1 /*
2  * Copyright (C) 2011 Red Hat, Inc.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm-btree.h"
8 #include "dm-btree-internal.h"
9 #include "dm-transaction-manager.h"
10 
11 #include <linux/export.h>
12 #include <linux/device-mapper.h>
13 
14 #define DM_MSG_PREFIX "btree"
15 
16 /*
17  * Removing an entry from a btree
18  * ==============================
19  *
20  * A very important constraint for our btree is that no node, except the
21  * root, may have fewer than a certain number of entries.
22  * (MIN_ENTRIES <= nr_entries <= MAX_ENTRIES).
23  *
24  * Ensuring this is complicated by the way we want to only ever hold the
25  * locks on 2 nodes concurrently, and only change nodes in a top to bottom
26  * fashion.
27  *
28  * Each node may have a left or right sibling.  When decending the spine,
29  * if a node contains only MIN_ENTRIES then we try and increase this to at
30  * least MIN_ENTRIES + 1.  We do this in the following ways:
31  *
32  * [A] No siblings => this can only happen if the node is the root, in which
33  *     case we copy the childs contents over the root.
34  *
35  * [B] No left sibling
36  *     ==> rebalance(node, right sibling)
37  *
38  * [C] No right sibling
39  *     ==> rebalance(left sibling, node)
40  *
41  * [D] Both siblings, total_entries(left, node, right) <= DEL_THRESHOLD
42  *     ==> delete node adding it's contents to left and right
43  *
44  * [E] Both siblings, total_entries(left, node, right) > DEL_THRESHOLD
45  *     ==> rebalance(left, node, right)
46  *
47  * After these operations it's possible that the our original node no
48  * longer contains the desired sub tree.  For this reason this rebalancing
49  * is performed on the children of the current node.  This also avoids
50  * having a special case for the root.
51  *
52  * Once this rebalancing has occurred we can then step into the child node
53  * for internal nodes.  Or delete the entry for leaf nodes.
54  */
55 
56 /*
57  * Some little utilities for moving node data around.
58  */
59 static void node_shift(struct btree_node *n, int shift)
60 {
61 	uint32_t nr_entries = le32_to_cpu(n->header.nr_entries);
62 	uint32_t value_size = le32_to_cpu(n->header.value_size);
63 
64 	if (shift < 0) {
65 		shift = -shift;
66 		BUG_ON(shift > nr_entries);
67 		BUG_ON((void *) key_ptr(n, shift) >= value_ptr(n, shift));
68 		memmove(key_ptr(n, 0),
69 			key_ptr(n, shift),
70 			(nr_entries - shift) * sizeof(__le64));
71 		memmove(value_ptr(n, 0),
72 			value_ptr(n, shift),
73 			(nr_entries - shift) * value_size);
74 	} else {
75 		BUG_ON(nr_entries + shift > le32_to_cpu(n->header.max_entries));
76 		memmove(key_ptr(n, shift),
77 			key_ptr(n, 0),
78 			nr_entries * sizeof(__le64));
79 		memmove(value_ptr(n, shift),
80 			value_ptr(n, 0),
81 			nr_entries * value_size);
82 	}
83 }
84 
85 static int node_copy(struct btree_node *left, struct btree_node *right, int shift)
86 {
87 	uint32_t nr_left = le32_to_cpu(left->header.nr_entries);
88 	uint32_t value_size = le32_to_cpu(left->header.value_size);
89 	if (value_size != le32_to_cpu(right->header.value_size)) {
90 		DMERR("mismatched value size");
91 		return -EILSEQ;
92 	}
93 
94 	if (shift < 0) {
95 		shift = -shift;
96 
97 		if (nr_left + shift > le32_to_cpu(left->header.max_entries)) {
98 			DMERR("bad shift");
99 			return -EINVAL;
100 		}
101 
102 		memcpy(key_ptr(left, nr_left),
103 		       key_ptr(right, 0),
104 		       shift * sizeof(__le64));
105 		memcpy(value_ptr(left, nr_left),
106 		       value_ptr(right, 0),
107 		       shift * value_size);
108 	} else {
109 		if (shift > le32_to_cpu(right->header.max_entries)) {
110 			DMERR("bad shift");
111 			return -EINVAL;
112 		}
113 
114 		memcpy(key_ptr(right, 0),
115 		       key_ptr(left, nr_left - shift),
116 		       shift * sizeof(__le64));
117 		memcpy(value_ptr(right, 0),
118 		       value_ptr(left, nr_left - shift),
119 		       shift * value_size);
120 	}
121 	return 0;
122 }
123 
124 /*
125  * Delete a specific entry from a leaf node.
