1 /* 2 * Copyright (C) 2011 Red Hat, Inc. 3 * 4 * This file is released under the GPL. 5 */ 6 7 #include "dm-btree.h" 8 #include "dm-btree-internal.h" 9 #include "dm-transaction-manager.h" 10 11 #include <linux/export.h> 12 13 /* 14 * Removing an entry from a btree 15 * ============================== 16 * 17 * A very important constraint for our btree is that no node, except the 18 * root, may have fewer than a certain number of entries. 19 * (MIN_ENTRIES <= nr_entries <= MAX_ENTRIES). 20 * 21 * Ensuring this is complicated by the way we want to only ever hold the 22 * locks on 2 nodes concurrently, and only change nodes in a top to bottom 23 * fashion. 24 * 25 * Each node may have a left or right sibling. When decending the spine, 26 * if a node contains only MIN_ENTRIES then we try and increase this to at 27 * least MIN_ENTRIES + 1. We do this in the following ways: 28 * 29 * [A] No siblings => this can only happen if the node is the root, in which 30 * case we copy the childs contents over the root. 31 * 32 * [B] No left sibling 33 * ==> rebalance(node, right sibling) 34 * 35 * [C] No right sibling 36 * ==> rebalance(left sibling, node) 37 * 38 * [D] Both siblings, total_entries(left, node, right) <= DEL_THRESHOLD 39 * ==> delete node adding it's contents to left and right 40 * 41 * [E] Both siblings, total_entries(left, node, right) > DEL_THRESHOLD 42 * ==> rebalance(left, node, right) 43 * 44 * After these operations it's possible that the our original node no 45 * longer contains the desired sub tree. For this reason this rebalancing 46 * is performed on the children of the current node. This also avoids 47 * having a special case for the root. 48 * 49 * Once this rebalancing has occurred we can then step into the child node 50 * for internal nodes. Or delete the entry for leaf nodes. 51 */ 52 53 /* 54 * Some little utilities for moving node data around. 55 */ 56 static void node_shift(struct btree_node *n, int shift) 57 { 58 uint32_t nr_entries = le32_to_cpu(n->header.nr_entries); 59 uint32_t value_size = le32_to_cpu(n->header.value_size); 60 61 if (shift < 0) { 62 shift = -shift; 63 BUG_ON(shift > nr_entries); 64 BUG_ON((void *) key_ptr(n, shift) >= value_ptr(n, shift)); 65 memmove(key_ptr(n, 0), 66 key_ptr(n, shift), 67 (nr_entries - shift) * sizeof(__le64)); 68 memmove(value_ptr(n, 0), 69 value_ptr(n, shift), 70 (nr_entries - shift) * value_size); 71 } else { 72 BUG_ON(nr_entries + shift > le32_to_cpu(n->header.max_entries)); 73 memmove(key_ptr(n, shift), 74 key_ptr(n, 0), 75 nr_entries * sizeof(__le64)); 76 memmove(value_ptr(n, shift), 77 value_ptr(n, 0), 78 nr_entries * value_size); 79 } 80 } 81 82 static void node_copy(struct btree_node *left, struct btree_node *right, int shift) 83 { 84 uint32_t nr_left = le32_to_cpu(left->header.nr_entries); 85 uint32_t value_size = le32_to_cpu(left->header.value_size); 86 BUG_ON(value_size != le32_to_cpu(right->header.value_size)); 87 88 if (shift < 0) { 89 shift = -shift; 90 BUG_ON(nr_left + shift > le32_to_cpu(left->header.max_entries)); 91 memcpy(key_ptr(left, nr_left), 92 key_ptr(right, 0), 93 shift * sizeof(__le64)); 94 memcpy(value_ptr(left, nr_left), 95 value_ptr(right, 0), 96 shift * value_size); 97 } else { 98 BUG_ON(shift > le32_to_cpu(right->header.max_entries)); 99 memcpy(key_ptr(right, 0), 100 key_ptr(left, nr_left - shift), 101 shift * sizeof(__le64)); 102 memcpy(value_ptr(right, 0), 103 value_ptr(left, nr_left - shift), 104 shift * value_size); 105 } 106 } 107 108 /* 109 * Delete a specific entry from a leaf node. 110 */ 111 static void delete_at(struct btree_node *n, unsigned index) 112 { 113 unsigned nr_entries = le32_to_cpu(n->header.nr_entries); 114 unsigned nr_to_copy = nr_entries - (index + 1); 115 uint32_t value_size = le32_to_cpu(n->header.value_size); 116 BUG_ON(index >= nr_entries); 117 118 if (nr_to_copy) { 