xref: /openbmc/linux/drivers/md/md.c (revision f637b9f9)
1 /*
2    md.c : Multiple Devices driver for Linux
3 	  Copyright (C) 1998, 1999, 2000 Ingo Molnar
4 
5      completely rewritten, based on the MD driver code from Marc Zyngier
6 
7    Changes:
8 
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16 
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19 
20      Neil Brown <neilb@cse.unsw.edu.au>.
21 
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24 
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29 
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34 
35 #include <linux/module.h>
36 #include <linux/config.h>
37 #include <linux/kthread.h>
38 #include <linux/linkage.h>
39 #include <linux/raid/md.h>
40 #include <linux/raid/bitmap.h>
41 #include <linux/sysctl.h>
42 #include <linux/devfs_fs_kernel.h>
43 #include <linux/buffer_head.h> /* for invalidate_bdev */
44 #include <linux/suspend.h>
45 
46 #include <linux/init.h>
47 
48 #include <linux/file.h>
49 
50 #ifdef CONFIG_KMOD
51 #include <linux/kmod.h>
52 #endif
53 
54 #include <asm/unaligned.h>
55 
56 #define MAJOR_NR MD_MAJOR
57 #define MD_DRIVER
58 
59 /* 63 partitions with the alternate major number (mdp) */
60 #define MdpMinorShift 6
61 
62 #define DEBUG 0
63 #define dprintk(x...) ((void)(DEBUG && printk(x)))
64 
65 
66 #ifndef MODULE
67 static void autostart_arrays (int part);
68 #endif
69 
70 static mdk_personality_t *pers[MAX_PERSONALITY];
71 static DEFINE_SPINLOCK(pers_lock);
72 
73 /*
74  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
75  * is 1000 KB/sec, so the extra system load does not show up that much.
76  * Increase it if you want to have more _guaranteed_ speed. Note that
77  * the RAID driver will use the maximum available bandwidth if the IO
78  * subsystem is idle. There is also an 'absolute maximum' reconstruction
79  * speed limit - in case reconstruction slows down your system despite
80  * idle IO detection.
81  *
82  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
83  */
84 
85 static int sysctl_speed_limit_min = 1000;
86 static int sysctl_speed_limit_max = 200000;
87 
88 static struct ctl_table_header *raid_table_header;
89 
90 static ctl_table raid_table[] = {
91 	{
92 		.ctl_name	= DEV_RAID_SPEED_LIMIT_MIN,
93 		.procname	= "speed_limit_min",
94 		.data		= &sysctl_speed_limit_min,
95 		.maxlen		= sizeof(int),
96 		.mode		= 0644,
97 		.proc_handler	= &proc_dointvec,
98 	},
99 	{
100 		.ctl_name	= DEV_RAID_SPEED_LIMIT_MAX,
101 		.procname	= "speed_limit_max",
102 		.data		= &sysctl_speed_limit_max,
103 		.maxlen		= sizeof(int),
104 		.mode		= 0644,
105 		.proc_handler	= &proc_dointvec,
106 	},
107 	{ .ctl_name = 0 }
108 };
109 
110 static ctl_table raid_dir_table[] = {
111 	{
112 		.ctl_name	= DEV_RAID,
113 		.procname	= "raid",
114 		.maxlen		= 0,
115 		.mode		= 0555,
116 		.child		= raid_table,
117 	},
118 	{ .ctl_name = 0 }
119 };
120 
121 static ctl_table raid_root_table[] = {
122 	{
123 		.ctl_name	= CTL_DEV,
124 		.procname	= "dev",
125 		.maxlen		= 0,
126 		.mode		= 0555,
127 		.child		= raid_dir_table,
128 	},
129 	{ .ctl_name = 0 }
130 };
131 
132 static struct block_device_operations md_fops;
133 
134 static int start_readonly;
135 
136 /*
137  * Enables to iterate over all existing md arrays
138  * all_mddevs_lock protects this list.
139  */
140 static LIST_HEAD(all_mddevs);
141 static DEFINE_SPINLOCK(all_mddevs_lock);
142 
143 
144 /*
145  * iterates through all used mddevs in the system.
146  * We take care to grab the all_mddevs_lock whenever navigating
147  * the list, and to always hold a refcount when unlocked.
148  * Any code which breaks out of this loop while own
149  * a reference to the current mddev and must mddev_put it.
150  */
151 #define ITERATE_MDDEV(mddev,tmp)					\
152 									\
153 	for (({ spin_lock(&all_mddevs_lock); 				\
154 		tmp = all_mddevs.next;					\
155 		mddev = NULL;});					\
156 	     ({ if (tmp != &all_mddevs)					\
157 			mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
158 		spin_unlock(&all_mddevs_lock);				\
159 		if (mddev) mddev_put(mddev);				\
160 		mddev = list_entry(tmp, mddev_t, all_mddevs);		\
161 		tmp != &all_mddevs;});					\
162 	     ({ spin_lock(&all_mddevs_lock);				\
163 		tmp = tmp->next;})					\
164 		)
165 
166 
167 static int md_fail_request (request_queue_t *q, struct bio *bio)
168 {
169 	bio_io_error(bio, bio->bi_size);
170 	return 0;
171 }
172 
173 static inline mddev_t *mddev_get(mddev_t *mddev)
174 {
175 	atomic_inc(&mddev->active);
176 	return mddev;
177 }
178 
179 static void mddev_put(mddev_t *mddev)
180 {
181 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
182 		return;
183 	if (!mddev->raid_disks && list_empty(&mddev->disks)) {
184 		list_del(&mddev->all_mddevs);
185 		blk_put_queue(mddev->queue);
186 		kobject_unregister(&mddev->kobj);
187 	}
188 	spin_unlock(&all_mddevs_lock);
189 }
190 
191 static mddev_t * mddev_find(dev_t unit)
192 {
193 	mddev_t *mddev, *new = NULL;
194 
195  retry:
196 	spin_lock(&all_mddevs_lock);
197 	list_for_each_entry(mddev, &all_mddevs, all_mddevs)
198 		if (mddev->unit == unit) {
199 			mddev_get(mddev);
200 			spin_unlock(&all_mddevs_lock);
201 			kfree(new);
202 			return mddev;
203 		}
204 
205 	if (new) {
206 		list_add(&new->all_mddevs, &all_mddevs);
207 		spin_unlock(&all_mddevs_lock);
208 		return new;
209 	}
210 	spin_unlock(&all_mddevs_lock);
211 
212 	new = (mddev_t *) kmalloc(sizeof(*new), GFP_KERNEL);
213 	if (!new)
214 		return NULL;
215 
216 	memset(new, 0, sizeof(*new));
217 
218 	new->unit = unit;
219 	if (MAJOR(unit) == MD_MAJOR)
220 		new->md_minor = MINOR(unit);
221 	else
222 		new->md_minor = MINOR(unit) >> MdpMinorShift;
223 
224 	init_MUTEX(&new->reconfig_sem);
225 	INIT_LIST_HEAD(&new->disks);
226 	INIT_LIST_HEAD(&new->all_mddevs);
227 	init_timer(&new->safemode_timer);
228 	atomic_set(&new->active, 1);
229 	spin_lock_init(&new->write_lock);
230 	init_waitqueue_head(&new->sb_wait);
231 
232 	new->queue = blk_alloc_queue(GFP_KERNEL);
233 	if (!new->queue) {
234 		kfree(new);
235 		return NULL;
236 	}
237 
238 	blk_queue_make_request(new->queue, md_fail_request);
239 
240 	goto retry;
241 }
242 
243 static inline int mddev_lock(mddev_t * mddev)
244 {
245 	return down_interruptible(&mddev->reconfig_sem);
246 }
247 
248 static inline void mddev_lock_uninterruptible(mddev_t * mddev)
249 {
250 	down(&mddev->reconfig_sem);
251 }
252 
253 static inline int mddev_trylock(mddev_t * mddev)
254 {
255 	return down_trylock(&mddev->reconfig_sem);
256 }
257 
258 static inline void mddev_unlock(mddev_t * mddev)
259 {
260 	up(&mddev->reconfig_sem);
261 
262 	md_wakeup_thread(mddev->thread);
263 }
264 
265 mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
266 {
267 	mdk_rdev_t * rdev;
268 	struct list_head *tmp;
269 
270 	ITERATE_RDEV(mddev,rdev,tmp) {
271 		if (rdev->desc_nr == nr)
272 			return rdev;
273 	}
274 	return NULL;
275 }
276 
277 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
278 {
279 	struct list_head *tmp;
280 	mdk_rdev_t *rdev;
281 
282 	ITERATE_RDEV(mddev,rdev,tmp) {
283 		if (rdev->bdev->bd_dev == dev)
284 			return rdev;
285 	}
286 	return NULL;
287 }
288 
289 static inline sector_t calc_dev_sboffset(struct block_device *bdev)
290 {
291 	sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
292 	return MD_NEW_SIZE_BLOCKS(size);
293 }
294 
295 static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
296 {
297 	sector_t size;
298 
299 	size = rdev->sb_offset;
300 
301 	if (chunk_size)
302 		size &= ~((sector_t)chunk_size/1024 - 1);
303 	return size;
304 }
305 
306 static int alloc_disk_sb(mdk_rdev_t * rdev)
307 {
308 	if (rdev->sb_page)
309 		MD_BUG();
310 
311 	rdev->sb_page = alloc_page(GFP_KERNEL);
312 	if (!rdev->sb_page) {
313 		printk(KERN_ALERT "md: out of memory.\n");
314 		return -EINVAL;
315 	}
316 
317 	return 0;
318 }
319 
320 static void free_disk_sb(mdk_rdev_t * rdev)
321 {
322 	if (rdev->sb_page) {
323 		page_cache_release(rdev->sb_page);
324 		rdev->sb_loaded = 0;
325 		rdev->sb_page = NULL;
326 		rdev->sb_offset = 0;
327 		rdev->size = 0;
328 	}
329 }
330 
331 
332 static int super_written(struct bio *bio, unsigned int bytes_done, int error)
333 {
334 	mdk_rdev_t *rdev = bio->bi_private;
335 	mddev_t *mddev = rdev->mddev;
336 	if (bio->bi_size)
337 		return 1;
338 
339 	if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags))
340 		md_error(mddev, rdev);
341 
342 	if (atomic_dec_and_test(&mddev->pending_writes))
343 		wake_up(&mddev->sb_wait);
344 	bio_put(bio);
345 	return 0;
346 }
347 
348 static int super_written_barrier(struct bio *bio, unsigned int bytes_done, int error)
349 {
350 	struct bio *bio2 = bio->bi_private;
351 	mdk_rdev_t *rdev = bio2->bi_private;
352 	mddev_t *mddev = rdev->mddev;
353 	if (bio->bi_size)
354 		return 1;
355 
356 	if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
357 	    error == -EOPNOTSUPP) {
358 		unsigned long flags;
359 		/* barriers don't appear to be supported :-( */
360 		set_bit(BarriersNotsupp, &rdev->flags);
361 		mddev->barriers_work = 0;
362 		spin_lock_irqsave(&mddev->write_lock, flags);
363 		bio2->bi_next = mddev->biolist;
364 		mddev->biolist = bio2;
365 		spin_unlock_irqrestore(&mddev->write_lock, flags);
366 		wake_up(&mddev->sb_wait);
367 		bio_put(bio);
368 		return 0;
369 	}
370 	bio_put(bio2);
371 	bio->bi_private = rdev;
372 	return super_written(bio, bytes_done, error);
373 }
374 
375 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
376 		   sector_t sector, int size, struct page *page)
377 {
378 	/* write first size bytes of page to sector of rdev
379 	 * Increment mddev->pending_writes before returning
380 	 * and decrement it on completion, waking up sb_wait
381 	 * if zero is reached.
