xref: /openbmc/linux/drivers/md/md.c (revision fd589a8f)
1 /*
2    md.c : Multiple Devices driver for Linux
3 	  Copyright (C) 1998, 1999, 2000 Ingo Molnar
4 
5      completely rewritten, based on the MD driver code from Marc Zyngier
6 
7    Changes:
8 
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16 
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19 
20      Neil Brown <neilb@cse.unsw.edu.au>.
21 
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24 
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29 
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34 
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/buffer_head.h> /* for invalidate_bdev */
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/hdreg.h>
43 #include <linux/proc_fs.h>
44 #include <linux/random.h>
45 #include <linux/reboot.h>
46 #include <linux/file.h>
47 #include <linux/delay.h>
48 #include <linux/raid/md_p.h>
49 #include <linux/raid/md_u.h>
50 #include "md.h"
51 #include "bitmap.h"
52 
53 #define DEBUG 0
54 #define dprintk(x...) ((void)(DEBUG && printk(x)))
55 
56 
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
60 
61 static LIST_HEAD(pers_list);
62 static DEFINE_SPINLOCK(pers_lock);
63 
64 static void md_print_devices(void);
65 
66 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
67 
68 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
69 
70 /*
71  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
72  * is 1000 KB/sec, so the extra system load does not show up that much.
73  * Increase it if you want to have more _guaranteed_ speed. Note that
74  * the RAID driver will use the maximum available bandwidth if the IO
75  * subsystem is idle. There is also an 'absolute maximum' reconstruction
76  * speed limit - in case reconstruction slows down your system despite
77  * idle IO detection.
78  *
79  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
80  * or /sys/block/mdX/md/sync_speed_{min,max}
81  */
82 
83 static int sysctl_speed_limit_min = 1000;
84 static int sysctl_speed_limit_max = 200000;
85 static inline int speed_min(mddev_t *mddev)
86 {
87 	return mddev->sync_speed_min ?
88 		mddev->sync_speed_min : sysctl_speed_limit_min;
89 }
90 
91 static inline int speed_max(mddev_t *mddev)
92 {
93 	return mddev->sync_speed_max ?
94 		mddev->sync_speed_max : sysctl_speed_limit_max;
95 }
96 
97 static struct ctl_table_header *raid_table_header;
98 
99 static ctl_table raid_table[] = {
100 	{
101 		.ctl_name	= DEV_RAID_SPEED_LIMIT_MIN,
102 		.procname	= "speed_limit_min",
103 		.data		= &sysctl_speed_limit_min,
104 		.maxlen		= sizeof(int),
105 		.mode		= S_IRUGO|S_IWUSR,
106 		.proc_handler	= &proc_dointvec,
107 	},
108 	{
109 		.ctl_name	= DEV_RAID_SPEED_LIMIT_MAX,
110 		.procname	= "speed_limit_max",
111 		.data		= &sysctl_speed_limit_max,
112 		.maxlen		= sizeof(int),
113 		.mode		= S_IRUGO|S_IWUSR,
114 		.proc_handler	= &proc_dointvec,
115 	},
116 	{ .ctl_name = 0 }
117 };
118 
119 static ctl_table raid_dir_table[] = {
120 	{
121 		.ctl_name	= DEV_RAID,
122 		.procname	= "raid",
123 		.maxlen		= 0,
124 		.mode		= S_IRUGO|S_IXUGO,
125 		.child		= raid_table,
126 	},
127 	{ .ctl_name = 0 }
128 };
129 
130 static ctl_table raid_root_table[] = {
131 	{
132 		.ctl_name	= CTL_DEV,
133 		.procname	= "dev",
134 		.maxlen		= 0,
135 		.mode		= 0555,
136 		.child		= raid_dir_table,
137 	},
138 	{ .ctl_name = 0 }
139 };
140 
141 static struct block_device_operations md_fops;
142 
143 static int start_readonly;
144 
145 /*
146  * We have a system wide 'event count' that is incremented
147  * on any 'interesting' event, and readers of /proc/mdstat
148  * can use 'poll' or 'select' to find out when the event
149  * count increases.
150  *
151  * Events are:
152  *  start array, stop array, error, add device, remove device,
153  *  start build, activate spare
154  */
155 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
156 static atomic_t md_event_count;
157 void md_new_event(mddev_t *mddev)
158 {
159 	atomic_inc(&md_event_count);
160 	wake_up(&md_event_waiters);
161 }
162 EXPORT_SYMBOL_GPL(md_new_event);
163 
164 /* Alternate version that can be called from interrupts
165  * when calling sysfs_notify isn't needed.
166  */
167 static void md_new_event_inintr(mddev_t *mddev)
168 {
169 	atomic_inc(&md_event_count);
170 	wake_up(&md_event_waiters);
171 }
172 
173 /*
174  * Enables to iterate over all existing md arrays
175  * all_mddevs_lock protects this list.
176  */
177 static LIST_HEAD(all_mddevs);
178 static DEFINE_SPINLOCK(all_mddevs_lock);
179 
180 
181 /*
182  * iterates through all used mddevs in the system.
183  * We take care to grab the all_mddevs_lock whenever navigating
184  * the list, and to always hold a refcount when unlocked.
185  * Any code which breaks out of this loop while own
186  * a reference to the current mddev and must mddev_put it.
187  */
188 #define for_each_mddev(mddev,tmp)					\
189 									\
190 	for (({ spin_lock(&all_mddevs_lock); 				\
191 		tmp = all_mddevs.next;					\
192 		mddev = NULL;});					\
193 	     ({ if (tmp != &all_mddevs)					\
194 			mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
195 		spin_unlock(&all_mddevs_lock);				\
196 		if (mddev) mddev_put(mddev);				\
197 		mddev = list_entry(tmp, mddev_t, all_mddevs);		\
198 		tmp != &all_mddevs;});					\
199 	     ({ spin_lock(&all_mddevs_lock);				\
200 		tmp = tmp->next;})					\
201 		)
202 
203 
204 /* Rather than calling directly into the personality make_request function,
205  * IO requests come here first so that we can check if the device is
206  * being suspended pending a reconfiguration.
207  * We hold a refcount over the call to ->make_request.  By the time that
208  * call has finished, the bio has been linked into some internal structure
209  * and so is visible to ->quiesce(), so we don't need the refcount any more.
210  */
211 static int md_make_request(struct request_queue *q, struct bio *bio)
212 {
213 	mddev_t *mddev = q->queuedata;
214 	int rv;
215 	if (mddev == NULL || mddev->pers == NULL) {
216 		bio_io_error(bio);
217 		return 0;
218 	}
219 	rcu_read_lock();
220 	if (mddev->suspended) {
221 		DEFINE_WAIT(__wait);
222 		for (;;) {
223 			prepare_to_wait(&mddev->sb_wait, &__wait,
224 					TASK_UNINTERRUPTIBLE);
225 			if (!mddev->suspended)
226 				break;
227 			rcu_read_unlock();
228 			schedule();
229 			rcu_read_lock();
230 		}
231 		finish_wait(&mddev->sb_wait, &__wait);
232 	}
233 	atomic_inc(&mddev->active_io);
234 	rcu_read_unlock();
235 	rv = mddev->pers->make_request(q, bio);
236 	if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
237 		wake_up(&mddev->sb_wait);
238 
239 	return rv;
240 }
241 
242 static void mddev_suspend(mddev_t *mddev)
243 {
244 	BUG_ON(mddev->suspended);
245 	mddev->suspended = 1;
246 	synchronize_rcu();
247 	wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
248 	mddev->pers->quiesce(mddev, 1);
249 	md_unregister_thread(mddev->thread);
250 	mddev->thread = NULL;
251 	/* we now know that no code is executing in the personality module,
252 	 * except possibly the tail end of a ->bi_end_io function, but that
253 	 * is certain to complete before the module has a chance to get
254 	 * unloaded
255 	 */
256 }
257 
258 static void mddev_resume(mddev_t *mddev)
259 {
260 	mddev->suspended = 0;
261 	wake_up(&mddev->sb_wait);
262 	mddev->pers->quiesce(mddev, 0);
263 }
264 
265 
266 static inline mddev_t *mddev_get(mddev_t *mddev)
267 {
268 	atomic_inc(&mddev->active);
269 	return mddev;
270 }
271 
272 static void mddev_delayed_delete(struct work_struct *ws);
273 
274 static void mddev_put(mddev_t *mddev)
275 {
276 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
277 		return;
278 	if (!mddev->raid_disks && list_empty(&mddev->disks) &&
279 	    !mddev->hold_active) {
280 		list_del(&mddev->all_mddevs);
281 		if (mddev->gendisk) {
282 			/* we did a probe so need to clean up.
283 			 * Call schedule_work inside the spinlock
284 			 * so that flush_scheduled_work() after
285 			 * mddev_find will succeed in waiting for the
286 			 * work to be done.
287 			 */
288 			INIT_WORK(&mddev->del_work, mddev_delayed_delete);
289 			schedule_work(&mddev->del_work);
290 		} else
291 			kfree(mddev);
292 	}
293 	spin_unlock(&all_mddevs_lock);
294 }
295 
296 static mddev_t * mddev_find(dev_t unit)
297 {
298 	mddev_t *mddev, *new = NULL;
299 
300  retry:
301 	spin_lock(&all_mddevs_lock);
302 
303 	if (unit) {
304 		list_for_each_entry(mddev, &all_mddevs, all_mddevs)
305 			if (mddev->unit == unit) {
306 				mddev_get(mddev);
307 				spin_unlock(&all_mddevs_lock);
308 				kfree(new);
309 				return mddev;
310 			}
311 
312 		if (new) {
313 			list_add(&new->all_mddevs, &all_mddevs);
314 			spin_unlock(&all_mddevs_lock);
315 			new->hold_active = UNTIL_IOCTL;
316 			return new;
317 		}
318 	} else if (new) {
319 		/* find an unused unit number */
320 		static int next_minor = 512;
321 		int start = next_minor;
322 		int is_free = 0;
323 		int dev = 0;
324 		while (!is_free) {
325 			dev = MKDEV(MD_MAJOR, next_minor);
326 			next_minor++;
327 			if (next_minor > MINORMASK)
328 				next_minor = 0;
329 			if (next_minor == start) {
330 				/* Oh dear, all in use. */
331 				spin_unlock(&all_mddevs_lock);
332 				kfree(new);
333 				return NULL;
334 			}
335 
336 			is_free = 1;
337 			list_for_each_entry(mddev, &all_mddevs, all_mddevs)
338 				if (mddev->unit == dev) {
339 					is_free = 0;
340 					break;
341 				}
342 		}
343 		new->unit = dev;
344 		new->md_minor = MINOR(dev);
345 		new->hold_active = UNTIL_STOP;
346 		list_add(&new->all_mddevs, &all_mddevs);
347 		spin_unlock(&all_mddevs_lock);
348 		return new;
349 	}
350 	spin_unlock(&all_mddevs_lock);
351 
352 	new = kzalloc(sizeof(*new), GFP_KERNEL);
353 	if (!new)
354 		return NULL;
355 
356 	new->unit = unit;
357 	if (MAJOR(unit) == MD_MAJOR)
358 		new->md_minor = MINOR(unit);
359 	else
360 		new->md_minor = MINOR(unit) >> MdpMinorShift;
361 
362 	mutex_init(&new->open_mutex);
363 	mutex_init(&new->reconfig_mutex);
364 	INIT_LIST_HEAD(&new->disks);
365 	INIT_LIST_HEAD(&new->all_mddevs);
366 	init_timer(&new->safemode_timer);
367 	atomic_set(&new->active, 1);
368 	atomic_set(&new->openers, 0);
369 	atomic_set(&new->active_io, 0);
370 	spin_lock_init(&new->write_lock);
371 	init_waitqueue_head(&new->sb_wait);
372 	init_waitqueue_head(&new->recovery_wait);
373 	new->reshape_position = MaxSector;
374 	new->resync_min = 0;
375 	new->resync_max = MaxSector;
376 	new->level = LEVEL_NONE;
377 
378 	goto retry;
379 }
380 
381 static inline int mddev_lock(mddev_t * mddev)
382 {
383 	return mutex_lock_interruptible(&mddev->reconfig_mutex);
384 }
385 
386 static inline int mddev_is_locked(mddev_t *mddev)
387 {
388 	return mutex_is_locked(&mddev->reconfig_mutex);
389 }
390 
391 static inline int mddev_trylock(mddev_t * mddev)
392 {
393 	return mutex_trylock(&mddev->reconfig_mutex);
394 }
395 
396 static inline void mddev_unlock(mddev_t * mddev)
397 {
398 	mutex_unlock(&mddev->reconfig_mutex);
399 
400 	md_wakeup_thread(mddev->thread);
401 }
402 
403 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
404 {
405 	mdk_rdev_t *rdev;
406 
407 	list_for_each_entry(rdev, &mddev->disks, same_set)
408 		if (rdev->desc_nr == nr)
409 			return rdev;
410 
411 	return NULL;
412 }
413 
414 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
415 {
416 	mdk_rdev_t *rdev;
417 
418 	list_for_each_entry(rdev, &mddev->disks, same_set)
419 		if (rdev->bdev->bd_dev == dev)
420 			return rdev;
421 
422 	return NULL;
423 }
424 
425 static struct mdk_personality *find_pers(int level, char *clevel)
426 {
427 	struct mdk_personality *pers;
428 	list_for_each_entry(pers, &pers_list, list) {
429 		if (level != LEVEL_NONE && pers->level == level)
430 			return pers;
431 		if (strcmp(pers->name, clevel)==0)
432 			return pers;
433 	}
434 	return NULL;
435 }
436 
437 /* return the offset of the super block in 512byte sectors */
438 static inline sector_t calc_dev_sboffset(struct block_device *bdev)
439 {
440 	sector_t num_sectors = bdev->bd_inode->i_size / 512;
441 	return MD_NEW_SIZE_SECTORS(num_sectors);
442 }
443 
444 static int alloc_disk_sb(mdk_rdev_t * rdev)
445 {
446 	if (rdev->sb_page)
447 		MD_BUG();
448 
449 	rdev->sb_page = alloc_page(GFP_KERNEL);
450 	if (!rdev->sb_page) {
451 		printk(KERN_ALERT "md: out of memory.\n");
452 		return -ENOMEM;
453 	}
454 
455 	return 0;
456 }
457 
458 static void free_disk_sb(mdk_rdev_t * rdev)
459 {
460 	if (rdev->sb_page) {
461 		put_page(rdev->sb_page);
462 		rdev->sb_loaded = 0;
463 		rdev->sb_page = NULL;
464 		rdev->sb_start = 0;
465 		rdev->sectors = 0;
466 	}
467 }
468 
469 
470 static void super_written(struct bio *bio, int error)
471 {
472 	mdk_rdev_t *rdev = bio->bi_private;
473 	mddev_t *mddev = rdev->mddev;
474 
475 	if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
476 		printk("md: super_written gets error=%d, uptodate=%d\n",
477 		       error, test_bit(BIO_UPTODATE, &bio->bi_flags));
478 		WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
479 		md_error(mddev, rdev);
480 	}
481 
482 	if (atomic_dec_and_test(&mddev->pending_writes))
483 		wake_up(&mddev->sb_wait);
484 	bio_put(bio);
485 }
486 
487 static void super_written_barrier(struct bio *bio, int error)
488 {
489 	struct bio *bio2 = bio->bi_private;
490 	mdk_rdev_t *rdev = bio2->bi_private;
491 	mddev_t *mddev = rdev->mddev;
492 
493 	if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
494 	    error == -EOPNOTSUPP) {
495 		unsigned long flags;
496 		/* barriers don't appear to be supported :-( */
497 		set_bit(BarriersNotsupp, &rdev->flags);
498 		mddev->barriers_work = 0;
499 		spin_lock_irqsave(&mddev->write_lock, flags);
500 		bio2->bi_next = mddev->biolist;
501 		mddev->biolist = bio2;
502 		spin_unlock_irqrestore(&mddev->write_lock, flags);
503 		wake_up(&mddev->sb_wait);
504 		bio_put(bio);
505 	} else {
506 		bio_put(bio2);
507 		bio->bi_private = rdev;
508 		super_written(bio, error);
509 	}
510 }
511 
512 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
513 		   sector_t sector, int size, struct page *page)
514 {
515 	/* write first size bytes of page to sector of rdev
516 	 * Increment mddev->pending_writes before returning
517 	 * and decrement it on completion, waking up sb_wait
518 	 * if zero is reached.
519 	 * If an error occurred, call md_error
520 	 *
521 	 * As we might need to resubmit the request if BIO_RW_BARRIER
522 	 * causes ENOTSUPP, we allocate a spare bio...
523 	 */
524 	struct bio *bio = bio_alloc(GFP_NOIO, 1);
525 	int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNCIO) | (1<<BIO_RW_UNPLUG);
526 
527 	bio->bi_bdev = rdev->bdev;
528 	bio->bi_sector = sector;
529 	bio_add_page(bio, page, size, 0);
530 	bio->bi_private = rdev;
531 	bio->bi_end_io = super_written;
532 	bio->bi_rw = rw;
533 
534 	atomic_inc(&mddev->pending_writes);
535 	if (!test_bit(BarriersNotsupp, &rdev->flags)) {
536 		struct bio *rbio;
537 		rw |= (1<<BIO_RW_BARRIER);
538 		rbio = bio_clone(bio, GFP_NOIO);
539 		rbio->bi_private = bio;
540 		rbio->bi_end_io = super_written_barrier;
541 		submit_bio(rw, rbio);
542 	} else
543 		submit_bio(rw, bio);
544 }
545 
546 void md_super_wait(mddev_t *mddev)
547 {
548 	/* wait for all superblock writes that were scheduled to complete.
549 	 * if any had to be retried (due to BARRIER problems), retry them
550 	 */
551 	DEFINE_WAIT(wq);
552 	for(;;) {
553 		prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
554 		if (atomic_read(&mddev->pending_writes)==0)
555 			break;
556 		while (mddev->biolist) {
557 			struct bio *bio;
558 			spin_lock_irq(&mddev->write_lock);
559 			bio = mddev->biolist;
560 			mddev->biolist = bio->bi_next ;
561 			bio->bi_next = NULL;
562 			spin_unlock_irq(&mddev->write_lock);
563 			submit_bio(bio->bi_rw, bio);
564 		}
565 		schedule();
566 	}
567 	finish_wait(&mddev->sb_wait, &wq);
568 }
569 
570 static void bi_complete(struct bio *bio, int error)
571 {
572 	complete((struct completion*)bio->bi_private);
573 }
574 
575 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
576 		   struct page *page, int rw)
577 {
578 	struct bio *bio = bio_alloc(GFP_NOIO, 1);
579 	struct completion event;
580 	int ret;
581 
582 	rw |= (1 << BIO_RW_SYNCIO) | (1 << BIO_RW_UNPLUG);
583 
584 	bio->bi_bdev = bdev;
585 	bio->bi_sector = sector;
586 	bio_add_page(bio, page, size, 0);
587 	init_completion(&event);
588 	bio->bi_private = &event;
589 	bio->bi_end_io = bi_complete;
590 	submit_bio(rw, bio);
591 	wait_for_completion(&event);
592 
593 	ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
594 	bio_put(bio);
595 	return ret;
596 }
597 EXPORT_SYMBOL_GPL(sync_page_io);
598 
599 static int read_disk_sb(mdk_rdev_t * rdev, int size)
600 {
601 	char b[BDEVNAME_SIZE];
602 	if (!rdev->sb_page) {
603 		MD_BUG();
604 		return -EINVAL;
605 	}
606 	if (rdev->sb_loaded)
607 		return 0;
608 
609 
610 	if (!sync_page_io(rdev->bdev, rdev->sb_start, size, rdev->sb_page, READ))
611 		goto fail;
612 	rdev->sb_loaded = 1;
613 	return 0;
614 
615 fail:
616 	printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
617 		bdevname(rdev->bdev,b));
618 	return -EINVAL;
619 }
620 
621 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
622 {
623 	return 	sb1->set_uuid0 == sb2->set_uuid0 &&
624 		sb1->set_uuid1 == sb2->set_uuid1 &&
625 		sb1->set_uuid2 == sb2->set_uuid2 &&
626 		sb1->set_uuid3 == sb2->set_uuid3;
627 }
628 
629 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
630 {
631 	int ret;
632 	mdp_super_t *tmp1, *tmp2;
633 
634 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
635 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
636 
637 	if (!tmp1 || !tmp2) {
638 		ret = 0;
639 		printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
640 		goto abort;
641 	}
642 
643 	*tmp1 = *sb1;
644 	*tmp2 = *sb2;
645 
646 	/*
647 	 * nr_disks is not constant
648 	 */
649 	tmp1->nr_disks = 0;
650 	tmp2->nr_disks = 0;
651 
652 	ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
653 abort:
654 	kfree(tmp1);
655 	kfree(tmp2);
656 	return ret;
657 }
658 
659 
660 static u32 md_csum_fold(u32 csum)
661 {
662 	csum = (csum & 0xffff) + (csum >> 16);
663 	return (csum & 0xffff) + (csum >> 16);
664 }
665 
666 static unsigned int calc_sb_csum(mdp_super_t * sb)
667 {
668 	u64 newcsum = 0;
669 	u32 *sb32 = (u32*)sb;
670 	int i;
671 	unsigned int disk_csum, csum;
672 
673 	disk_csum = sb->sb_csum;
674 	sb->sb_csum = 0;
675 
676 	for (i = 0; i < MD_SB_BYTES/4 ; i++)
677 		newcsum += sb32[i];
678 	csum = (newcsum & 0xffffffff) + (newcsum>>32);
679 
680 
681 #ifdef CONFIG_ALPHA
682 	/* This used to use csum_partial, which was wrong for several
683 	 * reasons including that different results are returned on
684 	 * different architectures.  It isn't critical that we get exactly
685 	 * the same return value as before (we always csum_fold before
686 	 * testing, and that removes any differences).  However as we
687 	 * know that csum_partial always returned a 16bit value on
688 	 * alphas, do a fold to maximise conformity to previous behaviour.
689 	 */
690 	sb->sb_csum = md_csum_fold(disk_csum);
691 #else
692 	sb->sb_csum = disk_csum;
693 #endif
694 	return csum;
695 }
696 
697 
698 /*
699  * Handle superblock details.
700  * We want to be able to handle multiple superblock formats
701  * so we have a common interface to them all, and an array of
702  * different handlers.
703  * We rely on user-space to write the initial superblock, and support
704  * reading and updating of superblocks.
705  * Interface methods are:
706  *   int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
707  *      loads and validates a superblock on dev.
708  *      if refdev != NULL, compare superblocks on both devices
709  *    Return:
710  *      0 - dev has a superblock that is compatible with refdev
711  *      1 - dev has a superblock that is compatible and newer than refdev
712  *          so dev should be used as the refdev in future
713  *     -EINVAL superblock incompatible or invalid
714  *     -othererror e.g. -EIO
715  *
716  *   int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
717  *      Verify that dev is acceptable into mddev.
718  *       The first time, mddev->raid_disks will be 0, and data from
719  *       dev should be merged in.  Subsequent calls check that dev
720  *       is new enough.  Return 0 or -EINVAL
721  *
722  *   void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
723  *     Update the superblock for rdev with data in mddev
724  *     This does not write to disc.
725  *
726  */
727 
728 struct super_type  {
729 	char		    *name;
730 	struct module	    *owner;
731 	int		    (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev,
732 					  int minor_version);
733 	int		    (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
734 	void		    (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
735 	unsigned long long  (*rdev_size_change)(mdk_rdev_t *rdev,
736 						sector_t num_sectors);
737 };
738 
739 /*
740  * Check that the given mddev has no bitmap.
741  *
742  * This function is called from the run method of all personalities that do not
743  * support bitmaps. It prints an error message and returns non-zero if mddev
744  * has a bitmap. Otherwise, it returns 0.
745  *
746  */
747 int md_check_no_bitmap(mddev_t *mddev)
748 {
749 	if (!mddev->bitmap_file && !mddev->bitmap_offset)
750 		return 0;
751 	printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
752 		mdname(mddev), mddev->pers->name);
753 	return 1;
754 }
755 EXPORT_SYMBOL(md_check_no_bitmap);
756 
757 /*
758  * load_super for 0.90.0
759  */
760 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
761 {
762 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
763 	mdp_super_t *sb;
764 	int ret;
765 
766 	/*
767 	 * Calculate the position of the superblock (512byte sectors),
768 	 * it's at the end of the disk.
769 	 *
770 	 * It also happens to be a multiple of 4Kb.
771 	 */
772 	rdev->sb_start = calc_dev_sboffset(rdev->bdev);
773 
774 	ret = read_disk_sb(rdev, MD_SB_BYTES);
775 	if (ret) return ret;
776 
777 	ret = -EINVAL;
778 
779 	bdevname(rdev->bdev, b);
780 	sb = (mdp_super_t*)page_address(rdev->sb_page);
781 
782 	if (sb->md_magic != MD_SB_MAGIC) {
783 		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
784 		       b);
785 		goto abort;
786 	}
787 
788 	if (sb->major_version != 0 ||
789 	    sb->minor_version < 90 ||
790 	    sb->minor_version > 91) {
791 		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
792 			sb->major_version, sb->minor_version,
793 			b);
794 		goto abort;
795 	}
796 
797 	if (sb->raid_disks <= 0)
798 		goto abort;
799 
800 	if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
801 		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
802 			b);
803 		goto abort;
804 	}
805 
806 	rdev->preferred_minor = sb->md_minor;
807 	rdev->data_offset = 0;
808 	rdev->sb_size = MD_SB_BYTES;
809 
810 	if (sb->level == LEVEL_MULTIPATH)
811 		rdev->desc_nr = -1;
812 	else
813 		rdev->desc_nr = sb->this_disk.number;
814 
815 	if (!refdev) {
816 		ret = 1;
817 	} else {
818 		__u64 ev1, ev2;
819 		mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
820 		if (!uuid_equal(refsb, sb)) {
821 			printk(KERN_WARNING "md: %s has different UUID to %s\n",
822 				b, bdevname(refdev->bdev,b2));
823 			goto abort;
824 		}
825 		if (!sb_equal(refsb, sb)) {
826 			printk(KERN_WARNING "md: %s has same UUID"
827 			       " but different superblock to %s\n",
828 			       b, bdevname(refdev->bdev, b2));
829 			goto abort;
830 		}
831 		ev1 = md_event(sb);
832 		ev2 = md_event(refsb);
833 		if (ev1 > ev2)
834 			ret = 1;
835 		else
836 			ret = 0;
837 	}
838 	rdev->sectors = rdev->sb_start;
839 
840 	if (rdev->sectors < sb->size * 2 && sb->level > 1)
841 		/* "this cannot possibly happen" ... */
842 		ret = -EINVAL;
843 
844  abort:
845 	return ret;
846 }
847 
848 /*
849  * validate_super for 0.90.0
850  */
851 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
852 {
853 	mdp_disk_t *desc;
854 	mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
855 	__u64 ev1 = md_event(sb);
856 
857 	rdev->raid_disk = -1;
858 	clear_bit(Faulty, &rdev->flags);
859 	clear_bit(In_sync, &rdev->flags);
860 	clear_bit(WriteMostly, &rdev->flags);
861 	clear_bit(BarriersNotsupp, &rdev->flags);
862 
863 	if (mddev->raid_disks == 0) {
864 		mddev->major_version = 0;
865 		mddev->minor_version = sb->minor_version;
866 		mddev->patch_version = sb->patch_version;
867 		mddev->external = 0;
868 		mddev->chunk_sectors = sb->chunk_size >> 9;
869 		mddev->ctime = sb->ctime;
870 		mddev->utime = sb->utime;
871 		mddev->level = sb->level;
872 		mddev->clevel[0] = 0;
873 		mddev->layout = sb->layout;
874 		mddev->raid_disks = sb->raid_disks;
875 		mddev->dev_sectors = sb->size * 2;
876 		mddev->events = ev1;
877 		mddev->bitmap_offset = 0;
878 		mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
879 
880 		if (mddev->minor_version >= 91) {
881 			mddev->reshape_position = sb->reshape_position;
882 			mddev->delta_disks = sb->delta_disks;
883 			mddev->new_level = sb->new_level;
884 			mddev->new_layout = sb->new_layout;
885 			mddev->new_chunk_sectors = sb->new_chunk >> 9;
886 		} else {
887 			mddev->reshape_position = MaxSector;
888 			mddev->delta_disks = 0;
889 			mddev->new_level = mddev->level;
890 			mddev->new_layout = mddev->layout;
891 			mddev->new_chunk_sectors = mddev->chunk_sectors;
892 		}
893 
894 		if (sb->state & (1<<MD_SB_CLEAN))
895 			mddev->recovery_cp = MaxSector;
896 		else {
897 			if (sb->events_hi == sb->cp_events_hi &&
898 				sb->events_lo == sb->cp_events_lo) {
899 				mddev->recovery_cp = sb->recovery_cp;
900 			} else
901 				mddev->recovery_cp = 0;
902 		}
903 
904 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
905 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
906 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
907 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
908 
909 		mddev->max_disks = MD_SB_DISKS;
910 
911 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
912 		    mddev->bitmap_file == NULL)
913 			mddev->bitmap_offset = mddev->default_bitmap_offset;
914 
915 	} else if (mddev->pers == NULL) {
916 		/* Insist on good event counter while assembling */
917 		++ev1;
918 		if (ev1 < mddev->events)
919 			return -EINVAL;
920 	} else if (mddev->bitmap) {
921 		/* if adding to array with a bitmap, then we can accept an
922 		 * older device ... but not too old.
923 		 */
924 		if (ev1 < mddev->bitmap->events_cleared)
925 			return 0;
926 	} else {
927 		if (ev1 < mddev->events)
928 			/* just a hot-add of a new device, leave raid_disk at -1 */
929 			return 0;
930 	}
931 
932 	if (mddev->level != LEVEL_MULTIPATH) {
933 		desc = sb->disks + rdev->desc_nr;
934 
935 		if (desc->state & (1<<MD_DISK_FAULTY))
936 			set_bit(Faulty, &rdev->flags);
937 		else if (desc->state & (1<<MD_DISK_SYNC) /* &&
938 			    desc->raid_disk < mddev->raid_disks */) {
939 			set_bit(In_sync, &rdev->flags);
940 			rdev->raid_disk = desc->raid_disk;
941 		}
942 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
943 			set_bit(WriteMostly, &rdev->flags);
944 	} else /* MULTIPATH are always insync */
945 		set_bit(In_sync, &rdev->flags);
946 	return 0;
947 }
948 
949 /*
950  * sync_super for 0.90.0
951  */
952 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
953 {
954 	mdp_super_t *sb;
955 	mdk_rdev_t *rdev2;
956 	int next_spare = mddev->raid_disks;
957 
958 
959 	/* make rdev->sb match mddev data..
