1 /* 2 * Copyright (C) 2011 Red Hat, Inc. 3 * 4 * This file is released under the GPL. 5 */ 6 7 #include "dm-btree.h" 8 #include "dm-btree-internal.h" 9 #include "dm-transaction-manager.h" 10 11 #include <linux/export.h> 12 13 /* 14 * Removing an entry from a btree 15 * ============================== 16 * 17 * A very important constraint for our btree is that no node, except the 18 * root, may have fewer than a certain number of entries. 19 * (MIN_ENTRIES <= nr_entries <= MAX_ENTRIES). 20 * 21 * Ensuring this is complicated by the way we want to only ever hold the 22 * locks on 2 nodes concurrently, and only change nodes in a top to bottom 23 * fashion. 24 * 25 * Each node may have a left or right sibling. When decending the spine, 26 * if a node contains only MIN_ENTRIES then we try and increase this to at 27 * least MIN_ENTRIES + 1. We do this in the following ways: 28 * 29 * [A] No siblings => this can only happen if the node is the root, in which 30 * case we copy the childs contents over the root. 31 * 32 * [B] No left sibling 33 * ==> rebalance(node, right sibling) 34 * 35 * [C] No right sibling 36 * ==> rebalance(left sibling, node) 37 * 38 * [D] Both siblings, total_entries(left, node, right) <= DEL_THRESHOLD 39 * ==> delete node adding it's contents to left and right 40 * 41 * [E] Both siblings, total_entries(left, node, right) > DEL_THRESHOLD 42 * ==> rebalance(left, node, right) 43 * 44 * After these operations it's possible that the our original node no 45 * longer contains the desired sub tree. For this reason this rebalancing 46 * is performed on the children of the current node. This also avoids 47 * having a special case for the root. 48 * 49 * Once this rebalancing has occurred we can then step into the child node 50 * for internal nodes. Or delete the entry for leaf nodes. 51 */ 52 53 /* 54 * Some little utilities for moving node data around. 55 */ 56 static void node_shift(struct btree_node *n, int shift) 57 { 58 uint32_t nr_entries = le32_to_cpu(n->header.nr_entries); 59 uint32_t value_size = le32_to_cpu(n->header.value_size); 60 61 if (shift < 0) { 62 shift = -shift; 63 BUG_ON(shift > nr_entries); 64 BUG_ON((void *) key_ptr(n, shift) >= value_ptr(n, shift)); 65 memmove(key_ptr(n, 0), 66 key_ptr(n, shift), 67 (nr_entries - shift) * sizeof(__le64)); 68 memmove(value_ptr(n, 0), 69 value_ptr(n, shift), 70 (nr_entries - shift) * value_size); 71 } else { 72 BUG_ON(nr_entries + shift > le32_to_cpu(n->header.max_entries)); 73 memmove(key_ptr(n, shift), 74 key_ptr(n, 0), 75 nr_entries * sizeof(__le64)); 76 memmove(value_ptr(n, shift), 77 value_ptr(n, 0), 78 nr_entries * value_size); 79 } 80 } 81 82 static void node_copy(struct btree_node *left, struct btree_node *right, int shift) 83 { 84 uint32_t nr_left = le32_to_cpu(left->header.nr_entries); 85 uint32_t value_size = le32_to_cpu(left->header.value_size); 86 BUG_ON(value_size != le32_to_cpu(right->header.value_size)); 87 88 if (shift < 0) { 89 shift = -shift; 90 BUG_ON(nr_left + shift > le32_to_cpu(left->header.max_entries)); 91 memcpy(key_ptr(left, nr_left), 92 key_ptr(right, 0), 93 shift * sizeof(__le64)); 94 memcpy(value_ptr(left, nr_left), 95 value_ptr(right, 0), 96 shift * value_size); 97 } else { 98 BUG_ON(shift > le32_to_cpu(right->header.max_entries)); 99 memcpy(key_ptr(right, 0), 100 key_ptr(left, nr_left - shift), 101 shift * sizeof(__le64)); 102 memcpy(value_ptr(right, 0), 103 value_ptr(left, nr_left - shift), 104 shift * value_size); 105 } 106 } 107 108 /* 109 * Delete a specific entry from a leaf node. 110 */ 111 static void delete_at(struct btree_node *n, unsigned index) 112 { 113 unsigned nr_entries = le32_to_cpu(n->header.nr_entries); 114 unsigned nr_to_copy = nr_entries - (index + 1); 115 uint32_t value_size = le32_to_cpu(n->header.value_size); 116 BUG_ON(index >= nr_entries); 117 118 if (nr_to_copy) { 119 memmove(key_ptr(n, index), 120 key_ptr(n, index + 1), 121 nr_to_copy * sizeof(__le64)); 122 123 memmove(value_ptr(n, index), 124 value_ptr(n, index + 1), 125 nr_to_copy * value_size); 126 } 127 128 n->header.nr_entries = cpu_to_le32(nr_entries - 1); 129 } 130 131 static unsigned merge_threshold(struct btree_node *n) 132 { 133 return le32_to_cpu(n->header.max_entries) / 3; 134 } 135 136 struct child { 137 unsigned index; 138 struct dm_block *block; 139 struct btree_node *n; 140 }; 141 142 static int init_child(struct dm_btree_info *info, struct dm_btree_value_type *vt, 143 struct btree_node *parent, 144 unsigned index, struct child *result) 145 { 146 int r, inc; 147 dm_block_t root; 148 149 result->index = index; 150 root = value64(parent, index); 151 152 r = dm_tm_shadow_block(info->tm, root, &btree_node_validator, 153 &result->block, &inc); 154 if (r) 155 return r; 156 157 result->n = dm_block_data(result->block); 158 159 if (inc) 160 inc_children(info->tm, result->n, vt); 161 162 *((__le64 *) value_ptr(parent, index)) = 163 cpu_to_le64(dm_block_location(result->block)); 164 165 return 0; 166 } 167 168 static void exit_child(struct dm_btree_info *info, struct child *c) 169 { 170 dm_tm_unlock(info->tm, c->block); 171 } 172 173 static void shift(struct btree_node *left, struct btree_node *right, int count) 174 { 175 uint32_t nr_left = le32_to_cpu(left->header.nr_entries); 176 uint32_t nr_right = le32_to_cpu(right->header.nr_entries); 177 uint32_t max_entries = le32_to_cpu(left->header.max_entries); 178 uint32_t r_max_entries = le32_to_cpu(right->header.max_entries); 179 180 BUG_ON(max_entries != r_max_entries); 181 BUG_ON(nr_left - count > max_entries); 182 BUG_ON(nr_right + count > max_entries); 183 184 if (!count) 185 return; 186 187 if (count > 0) { 188 node_shift(right, count); 189 node_copy(left, right, count); 190 } else { 191 node_copy(left, right, count); 192 node_shift(right, count); 193 } 194 195 left->header.nr_entries = cpu_to_le32(nr_left - count); 196 right->header.nr_entries = cpu_to_le32(nr_right + count); 197 } 198 199 static void __rebalance2(struct dm_btree_info *info, struct btree_node *parent, 200 struct child *l, struct child *r) 201 { 202 struct btree_node *left = l->n; 203 struct btree_node *right = r->n; 204 uint32_t nr_left = le32_to_cpu(left->header.nr_entries); 205 uint32_t nr_right = le32_to_cpu(right->header.nr_entries); 206 /* 207 * Ensure the number of entries in each child will be greater 208 * than or equal to (max_entries / 3 + 1), so no matter which 209 * child is used for removal, the number will still be not 210 * less than (max_entries / 3). 211 */ 212 unsigned int threshold = 2 * (merge_threshold(left) + 1); 213 214 if (nr_left + nr_right < threshold) { 215 /* 216 * Merge 217 */ 218 node_copy(left, right, -nr_right); 219 left->header.nr_entries = cpu_to_le32(nr_left + nr_right); 220 delete_at(parent, r->index); 221 222 /* 223 * We need to decrement the right block, but not it's 224 * children, since they're still referenced by left. 225 */ 226 dm_tm_dec(info->tm, dm_block_location(r->block)); 227 } else { 228 /* 229 * Rebalance. 230 */ 231 unsigned target_left = (nr_left + nr_right) / 2; 232 shift(left, right, nr_left - target_left); 233 *key_ptr(parent, r->index) = right->keys[0]; 234 } 235 } 236 237 static int rebalance2(struct shadow_spine *s, struct dm_btree_info *info, 238 struct dm_btree_value_type *vt, unsigned left_index) 239 { 240 int r; 241 struct btree_node *parent; 242 struct child left, right; 243 244 parent = dm_block_data(shadow_current(s)); 245 246 r = init_child(info, vt, parent, left_index, &left); 247 if (r) 248 return r; 249 250 r = init_child(info, vt, parent, left_index + 1, &right); 251 if (r) { 252 exit_child(info, &left); 253 return r; 254 } 255 256 __rebalance2(info, parent, &left, &right); 257 258 