm_btree_cursor_end(struct dm_btree_cursor *c) 1117 { 1118 while (c->depth) 1119 pop_node(c); 1120 } 1121 EXPORT_SYMBOL_GPL(dm_btree_cursor_end); 1122 1123 int dm_btree_cursor_next(struct dm_btree_cursor *c) 1124 { 1125 int r = inc_or_backtrack(c); 1126 if (!r) { 1127 r = find_leaf(c); 1128 if (r) 1129 DMERR("find_leaf failed"); 1130 } 1131 1132 return r; 1133 } 1134 EXPORT_SYMBOL_GPL(dm_btree_cursor_next); 1135 1136 int dm_btree_cursor_skip(struct dm_btree_cursor *c, uint32_t count) 1137 { 1138 int r = 0; 1139 1140 while (count-- && !r) 1141 r = dm_btree_cursor_next(c); 1142 1143 return r; 1144 } 1145 EXPORT_SYMBOL_GPL(dm_btree_cursor_skip); 1146 1147 int dm_btree_cursor_get_value(struct dm_btree_cursor *c, uint64_t *key, void *value_le) 1148 { 1149 if (c->depth) { 1150 struct cursor_node *n = c->nodes + c->depth - 1; 1151 struct btree_node *bn = dm_block_data(n->b); 1152 1153 if (le32_to_cpu(bn->header.flags) & INTERNAL_NODE) 1154 return -EINVAL; 1155 1156 *key = le64_to_cpu(*key_ptr(bn, n->index)); 1157 memcpy(value_le, value_ptr(bn, n->index), c->info->value_type.size); 1158 return 0; 1159 1160 } else 1161 return -ENODATA; 1162 } 1163 EXPORT_SYMBOL_GPL(dm_btree_cursor_get_value); 1164