1 /*
2  * Copyright (C) 2011 Red Hat, Inc.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm-btree.h"
8 #include "dm-btree-internal.h"
9 #include "dm-transaction-manager.h"
10 
11 #include <linux/export.h>
12 
13 /*
14  * Removing an entry from a btree
15  * ==============================
16  *
17  * A very important constraint for our btree is that no node, except the
18  * root, may have fewer than a certain number of entries.
19  * (MIN_ENTRIES <= nr_entries <= MAX_ENTRIES).
20  *
21  * Ensuring this is complicated by the way we want to only ever hold the
22  * locks on 2 nodes concurrently, and only change nodes in a top to bottom
23  * fashion.
24  *
25  * Each node may have a left or right sibling.  When decending the spine,
26  * if a node contains only MIN_ENTRIES then we try and increase this to at
27  * least MIN_ENTRIES + 1.  We do this in the following ways:
28  *
29  * [A] No siblings => this can only happen if the node is the root, in which
30  *     case we copy the childs contents over the root.
31  *
32  * [B] No left sibling
33  *     ==> rebalance(node, right sibling)
34  *
35  * [C] No right sibling
36  *     ==> rebalance(left sibling, node)
37  *
38  * [D] Both siblings, total_entries(left, node, right) <= DEL_THRESHOLD
39  *     ==> delete node adding it's contents to left and right
40  *
41  * [E] Both siblings, total_entries(left, node, right) > DEL_THRESHOLD
42  *     ==> rebalance(left, node, right)
43  *
44  * After these operations it's possible that the our original node no
45  * longer contains the desired sub tree.  For this reason this rebalancing
46  * is performed on the children of the current node.  This also avoids
47  * having a special case for the root.
48  *
49  * Once this rebalancing has occurred we can then step into the child node
50  * for internal nodes.  Or delete the entry for leaf nodes.
51  */
52 
53 /*
54  * Some little utilities for moving node data around.
55  */
56 static void node_shift(struct btree_node *n, int shift)
57 {
58 	uint32_t nr_entries = le32_to_cpu(n->header.nr_entries);
59 	uint32_t value_size = le32_to_cpu(n->header.value_size);
60 
61 	if (shift < 0) {
62 		shift = -shift;
63 		BUG_ON(shift > nr_entries);
64 		BUG_ON((void *) key_ptr(n, shift) >= value_ptr(n, shift));
65 		memmove(key_ptr(n, 0),
66 			key_ptr(n, shift),
67 			(nr_entries - shift) * sizeof(__le64));
68 		memmove(value_ptr(n, 0),
69 			value_ptr(n, shift),
70 			(nr_entries - shift) * value_size);
71 	} else {
72 		BUG_ON(nr_entries + shift > le32_to_cpu(n->header.max_entries));
73 		memmove(key_ptr(n, shift),
74 			key_ptr(n, 0),
75 			nr_entries * sizeof(__le64));
76 		memmove(value_ptr(n, shift),
77 			value_ptr(n, 0),
78 			nr_entries * value_size);
79 	}
80 }
81 
82 static void node_copy(struct btree_node *left, struct btree_node *right, int shift)
83 {
84 	uint32_t nr_left = le32_to_cpu(left->header.nr_entries);
85 	uint32_t value_size = le32_to_cpu(left->header.value_size);
86 	BUG_ON(value_size != le32_to_cpu(right->header.value_size));
87 
88 	if (shift < 0) {
89 		shift = -shift;
90 		BUG_ON(nr_left + shift > le32_to_cpu(left->header.max_entries));
91 		memcpy(key_ptr(left, nr_left),
92 		       key_ptr(right, 0),
93 		       shift * sizeof(__le64));
94 		memcpy(value_ptr(left, nr_left),
95 		       value_ptr(right, 0),
96 		       shift * value_size);
97 	} else {
98 		BUG_ON(shift > le32_to_cpu(right->header.max_entries));
99 		memcpy(key_ptr(right, 0),
100 		       key_ptr(left, nr_left - shift),
101 		       shift * sizeof(__le64));
102 		memcpy(value_ptr(right, 0),
103 		       value_ptr(left, nr_left - shift),
104 		       shift * value_size);
105 	}
106 }
107 
108 /*
109  * Delete a specific entry from a leaf node.