119 memmove(key_ptr(n, index), 120 key_ptr(n, index + 1), 121 nr_to_copy * sizeof(__le64)); 122 123 memmove(value_ptr(n, index), 124 value_ptr(n, index + 1), 125 nr_to_copy * value_size); 126 } 127 128 n->header.nr_entries = cpu_to_le32(nr_entries - 1); 129 } 130 131 static unsigned merge_threshold(struct btree_node *n) 132 { 133 return le32_to_cpu(n->header.max_entries) / 3; 134 } 135 136 struct child { 137 unsigned index; 138 struct dm_block *block; 139 struct btree_node *n; 140 }; 141 142 static int init_child(struct dm_btree_info *info, struct dm_btree_value_type *vt, 143 struct btree_node *parent, 144 unsigned index, struct child *result) 145 { 146 int r, inc; 147 dm_block_t root; 148 149 result->index = index; 150 root = value64(parent, index); 151 152 r = dm_tm_shadow_block(info->tm, root, &btree_node_validator, 153 &result->block, &inc); 154 if (r) 155 return r; 156 157 result->n = dm_block_data(result->block); 158 159 if (inc) 160 inc_children(info->tm, result->n, vt); 161 162 *((__le64 *) value_ptr(parent, index)) = 163 cpu_to_le64(dm_block_location(result->block)); 164 165 return 0; 166 } 167 168 static int exit_child(struct dm_btree_info *info, struct child *c) 169 { 170 return dm_tm_unlock(info->tm, c->block); 171 } 172 173 static void shift(struct btree_node *left, struct btree_node *right, int count) 174 { 175 uint32_t nr_left = le32_to_cpu(left->header.nr_entries); 176 uint32_t nr_right = le32_to_cpu(right->header.nr_entries); 177 uint32_t max_entries = le32_to_cpu(left->header.max_entries); 178 uint32_t r_max_entries = le32_to_cpu(right->header.max_entries); 179 180 BUG_ON(max_entries != r_max_entries); 181 BUG_ON(nr_left - count > max_entries); 182 BUG_ON(nr_right + count > max_entries); 183 184 if (!count) 185 return; 186 187 if (count > 0) { 188 node_shift(right, count); 189 node_copy(left, right, count); 190 } else { 191 node_copy(left, right, count); 192 node_shift(right, count); 193 } 194 195 left->header.nr_entries = cpu_to_le32(nr_left - count); 196 right->header.nr_entries = cpu_to_le32(nr_right + count); 197 } 198 199 static void __rebalance2(struct dm_btree_info *info, struct btree_node *parent, 200 struct child *l, struct child *r) 201 { 202 struct btree_node *left = l->n; 203 struct btree_node *right = r->n; 204 uint32_t nr_left = le32_to_cpu(left->header.nr_entries); 205 uint32_t nr_right = le32_to_cpu(right->header.nr_entries); 206 unsigned threshold = 2 * merge_threshold(left) + 1; 207 208 if (nr_left + nr_right < threshold) { 209 /* 210 * Merge 211 */ 212 node_copy(left, right, -nr_right); 213 left->header.nr_entries = cpu_to_le32(nr_left + nr_right); 214 delete_at(parent, r->index); 215 216 /* 217 * We need to decrement the right block, but not it's 218 * children, since they're still referenced by left. 219 */ 220 dm_tm_dec(info->tm, dm_block_location(r->block)); 221 } else { 222 /* 223 * Rebalance. 224 */ 225 unsigned target_left = (nr_left + nr_right) / 2; 226 shift(left, right, nr_left - target_left); 227 *key_ptr(parent, r->index) = right->keys[0]; 228 } 229 } 230 231 static int rebalance2(struct shadow_spine *s, struct dm_btree_info *info, 232 struct dm_btree_value_type *vt, unsigned left_index) 233 { 234 int r; 235 struct btree_node *parent; 236 struct child left, right; 237 238 parent = dm_block_data(shadow_current(s)); 239 240 r = init_child(info, vt, parent, left_index, &left); 241 if (r) 242 return r; 243 244 r = init_child(info, vt, parent, left_index + 1, &right); 245 if (r) { 246 exit_child(info, &left); 247 return r; 248 } 249 250 __rebalance2(info, parent, &left, &right); 251 252 r = exit_child(info, &left); 253 if (r) { 254 exit_child(info, &right); 255 return r; 256 } 257 258 return exit_child(info, &right); 259 } 260 261 /* 262 * We dump as many entries from center as possible into left, then the rest 263 * in right, then