1 /*
2  * Copyright (C) 2011 Red Hat, Inc.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm-btree.h"
8 #include "dm-btree-internal.h"
9 #include "dm-transaction-manager.h"
10 
11 #include <linux/export.h>
12 
13 /*
14  * Removing an entry from a btree
15  * ==============================
16  *
17  * A very important constraint for our btree is that no node, except the
18  * root, may have fewer than a certain number of entries.
19  * (MIN_ENTRIES <= nr_entries <= MAX_ENTRIES).
20  *
21  * Ensuring this is complicated by the way we want to only ever hold the
22  * locks on 2 nodes concurrently, and only change nodes in a top to bottom
23  * fashion.
24  *
25  * Each node may have a left or right sibling.  When decending the spine,
26  * if a node contains only MIN_ENTRIES then we try and increase this to at
27  * least MIN_ENTRIES + 1.  We do this in the following ways:
28  *
29  * [A] No siblings => this can only happen if the node is the root, in which
30  *     case we copy the childs contents over the root.
31  *
32  * [B] No left sibling
33  *     ==> rebalance(node, right sibling)
34  *
35  * [C] No right sibling
36  *     ==> rebalance(left sibling, node)
37  *
38  * [D] Both siblings, total_entries(left, node, right) <= DEL_THRESHOLD
39  *     ==> delete node adding it's contents to left and right
40  *
41  * [E] Both siblings, total_entries(left, node, right) > DEL_THRESHOLD
42  *     ==> rebalance(left, node, right)
43  *
44  * After these operations it's possible that the our original node no
45  * longer contains the desired sub tree.  For this reason this rebalancing
46  * is performed on the children of the current node.  This also avoids
47  * having a special case for the root.
48  *
49  * Once this rebalancing has occurred we can then step into the child node
50  * for internal nodes.  Or delete the entry for leaf nodes.
51  */
52 
53 /*
54  * Some little utilities for moving node data around.
55  */
56 static void node_shift(struct btree_node *n, int shift)
57 {
58 	uint32_t nr_entries = le32_to_cpu(n->header.nr_entries);
59 	uint32_t value_size = le32_to_cpu(n->header.value_size);
60 
61 	if (shift < 0) {
62 		shift = -shift;
63 		BUG_ON(shift > nr_entries);
64 		BUG_ON((void *) key_ptr(n, shift) >= value_ptr(n, shift));
65 		memmove(key_ptr(n, 0),
66 			key_ptr(n, shift),
67 			(nr_entries - shift) * sizeof(__le64));
68 		memmove(value_ptr(n, 0),
69 			value_ptr(n, shift),
70 			(nr_entries - shift) * value_size);
71 	} else {
72 		BUG_ON(nr_entries + shift > le32_to_cpu(n->header.max_entries));
73 		memmove(key_ptr(n, shift),
74 			key_ptr(n, 0),
75 			nr_entries * sizeof(__le64));
76 		memmove(value_ptr(n, shift),
77 			value_ptr(n, 0),
78 			nr_entries * value_size);
79 	}
80 }
81 
82 static void node_copy(struct btree_node *left, struct btree_node *right, int shift)
83 {
84 	uint32_t nr_left = le32_to_cpu(left->header.nr_entries);
85 	uint32_t value_size = le32_to_cpu(left->header.value_size);
86 	BUG_ON(value_size != le32_to_cpu(right->header.value_size));
87 
88 	if (shift < 0) {
89 		shift = -shift;
90 		BUG_ON(nr_left + shift > le32_to_cpu(left->header.max_entries));
91 		memcpy(key_ptr(left, nr_left),
92 		       key_ptr(right, 0),
93 		       shift * sizeof(__le64));
94 		memcpy(value_ptr(left, nr_left),
95 		       value_ptr(right, 0),
96 		       shift * value_size);
97 	} else {
98 		BUG_ON(shift > le32_to_cpu(right->header.max_entries));
99 		memcpy(key_ptr(right, 0),
100 		       key_ptr(left, nr_left - shift),
101 		       shift * sizeof(__le64));
102 		memcpy(value_ptr(right, 0),
103 		       value_ptr(left, nr_left - shift),
104 		       shift * value_size);
105 	}
106 }
107 
108 /*
109  * Delete a specific entry from a leaf node.
