1 /*
2  * Copyright (C) 2012 Red Hat, Inc.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm-array.h"
8 #include "dm-space-map.h"
9 #include "dm-transaction-manager.h"
10 
11 #include <linux/export.h>
12 #include <linux/device-mapper.h>
13 
14 #define DM_MSG_PREFIX "array"
15 
16 /*----------------------------------------------------------------*/
17 
18 /*
19  * The array is implemented as a fully populated btree, which points to
20  * blocks that contain the packed values.  This is more space efficient
21  * than just using a btree since we don't store 1 key per value.
22  */
23 struct array_block {
24 	__le32 csum;
25 	__le32 max_entries;
26 	__le32 nr_entries;
27 	__le32 value_size;
28 	__le64 blocknr; /* Block this node is supposed to live in. */
29 } __packed;
30 
31 /*----------------------------------------------------------------*/
32 
33 /*
34  * Validator methods.  As usual we calculate a checksum, and also write the
35  * block location into the header (paranoia about ssds remapping areas by
36  * mistake).
37  */
38 #define CSUM_XOR 595846735
39 
40 static void array_block_prepare_for_write(struct dm_block_validator *v,
41 					  struct dm_block *b,
42 					  size_t size_of_block)
43 {
44 	struct array_block *bh_le = dm_block_data(b);
45 
46 	bh_le->blocknr = cpu_to_le64(dm_block_location(b));
47 	bh_le->csum = cpu_to_le32(dm_bm_checksum(&bh_le->max_entries,
48 						 size_of_block - sizeof(__le32),
49 						 CSUM_XOR));
50 }
51 
52 static int array_block_check(struct dm_block_validator *v,
53 			     struct dm_block *b,
54 			     size_t size_of_block)
55 {
56 	struct array_block *bh_le = dm_block_data(b);
57 	__le32 csum_disk;
58 
59 	if (dm_block_location(b) != le64_to_cpu(bh_le->blocknr)) {
60 		DMERR_LIMIT("array_block_check failed: blocknr %llu != wanted %llu",
61 			    (unsigned long long) le64_to_cpu(bh_le->blocknr),
62 			    (unsigned long long) dm_block_location(b));
63 		return -ENOTBLK;
64 	}
65 
66 	csum_disk = cpu_to_le32(dm_bm_checksum(&bh_le->max_entries,
67 					       size_of_block - sizeof(__le32),
68 					       CSUM_XOR));
69 	if (csum_disk != bh_le->csum) {
70 		DMERR_LIMIT("array_block_check failed: csum %u != wanted %u",
71 			    (unsigned) le32_to_cpu(csum_disk),
72 			    (unsigned) le32_to_cpu(bh_le->csum));
73 		return -EILSEQ;
74 	}
75 
76 	return 0;
77 }
78 
79 static struct dm_block_validator array_validator = {
80 	.name = "array",
81 	.prepare_for_write = array_block_prepare_for_write,
82 	.check = array_block_check
83 };
84 
85 /*----------------------------------------------------------------*/
86 
87 /*
88  * Functions for manipulating the array blocks.
89  */
90 
91 /*
92  * Returns a pointer to a value within an array block.
93  *
94  * index - The index into _this_ specific block.
95  */
96 static void *element_at(struct dm_array_info *info, struct array_block *ab,
97 			unsigned index)
98 {
99 	unsigned char *entry = (unsigned char *) (ab + 1);
100 
101 	entry += index * info->value_type.size;
102 
103 	return entry;
104 }
105 
106 /*
107  * Utility function that calls one of the value_type methods on every value
108  * in an array block.
109  */
110 static void on_entries(struct dm_array_info *info, struct array_block *ab,
111 		       void (*fn)(void *, const void *))
112 {
113 	unsigned i, nr_entries = le32_to_cpu(ab->nr_entries);
114 
115 	for (i = 0; i < nr_entries; i++)
116 		fn(info->value_type.context, element_at(info, ab, i));
117 }
118 
119 /*
120  * Increment every value in an array block.