110  */
111 static void delete_at(struct btree_node *n, unsigned index)
112 {
113 	unsigned nr_entries = le32_to_cpu(n->header.nr_entries);
114 	unsigned nr_to_copy = nr_entries - (index + 1);
115 	uint32_t value_size = le32_to_cpu(n->header.value_size);
116 	BUG_ON(index >= nr_entries);
117 
118 	if (nr_to_copy) {
119 		memmove(key_ptr(n, index),
120 			key_ptr(n, index + 1),
121 			nr_to_copy * sizeof(__le64));
122 
123 		memmove(value_ptr(n, index),
124 			value_ptr(n, index + 1),
125 			nr_to_copy * value_size);
126 	}
127 
128 	n->header.nr_entries = cpu_to_le32(nr_entries - 1);
129 }
130 
131 static unsigned merge_threshold(struct btree_node *n)
132 {
133 	return le32_to_cpu(n->header.max_entries) / 3;
134 }
135 
136 struct child {
137 	unsigned index;
138 	struct dm_block *block;
139 	struct btree_node *n;
140 };
141 
142 static int init_child(struct dm_btree_info *info, struct dm_btree_value_type *vt,
143 		      struct btree_node *parent,
144 		      unsigned index, struct child *result)
145 {
146 	int r, inc;
147 	dm_block_t root;
148 
149 	result->index = index;
150 	root = value64(parent, index);
151 
152 	r = dm_tm_shadow_block(info->tm, root, &btree_node_validator,
153 			       &result->block, &inc);
154 	if (r)
155 		return r;
156 
157 	result->n = dm_block_data(result->block);
158 
159 	if (inc)
160 		inc_children(info->tm, result->n, vt);
161 
162 	*((__le64 *) value_ptr(parent, index)) =
163 		cpu_to_le64(dm_block_location(result->block));
164 
165 	return 0;
166 }
167 
168 static void exit_child(struct dm_btree_info *info, struct child *c)
169 {
170 	dm_tm_unlock(info->tm, c->block);
171 }
172 
173 static void shift(struct btree_node *left, struct btree_node *right, int count)
174 {
175 	uint32_t nr_left = le32_to_cpu(left->header.nr_entries);
176 	uint32_t nr_right = le32_to_cpu(right->header.nr_entries);
177 	uint32_t max_entries = le32_to_cpu(left->header.max_entries);
178 	uint32_t r_max_entries = le32_to_cpu(right->header.max_entries);
179 
180 	BUG_ON(max_entries != r_max_entries);
181 	BUG_ON(nr_left - count > max_entries);
182 	BUG_ON(nr_right + count > max_entries);
183 
184 	if (!count)
185 		return;
186 
187 	if (count > 0) {
188 		node_shift(right, count);
189 		node_copy(left, right, count);
190 	} else {
191 		node_copy(left, right, count);
192 		node_shift(right, count);
193 	}
194 
195 	left->header.nr_entries = cpu_to_le32(nr_left - count);
196 	right->header.nr_entries = cpu_to_le32(nr_right + count);
197 }
198 
199 static void __rebalance2(struct dm_btree_info *info, struct btree_node *parent,
200 			 struct child *l, struct child *r)
201 {
202 	struct btree_node *left = l->n;
203 	struct btree_node *right = r->n;
204 	uint32_t nr_left = le32_to_cpu(left->header.nr_entries);
205 	uint32_t nr_right = le32_to_cpu(right->header.nr_entries);
206 	unsigned threshold = 2 * merge_threshold(left) + 1;
207 
208 	if (nr_left + nr_right < threshold) {
209 		/*
210 		 * Merge
211 		 */
212 		node_copy(left, right, -nr_right);
213 		left->header.nr_entries = cpu_to_le32(nr_left + nr_right);
214 		delete_at(parent, r->index);
215 
216 		/*
217 		 * We need to decrement the right block, but not it's
218 		 * children, since they're still referenced by left.
