1 /*
2  * Copyright (C) 2011 Red Hat, Inc.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm-btree-internal.h"
8 #include "dm-space-map.h"
9 #include "dm-transaction-manager.h"
10 
11 #include <linux/export.h>
12 #include <linux/device-mapper.h>
13 
14 #define DM_MSG_PREFIX "btree"
15 
16 /*----------------------------------------------------------------
17  * Array manipulation
18  *--------------------------------------------------------------*/
19 static void memcpy_disk(void *dest, const void *src, size_t len)
20 	__dm_written_to_disk(src)
21 {
22 	memcpy(dest, src, len);
23 	__dm_unbless_for_disk(src);
24 }
25 
26 static void array_insert(void *base, size_t elt_size, unsigned nr_elts,
27 			 unsigned index, void *elt)
28 	__dm_written_to_disk(elt)
29 {
30 	if (index < nr_elts)
31 		memmove(base + (elt_size * (index + 1)),
32 			base + (elt_size * index),
33 			(nr_elts - index) * elt_size);
34 
35 	memcpy_disk(base + (elt_size * index), elt, elt_size);
36 }
37 
38 /*----------------------------------------------------------------*/
39 
40 /* makes the assumption that no two keys are the same. */
41 static int bsearch(struct btree_node *n, uint64_t key, int want_hi)
42 {
43 	int lo = -1, hi = le32_to_cpu(n->header.nr_entries);
44 
45 	while (hi - lo > 1) {
46 		int mid = lo + ((hi - lo) / 2);
47 		uint64_t mid_key = le64_to_cpu(n->keys[mid]);
48 
49 		if (mid_key == key)
50 			return mid;
51 
52 		if (mid_key < key)
53 			lo = mid;
54 		else
55 			hi = mid;
56 	}
57 
58 	return want_hi ? hi : lo;
59 }
60 
61 int lower_bound(struct btree_node *n, uint64_t key)
62 {
63 	return bsearch(n, key, 0);
64 }
65 
66 static int upper_bound(struct btree_node *n, uint64_t key)
67 {
68 	return bsearch(n, key, 1);
69 }
70 
71 void inc_children(struct dm_transaction_manager *tm, struct btree_node *n,
72 		  struct dm_btree_value_type *vt)
73 {
74 	unsigned i;
75 	uint32_t nr_entries = le32_to_cpu(n->header.nr_entries);
76 
77 	if (le32_to_cpu(n->header.flags) & INTERNAL_NODE)
78 		for (i = 0; i < nr_entries; i++)
79 			dm_tm_inc(tm, value64(n, i));
80 	else if (vt->inc)
81 		for (i = 0; i < nr_entries; i++)
82 			vt->inc(vt->context, value_ptr(n, i));
83 }
84 
85 static int insert_at(size_t value_size, struct btree_node *node, unsigned index,
86 		      uint64_t key, void *value)
87 		      __dm_written_to_disk(value)
88 {
89 	uint32_t nr_entries = le32_to_cpu(node->header.nr_entries);
90 	__le64 key_le = cpu_to_le64(key);
91 
92 	if (index > nr_entries ||
93 	    index >= le32_to_cpu(node->header.max_entries)) {
94 		DMERR("too many entries in btree node for insert");
95 		__dm_unbless_for_disk(value);
96 		return -ENOMEM;
97 	}
98 
99 	__dm_bless_for_disk(&key_le);
100 
101 	array_insert(node->keys, sizeof(*node->keys), nr_entries, index, &key_le);
102 	array_insert(value_base(node), value_size, nr_entries, index, value);
103 	node->header.nr_entries = cpu_to_le32(nr_entries + 1);
104 
105 	return 0;
106 }
107 
108 /*----------------------------------------------------------------*/
109 
110 /*
111  * We want 3n entries (for some n).  This works more nicely for repeated
112  * insert remove loops than (2n + 1).
113  */
114 static uint32_t calc_max_entries(size_t value_size, size_t block_size)
115 {
116 	uint32_t total, n;
117 	size_t elt_size = sizeof(uint64_t) + value_size; /* key + value */
118 
119 	block_size -= sizeof(struct node_header);
120 	total = block_size / elt_size;
121 	n = total / 3;		/* rounds down */
122 
123 	return 3 * n;
124 }
125 
126 int dm_btree_empty(struct dm_btree_info *info, dm_block_t *root)
127 {
128 	int r;
129 	struct dm_block *b;
130 	struct btree_node *n;
131 	size_t block_size;
132 	uint32_t max_entries;
133 
134 	r = new_block(info, &b);
135 	if (r < 0)
136 		return r;
137 
138 	block_size = dm_bm_block_size(dm_tm_get_bm(info->tm));
139 	max_entries = calc_max_entries(info->value_type.size, block_size);
140 
141 	n = dm_block_data(b);
142 	memset(n, 0, block_size);
143 	n->header.flags = cpu_to_le32(LEAF_NODE);
144 	n->header.nr_entries = cpu_to_le32(0);
145 	n->header.max_entries = cpu_to_le32(max_entries);
146 	n->header.value_size = cpu_to_le32(info->value_type.size);
147 
148 	*root = dm_block_location(b);
149 	unlock_block(info, b);
150 
151 	return 0;
152 }
153 EXPORT_SYMBOL_GPL(dm_btree_empty);
154 
155 /*----------------------------------------------------------------*/
156 
157 /*
158  * Deletion uses a recursive algorithm, since we have limited stack space
159  * we explicitly manage our own stack on the heap.
