1 /* 2 md.c : Multiple Devices driver for Linux 3 Copyright (C) 1998, 1999, 2000 Ingo Molnar 4 5 completely rewritten, based on the MD driver code from Marc Zyngier 6 7 Changes: 8 9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar 10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> 11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> 12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su> 13 - kmod support by: Cyrus Durgin 14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> 15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> 16 17 - lots of fixes and improvements to the RAID1/RAID5 and generic 18 RAID code (such as request based resynchronization): 19 20 Neil Brown <neilb@cse.unsw.edu.au>. 21 22 - persistent bitmap code 23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. 24 25 This program is free software; you can redistribute it and/or modify 26 it under the terms of the GNU General Public License as published by 27 the Free Software Foundation; either version 2, or (at your option) 28 any later version. 29 30 You should have received a copy of the GNU General Public License 31 (for example /usr/src/linux/COPYING); if not, write to the Free 32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 33 */ 34 35 #include <linux/kthread.h> 36 #include <linux/blkdev.h> 37 #include <linux/sysctl.h> 38 #include <linux/seq_file.h> 39 #include <linux/fs.h> 40 #include <linux/poll.h> 41 #include <linux/ctype.h> 42 #include <linux/string.h> 43 #include <linux/hdreg.h> 44 #include <linux/proc_fs.h> 45 #include <linux/random.h> 46 #include <linux/module.h> 47 #include <linux/reboot.h> 48 #include <linux/file.h> 49 #include <linux/compat.h> 50 #include <linux/delay.h> 51 #include <linux/raid/md_p.h> 52 #include <linux/raid/md_u.h> 53 #include <linux/slab.h> 54 #include "md.h" 55 #include "bitmap.h" 56 57 #ifndef MODULE 58 static void autostart_arrays(int part); 59 #endif 60 61 /* pers_list is a list of registered personalities protected 62 * by pers_lock. 63 * pers_lock does extra service to protect accesses to 64 * mddev->thread when the mutex cannot be held. 65 */ 66 static LIST_HEAD(pers_list); 67 static DEFINE_SPINLOCK(pers_lock); 68 69 static void md_print_devices(void); 70 71 static DECLARE_WAIT_QUEUE_HEAD(resync_wait); 72 static struct workqueue_struct *md_wq; 73 static struct workqueue_struct *md_misc_wq; 74 75 static int remove_and_add_spares(struct mddev *mddev, 76 struct md_rdev *this); 77 78 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); } 79 80 /* 81 * Default number of read corrections we'll attempt on an rdev 82 * before ejecting it from the array. We divide the read error 83 * count by 2 for every hour elapsed between read errors. 84 */ 85 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20 86 /* 87 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' 88 * is 1000 KB/sec, so the extra system load does not show up that much. 89 * Increase it if you want to have more _guaranteed_ speed. Note that 90 * the RAID driver will use the maximum available bandwidth if the IO 91 * subsystem is idle. There is also an 'absolute maximum' reconstruction 92 * speed limit - in case reconstruction slows down your system despite 93 * idle IO detection. 94 * 95 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. 96 * or /sys/block/mdX/md/sync_speed_{min,max} 97 */ 98 99 static int sysctl_speed_limit_min = 1000; 100 static int sysctl_speed_limit_max = 200000; 101 static inline int speed_min(struct mddev *mddev) 102 { 103 return mddev->sync_speed_min ? 104 mddev->sync_speed_min : sysctl_speed_limit_min; 105 } 106 107 static inline int speed_max(struct mddev *mddev) 108 { 109 return mddev->sync_speed_max ? 110 mddev->sync_speed_max : sysctl_speed_limit_max; 111 } 112 113 static struct ctl_table_header *raid_table_header; 114 115 static ctl_table raid_table[] = { 116 { 117 .procname = "speed_limit_min", 118 .data = &sysctl_speed_limit_min, 119 .maxlen = sizeof(int), 120 .mode = S_IRUGO|S_IWUSR, 121 .proc_handler = proc_dointvec, 122 }, 123 { 124 .procname = "speed_limit_max", 125 .data = &sysctl_speed_limit_max, 126 .maxlen = sizeof(int), 127 .mode = S_IRUGO|S_IWUSR, 128 .proc_handler = proc_dointvec, 129 }, 130 { } 131 }; 132 133 static ctl_table raid_dir_table[] = { 134 { 135 .procname = "raid", 136 .maxlen = 0, 137 .mode = S_IRUGO|S_IXUGO, 138 .child = raid_table, 139 }, 140 { } 141 }; 142 143 static ctl_table raid_root_table[] = { 144 { 145 .procname = "dev", 146 .maxlen = 0, 147 .mode = 0555, 148 .child = raid_dir_table, 149 }, 150 { } 151 }; 152 153 static const struct block_device_operations md_fops; 154 155 static int start_readonly; 156 157 /* bio_clone_mddev 158 * like bio_clone, but with a local bio set 159 */ 160 161 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs, 162 struct mddev *mddev) 163 { 164 struct bio *b; 165 166 if (!mddev || !mddev->bio_set) 167 return bio_alloc(gfp_mask, nr_iovecs); 168 169 b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set); 170 if (!b) 171 return NULL; 172 return b; 173 } 174 EXPORT_SYMBOL_GPL(bio_alloc_mddev); 175 176 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask, 177 struct mddev *mddev) 178 { 179 if (!mddev || !mddev->bio_set) 180 return bio_clone(bio, gfp_mask); 181 182 return bio_clone_bioset(bio, gfp_mask, mddev->bio_set); 183 } 184 EXPORT_SYMBOL_GPL(bio_clone_mddev); 185 186 void md_trim_bio(struct bio *bio, int offset, int size) 187 { 188 /* 'bio' is a cloned bio which we need to trim to match 189 * the given offset and size. 190 * This requires adjusting bi_sector, bi_size, and bi_io_vec 191 */ 192 int i; 193 struct bio_vec *bvec; 194 int sofar = 0; 195 196 size <<= 9; 197 if (offset == 0 && size == bio->bi_size) 198 return; 199 200 clear_bit(BIO_SEG_VALID, &bio->bi_flags); 201 202 bio_advance(bio, offset << 9); 203 204 bio->bi_size = size; 205 206 /* avoid any complications with bi_idx being non-zero*/ 207 if (bio->bi_idx) { 208 memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx, 209 (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec)); 210 bio->bi_vcnt -= bio->bi_idx; 211 bio->bi_idx = 0; 212 } 213 /* Make sure vcnt and last bv are not too big */ 214 bio_for_each_segment(bvec, bio, i) { 215 if (sofar + bvec->bv_len > size) 216 bvec->bv_len = size - sofar; 217 if (bvec->bv_len == 0) { 218 bio->bi_vcnt = i; 219 break; 220 } 221 sofar += bvec->bv_len; 222 } 223 } 224 EXPORT_SYMBOL_GPL(md_trim_bio); 225 226 /* 227 * We have a system wide 'event count' that is incremented 228 * on any 'interesting' event, and readers of /proc/mdstat 229 * can use 'poll' or 'select' to find out when the event 230 * count increases. 231 * 232 * Events are: 233 * start array, stop array, error, add device, remove device, 234 * start build, activate spare 235 */ 236 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); 237 static atomic_t md_event_count; 238 void md_new_event(struct mddev *mddev) 239 { 240 atomic_inc(&md_event_count); 241 wake_up(&md_event_waiters); 242 } 243 EXPORT_SYMBOL_GPL(md_new_event); 244 245 /* Alternate version that can be called from interrupts 246 * when calling sysfs_notify isn't needed. 247 */ 248 static void md_new_event_inintr(struct mddev *mddev) 249 { 250 atomic_inc(&md_event_count); 251 wake_up(&md_event_waiters); 252 } 253 254 /* 255 * Enables to iterate over all existing md arrays 256 * all_mddevs_lock protects this list. 257 */ 258 static LIST_HEAD(all_mddevs); 259 static DEFINE_SPINLOCK(all_mddevs_lock); 260 261 262 /* 263 * iterates through all used mddevs in the system. 264 * We take care to grab the all_mddevs_lock whenever navigating 265 * the list, and to always hold a refcount when unlocked. 266 * Any code which breaks out of this loop while own 267 * a reference to the current mddev and must mddev_put it. 268 */ 269 #define for_each_mddev(_mddev,_tmp) \ 270 \ 271 for (({ spin_lock(&all_mddevs_lock); \ 272 _tmp = all_mddevs.next; \ 273 _mddev = NULL;}); \ 274 ({ if (_tmp != &all_mddevs) \ 275 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\ 276 spin_unlock(&all_mddevs_lock); \ 277 if (_mddev) mddev_put(_mddev); \ 278 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \ 279 _tmp != &all_mddevs;}); \ 280 ({ spin_lock(&all_mddevs_lock); \ 281 _tmp = _tmp->next;}) \ 282 ) 283 284 285 /* Rather than calling directly into the personality make_request function, 286 * IO requests come here first so that we can check if the device is 287 * being suspended pending a reconfiguration. 288 * We hold a refcount over the call to ->make_request. By the time that 289 * call has finished, the bio has been linked into some internal structure 290 * and so is visible to ->quiesce(), so we don't need the refcount any more. 291 */ 292 static void md_make_request(struct request_queue *q, struct bio *bio) 293 { 294 const int rw = bio_data_dir(bio); 295 struct mddev *mddev = q->queuedata; 296 int cpu; 297 unsigned int sectors; 298 299 if (mddev == NULL || mddev->pers == NULL 300 || !mddev->ready) { 301 bio_io_error(bio); 302 return; 303 } 304 if (mddev->ro == 1 && unlikely(rw == WRITE)) { 305 bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS); 306 return; 307 } 308 smp_rmb(); /* Ensure implications of 'active' are visible */ 309 rcu_read_lock(); 310 if (mddev->suspended) { 311 DEFINE_WAIT(__wait); 312 for (;;) { 313 prepare_to_wait(&mddev->sb_wait, &__wait, 314 TASK_UNINTERRUPTIBLE); 315 if (!mddev->suspended) 316 break; 317 rcu_read_unlock(); 318 schedule(); 319 rcu_read_lock(); 320 } 321 finish_wait(&mddev->sb_wait, &__wait); 322 } 323 atomic_inc(&mddev->active_io); 324 rcu_read_unlock(); 325 326 /* 327 * save the sectors now since our bio can 328 * go away inside make_request 329 */ 330 sectors = bio_sectors(bio); 331 mddev->pers->make_request(mddev, bio); 332 333 cpu = part_stat_lock(); 334 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]); 335 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors); 336 part_stat_unlock(); 337 338 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended) 339 wake_up(&mddev->sb_wait); 340 } 341 342 /* mddev_suspend makes sure no new requests are submitted 343 * to the device, and that any requests that have been submitted 344 * are completely handled. 345 * Once ->stop is called and completes, the module will be completely 346 * unused. 347 */ 348 void mddev_suspend(struct mddev *mddev) 349 { 350 BUG_ON(mddev->suspended); 351 mddev->suspended = 1; 352 synchronize_rcu(); 353 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0); 354 mddev->pers->quiesce(mddev, 1); 355 356 del_timer_sync(&mddev->safemode_timer); 357 } 358 EXPORT_SYMBOL_GPL(mddev_suspend); 359 360 void mddev_resume(struct mddev *mddev) 361 { 362 mddev->suspended = 0; 363 wake_up(&mddev->sb_wait); 364 mddev->pers->quiesce(mddev, 0); 365 366 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 367 md_wakeup_thread(mddev->thread); 368 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 369 } 370 EXPORT_SYMBOL_GPL(mddev_resume); 371 372 int mddev_congested(struct mddev *mddev, int bits) 373 { 374 return mddev->suspended; 375 } 376 EXPORT_SYMBOL(mddev_congested); 377 378 /* 379 * Generic flush handling for md 380 */ 381 382 static void md_end_flush(struct bio *bio, int err) 383 { 384 struct md_rdev *rdev = bio->bi_private; 385 struct mddev *mddev = rdev->mddev; 386 387 rdev_dec_pending(rdev, mddev); 388 389 if (atomic_dec_and_test(&mddev->flush_pending)) { 390 /* The pre-request flush has finished */ 391 queue_work(md_wq, &mddev->flush_work); 392 } 393 bio_put(bio); 394 } 395 396 static void md_submit_flush_data(struct work_struct *ws); 397 398 static void submit_flushes(struct work_struct *ws) 399 { 400 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 401 struct md_rdev *rdev; 402 403 INIT_WORK(&mddev->flush_work, md_submit_flush_data); 404 atomic_set(&mddev->flush_pending, 1); 405 rcu_read_lock(); 406 rdev_for_each_rcu(rdev, mddev) 407 if (rdev->raid_disk >= 0 && 408 !test_bit(Faulty, &rdev->flags)) { 409 /* Take two references, one is dropped 410 * when request finishes, one after 411 * we reclaim rcu_read_lock 412 */ 413 struct bio *bi; 414 atomic_inc(&rdev->nr_pending); 415 atomic_inc(&rdev->nr_pending); 416 rcu_read_unlock(); 417 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev); 418 bi->bi_end_io = md_end_flush; 419 bi->bi_private = rdev; 420 bi->bi_bdev = rdev->bdev; 421 atomic_inc(&mddev->flush_pending); 422 submit_bio(WRITE_FLUSH, bi); 423 rcu_read_lock(); 424 rdev_dec_pending(rdev, mddev); 425 } 426 rcu_read_unlock(); 427 if (atomic_dec_and_test(&mddev->flush_pending)) 428 queue_work(md_wq, &mddev->flush_work); 429 } 430 431 static void md_submit_flush_data(struct work_struct *ws) 432 { 433 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 434 struct bio *bio = mddev->flush_bio; 435 436 if (bio->bi_size == 0) 437 /* an empty barrier - all done */ 438 bio_endio(bio, 0); 439 else { 440 bio->bi_rw &= ~REQ_FLUSH; 441 mddev->pers->make_request(mddev, bio); 442 } 443 444 mddev->flush_bio = NULL; 445 wake_up(&mddev->sb_wait); 446 } 447 448 void md_flush_request(struct mddev *mddev, struct bio *bio) 449 { 450 spin_lock_irq(&mddev->write_lock); 451 wait_event_lock_irq(mddev->sb_wait, 452 !mddev->flush_bio, 453 mddev->write_lock); 454 mddev->flush_bio = bio; 455 spin_unlock_irq(&mddev->write_lock); 456 457 INIT_WORK(&mddev->flush_work, submit_flushes); 458 queue_work(md_wq, &mddev->flush_work); 459 } 460 EXPORT_SYMBOL(md_flush_request); 461 462 void md_unplug(struct blk_plug_cb *cb, bool from_schedule) 463 { 464 struct mddev *mddev = cb->data; 465 md_wakeup_thread(mddev->thread); 466 kfree(cb); 467 } 468 EXPORT_SYMBOL(md_unplug); 469 470 static inline struct mddev *mddev_get(struct mddev *mddev) 471 { 472 atomic_inc(&mddev->active); 473 return mddev; 474 } 475 476 static void mddev_delayed_delete(struct work_struct *ws); 477 478 static void mddev_put(struct mddev *mddev) 479 { 480 struct bio_set *bs = NULL; 481 482 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) 483 return; 484 if (!mddev->raid_disks && list_empty(&mddev->disks) && 485 mddev->ctime == 0 && !mddev->hold_active) { 486 /* Array is not configured at all, and not held active, 487 * so destroy it */ 488 list_del_init(&mddev->all_mddevs); 489 bs = mddev->bio_set; 490 mddev->bio_set = NULL; 491 if (mddev->gendisk) { 492 /* We did a probe so need to clean up. Call 493 * queue_work inside the spinlock so that 494 * flush_workqueue() after mddev_find will 495 * succeed in waiting for the work to be done. 496 */ 497 INIT_WORK(&mddev->del_work, mddev_delayed_delete); 498 queue_work(md_misc_wq, &mddev->del_work); 499 } else 500 kfree(mddev); 501 } 502 spin_unlock(&all_mddevs_lock); 503 if (bs) 504 bioset_free(bs); 505 } 506 507 void mddev_init(struct mddev *mddev) 508 { 509 mutex_init(&mddev->open_mutex); 510 mutex_init(&mddev->reconfig_mutex); 511 mutex_init(&mddev->bitmap_info.mutex); 512 INIT_LIST_HEAD(&mddev->disks); 513 INIT_LIST_HEAD(&mddev->all_mddevs); 514 init_timer(&mddev->safemode_timer); 515 atomic_set(&mddev->active, 1); 516 atomic_set(&mddev->openers, 0); 517 atomic_set(&mddev->active_io, 0); 518 spin_lock_init(&mddev->write_lock); 519 atomic_set(&mddev->flush_pending, 0); 520 init_waitqueue_head(&mddev->sb_wait); 521 init_waitqueue_head(&mddev->recovery_wait); 522 mddev->reshape_position = MaxSector; 523 mddev->reshape_backwards = 0; 524 mddev->last_sync_action = "none"; 525 mddev->resync_min = 0; 526 mddev->resync_max = MaxSector; 527 mddev->level = LEVEL_NONE; 528 } 529 EXPORT_SYMBOL_GPL(mddev_init); 530 531 static struct mddev * mddev_find(dev_t unit) 532 { 533 struct mddev *mddev, *new = NULL; 534 535 if (unit && MAJOR(unit) != MD_MAJOR) 536 unit &= ~((1<<MdpMinorShift)-1); 537 538 retry: 539 spin_lock(&all_mddevs_lock); 540 541 if (unit) { 542 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 543 if (mddev->unit == unit) { 544 mddev_get(mddev); 545 spin_unlock(&all_mddevs_lock); 546 kfree(new); 547 return mddev; 548 } 549 550 if (new) { 551 list_add(&new->all_mddevs, &all_mddevs); 552 spin_unlock(&all_mddevs_lock); 553 new->hold_active = UNTIL_IOCTL; 554 return new; 555 } 556 } else if (new) { 557 /* find an unused unit number */ 558 static int next_minor = 512; 559 int start = next_minor; 560 int is_free = 0; 561 int dev = 0; 562 while (!is_free) { 563 dev = MKDEV(MD_MAJOR, next_minor); 564 next_minor++; 565 if (next_minor > MINORMASK) 566 next_minor = 0; 567 if (next_minor == start) { 568 /* Oh dear, all in use. */ 569 spin_unlock(&all_mddevs_lock); 570 kfree(new); 571 return NULL; 572 } 573 574 is_free = 1; 575 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 576 if (mddev->unit == dev) { 577 is_free = 0; 578 break; 579 } 580 } 581 new->unit = dev; 582 new->md_minor = MINOR(dev); 583 new->hold_active = UNTIL_STOP; 584 list_add(&new->all_mddevs, &all_mddevs); 585 spin_unlock(&all_mddevs_lock); 586 return new; 587 } 588 spin_unlock(&all_mddevs_lock); 589 590 new = kzalloc(sizeof(*new), GFP_KERNEL); 591 if (!new) 592 return NULL; 593 594 new->unit = unit; 595 if (MAJOR(unit) == MD_MAJOR) 596 new->md_minor = MINOR(unit); 597 else 598 new->md_minor = MINOR(unit) >> MdpMinorShift; 599 600 mddev_init(new); 601 602 goto retry; 603 } 604 605 static inline int mddev_lock(struct mddev * mddev) 606 { 607 return mutex_lock_interruptible(&mddev->reconfig_mutex); 608 } 609 610 static inline int mddev_is_locked(struct mddev *mddev) 611 { 612 return mutex_is_locked(&mddev->reconfig_mutex); 613 } 614 615 static inline int mddev_trylock(struct mddev * mddev) 616 { 617 return mutex_trylock(&mddev->reconfig_mutex); 618 } 619 620 static struct attribute_group md_redundancy_group; 621 622 static void mddev_unlock(struct mddev * mddev) 623 { 624 if (mddev->to_remove) { 625 /* These cannot be removed under reconfig_mutex as 626 * an access to the files will try to take reconfig_mutex 627 * while holding the file unremovable, which leads to 628 * a deadlock. 629 * So hold set sysfs_active while the remove in happeing, 630 * and anything else which might set ->to_remove or my 631 * otherwise change the sysfs namespace will fail with 632 * -EBUSY if sysfs_active is still set. 633 * We set sysfs_active under reconfig_mutex and elsewhere 634 * test it under the same mutex to ensure its correct value 635 * is seen. 636 */ 637 struct attribute_group *to_remove = mddev->to_remove; 638 mddev->to_remove = NULL; 639 mddev->sysfs_active = 1; 640 mutex_unlock(&mddev->reconfig_mutex); 641 642 if (mddev->kobj.sd) { 643 if (to_remove != &md_redundancy_group) 644 sysfs_remove_group(&mddev->kobj, to_remove); 645 if (mddev->pers == NULL || 646 mddev->pers->sync_request == NULL) { 647 sysfs_remove_group(&mddev->kobj, &md_redundancy_group); 648 if (mddev->sysfs_action) 649 sysfs_put(mddev->sysfs_action); 650 mddev->sysfs_action = NULL; 651 } 652 } 653 mddev->sysfs_active = 0; 654 } else 655 mutex_unlock(&mddev->reconfig_mutex); 656 657 /* As we've dropped the mutex we need a spinlock to 658 * make sure the thread doesn't disappear 659 */ 660 spin_lock(&pers_lock); 661 md_wakeup_thread(mddev->thread); 662 spin_unlock(&pers_lock); 663 } 664 665 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr) 666 { 667 struct md_rdev *rdev; 668 669 rdev_for_each(rdev, mddev) 670 if (rdev->desc_nr == nr) 671 return rdev; 672 673 return NULL; 674 } 675 676 static struct md_rdev *find_rdev_nr_rcu(struct mddev *mddev, int nr) 677 { 678 struct md_rdev *rdev; 679 680 rdev_for_each_rcu(rdev, mddev) 681 if (rdev->desc_nr == nr) 682 return rdev; 683 684 return NULL; 685 } 686 687 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev) 688 { 689 struct md_rdev *rdev; 690 691 rdev_for_each(rdev, mddev) 692 if (rdev->bdev->bd_dev == dev) 693 return rdev; 694 695 return NULL; 696 } 697 698 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev) 699 { 700 struct md_rdev *rdev; 701 702 rdev_for_each_rcu(rdev, mddev) 703 if (rdev->bdev->bd_dev == dev) 704 return rdev; 705 706 return NULL; 707 } 708 709 static struct md_personality *find_pers(int level, char *clevel) 710 { 711 struct md_personality *pers; 712 list_for_each_entry(pers, &pers_list, list) { 713 if (level != LEVEL_NONE && pers->level == level) 714 return pers; 715 if (strcmp(pers->name, clevel)==0) 716 return pers; 717 } 718 return NULL; 719 } 720 721 /* return the offset of the super block in 512byte sectors */ 722 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev) 723 { 724 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512; 725 return MD_NEW_SIZE_SECTORS(num_sectors); 726 } 727 728 static int alloc_disk_sb(struct md_rdev * rdev) 729 { 730 if (rdev->sb_page) 731 MD_BUG(); 732 733 rdev->sb_page = alloc_page(GFP_KERNEL); 734 if (!rdev->sb_page) { 735 printk(KERN_ALERT "md: out of memory.\n"); 736 return -ENOMEM; 737 } 738 739 return 0; 740 } 741 742 void md_rdev_clear(struct md_rdev *rdev) 743 { 744 if (rdev->sb_page) { 745 put_page(rdev->sb_page); 746 rdev->sb_loaded = 0; 747 rdev->sb_page = NULL; 748 rdev->sb_start = 0; 749 rdev->sectors = 0; 750 } 751 if (rdev->bb_page) { 752 put_page(rdev->bb_page); 753 rdev->bb_page = NULL; 754 } 755 kfree(rdev->badblocks.page); 756 rdev->badblocks.page = NULL; 757 } 758 EXPORT_SYMBOL_GPL(md_rdev_clear); 759 760 static void super_written(struct bio *bio, int error) 761 { 762 struct md_rdev *rdev = bio->bi_private; 763 struct mddev *mddev = rdev->mddev; 764 765 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) { 766 printk("md: super_written gets error=%d, uptodate=%d\n", 767 error, test_bit(BIO_UPTODATE, &bio->bi_flags)); 768 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags)); 769 md_error(mddev, rdev); 770 } 771 772 if (atomic_dec_and_test(&mddev->pending_writes)) 773 wake_up(&mddev->sb_wait); 774 bio_put(bio); 775 } 776 777 void md_super_write(struct mddev *mddev, struct md_rdev *rdev, 778 sector_t sector, int size, struct page *page) 779 { 780 /* write first size bytes of page to sector of rdev 781 * Increment mddev->pending_writes before returning 782 * and decrement it on completion, waking up sb_wait 783 * if zero is reached. 784 * If an error occurred, call md_error 785 */ 786 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev); 787 788 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev; 789 bio->bi_sector = sector; 790 bio_add_page(bio, page, size, 0); 791 bio->bi_private = rdev; 792 bio->bi_end_io = super_written; 793 794 atomic_inc(&mddev->pending_writes); 795 submit_bio(WRITE_FLUSH_FUA, bio); 796 } 797 798 void md_super_wait(struct mddev *mddev) 799 { 800 /* wait for all superblock writes that were scheduled to complete */ 801 DEFINE_WAIT(wq); 802 for(;;) { 803 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE); 804 if (atomic_read(&mddev->pending_writes)==0) 805 break; 806 schedule(); 807 } 808 finish_wait(&mddev->sb_wait, &wq); 809 } 810 811 static void bi_complete(struct bio *bio, int error) 812 { 813 complete((struct completion*)bio->bi_private); 814 } 815 816 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size, 817 struct page *page, int rw, bool metadata_op) 818 { 819 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev); 820 struct completion event; 821 int ret; 822 823 rw |= REQ_SYNC; 824 825 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ? 826 rdev->meta_bdev : rdev->bdev; 827 if (metadata_op) 828 bio->bi_sector = sector + rdev->sb_start; 829 else if (rdev->mddev->reshape_position != MaxSector && 830 (rdev->mddev->reshape_backwards == 831 (sector >= rdev->mddev->reshape_position))) 832 bio->bi_sector = sector + rdev->new_data_offset; 833 else 834 bio->bi_sector = sector + rdev->data_offset; 835 bio_add_page(bio, page, size, 0); 836 init_completion(&event); 837 bio->bi_private = &event; 838 bio->bi_end_io = bi_complete; 839 submit_bio(rw, bio); 840 wait_for_completion(&event); 841 842 ret = test_bit(BIO_UPTODATE, &bio->bi_flags); 843 bio_put(bio); 844 return ret; 845 } 846 EXPORT_SYMBOL_GPL(sync_page_io); 847 848 static int read_disk_sb(struct md_rdev * rdev, int size) 849 { 850 char b[BDEVNAME_SIZE]; 851 if (!rdev->sb_page) { 852 MD_BUG(); 853 return -EINVAL; 854 } 855 if (rdev->sb_loaded) 856 return 0; 857 858 859 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true)) 860 goto fail; 861 rdev->sb_loaded = 1; 862 return 0; 863 864 fail: 865 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n", 866 bdevname(rdev->bdev,b)); 867 return -EINVAL; 868 } 869 870 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) 871 { 872 return sb1->set_uuid0 == sb2->set_uuid0 && 873 sb1->set_uuid1 == sb2->set_uuid1 && 874 sb1->set_uuid2 == sb2->set_uuid2 && 875 sb1->set_uuid3 == sb2->set_uuid3; 876 } 877 878 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) 879 { 880 int ret; 881 mdp_super_t *tmp1, *tmp2; 882 883 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); 884 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); 885 886 if (!tmp1 || !tmp2) { 887 ret = 0; 888 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n"); 889 goto abort; 890 } 891 892 *tmp1 = *sb1; 893 *tmp2 = *sb2; 894 895 /* 896 * nr_disks is not constant 897 */ 898 tmp1->nr_disks = 0; 899 tmp2->nr_disks = 0; 900 901 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0); 902 abort: 903 kfree(tmp1); 904 kfree(tmp2); 905 return ret; 906 } 907 908 909 static u32 md_csum_fold(u32 csum) 910 { 911 csum = (csum & 0xffff) + (csum >> 16); 912 return (csum & 0xffff) + (csum >> 16); 913 } 914 915 static unsigned int calc_sb_csum(mdp_super_t * sb) 916 { 917 u64 newcsum = 0; 918 u32 *sb32 = (u32*)sb; 919 int i; 920 unsigned int disk_csum, csum; 921 922 disk_csum = sb->sb_csum; 923 sb->sb_csum = 0; 924 925 for (i = 0; i < MD_SB_BYTES/4 ; i++) 926 newcsum += sb32[i]; 927 csum = (newcsum & 0xffffffff) + (newcsum>>32); 928 929 930 #ifdef CONFIG_ALPHA 931 /* This used to use csum_partial, which was wrong for several 932 * reasons including that different results are returned on 933 * different architectures. It isn't critical that we get exactly 934 * the same return value as before (we always csum_fold before 935 * testing, and that removes any differences). However as we 936 * know that csum_partial always returned a 16bit value on 937 * alphas, do a fold to maximise conformity to previous behaviour. 938 */ 939 sb->sb_csum = md_csum_fold(disk_csum); 940 #else 941 sb->sb_csum = disk_csum; 942 #endif 943 return csum; 944 } 945 946 947 /* 948 * Handle superblock details. 949 * We want to be able to handle multiple superblock formats 950 * so we have a common interface to them all, and an array of 951 * different handlers. 952 * We rely on user-space to write the initial superblock, and support 953 * reading and updating of superblocks. 954 * Interface methods are: 955 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version) 956 * loads and validates a superblock on dev. 957 * if refdev != NULL, compare superblocks on both devices 958 * Return: 959 * 0 - dev has a superblock that is compatible with refdev 960 * 1 - dev has a superblock that is compatible and newer than refdev 961 * so dev should be used as the refdev in future 962 * -EINVAL superblock incompatible or invalid 963 * -othererror e.g. -EIO 964 * 965 * int validate_super(struct mddev *mddev, struct md_rdev *dev) 966 * Verify that dev is acceptable into mddev. 967 * The first time, mddev->raid_disks will be 0, and data from 968 * dev should be merged in. Subsequent calls check that dev 969 * is new enough. Return 0 or -EINVAL 970 * 971 * void sync_super(struct mddev *mddev, struct md_rdev *dev) 972 * Update the superblock for rdev with data in mddev 973 * This does not write to disc. 974 * 975 */ 976 977 struct super_type { 978 char *name; 979 struct module *owner; 980 int (*load_super)(struct md_rdev *rdev, 981 struct md_rdev *refdev, 982 int minor_version); 983 int (*validate_super)(struct mddev *mddev, 984 struct md_rdev *rdev); 985 void (*sync_super)(struct mddev *mddev, 986 struct md_rdev *rdev); 987 unsigned long long (*rdev_size_change)(struct md_rdev *rdev, 988 sector_t num_sectors); 989 int (*allow_new_offset)(struct md_rdev *rdev, 990 unsigned long long new_offset); 991 }; 992 993 /* 994 * Check that the given mddev has no bitmap. 995 * 996 * This function is called from the run method of all personalities that do not 997 * support bitmaps. It prints an error message and returns non-zero if mddev 998 * has a bitmap. Otherwise, it returns 0. 999 * 1000 */ 1001 int md_check_no_bitmap(struct mddev *mddev) 1002 { 1003 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset) 1004 return 0; 1005 printk(KERN_ERR "%s: bitmaps are not supported for %s\n", 1006 mdname(mddev), mddev->pers->name); 1007 return 1; 1008 } 1009 EXPORT_SYMBOL(md_check_no_bitmap); 1010 1011 /* 1012 * load_super for 0.90.0 1013 */ 1014 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1015 { 1016 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1017 mdp_super_t *sb; 1018 int ret; 1019 1020 /* 1021 * Calculate the position of the superblock (512byte sectors), 1022 * it's at the end of the disk. 1023 * 1024 * It also happens to be a multiple of 4Kb. 1025 */ 1026 rdev->sb_start = calc_dev_sboffset(rdev); 1027 1028 ret = read_disk_sb(rdev, MD_SB_BYTES); 1029 if (ret) return ret; 1030 1031 ret = -EINVAL; 1032 1033 bdevname(rdev->bdev, b); 1034 sb = page_address(rdev->sb_page); 1035 1036 if (sb->md_magic != MD_SB_MAGIC) { 1037 printk(KERN_ERR "md: invalid raid superblock magic on %s\n", 1038 b); 1039 goto abort; 1040 } 1041 1042 if (sb->major_version != 0 || 1043 sb->minor_version < 90 || 1044 sb->minor_version > 91) { 1045 printk(KERN_WARNING "Bad version number %d.