1 /*
2  * Copyright (C) 2011 Red Hat, Inc.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm-btree.h"
8 #include "dm-btree-internal.h"
9 #include "dm-transaction-manager.h"
10 
11 #include <linux/export.h>
12 
13 /*
14  * Removing an entry from a btree
15  * ==============================
16  *
17  * A very important constraint for our btree is that no node, except the
18  * root, may have fewer than a certain number of entries.
19  * (MIN_ENTRIES <= nr_entries <= MAX_ENTRIES).
20  *
21  * Ensuring this is complicated by the way we want to only ever hold the
22  * locks on 2 nodes concurrently, and only change nodes in a top to bottom
23  * fashion.
24  *
25  * Each node may have a left or right sibling.  When decending the spine,
26  * if a node contains only MIN_ENTRIES then we try and increase this to at
27  * least MIN_ENTRIES + 1.  We do this in the following ways:
28  *
29  * [A] No siblings => this can only happen if the node is the root, in which
30  *     case we copy the childs contents over the root.
31  *
32  * [B] No left sibling
33  *     ==> rebalance(node, right sibling)
34  *
35  * [C] No right sibling
36  *     ==> rebalance(left sibling, node)
37  *
38  * [D] Both siblings, total_entries(left, node, right) <= DEL_THRESHOLD
39  *     ==> delete node adding it's contents to left and right
40  *
41  * [E] Both siblings, total_entries(left, node, right) > DEL_THRESHOLD
42  *     ==> rebalance(left, node, right)
43  *
44  * After these operations it's possible that the our original node no
45  * longer contains the desired sub tree.  For this reason this rebalancing
46  * is performed on the children of the current node.  This also avoids
47  * having a special case for the root.
48  *
49  * Once this rebalancing has occurred we can then step into the child node
50  * for internal nodes.  Or delete the entry for leaf nodes.
51  */
52 
53 /*
54  * Some little utilities for moving node data around.
55  */
56 static void node_shift(struct btree_node *n, int shift)
57 {
58 	uint32_t nr_entries = le32_to_cpu(n->header.nr_entries);
59 	uint32_t value_size = le32_to_cpu(n->header.value_size);
60 
61 	if (shift < 0) {
62 		shift = -shift;
63 		BUG_ON(shift > nr_entries);
64 		BUG_ON((void *) key_ptr(n, shift) >= value_ptr(n, shift));
65 		memmove(key_ptr(n, 0),
66 			key_ptr(n, shift),
67 			(nr_entries - shift) * sizeof(__le64));
68 		memmove(value_ptr(n, 0),
69 			value_ptr(n, shift),
70 			(nr_entries - shift) * value_size);
71 	} else {
72 		BUG_ON(nr_entries + shift > le32_to_cpu(n->header.max_entries));
73 		memmove(key_ptr(n, shift),
74 			key_ptr(n, 0),
75 			nr_entries * sizeof(__le64));
76 		memmove(value_ptr(n, shift),
77 			value_ptr(n, 0),
78 			nr_entries * value_size);
79 	}
80 }
81 
82 static void node_copy(struct btree_node *left, struct btree_node *right, int shift)
83 {
84 	uint32_t nr_left = le32_to_cpu(left->header.nr_entries);
85 	uint32_t value_size = le32_to_cpu(left->header.value_size);
86 	BUG_ON(value_size != le32_to_cpu(right->header.value_size));
87 
88 	if (shift < 0) {
89 		shift = -shift;
90 		BUG_ON(nr_left + shift > le32_to_cpu(left->header.max_entries));
91 		memcpy(key_ptr(left, nr_left),
92 		       key_ptr(right, 0),
93 		       shift * sizeof(__le64));
94 		memcpy(value_ptr(left, nr_left),
95 		       value_ptr(right, 0),
96 		       shift * value_size);
97 	} else {
98 		BUG_ON(shift > le32_to_cpu(right->header.max_entries));
99 		memcpy(key_ptr(right, 0),
100 		       key_ptr(left, nr_left - shift),
101 		       shift * sizeof(__le64));
102 		memcpy(value_ptr(right, 0),
103 		       value_ptr(left, nr_left - shift),
104 		       shift * value_size);
105 	}
106 }
107 
108 /*
109  * Delete a specific entry from a leaf node.