382 	 * If an error occurred, call md_error
383 	 *
384 	 * As we might need to resubmit the request if BIO_RW_BARRIER
385 	 * causes ENOTSUPP, we allocate a spare bio...
386 	 */
387 	struct bio *bio = bio_alloc(GFP_NOIO, 1);
388 	int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNC);
389 
390 	bio->bi_bdev = rdev->bdev;
391 	bio->bi_sector = sector;
392 	bio_add_page(bio, page, size, 0);
393 	bio->bi_private = rdev;
394 	bio->bi_end_io = super_written;
395 	bio->bi_rw = rw;
396 
397 	atomic_inc(&mddev->pending_writes);
398 	if (!test_bit(BarriersNotsupp, &rdev->flags)) {
399 		struct bio *rbio;
400 		rw |= (1<<BIO_RW_BARRIER);
401 		rbio = bio_clone(bio, GFP_NOIO);
402 		rbio->bi_private = bio;
403 		rbio->bi_end_io = super_written_barrier;
404 		submit_bio(rw, rbio);
405 	} else
406 		submit_bio(rw, bio);
407 }
408 
409 void md_super_wait(mddev_t *mddev)
410 {
411 	/* wait for all superblock writes that were scheduled to complete.
412 	 * if any had to be retried (due to BARRIER problems), retry them
413 	 */
414 	DEFINE_WAIT(wq);
415 	for(;;) {
416 		prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
417 		if (atomic_read(&mddev->pending_writes)==0)
418 			break;
419 		while (mddev->biolist) {
420 			struct bio *bio;
421 			spin_lock_irq(&mddev->write_lock);
422 			bio = mddev->biolist;
423 			mddev->biolist = bio->bi_next ;
424 			bio->bi_next = NULL;
425 			spin_unlock_irq(&mddev->write_lock);
426 			submit_bio(bio->bi_rw, bio);
427 		}
428 		schedule();
429 	}
430 	finish_wait(&mddev->sb_wait, &wq);
431 }
432 
433 static int bi_complete(struct bio *bio, unsigned int bytes_done, int error)
434 {
435 	if (bio->bi_size)
436 		return 1;
437 
438 	complete((struct completion*)bio->bi_private);
439 	return 0;
440 }
441 
442 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
443 		   struct page *page, int rw)
444 {
445 	struct bio *bio = bio_alloc(GFP_NOIO, 1);
446 	struct completion event;
447 	int ret;
448 
449 	rw |= (1 << BIO_RW_SYNC);
450 
451 	bio->bi_bdev = bdev;
452 	bio->bi_sector = sector;
453 	bio_add_page(bio, page, size, 0);
454 	init_completion(&event);
455 	bio->bi_private = &event;
456 	bio->bi_end_io = bi_complete;
457 	submit_bio(rw, bio);
458 	wait_for_completion(&event);
459 
460 	ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
461 	bio_put(bio);
462 	return ret;
463 }
464 
465 static int read_disk_sb(mdk_rdev_t * rdev, int size)
466 {
467 	char b[BDEVNAME_SIZE];
468 	if (!rdev->sb_page) {
469 		MD_BUG();
470 		return -EINVAL;
471 	}
472 	if (rdev->sb_loaded)
473 		return 0;
474 
475 
476 	if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, size, rdev->sb_page, READ))
477 		goto fail;
478 	rdev->sb_loaded = 1;
479 	return 0;
480 
481 fail:
482 	printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
483 		bdevname(rdev->bdev,b));
484 	return -EINVAL;
485 }
486 
487 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
488 {
489 	if (	(sb1->set_uuid0 == sb2->set_uuid0) &&
490 		(sb1->set_uuid1 == sb2->set_uuid1) &&
491 		(sb1->set_uuid2 == sb2->set_uuid2) &&
492 		(sb1->set_uuid3 == sb2->set_uuid3))
493 
494 		return 1;
495 
496 	return 0;
497 }
498 
499 
500 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
501 {
502 	int ret;
503 	mdp_super_t *tmp1, *tmp2;
504 
505 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
506 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
507 
508 	if (!tmp1 || !tmp2) {
509 		ret = 0;
510 		printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
511 		goto abort;
512 	}
513 
514 	*tmp1 = *sb1;
515 	*tmp2 = *sb2;
516 
517 	/*
518 	 * nr_disks is not constant
519 	 */
520 	tmp1->nr_disks = 0;
521 	tmp2->nr_disks = 0;
522 
523 	if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
524 		ret = 0;
525 	else
526 		ret = 1;
527 
528 abort:
529 	kfree(tmp1);
530 	kfree(tmp2);
531 	return ret;
532 }
533 
534 static unsigned int calc_sb_csum(mdp_super_t * sb)
535 {
536 	unsigned int disk_csum, csum;
537 
538 	disk_csum = sb->sb_csum;
539 	sb->sb_csum = 0;
540 	csum = csum_partial((void *)sb, MD_SB_BYTES, 0);
541 	sb->sb_csum = disk_csum;
542 	return csum;
543 }
544 
545 
546 /*
547  * Handle superblock details.
548  * We want to be able to handle multiple superblock formats
549  * so we have a common interface to them all, and an array of
550  * different handlers.
551  * We rely on user-space to write the initial superblock, and support
552  * reading and updating of superblocks.
553  * Interface methods are:
554  *   int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
555  *      loads and validates a superblock on dev.
556  *      if refdev != NULL, compare superblocks on both devices
557  *    Return:
558  *      0 - dev has a superblock that is compatible with refdev
559  *      1 - dev has a superblock that is compatible and newer than refdev
560  *          so dev should be used as the refdev in future
561  *     -EINVAL superblock incompatible or invalid
562  *     -othererror e.g. -EIO
563  *
564  *   int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
565  *      Verify that dev is acceptable into mddev.
566  *       The first time, mddev->raid_disks will be 0, and data from
567  *       dev should be merged in.  Subsequent calls check that dev
568  *       is new enough.  Return 0 or -EINVAL
569  *
570  *   void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
571  *     Update the superblock for rdev with data in mddev
572  *     This does not write to disc.
573  *
574  */
575 
576 struct super_type  {
577 	char 		*name;
578 	struct module	*owner;
579 	int		(*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
580 	int		(*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
581 	void		(*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
582 };
583 
584 /*
585  * load_super for 0.90.0
586  */
587 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
588 {
589 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
590 	mdp_super_t *sb;
591 	int ret;
592 	sector_t sb_offset;
593 
594 	/*
595 	 * Calculate the position of the superblock,
596 	 * it's at the end of the disk.
597 	 *
598 	 * It also happens to be a multiple of 4Kb.
599 	 */
600 	sb_offset = calc_dev_sboffset(rdev->bdev);
601 	rdev->sb_offset = sb_offset;
602 
603 	ret = read_disk_sb(rdev, MD_SB_BYTES);
604 	if (ret) return ret;
605 
606 	ret = -EINVAL;
607 
608 	bdevname(rdev->bdev, b);
609 	sb = (mdp_super_t*)page_address(rdev->sb_page);
610 
611 	if (sb->md_magic != MD_SB_MAGIC) {
612 		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
613 		       b);
614 		goto abort;
615 	}
616 
617 	if (sb->major_version != 0 ||
618 	    sb->minor_version != 90) {
619 		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
620 			sb->major_version, sb->minor_version,
621 			b);
622 		goto abort;
623 	}
624 
625 	if (sb->raid_disks <= 0)
626 		goto abort;
627 
628 	if (csum_fold(calc_sb_csum(sb)) != csum_fold(sb->sb_csum)) {
629 		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
630 			b);
631 		goto abort;
632 	}
633 
634 	rdev->preferred_minor = sb->md_minor;
635 	rdev->data_offset = 0;
636 	rdev->sb_size = MD_SB_BYTES;
637 
638 	if (sb->level == LEVEL_MULTIPATH)
639 		rdev->desc_nr = -1;
640 	else
641 		rdev->desc_nr = sb->this_disk.number;
642 
643 	if (refdev == 0)
644 		ret = 1;
645 	else {
646 		__u64 ev1, ev2;
647 		mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
648 		if (!uuid_equal(refsb, sb)) {
649 			printk(KERN_WARNING "md: %s has different UUID to %s\n",
650 				b, bdevname(refdev->bdev,b2));
651 			goto abort;
652 		}
653 		if (!sb_equal(refsb, sb)) {
654 			printk(KERN_WARNING "md: %s has same UUID"
655 			       " but different superblock to %s\n",
656 			       b, bdevname(refdev->bdev, b2));
657 			goto abort;
658 		}
659 		ev1 = md_event(sb);
660 		ev2 = md_event(refsb);
661 		if (ev1 > ev2)
662 			ret = 1;
663 		else
664 			ret = 0;
665 	}
666 	rdev->size = calc_dev_size(rdev, sb->chunk_size);
667 
668  abort:
669 	return ret;
670 }
671 
672 /*
673  * validate_super for 0.90.0
674  */
675 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
676 {
677 	mdp_disk_t *desc;
678 	mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
679 
680 	rdev->raid_disk = -1;
681 	rdev->flags = 0;
682 	if (mddev->raid_disks == 0) {
683 		mddev->major_version = 0;
684 		mddev->minor_version = sb->minor_version;
685 		mddev->patch_version = sb->patch_version;
686 		mddev->persistent = ! sb->not_persistent;
687 		mddev->chunk_size = sb->chunk_size;
688 		mddev->ctime = sb->ctime;
689 		mddev->utime = sb->utime;
690 		mddev->level = sb->level;
691 		mddev->layout = sb->layout;
692 		mddev->raid_disks = sb->raid_disks;
693 		mddev->size = sb->size;
694 		mddev->events = md_event(sb);
695 		mddev->bitmap_offset = 0;
696 		mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
697 
698 		if (sb->state & (1<<MD_SB_CLEAN))
699 			mddev->recovery_cp = MaxSector;
700 		else {
701 			if (sb->events_hi == sb->cp_events_hi &&
702 				sb->events_lo == sb->cp_events_lo) {
703 				mddev->recovery_cp = sb->recovery_cp;
704 			} else
705 				mddev->recovery_cp = 0;
706 		}
707 
708 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
709 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
710 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
711 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
712 
713 		mddev->max_disks = MD_SB_DISKS;
714 
715 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
716 		    mddev->bitmap_file == NULL) {
717 			if (mddev->level != 1 && mddev->level != 5 && mddev->level != 6) {
718 				/* FIXME use a better test */
719 				printk(KERN_WARNING "md: bitmaps only support for raid1\n");
720 				return -EINVAL;
721 			}
722 			mddev->bitmap_offset = mddev->default_bitmap_offset;
723 		}
724 
725 	} else if (mddev->pers == NULL) {
726 		/* Insist on good event counter while assembling */
727 		__u64 ev1 = md_event(sb);
728 		++ev1;
729 		if (ev1 < mddev->events)
730 			return -EINVAL;
731 	} else if (mddev->bitmap) {
732 		/* if adding to array with a bitmap, then we can accept an
733 		 * older device ... but not too old.