960 	 *
961 	 * 1/ zero out disks
962 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
963 	 * 3/ any empty disks < next_spare become removed
964 	 *
965 	 * disks[0] gets initialised to REMOVED because
966 	 * we cannot be sure from other fields if it has
967 	 * been initialised or not.
968 	 */
969 	int i;
970 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
971 
972 	rdev->sb_size = MD_SB_BYTES;
973 
974 	sb = (mdp_super_t*)page_address(rdev->sb_page);
975 
976 	memset(sb, 0, sizeof(*sb));
977 
978 	sb->md_magic = MD_SB_MAGIC;
979 	sb->major_version = mddev->major_version;
980 	sb->patch_version = mddev->patch_version;
981 	sb->gvalid_words  = 0; /* ignored */
982 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
983 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
984 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
985 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
986 
987 	sb->ctime = mddev->ctime;
988 	sb->level = mddev->level;
989 	sb->size = mddev->dev_sectors / 2;
990 	sb->raid_disks = mddev->raid_disks;
991 	sb->md_minor = mddev->md_minor;
992 	sb->not_persistent = 0;
993 	sb->utime = mddev->utime;
994 	sb->state = 0;
995 	sb->events_hi = (mddev->events>>32);
996 	sb->events_lo = (u32)mddev->events;
997 
998 	if (mddev->reshape_position == MaxSector)
999 		sb->minor_version = 90;
1000 	else {
1001 		sb->minor_version = 91;
1002 		sb->reshape_position = mddev->reshape_position;
1003 		sb->new_level = mddev->new_level;
1004 		sb->delta_disks = mddev->delta_disks;
1005 		sb->new_layout = mddev->new_layout;
1006 		sb->new_chunk = mddev->new_chunk_sectors << 9;
1007 	}
1008 	mddev->minor_version = sb->minor_version;
1009 	if (mddev->in_sync)
1010 	{
1011 		sb->recovery_cp = mddev->recovery_cp;
1012 		sb->cp_events_hi = (mddev->events>>32);
1013 		sb->cp_events_lo = (u32)mddev->events;
1014 		if (mddev->recovery_cp == MaxSector)
1015 			sb->state = (1<< MD_SB_CLEAN);
1016 	} else
1017 		sb->recovery_cp = 0;
1018 
1019 	sb->layout = mddev->layout;
1020 	sb->chunk_size = mddev->chunk_sectors << 9;
1021 
1022 	if (mddev->bitmap && mddev->bitmap_file == NULL)
1023 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1024 
1025 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
1026 	list_for_each_entry(rdev2, &mddev->disks, same_set) {
1027 		mdp_disk_t *d;
1028 		int desc_nr;
1029 		if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
1030 		    && !test_bit(Faulty, &rdev2->flags))
1031 			desc_nr = rdev2->raid_disk;
1032 		else
1033 			desc_nr = next_spare++;
1034 		rdev2->desc_nr = desc_nr;
1035 		d = &sb->disks[rdev2->desc_nr];
1036 		nr_disks++;
1037 		d->number = rdev2->desc_nr;
1038 		d->major = MAJOR(rdev2->bdev->bd_dev);
1039 		d->minor = MINOR(rdev2->bdev->bd_dev);
1040 		if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
1041 		    && !test_bit(Faulty, &rdev2->flags))
1042 			d->raid_disk = rdev2->raid_disk;
1043 		else
1044 			d->raid_disk = rdev2->desc_nr; /* compatibility */
1045 		if (test_bit(Faulty, &rdev2->flags))
1046 			d->state = (1<<MD_DISK_FAULTY);
1047 		else if (test_bit(In_sync, &rdev2->flags)) {
1048 			d->state = (1<<MD_DISK_ACTIVE);
1049 			d->state |= (1<<MD_DISK_SYNC);
1050 			active++;
1051 			working++;
1052 		} else {
1053 			d->state = 0;
1054 			spare++;
1055 			working++;
1056 		}
1057 		if (test_bit(WriteMostly, &rdev2->flags))
1058 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
1059 	}
1060 	/* now set the "removed" and "faulty" bits on any missing devices */
1061 	for (i=0 ; i < mddev->raid_disks ; i++) {
1062 		mdp_disk_t *d = &sb->disks[i];
1063 		if (d->state == 0 && d->number == 0) {
1064 			d->number = i;
1065 			d->raid_disk = i;
1066 			d->state = (1<<MD_DISK_REMOVED);
1067 			d->state |= (1<<MD_DISK_FAULTY);
1068 			failed++;
1069 		}
1070 	}
1071 	sb->nr_disks = nr_disks;
1072 	sb->active_disks = active;
1073 	sb->working_disks = working;
1074 	sb->failed_disks = failed;
1075 	sb->spare_disks = spare;
1076 
1077 	sb->this_disk = sb->disks[rdev->desc_nr];
1078 	sb->sb_csum = calc_sb_csum(sb);
1079 }
1080 
1081 /*
1082  * rdev_size_change for 0.90.0
1083  */
1084 static unsigned long long
1085 super_90_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1086 {
1087 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1088 		return 0; /* component must fit device */
1089 	if (rdev->mddev->bitmap_offset)
1090 		return 0; /* can't move bitmap */
1091 	rdev->sb_start = calc_dev_sboffset(rdev->bdev);
1092 	if (!num_sectors || num_sectors > rdev->sb_start)
1093 		num_sectors = rdev->sb_start;
1094 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1095 		       rdev->sb_page);
1096 	md_super_wait(rdev->mddev);
1097 	return num_sectors / 2; /* kB for sysfs */
1098 }
1099 
1100 
1101 /*
1102  * version 1 superblock
1103  */
1104 
1105 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1106 {
1107 	__le32 disk_csum;
1108 	u32 csum;
1109 	unsigned long long newcsum;
1110 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
1111 	__le32 *isuper = (__le32*)sb;
1112 	int i;
1113 
1114 	disk_csum = sb->sb_csum;
1115 	sb->sb_csum = 0;
1116 	newcsum = 0;
1117 	for (i=0; size>=4; size -= 4 )
1118 		newcsum += le32_to_cpu(*isuper++);
1119 
1120 	if (size == 2)
1121 		newcsum += le16_to_cpu(*(__le16*) isuper);
1122 
1123 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1124 	sb->sb_csum = disk_csum;
1125 	return cpu_to_le32(csum);
1126 }
1127 
1128 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
1129 {
1130 	struct mdp_superblock_1 *sb;
1131 	int ret;
1132 	sector_t sb_start;
1133 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1134 	int bmask;
1135 
1136 	/*
1137 	 * Calculate the position of the superblock in 512byte sectors.
1138 	 * It is always aligned to a 4K boundary and
1139 	 * depeding on minor_version, it can be:
1140 	 * 0: At least 8K, but less than 12K, from end of device
1141 	 * 1: At start of device
1142 	 * 2: 4K from start of device.
1143 	 */
1144 	switch(minor_version) {
1145 	case 0:
1146 		sb_start = rdev->bdev->bd_inode->i_size >> 9;
1147 		sb_start -= 8*2;
1148 		sb_start &= ~(sector_t)(4*2-1);
1149 		break;
1150 	case 1:
1151 		sb_start = 0;
1152 		break;
1153 	case 2:
1154 		sb_start = 8;
1155 		break;
1156 	default:
1157 		return -EINVAL;
1158 	}
1159 	rdev->sb_start = sb_start;
1160 
1161 	/* superblock is rarely larger than 1K, but it can be larger,
1162 	 * and it is safe to read 4k, so we do that
1163 	 */
1164 	ret = read_disk_sb(rdev, 4096);
1165 	if (ret) return ret;
1166 
1167 
1168 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1169 
1170 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1171 	    sb->major_version != cpu_to_le32(1) ||
1172 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1173 	    le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1174 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1175 		return -EINVAL;
1176 
1177 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
1178 		printk("md: invalid superblock checksum on %s\n",
1179 			bdevname(rdev->bdev,b));
1180 		return -EINVAL;
1181 	}
1182 	if (le64_to_cpu(sb->data_size) < 10) {
1183 		printk("md: data_size too small on %s\n",
1184 		       bdevname(rdev->bdev,b));
1185 		return -EINVAL;
1186 	}
1187 
1188 	rdev->preferred_minor = 0xffff;
1189 	rdev->data_offset = le64_to_cpu(sb->data_offset);
1190 	atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1191 
1192 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1193 	bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1194 	if (rdev->sb_size & bmask)
1195 		rdev->sb_size = (rdev->sb_size | bmask) + 1;
1196 
1197 	if (minor_version
1198 	    && rdev->data_offset < sb_start + (rdev->sb_size/512))
1199 		return -EINVAL;
1200 
1201 	if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1202 		rdev->desc_nr = -1;
1203 	else
1204 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1205 
1206 	if (!refdev) {
1207 		ret = 1;
1208 	} else {
1209 		__u64 ev1, ev2;
1210 		struct mdp_superblock_1 *refsb =
1211 			(struct mdp_superblock_1*)page_address(refdev->sb_page);
1212 
1213 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1214 		    sb->level != refsb->level ||
1215 		    sb->layout != refsb->layout ||
1216 		    sb->chunksize != refsb->chunksize) {
1217 			printk(KERN_WARNING "md: %s has strangely different"
1218 				" superblock to %s\n",
1219 				bdevname(rdev->bdev,b),
1220 				bdevname(refdev->bdev,b2));
1221 			return -EINVAL;
1222 		}
1223 		ev1 = le64_to_cpu(sb->events);
1224 		ev2 = le64_to_cpu(refsb->events);
1225 
1226 		if (ev1 > ev2)
1227 			ret = 1;
1228 		else
1229 			ret = 0;
1230 	}
1231 	if (minor_version)
1232 		rdev->sectors = (rdev->bdev->bd_inode->i_size >> 9) -
1233 			le64_to_cpu(sb->data_offset);
1234 	else
1235 		rdev->sectors = rdev->sb_start;
1236 	if (rdev->sectors < le64_to_cpu(sb->data_size))
1237 		return -EINVAL;
1238 	rdev->sectors = le64_to_cpu(sb->data_size);
1239 	if (le64_to_cpu(sb->size) > rdev->sectors)
1240 		return -EINVAL;
1241 	return ret;
1242 }
1243 
1244 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1245 {
1246 	struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1247 	__u64 ev1 = le64_to_cpu(sb->events);
1248 
1249 	rdev->raid_disk = -1;
1250 	clear_bit(Faulty, &rdev->flags);
1251 	clear_bit(In_sync, &rdev->flags);
1252 	clear_bit(WriteMostly, &rdev->flags);
1253 	clear_bit(BarriersNotsupp, &rdev->flags);
1254 
1255 	if (mddev->raid_disks == 0) {
1256 		mddev->major_version = 1;
1257 		mddev->patch_version = 0;
1258 		mddev->external = 0;
1259 		mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1260 		mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1261 		mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1262 		mddev->level = le32_to_cpu(sb->level);
1263 		mddev->clevel[0] = 0;
1264 		mddev->layout = le32_to_cpu(sb->layout);
1265 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1266 		mddev->dev_sectors = le64_to_cpu(sb->size);
1267 		mddev->events = ev1;
1268 		mddev->bitmap_offset = 0;
1269 		mddev->default_bitmap_offset = 1024 >> 9;
1270 
1271 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1272 		memcpy(mddev->uuid, sb->set_uuid, 16);
1273 
1274 		mddev->max_disks =  (4096-256)/2;
1275 
1276 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1277 		    mddev->bitmap_file == NULL )
1278 			mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
1279 
1280 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1281 			mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1282 			mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1283 			mddev->new_level = le32_to_cpu(sb->new_level);
1284 			mddev->new_layout = le32_to_cpu(sb->new_layout);
1285 			mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1286 		} else {
1287 			mddev->reshape_position = MaxSector;
1288 			mddev->delta_disks = 0;
1289 			mddev->new_level = mddev->level;
1290 			mddev->new_layout = mddev->layout;
1291 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1292 		}
1293 
1294 	} else if (mddev->pers == NULL) {
1295 		/* Insist of good event counter while assembling */
1296 		++ev1;
1297 		if (ev1 < mddev->events)
1298 			return -EINVAL;
1299 	} else if (mddev->bitmap) {
1300 		/* If adding to array with a bitmap, then we can accept an
1301 		 * older device, but not too old.
1302 		 */
1303 		if (ev1 < mddev->bitmap->events_cleared)
1304 			return 0;
1305 	} else {
1306 		if (ev1 < mddev->events)
1307 			/* just a hot-add of a new device, leave raid_disk at -1 */
1308 			return 0;
1309 	}
1310 	if (mddev->level != LEVEL_MULTIPATH) {
1311 		int role;
1312 		if (rdev->desc_nr < 0 ||
1313 		    rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1314 			role = 0xffff;
1315 			rdev->desc_nr = -1;
1316 		} else
1317 			role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1318 		switch(role) {
1319 		case 0xffff: /* spare */
1320 			break;
1321 		case 0xfffe: /* faulty */
1322 			set_bit(Faulty, &rdev->flags);
1323 			break;
1324 		default:
1325 			if ((le32_to_cpu(sb->feature_map) &
1326 			     MD_FEATURE_RECOVERY_OFFSET))
1327 				rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1328 			else
1329 				set_bit(In_sync, &rdev->flags);
1330 			rdev->raid_disk = role;
1331 			break;
1332 		}
1333 		if (sb->devflags & WriteMostly1)
1334 			set_bit(WriteMostly, &rdev->flags);
1335 	} else /* MULTIPATH are always insync */
1336 		set_bit(In_sync, &rdev->flags);
1337 
1338 	return 0;
1339 }
1340 
1341 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1342 {
1343 	struct mdp_superblock_1 *sb;
1344 	mdk_rdev_t *rdev2;
1345 	int max_dev, i;
1346 	/* make rdev->sb match mddev and rdev data. */
1347 
1348 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1349 
1350 	sb->feature_map = 0;
1351 	sb->pad0 = 0;
1352 	sb->recovery_offset = cpu_to_le64(0);
1353 	memset(sb->pad1, 0, sizeof(sb->pad1));
1354 	memset(sb->pad2, 0, sizeof(sb->pad2));
1355 	memset(sb->pad3, 0, sizeof(sb->pad3));
1356 
1357 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1358 	sb->events = cpu_to_le64(mddev->events);
1359 	if (mddev->in_sync)
1360 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1361 	else
1362 		sb->resync_offset = cpu_to_le64(0);
1363 
1364 	sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1365 
1366 	sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1367 	sb->size = cpu_to_le64(mddev->dev_sectors);
1368 	sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1369 	sb->level = cpu_to_le32(mddev->level);
1370 	sb->layout = cpu_to_le32(mddev->layout);
1371 
1372 	if (mddev->bitmap && mddev->bitmap_file == NULL) {
1373 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
1374 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1375 	}
1376 
1377 	if (rdev->raid_disk >= 0 &&
1378 	    !test_bit(In_sync, &rdev->flags)) {
1379 		if (mddev->curr_resync_completed > rdev->recovery_offset)
1380 			rdev->recovery_offset = mddev->curr_resync_completed;
1381 		if (rdev->recovery_offset > 0) {
1382 			sb->feature_map |=
1383 				cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1384 			sb->recovery_offset =
1385 				cpu_to_le64(rdev->recovery_offset);
1386 		}
1387 	}
1388 
1389 	if (mddev->reshape_position != MaxSector) {
1390 		sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1391 		sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1392 		sb->new_layout = cpu_to_le32(mddev->new_layout);
1393 		sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1394 		sb->new_level = cpu_to_le32(mddev->new_level);
1395 		sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1396 	}
1397 
1398 	max_dev = 0;
1399 	list_for_each_entry(rdev2, &mddev->disks, same_set)
1400 		if (rdev2->desc_nr+1 > max_dev)
1401 			max_dev = rdev2->desc_nr+1;
1402 
1403 	if (max_dev > le32_to_cpu(sb->max_dev)) {
1404 		int bmask;
1405 		sb->max_dev = cpu_to_le32(max_dev);
1406 		rdev->sb_size = max_dev * 2 + 256;
1407 		bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1408 		if (rdev->sb_size & bmask)
1409 			rdev->sb_size = (rdev->sb_size | bmask) + 1;
1410 	}
1411 	for (i=0; i<max_dev;i++)
1412 		sb->dev_roles[i] = cpu_to_le16(0xfffe);
1413 
1414 	list_for_each_entry(rdev2, &mddev->disks, same_set) {
1415 		i = rdev2->desc_nr;
1416 		if (test_bit(Faulty, &rdev2->flags))
1417 			sb->dev_roles[i] = cpu_to_le16(0xfffe);
1418 		else if (test_bit(In_sync, &rdev2->flags))
1419 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1420 		else if (rdev2->raid_disk >= 0 && rdev2->recovery_offset > 0)
1421 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1422 		else
1423 			sb->dev_roles[i] = cpu_to_le16(0xffff);
1424 	}
1425 
1426 	sb->sb_csum = calc_sb_1_csum(sb);
1427 }
1428 
1429 static unsigned long long
1430 super_1_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1431 {
1432 	struct mdp_superblock_1 *sb;
1433 	sector_t max_sectors;
1434 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1435 		return 0; /* component must fit device */
1436 	if (rdev->sb_start < rdev->data_offset) {
1437 		/* minor versions 1 and 2; superblock before data */
1438 		max_sectors = rdev->bdev->bd_inode->i_size >> 9;
1439 		max_sectors -= rdev->data_offset;
1440 		if (!num_sectors || num_sectors > max_sectors)
1441 			num_sectors = max_sectors;
1442 	} else if (rdev->mddev->bitmap_offset) {
1443 		/* minor version 0 with bitmap we can't move */
1444 		return 0;
1445 	} else {
1446 		/* minor version 0; superblock after data */
1447 		sector_t sb_start;
1448 		sb_start = (rdev->bdev->bd_inode->i_size >> 9) - 8*2;
1449 		sb_start &= ~(sector_t)(4*2 - 1);
1450 		max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1451 		if (!num_sectors || num_sectors > max_sectors)
1452 			num_sectors = max_sectors;
1453 		rdev->sb_start = sb_start;
1454 	}
1455 	sb = (struct mdp_superblock_1 *) page_address(rdev->sb_page);
1456 	sb->data_size = cpu_to_le64(num_sectors);
1457 	sb->super_offset = rdev->sb_start;
1458 	sb->sb_csum = calc_sb_1_csum(sb);
1459 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1460 		       rdev->sb_page);
1461 	md_super_wait(rdev->mddev);
1462 	return num_sectors / 2; /* kB for sysfs */
1463 }
1464 
1465 static struct super_type super_types[] = {
1466 	[0] = {
1467 		.name	= "0.90.0",
1468 		.owner	= THIS_MODULE,
1469 		.load_super	    = super_90_load,
1470 		.validate_super	    = super_90_validate,
1471 		.sync_super	    = super_90_sync,
1472 		.rdev_size_change   = super_90_rdev_size_change,
1473 	},
1474 	[1] = {
1475 		.name	= "md-1",
1476 		.owner	= THIS_MODULE,
1477 		.load_super	    = super_1_load,
1478 		.validate_super	    = super_1_validate,
1479 		.sync_super	    = super_1_sync,
1480 		.rdev_size_change   = super_1_rdev_size_change,
1481 	},
1482 };
1483 
1484 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1485 {
1486 	mdk_rdev_t *rdev, *rdev2;
1487 
1488 	rcu_read_lock();
1489 	rdev_for_each_rcu(rdev, mddev1)
1490 		rdev_for_each_rcu(rdev2, mddev2)
1491 			if (rdev->bdev->bd_contains ==
1492 			    rdev2->bdev->bd_contains) {
1493 				rcu_read_unlock();
1494 				return 1;
1495 			}
1496 	rcu_read_unlock();
1497 	return 0;
1498 }
1499 
1500 static LIST_HEAD(pending_raid_disks);
1501 
1502 /*
1503  * Try to register data integrity profile for an mddev
1504  *
1505  * This is called when an array is started and after a disk has been kicked
1506  * from the array. It only succeeds if all working and active component devices
1507  * are integrity capable with matching profiles.
1508  */
1509 int md_integrity_register(mddev_t *mddev)
1510 {
1511 	mdk_rdev_t *rdev, *reference = NULL;
1512 
1513 	if (list_empty(&mddev->disks))
1514 		return 0; /* nothing to do */
1515 	if (blk_get_integrity(mddev->gendisk))
1516 		return 0; /* already registered */
1517 	list_for_each_entry(rdev, &mddev->disks, same_set) {
1518 		/* skip spares and non-functional disks */
1519 		if (test_bit(Faulty, &rdev->flags))
1520 			continue;
1521 		if (rdev->raid_disk < 0)
1522 			continue;
1523 		/*
1524 		 * If at least one rdev is not integrity capable, we can not
1525 		 * enable data integrity for the md device.
1526 		 */
1527 		if (!bdev_get_integrity(rdev->bdev))
1528 			return -EINVAL;
1529 		if (!reference) {
1530 			/* Use the first rdev as the reference */
1531 			reference = rdev;
1532 			continue;
1533 		}
1534 		/* does this rdev's profile match the reference profile? */
1535 		if (blk_integrity_compare(reference->bdev->bd_disk,
1536 				rdev->bdev->bd_disk) < 0)
1537 			return -EINVAL;
1538 	}
1539 	/*
1540 	 * All component devices are integrity capable and have matching
1541 	 * profiles, register the common profile for the md device.
1542 	 */
1543 	if (blk_integrity_register(mddev->gendisk,
1544 			bdev_get_integrity(reference->bdev)) != 0) {
1545 		printk(KERN_ERR "md: failed to register integrity for %s\n",
1546 			mdname(mddev));
1547 		return -EINVAL;
1548 	}
1549 	printk(KERN_NOTICE "md: data integrity on %s enabled\n",
1550 		mdname(mddev));
1551 	return 0;
1552 }
1553 EXPORT_SYMBOL(md_integrity_register);
1554 
1555 /* Disable data integrity if non-capable/non-matching disk is being added */
1556 void md_integrity_add_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
1557 {
1558 	struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
1559 	struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
1560 
1561 	if (!bi_mddev) /* nothing to do */
1562 		return;
1563 	if (rdev->raid_disk < 0) /* skip spares */
1564 		return;
1565 	if (bi_rdev && blk_integrity_compare(mddev->gendisk,
1566 					     rdev->bdev->bd_disk) >= 0)
1567 		return;
1568 	printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
1569 	blk_integrity_unregister(mddev->gendisk);
1570 }
1571 EXPORT_SYMBOL(md_integrity_add_rdev);
1572 
1573 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1574 {
1575 	char b[BDEVNAME_SIZE];
1576 	struct kobject *ko;
1577 	char *s;
1578 	int err;
1579 
1580 	if (rdev->mddev) {
1581 		MD_BUG();
1582 		return -EINVAL;
1583 	}
1584 
1585 	/* prevent duplicates */
1586 	if (find_rdev(mddev, rdev->bdev->bd_dev))
1587 		return -EEXIST;
1588 
1589 	/* make sure rdev->sectors exceeds mddev->dev_sectors */
1590 	if (rdev->sectors && (mddev->dev_sectors == 0 ||
1591 			rdev->sectors < mddev->dev_sectors)) {
1592 		if (mddev->pers) {
1593 			/* Cannot change size, so fail
1594 			 * If mddev->level <= 0, then we don't care
1595 			 * about aligning sizes (e.g. linear)
1596 			 */
1597 			if (mddev->level > 0)
1598 				return -ENOSPC;
1599 		} else
1600 			mddev->dev_sectors = rdev->sectors;
1601 	}
1602 
1603 	/* Verify rdev->desc_nr is unique.
1604 	 * If it is -1, assign a free number, else
1605 	 * check number is not in use
1606 	 */
1607 	if (rdev->desc_nr < 0) {
1608 		int choice = 0;
1609 		if (mddev->pers) choice = mddev->raid_disks;
1610 		while (find_rdev_nr(mddev, choice))
1611 			choice++;
1612 		rdev->desc_nr = choice;
1613 	} else {
1614 		if (find_rdev_nr(mddev, rdev->desc_nr))
1615 			return -EBUSY;
1616 	}
1617 	if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
1618 		printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
1619 		       mdname(mddev), mddev->max_disks);
1620 		return -EBUSY;
1621 	}
1622 	bdevname(rdev->bdev,b);
1623 	while ( (s=strchr(b, '/')) != NULL)
1624 		*s = '!';
1625 
1626 	rdev->mddev = mddev;
1627 	printk(KERN_INFO "md: bind<%s>\n", b);
1628 
1629 	if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
1630 		goto fail;
1631 
1632 	ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
1633 	if ((err = sysfs_create_link(&rdev->kobj, ko, "block"))) {
1634 		kobject_del(&rdev->kobj);
1635 		goto fail;
1636 	}
1637 	rdev->sysfs_state = sysfs_get_dirent(rdev->kobj.sd, "state");
1638 
1639 	list_add_rcu(&rdev->same_set, &mddev->disks);
1640 	bd_claim_by_disk(rdev->bdev, rdev->bdev->bd_holder, mddev->gendisk);
1641 
1642 	/* May as well allow recovery to be retried once */
1643 	mddev->recovery_disabled = 0;
1644 
1645 	return 0;
1646 
1647  fail:
1648 	printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
1649 	       b, mdname(mddev));
1650 	return err;
1651 }
1652 
1653 static void md_delayed_delete(struct work_struct *ws)
1654 {
1655 	mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work);
1656 	kobject_del(&rdev->kobj);
1657 	kobject_put(&rdev->kobj);
1658 }
1659 
1660 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1661 {
1662 	char b[BDEVNAME_SIZE];
1663 	if (!rdev->mddev) {
1664 		MD_BUG();
1665 		return;
1666 	}
1667 	bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk);
1668 	list_del_rcu(&rdev->same_set);
1669 	printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1670 	rdev->mddev = NULL;
1671 	sysfs_remove_link(&rdev->kobj, "block");
1672 	sysfs_put(rdev->sysfs_state);
1673 	rdev->sysfs_state = NULL;
1674 	/* We need to delay this, otherwise we can deadlock when
1675 	 * writing to 'remove' to "dev/state".  We also need
1676 	 * to delay it due to rcu usage.
1677 	 */
1678 	synchronize_rcu();
1679 	INIT_WORK(&rdev->del_work, md_delayed_delete);
1680 	kobject_get(&rdev->kobj);
1681 	schedule_work(&rdev->del_work);
1682 }
1683 
1684 /*
1685  * prevent the device from being mounted, repartitioned or
1686  * otherwise reused by a RAID array (or any other kernel
1687  * subsystem), by bd_claiming the device.