121  */
122 static void inc_ablock_entries(struct dm_array_info *info, struct array_block *ab)
123 {
124 	struct dm_btree_value_type *vt = &info->value_type;
125 
126 	if (vt->inc)
127 		on_entries(info, ab, vt->inc);
128 }
129 
130 /*
131  * Decrement every value in an array block.
132  */
133 static void dec_ablock_entries(struct dm_array_info *info, struct array_block *ab)
134 {
135 	struct dm_btree_value_type *vt = &info->value_type;
136 
137 	if (vt->dec)
138 		on_entries(info, ab, vt->dec);
139 }
140 
141 /*
142  * Each array block can hold this many values.
143  */
144 static uint32_t calc_max_entries(size_t value_size, size_t size_of_block)
145 {
146 	return (size_of_block - sizeof(struct array_block)) / value_size;
147 }
148 
149 /*
150  * Allocate a new array block.  The caller will need to unlock block.
151  */
152 static int alloc_ablock(struct dm_array_info *info, size_t size_of_block,
153 			uint32_t max_entries,
154 			struct dm_block **block, struct array_block **ab)
155 {
156 	int r;
157 
158 	r = dm_tm_new_block(info->btree_info.tm, &array_validator, block);
159 	if (r)
160 		return r;
161 
162 	(*ab) = dm_block_data(*block);
163 	(*ab)->max_entries = cpu_to_le32(max_entries);
164 	(*ab)->nr_entries = cpu_to_le32(0);
165 	(*ab)->value_size = cpu_to_le32(info->value_type.size);
166 
167 	return 0;
168 }
169 
170 /*
171  * Pad an array block out with a particular value.  Every instance will
172  * cause an increment of the value_type.  new_nr must always be more than
173  * the current number of entries.
174  */
175 static void fill_ablock(struct dm_array_info *info, struct array_block *ab,
176 			const void *value, unsigned new_nr)
177 {
178 	unsigned i;
179 	uint32_t nr_entries;
180 	struct dm_btree_value_type *vt = &info->value_type;
181 
182 	BUG_ON(new_nr > le32_to_cpu(ab->max_entries));
183 	BUG_ON(new_nr < le32_to_cpu(ab->nr_entries));
184 
185 	nr_entries = le32_to_cpu(ab->nr_entries);
186 	for (i = nr_entries; i < new_nr; i++) {
187 		if (vt->inc)
188 			vt->inc(vt->context, value);
189 		memcpy(element_at(info, ab, i), value, vt->size);
190 	}
191 	ab->nr_entries = cpu_to_le32(new_nr);
192 }
193 
194 /*
195  * Remove some entries from the back of an array block.  Every value
196  * removed will be decremented.  new_nr must be <= the current number of
197  * entries.
198  */
199 static void trim_ablock(struct dm_array_info *info, struct array_block *ab,
200 			unsigned new_nr)
201 {
202 	unsigned i;
203 	uint32_t nr_entries;
204 	struct dm_btree_value_type *vt = &info->value_type;
205 
206 	BUG_ON(new_nr > le32_to_cpu(ab->max_entries));
207 	BUG_ON(new_nr > le32_to_cpu(ab->nr_entries));
208 
209 	nr_entries = le32_to_cpu(ab->nr_entries);
210 	for (i = nr_entries; i > new_nr; i--)
211 		if (vt->dec)
212 			vt->dec(vt->context, element_at(info, ab, i - 1));
213 	ab->nr_entries = cpu_to_le32(new_nr);
214 }
215 
216 /*
217  * Read locks a block, and coerces it to an array block.  The caller must
218  * unlock 'block' when finished.
219  */
220 static int get_ablock(struct dm_array_info *info, dm_block_t b,
221 		      struct dm_block **block, struct array_block **ab)
222 {
223 	int r;
224 
225 	r = dm_tm_read_lock(info->btree_info.tm, b, &array_validator, block);
226 	if (r)
227 		return r;
228 
229 	*ab = dm_block_data(*block);
230 	return 0;
231 }
232 
233 /*
234  * Unlocks an array block.