110  */
111 static void delete_at(struct btree_node *n, unsigned index)
112 {
113 	unsigned nr_entries = le32_to_cpu(n->header.nr_entries);
114 	unsigned nr_to_copy = nr_entries - (index + 1);
115 	uint32_t value_size = le32_to_cpu(n->header.value_size);
116 	BUG_ON(index >= nr_entries);
117 
118 	if (nr_to_copy) {
119 		memmove(key_ptr(n, index),
120 			key_ptr(n, index + 1),
121 			nr_to_copy * sizeof(__le64));
122 
123 		memmove(value_ptr(n, index),
124 			value_ptr(n, index + 1),
125 			nr_to_copy * value_size);
126 	}
127 
128 	n->header.nr_entries = cpu_to_le32(nr_entries - 1);
129 }
130 
131 static unsigned merge_threshold(struct btree_node *n)
132 {
133 	return le32_to_cpu(n->header.max_entries) / 3;
134 }
135 
136 struct child {
137 	unsigned index;
138 	struct dm_block *block;
139 	struct btree_node *n;
140 };
141 
142 static struct dm_btree_value_type le64_type = {
143 	.context = NULL,
144 	.size = sizeof(__le64),
145 	.inc = NULL,
146 	.dec = NULL,
147 	.equal = NULL
148 };
149 
150 static int init_child(struct dm_btree_info *info, struct btree_node *parent,
151 		      unsigned index, struct child *result)
152 {
153 	int r, inc;
154 	dm_block_t root;
155 
156 	result->index = index;
157 	root = value64(parent, index);
158 
159 	r = dm_tm_shadow_block(info->tm, root, &btree_node_validator,
160 			       &result->block, &inc);
161 	if (r)
162 		return r;
163 
164 	result->n = dm_block_data(result->block);
165 
166 	if (inc)
167 		inc_children(info->tm, result->n, &le64_type);
168 
169 	*((__le64 *) value_ptr(parent, index)) =
170 		cpu_to_le64(dm_block_location(result->block));
171 
172 	return 0;
173 }
174 
175 static int exit_child(struct dm_btree_info *info, struct child *c)
176 {
177 	return dm_tm_unlock(info->tm, c->block);
178 }
179 
180 static void shift(struct btree_node *left, struct btree_node *right, int count)
181 {
182 	uint32_t nr_left = le32_to_cpu(left->header.nr_entries);
183 	uint32_t nr_right = le32_to_cpu(right->header.nr_entries);
184 	uint32_t max_entries = le32_to_cpu(left->header.max_entries);
185 	uint32_t r_max_entries = le32_to_cpu(right->header.max_entries);
186 
187 	BUG_ON(max_entries != r_max_entries);
188 	BUG_ON(nr_left - count > max_entries);
189 	BUG_ON(nr_right + count > max_entries);
190 
191 	if (!count)
192 		return;
193 
194 	if (count > 0) {
195 		node_shift(right, count);
196 		node_copy(left, right, count);
197 	} else {
198 		node_copy(left, right, count);
199 		node_shift(right, count);
200 	}
201 
202 	left->header.nr_entries = cpu_to_le32(nr_left - count);
203 	right->header.nr_entries = cpu_to_le32(nr_right + count);
204 }
205 
206 static void __rebalance2(struct dm_btree_info *info, struct btree_node *parent,
207 			 struct child *l, struct child *r)
208 {
209 	struct btree_node *left = l->n;
210 	struct btree_node *right = r->n;
211 	uint32_t nr_left = le32_to_cpu(left->header.nr_entries);
212 	uint32_t nr_right = le32_to_cpu(right->header.nr_entries);
213 	unsigned threshold = 2 * merge_threshold(left) + 1;
214 
215 	if (nr_left + nr_right < threshold) {
216 		/*
217 		 * Merge
218 		 */
219 		node_copy(left, right, -nr_right);
220 		left->header.nr_entries = cpu_to_le32(nr_left + nr_right);
221 		delete_at(parent, r->index);
222 
223 		/*
224 		 * We need to decrement the right block, but not it's
225 		 * children, since they're still referenced by left.