160  */
161 #define MAX_SPINE_DEPTH 64
162 struct frame {
163 	struct dm_block *b;
164 	struct btree_node *n;
165 	unsigned level;
166 	unsigned nr_children;
167 	unsigned current_child;
168 };
169 
170 struct del_stack {
171 	struct dm_btree_info *info;
172 	struct dm_transaction_manager *tm;
173 	int top;
174 	struct frame spine[MAX_SPINE_DEPTH];
175 };
176 
177 static int top_frame(struct del_stack *s, struct frame **f)
178 {
179 	if (s->top < 0) {
180 		DMERR("btree deletion stack empty");
181 		return -EINVAL;
182 	}
183 
184 	*f = s->spine + s->top;
185 
186 	return 0;
187 }
188 
189 static int unprocessed_frames(struct del_stack *s)
190 {
191 	return s->top >= 0;
192 }
193 
194 static void prefetch_children(struct del_stack *s, struct frame *f)
195 {
196 	unsigned i;
197 	struct dm_block_manager *bm = dm_tm_get_bm(s->tm);
198 
199 	for (i = 0; i < f->nr_children; i++)
200 		dm_bm_prefetch(bm, value64(f->n, i));
201 }
202 
203 static bool is_internal_level(struct dm_btree_info *info, struct frame *f)
204 {
205 	return f->level < (info->levels - 1);
206 }
207 
208 static int push_frame(struct del_stack *s, dm_block_t b, unsigned level)
209 {
210 	int r;
211 	uint32_t ref_count;
212 
213 	if (s->top >= MAX_SPINE_DEPTH - 1) {
214 		DMERR("btree deletion stack out of memory");
215 		return -ENOMEM;
216 	}
217 
218 	r = dm_tm_ref(s->tm, b, &ref_count);
219 	if (r)
220 		return r;
221 
222 	if (ref_count > 1)
223 		/*
224 		 * This is a shared node, so we can just decrement it's
225 		 * reference counter and leave the children.
226 		 */
227 		dm_tm_dec(s->tm, b);
228 
229 	else {
230 		uint32_t flags;
231 		struct frame *f = s->spine + ++s->top;
232 
233 		r = dm_tm_read_lock(s->tm, b, &btree_node_validator, &f->b);
234 		if (r) {
235 			s->top--;
236 			return r;
237 		}
238 
239 		f->n = dm_block_data(f->b);
240 		f->level = level;
241 		f->nr_children = le32_to_cpu(f->n->header.nr_entries);
242 		f->current_child = 0;
243 
244 		flags = le32_to_cpu(f->n->header.flags);
245 		if (flags & INTERNAL_NODE || is_internal_level(s->info, f))
246 			prefetch_children(s, f);
247 	}
248 
249 	return 0;
250 }
251 
252 static void pop_frame(struct del_stack *s)
253 {
254 	struct frame *f = s->spine + s->top--;
255 
256 	dm_tm_dec(s->tm, dm_block_location(f->b));
257 	dm_tm_unlock(s->tm, f->b);
258 }
259 
260 static void unlock_all_frames(struct del_stack *s)
261 {
262 	struct frame *f;
263 
264 	while (unprocessed_frames(s)) {
265 		f = s->spine + s->top--;
266 		dm_tm_unlock(s->tm, f->b);
267 	}
268 }
269 
270 int dm_btree_del(struct dm_btree_info *info, dm_block_t root)
271 {
272 	int r;
273 	struct del_stack *s;
274 
275 	/*
276 	 * dm_btree_del() is called via an ioctl, as such should be
277 	 * considered an FS op.  We can't recurse back into the FS, so we
278 	 * allocate GFP_NOFS.
