1 /* 2 * Copyright (C) 2011 Red Hat, Inc. 3 * 4 * This file is released under the GPL. 5 */ 6 7 #include "dm-btree.h" 8 #include "dm-btree-internal.h" 9 #include "dm-transaction-manager.h" 10 11 #include <linux/export.h> 12 13 /* 14 * Removing an entry from a btree 15 * ============================== 16 * 17 * A very important constraint for our btree is that no node, except the 18 * root, may have fewer than a certain number of entries. 19 * (MIN_ENTRIES <= nr_entries <= MAX_ENTRIES). 20 * 21 * Ensuring this is complicated by the way we want to only ever hold the 22 * locks on 2 nodes concurrently, and only change nodes in a top to bottom 23 * fashion. 24 * 25 * Each node may have a left or right sibling. When decending the spine, 26 * if a node contains only MIN_ENTRIES then we try and increase this to at 27 * least MIN_ENTRIES + 1. We do this in the following ways: 28 * 29 * [A] No siblings => this can only happen if the node is the root, in which 30 * case we copy the childs contents over the root. 31 * 32 * [B] No left sibling 33 * ==> rebalance(node, right sibling) 34 * 35 * [C] No right sibling 36 * ==> rebalance(left sibling, node) 37 * 38 * [D] Both siblings, total_entries(left, node, right) <= DEL_THRESHOLD 39 * ==> delete node adding it's contents to left and right 40 * 41 * [E] Both siblings, total_entries(left, node, right) > DEL_THRESHOLD 42 * ==> rebalance(left, node, right) 43 * 44 * After these operations it's possible that the our original node no 45 * longer contains the desired sub tree. For this reason this rebalancing 46 * is performed on the children of the current node. This also avoids 47 * having a special case for the root. 48 * 49 * Once this rebalancing has occurred we can then step into the child node 50 * for internal nodes. Or delete the entry for leaf nodes. 51 */ 52 53 /* 54 * Some little utilities for moving node data around. 55 */ 56 static void node_shift(struct btree_node *n, int shift) 57 { 58 uint32_t nr_entries = le32_to_cpu(n->header.nr_entries); 59 uint32_t value_size = le32_to_cpu(n->header.value_size); 60 61 if (shift < 0) { 62 shift = -shift; 63 BUG_ON(shift > nr_entries); 64 BUG_ON((void *) key_ptr(n, shift) >= value_ptr(n, shift)); 65 memmove(key_ptr(n, 0), 66 key_ptr(n, shift), 67 (nr_entries - shift) * sizeof(__le64)); 68 memmove(value_ptr(n, 0), 69 value_ptr(n, shift), 70 (nr_entries - shift) * value_size); 71 } else { 72 BUG_ON(nr_entries + shift > le32_to_cpu(n->header.max_entries)); 73 memmove(key_ptr(n, shift), 74 key_ptr(n, 0), 75 nr_entries * sizeof(__le64)); 76 memmove(value_ptr(n, shift), 77 value_ptr(n, 0), 78 nr_entries * value_size); 79 } 80 } 81 82 static void node_copy(struct btree_node *left, struct btree_node *right, int shift) 83 { 84 uint32_t nr_left = le32_to_cpu(left->header.nr_entries); 85 uint32_t value_size = le32_to_cpu(left->header.value_size); 86 BUG_ON(value_size != le32_to_cpu(right->header.value_size)); 87 88 if (shift < 0) { 89 shift = -shift; 90 BUG_ON(nr_left + shift > le32_to_cpu(left->header.max_entries)); 91 memcpy(key_ptr(left, nr_left), 92 key_ptr(right, 0), 93 shift * sizeof(__le64)); 94 memcpy(value_ptr(left, nr_left), 95 value_ptr(right, 0), 96 shift * value_size); 97 } else { 98 BUG_ON(shift > le32_to_cpu(right->header.max_entries)); 99 memcpy(key_ptr(right, 0), 100 key_ptr(left, nr_left - shift), 101 shift * sizeof(__le64)); 102 memcpy(value_ptr(right, 0), 103 value_ptr(left, nr_left - shift), 104 shift * value_size); 105 } 106 } 107 108 /* 109 * Delete a specific entry from a leaf node. 110 */ 111 static void delete_at(struct btree_node *n, unsigned index) 112 { 113 unsigned nr_entries = le32_to_cpu(n->header.nr_entries); 114 unsigned nr_to_copy = nr_entries - (index + 1); 115 uint32_t value_size = le32_to_cpu(n->header.value_size); 