734 		 */
735 		__u64 ev1 = md_event(sb);
736 		if (ev1 < mddev->bitmap->events_cleared)
737 			return 0;
738 	} else /* just a hot-add of a new device, leave raid_disk at -1 */
739 		return 0;
740 
741 	if (mddev->level != LEVEL_MULTIPATH) {
742 		desc = sb->disks + rdev->desc_nr;
743 
744 		if (desc->state & (1<<MD_DISK_FAULTY))
745 			set_bit(Faulty, &rdev->flags);
746 		else if (desc->state & (1<<MD_DISK_SYNC) &&
747 			 desc->raid_disk < mddev->raid_disks) {
748 			set_bit(In_sync, &rdev->flags);
749 			rdev->raid_disk = desc->raid_disk;
750 		}
751 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
752 			set_bit(WriteMostly, &rdev->flags);
753 	} else /* MULTIPATH are always insync */
754 		set_bit(In_sync, &rdev->flags);
755 	return 0;
756 }
757 
758 /*
759  * sync_super for 0.90.0
760  */
761 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
762 {
763 	mdp_super_t *sb;
764 	struct list_head *tmp;
765 	mdk_rdev_t *rdev2;
766 	int next_spare = mddev->raid_disks;
767 
768 
769 	/* make rdev->sb match mddev data..
770 	 *
771 	 * 1/ zero out disks
772 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
773 	 * 3/ any empty disks < next_spare become removed
774 	 *
775 	 * disks[0] gets initialised to REMOVED because
776 	 * we cannot be sure from other fields if it has
777 	 * been initialised or not.
778 	 */
779 	int i;
780 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
781 
782 	rdev->sb_size = MD_SB_BYTES;
783 
784 	sb = (mdp_super_t*)page_address(rdev->sb_page);
785 
786 	memset(sb, 0, sizeof(*sb));
787 
788 	sb->md_magic = MD_SB_MAGIC;
789 	sb->major_version = mddev->major_version;
790 	sb->minor_version = mddev->minor_version;
791 	sb->patch_version = mddev->patch_version;
792 	sb->gvalid_words  = 0; /* ignored */
793 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
794 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
795 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
796 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
797 
798 	sb->ctime = mddev->ctime;
799 	sb->level = mddev->level;
800 	sb->size  = mddev->size;
801 	sb->raid_disks = mddev->raid_disks;
802 	sb->md_minor = mddev->md_minor;
803 	sb->not_persistent = !mddev->persistent;
804 	sb->utime = mddev->utime;
805 	sb->state = 0;
806 	sb->events_hi = (mddev->events>>32);
807 	sb->events_lo = (u32)mddev->events;
808 
809 	if (mddev->in_sync)
810 	{
811 		sb->recovery_cp = mddev->recovery_cp;
812 		sb->cp_events_hi = (mddev->events>>32);
813 		sb->cp_events_lo = (u32)mddev->events;
814 		if (mddev->recovery_cp == MaxSector)
815 			sb->state = (1<< MD_SB_CLEAN);
816 	} else
817 		sb->recovery_cp = 0;
818 
819 	sb->layout = mddev->layout;
820 	sb->chunk_size = mddev->chunk_size;
821 
822 	if (mddev->bitmap && mddev->bitmap_file == NULL)
823 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
824 
825 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
826 	ITERATE_RDEV(mddev,rdev2,tmp) {
827 		mdp_disk_t *d;
828 		int desc_nr;
829 		if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
830 		    && !test_bit(Faulty, &rdev2->flags))
831 			desc_nr = rdev2->raid_disk;
832 		else
833 			desc_nr = next_spare++;
834 		rdev2->desc_nr = desc_nr;
835 		d = &sb->disks[rdev2->desc_nr];
836 		nr_disks++;
837 		d->number = rdev2->desc_nr;
838 		d->major = MAJOR(rdev2->bdev->bd_dev);
839 		d->minor = MINOR(rdev2->bdev->bd_dev);
840 		if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
841 		    && !test_bit(Faulty, &rdev2->flags))
842 			d->raid_disk = rdev2->raid_disk;
843 		else
844 			d->raid_disk = rdev2->desc_nr; /* compatibility */
845 		if (test_bit(Faulty, &rdev2->flags)) {
846 			d->state = (1<<MD_DISK_FAULTY);
847 			failed++;
848 		} else if (test_bit(In_sync, &rdev2->flags)) {
849 			d->state = (1<<MD_DISK_ACTIVE);
850 			d->state |= (1<<MD_DISK_SYNC);
851 			active++;
852 			working++;
853 		} else {
854 			d->state = 0;
855 			spare++;
856 			working++;
857 		}
858 		if (test_bit(WriteMostly, &rdev2->flags))
859 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
860 	}
861 	/* now set the "removed" and "faulty" bits on any missing devices */
862 	for (i=0 ; i < mddev->raid_disks ; i++) {
863 		mdp_disk_t *d = &sb->disks[i];
864 		if (d->state == 0 && d->number == 0) {
865 			d->number = i;
866 			d->raid_disk = i;
867 			d->state = (1<<MD_DISK_REMOVED);
868 			d->state |= (1<<MD_DISK_FAULTY);
869 			failed++;
870 		}
871 	}
872 	sb->nr_disks = nr_disks;
873 	sb->active_disks = active;
874 	sb->working_disks = working;
875 	sb->failed_disks = failed;
876 	sb->spare_disks = spare;
877 
878 	sb->this_disk = sb->disks[rdev->desc_nr];
879 	sb->sb_csum = calc_sb_csum(sb);
880 }
881 
882 /*
883  * version 1 superblock
884  */
885 
886 static unsigned int calc_sb_1_csum(struct mdp_superblock_1 * sb)
887 {
888 	unsigned int disk_csum, csum;
889 	unsigned long long newcsum;
890 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
891 	unsigned int *isuper = (unsigned int*)sb;
892 	int i;
893 
894 	disk_csum = sb->sb_csum;
895 	sb->sb_csum = 0;
896 	newcsum = 0;
897 	for (i=0; size>=4; size -= 4 )
898 		newcsum += le32_to_cpu(*isuper++);
899 
900 	if (size == 2)
901 		newcsum += le16_to_cpu(*(unsigned short*) isuper);
902 
903 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
904 	sb->sb_csum = disk_csum;
905 	return cpu_to_le32(csum);
906 }
907 
908 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
909 {
910 	struct mdp_superblock_1 *sb;
911 	int ret;
912 	sector_t sb_offset;
913 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
914 	int bmask;
915 
916 	/*
917 	 * Calculate the position of the superblock.
918 	 * It is always aligned to a 4K boundary and
919 	 * depeding on minor_version, it can be:
920 	 * 0: At least 8K, but less than 12K, from end of device
921 	 * 1: At start of device
922 	 * 2: 4K from start of device.
923 	 */
924 	switch(minor_version) {
925 	case 0:
926 		sb_offset = rdev->bdev->bd_inode->i_size >> 9;
927 		sb_offset -= 8*2;
928 		sb_offset &= ~(sector_t)(4*2-1);
929 		/* convert from sectors to K */
930 		sb_offset /= 2;
931 		break;
932 	case 1:
933 		sb_offset = 0;
934 		break;
935 	case 2:
936 		sb_offset = 4;
937 		break;
938 	default:
939 		return -EINVAL;
940 	}
941 	rdev->sb_offset = sb_offset;
942 
943 	/* superblock is rarely larger than 1K, but it can be larger,
944 	 * and it is safe to read 4k, so we do that
945 	 */
946 	ret = read_disk_sb(rdev, 4096);
947 	if (ret) return ret;
948 
949 
950 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
951 
952 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
953 	    sb->major_version != cpu_to_le32(1) ||
954 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
955 	    le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
956 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
957 		return -EINVAL;
958 
959 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
960 		printk("md: invalid superblock checksum on %s\n",
961 			bdevname(rdev->bdev,b));
962 		return -EINVAL;
963 	}
964 	if (le64_to_cpu(sb->data_size) < 10) {
965 		printk("md: data_size too small on %s\n",
966 		       bdevname(rdev->bdev,b));
967 		return -EINVAL;
968 	}
969 	rdev->preferred_minor = 0xffff;
970 	rdev->data_offset = le64_to_cpu(sb->data_offset);
971 
972 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
973 	bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
974 	if (rdev->sb_size & bmask)
975 		rdev-> sb_size = (rdev->sb_size | bmask)+1;
976 
977 	if (refdev == 0)
978 		return 1;
979 	else {
980 		__u64 ev1, ev2;
981 		struct mdp_superblock_1 *refsb =
982 			(struct mdp_superblock_1*)page_address(refdev->sb_page);
983 
984 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
985 		    sb->level != refsb->level ||
986 		    sb->layout != refsb->layout ||
987 		    sb->chunksize != refsb->chunksize) {
988 			printk(KERN_WARNING "md: %s has strangely different"
989 				" superblock to %s\n",
990 				bdevname(rdev->bdev,b),
991 				bdevname(refdev->bdev,b2));
992 			return -EINVAL;
993 		}
994 		ev1 = le64_to_cpu(sb->events);
995 		ev2 = le64_to_cpu(refsb->events);
996 
997 		if (ev1 > ev2)
998 			return 1;
999 	}
1000 	if (minor_version)
1001 		rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
1002 	else
1003 		rdev->size = rdev->sb_offset;
1004 	if (rdev->size < le64_to_cpu(sb->data_size)/2)
1005 		return -EINVAL;
1006 	rdev->size = le64_to_cpu(sb->data_size)/2;
1007 	if (le32_to_cpu(sb->chunksize))
1008 		rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
1009 	return 0;
1010 }
1011 
1012 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1013 {
1014 	struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1015 
1016 	rdev->raid_disk = -1;
1017 	rdev->flags = 0;
1018 	if (mddev->raid_disks == 0) {
1019 		mddev->major_version = 1;
1020 		mddev->patch_version = 0;
1021 		mddev->persistent = 1;
1022 		mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
1023 		mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1024 		mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1025 		mddev->level = le32_to_cpu(sb->level);
1026 		mddev->layout = le32_to_cpu(sb->layout);
1027 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1028 		mddev->size = le64_to_cpu(sb->size)/2;
1029 		mddev->events = le64_to_cpu(sb->events);
1030 		mddev->bitmap_offset = 0;
1031 		mddev->default_bitmap_offset = 0;
1032 		mddev->default_bitmap_offset = 1024;
1033 
1034 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1035 		memcpy(mddev->uuid, sb->set_uuid, 16);
1036 
1037 		mddev->max_disks =  (4096-256)/2;
1038 
1039 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1040 		    mddev->bitmap_file == NULL ) {
1041 			if (mddev->level != 1) {
1042 				printk(KERN_WARNING "md: bitmaps only supported for raid1\n");
1043 				return -EINVAL;
1044 			}
1045 			mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
1046 		}
1047 	} else if (mddev->pers == NULL) {
1048 		/* Insist of good event counter while assembling */
1049 		__u64 ev1 = le64_to_cpu(sb->events);
1050 		++ev1;
1051 		if (ev1 < mddev->events)
1052 			return -EINVAL;
1053 	} else if (mddev->bitmap) {
1054 		/* If adding to array with a bitmap, then we can accept an
1055 		 * older device, but not too old.