%d on %s\n", 1046 sb->major_version, sb->minor_version, 1047 b); 1048 goto abort; 1049 } 1050 1051 if (sb->raid_disks <= 0) 1052 goto abort; 1053 1054 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) { 1055 printk(KERN_WARNING "md: invalid superblock checksum on %s\n", 1056 b); 1057 goto abort; 1058 } 1059 1060 rdev->preferred_minor = sb->md_minor; 1061 rdev->data_offset = 0; 1062 rdev->new_data_offset = 0; 1063 rdev->sb_size = MD_SB_BYTES; 1064 rdev->badblocks.shift = -1; 1065 1066 if (sb->level == LEVEL_MULTIPATH) 1067 rdev->desc_nr = -1; 1068 else 1069 rdev->desc_nr = sb->this_disk.number; 1070 1071 if (!refdev) { 1072 ret = 1; 1073 } else { 1074 __u64 ev1, ev2; 1075 mdp_super_t *refsb = page_address(refdev->sb_page); 1076 if (!uuid_equal(refsb, sb)) { 1077 printk(KERN_WARNING "md: %s has different UUID to %s\n", 1078 b, bdevname(refdev->bdev,b2)); 1079 goto abort; 1080 } 1081 if (!sb_equal(refsb, sb)) { 1082 printk(KERN_WARNING "md: %s has same UUID" 1083 " but different superblock to %s\n", 1084 b, bdevname(refdev->bdev, b2)); 1085 goto abort; 1086 } 1087 ev1 = md_event(sb); 1088 ev2 = md_event(refsb); 1089 if (ev1 > ev2) 1090 ret = 1; 1091 else 1092 ret = 0; 1093 } 1094 rdev->sectors = rdev->sb_start; 1095 /* Limit to 4TB as metadata cannot record more than that. 1096 * (not needed for Linear and RAID0 as metadata doesn't 1097 * record this size) 1098 */ 1099 if (rdev->sectors >= (2ULL << 32) && sb->level >= 1) 1100 rdev->sectors = (2ULL << 32) - 2; 1101 1102 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1) 1103 /* "this cannot possibly happen" ... */ 1104 ret = -EINVAL; 1105 1106 abort: 1107 return ret; 1108 } 1109 1110 /* 1111 * validate_super for 0.90.0 1112 */ 1113 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev) 1114 { 1115 mdp_disk_t *desc; 1116 mdp_super_t *sb = page_address(rdev->sb_page); 1117 __u64 ev1 = md_event(sb); 1118 1119 rdev->raid_disk = -1; 1120 clear_bit(Faulty, &rdev->flags); 1121 clear_bit(In_sync, &rdev->flags); 1122 clear_bit(WriteMostly, &rdev->flags); 1123 1124 if (mddev->raid_disks == 0) { 1125 mddev->major_version = 0; 1126 mddev->minor_version = sb->minor_version; 1127 mddev->patch_version = sb->patch_version; 1128 mddev->external = 0; 1129 mddev->chunk_sectors = sb->chunk_size >> 9; 1130 mddev->ctime = sb->ctime; 1131 mddev->utime = sb->utime; 1132 mddev->level = sb->level; 1133 mddev->clevel[0] = 0; 1134 mddev->layout = sb->layout; 1135 mddev->raid_disks = sb->raid_disks; 1136 mddev->dev_sectors = ((sector_t)sb->size) * 2; 1137 mddev->events = ev1; 1138 mddev->bitmap_info.offset = 0; 1139 mddev->bitmap_info.space = 0; 1140 /* bitmap can use 60 K after the 4K superblocks */ 1141 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 1142 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 1143 mddev->reshape_backwards = 0; 1144 1145 if (mddev->minor_version >= 91) { 1146 mddev->reshape_position = sb->reshape_position; 1147 mddev->delta_disks = sb->delta_disks; 1148 mddev->new_level = sb->new_level; 1149 mddev->new_layout = sb->new_layout; 1150 mddev->new_chunk_sectors = sb->new_chunk >> 9; 1151 if (mddev->delta_disks < 0) 1152 mddev->reshape_backwards = 1; 1153 } else { 1154 mddev->reshape_position = MaxSector; 1155 mddev->delta_disks = 0; 1156 mddev->new_level = mddev->level; 1157 mddev->new_layout = mddev->layout; 1158 mddev->new_chunk_sectors = mddev->chunk_sectors; 1159 } 1160 1161 if (sb->state & (1<<MD_SB_CLEAN)) 1162 mddev->recovery_cp = MaxSector; 1163 else { 1164 if (sb->events_hi == sb->cp_events_hi && 1165 sb->events_lo == sb->cp_events_lo) { 1166 mddev->recovery_cp = sb->recovery_cp; 1167 } else 1168 mddev->recovery_cp = 0; 1169 } 1170 1171 memcpy(mddev->uuid+0, &sb->set_uuid0, 4); 1172 memcpy(mddev->uuid+4, &sb->set_uuid1, 4); 1173 memcpy(mddev->uuid+8, &sb->set_uuid2, 4); 1174 memcpy(mddev->uuid+12,&sb->set_uuid3, 4); 1175 1176 mddev->max_disks = MD_SB_DISKS; 1177 1178 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && 1179 mddev->bitmap_info.file == NULL) { 1180 mddev->bitmap_info.offset = 1181 mddev->bitmap_info.default_offset; 1182 mddev->bitmap_info.space = 1183 mddev->bitmap_info.default_space; 1184 } 1185 1186 } else if (mddev->pers == NULL) { 1187 /* Insist on good event counter while assembling, except 1188 * for spares (which don't need an event count) */ 1189 ++ev1; 1190 if (sb->disks[rdev->desc_nr].state & ( 1191 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))) 1192 if (ev1 < mddev->events) 1193 return -EINVAL; 1194 } else if (mddev->bitmap) { 1195 /* if adding to array with a bitmap, then we can accept an 1196 * older device ... but not too old. 1197 */ 1198 if (ev1 < mddev->bitmap->events_cleared) 1199 return 0; 1200 } else { 1201 if (ev1 < mddev->events) 1202 /* just a hot-add of a new device, leave raid_disk at -1 */ 1203 return 0; 1204 } 1205 1206 if (mddev->level != LEVEL_MULTIPATH) { 1207 desc = sb->disks + rdev->desc_nr; 1208 1209 if (desc->state & (1<<MD_DISK_FAULTY)) 1210 set_bit(Faulty, &rdev->flags); 1211 else if (desc->state & (1<<MD_DISK_SYNC) /* && 1212 desc->raid_disk < mddev->raid_disks */) { 1213 set_bit(In_sync, &rdev->flags); 1214 rdev->raid_disk = desc->raid_disk; 1215 } else if (desc->state & (1<<MD_DISK_ACTIVE)) { 1216 /* active but not in sync implies recovery up to 1217 * reshape position. We don't know exactly where 1218 * that is, so set to zero for now */ 1219 if (mddev->minor_version >= 91) { 1220 rdev->recovery_offset = 0; 1221 rdev->raid_disk = desc->raid_disk; 1222 } 1223 } 1224 if (desc->state & (1<<MD_DISK_WRITEMOSTLY)) 1225 set_bit(WriteMostly, &rdev->flags); 1226 } else /* MULTIPATH are always insync */ 1227 set_bit(In_sync, &rdev->flags); 1228 return 0; 1229 } 1230 1231 /* 1232 * sync_super for 0.90.0 1233 */ 1234 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev) 1235 { 1236 mdp_super_t *sb; 1237 struct md_rdev *rdev2; 1238 int next_spare = mddev->raid_disks; 1239 1240 1241 /* make rdev->sb match mddev data.. 1242 * 1243 * 1/ zero out disks 1244 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); 1245 * 3/ any empty disks < next_spare become removed 1246 * 1247 * disks[0] gets initialised to REMOVED because 1248 * we cannot be sure from other fields if it has 1249 * been initialised or not. 1250 */ 1251 int i; 1252 int active=0, working=0,failed=0,spare=0,nr_disks=0; 1253 1254 rdev->sb_size = MD_SB_BYTES; 1255 1256 sb = page_address(rdev->sb_page); 1257 1258 memset(sb, 0, sizeof(*sb)); 1259 1260 sb->md_magic = MD_SB_MAGIC; 1261 sb->major_version = mddev->major_version; 1262 sb->patch_version = mddev->patch_version; 1263 sb->gvalid_words = 0; /* ignored */ 1264 memcpy(&sb->set_uuid0, mddev->uuid+0, 4); 1265 memcpy(&sb->set_uuid1, mddev->uuid+4, 4); 1266 memcpy(&sb->set_uuid2, mddev->uuid+8, 4); 1267 memcpy(&sb->set_uuid3, mddev->uuid+12,4); 1268 1269 sb->ctime = mddev->ctime; 1270 sb->level = mddev->level; 1271 sb->size = mddev->dev_sectors / 2; 1272 sb->raid_disks = mddev->raid_disks; 1273 sb->md_minor = mddev->md_minor; 1274 sb->not_persistent = 0; 1275 sb->utime = mddev->utime; 1276 sb->state = 0; 1277 sb->events_hi = (mddev->events>>32); 1278 sb->events_lo = (u32)mddev->events; 1279 1280 if (mddev->reshape_position == MaxSector) 1281 sb->minor_version = 90; 1282 else { 1283 sb->minor_version = 91; 1284 sb->reshape_position = mddev->reshape_position; 1285 sb->new_level = mddev->new_level; 1286 sb->delta_disks = mddev->delta_disks; 1287 sb->new_layout = mddev->new_layout; 1288 sb->new_chunk = mddev->new_chunk_sectors << 9; 1289 } 1290 mddev->minor_version = sb->minor_version; 1291 if (mddev->in_sync) 1292 { 1293 sb->recovery_cp = mddev->recovery_cp; 1294 sb->cp_events_hi = (mddev->events>>32); 1295 sb->cp_events_lo = (u32)mddev->events; 1296 if (mddev->recovery_cp == MaxSector) 1297 sb->state = (1<< MD_SB_CLEAN); 1298 } else 1299 sb->recovery_cp = 0; 1300 1301 sb->layout = mddev->layout; 1302 sb->chunk_size = mddev->chunk_sectors << 9; 1303 1304 if (mddev->bitmap && mddev->bitmap_info.file == NULL) 1305 sb->state |= (1<<MD_SB_BITMAP_PRESENT); 1306 1307 sb->disks[0].state = (1<<MD_DISK_REMOVED); 1308 rdev_for_each(rdev2, mddev) { 1309 mdp_disk_t *d; 1310 int desc_nr; 1311 int is_active = test_bit(In_sync, &rdev2->flags); 1312 1313 if (rdev2->raid_disk >= 0 && 1314 sb->minor_version >= 91) 1315 /* we have nowhere to store the recovery_offset, 1316 * but if it is not below the reshape_position, 1317 * we can piggy-back on that. 1318 */ 1319 is_active = 1; 1320 if (rdev2->raid_disk < 0 || 1321 test_bit(Faulty, &rdev2->flags)) 1322 is_active = 0; 1323 if (is_active) 1324 desc_nr = rdev2->raid_disk; 1325 else 1326 desc_nr = next_spare++; 1327 rdev2->desc_nr = desc_nr; 1328 d = &sb->disks[rdev2->desc_nr]; 1329 nr_disks++; 1330 d->number = rdev2->desc_nr; 1331 d->major = MAJOR(rdev2->bdev->bd_dev); 1332 d->minor = MINOR(rdev2->bdev->bd_dev); 1333 if (is_active) 1334 d->raid_disk = rdev2->raid_disk; 1335 else 1336 d->raid_disk = rdev2->desc_nr; /* compatibility */ 1337 if (test_bit(Faulty, &rdev2->flags)) 1338 d->state = (1<<MD_DISK_FAULTY); 1339 else if (is_active) { 1340 d->state = (1<<MD_DISK_ACTIVE); 1341 if (test_bit(In_sync, &rdev2->flags)) 1342 d->state |= (1<<MD_DISK_SYNC); 1343 active++; 1344 working++; 1345 } else { 1346 d->state = 0; 1347 spare++; 1348 working++; 1349 } 1350 if (test_bit(WriteMostly, &rdev2->flags)) 1351 d->state |= (1<<MD_DISK_WRITEMOSTLY); 1352 } 1353 /* now set the "removed" and "faulty" bits on any missing devices */ 1354 for (i=0 ; i < mddev->raid_disks ; i++) { 1355 mdp_disk_t *d = &sb->disks[i]; 1356 if (d->state == 0 && d->number == 0) { 1357 d->number = i; 1358 d->raid_disk = i; 1359 d->state = (1<<MD_DISK_REMOVED); 1360 d->state |= (1<<MD_DISK_FAULTY); 1361 failed++; 1362 } 1363 } 1364 sb->nr_disks = nr_disks; 1365 sb->active_disks = active; 1366 sb->working_disks = working; 1367 sb->failed_disks = failed; 1368 sb->spare_disks = spare; 1369 1370 sb->this_disk = sb->disks[rdev->desc_nr]; 1371 sb->sb_csum = calc_sb_csum(sb); 1372 } 1373 1374 /* 1375 * rdev_size_change for 0.90.0 1376 */ 1377 static unsigned long long 1378 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1379 { 1380 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1381 return 0; /* component must fit device */ 1382 if (rdev->mddev->bitmap_info.offset) 1383 return 0; /* can't move bitmap */ 1384 rdev->sb_start = calc_dev_sboffset(rdev); 1385 if (!num_sectors || num_sectors > rdev->sb_start) 1386 num_sectors = rdev->sb_start; 1387 /* Limit to 4TB as metadata cannot record more than that. 1388 * 4TB == 2^32 KB, or 2*2^32 sectors. 1389 */ 1390 if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1) 1391 num_sectors = (2ULL << 32) - 2; 1392 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1393 rdev->sb_page); 1394 md_super_wait(rdev->mddev); 1395 return num_sectors; 1396 } 1397 1398 static int 1399 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset) 1400 { 1401 /* non-zero offset changes not possible with v0.90 */ 1402 return new_offset == 0; 1403 } 1404 1405 /* 1406 * version 1 superblock 1407 */ 1408 1409 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb) 1410 { 1411 __le32 disk_csum; 1412 u32 csum; 1413 unsigned long long newcsum; 1414 int size = 256 + le32_to_cpu(sb->max_dev)*2; 1415 __le32 *isuper = (__le32*)sb; 1416 1417 disk_csum = sb->sb_csum; 1418 sb->sb_csum = 0; 1419 newcsum = 0; 1420 for (; size >= 4; size -= 4) 1421 newcsum += le32_to_cpu(*isuper++); 1422 1423 if (size == 2) 1424 newcsum += le16_to_cpu(*(__le16*) isuper); 1425 1426 csum = (newcsum & 0xffffffff) + (newcsum >> 32); 1427 sb->sb_csum = disk_csum; 1428 return cpu_to_le32(csum); 1429 } 1430 1431 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors, 1432 int acknowledged); 1433 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1434 { 1435 struct mdp_superblock_1 *sb; 1436 int ret; 1437 sector_t sb_start; 1438 sector_t sectors; 1439 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1440 int bmask; 1441 1442 /* 1443 * Calculate the position of the superblock in 512byte sectors. 1444 * It is always aligned to a 4K boundary and 1445 * depeding on minor_version, it can be: 1446 * 0: At least 8K, but less than 12K, from end of device 1447 * 1: At start of device 1448 * 2: 4K from start of device. 1449 */ 1450 switch(minor_version) { 1451 case 0: 1452 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9; 1453 sb_start -= 8*2; 1454 sb_start &= ~(sector_t)(4*2-1); 1455 break; 1456 case 1: 1457 sb_start = 0; 1458 break; 1459 case 2: 1460 sb_start = 8; 1461 break; 1462 default: 1463 return -EINVAL; 1464 } 1465 rdev->sb_start = sb_start; 1466 1467 /* superblock is rarely larger than 1K, but it can be larger, 1468 * and it is safe to read 4k, so we do that 1469 */ 1470 ret = read_disk_sb(rdev, 4096); 1471 if (ret) return ret; 1472 1473 1474 sb = page_address(rdev->sb_page); 1475 1476 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || 1477 sb->major_version != cpu_to_le32(1) || 1478 le32_to_cpu(sb->max_dev) > (4096-256)/2 || 1479 le64_to_cpu(sb->super_offset) != rdev->sb_start || 1480 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) 1481 return -EINVAL; 1482 1483 if (calc_sb_1_csum(sb) != sb->sb_csum) { 1484 printk("md: invalid superblock checksum on %s\n", 1485 bdevname(rdev->bdev,b)); 1486 return -EINVAL; 1487 } 1488 if (le64_to_cpu(sb->data_size) < 10) { 1489 printk("md: data_size too small on %s\n", 1490 bdevname(rdev->bdev,b)); 1491 return -EINVAL; 1492 } 1493 if (sb->pad0 || 1494 sb->pad3[0] || 1495 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1]))) 1496 /* Some padding is non-zero, might be a new feature */ 1497 return -EINVAL; 1498 1499 rdev->preferred_minor = 0xffff; 1500 rdev->data_offset = le64_to_cpu(sb->data_offset); 1501 rdev->new_data_offset = rdev->data_offset; 1502 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) && 1503 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET)) 1504 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset); 1505 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); 1506 1507 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; 1508 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1509 if (rdev->sb_size & bmask) 1510 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1511 1512 if (minor_version 1513 && rdev->data_offset < sb_start + (rdev->sb_size/512)) 1514 return -EINVAL; 1515 if (minor_version 1516 && rdev->new_data_offset < sb_start + (rdev->sb_size/512)) 1517 return -EINVAL; 1518 1519 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH)) 1520 rdev->desc_nr = -1; 1521 else 1522 rdev->desc_nr = le32_to_cpu(sb->dev_number); 1523 1524 if (!rdev->bb_page) { 1525 rdev->bb_page = alloc_page(GFP_KERNEL); 1526 if (!rdev->bb_page) 1527 return -ENOMEM; 1528 } 1529 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) && 1530 rdev->badblocks.count == 0) { 1531 /* need to load the bad block list. 1532 * Currently we limit it to one page. 1533 */ 1534 s32 offset; 1535 sector_t bb_sector; 1536 u64 *bbp; 1537 int i; 1538 int sectors = le16_to_cpu(sb->bblog_size); 1539 if (sectors > (PAGE_SIZE / 512)) 1540 return -EINVAL; 1541 offset = le32_to_cpu(sb->bblog_offset); 1542 if (offset == 0) 1543 return -EINVAL; 1544 bb_sector = (long long)offset; 1545 if (!sync_page_io(rdev, bb_sector, sectors << 9, 1546 rdev->bb_page, READ, true)) 1547 return -EIO; 1548 bbp = (u64 *)page_address(rdev->bb_page); 1549 rdev->badblocks.shift = sb->bblog_shift; 1550 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) { 1551 u64 bb = le64_to_cpu(*bbp); 1552 int count = bb & (0x3ff); 1553 u64 sector = bb >> 10; 1554 sector <<= sb->bblog_shift; 1555 count <<= sb->bblog_shift; 1556 if (bb + 1 == 0) 1557 break; 1558 if (md_set_badblocks(&rdev->badblocks, 1559 sector, count, 1) == 0) 1560 return -EINVAL; 1561 } 1562 } else if (sb->bblog_offset != 0) 1563 rdev->badblocks.shift = 0; 1564 1565 if (!refdev) { 1566 ret = 1; 1567 } else { 1568 __u64 ev1, ev2; 1569 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page); 1570 1571 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || 1572 sb->level != refsb->level || 1573 sb->layout != refsb->layout || 1574 sb->chunksize != refsb->chunksize) { 1575 printk(KERN_WARNING "md: %s has strangely different" 1576 " superblock to %s\n", 1577 bdevname(rdev->bdev,b), 1578 bdevname(refdev->bdev,b2)); 1579 return -EINVAL; 1580 } 1581 ev1 = le64_to_cpu(sb->events); 1582 ev2 = le64_to_cpu(refsb->events); 1583 1584 if (ev1 > ev2) 1585 ret = 1; 1586 else 1587 ret = 0; 1588 } 1589 if (minor_version) { 1590 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9); 1591 sectors -= rdev->data_offset; 1592 } else 1593 sectors = rdev->sb_start; 1594 if (sectors < le64_to_cpu(sb->data_size)) 1595 return -EINVAL; 1596 rdev->sectors = le64_to_cpu(sb->data_size); 1597 return ret; 1598 } 1599 1600 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev) 1601 { 1602 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 1603 __u64 ev1 = le64_to_cpu(sb->events); 1604 1605 rdev->raid_disk = -1; 1606 clear_bit(Faulty, &rdev->flags); 1607 clear_bit(In_sync, &rdev->flags); 1608 clear_bit(WriteMostly, &rdev->flags); 1609 1610 if (mddev->raid_disks == 0) { 1611 mddev->major_version = 1; 1612 mddev->patch_version = 0; 1613 mddev->external = 0; 1614 mddev->chunk_sectors = le32_to_cpu(sb->chunksize); 1615 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1); 1616 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1); 1617 mddev->level = le32_to_cpu(sb->level); 1618 mddev->clevel[0] = 0; 1619 mddev->layout = le32_to_cpu(sb->layout); 1620 mddev->raid_disks = le32_to_cpu(sb->raid_disks); 1621 mddev->dev_sectors = le64_to_cpu(sb->size); 1622 mddev->events = ev1; 1623 mddev->bitmap_info.offset = 0; 1624 mddev->bitmap_info.space = 0; 1625 /* Default location for bitmap is 1K after superblock 1626 * using 3K - total of 4K 1627 */ 1628 mddev->bitmap_info.default_offset = 1024 >> 9; 1629 mddev->bitmap_info.default_space = (4096-1024) >> 9; 1630 mddev->reshape_backwards = 0; 1631 1632 mddev->recovery_cp = le64_to_cpu(sb->resync_offset); 1633 memcpy(mddev->uuid, sb->set_uuid, 16); 1634 1635 mddev->max_disks = (4096-256)/2; 1636 1637 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && 1638 mddev->bitmap_info.file == NULL) { 1639 mddev->bitmap_info.offset = 1640 (__s32)le32_to_cpu(sb->bitmap_offset); 1641 /* Metadata doesn't record how much space is available. 1642 * For 1.0, we assume we can use up to the superblock 1643 * if before, else to 4K beyond superblock. 1644 * For others, assume no change is possible. 1645 */ 1646 if (mddev->minor_version > 0) 1647 mddev->bitmap_info.space = 0; 1648 else if (mddev->bitmap_info.offset > 0) 1649 mddev->bitmap_info.space = 1650 8 - mddev->bitmap_info.offset; 1651 else 1652 mddev->bitmap_info.space = 1653 -mddev->bitmap_info.offset; 1654 } 1655 1656 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 1657 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 1658 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 1659 mddev->new_level = le32_to_cpu(sb->new_level); 1660 mddev->new_layout = le32_to_cpu(sb->new_layout); 1661 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk); 1662 if (mddev->delta_disks < 0 || 1663 (mddev->delta_disks == 0 && 1664 (le32_to_cpu(sb->feature_map) 1665 & MD_FEATURE_RESHAPE_BACKWARDS))) 1666 mddev->reshape_backwards = 1; 1667 } else { 1668 mddev->reshape_position = MaxSector; 1669 mddev->delta_disks = 0; 1670 mddev->new_level = mddev->level; 1671 mddev->new_layout = mddev->layout; 1672 mddev->new_chunk_sectors = mddev->chunk_sectors; 1673 } 1674 1675 } else if (mddev->pers == NULL) { 1676 /* Insist of good event counter while assembling, except for 1677 * spares (which don't need an event count) */ 1678 ++ev1; 1679 if (rdev->desc_nr >= 0 && 1680 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1681 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe) 1682 if (ev1 < mddev->events) 1683 return -EINVAL; 1684 } else if (mddev->bitmap) { 1685 /* If adding to array with a bitmap, then we can accept an 1686 * older device, but not too old. 1687 */ 1688 if (ev1 < mddev->bitmap->events_cleared) 1689 return 0; 1690 } else { 1691 if (ev1 < mddev->events) 1692 /* just a hot-add of a new device, leave raid_disk at -1 */ 1693 return 0; 1694 } 1695 if (mddev->level != LEVEL_MULTIPATH) { 1696 int role; 1697 if (rdev->desc_nr < 0 || 1698 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) { 1699 role = 0xffff; 1700 rdev->desc_nr = -1; 1701 } else 1702 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 1703 switch(role) { 1704 case 0xffff: /* spare */ 1705 break; 1706 case 0xfffe: /* faulty */ 1707 set_bit(Faulty, &rdev->flags); 1708 break; 1709 default: 1710 if ((le32_to_cpu(sb->feature_map) & 1711 MD_FEATURE_RECOVERY_OFFSET)) 1712 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 1713 else 1714 set_bit(In_sync, &rdev->flags); 1715 rdev->raid_disk = role; 1716 break; 1717 } 1718 if (sb->devflags & WriteMostly1) 1719 set_bit(WriteMostly, &rdev->flags); 1720 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT) 1721 set_bit(Replacement, &rdev->flags); 1722 } else /* MULTIPATH are always insync */ 1723 set_bit(In_sync, &rdev->flags); 1724 1725 return 0; 1726 } 1727 1728 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev) 1729 { 1730 struct mdp_superblock_1 *sb; 1731 struct md_rdev *rdev2; 1732 int max_dev, i; 1733 /* make rdev->sb match mddev and rdev data. */ 1734 1735 sb = page_address(rdev->sb_page); 1736 1737 sb->feature_map = 0; 1738 sb->pad0 = 0; 1739 sb->recovery_offset = cpu_to_le64(0); 1740 memset(sb->pad3, 0, sizeof(sb->pad3)); 1741 1742 sb->utime = cpu_to_le64((__u64)mddev->utime); 1743 sb->events = cpu_to_le64(mddev->events); 1744 if (mddev->in_sync) 1745 sb->resync_offset = cpu_to_le64(mddev->recovery_cp); 1746 else 1747 sb->resync_offset = cpu_to_le64(0); 1748 1749 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); 1750 1751 sb->raid_disks = cpu_to_le32(mddev->raid_disks); 1752 sb->size = cpu_to_le64(mddev->dev_sectors); 1753 sb->chunksize = cpu_to_le32(mddev->chunk_sectors); 1754 sb->level = cpu_to_le32(mddev->level); 1755 sb->layout = cpu_to_le32(mddev->layout); 1756 1757 if (test_bit(WriteMostly, &rdev->flags)) 1758 sb->devflags |= WriteMostly1; 1759 else 1760 sb->devflags &= ~WriteMostly1; 1761 sb->data_offset = cpu_to_le64(rdev->data_offset); 1762 sb->data_size = cpu_to_le64(rdev->sectors); 1763 1764 if (mddev->bitmap && mddev->bitmap_info.file == NULL) { 1765 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset); 1766 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); 1767 } 1768 1769 if (rdev->raid_disk >= 0 && 1770 !test_bit(In_sync, &rdev->flags)) { 1771 sb->feature_map |= 1772 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); 1773 sb->recovery_offset = 1774 cpu_to_le64(rdev->recovery_offset); 1775 } 1776 if (test_bit(Replacement, &rdev->flags)) 1777 sb->feature_map |= 1778 cpu_to_le32(MD_FEATURE_REPLACEMENT); 1779 1780 if (mddev->reshape_position != MaxSector) { 1781 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); 1782 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 1783 sb->new_layout = cpu_to_le32(mddev->new_layout); 1784 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 1785 sb->new_level = cpu_to_le32(mddev->new_level); 1786 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors); 1787 if (mddev->delta_disks == 0 && 1788 mddev->reshape_backwards) 1789 sb->feature_map 1790 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS); 1791 if (rdev->new_data_offset != rdev->data_offset) { 1792 sb->feature_map 1793 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET); 1794 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset 1795 - rdev->data_offset)); 1796 } 1797 } 1798 1799 if (rdev->badblocks.count == 0) 1800 /* Nothing to do for bad blocks*/ ; 1801 else if (sb->bblog_offset == 0) 1802 /* Cannot record bad blocks on this device */ 1803 md_error(mddev, rdev); 1804 else { 1805 struct badblocks *bb = &rdev->badblocks; 1806 u64 *bbp = (u64 *)page_address(rdev->bb_page); 1807 u64 *p = bb->page; 1808 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS); 1809 if (bb->changed) { 1810 unsigned seq; 1811 1812 retry: 1813 seq = read_seqbegin(&bb->lock); 1814 1815 memset(bbp, 0xff, PAGE_SIZE); 1816 1817 for (i = 0 ; i < bb->count ; i++) { 1818 u64 internal_bb = p[i]; 1819 u64 store_bb = ((BB_OFFSET(internal_bb) << 10) 1820 | BB_LEN(internal_bb)); 1821 bbp[i] = cpu_to_le64(store_bb); 1822 } 1823 bb->changed = 0; 1824 if (read_seqretry(&bb->lock, seq)) 1825 goto retry; 1826 1827 bb->sector = (rdev->sb_start + 1828 (int)le32_to_cpu(sb->bblog_offset)); 1829 bb->size = le16_to_cpu(sb->bblog_size); 1830 } 1831 } 1832 1833 max_dev = 0; 1834 rdev_for_each(rdev2, mddev) 1835 if (rdev2->desc_nr+1 > max_dev) 1836 max_dev = rdev2->desc_nr+1; 1837 1838 if (max_dev > le32_to_cpu(sb->max_dev)) { 1839 int bmask; 1840 sb->max_dev = cpu_to_le32(max_dev); 1841 rdev->sb_size = max_dev * 2 + 256; 1842 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1843 if (rdev->sb_size & bmask) 1844 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1845 } else 1846 max_dev = le32_to_cpu(sb->max_dev); 1847 1848 for (i=0; i<max_dev;i++) 1849 sb->dev_roles[i] = cpu_to_le16(0xfffe); 1850 1851 rdev_for_each(rdev2, mddev) { 1852 i = rdev2->desc_nr; 1853 if (test_bit(Faulty, &rdev2->flags)) 1854 sb->dev_roles[i] = cpu_to_le16(0xfffe); 1855 else if (test_bit(In_sync, &rdev2->flags)) 1856 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1857 else if (rdev2->raid_disk >= 0) 1858 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1859 else 1860 sb->dev_roles[i] = cpu_to_le16(0xffff); 1861 } 1862 1863 sb->sb_csum = calc_sb_1_csum(sb); 1864 } 1865 1866 static unsigned long long 1867 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1868 { 1869 struct mdp_superblock_1 *sb; 1870 sector_t max_sectors; 1871 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1872 return 0; /* component must fit device */ 1873 if (rdev->data_offset != rdev->new_data_offset) 1874 return 0; /* too confusing */ 1875 if (rdev->sb_start < rdev->data_offset) { 1876 /* minor versions 1 and 2; superblock before data */ 1877 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9; 1878 max_sectors -= rdev->data_offset; 1879 if (!num_sectors || num_sectors > max_sectors) 1880 num_sectors = max_sectors; 1881 } else if (rdev->mddev->bitmap_info.offset) { 1882 /* minor version 0 with bitmap we can't move */ 1883 return 0; 1884 } else { 1885 /* minor version 0; superblock after data */ 1886 sector_t sb_start; 1887 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2; 1888 sb_start &= ~(sector_t)(4*2 - 1); 1889 max_sectors = rdev->sectors + sb_start - rdev->sb_start; 1890 if (!num_sectors || num_sectors > max_sectors) 1891 num_sectors = max_sectors; 1892 rdev->sb_start = sb_start; 1893 } 1894 sb = page_address(rdev->sb_page); 1895 sb->data_size = cpu_to_le64(num_sectors); 1896 sb->super_offset = rdev->sb_start; 1897 sb->sb_csum = calc_sb_1_csum(sb); 1898 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1899 rdev->sb_page); 1900 md_super_wait(rdev->mddev); 1901 return num_sectors; 1902 1903 } 1904 1905 static int 1906 super_1_allow_new_offset(struct md_rdev *rdev, 1907 unsigned long long new_offset) 1908 { 1909 /* All necessary checks on new >= old have been done */ 1910 struct bitmap *bitmap; 1911 if (new_offset >= rdev->data_offset) 1912 return 1; 1913 1914 /* with 1.0 metadata, there is no metadata to tread on 1915 * so we can always move back */ 1916 if (rdev->mddev->minor_version == 0) 1917 return 1; 1918 1919 /* otherwise we must be sure not to step on 1920 * any metadata, so stay: 1921 * 36K beyond start of superblock 1922 * beyond end of badblocks 1923 * beyond write-intent bitmap 1924 */ 1925 if (rdev->sb_start + (32+4)*2 > new_offset) 1926 return 0; 1927 bitmap = rdev->mddev->bitmap; 1928 if (bitmap && !rdev->mddev->bitmap_info.file && 1929 rdev->sb_start + rdev->mddev->bitmap_info.offset + 1930 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset) 1931 return 0; 1932 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset) 1933 return 0; 1934 1935 return 1; 1936 } 1937 1938 static struct super_type super_types[] = { 1939 [0] = { 1940 .name = "0.90.0", 1941 .owner = THIS_MODULE, 1942 .load_super = super_90_load, 1943 .validate_super = super_90_validate, 1944 .sync_super = super_90_sync, 1945 .rdev_size_change = super_90_rdev_size_change, 1946 .allow_new_offset = super_90_allow_new_offset, 1947 }, 1948 [1] = { 1949 .name = "md-1", 1950 .owner = THIS_MODULE, 1951 .load_super = super_1_load, 1952 .validate_super = super_1_validate, 1953 .sync_super = super_1_sync, 1954 .rdev_size_change = super_1_rdev_size_change, 1955 .allow_new_offset = super_1_allow_new_offset, 1956 }, 1957 }; 1958 1959 static void sync_super(struct mddev *mddev, struct md_rdev *rdev) 1960 { 1961 if (mddev->sync_super) { 1962 mddev->sync_super(mddev, rdev); 1963 return; 1964 } 1965 1966 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types)); 1967 1968 super_types[mddev->major_version].sync_super(mddev, rdev); 1969 } 1970 1971 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2) 1972 { 1973 struct md_rdev *rdev, *rdev2; 1974 1975 rcu_read_lock(); 1976 rdev_for_each_rcu(rdev, mddev1) 1977 rdev_for_each_rcu(rdev2, mddev2) 1978 if (rdev->bdev->bd_contains == 1979 rdev2->bdev->bd_contains) { 1980 rcu_read_unlock(); 1981 return 1; 1982 } 1983 rcu_read_unlock(); 1984 return 0; 1985 } 1986 1987 static LIST_HEAD(pending_raid_disks); 1988 1989 /* 1990 * Try to register data integrity profile for an mddev 1991 * 1992 * This is called when an array is started and after a disk has been kicked 1993 * from the array. It only succeeds if all working and active component devices 1994 * are integrity capable with matching profiles. 1995 */ 1996 int md_integrity_register(struct mddev *mddev) 1997 { 1998 struct md_rdev *rdev, *reference = NULL; 1999 2000 if (list_empty(&mddev->disks)) 2001 return 0; /* nothing to do */ 2002 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk)) 2003 return 0; /* shouldn't register, or already is */ 2004 rdev_for_each(rdev, mddev) { 2005 /* skip spares and non-functional disks */ 2006 if (test_bit(Faulty, &rdev->flags)) 2007 continue; 2008 if (rdev->raid_disk < 0) 2009 continue; 2010 if (!reference) { 2011 /* Use the first rdev as the reference */ 2012 reference = rdev; 2013 continue; 2014 } 2015 /* does this rdev's profile match the reference profile? */ 2016 if (blk_integrity_compare(reference->bdev->bd_disk, 2017 rdev->bdev->bd_disk) < 0) 2018 return -EINVAL; 2019 } 2020 if (!reference || !bdev_get_integrity(reference->bdev)) 2021 return 0; 2022 /* 2023 * All component devices are integrity capable and have matching 2024 * profiles, register the common profile for the md device. 2025 */ 2026 if (blk_integrity_register(mddev->gendisk, 2027 bdev_get_integrity(reference->bdev)) != 0) { 2028 printk(KERN_ERR "md: failed to register integrity for %s\n", 2029 mdname(mddev)); 2030 return -EINVAL; 2031 } 2032 printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev)); 2033 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) { 2034 printk(KERN_ERR "md: failed to create integrity pool for %s\n", 2035 mdname(mddev)); 2036 return -EINVAL; 2037 } 2038 return 0; 2039 } 2040 EXPORT_SYMBOL(md_integrity_register); 2041 2042 /* Disable data integrity if non-capable/non-matching disk is being added */ 2043 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev) 2044 { 2045 struct blk_integrity *bi_rdev; 2046 struct blk_integrity *bi_mddev; 2047 2048 if (!mddev->gendisk) 2049 return; 2050 2051 bi_rdev = bdev_get_integrity(rdev->bdev); 2052 bi_mddev = blk_get_integrity(mddev->gendisk); 2053 2054 if (!bi_mddev) /* nothing to do */ 2055 return; 2056 if (rdev->raid_disk < 0) /* skip spares */ 2057 return; 2058 if (bi_rdev && blk_integrity_compare(mddev->gendisk, 2059 rdev->bdev->bd_disk) >= 0) 2060 return; 2061 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev)); 2062 blk_integrity_unregister(mddev->gendisk); 2063 } 2064 EXPORT_SYMBOL(md_integrity_add_rdev); 2065 2066 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev) 2067 { 2068 char b[BDEVNAME_SIZE]; 2069 struct kobject *ko; 2070 char *s; 2071 int err; 2072 2073 if (rdev->mddev) { 2074 MD_BUG(); 2075 return -EINVAL; 2076 } 2077 2078 /* prevent duplicates */ 2079 if (find_rdev(mddev, rdev->bdev->bd_dev)) 2080 return -EEXIST; 2081 2082 /* make sure rdev->sectors exceeds mddev->dev_sectors */ 2083 if (rdev->sectors && (mddev->dev_sectors == 0 || 2084 rdev->sectors < mddev->dev_sectors)) { 2085 if (mddev->pers) { 2086 /* Cannot change size, so fail 2087 * If mddev->level <= 0, then we don't care 2088 * about aligning sizes (e.g. linear) 2089 */ 2090 if (mddev->level > 0) 2091 return -ENOSPC; 2092 } else 2093 mddev->dev_sectors = rdev->sectors; 2094 } 2095 2096 /* Verify rdev->desc_nr is unique. 