116 BUG_ON(index >= nr_entries); 117 118 if (nr_to_copy) { 119 memmove(key_ptr(n, index), 120 key_ptr(n, index + 1), 121 nr_to_copy * sizeof(__le64)); 122 123 memmove(value_ptr(n, index), 124 value_ptr(n, index + 1), 125 nr_to_copy * value_size); 126 } 127 128 n->header.nr_entries = cpu_to_le32(nr_entries - 1); 129 } 130 131 static unsigned merge_threshold(struct btree_node *n) 132 { 133 return le32_to_cpu(n->header.max_entries) / 3; 134 } 135 136 struct child { 137 unsigned index; 138 struct dm_block *block; 139 struct btree_node *n; 140 }; 141 142 static int init_child(struct dm_btree_info *info, struct dm_btree_value_type *vt, 143 struct btree_node *parent, 144 unsigned index, struct child *result) 145 { 146 int r, inc; 147 dm_block_t root; 148 149 result->index = index; 150 root = value64(parent, index); 151 152 r = dm_tm_shadow_block(info->tm, root, &btree_node_validator, 153 &result->block, &inc); 154 if (r) 155 return r; 156 157 result->n = dm_block_data(result->block); 158 159 if (inc) 160 inc_children(info->tm, result->n, vt); 161 162 *((__le64 *) value_ptr(parent, index)) = 163 cpu_to_le64(dm_block_location(result->block)); 164 165 return 0; 166 } 167 168 static void exit_child(struct dm_btree_info *info, struct child *c) 169 { 170 dm_tm_unlock(info->tm, c->block); 171 } 172 173 static void shift(struct btree_node *left, struct btree_node *right, int count) 174 { 175 uint32_t nr_left = le32_to_cpu(left->header.nr_entries); 176 uint32_t nr_right = le32_to_cpu(right->header.nr_entries); 177 uint32_t max_entries = le32_to_cpu(left->header.max_entries); 178 uint32_t r_max_entries = le32_to_cpu(right->header.max_entries); 179 180 BUG_ON(max_entries != r_max_entries); 181 BUG_ON(nr_left - count > max_entries); 182 BUG_ON(nr_right + count > max_entries); 183 184 if (!count) 185 return; 186 187 if (count > 0) { 188 node_shift(right, count); 189 node_copy(left, right, count); 190 } else { 191 node_copy(left, right, count); 192 node_shift(right, count); 193 } 194 195 left->header.nr_entries = cpu_to_le32(nr_left - count); 196 right->header.nr_entries = cpu_to_le32(nr_right + count); 197 } 198 199 static void __rebalance2(struct dm_btree_info *info, struct btree_node *parent, 200 struct child *l, struct child *r) 201 { 202 struct btree_node *left = l->n; 203 struct btree_node *right = r->n; 204 uint32_t nr_left = le32_to_cpu(left->header.nr_entries); 205 uint32_t nr_right = le32_to_cpu(right->header.nr_entries); 206 unsigned threshold = 2 * merge_threshold(left) + 1; 207 208 if (nr_left + nr_right < threshold) { 209 /* 210 * Merge 211 */ 212 node_copy(left, right, -nr_right); 213 left->header.nr_entries = cpu_to_le32(nr_left + nr_right); 214 delete_at(parent, r->index); 215 216 /* 217 * We need to decrement the right block, but not it's 218 * children, since they're still referenced by left. 219 */ 220 dm_tm_dec(info->tm, dm_block_location(r->block)); 221 } else { 222 /* 223 * Rebalance. 224 */ 225 unsigned target_left = (nr_left + nr_right) / 2; 226 shift(left, right, nr_left - target_left); 227 *key_ptr(parent, r->index) = right->keys[0]; 228 } 229 } 230 231 static int rebalance2(struct shadow_spine *s, struct dm_btree_info *info, 232 struct dm_btree_value_type *vt, unsigned left_index) 233 { 234 int r; 235 struct btree_node *parent; 236 struct child left, right; 237 238 parent = dm_block_data(shadow_current(s)); 239 240 r = init_child(info, vt, parent, left_index, &left); 241 if (r) 242 return r; 243 244 r = init_child(info, vt, parent, left_index + 1, &right); 245 if (r) { 246 exit_child(info, &left); 247 return r; 248 } 249 250 __rebalance2(info, parent, &left, &right); 251 252 exit_child(info, &left); 253 exit_child(info, &right); 254 255 return 0; 256 } 257 258 /* 259 * We dump as many entries from center as possible