1056 		 */
1057 		__u64 ev1 = le64_to_cpu(sb->events);
1058 		if (ev1 < mddev->bitmap->events_cleared)
1059 			return 0;
1060 	} else /* just a hot-add of a new device, leave raid_disk at -1 */
1061 		return 0;
1062 
1063 	if (mddev->level != LEVEL_MULTIPATH) {
1064 		int role;
1065 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1066 		role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1067 		switch(role) {
1068 		case 0xffff: /* spare */
1069 			break;
1070 		case 0xfffe: /* faulty */
1071 			set_bit(Faulty, &rdev->flags);
1072 			break;
1073 		default:
1074 			set_bit(In_sync, &rdev->flags);
1075 			rdev->raid_disk = role;
1076 			break;
1077 		}
1078 		if (sb->devflags & WriteMostly1)
1079 			set_bit(WriteMostly, &rdev->flags);
1080 	} else /* MULTIPATH are always insync */
1081 		set_bit(In_sync, &rdev->flags);
1082 
1083 	return 0;
1084 }
1085 
1086 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1087 {
1088 	struct mdp_superblock_1 *sb;
1089 	struct list_head *tmp;
1090 	mdk_rdev_t *rdev2;
1091 	int max_dev, i;
1092 	/* make rdev->sb match mddev and rdev data. */
1093 
1094 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1095 
1096 	sb->feature_map = 0;
1097 	sb->pad0 = 0;
1098 	memset(sb->pad1, 0, sizeof(sb->pad1));
1099 	memset(sb->pad2, 0, sizeof(sb->pad2));
1100 	memset(sb->pad3, 0, sizeof(sb->pad3));
1101 
1102 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1103 	sb->events = cpu_to_le64(mddev->events);
1104 	if (mddev->in_sync)
1105 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1106 	else
1107 		sb->resync_offset = cpu_to_le64(0);
1108 
1109 	if (mddev->bitmap && mddev->bitmap_file == NULL) {
1110 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
1111 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1112 	}
1113 
1114 	max_dev = 0;
1115 	ITERATE_RDEV(mddev,rdev2,tmp)
1116 		if (rdev2->desc_nr+1 > max_dev)
1117 			max_dev = rdev2->desc_nr+1;
1118 
1119 	sb->max_dev = cpu_to_le32(max_dev);
1120 	for (i=0; i<max_dev;i++)
1121 		sb->dev_roles[i] = cpu_to_le16(0xfffe);
1122 
1123 	ITERATE_RDEV(mddev,rdev2,tmp) {
1124 		i = rdev2->desc_nr;
1125 		if (test_bit(Faulty, &rdev2->flags))
1126 			sb->dev_roles[i] = cpu_to_le16(0xfffe);
1127 		else if (test_bit(In_sync, &rdev2->flags))
1128 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1129 		else
1130 			sb->dev_roles[i] = cpu_to_le16(0xffff);
1131 	}
1132 
1133 	sb->recovery_offset = cpu_to_le64(0); /* not supported yet */
1134 	sb->sb_csum = calc_sb_1_csum(sb);
1135 }
1136 
1137 
1138 static struct super_type super_types[] = {
1139 	[0] = {
1140 		.name	= "0.90.0",
1141 		.owner	= THIS_MODULE,
1142 		.load_super	= super_90_load,
1143 		.validate_super	= super_90_validate,
1144 		.sync_super	= super_90_sync,
1145 	},
1146 	[1] = {
1147 		.name	= "md-1",
1148 		.owner	= THIS_MODULE,
1149 		.load_super	= super_1_load,
1150 		.validate_super	= super_1_validate,
1151 		.sync_super	= super_1_sync,
1152 	},
1153 };
1154 
1155 static mdk_rdev_t * match_dev_unit(mddev_t *mddev, mdk_rdev_t *dev)
1156 {
1157 	struct list_head *tmp;
1158 	mdk_rdev_t *rdev;
1159 
1160 	ITERATE_RDEV(mddev,rdev,tmp)
1161 		if (rdev->bdev->bd_contains == dev->bdev->bd_contains)
1162 			return rdev;
1163 
1164 	return NULL;
1165 }
1166 
1167 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1168 {
1169 	struct list_head *tmp;
1170 	mdk_rdev_t *rdev;
1171 
1172 	ITERATE_RDEV(mddev1,rdev,tmp)
1173 		if (match_dev_unit(mddev2, rdev))
1174 			return 1;
1175 
1176 	return 0;
1177 }
1178 
1179 static LIST_HEAD(pending_raid_disks);
1180 
1181 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1182 {
1183 	mdk_rdev_t *same_pdev;
1184 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1185 	struct kobject *ko;
1186 
1187 	if (rdev->mddev) {
1188 		MD_BUG();
1189 		return -EINVAL;
1190 	}
1191 	same_pdev = match_dev_unit(mddev, rdev);
1192 	if (same_pdev)
1193 		printk(KERN_WARNING
1194 			"%s: WARNING: %s appears to be on the same physical"
1195 	 		" disk as %s. True\n     protection against single-disk"
1196 			" failure might be compromised.\n",
1197 			mdname(mddev), bdevname(rdev->bdev,b),
1198 			bdevname(same_pdev->bdev,b2));
1199 
1200 	/* Verify rdev->desc_nr is unique.
1201 	 * If it is -1, assign a free number, else
1202 	 * check number is not in use
1203 	 */
1204 	if (rdev->desc_nr < 0) {
1205 		int choice = 0;
1206 		if (mddev->pers) choice = mddev->raid_disks;
1207 		while (find_rdev_nr(mddev, choice))
1208 			choice++;
1209 		rdev->desc_nr = choice;
1210 	} else {
1211 		if (find_rdev_nr(mddev, rdev->desc_nr))
1212 			return -EBUSY;
1213 	}
1214 	bdevname(rdev->bdev,b);
1215 	if (kobject_set_name(&rdev->kobj, "dev-%s", b) < 0)
1216 		return -ENOMEM;
1217 
1218 	list_add(&rdev->same_set, &mddev->disks);
1219 	rdev->mddev = mddev;
1220 	printk(KERN_INFO "md: bind<%s>\n", b);
1221 
1222 	rdev->kobj.parent = &mddev->kobj;
1223 	kobject_add(&rdev->kobj);
1224 
1225 	if (rdev->bdev->bd_part)
1226 		ko = &rdev->bdev->bd_part->kobj;
1227 	else
1228 		ko = &rdev->bdev->bd_disk->kobj;
1229 	sysfs_create_link(&rdev->kobj, ko, "block");
1230 	return 0;
1231 }
1232 
1233 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1234 {
1235 	char b[BDEVNAME_SIZE];
1236 	if (!rdev->mddev) {
1237 		MD_BUG();
1238 		return;
1239 	}
1240 	list_del_init(&rdev->same_set);
1241 	printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1242 	rdev->mddev = NULL;
1243 	sysfs_remove_link(&rdev->kobj, "block");
1244 	kobject_del(&rdev->kobj);
1245 }
1246 
1247 /*
1248  * prevent the device from being mounted, repartitioned or
1249  * otherwise reused by a RAID array (or any other kernel
1250  * subsystem), by bd_claiming the device.