exit_child(info, &left); 259 exit_child(info, &right); 260 261 return 0; 262 } 263 264 /* 265 * We dump as many entries from center as possible into left, then the rest 266 * in right, then rebalance2. This wastes some cpu, but I want something 267 * simple atm. 268 */ 269 static void delete_center_node(struct dm_btree_info *info, struct btree_node *parent, 270 struct child *l, struct child *c, struct child *r, 271 struct btree_node *left, struct btree_node *center, struct btree_node *right, 272 uint32_t nr_left, uint32_t nr_center, uint32_t nr_right) 273 { 274 uint32_t max_entries = le32_to_cpu(left->header.max_entries); 275 unsigned shift = min(max_entries - nr_left, nr_center); 276 277 BUG_ON(nr_left + shift > max_entries); 278 node_copy(left, center, -shift); 279 left->header.nr_entries = cpu_to_le32(nr_left + shift); 280 281 if (shift != nr_center) { 282 shift = nr_center - shift; 283 BUG_ON((nr_right + shift) > max_entries); 284 node_shift(right, shift); 285 node_copy(center, right, shift); 286 right->header.nr_entries = cpu_to_le32(nr_right + shift); 287 } 288 *key_ptr(parent, r->index) = right->keys[0]; 289 290 delete_at(parent, c->index); 291 r->index--; 292 293 dm_tm_dec(info->tm, dm_block_location(c->block)); 294 __rebalance2(info, parent, l, r); 295 } 296 297 /* 298 * Redistributes entries among 3 sibling nodes. 299 */ 300 static void redistribute3(struct dm_btree_info *info, struct btree_node *parent, 301 struct child *l, struct child *c, struct child *r, 302 struct btree_node *left, struct btree_node *center, struct btree_node *right, 303 uint32_t nr_left, uint32_t nr_center, uint32_t nr_right) 304 { 305 int s; 306 uint32_t max_entries = le32_to_cpu(left->header.max_entries); 307 unsigned total = nr_left + nr_center + nr_right; 308 unsigned target_right = total / 3; 309 unsigned remainder = (target_right * 3) != total; 310 unsigned target_left = target_right + remainder; 311 312 BUG_ON(target_left > max_entries); 313 BUG_ON(target_right > max_entries); 314 315 if (nr_left < nr_right) { 316 s = nr_left - target_left; 317 318 if (s < 0 && nr_center < -s) { 319 /* not enough in central node */ 320 shift(left, center, -nr_center); 321 s += nr_center; 322 shift(left, right, s); 323 nr_right += s; 324 } else 325 shift(left, center, s); 326 327 shift(center, right, target_right - nr_right); 328 329 } else { 330 s = target_right - nr_right; 331 if (s > 0 && nr_center < s) { 332 /* not enough in central node */ 333 shift(center, right, nr_center); 334 s -= nr_center; 335 shift(left, right, s); 336 nr_left -= s; 337 } else 338 shift(center, right, s); 339 340 shift(left, center, nr_left - target_left); 341 } 342 343 *key_ptr(parent, c->index) = center->keys[0]; 344 *key_ptr(parent, r->index) = right->keys[0]; 345 } 346 347 static void __rebalance3(struct dm_btree_info *info, struct btree_node *parent, 348 struct child *l, struct child *c, struct child *r) 349 { 350 struct btree_node *left = l->n; 351 struct btree_node *center = c->n; 352 struct btree_node *right = r->n; 353 354 uint32_t nr_left = le32_to_cpu(left->header.nr_entries); 355 uint32_t nr_center = le32_to_cpu(center->header.nr_entries); 356 uint32_t nr_right = le32_to_cpu(right->header.nr_entries); 357 358 unsigned threshold = merge_threshold(left) * 4 + 1; 359 360 BUG_ON(left->header.max_entries != center->header.max_entries); 361 BUG_ON(center->header.max_entries != right->header.max_entries); 362 363 if ((nr_left + nr_center + nr_right) < threshold) 364 delete_center_node(info, parent, l, c, r, left, center, right, 365 nr_left, nr_center, nr_right); 366 else 367 redistribute3(info, parent, l, c, r, left, center, right, 368 nr_left, nr_center, nr_right); 369 } 370 371 static int rebalance3(struct shadow_spine *s, struct dm_btree_info *info, 372 struct dm_btree_value_type *vt, unsigned left_index) 373 { 374 int r; 375 struct btree_node *parent = dm_block_data(shadow_current(s)); 376 struct child left, center, right; 377 378 /* 379 * FIXME: fill out an array? 