110  */
111 static void delete_at(struct btree_node *n, unsigned index)
112 {
113 	unsigned nr_entries = le32_to_cpu(n->header.nr_entries);
114 	unsigned nr_to_copy = nr_entries - (index + 1);
115 	uint32_t value_size = le32_to_cpu(n->header.value_size);
116 	BUG_ON(index >= nr_entries);
117 
118 	if (nr_to_copy) {
119 		memmove(key_ptr(n, index),
120 			key_ptr(n, index + 1),
121 			nr_to_copy * sizeof(__le64));
122 
123 		memmove(value_ptr(n, index),
124 			value_ptr(n, index + 1),
125 			nr_to_copy * value_size);
126 	}
127 
128 	n->header.nr_entries = cpu_to_le32(nr_entries - 1);
129 }
130 
131 static unsigned merge_threshold(struct btree_node *n)
132 {
133 	return le32_to_cpu(n->header.max_entries) / 3;
134 }
135 
136 struct child {
137 	unsigned index;
138 	struct dm_block *block;
139 	struct btree_node *n;
140 };
141 
142 static int init_child(struct dm_btree_info *info, struct dm_btree_value_type *vt,
143 		      struct btree_node *parent,
144 		      unsigned index, struct child *result)
145 {
146 	int r, inc;
147 	dm_block_t root;
148 
149 	result->index = index;
150 	root = value64(parent, index);
151 
152 	r = dm_tm_shadow_block(info->tm, root, &btree_node_validator,
153 			       &result->block, &inc);
154 	if (r)
155 		return r;
156 
157 	result->n = dm_block_data(result->block);
158 
159 	if (inc)
160 		inc_children(info->tm, result->n, vt);
161 
162 	*((__le64 *) value_ptr(parent, index)) =
163 		cpu_to_le64(dm_block_location(result->block));
164 
165 	return 0;
166 }
167 
168 static void exit_child(struct dm_btree_info *info, struct child *c)
169 {
170 	dm_tm_unlock(info->tm, c->block);
171 }
172 
173 static void shift(struct btree_node *left, struct btree_node *right, int count)
174 {
175 	uint32_t nr_left = le32_to_cpu(left->header.nr_entries);
176 	uint32_t nr_right = le32_to_cpu(right->header.nr_entries);
177 	uint32_t max_entries = le32_to_cpu(left->header.max_entries);
178 	uint32_t r_max_entries = le32_to_cpu(right->header.max_entries);
179 
180 	BUG_ON(max_entries != r_max_entries);
181 	BUG_ON(nr_left - count > max_entries);
182 	BUG_ON(nr_right + count > max_entries);
183 
184 	if (!count)
185 		return;
186 
187 	if (count > 0) {
188 		node_shift(right, count);
189 		node_copy(left, right, count);
190 	} else {
191 		node_copy(left, right, count);
192 		node_shift(right, count);
193 	}
194 
195 	left->header.nr_entries = cpu_to_le32(nr_left - count);
196 	right->header.nr_entries = cpu_to_le32(nr_right + count);
197 }
198 
199 static void __rebalance2(struct dm_btree_info *info, struct btree_node *parent,
200 			 struct child *l, struct child *r)
201 {
202 	struct btree_node *left = l->n;
203 	struct btree_node *right = r->n;
204 	uint32_t nr_left = le32_to_cpu(left->header.nr_entries);
205 	uint32_t nr_right = le32_to_cpu(right->header.nr_entries);
206 	/*
207 	 * Ensure the number of entries in each child will be greater
208 	 * than or equal to (max_entries / 3 + 1), so no matter which
209 	 * child is used for removal, the number will still be not
210 	 * less than (max_entries / 3).