2097 * If it is -1, assign a free number, else 2098 * check number is not in use 2099 */ 2100 if (rdev->desc_nr < 0) { 2101 int choice = 0; 2102 if (mddev->pers) choice = mddev->raid_disks; 2103 while (find_rdev_nr(mddev, choice)) 2104 choice++; 2105 rdev->desc_nr = choice; 2106 } else { 2107 if (find_rdev_nr(mddev, rdev->desc_nr)) 2108 return -EBUSY; 2109 } 2110 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) { 2111 printk(KERN_WARNING "md: %s: array is limited to %d devices\n", 2112 mdname(mddev), mddev->max_disks); 2113 return -EBUSY; 2114 } 2115 bdevname(rdev->bdev,b); 2116 while ( (s=strchr(b, '/')) != NULL) 2117 *s = '!'; 2118 2119 rdev->mddev = mddev; 2120 printk(KERN_INFO "md: bind<%s>\n", b); 2121 2122 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b))) 2123 goto fail; 2124 2125 ko = &part_to_dev(rdev->bdev->bd_part)->kobj; 2126 if (sysfs_create_link(&rdev->kobj, ko, "block")) 2127 /* failure here is OK */; 2128 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state"); 2129 2130 list_add_rcu(&rdev->same_set, &mddev->disks); 2131 bd_link_disk_holder(rdev->bdev, mddev->gendisk); 2132 2133 /* May as well allow recovery to be retried once */ 2134 mddev->recovery_disabled++; 2135 2136 return 0; 2137 2138 fail: 2139 printk(KERN_WARNING "md: failed to register dev-%s for %s\n", 2140 b, mdname(mddev)); 2141 return err; 2142 } 2143 2144 static void md_delayed_delete(struct work_struct *ws) 2145 { 2146 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work); 2147 kobject_del(&rdev->kobj); 2148 kobject_put(&rdev->kobj); 2149 } 2150 2151 static void unbind_rdev_from_array(struct md_rdev * rdev) 2152 { 2153 char b[BDEVNAME_SIZE]; 2154 if (!rdev->mddev) { 2155 MD_BUG(); 2156 return; 2157 } 2158 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk); 2159 list_del_rcu(&rdev->same_set); 2160 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b)); 2161 rdev->mddev = NULL; 2162 sysfs_remove_link(&rdev->kobj, "block"); 2163 sysfs_put(rdev->sysfs_state); 2164 rdev->sysfs_state = NULL; 2165 rdev->badblocks.count = 0; 2166 /* We need to delay this, otherwise we can deadlock when 2167 * writing to 'remove' to "dev/state". We also need 2168 * to delay it due to rcu usage. 2169 */ 2170 synchronize_rcu(); 2171 INIT_WORK(&rdev->del_work, md_delayed_delete); 2172 kobject_get(&rdev->kobj); 2173 queue_work(md_misc_wq, &rdev->del_work); 2174 } 2175 2176 /* 2177 * prevent the device from being mounted, repartitioned or 2178 * otherwise reused by a RAID array (or any other kernel 2179 * subsystem), by bd_claiming the device. 2180 */ 2181 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared) 2182 { 2183 int err = 0; 2184 struct block_device *bdev; 2185 char b[BDEVNAME_SIZE]; 2186 2187 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, 2188 shared ? (struct md_rdev *)lock_rdev : rdev); 2189 if (IS_ERR(bdev)) { 2190 printk(KERN_ERR "md: could not open %s.\n", 2191 __bdevname(dev, b)); 2192 return PTR_ERR(bdev); 2193 } 2194 rdev->bdev = bdev; 2195 return err; 2196 } 2197 2198 static void unlock_rdev(struct md_rdev *rdev) 2199 { 2200 struct block_device *bdev = rdev->bdev; 2201 rdev->bdev = NULL; 2202 if (!bdev) 2203 MD_BUG(); 2204 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 2205 } 2206 2207 void md_autodetect_dev(dev_t dev); 2208 2209 static void export_rdev(struct md_rdev * rdev) 2210 { 2211 char b[BDEVNAME_SIZE]; 2212 printk(KERN_INFO "md: export_rdev(%s)\n", 2213 bdevname(rdev->bdev,b)); 2214 if (rdev->mddev) 2215 MD_BUG(); 2216 md_rdev_clear(rdev); 2217 #ifndef MODULE 2218 if (test_bit(AutoDetected, &rdev->flags)) 2219 md_autodetect_dev(rdev->bdev->bd_dev); 2220 #endif 2221 unlock_rdev(rdev); 2222 kobject_put(&rdev->kobj); 2223 } 2224 2225 static void kick_rdev_from_array(struct md_rdev * rdev) 2226 { 2227 unbind_rdev_from_array(rdev); 2228 export_rdev(rdev); 2229 } 2230 2231 static void export_array(struct mddev *mddev) 2232 { 2233 struct md_rdev *rdev, *tmp; 2234 2235 rdev_for_each_safe(rdev, tmp, mddev) { 2236 if (!rdev->mddev) { 2237 MD_BUG(); 2238 continue; 2239 } 2240 kick_rdev_from_array(rdev); 2241 } 2242 if (!list_empty(&mddev->disks)) 2243 MD_BUG(); 2244 mddev->raid_disks = 0; 2245 mddev->major_version = 0; 2246 } 2247 2248 static void print_desc(mdp_disk_t *desc) 2249 { 2250 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number, 2251 desc->major,desc->minor,desc->raid_disk,desc->state); 2252 } 2253 2254 static void print_sb_90(mdp_super_t *sb) 2255 { 2256 int i; 2257 2258 printk(KERN_INFO 2259 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n", 2260 sb->major_version, sb->minor_version, sb->patch_version, 2261 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3, 2262 sb->ctime); 2263 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n", 2264 sb->level, sb->size, sb->nr_disks, sb->raid_disks, 2265 sb->md_minor, sb->layout, sb->chunk_size); 2266 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d" 2267 " FD:%d SD:%d CSUM:%08x E:%08lx\n", 2268 sb->utime, sb->state, sb->active_disks, sb->working_disks, 2269 sb->failed_disks, sb->spare_disks, 2270 sb->sb_csum, (unsigned long)sb->events_lo); 2271 2272 printk(KERN_INFO); 2273 for (i = 0; i < MD_SB_DISKS; i++) { 2274 mdp_disk_t *desc; 2275 2276 desc = sb->disks + i; 2277 if (desc->number || desc->major || desc->minor || 2278 desc->raid_disk || (desc->state && (desc->state != 4))) { 2279 printk(" D %2d: ", i); 2280 print_desc(desc); 2281 } 2282 } 2283 printk(KERN_INFO "md: THIS: "); 2284 print_desc(&sb->this_disk); 2285 } 2286 2287 static void print_sb_1(struct mdp_superblock_1 *sb) 2288 { 2289 __u8 *uuid; 2290 2291 uuid = sb->set_uuid; 2292 printk(KERN_INFO 2293 "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n" 2294 "md: Name: \"%s\" CT:%llu\n", 2295 le32_to_cpu(sb->major_version), 2296 le32_to_cpu(sb->feature_map), 2297 uuid, 2298 sb->set_name, 2299 (unsigned long long)le64_to_cpu(sb->ctime) 2300 & MD_SUPERBLOCK_1_TIME_SEC_MASK); 2301 2302 uuid = sb->device_uuid; 2303 printk(KERN_INFO 2304 "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu" 2305 " RO:%llu\n" 2306 "md: Dev:%08x UUID: %pU\n" 2307 "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n" 2308 "md: (MaxDev:%u) \n", 2309 le32_to_cpu(sb->level), 2310 (unsigned long long)le64_to_cpu(sb->size), 2311 le32_to_cpu(sb->raid_disks), 2312 le32_to_cpu(sb->layout), 2313 le32_to_cpu(sb->chunksize), 2314 (unsigned long long)le64_to_cpu(sb->data_offset), 2315 (unsigned long long)le64_to_cpu(sb->data_size), 2316 (unsigned long long)le64_to_cpu(sb->super_offset), 2317 (unsigned long long)le64_to_cpu(sb->recovery_offset), 2318 le32_to_cpu(sb->dev_number), 2319 uuid, 2320 sb->devflags, 2321 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK, 2322 (unsigned long long)le64_to_cpu(sb->events), 2323 (unsigned long long)le64_to_cpu(sb->resync_offset), 2324 le32_to_cpu(sb->sb_csum), 2325 le32_to_cpu(sb->max_dev) 2326 ); 2327 } 2328 2329 static void print_rdev(struct md_rdev *rdev, int major_version) 2330 { 2331 char b[BDEVNAME_SIZE]; 2332 printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n", 2333 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors, 2334 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags), 2335 rdev->desc_nr); 2336 if (rdev->sb_loaded) { 2337 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version); 2338 switch (major_version) { 2339 case 0: 2340 print_sb_90(page_address(rdev->sb_page)); 2341 break; 2342 case 1: 2343 print_sb_1(page_address(rdev->sb_page)); 2344 break; 2345 } 2346 } else 2347 printk(KERN_INFO "md: no rdev superblock!\n"); 2348 } 2349 2350 static void md_print_devices(void) 2351 { 2352 struct list_head *tmp; 2353 struct md_rdev *rdev; 2354 struct mddev *mddev; 2355 char b[BDEVNAME_SIZE]; 2356 2357 printk("\n"); 2358 printk("md: **********************************\n"); 2359 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n"); 2360 printk("md: **********************************\n"); 2361 for_each_mddev(mddev, tmp) { 2362 2363 if (mddev->bitmap) 2364 bitmap_print_sb(mddev->bitmap); 2365 else 2366 printk("%s: ", mdname(mddev)); 2367 rdev_for_each(rdev, mddev) 2368 printk("<%s>", bdevname(rdev->bdev,b)); 2369 printk("\n"); 2370 2371 rdev_for_each(rdev, mddev) 2372 print_rdev(rdev, mddev->major_version); 2373 } 2374 printk("md: **********************************\n"); 2375 printk("\n"); 2376 } 2377 2378 2379 static void sync_sbs(struct mddev * mddev, int nospares) 2380 { 2381 /* Update each superblock (in-memory image), but 2382 * if we are allowed to, skip spares which already 2383 * have the right event counter, or have one earlier 2384 * (which would mean they aren't being marked as dirty 2385 * with the rest of the array) 2386 */ 2387 struct md_rdev *rdev; 2388 rdev_for_each(rdev, mddev) { 2389 if (rdev->sb_events == mddev->events || 2390 (nospares && 2391 rdev->raid_disk < 0 && 2392 rdev->sb_events+1 == mddev->events)) { 2393 /* Don't update this superblock */ 2394 rdev->sb_loaded = 2; 2395 } else { 2396 sync_super(mddev, rdev); 2397 rdev->sb_loaded = 1; 2398 } 2399 } 2400 } 2401 2402 static void md_update_sb(struct mddev * mddev, int force_change) 2403 { 2404 struct md_rdev *rdev; 2405 int sync_req; 2406 int nospares = 0; 2407 int any_badblocks_changed = 0; 2408 2409 if (mddev->ro) { 2410 if (force_change) 2411 set_bit(MD_CHANGE_DEVS, &mddev->flags); 2412 return; 2413 } 2414 repeat: 2415 /* First make sure individual recovery_offsets are correct */ 2416 rdev_for_each(rdev, mddev) { 2417 if (rdev->raid_disk >= 0 && 2418 mddev->delta_disks >= 0 && 2419 !test_bit(In_sync, &rdev->flags) && 2420 mddev->curr_resync_completed > rdev->recovery_offset) 2421 rdev->recovery_offset = mddev->curr_resync_completed; 2422 2423 } 2424 if (!mddev->persistent) { 2425 clear_bit(MD_CHANGE_CLEAN, &mddev->flags); 2426 clear_bit(MD_CHANGE_DEVS, &mddev->flags); 2427 if (!mddev->external) { 2428 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 2429 rdev_for_each(rdev, mddev) { 2430 if (rdev->badblocks.changed) { 2431 rdev->badblocks.changed = 0; 2432 md_ack_all_badblocks(&rdev->badblocks); 2433 md_error(mddev, rdev); 2434 } 2435 clear_bit(Blocked, &rdev->flags); 2436 clear_bit(BlockedBadBlocks, &rdev->flags); 2437 wake_up(&rdev->blocked_wait); 2438 } 2439 } 2440 wake_up(&mddev->sb_wait); 2441 return; 2442 } 2443 2444 spin_lock_irq(&mddev->write_lock); 2445 2446 mddev->utime = get_seconds(); 2447 2448 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags)) 2449 force_change = 1; 2450 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags)) 2451 /* just a clean<-> dirty transition, possibly leave spares alone, 2452 * though if events isn't the right even/odd, we will have to do 2453 * spares after all 2454 */ 2455 nospares = 1; 2456 if (force_change) 2457 nospares = 0; 2458 if (mddev->degraded) 2459 /* If the array is degraded, then skipping spares is both 2460 * dangerous and fairly pointless. 2461 * Dangerous because a device that was removed from the array 2462 * might have a event_count that still looks up-to-date, 2463 * so it can be re-added without a resync. 2464 * Pointless because if there are any spares to skip, 2465 * then a recovery will happen and soon that array won't 2466 * be degraded any more and the spare can go back to sleep then. 2467 */ 2468 nospares = 0; 2469 2470 sync_req = mddev->in_sync; 2471 2472 /* If this is just a dirty<->clean transition, and the array is clean 2473 * and 'events' is odd, we can roll back to the previous clean state */ 2474 if (nospares 2475 && (mddev->in_sync && mddev->recovery_cp == MaxSector) 2476 && mddev->can_decrease_events 2477 && mddev->events != 1) { 2478 mddev->events--; 2479 mddev->can_decrease_events = 0; 2480 } else { 2481 /* otherwise we have to go forward and ... */ 2482 mddev->events ++; 2483 mddev->can_decrease_events = nospares; 2484 } 2485 2486 if (!mddev->events) { 2487 /* 2488 * oops, this 64-bit counter should never wrap. 2489 * Either we are in around ~1 trillion A.C., assuming 2490 * 1 reboot per second, or we have a bug: 2491 */ 2492 MD_BUG(); 2493 mddev->events --; 2494 } 2495 2496 rdev_for_each(rdev, mddev) { 2497 if (rdev->badblocks.changed) 2498 any_badblocks_changed++; 2499 if (test_bit(Faulty, &rdev->flags)) 2500 set_bit(FaultRecorded, &rdev->flags); 2501 } 2502 2503 sync_sbs(mddev, nospares); 2504 spin_unlock_irq(&mddev->write_lock); 2505 2506 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n", 2507 mdname(mddev), mddev->in_sync); 2508 2509 bitmap_update_sb(mddev->bitmap); 2510 rdev_for_each(rdev, mddev) { 2511 char b[BDEVNAME_SIZE]; 2512 2513 if (rdev->sb_loaded != 1) 2514 continue; /* no noise on spare devices */ 2515 2516 if (!test_bit(Faulty, &rdev->flags) && 2517 rdev->saved_raid_disk == -1) { 2518 md_super_write(mddev,rdev, 2519 rdev->sb_start, rdev->sb_size, 2520 rdev->sb_page); 2521 pr_debug("md: (write) %s's sb offset: %llu\n", 2522 bdevname(rdev->bdev, b), 2523 (unsigned long long)rdev->sb_start); 2524 rdev->sb_events = mddev->events; 2525 if (rdev->badblocks.size) { 2526 md_super_write(mddev, rdev, 2527 rdev->badblocks.sector, 2528 rdev->badblocks.size << 9, 2529 rdev->bb_page); 2530 rdev->badblocks.size = 0; 2531 } 2532 2533 } else if (test_bit(Faulty, &rdev->flags)) 2534 pr_debug("md: %s (skipping faulty)\n", 2535 bdevname(rdev->bdev, b)); 2536 else 2537 pr_debug("(skipping incremental s/r "); 2538 2539 if (mddev->level == LEVEL_MULTIPATH) 2540 /* only need to write one superblock... */ 2541 break; 2542 } 2543 md_super_wait(mddev); 2544 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */ 2545 2546 spin_lock_irq(&mddev->write_lock); 2547 if (mddev->in_sync != sync_req || 2548 test_bit(MD_CHANGE_DEVS, &mddev->flags)) { 2549 /* have to write it out again */ 2550 spin_unlock_irq(&mddev->write_lock); 2551 goto repeat; 2552 } 2553 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 2554 spin_unlock_irq(&mddev->write_lock); 2555 wake_up(&mddev->sb_wait); 2556 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 2557 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 2558 2559 rdev_for_each(rdev, mddev) { 2560 if (test_and_clear_bit(FaultRecorded, &rdev->flags)) 2561 clear_bit(Blocked, &rdev->flags); 2562 2563 if (any_badblocks_changed) 2564 md_ack_all_badblocks(&rdev->badblocks); 2565 clear_bit(BlockedBadBlocks, &rdev->flags); 2566 wake_up(&rdev->blocked_wait); 2567 } 2568 } 2569 2570 /* words written to sysfs files may, or may not, be \n terminated. 2571 * We want to accept with case. For this we use cmd_match. 2572 */ 2573 static int cmd_match(const char *cmd, const char *str) 2574 { 2575 /* See if cmd, written into a sysfs file, matches 2576 * str. They must either be the same, or cmd can 2577 * have a trailing newline 2578 */ 2579 while (*cmd && *str && *cmd == *str) { 2580 cmd++; 2581 str++; 2582 } 2583 if (*cmd == '\n') 2584 cmd++; 2585 if (*str || *cmd) 2586 return 0; 2587 return 1; 2588 } 2589 2590 struct rdev_sysfs_entry { 2591 struct attribute attr; 2592 ssize_t (*show)(struct md_rdev *, char *); 2593 ssize_t (*store)(struct md_rdev *, const char *, size_t); 2594 }; 2595 2596 static ssize_t 2597 state_show(struct md_rdev *rdev, char *page) 2598 { 2599 char *sep = ""; 2600 size_t len = 0; 2601 2602 if (test_bit(Faulty, &rdev->flags) || 2603 rdev->badblocks.unacked_exist) { 2604 len+= sprintf(page+len, "%sfaulty",sep); 2605 sep = ","; 2606 } 2607 if (test_bit(In_sync, &rdev->flags)) { 2608 len += sprintf(page+len, "%sin_sync",sep); 2609 sep = ","; 2610 } 2611 if (test_bit(WriteMostly, &rdev->flags)) { 2612 len += sprintf(page+len, "%swrite_mostly",sep); 2613 sep = ","; 2614 } 2615 if (test_bit(Blocked, &rdev->flags) || 2616 (rdev->badblocks.unacked_exist 2617 && !test_bit(Faulty, &rdev->flags))) { 2618 len += sprintf(page+len, "%sblocked", sep); 2619 sep = ","; 2620 } 2621 if (!test_bit(Faulty, &rdev->flags) && 2622 !test_bit(In_sync, &rdev->flags)) { 2623 len += sprintf(page+len, "%sspare", sep); 2624 sep = ","; 2625 } 2626 if (test_bit(WriteErrorSeen, &rdev->flags)) { 2627 len += sprintf(page+len, "%swrite_error", sep); 2628 sep = ","; 2629 } 2630 if (test_bit(WantReplacement, &rdev->flags)) { 2631 len += sprintf(page+len, "%swant_replacement", sep); 2632 sep = ","; 2633 } 2634 if (test_bit(Replacement, &rdev->flags)) { 2635 len += sprintf(page+len, "%sreplacement", sep); 2636 sep = ","; 2637 } 2638 2639 return len+sprintf(page+len, "\n"); 2640 } 2641 2642 static ssize_t 2643 state_store(struct md_rdev *rdev, const char *buf, size_t len) 2644 { 2645 /* can write 2646 * faulty - simulates an error 2647 * remove - disconnects the device 2648 * writemostly - sets write_mostly 2649 * -writemostly - clears write_mostly 2650 * blocked - sets the Blocked flags 2651 * -blocked - clears the Blocked and possibly simulates an error 2652 * insync - sets Insync providing device isn't active 2653 * write_error - sets WriteErrorSeen 2654 * -write_error - clears WriteErrorSeen 2655 */ 2656 int err = -EINVAL; 2657 if (cmd_match(buf, "faulty") && rdev->mddev->pers) { 2658 md_error(rdev->mddev, rdev); 2659 if (test_bit(Faulty, &rdev->flags)) 2660 err = 0; 2661 else 2662 err = -EBUSY; 2663 } else if (cmd_match(buf, "remove")) { 2664 if (rdev->raid_disk >= 0) 2665 err = -EBUSY; 2666 else { 2667 struct mddev *mddev = rdev->mddev; 2668 kick_rdev_from_array(rdev); 2669 if (mddev->pers) 2670 md_update_sb(mddev, 1); 2671 md_new_event(mddev); 2672 err = 0; 2673 } 2674 } else if (cmd_match(buf, "writemostly")) { 2675 set_bit(WriteMostly, &rdev->flags); 2676 err = 0; 2677 } else if (cmd_match(buf, "-writemostly")) { 2678 clear_bit(WriteMostly, &rdev->flags); 2679 err = 0; 2680 } else if (cmd_match(buf, "blocked")) { 2681 set_bit(Blocked, &rdev->flags); 2682 err = 0; 2683 } else if (cmd_match(buf, "-blocked")) { 2684 if (!test_bit(Faulty, &rdev->flags) && 2685 rdev->badblocks.unacked_exist) { 2686 /* metadata handler doesn't understand badblocks, 2687 * so we need to fail the device 2688 */ 2689 md_error(rdev->mddev, rdev); 2690 } 2691 clear_bit(Blocked, &rdev->flags); 2692 clear_bit(BlockedBadBlocks, &rdev->flags); 2693 wake_up(&rdev->blocked_wait); 2694 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2695 md_wakeup_thread(rdev->mddev->thread); 2696 2697 err = 0; 2698 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) { 2699 set_bit(In_sync, &rdev->flags); 2700 err = 0; 2701 } else if (cmd_match(buf, "write_error")) { 2702 set_bit(WriteErrorSeen, &rdev->flags); 2703 err = 0; 2704 } else if (cmd_match(buf, "-write_error")) { 2705 clear_bit(WriteErrorSeen, &rdev->flags); 2706 err = 0; 2707 } else if (cmd_match(buf, "want_replacement")) { 2708 /* Any non-spare device that is not a replacement can 2709 * become want_replacement at any time, but we then need to 2710 * check if recovery is needed. 2711 */ 2712 if (rdev->raid_disk >= 0 && 2713 !test_bit(Replacement, &rdev->flags)) 2714 set_bit(WantReplacement, &rdev->flags); 2715 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2716 md_wakeup_thread(rdev->mddev->thread); 2717 err = 0; 2718 } else if (cmd_match(buf, "-want_replacement")) { 2719 /* Clearing 'want_replacement' is always allowed. 2720 * Once replacements starts it is too late though. 2721 */ 2722 err = 0; 2723 clear_bit(WantReplacement, &rdev->flags); 2724 } else if (cmd_match(buf, "replacement")) { 2725 /* Can only set a device as a replacement when array has not 2726 * yet been started. Once running, replacement is automatic 2727 * from spares, or by assigning 'slot'. 2728 */ 2729 if (rdev->mddev->pers) 2730 err = -EBUSY; 2731 else { 2732 set_bit(Replacement, &rdev->flags); 2733 err = 0; 2734 } 2735 } else if (cmd_match(buf, "-replacement")) { 2736 /* Similarly, can only clear Replacement before start */ 2737 if (rdev->mddev->pers) 2738 err = -EBUSY; 2739 else { 2740 clear_bit(Replacement, &rdev->flags); 2741 err = 0; 2742 } 2743 } 2744 if (!err) 2745 sysfs_notify_dirent_safe(rdev->sysfs_state); 2746 return err ? err : len; 2747 } 2748 static struct rdev_sysfs_entry rdev_state = 2749 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store); 2750 2751 static ssize_t 2752 errors_show(struct md_rdev *rdev, char *page) 2753 { 2754 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); 2755 } 2756 2757 static ssize_t 2758 errors_store(struct md_rdev *rdev, const char *buf, size_t len) 2759 { 2760 char *e; 2761 unsigned long n = simple_strtoul(buf, &e, 10); 2762 if (*buf && (*e == 0 || *e == '\n')) { 2763 atomic_set(&rdev->corrected_errors, n); 2764 return len; 2765 } 2766 return -EINVAL; 2767 } 2768 static struct rdev_sysfs_entry rdev_errors = 2769 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); 2770 2771 static ssize_t 2772 slot_show(struct md_rdev *rdev, char *page) 2773 { 2774 if (rdev->raid_disk < 0) 2775 return sprintf(page, "none\n"); 2776 else 2777 return sprintf(page, "%d\n", rdev->raid_disk); 2778 } 2779 2780 static ssize_t 2781 slot_store(struct md_rdev *rdev, const char *buf, size_t len) 2782 { 2783 char *e; 2784 int err; 2785 int slot = simple_strtoul(buf, &e, 10); 2786 if (strncmp(buf, "none", 4)==0) 2787 slot = -1; 2788 else if (e==buf || (*e && *e!= '\n')) 2789 return -EINVAL; 2790 if (rdev->mddev->pers && slot == -1) { 2791 /* Setting 'slot' on an active array requires also 2792 * updating the 'rd%d' link, and communicating 2793 * with the personality with ->hot_*_disk. 2794 * For now we only support removing 2795 * failed/spare devices. This normally happens automatically, 2796 * but not when the metadata is externally managed. 2797 */ 2798 if (rdev->raid_disk == -1) 2799 return -EEXIST; 2800 /* personality does all needed checks */ 2801 if (rdev->mddev->pers->hot_remove_disk == NULL) 2802 return -EINVAL; 2803 clear_bit(Blocked, &rdev->flags); 2804 remove_and_add_spares(rdev->mddev, rdev); 2805 if (rdev->raid_disk >= 0) 2806 return -EBUSY; 2807 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2808 md_wakeup_thread(rdev->mddev->thread); 2809 } else if (rdev->mddev->pers) { 2810 /* Activating a spare .. or possibly reactivating 2811 * if we ever get bitmaps working here. 2812 */ 2813 2814 if (rdev->raid_disk != -1) 2815 return -EBUSY; 2816 2817 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery)) 2818 return -EBUSY; 2819 2820 if (rdev->mddev->pers->hot_add_disk == NULL) 2821 return -EINVAL; 2822 2823 if (slot >= rdev->mddev->raid_disks && 2824 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 2825 return -ENOSPC; 2826 2827 rdev->raid_disk = slot; 2828 if (test_bit(In_sync, &rdev->flags)) 2829 rdev->saved_raid_disk = slot; 2830 else 2831 rdev->saved_raid_disk = -1; 2832 clear_bit(In_sync, &rdev->flags); 2833 err = rdev->mddev->pers-> 2834 hot_add_disk(rdev->mddev, rdev); 2835 if (err) { 2836 rdev->raid_disk = -1; 2837 return err; 2838 } else 2839 sysfs_notify_dirent_safe(rdev->sysfs_state); 2840 if (sysfs_link_rdev(rdev->mddev, rdev)) 2841 /* failure here is OK */; 2842 /* don't wakeup anyone, leave that to userspace. */ 2843 } else { 2844 if (slot >= rdev->mddev->raid_disks && 2845 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 2846 return -ENOSPC; 2847 rdev->raid_disk = slot; 2848 /* assume it is working */ 2849 clear_bit(Faulty, &rdev->flags); 2850 clear_bit(WriteMostly, &rdev->flags); 2851 set_bit(In_sync, &rdev->flags); 2852 sysfs_notify_dirent_safe(rdev->sysfs_state); 2853 } 2854 return len; 2855 } 2856 2857 2858 static struct rdev_sysfs_entry rdev_slot = 2859 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); 2860 2861 static ssize_t 2862 offset_show(struct md_rdev *rdev, char *page) 2863 { 2864 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); 2865 } 2866 2867 static ssize_t 2868 offset_store(struct md_rdev *rdev, const char *buf, size_t len) 2869 { 2870 unsigned long long offset; 2871 if (kstrtoull(buf, 10, &offset) < 0) 2872 return -EINVAL; 2873 if (rdev->mddev->pers && rdev->raid_disk >= 0) 2874 return -EBUSY; 2875 if (rdev->sectors && rdev->mddev->external) 2876 /* Must set offset before size, so overlap checks 2877 * can be sane */ 2878 return -EBUSY; 2879 rdev->data_offset = offset; 2880 rdev->new_data_offset = offset; 2881 return len; 2882 } 2883 2884 static struct rdev_sysfs_entry rdev_offset = 2885 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); 2886 2887 static ssize_t new_offset_show(struct md_rdev *rdev, char *page) 2888 { 2889 return sprintf(page, "%llu\n", 2890 (unsigned long long)rdev->new_data_offset); 2891 } 2892 2893 static ssize_t new_offset_store(struct md_rdev *rdev, 2894 const char *buf, size_t len) 2895 { 2896 unsigned long long new_offset; 2897 struct mddev *mddev = rdev->mddev; 2898 2899 if (kstrtoull(buf, 10, &new_offset) < 0) 2900 return -EINVAL; 2901 2902 if (mddev->sync_thread) 2903 return -EBUSY; 2904 if (new_offset == rdev->data_offset) 2905 /* reset is always permitted */ 2906 ; 2907 else if (new_offset > rdev->data_offset) { 2908 /* must not push array size beyond rdev_sectors */ 2909 if (new_offset - rdev->data_offset 2910 + mddev->dev_sectors > rdev->sectors) 2911 return -E2BIG; 2912 } 2913 /* Metadata worries about other space details. */ 2914 2915 /* decreasing the offset is inconsistent with a backwards 2916 * reshape. 2917 */ 2918 if (new_offset < rdev->data_offset && 2919 mddev->reshape_backwards) 2920 return -EINVAL; 2921 /* Increasing offset is inconsistent with forwards 2922 * reshape. reshape_direction should be set to 2923 * 'backwards' first. 2924 */ 2925 if (new_offset > rdev->data_offset && 2926 !mddev->reshape_backwards) 2927 return -EINVAL; 2928 2929 if (mddev->pers && mddev->persistent && 2930 !super_types[mddev->major_version] 2931 .allow_new_offset(rdev, new_offset)) 2932 return -E2BIG; 2933 rdev->new_data_offset = new_offset; 2934 if (new_offset > rdev->data_offset) 2935 mddev->reshape_backwards = 1; 2936 else if (new_offset < rdev->data_offset) 2937 mddev->reshape_backwards = 0; 2938 2939 return len; 2940 } 2941 static struct rdev_sysfs_entry rdev_new_offset = 2942 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store); 2943 2944 static ssize_t 2945 rdev_size_show(struct md_rdev *rdev, char *page) 2946 { 2947 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2); 2948 } 2949 2950 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2) 2951 { 2952 /* check if two start/length pairs overlap */ 2953 if (s1+l1 <= s2) 2954 return 0; 2955 if (s2+l2 <= s1) 2956 return 0; 2957 return 1; 2958 } 2959 2960 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors) 2961 { 2962 unsigned long long blocks; 2963 sector_t new; 2964 2965 if (kstrtoull(buf, 10, &blocks) < 0) 2966 return -EINVAL; 2967 2968 if (blocks & 1ULL << (8 * sizeof(blocks) - 1)) 2969 return -EINVAL; /* sector conversion overflow */ 2970 2971 new = blocks * 2; 2972 if (new != blocks * 2) 2973 return -EINVAL; /* unsigned long long to sector_t overflow */ 2974 2975 *sectors = new; 2976 return 0; 2977 } 2978 2979 static ssize_t 2980 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len) 2981 { 2982 struct mddev *my_mddev = rdev->mddev; 2983 sector_t oldsectors = rdev->sectors; 2984 sector_t sectors; 2985 2986 if (strict_blocks_to_sectors(buf, §ors) < 0) 2987 return -EINVAL; 2988 if (rdev->data_offset != rdev->new_data_offset) 2989 return -EINVAL; /* too confusing */ 2990 if (my_mddev->pers && rdev->raid_disk >= 0) { 2991 if (my_mddev->persistent) { 2992 sectors = super_types[my_mddev->major_version]. 2993 rdev_size_change(rdev, sectors); 2994 if (!sectors) 2995 return -EBUSY; 2996 } else if (!sectors) 2997 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) - 2998 rdev->data_offset; 2999 if (!my_mddev->pers->resize) 3000 /* Cannot change size for RAID0 or Linear etc */ 3001 return -EINVAL; 3002 } 3003 if (sectors < my_mddev->dev_sectors) 3004 return -EINVAL; /* component must fit device */ 3005 3006 rdev->sectors = sectors; 3007 if (sectors > oldsectors && my_mddev->external) { 3008 /* need to check that all other rdevs with the same ->bdev 3009 * do not overlap. We need to unlock the mddev to avoid 3010 * a deadlock. We have already changed rdev->sectors, and if 3011 * we have to change it back, we will have the lock again. 3012 */ 3013 struct mddev *mddev; 3014 int overlap = 0; 3015 struct list_head *tmp; 3016 3017 mddev_unlock(my_mddev); 3018 for_each_mddev(mddev, tmp) { 3019 struct md_rdev *rdev2; 3020 3021 mddev_lock(mddev); 3022 rdev_for_each(rdev2, mddev) 3023 if (rdev->bdev == rdev2->bdev && 3024 rdev != rdev2 && 3025 overlaps(rdev->data_offset, rdev->sectors, 3026 rdev2->data_offset, 3027 rdev2->sectors)) { 3028 overlap = 1; 3029 break; 3030 } 3031 mddev_unlock(mddev); 3032 if (overlap) { 3033 mddev_put(mddev); 3034 break; 3035 } 3036 } 3037 mddev_lock(my_mddev); 3038 if (overlap) { 3039 /* Someone else could have slipped in a size 3040 * change here, but doing so is just silly. 3041 * We put oldsectors back because we *know* it is 3042 * safe, and trust userspace not to race with 3043 * itself 3044 */ 3045 rdev->sectors = oldsectors; 3046 return -EBUSY; 3047 } 3048 } 3049 return len; 3050 } 3051 3052 static struct rdev_sysfs_entry rdev_size = 3053 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); 3054 3055 3056 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page) 3057 { 3058 unsigned long long recovery_start = rdev->recovery_offset; 3059 3060 if (test_bit(In_sync, &rdev->flags) || 3061 recovery_start == MaxSector) 3062 return sprintf(page, "none\n"); 3063 3064 return sprintf(page, "%llu\n", recovery_start); 3065 } 3066 3067 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len) 3068 { 3069 unsigned long long recovery_start; 3070 3071 if (cmd_match(buf, "none")) 3072 recovery_start = MaxSector; 3073 else if (kstrtoull(buf, 10, &recovery_start)) 3074 return -EINVAL; 3075 3076 if (rdev->mddev->pers && 3077 rdev->raid_disk >= 0) 3078 return -EBUSY; 3079 3080 rdev->recovery_offset = recovery_start; 3081 if (recovery_start == MaxSector) 3082 set_bit(In_sync, &rdev->flags); 3083 else 3084 clear_bit(In_sync, &rdev->flags); 3085 return len; 3086 } 3087 3088 static struct rdev_sysfs_entry rdev_recovery_start = 3089 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store); 3090 3091 3092 static ssize_t 3093 badblocks_show(struct badblocks *bb, char *page, int unack); 3094 static ssize_t 3095 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack); 3096 3097 static ssize_t bb_show(struct md_rdev *rdev, char *page) 3098 { 3099 return badblocks_show(&rdev->badblocks, page, 0); 3100 } 3101 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len) 3102 { 3103 int rv = badblocks_store(&rdev->badblocks, page, len, 0); 3104 /* Maybe that ack was all we needed */ 3105 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags)) 3106 wake_up(&rdev->blocked_wait); 3107 return rv; 3108 } 3109 static struct rdev_sysfs_entry rdev_bad_blocks = 3110 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store); 3111 3112 3113 static ssize_t ubb_show(struct md_rdev *rdev, char *page) 3114 { 3115 return badblocks_show(&rdev->badblocks, page, 1); 3116 } 3117 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len) 3118 { 3119 return badblocks_store(&rdev->badblocks, page, len, 1); 3120 } 3121 static struct rdev_sysfs_entry rdev_unack_bad_blocks = 3122 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store); 3123 3124 static struct attribute *rdev_default_attrs[] = { 3125 &rdev_state.attr, 3126 &rdev_errors.attr, 3127 &rdev_slot.attr, 3128 &rdev_offset.attr, 3129 &rdev_new_offset.attr, 3130 &rdev_size.attr, 3131 &rdev_recovery_start.attr, 3132 &rdev_bad_blocks.attr, 3133 &rdev_unack_bad_blocks.attr, 3134 NULL, 3135 }; 3136 static ssize_t 3137 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 3138 { 3139 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3140 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3141 struct mddev *mddev = rdev->mddev; 3142 ssize_t rv; 3143 3144 if (!entry->show) 3145 return -EIO; 3146 3147 rv = mddev ? mddev_lock(mddev) : -EBUSY; 3148 if (!rv) { 3149 if (rdev->mddev == NULL) 3150 rv = -EBUSY; 3151 else 3152 rv = entry->show(rdev, page); 3153 mddev_unlock(mddev); 3154 } 3155 return rv; 3156 } 3157 3158 static ssize_t 3159 rdev_attr_store(struct kobject *kobj, struct attribute *attr, 3160 const char *page, size_t length) 3161 { 3162 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3163 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3164 ssize_t rv; 3165 struct mddev *mddev = rdev->mddev; 3166 3167 if (!entry->store) 3168 return -EIO; 3169 if (!capable(CAP_SYS_ADMIN)) 3170 return -EACCES; 3171 rv = mddev ? mddev_lock(mddev): -EBUSY; 3172 if (!rv) { 3173 if (rdev->mddev == NULL) 3174 rv = -EBUSY; 3175 else 3176 rv = entry->store(rdev, page, length); 3177 mddev_unlock(mddev); 3178 } 3179 return rv; 3180 } 3181 3182 static void rdev_free(struct kobject *ko) 3183 { 3184 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj); 3185 kfree(rdev); 3186 } 3187 static const struct sysfs_ops rdev_sysfs_ops = { 3188 .show = rdev_attr_show, 3189 .store = rdev_attr_store, 3190 }; 3191 static struct kobj_type rdev_ktype = { 3192 .release = rdev_free, 3193 .sysfs_ops = &rdev_sysfs_ops, 3194 .default_attrs = rdev_default_attrs, 3195 }; 3196 3197 int md_rdev_init(struct md_rdev *rdev) 3198 { 3199 rdev->desc_nr = -1; 3200 rdev->saved_raid_disk = -1; 3201 rdev->raid_disk = -1; 3202 rdev->flags = 0; 3203 rdev->data_offset = 0; 3204 rdev->new_data_offset = 0; 3205 rdev->sb_events = 0; 3206 rdev->last_read_error.tv_sec = 0; 3207 rdev->last_read_error.tv_nsec = 0; 3208 rdev->sb_loaded = 0; 3209 rdev->bb_page = NULL; 3210 atomic_set(&rdev->nr_pending, 0); 3211 atomic_set(&rdev->read_errors, 0); 3212 atomic_set(&rdev->corrected_errors, 0); 3213 3214 INIT_LIST_HEAD(&rdev->same_set); 3215 init_waitqueue_head(&rdev->blocked_wait); 3216 3217 /* Add space to store bad block list. 3218 * This reserves the space even on arrays where it cannot 3219 * be used - I wonder if that matters 3220 */ 3221 rdev->badblocks.count = 0; 3222 rdev->badblocks.shift = -1; /* disabled until explicitly enabled */ 3223 rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL); 3224 seqlock_init(&rdev->badblocks.lock); 3225 if (rdev->badblocks.page == NULL) 3226 return -ENOMEM; 3227 3228 return 0; 3229 } 3230 EXPORT_SYMBOL_GPL(md_rdev_init); 3231 /* 3232 * Import a device. If 'super_format' >= 0, then sanity check the superblock 3233 * 3234 * mark the device faulty if: 3235 * 3236 * - the device is nonexistent (zero size) 3237 * - the device has no valid superblock 3238 * 3239 * a faulty rdev _never_ has rdev->sb set. 3240 */ 3241 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor) 3242 { 3243 char b[BDEVNAME_SIZE]; 3244 int err; 3245 struct md_rdev *rdev; 3246 sector_t size; 3247 3248 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 3249 if (!rdev) { 3250 printk(KERN_ERR "md: could not alloc mem for new device!