1688  */
1689 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev, int shared)
1690 {
1691 	int err = 0;
1692 	struct block_device *bdev;
1693 	char b[BDEVNAME_SIZE];
1694 
1695 	bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1696 	if (IS_ERR(bdev)) {
1697 		printk(KERN_ERR "md: could not open %s.\n",
1698 			__bdevname(dev, b));
1699 		return PTR_ERR(bdev);
1700 	}
1701 	err = bd_claim(bdev, shared ? (mdk_rdev_t *)lock_rdev : rdev);
1702 	if (err) {
1703 		printk(KERN_ERR "md: could not bd_claim %s.\n",
1704 			bdevname(bdev, b));
1705 		blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
1706 		return err;
1707 	}
1708 	if (!shared)
1709 		set_bit(AllReserved, &rdev->flags);
1710 	rdev->bdev = bdev;
1711 	return err;
1712 }
1713 
1714 static void unlock_rdev(mdk_rdev_t *rdev)
1715 {
1716 	struct block_device *bdev = rdev->bdev;
1717 	rdev->bdev = NULL;
1718 	if (!bdev)
1719 		MD_BUG();
1720 	bd_release(bdev);
1721 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
1722 }
1723 
1724 void md_autodetect_dev(dev_t dev);
1725 
1726 static void export_rdev(mdk_rdev_t * rdev)
1727 {
1728 	char b[BDEVNAME_SIZE];
1729 	printk(KERN_INFO "md: export_rdev(%s)\n",
1730 		bdevname(rdev->bdev,b));
1731 	if (rdev->mddev)
1732 		MD_BUG();
1733 	free_disk_sb(rdev);
1734 #ifndef MODULE
1735 	if (test_bit(AutoDetected, &rdev->flags))
1736 		md_autodetect_dev(rdev->bdev->bd_dev);
1737 #endif
1738 	unlock_rdev(rdev);
1739 	kobject_put(&rdev->kobj);
1740 }
1741 
1742 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1743 {
1744 	unbind_rdev_from_array(rdev);
1745 	export_rdev(rdev);
1746 }
1747 
1748 static void export_array(mddev_t *mddev)
1749 {
1750 	mdk_rdev_t *rdev, *tmp;
1751 
1752 	rdev_for_each(rdev, tmp, mddev) {
1753 		if (!rdev->mddev) {
1754 			MD_BUG();
1755 			continue;
1756 		}
1757 		kick_rdev_from_array(rdev);
1758 	}
1759 	if (!list_empty(&mddev->disks))
1760 		MD_BUG();
1761 	mddev->raid_disks = 0;
1762 	mddev->major_version = 0;
1763 }
1764 
1765 static void print_desc(mdp_disk_t *desc)
1766 {
1767 	printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1768 		desc->major,desc->minor,desc->raid_disk,desc->state);
1769 }
1770 
1771 static void print_sb_90(mdp_super_t *sb)
1772 {
1773 	int i;
1774 
1775 	printk(KERN_INFO
1776 		"md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1777 		sb->major_version, sb->minor_version, sb->patch_version,
1778 		sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1779 		sb->ctime);
1780 	printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1781 		sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1782 		sb->md_minor, sb->layout, sb->chunk_size);
1783 	printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
1784 		" FD:%d SD:%d CSUM:%08x E:%08lx\n",
1785 		sb->utime, sb->state, sb->active_disks, sb->working_disks,
1786 		sb->failed_disks, sb->spare_disks,
1787 		sb->sb_csum, (unsigned long)sb->events_lo);
1788 
1789 	printk(KERN_INFO);
1790 	for (i = 0; i < MD_SB_DISKS; i++) {
1791 		mdp_disk_t *desc;
1792 
1793 		desc = sb->disks + i;
1794 		if (desc->number || desc->major || desc->minor ||
1795 		    desc->raid_disk || (desc->state && (desc->state != 4))) {
1796 			printk("     D %2d: ", i);
1797 			print_desc(desc);
1798 		}
1799 	}
1800 	printk(KERN_INFO "md:     THIS: ");
1801 	print_desc(&sb->this_disk);
1802 }
1803 
1804 static void print_sb_1(struct mdp_superblock_1 *sb)
1805 {
1806 	__u8 *uuid;
1807 
1808 	uuid = sb->set_uuid;
1809 	printk(KERN_INFO
1810 	       "md:  SB: (V:%u) (F:0x%08x) Array-ID:<%02x%02x%02x%02x"
1811 	       ":%02x%02x:%02x%02x:%02x%02x:%02x%02x%02x%02x%02x%02x>\n"
1812 	       "md:    Name: \"%s\" CT:%llu\n",
1813 		le32_to_cpu(sb->major_version),
1814 		le32_to_cpu(sb->feature_map),
1815 		uuid[0], uuid[1], uuid[2], uuid[3],
1816 		uuid[4], uuid[5], uuid[6], uuid[7],
1817 		uuid[8], uuid[9], uuid[10], uuid[11],
1818 		uuid[12], uuid[13], uuid[14], uuid[15],
1819 		sb->set_name,
1820 		(unsigned long long)le64_to_cpu(sb->ctime)
1821 		       & MD_SUPERBLOCK_1_TIME_SEC_MASK);
1822 
1823 	uuid = sb->device_uuid;
1824 	printk(KERN_INFO
1825 	       "md:       L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
1826 			" RO:%llu\n"
1827 	       "md:     Dev:%08x UUID: %02x%02x%02x%02x:%02x%02x:%02x%02x:%02x%02x"
1828 	                ":%02x%02x%02x%02x%02x%02x\n"
1829 	       "md:       (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
1830 	       "md:         (MaxDev:%u) \n",
1831 		le32_to_cpu(sb->level),
1832 		(unsigned long long)le64_to_cpu(sb->size),
1833 		le32_to_cpu(sb->raid_disks),
1834 		le32_to_cpu(sb->layout),
1835 		le32_to_cpu(sb->chunksize),
1836 		(unsigned long long)le64_to_cpu(sb->data_offset),
1837 		(unsigned long long)le64_to_cpu(sb->data_size),
1838 		(unsigned long long)le64_to_cpu(sb->super_offset),
1839 		(unsigned long long)le64_to_cpu(sb->recovery_offset),
1840 		le32_to_cpu(sb->dev_number),
1841 		uuid[0], uuid[1], uuid[2], uuid[3],
1842 		uuid[4], uuid[5], uuid[6], uuid[7],
1843 		uuid[8], uuid[9], uuid[10], uuid[11],
1844 		uuid[12], uuid[13], uuid[14], uuid[15],
1845 		sb->devflags,
1846 		(unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
1847 		(unsigned long long)le64_to_cpu(sb->events),
1848 		(unsigned long long)le64_to_cpu(sb->resync_offset),
1849 		le32_to_cpu(sb->sb_csum),
1850 		le32_to_cpu(sb->max_dev)
1851 		);
1852 }
1853 
1854 static void print_rdev(mdk_rdev_t *rdev, int major_version)
1855 {
1856 	char b[BDEVNAME_SIZE];
1857 	printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
1858 		bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
1859 	        test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
1860 	        rdev->desc_nr);
1861 	if (rdev->sb_loaded) {
1862 		printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
1863 		switch (major_version) {
1864 		case 0:
1865 			print_sb_90((mdp_super_t*)page_address(rdev->sb_page));
1866 			break;
1867 		case 1:
1868 			print_sb_1((struct mdp_superblock_1 *)page_address(rdev->sb_page));
1869 			break;
1870 		}
1871 	} else
1872 		printk(KERN_INFO "md: no rdev superblock!\n");
1873 }
1874 
1875 static void md_print_devices(void)
1876 {
1877 	struct list_head *tmp;
1878 	mdk_rdev_t *rdev;
1879 	mddev_t *mddev;
1880 	char b[BDEVNAME_SIZE];
1881 
1882 	printk("\n");
1883 	printk("md:	**********************************\n");
1884 	printk("md:	* <COMPLETE RAID STATE PRINTOUT> *\n");
1885 	printk("md:	**********************************\n");
1886 	for_each_mddev(mddev, tmp) {
1887 
1888 		if (mddev->bitmap)
1889 			bitmap_print_sb(mddev->bitmap);
1890 		else
1891 			printk("%s: ", mdname(mddev));
1892 		list_for_each_entry(rdev, &mddev->disks, same_set)
1893 			printk("<%s>", bdevname(rdev->bdev,b));
1894 		printk("\n");
1895 
1896 		list_for_each_entry(rdev, &mddev->disks, same_set)
1897 			print_rdev(rdev, mddev->major_version);
1898 	}
1899 	printk("md:	**********************************\n");
1900 	printk("\n");
1901 }
1902 
1903 
1904 static void sync_sbs(mddev_t * mddev, int nospares)
1905 {
1906 	/* Update each superblock (in-memory image), but
1907 	 * if we are allowed to, skip spares which already
1908 	 * have the right event counter, or have one earlier
1909 	 * (which would mean they aren't being marked as dirty
1910 	 * with the rest of the array)
1911 	 */
1912 	mdk_rdev_t *rdev;
1913 
1914 	list_for_each_entry(rdev, &mddev->disks, same_set) {
1915 		if (rdev->sb_events == mddev->events ||
1916 		    (nospares &&
1917 		     rdev->raid_disk < 0 &&
1918 		     (rdev->sb_events&1)==0 &&
1919 		     rdev->sb_events+1 == mddev->events)) {
1920 			/* Don't update this superblock */
1921 			rdev->sb_loaded = 2;
1922 		} else {
1923 			super_types[mddev->major_version].
1924 				sync_super(mddev, rdev);
1925 			rdev->sb_loaded = 1;
1926 		}
1927 	}
1928 }
1929 
1930 static void md_update_sb(mddev_t * mddev, int force_change)
1931 {
1932 	mdk_rdev_t *rdev;
1933 	int sync_req;
1934 	int nospares = 0;
1935 
1936 	mddev->utime = get_seconds();
1937 	if (mddev->external)
1938 		return;
1939 repeat:
1940 	spin_lock_irq(&mddev->write_lock);
1941 
1942 	set_bit(MD_CHANGE_PENDING, &mddev->flags);
1943 	if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
1944 		force_change = 1;
1945 	if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
1946 		/* just a clean<-> dirty transition, possibly leave spares alone,
1947 		 * though if events isn't the right even/odd, we will have to do
1948 		 * spares after all
1949 		 */
1950 		nospares = 1;
1951 	if (force_change)
1952 		nospares = 0;
1953 	if (mddev->degraded)
1954 		/* If the array is degraded, then skipping spares is both
1955 		 * dangerous and fairly pointless.
1956 		 * Dangerous because a device that was removed from the array
1957 		 * might have a event_count that still looks up-to-date,
1958 		 * so it can be re-added without a resync.
1959 		 * Pointless because if there are any spares to skip,
1960 		 * then a recovery will happen and soon that array won't
1961 		 * be degraded any more and the spare can go back to sleep then.
1962 		 */
1963 		nospares = 0;
1964 
1965 	sync_req = mddev->in_sync;
1966 
1967 	/* If this is just a dirty<->clean transition, and the array is clean
1968 	 * and 'events' is odd, we can roll back to the previous clean state */
1969 	if (nospares
1970 	    && (mddev->in_sync && mddev->recovery_cp == MaxSector)
1971 	    && (mddev->events & 1)
1972 	    && mddev->events != 1)
1973 		mddev->events--;
1974 	else {
1975 		/* otherwise we have to go forward and ... */
1976 		mddev->events ++;
1977 		if (!mddev->in_sync || mddev->recovery_cp != MaxSector) { /* not clean */
1978 			/* .. if the array isn't clean, an 'even' event must also go
1979 			 * to spares. */
1980 			if ((mddev->events&1)==0)
1981 				nospares = 0;
1982 		} else {
1983 			/* otherwise an 'odd' event must go to spares */
1984 			if ((mddev->events&1))
1985 				nospares = 0;
1986 		}
1987 	}
1988 
1989 	if (!mddev->events) {
1990 		/*
1991 		 * oops, this 64-bit counter should never wrap.
1992 		 * Either we are in around ~1 trillion A.C., assuming
1993 		 * 1 reboot per second, or we have a bug:
1994 		 */
1995 		MD_BUG();
1996 		mddev->events --;
1997 	}
1998 
1999 	/*
2000 	 * do not write anything to disk if using
2001 	 * nonpersistent superblocks
2002 	 */
2003 	if (!mddev->persistent) {
2004 		if (!mddev->external)
2005 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2006 
2007 		spin_unlock_irq(&mddev->write_lock);
2008 		wake_up(&mddev->sb_wait);
2009 		return;
2010 	}
2011 	sync_sbs(mddev, nospares);
2012 	spin_unlock_irq(&mddev->write_lock);
2013 
2014 	dprintk(KERN_INFO
2015 		"md: updating %s RAID superblock on device (in sync %d)\n",
2016 		mdname(mddev),mddev->in_sync);
2017 
2018 	bitmap_update_sb(mddev->bitmap);
2019 	list_for_each_entry(rdev, &mddev->disks, same_set) {
2020 		char b[BDEVNAME_SIZE];
2021 		dprintk(KERN_INFO "md: ");
2022 		if (rdev->sb_loaded != 1)
2023 			continue; /* no noise on spare devices */
2024 		if (test_bit(Faulty, &rdev->flags))
2025 			dprintk("(skipping faulty ");
2026 
2027 		dprintk("%s ", bdevname(rdev->bdev,b));
2028 		if (!test_bit(Faulty, &rdev->flags)) {
2029 			md_super_write(mddev,rdev,
2030 				       rdev->sb_start, rdev->sb_size,
2031 				       rdev->sb_page);
2032 			dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
2033 				bdevname(rdev->bdev,b),
2034 				(unsigned long long)rdev->sb_start);
2035 			rdev->sb_events = mddev->events;
2036 
2037 		} else
2038 			dprintk(")\n");
2039 		if (mddev->level == LEVEL_MULTIPATH)
2040 			/* only need to write one superblock... */
2041 			break;
2042 	}
2043 	md_super_wait(mddev);
2044 	/* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2045 
2046 	spin_lock_irq(&mddev->write_lock);
2047 	if (mddev->in_sync != sync_req ||
2048 	    test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2049 		/* have to write it out again */
2050 		spin_unlock_irq(&mddev->write_lock);
2051 		goto repeat;
2052 	}
2053 	clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2054 	spin_unlock_irq(&mddev->write_lock);
2055 	wake_up(&mddev->sb_wait);
2056 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2057 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2058 
2059 }
2060 
2061 /* words written to sysfs files may, or may not, be \n terminated.
2062  * We want to accept with case. For this we use cmd_match.
2063  */
2064 static int cmd_match(const char *cmd, const char *str)
2065 {
2066 	/* See if cmd, written into a sysfs file, matches
2067 	 * str.  They must either be the same, or cmd can
2068 	 * have a trailing newline
2069 	 */
2070 	while (*cmd && *str && *cmd == *str) {
2071 		cmd++;
2072 		str++;
2073 	}
2074 	if (*cmd == '\n')
2075 		cmd++;
2076 	if (*str || *cmd)
2077 		return 0;
2078 	return 1;
2079 }
2080 
2081 struct rdev_sysfs_entry {
2082 	struct attribute attr;
2083 	ssize_t (*show)(mdk_rdev_t *, char *);
2084 	ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
2085 };
2086 
2087 static ssize_t
2088 state_show(mdk_rdev_t *rdev, char *page)
2089 {
2090 	char *sep = "";
2091 	size_t len = 0;
2092 
2093 	if (test_bit(Faulty, &rdev->flags)) {
2094 		len+= sprintf(page+len, "%sfaulty",sep);
2095 		sep = ",";
2096 	}
2097 	if (test_bit(In_sync, &rdev->flags)) {
2098 		len += sprintf(page+len, "%sin_sync",sep);
2099 		sep = ",";
2100 	}
2101 	if (test_bit(WriteMostly, &rdev->flags)) {
2102 		len += sprintf(page+len, "%swrite_mostly",sep);
2103 		sep = ",";
2104 	}
2105 	if (test_bit(Blocked, &rdev->flags)) {
2106 		len += sprintf(page+len, "%sblocked", sep);
2107 		sep = ",";
2108 	}
2109 	if (!test_bit(Faulty, &rdev->flags) &&
2110 	    !test_bit(In_sync, &rdev->flags)) {
2111 		len += sprintf(page+len, "%sspare", sep);
2112 		sep = ",";
2113 	}
2114 	return len+sprintf(page+len, "\n");
2115 }
2116 
2117 static ssize_t
2118 state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2119 {
2120 	/* can write
2121 	 *  faulty  - simulates and error
2122 	 *  remove  - disconnects the device
2123 	 *  writemostly - sets write_mostly
2124 	 *  -writemostly - clears write_mostly
2125 	 *  blocked - sets the Blocked flag
2126 	 *  -blocked - clears the Blocked flag
2127 	 *  insync - sets Insync providing device isn't active
2128 	 */
2129 	int err = -EINVAL;
2130 	if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2131 		md_error(rdev->mddev, rdev);
2132 		err = 0;
2133 	} else if (cmd_match(buf, "remove")) {
2134 		if (rdev->raid_disk >= 0)
2135 			err = -EBUSY;
2136 		else {
2137 			mddev_t *mddev = rdev->mddev;
2138 			kick_rdev_from_array(rdev);
2139 			if (mddev->pers)
2140 				md_update_sb(mddev, 1);
2141 			md_new_event(mddev);
2142 			err = 0;
2143 		}
2144 	} else if (cmd_match(buf, "writemostly")) {
2145 		set_bit(WriteMostly, &rdev->flags);
2146 		err = 0;
2147 	} else if (cmd_match(buf, "-writemostly")) {
2148 		clear_bit(WriteMostly, &rdev->flags);
2149 		err = 0;
2150 	} else if (cmd_match(buf, "blocked")) {
2151 		set_bit(Blocked, &rdev->flags);
2152 		err = 0;
2153 	} else if (cmd_match(buf, "-blocked")) {
2154 		clear_bit(Blocked, &rdev->flags);
2155 		wake_up(&rdev->blocked_wait);
2156 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2157 		md_wakeup_thread(rdev->mddev->thread);
2158 
2159 		err = 0;
2160 	} else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2161 		set_bit(In_sync, &rdev->flags);
2162 		err = 0;
2163 	}
2164 	if (!err && rdev->sysfs_state)
2165 		sysfs_notify_dirent(rdev->sysfs_state);
2166 	return err ? err : len;
2167 }
2168 static struct rdev_sysfs_entry rdev_state =
2169 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2170 
2171 static ssize_t
2172 errors_show(mdk_rdev_t *rdev, char *page)
2173 {
2174 	return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2175 }
2176 
2177 static ssize_t
2178 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2179 {
2180 	char *e;
2181 	unsigned long n = simple_strtoul(buf, &e, 10);
2182 	if (*buf && (*e == 0 || *e == '\n')) {
2183 		atomic_set(&rdev->corrected_errors, n);
2184 		return len;
2185 	}
2186 	return -EINVAL;
2187 }
2188 static struct rdev_sysfs_entry rdev_errors =
2189 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2190 
2191 static ssize_t
2192 slot_show(mdk_rdev_t *rdev, char *page)
2193 {
2194 	if (rdev->raid_disk < 0)
2195 		return sprintf(page, "none\n");
2196 	else
2197 		return sprintf(page, "%d\n", rdev->raid_disk);
2198 }
2199 
2200 static ssize_t
2201 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2202 {
2203 	char *e;
2204 	int err;
2205 	char nm[20];
2206 	int slot = simple_strtoul(buf, &e, 10);
2207 	if (strncmp(buf, "none", 4)==0)
2208 		slot = -1;
2209 	else if (e==buf || (*e && *e!= '\n'))
2210 		return -EINVAL;
2211 	if (rdev->mddev->pers && slot == -1) {
2212 		/* Setting 'slot' on an active array requires also
2213 		 * updating the 'rd%d' link, and communicating
2214 		 * with the personality with ->hot_*_disk.
2215 		 * For now we only support removing
2216 		 * failed/spare devices.  This normally happens automatically,
2217 		 * but not when the metadata is externally managed.
2218 		 */
2219 		if (rdev->raid_disk == -1)
2220 			return -EEXIST;
2221 		/* personality does all needed checks */
2222 		if (rdev->mddev->pers->hot_add_disk == NULL)
2223 			return -EINVAL;
2224 		err = rdev->mddev->pers->
2225 			hot_remove_disk(rdev->mddev, rdev->raid_disk);
2226 		if (err)
2227 			return err;
2228 		sprintf(nm, "rd%d", rdev->raid_disk);
2229 		sysfs_remove_link(&rdev->mddev->kobj, nm);
2230 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2231 		md_wakeup_thread(rdev->mddev->thread);
2232 	} else if (rdev->mddev->pers) {
2233 		mdk_rdev_t *rdev2;
2234 		/* Activating a spare .. or possibly reactivating
2235 		 * if we ever get bitmaps working here.
2236 		 */
2237 
2238 		if (rdev->raid_disk != -1)
2239 			return -EBUSY;
2240 
2241 		if (rdev->mddev->pers->hot_add_disk == NULL)
2242 			return -EINVAL;
2243 
2244 		list_for_each_entry(rdev2, &rdev->mddev->disks, same_set)
2245 			if (rdev2->raid_disk == slot)
2246 				return -EEXIST;
2247 
2248 		rdev->raid_disk = slot;
2249 		if (test_bit(In_sync, &rdev->flags))
2250 			rdev->saved_raid_disk = slot;
2251 		else
2252 			rdev->saved_raid_disk = -1;
2253 		err = rdev->mddev->pers->
2254 			hot_add_disk(rdev->mddev, rdev);
2255 		if (err) {
2256 			rdev->raid_disk = -1;
2257 			return err;
2258 		} else
2259 			sysfs_notify_dirent(rdev->sysfs_state);
2260 		sprintf(nm, "rd%d", rdev->raid_disk);
2261 		if (sysfs_create_link(&rdev->mddev->kobj, &rdev->kobj, nm))
2262 			printk(KERN_WARNING
2263 			       "md: cannot register "
2264 			       "%s for %s\n",
2265 			       nm, mdname(rdev->mddev));
2266 
2267 		/* don't wakeup anyone, leave that to userspace. */
2268 	} else {
2269 		if (slot >= rdev->mddev->raid_disks)
2270 			return -ENOSPC;
2271 		rdev->raid_disk = slot;
2272 		/* assume it is working */
2273 		clear_bit(Faulty, &rdev->flags);
2274 		clear_bit(WriteMostly, &rdev->flags);
2275 		set_bit(In_sync, &rdev->flags);
2276 		sysfs_notify_dirent(rdev->sysfs_state);
2277 	}
2278 	return len;
2279 }
2280 
2281 
2282 static struct rdev_sysfs_entry rdev_slot =
2283 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2284 
2285 static ssize_t
2286 offset_show(mdk_rdev_t *rdev, char *page)
2287 {
2288 	return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2289 }
2290 
2291 static ssize_t
2292 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2293 {
2294 	char *e;
2295 	unsigned long long offset = simple_strtoull(buf, &e, 10);
2296 	if (e==buf || (*e && *e != '\n'))
2297 		return -EINVAL;
2298 	if (rdev->mddev->pers && rdev->raid_disk >= 0)
2299 		return -EBUSY;
2300 	if (rdev->sectors && rdev->mddev->external)
2301 		/* Must set offset before size, so overlap checks
2302 		 * can be sane */
2303 		return -EBUSY;
2304 	rdev->data_offset = offset;
2305 	return len;
2306 }
2307 
2308 static struct rdev_sysfs_entry rdev_offset =
2309 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2310 
2311 static ssize_t
2312 rdev_size_show(mdk_rdev_t *rdev, char *page)
2313 {
2314 	return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2315 }
2316 
2317 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2318 {
2319 	/* check if two start/length pairs overlap */
2320 	if (s1+l1 <= s2)
2321 		return 0;
2322 	if (s2+l2 <= s1)
2323 		return 0;
2324 	return 1;
2325 }
2326 
2327 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2328 {
2329 	unsigned long long blocks;
2330 	sector_t new;
2331 
2332 	if (strict_strtoull(buf, 10, &blocks) < 0)
2333 		return -EINVAL;
2334 
2335 	if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2336 		return -EINVAL; /* sector conversion overflow */
2337 
2338 	new = blocks * 2;
2339 	if (new != blocks * 2)
2340 		return -EINVAL; /* unsigned long long to sector_t overflow */
2341 
2342 	*sectors = new;
2343 	return 0;
2344 }
2345 
2346 static ssize_t
2347 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2348 {
2349 	mddev_t *my_mddev = rdev->mddev;
2350 	sector_t oldsectors = rdev->sectors;
2351 	sector_t sectors;
2352 
2353 	if (strict_blocks_to_sectors(buf, &sectors) < 0)
2354 		return -EINVAL;
2355 	if (my_mddev->pers && rdev->raid_disk >= 0) {
2356 		if (my_mddev->persistent) {
2357 			sectors = super_types[my_mddev->major_version].
2358 				rdev_size_change(rdev, sectors);
2359 			if (!sectors)
2360 				return -EBUSY;
2361 		} else if (!sectors)
2362 			sectors = (rdev->bdev->bd_inode->i_size >> 9) -
2363 				rdev->data_offset;
2364 	}
2365 	if (sectors < my_mddev->dev_sectors)
2366 		return -EINVAL; /* component must fit device */
2367 
2368 	rdev->sectors = sectors;
2369 	if (sectors > oldsectors && my_mddev->external) {
2370 		/* need to check that all other rdevs with the same ->bdev
2371 		 * do not overlap.  We need to unlock the mddev to avoid
2372 		 * a deadlock.  We have already changed rdev->sectors, and if
2373 		 * we have to change it back, we will have the lock again.
2374 		 */
2375 		mddev_t *mddev;
2376 		int overlap = 0;
2377 		struct list_head *tmp;
2378 
2379 		mddev_unlock(my_mddev);
2380 		for_each_mddev(mddev, tmp) {
2381 			mdk_rdev_t *rdev2;
2382 
2383 			mddev_lock(mddev);
2384 			list_for_each_entry(rdev2, &mddev->disks, same_set)
2385 				if (test_bit(AllReserved, &rdev2->flags) ||
2386 				    (rdev->bdev == rdev2->bdev &&
2387 				     rdev != rdev2 &&
2388 				     overlaps(rdev->data_offset, rdev->sectors,
2389 					      rdev2->data_offset,
2390 					      rdev2->sectors))) {
2391 					overlap = 1;
2392 					break;
2393 				}
2394 			mddev_unlock(mddev);
2395 			if (overlap) {
2396 				mddev_put(mddev);
2397 				break;
2398 			}
2399 		}
2400 		mddev_lock(my_mddev);
2401 		if (overlap) {
2402 			/* Someone else could have slipped in a size
2403 			 * change here, but doing so is just silly.
2404 			 * We put oldsectors back because we *know* it is
2405 			 * safe, and trust userspace not to race with
2406 			 * itself
2407 			 */
2408 			rdev->sectors = oldsectors;
2409 			return -EBUSY;
2410 		}
2411 	}
2412 	return len;
2413 }
2414 
2415 static struct rdev_sysfs_entry rdev_size =
2416 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2417 
2418 static struct attribute *rdev_default_attrs[] = {
2419 	&rdev_state.attr,
2420 	&rdev_errors.attr,
2421 	&rdev_slot.attr,
2422 	&rdev_offset.attr,
2423 	&rdev_size.attr,
2424 	NULL,
2425 };
2426 static ssize_t
2427 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2428 {
2429 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2430 	mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2431 	mddev_t *mddev = rdev->mddev;
2432 	ssize_t rv;
2433 
2434 	if (!entry->show)
2435 		return -EIO;
2436 
2437 	rv = mddev ? mddev_lock(mddev) : -EBUSY;
2438 	if (!rv) {
2439 		if (rdev->mddev == NULL)
2440 			rv = -EBUSY;
2441 		else
2442 			rv = entry->show(rdev, page);
2443 		mddev_unlock(mddev);
2444 	}
2445 	return rv;
2446 }
2447 
2448 static ssize_t
2449 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
2450 	      const char *page, size_t length)
2451 {
2452 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2453 	mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2454 	ssize_t rv;
2455 	mddev_t *mddev = rdev->mddev;
2456 
2457 	if (!entry->store)
2458 		return -EIO;
2459 	if (!capable(CAP_SYS_ADMIN))
2460 		return -EACCES;
2461 	rv = mddev ? mddev_lock(mddev): -EBUSY;
2462 	if (!rv) {
2463 		if (rdev->mddev == NULL)
2464 			rv = -EBUSY;
2465 		else
2466 			rv = entry->store(rdev, page, length);
2467 		mddev_unlock(mddev);
2468 	}
2469 	return rv;
2470 }
2471 
2472 static void rdev_free(struct kobject *ko)
2473 {
2474 	mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
2475 	kfree(rdev);
2476 }
2477 static struct sysfs_ops rdev_sysfs_ops = {
2478 	.show		= rdev_attr_show,
2479 	.store		= rdev_attr_store,
2480 };
2481 static struct kobj_type rdev_ktype = {
2482 	.release	= rdev_free,
2483 	.sysfs_ops	= &rdev_sysfs_ops,
2484 	.default_attrs	= rdev_default_attrs,
2485 };
2486 
2487 /*
2488  * Import a device. If 'super_format' >= 0, then sanity check the superblock
2489  *
2490  * mark the device faulty if:
2491  *
2492  *   - the device is nonexistent (zero size)
2493  *   - the device has no valid superblock
2494  *
2495  * a faulty rdev _never_ has rdev->sb set.
2496  */
2497 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
2498 {
2499 	char b[BDEVNAME_SIZE];
2500 	int err;
2501 	mdk_rdev_t *rdev;
2502 	sector_t size;
2503 
2504 	rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
2505 	if (!rdev) {
2506 		printk(KERN_ERR "md: could not alloc mem for new device!\n");
2507 		return ERR_PTR(-ENOMEM);
2508 	}
2509 
2510 	if ((err = alloc_disk_sb(rdev)))
2511 		goto abort_free;
2512 
2513 	err = lock_rdev(rdev, newdev, super_format == -2);
2514 	if (err)
2515 		goto abort_free;
2516 
2517 	kobject_init(&rdev->kobj, &rdev_ktype);
2518 
2519 	rdev->desc_nr = -1;
2520 	rdev->saved_raid_disk = -1;
2521 	rdev->raid_disk = -1;
2522 	rdev->flags = 0;
2523 	rdev->data_offset = 0;
2524 	rdev->sb_events = 0;
2525 	atomic_set(&rdev->nr_pending, 0);
2526 	atomic_set(&rdev->read_errors, 0);
2527 	atomic_set(&rdev->corrected_errors, 0);
2528 
2529 	size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2530 	if (!size) {
2531 		printk(KERN_WARNING
2532 			"md: %s has zero or unknown size, marking faulty!\n",
2533 			bdevname(rdev->bdev,b));
2534 		err = -EINVAL;
2535 		goto abort_free;
2536 	}
2537 
2538 	if (super_format >= 0) {
2539 		err = super_types[super_format].
2540 			load_super(rdev, NULL, super_minor);
2541 		if (err == -EINVAL) {
2542 			printk(KERN_WARNING
2543 				"md: %s does not have a valid v%d.%d "
2544 			       "superblock, not importing!\n",
2545 				bdevname(rdev->bdev,b),
2546 			       super_format, super_minor);
2547 			goto abort_free;
2548 		}
2549 		if (err < 0) {
2550 			printk(KERN_WARNING
2551 				"md: could not read %s's sb, not importing!\n",
2552 				bdevname(rdev->bdev,b));
2553 			goto abort_free;
2554 		}
2555 	}
2556 
2557 	INIT_LIST_HEAD(&rdev->same_set);
2558 	init_waitqueue_head(&rdev->blocked_wait);
2559 
2560 	return rdev;
2561 
2562 abort_free:
2563 	if (rdev->sb_page) {
2564 		if (rdev->bdev)
2565 			unlock_rdev(rdev);
2566 		free_disk_sb(rdev);
2567 	}
2568 	kfree(rdev);
2569 	return ERR_PTR(err);
2570 }
2571 
2572 /*
2573  * Check a full RAID array for plausibility
2574  */
2575 
2576 
2577 static void analyze_sbs(mddev_t * mddev)
2578 {
2579 	int i;
2580 	mdk_rdev_t *rdev, *freshest, *tmp;
2581 	char b[BDEVNAME_SIZE];
2582 
2583 	freshest = NULL;
2584 	rdev_for_each(rdev, tmp, mddev)
2585 		switch (super_types[mddev->major_version].
2586 			load_super(rdev, freshest, mddev->minor_version)) {
2587 		case 1:
2588 			freshest = rdev;
2589 			break;
2590 		case 0:
2591 			break;
2592 		default:
2593 			printk( KERN_ERR \
2594 				"md: fatal superblock inconsistency in %s"
2595 				" -- removing from array\n",
2596 				bdevname(rdev->bdev,b));
2597 			kick_rdev_from_array(rdev);
2598 		}
2599 
2600 
2601 	super_types[mddev->major_version].
2602 		validate_super(mddev, freshest);
2603 
2604 	i = 0;
2605 	rdev_for_each(rdev, tmp, mddev) {
2606 		if (rdev->desc_nr >= mddev->max_disks ||
2607 		    i > mddev->max_disks) {
2608 			printk(KERN_WARNING
2609 			       "md: %s: %s: only %d devices permitted\n",
2610 			       mdname(mddev), bdevname(rdev->bdev, b),
2611 			       mddev->max_disks);
2612 			kick_rdev_from_array(rdev);
2613 			continue;
2614 		}
2615 		if (rdev != freshest)
2616 			if (super_types[mddev->major_version].