279 	 */
280 	s = kmalloc(sizeof(*s), GFP_NOFS);
281 	if (!s)
282 		return -ENOMEM;
283 	s->info = info;
284 	s->tm = info->tm;
285 	s->top = -1;
286 
287 	r = push_frame(s, root, 0);
288 	if (r)
289 		goto out;
290 
291 	while (unprocessed_frames(s)) {
292 		uint32_t flags;
293 		struct frame *f;
294 		dm_block_t b;
295 
296 		r = top_frame(s, &f);
297 		if (r)
298 			goto out;
299 
300 		if (f->current_child >= f->nr_children) {
301 			pop_frame(s);
302 			continue;
303 		}
304 
305 		flags = le32_to_cpu(f->n->header.flags);
306 		if (flags & INTERNAL_NODE) {
307 			b = value64(f->n, f->current_child);
308 			f->current_child++;
309 			r = push_frame(s, b, f->level);
310 			if (r)
311 				goto out;
312 
313 		} else if (is_internal_level(info, f)) {
314 			b = value64(f->n, f->current_child);
315 			f->current_child++;
316 			r = push_frame(s, b, f->level + 1);
317 			if (r)
318 				goto out;
319 
320 		} else {
321 			if (info->value_type.dec) {
322 				unsigned i;
323 
324 				for (i = 0; i < f->nr_children; i++)
325 					info->value_type.dec(info->value_type.context,
326 							     value_ptr(f->n, i));
327 			}
328 			pop_frame(s);
329 		}
330 	}
331 out:
332 	if (r) {
333 		/* cleanup all frames of del_stack */
334 		unlock_all_frames(s);
335 	}
336 	kfree(s);
337 
338 	return r;
339 }
340 EXPORT_SYMBOL_GPL(dm_btree_del);
341 
342 /*----------------------------------------------------------------*/
343 
344 static int btree_lookup_raw(struct ro_spine *s, dm_block_t block, uint64_t key,
345 			    int (*search_fn)(struct btree_node *, uint64_t),
346 			    uint64_t *result_key, void *v, size_t value_size)
347 {
348 	int i, r;
349 	uint32_t flags, nr_entries;
350 
351 	do {
352 		r = ro_step(s, block);
353 		if (r < 0)
354 			return r;
355 
356 		i = search_fn(ro_node(s), key);
357 
358 		flags = le32_to_cpu(ro_node(s)->header.flags);
359 		nr_entries = le32_to_cpu(ro_node(s)->header.nr_entries);
360 		if (i < 0 || i >= nr_entries)
361 			return -ENODATA;
362 
363 		if (flags & INTERNAL_NODE)
364 			block = value64(ro_node(s), i);
365 
366 	} while (!(flags & LEAF_NODE));
367 
368 	*result_key = le64_to_cpu(ro_node(s)->keys[i]);
369 	memcpy(v, value_ptr(ro_node(s), i), value_size);
370 
371 	return 0;
372 }
373 
374 int dm_btree_lookup(struct dm_btree_info *info, dm_block_t root,
375 		    uint64_t *keys, void *value_le)
376 {
377 	unsigned level, last_level = info->levels - 1;
378 	int r = -ENODATA;
379 	uint64_t rkey;
380 	__le64 internal_value_le;
381 	struct ro_spine spine;
382 
383 	init_ro_spine(&spine, info);
384 	for (level = 0; level < info->levels; level++) {
385 		size_t size;
386 		void *value_p;
387 
388 		if (level == last_level) {
389 			value_p = value_le;
390 			size = info->value_type.size;
391 
392 		} else {
393 			value_p = &internal_value_le;
394 			size = sizeof(uint64_t);
395 		}
396 
397 		r = btree_lookup_raw(&spine, root, keys[level],
398 				     lower_bound, &rkey,
399 				     value_p, size);
400 
401 		if (!r) {
402 			if (rkey != keys[level]) {
403 				exit_ro_spine(&spine);
404 				return -ENODATA;
405 			}
406 		} else {
407 			exit_ro_spine(&spine);
408 			return r;
409 		}
410 
411 		root = le64_to_cpu(internal_value_le);
412 	}
413 	exit_ro_spine(&spine);
414 
415 	return r;
416 }
417 EXPORT_SYMBOL_GPL(dm_btree_lookup);
418 
419 static int dm_btree_lookup_next_single(struct dm_btree_info *info, dm_block_t root,
420 				       uint64_t key, uint64_t *rkey, void *value_le)
421 {
422 	int r, i;
423 	uint32_t flags, nr_entries;
424 	struct dm_block *node;
425 	struct btree_node *n;
426 
427 	r = bn_read_lock(info, root, &node);
428 	if (r)
429 		return r;
430 
431 	n = dm_block_data(node);
432 	flags = le32_to_cpu(n->header.flags);
433 	nr_entries = le32_to_cpu(n->header.nr_entries);
434 
435 	if (flags & INTERNAL_NODE) {
436 		i = lower_bound(n, key);
437 		if (i < 0) {
438 			/*
439 			 * avoid early -ENODATA return when all entries are
440 			 * higher than the search @key.