126  */
127 static void delete_at(struct btree_node *n, unsigned index)
128 {
129 	unsigned nr_entries = le32_to_cpu(n->header.nr_entries);
130 	unsigned nr_to_copy = nr_entries - (index + 1);
131 	uint32_t value_size = le32_to_cpu(n->header.value_size);
132 	BUG_ON(index >= nr_entries);
133 
134 	if (nr_to_copy) {
135 		memmove(key_ptr(n, index),
136 			key_ptr(n, index + 1),
137 			nr_to_copy * sizeof(__le64));
138 
139 		memmove(value_ptr(n, index),
140 			value_ptr(n, index + 1),
141 			nr_to_copy * value_size);
142 	}
143 
144 	n->header.nr_entries = cpu_to_le32(nr_entries - 1);
145 }
146 
147 static unsigned merge_threshold(struct btree_node *n)
148 {
149 	return le32_to_cpu(n->header.max_entries) / 3;
150 }
151 
152 struct child {
153 	unsigned index;
154 	struct dm_block *block;
155 	struct btree_node *n;
156 };
157 
158 static int init_child(struct dm_btree_info *info, struct dm_btree_value_type *vt,
159 		      struct btree_node *parent,
160 		      unsigned index, struct child *result)
161 {
162 	int r, inc;
163 	dm_block_t root;
164 
165 	result->index = index;
166 	root = value64(parent, index);
167 
168 	r = dm_tm_shadow_block(info->tm, root, &btree_node_validator,
169 			       &result->block, &inc);
170 	if (r)
171 		return r;
172 
173 	result->n = dm_block_data(result->block);
174 
175 	if (inc)
176 		inc_children(info->tm, result->n, vt);
177 
178 	*((__le64 *) value_ptr(parent, index)) =
179 		cpu_to_le64(dm_block_location(result->block));
180 
181 	return 0;
182 }
183 
184 static void exit_child(struct dm_btree_info *info, struct child *c)
185 {
186 	dm_tm_unlock(info->tm, c->block);
187 }
188 
189 static int shift(struct btree_node *left, struct btree_node *right, int count)
190 {
191 	int r;
192 	uint32_t nr_left = le32_to_cpu(left->header.nr_entries);
193 	uint32_t nr_right = le32_to_cpu(right->header.nr_entries);
194 	uint32_t max_entries = le32_to_cpu(left->header.max_entries);
195 	uint32_t r_max_entries = le32_to_cpu(right->header.max_entries);
196 
197 	if (max_entries != r_max_entries) {
198 		DMERR("node max_entries mismatch");
199 		return -EILSEQ;
200 	}
201 
202 	if (nr_left - count > max_entries) {
203 		DMERR("node shift out of bounds");
204 		return -EINVAL;
205 	}
206 
207 	if (nr_right + count > max_entries) {
208 		DMERR("node shift out of bounds");
209 		return -EINVAL;
210 	}
211 
212 	if (!count)
213 		return 0;
214 
215 	if (count > 0) {
216 		node_shift(right, count);
217 		r = node_copy(left, right, count);
218 		if (r)
219 			return r;
220 	} else {
221 		r = node_copy(left, right, count);
222 		if (r)
223 			return r;
224 		node_shift(right, count);
225 	}
226 
227 	left->header.nr_entries = cpu_to_le32(nr_left - count);
228 	right->header.nr_entries = cpu_to_le32(nr_right + count);
229 
230 	return 0;
231 }
232 
233 static int __rebalance2(struct dm_btree_info *info, struct btree_node *parent,
234 			struct child *l, struct child *r)
235 {
236 	int ret;
237 	struct btree_node *left = l->n;
238 	struct btree_node *right = r->n;
239 	uint32_t nr_left = le32_to_cpu(left->header.nr_entries);
240 	uint32_t nr_right = le32_to_cpu(right->header.nr_entries);
241 	/*
242 	 * Ensure the number of entries in each child will be greater
243 	 * than or equal to (max_entries / 3 + 1), so no matter which
244 	 * child is used for removal, the number will still be not
245 	 * less than (max_entries / 3).