\n"); 3251 return ERR_PTR(-ENOMEM); 3252 } 3253 3254 err = md_rdev_init(rdev); 3255 if (err) 3256 goto abort_free; 3257 err = alloc_disk_sb(rdev); 3258 if (err) 3259 goto abort_free; 3260 3261 err = lock_rdev(rdev, newdev, super_format == -2); 3262 if (err) 3263 goto abort_free; 3264 3265 kobject_init(&rdev->kobj, &rdev_ktype); 3266 3267 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS; 3268 if (!size) { 3269 printk(KERN_WARNING 3270 "md: %s has zero or unknown size, marking faulty!\n", 3271 bdevname(rdev->bdev,b)); 3272 err = -EINVAL; 3273 goto abort_free; 3274 } 3275 3276 if (super_format >= 0) { 3277 err = super_types[super_format]. 3278 load_super(rdev, NULL, super_minor); 3279 if (err == -EINVAL) { 3280 printk(KERN_WARNING 3281 "md: %s does not have a valid v%d.%d " 3282 "superblock, not importing!\n", 3283 bdevname(rdev->bdev,b), 3284 super_format, super_minor); 3285 goto abort_free; 3286 } 3287 if (err < 0) { 3288 printk(KERN_WARNING 3289 "md: could not read %s's sb, not importing!\n", 3290 bdevname(rdev->bdev,b)); 3291 goto abort_free; 3292 } 3293 } 3294 3295 return rdev; 3296 3297 abort_free: 3298 if (rdev->bdev) 3299 unlock_rdev(rdev); 3300 md_rdev_clear(rdev); 3301 kfree(rdev); 3302 return ERR_PTR(err); 3303 } 3304 3305 /* 3306 * Check a full RAID array for plausibility 3307 */ 3308 3309 3310 static void analyze_sbs(struct mddev * mddev) 3311 { 3312 int i; 3313 struct md_rdev *rdev, *freshest, *tmp; 3314 char b[BDEVNAME_SIZE]; 3315 3316 freshest = NULL; 3317 rdev_for_each_safe(rdev, tmp, mddev) 3318 switch (super_types[mddev->major_version]. 3319 load_super(rdev, freshest, mddev->minor_version)) { 3320 case 1: 3321 freshest = rdev; 3322 break; 3323 case 0: 3324 break; 3325 default: 3326 printk( KERN_ERR \ 3327 "md: fatal superblock inconsistency in %s" 3328 " -- removing from array\n", 3329 bdevname(rdev->bdev,b)); 3330 kick_rdev_from_array(rdev); 3331 } 3332 3333 3334 super_types[mddev->major_version]. 3335 validate_super(mddev, freshest); 3336 3337 i = 0; 3338 rdev_for_each_safe(rdev, tmp, mddev) { 3339 if (mddev->max_disks && 3340 (rdev->desc_nr >= mddev->max_disks || 3341 i > mddev->max_disks)) { 3342 printk(KERN_WARNING 3343 "md: %s: %s: only %d devices permitted\n", 3344 mdname(mddev), bdevname(rdev->bdev, b), 3345 mddev->max_disks); 3346 kick_rdev_from_array(rdev); 3347 continue; 3348 } 3349 if (rdev != freshest) 3350 if (super_types[mddev->major_version]. 3351 validate_super(mddev, rdev)) { 3352 printk(KERN_WARNING "md: kicking non-fresh %s" 3353 " from array!\n", 3354 bdevname(rdev->bdev,b)); 3355 kick_rdev_from_array(rdev); 3356 continue; 3357 } 3358 if (mddev->level == LEVEL_MULTIPATH) { 3359 rdev->desc_nr = i++; 3360 rdev->raid_disk = rdev->desc_nr; 3361 set_bit(In_sync, &rdev->flags); 3362 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) { 3363 rdev->raid_disk = -1; 3364 clear_bit(In_sync, &rdev->flags); 3365 } 3366 } 3367 } 3368 3369 /* Read a fixed-point number. 3370 * Numbers in sysfs attributes should be in "standard" units where 3371 * possible, so time should be in seconds. 3372 * However we internally use a a much smaller unit such as 3373 * milliseconds or jiffies. 3374 * This function takes a decimal number with a possible fractional 3375 * component, and produces an integer which is the result of 3376 * multiplying that number by 10^'scale'. 3377 * all without any floating-point arithmetic. 3378 */ 3379 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale) 3380 { 3381 unsigned long result = 0; 3382 long decimals = -1; 3383 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) { 3384 if (*cp == '.') 3385 decimals = 0; 3386 else if (decimals < scale) { 3387 unsigned int value; 3388 value = *cp - '0'; 3389 result = result * 10 + value; 3390 if (decimals >= 0) 3391 decimals++; 3392 } 3393 cp++; 3394 } 3395 if (*cp == '\n') 3396 cp++; 3397 if (*cp) 3398 return -EINVAL; 3399 if (decimals < 0) 3400 decimals = 0; 3401 while (decimals < scale) { 3402 result *= 10; 3403 decimals ++; 3404 } 3405 *res = result; 3406 return 0; 3407 } 3408 3409 3410 static void md_safemode_timeout(unsigned long data); 3411 3412 static ssize_t 3413 safe_delay_show(struct mddev *mddev, char *page) 3414 { 3415 int msec = (mddev->safemode_delay*1000)/HZ; 3416 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000); 3417 } 3418 static ssize_t 3419 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len) 3420 { 3421 unsigned long msec; 3422 3423 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0) 3424 return -EINVAL; 3425 if (msec == 0) 3426 mddev->safemode_delay = 0; 3427 else { 3428 unsigned long old_delay = mddev->safemode_delay; 3429 mddev->safemode_delay = (msec*HZ)/1000; 3430 if (mddev->safemode_delay == 0) 3431 mddev->safemode_delay = 1; 3432 if (mddev->safemode_delay < old_delay || old_delay == 0) 3433 md_safemode_timeout((unsigned long)mddev); 3434 } 3435 return len; 3436 } 3437 static struct md_sysfs_entry md_safe_delay = 3438 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); 3439 3440 static ssize_t 3441 level_show(struct mddev *mddev, char *page) 3442 { 3443 struct md_personality *p = mddev->pers; 3444 if (p) 3445 return sprintf(page, "%s\n", p->name); 3446 else if (mddev->clevel[0]) 3447 return sprintf(page, "%s\n", mddev->clevel); 3448 else if (mddev->level != LEVEL_NONE) 3449 return sprintf(page, "%d\n", mddev->level); 3450 else 3451 return 0; 3452 } 3453 3454 static ssize_t 3455 level_store(struct mddev *mddev, const char *buf, size_t len) 3456 { 3457 char clevel[16]; 3458 ssize_t rv = len; 3459 struct md_personality *pers; 3460 long level; 3461 void *priv; 3462 struct md_rdev *rdev; 3463 3464 if (mddev->pers == NULL) { 3465 if (len == 0) 3466 return 0; 3467 if (len >= sizeof(mddev->clevel)) 3468 return -ENOSPC; 3469 strncpy(mddev->clevel, buf, len); 3470 if (mddev->clevel[len-1] == '\n') 3471 len--; 3472 mddev->clevel[len] = 0; 3473 mddev->level = LEVEL_NONE; 3474 return rv; 3475 } 3476 3477 /* request to change the personality. Need to ensure: 3478 * - array is not engaged in resync/recovery/reshape 3479 * - old personality can be suspended 3480 * - new personality will access other array. 3481 */ 3482 3483 if (mddev->sync_thread || 3484 mddev->reshape_position != MaxSector || 3485 mddev->sysfs_active) 3486 return -EBUSY; 3487 3488 if (!mddev->pers->quiesce) { 3489 printk(KERN_WARNING "md: %s: %s does not support online personality change\n", 3490 mdname(mddev), mddev->pers->name); 3491 return -EINVAL; 3492 } 3493 3494 /* Now find the new personality */ 3495 if (len == 0 || len >= sizeof(clevel)) 3496 return -EINVAL; 3497 strncpy(clevel, buf, len); 3498 if (clevel[len-1] == '\n') 3499 len--; 3500 clevel[len] = 0; 3501 if (kstrtol(clevel, 10, &level)) 3502 level = LEVEL_NONE; 3503 3504 if (request_module("md-%s", clevel) != 0) 3505 request_module("md-level-%s", clevel); 3506 spin_lock(&pers_lock); 3507 pers = find_pers(level, clevel); 3508 if (!pers || !try_module_get(pers->owner)) { 3509 spin_unlock(&pers_lock); 3510 printk(KERN_WARNING "md: personality %s not loaded\n", clevel); 3511 return -EINVAL; 3512 } 3513 spin_unlock(&pers_lock); 3514 3515 if (pers == mddev->pers) { 3516 /* Nothing to do! */ 3517 module_put(pers->owner); 3518 return rv; 3519 } 3520 if (!pers->takeover) { 3521 module_put(pers->owner); 3522 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n", 3523 mdname(mddev), clevel); 3524 return -EINVAL; 3525 } 3526 3527 rdev_for_each(rdev, mddev) 3528 rdev->new_raid_disk = rdev->raid_disk; 3529 3530 /* ->takeover must set new_* and/or delta_disks 3531 * if it succeeds, and may set them when it fails. 3532 */ 3533 priv = pers->takeover(mddev); 3534 if (IS_ERR(priv)) { 3535 mddev->new_level = mddev->level; 3536 mddev->new_layout = mddev->layout; 3537 mddev->new_chunk_sectors = mddev->chunk_sectors; 3538 mddev->raid_disks -= mddev->delta_disks; 3539 mddev->delta_disks = 0; 3540 mddev->reshape_backwards = 0; 3541 module_put(pers->owner); 3542 printk(KERN_WARNING "md: %s: %s would not accept array\n", 3543 mdname(mddev), clevel); 3544 return PTR_ERR(priv); 3545 } 3546 3547 /* Looks like we have a winner */ 3548 mddev_suspend(mddev); 3549 mddev->pers->stop(mddev); 3550 3551 if (mddev->pers->sync_request == NULL && 3552 pers->sync_request != NULL) { 3553 /* need to add the md_redundancy_group */ 3554 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 3555 printk(KERN_WARNING 3556 "md: cannot register extra attributes for %s\n", 3557 mdname(mddev)); 3558 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action"); 3559 } 3560 if (mddev->pers->sync_request != NULL && 3561 pers->sync_request == NULL) { 3562 /* need to remove the md_redundancy_group */ 3563 if (mddev->to_remove == NULL) 3564 mddev->to_remove = &md_redundancy_group; 3565 } 3566 3567 if (mddev->pers->sync_request == NULL && 3568 mddev->external) { 3569 /* We are converting from a no-redundancy array 3570 * to a redundancy array and metadata is managed 3571 * externally so we need to be sure that writes 3572 * won't block due to a need to transition 3573 * clean->dirty 3574 * until external management is started. 3575 */ 3576 mddev->in_sync = 0; 3577 mddev->safemode_delay = 0; 3578 mddev->safemode = 0; 3579 } 3580 3581 rdev_for_each(rdev, mddev) { 3582 if (rdev->raid_disk < 0) 3583 continue; 3584 if (rdev->new_raid_disk >= mddev->raid_disks) 3585 rdev->new_raid_disk = -1; 3586 if (rdev->new_raid_disk == rdev->raid_disk) 3587 continue; 3588 sysfs_unlink_rdev(mddev, rdev); 3589 } 3590 rdev_for_each(rdev, mddev) { 3591 if (rdev->raid_disk < 0) 3592 continue; 3593 if (rdev->new_raid_disk == rdev->raid_disk) 3594 continue; 3595 rdev->raid_disk = rdev->new_raid_disk; 3596 if (rdev->raid_disk < 0) 3597 clear_bit(In_sync, &rdev->flags); 3598 else { 3599 if (sysfs_link_rdev(mddev, rdev)) 3600 printk(KERN_WARNING "md: cannot register rd%d" 3601 " for %s after level change\n", 3602 rdev->raid_disk, mdname(mddev)); 3603 } 3604 } 3605 3606 module_put(mddev->pers->owner); 3607 mddev->pers = pers; 3608 mddev->private = priv; 3609 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 3610 mddev->level = mddev->new_level; 3611 mddev->layout = mddev->new_layout; 3612 mddev->chunk_sectors = mddev->new_chunk_sectors; 3613 mddev->delta_disks = 0; 3614 mddev->reshape_backwards = 0; 3615 mddev->degraded = 0; 3616 if (mddev->pers->sync_request == NULL) { 3617 /* this is now an array without redundancy, so 3618 * it must always be in_sync 3619 */ 3620 mddev->in_sync = 1; 3621 del_timer_sync(&mddev->safemode_timer); 3622 } 3623 pers->run(mddev); 3624 set_bit(MD_CHANGE_DEVS, &mddev->flags); 3625 mddev_resume(mddev); 3626 sysfs_notify(&mddev->kobj, NULL, "level"); 3627 md_new_event(mddev); 3628 return rv; 3629 } 3630 3631 static struct md_sysfs_entry md_level = 3632 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); 3633 3634 3635 static ssize_t 3636 layout_show(struct mddev *mddev, char *page) 3637 { 3638 /* just a number, not meaningful for all levels */ 3639 if (mddev->reshape_position != MaxSector && 3640 mddev->layout != mddev->new_layout) 3641 return sprintf(page, "%d (%d)\n", 3642 mddev->new_layout, mddev->layout); 3643 return sprintf(page, "%d\n", mddev->layout); 3644 } 3645 3646 static ssize_t 3647 layout_store(struct mddev *mddev, const char *buf, size_t len) 3648 { 3649 char *e; 3650 unsigned long n = simple_strtoul(buf, &e, 10); 3651 3652 if (!*buf || (*e && *e != '\n')) 3653 return -EINVAL; 3654 3655 if (mddev->pers) { 3656 int err; 3657 if (mddev->pers->check_reshape == NULL) 3658 return -EBUSY; 3659 mddev->new_layout = n; 3660 err = mddev->pers->check_reshape(mddev); 3661 if (err) { 3662 mddev->new_layout = mddev->layout; 3663 return err; 3664 } 3665 } else { 3666 mddev->new_layout = n; 3667 if (mddev->reshape_position == MaxSector) 3668 mddev->layout = n; 3669 } 3670 return len; 3671 } 3672 static struct md_sysfs_entry md_layout = 3673 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); 3674 3675 3676 static ssize_t 3677 raid_disks_show(struct mddev *mddev, char *page) 3678 { 3679 if (mddev->raid_disks == 0) 3680 return 0; 3681 if (mddev->reshape_position != MaxSector && 3682 mddev->delta_disks != 0) 3683 return sprintf(page, "%d (%d)\n", mddev->raid_disks, 3684 mddev->raid_disks - mddev->delta_disks); 3685 return sprintf(page, "%d\n", mddev->raid_disks); 3686 } 3687 3688 static int update_raid_disks(struct mddev *mddev, int raid_disks); 3689 3690 static ssize_t 3691 raid_disks_store(struct mddev *mddev, const char *buf, size_t len) 3692 { 3693 char *e; 3694 int rv = 0; 3695 unsigned long n = simple_strtoul(buf, &e, 10); 3696 3697 if (!*buf || (*e && *e != '\n')) 3698 return -EINVAL; 3699 3700 if (mddev->pers) 3701 rv = update_raid_disks(mddev, n); 3702 else if (mddev->reshape_position != MaxSector) { 3703 struct md_rdev *rdev; 3704 int olddisks = mddev->raid_disks - mddev->delta_disks; 3705 3706 rdev_for_each(rdev, mddev) { 3707 if (olddisks < n && 3708 rdev->data_offset < rdev->new_data_offset) 3709 return -EINVAL; 3710 if (olddisks > n && 3711 rdev->data_offset > rdev->new_data_offset) 3712 return -EINVAL; 3713 } 3714 mddev->delta_disks = n - olddisks; 3715 mddev->raid_disks = n; 3716 mddev->reshape_backwards = (mddev->delta_disks < 0); 3717 } else 3718 mddev->raid_disks = n; 3719 return rv ? rv : len; 3720 } 3721 static struct md_sysfs_entry md_raid_disks = 3722 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); 3723 3724 static ssize_t 3725 chunk_size_show(struct mddev *mddev, char *page) 3726 { 3727 if (mddev->reshape_position != MaxSector && 3728 mddev->chunk_sectors != mddev->new_chunk_sectors) 3729 return sprintf(page, "%d (%d)\n", 3730 mddev->new_chunk_sectors << 9, 3731 mddev->chunk_sectors << 9); 3732 return sprintf(page, "%d\n", mddev->chunk_sectors << 9); 3733 } 3734 3735 static ssize_t 3736 chunk_size_store(struct mddev *mddev, const char *buf, size_t len) 3737 { 3738 char *e; 3739 unsigned long n = simple_strtoul(buf, &e, 10); 3740 3741 if (!*buf || (*e && *e != '\n')) 3742 return -EINVAL; 3743 3744 if (mddev->pers) { 3745 int err; 3746 if (mddev->pers->check_reshape == NULL) 3747 return -EBUSY; 3748 mddev->new_chunk_sectors = n >> 9; 3749 err = mddev->pers->check_reshape(mddev); 3750 if (err) { 3751 mddev->new_chunk_sectors = mddev->chunk_sectors; 3752 return err; 3753 } 3754 } else { 3755 mddev->new_chunk_sectors = n >> 9; 3756 if (mddev->reshape_position == MaxSector) 3757 mddev->chunk_sectors = n >> 9; 3758 } 3759 return len; 3760 } 3761 static struct md_sysfs_entry md_chunk_size = 3762 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); 3763 3764 static ssize_t 3765 resync_start_show(struct mddev *mddev, char *page) 3766 { 3767 if (mddev->recovery_cp == MaxSector) 3768 return sprintf(page, "none\n"); 3769 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); 3770 } 3771 3772 static ssize_t 3773 resync_start_store(struct mddev *mddev, const char *buf, size_t len) 3774 { 3775 char *e; 3776 unsigned long long n = simple_strtoull(buf, &e, 10); 3777 3778 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 3779 return -EBUSY; 3780 if (cmd_match(buf, "none")) 3781 n = MaxSector; 3782 else if (!*buf || (*e && *e != '\n')) 3783 return -EINVAL; 3784 3785 mddev->recovery_cp = n; 3786 if (mddev->pers) 3787 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 3788 return len; 3789 } 3790 static struct md_sysfs_entry md_resync_start = 3791 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store); 3792 3793 /* 3794 * The array state can be: 3795 * 3796 * clear 3797 * No devices, no size, no level 3798 * Equivalent to STOP_ARRAY ioctl 3799 * inactive 3800 * May have some settings, but array is not active 3801 * all IO results in error 3802 * When written, doesn't tear down array, but just stops it 3803 * suspended (not supported yet) 3804 * All IO requests will block. The array can be reconfigured. 3805 * Writing this, if accepted, will block until array is quiescent 3806 * readonly 3807 * no resync can happen. no superblocks get written. 3808 * write requests fail 3809 * read-auto 3810 * like readonly, but behaves like 'clean' on a write request. 3811 * 3812 * clean - no pending writes, but otherwise active. 3813 * When written to inactive array, starts without resync 3814 * If a write request arrives then 3815 * if metadata is known, mark 'dirty' and switch to 'active'. 3816 * if not known, block and switch to write-pending 3817 * If written to an active array that has pending writes, then fails. 3818 * active 3819 * fully active: IO and resync can be happening. 3820 * When written to inactive array, starts with resync 3821 * 3822 * write-pending 3823 * clean, but writes are blocked waiting for 'active' to be written. 3824 * 3825 * active-idle 3826 * like active, but no writes have been seen for a while (100msec). 3827 * 3828 */ 3829 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, 3830 write_pending, active_idle, bad_word}; 3831 static char *array_states[] = { 3832 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", 3833 "write-pending", "active-idle", NULL }; 3834 3835 static int match_word(const char *word, char **list) 3836 { 3837 int n; 3838 for (n=0; list[n]; n++) 3839 if (cmd_match(word, list[n])) 3840 break; 3841 return n; 3842 } 3843 3844 static ssize_t 3845 array_state_show(struct mddev *mddev, char *page) 3846 { 3847 enum array_state st = inactive; 3848 3849 if (mddev->pers) 3850 switch(mddev->ro) { 3851 case 1: 3852 st = readonly; 3853 break; 3854 case 2: 3855 st = read_auto; 3856 break; 3857 case 0: 3858 if (mddev->in_sync) 3859 st = clean; 3860 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags)) 3861 st = write_pending; 3862 else if (mddev->safemode) 3863 st = active_idle; 3864 else 3865 st = active; 3866 } 3867 else { 3868 if (list_empty(&mddev->disks) && 3869 mddev->raid_disks == 0 && 3870 mddev->dev_sectors == 0) 3871 st = clear; 3872 else 3873 st = inactive; 3874 } 3875 return sprintf(page, "%s\n", array_states[st]); 3876 } 3877 3878 static int do_md_stop(struct mddev * mddev, int ro, struct block_device *bdev); 3879 static int md_set_readonly(struct mddev * mddev, struct block_device *bdev); 3880 static int do_md_run(struct mddev * mddev); 3881 static int restart_array(struct mddev *mddev); 3882 3883 static ssize_t 3884 array_state_store(struct mddev *mddev, const char *buf, size_t len) 3885 { 3886 int err = -EINVAL; 3887 enum array_state st = match_word(buf, array_states); 3888 switch(st) { 3889 case bad_word: 3890 break; 3891 case clear: 3892 /* stopping an active array */ 3893 err = do_md_stop(mddev, 0, NULL); 3894 break; 3895 case inactive: 3896 /* stopping an active array */ 3897 if (mddev->pers) 3898 err = do_md_stop(mddev, 2, NULL); 3899 else 3900 err = 0; /* already inactive */ 3901 break; 3902 case suspended: 3903 break; /* not supported yet */ 3904 case readonly: 3905 if (mddev->pers) 3906 err = md_set_readonly(mddev, NULL); 3907 else { 3908 mddev->ro = 1; 3909 set_disk_ro(mddev->gendisk, 1); 3910 err = do_md_run(mddev); 3911 } 3912 break; 3913 case read_auto: 3914 if (mddev->pers) { 3915 if (mddev->ro == 0) 3916 err = md_set_readonly(mddev, NULL); 3917 else if (mddev->ro == 1) 3918 err = restart_array(mddev); 3919 if (err == 0) { 3920 mddev->ro = 2; 3921 set_disk_ro(mddev->gendisk, 0); 3922 } 3923 } else { 3924 mddev->ro = 2; 3925 err = do_md_run(mddev); 3926 } 3927 break; 3928 case clean: 3929 if (mddev->pers) { 3930 restart_array(mddev); 3931 spin_lock_irq(&mddev->write_lock); 3932 if (atomic_read(&mddev->writes_pending) == 0) { 3933 if (mddev->in_sync == 0) { 3934 mddev->in_sync = 1; 3935 if (mddev->safemode == 1) 3936 mddev->safemode = 0; 3937 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 3938 } 3939 err = 0; 3940 } else 3941 err = -EBUSY; 3942 spin_unlock_irq(&mddev->write_lock); 3943 } else 3944 err = -EINVAL; 3945 break; 3946 case active: 3947 if (mddev->pers) { 3948 restart_array(mddev); 3949 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 3950 wake_up(&mddev->sb_wait); 3951 err = 0; 3952 } else { 3953 mddev->ro = 0; 3954 set_disk_ro(mddev->gendisk, 0); 3955 err = do_md_run(mddev); 3956 } 3957 break; 3958 case write_pending: 3959 case active_idle: 3960 /* these cannot be set */ 3961 break; 3962 } 3963 if (err) 3964 return err; 3965 else { 3966 if (mddev->hold_active == UNTIL_IOCTL) 3967 mddev->hold_active = 0; 3968 sysfs_notify_dirent_safe(mddev->sysfs_state); 3969 return len; 3970 } 3971 } 3972 static struct md_sysfs_entry md_array_state = 3973 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); 3974 3975 static ssize_t 3976 max_corrected_read_errors_show(struct mddev *mddev, char *page) { 3977 return sprintf(page, "%d\n", 3978 atomic_read(&mddev->max_corr_read_errors)); 3979 } 3980 3981 static ssize_t 3982 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len) 3983 { 3984 char *e; 3985 unsigned long n = simple_strtoul(buf, &e, 10); 3986 3987 if (*buf && (*e == 0 || *e == '\n')) { 3988 atomic_set(&mddev->max_corr_read_errors, n); 3989 return len; 3990 } 3991 return -EINVAL; 3992 } 3993 3994 static struct md_sysfs_entry max_corr_read_errors = 3995 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show, 3996 max_corrected_read_errors_store); 3997 3998 static ssize_t 3999 null_show(struct mddev *mddev, char *page) 4000 { 4001 return -EINVAL; 4002 } 4003 4004 static ssize_t 4005 new_dev_store(struct mddev *mddev, const char *buf, size_t len) 4006 { 4007 /* buf must be %d:%d\n? giving major and minor numbers */ 4008 /* The new device is added to the array. 4009 * If the array has a persistent superblock, we read the 4010 * superblock to initialise info and check validity. 4011 * Otherwise, only checking done is that in bind_rdev_to_array, 4012 * which mainly checks size. 4013 */ 4014 char *e; 4015 int major = simple_strtoul(buf, &e, 10); 4016 int minor; 4017 dev_t dev; 4018 struct md_rdev *rdev; 4019 int err; 4020 4021 if (!*buf || *e != ':' || !e[1] || e[1] == '\n') 4022 return -EINVAL; 4023 minor = simple_strtoul(e+1, &e, 10); 4024 if (*e && *e != '\n') 4025 return -EINVAL; 4026 dev = MKDEV(major, minor); 4027 if (major != MAJOR(dev) || 4028 minor != MINOR(dev)) 4029 return -EOVERFLOW; 4030 4031 4032 if (mddev->persistent) { 4033 rdev = md_import_device(dev, mddev->major_version, 4034 mddev->minor_version); 4035 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { 4036 struct md_rdev *rdev0 4037 = list_entry(mddev->disks.next, 4038 struct md_rdev, same_set); 4039 err = super_types[mddev->major_version] 4040 .load_super(rdev, rdev0, mddev->minor_version); 4041 if (err < 0) 4042 goto out; 4043 } 4044 } else if (mddev->external) 4045 rdev = md_import_device(dev, -2, -1); 4046 else 4047 rdev = md_import_device(dev, -1, -1); 4048 4049 if (IS_ERR(rdev)) 4050 return PTR_ERR(rdev); 4051 err = bind_rdev_to_array(rdev, mddev); 4052 out: 4053 if (err) 4054 export_rdev(rdev); 4055 return err ? err : len; 4056 } 4057 4058 static struct md_sysfs_entry md_new_device = 4059 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store); 4060 4061 static ssize_t 4062 bitmap_store(struct mddev *mddev, const char *buf, size_t len) 4063 { 4064 char *end; 4065 unsigned long chunk, end_chunk; 4066 4067 if (!mddev->bitmap) 4068 goto out; 4069 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */ 4070 while (*buf) { 4071 chunk = end_chunk = simple_strtoul(buf, &end, 0); 4072 if (buf == end) break; 4073 if (*end == '-') { /* range */ 4074 buf = end + 1; 4075 end_chunk = simple_strtoul(buf, &end, 0); 4076 if (buf == end) break; 4077 } 4078 if (*end && !isspace(*end)) break; 4079 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk); 4080 buf = skip_spaces(end); 4081 } 4082 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */ 4083 out: 4084 return len; 4085 } 4086 4087 static struct md_sysfs_entry md_bitmap = 4088 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); 4089 4090 static ssize_t 4091 size_show(struct mddev *mddev, char *page) 4092 { 4093 return sprintf(page, "%llu\n", 4094 (unsigned long long)mddev->dev_sectors / 2); 4095 } 4096 4097 static int update_size(struct mddev *mddev, sector_t num_sectors); 4098 4099 static ssize_t 4100 size_store(struct mddev *mddev, const char *buf, size_t len) 4101 { 4102 /* If array is inactive, we can reduce the component size, but 4103 * not increase it (except from 0). 4104 * If array is active, we can try an on-line resize 4105 */ 4106 sector_t sectors; 4107 int err = strict_blocks_to_sectors(buf, §ors); 4108 4109 if (err < 0) 4110 return err; 4111 if (mddev->pers) { 4112 err = update_size(mddev, sectors); 4113 md_update_sb(mddev, 1); 4114 } else { 4115 if (mddev->dev_sectors == 0 || 4116 mddev->dev_sectors > sectors) 4117 mddev->dev_sectors = sectors; 4118 else 4119 err = -ENOSPC; 4120 } 4121 return err ? err : len; 4122 } 4123 4124 static struct md_sysfs_entry md_size = 4125 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); 4126 4127 4128 /* Metadata version. 4129 * This is one of 4130 * 'none' for arrays with no metadata (good luck...) 4131 * 'external' for arrays with externally managed metadata, 4132 * or N.M for internally known formats 4133 */ 4134 static ssize_t 4135 metadata_show(struct mddev *mddev, char *page) 4136 { 4137 if (mddev->persistent) 4138 return sprintf(page, "%d.%d\n", 4139 mddev->major_version, mddev->minor_version); 4140 else if (mddev->external) 4141 return sprintf(page, "external:%s\n", mddev->metadata_type); 4142 else 4143 return sprintf(page, "none\n"); 4144 } 4145 4146 static ssize_t 4147 metadata_store(struct mddev *mddev, const char *buf, size_t len) 4148 { 4149 int major, minor; 4150 char *e; 4151 /* Changing the details of 'external' metadata is 4152 * always permitted. Otherwise there must be 4153 * no devices attached to the array. 4154 */ 4155 if (mddev->external && strncmp(buf, "external:", 9) == 0) 4156 ; 4157 else if (!list_empty(&mddev->disks)) 4158 return -EBUSY; 4159 4160 if (cmd_match(buf, "none")) { 4161 mddev->persistent = 0; 4162 mddev->external = 0; 4163 mddev->major_version = 0; 4164 mddev->minor_version = 90; 4165 return len; 4166 } 4167 if (strncmp(buf, "external:", 9) == 0) { 4168 size_t namelen = len-9; 4169 if (namelen >= sizeof(mddev->metadata_type)) 4170 namelen = sizeof(mddev->metadata_type)-1; 4171 strncpy(mddev->metadata_type, buf+9, namelen); 4172 mddev->metadata_type[namelen] = 0; 4173 if (namelen && mddev->metadata_type[namelen-1] == '\n') 4174 mddev->metadata_type[--namelen] = 0; 4175 mddev->persistent = 0; 4176 mddev->external = 1; 4177 mddev->major_version = 0; 4178 mddev->minor_version = 90; 4179 return len; 4180 } 4181 major = simple_strtoul(buf, &e, 10); 4182 if (e==buf || *e != '.') 