2617 			    validate_super(mddev, rdev)) {
2618 				printk(KERN_WARNING "md: kicking non-fresh %s"
2619 					" from array!\n",
2620 					bdevname(rdev->bdev,b));
2621 				kick_rdev_from_array(rdev);
2622 				continue;
2623 			}
2624 		if (mddev->level == LEVEL_MULTIPATH) {
2625 			rdev->desc_nr = i++;
2626 			rdev->raid_disk = rdev->desc_nr;
2627 			set_bit(In_sync, &rdev->flags);
2628 		} else if (rdev->raid_disk >= mddev->raid_disks) {
2629 			rdev->raid_disk = -1;
2630 			clear_bit(In_sync, &rdev->flags);
2631 		}
2632 	}
2633 }
2634 
2635 static void md_safemode_timeout(unsigned long data);
2636 
2637 static ssize_t
2638 safe_delay_show(mddev_t *mddev, char *page)
2639 {
2640 	int msec = (mddev->safemode_delay*1000)/HZ;
2641 	return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
2642 }
2643 static ssize_t
2644 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
2645 {
2646 	int scale=1;
2647 	int dot=0;
2648 	int i;
2649 	unsigned long msec;
2650 	char buf[30];
2651 
2652 	/* remove a period, and count digits after it */
2653 	if (len >= sizeof(buf))
2654 		return -EINVAL;
2655 	strlcpy(buf, cbuf, sizeof(buf));
2656 	for (i=0; i<len; i++) {
2657 		if (dot) {
2658 			if (isdigit(buf[i])) {
2659 				buf[i-1] = buf[i];
2660 				scale *= 10;
2661 			}
2662 			buf[i] = 0;
2663 		} else if (buf[i] == '.') {
2664 			dot=1;
2665 			buf[i] = 0;
2666 		}
2667 	}
2668 	if (strict_strtoul(buf, 10, &msec) < 0)
2669 		return -EINVAL;
2670 	msec = (msec * 1000) / scale;
2671 	if (msec == 0)
2672 		mddev->safemode_delay = 0;
2673 	else {
2674 		unsigned long old_delay = mddev->safemode_delay;
2675 		mddev->safemode_delay = (msec*HZ)/1000;
2676 		if (mddev->safemode_delay == 0)
2677 			mddev->safemode_delay = 1;
2678 		if (mddev->safemode_delay < old_delay)
2679 			md_safemode_timeout((unsigned long)mddev);
2680 	}
2681 	return len;
2682 }
2683 static struct md_sysfs_entry md_safe_delay =
2684 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
2685 
2686 static ssize_t
2687 level_show(mddev_t *mddev, char *page)
2688 {
2689 	struct mdk_personality *p = mddev->pers;
2690 	if (p)
2691 		return sprintf(page, "%s\n", p->name);
2692 	else if (mddev->clevel[0])
2693 		return sprintf(page, "%s\n", mddev->clevel);
2694 	else if (mddev->level != LEVEL_NONE)
2695 		return sprintf(page, "%d\n", mddev->level);
2696 	else
2697 		return 0;
2698 }
2699 
2700 static ssize_t
2701 level_store(mddev_t *mddev, const char *buf, size_t len)
2702 {
2703 	char level[16];
2704 	ssize_t rv = len;
2705 	struct mdk_personality *pers;
2706 	void *priv;
2707 	mdk_rdev_t *rdev;
2708 
2709 	if (mddev->pers == NULL) {
2710 		if (len == 0)
2711 			return 0;
2712 		if (len >= sizeof(mddev->clevel))
2713 			return -ENOSPC;
2714 		strncpy(mddev->clevel, buf, len);
2715 		if (mddev->clevel[len-1] == '\n')
2716 			len--;
2717 		mddev->clevel[len] = 0;
2718 		mddev->level = LEVEL_NONE;
2719 		return rv;
2720 	}
2721 
2722 	/* request to change the personality.  Need to ensure:
2723 	 *  - array is not engaged in resync/recovery/reshape
2724 	 *  - old personality can be suspended
2725 	 *  - new personality will access other array.
2726 	 */
2727 
2728 	if (mddev->sync_thread || mddev->reshape_position != MaxSector)
2729 		return -EBUSY;
2730 
2731 	if (!mddev->pers->quiesce) {
2732 		printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
2733 		       mdname(mddev), mddev->pers->name);
2734 		return -EINVAL;
2735 	}
2736 
2737 	/* Now find the new personality */
2738 	if (len == 0 || len >= sizeof(level))
2739 		return -EINVAL;
2740 	strncpy(level, buf, len);
2741 	if (level[len-1] == '\n')
2742 		len--;
2743 	level[len] = 0;
2744 
2745 	request_module("md-%s", level);
2746 	spin_lock(&pers_lock);
2747 	pers = find_pers(LEVEL_NONE, level);
2748 	if (!pers || !try_module_get(pers->owner)) {
2749 		spin_unlock(&pers_lock);
2750 		printk(KERN_WARNING "md: personality %s not loaded\n", level);
2751 		return -EINVAL;
2752 	}
2753 	spin_unlock(&pers_lock);
2754 
2755 	if (pers == mddev->pers) {
2756 		/* Nothing to do! */
2757 		module_put(pers->owner);
2758 		return rv;
2759 	}
2760 	if (!pers->takeover) {
2761 		module_put(pers->owner);
2762 		printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
2763 		       mdname(mddev), level);
2764 		return -EINVAL;
2765 	}
2766 
2767 	/* ->takeover must set new_* and/or delta_disks
2768 	 * if it succeeds, and may set them when it fails.
2769 	 */
2770 	priv = pers->takeover(mddev);
2771 	if (IS_ERR(priv)) {
2772 		mddev->new_level = mddev->level;
2773 		mddev->new_layout = mddev->layout;
2774 		mddev->new_chunk_sectors = mddev->chunk_sectors;
2775 		mddev->raid_disks -= mddev->delta_disks;
2776 		mddev->delta_disks = 0;
2777 		module_put(pers->owner);
2778 		printk(KERN_WARNING "md: %s: %s would not accept array\n",
2779 		       mdname(mddev), level);
2780 		return PTR_ERR(priv);
2781 	}
2782 
2783 	/* Looks like we have a winner */
2784 	mddev_suspend(mddev);
2785 	mddev->pers->stop(mddev);
2786 	module_put(mddev->pers->owner);
2787 	/* Invalidate devices that are now superfluous */
2788 	list_for_each_entry(rdev, &mddev->disks, same_set)
2789 		if (rdev->raid_disk >= mddev->raid_disks) {
2790 			rdev->raid_disk = -1;
2791 			clear_bit(In_sync, &rdev->flags);
2792 		}
2793 	mddev->pers = pers;
2794 	mddev->private = priv;
2795 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
2796 	mddev->level = mddev->new_level;
2797 	mddev->layout = mddev->new_layout;
2798 	mddev->chunk_sectors = mddev->new_chunk_sectors;
2799 	mddev->delta_disks = 0;
2800 	pers->run(mddev);
2801 	mddev_resume(mddev);
2802 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
2803 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2804 	md_wakeup_thread(mddev->thread);
2805 	return rv;
2806 }
2807 
2808 static struct md_sysfs_entry md_level =
2809 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
2810 
2811 
2812 static ssize_t
2813 layout_show(mddev_t *mddev, char *page)
2814 {
2815 	/* just a number, not meaningful for all levels */
2816 	if (mddev->reshape_position != MaxSector &&
2817 	    mddev->layout != mddev->new_layout)
2818 		return sprintf(page, "%d (%d)\n",
2819 			       mddev->new_layout, mddev->layout);
2820 	return sprintf(page, "%d\n", mddev->layout);
2821 }
2822 
2823 static ssize_t
2824 layout_store(mddev_t *mddev, const char *buf, size_t len)
2825 {
2826 	char *e;
2827 	unsigned long n = simple_strtoul(buf, &e, 10);
2828 
2829 	if (!*buf || (*e && *e != '\n'))
2830 		return -EINVAL;
2831 
2832 	if (mddev->pers) {
2833 		int err;
2834 		if (mddev->pers->check_reshape == NULL)
2835 			return -EBUSY;
2836 		mddev->new_layout = n;
2837 		err = mddev->pers->check_reshape(mddev);
2838 		if (err) {
2839 			mddev->new_layout = mddev->layout;
2840 			return err;
2841 		}
2842 	} else {
2843 		mddev->new_layout = n;
2844 		if (mddev->reshape_position == MaxSector)
2845 			mddev->layout = n;
2846 	}
2847 	return len;
2848 }
2849 static struct md_sysfs_entry md_layout =
2850 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
2851 
2852 
2853 static ssize_t
2854 raid_disks_show(mddev_t *mddev, char *page)
2855 {
2856 	if (mddev->raid_disks == 0)
2857 		return 0;
2858 	if (mddev->reshape_position != MaxSector &&
2859 	    mddev->delta_disks != 0)
2860 		return sprintf(page, "%d (%d)\n", mddev->raid_disks,
2861 			       mddev->raid_disks - mddev->delta_disks);
2862 	return sprintf(page, "%d\n", mddev->raid_disks);
2863 }
2864 
2865 static int update_raid_disks(mddev_t *mddev, int raid_disks);
2866 
2867 static ssize_t
2868 raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
2869 {
2870 	char *e;
2871 	int rv = 0;
2872 	unsigned long n = simple_strtoul(buf, &e, 10);
2873 
2874 	if (!*buf || (*e && *e != '\n'))
2875 		return -EINVAL;
2876 
2877 	if (mddev->pers)
2878 		rv = update_raid_disks(mddev, n);
2879 	else if (mddev->reshape_position != MaxSector) {
2880 		int olddisks = mddev->raid_disks - mddev->delta_disks;
2881 		mddev->delta_disks = n - olddisks;
2882 		mddev->raid_disks = n;
2883 	} else
2884 		mddev->raid_disks = n;
2885 	return rv ? rv : len;
2886 }
2887 static struct md_sysfs_entry md_raid_disks =
2888 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
2889 
2890 static ssize_t
2891 chunk_size_show(mddev_t *mddev, char *page)
2892 {
2893 	if (mddev->reshape_position != MaxSector &&
2894 	    mddev->chunk_sectors != mddev->new_chunk_sectors)
2895 		return sprintf(page, "%d (%d)\n",
2896 			       mddev->new_chunk_sectors << 9,
2897 			       mddev->chunk_sectors << 9);
2898 	return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
2899 }
2900 
2901 static ssize_t
2902 chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
2903 {
2904 	char *e;
2905 	unsigned long n = simple_strtoul(buf, &e, 10);
2906 
2907 	if (!*buf || (*e && *e != '\n'))
2908 		return -EINVAL;
2909 
2910 	if (mddev->pers) {
2911 		int err;
2912 		if (mddev->pers->check_reshape == NULL)
2913 			return -EBUSY;
2914 		mddev->new_chunk_sectors = n >> 9;
2915 		err = mddev->pers->check_reshape(mddev);
2916 		if (err) {
2917 			mddev->new_chunk_sectors = mddev->chunk_sectors;
2918 			return err;
2919 		}
2920 	} else {
2921 		mddev->new_chunk_sectors = n >> 9;
2922 		if (mddev->reshape_position == MaxSector)
2923 			mddev->chunk_sectors = n >> 9;
2924 	}
2925 	return len;
2926 }
2927 static struct md_sysfs_entry md_chunk_size =
2928 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
2929 
2930 static ssize_t
2931 resync_start_show(mddev_t *mddev, char *page)
2932 {
2933 	if (mddev->recovery_cp == MaxSector)
2934 		return sprintf(page, "none\n");
2935 	return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
2936 }
2937 
2938 static ssize_t
2939 resync_start_store(mddev_t *mddev, const char *buf, size_t len)
2940 {
2941 	char *e;
2942 	unsigned long long n = simple_strtoull(buf, &e, 10);
2943 
2944 	if (mddev->pers)
2945 		return -EBUSY;
2946 	if (!*buf || (*e && *e != '\n'))
2947 		return -EINVAL;
2948 
2949 	mddev->recovery_cp = n;
2950 	return len;
2951 }
2952 static struct md_sysfs_entry md_resync_start =
2953 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
2954 
2955 /*
2956  * The array state can be:
2957  *
2958  * clear
2959  *     No devices, no size, no level
2960  *     Equivalent to STOP_ARRAY ioctl
2961  * inactive
2962  *     May have some settings, but array is not active
2963  *        all IO results in error
2964  *     When written, doesn't tear down array, but just stops it
2965  * suspended (not supported yet)
2966  *     All IO requests will block. The array can be reconfigured.
2967  *     Writing this, if accepted, will block until array is quiescent
2968  * readonly
2969  *     no resync can happen.  no superblocks get written.
2970  *     write requests fail
2971  * read-auto
2972  *     like readonly, but behaves like 'clean' on a write request.
2973  *
2974  * clean - no pending writes, but otherwise active.
2975  *     When written to inactive array, starts without resync
2976  *     If a write request arrives then
2977  *       if metadata is known, mark 'dirty' and switch to 'active'.
2978  *       if not known, block and switch to write-pending
2979  *     If written to an active array that has pending writes, then fails.
2980  * active
2981  *     fully active: IO and resync can be happening.
2982  *     When written to inactive array, starts with resync
2983  *
2984  * write-pending
2985  *     clean, but writes are blocked waiting for 'active' to be written.
2986  *
2987  * active-idle
2988  *     like active, but no writes have been seen for a while (100msec).
2989  *
2990  */
2991 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
2992 		   write_pending, active_idle, bad_word};
2993 static char *array_states[] = {
2994 	"clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
2995 	"write-pending", "active-idle", NULL };
2996 
2997 static int match_word(const char *word, char **list)
2998 {
2999 	int n;
3000 	for (n=0; list[n]; n++)
3001 		if (cmd_match(word, list[n]))
3002 			break;
3003 	return n;
3004 }
3005 
3006 static ssize_t
3007 array_state_show(mddev_t *mddev, char *page)
3008 {
3009 	enum array_state st = inactive;
3010 
3011 	if (mddev->pers)
3012 		switch(mddev->ro) {
3013 		case 1:
3014 			st = readonly;
3015 			break;
3016 		case 2:
3017 			st = read_auto;
3018 			break;
3019 		case 0:
3020 			if (mddev->in_sync)
3021 				st = clean;
3022 			else if (test_bit(MD_CHANGE_CLEAN, &mddev->flags))
3023 				st = write_pending;
3024 			else if (mddev->safemode)
3025 				st = active_idle;
3026 			else
3027 				st = active;
3028 		}
3029 	else {
3030 		if (list_empty(&mddev->disks) &&
3031 		    mddev->raid_disks == 0 &&
3032 		    mddev->dev_sectors == 0)
3033 			st = clear;
3034 		else
3035 			st = inactive;
3036 	}
3037 	return sprintf(page, "%s\n", array_states[st]);
3038 }
3039 
3040 static int do_md_stop(mddev_t * mddev, int ro, int is_open);
3041 static int do_md_run(mddev_t * mddev);
3042 static int restart_array(mddev_t *mddev);
3043 
3044 static ssize_t
3045 array_state_store(mddev_t *mddev, const char *buf, size_t len)
3046 {
3047 	int err = -EINVAL;
3048 	enum array_state st = match_word(buf, array_states);
3049 	switch(st) {
3050 	case bad_word:
3051 		break;
3052 	case clear:
3053 		/* stopping an active array */
3054 		if (atomic_read(&mddev->openers) > 0)
3055 			return -EBUSY;
3056 		err = do_md_stop(mddev, 0, 0);
3057 		break;
3058 	case inactive:
3059 		/* stopping an active array */
3060 		if (mddev->pers) {
3061 			if (atomic_read(&mddev->openers) > 0)
3062 				return -EBUSY;
3063 			err = do_md_stop(mddev, 2, 0);
3064 		} else
3065 			err = 0; /* already inactive */
3066 		break;
3067 	case suspended:
3068 		break; /* not supported yet */
3069 	case readonly:
3070 		if (mddev->pers)
3071 			err = do_md_stop(mddev, 1, 0);
3072 		else {
3073 			mddev->ro = 1;
3074 			set_disk_ro(mddev->gendisk, 1);
3075 			err = do_md_run(mddev);
3076 		}
3077 		break;
3078 	case read_auto:
3079 		if (mddev->pers) {
3080 			if (mddev->ro == 0)
3081 				err = do_md_stop(mddev, 1, 0);
3082 			else if (mddev->ro == 1)
3083 				err = restart_array(mddev);
3084 			if (err == 0) {
3085 				mddev->ro = 2;
3086 				set_disk_ro(mddev->gendisk, 0);
3087 			}
3088 		} else {
3089 			mddev->ro = 2;
3090 			err = do_md_run(mddev);
3091 		}
3092 		break;
3093 	case clean:
3094 		if (mddev->pers) {
3095 			restart_array(mddev);
3096 			spin_lock_irq(&mddev->write_lock);
3097 			if (atomic_read(&mddev->writes_pending) == 0) {
3098 				if (mddev->in_sync == 0) {
3099 					mddev->in_sync = 1;
3100 					if (mddev->safemode == 1)
3101 						mddev->safemode = 0;
3102 					if (mddev->persistent)
3103 						set_bit(MD_CHANGE_CLEAN,
3104 							&mddev->flags);
3105 				}
3106 				err = 0;
3107 			} else
3108 				err = -EBUSY;
3109 			spin_unlock_irq(&mddev->write_lock);
3110 		} else
3111 			err = -EINVAL;
3112 		break;
3113 	case active:
3114 		if (mddev->pers) {
3115 			restart_array(mddev);
3116 			if (mddev->external)
3117 				clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
3118 			wake_up(&mddev->sb_wait);
3119 			err = 0;
3120 		} else {
3121 			mddev->ro = 0;
3122 			set_disk_ro(mddev->gendisk, 0);
3123 			err = do_md_run(mddev);
3124 		}
3125 		break;
3126 	case write_pending:
3127 	case active_idle:
3128 		/* these cannot be set */
3129 		break;
3130 	}
3131 	if (err)
3132 		return err;
3133 	else {
3134 		sysfs_notify_dirent(mddev->sysfs_state);
3135 		return len;
3136 	}
3137 }
3138 static struct md_sysfs_entry md_array_state =
3139 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3140 
3141 static ssize_t
3142 null_show(mddev_t *mddev, char *page)
3143 {
3144 	return -EINVAL;
3145 }
3146 
3147 static ssize_t
3148 new_dev_store(mddev_t *mddev, const char *buf, size_t len)
3149 {
3150 	/* buf must be %d:%d\n? giving major and minor numbers */
3151 	/* The new device is added to the array.
3152 	 * If the array has a persistent superblock, we read the
3153 	 * superblock to initialise info and check validity.
3154 	 * Otherwise, only checking done is that in bind_rdev_to_array,
3155 	 * which mainly checks size.
3156 	 */
3157 	char *e;
3158 	int major = simple_strtoul(buf, &e, 10);
3159 	int minor;
3160 	dev_t dev;
3161 	mdk_rdev_t *rdev;
3162 	int err;
3163 
3164 	if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3165 		return -EINVAL;
3166 	minor = simple_strtoul(e+1, &e, 10);
3167 	if (*e && *e != '\n')
3168 		return -EINVAL;
3169 	dev = MKDEV(major, minor);
3170 	if (major != MAJOR(dev) ||
3171 	    minor != MINOR(dev))
3172 		return -EOVERFLOW;
3173 
3174 
3175 	if (mddev->persistent) {
3176 		rdev = md_import_device(dev, mddev->major_version,
3177 					mddev->minor_version);
3178 		if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3179 			mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
3180 						       mdk_rdev_t, same_set);
3181 			err = super_types[mddev->major_version]
3182 				.load_super(rdev, rdev0, mddev->minor_version);
3183 			if (err < 0)
3184 				goto out;
3185 		}
3186 	} else if (mddev->external)
3187 		rdev = md_import_device(dev, -2, -1);
3188 	else
3189 		rdev = md_import_device(dev, -1, -1);
3190 
3191 	if (IS_ERR(rdev))
3192 		return PTR_ERR(rdev);
3193 	err = bind_rdev_to_array(rdev, mddev);
3194  out:
3195 	if (err)
3196 		export_rdev(rdev);
3197 	return err ? err : len;
3198 }
3199 
3200 static struct md_sysfs_entry md_new_device =
3201 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3202 
3203 static ssize_t
3204 bitmap_store(mddev_t *mddev, const char *buf, size_t len)
3205 {
3206 	char *end;
3207 	unsigned long chunk, end_chunk;
3208 
3209 	if (!mddev->bitmap)
3210 		goto out;
3211 	/* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3212 	while (*buf) {
3213 		chunk = end_chunk = simple_strtoul(buf, &end, 0);
3214 		if (buf == end) break;
3215 		if (*end == '-') { /* range */
3216 			buf = end + 1;
3217 			end_chunk = simple_strtoul(buf, &end, 0);
3218 			if (buf == end) break;
3219 		}
3220 		if (*end && !isspace(*end)) break;
3221 		bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3222 		buf = end;
3223 		while (isspace(*buf)) buf++;
3224 	}
3225 	bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3226 out:
3227 	return len;
3228 }
3229 
3230 static struct md_sysfs_entry md_bitmap =
3231 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3232 
3233 static ssize_t
3234 size_show(mddev_t *mddev, char *page)
3235 {
3236 	return sprintf(page, "%llu\n",
3237 		(unsigned long long)mddev->dev_sectors / 2);
3238 }
3239 
3240 static int update_size(mddev_t *mddev, sector_t num_sectors);
3241 
3242 static ssize_t
3243 size_store(mddev_t *mddev, const char *buf, size_t len)
3244 {
3245 	/* If array is inactive, we can reduce the component size, but
3246 	 * not increase it (except from 0).
3247 	 * If array is active, we can try an on-line resize
3248 	 */
3249 	sector_t sectors;
3250 	int err = strict_blocks_to_sectors(buf, &sectors);
3251 
3252 	if (err < 0)
3253 		return err;
3254 	if (mddev->pers) {
3255 		err = update_size(mddev, sectors);
3256 		md_update_sb(mddev, 1);
3257 	} else {
3258 		if (mddev->dev_sectors == 0 ||
3259 		    mddev->dev_sectors > sectors)
3260 			mddev->dev_sectors = sectors;
3261 		else
3262 			err = -ENOSPC;
3263 	}
3264 	return err ? err : len;
3265 }
3266 
3267 static struct md_sysfs_entry md_size =
3268 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
3269 
3270 
3271 /* Metdata version.
3272  * This is one of
3273  *   'none' for arrays with no metadata (good luck...)
3274  *   'external' for arrays with externally managed metadata,
3275  * or N.M for internally known formats
3276  */
3277 static ssize_t
3278 metadata_show(mddev_t *mddev, char *page)
3279 {
3280 	if (mddev->persistent)
3281 		return sprintf(page, "%d.%d\n",
3282 			       mddev->major_version, mddev->minor_version);
3283 	else if (mddev->external)
3284 		return sprintf(page, "external:%s\n", mddev->metadata_type);
3285 	else
3286 		return sprintf(page, "none\n");
3287 }
3288 
3289 static ssize_t
3290 metadata_store(mddev_t *mddev, const char *buf, size_t len)
3291 {
3292 	int major, minor;
3293 	char *e;
3294 	/* Changing the details of 'external' metadata is
3295 	 * always permitted.  Otherwise there must be
3296 	 * no devices attached to the array.
3297 	 */
3298 	if (mddev->external && strncmp(buf, "external:", 9) == 0)
3299 		;
3300 	else if (!list_empty(&mddev->disks))
3301 		return -EBUSY;
3302 
3303 	if (cmd_match(buf, "none")) {
3304 		mddev->persistent = 0;
3305 		mddev->external = 0;
3306 		mddev->major_version = 0;
3307 		mddev->minor_version = 90;
3308 		return len;
3309 	}
3310 	if (strncmp(buf, "external:", 9) == 0) {
3311 		size_t namelen = len-9;
3312 		if (namelen >= sizeof(mddev->metadata_type))
3313 			namelen = sizeof(mddev->metadata_type)-1;
3314 		strncpy(mddev->metadata_type, buf+9, namelen);
3315 		mddev->metadata_type[namelen] = 0;
3316 		if (namelen && mddev->metadata_type[namelen-1] == '\n')
3317 			mddev->metadata_type[--namelen] = 0;
3318 		mddev->persistent = 0;
3319 		mddev->external = 1;
3320 		mddev->major_version = 0;
3321 		mddev->minor_version = 90;
3322 		return len;
3323 	}
3324 	major = simple_strtoul(buf, &e, 10);
3325 	if (e==buf || *e != '.')