441 			 */
442 			i = 0;
443 		}
444 		if (i >= nr_entries) {
445 			r = -ENODATA;
446 			goto out;
447 		}
448 
449 		r = dm_btree_lookup_next_single(info, value64(n, i), key, rkey, value_le);
450 		if (r == -ENODATA && i < (nr_entries - 1)) {
451 			i++;
452 			r = dm_btree_lookup_next_single(info, value64(n, i), key, rkey, value_le);
453 		}
454 
455 	} else {
456 		i = upper_bound(n, key);
457 		if (i < 0 || i >= nr_entries) {
458 			r = -ENODATA;
459 			goto out;
460 		}
461 
462 		*rkey = le64_to_cpu(n->keys[i]);
463 		memcpy(value_le, value_ptr(n, i), info->value_type.size);
464 	}
465 out:
466 	dm_tm_unlock(info->tm, node);
467 	return r;
468 }
469 
470 int dm_btree_lookup_next(struct dm_btree_info *info, dm_block_t root,
471 			 uint64_t *keys, uint64_t *rkey, void *value_le)
472 {
473 	unsigned level;
474 	int r = -ENODATA;
475 	__le64 internal_value_le;
476 	struct ro_spine spine;
477 
478 	init_ro_spine(&spine, info);
479 	for (level = 0; level < info->levels - 1u; level++) {
480 		r = btree_lookup_raw(&spine, root, keys[level],
481 				     lower_bound, rkey,
482 				     &internal_value_le, sizeof(uint64_t));
483 		if (r)
484 			goto out;
485 
486 		if (*rkey != keys[level]) {
487 			r = -ENODATA;
488 			goto out;
489 		}
490 
491 		root = le64_to_cpu(internal_value_le);
492 	}
493 
494 	r = dm_btree_lookup_next_single(info, root, keys[level], rkey, value_le);
495 out:
496 	exit_ro_spine(&spine);
497 	return r;
498 }
499 
500 EXPORT_SYMBOL_GPL(dm_btree_lookup_next);
501 
502 /*
503  * Splits a node by creating a sibling node and shifting half the nodes
504  * contents across.  Assumes there is a parent node, and it has room for
505  * another child.
506  *
507  * Before:
508  *	  +--------+
509  *	  | Parent |
510  *	  +--------+
511  *	     |
512  *	     v
513  *	+----------+
514  *	| A ++++++ |
515  *	+----------+
516  *
517  *
518  * After:
519  *		+--------+
520  *		| Parent |
521  *		+--------+
522  *		  |	|
523  *		  v	+------+
524  *	    +---------+	       |
525  *	    | A* +++  |	       v
526  *	    +---------+	  +-------+
527  *			  | B +++ |
528  *			  +-------+
529  *
530  * Where A* is a shadow of A.
531  */
532 static int btree_split_sibling(struct shadow_spine *s, unsigned parent_index,
533 			       uint64_t key)
534 {
535 	int r;
536 	size_t size;
537 	unsigned nr_left, nr_right;
538 	struct dm_block *left, *right, *parent;
539 	struct btree_node *ln, *rn, *pn;
540 	__le64 location;
541 
542 	left = shadow_current(s);
543 
544 	r = new_block(s->info, &right);
545 	if (r < 0)
546 		return r;
547 
548 	ln = dm_block_data(left);
549 	rn = dm_block_data(right);
550 
551 	nr_left = le32_to_cpu(ln->header.nr_entries) / 2;
552 	nr_right = le32_to_cpu(ln->header.nr_entries) - nr_left;
553 
554 	ln->header.nr_entries = cpu_to_le32(nr_left);
555 
556 	rn->header.flags = ln->header.flags;
557 	rn->header.nr_entries = cpu_to_le32(nr_right);
558 	rn->header.max_entries = ln->header.max_entries;
559 	rn->header.value_size = ln->header.value_size;
560 	memcpy(rn->keys, ln->keys + nr_left, nr_right * sizeof(rn->keys[0]));
561 
562 	size = le32_to_cpu(ln->header.flags) & INTERNAL_NODE ?
563 		sizeof(uint64_t) : s->info->value_type.size;
564 	memcpy(value_ptr(rn, 0), value_ptr(ln, nr_left),
565 	       size * nr_right);
566 
567 	/*
568 	 * Patch up the parent
569 	 */
570 	parent = shadow_parent(s);
571 
572 	pn = dm_block_data(parent);
573 	location = cpu_to_le64(dm_block_location(left));
574 	__dm_bless_for_disk(&location);
575 	memcpy_disk(value_ptr(pn, parent_index),
576 		    &location, sizeof(__le64));
577 
578 	location = cpu_to_le64(dm_block_location(right));
579 	__dm_bless_for_disk(&location);
580 
581 	r = insert_at(sizeof(__le64), pn, parent_index + 1,
582 		      le64_to_cpu(rn->keys[0]), &location);
583 	if (r) {
584 		unlock_block(s->info, right);
585 		return r;
586 	}
587 
588 	if (key < le64_to_cpu(rn->keys[0])) {
589 		unlock_block(s->info, right);
590 		s->nodes[1] = left;
591 	} else {
592 		unlock_block(s->info, left);
593 		s->nodes[1] = right;
594 	}
595 
596 	return 0;
597 }
598 
599 /*
600  * Splits a node by creating two new children beneath the given node.