1251  */
1252 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
1253 {
1254 	int err = 0;
1255 	struct block_device *bdev;
1256 	char b[BDEVNAME_SIZE];
1257 
1258 	bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1259 	if (IS_ERR(bdev)) {
1260 		printk(KERN_ERR "md: could not open %s.\n",
1261 			__bdevname(dev, b));
1262 		return PTR_ERR(bdev);
1263 	}
1264 	err = bd_claim(bdev, rdev);
1265 	if (err) {
1266 		printk(KERN_ERR "md: could not bd_claim %s.\n",
1267 			bdevname(bdev, b));
1268 		blkdev_put(bdev);
1269 		return err;
1270 	}
1271 	rdev->bdev = bdev;
1272 	return err;
1273 }
1274 
1275 static void unlock_rdev(mdk_rdev_t *rdev)
1276 {
1277 	struct block_device *bdev = rdev->bdev;
1278 	rdev->bdev = NULL;
1279 	if (!bdev)
1280 		MD_BUG();
1281 	bd_release(bdev);
1282 	blkdev_put(bdev);
1283 }
1284 
1285 void md_autodetect_dev(dev_t dev);
1286 
1287 static void export_rdev(mdk_rdev_t * rdev)
1288 {
1289 	char b[BDEVNAME_SIZE];
1290 	printk(KERN_INFO "md: export_rdev(%s)\n",
1291 		bdevname(rdev->bdev,b));
1292 	if (rdev->mddev)
1293 		MD_BUG();
1294 	free_disk_sb(rdev);
1295 	list_del_init(&rdev->same_set);
1296 #ifndef MODULE
1297 	md_autodetect_dev(rdev->bdev->bd_dev);
1298 #endif
1299 	unlock_rdev(rdev);
1300 	kobject_put(&rdev->kobj);
1301 }
1302 
1303 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1304 {
1305 	unbind_rdev_from_array(rdev);
1306 	export_rdev(rdev);
1307 }
1308 
1309 static void export_array(mddev_t *mddev)
1310 {
1311 	struct list_head *tmp;
1312 	mdk_rdev_t *rdev;
1313 
1314 	ITERATE_RDEV(mddev,rdev,tmp) {
1315 		if (!rdev->mddev) {
1316 			MD_BUG();
1317 			continue;
1318 		}
1319 		kick_rdev_from_array(rdev);
1320 	}
1321 	if (!list_empty(&mddev->disks))
1322 		MD_BUG();
1323 	mddev->raid_disks = 0;
1324 	mddev->major_version = 0;
1325 }
1326 
1327 static void print_desc(mdp_disk_t *desc)
1328 {
1329 	printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1330 		desc->major,desc->minor,desc->raid_disk,desc->state);
1331 }
1332 
1333 static void print_sb(mdp_super_t *sb)
1334 {
1335 	int i;
1336 
1337 	printk(KERN_INFO
1338 		"md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1339 		sb->major_version, sb->minor_version, sb->patch_version,
1340 		sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1341 		sb->ctime);
1342 	printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1343 		sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1344 		sb->md_minor, sb->layout, sb->chunk_size);
1345 	printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
1346 		" FD:%d SD:%d CSUM:%08x E:%08lx\n",
1347 		sb->utime, sb->state, sb->active_disks, sb->working_disks,
1348 		sb->failed_disks, sb->spare_disks,
1349 		sb->sb_csum, (unsigned long)sb->events_lo);
1350 
1351 	printk(KERN_INFO);
1352 	for (i = 0; i < MD_SB_DISKS; i++) {
1353 		mdp_disk_t *desc;
1354 
1355 		desc = sb->disks + i;
1356 		if (desc->number || desc->major || desc->minor ||
1357 		    desc->raid_disk || (desc->state && (desc->state != 4))) {
1358 			printk("     D %2d: ", i);
1359 			print_desc(desc);
1360 		}
1361 	}
1362 	printk(KERN_INFO "md:     THIS: ");
1363 	print_desc(&sb->this_disk);
1364 
1365 }
1366 
1367 static void print_rdev(mdk_rdev_t *rdev)
1368 {
1369 	char b[BDEVNAME_SIZE];
1370 	printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
1371 		bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
1372 	        test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
1373 	        rdev->desc_nr);
1374 	if (rdev->sb_loaded) {
1375 		printk(KERN_INFO "md: rdev superblock:\n");
1376 		print_sb((mdp_super_t*)page_address(rdev->sb_page));
1377 	} else
1378 		printk(KERN_INFO "md: no rdev superblock!\n");
1379 }
1380 
1381 void md_print_devices(void)
1382 {
1383 	struct list_head *tmp, *tmp2;
1384 	mdk_rdev_t *rdev;
1385 	mddev_t *mddev;
1386 	char b[BDEVNAME_SIZE];
1387 
1388 	printk("\n");
1389 	printk("md:	**********************************\n");
1390 	printk("md:	* <COMPLETE RAID STATE PRINTOUT> *\n");
1391 	printk("md:	**********************************\n");
1392 	ITERATE_MDDEV(mddev,tmp) {
1393 
1394 		if (mddev->bitmap)
1395 			bitmap_print_sb(mddev->bitmap);
1396 		else
1397 			printk("%s: ", mdname(mddev));
1398 		ITERATE_RDEV(mddev,rdev,tmp2)
1399 			printk("<%s>", bdevname(rdev->bdev,b));
1400 		printk("\n");
1401 
1402 		ITERATE_RDEV(mddev,rdev,tmp2)
1403 			print_rdev(rdev);
1404 	}
1405 	printk("md:	**********************************\n");
1406 	printk("\n");
1407 }
1408 
1409 
1410 static void sync_sbs(mddev_t * mddev)
1411 {
1412 	mdk_rdev_t *rdev;
1413 	struct list_head *tmp;
1414 
1415 	ITERATE_RDEV(mddev,rdev,tmp) {
1416 		super_types[mddev->major_version].
1417 			sync_super(mddev, rdev);
1418 		rdev->sb_loaded = 1;
1419 	}
1420 }
1421 
1422 static void md_update_sb(mddev_t * mddev)
1423 {
1424 	int err;
1425 	struct list_head *tmp;
1426 	mdk_rdev_t *rdev;
1427 	int sync_req;
1428 
1429 repeat:
1430 	spin_lock_irq(&mddev->write_lock);
1431 	sync_req = mddev->in_sync;
1432 	mddev->utime = get_seconds();
1433 	mddev->events ++;
1434 
1435 	if (!mddev->events) {
1436 		/*
1437 		 * oops, this 64-bit counter should never wrap.
1438 		 * Either we are in around ~1 trillion A.C., assuming
1439 		 * 1 reboot per second, or we have a bug:
1440 		 */
1441 		MD_BUG();
1442 		mddev->events --;
1443 	}
1444 	mddev->sb_dirty = 2;
1445 	sync_sbs(mddev);
1446 
1447 	/*
1448 	 * do not write anything to disk if using
1449 	 * nonpersistent superblocks
1450 	 */
1451 	if (!mddev->persistent) {
1452 		mddev->sb_dirty = 0;
1453 		spin_unlock_irq(&mddev->write_lock);
1454 		wake_up(&mddev->sb_wait);
1455 		return;
1456 	}
1457 	spin_unlock_irq(&mddev->write_lock);
1458 
1459 	dprintk(KERN_INFO
1460 		"md: updating %s RAID superblock on device (in sync %d)\n",
1461 		mdname(mddev),mddev->in_sync);
1462 
1463 	err = bitmap_update_sb(mddev->bitmap);
1464 	ITERATE_RDEV(mddev,rdev,tmp) {
1465 		char b[BDEVNAME_SIZE];
1466 		dprintk(KERN_INFO "md: ");
1467 		if (test_bit(Faulty, &rdev->flags))
1468 			dprintk("(skipping faulty ");
1469 
1470 		dprintk("%s ", bdevname(rdev->bdev,b));
1471 		if (!test_bit(Faulty, &rdev->flags)) {
1472 			md_super_write(mddev,rdev,
1473 				       rdev->sb_offset<<1, rdev->sb_size,
1474 				       rdev->sb_page);
1475 			dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
1476 				bdevname(rdev->bdev,b),
1477 				(unsigned long long)rdev->sb_offset);
1478 
1479 		} else
1480 			dprintk(")\n");
1481 		if (mddev->level == LEVEL_MULTIPATH)
1482 			/* only need to write one superblock... */
1483 			break;
1484 	}
1485 	md_super_wait(mddev);
1486 	/* if there was a failure, sb_dirty was set to 1, and we re-write super */
1487 
1488 	spin_lock_irq(&mddev->write_lock);
1489 	if (mddev->in_sync != sync_req|| mddev->sb_dirty == 1) {
1490 		/* have to write it out again */
1491 		spin_unlock_irq(&mddev->write_lock);
1492 		goto repeat;
1493 	}
1494 	mddev->sb_dirty = 0;
1495 	spin_unlock_irq(&mddev->write_lock);
1496 	wake_up(&mddev->sb_wait);
1497 
1498 }
1499 
1500 struct rdev_sysfs_entry {
1501 	struct attribute attr;
1502 	ssize_t (*show)(mdk_rdev_t *, char *);
1503 	ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
1504 };
1505 
1506 static ssize_t
1507 rdev_show_state(mdk_rdev_t *rdev, char *page)
1508 {
1509 	char *sep = "";
1510 	int len=0;
1511 
1512 	if (test_bit(Faulty, &rdev->flags)) {
1513 		len+= sprintf(page+len, "%sfaulty",sep);
1514 		sep = ",";
1515 	}
1516 	if (test_bit(In_sync, &rdev->flags)) {
1517 		len += sprintf(page+len, "%sin_sync",sep);
1518 		sep = ",";
1519 	}
1520 	if (!test_bit(Faulty, &rdev->flags) &&
1521 	    !test_bit(In_sync, &rdev->flags)) {
1522 		len += sprintf(page+len, "%sspare", sep);
1523 		sep = ",";
1524 	}
1525 	return len+sprintf(page+len, "\n");
1526 }
1527 
1528 static struct rdev_sysfs_entry rdev_state = {
1529 	.attr = {.name = "state", .mode = S_IRUGO },
1530 	.show = rdev_show_state,
1531 };
1532 
1533 static ssize_t
1534 rdev_show_super(mdk_rdev_t *rdev, char *page)
1535 {
1536 	if (rdev->sb_loaded && rdev->sb_size) {
1537 		memcpy(page, page_address(rdev->sb_page), rdev->sb_size);
1538 		return rdev->sb_size;
1539 	} else
1540 		return 0;
1541 }
1542 static struct rdev_sysfs_entry rdev_super = {
1543 	.attr = {.name = "super", .mode = S_IRUGO },
1544 	.show = rdev_show_super,
1545 };
1546 static struct attribute *rdev_default_attrs[] = {
1547 	&rdev_state.attr,
1548 	&rdev_super.attr,
1549 	NULL,
1550 };
1551 static ssize_t
1552 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
1553 {
1554 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1555 	mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1556 
1557 	if (!entry->show)
1558 		return -EIO;
1559 	return entry->show(rdev, page);
1560 }
1561 
1562 static ssize_t
1563 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
1564 	      const char *page, size_t length)
1565 {
1566 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1567 	mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1568 
1569 	if (!entry->store)
1570 		return -EIO;
1571 	return entry->store(rdev, page, length);
1572 }
1573 
1574 static void rdev_free(struct kobject *ko)
1575 {
1576 	mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
1577 	kfree(rdev);
1578 }
1579 static struct sysfs_ops rdev_sysfs_ops = {
1580 	.show		= rdev_attr_show,
1581 	.store		= rdev_attr_store,
1582 };
1583 static struct kobj_type rdev_ktype = {
1584 	.release	= rdev_free,
1585 	.sysfs_ops	= &rdev_sysfs_ops,
1586 	.default_attrs	= rdev_default_attrs,
1587 };
1588 
1589 /*
1590  * Import a device. If 'super_format' >= 0, then sanity check the superblock
1591  *
1592  * mark the device faulty if:
1593  *
1594  *   - the device is nonexistent (zero size)
1595  *   - the device has no valid superblock
1596  *
1597  * a faulty rdev _never_ has rdev->sb set.