219 		 */
220 		dm_tm_dec(info->tm, dm_block_location(r->block));
221 	} else {
222 		/*
223 		 * Rebalance.
224 		 */
225 		unsigned target_left = (nr_left + nr_right) / 2;
226 		shift(left, right, nr_left - target_left);
227 		*key_ptr(parent, r->index) = right->keys[0];
228 	}
229 }
230 
231 static int rebalance2(struct shadow_spine *s, struct dm_btree_info *info,
232 		      struct dm_btree_value_type *vt, unsigned left_index)
233 {
234 	int r;
235 	struct btree_node *parent;
236 	struct child left, right;
237 
238 	parent = dm_block_data(shadow_current(s));
239 
240 	r = init_child(info, vt, parent, left_index, &left);
241 	if (r)
242 		return r;
243 
244 	r = init_child(info, vt, parent, left_index + 1, &right);
245 	if (r) {
246 		exit_child(info, &left);
247 		return r;
248 	}
249 
250 	__rebalance2(info, parent, &left, &right);
251 
252 	exit_child(info, &left);
253 	exit_child(info, &right);
254 
255 	return 0;
256 }
257 
258 /*
259  * We dump as many entries from center as possible into left, then the rest
260  * in right, then rebalance2.  This wastes some cpu, but I want something
261  * simple atm.
262  */
263 static void delete_center_node(struct dm_btree_info *info, struct btree_node *parent,
264 			       struct child *l, struct child *c, struct child *r,
265 			       struct btree_node *left, struct btree_node *center, struct btree_node *right,
266 			       uint32_t nr_left, uint32_t nr_center, uint32_t nr_right)
267 {
268 	uint32_t max_entries = le32_to_cpu(left->header.max_entries);
269 	unsigned shift = min(max_entries - nr_left, nr_center);
270 
271 	BUG_ON(nr_left + shift > max_entries);
272 	node_copy(left, center, -shift);
273 	left->header.nr_entries = cpu_to_le32(nr_left + shift);
274 
275 	if (shift != nr_center) {
276 		shift = nr_center - shift;
277 		BUG_ON((nr_right + shift) > max_entries);
278 		node_shift(right, shift);
279 		node_copy(center, right, shift);
280 		right->header.nr_entries = cpu_to_le32(nr_right + shift);
281 	}
282 	*key_ptr(parent, r->index) = right->keys[0];
283 
284 	delete_at(parent, c->index);
285 	r->index--;
286 
287 	dm_tm_dec(info->tm, dm_block_location(c->block));
288 	__rebalance2(info, parent, l, r);
289 }
290 
291 /*
292  * Redistributes entries among 3 sibling nodes.