601  *
602  * Before:
603  *	  +----------+
604  *	  | A ++++++ |
605  *	  +----------+
606  *
607  *
608  * After:
609  *	+------------+
610  *	| A (shadow) |
611  *	+------------+
612  *	    |	|
613  *   +------+	+----+
614  *   |		     |
615  *   v		     v
616  * +-------+	 +-------+
617  * | B +++ |	 | C +++ |
618  * +-------+	 +-------+
619  */
620 static int btree_split_beneath(struct shadow_spine *s, uint64_t key)
621 {
622 	int r;
623 	size_t size;
624 	unsigned nr_left, nr_right;
625 	struct dm_block *left, *right, *new_parent;
626 	struct btree_node *pn, *ln, *rn;
627 	__le64 val;
628 
629 	new_parent = shadow_current(s);
630 
631 	r = new_block(s->info, &left);
632 	if (r < 0)
633 		return r;
634 
635 	r = new_block(s->info, &right);
636 	if (r < 0) {
637 		unlock_block(s->info, left);
638 		return r;
639 	}
640 
641 	pn = dm_block_data(new_parent);
642 	ln = dm_block_data(left);
643 	rn = dm_block_data(right);
644 
645 	nr_left = le32_to_cpu(pn->header.nr_entries) / 2;
646 	nr_right = le32_to_cpu(pn->header.nr_entries) - nr_left;
647 
648 	ln->header.flags = pn->header.flags;
649 	ln->header.nr_entries = cpu_to_le32(nr_left);
650 	ln->header.max_entries = pn->header.max_entries;
651 	ln->header.value_size = pn->header.value_size;
652 
653 	rn->header.flags = pn->header.flags;
654 	rn->header.nr_entries = cpu_to_le32(nr_right);
655 	rn->header.max_entries = pn->header.max_entries;
656 	rn->header.value_size = pn->header.value_size;
657 
658 	memcpy(ln->keys, pn->keys, nr_left * sizeof(pn->keys[0]));
659 	memcpy(rn->keys, pn->keys + nr_left, nr_right * sizeof(pn->keys[0]));
660 
661 	size = le32_to_cpu(pn->header.flags) & INTERNAL_NODE ?
662 		sizeof(__le64) : s->info->value_type.size;
663 	memcpy(value_ptr(ln, 0), value_ptr(pn, 0), nr_left * size);
664 	memcpy(value_ptr(rn, 0), value_ptr(pn, nr_left),
665 	       nr_right * size);
666 
667 	/* new_parent should just point to l and r now */
668 	pn->header.flags = cpu_to_le32(INTERNAL_NODE);
669 	pn->header.nr_entries = cpu_to_le32(2);
670 	pn->header.max_entries = cpu_to_le32(
671 		calc_max_entries(sizeof(__le64),
672 				 dm_bm_block_size(
673 					 dm_tm_get_bm(s->info->tm))));
674 	pn->header.value_size = cpu_to_le32(sizeof(__le64));
675 
676 	val = cpu_to_le64(dm_block_location(left));
677 	__dm_bless_for_disk(&val);
678 	pn->keys[0] = ln->keys[0];
679 	memcpy_disk(value_ptr(pn, 0), &val, sizeof(__le64));
680 
681 	val = cpu_to_le64(dm_block_location(right));
682 	__dm_bless_for_disk(&val);
683 	pn->keys[1] = rn->keys[0];
684 	memcpy_disk(value_ptr(pn, 1), &val, sizeof(__le64));
685 
686 	/*
687 	 * rejig the spine.  This is ugly, since it knows too
688 	 * much about the spine
689 	 */
690 	if (s->nodes[0] != new_parent) {
691 		unlock_block(s->info, s->nodes[0]);
692 		s->nodes[0] = new_parent;
693 	}
694 	if (key < le64_to_cpu(rn->keys[0])) {
695 		unlock_block(s->info, right);
696 		s->nodes[1] = left;
697 	} else {
698 		unlock_block(s->info, left);
699 		s->nodes[1] = right;
700 	}
701 	s->count = 2;
702 
703 	return 0;
704 }
705 
706 static int btree_insert_raw(struct shadow_spine *s, dm_block_t root,
707 			    struct dm_btree_value_type *vt,
708 			    uint64_t key, unsigned *index)
709 {
710 	int r, i = *index, top = 1;
711 	struct btree_node *node;
712 
713 	for (;;) {
714 		r = shadow_step(s, root, vt);
715 		if (r < 0)
716 			return r;
717 
718 		node = dm_block_data(shadow_current(s));
719 
720 		/*
721 		 * We have to patch up the parent node, ugly, but I don't
722 		 * see a way to do this automatically as part of the spine
723 		 * op.