3326 		return -EINVAL;
3327 	buf = e+1;
3328 	minor = simple_strtoul(buf, &e, 10);
3329 	if (e==buf || (*e && *e != '\n') )
3330 		return -EINVAL;
3331 	if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
3332 		return -ENOENT;
3333 	mddev->major_version = major;
3334 	mddev->minor_version = minor;
3335 	mddev->persistent = 1;
3336 	mddev->external = 0;
3337 	return len;
3338 }
3339 
3340 static struct md_sysfs_entry md_metadata =
3341 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
3342 
3343 static ssize_t
3344 action_show(mddev_t *mddev, char *page)
3345 {
3346 	char *type = "idle";
3347 	if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3348 		type = "frozen";
3349 	else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3350 	    (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
3351 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3352 			type = "reshape";
3353 		else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3354 			if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
3355 				type = "resync";
3356 			else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
3357 				type = "check";
3358 			else
3359 				type = "repair";
3360 		} else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
3361 			type = "recover";
3362 	}
3363 	return sprintf(page, "%s\n", type);
3364 }
3365 
3366 static ssize_t
3367 action_store(mddev_t *mddev, const char *page, size_t len)
3368 {
3369 	if (!mddev->pers || !mddev->pers->sync_request)
3370 		return -EINVAL;
3371 
3372 	if (cmd_match(page, "frozen"))
3373 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3374 	else
3375 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3376 
3377 	if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
3378 		if (mddev->sync_thread) {
3379 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3380 			md_unregister_thread(mddev->sync_thread);
3381 			mddev->sync_thread = NULL;
3382 			mddev->recovery = 0;
3383 		}
3384 	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3385 		   test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
3386 		return -EBUSY;
3387 	else if (cmd_match(page, "resync"))
3388 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3389 	else if (cmd_match(page, "recover")) {
3390 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3391 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3392 	} else if (cmd_match(page, "reshape")) {
3393 		int err;
3394 		if (mddev->pers->start_reshape == NULL)
3395 			return -EINVAL;
3396 		err = mddev->pers->start_reshape(mddev);
3397 		if (err)
3398 			return err;
3399 		sysfs_notify(&mddev->kobj, NULL, "degraded");
3400 	} else {
3401 		if (cmd_match(page, "check"))
3402 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3403 		else if (!cmd_match(page, "repair"))
3404 			return -EINVAL;
3405 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3406 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3407 	}
3408 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3409 	md_wakeup_thread(mddev->thread);
3410 	sysfs_notify_dirent(mddev->sysfs_action);
3411 	return len;
3412 }
3413 
3414 static ssize_t
3415 mismatch_cnt_show(mddev_t *mddev, char *page)
3416 {
3417 	return sprintf(page, "%llu\n",
3418 		       (unsigned long long) mddev->resync_mismatches);
3419 }
3420 
3421 static struct md_sysfs_entry md_scan_mode =
3422 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
3423 
3424 
3425 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
3426 
3427 static ssize_t
3428 sync_min_show(mddev_t *mddev, char *page)
3429 {
3430 	return sprintf(page, "%d (%s)\n", speed_min(mddev),
3431 		       mddev->sync_speed_min ? "local": "system");
3432 }
3433 
3434 static ssize_t
3435 sync_min_store(mddev_t *mddev, const char *buf, size_t len)
3436 {
3437 	int min;
3438 	char *e;
3439 	if (strncmp(buf, "system", 6)==0) {
3440 		mddev->sync_speed_min = 0;
3441 		return len;
3442 	}
3443 	min = simple_strtoul(buf, &e, 10);
3444 	if (buf == e || (*e && *e != '\n') || min <= 0)
3445 		return -EINVAL;
3446 	mddev->sync_speed_min = min;
3447 	return len;
3448 }
3449 
3450 static struct md_sysfs_entry md_sync_min =
3451 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
3452 
3453 static ssize_t
3454 sync_max_show(mddev_t *mddev, char *page)
3455 {
3456 	return sprintf(page, "%d (%s)\n", speed_max(mddev),
3457 		       mddev->sync_speed_max ? "local": "system");
3458 }
3459 
3460 static ssize_t
3461 sync_max_store(mddev_t *mddev, const char *buf, size_t len)
3462 {
3463 	int max;
3464 	char *e;
3465 	if (strncmp(buf, "system", 6)==0) {
3466 		mddev->sync_speed_max = 0;
3467 		return len;
3468 	}
3469 	max = simple_strtoul(buf, &e, 10);
3470 	if (buf == e || (*e && *e != '\n') || max <= 0)
3471 		return -EINVAL;
3472 	mddev->sync_speed_max = max;
3473 	return len;
3474 }
3475 
3476 static struct md_sysfs_entry md_sync_max =
3477 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
3478 
3479 static ssize_t
3480 degraded_show(mddev_t *mddev, char *page)
3481 {
3482 	return sprintf(page, "%d\n", mddev->degraded);
3483 }
3484 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
3485 
3486 static ssize_t
3487 sync_force_parallel_show(mddev_t *mddev, char *page)
3488 {
3489 	return sprintf(page, "%d\n", mddev->parallel_resync);
3490 }
3491 
3492 static ssize_t
3493 sync_force_parallel_store(mddev_t *mddev, const char *buf, size_t len)
3494 {
3495 	long n;
3496 
3497 	if (strict_strtol(buf, 10, &n))
3498 		return -EINVAL;
3499 
3500 	if (n != 0 && n != 1)
3501 		return -EINVAL;
3502 
3503 	mddev->parallel_resync = n;
3504 
3505 	if (mddev->sync_thread)
3506 		wake_up(&resync_wait);
3507 
3508 	return len;
3509 }
3510 
3511 /* force parallel resync, even with shared block devices */
3512 static struct md_sysfs_entry md_sync_force_parallel =
3513 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
3514        sync_force_parallel_show, sync_force_parallel_store);
3515 
3516 static ssize_t
3517 sync_speed_show(mddev_t *mddev, char *page)
3518 {
3519 	unsigned long resync, dt, db;
3520 	if (mddev->curr_resync == 0)
3521 		return sprintf(page, "none\n");
3522 	resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
3523 	dt = (jiffies - mddev->resync_mark) / HZ;
3524 	if (!dt) dt++;
3525 	db = resync - mddev->resync_mark_cnt;
3526 	return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
3527 }
3528 
3529 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
3530 
3531 static ssize_t
3532 sync_completed_show(mddev_t *mddev, char *page)
3533 {
3534 	unsigned long max_sectors, resync;
3535 
3536 	if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3537 		return sprintf(page, "none\n");
3538 
3539 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3540 		max_sectors = mddev->resync_max_sectors;
3541 	else
3542 		max_sectors = mddev->dev_sectors;
3543 
3544 	resync = mddev->curr_resync_completed;
3545 	return sprintf(page, "%lu / %lu\n", resync, max_sectors);
3546 }
3547 
3548 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
3549 
3550 static ssize_t
3551 min_sync_show(mddev_t *mddev, char *page)
3552 {
3553 	return sprintf(page, "%llu\n",
3554 		       (unsigned long long)mddev->resync_min);
3555 }
3556 static ssize_t
3557 min_sync_store(mddev_t *mddev, const char *buf, size_t len)
3558 {
3559 	unsigned long long min;
3560 	if (strict_strtoull(buf, 10, &min))
3561 		return -EINVAL;
3562 	if (min > mddev->resync_max)
3563 		return -EINVAL;
3564 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3565 		return -EBUSY;
3566 
3567 	/* Must be a multiple of chunk_size */
3568 	if (mddev->chunk_sectors) {
3569 		sector_t temp = min;
3570 		if (sector_div(temp, mddev->chunk_sectors))
3571 			return -EINVAL;
3572 	}
3573 	mddev->resync_min = min;
3574 
3575 	return len;
3576 }
3577 
3578 static struct md_sysfs_entry md_min_sync =
3579 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
3580 
3581 static ssize_t
3582 max_sync_show(mddev_t *mddev, char *page)
3583 {
3584 	if (mddev->resync_max == MaxSector)
3585 		return sprintf(page, "max\n");
3586 	else
3587 		return sprintf(page, "%llu\n",
3588 			       (unsigned long long)mddev->resync_max);
3589 }
3590 static ssize_t
3591 max_sync_store(mddev_t *mddev, const char *buf, size_t len)
3592 {
3593 	if (strncmp(buf, "max", 3) == 0)
3594 		mddev->resync_max = MaxSector;
3595 	else {
3596 		unsigned long long max;
3597 		if (strict_strtoull(buf, 10, &max))
3598 			return -EINVAL;
3599 		if (max < mddev->resync_min)
3600 			return -EINVAL;
3601 		if (max < mddev->resync_max &&
3602 		    mddev->ro == 0 &&
3603 		    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3604 			return -EBUSY;
3605 
3606 		/* Must be a multiple of chunk_size */
3607 		if (mddev->chunk_sectors) {
3608 			sector_t temp = max;
3609 			if (sector_div(temp, mddev->chunk_sectors))
3610 				return -EINVAL;
3611 		}
3612 		mddev->resync_max = max;
3613 	}
3614 	wake_up(&mddev->recovery_wait);
3615 	return len;
3616 }
3617 
3618 static struct md_sysfs_entry md_max_sync =
3619 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
3620 
3621 static ssize_t
3622 suspend_lo_show(mddev_t *mddev, char *page)
3623 {
3624 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
3625 }
3626 
3627 static ssize_t
3628 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
3629 {
3630 	char *e;
3631 	unsigned long long new = simple_strtoull(buf, &e, 10);
3632 
3633 	if (mddev->pers == NULL ||
3634 	    mddev->pers->quiesce == NULL)
3635 		return -EINVAL;
3636 	if (buf == e || (*e && *e != '\n'))
3637 		return -EINVAL;
3638 	if (new >= mddev->suspend_hi ||
3639 	    (new > mddev->suspend_lo && new < mddev->suspend_hi)) {
3640 		mddev->suspend_lo = new;
3641 		mddev->pers->quiesce(mddev, 2);
3642 		return len;
3643 	} else
3644 		return -EINVAL;
3645 }
3646 static struct md_sysfs_entry md_suspend_lo =
3647 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
3648 
3649 
3650 static ssize_t
3651 suspend_hi_show(mddev_t *mddev, char *page)
3652 {
3653 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
3654 }
3655 
3656 static ssize_t
3657 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
3658 {
3659 	char *e;
3660 	unsigned long long new = simple_strtoull(buf, &e, 10);
3661 
3662 	if (mddev->pers == NULL ||
3663 	    mddev->pers->quiesce == NULL)
3664 		return -EINVAL;
3665 	if (buf == e || (*e && *e != '\n'))
3666 		return -EINVAL;
3667 	if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) ||
3668 	    (new > mddev->suspend_lo && new > mddev->suspend_hi)) {
3669 		mddev->suspend_hi = new;
3670 		mddev->pers->quiesce(mddev, 1);
3671 		mddev->pers->quiesce(mddev, 0);
3672 		return len;
3673 	} else
3674 		return -EINVAL;
3675 }
3676 static struct md_sysfs_entry md_suspend_hi =
3677 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
3678 
3679 static ssize_t
3680 reshape_position_show(mddev_t *mddev, char *page)
3681 {
3682 	if (mddev->reshape_position != MaxSector)
3683 		return sprintf(page, "%llu\n",
3684 			       (unsigned long long)mddev->reshape_position);
3685 	strcpy(page, "none\n");
3686 	return 5;
3687 }
3688 
3689 static ssize_t
3690 reshape_position_store(mddev_t *mddev, const char *buf, size_t len)
3691 {
3692 	char *e;
3693 	unsigned long long new = simple_strtoull(buf, &e, 10);
3694 	if (mddev->pers)
3695 		return -EBUSY;
3696 	if (buf == e || (*e && *e != '\n'))
3697 		return -EINVAL;
3698 	mddev->reshape_position = new;
3699 	mddev->delta_disks = 0;
3700 	mddev->new_level = mddev->level;
3701 	mddev->new_layout = mddev->layout;
3702 	mddev->new_chunk_sectors = mddev->chunk_sectors;
3703 	return len;
3704 }
3705 
3706 static struct md_sysfs_entry md_reshape_position =
3707 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
3708        reshape_position_store);
3709 
3710 static ssize_t
3711 array_size_show(mddev_t *mddev, char *page)
3712 {
3713 	if (mddev->external_size)
3714 		return sprintf(page, "%llu\n",
3715 			       (unsigned long long)mddev->array_sectors/2);
3716 	else
3717 		return sprintf(page, "default\n");
3718 }
3719 
3720 static ssize_t
3721 array_size_store(mddev_t *mddev, const char *buf, size_t len)
3722 {
3723 	sector_t sectors;
3724 
3725 	if (strncmp(buf, "default", 7) == 0) {
3726 		if (mddev->pers)
3727 			sectors = mddev->pers->size(mddev, 0, 0);
3728 		else
3729 			sectors = mddev->array_sectors;
3730 
3731 		mddev->external_size = 0;
3732 	} else {
3733 		if (strict_blocks_to_sectors(buf, &sectors) < 0)
3734 			return -EINVAL;
3735 		if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
3736 			return -E2BIG;
3737 
3738 		mddev->external_size = 1;
3739 	}
3740 
3741 	mddev->array_sectors = sectors;
3742 	set_capacity(mddev->gendisk, mddev->array_sectors);
3743 	if (mddev->pers)
3744 		revalidate_disk(mddev->gendisk);
3745 
3746 	return len;
3747 }
3748 
3749 static struct md_sysfs_entry md_array_size =
3750 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
3751        array_size_store);
3752 
3753 static struct attribute *md_default_attrs[] = {
3754 	&md_level.attr,
3755 	&md_layout.attr,
3756 	&md_raid_disks.attr,
3757 	&md_chunk_size.attr,
3758 	&md_size.attr,
3759 	&md_resync_start.attr,
3760 	&md_metadata.attr,
3761 	&md_new_device.attr,
3762 	&md_safe_delay.attr,
3763 	&md_array_state.attr,
3764 	&md_reshape_position.attr,
3765 	&md_array_size.attr,
3766 	NULL,
3767 };
3768 
3769 static struct attribute *md_redundancy_attrs[] = {
3770 	&md_scan_mode.attr,
3771 	&md_mismatches.attr,
3772 	&md_sync_min.attr,
3773 	&md_sync_max.attr,
3774 	&md_sync_speed.attr,
3775 	&md_sync_force_parallel.attr,
3776 	&md_sync_completed.attr,
3777 	&md_min_sync.attr,
3778 	&md_max_sync.attr,
3779 	&md_suspend_lo.attr,
3780 	&md_suspend_hi.attr,
3781 	&md_bitmap.attr,
3782 	&md_degraded.attr,
3783 	NULL,
3784 };
3785 static struct attribute_group md_redundancy_group = {
3786 	.name = NULL,
3787 	.attrs = md_redundancy_attrs,
3788 };
3789 
3790 
3791 static ssize_t
3792 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3793 {
3794 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
3795 	mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
3796 	ssize_t rv;
3797 
3798 	if (!entry->show)
3799 		return -EIO;
3800 	rv = mddev_lock(mddev);
3801 	if (!rv) {
3802 		rv = entry->show(mddev, page);
3803 		mddev_unlock(mddev);
3804 	}
3805 	return rv;
3806 }
3807 
3808 static ssize_t
3809 md_attr_store(struct kobject *kobj, struct attribute *attr,
3810 	      const char *page, size_t length)
3811 {
3812 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
3813 	mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
3814 	ssize_t rv;
3815 
3816 	if (!entry->store)
3817 		return -EIO;
3818 	if (!capable(CAP_SYS_ADMIN))
3819 		return -EACCES;
3820 	rv = mddev_lock(mddev);
3821 	if (mddev->hold_active == UNTIL_IOCTL)
3822 		mddev->hold_active = 0;
3823 	if (!rv) {
3824 		rv = entry->store(mddev, page, length);
3825 		mddev_unlock(mddev);
3826 	}
3827 	return rv;
3828 }
3829 
3830 static void md_free(struct kobject *ko)
3831 {
3832 	mddev_t *mddev = container_of(ko, mddev_t, kobj);
3833 
3834 	if (mddev->sysfs_state)
3835 		sysfs_put(mddev->sysfs_state);
3836 
3837 	if (mddev->gendisk) {
3838 		del_gendisk(mddev->gendisk);
3839 		put_disk(mddev->gendisk);
3840 	}
3841 	if (mddev->queue)
3842 		blk_cleanup_queue(mddev->queue);
3843 
3844 	kfree(mddev);
3845 }
3846 
3847 static struct sysfs_ops md_sysfs_ops = {
3848 	.show	= md_attr_show,
3849 	.store	= md_attr_store,
3850 };
3851 static struct kobj_type md_ktype = {
3852 	.release	= md_free,
3853 	.sysfs_ops	= &md_sysfs_ops,
3854 	.default_attrs	= md_default_attrs,
3855 };
3856 
3857 int mdp_major = 0;
3858 
3859 static void mddev_delayed_delete(struct work_struct *ws)
3860 {
3861 	mddev_t *mddev = container_of(ws, mddev_t, del_work);
3862 
3863 	if (mddev->private == &md_redundancy_group) {
3864 		sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
3865 		if (mddev->sysfs_action)
3866 			sysfs_put(mddev->sysfs_action);
3867 		mddev->sysfs_action = NULL;
3868 		mddev->private = NULL;
3869 	}
3870 	kobject_del(&mddev->kobj);
3871 	kobject_put(&mddev->kobj);
3872 }
3873 
3874 static int md_alloc(dev_t dev, char *name)
3875 {
3876 	static DEFINE_MUTEX(disks_mutex);
3877 	mddev_t *mddev = mddev_find(dev);
3878 	struct gendisk *disk;
3879 	int partitioned;
3880 	int shift;
3881 	int unit;
3882 	int error;
3883 
3884 	if (!mddev)
3885 		return -ENODEV;
3886 
3887 	partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
3888 	shift = partitioned ? MdpMinorShift : 0;
3889 	unit = MINOR(mddev->unit) >> shift;
3890 
3891 	/* wait for any previous instance if this device
3892 	 * to be completed removed (mddev_delayed_delete).
3893 	 */
3894 	flush_scheduled_work();
3895 
3896 	mutex_lock(&disks_mutex);
3897 	error = -EEXIST;
3898 	if (mddev->gendisk)
3899 		goto abort;
3900 
3901 	if (name) {
3902 		/* Need to ensure that 'name' is not a duplicate.
3903 		 */
3904 		mddev_t *mddev2;
3905 		spin_lock(&all_mddevs_lock);
3906 
3907 		list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
3908 			if (mddev2->gendisk &&
3909 			    strcmp(mddev2->gendisk->disk_name, name) == 0) {
3910 				spin_unlock(&all_mddevs_lock);
3911 				goto abort;
3912 			}
3913 		spin_unlock(&all_mddevs_lock);
3914 	}
3915 
3916 	error = -ENOMEM;
3917 	mddev->queue = blk_alloc_queue(GFP_KERNEL);
3918 	if (!mddev->queue)
3919 		goto abort;
3920 	mddev->queue->queuedata = mddev;
3921 
3922 	/* Can be unlocked because the queue is new: no concurrency */
3923 	queue_flag_set_unlocked(QUEUE_FLAG_CLUSTER, mddev->queue);
3924 
3925 	blk_queue_make_request(mddev->queue, md_make_request);
3926 
3927 	disk = alloc_disk(1 << shift);
3928 	if (!disk) {
3929 		blk_cleanup_queue(mddev->queue);
3930 		mddev->queue = NULL;
3931 		goto abort;
3932 	}
3933 	disk->major = MAJOR(mddev->unit);
3934 	disk->first_minor = unit << shift;
3935 	if (name)
3936 		strcpy(disk->disk_name, name);
3937 	else if (partitioned)
3938 		sprintf(disk->disk_name, "md_d%d", unit);
3939 	else
3940 		sprintf(disk->disk_name, "md%d", unit);
3941 	disk->fops = &md_fops;
3942 	disk->private_data = mddev;
3943 	disk->queue = mddev->queue;
3944 	/* Allow extended partitions.  This makes the
3945 	 * 'mdp' device redundant, but we can't really
3946 	 * remove it now.
3947 	 */
3948 	disk->flags |= GENHD_FL_EXT_DEVT;
3949 	add_disk(disk);
3950 	mddev->gendisk = disk;
3951 	error = kobject_init_and_add(&mddev->kobj, &md_ktype,
3952 				     &disk_to_dev(disk)->kobj, "%s", "md");
3953 	if (error) {
3954 		/* This isn't possible, but as kobject_init_and_add is marked
3955 		 * __must_check, we must do something with the result
3956 		 */
3957 		printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
3958 		       disk->disk_name);
3959 		error = 0;
3960 	}
3961  abort:
3962 	mutex_unlock(&disks_mutex);
3963 	if (!error) {
3964 		kobject_uevent(&mddev->kobj, KOBJ_ADD);
3965 		mddev->sysfs_state = sysfs_get_dirent(mddev->kobj.sd, "array_state");
3966 	}
3967 	mddev_put(mddev);
3968 	return error;
3969 }
3970 
3971 static struct kobject *md_probe(dev_t dev, int *part, void *data)
3972 {
3973 	md_alloc(dev, NULL);
3974 	return NULL;
3975 }
3976 
3977 static int add_named_array(const char *val, struct kernel_param *kp)
3978 {
3979 	/* val must be "md_*" where * is not all digits.
3980 	 * We allocate an array with a large free minor number, and
3981 	 * set the name to val.  val must not already be an active name.
3982 	 */
3983 	int len = strlen(val);
3984 	char buf[DISK_NAME_LEN];
3985 
3986 	while (len && val[len-1] == '\n')
3987 		len--;
3988 	if (len >= DISK_NAME_LEN)
3989 		return -E2BIG;
3990 	strlcpy(buf, val, len+1);
3991 	if (strncmp(buf, "md_", 3) != 0)
3992 		return -EINVAL;
3993 	return md_alloc(0, buf);
3994 }
3995 
3996 static void md_safemode_timeout(unsigned long data)
3997 {
3998 	mddev_t *mddev = (mddev_t *) data;
3999 
4000 	if (!atomic_read(&mddev->writes_pending)) {
4001 		mddev->safemode = 1;
4002 		if (mddev->external)
4003 			sysfs_notify_dirent(mddev->sysfs_state);
4004 	}
4005 	md_wakeup_thread(mddev->thread);
4006 }
4007 
4008 static int start_dirty_degraded;
4009 
4010 static int do_md_run(mddev_t * mddev)
4011 {
4012 	int err;
4013 	mdk_rdev_t *rdev;
4014 	struct gendisk *disk;
4015 	struct mdk_personality *pers;
4016 
4017 	if (list_empty(&mddev->disks))
4018 		/* cannot run an array with no devices.. */
4019 		return -EINVAL;
4020 
4021 	if (mddev->pers)
4022 		return -EBUSY;
4023 
4024 	/*
4025 	 * Analyze all RAID superblock(s)
4026 	 */
4027 	if (!mddev->raid_disks) {
4028 		if (!mddev->persistent)
4029 			return -EINVAL;
4030 		analyze_sbs(mddev);
4031 	}
4032 
4033 	if (mddev->level != LEVEL_NONE)
4034 		request_module("md-level-%d", mddev->level);
4035 	else if (mddev->clevel[0])
4036 		request_module("md-%s", mddev->clevel);
4037 
4038 	/*
4039 	 * Drop all container device buffers, from now on
4040 	 * the only valid external interface is through the md
4041 	 * device.
4042 	 */
4043 	list_for_each_entry(rdev, &mddev->disks, same_set) {
4044 		if (test_bit(Faulty, &rdev->flags))
4045 			continue;
4046 		sync_blockdev(rdev->bdev);
4047 		invalidate_bdev(rdev->bdev);
4048 
4049 		/* perform some consistency tests on the device.
4050 		 * We don't want the data to overlap the metadata,
4051 		 * Internal Bitmap issues have been handled elsewhere.
4052 		 */
4053 		if (rdev->data_offset < rdev->sb_start) {
4054 			if (mddev->dev_sectors &&
4055 			    rdev->data_offset + mddev->dev_sectors
4056 			    > rdev->sb_start) {
4057 				printk("md: %s: data overlaps metadata\n",
4058 				       mdname(mddev));
4059 				return -EINVAL;
4060 			}
4061 		} else {
4062 			if (rdev->sb_start + rdev->sb_size/512
4063 			    > rdev->data_offset) {
4064 				printk("md: %s: metadata overlaps data\n",
4065 				       mdname(mddev));
4066 				return -EINVAL;
4067 			}
4068 		}
4069 		sysfs_notify_dirent(rdev->sysfs_state);
4070 	}
4071 
4072 	md_probe(mddev->unit, NULL, NULL);
4073 	disk = mddev->gendisk;
4074 	if (!disk)
4075 		return -ENOMEM;
4076 
4077 	spin_lock(&pers_lock);
4078 	pers = find_pers(mddev->level, mddev->clevel);
4079 	if (!pers || !try_module_get(pers->owner)) {
4080 		spin_unlock(&pers_lock);
4081 		if (mddev->level != LEVEL_NONE)
4082 			printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
4083 			       mddev->level);
4084 		else
4085 			printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
4086 			       mddev->clevel);
4087 		return -EINVAL;
4088 	}
4089 	mddev->pers = pers;
4090 	spin_unlock(&pers_lock);
4091 	if (mddev->level != pers->level) {
4092 		mddev->level = pers->level;
4093 		mddev->new_level = pers->level;
4094 	}
4095 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4096 
4097 	if (mddev->reshape_position != MaxSector &&
4098 	    pers->start_reshape == NULL) {
4099 		/* This personality cannot handle reshaping... */
4100 		mddev->pers = NULL;
4101 		module_put(pers->owner);
4102 		return -EINVAL;
4103 	}
4104 
4105 	if (pers->sync_request) {
4106 		/* Warn if this is a potentially silly
4107 		 * configuration.
4108 		 */
4109 		char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4110 		mdk_rdev_t *rdev2;
4111 		int warned = 0;
4112 
4113 		list_for_each_entry(rdev, &mddev->disks, same_set)
4114 			list_for_each_entry(rdev2, &mddev->disks, same_set) {
4115 				if (rdev < rdev2 &&
4116 				    rdev->bdev->bd_contains ==
4117 				    rdev2->bdev->bd_contains) {
4118 					printk(KERN_WARNING
4119 					       "%s: WARNING: %s appears to be"
4120 					       " on the same physical disk as"
4121 					       " %s.\n",
4122 					       mdname(mddev),
4123 					       bdevname(rdev->bdev,b),
4124 					       bdevname(rdev2->bdev,b2));
4125 					warned = 1;
4126 				}
4127 			}
4128 
4129 		if (warned)
4130 			printk(KERN_WARNING
4131 			       "True protection against single-disk"
4132 			       " failure might be compromised.\n");
4133 	}
4134 
4135 	mddev->recovery = 0;
4136 	/* may be over-ridden by personality */
4137 	mddev->resync_max_sectors = mddev->dev_sectors;
4138 
4139 	mddev->barriers_work = 1;
4140 	mddev->ok_start_degraded = start_dirty_degraded;
4141 
4142 	if (start_readonly)
4143 		mddev->ro = 2; /* read-only, but switch on first write */
4144 
4145 	err = mddev->pers->run(mddev);
4146 	if (err)
4147 		printk(KERN_ERR "md: pers->run() failed ...\n");
4148 	else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
4149 		WARN_ONCE(!mddev->external_size, "%s: default size too small,"
4150 			  " but 'external_size' not in effect?\n", __func__);
4151 		printk(KERN_ERR
4152 		       "md: invalid array_size %llu > default size %llu\n",
4153 		       (unsigned long long)mddev->array_sectors / 2,
4154 		       (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
4155 		err = -EINVAL;
4156 		mddev->pers->stop(mddev);
4157 	}
4158 	if (err == 0 && mddev->pers->sync_request) {
4159 		err = bitmap_create(mddev);
4160 		if (err) {
4161 			printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
4162 			       mdname(mddev), err);
4163 			mddev->pers->stop(mddev);
4164 		}
4165 	}
4166 	if (err) {
4167 		module_put(mddev->pers->owner);
4168 		mddev->pers = NULL;
4169 		bitmap_destroy(mddev);
4170 		return err;
4171 	}
4172 	if (mddev->pers->sync_request) {
4173 		if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4174 			printk(KERN_WARNING
4175 			       "md: cannot register extra attributes for %s\n",
4176 			       mdname(mddev));
4177 		mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
4178 	} else if (mddev->ro == 2) /* auto-readonly not meaningful */
4179 		mddev->ro = 0;
4180 
4181  	atomic_set(&mddev->writes_pending,0);
4182 	mddev->safemode = 0;
4183 	mddev->safemode_timer.function = md_safemode_timeout;
4184 	mddev->safemode_timer.data = (unsigned long) mddev;
4185 	mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
4186 	mddev->in_sync = 1;
4187 
4188 	list_for_each_entry(rdev, &mddev->disks, same_set)
4189 		if (rdev->raid_disk >= 0) {
4190 			char nm[20];
4191 			sprintf(nm, "rd%d", rdev->raid_disk);
4192 			if (sysfs_create_link(&mddev->kobj, &rdev->kobj, nm))
4193 				printk("md: cannot register %s for %s\n",
4194 				       nm, mdname(mddev));
4195 		}
4196 
4197 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4198 
4199 	if (mddev->flags)
4200 		md_update_sb(mddev, 0);
4201 
4202 	set_capacity(disk, mddev->array_sectors);
4203 
4204 	/* If there is a partially-recovered drive we need to
4205 	 * start recovery here.  If we leave it to md_check_recovery,
4206 	 * it will remove the drives and not do the right thing
4207 	 */
4208 	if (mddev->degraded && !mddev->sync_thread) {
4209 		int spares = 0;
4210 		list_for_each_entry(rdev, &mddev->disks, same_set)
4211 			if (rdev->raid_disk >= 0 &&
4212 			    !test_bit(In_sync, &rdev->flags) &&
4213 			    !test_bit(Faulty, &rdev->flags))
4214 				/* complete an interrupted recovery */
4215 				spares++;
4216 		if (spares && mddev->pers->sync_request) {
4217 			mddev->recovery = 0;
4218 			set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4219 			mddev->sync_thread = md_register_thread(md_do_sync,
4220 								mddev,
4221 								"%s_resync");
4222 			if (!mddev->sync_thread) {
4223 				printk(KERN_ERR "%s: could not start resync"
4224 				       " thread...\n",
4225 				       mdname(mddev));
4226 				/* leave the spares where they are, it shouldn't hurt */
4227 				mddev->recovery = 0;
4228 			}
4229 		}
4230 	}
4231 	md_wakeup_thread(mddev->thread);
4232 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
4233 
4234 	revalidate_disk(mddev->gendisk);
4235 	mddev->changed = 1;
4236 	md_new_event(mddev);
4237 	sysfs_notify_dirent(mddev->sysfs_state);
4238 	if (mddev->sysfs_action)
4239 		sysfs_notify_dirent(mddev->sysfs_action);
4240 	sysfs_notify(&mddev->kobj, NULL, "degraded");
4241 	kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4242 	return 0;
4243 }
4244 
4245 static int restart_array(mddev_t *mddev)
4246 {
4247 	struct gendisk *disk = mddev->gendisk;
4248 
4249 	/* Complain if it has no devices */
4250 	if (list_empty(&mddev->disks))
4251 		return -ENXIO;
4252 	if (!mddev->pers)
4253 		return -EINVAL;
4254 	if (!mddev->ro)
4255 		return -EBUSY;
4256 	mddev->safemode = 0;
4257 	mddev->ro = 0;
4258 	set_disk_ro(disk, 0);
4259 	printk(KERN_INFO "md: %s switched to read-write mode.\n",
4260 		mdname(mddev));
4261 	/* Kick recovery or resync if necessary */
4262 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4263 	md_wakeup_thread(mddev->thread);
4264 	md_wakeup_thread(mddev->sync_thread);
4265 	sysfs_notify_dirent(mddev->sysfs_state);
4266 	return 0;
4267 }
4268 
4269 /* similar to deny_write_access, but accounts for our holding a reference
4270  * to the file ourselves */
4271 static int deny_bitmap_write_access(struct file * file)
4272 {
4273 	struct inode *inode = file->f_mapping->host;
4274 
4275 	spin_lock(&inode->i_lock);
4276 	if (atomic_read(&inode->i_writecount) > 1) {
4277 		spin_unlock(&inode->i_lock);
4278 		return -ETXTBSY;
4279 	}
4280 	atomic_set(&inode->i_writecount, -1);
4281 	spin_unlock(&inode->i_lock);
4282 
4283 	return 0;
4284 }
4285 
4286 static void restore_bitmap_write_access(struct file *file)
4287 {
4288 	struct inode *inode = file->f_mapping->host;
4289 
4290 	spin_lock(&inode->i_lock);
4291 	atomic_set(&inode->i_writecount, 1);
4292 	spin_unlock(&inode->i_lock);
4293 }
4294 
4295 /* mode:
4296  *   0 - completely stop and dis-assemble array
4297  *   1 - switch to readonly
4298  *   2 - stop but do not disassemble array
4299  */
4300 static int do_md_stop(mddev_t * mddev, int mode, int is_open)
4301 {
4302 	int err = 0;
4303 	struct gendisk *disk = mddev->gendisk;
4304 	mdk_rdev_t *rdev;
4305 
4306 	mutex_lock(&mddev->open_mutex);
4307 	if (atomic_read(&mddev->openers) > is_open) {
4308 		printk("md: %s still in use.\n",mdname(mddev));
4309 		err = -EBUSY;
4310 	} else if (mddev->pers) {
4311 
4312 		if (mddev->sync_thread) {
4313 			set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4314 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4315 			md_unregister_thread(mddev->sync_thread);
4316 			mddev->sync_thread = NULL;
4317 		}
4318 
4319 		del_timer_sync(&mddev->safemode_timer);
4320 
4321 		switch(mode) {
4322 		case 1: /* readonly */
4323 			err  = -ENXIO;
4324 			if (mddev->ro==1)
4325 				goto out;
4326 			mddev->ro = 1;
4327 			break;
4328 		case 0: /* disassemble */
4329 		case 2: /* stop */
4330 			bitmap_flush(mddev);
4331 			md_super_wait(mddev);
4332 			if (mddev->ro)
4333 				set_disk_ro(disk, 0);
4334 
4335 			mddev->pers->stop(mddev);
4336 			mddev->queue->merge_bvec_fn = NULL;
4337 			mddev->queue->unplug_fn = NULL;
4338 			mddev->queue->backing_dev_info.congested_fn = NULL;
4339 			module_put(mddev->pers->owner);
4340 			if (mddev->pers->sync_request)
4341 				mddev->private = &md_redundancy_group;
4342 			mddev->pers = NULL;
4343 			/* tell userspace to handle 'inactive' */
4344 			sysfs_notify_dirent(mddev->sysfs_state);
4345 
4346 			list_for_each_entry(rdev, &mddev->disks, same_set)
4347 				if (rdev->raid_disk >= 0) {
4348 					char nm[20];
4349 					sprintf(nm, "rd%d", rdev->raid_disk);
4350 					sysfs_remove_link(&mddev->kobj, nm);
4351 				}
4352 
4353 			set_capacity(disk, 0);
4354 			mddev->changed = 1;
4355 
4356 			if (mddev->ro)
4357 				mddev->ro = 0;
4358 		}
4359 		if (!mddev->in_sync || mddev->flags) {
4360 			/* mark array as shutdown cleanly */
4361 			mddev->in_sync = 1;
4362 			md_update_sb(mddev, 1);
4363 		}
4364 		if (mode == 1)
4365 			set_disk_ro(disk, 1);
4366 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4367 		err = 0;
4368 	}
4369 out:
4370 	mutex_unlock(&mddev->open_mutex);
4371 	if (err)
4372 		return err;
4373 	/*
4374 	 * Free resources if final stop
4375 	 */
4376 	if (mode == 0) {
4377 
4378 		printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
4379 
4380 		bitmap_destroy(mddev);
4381 		if (mddev->bitmap_file) {
4382 			restore_bitmap_write_access(mddev->bitmap_file);
4383 			fput(mddev->bitmap_file);
4384 			mddev->bitmap_file = NULL;
4385 		}
4386 		mddev->bitmap_offset = 0;
4387 
4388 		/* make sure all md_delayed_delete calls have finished */
4389 		flush_scheduled_work();
4390 
4391 		export_array(mddev);
4392 
4393 		mddev->array_sectors = 0;
4394 		mddev->external_size = 0;
4395 		mddev->dev_sectors = 0;
4396 		mddev->raid_disks = 0;
4397 		mddev->recovery_cp = 0;
4398 		mddev->resync_min = 0;
4399 		mddev->resync_max = MaxSector;
4400 		mddev->reshape_position = MaxSector;
4401 		mddev->external = 0;
4402 		mddev->persistent = 0;
4403 		mddev->level = LEVEL_NONE;
4404 		mddev->clevel[0] = 0;
4405 		mddev->flags = 0;
4406 		mddev->ro = 0;
4407 		mddev->metadata_type[0] = 0;
4408 		mddev->chunk_sectors = 0;
4409 		mddev->ctime = mddev->utime = 0;
4410 		mddev->layout = 0;
4411 		mddev->max_disks = 0;
4412 		mddev->events = 0;
4413 		mddev->delta_disks = 0;
4414 		mddev->new_level = LEVEL_NONE;
4415 		mddev->new_layout = 0;
4416 		mddev->new_chunk_sectors = 0;
4417 		mddev->curr_resync = 0;
4418 		mddev->resync_mismatches = 0;
4419 		mddev->suspend_lo = mddev->suspend_hi = 0;
4420 		mddev->sync_speed_min = mddev->sync_speed_max = 0;
4421 		mddev->recovery = 0;
4422 		mddev->in_sync = 0;
4423 		mddev->changed = 0;
4424 		mddev->degraded = 0;
4425 		mddev->barriers_work = 0;
4426 		mddev->safemode = 0;
4427 		kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4428 		if (mddev->hold_active == UNTIL_STOP)
4429 			mddev->hold_active = 0;
4430 
4431 	} else if (mddev->pers)
4432 		printk(KERN_INFO "md: %s switched to read-only mode.\n",
4433 			mdname(mddev));
4434 	err = 0;
4435 	blk_integrity_unregister(disk);
4436 	md_new_event(mddev);
4437 	sysfs_notify_dirent(mddev->sysfs_state);
4438 	return err;
4439 }
4440 
4441 #ifndef MODULE
4442 static void autorun_array(mddev_t *mddev)
4443 {
4444 	mdk_rdev_t *rdev;
4445 	int err;
4446 
4447 	if (list_empty(&mddev->disks))
4448 		return;
4449 
4450 	printk(KERN_INFO "md: running: ");
4451 
4452 	list_for_each_entry(rdev, &mddev->disks, same_set) {
4453 		char b[BDEVNAME_SIZE];
4454 		printk("<%s>", bdevname(rdev->bdev,b));
4455 	}
4456 	printk("\n");
4457 
4458 	err = do_md_run(mddev);
4459 	if (err) {
4460 		printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
4461 		do_md_stop(mddev, 0, 0);
4462 	}
4463 }
4464 
4465 /*
4466  * lets try to run arrays based on all disks that have arrived
4467  * until now. (those are in pending_raid_disks)
4468  *
4469  * the method: pick the first pending disk, collect all disks with
4470  * the same UUID, remove all from the pending list and put them into
4471  * the 'same_array' list. Then order this list based on superblock
4472  * update time (freshest comes first), kick out 'old' disks and
4473  * compare superblocks. If everything's fine then run it.