211 	 */
212 	unsigned int threshold = 2 * (merge_threshold(left) + 1);
213 
214 	if (nr_left + nr_right < threshold) {
215 		/*
216 		 * Merge
217 		 */
218 		node_copy(left, right, -nr_right);
219 		left->header.nr_entries = cpu_to_le32(nr_left + nr_right);
220 		delete_at(parent, r->index);
221 
222 		/*
223 		 * We need to decrement the right block, but not it's
224 		 * children, since they're still referenced by left.
225 		 */
226 		dm_tm_dec(info->tm, dm_block_location(r->block));
227 	} else {
228 		/*
229 		 * Rebalance.
230 		 */
231 		unsigned target_left = (nr_left + nr_right) / 2;
232 		shift(left, right, nr_left - target_left);
233 		*key_ptr(parent, r->index) = right->keys[0];
234 	}
235 }
236 
237 static int rebalance2(struct shadow_spine *s, struct dm_btree_info *info,
238 		      struct dm_btree_value_type *vt, unsigned left_index)
239 {
240 	int r;
241 	struct btree_node *parent;
242 	struct child left, right;
243 
244 	parent = dm_block_data(shadow_current(s));
245 
246 	r = init_child(info, vt, parent, left_index, &left);
247 	if (r)
248 		return r;
249 
250 	r = init_child(info, vt, parent, left_index + 1, &right);
251 	if (r) {
252 		exit_child(info, &left);
253 		return r;
254 	}
255 
256 	__rebalance2(info, parent, &left, &right);
257 
258 	exit_child(info, &left);
259 	exit_child(info, &right);
260 
261 	return 0;
262 }
263 
264 /*
265  * We dump as many entries from center as possible into left, then the rest
266  * in right, then rebalance2.  This wastes some cpu, but I want something
267  * simple atm.
268  */
269 static void delete_center_node(struct dm_btree_info *info, struct btree_node *parent,
270 			       struct child *l, struct child *c, struct child *r,
271 			       struct btree_node *left, struct btree_node *center, struct btree_node *right,
272 			       uint32_t nr_left, uint32_t nr_center, uint32_t nr_right)
273 {
274 	uint32_t max_entries = le32_to_cpu(left->header.max_entries);
275 	unsigned shift = min(max_entries - nr_left, nr_center);
276 
277 	BUG_ON(nr_left + shift > max_entries);
278 	node_copy(left, center, -shift);
279 	left->header.nr_entries = cpu_to_le32(nr_left + shift);
280 
281 	if (shift != nr_center) {
282 		shift = nr_center - shift;
283 		BUG_ON((nr_right + shift) > max_entries);
284 		node_shift(right, shift);
285 		node_copy(center, right, shift);
286 		right->header.nr_entries = cpu_to_le32(nr_right + shift);
287 	}
288 	*key_ptr(parent, r->index) = right->keys[0];
289 
290 	delete_at(parent, c->index);
291 	r->index--;
292 
293 	dm_tm_dec(info->tm, dm_block_location(c->block));
294 	__rebalance2(info, parent, l, r);
295 }
296 
297 /*
298  * Redistributes entries among 3 sibling nodes.