rebalance2. This wastes some cpu, but I want something 264 * simple atm. 265 */ 266 static void delete_center_node(struct dm_btree_info *info, struct btree_node *parent, 267 struct child *l, struct child *c, struct child *r, 268 struct btree_node *left, struct btree_node *center, struct btree_node *right, 269 uint32_t nr_left, uint32_t nr_center, uint32_t nr_right) 270 { 271 uint32_t max_entries = le32_to_cpu(left->header.max_entries); 272 unsigned shift = min(max_entries - nr_left, nr_center); 273 274 BUG_ON(nr_left + shift > max_entries); 275 node_copy(left, center, -shift); 276 left->header.nr_entries = cpu_to_le32(nr_left + shift); 277 278 if (shift != nr_center) { 279 shift = nr_center - shift; 280 BUG_ON((nr_right + shift) > max_entries); 281 node_shift(right, shift); 282 node_copy(center, right, shift); 283 right->header.nr_entries = cpu_to_le32(nr_right + shift); 284 } 285 *key_ptr(parent, r->index) = right->keys[0]; 286 287 delete_at(parent, c->index); 288 r->index--; 289 290 dm_tm_dec(info->tm, dm_block_location(c->block)); 291 __rebalance2(info, parent, l, r); 292 } 293 294 /* 295 * Redistributes entries among 3 sibling nodes. 296 */ 297 static void redistribute3(struct dm_btree_info *info, struct btree_node *parent, 298 struct child *l, struct child *c, struct child *r, 299 struct btree_node *left, struct btree_node *center, struct btree_node *right, 300 uint32_t nr_left, uint32_t nr_center, uint32_t nr_right) 301 { 302 int s; 303 uint32_t max_entries = le32_to_cpu(left->header.max_entries); 304 unsigned total = nr_left + nr_center + nr_right; 305 unsigned target_right = total / 3; 306 unsigned remainder = (target_right * 3) != total; 307 unsigned target_left = target_right + remainder; 308 309 BUG_ON(target_left > max_entries); 310 BUG_ON(target_right > max_entries); 311 312 if (nr_left < nr_right) { 313 s = nr_left - target_left; 314 315 if (s < 0 && nr_center < -s) { 316 /* not enough in central node */ 317 shift(left, center, -nr_center); 318 s += nr_center; 319 shift(left, right, s); 320 nr_right += s; 321 } else 322 shift(left, center, s); 323 324 shift(center, right, target_right - nr_right); 325 326 } else { 327 s = target_right - nr_right; 328 if (s > 0 && nr_center < s) { 329 /* not enough in central node */ 330 shift(center, right, nr_center); 331 s -= nr_center; 332 shift(left, right, s); 333 nr_left -= s; 334 } else 335 shift(center, right, s); 336 337 shift(left, center, nr_left - target_left); 338 } 339 340 *key_ptr(parent, c->index) = center->keys[0]; 341 *key_ptr(parent, r->index) = right->keys[0]; 342 } 343 344 static void __rebalance3(struct dm_btree_info *info, struct btree_node *parent, 345 struct child *l, struct child *c, struct child *r) 346 { 347 struct btree_node *left = l->n; 348 struct btree_node *center = c->n; 349 struct btree_node *right = r->n; 350 351 uint32_t nr_left = le32_to_cpu(left->header.nr_entries); 352 uint32_t nr_center = le32_to_cpu(center->header.nr_entries); 353 uint32_t nr_right = le32_to_cpu(right->header.nr_entries); 354 355 unsigned threshold = merge_threshold(left) * 4 + 1; 356 357 BUG_ON(left->header.max_entries != center->header.max_entries); 358 BUG_ON(center->header.max_entries != right->header.max_entries); 359 360 if ((nr_left + nr_center + nr_right) < threshold) 361 delete_center_node(info, parent, l, c, r, left, center, right, 362 nr_left, nr_center, nr_right); 363 else 364 redistribute3(info, parent, l, c, r, left, center, right, 365 nr_left, nr_center, nr_right); 366 } 367 368 static int rebalance3(struct shadow_spine *s, struct dm_btree_info *info, 369 struct dm_btree_value_type *vt, unsigned left_index) 370 { 371 int r; 372 struct btree_node *parent = dm_block_data(shadow_current(s)); 373 struct child left, center, right; 374 375 /* 376 * FIXME: fill out an array? 