724 		 */
725 		if (shadow_has_parent(s) && i >= 0) { /* FIXME: second clause unness. */
726 			__le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));
727 
728 			__dm_bless_for_disk(&location);
729 			memcpy_disk(value_ptr(dm_block_data(shadow_parent(s)), i),
730 				    &location, sizeof(__le64));
731 		}
732 
733 		node = dm_block_data(shadow_current(s));
734 
735 		if (node->header.nr_entries == node->header.max_entries) {
736 			if (top)
737 				r = btree_split_beneath(s, key);
738 			else
739 				r = btree_split_sibling(s, i, key);
740 
741 			if (r < 0)
742 				return r;
743 		}
744 
745 		node = dm_block_data(shadow_current(s));
746 
747 		i = lower_bound(node, key);
748 
749 		if (le32_to_cpu(node->header.flags) & LEAF_NODE)
750 			break;
751 
752 		if (i < 0) {
753 			/* change the bounds on the lowest key */
754 			node->keys[0] = cpu_to_le64(key);
755 			i = 0;
756 		}
757 
758 		root = value64(node, i);
759 		top = 0;
760 	}
761 
762 	if (i < 0 || le64_to_cpu(node->keys[i]) != key)
763 		i++;
764 
765 	*index = i;
766 	return 0;
767 }
768 
769 static bool need_insert(struct btree_node *node, uint64_t *keys,
770 			unsigned level, unsigned index)
771 {
772         return ((index >= le32_to_cpu(node->header.nr_entries)) ||
773 		(le64_to_cpu(node->keys[index]) != keys[level]));
774 }
775 
776 static int insert(struct dm_btree_info *info, dm_block_t root,
777 		  uint64_t *keys, void *value, dm_block_t *new_root,
778 		  int *inserted)
779 		  __dm_written_to_disk(value)
780 {
781 	int r;
782 	unsigned level, index = -1, last_level = info->levels - 1;
783 	dm_block_t block = root;
784 	struct shadow_spine spine;
785 	struct btree_node *n;
786 	struct dm_btree_value_type le64_type;
787 
788 	init_le64_type(info->tm, &le64_type);
789 	init_shadow_spine(&spine, info);
790 
791 	for (level = 0; level < (info->levels - 1); level++) {
792 		r = btree_insert_raw(&spine, block, &le64_type, keys[level], &index);
793 		if (r < 0)
794 			goto bad;
795 
796 		n = dm_block_data(shadow_current(&spine));
797 
798 		if (need_insert(n, keys, level, index)) {
799 			dm_block_t new_tree;
800 			__le64 new_le;
801 
802 			r = dm_btree_empty(info, &new_tree);
803 			if (r < 0)
804 				goto bad;
805 
806 			new_le = cpu_to_le64(new_tree);
807 			__dm_bless_for_disk(&new_le);
808 
809 			r = insert_at(sizeof(uint64_t), n, index,
810 				      keys[level], &new_le);
811 			if (r)
812 				goto bad;
813 		}
814 
815 		if (level < last_level)
816 			block = value64(n, index);
817 	}
818 
819 	r = btree_insert_raw(&spine, block, &info->value_type,
820 			     keys[level], &index);
821 	if (r < 0)
822 		goto bad;
823 
824 	n = dm_block_data(shadow_current(&spine));
825 
826 	if (need_insert(n, keys, level, index)) {
827 		if (inserted)
828 			*inserted = 1;
829 
830 		r = insert_at(info->value_type.size, n, index,
831 			      keys[level], value);
832 		if (r)
833 			goto bad_unblessed;
834 	} else {
835 		if (inserted)
836 			*inserted = 0;
837 
838 		if (info->value_type.dec &&
839 		    (!info->value_type.equal ||
840 		     !info->value_type.equal(
841 			     info->value_type.context,
842 			     value_ptr(n, index),
843 			     value))) {
844 			info->value_type.dec(info->value_type.context,
845 					     value_ptr(n, index));
846 		}
847 		memcpy_disk(value_ptr(n, index),
848 			    value, info->value_type.size);
849 	}
850 
851 	*new_root = shadow_root(&spine);
852 	exit_shadow_spine(&spine);
853 
854 	return 0;
855 
856 bad:
857 	__dm_unbless_for_disk(value);
858 bad_unblessed:
859 	exit_shadow_spine(&spine);
860 	return r;
861 }
862 
863 int dm_btree_insert(struct dm_btree_info *info, dm_block_t root,
864 		    uint64_t *keys, void *value, dm_block_t *new_root)
865 		    __dm_written_to_disk(value)
866 {
867 	return insert(info, root, keys, value, new_root, NULL);
868 }
869 EXPORT_SYMBOL_GPL(dm_btree_insert);
870 
871 int dm_btree_insert_notify(struct dm_btree_info *info, dm_block_t root,