226 		 */
227 		dm_tm_dec(info->tm, dm_block_location(r->block));
228 	} else {
229 		/*
230 		 * Rebalance.
231 		 */
232 		unsigned target_left = (nr_left + nr_right) / 2;
233 		shift(left, right, nr_left - target_left);
234 		*key_ptr(parent, r->index) = right->keys[0];
235 	}
236 }
237 
238 static int rebalance2(struct shadow_spine *s, struct dm_btree_info *info,
239 		      unsigned left_index)
240 {
241 	int r;
242 	struct btree_node *parent;
243 	struct child left, right;
244 
245 	parent = dm_block_data(shadow_current(s));
246 
247 	r = init_child(info, parent, left_index, &left);
248 	if (r)
249 		return r;
250 
251 	r = init_child(info, parent, left_index + 1, &right);
252 	if (r) {
253 		exit_child(info, &left);
254 		return r;
255 	}
256 
257 	__rebalance2(info, parent, &left, &right);
258 
259 	r = exit_child(info, &left);
260 	if (r) {
261 		exit_child(info, &right);
262 		return r;
263 	}
264 
265 	return exit_child(info, &right);
266 }
267 
268 /*
269  * We dump as many entries from center as possible into left, then the rest
270  * in right, then rebalance2.  This wastes some cpu, but I want something
271  * simple atm.
272  */
273 static void delete_center_node(struct dm_btree_info *info, struct btree_node *parent,
274 			       struct child *l, struct child *c, struct child *r,
275 			       struct btree_node *left, struct btree_node *center, struct btree_node *right,
276 			       uint32_t nr_left, uint32_t nr_center, uint32_t nr_right)
277 {
278 	uint32_t max_entries = le32_to_cpu(left->header.max_entries);
279 	unsigned shift = min(max_entries - nr_left, nr_center);
280 
281 	BUG_ON(nr_left + shift > max_entries);
282 	node_copy(left, center, -shift);
283 	left->header.nr_entries = cpu_to_le32(nr_left + shift);
284 
285 	if (shift != nr_center) {
286 		shift = nr_center - shift;
287 		BUG_ON((nr_right + shift) > max_entries);
288 		node_shift(right, shift);
289 		node_copy(center, right, shift);
290 		right->header.nr_entries = cpu_to_le32(nr_right + shift);
291 	}
292 	*key_ptr(parent, r->index) = right->keys[0];
293 
294 	delete_at(parent, c->index);
295 	r->index--;
296 
297 	dm_tm_dec(info->tm, dm_block_location(c->block));
298 	__rebalance2(info, parent, l, r);
299 }
300 
301 /*
302  * Redistributes entries among 3 sibling nodes.
303  */
304 static void redistribute3(struct dm_btree_info *info, struct btree_node *parent,
305 			  struct child *l, struct child *c, struct child *r,
306 			  struct btree_node *left, struct btree_node *center, struct btree_node *right,
307 			  uint32_t nr_left, uint32_t nr_center, uint32_t nr_right)
308 {
309 	int s;
310 	uint32_t max_entries = le32_to_cpu(left->header.max_entries);
311 	unsigned target = (nr_left + nr_center + nr_right) / 3;
312 	BUG_ON(target > max_entries);
313 
314 	if (nr_left < nr_right) {
315 		s = nr_left - target;
316 
317 		if (s < 0 && nr_center < -s) {
318 			/* not enough in central node */
319 			shift(left, center, nr_center);
320 			s = nr_center - target;
321 			shift(left, right, s);
322 			nr_right += s;
323 		} else
324 			shift(left, center, s);
325 
326 		shift(center, right, target - nr_right);
327 
328 	} else {
329 		s = target - nr_right;
330 		if (s > 0 && nr_center < s) {
331 			/* not enough in central node */
332 			shift(center, right, nr_center);
333 			s = target - nr_center;
334 			shift(left, right, s);
335 			nr_left -= s;