235  */
236 static void unlock_ablock(struct dm_array_info *info, struct dm_block *block)
237 {
238 	dm_tm_unlock(info->btree_info.tm, block);
239 }
240 
241 /*----------------------------------------------------------------*/
242 
243 /*
244  * Btree manipulation.
245  */
246 
247 /*
248  * Looks up an array block in the btree, and then read locks it.
249  *
250  * index is the index of the index of the array_block, (ie. the array index
251  * / max_entries).
252  */
253 static int lookup_ablock(struct dm_array_info *info, dm_block_t root,
254 			 unsigned index, struct dm_block **block,
255 			 struct array_block **ab)
256 {
257 	int r;
258 	uint64_t key = index;
259 	__le64 block_le;
260 
261 	r = dm_btree_lookup(&info->btree_info, root, &key, &block_le);
262 	if (r)
263 		return r;
264 
265 	return get_ablock(info, le64_to_cpu(block_le), block, ab);
266 }
267 
268 /*
269  * Insert an array block into the btree.  The block is _not_ unlocked.
270  */
271 static int insert_ablock(struct dm_array_info *info, uint64_t index,
272 			 struct dm_block *block, dm_block_t *root)
273 {
274 	__le64 block_le = cpu_to_le64(dm_block_location(block));
275 
276 	__dm_bless_for_disk(block_le);
277 	return dm_btree_insert(&info->btree_info, *root, &index, &block_le, root);
278 }
279 
280 /*
281  * Looks up an array block in the btree.  Then shadows it, and updates the
282  * btree to point to this new shadow.  'root' is an input/output parameter
283  * for both the current root block, and the new one.
284  */
285 static int shadow_ablock(struct dm_array_info *info, dm_block_t *root,
286 			 unsigned index, struct dm_block **block,
287 			 struct array_block **ab)
288 {
289 	int r, inc;
290 	uint64_t key = index;
291 	dm_block_t b;
292 	__le64 block_le;
293 
294 	/*
295 	 * lookup
296 	 */
297 	r = dm_btree_lookup(&info->btree_info, *root, &key, &block_le);
298 	if (r)
299 		return r;
300 	b = le64_to_cpu(block_le);
301 
302 	/*
303 	 * shadow
304 	 */
305 	r = dm_tm_shadow_block(info->btree_info.tm, b,
306 			       &array_validator, block, &inc);
307 	if (r)
308 		return r;
309 
310 	*ab = dm_block_data(*block);
311 	if (inc)
312 		inc_ablock_entries(info, *ab);
313 
314 	/*
315 	 * Reinsert.
316 	 *
317 	 * The shadow op will often be a noop.  Only insert if it really
318 	 * copied data.
319 	 */
320 	if (dm_block_location(*block) != b) {
321 		/*
322 		 * dm_tm_shadow_block will have already decremented the old
323 		 * block, but it is still referenced by the btree.  We
324 		 * increment to stop the insert decrementing it below zero
325 		 * when overwriting the old value.
326 		 */
327 		dm_tm_inc(info->btree_info.tm, b);
328 		r = insert_ablock(info, index, *block, root);
329 	}
330 
331 	return r;
332 }
333 
334 /*
335  * Allocate an new array block, and fill it with some values.