872 			   uint64_t *keys, void *value, dm_block_t *new_root,
873 			   int *inserted)
874 			   __dm_written_to_disk(value)
875 {
876 	return insert(info, root, keys, value, new_root, inserted);
877 }
878 EXPORT_SYMBOL_GPL(dm_btree_insert_notify);
879 
880 /*----------------------------------------------------------------*/
881 
882 static int find_key(struct ro_spine *s, dm_block_t block, bool find_highest,
883 		    uint64_t *result_key, dm_block_t *next_block)
884 {
885 	int i, r;
886 	uint32_t flags;
887 
888 	do {
889 		r = ro_step(s, block);
890 		if (r < 0)
891 			return r;
892 
893 		flags = le32_to_cpu(ro_node(s)->header.flags);
894 		i = le32_to_cpu(ro_node(s)->header.nr_entries);
895 		if (!i)
896 			return -ENODATA;
897 		else
898 			i--;
899 
900 		if (find_highest)
901 			*result_key = le64_to_cpu(ro_node(s)->keys[i]);
902 		else
903 			*result_key = le64_to_cpu(ro_node(s)->keys[0]);
904 
905 		if (next_block || flags & INTERNAL_NODE)
906 			block = value64(ro_node(s), i);
907 
908 	} while (flags & INTERNAL_NODE);
909 
910 	if (next_block)
911 		*next_block = block;
912 	return 0;
913 }
914 
915 static int dm_btree_find_key(struct dm_btree_info *info, dm_block_t root,
916 			     bool find_highest, uint64_t *result_keys)
917 {
918 	int r = 0, count = 0, level;
919 	struct ro_spine spine;
920 
921 	init_ro_spine(&spine, info);
922 	for (level = 0; level < info->levels; level++) {
923 		r = find_key(&spine, root, find_highest, result_keys + level,
924 			     level == info->levels - 1 ? NULL : &root);
925 		if (r == -ENODATA) {
926 			r = 0;
927 			break;
928 
929 		} else if (r)
930 			break;
931 
932 		count++;
933 	}
934 	exit_ro_spine(&spine);
935 
936 	return r ? r : count;
937 }
938 
939 int dm_btree_find_highest_key(struct dm_btree_info *info, dm_block_t root,
940 			      uint64_t *result_keys)
941 {
942 	return dm_btree_find_key(info, root, true, result_keys);
943 }
944 EXPORT_SYMBOL_GPL(dm_btree_find_highest_key);
945 
946 int dm_btree_find_lowest_key(struct dm_btree_info *info, dm_block_t root,
947 			     uint64_t *result_keys)
948 {
949 	return dm_btree_find_key(info, root, false, result_keys);
950 }
951 EXPORT_SYMBOL_GPL(dm_btree_find_lowest_key);
952 
953 /*----------------------------------------------------------------*/
954 
955 /*
956  * FIXME: We shouldn't use a recursive algorithm when we have limited stack
957  * space.  Also this only works for single level trees.
958  */
959 static int walk_node(struct dm_btree_info *info, dm_block_t block,
960 		     int (*fn)(void *context, uint64_t *keys, void *leaf),
961 		     void *context)
962 {
963 	int r;
964 	unsigned i, nr;
965 	struct dm_block *node;
966 	struct btree_node *n;
967 	uint64_t keys;
968 
969 	r = bn_read_lock(info, block, &node);
970 	if (r)
971 		return r;
972 
973 	n = dm_block_data(node);
974 
975 	nr = le32_to_cpu(n->header.nr_entries);
976 	for (i = 0; i < nr; i++) {
977 		if (le32_to_cpu(n->header.flags) & INTERNAL_NODE) {
978 			r = walk_node(info, value64(n, i), fn, context);
979 			if (r)
980 				goto out;
981 		} else {
982 			keys = le64_to_cpu(*key_ptr(n, i));
983 			r = fn(context, &keys, value_ptr(n, i));
984 			if (r)
985 				goto out;
986 		}
987 	}
988 
989 out:
990 	dm_tm_unlock(info->tm, node);
991 	return r;
992 }
993 
994 int dm_btree_walk(struct dm_btree_info *info, dm_block_t root,
995 		  int (*fn)(void *context, uint64_t *keys, void *leaf),
996 		  void *context)
997 {
998 	BUG_ON(info->levels > 1);
999 	return walk_node(info, root, fn, context);
1000 }
1001 EXPORT_SYMBOL_GPL(dm_btree_walk);
1002 
1003 /*----------------------------------------------------------------*/
1004 
1005 static void prefetch_values(struct dm_btree_cursor *c)
1006 {
1007 	unsigned i, nr;
1008 	__le64 value_le;
1009 	struct cursor_node *n = c->nodes + c->depth - 1;
1010 	struct btree_node *bn = dm_block_data(n->b);
1011 	struct dm_block_manager *bm = dm_tm_get_bm(c->info->tm);
1012 