336 		} else
337 			shift(center, right, s);
338 
339 		shift(left, center, nr_left - target);
340 	}
341 
342 	*key_ptr(parent, c->index) = center->keys[0];
343 	*key_ptr(parent, r->index) = right->keys[0];
344 }
345 
346 static void __rebalance3(struct dm_btree_info *info, struct btree_node *parent,
347 			 struct child *l, struct child *c, struct child *r)
348 {
349 	struct btree_node *left = l->n;
350 	struct btree_node *center = c->n;
351 	struct btree_node *right = r->n;
352 
353 	uint32_t nr_left = le32_to_cpu(left->header.nr_entries);
354 	uint32_t nr_center = le32_to_cpu(center->header.nr_entries);
355 	uint32_t nr_right = le32_to_cpu(right->header.nr_entries);
356 
357 	unsigned threshold = merge_threshold(left) * 4 + 1;
358 
359 	BUG_ON(left->header.max_entries != center->header.max_entries);
360 	BUG_ON(center->header.max_entries != right->header.max_entries);
361 
362 	if ((nr_left + nr_center + nr_right) < threshold)
363 		delete_center_node(info, parent, l, c, r, left, center, right,
364 				   nr_left, nr_center, nr_right);
365 	else
366 		redistribute3(info, parent, l, c, r, left, center, right,
367 			      nr_left, nr_center, nr_right);
368 }
369 
370 static int rebalance3(struct shadow_spine *s, struct dm_btree_info *info,
371 		      unsigned left_index)
372 {
373 	int r;
374 	struct btree_node *parent = dm_block_data(shadow_current(s));
375 	struct child left, center, right;
376 
377 	/*
378 	 * FIXME: fill out an array?
379 	 */
380 	r = init_child(info, parent, left_index, &left);
381 	if (r)
382 		return r;
383 
384 	r = init_child(info, parent, left_index + 1, &center);
385 	if (r) {
386 		exit_child(info, &left);
387 		return r;
388 	}
389 
390 	r = init_child(info, parent, left_index + 2, &right);
391 	if (r) {
392 		exit_child(info, &left);
393 		exit_child(info, &center);
394 		return r;
395 	}
396 
397 	__rebalance3(info, parent, &left, &center, &right);
398 
399 	r = exit_child(info, &left);
400 	if (r) {
401 		exit_child(info, &center);
402 		exit_child(info, &right);
403 		return r;
404 	}
405 
406 	r = exit_child(info, &center);
407 	if (r) {
408 		exit_child(info, &right);
409 		return r;
410 	}
411 
412 	r = exit_child(info, &right);
413 	if (r)
414 		return r;
415 
416 	return 0;
417 }
418 
419 static int get_nr_entries(struct dm_transaction_manager *tm,
420 			  dm_block_t b, uint32_t *result)
421 {
422 	int r;
423 	struct dm_block *block;
424 	struct btree_node *n;
425 
426 	r = dm_tm_read_lock(tm, b, &btree_node_validator, &block);
427 	if (r)
428 		return r;
429 
430 	n = dm_block_data(block);
431 	*result = le32_to_cpu(n->header.nr_entries);
432 
433 	return dm_tm_unlock(tm, block);
434 }
435 
436 static int rebalance_children(struct shadow_spine *s,
437 			      struct dm_btree_info *info, uint64_t key)
438 {
439 	int i, r, has_left_sibling, has_right_sibling;
440 	uint32_t child_entries;
441 	struct btree_node *n;
442 
443 	n = dm_block_data(shadow_current(s));
444 
445 	if (le32_to_cpu(n->header.nr_entries) == 1) {
446 		struct dm_block *child;
447 		dm_block_t b = value64(n, 0);
448 
449 		r = dm_tm_read_lock(info->tm, b, &btree_node_validator, &child);
450 		if (r)
451 			return r;
452 
453 		memcpy(n, dm_block_data(child),
454 		       dm_bm_block_size(dm_tm_get_bm(info->tm)));
455 		r = dm_tm_unlock(info->tm, child);
456 		if (r)
457 			return r;
458 
459 		dm_tm_dec(info->tm, dm_block_location(child));