377 */ 378 r = init_child(info, vt, parent, left_index, &left); 379 if (r) 380 return r; 381 382 r = init_child(info, vt, parent, left_index + 1, ¢er); 383 if (r) { 384 exit_child(info, &left); 385 return r; 386 } 387 388 r = init_child(info, vt, parent, left_index + 2, &right); 389 if (r) { 390 exit_child(info, &left); 391 exit_child(info, ¢er); 392 return r; 393 } 394 395 __rebalance3(info, parent, &left, ¢er, &right); 396 397 r = exit_child(info, &left); 398 if (r) { 399 exit_child(info, ¢er); 400 exit_child(info, &right); 401 return r; 402 } 403 404 r = exit_child(info, ¢er); 405 if (r) { 406 exit_child(info, &right); 407 return r; 408 } 409 410 r = exit_child(info, &right); 411 if (r) 412 return r; 413 414 return 0; 415 } 416 417 static int rebalance_children(struct shadow_spine *s, 418 struct dm_btree_info *info, 419 struct dm_btree_value_type *vt, uint64_t key) 420 { 421 int i, r, has_left_sibling, has_right_sibling; 422 struct btree_node *n; 423 424 n = dm_block_data(shadow_current(s)); 425 426 if (le32_to_cpu(n->header.nr_entries) == 1) { 427 struct dm_block *child; 428 dm_block_t b = value64(n, 0); 429 430 r = dm_tm_read_lock(info->tm, b, &btree_node_validator, &child); 431 if (r) 432 return r; 433 434 memcpy(n, dm_block_data(child), 435 dm_bm_block_size(dm_tm_get_bm(info->tm))); 436 r = dm_tm_unlock(info->tm, child); 437 if (r) 438 return r; 439 440 dm_tm_dec(info->tm, dm_block_location(child)); 441 return 0; 442 } 443 444 i = lower_bound(n, key); 445 if (i < 0) 446 return -ENODATA; 447 448 has_left_sibling = i > 0; 449 has_right_sibling = i < (le32_to_cpu(n->header.nr_entries) - 1); 450 451 if (!has_left_sibling) 452 r = rebalance2(s, info, vt, i); 453 454 else if (!has_right_sibling) 455 r = rebalance2(s, info, vt, i - 1); 456 457 else 458 r = rebalance3(s, info, vt, i - 1); 459 460 return r; 461 } 462 463 static int do_leaf(struct btree_node *n, uint64_t key, unsigned *index) 464 { 465 int i = lower_bound(n, key); 466 467 if ((i < 0) || 468 (i >= le32_to_cpu(n->header.nr_entries)) || 469 (le64_to_cpu(n->keys[i]) != key)) 470 return -ENODATA; 471 472 *index = i; 473 474 return 0; 475 } 476 477 /* 478 * Prepares for removal from one level of the hierarchy. The caller must 479 * call delete_at() to remove the entry at index. 480 */ 481 static int remove_raw(struct shadow_spine *s, struct dm_btree_info *info, 482 struct dm_btree_value_type *vt, dm_block_t root, 483 uint64_t key, unsigned *index) 484 { 485 int i = *index, r; 486 struct btree_node *n; 487 488 for (;;) { 489 r = shadow_step(s, root, vt); 490 if (r < 0) 491 break; 492 493 /* 494 * We have to patch up the parent node, ugly, but I don't 495 * see a way to do this automatically as part of the spine 496 * op. 497 */ 498 if (shadow_has_parent(s)) { 499 __le64 location = cpu_to_le64(dm_block_location(shadow_current(s))); 500 memcpy(value_ptr(dm_block_data(shadow_parent(s)), i), 501 &location, sizeof(__le64)); 502 } 503 504 n = dm_block_data(shadow_current(s)); 505 506 if (le32_to_cpu(n->header.flags) & LEAF_NODE) 507 return do_leaf(n, key, index); 508 509 r = rebalance_children(s, info, vt, key); 510 if (r) 511 break; 512 513 n = dm_block_data(shadow_current(s)); 514 if (le32_to_cpu(n->header.flags) & LEAF_NODE) 515 return do_leaf(n, key, index); 516 517 i = lower_bound(n, key); 518 519 /* 520 * We know the key is present, or else 521 * rebalance_children would have returned 522 * -ENODATA 523 */ 524 root = value64(n, i); 525 } 526 527 return r; 528 } 529 530 int dm_btree_remove(struct dm_btree_info *info, dm_block_t root, 531 uint64_t *keys, dm_block_t *new_root) 532 { 533 unsigned level, last_level = info->levels - 1; 534 int index = 0, r = 0; 535 struct shadow_spine spine; 536 struct btree_node *n; 537 struct dm_btree_value_type le64_vt; 538 539 init_le64_type(info->tm, &le64_vt); 540 init_shadow_spine(&spine, info); 541 for (level = 0; level < info->levels; level++) { 542 r = remove_raw(&spine, info, 543 (level == last_level ? 