into left, then the rest 260 * in right, then rebalance2. This wastes some cpu, but I want something 261 * simple atm. 262 */ 263 static void delete_center_node(struct dm_btree_info *info, struct btree_node *parent, 264 struct child *l, struct child *c, struct child *r, 265 struct btree_node *left, struct btree_node *center, struct btree_node *right, 266 uint32_t nr_left, uint32_t nr_center, uint32_t nr_right) 267 { 268 uint32_t max_entries = le32_to_cpu(left->header.max_entries); 269 unsigned shift = min(max_entries - nr_left, nr_center); 270 271 BUG_ON(nr_left + shift > max_entries); 272 node_copy(left, center, -shift); 273 left->header.nr_entries = cpu_to_le32(nr_left + shift); 274 275 if (shift != nr_center) { 276 shift = nr_center - shift; 277 BUG_ON((nr_right + shift) > max_entries); 278 node_shift(right, shift); 279 node_copy(center, right, shift); 280 right->header.nr_entries = cpu_to_le32(nr_right + shift); 281 } 282 *key_ptr(parent, r->index) = right->keys[0]; 283 284 delete_at(parent, c->index); 285 r->index--; 286 287 dm_tm_dec(info->tm, dm_block_location(c->block)); 288 __rebalance2(info, parent, l, r); 289 } 290 291 /* 292 * Redistributes entries among 3 sibling nodes. 293 */ 294 static void redistribute3(struct dm_btree_info *info, struct btree_node *parent, 295 struct child *l, struct child *c, struct child *r, 296 struct btree_node *left, struct btree_node *center, struct btree_node *right, 297 uint32_t nr_left, uint32_t nr_center, uint32_t nr_right) 298 { 299 int s; 300 uint32_t max_entries = le32_to_cpu(left->header.max_entries); 301 unsigned total = nr_left + nr_center + nr_right; 302 unsigned target_right = total / 3; 303 unsigned remainder = (target_right * 3) != total; 304 unsigned target_left = target_right + remainder; 305 306 BUG_ON(target_left > max_entries); 307 BUG_ON(target_right > max_entries); 308 309 if (nr_left < nr_right) { 310 s = nr_left - target_left; 311 312 if (s < 0 && nr_center < -s) { 313 /* not enough in central node */ 314 shift(left, center, -nr_center); 315 s += nr_center; 316 shift(left, right, s); 317 nr_right += s; 318 } else 319 shift(left, center, s); 320 321 shift(center, right, target_right - nr_right); 322 323 } else { 324 s = target_right - nr_right; 325 if (s > 0 && nr_center < s) { 326 /* not enough in central node */ 327 shift(center, right, nr_center); 328 s -= nr_center; 329 shift(left, right, s); 330 nr_left -= s; 331 } else 332 shift(center, right, s); 333 334 shift(left, center, nr_left - target_left); 335 } 336 337 *key_ptr(parent, c->index) = center->keys[0]; 338 *key_ptr(parent, r->index) = right->keys[0]; 339 } 340 341 static void __rebalance3(struct dm_btree_info *info, struct btree_node *parent, 342 struct child *l, struct child *c, struct child *r) 343 { 344 struct btree_node *left = l->n; 345 struct btree_node *center = c->n; 346 struct btree_node *right = r->n; 347 348 uint32_t nr_left = le32_to_cpu(left->header.nr_entries); 349 uint32_t nr_center = le32_to_cpu(center->header.nr_entries); 350 uint32_t nr_right = le32_to_cpu(right->header.nr_entries); 351 352 unsigned threshold = merge_threshold(left) * 4 + 1; 353 354 BUG_ON(left->header.max_entries != center->header.max_entries); 355 BUG_ON(center->header.max_entries != right->header.max_entries); 356 357 if ((nr_left + nr_center + nr_right) < threshold) 358 delete_center_node(info, parent, l, c, r, left, center, right, 359 nr_left, nr_center, nr_right); 360 else 361 redistribute3(info, parent, l, c, r, left, center, right, 362 nr_left, nr_center, nr_right); 363 } 364 365 static int rebalance3(struct shadow_spine *s, struct dm_btree_info *info, 366 struct dm_btree_value_type *vt, unsigned left_index) 367 { 368 int r; 369 struct btree_node *parent = dm_block_data(shadow_current(s)); 370 struct child left, center, right; 371 372 /* 373 * FIXME: fill out an array? 