1598  */
1599 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
1600 {
1601 	char b[BDEVNAME_SIZE];
1602 	int err;
1603 	mdk_rdev_t *rdev;
1604 	sector_t size;
1605 
1606 	rdev = (mdk_rdev_t *) kmalloc(sizeof(*rdev), GFP_KERNEL);
1607 	if (!rdev) {
1608 		printk(KERN_ERR "md: could not alloc mem for new device!\n");
1609 		return ERR_PTR(-ENOMEM);
1610 	}
1611 	memset(rdev, 0, sizeof(*rdev));
1612 
1613 	if ((err = alloc_disk_sb(rdev)))
1614 		goto abort_free;
1615 
1616 	err = lock_rdev(rdev, newdev);
1617 	if (err)
1618 		goto abort_free;
1619 
1620 	rdev->kobj.parent = NULL;
1621 	rdev->kobj.ktype = &rdev_ktype;
1622 	kobject_init(&rdev->kobj);
1623 
1624 	rdev->desc_nr = -1;
1625 	rdev->flags = 0;
1626 	rdev->data_offset = 0;
1627 	atomic_set(&rdev->nr_pending, 0);
1628 	atomic_set(&rdev->read_errors, 0);
1629 
1630 	size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
1631 	if (!size) {
1632 		printk(KERN_WARNING
1633 			"md: %s has zero or unknown size, marking faulty!\n",
1634 			bdevname(rdev->bdev,b));
1635 		err = -EINVAL;
1636 		goto abort_free;
1637 	}
1638 
1639 	if (super_format >= 0) {
1640 		err = super_types[super_format].
1641 			load_super(rdev, NULL, super_minor);
1642 		if (err == -EINVAL) {
1643 			printk(KERN_WARNING
1644 				"md: %s has invalid sb, not importing!\n",
1645 				bdevname(rdev->bdev,b));
1646 			goto abort_free;
1647 		}
1648 		if (err < 0) {
1649 			printk(KERN_WARNING
1650 				"md: could not read %s's sb, not importing!\n",
1651 				bdevname(rdev->bdev,b));
1652 			goto abort_free;
1653 		}
1654 	}
1655 	INIT_LIST_HEAD(&rdev->same_set);
1656 
1657 	return rdev;
1658 
1659 abort_free:
1660 	if (rdev->sb_page) {
1661 		if (rdev->bdev)
1662 			unlock_rdev(rdev);
1663 		free_disk_sb(rdev);
1664 	}
1665 	kfree(rdev);
1666 	return ERR_PTR(err);
1667 }
1668 
1669 /*
1670  * Check a full RAID array for plausibility
1671  */
1672 
1673 
1674 static void analyze_sbs(mddev_t * mddev)
1675 {
1676 	int i;
1677 	struct list_head *tmp;
1678 	mdk_rdev_t *rdev, *freshest;
1679 	char b[BDEVNAME_SIZE];
1680 
1681 	freshest = NULL;
1682 	ITERATE_RDEV(mddev,rdev,tmp)
1683 		switch (super_types[mddev->major_version].
1684 			load_super(rdev, freshest, mddev->minor_version)) {
1685 		case 1:
1686 			freshest = rdev;
1687 			break;
1688 		case 0:
1689 			break;
1690 		default:
1691 			printk( KERN_ERR \
1692 				"md: fatal superblock inconsistency in %s"
1693 				" -- removing from array\n",
1694 				bdevname(rdev->bdev,b));
1695 			kick_rdev_from_array(rdev);
1696 		}
1697 
1698 
1699 	super_types[mddev->major_version].
1700 		validate_super(mddev, freshest);
1701 
1702 	i = 0;
1703 	ITERATE_RDEV(mddev,rdev,tmp) {
1704 		if (rdev != freshest)
1705 			if (super_types[mddev->major_version].
1706 			    validate_super(mddev, rdev)) {
1707 				printk(KERN_WARNING "md: kicking non-fresh %s"
1708 					" from array!\n",
1709 					bdevname(rdev->bdev,b));
1710 				kick_rdev_from_array(rdev);
1711 				continue;
1712 			}
1713 		if (mddev->level == LEVEL_MULTIPATH) {
1714 			rdev->desc_nr = i++;
1715 			rdev->raid_disk = rdev->desc_nr;
1716 			set_bit(In_sync, &rdev->flags);
1717 		}
1718 	}
1719 
1720 
1721 
1722 	if (mddev->recovery_cp != MaxSector &&
1723 	    mddev->level >= 1)
1724 		printk(KERN_ERR "md: %s: raid array is not clean"
1725 		       " -- starting background reconstruction\n",
1726 		       mdname(mddev));
1727 
1728 }
1729 
1730 static ssize_t
1731 md_show_level(mddev_t *mddev, char *page)
1732 {
1733 	mdk_personality_t *p = mddev->pers;
1734 	if (p == NULL)
1735 		return 0;
1736 	if (mddev->level >= 0)
1737 		return sprintf(page, "RAID-%d\n", mddev->level);
1738 	else
1739 		return sprintf(page, "%s\n", p->name);
1740 }
1741 
1742 static struct md_sysfs_entry md_level = {
1743 	.attr = {.name = "level", .mode = S_IRUGO },
1744 	.show = md_show_level,
1745 };
1746 
1747 static ssize_t
1748 md_show_rdisks(mddev_t *mddev, char *page)
1749 {
1750 	return sprintf(page, "%d\n", mddev->raid_disks);
1751 }
1752 
1753 static struct md_sysfs_entry md_raid_disks = {
1754 	.attr = {.name = "raid_disks", .mode = S_IRUGO },
1755 	.show = md_show_rdisks,
1756 };
1757 
1758 static ssize_t
1759 md_show_scan(mddev_t *mddev, char *page)
1760 {
1761 	char *type = "none";
1762 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
1763 	    test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) {
1764 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
1765 			if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1766 				type = "resync";
1767 			else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1768 				type = "check";
1769 			else
1770 				type = "repair";
1771 		} else
1772 			type = "recover";
1773 	}
1774 	return sprintf(page, "%s\n", type);
1775 }
1776 
1777 static ssize_t
1778 md_store_scan(mddev_t *mddev, const char *page, size_t len)
1779 {
1780 	int canscan=0;
1781 
1782 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
1783 	    test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
1784 		return -EBUSY;
1785 	down(&mddev->reconfig_sem);
1786 	if (mddev->pers && mddev->pers->sync_request)
1787 		canscan=1;
1788 	up(&mddev->reconfig_sem);
1789 	if (!canscan)
1790 		return -EINVAL;
1791 
1792 	if (strcmp(page, "check")==0 || strcmp(page, "check\n")==0)
1793 		set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
1794 	else if (strcmp(page, "repair")!=0 && strcmp(page, "repair\n")!=0)
1795 		return -EINVAL;
1796 	set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
1797 	set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
1798 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1799 	md_wakeup_thread(mddev->thread);
1800 	return len;
1801 }
1802 
1803 static ssize_t
1804 md_show_mismatch(mddev_t *mddev, char *page)
1805 {
1806 	return sprintf(page, "%llu\n",
1807 		       (unsigned long long) mddev->resync_mismatches);
1808 }
1809 
1810 static struct md_sysfs_entry md_scan_mode = {
1811 	.attr = {.name = "scan_mode", .mode = S_IRUGO|S_IWUSR },
1812 	.show = md_show_scan,
1813 	.store = md_store_scan,
1814 };
1815 
1816 static struct md_sysfs_entry md_mismatches = {
1817 	.attr = {.name = "mismatch_cnt", .mode = S_IRUGO },
1818 	.show = md_show_mismatch,
1819 };
1820 
1821 static struct attribute *md_default_attrs[] = {
1822 	&md_level.attr,
1823 	&md_raid_disks.attr,
1824 	&md_scan_mode.attr,
1825 	&md_mismatches.attr,
1826 	NULL,
1827 };
1828 
1829 static ssize_t
1830 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
1831 {
1832 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
1833 	mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
1834 
1835 	if (!entry->show)
1836 		return -EIO;
1837 	return entry->show(mddev, page);
1838 }
1839 
1840 static ssize_t
1841 md_attr_store(struct kobject *kobj, struct attribute *attr,
1842 	      const char *page, size_t length)
1843 {
1844 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
1845 	mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
1846 
1847 	if (!entry->store)
1848 		return -EIO;
1849 	return entry->store(mddev, page, length);
1850 }
1851 
1852 static void md_free(struct kobject *ko)
1853 {
1854 	mddev_t *mddev = container_of(ko, mddev_t, kobj);
1855 	kfree(mddev);
1856 }
1857 
1858 static struct sysfs_ops md_sysfs_ops = {
1859 	.show	= md_attr_show,
1860 	.store	= md_attr_store,
1861 };
1862 static struct kobj_type md_ktype = {
1863 	.release	= md_free,
1864 	.sysfs_ops	= &md_sysfs_ops,
1865 	.default_attrs	= md_default_attrs,
1866 };
1867 
1868 int mdp_major = 0;
1869 
1870 static struct kobject *md_probe(dev_t dev, int *part, void *data)
1871 {
1872 	static DECLARE_MUTEX(disks_sem);
1873 	mddev_t *mddev = mddev_find(dev);
1874 	struct gendisk *disk;
1875 	int partitioned = (MAJOR(dev) != MD_MAJOR);
1876 	int shift = partitioned ? MdpMinorShift : 0;
1877 	int unit = MINOR(dev) >> shift;
1878 
1879 	if (!mddev)
1880 		return NULL;
1881 
1882 	down(&disks_sem);
1883 	if (mddev->gendisk) {
1884 		up(&disks_sem);
1885 		mddev_put(mddev);
1886 		return NULL;
1887 	}
1888 	disk = alloc_disk(1 << shift);
1889 	if (!disk) {
1890 		up(&disks_sem);
1891 		mddev_put(mddev);
1892 		return NULL;
1893 	}
1894 	disk->major = MAJOR(dev);
1895 	disk->first_minor = unit << shift;
1896 	if (partitioned) {
1897 		sprintf(disk->disk_name, "md_d%d", unit);
1898 		sprintf(disk->devfs_name, "md/d%d", unit);
1899 	} else {
1900 		sprintf(disk->disk_name, "md%d", unit);
1901 		sprintf(disk->devfs_name, "md/%d", unit);
1902 	}
1903 	disk->fops = &md_fops;
1904 	disk->private_data = mddev;
1905 	disk->queue = mddev->queue;
1906 	add_disk(disk);
1907 	mddev->gendisk = disk;
1908 	up(&disks_sem);
1909 	mddev->kobj.parent = &disk->kobj;
1910 	mddev->kobj.k_name = NULL;
1911 	snprintf(mddev->kobj.name, KOBJ_NAME_LEN, "%s", "md");
1912 	mddev->kobj.ktype = &md_ktype;
1913 	kobject_register(&mddev->kobj);
1914 	return NULL;
1915 }
1916 
1917 void md_wakeup_thread(mdk_thread_t *thread);
1918 
1919 static void md_safemode_timeout(unsigned long data)
1920 {
1921 	mddev_t *mddev = (mddev_t *) data;
1922 
1923 	mddev->safemode = 1;
1924 	md_wakeup_thread(mddev->thread);
1925 }
1926 
1927 
1928 static int do_md_run(mddev_t * mddev)
1929 {
1930 	int pnum, err;
1931 	int chunk_size;
1932 	struct list_head *tmp;
1933 	mdk_rdev_t *rdev;
1934 	struct gendisk *disk;
1935 	char b[BDEVNAME_SIZE];
1936 
1937 	if (list_empty(&mddev->disks))
1938 		/* cannot run an array with no devices.. */
1939 		return -EINVAL;
1940 
1941 	if (mddev->pers)
1942 		return -EBUSY;
1943 
1944 	/*
1945 	 * Analyze all RAID superblock(s)
1946 	 */
1947 	if (!mddev->raid_disks)
1948 		analyze_sbs(mddev);
1949 
1950 	chunk_size = mddev->chunk_size;
1951 	pnum = level_to_pers(mddev->level);
1952 
1953 	if ((pnum != MULTIPATH) && (pnum != RAID1)) {
1954 		if (!chunk_size) {
1955 			/*
1956 			 * 'default chunksize' in the old md code used to
1957 			 * be PAGE_SIZE, baaad.
