1 /*
2  * Copyright (C) 2011 Red Hat, Inc.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #ifndef DM_BTREE_INTERNAL_H
8 #define DM_BTREE_INTERNAL_H
9 
10 #include "dm-btree.h"
11 
12 /*----------------------------------------------------------------*/
13 
14 /*
15  * We'll need 2 accessor functions for n->csum and n->blocknr
16  * to support dm-btree-spine.c in that case.
17  */
18 
19 enum node_flags {
20 	INTERNAL_NODE = 1,
21 	LEAF_NODE = 1 << 1
22 };
23 
24 /*
25  * Every btree node begins with this structure.  Make sure it's a multiple
26  * of 8-bytes in size, otherwise the 64bit keys will be mis-aligned.
27  */
28 struct node_header {
29 	__le32 csum;
30 	__le32 flags;
31 	__le64 blocknr; /* Block this node is supposed to live in. */
32 
33 	__le32 nr_entries;
34 	__le32 max_entries;
35 	__le32 value_size;
36 	__le32 padding;
37 } __attribute__((packed, aligned(8)));
38 
39 struct btree_node {
40 	struct node_header header;
41 	__le64 keys[];
42 } __attribute__((packed, aligned(8)));
43 
44 
45 /*
46  * Locks a block using the btree node validator.
47  */
48 int bn_read_lock(struct dm_btree_info *info, dm_block_t b,
49 		 struct dm_block **result);
50 
51 void inc_children(struct dm_transaction_manager *tm, struct btree_node *n,
52 		  struct dm_btree_value_type *vt);
53 
54 int new_block(struct dm_btree_info *info, struct dm_block **result);
55 void unlock_block(struct dm_btree_info *info, struct dm_block *b);
56 
57 /*
58  * Spines keep track of the rolling locks.  There are 2 variants, read-only
59  * and one that uses shadowing.  These are separate structs to allow the
60  * type checker to spot misuse, for example accidentally calling read_lock
61  * on a shadow spine.
62  */
63 struct ro_spine {
64 	struct dm_btree_info *info;
65 
66 	int count;
67 	struct dm_block *nodes[2];
68 };
69 
70 void init_ro_spine(struct ro_spine *s, struct dm_btree_info *info);
71 void exit_ro_spine(struct ro_spine *s);
72 int ro_step(struct ro_spine *s, dm_block_t new_child);
73 void ro_pop(struct ro_spine *s);
74 struct btree_node *ro_node(struct ro_spine *s);
75 
76 struct shadow_spine {
77 	struct dm_btree_info *info;
78 
79 	int count;
80 	struct dm_block *nodes[2];
81 
82 	dm_block_t root;
83 };
84 
85 void init_shadow_spine(struct shadow_spine *s, struct dm_btree_info *info);
86 void exit_shadow_spine(struct shadow_spine *s);
87 
88 int shadow_step(struct shadow_spine *s, dm_block_t b,
89 		struct dm_btree_value_type *vt);
90 
91 /*
92  * The spine must have at least one entry before calling this.
93  */
94 struct dm_block *shadow_current(struct shadow_spine *s);
95 
96 /*
97  * The spine must have at least two entries before calling this.
98  */
99 struct dm_block *shadow_parent(struct shadow_spine *s);
100 
101 int shadow_has_parent(struct shadow_spine *s);
102 
103 dm_block_t shadow_root(struct shadow_spine *s);
104 
105 /*
106  * Some inlines.
107  */
108 static inline __le64 *key_ptr(struct btree_node *n, uint32_t index)
109 {
110 	return n->keys + index;
111 }
112 
113 static inline void *value_base(struct btree_node *n)
114 {
115 	return &n->keys[le32_to_cpu(n->header.max_entries)];
116 }
117 
118 static inline void *value_ptr(struct btree_node *n, uint32_t index)
119 {
120 	uint32_t value_size = le32_to_cpu(n->header.value_size);
121 	return value_base(n) + (value_size * index);
122 }
123 
124 /*
125  * Assumes the values are suitably-aligned and converts to core format.
126  */
127 static inline uint64_t value64(struct btree_node *n, uint32_t index)
128 {
129 	__le64 *values_le = value_base(n);
130 
131 	return le64_to_cpu(values_le[index]);
132 }
133 
134 /*
135  * Searching for a key within a single node.
136  */
137 int lower_bound(struct btree_node *n, uint64_t key);
138 
139 extern struct dm_block_validator btree_node_validator;
140 
141 /*
142  * Value type for upper levels of multi-level btrees.
143  */
144 extern void init_le64_type(struct dm_transaction_manager *tm,
145 			   struct dm_btree_value_type *vt);
146 
147 /*
148  * This returns a shadowed btree leaf that you may modify.  In practise
149  * this means overwrites only, since an insert could cause a node to
150  * be split.  Useful if you need access to the old value to calculate the
151  * new one.
152  *
153  * This only works with single level btrees.  The given key must be present in
154  * the tree, otherwise -EINVAL will be returned.
155  */
156 int btree_get_overwrite_leaf(struct dm_btree_info *info, dm_block_t root,
157 			     uint64_t key, int *index,
158 			     dm_block_t *new_root, struct dm_block **leaf);
159 
160 #endif	/* DM_BTREE_INTERNAL_H */
161