374 */ 375 r = init_child(info, vt, parent, left_index, &left); 376 if (r) 377 return r; 378 379 r = init_child(info, vt, parent, left_index + 1, ¢er); 380 if (r) { 381 exit_child(info, &left); 382 return r; 383 } 384 385 r = init_child(info, vt, parent, left_index + 2, &right); 386 if (r) { 387 exit_child(info, &left); 388 exit_child(info, ¢er); 389 return r; 390 } 391 392 __rebalance3(info, parent, &left, ¢er, &right); 393 394 exit_child(info, &left); 395 exit_child(info, ¢er); 396 exit_child(info, &right); 397 398 return 0; 399 } 400 401 static int rebalance_children(struct shadow_spine *s, 402 struct dm_btree_info *info, 403 struct dm_btree_value_type *vt, uint64_t key) 404 { 405 int i, r, has_left_sibling, has_right_sibling; 406 struct btree_node *n; 407 408 n = dm_block_data(shadow_current(s)); 409 410 if (le32_to_cpu(n->header.nr_entries) == 1) { 411 struct dm_block *child; 412 dm_block_t b = value64(n, 0); 413 414 r = dm_tm_read_lock(info->tm, b, &btree_node_validator, &child); 415 if (r) 416 return r; 417 418 memcpy(n, dm_block_data(child), 419 dm_bm_block_size(dm_tm_get_bm(info->tm))); 420 dm_tm_unlock(info->tm, child); 421 422 dm_tm_dec(info->tm, dm_block_location(child)); 423 return 0; 424 } 425 426 i = lower_bound(n, key); 427 if (i < 0) 428 return -ENODATA; 429 430 has_left_sibling = i > 0; 431 has_right_sibling = i < (le32_to_cpu(n->header.nr_entries) - 1); 432 433 if (!has_left_sibling) 434 r = rebalance2(s, info, vt, i); 435 436 else if (!has_right_sibling) 437 r = rebalance2(s, info, vt, i - 1); 438 439 else 440 r = rebalance3(s, info, vt, i - 1); 441 442 return r; 443 } 444 445 static int do_leaf(struct btree_node *n, uint64_t key, unsigned *index) 446 { 447 int i = lower_bound(n, key); 448 449 if ((i < 0) || 450 (i >= le32_to_cpu(n->header.nr_entries)) || 451 (le64_to_cpu(n->keys[i]) != key)) 452 return -ENODATA; 453 454 *index = i; 455 456 return 0; 457 } 458 459 /* 460 * Prepares for removal from one level of the hierarchy. The caller must 461 * call delete_at() to remove the entry at index. 462 */ 463 static int remove_raw(struct shadow_spine *s, struct dm_btree_info *info, 464 struct dm_btree_value_type *vt, dm_block_t root, 465 uint64_t key, unsigned *index) 466 { 467 int i = *index, r; 468 struct btree_node *n; 469 470 for (;;) { 471 r = shadow_step(s, root, vt); 472 if (r < 0) 473 break; 474 475 /* 476 * We have to patch up the parent node, ugly, but I don't 477 * see a way to do this automatically as part of the spine 478 * op. 479 */ 480 if (shadow_has_parent(s)) { 481 __le64 location = cpu_to_le64(dm_block_location(shadow_current(s))); 482 memcpy(value_ptr(dm_block_data(shadow_parent(s)), i), 483 &location, sizeof(__le64)); 484 } 485 486 n = dm_block_data(shadow_current(s)); 487 488 if (le32_to_cpu(n->header.flags) & LEAF_NODE) 489 return do_leaf(n, key, index); 490 491 r = rebalance_children(s, info, vt, key); 492 if (r) 493 break; 494 495 n = dm_block_data(shadow_current(s)); 496 if (le32_to_cpu(n->header.flags) & LEAF_NODE) 497 return do_leaf(n, key, index); 498 499 i = lower_bound(n, key); 500 501 /* 502 * We know the key is present, or else 503 * rebalance_children would have returned 504 * -ENODATA 505 */ 506 root = value64(n, i); 507 } 508 509 return r; 510 } 511 512 int dm_btree_remove(struct dm_btree_info *info, dm_block_t root, 513 uint64_t *keys, dm_block_t *new_root) 514 { 515 unsigned level, last_level = info->levels - 1; 516 int index = 0, r = 0; 517 struct shadow_spine spine; 518 struct btree_node *n; 519 struct dm_btree_value_type le64_vt; 520 521 init_le64_type(info->tm, &le64_vt); 522 init_shadow_spine(&spine, info); 523 for (level = 0; level < info->levels; level++) { 524 r = remove_raw(&spine, info, 525 (level == last_level ? 