299  */
300 static void redistribute3(struct dm_btree_info *info, struct btree_node *parent,
301 			  struct child *l, struct child *c, struct child *r,
302 			  struct btree_node *left, struct btree_node *center, struct btree_node *right,
303 			  uint32_t nr_left, uint32_t nr_center, uint32_t nr_right)
304 {
305 	int s;
306 	uint32_t max_entries = le32_to_cpu(left->header.max_entries);
307 	unsigned total = nr_left + nr_center + nr_right;
308 	unsigned target_right = total / 3;
309 	unsigned remainder = (target_right * 3) != total;
310 	unsigned target_left = target_right + remainder;
311 
312 	BUG_ON(target_left > max_entries);
313 	BUG_ON(target_right > max_entries);
314 
315 	if (nr_left < nr_right) {
316 		s = nr_left - target_left;
317 
318 		if (s < 0 && nr_center < -s) {
319 			/* not enough in central node */
320 			shift(left, center, -nr_center);
321 			s += nr_center;
322 			shift(left, right, s);
323 			nr_right += s;
324 		} else
325 			shift(left, center, s);
326 
327 		shift(center, right, target_right - nr_right);
328 
329 	} else {
330 		s = target_right - nr_right;
331 		if (s > 0 && nr_center < s) {
332 			/* not enough in central node */
333 			shift(center, right, nr_center);
334 			s -= nr_center;
335 			shift(left, right, s);
336 			nr_left -= s;
337 		} else
338 			shift(center, right, s);
339 
340 		shift(left, center, nr_left - target_left);
341 	}
342 
343 	*key_ptr(parent, c->index) = center->keys[0];
344 	*key_ptr(parent, r->index) = right->keys[0];
345 }
346 
347 static void __rebalance3(struct dm_btree_info *info, struct btree_node *parent,
348 			 struct child *l, struct child *c, struct child *r)
349 {
350 	struct btree_node *left = l->n;
351 	struct btree_node *center = c->n;
352 	struct btree_node *right = r->n;
353 
354 	uint32_t nr_left = le32_to_cpu(left->header.nr_entries);
355 	uint32_t nr_center = le32_to_cpu(center->header.nr_entries);
356 	uint32_t nr_right = le32_to_cpu(right->header.nr_entries);
357 
358 	unsigned threshold = merge_threshold(left) * 4 + 1;
359 
360 	BUG_ON(left->header.max_entries != center->header.max_entries);
361 	BUG_ON(center->header.max_entries != right->header.max_entries);
362 
363 	if ((nr_left + nr_center + nr_right) < threshold)
364 		delete_center_node(info, parent, l, c, r, left, center, right,
365 				   nr_left, nr_center, nr_right);
366 	else
367 		redistribute3(info, parent, l, c, r, left, center, right,
368 			      nr_left, nr_center, nr_right);
369 }
370 
371 static int rebalance3(struct shadow_spine *s, struct dm_btree_info *info,
372 		      struct dm_btree_value_type *vt, unsigned left_index)
373 {
374 	int r;
375 	struct btree_node *parent = dm_block_data(shadow_current(s));
376 	struct child left, center, right;
377 
378 	/*
379 	 * FIXME: fill out an array?
380 	 */
381 	r = init_child(info, vt, parent, left_index, &left);
382 	if (r)
383 		return r;
384 
385 	r = init_child(info, vt, parent, left_index + 1, &center);
386 	if (r) {
387 		exit_child(info, &left);
388 		return r;
389 	}
390 
391 	r = init_child(info, vt, parent, left_index + 2, &right);
392 	if (r) {
393 		exit_child(info, &left);
394 		exit_child(info, &center);
395 		return r;
396 	}
397 
398 	__rebalance3(info, parent, &left, &center, &right);
399 
400 	exit_child(info, &left);
401 	exit_child(info, &center);
402 	exit_child(info, &right);
403 
404 	return 0;
405 }
406 
407 static int rebalance_children(struct shadow_spine *s,
408 			      struct dm_btree_info *info,
409 			      struct dm_btree_value_type *vt, uint64_t key)
410 {
411 	int i, r, has_left_sibling, has_right_sibling;
412 	struct btree_node *n;
413 
414 	n = dm_block_data(shadow_current(s));
415 
416 	if (le32_to_cpu(n->header.nr_entries) == 1) {
417 		struct dm_block *child;
418 		dm_block_t b = value64(n, 0);
419 
420 		r = dm_tm_read_lock(info->tm, b, &btree_node_validator, &child);
421 		if (r)
422 			return r;
423 
424 		memcpy(n, dm_block_data(child),
425 		       dm_bm_block_size(dm_tm_get_bm(info->tm)));
426 		dm_tm_unlock(info->tm, child);
427 
428 		dm_tm_dec(info->tm, dm_block_location(child));
429 		return 0;
430 	}
431 
432 	i = lower_bound(n, key);
433 	if (i < 0)
434 		return -ENODATA;
435 
436 	has_left_sibling = i > 0;
437 	has_right_sibling = i < (le32_to_cpu(n->header.nr_entries) - 1);
438 
439 	if (!has_left_sibling)
440 		r = rebalance2(s, info, vt, i);
441 
442 	else if (!has_right_sibling)
443 		r = rebalance2(s, info, vt, i - 1);
444 
445 	else
446 		r = rebalance3(s, info, vt, i - 1);
447 
448 	return r;
449 }
450 
451 static int do_leaf(struct btree_node *n, uint64_t key, unsigned *index)
452 {
453 	int i = lower_bound(n, key);
454 
455 	if ((i < 0) ||
456 	    (i >= le32_to_cpu(n->header.nr_entries)) ||
457 	    (le64_to_cpu(n->keys[i]) != key))
458 		return -ENODATA;
459 
460 	*index = i;
461 
462 	return 0;
463 }
464 
465 /*
466  * Prepares for removal from one level of the hierarchy.  The caller must
467  * call delete_at() to remove the entry at index.