293  */
294 static void redistribute3(struct dm_btree_info *info, struct btree_node *parent,
295 			  struct child *l, struct child *c, struct child *r,
296 			  struct btree_node *left, struct btree_node *center, struct btree_node *right,
297 			  uint32_t nr_left, uint32_t nr_center, uint32_t nr_right)
298 {
299 	int s;
300 	uint32_t max_entries = le32_to_cpu(left->header.max_entries);
301 	unsigned total = nr_left + nr_center + nr_right;
302 	unsigned target_right = total / 3;
303 	unsigned remainder = (target_right * 3) != total;
304 	unsigned target_left = target_right + remainder;
305 
306 	BUG_ON(target_left > max_entries);
307 	BUG_ON(target_right > max_entries);
308 
309 	if (nr_left < nr_right) {
310 		s = nr_left - target_left;
311 
312 		if (s < 0 && nr_center < -s) {
313 			/* not enough in central node */
314 			shift(left, center, -nr_center);
315 			s += nr_center;
316 			shift(left, right, s);
317 			nr_right += s;
318 		} else
319 			shift(left, center, s);
320 
321 		shift(center, right, target_right - nr_right);
322 
323 	} else {
324 		s = target_right - nr_right;
325 		if (s > 0 && nr_center < s) {
326 			/* not enough in central node */
327 			shift(center, right, nr_center);
328 			s -= nr_center;
329 			shift(left, right, s);
330 			nr_left -= s;
331 		} else
332 			shift(center, right, s);
333 
334 		shift(left, center, nr_left - target_left);
335 	}
336 
337 	*key_ptr(parent, c->index) = center->keys[0];
338 	*key_ptr(parent, r->index) = right->keys[0];
339 }
340 
341 static void __rebalance3(struct dm_btree_info *info, struct btree_node *parent,
342 			 struct child *l, struct child *c, struct child *r)
343 {
344 	struct btree_node *left = l->n;
345 	struct btree_node *center = c->n;
346 	struct btree_node *right = r->n;
347 
348 	uint32_t nr_left = le32_to_cpu(left->header.nr_entries);
349 	uint32_t nr_center = le32_to_cpu(center->header.nr_entries);
350 	uint32_t nr_right = le32_to_cpu(right->header.nr_entries);
351 
352 	unsigned threshold = merge_threshold(left) * 4 + 1;
353 
354 	BUG_ON(left->header.max_entries != center->header.max_entries);
355 	BUG_ON(center->header.max_entries != right->header.max_entries);
356 
357 	if ((nr_left + nr_center + nr_right) < threshold)
358 		delete_center_node(info, parent, l, c, r, left, center, right,
359 				   nr_left, nr_center, nr_right);
360 	else
361 		redistribute3(info, parent, l, c, r, left, center, right,
362 			      nr_left, nr_center, nr_right);
363 }
364 
365 static int rebalance3(struct shadow_spine *s, struct dm_btree_info *info,
366 		      struct dm_btree_value_type *vt, unsigned left_index)
367 {
368 	int r;
369 	struct btree_node *parent = dm_block_data(shadow_current(s));
370 	struct child left, center, right;
371 
372 	/*
373 	 * FIXME: fill out an array?
374 	 */
375 	r = init_child(info, vt, parent, left_index, &left);
376 	if (r)
377 		return r;
378 
379 	r = init_child(info, vt, parent, left_index + 1, &center);
380 	if (r) {
381 		exit_child(info, &left);
382 		return r;
383 	}
384 
385 	r = init_child(info, vt, parent, left_index + 2, &right);
386 	if (r) {
387 		exit_child(info, &left);
388 		exit_child(info, &center);
389 		return r;
390 	}
391 
392 	__rebalance3(info, parent, &left, &center, &right);
393 
394 	exit_child(info, &left);
395 	exit_child(info, &center);
396 	exit_child(info, &right);
397 
398 	return 0;
399 }
400 
401 static int rebalance_children(struct shadow_spine *s,
402 			      struct dm_btree_info *info,
403 			      struct dm_btree_value_type *vt, uint64_t key)
404 {
405 	int i, r, has_left_sibling, has_right_sibling;
406 	struct btree_node *n;
407 
408 	n = dm_block_data(shadow_current(s));
409 
410 	if (le32_to_cpu(n->header.nr_entries) == 1) {
411 		struct dm_block *child;
412 		dm_block_t b = value64(n, 0);
413 
414 		r = dm_tm_read_lock(info->tm, b, &btree_node_validator, &child);
415 		if (r)
416 			return r;
417 
418 		memcpy(n, dm_block_data(child),
419 		       dm_bm_block_size(dm_tm_get_bm(info->tm)));
420 		dm_tm_unlock(info->tm, child);
421 
422 		dm_tm_dec(info->tm, dm_block_location(child));
423 		return 0;
424 	}
425 
426 	i = lower_bound(n, key);
427 	if (i < 0)
428 		return -ENODATA;
429 
430 	has_left_sibling = i > 0;
431 	has_right_sibling = i < (le32_to_cpu(n->header.nr_entries) - 1);
432 
433 	if (!has_left_sibling)
434 		r = rebalance2(s, info, vt, i);
435 
436 	else if (!has_right_sibling)
437 		r = rebalance2(s, info, vt, i - 1);
438 
439 	else
440 		r = rebalance3(s, info, vt, i - 1);
441 
442 	return r;
443 }
444 
445 static int do_leaf(struct btree_node *n, uint64_t key, unsigned *index)
446 {
447 	int i = lower_bound(n, key);
448 
449 	if ((i < 0) ||
450 	    (i >= le32_to_cpu(n->header.nr_entries)) ||
451 	    (le64_to_cpu(n->keys[i]) != key))
452 		return -ENODATA;
453 
454 	*index = i;
455 
456 	return 0;
457 }
458 
459 /*
460  * Prepares for removal from one level of the hierarchy.  The caller must
461  * call delete_at() to remove the entry at index.