336  */
337 static int insert_new_ablock(struct dm_array_info *info, size_t size_of_block,
338 			     uint32_t max_entries,
339 			     unsigned block_index, uint32_t nr,
340 			     const void *value, dm_block_t *root)
341 {
342 	int r;
343 	struct dm_block *block;
344 	struct array_block *ab;
345 
346 	r = alloc_ablock(info, size_of_block, max_entries, &block, &ab);
347 	if (r)
348 		return r;
349 
350 	fill_ablock(info, ab, value, nr);
351 	r = insert_ablock(info, block_index, block, root);
352 	unlock_ablock(info, block);
353 
354 	return r;
355 }
356 
357 static int insert_full_ablocks(struct dm_array_info *info, size_t size_of_block,
358 			       unsigned begin_block, unsigned end_block,
359 			       unsigned max_entries, const void *value,
360 			       dm_block_t *root)
361 {
362 	int r = 0;
363 
364 	for (; !r && begin_block != end_block; begin_block++)
365 		r = insert_new_ablock(info, size_of_block, max_entries, begin_block, max_entries, value, root);
366 
367 	return r;
368 }
369 
370 /*
371  * There are a bunch of functions involved with resizing an array.  This
372  * structure holds information that commonly needed by them.  Purely here
373  * to reduce parameter count.
374  */
375 struct resize {
376 	/*
377 	 * Describes the array.
378 	 */
379 	struct dm_array_info *info;
380 
381 	/*
382 	 * The current root of the array.  This gets updated.
383 	 */
384 	dm_block_t root;
385 
386 	/*
387 	 * Metadata block size.  Used to calculate the nr entries in an
388 	 * array block.
389 	 */
390 	size_t size_of_block;
391 
392 	/*
393 	 * Maximum nr entries in an array block.
394 	 */
395 	unsigned max_entries;
396 
397 	/*
398 	 * nr of completely full blocks in the array.
399 	 *
400 	 * 'old' refers to before the resize, 'new' after.
401 	 */
402 	unsigned old_nr_full_blocks, new_nr_full_blocks;
403 
404 	/*
405 	 * Number of entries in the final block.  0 iff only full blocks in
406 	 * the array.
407 	 */
408 	unsigned old_nr_entries_in_last_block, new_nr_entries_in_last_block;
409 
410 	/*
411 	 * The default value used when growing the array.
412 	 */
413 	const void *value;
414 };
415 
416 /*
417  * Removes a consecutive set of array blocks from the btree.  The values
418  * in block are decremented as a side effect of the btree remove.
419  *
420  * begin_index - the index of the first array block to remove.
421  * end_index - the one-past-the-end value.  ie. this block is not removed.
422  */
423 static int drop_blocks(struct resize *resize, unsigned begin_index,
424 		       unsigned end_index)
425 {
426 	int r;
427 
428 	while (begin_index != end_index) {
429 		uint64_t key = begin_index++;
430 		r = dm_btree_remove(&resize->info->btree_info, resize->root,
431 				    &key, &resize->root);
432 		if (r)
433 			return r;
434 	}
435 
436 	return 0;
437 }
438 
439 /*
440  * Calculates how many blocks are needed for the array.
441  */
442 static unsigned total_nr_blocks_needed(unsigned nr_full_blocks,
443 				       unsigned nr_entries_in_last_block)
444 {
445 	return nr_full_blocks + (nr_entries_in_last_block ? 1 : 0);
446 }
447 
448 /*
449  * Shrink an array.
450  */
451 static int shrink(struct resize *resize)
452 {
453 	int r;
454 	unsigned begin, end;
455 	struct dm_block *block;
456 	struct array_block *ab;
457 
458 	/*
459 	 * Lose some blocks from the back?
460 	 */
461 	if (resize->new_nr_full_blocks < resize->old_nr_full_blocks) {
462 		begin = total_nr_blocks_needed(resize->new_nr_full_blocks,
463 					       resize->new_nr_entries_in_last_block);
464 		end = total_nr_blocks_needed(resize->old_nr_full_blocks,
465 					     resize->old_nr_entries_in_last_block);
466 
467 		r = drop_blocks(resize, begin, end);
468 		if (r)
469 			return r;
470 	}
471 
472 	/*
473 	 * Trim the new tail block
474 	 */
475 	if (resize->new_nr_entries_in_last_block) {
476 		r = shadow_ablock(resize->info, &resize->root,
477 				  resize->new_nr_full_blocks, &block, &ab);
478 		if (r)
479 			return r;
480 
481 		trim_ablock(resize->info, ab, resize->new_nr_entries_in_last_block);
482 		unlock_ablock(resize->info, block);
483 	}
484 
485 	return 0;
486 }
487 
488 /*
489  * Grow an array.