246 	 */
247 	unsigned int threshold = 2 * (merge_threshold(left) + 1);
248 
249 	if (nr_left + nr_right < threshold) {
250 		/*
251 		 * Merge
252 		 */
253 		node_copy(left, right, -nr_right);
254 		left->header.nr_entries = cpu_to_le32(nr_left + nr_right);
255 		delete_at(parent, r->index);
256 
257 		/*
258 		 * We need to decrement the right block, but not it's
259 		 * children, since they're still referenced by left.
260 		 */
261 		dm_tm_dec(info->tm, dm_block_location(r->block));
262 	} else {
263 		/*
264 		 * Rebalance.
265 		 */
266 		unsigned target_left = (nr_left + nr_right) / 2;
267 		ret = shift(left, right, nr_left - target_left);
268 		if (ret)
269 			return ret;
270 		*key_ptr(parent, r->index) = right->keys[0];
271 	}
272 	return 0;
273 }
274 
275 static int rebalance2(struct shadow_spine *s, struct dm_btree_info *info,
276 		      struct dm_btree_value_type *vt, unsigned left_index)
277 {
278 	int r;
279 	struct btree_node *parent;
280 	struct child left, right;
281 
282 	parent = dm_block_data(shadow_current(s));
283 
284 	r = init_child(info, vt, parent, left_index, &left);
285 	if (r)
286 		return r;
287 
288 	r = init_child(info, vt, parent, left_index + 1, &right);
289 	if (r) {
290 		exit_child(info, &left);
291 		return r;
292 	}
293 
294 	r = __rebalance2(info, parent, &left, &right);
295 
296 	exit_child(info, &left);
297 	exit_child(info, &right);
298 
299 	return r;
300 }
301 
302 /*
303  * We dump as many entries from center as possible into left, then the rest
304  * in right, then rebalance2.  This wastes some cpu, but I want something
305  * simple atm.
306  */
307 static int delete_center_node(struct dm_btree_info *info, struct btree_node *parent,
308 			      struct child *l, struct child *c, struct child *r,
309 			      struct btree_node *left, struct btree_node *center, struct btree_node *right,
310 			      uint32_t nr_left, uint32_t nr_center, uint32_t nr_right)
311 {
312 	uint32_t max_entries = le32_to_cpu(left->header.max_entries);
313 	unsigned shift = min(max_entries - nr_left, nr_center);
314 
315 	if (nr_left + shift > max_entries) {
316 		DMERR("node shift out of bounds");
317 		return -EINVAL;
318 	}
319 
320 	node_copy(left, center, -shift);
321 	left->header.nr_entries = cpu_to_le32(nr_left + shift);
322 
323 	if (shift != nr_center) {
324 		shift = nr_center - shift;
325 
326 		if ((nr_right + shift) > max_entries) {
327 			DMERR("node shift out of bounds");
328 			return -EINVAL;
329 		}
330 
331 		node_shift(right, shift);
332 		node_copy(center, right, shift);
333 		right->header.nr_entries = cpu_to_le32(nr_right + shift);
334 	}
335 	*key_ptr(parent, r->index) = right->keys[0];
336 
337 	delete_at(parent, c->index);
338 	r->index--;
339 
340 	dm_tm_dec(info->tm, dm_block_location(c->block));
341 	return __rebalance2(info, parent, l, r);
342 }
343 
344 /*
345  * Redistributes entries among 3 sibling nodes.