4183 return -EINVAL; 4184 buf = e+1; 4185 minor = simple_strtoul(buf, &e, 10); 4186 if (e==buf || (*e && *e != '\n') ) 4187 return -EINVAL; 4188 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL) 4189 return -ENOENT; 4190 mddev->major_version = major; 4191 mddev->minor_version = minor; 4192 mddev->persistent = 1; 4193 mddev->external = 0; 4194 return len; 4195 } 4196 4197 static struct md_sysfs_entry md_metadata = 4198 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 4199 4200 static ssize_t 4201 action_show(struct mddev *mddev, char *page) 4202 { 4203 char *type = "idle"; 4204 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 4205 type = "frozen"; 4206 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 4207 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) { 4208 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 4209 type = "reshape"; 4210 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 4211 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 4212 type = "resync"; 4213 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 4214 type = "check"; 4215 else 4216 type = "repair"; 4217 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) 4218 type = "recover"; 4219 } 4220 return sprintf(page, "%s\n", type); 4221 } 4222 4223 static ssize_t 4224 action_store(struct mddev *mddev, const char *page, size_t len) 4225 { 4226 if (!mddev->pers || !mddev->pers->sync_request) 4227 return -EINVAL; 4228 4229 if (cmd_match(page, "frozen")) 4230 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4231 else 4232 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4233 4234 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) { 4235 if (mddev->sync_thread) { 4236 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4237 md_reap_sync_thread(mddev); 4238 } 4239 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 4240 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 4241 return -EBUSY; 4242 else if (cmd_match(page, "resync")) 4243 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4244 else if (cmd_match(page, "recover")) { 4245 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 4246 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4247 } else if (cmd_match(page, "reshape")) { 4248 int err; 4249 if (mddev->pers->start_reshape == NULL) 4250 return -EINVAL; 4251 err = mddev->pers->start_reshape(mddev); 4252 if (err) 4253 return err; 4254 sysfs_notify(&mddev->kobj, NULL, "degraded"); 4255 } else { 4256 if (cmd_match(page, "check")) 4257 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4258 else if (!cmd_match(page, "repair")) 4259 return -EINVAL; 4260 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 4261 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4262 } 4263 if (mddev->ro == 2) { 4264 /* A write to sync_action is enough to justify 4265 * canceling read-auto mode 4266 */ 4267 mddev->ro = 0; 4268 md_wakeup_thread(mddev->sync_thread); 4269 } 4270 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4271 md_wakeup_thread(mddev->thread); 4272 sysfs_notify_dirent_safe(mddev->sysfs_action); 4273 return len; 4274 } 4275 4276 static struct md_sysfs_entry md_scan_mode = 4277 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); 4278 4279 static ssize_t 4280 last_sync_action_show(struct mddev *mddev, char *page) 4281 { 4282 return sprintf(page, "%s\n", mddev->last_sync_action); 4283 } 4284 4285 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action); 4286 4287 static ssize_t 4288 mismatch_cnt_show(struct mddev *mddev, char *page) 4289 { 4290 return sprintf(page, "%llu\n", 4291 (unsigned long long) 4292 atomic64_read(&mddev->resync_mismatches)); 4293 } 4294 4295 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); 4296 4297 static ssize_t 4298 sync_min_show(struct mddev *mddev, char *page) 4299 { 4300 return sprintf(page, "%d (%s)\n", speed_min(mddev), 4301 mddev->sync_speed_min ? "local": "system"); 4302 } 4303 4304 static ssize_t 4305 sync_min_store(struct mddev *mddev, const char *buf, size_t len) 4306 { 4307 int min; 4308 char *e; 4309 if (strncmp(buf, "system", 6)==0) { 4310 mddev->sync_speed_min = 0; 4311 return len; 4312 } 4313 min = simple_strtoul(buf, &e, 10); 4314 if (buf == e || (*e && *e != '\n') || min <= 0) 4315 return -EINVAL; 4316 mddev->sync_speed_min = min; 4317 return len; 4318 } 4319 4320 static struct md_sysfs_entry md_sync_min = 4321 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); 4322 4323 static ssize_t 4324 sync_max_show(struct mddev *mddev, char *page) 4325 { 4326 return sprintf(page, "%d (%s)\n", speed_max(mddev), 4327 mddev->sync_speed_max ? "local": "system"); 4328 } 4329 4330 static ssize_t 4331 sync_max_store(struct mddev *mddev, const char *buf, size_t len) 4332 { 4333 int max; 4334 char *e; 4335 if (strncmp(buf, "system", 6)==0) { 4336 mddev->sync_speed_max = 0; 4337 return len; 4338 } 4339 max = simple_strtoul(buf, &e, 10); 4340 if (buf == e || (*e && *e != '\n') || max <= 0) 4341 return -EINVAL; 4342 mddev->sync_speed_max = max; 4343 return len; 4344 } 4345 4346 static struct md_sysfs_entry md_sync_max = 4347 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); 4348 4349 static ssize_t 4350 degraded_show(struct mddev *mddev, char *page) 4351 { 4352 return sprintf(page, "%d\n", mddev->degraded); 4353 } 4354 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded); 4355 4356 static ssize_t 4357 sync_force_parallel_show(struct mddev *mddev, char *page) 4358 { 4359 return sprintf(page, "%d\n", mddev->parallel_resync); 4360 } 4361 4362 static ssize_t 4363 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len) 4364 { 4365 long n; 4366 4367 if (kstrtol(buf, 10, &n)) 4368 return -EINVAL; 4369 4370 if (n != 0 && n != 1) 4371 return -EINVAL; 4372 4373 mddev->parallel_resync = n; 4374 4375 if (mddev->sync_thread) 4376 wake_up(&resync_wait); 4377 4378 return len; 4379 } 4380 4381 /* force parallel resync, even with shared block devices */ 4382 static struct md_sysfs_entry md_sync_force_parallel = 4383 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR, 4384 sync_force_parallel_show, sync_force_parallel_store); 4385 4386 static ssize_t 4387 sync_speed_show(struct mddev *mddev, char *page) 4388 { 4389 unsigned long resync, dt, db; 4390 if (mddev->curr_resync == 0) 4391 return sprintf(page, "none\n"); 4392 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active); 4393 dt = (jiffies - mddev->resync_mark) / HZ; 4394 if (!dt) dt++; 4395 db = resync - mddev->resync_mark_cnt; 4396 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */ 4397 } 4398 4399 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); 4400 4401 static ssize_t 4402 sync_completed_show(struct mddev *mddev, char *page) 4403 { 4404 unsigned long long max_sectors, resync; 4405 4406 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4407 return sprintf(page, "none\n"); 4408 4409 if (mddev->curr_resync == 1 || 4410 mddev->curr_resync == 2) 4411 return sprintf(page, "delayed\n"); 4412 4413 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 4414 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 4415 max_sectors = mddev->resync_max_sectors; 4416 else 4417 max_sectors = mddev->dev_sectors; 4418 4419 resync = mddev->curr_resync_completed; 4420 return sprintf(page, "%llu / %llu\n", resync, max_sectors); 4421 } 4422 4423 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed); 4424 4425 static ssize_t 4426 min_sync_show(struct mddev *mddev, char *page) 4427 { 4428 return sprintf(page, "%llu\n", 4429 (unsigned long long)mddev->resync_min); 4430 } 4431 static ssize_t 4432 min_sync_store(struct mddev *mddev, const char *buf, size_t len) 4433 { 4434 unsigned long long min; 4435 if (kstrtoull(buf, 10, &min)) 4436 return -EINVAL; 4437 if (min > mddev->resync_max) 4438 return -EINVAL; 4439 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4440 return -EBUSY; 4441 4442 /* Must be a multiple of chunk_size */ 4443 if (mddev->chunk_sectors) { 4444 sector_t temp = min; 4445 if (sector_div(temp, mddev->chunk_sectors)) 4446 return -EINVAL; 4447 } 4448 mddev->resync_min = min; 4449 4450 return len; 4451 } 4452 4453 static struct md_sysfs_entry md_min_sync = 4454 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store); 4455 4456 static ssize_t 4457 max_sync_show(struct mddev *mddev, char *page) 4458 { 4459 if (mddev->resync_max == MaxSector) 4460 return sprintf(page, "max\n"); 4461 else 4462 return sprintf(page, "%llu\n", 4463 (unsigned long long)mddev->resync_max); 4464 } 4465 static ssize_t 4466 max_sync_store(struct mddev *mddev, const char *buf, size_t len) 4467 { 4468 if (strncmp(buf, "max", 3) == 0) 4469 mddev->resync_max = MaxSector; 4470 else { 4471 unsigned long long max; 4472 if (kstrtoull(buf, 10, &max)) 4473 return -EINVAL; 4474 if (max < mddev->resync_min) 4475 return -EINVAL; 4476 if (max < mddev->resync_max && 4477 mddev->ro == 0 && 4478 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4479 return -EBUSY; 4480 4481 /* Must be a multiple of chunk_size */ 4482 if (mddev->chunk_sectors) { 4483 sector_t temp = max; 4484 if (sector_div(temp, mddev->chunk_sectors)) 4485 return -EINVAL; 4486 } 4487 mddev->resync_max = max; 4488 } 4489 wake_up(&mddev->recovery_wait); 4490 return len; 4491 } 4492 4493 static struct md_sysfs_entry md_max_sync = 4494 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store); 4495 4496 static ssize_t 4497 suspend_lo_show(struct mddev *mddev, char *page) 4498 { 4499 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo); 4500 } 4501 4502 static ssize_t 4503 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len) 4504 { 4505 char *e; 4506 unsigned long long new = simple_strtoull(buf, &e, 10); 4507 unsigned long long old = mddev->suspend_lo; 4508 4509 if (mddev->pers == NULL || 4510 mddev->pers->quiesce == NULL) 4511 return -EINVAL; 4512 if (buf == e || (*e && *e != '\n')) 4513 return -EINVAL; 4514 4515 mddev->suspend_lo = new; 4516 if (new >= old) 4517 /* Shrinking suspended region */ 4518 mddev->pers->quiesce(mddev, 2); 4519 else { 4520 /* Expanding suspended region - need to wait */ 4521 mddev->pers->quiesce(mddev, 1); 4522 mddev->pers->quiesce(mddev, 0); 4523 } 4524 return len; 4525 } 4526 static struct md_sysfs_entry md_suspend_lo = 4527 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); 4528 4529 4530 static ssize_t 4531 suspend_hi_show(struct mddev *mddev, char *page) 4532 { 4533 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi); 4534 } 4535 4536 static ssize_t 4537 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len) 4538 { 4539 char *e; 4540 unsigned long long new = simple_strtoull(buf, &e, 10); 4541 unsigned long long old = mddev->suspend_hi; 4542 4543 if (mddev->pers == NULL || 4544 mddev->pers->quiesce == NULL) 4545 return -EINVAL; 4546 if (buf == e || (*e && *e != '\n')) 4547 return -EINVAL; 4548 4549 mddev->suspend_hi = new; 4550 if (new <= old) 4551 /* Shrinking suspended region */ 4552 mddev->pers->quiesce(mddev, 2); 4553 else { 4554 /* Expanding suspended region - need to wait */ 4555 mddev->pers->quiesce(mddev, 1); 4556 mddev->pers->quiesce(mddev, 0); 4557 } 4558 return len; 4559 } 4560 static struct md_sysfs_entry md_suspend_hi = 4561 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); 4562 4563 static ssize_t 4564 reshape_position_show(struct mddev *mddev, char *page) 4565 { 4566 if (mddev->reshape_position != MaxSector) 4567 return sprintf(page, "%llu\n", 4568 (unsigned long long)mddev->reshape_position); 4569 strcpy(page, "none\n"); 4570 return 5; 4571 } 4572 4573 static ssize_t 4574 reshape_position_store(struct mddev *mddev, const char *buf, size_t len) 4575 { 4576 struct md_rdev *rdev; 4577 char *e; 4578 unsigned long long new = simple_strtoull(buf, &e, 10); 4579 if (mddev->pers) 4580 return -EBUSY; 4581 if (buf == e || (*e && *e != '\n')) 4582 return -EINVAL; 4583 mddev->reshape_position = new; 4584 mddev->delta_disks = 0; 4585 mddev->reshape_backwards = 0; 4586 mddev->new_level = mddev->level; 4587 mddev->new_layout = mddev->layout; 4588 mddev->new_chunk_sectors = mddev->chunk_sectors; 4589 rdev_for_each(rdev, mddev) 4590 rdev->new_data_offset = rdev->data_offset; 4591 return len; 4592 } 4593 4594 static struct md_sysfs_entry md_reshape_position = 4595 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show, 4596 reshape_position_store); 4597 4598 static ssize_t 4599 reshape_direction_show(struct mddev *mddev, char *page) 4600 { 4601 return sprintf(page, "%s\n", 4602 mddev->reshape_backwards ? "backwards" : "forwards"); 4603 } 4604 4605 static ssize_t 4606 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len) 4607 { 4608 int backwards = 0; 4609 if (cmd_match(buf, "forwards")) 4610 backwards = 0; 4611 else if (cmd_match(buf, "backwards")) 4612 backwards = 1; 4613 else 4614 return -EINVAL; 4615 if (mddev->reshape_backwards == backwards) 4616 return len; 4617 4618 /* check if we are allowed to change */ 4619 if (mddev->delta_disks) 4620 return -EBUSY; 4621 4622 if (mddev->persistent && 4623 mddev->major_version == 0) 4624 return -EINVAL; 4625 4626 mddev->reshape_backwards = backwards; 4627 return len; 4628 } 4629 4630 static struct md_sysfs_entry md_reshape_direction = 4631 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show, 4632 reshape_direction_store); 4633 4634 static ssize_t 4635 array_size_show(struct mddev *mddev, char *page) 4636 { 4637 if (mddev->external_size) 4638 return sprintf(page, "%llu\n", 4639 (unsigned long long)mddev->array_sectors/2); 4640 else 4641 return sprintf(page, "default\n"); 4642 } 4643 4644 static ssize_t 4645 array_size_store(struct mddev *mddev, const char *buf, size_t len) 4646 { 4647 sector_t sectors; 4648 4649 if (strncmp(buf, "default", 7) == 0) { 4650 if (mddev->pers) 4651 sectors = mddev->pers->size(mddev, 0, 0); 4652 else 4653 sectors = mddev->array_sectors; 4654 4655 mddev->external_size = 0; 4656 } else { 4657 if (strict_blocks_to_sectors(buf, §ors) < 0) 4658 return -EINVAL; 4659 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors) 4660 return -E2BIG; 4661 4662 mddev->external_size = 1; 4663 } 4664 4665 mddev->array_sectors = sectors; 4666 if (mddev->pers) { 4667 set_capacity(mddev->gendisk, mddev->array_sectors); 4668 revalidate_disk(mddev->gendisk); 4669 } 4670 return len; 4671 } 4672 4673 static struct md_sysfs_entry md_array_size = 4674 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show, 4675 array_size_store); 4676 4677 static struct attribute *md_default_attrs[] = { 4678 &md_level.attr, 4679 &md_layout.attr, 4680 &md_raid_disks.attr, 4681 &md_chunk_size.attr, 4682 &md_size.attr, 4683 &md_resync_start.attr, 4684 &md_metadata.attr, 4685 &md_new_device.attr, 4686 &md_safe_delay.attr, 4687 &md_array_state.attr, 4688 &md_reshape_position.attr, 4689 &md_reshape_direction.attr, 4690 &md_array_size.attr, 4691 &max_corr_read_errors.attr, 4692 NULL, 4693 }; 4694 4695 static struct attribute *md_redundancy_attrs[] = { 4696 &md_scan_mode.attr, 4697 &md_last_scan_mode.attr, 4698 &md_mismatches.attr, 4699 &md_sync_min.attr, 4700 &md_sync_max.attr, 4701 &md_sync_speed.attr, 4702 &md_sync_force_parallel.attr, 4703 &md_sync_completed.attr, 4704 &md_min_sync.attr, 4705 &md_max_sync.attr, 4706 &md_suspend_lo.attr, 4707 &md_suspend_hi.attr, 4708 &md_bitmap.attr, 4709 &md_degraded.attr, 4710 NULL, 4711 }; 4712 static struct attribute_group md_redundancy_group = { 4713 .name = NULL, 4714 .attrs = md_redundancy_attrs, 4715 }; 4716 4717 4718 static ssize_t 4719 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 4720 { 4721 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 4722 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 4723 ssize_t rv; 4724 4725 if (!entry->show) 4726 return -EIO; 4727 spin_lock(&all_mddevs_lock); 4728 if (list_empty(&mddev->all_mddevs)) { 4729 spin_unlock(&all_mddevs_lock); 4730 return -EBUSY; 4731 } 4732 mddev_get(mddev); 4733 spin_unlock(&all_mddevs_lock); 4734 4735 rv = mddev_lock(mddev); 4736 if (!rv) { 4737 rv = entry->show(mddev, page); 4738 mddev_unlock(mddev); 4739 } 4740 mddev_put(mddev); 4741 return rv; 4742 } 4743 4744 static ssize_t 4745 md_attr_store(struct kobject *kobj, struct attribute *attr, 4746 const char *page, size_t length) 4747 { 4748 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 4749 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 4750 ssize_t rv; 4751 4752 if (!entry->store) 4753 return -EIO; 4754 if (!capable(CAP_SYS_ADMIN)) 4755 return -EACCES; 4756 spin_lock(&all_mddevs_lock); 4757 if (list_empty(&mddev->all_mddevs)) { 4758 spin_unlock(&all_mddevs_lock); 4759 return -EBUSY; 4760 } 4761 mddev_get(mddev); 4762 spin_unlock(&all_mddevs_lock); 4763 if (entry->store == new_dev_store) 4764 flush_workqueue(md_misc_wq); 4765 rv = mddev_lock(mddev); 4766 if (!rv) { 4767 rv = entry->store(mddev, page, length); 4768 mddev_unlock(mddev); 4769 } 4770 mddev_put(mddev); 4771 return rv; 4772 } 4773 4774 static void md_free(struct kobject *ko) 4775 { 4776 struct mddev *mddev = container_of(ko, struct mddev, kobj); 4777 4778 if (mddev->sysfs_state) 4779 sysfs_put(mddev->sysfs_state); 4780 4781 if (mddev->gendisk) { 4782 del_gendisk(mddev->gendisk); 4783 put_disk(mddev->gendisk); 4784 } 4785 if (mddev->queue) 4786 blk_cleanup_queue(mddev->queue); 4787 4788 kfree(mddev); 4789 } 4790 4791 static const struct sysfs_ops md_sysfs_ops = { 4792 .show = md_attr_show, 4793 .store = md_attr_store, 4794 }; 4795 static struct kobj_type md_ktype = { 4796 .release = md_free, 4797 .sysfs_ops = &md_sysfs_ops, 4798 .default_attrs = md_default_attrs, 4799 }; 4800 4801 int mdp_major = 0; 4802 4803 static void mddev_delayed_delete(struct work_struct *ws) 4804 { 4805 struct mddev *mddev = container_of(ws, struct mddev, del_work); 4806 4807 sysfs_remove_group(&mddev->kobj, &md_bitmap_group); 4808 kobject_del(&mddev->kobj); 4809 kobject_put(&mddev->kobj); 4810 } 4811 4812 static int md_alloc(dev_t dev, char *name) 4813 { 4814 static DEFINE_MUTEX(disks_mutex); 4815 struct mddev *mddev = mddev_find(dev); 4816 struct gendisk *disk; 4817 int partitioned; 4818 int shift; 4819 int unit; 4820 int error; 4821 4822 if (!mddev) 4823 return -ENODEV; 4824 4825 partitioned = (MAJOR(mddev->unit) != MD_MAJOR); 4826 shift = partitioned ? MdpMinorShift : 0; 4827 unit = MINOR(mddev->unit) >> shift; 4828 4829 /* wait for any previous instance of this device to be 4830 * completely removed (mddev_delayed_delete). 4831 */ 4832 flush_workqueue(md_misc_wq); 4833 4834 mutex_lock(&disks_mutex); 4835 error = -EEXIST; 4836 if (mddev->gendisk) 4837 goto abort; 4838 4839 if (name) { 4840 /* Need to ensure that 'name' is not a duplicate. 4841 */ 4842 struct mddev *mddev2; 4843 spin_lock(&all_mddevs_lock); 4844 4845 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) 4846 if (mddev2->gendisk && 4847 strcmp(mddev2->gendisk->disk_name, name) == 0) { 4848 spin_unlock(&all_mddevs_lock); 4849 goto abort; 4850 } 4851 spin_unlock(&all_mddevs_lock); 4852 } 4853 4854 error = -ENOMEM; 4855 mddev->queue = blk_alloc_queue(GFP_KERNEL); 4856 if (!mddev->queue) 4857 goto abort; 4858 mddev->queue->queuedata = mddev; 4859 4860 blk_queue_make_request(mddev->queue, md_make_request); 4861 blk_set_stacking_limits(&mddev->queue->limits); 4862 4863 disk = alloc_disk(1 << shift); 4864 if (!disk) { 4865 blk_cleanup_queue(mddev->queue); 4866 mddev->queue = NULL; 4867 goto abort; 4868 } 4869 disk->major = MAJOR(mddev->unit); 4870 disk->first_minor = unit << shift; 4871 if (name) 4872 strcpy(disk->disk_name, name); 4873 else if (partitioned) 4874 sprintf(disk->disk_name, "md_d%d", unit); 4875 else 4876 sprintf(disk->disk_name, "md%d", unit); 4877 disk->fops = &md_fops; 4878 disk->private_data = mddev; 4879 disk->queue = mddev->queue; 4880 blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA); 4881 /* Allow extended partitions. This makes the 4882 * 'mdp' device redundant, but we can't really 4883 * remove it now. 4884 */ 4885 disk->flags |= GENHD_FL_EXT_DEVT; 4886 mddev->gendisk = disk; 4887 /* As soon as we call add_disk(), another thread could get 4888 * through to md_open, so make sure it doesn't get too far 4889 */ 4890 mutex_lock(&mddev->open_mutex); 4891 add_disk(disk); 4892 4893 error = kobject_init_and_add(&mddev->kobj, &md_ktype, 4894 &disk_to_dev(disk)->kobj, "%s", "md"); 4895 if (error) { 4896 /* This isn't possible, but as kobject_init_and_add is marked 4897 * __must_check, we must do something with the result 4898 */ 4899 printk(KERN_WARNING "md: cannot register %s/md - name in use\n", 4900 disk->disk_name); 4901 error = 0; 4902 } 4903 if (mddev->kobj.sd && 4904 sysfs_create_group(&mddev->kobj, &md_bitmap_group)) 4905 printk(KERN_DEBUG "pointless warning\n"); 4906 mutex_unlock(&mddev->open_mutex); 4907 abort: 4908 mutex_unlock(&disks_mutex); 4909 if (!error && mddev->kobj.sd) { 4910 kobject_uevent(&mddev->kobj, KOBJ_ADD); 4911 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state"); 4912 } 4913 mddev_put(mddev); 4914 return error; 4915 } 4916 4917 static struct kobject *md_probe(dev_t dev, int *part, void *data) 4918 { 4919 md_alloc(dev, NULL); 4920 return NULL; 4921 } 4922 4923 static int add_named_array(const char *val, struct kernel_param *kp) 4924 { 4925 /* val must be "md_*" where * is not all digits. 4926 * We allocate an array with a large free minor number, and 4927 * set the name to val. val must not already be an active name. 4928 */ 4929 int len = strlen(val); 4930 char buf[DISK_NAME_LEN]; 4931 4932 while (len && val[len-1] == '\n') 4933 len--; 4934 if (len >= DISK_NAME_LEN) 4935 return -E2BIG; 4936 strlcpy(buf, val, len+1); 4937 if (strncmp(buf, "md_", 3) != 0) 4938 return -EINVAL; 4939 return md_alloc(0, buf); 4940 } 4941 4942 static void md_safemode_timeout(unsigned long data) 4943 { 4944 struct mddev *mddev = (struct mddev *) data; 4945 4946 if (!atomic_read(&mddev->writes_pending)) { 4947 mddev->safemode = 1; 4948 if (mddev->external) 4949 sysfs_notify_dirent_safe(mddev->sysfs_state); 4950 } 4951 md_wakeup_thread(mddev->thread); 4952 } 4953 4954 static int start_dirty_degraded; 4955 4956 int md_run(struct mddev *mddev) 4957 { 4958 int err; 4959 struct md_rdev *rdev; 4960 struct md_personality *pers; 4961 4962 if (list_empty(&mddev->disks)) 4963 /* cannot run an array with no devices.. */ 4964 return -EINVAL; 4965 4966 if (mddev->pers) 4967 return -EBUSY; 4968 /* Cannot run until previous stop completes properly */ 4969 if (mddev->sysfs_active) 4970 return -EBUSY; 4971 4972 /* 4973 * Analyze all RAID superblock(s) 4974 */ 4975 if (!mddev->raid_disks) { 4976 if (!mddev->persistent) 4977 return -EINVAL; 4978 analyze_sbs(mddev); 4979 } 4980 4981 if (mddev->level != LEVEL_NONE) 4982 request_module("md-level-%d", mddev->level); 4983 else if (mddev->clevel[0]) 4984 request_module("md-%s", mddev->clevel); 4985 4986 /* 4987 * Drop all container device buffers, from now on 4988 * the only valid external interface is through the md 4989 * device. 4990 */ 4991 rdev_for_each(rdev, mddev) { 4992 if (test_bit(Faulty, &rdev->flags)) 4993 continue; 4994 sync_blockdev(rdev->bdev); 4995 invalidate_bdev(rdev->bdev); 4996 4997 /* perform some consistency tests on the device. 4998 * We don't want the data to overlap the metadata, 4999 * Internal Bitmap issues have been handled elsewhere. 5000 */ 5001 if (rdev->meta_bdev) { 5002 /* Nothing to check */; 5003 } else if (rdev->data_offset < rdev->sb_start) { 5004 if (mddev->dev_sectors && 5005 rdev->data_offset + mddev->dev_sectors 5006 > rdev->sb_start) { 5007 printk("md: %s: data overlaps metadata\n", 5008 mdname(mddev)); 5009 return -EINVAL; 5010 } 5011 } else { 5012 if (rdev->sb_start + rdev->sb_size/512 5013 > rdev->data_offset) { 5014 printk("md: %s: metadata overlaps data\n", 5015 mdname(mddev)); 5016 return -EINVAL; 5017 } 5018 } 5019 sysfs_notify_dirent_safe(rdev->sysfs_state); 5020 } 5021 5022 if (mddev->bio_set == NULL) 5023 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0); 5024 5025 spin_lock(&pers_lock); 5026 pers = find_pers(mddev->level, mddev->clevel); 5027 if (!pers || !try_module_get(pers->owner)) { 5028 spin_unlock(&pers_lock); 5029 if (mddev->level != LEVEL_NONE) 5030 printk(KERN_WARNING "md: personality for level %d is not loaded!\n", 5031 mddev->level); 5032 else 5033 printk(KERN_WARNING "md: personality for level %s is not loaded!\n", 5034 mddev->clevel); 5035 return -EINVAL; 5036 } 5037 mddev->pers = pers; 5038 spin_unlock(&pers_lock); 5039 if (mddev->level != pers->level) { 5040 mddev->level = pers->level; 5041 mddev->new_level = pers->level; 5042 } 5043 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 5044 5045 if (mddev->reshape_position != MaxSector && 5046 pers->start_reshape == NULL) { 5047 /* This personality cannot handle reshaping... */ 5048 mddev->pers = NULL; 5049 module_put(pers->owner); 5050 return -EINVAL; 5051 } 5052 5053 if (pers->sync_request) { 5054 /* Warn if this is a potentially silly 5055 * configuration. 5056 */ 5057 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 5058 struct md_rdev *rdev2; 5059 int warned = 0; 5060 5061 rdev_for_each(rdev, mddev) 5062 rdev_for_each(rdev2, mddev) { 5063 if (rdev < rdev2 && 5064 rdev->bdev->bd_contains == 5065 rdev2->bdev->bd_contains) { 5066 printk(KERN_WARNING 5067 "%s: WARNING: %s appears to be" 5068 " on the same physical disk as" 5069 " %s.\n", 5070 mdname(mddev), 5071 bdevname(rdev->bdev,b), 5072 bdevname(rdev2->bdev,b2)); 5073 warned = 1; 5074 } 5075 } 5076 5077 if (warned) 5078 printk(KERN_WARNING 5079 "True protection against single-disk" 5080 " failure might be compromised.\n"); 5081 } 5082 5083 mddev->recovery = 0; 5084 /* may be over-ridden by personality */ 5085 mddev->resync_max_sectors = mddev->dev_sectors; 5086 5087 mddev->ok_start_degraded = start_dirty_degraded; 5088 5089 if (start_readonly && mddev->ro == 0) 5090 mddev->ro = 2; /* read-only, but switch on first write */ 5091 5092 err = mddev->pers->run(mddev); 5093 if (err) 5094 printk(KERN_ERR "md: pers->run() failed ...\n"); 5095 else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) { 5096 WARN_ONCE(!mddev->external_size, "%s: default size too small," 5097 " but 'external_size' not in effect?\n", __func__); 5098 printk(KERN_ERR 5099 "md: invalid array_size %llu > default size %llu\n", 5100 (unsigned long long)mddev->array_sectors / 2, 5101 (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2); 5102 err = -EINVAL; 5103 mddev->pers->stop(mddev); 5104 } 5105 if (err == 0 && mddev->pers->sync_request && 5106 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) { 5107 err = bitmap_create(mddev); 5108 if (err) { 5109 printk(KERN_ERR "%s: failed to create bitmap (%d)\n", 5110 mdname(mddev), err); 5111 mddev->pers->stop(mddev); 5112 } 5113 } 5114 if (err) { 5115 module_put(mddev->pers->owner); 5116 mddev->pers = NULL; 5117 bitmap_destroy(mddev); 5118 return err; 5119 } 5120 if (mddev->pers->sync_request) { 5121 if (mddev->kobj.sd && 5122 sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 5123 printk(KERN_WARNING 5124 "md: cannot register extra attributes for %s\n", 5125 mdname(mddev)); 5126 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action"); 5127 } else if (mddev->ro == 2) /* auto-readonly not meaningful */ 5128 mddev->ro = 0; 5129 5130 atomic_set(&mddev->writes_pending,0); 5131 atomic_set(&mddev->max_corr_read_errors, 5132 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS); 5133 mddev->safemode = 0; 5134 mddev->safemode_timer.function = md_safemode_timeout; 5135 mddev->safemode_timer.data = (unsigned long) mddev; 5136 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */ 5137 mddev->in_sync = 1; 5138 smp_wmb(); 5139 mddev->ready = 1; 5140 rdev_for_each(rdev, mddev) 5141 if (rdev->raid_disk >= 0) 5142 if (sysfs_link_rdev(mddev, rdev)) 5143 /* failure here is OK */; 5144 5145 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5146 5147 if (mddev->flags & MD_UPDATE_SB_FLAGS) 5148 md_update_sb(mddev, 0); 5149 5150 md_new_event(mddev); 5151 sysfs_notify_dirent_safe(mddev->sysfs_state); 5152 sysfs_notify_dirent_safe(mddev->sysfs_action); 5153 sysfs_notify(&mddev->kobj, NULL, "degraded"); 5154 return 0; 5155 } 5156 EXPORT_SYMBOL_GPL(md_run); 5157 5158 static int do_md_run(struct mddev *mddev) 5159 { 5160 int err; 5161 5162 err = md_run(mddev); 5163 if (err) 5164 goto out; 5165 err = bitmap_load(mddev); 5166 if (err) { 5167 bitmap_destroy(mddev); 5168 goto out; 5169 } 5170 5171 md_wakeup_thread(mddev->thread); 5172 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 5173 5174 set_capacity(mddev->gendisk, mddev->array_sectors); 5175 revalidate_disk(mddev->gendisk); 5176 mddev->changed = 1; 5177 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 5178 out: 5179 return err; 5180 } 5181 5182 static int restart_array(struct mddev *mddev) 5183 { 5184 struct gendisk *disk = mddev->gendisk; 5185 5186 /* Complain if it has no devices */ 5187 if (list_empty(&mddev->disks)) 5188 return -ENXIO; 5189 if (!mddev->pers) 5190 return -EINVAL; 5191 if (!mddev->ro) 5192 return -EBUSY; 5193 mddev->safemode = 0; 5194 mddev->ro = 0; 5195 set_disk_ro(disk, 0); 5196 printk(KERN_INFO "md: %s switched to read-write mode.\n", 5197 mdname(mddev)); 5198 /* Kick recovery or resync if necessary */ 5199 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5200 md_wakeup_thread(mddev->thread); 5201 md_wakeup_thread(mddev->sync_thread); 5202 sysfs_notify_dirent_safe(mddev->sysfs_state); 5203 return 0; 5204 } 5205 5206 /* similar to deny_write_access, but accounts for our holding a reference 5207 * to the file ourselves */ 5208 static int deny_bitmap_write_access(struct file * file) 5209 { 5210 struct inode *inode = file->f_mapping->host; 5211 5212 spin_lock(&inode->i_lock); 5213 if (atomic_read(&inode->i_writecount) > 1) { 5214 spin_unlock(&inode->i_lock); 5215 return -ETXTBSY; 5216 } 5217 atomic_set(&inode->i_writecount, -1); 5218 spin_unlock(&inode->i_lock); 5219 5220 return 0; 5221 } 5222 5223 void restore_bitmap_write_access(struct file *file) 5224 { 5225 struct inode *inode = file->f_mapping->host; 5226 5227 spin_lock(&inode->i_lock); 5228 atomic_set(&inode->i_writecount, 1); 5229 spin_unlock(&inode->i_lock); 5230 } 5231 5232 static void md_clean(struct mddev *mddev) 5233 { 5234 mddev->array_sectors = 0; 5235 mddev->external_size = 0; 5236 mddev->dev_sectors = 0; 5237 mddev->raid_disks = 0; 5238 mddev->recovery_cp = 0; 5239 mddev->resync_min = 0; 5240 mddev->resync_max = MaxSector; 5241 mddev->reshape_position = MaxSector; 5242 mddev->external = 0; 5243 mddev->persistent = 0; 5244 mddev->level = LEVEL_NONE; 5245 mddev->clevel[0] = 0; 5246 mddev->flags = 0; 5247 mddev->ro = 0; 5248 mddev->metadata_type[0] = 0; 5249 mddev->chunk_sectors = 0; 5250 mddev->ctime = mddev->utime = 0; 5251 mddev->layout = 0; 5252 mddev->max_disks = 0; 5253 mddev->events = 0; 5254 mddev->can_decrease_events = 0; 5255 mddev->delta_disks = 0; 5256 mddev->reshape_backwards = 0; 5257 mddev->new_level = LEVEL_NONE; 5258 mddev->new_layout = 0; 5259 mddev->new_chunk_sectors = 0; 5260 mddev->curr_resync = 0; 5261 atomic64_set(&mddev->resync_mismatches, 0); 5262 mddev->suspend_lo = mddev->suspend_hi = 0; 5263 mddev->sync_speed_min = mddev->sync_speed_max = 0; 5264 mddev->recovery = 0; 5265 mddev->in_sync = 0; 5266 mddev->changed = 0; 5267 mddev->degraded = 0; 5268 mddev->safemode = 0; 5269 mddev->merge_check_needed = 0; 5270 mddev->bitmap_info.offset = 0; 5271 mddev->bitmap_info.default_offset = 0; 5272 mddev->bitmap_info.default_space = 0; 5273 mddev->bitmap_info.chunksize = 0; 5274 mddev->bitmap_info.daemon_sleep = 0; 5275 mddev->bitmap_info.max_write_behind = 0; 5276 } 5277 5278 static void __md_stop_writes(struct mddev *mddev) 5279 { 5280 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5281 if (mddev->sync_thread) { 5282 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5283 md_reap_sync_thread(mddev); 5284 } 5285 5286 del_timer_sync(&mddev->safemode_timer); 5287 5288 bitmap_flush(mddev); 5289 md_super_wait(mddev); 5290 5291 if (mddev->ro == 0 && 5292 (!mddev->in_sync || (mddev->flags & MD_UPDATE_SB_FLAGS))) { 5293 /* mark array as shutdown cleanly */ 5294 mddev->in_sync = 1; 5295 md_update_sb(mddev, 1); 5296 } 5297 } 5298 5299 void md_stop_writes(struct mddev *mddev) 5300 { 5301 mddev_lock(mddev); 5302 __md_stop_writes(mddev); 5303 mddev_unlock(mddev); 5304 } 5305 EXPORT_SYMBOL_GPL(md_stop_writes); 5306 5307 static void __md_stop(struct mddev *mddev) 5308 { 5309 mddev->ready = 0; 5310 mddev->pers->stop(mddev); 5311 if (mddev->pers->sync_request && mddev->to_remove == NULL) 5312 mddev->to_remove = &md_redundancy_group; 5313 module_put(mddev->pers->owner); 5314 mddev->pers = NULL; 5315 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5316 } 5317 5318 void md_stop(struct mddev *mddev) 5319 { 5320 /* stop the array and free an attached data structures. 5321 * This is called from dm-raid 5322 */ 5323 __md_stop(mddev); 5324 bitmap_destroy(mddev); 5325 if (mddev->bio_set) 5326 bioset_free(mddev->bio_set); 5327 } 5328 5329 EXPORT_SYMBOL_GPL(md_stop); 5330 5331 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev) 5332 { 5333 int err = 0; 5334 mutex_lock(&mddev->open_mutex); 5335 if (atomic_read(&mddev->openers) > !!bdev) { 5336 printk("md: %s still in use.\n",mdname(mddev)); 5337 err = -EBUSY; 5338 goto out; 5339 } 5340 if (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags)) { 5341 /* Someone opened the device since we flushed it 5342 * so page cache could be dirty and it is too late 5343 * to flush. So abort 5344 */ 5345 mutex_unlock(&mddev->open_mutex); 5346 return -EBUSY; 5347 } 5348 if (mddev->pers) { 5349 __md_stop_writes(mddev); 5350 5351 err = -ENXIO; 5352 if (mddev->ro==1) 5353 goto out; 5354 mddev->ro = 1; 5355 set_disk_ro(mddev->gendisk, 1); 5356 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5357 sysfs_notify_dirent_safe(mddev->sysfs_state); 5358 err = 0; 5359 } 5360 out: 5361 mutex_unlock(&mddev->open_mutex); 5362 return err; 5363 } 5364 5365 /* mode: 5366 * 0 - completely stop and dis-assemble array 5367 * 2 - stop but do not disassemble array 5368 */ 5369 static int do_md_stop(struct mddev * mddev, int mode, 5370 struct block_device *bdev) 5371 { 5372 struct gendisk *disk = mddev->gendisk; 5373 struct md_rdev *rdev; 5374 5375 mutex_lock(&mddev->open_mutex); 5376 if (atomic_read(&mddev->openers) > !!bdev || 5377 mddev->sysfs_active) { 5378 printk("md: %s still in use.