490  */
491 static int grow_extend_tail_block(struct resize *resize, uint32_t new_nr_entries)
492 {
493 	int r;
494 	struct dm_block *block;
495 	struct array_block *ab;
496 
497 	r = shadow_ablock(resize->info, &resize->root,
498 			  resize->old_nr_full_blocks, &block, &ab);
499 	if (r)
500 		return r;
501 
502 	fill_ablock(resize->info, ab, resize->value, new_nr_entries);
503 	unlock_ablock(resize->info, block);
504 
505 	return r;
506 }
507 
508 static int grow_add_tail_block(struct resize *resize)
509 {
510 	return insert_new_ablock(resize->info, resize->size_of_block,
511 				 resize->max_entries,
512 				 resize->new_nr_full_blocks,
513 				 resize->new_nr_entries_in_last_block,
514 				 resize->value, &resize->root);
515 }
516 
517 static int grow_needs_more_blocks(struct resize *resize)
518 {
519 	int r;
520 	unsigned old_nr_blocks = resize->old_nr_full_blocks;
521 
522 	if (resize->old_nr_entries_in_last_block > 0) {
523 		old_nr_blocks++;
524 
525 		r = grow_extend_tail_block(resize, resize->max_entries);
526 		if (r)
527 			return r;
528 	}
529 
530 	r = insert_full_ablocks(resize->info, resize->size_of_block,
531 				old_nr_blocks,
532 				resize->new_nr_full_blocks,
533 				resize->max_entries, resize->value,
534 				&resize->root);
535 	if (r)
536 		return r;
537 
538 	if (resize->new_nr_entries_in_last_block)
539 		r = grow_add_tail_block(resize);
540 
541 	return r;
542 }
543 
544 static int grow(struct resize *resize)
545 {
546 	if (resize->new_nr_full_blocks > resize->old_nr_full_blocks)
547 		return grow_needs_more_blocks(resize);
548 
549 	else if (resize->old_nr_entries_in_last_block)
550 		return grow_extend_tail_block(resize, resize->new_nr_entries_in_last_block);
551 
552 	else
553 		return grow_add_tail_block(resize);
554 }
555 
556 /*----------------------------------------------------------------*/
557 
558 /*
559  * These are the value_type functions for the btree elements, which point
560  * to array blocks.
561  */
562 static void block_inc(void *context, const void *value)
563 {
564 	__le64 block_le;
565 	struct dm_array_info *info = context;
566 
567 	memcpy(&block_le, value, sizeof(block_le));
568 	dm_tm_inc(info->btree_info.tm, le64_to_cpu(block_le));
569 }
570 
571 static void block_dec(void *context, const void *value)
572 {
573 	int r;
574 	uint64_t b;
575 	__le64 block_le;
576 	uint32_t ref_count;
577 	struct dm_block *block;
578 	struct array_block *ab;
579 	struct dm_array_info *info = context;
580 
581 	memcpy(&block_le, value, sizeof(block_le));
582 	b = le64_to_cpu(block_le);
583 
584 	r = dm_tm_ref(info->btree_info.tm, b, &ref_count);
585 	if (r) {
586 		DMERR_LIMIT("couldn't get reference count for block %llu",
587 			    (unsigned long long) b);
588 		return;
589 	}
590 
591 	if (ref_count == 1) {
592 		/*
593 		 * We're about to drop the last reference to this ablock.
594 		 * So we need to decrement the ref count of the contents.