460 		return 0;
461 	}
462 
463 	i = lower_bound(n, key);
464 	if (i < 0)
465 		return -ENODATA;
466 
467 	r = get_nr_entries(info->tm, value64(n, i), &child_entries);
468 	if (r)
469 		return r;
470 
471 	has_left_sibling = i > 0;
472 	has_right_sibling = i < (le32_to_cpu(n->header.nr_entries) - 1);
473 
474 	if (!has_left_sibling)
475 		r = rebalance2(s, info, i);
476 
477 	else if (!has_right_sibling)
478 		r = rebalance2(s, info, i - 1);
479 
480 	else
481 		r = rebalance3(s, info, i - 1);
482 
483 	return r;
484 }
485 
486 static int do_leaf(struct btree_node *n, uint64_t key, unsigned *index)
487 {
488 	int i = lower_bound(n, key);
489 
490 	if ((i < 0) ||
491 	    (i >= le32_to_cpu(n->header.nr_entries)) ||
492 	    (le64_to_cpu(n->keys[i]) != key))
493 		return -ENODATA;
494 
495 	*index = i;
496 
497 	return 0;
498 }
499 
500 /*
501  * Prepares for removal from one level of the hierarchy.  The caller must
502  * call delete_at() to remove the entry at index.
503  */
504 static int remove_raw(struct shadow_spine *s, struct dm_btree_info *info,
505 		      struct dm_btree_value_type *vt, dm_block_t root,
506 		      uint64_t key, unsigned *index)
507 {
508 	int i = *index, r;
509 	struct btree_node *n;
510 
511 	for (;;) {
512 		r = shadow_step(s, root, vt);
513 		if (r < 0)
514 			break;
515 
516 		/*
517 		 * We have to patch up the parent node, ugly, but I don't
518 		 * see a way to do this automatically as part of the spine
519 		 * op.
520 		 */
521 		if (shadow_has_parent(s)) {
522 			__le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));
523 			memcpy(value_ptr(dm_block_data(shadow_parent(s)), i),
524 			       &location, sizeof(__le64));
525 		}
526 
527 		n = dm_block_data(shadow_current(s));
528 
529 		if (le32_to_cpu(n->header.flags) & LEAF_NODE)
530 			return do_leaf(n, key, index);
531 
532 		r = rebalance_children(s, info, key);
533 		if (r)
534 			break;
535 
536 		n = dm_block_data(shadow_current(s));
537 		if (le32_to_cpu(n->header.flags) & LEAF_NODE)
538 			return do_leaf(n, key, index);
539 
540 		i = lower_bound(n, key);
541 
542 		/*
543 		 * We know the key is present, or else
544 		 * rebalance_children would have returned
545 		 * -ENODATA
546 		 */
547 		root = value64(n, i);
548 	}
549 
550 	return r;
551 }
552 
553 int dm_btree_remove(struct dm_btree_info *info, dm_block_t root,
554 		    uint64_t *keys, dm_block_t *new_root)
555 {
556 	unsigned level, last_level = info->levels - 1;
557 	int index = 0, r = 0;
558 	struct shadow_spine spine;
559 	struct btree_node *n;
560 
561 	init_shadow_spine(&spine, info);
562 	for (level = 0; level < info->levels; level++) {
563 		r = remove_raw(&spine, info,
564 			       (level == last_level ?
565 				&info->value_type : &le64_type),
566 			       root, keys[level], (unsigned *)&index);
567 		if (r < 0)
568 			break;
569 
570 		n = dm_block_data(shadow_current(&spine));
571 		if (level != last_level) {
572 			root = value64(n, index);
573 			continue;
574 		}
575 
576 		BUG_ON(index < 0 || index >= le32_to_cpu(n->header.nr_entries));
577 
578 		if (info->value_type.dec)
579 			info->value_type.dec(info->value_type.context,
580 					     value_ptr(n, index));
581 
582 		delete_at(n, index);
583 	}
584 
585 	*new_root = shadow_root(&spine);
586 	exit_shadow_spine(&spine);
587 
588 	return r;
589 }
590 EXPORT_SYMBOL_GPL(dm_btree_remove);
591