526 &info->value_type : &le64_vt), 527 root, keys[level], (unsigned *)&index); 528 if (r < 0) 529 break; 530 531 n = dm_block_data(shadow_current(&spine)); 532 if (level != last_level) { 533 root = value64(n, index); 534 continue; 535 } 536 537 BUG_ON(index < 0 || index >= le32_to_cpu(n->header.nr_entries)); 538 539 if (info->value_type.dec) 540 info->value_type.dec(info->value_type.context, 541 value_ptr(n, index)); 542 543 delete_at(n, index); 544 } 545 546 *new_root = shadow_root(&spine); 547 exit_shadow_spine(&spine); 548 549 return r; 550 } 551 EXPORT_SYMBOL_GPL(dm_btree_remove); 552 553 /*----------------------------------------------------------------*/ 554 555 static int remove_nearest(struct shadow_spine *s, struct dm_btree_info *info, 556 struct dm_btree_value_type *vt, dm_block_t root, 557 uint64_t key, int *index) 558 { 559 int i = *index, r; 560 struct btree_node *n; 561 562 for (;;) { 563 r = shadow_step(s, root, vt); 564 if (r < 0) 565 break; 566 567 /* 568 * We have to patch up the parent node, ugly, but I don't 569 * see a way to do this automatically as part of the spine 570 * op. 571 */ 572 if (shadow_has_parent(s)) { 573 __le64 location = cpu_to_le64(dm_block_location(shadow_current(s))); 574 memcpy(value_ptr(dm_block_data(shadow_parent(s)), i), 575 &location, sizeof(__le64)); 576 } 577 578 n = dm_block_data(shadow_current(s)); 579 580 if (le32_to_cpu(n->header.flags) & LEAF_NODE) { 581 *index = lower_bound(n, key); 582 return 0; 583 } 584 585 r = rebalance_children(s, info, vt, key); 586 if (r) 587 break; 588 589 n = dm_block_data(shadow_current(s)); 590 if (le32_to_cpu(n->header.flags) & LEAF_NODE) { 591 *index = lower_bound(n, key); 592 return 0; 593 } 594 595 i = lower_bound(n, key); 596 597 /* 598 * We know the key is present, or else 599 * rebalance_children would have returned 600 * -ENODATA 601 */ 602 root = value64(n, i); 603 } 604 605 return r; 606 } 607 608 static int remove_one(struct dm_btree_info *info, dm_block_t root, 609 uint64_t *keys, uint64_t end_key, 610 dm_block_t *new_root, unsigned *nr_removed) 611 { 612 unsigned level, last_level = info->levels - 1; 613 int index = 0, r = 0; 614 struct shadow_spine spine; 615 struct btree_node *n; 616 struct dm_btree_value_type le64_vt; 617 uint64_t k; 618 619 init_le64_type(info->tm, &le64_vt); 620 init_shadow_spine(&spine, info); 621 for (level = 0; level < last_level; level++) { 622 r = remove_raw(&spine, info, &le64_vt, 623 root, keys[level], (unsigned *) &index); 624 if (r < 0) 625 goto out; 626 627 n = dm_block_data(shadow_current(&spine)); 628 root = value64(n, index); 629 } 630 631 r = remove_nearest(&spine, info, &info->value_type, 632 root, keys[last_level], &index); 633 if (r < 0) 634 goto out; 635 636 n = dm_block_data(shadow_current(&spine)); 637 638 if (index < 0) 639 index = 0; 640 641 if (index >= le32_to_cpu(n->header.nr_entries)) { 642 r = -ENODATA; 643 goto out; 644 } 645 646 k = le64_to_cpu(n->keys[index]); 647 if (k >= keys[last_level] && k < end_key) { 648 if (info->value_type.dec) 649 info->value_type.dec(info->value_type.context, 650 value_ptr(n, index)); 651 652 delete_at(n, index); 653 keys[last_level] = k + 1ull; 654 655 } else 656 r = -ENODATA; 657 658 out: 659 *new_root = shadow_root(&spine); 660 exit_shadow_spine(&spine); 661 662 return r; 663 } 664 665 int dm_btree_remove_leaves(struct dm_btree_info *info, dm_block_t root, 666 uint64_t *first_key, uint64_t end_key, 667 dm_block_t *new_root, unsigned *nr_removed) 668 { 669 int r; 670 671 *nr_removed = 0; 672 do { 673 r = remove_one(info, root, first_key, end_key, &root, nr_removed); 674 if (!r) 675 (*nr_removed)++; 676 } while (!r); 677 678 *new_root = root; 679 return r == -ENODATA ? 0 : r; 680 } 681 EXPORT_SYMBOL_GPL(dm_btree_remove_leaves); 682