595 		 */
596 		r = get_ablock(info, b, &block, &ab);
597 		if (r) {
598 			DMERR_LIMIT("couldn't get array block %llu",
599 				    (unsigned long long) b);
600 			return;
601 		}
602 
603 		dec_ablock_entries(info, ab);
604 		unlock_ablock(info, block);
605 	}
606 
607 	dm_tm_dec(info->btree_info.tm, b);
608 }
609 
610 static int block_equal(void *context, const void *value1, const void *value2)
611 {
612 	return !memcmp(value1, value2, sizeof(__le64));
613 }
614 
615 /*----------------------------------------------------------------*/
616 
617 void dm_array_info_init(struct dm_array_info *info,
618 			struct dm_transaction_manager *tm,
619 			struct dm_btree_value_type *vt)
620 {
621 	struct dm_btree_value_type *bvt = &info->btree_info.value_type;
622 
623 	memcpy(&info->value_type, vt, sizeof(info->value_type));
624 	info->btree_info.tm = tm;
625 	info->btree_info.levels = 1;
626 
627 	bvt->context = info;
628 	bvt->size = sizeof(__le64);
629 	bvt->inc = block_inc;
630 	bvt->dec = block_dec;
631 	bvt->equal = block_equal;
632 }
633 EXPORT_SYMBOL_GPL(dm_array_info_init);
634 
635 int dm_array_empty(struct dm_array_info *info, dm_block_t *root)
636 {
637 	return dm_btree_empty(&info->btree_info, root);
638 }
639 EXPORT_SYMBOL_GPL(dm_array_empty);
640 
641 static int array_resize(struct dm_array_info *info, dm_block_t root,
642 			uint32_t old_size, uint32_t new_size,
643 			const void *value, dm_block_t *new_root)
644 {
645 	int r;
646 	struct resize resize;
647 
648 	if (old_size == new_size) {
649 		*new_root = root;
650 		return 0;
651 	}
652 
653 	resize.info = info;
654 	resize.root = root;
655 	resize.size_of_block = dm_bm_block_size(dm_tm_get_bm(info->btree_info.tm));
656 	resize.max_entries = calc_max_entries(info->value_type.size,
657 					      resize.size_of_block);
658 
659 	resize.old_nr_full_blocks = old_size / resize.max_entries;
660 	resize.old_nr_entries_in_last_block = old_size % resize.max_entries;
661 	resize.new_nr_full_blocks = new_size / resize.max_entries;
662 	resize.new_nr_entries_in_last_block = new_size % resize.max_entries;
663 	resize.value = value;
664 
665 	r = ((new_size > old_size) ? grow : shrink)(&resize);
666 	if (r)
667 		return r;
668 
669 	*new_root = resize.root;
670 	return 0;
671 }
672 
673 int dm_array_resize(struct dm_array_info *info, dm_block_t root,
674 		    uint32_t old_size, uint32_t new_size,
675 		    const void *value, dm_block_t *new_root)
676 		    __dm_written_to_disk(value)
677 {
678 	int r = array_resize(info, root, old_size, new_size, value, new_root);
679 	__dm_unbless_for_disk(value);
680 	return r;
681 }
682 EXPORT_SYMBOL_GPL(dm_array_resize);
683 
684 int dm_array_del(struct dm_array_info *info, dm_block_t root)
685 {
686 	return dm_btree_del(&info->btree_info, root);
687 }
688 EXPORT_SYMBOL_GPL(dm_array_del);
689 
690 int dm_array_get_value(struct dm_array_info *info, dm_block_t root,
691 		       uint32_t index, void *value_le)
692 {
693 	int r;
694 	struct dm_block *block;
695 	struct array_block *ab;
696 	size_t size_of_block;
697 	unsigned entry, max_entries;
698 
699 	size_of_block = dm_bm_block_size(dm_tm_get_bm(info->btree_info.tm));
700 	max_entries = calc_max_entries(info->value_type.size, size_of_block);
701 