\n",mdname(mddev)); 5379 mutex_unlock(&mddev->open_mutex); 5380 return -EBUSY; 5381 } 5382 if (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags)) { 5383 /* Someone opened the device since we flushed it 5384 * so page cache could be dirty and it is too late 5385 * to flush. So abort 5386 */ 5387 mutex_unlock(&mddev->open_mutex); 5388 return -EBUSY; 5389 } 5390 if (mddev->pers) { 5391 if (mddev->ro) 5392 set_disk_ro(disk, 0); 5393 5394 __md_stop_writes(mddev); 5395 __md_stop(mddev); 5396 mddev->queue->merge_bvec_fn = NULL; 5397 mddev->queue->backing_dev_info.congested_fn = NULL; 5398 5399 /* tell userspace to handle 'inactive' */ 5400 sysfs_notify_dirent_safe(mddev->sysfs_state); 5401 5402 rdev_for_each(rdev, mddev) 5403 if (rdev->raid_disk >= 0) 5404 sysfs_unlink_rdev(mddev, rdev); 5405 5406 set_capacity(disk, 0); 5407 mutex_unlock(&mddev->open_mutex); 5408 mddev->changed = 1; 5409 revalidate_disk(disk); 5410 5411 if (mddev->ro) 5412 mddev->ro = 0; 5413 } else 5414 mutex_unlock(&mddev->open_mutex); 5415 /* 5416 * Free resources if final stop 5417 */ 5418 if (mode == 0) { 5419 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev)); 5420 5421 bitmap_destroy(mddev); 5422 if (mddev->bitmap_info.file) { 5423 restore_bitmap_write_access(mddev->bitmap_info.file); 5424 fput(mddev->bitmap_info.file); 5425 mddev->bitmap_info.file = NULL; 5426 } 5427 mddev->bitmap_info.offset = 0; 5428 5429 export_array(mddev); 5430 5431 md_clean(mddev); 5432 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 5433 if (mddev->hold_active == UNTIL_STOP) 5434 mddev->hold_active = 0; 5435 } 5436 blk_integrity_unregister(disk); 5437 md_new_event(mddev); 5438 sysfs_notify_dirent_safe(mddev->sysfs_state); 5439 return 0; 5440 } 5441 5442 #ifndef MODULE 5443 static void autorun_array(struct mddev *mddev) 5444 { 5445 struct md_rdev *rdev; 5446 int err; 5447 5448 if (list_empty(&mddev->disks)) 5449 return; 5450 5451 printk(KERN_INFO "md: running: "); 5452 5453 rdev_for_each(rdev, mddev) { 5454 char b[BDEVNAME_SIZE]; 5455 printk("<%s>", bdevname(rdev->bdev,b)); 5456 } 5457 printk("\n"); 5458 5459 err = do_md_run(mddev); 5460 if (err) { 5461 printk(KERN_WARNING "md: do_md_run() returned %d\n", err); 5462 do_md_stop(mddev, 0, NULL); 5463 } 5464 } 5465 5466 /* 5467 * lets try to run arrays based on all disks that have arrived 5468 * until now. (those are in pending_raid_disks) 5469 * 5470 * the method: pick the first pending disk, collect all disks with 5471 * the same UUID, remove all from the pending list and put them into 5472 * the 'same_array' list. Then order this list based on superblock 5473 * update time (freshest comes first), kick out 'old' disks and 5474 * compare superblocks. If everything's fine then run it. 5475 * 5476 * If "unit" is allocated, then bump its reference count 5477 */ 5478 static void autorun_devices(int part) 5479 { 5480 struct md_rdev *rdev0, *rdev, *tmp; 5481 struct mddev *mddev; 5482 char b[BDEVNAME_SIZE]; 5483 5484 printk(KERN_INFO "md: autorun ...\n"); 5485 while (!list_empty(&pending_raid_disks)) { 5486 int unit; 5487 dev_t dev; 5488 LIST_HEAD(candidates); 5489 rdev0 = list_entry(pending_raid_disks.next, 5490 struct md_rdev, same_set); 5491 5492 printk(KERN_INFO "md: considering %s ...\n", 5493 bdevname(rdev0->bdev,b)); 5494 INIT_LIST_HEAD(&candidates); 5495 rdev_for_each_list(rdev, tmp, &pending_raid_disks) 5496 if (super_90_load(rdev, rdev0, 0) >= 0) { 5497 printk(KERN_INFO "md: adding %s ...\n", 5498 bdevname(rdev->bdev,b)); 5499 list_move(&rdev->same_set, &candidates); 5500 } 5501 /* 5502 * now we have a set of devices, with all of them having 5503 * mostly sane superblocks. It's time to allocate the 5504 * mddev. 5505 */ 5506 if (part) { 5507 dev = MKDEV(mdp_major, 5508 rdev0->preferred_minor << MdpMinorShift); 5509 unit = MINOR(dev) >> MdpMinorShift; 5510 } else { 5511 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); 5512 unit = MINOR(dev); 5513 } 5514 if (rdev0->preferred_minor != unit) { 5515 printk(KERN_INFO "md: unit number in %s is bad: %d\n", 5516 bdevname(rdev0->bdev, b), rdev0->preferred_minor); 5517 break; 5518 } 5519 5520 md_probe(dev, NULL, NULL); 5521 mddev = mddev_find(dev); 5522 if (!mddev || !mddev->gendisk) { 5523 if (mddev) 5524 mddev_put(mddev); 5525 printk(KERN_ERR 5526 "md: cannot allocate memory for md drive.\n"); 5527 break; 5528 } 5529 if (mddev_lock(mddev)) 5530 printk(KERN_WARNING "md: %s locked, cannot run\n", 5531 mdname(mddev)); 5532 else if (mddev->raid_disks || mddev->major_version 5533 || !list_empty(&mddev->disks)) { 5534 printk(KERN_WARNING 5535 "md: %s already running, cannot run %s\n", 5536 mdname(mddev), bdevname(rdev0->bdev,b)); 5537 mddev_unlock(mddev); 5538 } else { 5539 printk(KERN_INFO "md: created %s\n", mdname(mddev)); 5540 mddev->persistent = 1; 5541 rdev_for_each_list(rdev, tmp, &candidates) { 5542 list_del_init(&rdev->same_set); 5543 if (bind_rdev_to_array(rdev, mddev)) 5544 export_rdev(rdev); 5545 } 5546 autorun_array(mddev); 5547 mddev_unlock(mddev); 5548 } 5549 /* on success, candidates will be empty, on error 5550 * it won't... 5551 */ 5552 rdev_for_each_list(rdev, tmp, &candidates) { 5553 list_del_init(&rdev->same_set); 5554 export_rdev(rdev); 5555 } 5556 mddev_put(mddev); 5557 } 5558 printk(KERN_INFO "md: ... autorun DONE.\n"); 5559 } 5560 #endif /* !MODULE */ 5561 5562 static int get_version(void __user * arg) 5563 { 5564 mdu_version_t ver; 5565 5566 ver.major = MD_MAJOR_VERSION; 5567 ver.minor = MD_MINOR_VERSION; 5568 ver.patchlevel = MD_PATCHLEVEL_VERSION; 5569 5570 if (copy_to_user(arg, &ver, sizeof(ver))) 5571 return -EFAULT; 5572 5573 return 0; 5574 } 5575 5576 static int get_array_info(struct mddev * mddev, void __user * arg) 5577 { 5578 mdu_array_info_t info; 5579 int nr,working,insync,failed,spare; 5580 struct md_rdev *rdev; 5581 5582 nr = working = insync = failed = spare = 0; 5583 rcu_read_lock(); 5584 rdev_for_each_rcu(rdev, mddev) { 5585 nr++; 5586 if (test_bit(Faulty, &rdev->flags)) 5587 failed++; 5588 else { 5589 working++; 5590 if (test_bit(In_sync, &rdev->flags)) 5591 insync++; 5592 else 5593 spare++; 5594 } 5595 } 5596 rcu_read_unlock(); 5597 5598 info.major_version = mddev->major_version; 5599 info.minor_version = mddev->minor_version; 5600 info.patch_version = MD_PATCHLEVEL_VERSION; 5601 info.ctime = mddev->ctime; 5602 info.level = mddev->level; 5603 info.size = mddev->dev_sectors / 2; 5604 if (info.size != mddev->dev_sectors / 2) /* overflow */ 5605 info.size = -1; 5606 info.nr_disks = nr; 5607 info.raid_disks = mddev->raid_disks; 5608 info.md_minor = mddev->md_minor; 5609 info.not_persistent= !mddev->persistent; 5610 5611 info.utime = mddev->utime; 5612 info.state = 0; 5613 if (mddev->in_sync) 5614 info.state = (1<<MD_SB_CLEAN); 5615 if (mddev->bitmap && mddev->bitmap_info.offset) 5616 info.state = (1<<MD_SB_BITMAP_PRESENT); 5617 info.active_disks = insync; 5618 info.working_disks = working; 5619 info.failed_disks = failed; 5620 info.spare_disks = spare; 5621 5622 info.layout = mddev->layout; 5623 info.chunk_size = mddev->chunk_sectors << 9; 5624 5625 if (copy_to_user(arg, &info, sizeof(info))) 5626 return -EFAULT; 5627 5628 return 0; 5629 } 5630 5631 static int get_bitmap_file(struct mddev * mddev, void __user * arg) 5632 { 5633 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ 5634 char *ptr, *buf = NULL; 5635 int err = -ENOMEM; 5636 5637 file = kmalloc(sizeof(*file), GFP_NOIO); 5638 5639 if (!file) 5640 goto out; 5641 5642 /* bitmap disabled, zero the first byte and copy out */ 5643 if (!mddev->bitmap || !mddev->bitmap->storage.file) { 5644 file->pathname[0] = '\0'; 5645 goto copy_out; 5646 } 5647 5648 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL); 5649 if (!buf) 5650 goto out; 5651 5652 ptr = d_path(&mddev->bitmap->storage.file->f_path, 5653 buf, sizeof(file->pathname)); 5654 if (IS_ERR(ptr)) 5655 goto out; 5656 5657 strcpy(file->pathname, ptr); 5658 5659 copy_out: 5660 err = 0; 5661 if (copy_to_user(arg, file, sizeof(*file))) 5662 err = -EFAULT; 5663 out: 5664 kfree(buf); 5665 kfree(file); 5666 return err; 5667 } 5668 5669 static int get_disk_info(struct mddev * mddev, void __user * arg) 5670 { 5671 mdu_disk_info_t info; 5672 struct md_rdev *rdev; 5673 5674 if (copy_from_user(&info, arg, sizeof(info))) 5675 return -EFAULT; 5676 5677 rcu_read_lock(); 5678 rdev = find_rdev_nr_rcu(mddev, info.number); 5679 if (rdev) { 5680 info.major = MAJOR(rdev->bdev->bd_dev); 5681 info.minor = MINOR(rdev->bdev->bd_dev); 5682 info.raid_disk = rdev->raid_disk; 5683 info.state = 0; 5684 if (test_bit(Faulty, &rdev->flags)) 5685 info.state |= (1<<MD_DISK_FAULTY); 5686 else if (test_bit(In_sync, &rdev->flags)) { 5687 info.state |= (1<<MD_DISK_ACTIVE); 5688 info.state |= (1<<MD_DISK_SYNC); 5689 } 5690 if (test_bit(WriteMostly, &rdev->flags)) 5691 info.state |= (1<<MD_DISK_WRITEMOSTLY); 5692 } else { 5693 info.major = info.minor = 0; 5694 info.raid_disk = -1; 5695 info.state = (1<<MD_DISK_REMOVED); 5696 } 5697 rcu_read_unlock(); 5698 5699 if (copy_to_user(arg, &info, sizeof(info))) 5700 return -EFAULT; 5701 5702 return 0; 5703 } 5704 5705 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info) 5706 { 5707 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 5708 struct md_rdev *rdev; 5709 dev_t dev = MKDEV(info->major,info->minor); 5710 5711 if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) 5712 return -EOVERFLOW; 5713 5714 if (!mddev->raid_disks) { 5715 int err; 5716 /* expecting a device which has a superblock */ 5717 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); 5718 if (IS_ERR(rdev)) { 5719 printk(KERN_WARNING 5720 "md: md_import_device returned %ld\n", 5721 PTR_ERR(rdev)); 5722 return PTR_ERR(rdev); 5723 } 5724 if (!list_empty(&mddev->disks)) { 5725 struct md_rdev *rdev0 5726 = list_entry(mddev->disks.next, 5727 struct md_rdev, same_set); 5728 err = super_types[mddev->major_version] 5729 .load_super(rdev, rdev0, mddev->minor_version); 5730 if (err < 0) { 5731 printk(KERN_WARNING 5732 "md: %s has different UUID to %s\n", 5733 bdevname(rdev->bdev,b), 5734 bdevname(rdev0->bdev,b2)); 5735 export_rdev(rdev); 5736 return -EINVAL; 5737 } 5738 } 5739 err = bind_rdev_to_array(rdev, mddev); 5740 if (err) 5741 export_rdev(rdev); 5742 return err; 5743 } 5744 5745 /* 5746 * add_new_disk can be used once the array is assembled 5747 * to add "hot spares". They must already have a superblock 5748 * written 5749 */ 5750 if (mddev->pers) { 5751 int err; 5752 if (!mddev->pers->hot_add_disk) { 5753 printk(KERN_WARNING 5754 "%s: personality does not support diskops!\n", 5755 mdname(mddev)); 5756 return -EINVAL; 5757 } 5758 if (mddev->persistent) 5759 rdev = md_import_device(dev, mddev->major_version, 5760 mddev->minor_version); 5761 else 5762 rdev = md_import_device(dev, -1, -1); 5763 if (IS_ERR(rdev)) { 5764 printk(KERN_WARNING 5765 "md: md_import_device returned %ld\n", 5766 PTR_ERR(rdev)); 5767 return PTR_ERR(rdev); 5768 } 5769 /* set saved_raid_disk if appropriate */ 5770 if (!mddev->persistent) { 5771 if (info->state & (1<<MD_DISK_SYNC) && 5772 info->raid_disk < mddev->raid_disks) { 5773 rdev->raid_disk = info->raid_disk; 5774 set_bit(In_sync, &rdev->flags); 5775 } else 5776 rdev->raid_disk = -1; 5777 } else 5778 super_types[mddev->major_version]. 5779 validate_super(mddev, rdev); 5780 if ((info->state & (1<<MD_DISK_SYNC)) && 5781 rdev->raid_disk != info->raid_disk) { 5782 /* This was a hot-add request, but events doesn't 5783 * match, so reject it. 5784 */ 5785 export_rdev(rdev); 5786 return -EINVAL; 5787 } 5788 5789 if (test_bit(In_sync, &rdev->flags)) 5790 rdev->saved_raid_disk = rdev->raid_disk; 5791 else 5792 rdev->saved_raid_disk = -1; 5793 5794 clear_bit(In_sync, &rdev->flags); /* just to be sure */ 5795 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 5796 set_bit(WriteMostly, &rdev->flags); 5797 else 5798 clear_bit(WriteMostly, &rdev->flags); 5799 5800 rdev->raid_disk = -1; 5801 err = bind_rdev_to_array(rdev, mddev); 5802 if (!err && !mddev->pers->hot_remove_disk) { 5803 /* If there is hot_add_disk but no hot_remove_disk 5804 * then added disks for geometry changes, 5805 * and should be added immediately. 5806 */ 5807 super_types[mddev->major_version]. 5808 validate_super(mddev, rdev); 5809 err = mddev->pers->hot_add_disk(mddev, rdev); 5810 if (err) 5811 unbind_rdev_from_array(rdev); 5812 } 5813 if (err) 5814 export_rdev(rdev); 5815 else 5816 sysfs_notify_dirent_safe(rdev->sysfs_state); 5817 5818 set_bit(MD_CHANGE_DEVS, &mddev->flags); 5819 if (mddev->degraded) 5820 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 5821 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5822 if (!err) 5823 md_new_event(mddev); 5824 md_wakeup_thread(mddev->thread); 5825 return err; 5826 } 5827 5828 /* otherwise, add_new_disk is only allowed 5829 * for major_version==0 superblocks 5830 */ 5831 if (mddev->major_version != 0) { 5832 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n", 5833 mdname(mddev)); 5834 return -EINVAL; 5835 } 5836 5837 if (!(info->state & (1<<MD_DISK_FAULTY))) { 5838 int err; 5839 rdev = md_import_device(dev, -1, 0); 5840 if (IS_ERR(rdev)) { 5841 printk(KERN_WARNING 5842 "md: error, md_import_device() returned %ld\n", 5843 PTR_ERR(rdev)); 5844 return PTR_ERR(rdev); 5845 } 5846 rdev->desc_nr = info->number; 5847 if (info->raid_disk < mddev->raid_disks) 5848 rdev->raid_disk = info->raid_disk; 5849 else 5850 rdev->raid_disk = -1; 5851 5852 if (rdev->raid_disk < mddev->raid_disks) 5853 if (info->state & (1<<MD_DISK_SYNC)) 5854 set_bit(In_sync, &rdev->flags); 5855 5856 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 5857 set_bit(WriteMostly, &rdev->flags); 5858 5859 if (!mddev->persistent) { 5860 printk(KERN_INFO "md: nonpersistent superblock ...\n"); 5861 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 5862 } else 5863 rdev->sb_start = calc_dev_sboffset(rdev); 5864 rdev->sectors = rdev->sb_start; 5865 5866 err = bind_rdev_to_array(rdev, mddev); 5867 if (err) { 5868 export_rdev(rdev); 5869 return err; 5870 } 5871 } 5872 5873 return 0; 5874 } 5875 5876 static int hot_remove_disk(struct mddev * mddev, dev_t dev) 5877 { 5878 char b[BDEVNAME_SIZE]; 5879 struct md_rdev *rdev; 5880 5881 rdev = find_rdev(mddev, dev); 5882 if (!rdev) 5883 return -ENXIO; 5884 5885 clear_bit(Blocked, &rdev->flags); 5886 remove_and_add_spares(mddev, rdev); 5887 5888 if (rdev->raid_disk >= 0) 5889 goto busy; 5890 5891 kick_rdev_from_array(rdev); 5892 md_update_sb(mddev, 1); 5893 md_new_event(mddev); 5894 5895 return 0; 5896 busy: 5897 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n", 5898 bdevname(rdev->bdev,b), mdname(mddev)); 5899 return -EBUSY; 5900 } 5901 5902 static int hot_add_disk(struct mddev * mddev, dev_t dev) 5903 { 5904 char b[BDEVNAME_SIZE]; 5905 int err; 5906 struct md_rdev *rdev; 5907 5908 if (!mddev->pers) 5909 return -ENODEV; 5910 5911 if (mddev->major_version != 0) { 5912 printk(KERN_WARNING "%s: HOT_ADD may only be used with" 5913 " version-0 superblocks.\n", 5914 mdname(mddev)); 5915 return -EINVAL; 5916 } 5917 if (!mddev->pers->hot_add_disk) { 5918 printk(KERN_WARNING 5919 "%s: personality does not support diskops!\n", 5920 mdname(mddev)); 5921 return -EINVAL; 5922 } 5923 5924 rdev = md_import_device(dev, -1, 0); 5925 if (IS_ERR(rdev)) { 5926 printk(KERN_WARNING 5927 "md: error, md_import_device() returned %ld\n", 5928 PTR_ERR(rdev)); 5929 return -EINVAL; 5930 } 5931 5932 if (mddev->persistent) 5933 rdev->sb_start = calc_dev_sboffset(rdev); 5934 else 5935 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 5936 5937 rdev->sectors = rdev->sb_start; 5938 5939 if (test_bit(Faulty, &rdev->flags)) { 5940 printk(KERN_WARNING 5941 "md: can not hot-add faulty %s disk to %s!\n", 5942 bdevname(rdev->bdev,b), mdname(mddev)); 5943 err = -EINVAL; 5944 goto abort_export; 5945 } 5946 clear_bit(In_sync, &rdev->flags); 5947 rdev->desc_nr = -1; 5948 rdev->saved_raid_disk = -1; 5949 err = bind_rdev_to_array(rdev, mddev); 5950 if (err) 5951 goto abort_export; 5952 5953 /* 5954 * The rest should better be atomic, we can have disk failures 5955 * noticed in interrupt contexts ... 5956 */ 5957 5958 rdev->raid_disk = -1; 5959 5960 md_update_sb(mddev, 1); 5961 5962 /* 5963 * Kick recovery, maybe this spare has to be added to the 5964 * array immediately. 5965 */ 5966 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5967 md_wakeup_thread(mddev->thread); 5968 md_new_event(mddev); 5969 return 0; 5970 5971 abort_export: 5972 export_rdev(rdev); 5973 return err; 5974 } 5975 5976 static int set_bitmap_file(struct mddev *mddev, int fd) 5977 { 5978 int err; 5979 5980 if (mddev->pers) { 5981 if (!mddev->pers->quiesce) 5982 return -EBUSY; 5983 if (mddev->recovery || mddev->sync_thread) 5984 return -EBUSY; 5985 /* we should be able to change the bitmap.. */ 5986 } 5987 5988 5989 if (fd >= 0) { 5990 if (mddev->bitmap) 5991 return -EEXIST; /* cannot add when bitmap is present */ 5992 mddev->bitmap_info.file = fget(fd); 5993 5994 if (mddev->bitmap_info.file == NULL) { 5995 printk(KERN_ERR "%s: error: failed to get bitmap file\n", 5996 mdname(mddev)); 5997 return -EBADF; 5998 } 5999 6000 err = deny_bitmap_write_access(mddev->bitmap_info.file); 6001 if (err) { 6002 printk(KERN_ERR "%s: error: bitmap file is already in use\n", 6003 mdname(mddev)); 6004 fput(mddev->bitmap_info.file); 6005 mddev->bitmap_info.file = NULL; 6006 return err; 6007 } 6008 mddev->bitmap_info.offset = 0; /* file overrides offset */ 6009 } else if (mddev->bitmap == NULL) 6010 return -ENOENT; /* cannot remove what isn't there */ 6011 err = 0; 6012 if (mddev->pers) { 6013 mddev->pers->quiesce(mddev, 1); 6014 if (fd >= 0) { 6015 err = bitmap_create(mddev); 6016 if (!err) 6017 err = bitmap_load(mddev); 6018 } 6019 if (fd < 0 || err) { 6020 bitmap_destroy(mddev); 6021 fd = -1; /* make sure to put the file */ 6022 } 6023 mddev->pers->quiesce(mddev, 0); 6024 } 6025 if (fd < 0) { 6026 if (mddev->bitmap_info.file) { 6027 restore_bitmap_write_access(mddev->bitmap_info.file); 6028 fput(mddev->bitmap_info.file); 6029 } 6030 mddev->bitmap_info.file = NULL; 6031 } 6032 6033 return err; 6034 } 6035 6036 /* 6037 * set_array_info is used two different ways 6038 * The original usage is when creating a new array. 6039 * In this usage, raid_disks is > 0 and it together with 6040 * level, size, not_persistent,layout,chunksize determine the 6041 * shape of the array. 6042 * This will always create an array with a type-0.90.0 superblock. 6043 * The newer usage is when assembling an array. 6044 * In this case raid_disks will be 0, and the major_version field is 6045 * use to determine which style super-blocks are to be found on the devices. 6046 * The minor and patch _version numbers are also kept incase the 6047 * super_block handler wishes to interpret them. 6048 */ 6049 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info) 6050 { 6051 6052 if (info->raid_disks == 0) { 6053 /* just setting version number for superblock loading */ 6054 if (info->major_version < 0 || 6055 info->major_version >= ARRAY_SIZE(super_types) || 6056 super_types[info->major_version].name == NULL) { 6057 /* maybe try to auto-load a module? */ 6058 printk(KERN_INFO 6059 "md: superblock version %d not known\n", 6060 info->major_version); 6061 return -EINVAL; 6062 } 6063 mddev->major_version = info->major_version; 6064 mddev->minor_version = info->minor_version; 6065 mddev->patch_version = info->patch_version; 6066 mddev->persistent = !info->not_persistent; 6067 /* ensure mddev_put doesn't delete this now that there 6068 * is some minimal configuration. 6069 */ 6070 mddev->ctime = get_seconds(); 6071 return 0; 6072 } 6073 mddev->major_version = MD_MAJOR_VERSION; 6074 mddev->minor_version = MD_MINOR_VERSION; 6075 mddev->patch_version = MD_PATCHLEVEL_VERSION; 6076 mddev->ctime = get_seconds(); 6077 6078 mddev->level = info->level; 6079 mddev->clevel[0] = 0; 6080 mddev->dev_sectors = 2 * (sector_t)info->size; 6081 mddev->raid_disks = info->raid_disks; 6082 /* don't set md_minor, it is determined by which /dev/md* was 6083 * openned 6084 */ 6085 if (info->state & (1<<MD_SB_CLEAN)) 6086 mddev->recovery_cp = MaxSector; 6087 else 6088 mddev->recovery_cp = 0; 6089 mddev->persistent = ! info->not_persistent; 6090 mddev->external = 0; 6091 6092 mddev->layout = info->layout; 6093 mddev->chunk_sectors = info->chunk_size >> 9; 6094 6095 mddev->max_disks = MD_SB_DISKS; 6096 6097 if (mddev->persistent) 6098 mddev->flags = 0; 6099 set_bit(MD_CHANGE_DEVS, &mddev->flags); 6100 6101 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 6102 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 6103 mddev->bitmap_info.offset = 0; 6104 6105 mddev->reshape_position = MaxSector; 6106 6107 /* 6108 * Generate a 128 bit UUID 6109 */ 6110 get_random_bytes(mddev->uuid, 16); 6111 6112 mddev->new_level = mddev->level; 6113 mddev->new_chunk_sectors = mddev->chunk_sectors; 6114 mddev->new_layout = mddev->layout; 6115 mddev->delta_disks = 0; 6116 mddev->reshape_backwards = 0; 6117 6118 return 0; 6119 } 6120 6121 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors) 6122 { 6123 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__); 6124 6125 if (mddev->external_size) 6126 return; 6127 6128 mddev->array_sectors = array_sectors; 6129 } 6130 EXPORT_SYMBOL(md_set_array_sectors); 6131 6132 static int update_size(struct mddev *mddev, sector_t num_sectors) 6133 { 6134 struct md_rdev *rdev; 6135 int rv; 6136 int fit = (num_sectors == 0); 6137 6138 if (mddev->pers->resize == NULL) 6139 return -EINVAL; 6140 /* The "num_sectors" is the number of sectors of each device that 6141 * is used. This can only make sense for arrays with redundancy. 6142 * linear and raid0 always use whatever space is available. We can only 6143 * consider changing this number if no resync or reconstruction is 6144 * happening, and if the new size is acceptable. It must fit before the 6145 * sb_start or, if that is <data_offset, it must fit before the size 6146 * of each device. If num_sectors is zero, we find the largest size 6147 * that fits. 6148 */ 6149 if (mddev->sync_thread) 6150 return -EBUSY; 6151 6152 rdev_for_each(rdev, mddev) { 6153 sector_t avail = rdev->sectors; 6154 6155 if (fit && (num_sectors == 0 || num_sectors > avail)) 6156 num_sectors = avail; 6157 if (avail < num_sectors) 6158 return -ENOSPC; 6159 } 6160 rv = mddev->pers->resize(mddev, num_sectors); 6161 if (!rv) 6162 revalidate_disk(mddev->gendisk); 6163 return rv; 6164 } 6165 6166 static int update_raid_disks(struct mddev *mddev, int raid_disks) 6167 { 6168 int rv; 6169 struct md_rdev *rdev; 6170 /* change the number of raid disks */ 6171 if (mddev->pers->check_reshape == NULL) 6172 return -EINVAL; 6173 if (raid_disks <= 0 || 6174 (mddev->max_disks && raid_disks >= mddev->max_disks)) 6175 return -EINVAL; 6176 if (mddev->sync_thread || mddev->reshape_position != MaxSector) 6177 return -EBUSY; 6178 6179 rdev_for_each(rdev, mddev) { 6180 if (mddev->raid_disks < raid_disks && 6181 rdev->data_offset < rdev->new_data_offset) 6182 return -EINVAL; 6183 if (mddev->raid_disks > raid_disks && 6184 rdev->data_offset > rdev->new_data_offset) 6185 return -EINVAL; 6186 } 6187 6188 mddev->delta_disks = raid_disks - mddev->raid_disks; 6189 if (mddev->delta_disks < 0) 6190 mddev->reshape_backwards = 1; 6191 else if (mddev->delta_disks > 0) 6192 mddev->reshape_backwards = 0; 6193 6194 rv = mddev->pers->check_reshape(mddev); 6195 if (rv < 0) { 6196 mddev->delta_disks = 0; 6197 mddev->reshape_backwards = 0; 6198 } 6199 return rv; 6200 } 6201 6202 6203 /* 6204 * update_array_info is used to change the configuration of an 6205 * on-line array. 6206 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size 6207 * fields in the info are checked against the array. 6208 * Any differences that cannot be handled will cause an error. 6209 * Normally, only one change can be managed at a time. 6210 */ 6211 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info) 6212 { 6213 int rv = 0; 6214 int cnt = 0; 6215 int state = 0; 6216 6217 /* calculate expected state,ignoring low bits */ 6218 if (mddev->bitmap && mddev->bitmap_info.offset) 6219 state |= (1 << MD_SB_BITMAP_PRESENT); 6220 6221 if (mddev->major_version != info->major_version || 6222 mddev->minor_version != info->minor_version || 6223 /* mddev->patch_version != info->patch_version || */ 6224 mddev->ctime != info->ctime || 6225 mddev->level != info->level || 6226 /* mddev->layout != info->layout || */ 6227 !mddev->persistent != info->not_persistent|| 6228 mddev->chunk_sectors != info->chunk_size >> 9 || 6229 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ 6230 ((state^info->state) & 0xfffffe00) 6231 ) 6232 return -EINVAL; 6233 /* Check there is only one change */ 6234 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 6235 cnt++; 6236 if (mddev->raid_disks != info->raid_disks) 6237 cnt++; 6238 if (mddev->layout != info->layout) 6239 cnt++; 6240 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) 6241 cnt++; 6242 if (cnt == 0) 6243 return 0; 6244 if (cnt > 1) 6245 return -EINVAL; 6246 6247 if (mddev->layout != info->layout) { 6248 /* Change layout 6249 * we don't need to do anything at the md level, the 6250 * personality will take care of it all. 6251 */ 6252 if (mddev->pers->check_reshape == NULL) 6253 return -EINVAL; 6254 else { 6255 mddev->new_layout = info->layout; 6256 rv = mddev->pers->check_reshape(mddev); 6257 if (rv) 6258 mddev->new_layout = mddev->layout; 6259 return rv; 6260 } 6261 } 6262 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 6263 rv = update_size(mddev, (sector_t)info->size * 2); 6264 6265 if (mddev->raid_disks != info->raid_disks) 6266 rv = update_raid_disks(mddev, info->raid_disks); 6267 6268 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { 6269 if (mddev->pers->quiesce == NULL) 6270 return -EINVAL; 6271 if (mddev->recovery || mddev->sync_thread) 6272 return -EBUSY; 6273 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { 6274 /* add the bitmap */ 6275 if (mddev->bitmap) 6276 return -EEXIST; 6277 if (mddev->bitmap_info.default_offset == 0) 6278 return -EINVAL; 6279 mddev->bitmap_info.offset = 6280 mddev->bitmap_info.default_offset; 6281 mddev->bitmap_info.space = 6282 mddev->bitmap_info.default_space; 6283 mddev->pers->quiesce(mddev, 1); 6284 rv = bitmap_create(mddev); 6285 if (!rv) 6286 rv = bitmap_load(mddev); 6287 if (rv) 6288 bitmap_destroy(mddev); 6289 mddev->pers->quiesce(mddev, 0); 6290 } else { 6291 /* remove the bitmap */ 6292 if (!mddev->bitmap) 6293 return -ENOENT; 6294 if (mddev->bitmap->storage.file) 6295 return -EINVAL; 6296 mddev->pers->quiesce(mddev, 1); 6297 bitmap_destroy(mddev); 6298 mddev->pers->quiesce(mddev, 0); 6299 mddev->bitmap_info.offset = 0; 6300 } 6301 } 6302 md_update_sb(mddev, 1); 6303 return rv; 6304 } 6305 6306 static int set_disk_faulty(struct mddev *mddev, dev_t dev) 6307 { 6308 struct md_rdev *rdev; 6309 int err = 0; 6310 6311 if (mddev->pers == NULL) 6312 return -ENODEV; 6313 6314 rcu_read_lock(); 6315 rdev = find_rdev_rcu(mddev, dev); 6316 if (!rdev) 6317 err = -ENODEV; 6318 else { 6319 md_error(mddev, rdev); 6320 if (!test_bit(Faulty, &rdev->flags)) 6321 err = -EBUSY; 6322 } 6323 rcu_read_unlock(); 6324 return err; 6325 } 6326 6327 /* 6328 * We have a problem here : there is no easy way to give a CHS 6329 * virtual geometry. We currently pretend that we have a 2 heads 6330 * 4 sectors (with a BIG number of cylinders...). This drives 6331 * dosfs just mad... ;-) 6332 */ 6333 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) 6334 { 6335 struct mddev *mddev = bdev->bd_disk->private_data; 6336 6337 geo->heads = 2; 6338 geo->sectors = 4; 6339 geo->cylinders = mddev->array_sectors / 8; 6340 return 0; 6341 } 6342 6343 static int md_ioctl(struct block_device *bdev, fmode_t mode, 6344 unsigned int cmd, unsigned long arg) 6345 { 6346 int err = 0; 6347 void __user *argp = (void __user *)arg; 6348 struct mddev *mddev = NULL; 6349 int ro; 6350 6351 switch (cmd) { 6352 case RAID_VERSION: 6353 case GET_ARRAY_INFO: 6354 case GET_DISK_INFO: 6355 break; 6356 default: 6357 if (!capable(CAP_SYS_ADMIN)) 6358 return -EACCES; 6359 } 6360 6361 /* 6362 * Commands dealing with the RAID driver but not any 6363 * particular array: 6364 */ 6365 switch (cmd) { 6366 case RAID_VERSION: 6367 err = get_version(argp); 6368 goto done; 6369 6370 case PRINT_RAID_DEBUG: 6371 err = 0; 6372 md_print_devices(); 6373 goto done; 6374 6375 #ifndef MODULE 6376 case RAID_AUTORUN: 6377 err = 0; 6378 autostart_arrays(arg); 6379 goto done; 6380 #endif 6381 default:; 6382 } 6383 6384 /* 6385 * Commands creating/starting a new array: 6386 */ 6387 6388 mddev = bdev->bd_disk->private_data; 6389 6390 if (!mddev) { 6391 BUG(); 6392 goto abort; 6393 } 6394 6395 /* Some actions do not requires the mutex */ 6396 switch (cmd) { 6397 case GET_ARRAY_INFO: 6398 if (!mddev->raid_disks && !mddev->external) 6399 err = -ENODEV; 6400 else 6401 err = get_array_info(mddev, argp); 6402 goto abort; 6403 6404 case GET_DISK_INFO: 6405 if (!mddev->raid_disks && !mddev->external) 6406 err = -ENODEV; 6407 else 6408 err = get_disk_info(mddev, argp); 6409 goto abort; 6410 6411 case SET_DISK_FAULTY: 6412 err = set_disk_faulty(mddev, new_decode_dev(arg)); 6413 goto abort; 6414 } 6415 6416 if (cmd == ADD_NEW_DISK) 6417 /* need to ensure md_delayed_delete() has completed */ 6418 flush_workqueue(md_misc_wq); 6419 6420 if (cmd == HOT_REMOVE_DISK) 6421 /* need to ensure recovery thread has run */ 6422 wait_event_interruptible_timeout(mddev->sb_wait, 6423 !test_bit(MD_RECOVERY_NEEDED, 6424 &mddev->flags), 6425 msecs_to_jiffies(5000)); 6426 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) { 6427 /* Need to flush page cache, and ensure no-one else opens 6428 * and writes 6429 */ 6430 mutex_lock(&mddev->open_mutex); 6431 if (atomic_read(&mddev->openers) > 1) { 6432 mutex_unlock(&mddev->open_mutex); 6433 err = -EBUSY; 6434 goto abort; 6435 } 6436 set_bit(MD_STILL_CLOSED, &mddev->flags); 6437 mutex_unlock(&mddev->open_mutex); 6438 sync_blockdev(bdev); 6439 } 6440 err = mddev_lock(mddev); 6441 if (err) { 6442 printk(KERN_INFO 6443 "md: ioctl lock interrupted, reason %d, cmd %d\n", 6444 err, cmd); 6445 goto abort; 6446 } 6447 6448 if (cmd == SET_ARRAY_INFO) { 6449 mdu_array_info_t info; 6450 if (!arg) 6451 memset(&info, 0, sizeof(info)); 6452 else if (copy_from_user(&info, argp, sizeof(info))) { 6453 err = -EFAULT; 6454 goto abort_unlock; 6455 } 6456 if (mddev->pers) { 6457 err = update_array_info(mddev, &info); 6458 if (err) { 6459 printk(KERN_WARNING "md: couldn't update" 6460 " array info. %d\n", err); 6461 goto abort_unlock; 6462 } 6463 goto done_unlock; 6464 } 6465 if (!list_empty(&mddev->disks)) { 6466 printk(KERN_WARNING 6467 "md: array %s already has disks!\n", 6468 mdname(mddev)); 6469 err = -EBUSY; 6470 goto abort_unlock; 6471 } 6472 if (mddev->raid_disks) { 6473 printk(KERN_WARNING 6474 "md: array %s already initialised!\n", 6475 mdname(mddev)); 6476 err = -EBUSY; 6477 goto abort_unlock; 6478 } 6479 err = set_array_info(mddev, &info); 6480 if (err) { 6481 printk(KERN_WARNING "md: couldn't set" 6482 " array info. %d\n", err); 6483 goto abort_unlock; 6484 } 6485 goto done_unlock; 6486 } 6487 6488 /* 6489 * Commands querying/configuring an existing array: 6490 */ 6491 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, 6492 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ 6493 if ((!mddev->raid_disks && !mddev->external) 6494 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY 6495 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE 6496 && cmd != GET_BITMAP_FILE) { 6497 err = -ENODEV; 6498 goto abort_unlock; 6499 } 6500 6501 /* 6502 * Commands even a read-only array can execute: 6503 */ 6504 switch (cmd) { 6505 case GET_BITMAP_FILE: 6506 err = get_bitmap_file(mddev, argp); 6507 goto done_unlock; 6508 6509 case RESTART_ARRAY_RW: 6510 err = restart_array(mddev); 6511 goto done_unlock; 6512 6513 case STOP_ARRAY: 6514 err = do_md_stop(mddev, 0, bdev); 6515 goto done_unlock; 6516 6517 case STOP_ARRAY_RO: 6518 err = md_set_readonly(mddev, bdev); 6519 goto done_unlock; 6520 6521 case HOT_REMOVE_DISK: 6522 err = hot_remove_disk(mddev, new_decode_dev(arg)); 6523 goto done_unlock; 6524 6525 case ADD_NEW_DISK: 6526 /* We can support ADD_NEW_DISK on read-only arrays 6527 * on if we are re-adding a preexisting device. 6528 * So require mddev->pers and MD_DISK_SYNC. 6529 */ 6530 if (mddev->pers) { 6531 mdu_disk_info_t info; 6532 if (copy_from_user(&info, argp, sizeof(info))) 6533 err = -EFAULT; 6534 else if (!