1958 			 * we abort here to be on the safe side. We don't
1959 			 * want to continue the bad practice.
1960 			 */
1961 			printk(KERN_ERR
1962 				"no chunksize specified, see 'man raidtab'\n");
1963 			return -EINVAL;
1964 		}
1965 		if (chunk_size > MAX_CHUNK_SIZE) {
1966 			printk(KERN_ERR "too big chunk_size: %d > %d\n",
1967 				chunk_size, MAX_CHUNK_SIZE);
1968 			return -EINVAL;
1969 		}
1970 		/*
1971 		 * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
1972 		 */
1973 		if ( (1 << ffz(~chunk_size)) != chunk_size) {
1974 			printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
1975 			return -EINVAL;
1976 		}
1977 		if (chunk_size < PAGE_SIZE) {
1978 			printk(KERN_ERR "too small chunk_size: %d < %ld\n",
1979 				chunk_size, PAGE_SIZE);
1980 			return -EINVAL;
1981 		}
1982 
1983 		/* devices must have minimum size of one chunk */
1984 		ITERATE_RDEV(mddev,rdev,tmp) {
1985 			if (test_bit(Faulty, &rdev->flags))
1986 				continue;
1987 			if (rdev->size < chunk_size / 1024) {
1988 				printk(KERN_WARNING
1989 					"md: Dev %s smaller than chunk_size:"
1990 					" %lluk < %dk\n",
1991 					bdevname(rdev->bdev,b),
1992 					(unsigned long long)rdev->size,
1993 					chunk_size / 1024);
1994 				return -EINVAL;
1995 			}
1996 		}
1997 	}
1998 
1999 #ifdef CONFIG_KMOD
2000 	if (!pers[pnum])
2001 	{
2002 		request_module("md-personality-%d", pnum);
2003 	}
2004 #endif
2005 
2006 	/*
2007 	 * Drop all container device buffers, from now on
2008 	 * the only valid external interface is through the md
2009 	 * device.
2010 	 * Also find largest hardsector size
2011 	 */
2012 	ITERATE_RDEV(mddev,rdev,tmp) {
2013 		if (test_bit(Faulty, &rdev->flags))
2014 			continue;
2015 		sync_blockdev(rdev->bdev);
2016 		invalidate_bdev(rdev->bdev, 0);
2017 	}
2018 
2019 	md_probe(mddev->unit, NULL, NULL);
2020 	disk = mddev->gendisk;
2021 	if (!disk)
2022 		return -ENOMEM;
2023 
2024 	spin_lock(&pers_lock);
2025 	if (!pers[pnum] || !try_module_get(pers[pnum]->owner)) {
2026 		spin_unlock(&pers_lock);
2027 		printk(KERN_WARNING "md: personality %d is not loaded!\n",
2028 		       pnum);
2029 		return -EINVAL;
2030 	}
2031 
2032 	mddev->pers = pers[pnum];
2033 	spin_unlock(&pers_lock);
2034 
2035 	mddev->recovery = 0;
2036 	mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
2037 	mddev->barriers_work = 1;
2038 
2039 	if (start_readonly)
2040 		mddev->ro = 2; /* read-only, but switch on first write */
2041 
2042 	/* before we start the array running, initialise the bitmap */
2043 	err = bitmap_create(mddev);
2044 	if (err)
2045 		printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
2046 			mdname(mddev), err);
2047 	else
2048 		err = mddev->pers->run(mddev);
2049 	if (err) {
2050 		printk(KERN_ERR "md: pers->run() failed ...\n");
2051 		module_put(mddev->pers->owner);
2052 		mddev->pers = NULL;
2053 		bitmap_destroy(mddev);
2054 		return err;
2055 	}
2056  	atomic_set(&mddev->writes_pending,0);
2057 	mddev->safemode = 0;
2058 	mddev->safemode_timer.function = md_safemode_timeout;
2059 	mddev->safemode_timer.data = (unsigned long) mddev;
2060 	mddev->safemode_delay = (20 * HZ)/1000 +1; /* 20 msec delay */
2061 	mddev->in_sync = 1;
2062 
2063 	ITERATE_RDEV(mddev,rdev,tmp)
2064 		if (rdev->raid_disk >= 0) {
2065 			char nm[20];
2066 			sprintf(nm, "rd%d", rdev->raid_disk);
2067 			sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
2068 		}
2069 
2070 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2071 	md_wakeup_thread(mddev->thread);
2072 
2073 	if (mddev->sb_dirty)
2074 		md_update_sb(mddev);
2075 
2076 	set_capacity(disk, mddev->array_size<<1);
2077 
2078 	/* If we call blk_queue_make_request here, it will
2079 	 * re-initialise max_sectors etc which may have been
2080 	 * refined inside -> run.  So just set the bits we need to set.
2081 	 * Most initialisation happended when we called
2082 	 * blk_queue_make_request(..., md_fail_request)
2083 	 * earlier.
2084 	 */
2085 	mddev->queue->queuedata = mddev;
2086 	mddev->queue->make_request_fn = mddev->pers->make_request;
2087 
2088 	mddev->changed = 1;
2089 	return 0;
2090 }
2091 
2092 static int restart_array(mddev_t *mddev)
2093 {
2094 	struct gendisk *disk = mddev->gendisk;
2095 	int err;
2096 
2097 	/*
2098 	 * Complain if it has no devices
2099 	 */
2100 	err = -ENXIO;
2101 	if (list_empty(&mddev->disks))
2102 		goto out;
2103 
2104 	if (mddev->pers) {
2105 		err = -EBUSY;
2106 		if (!mddev->ro)
2107 			goto out;
2108 
2109 		mddev->safemode = 0;
2110 		mddev->ro = 0;
2111 		set_disk_ro(disk, 0);
2112 
2113 		printk(KERN_INFO "md: %s switched to read-write mode.\n",
2114 			mdname(mddev));
2115 		/*
2116 		 * Kick recovery or resync if necessary
2117 		 */
2118 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2119 		md_wakeup_thread(mddev->thread);
2120 		err = 0;
2121 	} else {
2122 		printk(KERN_ERR "md: %s has no personality assigned.\n",
2123 			mdname(mddev));
2124 		err = -EINVAL;
2125 	}
2126 
2127 out:
2128 	return err;
2129 }
2130 
2131 static int do_md_stop(mddev_t * mddev, int ro)
2132 {
2133 	int err = 0;
2134 	struct gendisk *disk = mddev->gendisk;
2135 
2136 	if (mddev->pers) {
2137 		if (atomic_read(&mddev->active)>2) {
2138 			printk("md: %s still in use.\n",mdname(mddev));
2139 			return -EBUSY;
2140 		}
2141 
2142 		if (mddev->sync_thread) {
2143 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2144 			md_unregister_thread(mddev->sync_thread);
2145 			mddev->sync_thread = NULL;
2146 		}
2147 
2148 		del_timer_sync(&mddev->safemode_timer);
2149 
2150 		invalidate_partition(disk, 0);
2151 
2152 		if (ro) {
2153 			err  = -ENXIO;
2154 			if (mddev->ro==1)
2155 				goto out;
2156 			mddev->ro = 1;
2157 		} else {
2158 			bitmap_flush(mddev);
2159 			md_super_wait(mddev);
2160 			if (mddev->ro)
2161 				set_disk_ro(disk, 0);
2162 			blk_queue_make_request(mddev->queue, md_fail_request);
2163 			mddev->pers->stop(mddev);
2164 			module_put(mddev->pers->owner);
2165 			mddev->pers = NULL;
2166 			if (mddev->ro)
2167 				mddev->ro = 0;
2168 		}
2169 		if (!mddev->in_sync) {
2170 			/* mark array as shutdown cleanly */
2171 			mddev->in_sync = 1;
2172 			md_update_sb(mddev);
2173 		}
2174 		if (ro)
2175 			set_disk_ro(disk, 1);
2176 	}
2177 
2178 	bitmap_destroy(mddev);
2179 	if (mddev->bitmap_file) {
2180 		atomic_set(&mddev->bitmap_file->f_dentry->d_inode->i_writecount, 1);
2181 		fput(mddev->bitmap_file);
2182 		mddev->bitmap_file = NULL;
2183 	}
2184 	mddev->bitmap_offset = 0;
2185 
2186 	/*
2187 	 * Free resources if final stop
2188 	 */
2189 	if (!ro) {
2190 		mdk_rdev_t *rdev;
2191 		struct list_head *tmp;
2192 		struct gendisk *disk;
2193 		printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
2194 
2195 		ITERATE_RDEV(mddev,rdev,tmp)
2196 			if (rdev->raid_disk >= 0) {
2197 				char nm[20];
2198 				sprintf(nm, "rd%d", rdev->raid_disk);
2199 				sysfs_remove_link(&mddev->kobj, nm);
2200 			}
2201 
2202 		export_array(mddev);
2203 
2204 		mddev->array_size = 0;
2205 		disk = mddev->gendisk;
2206 		if (disk)
2207 			set_capacity(disk, 0);
2208 		mddev->changed = 1;
2209 	} else
2210 		printk(KERN_INFO "md: %s switched to read-only mode.\n",
2211 			mdname(mddev));
2212 	err = 0;
2213 out:
2214 	return err;
2215 }
2216 
2217 static void autorun_array(mddev_t *mddev)
2218 {
2219 	mdk_rdev_t *rdev;
2220 	struct list_head *tmp;
2221 	int err;
2222 
2223 	if (list_empty(&mddev->disks))
2224 		return;
2225 
2226 	printk(KERN_INFO "md: running: ");
2227 
2228 	ITERATE_RDEV(mddev,rdev,tmp) {
2229 		char b[BDEVNAME_SIZE];
2230 		printk("<%s>", bdevname(rdev->bdev,b));
2231 	}
2232 	printk("\n");
2233 
2234 	err = do_md_run (mddev);
2235 	if (err) {
2236 		printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
2237 		do_md_stop (mddev, 0);
2238 	}
2239 }
2240 
2241 /*
2242  * lets try to run arrays based on all disks that have arrived
2243  * until now. (those are in pending_raid_disks)
2244  *
2245  * the method: pick the first pending disk, collect all disks with
2246  * the same UUID, remove all from the pending list and put them into
2247  * the 'same_array' list. Then order this list based on superblock
2248  * update time (freshest comes first), kick out 'old' disks and
2249  * compare superblocks. If everything's fine then run it.