380 */ 381 r = init_child(info, vt, parent, left_index, &left); 382 if (r) 383 return r; 384 385 r = init_child(info, vt, parent, left_index + 1, ¢er); 386 if (r) { 387 exit_child(info, &left); 388 return r; 389 } 390 391 r = init_child(info, vt, parent, left_index + 2, &right); 392 if (r) { 393 exit_child(info, &left); 394 exit_child(info, ¢er); 395 return r; 396 } 397 398 __rebalance3(info, parent, &left, ¢er, &right); 399 400 exit_child(info, &left); 401 exit_child(info, ¢er); 402 exit_child(info, &right); 403 404 return 0; 405 } 406 407 static int rebalance_children(struct shadow_spine *s, 408 struct dm_btree_info *info, 409 struct dm_btree_value_type *vt, uint64_t key) 410 { 411 int i, r, has_left_sibling, has_right_sibling; 412 struct btree_node *n; 413 414 n = dm_block_data(shadow_current(s)); 415 416 if (le32_to_cpu(n->header.nr_entries) == 1) { 417 struct dm_block *child; 418 dm_block_t b = value64(n, 0); 419 420 r = dm_tm_read_lock(info->tm, b, &btree_node_validator, &child); 421 if (r) 422 return r; 423 424 memcpy(n, dm_block_data(child), 425 dm_bm_block_size(dm_tm_get_bm(info->tm))); 426 dm_tm_unlock(info->tm, child); 427 428 dm_tm_dec(info->tm, dm_block_location(child)); 429 return 0; 430 } 431 432 i = lower_bound(n, key); 433 if (i < 0) 434 return -ENODATA; 435 436 has_left_sibling = i > 0; 437 has_right_sibling = i < (le32_to_cpu(n->header.nr_entries) - 1); 438 439 if (!has_left_sibling) 440 r = rebalance2(s, info, vt, i); 441 442 else if (!has_right_sibling) 443 r = rebalance2(s, info, vt, i - 1); 444 445 else 446 r = rebalance3(s, info, vt, i - 1); 447 448 return r; 449 } 450 451 static int do_leaf(struct btree_node *n, uint64_t key, unsigned *index) 452 { 453 int i = lower_bound(n, key); 454 455 if ((i < 0) || 456 (i >= le32_to_cpu(n->header.nr_entries)) || 457 (le64_to_cpu(n->keys[i]) != key)) 458 return -ENODATA; 459 460 *index = i; 461 462 return 0; 463 } 464 465 /* 466 * Prepares for removal from one level of the hierarchy. The caller must 467 * call delete_at() to remove the entry at index. 468 */ 469 static int remove_raw(struct shadow_spine *s, struct dm_btree_info *info, 470 struct dm_btree_value_type *vt, dm_block_t root, 471 uint64_t key, unsigned *index) 472 { 473 int i = *index, r; 474 struct btree_node *n; 475 476 for (;;) { 477 r = shadow_step(s, root, vt); 478 if (r < 0) 479 break; 480 481 /* 482 * We have to patch up the parent node, ugly, but I don't 483 * see a way to do this automatically as part of the spine 484 * op. 485 */ 486 if (shadow_has_parent(s)) { 487 __le64 location = cpu_to_le64(dm_block_location(shadow_current(s))); 488 memcpy(value_ptr(dm_block_data(shadow_parent(s)), i), 489 &location, sizeof(__le64)); 490 } 491 492 n = dm_block_data(shadow_current(s)); 493 494 if (le32_to_cpu(n->header.flags) & LEAF_NODE) 495 return do_leaf(n, key, index); 496 497 r = rebalance_children(s, info, vt, key); 498 if (r) 499 break; 500 501 n = dm_block_data(shadow_current(s)); 502 if (le32_to_cpu(n->header.flags) & LEAF_NODE) 503 return do_leaf(n, key, index); 504 505 i = lower_bound(n, key); 506 507 /* 508 * We know the key is present, or else 509 * rebalance_children would have returned 510 * -ENODATA 511 */ 512 root = value64(n, i); 513 } 514 515 return r; 516 } 517 518 int dm_btree_remove(struct dm_btree_info *info, dm_block_t root, 519 uint64_t *keys, dm_block_t *new_root) 520 { 521 unsigned level, last_level = info->levels - 1; 522 int index = 0, r = 0; 523 struct shadow_spine spine; 524 struct btree_node *n; 525 struct dm_btree_value_type le64_vt; 526 527 init_le64_type(info->tm, &le64_vt); 528 init_shadow_spine(&spine, info); 529 for (level = 0; level < info->levels; level++) { 530 r = remove_raw(&spine, info, 531 (level == last_level ? 