462  */
463 static int remove_raw(struct shadow_spine *s, struct dm_btree_info *info,
464 		      struct dm_btree_value_type *vt, dm_block_t root,
465 		      uint64_t key, unsigned *index)
466 {
467 	int i = *index, r;
468 	struct btree_node *n;
469 
470 	for (;;) {
471 		r = shadow_step(s, root, vt);
472 		if (r < 0)
473 			break;
474 
475 		/*
476 		 * We have to patch up the parent node, ugly, but I don't
477 		 * see a way to do this automatically as part of the spine
478 		 * op.
479 		 */
480 		if (shadow_has_parent(s)) {
481 			__le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));
482 			memcpy(value_ptr(dm_block_data(shadow_parent(s)), i),
483 			       &location, sizeof(__le64));
484 		}
485 
486 		n = dm_block_data(shadow_current(s));
487 
488 		if (le32_to_cpu(n->header.flags) & LEAF_NODE)
489 			return do_leaf(n, key, index);
490 
491 		r = rebalance_children(s, info, vt, key);
492 		if (r)
493 			break;
494 
495 		n = dm_block_data(shadow_current(s));
496 		if (le32_to_cpu(n->header.flags) & LEAF_NODE)
497 			return do_leaf(n, key, index);
498 
499 		i = lower_bound(n, key);
500 
501 		/*
502 		 * We know the key is present, or else
503 		 * rebalance_children would have returned
504 		 * -ENODATA
505 		 */
506 		root = value64(n, i);
507 	}
508 
509 	return r;
510 }
511 
512 int dm_btree_remove(struct dm_btree_info *info, dm_block_t root,
513 		    uint64_t *keys, dm_block_t *new_root)
514 {
515 	unsigned level, last_level = info->levels - 1;
516 	int index = 0, r = 0;
517 	struct shadow_spine spine;
518 	struct btree_node *n;
519 	struct dm_btree_value_type le64_vt;
520 
521 	init_le64_type(info->tm, &le64_vt);
522 	init_shadow_spine(&spine, info);
523 	for (level = 0; level < info->levels; level++) {
524 		r = remove_raw(&spine, info,
525 			       (level == last_level ?
526 				&info->value_type : &le64_vt),
527 			       root, keys[level], (unsigned *)&index);
528 		if (r < 0)
529 			break;
530 
531 		n = dm_block_data(shadow_current(&spine));
532 		if (level != last_level) {
533 			root = value64(n, index);
534 			continue;
535 		}
536 
537 		BUG_ON(index < 0 || index >= le32_to_cpu(n->header.nr_entries));
538 
539 		if (info->value_type.dec)
540 			info->value_type.dec(info->value_type.context,
541 					     value_ptr(n, index));
542 
543 		delete_at(n, index);
544 	}
545 
546 	*new_root = shadow_root(&spine);
547 	exit_shadow_spine(&spine);
548 
549 	return r;
550 }
551 EXPORT_SYMBOL_GPL(dm_btree_remove);
552 
553 /*----------------------------------------------------------------*/
554 
555 static int remove_nearest(struct shadow_spine *s, struct dm_btree_info *info,
556 			  struct dm_btree_value_type *vt, dm_block_t root,
557 			  uint64_t key, int *index)
558 {
559 	int i = *index, r;
560 	struct btree_node *n;
561 
562 	for (;;) {
563 		r = shadow_step(s, root, vt);
564 		if (r < 0)
565 			break;
566 
567 		/*
568 		 * We have to patch up the parent node, ugly, but I don't
569 		 * see a way to do this automatically as part of the spine
570 		 * op.