468  */
469 static int remove_raw(struct shadow_spine *s, struct dm_btree_info *info,
470 		      struct dm_btree_value_type *vt, dm_block_t root,
471 		      uint64_t key, unsigned *index)
472 {
473 	int i = *index, r;
474 	struct btree_node *n;
475 
476 	for (;;) {
477 		r = shadow_step(s, root, vt);
478 		if (r < 0)
479 			break;
480 
481 		/*
482 		 * We have to patch up the parent node, ugly, but I don't
483 		 * see a way to do this automatically as part of the spine
484 		 * op.
485 		 */
486 		if (shadow_has_parent(s)) {
487 			__le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));
488 			memcpy(value_ptr(dm_block_data(shadow_parent(s)), i),
489 			       &location, sizeof(__le64));
490 		}
491 
492 		n = dm_block_data(shadow_current(s));
493 
494 		if (le32_to_cpu(n->header.flags) & LEAF_NODE)
495 			return do_leaf(n, key, index);
496 
497 		r = rebalance_children(s, info, vt, key);
498 		if (r)
499 			break;
500 
501 		n = dm_block_data(shadow_current(s));
502 		if (le32_to_cpu(n->header.flags) & LEAF_NODE)
503 			return do_leaf(n, key, index);
504 
505 		i = lower_bound(n, key);
506 
507 		/*
508 		 * We know the key is present, or else
509 		 * rebalance_children would have returned
510 		 * -ENODATA
511 		 */
512 		root = value64(n, i);
513 	}
514 
515 	return r;
516 }
517 
518 int dm_btree_remove(struct dm_btree_info *info, dm_block_t root,
519 		    uint64_t *keys, dm_block_t *new_root)
520 {
521 	unsigned level, last_level = info->levels - 1;
522 	int index = 0, r = 0;
523 	struct shadow_spine spine;
524 	struct btree_node *n;
525 	struct dm_btree_value_type le64_vt;
526 
527 	init_le64_type(info->tm, &le64_vt);
528 	init_shadow_spine(&spine, info);
529 	for (level = 0; level < info->levels; level++) {
530 		r = remove_raw(&spine, info,
531 			       (level == last_level ?
532 				&info->value_type : &le64_vt),
533 			       root, keys[level], (unsigned *)&index);
534 		if (r < 0)
535 			break;
536 
537 		n = dm_block_data(shadow_current(&spine));
538 		if (level != last_level) {
539 			root = value64(n, index);
540 			continue;
541 		}
542 
543 		BUG_ON(index < 0 || index >= le32_to_cpu(n->header.nr_entries));
544 
545 		if (info->value_type.dec)
546 			info->value_type.dec(info->value_type.context,
547 					     value_ptr(n, index), 1);
548 
549 		delete_at(n, index);
550 	}
551 
552 	if (!r)
553 		*new_root = shadow_root(&spine);
554 	exit_shadow_spine(&spine);
555 
556 	return r;
557 }
558 EXPORT_SYMBOL_GPL(dm_btree_remove);
559 
560 /*----------------------------------------------------------------*/
561 
562 static int remove_nearest(struct shadow_spine *s, struct dm_btree_info *info,
563 			  struct dm_btree_value_type *vt, dm_block_t root,
564 			  uint64_t key, int *index)
565 {
566 	int i = *index, r;
567 	struct btree_node *n;
568 
569 	for (;;) {
570 		r = shadow_step(s, root, vt);
571 		if (r < 0)
572 			break;
573 
574 		/*
575 		 * We have to patch up the parent node, ugly, but I don't
576 		 * see a way to do this automatically as part of the spine
577 		 * op.