4474  *
4475  * If "unit" is allocated, then bump its reference count
4476  */
4477 static void autorun_devices(int part)
4478 {
4479 	mdk_rdev_t *rdev0, *rdev, *tmp;
4480 	mddev_t *mddev;
4481 	char b[BDEVNAME_SIZE];
4482 
4483 	printk(KERN_INFO "md: autorun ...\n");
4484 	while (!list_empty(&pending_raid_disks)) {
4485 		int unit;
4486 		dev_t dev;
4487 		LIST_HEAD(candidates);
4488 		rdev0 = list_entry(pending_raid_disks.next,
4489 					 mdk_rdev_t, same_set);
4490 
4491 		printk(KERN_INFO "md: considering %s ...\n",
4492 			bdevname(rdev0->bdev,b));
4493 		INIT_LIST_HEAD(&candidates);
4494 		rdev_for_each_list(rdev, tmp, &pending_raid_disks)
4495 			if (super_90_load(rdev, rdev0, 0) >= 0) {
4496 				printk(KERN_INFO "md:  adding %s ...\n",
4497 					bdevname(rdev->bdev,b));
4498 				list_move(&rdev->same_set, &candidates);
4499 			}
4500 		/*
4501 		 * now we have a set of devices, with all of them having
4502 		 * mostly sane superblocks. It's time to allocate the
4503 		 * mddev.
4504 		 */
4505 		if (part) {
4506 			dev = MKDEV(mdp_major,
4507 				    rdev0->preferred_minor << MdpMinorShift);
4508 			unit = MINOR(dev) >> MdpMinorShift;
4509 		} else {
4510 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
4511 			unit = MINOR(dev);
4512 		}
4513 		if (rdev0->preferred_minor != unit) {
4514 			printk(KERN_INFO "md: unit number in %s is bad: %d\n",
4515 			       bdevname(rdev0->bdev, b), rdev0->preferred_minor);
4516 			break;
4517 		}
4518 
4519 		md_probe(dev, NULL, NULL);
4520 		mddev = mddev_find(dev);
4521 		if (!mddev || !mddev->gendisk) {
4522 			if (mddev)
4523 				mddev_put(mddev);
4524 			printk(KERN_ERR
4525 				"md: cannot allocate memory for md drive.\n");
4526 			break;
4527 		}
4528 		if (mddev_lock(mddev))
4529 			printk(KERN_WARNING "md: %s locked, cannot run\n",
4530 			       mdname(mddev));
4531 		else if (mddev->raid_disks || mddev->major_version
4532 			 || !list_empty(&mddev->disks)) {
4533 			printk(KERN_WARNING
4534 				"md: %s already running, cannot run %s\n",
4535 				mdname(mddev), bdevname(rdev0->bdev,b));
4536 			mddev_unlock(mddev);
4537 		} else {
4538 			printk(KERN_INFO "md: created %s\n", mdname(mddev));
4539 			mddev->persistent = 1;
4540 			rdev_for_each_list(rdev, tmp, &candidates) {
4541 				list_del_init(&rdev->same_set);
4542 				if (bind_rdev_to_array(rdev, mddev))
4543 					export_rdev(rdev);
4544 			}
4545 			autorun_array(mddev);
4546 			mddev_unlock(mddev);
4547 		}
4548 		/* on success, candidates will be empty, on error
4549 		 * it won't...
4550 		 */
4551 		rdev_for_each_list(rdev, tmp, &candidates) {
4552 			list_del_init(&rdev->same_set);
4553 			export_rdev(rdev);
4554 		}
4555 		mddev_put(mddev);
4556 	}
4557 	printk(KERN_INFO "md: ... autorun DONE.\n");
4558 }
4559 #endif /* !MODULE */
4560 
4561 static int get_version(void __user * arg)
4562 {
4563 	mdu_version_t ver;
4564 
4565 	ver.major = MD_MAJOR_VERSION;
4566 	ver.minor = MD_MINOR_VERSION;
4567 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
4568 
4569 	if (copy_to_user(arg, &ver, sizeof(ver)))
4570 		return -EFAULT;
4571 
4572 	return 0;
4573 }
4574 
4575 static int get_array_info(mddev_t * mddev, void __user * arg)
4576 {
4577 	mdu_array_info_t info;
4578 	int nr,working,active,failed,spare;
4579 	mdk_rdev_t *rdev;
4580 
4581 	nr=working=active=failed=spare=0;
4582 	list_for_each_entry(rdev, &mddev->disks, same_set) {
4583 		nr++;
4584 		if (test_bit(Faulty, &rdev->flags))
4585 			failed++;
4586 		else {
4587 			working++;
4588 			if (test_bit(In_sync, &rdev->flags))
4589 				active++;
4590 			else
4591 				spare++;
4592 		}
4593 	}
4594 
4595 	info.major_version = mddev->major_version;
4596 	info.minor_version = mddev->minor_version;
4597 	info.patch_version = MD_PATCHLEVEL_VERSION;
4598 	info.ctime         = mddev->ctime;
4599 	info.level         = mddev->level;
4600 	info.size          = mddev->dev_sectors / 2;
4601 	if (info.size != mddev->dev_sectors / 2) /* overflow */
4602 		info.size = -1;
4603 	info.nr_disks      = nr;
4604 	info.raid_disks    = mddev->raid_disks;
4605 	info.md_minor      = mddev->md_minor;
4606 	info.not_persistent= !mddev->persistent;
4607 
4608 	info.utime         = mddev->utime;
4609 	info.state         = 0;
4610 	if (mddev->in_sync)
4611 		info.state = (1<<MD_SB_CLEAN);
4612 	if (mddev->bitmap && mddev->bitmap_offset)
4613 		info.state = (1<<MD_SB_BITMAP_PRESENT);
4614 	info.active_disks  = active;
4615 	info.working_disks = working;
4616 	info.failed_disks  = failed;
4617 	info.spare_disks   = spare;
4618 
4619 	info.layout        = mddev->layout;
4620 	info.chunk_size    = mddev->chunk_sectors << 9;
4621 
4622 	if (copy_to_user(arg, &info, sizeof(info)))
4623 		return -EFAULT;
4624 
4625 	return 0;
4626 }
4627 
4628 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
4629 {
4630 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
4631 	char *ptr, *buf = NULL;
4632 	int err = -ENOMEM;
4633 
4634 	if (md_allow_write(mddev))
4635 		file = kmalloc(sizeof(*file), GFP_NOIO);
4636 	else
4637 		file = kmalloc(sizeof(*file), GFP_KERNEL);
4638 
4639 	if (!file)
4640 		goto out;
4641 
4642 	/* bitmap disabled, zero the first byte and copy out */
4643 	if (!mddev->bitmap || !mddev->bitmap->file) {
4644 		file->pathname[0] = '\0';
4645 		goto copy_out;
4646 	}
4647 
4648 	buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
4649 	if (!buf)
4650 		goto out;
4651 
4652 	ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
4653 	if (IS_ERR(ptr))
4654 		goto out;
4655 
4656 	strcpy(file->pathname, ptr);
4657 
4658 copy_out:
4659 	err = 0;
4660 	if (copy_to_user(arg, file, sizeof(*file)))
4661 		err = -EFAULT;
4662 out:
4663 	kfree(buf);
4664 	kfree(file);
4665 	return err;
4666 }
4667 
4668 static int get_disk_info(mddev_t * mddev, void __user * arg)
4669 {
4670 	mdu_disk_info_t info;
4671 	mdk_rdev_t *rdev;
4672 
4673 	if (copy_from_user(&info, arg, sizeof(info)))
4674 		return -EFAULT;
4675 
4676 	rdev = find_rdev_nr(mddev, info.number);
4677 	if (rdev) {
4678 		info.major = MAJOR(rdev->bdev->bd_dev);
4679 		info.minor = MINOR(rdev->bdev->bd_dev);
4680 		info.raid_disk = rdev->raid_disk;
4681 		info.state = 0;
4682 		if (test_bit(Faulty, &rdev->flags))
4683 			info.state |= (1<<MD_DISK_FAULTY);
4684 		else if (test_bit(In_sync, &rdev->flags)) {
4685 			info.state |= (1<<MD_DISK_ACTIVE);
4686 			info.state |= (1<<MD_DISK_SYNC);
4687 		}
4688 		if (test_bit(WriteMostly, &rdev->flags))
4689 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
4690 	} else {
4691 		info.major = info.minor = 0;
4692 		info.raid_disk = -1;
4693 		info.state = (1<<MD_DISK_REMOVED);
4694 	}
4695 
4696 	if (copy_to_user(arg, &info, sizeof(info)))
4697 		return -EFAULT;
4698 
4699 	return 0;
4700 }
4701 
4702 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
4703 {
4704 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4705 	mdk_rdev_t *rdev;
4706 	dev_t dev = MKDEV(info->major,info->minor);
4707 
4708 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
4709 		return -EOVERFLOW;
4710 
4711 	if (!mddev->raid_disks) {
4712 		int err;
4713 		/* expecting a device which has a superblock */
4714 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
4715 		if (IS_ERR(rdev)) {
4716 			printk(KERN_WARNING
4717 				"md: md_import_device returned %ld\n",
4718 				PTR_ERR(rdev));
4719 			return PTR_ERR(rdev);
4720 		}
4721 		if (!list_empty(&mddev->disks)) {
4722 			mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
4723 							mdk_rdev_t, same_set);
4724 			int err = super_types[mddev->major_version]
4725 				.load_super(rdev, rdev0, mddev->minor_version);
4726 			if (err < 0) {
4727 				printk(KERN_WARNING
4728 					"md: %s has different UUID to %s\n",
4729 					bdevname(rdev->bdev,b),
4730 					bdevname(rdev0->bdev,b2));
4731 				export_rdev(rdev);
4732 				return -EINVAL;
4733 			}
4734 		}
4735 		err = bind_rdev_to_array(rdev, mddev);
4736 		if (err)
4737 			export_rdev(rdev);
4738 		return err;
4739 	}
4740 
4741 	/*
4742 	 * add_new_disk can be used once the array is assembled
4743 	 * to add "hot spares".  They must already have a superblock
4744 	 * written
4745 	 */
4746 	if (mddev->pers) {
4747 		int err;
4748 		if (!mddev->pers->hot_add_disk) {
4749 			printk(KERN_WARNING
4750 				"%s: personality does not support diskops!\n",
4751 			       mdname(mddev));
4752 			return -EINVAL;
4753 		}
4754 		if (mddev->persistent)
4755 			rdev = md_import_device(dev, mddev->major_version,
4756 						mddev->minor_version);
4757 		else
4758 			rdev = md_import_device(dev, -1, -1);
4759 		if (IS_ERR(rdev)) {
4760 			printk(KERN_WARNING
4761 				"md: md_import_device returned %ld\n",
4762 				PTR_ERR(rdev));
4763 			return PTR_ERR(rdev);
4764 		}
4765 		/* set save_raid_disk if appropriate */
4766 		if (!mddev->persistent) {
4767 			if (info->state & (1<<MD_DISK_SYNC)  &&
4768 			    info->raid_disk < mddev->raid_disks)
4769 				rdev->raid_disk = info->raid_disk;
4770 			else
4771 				rdev->raid_disk = -1;
4772 		} else
4773 			super_types[mddev->major_version].
4774 				validate_super(mddev, rdev);
4775 		rdev->saved_raid_disk = rdev->raid_disk;
4776 
4777 		clear_bit(In_sync, &rdev->flags); /* just to be sure */
4778 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
4779 			set_bit(WriteMostly, &rdev->flags);
4780 		else
4781 			clear_bit(WriteMostly, &rdev->flags);
4782 
4783 		rdev->raid_disk = -1;
4784 		err = bind_rdev_to_array(rdev, mddev);
4785 		if (!err && !mddev->pers->hot_remove_disk) {
4786 			/* If there is hot_add_disk but no hot_remove_disk
4787 			 * then added disks for geometry changes,
4788 			 * and should be added immediately.
4789 			 */
4790 			super_types[mddev->major_version].
4791 				validate_super(mddev, rdev);
4792 			err = mddev->pers->hot_add_disk(mddev, rdev);
4793 			if (err)
4794 				unbind_rdev_from_array(rdev);
4795 		}
4796 		if (err)
4797 			export_rdev(rdev);
4798 		else
4799 			sysfs_notify_dirent(rdev->sysfs_state);
4800 
4801 		md_update_sb(mddev, 1);
4802 		if (mddev->degraded)
4803 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4804 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4805 		md_wakeup_thread(mddev->thread);
4806 		return err;
4807 	}
4808 
4809 	/* otherwise, add_new_disk is only allowed
4810 	 * for major_version==0 superblocks
4811 	 */
4812 	if (mddev->major_version != 0) {
4813 		printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
4814 		       mdname(mddev));
4815 		return -EINVAL;
4816 	}
4817 
4818 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
4819 		int err;
4820 		rdev = md_import_device(dev, -1, 0);
4821 		if (IS_ERR(rdev)) {
4822 			printk(KERN_WARNING
4823 				"md: error, md_import_device() returned %ld\n",
4824 				PTR_ERR(rdev));
4825 			return PTR_ERR(rdev);
4826 		}
4827 		rdev->desc_nr = info->number;
4828 		if (info->raid_disk < mddev->raid_disks)
4829 			rdev->raid_disk = info->raid_disk;
4830 		else
4831 			rdev->raid_disk = -1;
4832 
4833 		if (rdev->raid_disk < mddev->raid_disks)
4834 			if (info->state & (1<<MD_DISK_SYNC))
4835 				set_bit(In_sync, &rdev->flags);
4836 
4837 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
4838 			set_bit(WriteMostly, &rdev->flags);
4839 
4840 		if (!mddev->persistent) {
4841 			printk(KERN_INFO "md: nonpersistent superblock ...\n");
4842 			rdev->sb_start = rdev->bdev->bd_inode->i_size / 512;
4843 		} else
4844 			rdev->sb_start = calc_dev_sboffset(rdev->bdev);
4845 		rdev->sectors = rdev->sb_start;
4846 
4847 		err = bind_rdev_to_array(rdev, mddev);
4848 		if (err) {
4849 			export_rdev(rdev);
4850 			return err;
4851 		}
4852 	}
4853 
4854 	return 0;
4855 }
4856 
4857 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
4858 {
4859 	char b[BDEVNAME_SIZE];
4860 	mdk_rdev_t *rdev;
4861 
4862 	rdev = find_rdev(mddev, dev);
4863 	if (!rdev)
4864 		return -ENXIO;
4865 
4866 	if (rdev->raid_disk >= 0)
4867 		goto busy;
4868 
4869 	kick_rdev_from_array(rdev);
4870 	md_update_sb(mddev, 1);
4871 	md_new_event(mddev);
4872 
4873 	return 0;
4874 busy:
4875 	printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
4876 		bdevname(rdev->bdev,b), mdname(mddev));
4877 	return -EBUSY;
4878 }
4879 
4880 static int hot_add_disk(mddev_t * mddev, dev_t dev)
4881 {
4882 	char b[BDEVNAME_SIZE];
4883 	int err;
4884 	mdk_rdev_t *rdev;
4885 
4886 	if (!mddev->pers)
4887 		return -ENODEV;
4888 
4889 	if (mddev->major_version != 0) {
4890 		printk(KERN_WARNING "%s: HOT_ADD may only be used with"
4891 			" version-0 superblocks.\n",
4892 			mdname(mddev));
4893 		return -EINVAL;
4894 	}
4895 	if (!mddev->pers->hot_add_disk) {
4896 		printk(KERN_WARNING
4897 			"%s: personality does not support diskops!\n",
4898 			mdname(mddev));
4899 		return -EINVAL;
4900 	}
4901 
4902 	rdev = md_import_device(dev, -1, 0);
4903 	if (IS_ERR(rdev)) {
4904 		printk(KERN_WARNING
4905 			"md: error, md_import_device() returned %ld\n",
4906 			PTR_ERR(rdev));
4907 		return -EINVAL;
4908 	}
4909 
4910 	if (mddev->persistent)
4911 		rdev->sb_start = calc_dev_sboffset(rdev->bdev);
4912 	else
4913 		rdev->sb_start = rdev->bdev->bd_inode->i_size / 512;
4914 
4915 	rdev->sectors = rdev->sb_start;
4916 
4917 	if (test_bit(Faulty, &rdev->flags)) {
4918 		printk(KERN_WARNING
4919 			"md: can not hot-add faulty %s disk to %s!\n",
4920 			bdevname(rdev->bdev,b), mdname(mddev));
4921 		err = -EINVAL;
4922 		goto abort_export;
4923 	}
4924 	clear_bit(In_sync, &rdev->flags);
4925 	rdev->desc_nr = -1;
4926 	rdev->saved_raid_disk = -1;
4927 	err = bind_rdev_to_array(rdev, mddev);
4928 	if (err)
4929 		goto abort_export;
4930 
4931 	/*
4932 	 * The rest should better be atomic, we can have disk failures
4933 	 * noticed in interrupt contexts ...
4934 	 */
4935 
4936 	rdev->raid_disk = -1;
4937 
4938 	md_update_sb(mddev, 1);
4939 
4940 	/*
4941 	 * Kick recovery, maybe this spare has to be added to the
4942 	 * array immediately.
4943 	 */
4944 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4945 	md_wakeup_thread(mddev->thread);
4946 	md_new_event(mddev);
4947 	return 0;
4948 
4949 abort_export:
4950 	export_rdev(rdev);
4951 	return err;
4952 }
4953 
4954 static int set_bitmap_file(mddev_t *mddev, int fd)
4955 {
4956 	int err;
4957 
4958 	if (mddev->pers) {
4959 		if (!mddev->pers->quiesce)
4960 			return -EBUSY;
4961 		if (mddev->recovery || mddev->sync_thread)
4962 			return -EBUSY;
4963 		/* we should be able to change the bitmap.. */
4964 	}
4965 
4966 
4967 	if (fd >= 0) {
4968 		if (mddev->bitmap)
4969 			return -EEXIST; /* cannot add when bitmap is present */
4970 		mddev->bitmap_file = fget(fd);
4971 
4972 		if (mddev->bitmap_file == NULL) {
4973 			printk(KERN_ERR "%s: error: failed to get bitmap file\n",
4974 			       mdname(mddev));
4975 			return -EBADF;
4976 		}
4977 
4978 		err = deny_bitmap_write_access(mddev->bitmap_file);
4979 		if (err) {
4980 			printk(KERN_ERR "%s: error: bitmap file is already in use\n",
4981 			       mdname(mddev));
4982 			fput(mddev->bitmap_file);
4983 			mddev->bitmap_file = NULL;
4984 			return err;
4985 		}
4986 		mddev->bitmap_offset = 0; /* file overrides offset */
4987 	} else if (mddev->bitmap == NULL)
4988 		return -ENOENT; /* cannot remove what isn't there */
4989 	err = 0;
4990 	if (mddev->pers) {
4991 		mddev->pers->quiesce(mddev, 1);
4992 		if (fd >= 0)
4993 			err = bitmap_create(mddev);
4994 		if (fd < 0 || err) {
4995 			bitmap_destroy(mddev);
4996 			fd = -1; /* make sure to put the file */
4997 		}
4998 		mddev->pers->quiesce(mddev, 0);
4999 	}
5000 	if (fd < 0) {
5001 		if (mddev->bitmap_file) {
5002 			restore_bitmap_write_access(mddev->bitmap_file);
5003 			fput(mddev->bitmap_file);
5004 		}
5005 		mddev->bitmap_file = NULL;
5006 	}
5007 
5008 	return err;
5009 }
5010 
5011 /*
5012  * set_array_info is used two different ways
5013  * The original usage is when creating a new array.
5014  * In this usage, raid_disks is > 0 and it together with
5015  *  level, size, not_persistent,layout,chunksize determine the
5016  *  shape of the array.
5017  *  This will always create an array with a type-0.90.0 superblock.
5018  * The newer usage is when assembling an array.
5019  *  In this case raid_disks will be 0, and the major_version field is
5020  *  use to determine which style super-blocks are to be found on the devices.
5021  *  The minor and patch _version numbers are also kept incase the
5022  *  super_block handler wishes to interpret them.
5023  */
5024 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
5025 {
5026 
5027 	if (info->raid_disks == 0) {
5028 		/* just setting version number for superblock loading */
5029 		if (info->major_version < 0 ||
5030 		    info->major_version >= ARRAY_SIZE(super_types) ||
5031 		    super_types[info->major_version].name == NULL) {
5032 			/* maybe try to auto-load a module? */
5033 			printk(KERN_INFO
5034 				"md: superblock version %d not known\n",
5035 				info->major_version);
5036 			return -EINVAL;
5037 		}
5038 		mddev->major_version = info->major_version;
5039 		mddev->minor_version = info->minor_version;
5040 		mddev->patch_version = info->patch_version;
5041 		mddev->persistent = !info->not_persistent;
5042 		return 0;
5043 	}
5044 	mddev->major_version = MD_MAJOR_VERSION;
5045 	mddev->minor_version = MD_MINOR_VERSION;
5046 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
5047 	mddev->ctime         = get_seconds();
5048 
5049 	mddev->level         = info->level;
5050 	mddev->clevel[0]     = 0;
5051 	mddev->dev_sectors   = 2 * (sector_t)info->size;
5052 	mddev->raid_disks    = info->raid_disks;
5053 	/* don't set md_minor, it is determined by which /dev/md* was
5054 	 * openned
5055 	 */
5056 	if (info->state & (1<<MD_SB_CLEAN))
5057 		mddev->recovery_cp = MaxSector;
5058 	else
5059 		mddev->recovery_cp = 0;
5060 	mddev->persistent    = ! info->not_persistent;
5061 	mddev->external	     = 0;
5062 
5063 	mddev->layout        = info->layout;
5064 	mddev->chunk_sectors = info->chunk_size >> 9;
5065 
5066 	mddev->max_disks     = MD_SB_DISKS;
5067 
5068 	if (mddev->persistent)
5069 		mddev->flags         = 0;
5070 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
5071 
5072 	mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
5073 	mddev->bitmap_offset = 0;
5074 
5075 	mddev->reshape_position = MaxSector;
5076 
5077 	/*
5078 	 * Generate a 128 bit UUID
5079 	 */
5080 	get_random_bytes(mddev->uuid, 16);
5081 
5082 	mddev->new_level = mddev->level;
5083 	mddev->new_chunk_sectors = mddev->chunk_sectors;
5084 	mddev->new_layout = mddev->layout;
5085 	mddev->delta_disks = 0;
5086 
5087 	return 0;
5088 }
5089 
5090 void md_set_array_sectors(mddev_t *mddev, sector_t array_sectors)
5091 {
5092 	WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
5093 
5094 	if (mddev->external_size)
5095 		return;
5096 
5097 	mddev->array_sectors = array_sectors;
5098 }
5099 EXPORT_SYMBOL(md_set_array_sectors);
5100 
5101 static int update_size(mddev_t *mddev, sector_t num_sectors)
5102 {
5103 	mdk_rdev_t *rdev;
5104 	int rv;
5105 	int fit = (num_sectors == 0);
5106 
5107 	if (mddev->pers->resize == NULL)
5108 		return -EINVAL;
5109 	/* The "num_sectors" is the number of sectors of each device that
5110 	 * is used.  This can only make sense for arrays with redundancy.
5111 	 * linear and raid0 always use whatever space is available. We can only
5112 	 * consider changing this number if no resync or reconstruction is
5113 	 * happening, and if the new size is acceptable. It must fit before the
5114 	 * sb_start or, if that is <data_offset, it must fit before the size
5115 	 * of each device.  If num_sectors is zero, we find the largest size
5116 	 * that fits.
5117 
5118 	 */
5119 	if (mddev->sync_thread)
5120 		return -EBUSY;
5121 	if (mddev->bitmap)
5122 		/* Sorry, cannot grow a bitmap yet, just remove it,
5123 		 * grow, and re-add.
5124 		 */
5125 		return -EBUSY;
5126 	list_for_each_entry(rdev, &mddev->disks, same_set) {
5127 		sector_t avail = rdev->sectors;
5128 
5129 		if (fit && (num_sectors == 0 || num_sectors > avail))
5130 			num_sectors = avail;
5131 		if (avail < num_sectors)
5132 			return -ENOSPC;
5133 	}
5134 	rv = mddev->pers->resize(mddev, num_sectors);
5135 	if (!rv)
5136 		revalidate_disk(mddev->gendisk);
5137 	return rv;
5138 }
5139 
5140 static int update_raid_disks(mddev_t *mddev, int raid_disks)
5141 {
5142 	int rv;
5143 	/* change the number of raid disks */
5144 	if (mddev->pers->check_reshape == NULL)
5145 		return -EINVAL;
5146 	if (raid_disks <= 0 ||
5147 	    raid_disks >= mddev->max_disks)
5148 		return -EINVAL;
5149 	if (mddev->sync_thread || mddev->reshape_position != MaxSector)
5150 		return -EBUSY;
5151 	mddev->delta_disks = raid_disks - mddev->raid_disks;
5152 
5153 	rv = mddev->pers->check_reshape(mddev);
5154 	return rv;
5155 }
5156 
5157 
5158 /*
5159  * update_array_info is used to change the configuration of an
5160  * on-line array.
5161  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
5162  * fields in the info are checked against the array.
5163  * Any differences that cannot be handled will cause an error.
5164  * Normally, only one change can be managed at a time.
5165  */
5166 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
5167 {
5168 	int rv = 0;
5169 	int cnt = 0;
5170 	int state = 0;
5171 
5172 	/* calculate expected state,ignoring low bits */
5173 	if (mddev->bitmap && mddev->bitmap_offset)
5174 		state |= (1 << MD_SB_BITMAP_PRESENT);
5175 
5176 	if (mddev->major_version != info->major_version ||
5177 	    mddev->minor_version != info->minor_version ||
5178 /*	    mddev->patch_version != info->patch_version || */
5179 	    mddev->ctime         != info->ctime         ||
5180 	    mddev->level         != info->level         ||
5181 /*	    mddev->layout        != info->layout        || */
5182 	    !mddev->persistent	 != info->not_persistent||
5183 	    mddev->chunk_sectors != info->chunk_size >> 9 ||
5184 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
5185 	    ((state^info->state) & 0xfffffe00)
5186 		)
5187 		return -EINVAL;
5188 	/* Check there is only one change */
5189 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5190 		cnt++;
5191 	if (mddev->raid_disks != info->raid_disks)
5192 		cnt++;
5193 	if (mddev->layout != info->layout)
5194 		cnt++;
5195 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
5196 		cnt++;
5197 	if (cnt == 0)
5198 		return 0;
5199 	if (cnt > 1)
5200 		return -EINVAL;
5201 
5202 	if (mddev->layout != info->layout) {
5203 		/* Change layout
5204 		 * we don't need to do anything at the md level, the
5205 		 * personality will take care of it all.