544 &info->value_type : &le64_vt), 545 root, keys[level], (unsigned *)&index); 546 if (r < 0) 547 break; 548 549 n = dm_block_data(shadow_current(&spine)); 550 if (level != last_level) { 551 root = value64(n, index); 552 continue; 553 } 554 555 BUG_ON(index < 0 || index >= le32_to_cpu(n->header.nr_entries)); 556 557 if (info->value_type.dec) 558 info->value_type.dec(info->value_type.context, 559 value_ptr(n, index)); 560 561 delete_at(n, index); 562 } 563 564 *new_root = shadow_root(&spine); 565 exit_shadow_spine(&spine); 566 567 return r; 568 } 569 EXPORT_SYMBOL_GPL(dm_btree_remove); 570 571 /*----------------------------------------------------------------*/ 572 573 static int remove_nearest(struct shadow_spine *s, struct dm_btree_info *info, 574 struct dm_btree_value_type *vt, dm_block_t root, 575 uint64_t key, int *index) 576 { 577 int i = *index, r; 578 struct btree_node *n; 579 580 for (;;) { 581 r = shadow_step(s, root, vt); 582 if (r < 0) 583 break; 584 585 /* 586 * We have to patch up the parent node, ugly, but I don't 587 * see a way to do this automatically as part of the spine 588 * op. 589 */ 590 if (shadow_has_parent(s)) { 591 __le64 location = cpu_to_le64(dm_block_location(shadow_current(s))); 592 memcpy(value_ptr(dm_block_data(shadow_parent(s)), i), 593 &location, sizeof(__le64)); 594 } 595 596 n = dm_block_data(shadow_current(s)); 597 598 if (le32_to_cpu(n->header.flags) & LEAF_NODE) { 599 *index = lower_bound(n, key); 600 return 0; 601 } 602 603 r = rebalance_children(s, info, vt, key); 604 if (r) 605 break; 606 607 n = dm_block_data(shadow_current(s)); 608 if (le32_to_cpu(n->header.flags) & LEAF_NODE) { 609 *index = lower_bound(n, key); 610 return 0; 611 } 612 613 i = lower_bound(n, key); 614 615 /* 616 * We know the key is present, or else 617 * rebalance_children would have returned 618 * -ENODATA 619 */ 620 root = value64(n, i); 621 } 622 623 return r; 624 } 625 626 static int remove_one(struct dm_btree_info *info, dm_block_t root, 627 uint64_t *keys, uint64_t end_key, 628 dm_block_t *new_root, unsigned *nr_removed) 629 { 630 unsigned level, last_level = info->levels - 1; 631 int index = 0, r = 0; 632 struct shadow_spine spine; 633 struct btree_node *n; 634 struct dm_btree_value_type le64_vt; 635 uint64_t k; 636 637 init_le64_type(info->tm, &le64_vt); 638 init_shadow_spine(&spine, info); 639 for (level = 0; level < last_level; level++) { 640 r = remove_raw(&spine, info, &le64_vt, 641 root, keys[level], (unsigned *) &index); 642 if (r < 0) 643 goto out; 644 645 n = dm_block_data(shadow_current(&spine)); 646 root = value64(n, index); 647 } 648 649 r = remove_nearest(&spine, info, &info->value_type, 650 root, keys[last_level], &index); 651 if (r < 0) 652 goto out; 653 654 n = dm_block_data(shadow_current(&spine)); 655 656 if (index < 0) 657 index = 0; 658 659 if (index >= le32_to_cpu(n->header.nr_entries)) { 660 r = -ENODATA; 661 goto out; 662 } 663 664 k = le64_to_cpu(n->keys[index]); 665 if (k >= keys[last_level] && k < end_key) { 666 if (info->value_type.dec) 667 info->value_type.dec(info->value_type.context, 668 value_ptr(n, index)); 669 670 delete_at(n, index); 671 keys[last_level] = k + 1ull; 672 673 } else 674 r = -ENODATA; 675 676 out: 677 *new_root = shadow_root(&spine); 678 exit_shadow_spine(&spine); 679 680 return r; 681 } 682 683 int dm_btree_remove_leaves(struct dm_btree_info *info, dm_block_t root, 684 uint64_t *first_key, uint64_t end_key, 685 dm_block_t *new_root, unsigned *nr_removed) 686 { 687 int r; 688 689 *nr_removed = 0; 690 do { 691 r = remove_one(info, root, first_key, end_key, &root, nr_removed); 692 if (!r) 693 (*nr_removed)++; 694 } while (!r); 695 696 *new_root = root; 697 return r == -ENODATA ? 0 : r; 698 } 699 EXPORT_SYMBOL_GPL(dm_btree_remove_leaves); 700