702 	r = lookup_ablock(info, root, index / max_entries, &block, &ab);
703 	if (r)
704 		return r;
705 
706 	entry = index % max_entries;
707 	if (entry >= le32_to_cpu(ab->nr_entries))
708 		r = -ENODATA;
709 	else
710 		memcpy(value_le, element_at(info, ab, entry),
711 		       info->value_type.size);
712 
713 	unlock_ablock(info, block);
714 	return r;
715 }
716 EXPORT_SYMBOL_GPL(dm_array_get_value);
717 
718 static int array_set_value(struct dm_array_info *info, dm_block_t root,
719 			   uint32_t index, const void *value, dm_block_t *new_root)
720 {
721 	int r;
722 	struct dm_block *block;
723 	struct array_block *ab;
724 	size_t size_of_block;
725 	unsigned max_entries;
726 	unsigned entry;
727 	void *old_value;
728 	struct dm_btree_value_type *vt = &info->value_type;
729 
730 	size_of_block = dm_bm_block_size(dm_tm_get_bm(info->btree_info.tm));
731 	max_entries = calc_max_entries(info->value_type.size, size_of_block);
732 
733 	r = shadow_ablock(info, &root, index / max_entries, &block, &ab);
734 	if (r)
735 		return r;
736 	*new_root = root;
737 
738 	entry = index % max_entries;
739 	if (entry >= le32_to_cpu(ab->nr_entries)) {
740 		r = -ENODATA;
741 		goto out;
742 	}
743 
744 	old_value = element_at(info, ab, entry);
745 	if (vt->dec &&
746 	    (!vt->equal || !vt->equal(vt->context, old_value, value))) {
747 		vt->dec(vt->context, old_value);
748 		if (vt->inc)
749 			vt->inc(vt->context, value);
750 	}
751 
752 	memcpy(old_value, value, info->value_type.size);
753 
754 out:
755 	unlock_ablock(info, block);
756 	return r;
757 }
758 
759 int dm_array_set_value(struct dm_array_info *info, dm_block_t root,
760 		 uint32_t index, const void *value, dm_block_t *new_root)
761 		 __dm_written_to_disk(value)
762 {
763 	int r;
764 
765 	r = array_set_value(info, root, index, value, new_root);
766 	__dm_unbless_for_disk(value);
767 	return r;
768 }
769 EXPORT_SYMBOL_GPL(dm_array_set_value);
770 
771 struct walk_info {
772 	struct dm_array_info *info;
773 	int (*fn)(void *context, uint64_t key, void *leaf);
774 	void *context;
775 };
776 
777 static int walk_ablock(void *context, uint64_t *keys, void *leaf)
778 {
779 	struct walk_info *wi = context;
780 
781 	int r;
782 	unsigned i;
783 	__le64 block_le;
784 	unsigned nr_entries, max_entries;
785 	struct dm_block *block;
786 	struct array_block *ab;
787 
788 	memcpy(&block_le, leaf, sizeof(block_le));
789 	r = get_ablock(wi->info, le64_to_cpu(block_le), &block, &ab);
790 	if (r)
791 		return r;
792 
793 	max_entries = le32_to_cpu(ab->max_entries);
794 	nr_entries = le32_to_cpu(ab->nr_entries);
795 	for (i = 0; i < nr_entries; i++) {
796 		r = wi->fn(wi->context, keys[0] * max_entries + i,
797 			   element_at(wi->info, ab, i));
798 
799 		if (r)
800 			break;
801 	}
802 
803 	unlock_ablock(wi->info, block);
804 	return r;
805 }
806 
807 int dm_array_walk(struct dm_array_info *info, dm_block_t root,
808 		  int (*fn)(void *, uint64_t key, void *leaf),
809 		  void *context)
810 {
811 	struct walk_info wi;
812 
813 	wi.info = info;
814 	wi.fn = fn;
815 	wi.context = context;
816 
817 	return dm_btree_walk(&info->btree_info, root, walk_ablock, &wi);
818 }
819 EXPORT_SYMBOL_GPL(dm_array_walk);
820 
821 /*----------------------------------------------------------------*/
822