346  */
347 static int redistribute3(struct dm_btree_info *info, struct btree_node *parent,
348 			 struct child *l, struct child *c, struct child *r,
349 			 struct btree_node *left, struct btree_node *center, struct btree_node *right,
350 			 uint32_t nr_left, uint32_t nr_center, uint32_t nr_right)
351 {
352 	int s, ret;
353 	uint32_t max_entries = le32_to_cpu(left->header.max_entries);
354 	unsigned total = nr_left + nr_center + nr_right;
355 	unsigned target_right = total / 3;
356 	unsigned remainder = (target_right * 3) != total;
357 	unsigned target_left = target_right + remainder;
358 
359 	BUG_ON(target_left > max_entries);
360 	BUG_ON(target_right > max_entries);
361 
362 	if (nr_left < nr_right) {
363 		s = nr_left - target_left;
364 
365 		if (s < 0 && nr_center < -s) {
366 			/* not enough in central node */
367 			ret = shift(left, center, -nr_center);
368 			if (ret)
369 				return ret;
370 
371 			s += nr_center;
372 			ret = shift(left, right, s);
373 			if (ret)
374 				return ret;
375 
376 			nr_right += s;
377 		} else {
378 			ret = shift(left, center, s);
379 			if (ret)
380 				return ret;
381 		}
382 
383 		ret = shift(center, right, target_right - nr_right);
384 		if (ret)
385 			return ret;
386 	} else {
387 		s = target_right - nr_right;
388 		if (s > 0 && nr_center < s) {
389 			/* not enough in central node */
390 			ret = shift(center, right, nr_center);
391 			if (ret)
392 				return ret;
393 			s -= nr_center;
394 			ret = shift(left, right, s);
395 			if (ret)
396 				return ret;
397 			nr_left -= s;
398 		} else {
399 			ret = shift(center, right, s);
400 			if (ret)
401 				return ret;
402 		}
403 
404 		ret = shift(left, center, nr_left - target_left);
405 		if (ret)
406 			return ret;
407 	}
408 
409 	*key_ptr(parent, c->index) = center->keys[0];
410 	*key_ptr(parent, r->index) = right->keys[0];
411 	return 0;
412 }
413 
414 static int __rebalance3(struct dm_btree_info *info, struct btree_node *parent,
415 			struct child *l, struct child *c, struct child *r)
416 {
417 	struct btree_node *left = l->n;
418 	struct btree_node *center = c->n;
419 	struct btree_node *right = r->n;
420 
421 	uint32_t nr_left = le32_to_cpu(left->header.nr_entries);
422 	uint32_t nr_center = le32_to_cpu(center->header.nr_entries);
423 	uint32_t nr_right = le32_to_cpu(right->header.nr_entries);
424 
425 	unsigned threshold = merge_threshold(left) * 4 + 1;
426 
427 	if ((left->header.max_entries != center->header.max_entries) ||
428 	    (center->header.max_entries != right->header.max_entries)) {
429 		DMERR("bad btree metadata, max_entries differ");
430 		return -EILSEQ;
431 	}
432 
433 	if ((nr_left + nr_center + nr_right) < threshold) {
434 		return delete_center_node(info, parent, l, c, r, left, center, right,
435 					  nr_left, nr_center, nr_right);
436 	}
437 
438 	return redistribute3(info, parent, l, c, r, left, center, right,
439 			     nr_left, nr_center, nr_right);
440 }
441 
442 static int rebalance3(struct shadow_spine *s, struct dm_btree_info *info,
443 		      struct dm_btree_value_type *vt, unsigned left_index)
444 {
445 	int r;
446 	struct btree_node *parent = dm_block_data(shadow_current(s));
447 	struct child left, center, right;
448 
449 	/*
450 	 * FIXME: fill out an array?
451 	 */
452 	r = init_child(info, vt, parent, left_index, &left);
453 	if (r)
454 		return r;
455 
456 	r = init_child(info, vt, parent, left_index + 1, &center);
457 	if (r) {
458 		exit_child(info, &left);
459 		return r;
460 	}
461 
462 	r = init_child(info, vt, parent, left_index + 2, &right);
463 	if (r) {
464 		exit_child(info, &left);
465 		exit_child(info, &center);
466 		return r;
467 	}
468 
469 	r = __rebalance3(info, parent, &left, &center, &right);
470 
471 	exit_child(info, &left);
472 	exit_child(info, &center);
473 	exit_child(info, &right);
474 
475 	return r;
476 }
477 
478 static int rebalance_children(struct shadow_spine *s,
479 			      struct dm_btree_info *info,
480 			      struct dm_btree_value_type *vt, uint64_t key)
481 {
482 	int i, r, has_left_sibling, has_right_sibling;
483 	struct btree_node *n;
484 
485 	n = dm_block_data(shadow_current(s));
486 
487 	if (le32_to_cpu(n->header.nr_entries) == 1) {
488 		struct dm_block *child;
489 		dm_block_t b = value64(n, 0);