1013 	BUG_ON(c->info->value_type.size != sizeof(value_le));
1014 
1015 	nr = le32_to_cpu(bn->header.nr_entries);
1016 	for (i = 0; i < nr; i++) {
1017 		memcpy(&value_le, value_ptr(bn, i), sizeof(value_le));
1018 		dm_bm_prefetch(bm, le64_to_cpu(value_le));
1019 	}
1020 }
1021 
1022 static bool leaf_node(struct dm_btree_cursor *c)
1023 {
1024 	struct cursor_node *n = c->nodes + c->depth - 1;
1025 	struct btree_node *bn = dm_block_data(n->b);
1026 
1027 	return le32_to_cpu(bn->header.flags) & LEAF_NODE;
1028 }
1029 
1030 static int push_node(struct dm_btree_cursor *c, dm_block_t b)
1031 {
1032 	int r;
1033 	struct cursor_node *n = c->nodes + c->depth;
1034 
1035 	if (c->depth >= DM_BTREE_CURSOR_MAX_DEPTH - 1) {
1036 		DMERR("couldn't push cursor node, stack depth too high");
1037 		return -EINVAL;
1038 	}
1039 
1040 	r = bn_read_lock(c->info, b, &n->b);
1041 	if (r)
1042 		return r;
1043 
1044 	n->index = 0;
1045 	c->depth++;
1046 
1047 	if (c->prefetch_leaves || !leaf_node(c))
1048 		prefetch_values(c);
1049 
1050 	return 0;
1051 }
1052 
1053 static void pop_node(struct dm_btree_cursor *c)
1054 {
1055 	c->depth--;
1056 	unlock_block(c->info, c->nodes[c->depth].b);
1057 }
1058 
1059 static int inc_or_backtrack(struct dm_btree_cursor *c)
1060 {
1061 	struct cursor_node *n;
1062 	struct btree_node *bn;
1063 
1064 	for (;;) {
1065 		if (!c->depth)
1066 			return -ENODATA;
1067 
1068 		n = c->nodes + c->depth - 1;
1069 		bn = dm_block_data(n->b);
1070 
1071 		n->index++;
1072 		if (n->index < le32_to_cpu(bn->header.nr_entries))
1073 			break;
1074 
1075 		pop_node(c);
1076 	}
1077 
1078 	return 0;
1079 }
1080 
1081 static int find_leaf(struct dm_btree_cursor *c)
1082 {
1083 	int r = 0;
1084 	struct cursor_node *n;
1085 	struct btree_node *bn;
1086 	__le64 value_le;
1087 
1088 	for (;;) {
1089 		n = c->nodes + c->depth - 1;
1090 		bn = dm_block_data(n->b);
1091 
1092 		if (le32_to_cpu(bn->header.flags) & LEAF_NODE)
1093 			break;
1094 
1095 		memcpy(&value_le, value_ptr(bn, n->index), sizeof(value_le));
1096 		r = push_node(c, le64_to_cpu(value_le));
1097 		if (r) {
1098 			DMERR("push_node failed");
1099 			break;
1100 		}
1101 	}
1102 
1103 	if (!r && (le32_to_cpu(bn->header.nr_entries) == 0))
1104 		return -ENODATA;
1105 
1106 	return r;
1107 }
1108 
1109 int dm_btree_cursor_begin(struct dm_btree_info *info, dm_block_t root,
1110 			  bool prefetch_leaves, struct dm_btree_cursor *c)
1111 {
1112 	int r;
1113 
1114 	c->info = info;
1115 	c->root = root;
1116 	c->depth = 0;
1117 	c->prefetch_leaves = prefetch_leaves;
1118 
1119 	r = push_node(c, root);
1120 	if (r)
1121 		return r;
1122 
1123 	return find_leaf(c);
1124 }
1125 EXPORT_SYMBOL_GPL(dm_btree_cursor_begin);
1126 
1127 void dm_btree_cursor_end(struct dm_btree_cursor *c)
1128 {
1129 	while (c->depth)
1130 		pop_node(c);
1131 }
1132 EXPORT_SYMBOL_GPL(dm_btree_cursor_end);
1133 
1134 int dm_btree_cursor_next(struct dm_btree_cursor *c)
1135 {
1136 	int r = inc_or_backtrack(c);
1137 	if (!r) {
1138 		r = find_leaf(c);
1139 		if (r)
1140 			DMERR("find_leaf failed");
1141 	}
1142 
1143 	return r;
1144 }
1145 EXPORT_SYMBOL_GPL(dm_btree_cursor_next);
1146 
1147 int dm_btree_cursor_skip(struct dm_btree_cursor *c, uint32_t count)
1148 {
1149 	int r = 0;
1150 
1151 	while (count-- && !r)
1152 		r = dm_btree_cursor_next(c);
1153 
1154 	return r;
1155 }
1156 EXPORT_SYMBOL_GPL(dm_btree_cursor_skip);
1157 
1158 int dm_btree_cursor_get_value(struct dm_btree_cursor *c, uint64_t *key, void *value_le)
1159 {
1160 	if (c->depth) {
1161 		struct cursor_node *n = c->nodes + c->depth - 1;
1162 		struct btree_node *bn = dm_block_data(n->b);
1163 
1164 		if (le32_to_cpu(bn->header.flags) & INTERNAL_NODE)
1165 			return -EINVAL;
1166 
1167 		*key = le64_to_cpu(*key_ptr(bn, n->index));
1168 		memcpy(value_le, value_ptr(bn, n->index), c->info->value_type.size);
1169 		return 0;
1170 
1171 	} else
1172 		return -ENODATA;
1173 }
1174 EXPORT_SYMBOL_GPL(dm_btree_cursor_get_value);
1175