5206 		 */
5207 		if (mddev->pers->check_reshape == NULL)
5208 			return -EINVAL;
5209 		else {
5210 			mddev->new_layout = info->layout;
5211 			rv = mddev->pers->check_reshape(mddev);
5212 			if (rv)
5213 				mddev->new_layout = mddev->layout;
5214 			return rv;
5215 		}
5216 	}
5217 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5218 		rv = update_size(mddev, (sector_t)info->size * 2);
5219 
5220 	if (mddev->raid_disks    != info->raid_disks)
5221 		rv = update_raid_disks(mddev, info->raid_disks);
5222 
5223 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
5224 		if (mddev->pers->quiesce == NULL)
5225 			return -EINVAL;
5226 		if (mddev->recovery || mddev->sync_thread)
5227 			return -EBUSY;
5228 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
5229 			/* add the bitmap */
5230 			if (mddev->bitmap)
5231 				return -EEXIST;
5232 			if (mddev->default_bitmap_offset == 0)
5233 				return -EINVAL;
5234 			mddev->bitmap_offset = mddev->default_bitmap_offset;
5235 			mddev->pers->quiesce(mddev, 1);
5236 			rv = bitmap_create(mddev);
5237 			if (rv)
5238 				bitmap_destroy(mddev);
5239 			mddev->pers->quiesce(mddev, 0);
5240 		} else {
5241 			/* remove the bitmap */
5242 			if (!mddev->bitmap)
5243 				return -ENOENT;
5244 			if (mddev->bitmap->file)
5245 				return -EINVAL;
5246 			mddev->pers->quiesce(mddev, 1);
5247 			bitmap_destroy(mddev);
5248 			mddev->pers->quiesce(mddev, 0);
5249 			mddev->bitmap_offset = 0;
5250 		}
5251 	}
5252 	md_update_sb(mddev, 1);
5253 	return rv;
5254 }
5255 
5256 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
5257 {
5258 	mdk_rdev_t *rdev;
5259 
5260 	if (mddev->pers == NULL)
5261 		return -ENODEV;
5262 
5263 	rdev = find_rdev(mddev, dev);
5264 	if (!rdev)
5265 		return -ENODEV;
5266 
5267 	md_error(mddev, rdev);
5268 	return 0;
5269 }
5270 
5271 /*
5272  * We have a problem here : there is no easy way to give a CHS
5273  * virtual geometry. We currently pretend that we have a 2 heads
5274  * 4 sectors (with a BIG number of cylinders...). This drives
5275  * dosfs just mad... ;-)
5276  */
5277 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
5278 {
5279 	mddev_t *mddev = bdev->bd_disk->private_data;
5280 
5281 	geo->heads = 2;
5282 	geo->sectors = 4;
5283 	geo->cylinders = get_capacity(mddev->gendisk) / 8;
5284 	return 0;
5285 }
5286 
5287 static int md_ioctl(struct block_device *bdev, fmode_t mode,
5288 			unsigned int cmd, unsigned long arg)
5289 {
5290 	int err = 0;
5291 	void __user *argp = (void __user *)arg;
5292 	mddev_t *mddev = NULL;
5293 
5294 	if (!capable(CAP_SYS_ADMIN))
5295 		return -EACCES;
5296 
5297 	/*
5298 	 * Commands dealing with the RAID driver but not any
5299 	 * particular array:
5300 	 */
5301 	switch (cmd)
5302 	{
5303 		case RAID_VERSION:
5304 			err = get_version(argp);
5305 			goto done;
5306 
5307 		case PRINT_RAID_DEBUG:
5308 			err = 0;
5309 			md_print_devices();
5310 			goto done;
5311 
5312 #ifndef MODULE
5313 		case RAID_AUTORUN:
5314 			err = 0;
5315 			autostart_arrays(arg);
5316 			goto done;
5317 #endif
5318 		default:;
5319 	}
5320 
5321 	/*
5322 	 * Commands creating/starting a new array:
5323 	 */
5324 
5325 	mddev = bdev->bd_disk->private_data;
5326 
5327 	if (!mddev) {
5328 		BUG();
5329 		goto abort;
5330 	}
5331 
5332 	err = mddev_lock(mddev);
5333 	if (err) {
5334 		printk(KERN_INFO
5335 			"md: ioctl lock interrupted, reason %d, cmd %d\n",
5336 			err, cmd);
5337 		goto abort;
5338 	}
5339 
5340 	switch (cmd)
5341 	{
5342 		case SET_ARRAY_INFO:
5343 			{
5344 				mdu_array_info_t info;
5345 				if (!arg)
5346 					memset(&info, 0, sizeof(info));
5347 				else if (copy_from_user(&info, argp, sizeof(info))) {
5348 					err = -EFAULT;
5349 					goto abort_unlock;
5350 				}
5351 				if (mddev->pers) {
5352 					err = update_array_info(mddev, &info);
5353 					if (err) {
5354 						printk(KERN_WARNING "md: couldn't update"
5355 						       " array info. %d\n", err);
5356 						goto abort_unlock;
5357 					}
5358 					goto done_unlock;
5359 				}
5360 				if (!list_empty(&mddev->disks)) {
5361 					printk(KERN_WARNING
5362 					       "md: array %s already has disks!\n",
5363 					       mdname(mddev));
5364 					err = -EBUSY;
5365 					goto abort_unlock;
5366 				}
5367 				if (mddev->raid_disks) {
5368 					printk(KERN_WARNING
5369 					       "md: array %s already initialised!\n",
5370 					       mdname(mddev));
5371 					err = -EBUSY;
5372 					goto abort_unlock;
5373 				}
5374 				err = set_array_info(mddev, &info);
5375 				if (err) {
5376 					printk(KERN_WARNING "md: couldn't set"
5377 					       " array info. %d\n", err);
5378 					goto abort_unlock;
5379 				}
5380 			}
5381 			goto done_unlock;
5382 
5383 		default:;
5384 	}
5385 
5386 	/*
5387 	 * Commands querying/configuring an existing array:
5388 	 */
5389 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
5390 	 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
5391 	if ((!mddev->raid_disks && !mddev->external)
5392 	    && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
5393 	    && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
5394 	    && cmd != GET_BITMAP_FILE) {
5395 		err = -ENODEV;
5396 		goto abort_unlock;
5397 	}
5398 
5399 	/*
5400 	 * Commands even a read-only array can execute:
5401 	 */
5402 	switch (cmd)
5403 	{
5404 		case GET_ARRAY_INFO:
5405 			err = get_array_info(mddev, argp);
5406 			goto done_unlock;
5407 
5408 		case GET_BITMAP_FILE:
5409 			err = get_bitmap_file(mddev, argp);
5410 			goto done_unlock;
5411 
5412 		case GET_DISK_INFO:
5413 			err = get_disk_info(mddev, argp);
5414 			goto done_unlock;
5415 
5416 		case RESTART_ARRAY_RW:
5417 			err = restart_array(mddev);
5418 			goto done_unlock;
5419 
5420 		case STOP_ARRAY:
5421 			err = do_md_stop(mddev, 0, 1);
5422 			goto done_unlock;
5423 
5424 		case STOP_ARRAY_RO:
5425 			err = do_md_stop(mddev, 1, 1);
5426 			goto done_unlock;
5427 
5428 	}
5429 
5430 	/*
5431 	 * The remaining ioctls are changing the state of the
5432 	 * superblock, so we do not allow them on read-only arrays.
5433 	 * However non-MD ioctls (e.g. get-size) will still come through
5434 	 * here and hit the 'default' below, so only disallow
5435 	 * 'md' ioctls, and switch to rw mode if started auto-readonly.
5436 	 */
5437 	if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
5438 		if (mddev->ro == 2) {
5439 			mddev->ro = 0;
5440 			sysfs_notify_dirent(mddev->sysfs_state);
5441 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5442 			md_wakeup_thread(mddev->thread);
5443 		} else {
5444 			err = -EROFS;
5445 			goto abort_unlock;
5446 		}
5447 	}
5448 
5449 	switch (cmd)
5450 	{
5451 		case ADD_NEW_DISK:
5452 		{
5453 			mdu_disk_info_t info;
5454 			if (copy_from_user(&info, argp, sizeof(info)))
5455 				err = -EFAULT;
5456 			else
5457 				err = add_new_disk(mddev, &info);
5458 			goto done_unlock;
5459 		}
5460 
5461 		case HOT_REMOVE_DISK:
5462 			err = hot_remove_disk(mddev, new_decode_dev(arg));
5463 			goto done_unlock;
5464 
5465 		case HOT_ADD_DISK:
5466 			err = hot_add_disk(mddev, new_decode_dev(arg));
5467 			goto done_unlock;
5468 
5469 		case SET_DISK_FAULTY:
5470 			err = set_disk_faulty(mddev, new_decode_dev(arg));
5471 			goto done_unlock;
5472 
5473 		case RUN_ARRAY:
5474 			err = do_md_run(mddev);
5475 			goto done_unlock;
5476 
5477 		case SET_BITMAP_FILE:
5478 			err = set_bitmap_file(mddev, (int)arg);
5479 			goto done_unlock;
5480 
5481 		default:
5482 			err = -EINVAL;
5483 			goto abort_unlock;
5484 	}
5485 
5486 done_unlock:
5487 abort_unlock:
5488 	if (mddev->hold_active == UNTIL_IOCTL &&
5489 	    err != -EINVAL)
5490 		mddev->hold_active = 0;
5491 	mddev_unlock(mddev);
5492 
5493 	return err;
5494 done:
5495 	if (err)
5496 		MD_BUG();
5497 abort:
5498 	return err;
5499 }
5500 
5501 static int md_open(struct block_device *bdev, fmode_t mode)
5502 {
5503 	/*
5504 	 * Succeed if we can lock the mddev, which confirms that
5505 	 * it isn't being stopped right now.
5506 	 */
5507 	mddev_t *mddev = mddev_find(bdev->bd_dev);
5508 	int err;
5509 
5510 	if (mddev->gendisk != bdev->bd_disk) {
5511 		/* we are racing with mddev_put which is discarding this
5512 		 * bd_disk.
5513 		 */
5514 		mddev_put(mddev);
5515 		/* Wait until bdev->bd_disk is definitely gone */
5516 		flush_scheduled_work();
5517 		/* Then retry the open from the top */
5518 		return -ERESTARTSYS;
5519 	}
5520 	BUG_ON(mddev != bdev->bd_disk->private_data);
5521 
5522 	if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
5523 		goto out;
5524 
5525 	err = 0;
5526 	atomic_inc(&mddev->openers);
5527 	mutex_unlock(&mddev->open_mutex);
5528 
5529 	check_disk_change(bdev);
5530  out:
5531 	return err;
5532 }
5533 
5534 static int md_release(struct gendisk *disk, fmode_t mode)
5535 {
5536  	mddev_t *mddev = disk->private_data;
5537 
5538 	BUG_ON(!mddev);
5539 	atomic_dec(&mddev->openers);
5540 	mddev_put(mddev);
5541 
5542 	return 0;
5543 }
5544 
5545 static int md_media_changed(struct gendisk *disk)
5546 {
5547 	mddev_t *mddev = disk->private_data;
5548 
5549 	return mddev->changed;
5550 }
5551 
5552 static int md_revalidate(struct gendisk *disk)
5553 {
5554 	mddev_t *mddev = disk->private_data;
5555 
5556 	mddev->changed = 0;
5557 	return 0;
5558 }
5559 static struct block_device_operations md_fops =
5560 {
5561 	.owner		= THIS_MODULE,
5562 	.open		= md_open,
5563 	.release	= md_release,
5564 	.ioctl		= md_ioctl,
5565 	.getgeo		= md_getgeo,
5566 	.media_changed	= md_media_changed,
5567 	.revalidate_disk= md_revalidate,
5568 };
5569 
5570 static int md_thread(void * arg)
5571 {
5572 	mdk_thread_t *thread = arg;
5573 
5574 	/*
5575 	 * md_thread is a 'system-thread', it's priority should be very
5576 	 * high. We avoid resource deadlocks individually in each
5577 	 * raid personality. (RAID5 does preallocation) We also use RR and
5578 	 * the very same RT priority as kswapd, thus we will never get
5579 	 * into a priority inversion deadlock.
5580 	 *
5581 	 * we definitely have to have equal or higher priority than
5582 	 * bdflush, otherwise bdflush will deadlock if there are too
5583 	 * many dirty RAID5 blocks.
5584 	 */
5585 
5586 	allow_signal(SIGKILL);
5587 	while (!kthread_should_stop()) {
5588 
5589 		/* We need to wait INTERRUPTIBLE so that
5590 		 * we don't add to the load-average.
5591 		 * That means we need to be sure no signals are
5592 		 * pending
5593 		 */
5594 		if (signal_pending(current))
5595 			flush_signals(current);
5596 
5597 		wait_event_interruptible_timeout
5598 			(thread->wqueue,
5599 			 test_bit(THREAD_WAKEUP, &thread->flags)
5600 			 || kthread_should_stop(),
5601 			 thread->timeout);
5602 
5603 		clear_bit(THREAD_WAKEUP, &thread->flags);
5604 
5605 		thread->run(thread->mddev);
5606 	}
5607 
5608 	return 0;
5609 }
5610 
5611 void md_wakeup_thread(mdk_thread_t *thread)
5612 {
5613 	if (thread) {
5614 		dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
5615 		set_bit(THREAD_WAKEUP, &thread->flags);
5616 		wake_up(&thread->wqueue);
5617 	}
5618 }
5619 
5620 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
5621 				 const char *name)
5622 {
5623 	mdk_thread_t *thread;
5624 
5625 	thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
5626 	if (!thread)
5627 		return NULL;
5628 
5629 	init_waitqueue_head(&thread->wqueue);
5630 
5631 	thread->run = run;
5632 	thread->mddev = mddev;
5633 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
5634 	thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
5635 	if (IS_ERR(thread->tsk)) {
5636 		kfree(thread);
5637 		return NULL;
5638 	}
5639 	return thread;
5640 }
5641 
5642 void md_unregister_thread(mdk_thread_t *thread)
5643 {
5644 	if (!thread)
5645 		return;
5646 	dprintk("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
5647 
5648 	kthread_stop(thread->tsk);
5649 	kfree(thread);
5650 }
5651 
5652 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
5653 {
5654 	if (!mddev) {
5655 		MD_BUG();
5656 		return;
5657 	}
5658 
5659 	if (!rdev || test_bit(Faulty, &rdev->flags))
5660 		return;
5661 
5662 	if (mddev->external)
5663 		set_bit(Blocked, &rdev->flags);
5664 /*
5665 	dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
5666 		mdname(mddev),
5667 		MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
5668 		__builtin_return_address(0),__builtin_return_address(1),
5669 		__builtin_return_address(2),__builtin_return_address(3));
5670 */
5671 	if (!mddev->pers)
5672 		return;
5673 	if (!mddev->pers->error_handler)
5674 		return;
5675 	mddev->pers->error_handler(mddev,rdev);
5676 	if (mddev->degraded)
5677 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5678 	set_bit(StateChanged, &rdev->flags);
5679 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5680 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5681 	md_wakeup_thread(mddev->thread);
5682 	md_new_event_inintr(mddev);
5683 }
5684 
5685 /* seq_file implementation /proc/mdstat */
5686 
5687 static void status_unused(struct seq_file *seq)
5688 {
5689 	int i = 0;
5690 	mdk_rdev_t *rdev;
5691 
5692 	seq_printf(seq, "unused devices: ");
5693 
5694 	list_for_each_entry(rdev, &pending_raid_disks, same_set) {
5695 		char b[BDEVNAME_SIZE];
5696 		i++;
5697 		seq_printf(seq, "%s ",
5698 			      bdevname(rdev->bdev,b));
5699 	}
5700 	if (!i)
5701 		seq_printf(seq, "<none>");
5702 
5703 	seq_printf(seq, "\n");
5704 }
5705 
5706 
5707 static void status_resync(struct seq_file *seq, mddev_t * mddev)
5708 {
5709 	sector_t max_sectors, resync, res;
5710 	unsigned long dt, db;
5711 	sector_t rt;
5712 	int scale;
5713 	unsigned int per_milli;
5714 
5715 	resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
5716 
5717 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
5718 		max_sectors = mddev->resync_max_sectors;
5719 	else
5720 		max_sectors = mddev->dev_sectors;
5721 
5722 	/*
5723 	 * Should not happen.
5724 	 */
5725 	if (!max_sectors) {
5726 		MD_BUG();
5727 		return;
5728 	}
5729 	/* Pick 'scale' such that (resync>>scale)*1000 will fit
5730 	 * in a sector_t, and (max_sectors>>scale) will fit in a
5731 	 * u32, as those are the requirements for sector_div.
5732 	 * Thus 'scale' must be at least 10
5733 	 */
5734 	scale = 10;
5735 	if (sizeof(sector_t) > sizeof(unsigned long)) {
5736 		while ( max_sectors/2 > (1ULL<<(scale+32)))
5737 			scale++;
5738 	}
5739 	res = (resync>>scale)*1000;
5740 	sector_div(res, (u32)((max_sectors>>scale)+1));
5741 
5742 	per_milli = res;
5743 	{
5744 		int i, x = per_milli/50, y = 20-x;
5745 		seq_printf(seq, "[");
5746 		for (i = 0; i < x; i++)
5747 			seq_printf(seq, "=");
5748 		seq_printf(seq, ">");
5749 		for (i = 0; i < y; i++)
5750 			seq_printf(seq, ".");
5751 		seq_printf(seq, "] ");
5752 	}
5753 	seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
5754 		   (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
5755 		    "reshape" :
5756 		    (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
5757 		     "check" :
5758 		     (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
5759 		      "resync" : "recovery"))),
5760 		   per_milli/10, per_milli % 10,
5761 		   (unsigned long long) resync/2,
5762 		   (unsigned long long) max_sectors/2);
5763 
5764 	/*
5765 	 * dt: time from mark until now
5766 	 * db: blocks written from mark until now
5767 	 * rt: remaining time
5768 	 *
5769 	 * rt is a sector_t, so could be 32bit or 64bit.
5770 	 * So we divide before multiply in case it is 32bit and close
5771 	 * to the limit.
5772 	 * We scale the divisor (db) by 32 to avoid loosing precision
5773 	 * near the end of resync when the number of remaining sectors
5774 	 * is close to 'db'.
5775 	 * We then divide rt by 32 after multiplying by db to compensate.
5776 	 * The '+1' avoids division by zero if db is very small.
5777 	 */
5778 	dt = ((jiffies - mddev->resync_mark) / HZ);
5779 	if (!dt) dt++;
5780 	db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
5781 		- mddev->resync_mark_cnt;
5782 
5783 	rt = max_sectors - resync;    /* number of remaining sectors */
5784 	sector_div(rt, db/32+1);
5785 	rt *= dt;
5786 	rt >>= 5;
5787 
5788 	seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
5789 		   ((unsigned long)rt % 60)/6);
5790 
5791 	seq_printf(seq, " speed=%ldK/sec", db/2/dt);
5792 }
5793 
5794 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
5795 {
5796 	struct list_head *tmp;
5797 	loff_t l = *pos;
5798 	mddev_t *mddev;
5799 
5800 	if (l >= 0x10000)
5801 		return NULL;
5802 	if (!l--)
5803 		/* header */
5804 		return (void*)1;
5805 
5806 	spin_lock(&all_mddevs_lock);
5807 	list_for_each(tmp,&all_mddevs)
5808 		if (!l--) {
5809 			mddev = list_entry(tmp, mddev_t, all_mddevs);
5810 			mddev_get(mddev);
5811 			spin_unlock(&all_mddevs_lock);
5812 			return mddev;
5813 		}
5814 	spin_unlock(&all_mddevs_lock);
5815 	if (!l--)
5816 		return (void*)2;/* tail */
5817 	return NULL;
5818 }
5819 
5820 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
5821 {
5822 	struct list_head *tmp;
5823 	mddev_t *next_mddev, *mddev = v;
5824 
5825 	++*pos;
5826 	if (v == (void*)2)
5827 		return NULL;
5828 
5829 	spin_lock(&all_mddevs_lock);
5830 	if (v == (void*)1)
5831 		tmp = all_mddevs.next;
5832 	else
5833 		tmp = mddev->all_mddevs.next;
5834 	if (tmp != &all_mddevs)
5835 		next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
5836 	else {
5837 		next_mddev = (void*)2;
5838 		*pos = 0x10000;
5839 	}
5840 	spin_unlock(&all_mddevs_lock);
5841 
5842 	if (v != (void*)1)
5843 		mddev_put(mddev);
5844 	return next_mddev;
5845 
5846 }
5847 
5848 static void md_seq_stop(struct seq_file *seq, void *v)
5849 {
5850 	mddev_t *mddev = v;
5851 
5852 	if (mddev && v != (void*)1 && v != (void*)2)
5853 		mddev_put(mddev);
5854 }
5855 
5856 struct mdstat_info {
5857 	int event;
5858 };
5859 
5860 static int md_seq_show(struct seq_file *seq, void *v)
5861 {
5862 	mddev_t *mddev = v;
5863 	sector_t sectors;
5864 	mdk_rdev_t *rdev;
5865 	struct mdstat_info *mi = seq->private;
5866 	struct bitmap *bitmap;
5867 
5868 	if (v == (void*)1) {
5869 		struct mdk_personality *pers;
5870 		seq_printf(seq, "Personalities : ");
5871 		spin_lock(&pers_lock);
5872 		list_for_each_entry(pers, &pers_list, list)
5873 			seq_printf(seq, "[%s] ", pers->name);
5874 
5875 		spin_unlock(&pers_lock);
5876 		seq_printf(seq, "\n");
5877 		mi->event = atomic_read(&md_event_count);
5878 		return 0;
5879 	}
5880 	if (v == (void*)2) {
5881 		status_unused(seq);
5882 		return 0;
5883 	}
5884 
5885 	if (mddev_lock(mddev) < 0)
5886 		return -EINTR;
5887 
5888 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
5889 		seq_printf(seq, "%s : %sactive", mdname(mddev),
5890 						mddev->pers ? "" : "in");
5891 		if (mddev->pers) {
5892 			if (mddev->ro==1)
5893 				seq_printf(seq, " (read-only)");
5894 			if (mddev->ro==2)
5895 				seq_printf(seq, " (auto-read-only)");
5896 			seq_printf(seq, " %s", mddev->pers->name);
5897 		}
5898 
5899 		sectors = 0;
5900 		list_for_each_entry(rdev, &mddev->disks, same_set) {
5901 			char b[BDEVNAME_SIZE];
5902 			seq_printf(seq, " %s[%d]",
5903 				bdevname(rdev->bdev,b), rdev->desc_nr);
5904 			if (test_bit(WriteMostly, &rdev->flags))
5905 				seq_printf(seq, "(W)");
5906 			if (test_bit(Faulty, &rdev->flags)) {
5907 				seq_printf(seq, "(F)");
5908 				continue;
5909 			} else if (rdev->raid_disk < 0)
5910 				seq_printf(seq, "(S)"); /* spare */
5911 			sectors += rdev->sectors;
5912 		}
5913 
5914 		if (!list_empty(&mddev->disks)) {
5915 			if (mddev->pers)
5916 				seq_printf(seq, "\n      %llu blocks",
5917 					   (unsigned long long)
5918 					   mddev->array_sectors / 2);
5919 			else
5920 				seq_printf(seq, "\n      %llu blocks",
5921 					   (unsigned long long)sectors / 2);
5922 		}
5923 		if (mddev->persistent) {
5924 			if (mddev->major_version != 0 ||
5925 			    mddev->minor_version != 90) {
5926 				seq_printf(seq," super %d.%d",
5927 					   mddev->major_version,
5928 					   mddev->minor_version);
5929 			}
5930 		} else if (mddev->external)
5931 			seq_printf(seq, " super external:%s",
5932 				   mddev->metadata_type);
5933 		else
5934 			seq_printf(seq, " super non-persistent");
5935 
5936 		if (mddev->pers) {
5937 			mddev->pers->status(seq, mddev);
5938 	 		seq_printf(seq, "\n      ");
5939 			if (mddev->pers->sync_request) {
5940 				if (mddev->curr_resync > 2) {
5941 					status_resync(seq, mddev);
5942 					seq_printf(seq, "\n      ");
5943 				} else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
5944 					seq_printf(seq, "\tresync=DELAYED\n      ");
5945 				else if (mddev->recovery_cp < MaxSector)
5946 					seq_printf(seq, "\tresync=PENDING\n      ");
5947 			}
5948 		} else
5949 			seq_printf(seq, "\n       ");
5950 
5951 		if ((bitmap = mddev->bitmap)) {
5952 			unsigned long chunk_kb;
5953 			unsigned long flags;
5954 			spin_lock_irqsave(&bitmap->lock, flags);
5955 			chunk_kb = bitmap->chunksize >> 10;
5956 			seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
5957 				"%lu%s chunk",
5958 				bitmap->pages - bitmap->missing_pages,
5959 				bitmap->pages,
5960 				(bitmap->pages - bitmap->missing_pages)
5961 					<< (PAGE_SHIFT - 10),
5962 				chunk_kb ? chunk_kb : bitmap->chunksize,
5963 				chunk_kb ? "KB" : "B");
5964 			if (bitmap->file) {
5965 				seq_printf(seq, ", file: ");
5966 				seq_path(seq, &bitmap->file->f_path, " \t\n");
5967 			}
5968 
5969 			seq_printf(seq, "\n");
5970 			spin_unlock_irqrestore(&bitmap->lock, flags);
5971 		}
5972 
5973 		seq_printf(seq, "\n");
5974 	}
5975 	mddev_unlock(mddev);
5976 
5977 	return 0;
5978 }
5979 
5980 static const struct seq_operations md_seq_ops = {
5981 	.start  = md_seq_start,
5982 	.next   = md_seq_next,
5983 	.stop   = md_seq_stop,
5984 	.show   = md_seq_show,
5985 };
5986 
5987 static int md_seq_open(struct inode *inode, struct file *file)
5988 {
5989 	int error;
5990 	struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
5991 	if (mi == NULL)
5992 		return -ENOMEM;
5993 
5994 	error = seq_open(file, &md_seq_ops);
5995 	if (error)
5996 		kfree(mi);
5997 	else {
5998 		struct seq_file *p = file->private_data;
5999 		p->private = mi;
6000 		mi->event = atomic_read(&md_event_count);
6001 	}
6002 	return error;
6003 }
6004 
6005 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
6006 {
6007 	struct seq_file *m = filp->private_data;
6008 	struct mdstat_info *mi = m->private;
6009 	int mask;
6010 
6011 	poll_wait(filp, &md_event_waiters, wait);
6012 
6013 	/* always allow read */
6014 	mask = POLLIN | POLLRDNORM;
6015 
6016 	if (mi->event != atomic_read(&md_event_count))
6017 		mask |= POLLERR | POLLPRI;
6018 	return mask;
6019 }
6020 
6021 static const struct file_operations md_seq_fops = {
6022 	.owner		= THIS_MODULE,
6023 	.open           = md_seq_open,
6024 	.read           = seq_read,
6025 	.llseek         = seq_lseek,
6026 	.release	= seq_release_private,
6027 	.poll		= mdstat_poll,
6028 };
6029 
6030 int register_md_personality(struct mdk_personality *p)
6031 {
6032 	spin_lock(&pers_lock);
6033 	list_add_tail(&p->list, &pers_list);
6034 	printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
6035 	spin_unlock(&pers_lock);
6036 	return 0;
6037 }
6038 
6039 int unregister_md_personality(struct mdk_personality *p)
6040 {
6041 	printk(KERN_INFO "md: %s personality unregistered\n", p->name);
6042 	spin_lock(&pers_lock);
6043 	list_del_init(&p->list);
6044 	spin_unlock(&pers_lock);
6045 	return 0;
6046 }
6047 
6048 static int is_mddev_idle(mddev_t *mddev, int init)
6049 {
6050 	mdk_rdev_t * rdev;
6051 	int idle;
6052 	int curr_events;
6053 
6054 	idle = 1;
6055 	rcu_read_lock();
6056 	rdev_for_each_rcu(rdev, mddev) {
6057 		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
6058 		curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
6059 			      (int)part_stat_read(&disk->part0, sectors[1]) -
6060 			      atomic_read(&disk->sync_io);
6061 		/* sync IO will cause sync_io to increase before the disk_stats
6062 		 * as sync_io is counted when a request starts, and
6063 		 * disk_stats is counted when it completes.
6064 		 * So resync activity will cause curr_events to be smaller than
6065 		 * when there was no such activity.
6066 		 * non-sync IO will cause disk_stat to increase without
6067 		 * increasing sync_io so curr_events will (eventually)
6068 		 * be larger than it was before.  Once it becomes
6069 		 * substantially larger, the test below will cause
6070 		 * the array to appear non-idle, and resync will slow
6071 		 * down.
6072 		 * If there is a lot of outstanding resync activity when
6073 		 * we set last_event to curr_events, then all that activity
6074 		 * completing might cause the array to appear non-idle
6075 		 * and resync will be slowed down even though there might
6076 		 * not have been non-resync activity.  This will only
6077 		 * happen once though.  'last_events' will soon reflect
6078 		 * the state where there is little or no outstanding
6079 		 * resync requests, and further resync activity will
6080 		 * always make curr_events less than last_events.
6081 		 *
6082 		 */
6083 		if (init || curr_events - rdev->last_events > 64) {
6084 			rdev->last_events = curr_events;
6085 			idle = 0;
6086 		}
6087 	}
6088 	rcu_read_unlock();
6089 	return idle;
6090 }
6091 
6092 void md_done_sync(mddev_t *mddev, int blocks, int ok)
6093 {
6094 	/* another "blocks" (512byte) blocks have been synced */
6095 	atomic_sub(blocks, &mddev->recovery_active);
6096 	wake_up(&mddev->recovery_wait);
6097 	if (!ok) {
6098 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6099 		md_wakeup_thread(mddev->thread);
6100 		// stop recovery, signal do_sync ....