(info.state & (1<<MD_DISK_SYNC))) 6535 /* Need to clear read-only for this */ 6536 break; 6537 else 6538 err = add_new_disk(mddev, &info); 6539 goto done_unlock; 6540 } 6541 break; 6542 6543 case BLKROSET: 6544 if (get_user(ro, (int __user *)(arg))) { 6545 err = -EFAULT; 6546 goto done_unlock; 6547 } 6548 err = -EINVAL; 6549 6550 /* if the bdev is going readonly the value of mddev->ro 6551 * does not matter, no writes are coming 6552 */ 6553 if (ro) 6554 goto done_unlock; 6555 6556 /* are we are already prepared for writes? */ 6557 if (mddev->ro != 1) 6558 goto done_unlock; 6559 6560 /* transitioning to readauto need only happen for 6561 * arrays that call md_write_start 6562 */ 6563 if (mddev->pers) { 6564 err = restart_array(mddev); 6565 if (err == 0) { 6566 mddev->ro = 2; 6567 set_disk_ro(mddev->gendisk, 0); 6568 } 6569 } 6570 goto done_unlock; 6571 } 6572 6573 /* 6574 * The remaining ioctls are changing the state of the 6575 * superblock, so we do not allow them on read-only arrays. 6576 * However non-MD ioctls (e.g. get-size) will still come through 6577 * here and hit the 'default' below, so only disallow 6578 * 'md' ioctls, and switch to rw mode if started auto-readonly. 6579 */ 6580 if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) { 6581 if (mddev->ro == 2) { 6582 mddev->ro = 0; 6583 sysfs_notify_dirent_safe(mddev->sysfs_state); 6584 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6585 /* mddev_unlock will wake thread */ 6586 /* If a device failed while we were read-only, we 6587 * need to make sure the metadata is updated now. 6588 */ 6589 if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) { 6590 mddev_unlock(mddev); 6591 wait_event(mddev->sb_wait, 6592 !test_bit(MD_CHANGE_DEVS, &mddev->flags) && 6593 !test_bit(MD_CHANGE_PENDING, &mddev->flags)); 6594 mddev_lock(mddev); 6595 } 6596 } else { 6597 err = -EROFS; 6598 goto abort_unlock; 6599 } 6600 } 6601 6602 switch (cmd) { 6603 case ADD_NEW_DISK: 6604 { 6605 mdu_disk_info_t info; 6606 if (copy_from_user(&info, argp, sizeof(info))) 6607 err = -EFAULT; 6608 else 6609 err = add_new_disk(mddev, &info); 6610 goto done_unlock; 6611 } 6612 6613 case HOT_ADD_DISK: 6614 err = hot_add_disk(mddev, new_decode_dev(arg)); 6615 goto done_unlock; 6616 6617 case RUN_ARRAY: 6618 err = do_md_run(mddev); 6619 goto done_unlock; 6620 6621 case SET_BITMAP_FILE: 6622 err = set_bitmap_file(mddev, (int)arg); 6623 goto done_unlock; 6624 6625 default: 6626 err = -EINVAL; 6627 goto abort_unlock; 6628 } 6629 6630 done_unlock: 6631 abort_unlock: 6632 if (mddev->hold_active == UNTIL_IOCTL && 6633 err != -EINVAL) 6634 mddev->hold_active = 0; 6635 mddev_unlock(mddev); 6636 6637 return err; 6638 done: 6639 if (err) 6640 MD_BUG(); 6641 abort: 6642 return err; 6643 } 6644 #ifdef CONFIG_COMPAT 6645 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode, 6646 unsigned int cmd, unsigned long arg) 6647 { 6648 switch (cmd) { 6649 case HOT_REMOVE_DISK: 6650 case HOT_ADD_DISK: 6651 case SET_DISK_FAULTY: 6652 case SET_BITMAP_FILE: 6653 /* These take in integer arg, do not convert */ 6654 break; 6655 default: 6656 arg = (unsigned long)compat_ptr(arg); 6657 break; 6658 } 6659 6660 return md_ioctl(bdev, mode, cmd, arg); 6661 } 6662 #endif /* CONFIG_COMPAT */ 6663 6664 static int md_open(struct block_device *bdev, fmode_t mode) 6665 { 6666 /* 6667 * Succeed if we can lock the mddev, which confirms that 6668 * it isn't being stopped right now. 6669 */ 6670 struct mddev *mddev = mddev_find(bdev->bd_dev); 6671 int err; 6672 6673 if (!mddev) 6674 return -ENODEV; 6675 6676 if (mddev->gendisk != bdev->bd_disk) { 6677 /* we are racing with mddev_put which is discarding this 6678 * bd_disk. 6679 */ 6680 mddev_put(mddev); 6681 /* Wait until bdev->bd_disk is definitely gone */ 6682 flush_workqueue(md_misc_wq); 6683 /* Then retry the open from the top */ 6684 return -ERESTARTSYS; 6685 } 6686 BUG_ON(mddev != bdev->bd_disk->private_data); 6687 6688 if ((err = mutex_lock_interruptible(&mddev->open_mutex))) 6689 goto out; 6690 6691 err = 0; 6692 atomic_inc(&mddev->openers); 6693 clear_bit(MD_STILL_CLOSED, &mddev->flags); 6694 mutex_unlock(&mddev->open_mutex); 6695 6696 check_disk_change(bdev); 6697 out: 6698 return err; 6699 } 6700 6701 static void md_release(struct gendisk *disk, fmode_t mode) 6702 { 6703 struct mddev *mddev = disk->private_data; 6704 6705 BUG_ON(!mddev); 6706 atomic_dec(&mddev->openers); 6707 mddev_put(mddev); 6708 } 6709 6710 static int md_media_changed(struct gendisk *disk) 6711 { 6712 struct mddev *mddev = disk->private_data; 6713 6714 return mddev->changed; 6715 } 6716 6717 static int md_revalidate(struct gendisk *disk) 6718 { 6719 struct mddev *mddev = disk->private_data; 6720 6721 mddev->changed = 0; 6722 return 0; 6723 } 6724 static const struct block_device_operations md_fops = 6725 { 6726 .owner = THIS_MODULE, 6727 .open = md_open, 6728 .release = md_release, 6729 .ioctl = md_ioctl, 6730 #ifdef CONFIG_COMPAT 6731 .compat_ioctl = md_compat_ioctl, 6732 #endif 6733 .getgeo = md_getgeo, 6734 .media_changed = md_media_changed, 6735 .revalidate_disk= md_revalidate, 6736 }; 6737 6738 static int md_thread(void * arg) 6739 { 6740 struct md_thread *thread = arg; 6741 6742 /* 6743 * md_thread is a 'system-thread', it's priority should be very 6744 * high. We avoid resource deadlocks individually in each 6745 * raid personality. (RAID5 does preallocation) We also use RR and 6746 * the very same RT priority as kswapd, thus we will never get 6747 * into a priority inversion deadlock. 6748 * 6749 * we definitely have to have equal or higher priority than 6750 * bdflush, otherwise bdflush will deadlock if there are too 6751 * many dirty RAID5 blocks. 6752 */ 6753 6754 allow_signal(SIGKILL); 6755 while (!kthread_should_stop()) { 6756 6757 /* We need to wait INTERRUPTIBLE so that 6758 * we don't add to the load-average. 6759 * That means we need to be sure no signals are 6760 * pending 6761 */ 6762 if (signal_pending(current)) 6763 flush_signals(current); 6764 6765 wait_event_interruptible_timeout 6766 (thread->wqueue, 6767 test_bit(THREAD_WAKEUP, &thread->flags) 6768 || kthread_should_stop(), 6769 thread->timeout); 6770 6771 clear_bit(THREAD_WAKEUP, &thread->flags); 6772 if (!kthread_should_stop()) 6773 thread->run(thread); 6774 } 6775 6776 return 0; 6777 } 6778 6779 void md_wakeup_thread(struct md_thread *thread) 6780 { 6781 if (thread) { 6782 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm); 6783 set_bit(THREAD_WAKEUP, &thread->flags); 6784 wake_up(&thread->wqueue); 6785 } 6786 } 6787 6788 struct md_thread *md_register_thread(void (*run) (struct md_thread *), 6789 struct mddev *mddev, const char *name) 6790 { 6791 struct md_thread *thread; 6792 6793 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL); 6794 if (!thread) 6795 return NULL; 6796 6797 init_waitqueue_head(&thread->wqueue); 6798 6799 thread->run = run; 6800 thread->mddev = mddev; 6801 thread->timeout = MAX_SCHEDULE_TIMEOUT; 6802 thread->tsk = kthread_run(md_thread, thread, 6803 "%s_%s", 6804 mdname(thread->mddev), 6805 name); 6806 if (IS_ERR(thread->tsk)) { 6807 kfree(thread); 6808 return NULL; 6809 } 6810 return thread; 6811 } 6812 6813 void md_unregister_thread(struct md_thread **threadp) 6814 { 6815 struct md_thread *thread = *threadp; 6816 if (!thread) 6817 return; 6818 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk)); 6819 /* Locking ensures that mddev_unlock does not wake_up a 6820 * non-existent thread 6821 */ 6822 spin_lock(&pers_lock); 6823 *threadp = NULL; 6824 spin_unlock(&pers_lock); 6825 6826 kthread_stop(thread->tsk); 6827 kfree(thread); 6828 } 6829 6830 void md_error(struct mddev *mddev, struct md_rdev *rdev) 6831 { 6832 if (!mddev) { 6833 MD_BUG(); 6834 return; 6835 } 6836 6837 if (!rdev || test_bit(Faulty, &rdev->flags)) 6838 return; 6839 6840 if (!mddev->pers || !mddev->pers->error_handler) 6841 return; 6842 mddev->pers->error_handler(mddev,rdev); 6843 if (mddev->degraded) 6844 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 6845 sysfs_notify_dirent_safe(rdev->sysfs_state); 6846 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6847 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6848 md_wakeup_thread(mddev->thread); 6849 if (mddev->event_work.func) 6850 queue_work(md_misc_wq, &mddev->event_work); 6851 md_new_event_inintr(mddev); 6852 } 6853 6854 /* seq_file implementation /proc/mdstat */ 6855 6856 static void status_unused(struct seq_file *seq) 6857 { 6858 int i = 0; 6859 struct md_rdev *rdev; 6860 6861 seq_printf(seq, "unused devices: "); 6862 6863 list_for_each_entry(rdev, &pending_raid_disks, same_set) { 6864 char b[BDEVNAME_SIZE]; 6865 i++; 6866 seq_printf(seq, "%s ", 6867 bdevname(rdev->bdev,b)); 6868 } 6869 if (!i) 6870 seq_printf(seq, "<none>"); 6871 6872 seq_printf(seq, "\n"); 6873 } 6874 6875 6876 static void status_resync(struct seq_file *seq, struct mddev * mddev) 6877 { 6878 sector_t max_sectors, resync, res; 6879 unsigned long dt, db; 6880 sector_t rt; 6881 int scale; 6882 unsigned int per_milli; 6883 6884 if (mddev->curr_resync <= 3) 6885 resync = 0; 6886 else 6887 resync = mddev->curr_resync 6888 - atomic_read(&mddev->recovery_active); 6889 6890 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 6891 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 6892 max_sectors = mddev->resync_max_sectors; 6893 else 6894 max_sectors = mddev->dev_sectors; 6895 6896 /* 6897 * Should not happen. 6898 */ 6899 if (!max_sectors) { 6900 MD_BUG(); 6901 return; 6902 } 6903 /* Pick 'scale' such that (resync>>scale)*1000 will fit 6904 * in a sector_t, and (max_sectors>>scale) will fit in a 6905 * u32, as those are the requirements for sector_div. 6906 * Thus 'scale' must be at least 10 6907 */ 6908 scale = 10; 6909 if (sizeof(sector_t) > sizeof(unsigned long)) { 6910 while ( max_sectors/2 > (1ULL<<(scale+32))) 6911 scale++; 6912 } 6913 res = (resync>>scale)*1000; 6914 sector_div(res, (u32)((max_sectors>>scale)+1)); 6915 6916 per_milli = res; 6917 { 6918 int i, x = per_milli/50, y = 20-x; 6919 seq_printf(seq, "["); 6920 for (i = 0; i < x; i++) 6921 seq_printf(seq, "="); 6922 seq_printf(seq, ">"); 6923 for (i = 0; i < y; i++) 6924 seq_printf(seq, "."); 6925 seq_printf(seq, "] "); 6926 } 6927 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", 6928 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? 6929 "reshape" : 6930 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? 6931 "check" : 6932 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? 6933 "resync" : "recovery"))), 6934 per_milli/10, per_milli % 10, 6935 (unsigned long long) resync/2, 6936 (unsigned long long) max_sectors/2); 6937 6938 /* 6939 * dt: time from mark until now 6940 * db: blocks written from mark until now 6941 * rt: remaining time 6942 * 6943 * rt is a sector_t, so could be 32bit or 64bit. 6944 * So we divide before multiply in case it is 32bit and close 6945 * to the limit. 6946 * We scale the divisor (db) by 32 to avoid losing precision 6947 * near the end of resync when the number of remaining sectors 6948 * is close to 'db'. 6949 * We then divide rt by 32 after multiplying by db to compensate. 6950 * The '+1' avoids division by zero if db is very small. 6951 */ 6952 dt = ((jiffies - mddev->resync_mark) / HZ); 6953 if (!dt) dt++; 6954 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active)) 6955 - mddev->resync_mark_cnt; 6956 6957 rt = max_sectors - resync; /* number of remaining sectors */ 6958 sector_div(rt, db/32+1); 6959 rt *= dt; 6960 rt >>= 5; 6961 6962 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60, 6963 ((unsigned long)rt % 60)/6); 6964 6965 seq_printf(seq, " speed=%ldK/sec", db/2/dt); 6966 } 6967 6968 static void *md_seq_start(struct seq_file *seq, loff_t *pos) 6969 { 6970 struct list_head *tmp; 6971 loff_t l = *pos; 6972 struct mddev *mddev; 6973 6974 if (l >= 0x10000) 6975 return NULL; 6976 if (!l--) 6977 /* header */ 6978 return (void*)1; 6979 6980 spin_lock(&all_mddevs_lock); 6981 list_for_each(tmp,&all_mddevs) 6982 if (!l--) { 6983 mddev = list_entry(tmp, struct mddev, all_mddevs); 6984 mddev_get(mddev); 6985 spin_unlock(&all_mddevs_lock); 6986 return mddev; 6987 } 6988 spin_unlock(&all_mddevs_lock); 6989 if (!l--) 6990 return (void*)2;/* tail */ 6991 return NULL; 6992 } 6993 6994 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) 6995 { 6996 struct list_head *tmp; 6997 struct mddev *next_mddev, *mddev = v; 6998 6999 ++*pos; 7000 if (v == (void*)2) 7001 return NULL; 7002 7003 spin_lock(&all_mddevs_lock); 7004 if (v == (void*)1) 7005 tmp = all_mddevs.next; 7006 else 7007 tmp = mddev->all_mddevs.next; 7008 if (tmp != &all_mddevs) 7009 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs)); 7010 else { 7011 next_mddev = (void*)2; 7012 *pos = 0x10000; 7013 } 7014 spin_unlock(&all_mddevs_lock); 7015 7016 if (v != (void*)1) 7017 mddev_put(mddev); 7018 return next_mddev; 7019 7020 } 7021 7022 static void md_seq_stop(struct seq_file *seq, void *v) 7023 { 7024 struct mddev *mddev = v; 7025 7026 if (mddev && v != (void*)1 && v != (void*)2) 7027 mddev_put(mddev); 7028 } 7029 7030 static int md_seq_show(struct seq_file *seq, void *v) 7031 { 7032 struct mddev *mddev = v; 7033 sector_t sectors; 7034 struct md_rdev *rdev; 7035 7036 if (v == (void*)1) { 7037 struct md_personality *pers; 7038 seq_printf(seq, "Personalities : "); 7039 spin_lock(&pers_lock); 7040 list_for_each_entry(pers, &pers_list, list) 7041 seq_printf(seq, "[%s] ", pers->name); 7042 7043 spin_unlock(&pers_lock); 7044 seq_printf(seq, "\n"); 7045 seq->poll_event = atomic_read(&md_event_count); 7046 return 0; 7047 } 7048 if (v == (void*)2) { 7049 status_unused(seq); 7050 return 0; 7051 } 7052 7053 if (mddev_lock(mddev) < 0) 7054 return -EINTR; 7055 7056 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { 7057 seq_printf(seq, "%s : %sactive", mdname(mddev), 7058 mddev->pers ? "" : "in"); 7059 if (mddev->pers) { 7060 if (mddev->ro==1) 7061 seq_printf(seq, " (read-only)"); 7062 if (mddev->ro==2) 7063 seq_printf(seq, " (auto-read-only)"); 7064 seq_printf(seq, " %s", mddev->pers->name); 7065 } 7066 7067 sectors = 0; 7068 rdev_for_each(rdev, mddev) { 7069 char b[BDEVNAME_SIZE]; 7070 seq_printf(seq, " %s[%d]", 7071 bdevname(rdev->bdev,b), rdev->desc_nr); 7072 if (test_bit(WriteMostly, &rdev->flags)) 7073 seq_printf(seq, "(W)"); 7074 if (test_bit(Faulty, &rdev->flags)) { 7075 seq_printf(seq, "(F)"); 7076 continue; 7077 } 7078 if (rdev->raid_disk < 0) 7079 seq_printf(seq, "(S)"); /* spare */ 7080 if (test_bit(Replacement, &rdev->flags)) 7081 seq_printf(seq, "(R)"); 7082 sectors += rdev->sectors; 7083 } 7084 7085 if (!list_empty(&mddev->disks)) { 7086 if (mddev->pers) 7087 seq_printf(seq, "\n %llu blocks", 7088 (unsigned long long) 7089 mddev->array_sectors / 2); 7090 else 7091 seq_printf(seq, "\n %llu blocks", 7092 (unsigned long long)sectors / 2); 7093 } 7094 if (mddev->persistent) { 7095 if (mddev->major_version != 0 || 7096 mddev->minor_version != 90) { 7097 seq_printf(seq," super %d.%d", 7098 mddev->major_version, 7099 mddev->minor_version); 7100 } 7101 } else if (mddev->external) 7102 seq_printf(seq, " super external:%s", 7103 mddev->metadata_type); 7104 else 7105 seq_printf(seq, " super non-persistent"); 7106 7107 if (mddev->pers) { 7108 mddev->pers->status(seq, mddev); 7109 seq_printf(seq, "\n "); 7110 if (mddev->pers->sync_request) { 7111 if (mddev->curr_resync > 2) { 7112 status_resync(seq, mddev); 7113 seq_printf(seq, "\n "); 7114 } else if (mddev->curr_resync >= 1) 7115 seq_printf(seq, "\tresync=DELAYED\n "); 7116 else if (mddev->recovery_cp < MaxSector) 7117 seq_printf(seq, "\tresync=PENDING\n "); 7118 } 7119 } else 7120 seq_printf(seq, "\n "); 7121 7122 bitmap_status(seq, mddev->bitmap); 7123 7124 seq_printf(seq, "\n"); 7125 } 7126 mddev_unlock(mddev); 7127 7128 return 0; 7129 } 7130 7131 static const struct seq_operations md_seq_ops = { 7132 .start = md_seq_start, 7133 .next = md_seq_next, 7134 .stop = md_seq_stop, 7135 .show = md_seq_show, 7136 }; 7137 7138 static int md_seq_open(struct inode *inode, struct file *file) 7139 { 7140 struct seq_file *seq; 7141 int error; 7142 7143 error = seq_open(file, &md_seq_ops); 7144 if (error) 7145 return error; 7146 7147 seq = file->private_data; 7148 seq->poll_event = atomic_read(&md_event_count); 7149 return error; 7150 } 7151 7152 static unsigned int mdstat_poll(struct file *filp, poll_table *wait) 7153 { 7154 struct seq_file *seq = filp->private_data; 7155 int mask; 7156 7157 poll_wait(filp, &md_event_waiters, wait); 7158 7159 /* always allow read */ 7160 mask = POLLIN | POLLRDNORM; 7161 7162 if (seq->poll_event != atomic_read(&md_event_count)) 7163 mask |= POLLERR | POLLPRI; 7164 return mask; 7165 } 7166 7167 static const struct file_operations md_seq_fops = { 7168 .owner = THIS_MODULE, 7169 .open = md_seq_open, 7170 .read = seq_read, 7171 .llseek = seq_lseek, 7172 .release = seq_release_private, 7173 .poll = mdstat_poll, 7174 }; 7175 7176 int register_md_personality(struct md_personality *p) 7177 { 7178 spin_lock(&pers_lock); 7179 list_add_tail(&p->list, &pers_list); 7180 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level); 7181 spin_unlock(&pers_lock); 7182 return 0; 7183 } 7184 7185 int unregister_md_personality(struct md_personality *p) 7186 { 7187 printk(KERN_INFO "md: %s personality unregistered\n", p->name); 7188 spin_lock(&pers_lock); 7189 list_del_init(&p->list); 7190 spin_unlock(&pers_lock); 7191 return 0; 7192 } 7193 7194 static int is_mddev_idle(struct mddev *mddev, int init) 7195 { 7196 struct md_rdev * rdev; 7197 int idle; 7198 int curr_events; 7199 7200 idle = 1; 7201 rcu_read_lock(); 7202 rdev_for_each_rcu(rdev, mddev) { 7203 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk; 7204 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) + 7205 (int)part_stat_read(&disk->part0, sectors[1]) - 7206 atomic_read(&disk->sync_io); 7207 /* sync IO will cause sync_io to increase before the disk_stats 7208 * as sync_io is counted when a request starts, and 7209 * disk_stats is counted when it completes. 7210 * So resync activity will cause curr_events to be smaller than 7211 * when there was no such activity. 7212 * non-sync IO will cause disk_stat to increase without 7213 * increasing sync_io so curr_events will (eventually) 7214 * be larger than it was before. Once it becomes 7215 * substantially larger, the test below will cause 7216 * the array to appear non-idle, and resync will slow 7217 * down. 7218 * If there is a lot of outstanding resync activity when 7219 * we set last_event to curr_events, then all that activity 7220 * completing might cause the array to appear non-idle 7221 * and resync will be slowed down even though there might 7222 * not have been non-resync activity. This will only 7223 * happen once though. 'last_events' will soon reflect 7224 * the state where there is little or no outstanding 7225 * resync requests, and further resync activity will 7226 * always make curr_events less than last_events. 7227 * 7228 */ 7229 if (init || curr_events - rdev->last_events > 64) { 7230 rdev->last_events = curr_events; 7231 idle = 0; 7232 } 7233 } 7234 rcu_read_unlock(); 7235 return idle; 7236 } 7237 7238 void md_done_sync(struct mddev *mddev, int blocks, int ok) 7239 { 7240 /* another "blocks" (512byte) blocks have been synced */ 7241 atomic_sub(blocks, &mddev->recovery_active); 7242 wake_up(&mddev->recovery_wait); 7243 if (!ok) { 7244 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7245 set_bit(MD_RECOVERY_ERROR, &mddev->recovery); 7246 md_wakeup_thread(mddev->thread); 7247 // stop recovery, signal do_sync .... 7248 } 7249 } 7250 7251 7252 /* md_write_start(mddev, bi) 7253 * If we need to update some array metadata (e.g. 'active' flag 7254 * in superblock) before writing, schedule a superblock update 7255 * and wait for it to complete. 7256 */ 7257 void md_write_start(struct mddev *mddev, struct bio *bi) 7258 { 7259 int did_change = 0; 7260 if (bio_data_dir(bi) != WRITE) 7261 return; 7262 7263 BUG_ON(mddev->ro == 1); 7264 if (mddev->ro == 2) { 7265 /* need to switch to read/write */ 7266 mddev->ro = 0; 7267 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7268 md_wakeup_thread(mddev->thread); 7269 md_wakeup_thread(mddev->sync_thread); 7270 did_change = 1; 7271 } 7272 atomic_inc(&mddev->writes_pending); 7273 if (mddev->safemode == 1) 7274 mddev->safemode = 0; 7275 if (mddev->in_sync) { 7276 spin_lock_irq(&mddev->write_lock); 7277 if (mddev->in_sync) { 7278 mddev->in_sync = 0; 7279 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 7280 set_bit(MD_CHANGE_PENDING, &mddev->flags); 7281 md_wakeup_thread(mddev->thread); 7282 did_change = 1; 7283 } 7284 spin_unlock_irq(&mddev->write_lock); 7285 } 7286 if (did_change) 7287 sysfs_notify_dirent_safe(mddev->sysfs_state); 7288 wait_event(mddev->sb_wait, 7289 !test_bit(MD_CHANGE_PENDING, &mddev->flags)); 7290 } 7291 7292 void md_write_end(struct mddev *mddev) 7293 { 7294 if (atomic_dec_and_test(&mddev->writes_pending)) { 7295 if (mddev->safemode == 2) 7296 md_wakeup_thread(mddev->thread); 7297 else if (mddev->safemode_delay) 7298 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay); 7299 } 7300 } 7301 7302 /* md_allow_write(mddev) 7303 * Calling this ensures that the array is marked 'active' so that writes 7304 * may proceed without blocking. It is important to call this before 7305 * attempting a GFP_KERNEL allocation while holding the mddev lock. 7306 * Must be called with mddev_lock held. 7307 * 7308 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock 7309 * is dropped, so return -EAGAIN after notifying userspace. 7310 */ 7311 int md_allow_write(struct mddev *mddev) 7312 { 7313 if (!mddev->pers) 7314 return 0; 7315 if (mddev->ro) 7316 return 0; 7317 if (!mddev->pers->sync_request) 7318 return 0; 7319 7320 spin_lock_irq(&mddev->write_lock); 7321 if (mddev->in_sync) { 7322 mddev->in_sync = 0; 7323 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 7324 set_bit(MD_CHANGE_PENDING, &mddev->flags); 7325 if (mddev->safemode_delay && 7326 mddev->safemode == 0) 7327 mddev->safemode = 1; 7328 spin_unlock_irq(&mddev->write_lock); 7329 md_update_sb(mddev, 0); 7330 sysfs_notify_dirent_safe(mddev->sysfs_state); 7331 } else 7332 spin_unlock_irq(&mddev->write_lock); 7333 7334 if (test_bit(MD_CHANGE_PENDING, &mddev->flags)) 7335 return -EAGAIN; 7336 else 7337 return 0; 7338 } 7339 EXPORT_SYMBOL_GPL(md_allow_write); 7340 7341 #define SYNC_MARKS 10 7342 #define SYNC_MARK_STEP (3*HZ) 7343 #define UPDATE_FREQUENCY (5*60*HZ) 7344 void md_do_sync(struct md_thread *thread) 7345 { 7346 struct mddev *mddev = thread->mddev; 7347 struct mddev *mddev2; 7348 unsigned int currspeed = 0, 7349 window; 7350 sector_t max_sectors,j, io_sectors; 7351 unsigned long mark[SYNC_MARKS]; 7352 unsigned long update_time; 7353 sector_t mark_cnt[SYNC_MARKS]; 7354 int last_mark,m; 7355 struct list_head *tmp; 7356 sector_t last_check; 7357 int skipped = 0; 7358 struct md_rdev *rdev; 7359 char *desc, *action = NULL; 7360 struct blk_plug plug; 7361 7362 /* just incase thread restarts... */ 7363 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 7364 return; 7365 if (mddev->ro) /* never try to sync a read-only array */ 7366 return; 7367 7368 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 7369 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 7370 desc = "data-check"; 7371 action = "check"; 7372 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 7373 desc = "requested-resync"; 7374 action = "repair"; 7375 } else 7376 desc = "resync"; 7377 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 7378 desc = "reshape"; 7379 else 7380 desc = "recovery"; 7381 7382 mddev->last_sync_action = action ?: desc; 7383 7384 /* we overload curr_resync somewhat here. 7385 * 0 == not engaged in resync at all 7386 * 2 == checking that there is no conflict with another sync 7387 * 1 == like 2, but have yielded to allow conflicting resync to 7388 * commense 7389 * other == active in resync - this many blocks 7390 * 7391 * Before starting a resync we must have set curr_resync to 7392 * 2, and then checked that every "conflicting" array has curr_resync 7393 * less than ours. When we find one that is the same or higher 7394 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync 7395 * to 1 if we choose to yield (based arbitrarily on address of mddev structure). 7396 * This will mean we have to start checking from the beginning again. 7397 * 7398 */ 7399 7400 do { 7401 mddev->curr_resync = 2; 7402 7403 try_again: 7404 if (kthread_should_stop()) 7405 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7406 7407 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 7408 goto skip; 7409 for_each_mddev(mddev2, tmp) { 7410 if (mddev2 == mddev) 7411 continue; 7412 if (!mddev->parallel_resync 7413 && mddev2->curr_resync 7414 && match_mddev_units(mddev, mddev2)) { 7415 DEFINE_WAIT(wq); 7416 if (mddev < mddev2 && mddev->curr_resync == 2) { 7417 /* arbitrarily yield */ 7418 mddev->curr_resync = 1; 7419 wake_up(&resync_wait); 7420 } 7421 if (mddev > mddev2 && mddev->curr_resync == 1) 7422 /* no need to wait here, we can wait the next 7423 * time 'round when curr_resync == 2 7424 */ 7425 continue; 7426 /* We need to wait 'interruptible' so as not to 7427 * contribute to the load average, and not to 7428 * be caught by 'softlockup' 7429 */ 7430 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE); 7431 if (!kthread_should_stop() && 7432 mddev2->curr_resync >= mddev->curr_resync) { 7433 printk(KERN_INFO "md: delaying %s of %s" 7434 " until %s has finished (they" 7435 " share one or more physical units)\n", 7436 desc, mdname(mddev), mdname(mddev2)); 7437 mddev_put(mddev2); 7438 if (signal_pending(current)) 7439 flush_signals(current); 7440 schedule(); 7441 finish_wait(&resync_wait, &wq); 7442 goto try_again; 7443 } 7444 finish_wait(&resync_wait, &wq); 7445 } 7446 } 7447 } while (mddev->curr_resync < 2); 7448 7449 j = 0; 7450 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 7451 /* resync follows the size requested by the personality, 7452 * which defaults to physical size, but can be virtual size 7453 */ 7454 max_sectors = mddev->resync_max_sectors; 7455 atomic64_set(&mddev->resync_mismatches, 0); 7456 /* we don't use the checkpoint if there's a bitmap */ 7457 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 7458 j = mddev->resync_min; 7459 else if (!mddev->bitmap) 7460 j = mddev->recovery_cp; 7461 7462 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 7463 max_sectors = mddev->resync_max_sectors; 7464 else { 7465 /* recovery follows the physical size of devices */ 7466 max_sectors = mddev->dev_sectors; 7467 j = MaxSector; 7468 rcu_read_lock(); 7469 rdev_for_each_rcu(rdev, mddev) 7470 if (rdev->raid_disk >= 0 && 7471 !test_bit(Faulty, &rdev->flags) && 7472 !test_bit(In_sync, &rdev->flags) && 7473 rdev->recovery_offset < j) 7474 j = rdev->recovery_offset; 7475 rcu_read_unlock(); 7476 } 7477 7478 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev)); 7479 printk(KERN_INFO "md: minimum _guaranteed_ speed:" 7480 " %d KB/sec/disk.\n", speed_min(mddev)); 7481 printk(KERN_INFO "md: using maximum available idle IO bandwidth " 7482 "(but not more than %d KB/sec) for %s.\n", 7483 speed_max(mddev), desc); 7484 7485 is_mddev_idle(mddev, 1); /* this initializes IO event counters */ 7486 7487 io_sectors = 0; 7488 for (m = 0; m < SYNC_MARKS; m++) { 7489 mark[m] = jiffies; 7490 mark_cnt[m] = io_sectors; 7491 } 7492 last_mark = 0; 7493 mddev->resync_mark = mark[last_mark]; 7494 mddev->resync_mark_cnt = mark_cnt[last_mark]; 7495 7496 /* 7497 * Tune reconstruction: 7498 */ 7499 window = 32*(PAGE_SIZE/512); 7500 printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n", 7501 window/2, (unsigned long long)max_sectors/2); 7502 7503 atomic_set(&mddev->recovery_active, 0); 7504 last_check = 0; 7505 7506 if (j>2) { 7507 printk(KERN_INFO 7508 "md: resuming %s of %s from checkpoint.\n", 7509 desc, mdname(mddev)); 7510 mddev->curr_resync = j; 7511 } else 7512 mddev->curr_resync = 3; /* no longer delayed */ 7513 mddev->curr_resync_completed = j; 7514 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 7515 md_new_event(mddev); 7516 update_time = jiffies; 7517 7518 blk_start_plug(&plug); 7519 while (j < max_sectors) { 7520 sector_t sectors; 7521 7522 skipped = 0; 7523 7524 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 7525 ((mddev->curr_resync > mddev->curr_resync_completed && 7526 (mddev->curr_resync - mddev->curr_resync_completed) 7527 > (max_sectors >> 4)) || 7528 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) || 7529 (j - mddev->curr_resync_completed)*2 7530 >= mddev->resync_max - mddev->curr_resync_completed 7531 )) { 7532 /* time to update curr_resync_completed */ 7533 wait_event(mddev->recovery_wait, 7534 atomic_read(&mddev->recovery_active) == 0); 7535 mddev->curr_resync_completed = j; 7536 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 7537 j > mddev->recovery_cp) 7538 mddev->recovery_cp = j; 7539 update_time = jiffies; 7540 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 7541 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 7542 } 7543 7544 while (j >= mddev->resync_max && !kthread_should_stop()) { 7545 /* As this condition is controlled by user-space, 7546 * we can block indefinitely, so use '_interruptible' 7547 * to avoid triggering warnings. 7548 */ 7549 flush_signals(current); /* just in case */ 7550 wait_event_interruptible(mddev->recovery_wait, 7551 mddev->resync_max > j 7552 || kthread_should_stop()); 7553 } 7554 7555 if (kthread_should_stop()) 7556 goto interrupted; 7557 7558 sectors = mddev->pers->sync_request(mddev, j, &skipped, 7559 currspeed < speed_min(mddev)); 7560 if (sectors == 0) { 7561 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7562 goto out; 7563 } 7564 7565 if (!skipped) { /* actual IO requested */ 7566 io_sectors += sectors; 7567 atomic_add(sectors, &mddev->recovery_active); 7568 } 7569 7570 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 7571 break; 7572 7573 j += sectors; 7574 if (j > 2) 7575 mddev->curr_resync = j; 7576 mddev->curr_mark_cnt = io_sectors; 7577 if (last_check == 0) 7578 /* this is the earliest that rebuild will be 7579 * visible in /proc/mdstat 7580 */ 7581 md_new_event(mddev); 7582 7583 if (last_check + window > io_sectors || j == max_sectors) 7584 continue; 7585 7586 last_check = io_sectors; 7587 repeat: 7588 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { 7589 /* step marks */ 7590 int next = (last_mark+1) % SYNC_MARKS; 7591 7592 mddev->resync_mark = mark[next]; 7593 mddev->resync_mark_cnt = mark_cnt[next]; 7594 mark[next] = jiffies; 7595 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); 7596 last_mark = next; 7597 } 7598 7599 7600 if (kthread_should_stop()) 7601 goto interrupted; 7602 7603 7604 /* 7605 * this loop exits only if either when we are slower than 7606 * the 'hard' speed limit, or the system was IO-idle for 7607 * a jiffy. 7608 * the system might be non-idle CPU-wise, but we only care 7609 * about not overloading the IO subsystem. (things like an 7610 * e2fsck being done on the RAID array should execute fast) 7611 */ 7612 cond_resched(); 7613 7614 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2 7615 /((jiffies-mddev->resync_mark)/HZ +1) +1; 7616 7617 if (currspeed > speed_min(mddev)) { 7618 if ((currspeed > speed_max(mddev)) || 7619 !is_mddev_idle(mddev, 0)) { 7620 msleep(500); 7621 goto repeat; 7622 } 7623 } 7624 } 7625 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc); 7626 /* 7627 * this also signals 'finished resyncing' to md_stop 7628 */ 7629 out: 7630 blk_finish_plug(&plug); 7631 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); 7632 7633 /* tell personality that we are finished */ 7634 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1); 7635 7636 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && 7637 mddev->curr_resync > 2) { 7638 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 7639 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 7640 if (mddev->curr_resync >= mddev->recovery_cp) { 7641 printk(KERN_INFO 7642 "md: checkpointing %s of %s.