578 		 */
579 		if (shadow_has_parent(s)) {
580 			__le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));
581 			memcpy(value_ptr(dm_block_data(shadow_parent(s)), i),
582 			       &location, sizeof(__le64));
583 		}
584 
585 		n = dm_block_data(shadow_current(s));
586 
587 		if (le32_to_cpu(n->header.flags) & LEAF_NODE) {
588 			*index = lower_bound(n, key);
589 			return 0;
590 		}
591 
592 		r = rebalance_children(s, info, vt, key);
593 		if (r)
594 			break;
595 
596 		n = dm_block_data(shadow_current(s));
597 		if (le32_to_cpu(n->header.flags) & LEAF_NODE) {
598 			*index = lower_bound(n, key);
599 			return 0;
600 		}
601 
602 		i = lower_bound(n, key);
603 
604 		/*
605 		 * We know the key is present, or else
606 		 * rebalance_children would have returned
607 		 * -ENODATA
608 		 */
609 		root = value64(n, i);
610 	}
611 
612 	return r;
613 }
614 
615 static int remove_one(struct dm_btree_info *info, dm_block_t root,
616 		      uint64_t *keys, uint64_t end_key,
617 		      dm_block_t *new_root, unsigned *nr_removed)
618 {
619 	unsigned level, last_level = info->levels - 1;
620 	int index = 0, r = 0;
621 	struct shadow_spine spine;
622 	struct btree_node *n;
623 	struct dm_btree_value_type le64_vt;
624 	uint64_t k;
625 
626 	init_le64_type(info->tm, &le64_vt);
627 	init_shadow_spine(&spine, info);
628 	for (level = 0; level < last_level; level++) {
629 		r = remove_raw(&spine, info, &le64_vt,
630 			       root, keys[level], (unsigned *) &index);
631 		if (r < 0)
632 			goto out;
633 
634 		n = dm_block_data(shadow_current(&spine));
635 		root = value64(n, index);
636 	}
637 
638 	r = remove_nearest(&spine, info, &info->value_type,
639 			   root, keys[last_level], &index);
640 	if (r < 0)
641 		goto out;
642 
643 	n = dm_block_data(shadow_current(&spine));
644 
645 	if (index < 0)
646 		index = 0;
647 
648 	if (index >= le32_to_cpu(n->header.nr_entries)) {
649 		r = -ENODATA;
650 		goto out;
651 	}
652 
653 	k = le64_to_cpu(n->keys[index]);
654 	if (k >= keys[last_level] && k < end_key) {
655 		if (info->value_type.dec)
656 			info->value_type.dec(info->value_type.context,
657 					     value_ptr(n, index), 1);
658 
659 		delete_at(n, index);
660 		keys[last_level] = k + 1ull;
661 
662 	} else
663 		r = -ENODATA;
664 
665 out:
666 	*new_root = shadow_root(&spine);
667 	exit_shadow_spine(&spine);
668 
669 	return r;
670 }
671 
672 int dm_btree_remove_leaves(struct dm_btree_info *info, dm_block_t root,
673 			   uint64_t *first_key, uint64_t end_key,
674 			   dm_block_t *new_root, unsigned *nr_removed)
675 {
676 	int r;
677 
678 	*nr_removed = 0;
679 	do {
680 		r = remove_one(info, root, first_key, end_key, &root, nr_removed);
681 		if (!r)
682 			(*nr_removed)++;
683 	} while (!r);
684 
685 	*new_root = root;
686 	return r == -ENODATA ? 0 : r;
687 }
688 EXPORT_SYMBOL_GPL(dm_btree_remove_leaves);
689