532 &info->value_type : &le64_vt), 533 root, keys[level], (unsigned *)&index); 534 if (r < 0) 535 break; 536 537 n = dm_block_data(shadow_current(&spine)); 538 if (level != last_level) { 539 root = value64(n, index); 540 continue; 541 } 542 543 BUG_ON(index < 0 || index >= le32_to_cpu(n->header.nr_entries)); 544 545 if (info->value_type.dec) 546 info->value_type.dec(info->value_type.context, 547 value_ptr(n, index), 1); 548 549 delete_at(n, index); 550 } 551 552 if (!r) 553 *new_root = shadow_root(&spine); 554 exit_shadow_spine(&spine); 555 556 return r; 557 } 558 EXPORT_SYMBOL_GPL(dm_btree_remove); 559 560 /*----------------------------------------------------------------*/ 561 562 static int remove_nearest(struct shadow_spine *s, struct dm_btree_info *info, 563 struct dm_btree_value_type *vt, dm_block_t root, 564 uint64_t key, int *index) 565 { 566 int i = *index, r; 567 struct btree_node *n; 568 569 for (;;) { 570 r = shadow_step(s, root, vt); 571 if (r < 0) 572 break; 573 574 /* 575 * We have to patch up the parent node, ugly, but I don't 576 * see a way to do this automatically as part of the spine 577 * op. 578 */ 579 if (shadow_has_parent(s)) { 580 __le64 location = cpu_to_le64(dm_block_location(shadow_current(s))); 581 memcpy(value_ptr(dm_block_data(shadow_parent(s)), i), 582 &location, sizeof(__le64)); 583 } 584 585 n = dm_block_data(shadow_current(s)); 586 587 if (le32_to_cpu(n->header.flags) & LEAF_NODE) { 588 *index = lower_bound(n, key); 589 return 0; 590 } 591 592 r = rebalance_children(s, info, vt, key); 593 if (r) 594 break; 595 596 n = dm_block_data(shadow_current(s)); 597 if (le32_to_cpu(n->header.flags) & LEAF_NODE) { 598 *index = lower_bound(n, key); 599 return 0; 600 } 601 602 i = lower_bound(n, key); 603 604 /* 605 * We know the key is present, or else 606 * rebalance_children would have returned 607 * -ENODATA 608 */ 609 root = value64(n, i); 610 } 611 612 return r; 613 } 614 615 static int remove_one(struct dm_btree_info *info, dm_block_t root, 616 uint64_t *keys, uint64_t end_key, 617 dm_block_t *new_root, unsigned *nr_removed) 618 { 619 unsigned level, last_level = info->levels - 1; 620 int index = 0, r = 0; 621 struct shadow_spine spine; 622 struct btree_node *n; 623 struct dm_btree_value_type le64_vt; 624 uint64_t k; 625 626 init_le64_type(info->tm, &le64_vt); 627 init_shadow_spine(&spine, info); 628 for (level = 0; level < last_level; level++) { 629 r = remove_raw(&spine, info, &le64_vt, 630 root, keys[level], (unsigned *) &index); 631 if (r < 0) 632 goto out; 633 634 n = dm_block_data(shadow_current(&spine)); 635 root = value64(n, index); 636 } 637 638 r = remove_nearest(&spine, info, &info->value_type, 639 root, keys[last_level], &index); 640 if (r < 0) 641 goto out; 642 643 n = dm_block_data(shadow_current(&spine)); 644 645 if (index < 0) 646 index = 0; 647 648 if (index >= le32_to_cpu(n->header.nr_entries)) { 649 r = -ENODATA; 650 goto out; 651 } 652 653 k = le64_to_cpu(n->keys[index]); 654 if (k >= keys[last_level] && k < end_key) { 655 if (info->value_type.dec) 656 info->value_type.dec(info->value_type.context, 657 value_ptr(n, index), 1); 658 659 delete_at(n, index); 660 keys[last_level] = k + 1ull; 661 662 } else 663 r = -ENODATA; 664 665 out: 666 *new_root = shadow_root(&spine); 667 exit_shadow_spine(&spine); 668 669 return r; 670 } 671 672 int dm_btree_remove_leaves(struct dm_btree_info *info, dm_block_t root, 673 uint64_t *first_key, uint64_t end_key, 674 dm_block_t *new_root, unsigned *nr_removed) 675 { 676 int r; 677 678 *nr_removed = 0; 679 do { 680 r = remove_one(info, root, first_key, end_key, &root, nr_removed); 681 if (!r) 682 (*nr_removed)++; 683 } while (!r); 684 685 *new_root = root; 686 return r == -ENODATA ? 0 : r; 687 } 688 EXPORT_SYMBOL_GPL(dm_btree_remove_leaves); 689