490 
491 		r = dm_tm_read_lock(info->tm, b, &btree_node_validator, &child);
492 		if (r)
493 			return r;
494 
495 		memcpy(n, dm_block_data(child),
496 		       dm_bm_block_size(dm_tm_get_bm(info->tm)));
497 
498 		dm_tm_dec(info->tm, dm_block_location(child));
499 		dm_tm_unlock(info->tm, child);
500 		return 0;
501 	}
502 
503 	i = lower_bound(n, key);
504 	if (i < 0)
505 		return -ENODATA;
506 
507 	has_left_sibling = i > 0;
508 	has_right_sibling = i < (le32_to_cpu(n->header.nr_entries) - 1);
509 
510 	if (!has_left_sibling)
511 		r = rebalance2(s, info, vt, i);
512 
513 	else if (!has_right_sibling)
514 		r = rebalance2(s, info, vt, i - 1);
515 
516 	else
517 		r = rebalance3(s, info, vt, i - 1);
518 
519 	return r;
520 }
521 
522 static int do_leaf(struct btree_node *n, uint64_t key, unsigned *index)
523 {
524 	int i = lower_bound(n, key);
525 
526 	if ((i < 0) ||
527 	    (i >= le32_to_cpu(n->header.nr_entries)) ||
528 	    (le64_to_cpu(n->keys[i]) != key))
529 		return -ENODATA;
530 
531 	*index = i;
532 
533 	return 0;
534 }
535 
536 /*
537  * Prepares for removal from one level of the hierarchy.  The caller must
538  * call delete_at() to remove the entry at index.
539  */
540 static int remove_raw(struct shadow_spine *s, struct dm_btree_info *info,
541 		      struct dm_btree_value_type *vt, dm_block_t root,
542 		      uint64_t key, unsigned *index)
543 {
544 	int i = *index, r;
545 	struct btree_node *n;
546 
547 	for (;;) {
548 		r = shadow_step(s, root, vt);
549 		if (r < 0)
550 			break;
551 
552 		/*
553 		 * We have to patch up the parent node, ugly, but I don't
554 		 * see a way to do this automatically as part of the spine
555 		 * op.
556 		 */
557 		if (shadow_has_parent(s)) {
558 			__le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));
559 			memcpy(value_ptr(dm_block_data(shadow_parent(s)), i),
560 			       &location, sizeof(__le64));
561 		}
562 
563 		n = dm_block_data(shadow_current(s));
564 
565 		if (le32_to_cpu(n->header.flags) & LEAF_NODE)
566 			return do_leaf(n, key, index);
567 
568 		r = rebalance_children(s, info, vt, key);
569 		if (r)
570 			break;
571 
572 		n = dm_block_data(shadow_current(s));
573 		if (le32_to_cpu(n->header.flags) & LEAF_NODE)
574 			return do_leaf(n, key, index);
575 
576 		i = lower_bound(n, key);
577 
578 		/*
579 		 * We know the key is present, or else
580 		 * rebalance_children would have returned
581 		 * -ENODATA
582 		 */
583 		root = value64(n, i);
584 	}
585 
586 	return r;
587 }
588 
589 int dm_btree_remove(struct dm_btree_info *info, dm_block_t root,
590 		    uint64_t *keys, dm_block_t *new_root)
591 {
592 	unsigned level, last_level = info->levels - 1;
593 	int index = 0, r = 0;
594 	struct shadow_spine spine;
595 	struct btree_node *n;
596 	struct dm_btree_value_type le64_vt;
597 
598 	init_le64_type(info->tm, &le64_vt);
599 	init_shadow_spine(&spine, info);
600 	for (level = 0; level < info->levels; level++) {
601 		r = remove_raw(&spine, info,
602 			       (level == last_level ?
603 				&info->value_type : &le64_vt),
604 			       root, keys[level], (unsigned *)&index);
605 		if (r < 0)
606 			break;
607 
608 		n = dm_block_data(shadow_current(&spine));
609 		if (level != last_level) {
610 			root = value64(n, index);
611 			continue;
612 		}
613 
614 		BUG_ON(index < 0 || index >= le32_to_cpu(n->header.nr_entries));
615 
616 		if (info->value_type.dec)
617 			info->value_type.dec(info->value_type.context,
618 					     value_ptr(n, index), 1);
619 
620 		delete_at(n, index);
621 	}
622 
623 	if (!r)
624 		*new_root = shadow_root(&spine);
625 	exit_shadow_spine(&spine);
626 
627 	return r;
628 }
629 EXPORT_SYMBOL_GPL(dm_btree_remove);
630 
631 /*----------------------------------------------------------------*/
632 
633 static int remove_nearest(struct shadow_spine *s, struct dm_btree_info *info,
634 			  struct dm_btree_value_type *vt, dm_block_t root,
635 			  uint64_t key, int *index)
636 {
637 	int i = *index, r;
638 	struct btree_node *n;
639 
640 	for (;;) {
641 		r = shadow_step(s, root, vt);
642 		if (r < 0)
643 			break;
644 
645 		/*
646 		 * We have to patch up the parent node, ugly, but I don't
647 		 * see a way to do this automatically as part of the spine
648 		 * op.