6101 	}
6102 }
6103 
6104 
6105 /* md_write_start(mddev, bi)
6106  * If we need to update some array metadata (e.g. 'active' flag
6107  * in superblock) before writing, schedule a superblock update
6108  * and wait for it to complete.
6109  */
6110 void md_write_start(mddev_t *mddev, struct bio *bi)
6111 {
6112 	int did_change = 0;
6113 	if (bio_data_dir(bi) != WRITE)
6114 		return;
6115 
6116 	BUG_ON(mddev->ro == 1);
6117 	if (mddev->ro == 2) {
6118 		/* need to switch to read/write */
6119 		mddev->ro = 0;
6120 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6121 		md_wakeup_thread(mddev->thread);
6122 		md_wakeup_thread(mddev->sync_thread);
6123 		did_change = 1;
6124 	}
6125 	atomic_inc(&mddev->writes_pending);
6126 	if (mddev->safemode == 1)
6127 		mddev->safemode = 0;
6128 	if (mddev->in_sync) {
6129 		spin_lock_irq(&mddev->write_lock);
6130 		if (mddev->in_sync) {
6131 			mddev->in_sync = 0;
6132 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6133 			md_wakeup_thread(mddev->thread);
6134 			did_change = 1;
6135 		}
6136 		spin_unlock_irq(&mddev->write_lock);
6137 	}
6138 	if (did_change)
6139 		sysfs_notify_dirent(mddev->sysfs_state);
6140 	wait_event(mddev->sb_wait,
6141 		   !test_bit(MD_CHANGE_CLEAN, &mddev->flags) &&
6142 		   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6143 }
6144 
6145 void md_write_end(mddev_t *mddev)
6146 {
6147 	if (atomic_dec_and_test(&mddev->writes_pending)) {
6148 		if (mddev->safemode == 2)
6149 			md_wakeup_thread(mddev->thread);
6150 		else if (mddev->safemode_delay)
6151 			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
6152 	}
6153 }
6154 
6155 /* md_allow_write(mddev)
6156  * Calling this ensures that the array is marked 'active' so that writes
6157  * may proceed without blocking.  It is important to call this before
6158  * attempting a GFP_KERNEL allocation while holding the mddev lock.
6159  * Must be called with mddev_lock held.
6160  *
6161  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
6162  * is dropped, so return -EAGAIN after notifying userspace.
6163  */
6164 int md_allow_write(mddev_t *mddev)
6165 {
6166 	if (!mddev->pers)
6167 		return 0;
6168 	if (mddev->ro)
6169 		return 0;
6170 	if (!mddev->pers->sync_request)
6171 		return 0;
6172 
6173 	spin_lock_irq(&mddev->write_lock);
6174 	if (mddev->in_sync) {
6175 		mddev->in_sync = 0;
6176 		set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6177 		if (mddev->safemode_delay &&
6178 		    mddev->safemode == 0)
6179 			mddev->safemode = 1;
6180 		spin_unlock_irq(&mddev->write_lock);
6181 		md_update_sb(mddev, 0);
6182 		sysfs_notify_dirent(mddev->sysfs_state);
6183 	} else
6184 		spin_unlock_irq(&mddev->write_lock);
6185 
6186 	if (test_bit(MD_CHANGE_CLEAN, &mddev->flags))
6187 		return -EAGAIN;
6188 	else
6189 		return 0;
6190 }
6191 EXPORT_SYMBOL_GPL(md_allow_write);
6192 
6193 #define SYNC_MARKS	10
6194 #define	SYNC_MARK_STEP	(3*HZ)
6195 void md_do_sync(mddev_t *mddev)
6196 {
6197 	mddev_t *mddev2;
6198 	unsigned int currspeed = 0,
6199 		 window;
6200 	sector_t max_sectors,j, io_sectors;
6201 	unsigned long mark[SYNC_MARKS];
6202 	sector_t mark_cnt[SYNC_MARKS];
6203 	int last_mark,m;
6204 	struct list_head *tmp;
6205 	sector_t last_check;
6206 	int skipped = 0;
6207 	mdk_rdev_t *rdev;
6208 	char *desc;
6209 
6210 	/* just incase thread restarts... */
6211 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
6212 		return;
6213 	if (mddev->ro) /* never try to sync a read-only array */
6214 		return;
6215 
6216 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6217 		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
6218 			desc = "data-check";
6219 		else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6220 			desc = "requested-resync";
6221 		else
6222 			desc = "resync";
6223 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6224 		desc = "reshape";
6225 	else
6226 		desc = "recovery";
6227 
6228 	/* we overload curr_resync somewhat here.
6229 	 * 0 == not engaged in resync at all
6230 	 * 2 == checking that there is no conflict with another sync
6231 	 * 1 == like 2, but have yielded to allow conflicting resync to
6232 	 *		commense
6233 	 * other == active in resync - this many blocks
6234 	 *
6235 	 * Before starting a resync we must have set curr_resync to
6236 	 * 2, and then checked that every "conflicting" array has curr_resync
6237 	 * less than ours.  When we find one that is the same or higher
6238 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
6239 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
6240 	 * This will mean we have to start checking from the beginning again.
6241 	 *
6242 	 */
6243 
6244 	do {
6245 		mddev->curr_resync = 2;
6246 
6247 	try_again:
6248 		if (kthread_should_stop()) {
6249 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6250 			goto skip;
6251 		}
6252 		for_each_mddev(mddev2, tmp) {
6253 			if (mddev2 == mddev)
6254 				continue;
6255 			if (!mddev->parallel_resync
6256 			&&  mddev2->curr_resync
6257 			&&  match_mddev_units(mddev, mddev2)) {
6258 				DEFINE_WAIT(wq);
6259 				if (mddev < mddev2 && mddev->curr_resync == 2) {
6260 					/* arbitrarily yield */
6261 					mddev->curr_resync = 1;
6262 					wake_up(&resync_wait);
6263 				}
6264 				if (mddev > mddev2 && mddev->curr_resync == 1)
6265 					/* no need to wait here, we can wait the next
6266 					 * time 'round when curr_resync == 2
6267 					 */
6268 					continue;
6269 				/* We need to wait 'interruptible' so as not to
6270 				 * contribute to the load average, and not to
6271 				 * be caught by 'softlockup'
6272 				 */
6273 				prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
6274 				if (!kthread_should_stop() &&
6275 				    mddev2->curr_resync >= mddev->curr_resync) {
6276 					printk(KERN_INFO "md: delaying %s of %s"
6277 					       " until %s has finished (they"
6278 					       " share one or more physical units)\n",
6279 					       desc, mdname(mddev), mdname(mddev2));
6280 					mddev_put(mddev2);
6281 					if (signal_pending(current))
6282 						flush_signals(current);
6283 					schedule();
6284 					finish_wait(&resync_wait, &wq);
6285 					goto try_again;
6286 				}
6287 				finish_wait(&resync_wait, &wq);
6288 			}
6289 		}
6290 	} while (mddev->curr_resync < 2);
6291 
6292 	j = 0;
6293 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6294 		/* resync follows the size requested by the personality,
6295 		 * which defaults to physical size, but can be virtual size
6296 		 */
6297 		max_sectors = mddev->resync_max_sectors;
6298 		mddev->resync_mismatches = 0;
6299 		/* we don't use the checkpoint if there's a bitmap */
6300 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6301 			j = mddev->resync_min;
6302 		else if (!mddev->bitmap)
6303 			j = mddev->recovery_cp;
6304 
6305 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6306 		max_sectors = mddev->dev_sectors;
6307 	else {
6308 		/* recovery follows the physical size of devices */
6309 		max_sectors = mddev->dev_sectors;
6310 		j = MaxSector;
6311 		list_for_each_entry(rdev, &mddev->disks, same_set)
6312 			if (rdev->raid_disk >= 0 &&
6313 			    !test_bit(Faulty, &rdev->flags) &&
6314 			    !test_bit(In_sync, &rdev->flags) &&
6315 			    rdev->recovery_offset < j)
6316 				j = rdev->recovery_offset;
6317 	}
6318 
6319 	printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
6320 	printk(KERN_INFO "md: minimum _guaranteed_  speed:"
6321 		" %d KB/sec/disk.\n", speed_min(mddev));
6322 	printk(KERN_INFO "md: using maximum available idle IO bandwidth "
6323 	       "(but not more than %d KB/sec) for %s.\n",
6324 	       speed_max(mddev), desc);
6325 
6326 	is_mddev_idle(mddev, 1); /* this initializes IO event counters */
6327 
6328 	io_sectors = 0;
6329 	for (m = 0; m < SYNC_MARKS; m++) {
6330 		mark[m] = jiffies;
6331 		mark_cnt[m] = io_sectors;
6332 	}
6333 	last_mark = 0;
6334 	mddev->resync_mark = mark[last_mark];
6335 	mddev->resync_mark_cnt = mark_cnt[last_mark];
6336 
6337 	/*
6338 	 * Tune reconstruction:
6339 	 */
6340 	window = 32*(PAGE_SIZE/512);
6341 	printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
6342 		window/2,(unsigned long long) max_sectors/2);
6343 
6344 	atomic_set(&mddev->recovery_active, 0);
6345 	last_check = 0;
6346 
6347 	if (j>2) {
6348 		printk(KERN_INFO
6349 		       "md: resuming %s of %s from checkpoint.\n",
6350 		       desc, mdname(mddev));
6351 		mddev->curr_resync = j;
6352 	}
6353 
6354 	while (j < max_sectors) {
6355 		sector_t sectors;
6356 
6357 		skipped = 0;
6358 
6359 		if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
6360 		    ((mddev->curr_resync > mddev->curr_resync_completed &&
6361 		      (mddev->curr_resync - mddev->curr_resync_completed)
6362 		      > (max_sectors >> 4)) ||
6363 		     (j - mddev->curr_resync_completed)*2
6364 		     >= mddev->resync_max - mddev->curr_resync_completed
6365 			    )) {
6366 			/* time to update curr_resync_completed */
6367 			blk_unplug(mddev->queue);
6368 			wait_event(mddev->recovery_wait,
6369 				   atomic_read(&mddev->recovery_active) == 0);
6370 			mddev->curr_resync_completed =
6371 				mddev->curr_resync;
6372 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6373 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
6374 		}
6375 
6376 		while (j >= mddev->resync_max && !kthread_should_stop()) {
6377 			/* As this condition is controlled by user-space,
6378 			 * we can block indefinitely, so use '_interruptible'
6379 			 * to avoid triggering warnings.
6380 			 */
6381 			flush_signals(current); /* just in case */
6382 			wait_event_interruptible(mddev->recovery_wait,
6383 						 mddev->resync_max > j
6384 						 || kthread_should_stop());
6385 		}
6386 
6387 		if (kthread_should_stop())
6388 			goto interrupted;
6389 
6390 		sectors = mddev->pers->sync_request(mddev, j, &skipped,
6391 						  currspeed < speed_min(mddev));
6392 		if (sectors == 0) {
6393 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6394 			goto out;
6395 		}
6396 
6397 		if (!skipped) { /* actual IO requested */
6398 			io_sectors += sectors;
6399 			atomic_add(sectors, &mddev->recovery_active);
6400 		}
6401 
6402 		j += sectors;
6403 		if (j>1) mddev->curr_resync = j;
6404 		mddev->curr_mark_cnt = io_sectors;
6405 		if (last_check == 0)
6406 			/* this is the earliers that rebuilt will be
6407 			 * visible in /proc/mdstat
6408 			 */
6409 			md_new_event(mddev);
6410 
6411 		if (last_check + window > io_sectors || j == max_sectors)
6412 			continue;
6413 
6414 		last_check = io_sectors;
6415 
6416 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6417 			break;
6418 
6419 	repeat:
6420 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
6421 			/* step marks */
6422 			int next = (last_mark+1) % SYNC_MARKS;
6423 
6424 			mddev->resync_mark = mark[next];
6425 			mddev->resync_mark_cnt = mark_cnt[next];
6426 			mark[next] = jiffies;
6427 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
6428 			last_mark = next;
6429 		}
6430 
6431 
6432 		if (kthread_should_stop())
6433 			goto interrupted;
6434 
6435 
6436 		/*
6437 		 * this loop exits only if either when we are slower than
6438 		 * the 'hard' speed limit, or the system was IO-idle for
6439 		 * a jiffy.
6440 		 * the system might be non-idle CPU-wise, but we only care
6441 		 * about not overloading the IO subsystem. (things like an
6442 		 * e2fsck being done on the RAID array should execute fast)
6443 		 */
6444 		blk_unplug(mddev->queue);
6445 		cond_resched();
6446 
6447 		currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
6448 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
6449 
6450 		if (currspeed > speed_min(mddev)) {
6451 			if ((currspeed > speed_max(mddev)) ||
6452 					!is_mddev_idle(mddev, 0)) {
6453 				msleep(500);
6454 				goto repeat;
6455 			}
6456 		}
6457 	}
6458 	printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
6459 	/*
6460 	 * this also signals 'finished resyncing' to md_stop
6461 	 */
6462  out:
6463 	blk_unplug(mddev->queue);
6464 
6465 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
6466 
6467 	/* tell personality that we are finished */
6468 	mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
6469 
6470 	if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
6471 	    mddev->curr_resync > 2) {
6472 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6473 			if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6474 				if (mddev->curr_resync >= mddev->recovery_cp) {
6475 					printk(KERN_INFO
6476 					       "md: checkpointing %s of %s.\n",
6477 					       desc, mdname(mddev));
6478 					mddev->recovery_cp = mddev->curr_resync;
6479 				}
6480 			} else
6481 				mddev->recovery_cp = MaxSector;
6482 		} else {
6483 			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6484 				mddev->curr_resync = MaxSector;
6485 			list_for_each_entry(rdev, &mddev->disks, same_set)
6486 				if (rdev->raid_disk >= 0 &&
6487 				    !test_bit(Faulty, &rdev->flags) &&
6488 				    !test_bit(In_sync, &rdev->flags) &&
6489 				    rdev->recovery_offset < mddev->curr_resync)
6490 					rdev->recovery_offset = mddev->curr_resync;
6491 		}
6492 	}
6493 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
6494 
6495  skip:
6496 	mddev->curr_resync = 0;
6497 	mddev->curr_resync_completed = 0;
6498 	mddev->resync_min = 0;
6499 	mddev->resync_max = MaxSector;
6500 	sysfs_notify(&mddev->kobj, NULL, "sync_completed");
6501 	wake_up(&resync_wait);
6502 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
6503 	md_wakeup_thread(mddev->thread);
6504 	return;
6505 
6506  interrupted:
6507 	/*
6508 	 * got a signal, exit.
6509 	 */
6510 	printk(KERN_INFO
6511 	       "md: md_do_sync() got signal ... exiting\n");
6512 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6513 	goto out;
6514 
6515 }
6516 EXPORT_SYMBOL_GPL(md_do_sync);
6517 
6518 
6519 static int remove_and_add_spares(mddev_t *mddev)
6520 {
6521 	mdk_rdev_t *rdev;
6522 	int spares = 0;
6523 
6524 	mddev->curr_resync_completed = 0;
6525 
6526 	list_for_each_entry(rdev, &mddev->disks, same_set)
6527 		if (rdev->raid_disk >= 0 &&
6528 		    !test_bit(Blocked, &rdev->flags) &&
6529 		    (test_bit(Faulty, &rdev->flags) ||
6530 		     ! test_bit(In_sync, &rdev->flags)) &&
6531 		    atomic_read(&rdev->nr_pending)==0) {
6532 			if (mddev->pers->hot_remove_disk(
6533 				    mddev, rdev->raid_disk)==0) {
6534 				char nm[20];
6535 				sprintf(nm,"rd%d", rdev->raid_disk);
6536 				sysfs_remove_link(&mddev->kobj, nm);
6537 				rdev->raid_disk = -1;
6538 			}
6539 		}
6540 
6541 	if (mddev->degraded && ! mddev->ro && !mddev->recovery_disabled) {
6542 		list_for_each_entry(rdev, &mddev->disks, same_set) {
6543 			if (rdev->raid_disk >= 0 &&
6544 			    !test_bit(In_sync, &rdev->flags) &&
6545 			    !test_bit(Blocked, &rdev->flags))
6546 				spares++;
6547 			if (rdev->raid_disk < 0
6548 			    && !test_bit(Faulty, &rdev->flags)) {
6549 				rdev->recovery_offset = 0;
6550 				if (mddev->pers->
6551 				    hot_add_disk(mddev, rdev) == 0) {
6552 					char nm[20];
6553 					sprintf(nm, "rd%d", rdev->raid_disk);
6554 					if (sysfs_create_link(&mddev->kobj,
6555 							      &rdev->kobj, nm))
6556 						printk(KERN_WARNING
6557 						       "md: cannot register "
6558 						       "%s for %s\n",
6559 						       nm, mdname(mddev));
6560 					spares++;
6561 					md_new_event(mddev);
6562 				} else
6563 					break;
6564 			}
6565 		}
6566 	}
6567 	return spares;
6568 }
6569 /*
6570  * This routine is regularly called by all per-raid-array threads to
6571  * deal with generic issues like resync and super-block update.
6572  * Raid personalities that don't have a thread (linear/raid0) do not
6573  * need this as they never do any recovery or update the superblock.
6574  *
6575  * It does not do any resync itself, but rather "forks" off other threads
6576  * to do that as needed.
6577  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
6578  * "->recovery" and create a thread at ->sync_thread.
6579  * When the thread finishes it sets MD_RECOVERY_DONE
6580  * and wakeups up this thread which will reap the thread and finish up.
6581  * This thread also removes any faulty devices (with nr_pending == 0).
6582  *
6583  * The overall approach is:
6584  *  1/ if the superblock needs updating, update it.
6585  *  2/ If a recovery thread is running, don't do anything else.
6586  *  3/ If recovery has finished, clean up, possibly marking spares active.
6587  *  4/ If there are any faulty devices, remove them.
6588  *  5/ If array is degraded, try to add spares devices
6589  *  6/ If array has spares or is not in-sync, start a resync thread.
6590  */
6591 void md_check_recovery(mddev_t *mddev)
6592 {
6593 	mdk_rdev_t *rdev;
6594 
6595 
6596 	if (mddev->bitmap)
6597 		bitmap_daemon_work(mddev->bitmap);
6598 
6599 	if (mddev->ro)
6600 		return;
6601 
6602 	if (signal_pending(current)) {
6603 		if (mddev->pers->sync_request && !mddev->external) {
6604 			printk(KERN_INFO "md: %s in immediate safe mode\n",
6605 			       mdname(mddev));
6606 			mddev->safemode = 2;
6607 		}
6608 		flush_signals(current);
6609 	}
6610 
6611 	if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
6612 		return;
6613 	if ( ! (
6614 		(mddev->flags && !mddev->external) ||
6615 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
6616 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
6617 		(mddev->external == 0 && mddev->safemode == 1) ||
6618 		(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
6619 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
6620 		))
6621 		return;
6622 
6623 	if (mddev_trylock(mddev)) {
6624 		int spares = 0;
6625 
6626 		if (mddev->ro) {
6627 			/* Only thing we do on a ro array is remove
6628 			 * failed devices.
6629 			 */
6630 			remove_and_add_spares(mddev);
6631 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6632 			goto unlock;
6633 		}
6634 
6635 		if (!mddev->external) {
6636 			int did_change = 0;
6637 			spin_lock_irq(&mddev->write_lock);
6638 			if (mddev->safemode &&
6639 			    !atomic_read(&mddev->writes_pending) &&
6640 			    !mddev->in_sync &&
6641 			    mddev->recovery_cp == MaxSector) {
6642 				mddev->in_sync = 1;
6643 				did_change = 1;
6644 				if (mddev->persistent)
6645 					set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6646 			}
6647 			if (mddev->safemode == 1)
6648 				mddev->safemode = 0;
6649 			spin_unlock_irq(&mddev->write_lock);
6650 			if (did_change)
6651 				sysfs_notify_dirent(mddev->sysfs_state);
6652 		}
6653 
6654 		if (mddev->flags)
6655 			md_update_sb(mddev, 0);
6656 
6657 		list_for_each_entry(rdev, &mddev->disks, same_set)
6658 			if (test_and_clear_bit(StateChanged, &rdev->flags))
6659 				sysfs_notify_dirent(rdev->sysfs_state);
6660 
6661 
6662 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
6663 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
6664 			/* resync/recovery still happening */
6665 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6666 			goto unlock;
6667 		}
6668 		if (mddev->sync_thread) {
6669 			/* resync has finished, collect result */
6670 			md_unregister_thread(mddev->sync_thread);
6671 			mddev->sync_thread = NULL;
6672 			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
6673 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
6674 				/* success...*/
6675 				/* activate any spares */
6676 				if (mddev->pers->spare_active(mddev))
6677 					sysfs_notify(&mddev->kobj, NULL,
6678 						     "degraded");
6679 			}
6680 			if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
6681 			    mddev->pers->finish_reshape)
6682 				mddev->pers->finish_reshape(mddev);
6683 			md_update_sb(mddev, 1);
6684 
6685 			/* if array is no-longer degraded, then any saved_raid_disk
6686 			 * information must be scrapped
6687 			 */
6688 			if (!mddev->degraded)
6689 				list_for_each_entry(rdev, &mddev->disks, same_set)
6690 					rdev->saved_raid_disk = -1;
6691 
6692 			mddev->recovery = 0;
6693 			/* flag recovery needed just to double check */
6694 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6695 			sysfs_notify_dirent(mddev->sysfs_action);
6696 			md_new_event(mddev);
6697 			goto unlock;
6698 		}
6699 		/* Set RUNNING before clearing NEEDED to avoid
6700 		 * any transients in the value of "sync_action".
6701 		 */
6702 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6703 		clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6704 		/* Clear some bits that don't mean anything, but
6705 		 * might be left set
6706 		 */
6707 		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
6708 		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
6709 
6710 		if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
6711 			goto unlock;
6712 		/* no recovery is running.
6713 		 * remove any failed drives, then
6714 		 * add spares if possible.
6715 		 * Spare are also removed and re-added, to allow
6716 		 * the personality to fail the re-add.
6717 		 */
6718 
6719 		if (mddev->reshape_position != MaxSector) {
6720 			if (mddev->pers->check_reshape == NULL ||
6721 			    mddev->pers->check_reshape(mddev) != 0)
6722 				/* Cannot proceed */
6723 				goto unlock;
6724 			set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6725 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6726 		} else if ((spares = remove_and_add_spares(mddev))) {
6727 			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6728 			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6729 			clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
6730 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6731 		} else if (mddev->recovery_cp < MaxSector) {
6732 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6733 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6734 		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
6735 			/* nothing to be done ... */
6736 			goto unlock;
6737 
6738 		if (mddev->pers->sync_request) {
6739 			if (spares && mddev->bitmap && ! mddev->bitmap->file) {
6740 				/* We are adding a device or devices to an array
6741 				 * which has the bitmap stored on all devices.
6742 				 * So make sure all bitmap pages get written
6743 				 */
6744 				bitmap_write_all(mddev->bitmap);
6745 			}
6746 			mddev->sync_thread = md_register_thread(md_do_sync,
6747 								mddev,
6748 								"%s_resync");
6749 			if (!mddev->sync_thread) {
6750 				printk(KERN_ERR "%s: could not start resync"
6751 					" thread...\n",
6752 					mdname(mddev));
6753 				/* leave the spares where they are, it shouldn't hurt */
6754 				mddev->recovery = 0;
6755 			} else
6756 				md_wakeup_thread(mddev->sync_thread);
6757 			sysfs_notify_dirent(mddev->sysfs_action);
6758 			md_new_event(mddev);
6759 		}
6760 	unlock:
6761 		if (!mddev->sync_thread) {
6762 			clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6763 			if (test_and_clear_bit(MD_RECOVERY_RECOVER,
6764 					       &mddev->recovery))
6765 				if (mddev->sysfs_action)
6766 					sysfs_notify_dirent(mddev->sysfs_action);
6767 		}
6768 		mddev_unlock(mddev);
6769 	}
6770 }
6771 
6772 void md_wait_for_blocked_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
6773 {
6774 	sysfs_notify_dirent(rdev->sysfs_state);
6775 	wait_event_timeout(rdev->blocked_wait,
6776 			   !test_bit(Blocked, &rdev->flags),
6777 			   msecs_to_jiffies(5000));
6778 	rdev_dec_pending(rdev, mddev);
6779 }
6780 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
6781 
6782 static int md_notify_reboot(struct notifier_block *this,
6783 			    unsigned long code, void *x)
6784 {
6785 	struct list_head *tmp;
6786 	mddev_t *mddev;
6787 
6788 	if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
6789 
6790 		printk(KERN_INFO "md: stopping all md devices.\n");
6791 
6792 		for_each_mddev(mddev, tmp)
6793 			if (mddev_trylock(mddev)) {
6794 				/* Force a switch to readonly even array
6795 				 * appears to still be in use.  Hence
6796 				 * the '100'.
6797 				 */
6798 				do_md_stop(mddev, 1, 100);
6799 				mddev_unlock(mddev);
6800 			}
6801 		/*
6802 		 * certain more exotic SCSI devices are known to be
6803 		 * volatile wrt too early system reboots. While the
6804 		 * right place to handle this issue is the given
6805 		 * driver, we do want to have a safe RAID driver ...
6806 		 */
6807 		mdelay(1000*1);
6808 	}
6809 	return NOTIFY_DONE;
6810 }
6811 
6812 static struct notifier_block md_notifier = {
6813 	.notifier_call	= md_notify_reboot,
6814 	.next		= NULL,
6815 	.priority	= INT_MAX, /* before any real devices */
6816 };
6817 
6818 static void md_geninit(void)
6819 {
6820 	dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
6821 
6822 	proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
6823 }
6824 
6825 static int __init md_init(void)
6826 {
6827 	if (register_blkdev(MD_MAJOR, "md"))
6828 		return -1;
6829 	if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
6830 		unregister_blkdev(MD_MAJOR, "md");
6831 		return -1;
6832 	}
6833 	blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
6834 			    md_probe, NULL, NULL);
6835 	blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
6836 			    md_probe, NULL, NULL);
6837 
6838 	register_reboot_notifier(&md_notifier);
6839 	raid_table_header = register_sysctl_table(raid_root_table);
6840 
6841 	md_geninit();
6842 	return 0;
6843 }
6844 
6845 
6846 #ifndef MODULE
6847 
6848 /*
6849  * Searches all registered partitions for autorun RAID arrays
6850  * at boot time.
6851  */
6852 
6853 static LIST_HEAD(all_detected_devices);
6854 struct detected_devices_node {
6855 	struct list_head list;
6856 	dev_t dev;
6857 };
6858 
6859 void md_autodetect_dev(dev_t dev)
6860 {
6861 	struct detected_devices_node *node_detected_dev;
6862 
6863 	node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
6864 	if (node_detected_dev) {
6865 		node_detected_dev->dev = dev;
6866 		list_add_tail(&node_detected_dev->list, &all_detected_devices);
6867 	} else {
6868 		printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
6869 			", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
6870 	}
6871 }
6872 
6873 
6874 static void autostart_arrays(int part)
6875 {
6876 	mdk_rdev_t *rdev;
6877 	struct detected_devices_node *node_detected_dev;
6878 	dev_t dev;
6879 	int i_scanned, i_passed;
6880 
6881 	i_scanned = 0;
6882 	i_passed = 0;
6883 
6884 	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
6885 
6886 	while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
6887 		i_scanned++;
6888 		node_detected_dev = list_entry(all_detected_devices.next,
6889 					struct detected_devices_node, list);
6890 		list_del(&node_detected_dev->list);
6891 		dev = node_detected_dev->dev;
6892 		kfree(node_detected_dev);
6893 		rdev = md_import_device(dev,0, 90);
6894 		if (IS_ERR(rdev))
6895 			continue;
6896 
6897 		if (test_bit(Faulty, &rdev->flags)) {
6898 			MD_BUG();
6899 			continue;
6900 		}
6901 		set_bit(AutoDetected, &rdev->flags);
6902 		list_add(&rdev->same_set, &pending_raid_disks);
6903 		i_passed++;
6904 	}
6905 
6906 	printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
6907 						i_scanned, i_passed);
6908 
6909 	autorun_devices(part);
6910 }
6911 
6912 #endif /* !MODULE */
6913 
6914 static __exit void md_exit(void)
6915 {
6916 	mddev_t *mddev;
6917 	struct list_head *tmp;
6918 
6919 	blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
6920 	blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
6921 
6922 	unregister_blkdev(MD_MAJOR,"md");
6923 	unregister_blkdev(mdp_major, "mdp");
6924 	unregister_reboot_notifier(&md_notifier);
6925 	unregister_sysctl_table(raid_table_header);
6926 	remove_proc_entry("mdstat", NULL);
6927 	for_each_mddev(mddev, tmp) {
6928 		export_array(mddev);
6929 		mddev->hold_active = 0;
6930 	}
6931 }
6932 
6933 subsys_initcall(md_init);
6934 module_exit(md_exit)
6935 
6936 static int get_ro(char *buffer, struct kernel_param *kp)
6937 {
6938 	return sprintf(buffer, "%d", start_readonly);
6939 }
6940 static int set_ro(const char *val, struct kernel_param *kp)
6941 {
6942 	char *e;
6943 	int num = simple_strtoul(val, &e, 10);
6944 	if (*val && (*e == '\0' || *e == '\n')) {
6945 		start_readonly = num;
6946 		return 0;
6947 	}
6948 	return -EINVAL;
6949 }
6950 
6951 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
6952 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
6953 
6954 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
6955 
6956 EXPORT_SYMBOL(register_md_personality);
6957 EXPORT_SYMBOL(unregister_md_personality);
6958 EXPORT_SYMBOL(md_error);
6959 EXPORT_SYMBOL(md_done_sync);
6960 EXPORT_SYMBOL(md_write_start);
6961 EXPORT_SYMBOL(md_write_end);
6962 EXPORT_SYMBOL(md_register_thread);
6963 EXPORT_SYMBOL(md_unregister_thread);
6964 EXPORT_SYMBOL(md_wakeup_thread);
6965 EXPORT_SYMBOL(md_check_recovery);
6966 MODULE_LICENSE("GPL");
6967 MODULE_ALIAS("md");
6968 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
6969