571 		 */
572 		if (shadow_has_parent(s)) {
573 			__le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));
574 			memcpy(value_ptr(dm_block_data(shadow_parent(s)), i),
575 			       &location, sizeof(__le64));
576 		}
577 
578 		n = dm_block_data(shadow_current(s));
579 
580 		if (le32_to_cpu(n->header.flags) & LEAF_NODE) {
581 			*index = lower_bound(n, key);
582 			return 0;
583 		}
584 
585 		r = rebalance_children(s, info, vt, key);
586 		if (r)
587 			break;
588 
589 		n = dm_block_data(shadow_current(s));
590 		if (le32_to_cpu(n->header.flags) & LEAF_NODE) {
591 			*index = lower_bound(n, key);
592 			return 0;
593 		}
594 
595 		i = lower_bound(n, key);
596 
597 		/*
598 		 * We know the key is present, or else
599 		 * rebalance_children would have returned
600 		 * -ENODATA
601 		 */
602 		root = value64(n, i);
603 	}
604 
605 	return r;
606 }
607 
608 static int remove_one(struct dm_btree_info *info, dm_block_t root,
609 		      uint64_t *keys, uint64_t end_key,
610 		      dm_block_t *new_root, unsigned *nr_removed)
611 {
612 	unsigned level, last_level = info->levels - 1;
613 	int index = 0, r = 0;
614 	struct shadow_spine spine;
615 	struct btree_node *n;
616 	struct dm_btree_value_type le64_vt;
617 	uint64_t k;
618 
619 	init_le64_type(info->tm, &le64_vt);
620 	init_shadow_spine(&spine, info);
621 	for (level = 0; level < last_level; level++) {
622 		r = remove_raw(&spine, info, &le64_vt,
623 			       root, keys[level], (unsigned *) &index);
624 		if (r < 0)
625 			goto out;
626 
627 		n = dm_block_data(shadow_current(&spine));
628 		root = value64(n, index);
629 	}
630 
631 	r = remove_nearest(&spine, info, &info->value_type,
632 			   root, keys[last_level], &index);
633 	if (r < 0)
634 		goto out;
635 
636 	n = dm_block_data(shadow_current(&spine));
637 
638 	if (index < 0)
639 		index = 0;
640 
641 	if (index >= le32_to_cpu(n->header.nr_entries)) {
642 		r = -ENODATA;
643 		goto out;
644 	}
645 
646 	k = le64_to_cpu(n->keys[index]);
647 	if (k >= keys[last_level] && k < end_key) {
648 		if (info->value_type.dec)
649 			info->value_type.dec(info->value_type.context,
650 					     value_ptr(n, index));
651 
652 		delete_at(n, index);
653 		keys[last_level] = k + 1ull;
654 
655 	} else
656 		r = -ENODATA;
657 
658 out:
659 	*new_root = shadow_root(&spine);
660 	exit_shadow_spine(&spine);
661 
662 	return r;
663 }
664 
665 int dm_btree_remove_leaves(struct dm_btree_info *info, dm_block_t root,
666 			   uint64_t *first_key, uint64_t end_key,
667 			   dm_block_t *new_root, unsigned *nr_removed)
668 {
669 	int r;
670 
671 	*nr_removed = 0;
672 	do {
673 		r = remove_one(info, root, first_key, end_key, &root, nr_removed);
674 		if (!r)
675 			(*nr_removed)++;
676 	} while (!r);
677 
678 	*new_root = root;
679 	return r == -ENODATA ? 0 : r;
680 }
681 EXPORT_SYMBOL_GPL(dm_btree_remove_leaves);
682