649 		 */
650 		if (shadow_has_parent(s)) {
651 			__le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));
652 			memcpy(value_ptr(dm_block_data(shadow_parent(s)), i),
653 			       &location, sizeof(__le64));
654 		}
655 
656 		n = dm_block_data(shadow_current(s));
657 
658 		if (le32_to_cpu(n->header.flags) & LEAF_NODE) {
659 			*index = lower_bound(n, key);
660 			return 0;
661 		}
662 
663 		r = rebalance_children(s, info, vt, key);
664 		if (r)
665 			break;
666 
667 		n = dm_block_data(shadow_current(s));
668 		if (le32_to_cpu(n->header.flags) & LEAF_NODE) {
669 			*index = lower_bound(n, key);
670 			return 0;
671 		}
672 
673 		i = lower_bound(n, key);
674 
675 		/*
676 		 * We know the key is present, or else
677 		 * rebalance_children would have returned
678 		 * -ENODATA
679 		 */
680 		root = value64(n, i);
681 	}
682 
683 	return r;
684 }
685 
686 static int remove_one(struct dm_btree_info *info, dm_block_t root,
687 		      uint64_t *keys, uint64_t end_key,
688 		      dm_block_t *new_root, unsigned *nr_removed)
689 {
690 	unsigned level, last_level = info->levels - 1;
691 	int index = 0, r = 0;
692 	struct shadow_spine spine;
693 	struct btree_node *n;
694 	struct dm_btree_value_type le64_vt;
695 	uint64_t k;
696 
697 	init_le64_type(info->tm, &le64_vt);
698 	init_shadow_spine(&spine, info);
699 	for (level = 0; level < last_level; level++) {
700 		r = remove_raw(&spine, info, &le64_vt,
701 			       root, keys[level], (unsigned *) &index);
702 		if (r < 0)
703 			goto out;
704 
705 		n = dm_block_data(shadow_current(&spine));
706 		root = value64(n, index);
707 	}
708 
709 	r = remove_nearest(&spine, info, &info->value_type,
710 			   root, keys[last_level], &index);
711 	if (r < 0)
712 		goto out;
713 
714 	n = dm_block_data(shadow_current(&spine));
715 
716 	if (index < 0)
717 		index = 0;
718 
719 	if (index >= le32_to_cpu(n->header.nr_entries)) {
720 		r = -ENODATA;
721 		goto out;
722 	}
723 
724 	k = le64_to_cpu(n->keys[index]);
725 	if (k >= keys[last_level] && k < end_key) {
726 		if (info->value_type.dec)
727 			info->value_type.dec(info->value_type.context,
728 					     value_ptr(n, index), 1);
729 
730 		delete_at(n, index);
731 		keys[last_level] = k + 1ull;
732 
733 	} else
734 		r = -ENODATA;
735 
736 out:
737 	*new_root = shadow_root(&spine);
738 	exit_shadow_spine(&spine);
739 
740 	return r;
741 }
742 
743 int dm_btree_remove_leaves(struct dm_btree_info *info, dm_block_t root,
744 			   uint64_t *first_key, uint64_t end_key,
745 			   dm_block_t *new_root, unsigned *nr_removed)
746 {
747 	int r;
748 
749 	*nr_removed = 0;
750 	do {
751 		r = remove_one(info, root, first_key, end_key, &root, nr_removed);
752 		if (!r)
753 			(*nr_removed)++;
754 	} while (!r);
755 
756 	*new_root = root;
757 	return r == -ENODATA ? 0 : r;
758 }
759 EXPORT_SYMBOL_GPL(dm_btree_remove_leaves);
760