\n", 7643 desc, mdname(mddev)); 7644 if (test_bit(MD_RECOVERY_ERROR, 7645 &mddev->recovery)) 7646 mddev->recovery_cp = 7647 mddev->curr_resync_completed; 7648 else 7649 mddev->recovery_cp = 7650 mddev->curr_resync; 7651 } 7652 } else 7653 mddev->recovery_cp = MaxSector; 7654 } else { 7655 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 7656 mddev->curr_resync = MaxSector; 7657 rcu_read_lock(); 7658 rdev_for_each_rcu(rdev, mddev) 7659 if (rdev->raid_disk >= 0 && 7660 mddev->delta_disks >= 0 && 7661 !test_bit(Faulty, &rdev->flags) && 7662 !test_bit(In_sync, &rdev->flags) && 7663 rdev->recovery_offset < mddev->curr_resync) 7664 rdev->recovery_offset = mddev->curr_resync; 7665 rcu_read_unlock(); 7666 } 7667 } 7668 skip: 7669 set_bit(MD_CHANGE_DEVS, &mddev->flags); 7670 7671 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 7672 /* We completed so min/max setting can be forgotten if used. */ 7673 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 7674 mddev->resync_min = 0; 7675 mddev->resync_max = MaxSector; 7676 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 7677 mddev->resync_min = mddev->curr_resync_completed; 7678 mddev->curr_resync = 0; 7679 wake_up(&resync_wait); 7680 set_bit(MD_RECOVERY_DONE, &mddev->recovery); 7681 md_wakeup_thread(mddev->thread); 7682 return; 7683 7684 interrupted: 7685 /* 7686 * got a signal, exit. 7687 */ 7688 printk(KERN_INFO 7689 "md: md_do_sync() got signal ... exiting\n"); 7690 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7691 goto out; 7692 7693 } 7694 EXPORT_SYMBOL_GPL(md_do_sync); 7695 7696 static int remove_and_add_spares(struct mddev *mddev, 7697 struct md_rdev *this) 7698 { 7699 struct md_rdev *rdev; 7700 int spares = 0; 7701 int removed = 0; 7702 7703 rdev_for_each(rdev, mddev) 7704 if ((this == NULL || rdev == this) && 7705 rdev->raid_disk >= 0 && 7706 !test_bit(Blocked, &rdev->flags) && 7707 (test_bit(Faulty, &rdev->flags) || 7708 ! test_bit(In_sync, &rdev->flags)) && 7709 atomic_read(&rdev->nr_pending)==0) { 7710 if (mddev->pers->hot_remove_disk( 7711 mddev, rdev) == 0) { 7712 sysfs_unlink_rdev(mddev, rdev); 7713 rdev->raid_disk = -1; 7714 removed++; 7715 } 7716 } 7717 if (removed && mddev->kobj.sd) 7718 sysfs_notify(&mddev->kobj, NULL, "degraded"); 7719 7720 if (this) 7721 goto no_add; 7722 7723 rdev_for_each(rdev, mddev) { 7724 if (rdev->raid_disk >= 0 && 7725 !test_bit(In_sync, &rdev->flags) && 7726 !test_bit(Faulty, &rdev->flags)) 7727 spares++; 7728 if (rdev->raid_disk >= 0) 7729 continue; 7730 if (test_bit(Faulty, &rdev->flags)) 7731 continue; 7732 if (mddev->ro && 7733 rdev->saved_raid_disk < 0) 7734 continue; 7735 7736 rdev->recovery_offset = 0; 7737 if (mddev->pers-> 7738 hot_add_disk(mddev, rdev) == 0) { 7739 if (sysfs_link_rdev(mddev, rdev)) 7740 /* failure here is OK */; 7741 spares++; 7742 md_new_event(mddev); 7743 set_bit(MD_CHANGE_DEVS, &mddev->flags); 7744 } 7745 } 7746 no_add: 7747 if (removed) 7748 set_bit(MD_CHANGE_DEVS, &mddev->flags); 7749 return spares; 7750 } 7751 7752 /* 7753 * This routine is regularly called by all per-raid-array threads to 7754 * deal with generic issues like resync and super-block update. 7755 * Raid personalities that don't have a thread (linear/raid0) do not 7756 * need this as they never do any recovery or update the superblock. 7757 * 7758 * It does not do any resync itself, but rather "forks" off other threads 7759 * to do that as needed. 7760 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in 7761 * "->recovery" and create a thread at ->sync_thread. 7762 * When the thread finishes it sets MD_RECOVERY_DONE 7763 * and wakeups up this thread which will reap the thread and finish up. 7764 * This thread also removes any faulty devices (with nr_pending == 0). 7765 * 7766 * The overall approach is: 7767 * 1/ if the superblock needs updating, update it. 7768 * 2/ If a recovery thread is running, don't do anything else. 7769 * 3/ If recovery has finished, clean up, possibly marking spares active. 7770 * 4/ If there are any faulty devices, remove them. 7771 * 5/ If array is degraded, try to add spares devices 7772 * 6/ If array has spares or is not in-sync, start a resync thread. 7773 */ 7774 void md_check_recovery(struct mddev *mddev) 7775 { 7776 if (mddev->suspended) 7777 return; 7778 7779 if (mddev->bitmap) 7780 bitmap_daemon_work(mddev); 7781 7782 if (signal_pending(current)) { 7783 if (mddev->pers->sync_request && !mddev->external) { 7784 printk(KERN_INFO "md: %s in immediate safe mode\n", 7785 mdname(mddev)); 7786 mddev->safemode = 2; 7787 } 7788 flush_signals(current); 7789 } 7790 7791 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 7792 return; 7793 if ( ! ( 7794 (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) || 7795 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 7796 test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 7797 (mddev->external == 0 && mddev->safemode == 1) || 7798 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending) 7799 && !mddev->in_sync && mddev->recovery_cp == MaxSector) 7800 )) 7801 return; 7802 7803 if (mddev_trylock(mddev)) { 7804 int spares = 0; 7805 7806 if (mddev->ro) { 7807 /* On a read-only array we can: 7808 * - remove failed devices 7809 * - add already-in_sync devices if the array itself 7810 * is in-sync. 7811 * As we only add devices that are already in-sync, 7812 * we can activate the spares immediately. 7813 */ 7814 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7815 remove_and_add_spares(mddev, NULL); 7816 mddev->pers->spare_active(mddev); 7817 goto unlock; 7818 } 7819 7820 if (!mddev->external) { 7821 int did_change = 0; 7822 spin_lock_irq(&mddev->write_lock); 7823 if (mddev->safemode && 7824 !atomic_read(&mddev->writes_pending) && 7825 !mddev->in_sync && 7826 mddev->recovery_cp == MaxSector) { 7827 mddev->in_sync = 1; 7828 did_change = 1; 7829 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 7830 } 7831 if (mddev->safemode == 1) 7832 mddev->safemode = 0; 7833 spin_unlock_irq(&mddev->write_lock); 7834 if (did_change) 7835 sysfs_notify_dirent_safe(mddev->sysfs_state); 7836 } 7837 7838 if (mddev->flags & MD_UPDATE_SB_FLAGS) 7839 md_update_sb(mddev, 0); 7840 7841 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 7842 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { 7843 /* resync/recovery still happening */ 7844 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7845 goto unlock; 7846 } 7847 if (mddev->sync_thread) { 7848 md_reap_sync_thread(mddev); 7849 goto unlock; 7850 } 7851 /* Set RUNNING before clearing NEEDED to avoid 7852 * any transients in the value of "sync_action". 7853 */ 7854 mddev->curr_resync_completed = 0; 7855 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7856 /* Clear some bits that don't mean anything, but 7857 * might be left set 7858 */ 7859 clear_bit(MD_RECOVERY_INTR, &mddev->recovery); 7860 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 7861 7862 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 7863 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 7864 goto unlock; 7865 /* no recovery is running. 7866 * remove any failed drives, then 7867 * add spares if possible. 7868 * Spares are also removed and re-added, to allow 7869 * the personality to fail the re-add. 7870 */ 7871 7872 if (mddev->reshape_position != MaxSector) { 7873 if (mddev->pers->check_reshape == NULL || 7874 mddev->pers->check_reshape(mddev) != 0) 7875 /* Cannot proceed */ 7876 goto unlock; 7877 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7878 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7879 } else if ((spares = remove_and_add_spares(mddev, NULL))) { 7880 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7881 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7882 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 7883 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7884 } else if (mddev->recovery_cp < MaxSector) { 7885 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7886 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7887 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 7888 /* nothing to be done ... */ 7889 goto unlock; 7890 7891 if (mddev->pers->sync_request) { 7892 if (spares) { 7893 /* We are adding a device or devices to an array 7894 * which has the bitmap stored on all devices. 7895 * So make sure all bitmap pages get written 7896 */ 7897 bitmap_write_all(mddev->bitmap); 7898 } 7899 mddev->sync_thread = md_register_thread(md_do_sync, 7900 mddev, 7901 "resync"); 7902 if (!mddev->sync_thread) { 7903 printk(KERN_ERR "%s: could not start resync" 7904 " thread...\n", 7905 mdname(mddev)); 7906 /* leave the spares where they are, it shouldn't hurt */ 7907 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7908 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7909 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7910 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 7911 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7912 } else 7913 md_wakeup_thread(mddev->sync_thread); 7914 sysfs_notify_dirent_safe(mddev->sysfs_action); 7915 md_new_event(mddev); 7916 } 7917 unlock: 7918 wake_up(&mddev->sb_wait); 7919 7920 if (!mddev->sync_thread) { 7921 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7922 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 7923 &mddev->recovery)) 7924 if (mddev->sysfs_action) 7925 sysfs_notify_dirent_safe(mddev->sysfs_action); 7926 } 7927 mddev_unlock(mddev); 7928 } 7929 } 7930 7931 void md_reap_sync_thread(struct mddev *mddev) 7932 { 7933 struct md_rdev *rdev; 7934 7935 /* resync has finished, collect result */ 7936 md_unregister_thread(&mddev->sync_thread); 7937 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 7938 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 7939 /* success...*/ 7940 /* activate any spares */ 7941 if (mddev->pers->spare_active(mddev)) { 7942 sysfs_notify(&mddev->kobj, NULL, 7943 "degraded"); 7944 set_bit(MD_CHANGE_DEVS, &mddev->flags); 7945 } 7946 } 7947 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 7948 mddev->pers->finish_reshape) 7949 mddev->pers->finish_reshape(mddev); 7950 7951 /* If array is no-longer degraded, then any saved_raid_disk 7952 * information must be scrapped. Also if any device is now 7953 * In_sync we must scrape the saved_raid_disk for that device 7954 * do the superblock for an incrementally recovered device 7955 * written out. 7956 */ 7957 rdev_for_each(rdev, mddev) 7958 if (!mddev->degraded || 7959 test_bit(In_sync, &rdev->flags)) 7960 rdev->saved_raid_disk = -1; 7961 7962 md_update_sb(mddev, 1); 7963 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7964 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7965 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7966 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 7967 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7968 /* flag recovery needed just to double check */ 7969 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7970 sysfs_notify_dirent_safe(mddev->sysfs_action); 7971 md_new_event(mddev); 7972 if (mddev->event_work.func) 7973 queue_work(md_misc_wq, &mddev->event_work); 7974 } 7975 7976 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev) 7977 { 7978 sysfs_notify_dirent_safe(rdev->sysfs_state); 7979 wait_event_timeout(rdev->blocked_wait, 7980 !test_bit(Blocked, &rdev->flags) && 7981 !test_bit(BlockedBadBlocks, &rdev->flags), 7982 msecs_to_jiffies(5000)); 7983 rdev_dec_pending(rdev, mddev); 7984 } 7985 EXPORT_SYMBOL(md_wait_for_blocked_rdev); 7986 7987 void md_finish_reshape(struct mddev *mddev) 7988 { 7989 /* called be personality module when reshape completes. */ 7990 struct md_rdev *rdev; 7991 7992 rdev_for_each(rdev, mddev) { 7993 if (rdev->data_offset > rdev->new_data_offset) 7994 rdev->sectors += rdev->data_offset - rdev->new_data_offset; 7995 else 7996 rdev->sectors -= rdev->new_data_offset - rdev->data_offset; 7997 rdev->data_offset = rdev->new_data_offset; 7998 } 7999 } 8000 EXPORT_SYMBOL(md_finish_reshape); 8001 8002 /* Bad block management. 8003 * We can record which blocks on each device are 'bad' and so just 8004 * fail those blocks, or that stripe, rather than the whole device. 8005 * Entries in the bad-block table are 64bits wide. This comprises: 8006 * Length of bad-range, in sectors: 0-511 for lengths 1-512 8007 * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes) 8008 * A 'shift' can be set so that larger blocks are tracked and 8009 * consequently larger devices can be covered. 8010 * 'Acknowledged' flag - 1 bit. - the most significant bit. 8011 * 8012 * Locking of the bad-block table uses a seqlock so md_is_badblock 8013 * might need to retry if it is very unlucky. 8014 * We will sometimes want to check for bad blocks in a bi_end_io function, 8015 * so we use the write_seqlock_irq variant. 8016 * 8017 * When looking for a bad block we specify a range and want to 8018 * know if any block in the range is bad. So we binary-search 8019 * to the last range that starts at-or-before the given endpoint, 8020 * (or "before the sector after the target range") 8021 * then see if it ends after the given start. 8022 * We return 8023 * 0 if there are no known bad blocks in the range 8024 * 1 if there are known bad block which are all acknowledged 8025 * -1 if there are bad blocks which have not yet been acknowledged in metadata. 8026 * plus the start/length of the first bad section we overlap. 8027 */ 8028 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors, 8029 sector_t *first_bad, int *bad_sectors) 8030 { 8031 int hi; 8032 int lo; 8033 u64 *p = bb->page; 8034 int rv; 8035 sector_t target = s + sectors; 8036 unsigned seq; 8037 8038 if (bb->shift > 0) { 8039 /* round the start down, and the end up */ 8040 s >>= bb->shift; 8041 target += (1<<bb->shift) - 1; 8042 target >>= bb->shift; 8043 sectors = target - s; 8044 } 8045 /* 'target' is now the first block after the bad range */ 8046 8047 retry: 8048 seq = read_seqbegin(&bb->lock); 8049 lo = 0; 8050 rv = 0; 8051 hi = bb->count; 8052 8053 /* Binary search between lo and hi for 'target' 8054 * i.e. for the last range that starts before 'target' 8055 */ 8056 /* INVARIANT: ranges before 'lo' and at-or-after 'hi' 8057 * are known not to be the last range before target. 8058 * VARIANT: hi-lo is the number of possible 8059 * ranges, and decreases until it reaches 1 8060 */ 8061 while (hi - lo > 1) { 8062 int mid = (lo + hi) / 2; 8063 sector_t a = BB_OFFSET(p[mid]); 8064 if (a < target) 8065 /* This could still be the one, earlier ranges 8066 * could not. */ 8067 lo = mid; 8068 else 8069 /* This and later ranges are definitely out. */ 8070 hi = mid; 8071 } 8072 /* 'lo' might be the last that started before target, but 'hi' isn't */ 8073 if (hi > lo) { 8074 /* need to check all range that end after 's' to see if 8075 * any are unacknowledged. 8076 */ 8077 while (lo >= 0 && 8078 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) { 8079 if (BB_OFFSET(p[lo]) < target) { 8080 /* starts before the end, and finishes after 8081 * the start, so they must overlap 8082 */ 8083 if (rv != -1 && BB_ACK(p[lo])) 8084 rv = 1; 8085 else 8086 rv = -1; 8087 *first_bad = BB_OFFSET(p[lo]); 8088 *bad_sectors = BB_LEN(p[lo]); 8089 } 8090 lo--; 8091 } 8092 } 8093 8094 if (read_seqretry(&bb->lock, seq)) 8095 goto retry; 8096 8097 return rv; 8098 } 8099 EXPORT_SYMBOL_GPL(md_is_badblock); 8100 8101 /* 8102 * Add a range of bad blocks to the table. 8103 * This might extend the table, or might contract it 8104 * if two adjacent ranges can be merged. 8105 * We binary-search to find the 'insertion' point, then 8106 * decide how best to handle it. 8107 */ 8108 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors, 8109 int acknowledged) 8110 { 8111 u64 *p; 8112 int lo, hi; 8113 int rv = 1; 8114 unsigned long flags; 8115 8116 if (bb->shift < 0) 8117 /* badblocks are disabled */ 8118 return 0; 8119 8120 if (bb->shift) { 8121 /* round the start down, and the end up */ 8122 sector_t next = s + sectors; 8123 s >>= bb->shift; 8124 next += (1<<bb->shift) - 1; 8125 next >>= bb->shift; 8126 sectors = next - s; 8127 } 8128 8129 write_seqlock_irqsave(&bb->lock, flags); 8130 8131 p = bb->page; 8132 lo = 0; 8133 hi = bb->count; 8134 /* Find the last range that starts at-or-before 's' */ 8135 while (hi - lo > 1) { 8136 int mid = (lo + hi) / 2; 8137 sector_t a = BB_OFFSET(p[mid]); 8138 if (a <= s) 8139 lo = mid; 8140 else 8141 hi = mid; 8142 } 8143 if (hi > lo && BB_OFFSET(p[lo]) > s) 8144 hi = lo; 8145 8146 if (hi > lo) { 8147 /* we found a range that might merge with the start 8148 * of our new range 8149 */ 8150 sector_t a = BB_OFFSET(p[lo]); 8151 sector_t e = a + BB_LEN(p[lo]); 8152 int ack = BB_ACK(p[lo]); 8153 if (e >= s) { 8154 /* Yes, we can merge with a previous range */ 8155 if (s == a && s + sectors >= e) 8156 /* new range covers old */ 8157 ack = acknowledged; 8158 else 8159 ack = ack && acknowledged; 8160 8161 if (e < s + sectors) 8162 e = s + sectors; 8163 if (e - a <= BB_MAX_LEN) { 8164 p[lo] = BB_MAKE(a, e-a, ack); 8165 s = e; 8166 } else { 8167 /* does not all fit in one range, 8168 * make p[lo] maximal 8169 */ 8170 if (BB_LEN(p[lo]) != BB_MAX_LEN) 8171 p[lo] = BB_MAKE(a, BB_MAX_LEN, ack); 8172 s = a + BB_MAX_LEN; 8173 } 8174 sectors = e - s; 8175 } 8176 } 8177 if (sectors && hi < bb->count) { 8178 /* 'hi' points to the first range that starts after 's'. 8179 * Maybe we can merge with the start of that range */ 8180 sector_t a = BB_OFFSET(p[hi]); 8181 sector_t e = a + BB_LEN(p[hi]); 8182 int ack = BB_ACK(p[hi]); 8183 if (a <= s + sectors) { 8184 /* merging is possible */ 8185 if (e <= s + sectors) { 8186 /* full overlap */ 8187 e = s + sectors; 8188 ack = acknowledged; 8189 } else 8190 ack = ack && acknowledged; 8191 8192 a = s; 8193 if (e - a <= BB_MAX_LEN) { 8194 p[hi] = BB_MAKE(a, e-a, ack); 8195 s = e; 8196 } else { 8197 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack); 8198 s = a + BB_MAX_LEN; 8199 } 8200 sectors = e - s; 8201 lo = hi; 8202 hi++; 8203 } 8204 } 8205 if (sectors == 0 && hi < bb->count) { 8206 /* we might be able to combine lo and hi */ 8207 /* Note: 's' is at the end of 'lo' */ 8208 sector_t a = BB_OFFSET(p[hi]); 8209 int lolen = BB_LEN(p[lo]); 8210 int hilen = BB_LEN(p[hi]); 8211 int newlen = lolen + hilen - (s - a); 8212 if (s >= a && newlen < BB_MAX_LEN) { 8213 /* yes, we can combine them */ 8214 int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]); 8215 p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack); 8216 memmove(p + hi, p + hi + 1, 8217 (bb->count - hi - 1) * 8); 8218 bb->count--; 8219 } 8220 } 8221 while (sectors) { 8222 /* didn't merge (it all). 8223 * Need to add a range just before 'hi' */ 8224 if (bb->count >= MD_MAX_BADBLOCKS) { 8225 /* No room for more */ 8226 rv = 0; 8227 break; 8228 } else { 8229 int this_sectors = sectors; 8230 memmove(p + hi + 1, p + hi, 8231 (bb->count - hi) * 8); 8232 bb->count++; 8233 8234 if (this_sectors > BB_MAX_LEN) 8235 this_sectors = BB_MAX_LEN; 8236 p[hi] = BB_MAKE(s, this_sectors, acknowledged); 8237 sectors -= this_sectors; 8238 s += this_sectors; 8239 } 8240 } 8241 8242 bb->changed = 1; 8243 if (!acknowledged) 8244 bb->unacked_exist = 1; 8245 write_sequnlock_irqrestore(&bb->lock, flags); 8246 8247 return rv; 8248 } 8249 8250 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 8251 int is_new) 8252 { 8253 int rv; 8254 if (is_new) 8255 s += rdev->new_data_offset; 8256 else 8257 s += rdev->data_offset; 8258 rv = md_set_badblocks(&rdev->badblocks, 8259 s, sectors, 0); 8260 if (rv) { 8261 /* Make sure they get written out promptly */ 8262 sysfs_notify_dirent_safe(rdev->sysfs_state); 8263 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags); 8264 md_wakeup_thread(rdev->mddev->thread); 8265 } 8266 return rv; 8267 } 8268 EXPORT_SYMBOL_GPL(rdev_set_badblocks); 8269 8270 /* 8271 * Remove a range of bad blocks from the table. 8272 * This may involve extending the table if we spilt a region, 8273 * but it must not fail. So if the table becomes full, we just 8274 * drop the remove request. 8275 */ 8276 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors) 8277 { 8278 u64 *p; 8279 int lo, hi; 8280 sector_t target = s + sectors; 8281 int rv = 0; 8282 8283 if (bb->shift > 0) { 8284 /* When clearing we round the start up and the end down. 8285 * This should not matter as the shift should align with 8286 * the block size and no rounding should ever be needed. 8287 * However it is better the think a block is bad when it 8288 * isn't than to think a block is not bad when it is. 8289 */ 8290 s += (1<<bb->shift) - 1; 8291 s >>= bb->shift; 8292 target >>= bb->shift; 8293 sectors = target - s; 8294 } 8295 8296 write_seqlock_irq(&bb->lock); 8297 8298 p = bb->page; 8299 lo = 0; 8300 hi = bb->count; 8301 /* Find the last range that starts before 'target' */ 8302 while (hi - lo > 1) { 8303 int mid = (lo + hi) / 2; 8304 sector_t a = BB_OFFSET(p[mid]); 8305 if (a < target) 8306 lo = mid; 8307 else 8308 hi = mid; 8309 } 8310 if (hi > lo) { 8311 /* p[lo] is the last range that could overlap the 8312 * current range. Earlier ranges could also overlap, 8313 * but only this one can overlap the end of the range. 8314 */ 8315 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) { 8316 /* Partial overlap, leave the tail of this range */ 8317 int ack = BB_ACK(p[lo]); 8318 sector_t a = BB_OFFSET(p[lo]); 8319 sector_t end = a + BB_LEN(p[lo]); 8320 8321 if (a < s) { 8322 /* we need to split this range */ 8323 if (bb->count >= MD_MAX_BADBLOCKS) { 8324 rv = 0; 8325 goto out; 8326 } 8327 memmove(p+lo+1, p+lo, (bb->count - lo) * 8); 8328 bb->count++; 8329 p[lo] = BB_MAKE(a, s-a, ack); 8330 lo++; 8331 } 8332 p[lo] = BB_MAKE(target, end - target, ack); 8333 /* there is no longer an overlap */ 8334 hi = lo; 8335 lo--; 8336 } 8337 while (lo >= 0 && 8338 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) { 8339 /* This range does overlap */ 8340 if (BB_OFFSET(p[lo]) < s) { 8341 /* Keep the early parts of this range. */ 8342 int ack = BB_ACK(p[lo]); 8343 sector_t start = BB_OFFSET(p[lo]); 8344 p[lo] = BB_MAKE(start, s - start, ack); 8345 /* now low doesn't overlap, so.. */ 8346 break; 8347 } 8348 lo--; 8349 } 8350 /* 'lo' is strictly before, 'hi' is strictly after, 8351 * anything between needs to be discarded 8352 */ 8353 if (hi - lo > 1) { 8354 memmove(p+lo+1, p+hi, (bb->count - hi) * 8); 8355 bb->count -= (hi - lo - 1); 8356 } 8357 } 8358 8359 bb->changed = 1; 8360 out: 8361 write_sequnlock_irq(&bb->lock); 8362 return rv; 8363 } 8364 8365 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 8366 int is_new) 8367 { 8368 if (is_new) 8369 s += rdev->new_data_offset; 8370 else 8371 s += rdev->data_offset; 8372 return md_clear_badblocks(&rdev->badblocks, 8373 s, sectors); 8374 } 8375 EXPORT_SYMBOL_GPL(rdev_clear_badblocks); 8376 8377 /* 8378 * Acknowledge all bad blocks in a list. 8379 * This only succeeds if ->changed is clear. It is used by 8380 * in-kernel metadata updates 8381 */ 8382 void md_ack_all_badblocks(struct badblocks *bb) 8383 { 8384 if (bb->page == NULL || bb->changed) 8385 /* no point even trying */ 8386 return; 8387 write_seqlock_irq(&bb->lock); 8388 8389 if (bb->changed == 0 && bb->unacked_exist) { 8390 u64 *p = bb->page; 8391 int i; 8392 for (i = 0; i < bb->count ; i++) { 8393 if (!BB_ACK(p[i])) { 8394 sector_t start = BB_OFFSET(p[i]); 8395 int len = BB_LEN(p[i]); 8396 p[i] = BB_MAKE(start, len, 1); 8397 } 8398 } 8399 bb->unacked_exist = 0; 8400 } 8401 write_sequnlock_irq(&bb->lock); 8402 } 8403 EXPORT_SYMBOL_GPL(md_ack_all_badblocks); 8404 8405 /* sysfs access to bad-blocks list. 8406 * We present two files. 8407 * 'bad-blocks' lists sector numbers and lengths of ranges that 8408 * are recorded as bad. The list is truncated to fit within 8409 * the one-page limit of sysfs. 8410 * Writing "sector length" to this file adds an acknowledged 8411 * bad block list. 8412 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet 8413 * been acknowledged. Writing to this file adds bad blocks 8414 * without acknowledging them. This is largely for testing. 8415 */ 8416 8417 static ssize_t 8418 badblocks_show(struct badblocks *bb, char *page, int unack) 8419 { 8420 size_t len; 8421 int i; 8422 u64 *p = bb->page; 8423 unsigned seq; 8424 8425 if (bb->shift < 0) 8426 return 0; 8427 8428 retry: 8429 seq = read_seqbegin(&bb->lock); 8430 8431 len = 0; 8432 i = 0; 8433 8434 while (len < PAGE_SIZE && i < bb->count) { 8435 sector_t s = BB_OFFSET(p[i]); 8436 unsigned int length = BB_LEN(p[i]); 8437 int ack = BB_ACK(p[i]); 8438 i++; 8439 8440 if (unack && ack) 8441 continue; 8442 8443 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n", 8444 (unsigned long long)s << bb->shift, 8445 length << bb->shift); 8446 } 8447 if (unack && len == 0) 8448 bb->unacked_exist = 0; 8449 8450 if (read_seqretry(&bb->lock, seq)) 8451 goto retry; 8452 8453 return len; 8454 } 8455 8456 #define DO_DEBUG 1 8457 8458 static ssize_t 8459 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack) 8460 { 8461 unsigned long long sector; 8462 int length; 8463 char newline; 8464 #ifdef DO_DEBUG 8465 /* Allow clearing via sysfs *only* for testing/debugging. 8466 * Normally only a successful write may clear a badblock 8467 */ 8468 int clear = 0; 8469 if (page[0] == '-') { 8470 clear = 1; 8471 page++; 8472 } 8473 #endif /* DO_DEBUG */ 8474 8475 switch (sscanf(page, "%llu %d%c", §or, &length, &newline)) { 8476 case 3: 8477 if (newline != '\n') 8478 return -EINVAL; 8479 case 2: 8480 if (length <= 0) 8481 return -EINVAL; 8482 break; 8483 default: 8484 return -EINVAL; 8485 } 8486 8487 #ifdef DO_DEBUG 8488 if (clear) { 8489 md_clear_badblocks(bb, sector, length); 8490 return len; 8491 } 8492 #endif /* DO_DEBUG */ 8493 if (md_set_badblocks(bb, sector, length, !unack)) 8494 return len; 8495 else 8496 return -ENOSPC; 8497 } 8498 8499 static int md_notify_reboot(struct notifier_block *this, 8500 unsigned long code, void *x) 8501 { 8502 struct list_head *tmp; 8503 struct mddev *mddev; 8504 int need_delay = 0; 8505 8506 for_each_mddev(mddev, tmp) { 8507 if (mddev_trylock(mddev)) { 8508 if (mddev->pers) 8509 __md_stop_writes(mddev); 8510 mddev->safemode = 2; 8511 mddev_unlock(mddev); 8512 } 8513 need_delay = 1; 8514 } 8515 /* 8516 * certain more exotic SCSI devices are known to be 8517 * volatile wrt too early system reboots. While the 8518 * right place to handle this issue is the given 8519 * driver, we do want to have a safe RAID driver ... 8520 */ 8521 if (need_delay) 8522 mdelay(1000*1); 8523 8524 return NOTIFY_DONE; 8525 } 8526 8527 static struct notifier_block md_notifier = { 8528 .notifier_call = md_notify_reboot, 8529 .next = NULL, 8530 .priority = INT_MAX, /* before any real devices */ 8531 }; 8532 8533 static void md_geninit(void) 8534 { 8535 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); 8536 8537 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops); 8538 } 8539 8540 static int __init md_init(void) 8541 { 8542 int ret = -ENOMEM; 8543 8544 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0); 8545 if (!md_wq) 8546 goto err_wq; 8547 8548 md_misc_wq = alloc_workqueue("md_misc", 0, 0); 8549 if (!md_misc_wq) 8550 goto err_misc_wq; 8551 8552 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0) 8553 goto err_md; 8554 8555 if ((ret = register_blkdev(0, "mdp")) < 0) 8556 goto err_mdp; 8557 mdp_major = ret; 8558 8559 blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE, 8560 md_probe, NULL, NULL); 8561 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE, 8562 md_probe, NULL, NULL); 8563 8564 register_reboot_notifier(&md_notifier); 8565 raid_table_header = register_sysctl_table(raid_root_table); 8566 8567 md_geninit(); 8568 return 0; 8569 8570 err_mdp: 8571 unregister_blkdev(MD_MAJOR, "md"); 8572 err_md: 8573 destroy_workqueue(md_misc_wq); 8574 err_misc_wq: 8575 destroy_workqueue(md_wq); 8576 err_wq: 8577 return ret; 8578 } 8579 8580 #ifndef MODULE 8581 8582 /* 8583 * Searches all registered partitions for autorun RAID arrays 8584 * at boot time. 8585 */ 8586 8587 static LIST_HEAD(all_detected_devices); 8588 struct detected_devices_node { 8589 struct list_head list; 8590 dev_t dev; 8591 }; 8592 8593 void md_autodetect_dev(dev_t dev) 8594 { 8595 struct detected_devices_node *node_detected_dev; 8596 8597 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL); 8598 if (node_detected_dev) { 8599 node_detected_dev->dev = dev; 8600 list_add_tail(&node_detected_dev->list, &all_detected_devices); 8601 } else { 8602 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed" 8603 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev)); 8604 } 8605 } 8606 8607 8608 static void autostart_arrays(int part) 8609 { 8610 struct md_rdev *rdev; 8611 struct detected_devices_node *node_detected_dev; 8612 dev_t dev; 8613 int i_scanned, i_passed; 8614 8615 i_scanned = 0; 8616 i_passed = 0; 8617 8618 printk(KERN_INFO "md: Autodetecting RAID arrays.\n"); 8619 8620 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) { 8621 i_scanned++; 8622 node_detected_dev = list_entry(all_detected_devices.next, 8623 struct detected_devices_node, list); 8624 list_del(&node_detected_dev->list); 8625 dev = node_detected_dev->dev; 8626 kfree(node_detected_dev); 8627 rdev = md_import_device(dev,0, 90); 8628 if (IS_ERR(rdev)) 8629 continue; 8630 8631 if (test_bit(Faulty, &rdev->flags)) { 8632 MD_BUG(); 8633 continue; 8634 } 8635 set_bit(AutoDetected, &rdev->flags); 8636 list_add(&rdev->same_set, &pending_raid_disks); 8637 i_passed++; 8638 } 8639 8640 printk(KERN_INFO "md: Scanned %d and added %d devices.\n", 8641 i_scanned, i_passed); 8642 8643 autorun_devices(part); 8644 } 8645 8646 #endif /* !MODULE */ 8647 8648 static __exit void md_exit(void) 8649 { 8650 struct mddev *mddev; 8651 struct list_head *tmp; 8652 8653 blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS); 8654 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS); 8655 8656 unregister_blkdev(MD_MAJOR,"md"); 8657 unregister_blkdev(mdp_major, "mdp"); 8658 unregister_reboot_notifier(&md_notifier); 8659 unregister_sysctl_table(raid_table_header); 8660 remove_proc_entry("mdstat", NULL); 8661 for_each_mddev(mddev, tmp) { 8662 export_array(mddev); 8663 mddev->hold_active = 0; 8664 } 8665 destroy_workqueue(md_misc_wq); 8666 destroy_workqueue(md_wq); 8667 } 8668 8669 subsys_initcall(md_init); 8670 module_exit(md_exit) 8671 8672 static int get_ro(char *buffer, struct kernel_param *kp) 8673 { 8674 return sprintf(buffer, "%d", start_readonly); 8675 } 8676 static int set_ro(const char *val, struct kernel_param *kp) 8677 { 8678 char *e; 8679 int num = simple_strtoul(val, &e, 10); 8680 if (*val && (*e == '\0' || *e == '\n')) { 8681 start_readonly = num; 8682 return 0; 8683 } 8684 return -EINVAL; 8685 } 8686 8687 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); 8688 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); 8689 8690 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR); 8691 8692 EXPORT_SYMBOL(register_md_personality); 8693 EXPORT_SYMBOL(unregister_md_personality); 8694 EXPORT_SYMBOL(md_error); 8695 EXPORT_SYMBOL(md_done_sync); 8696 EXPORT_SYMBOL(md_write_start); 8697 EXPORT_SYMBOL(md_write_end); 8698 EXPORT_SYMBOL(md_register_thread); 8699 EXPORT_SYMBOL(md_unregister_thread); 8700 EXPORT_SYMBOL(md_wakeup_thread); 8701 EXPORT_SYMBOL(md_check_recovery); 8702 EXPORT_SYMBOL(md_reap_sync_thread); 8703 MODULE_LICENSE("GPL"); 8704 MODULE_DESCRIPTION("MD RAID framework"); 8705 MODULE_ALIAS("md"); 8706 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR); 8707