2250  *
2251  * If "unit" is allocated, then bump its reference count
2252  */
2253 static void autorun_devices(int part)
2254 {
2255 	struct list_head candidates;
2256 	struct list_head *tmp;
2257 	mdk_rdev_t *rdev0, *rdev;
2258 	mddev_t *mddev;
2259 	char b[BDEVNAME_SIZE];
2260 
2261 	printk(KERN_INFO "md: autorun ...\n");
2262 	while (!list_empty(&pending_raid_disks)) {
2263 		dev_t dev;
2264 		rdev0 = list_entry(pending_raid_disks.next,
2265 					 mdk_rdev_t, same_set);
2266 
2267 		printk(KERN_INFO "md: considering %s ...\n",
2268 			bdevname(rdev0->bdev,b));
2269 		INIT_LIST_HEAD(&candidates);
2270 		ITERATE_RDEV_PENDING(rdev,tmp)
2271 			if (super_90_load(rdev, rdev0, 0) >= 0) {
2272 				printk(KERN_INFO "md:  adding %s ...\n",
2273 					bdevname(rdev->bdev,b));
2274 				list_move(&rdev->same_set, &candidates);
2275 			}
2276 		/*
2277 		 * now we have a set of devices, with all of them having
2278 		 * mostly sane superblocks. It's time to allocate the
2279 		 * mddev.
2280 		 */
2281 		if (rdev0->preferred_minor < 0 || rdev0->preferred_minor >= MAX_MD_DEVS) {
2282 			printk(KERN_INFO "md: unit number in %s is bad: %d\n",
2283 			       bdevname(rdev0->bdev, b), rdev0->preferred_minor);
2284 			break;
2285 		}
2286 		if (part)
2287 			dev = MKDEV(mdp_major,
2288 				    rdev0->preferred_minor << MdpMinorShift);
2289 		else
2290 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
2291 
2292 		md_probe(dev, NULL, NULL);
2293 		mddev = mddev_find(dev);
2294 		if (!mddev) {
2295 			printk(KERN_ERR
2296 				"md: cannot allocate memory for md drive.\n");
2297 			break;
2298 		}
2299 		if (mddev_lock(mddev))
2300 			printk(KERN_WARNING "md: %s locked, cannot run\n",
2301 			       mdname(mddev));
2302 		else if (mddev->raid_disks || mddev->major_version
2303 			 || !list_empty(&mddev->disks)) {
2304 			printk(KERN_WARNING
2305 				"md: %s already running, cannot run %s\n",
2306 				mdname(mddev), bdevname(rdev0->bdev,b));
2307 			mddev_unlock(mddev);
2308 		} else {
2309 			printk(KERN_INFO "md: created %s\n", mdname(mddev));
2310 			ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
2311 				list_del_init(&rdev->same_set);
2312 				if (bind_rdev_to_array(rdev, mddev))
2313 					export_rdev(rdev);
2314 			}
2315 			autorun_array(mddev);
2316 			mddev_unlock(mddev);
2317 		}
2318 		/* on success, candidates will be empty, on error
2319 		 * it won't...
2320 		 */
2321 		ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
2322 			export_rdev(rdev);
2323 		mddev_put(mddev);
2324 	}
2325 	printk(KERN_INFO "md: ... autorun DONE.\n");
2326 }
2327 
2328 /*
2329  * import RAID devices based on one partition
2330  * if possible, the array gets run as well.
2331  */
2332 
2333 static int autostart_array(dev_t startdev)
2334 {
2335 	char b[BDEVNAME_SIZE];
2336 	int err = -EINVAL, i;
2337 	mdp_super_t *sb = NULL;
2338 	mdk_rdev_t *start_rdev = NULL, *rdev;
2339 
2340 	start_rdev = md_import_device(startdev, 0, 0);
2341 	if (IS_ERR(start_rdev))
2342 		return err;
2343 
2344 
2345 	/* NOTE: this can only work for 0.90.0 superblocks */
2346 	sb = (mdp_super_t*)page_address(start_rdev->sb_page);
2347 	if (sb->major_version != 0 ||
2348 	    sb->minor_version != 90 ) {
2349 		printk(KERN_WARNING "md: can only autostart 0.90.0 arrays\n");
2350 		export_rdev(start_rdev);
2351 		return err;
2352 	}
2353 
2354 	if (test_bit(Faulty, &start_rdev->flags)) {
2355 		printk(KERN_WARNING
2356 			"md: can not autostart based on faulty %s!\n",
2357 			bdevname(start_rdev->bdev,b));
2358 		export_rdev(start_rdev);
2359 		return err;
2360 	}
2361 	list_add(&start_rdev->same_set, &pending_raid_disks);
2362 
2363 	for (i = 0; i < MD_SB_DISKS; i++) {
2364 		mdp_disk_t *desc = sb->disks + i;
2365 		dev_t dev = MKDEV(desc->major, desc->minor);
2366 
2367 		if (!dev)
2368 			continue;
2369 		if (dev == startdev)
2370 			continue;
2371 		if (MAJOR(dev) != desc->major || MINOR(dev) != desc->minor)
2372 			continue;
2373 		rdev = md_import_device(dev, 0, 0);
2374 		if (IS_ERR(rdev))
2375 			continue;
2376 
2377 		list_add(&rdev->same_set, &pending_raid_disks);
2378 	}
2379 
2380 	/*
2381 	 * possibly return codes
2382 	 */
2383 	autorun_devices(0);
2384 	return 0;
2385 
2386 }
2387 
2388 
2389 static int get_version(void __user * arg)
2390 {
2391 	mdu_version_t ver;
2392 
2393 	ver.major = MD_MAJOR_VERSION;
2394 	ver.minor = MD_MINOR_VERSION;
2395 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
2396 
2397 	if (copy_to_user(arg, &ver, sizeof(ver)))
2398 		return -EFAULT;
2399 
2400 	return 0;
2401 }
2402 
2403 static int get_array_info(mddev_t * mddev, void __user * arg)
2404 {
2405 	mdu_array_info_t info;
2406 	int nr,working,active,failed,spare;
2407 	mdk_rdev_t *rdev;
2408 	struct list_head *tmp;
2409 
2410 	nr=working=active=failed=spare=0;
2411 	ITERATE_RDEV(mddev,rdev,tmp) {
2412 		nr++;
2413 		if (test_bit(Faulty, &rdev->flags))
2414 			failed++;
2415 		else {
2416 			working++;
2417 			if (test_bit(In_sync, &rdev->flags))
2418 				active++;
2419 			else
2420 				spare++;
2421 		}
2422 	}
2423 
2424 	info.major_version = mddev->major_version;
2425 	info.minor_version = mddev->minor_version;
2426 	info.patch_version = MD_PATCHLEVEL_VERSION;
2427 	info.ctime         = mddev->ctime;
2428 	info.level         = mddev->level;
2429 	info.size          = mddev->size;
2430 	info.nr_disks      = nr;
2431 	info.raid_disks    = mddev->raid_disks;
2432 	info.md_minor      = mddev->md_minor;
2433 	info.not_persistent= !mddev->persistent;
2434 
2435 	info.utime         = mddev->utime;
2436 	info.state         = 0;
2437 	if (mddev->in_sync)
2438 		info.state = (1<<MD_SB_CLEAN);
2439 	if (mddev->bitmap && mddev->bitmap_offset)
2440 		info.state = (1<<MD_SB_BITMAP_PRESENT);
2441 	info.active_disks  = active;
2442 	info.working_disks = working;
2443 	info.failed_disks  = failed;
2444 	info.spare_disks   = spare;
2445 
2446 	info.layout        = mddev->layout;
2447 	info.chunk_size    = mddev->chunk_size;
2448 
2449 	if (copy_to_user(arg, &info, sizeof(info)))
2450 		return -EFAULT;
2451 
2452 	return 0;
2453 }
2454 
2455 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
2456 {
2457 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
2458 	char *ptr, *buf = NULL;
2459 	int err = -ENOMEM;
2460 
2461 	file = kmalloc(sizeof(*file), GFP_KERNEL);
2462 	if (!file)
2463 		goto out;
2464 
2465 	/* bitmap disabled, zero the first byte and copy out */
2466 	if (!mddev->bitmap || !mddev->bitmap->file) {
2467 		file->pathname[0] = '\0';
2468 		goto copy_out;
2469 	}
2470 
2471 	buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
2472 	if (!buf)
2473 		goto out;
2474 
2475 	ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
2476 	if (!ptr)
2477 		goto out;
2478 
2479 	strcpy(file->pathname, ptr);
2480 
2481 copy_out:
2482 	err = 0;
2483 	if (copy_to_user(arg, file, sizeof(*file)))
2484 		err = -EFAULT;
2485 out:
2486 	kfree(buf);
2487 	kfree(file);
2488 	return err;
2489 }
2490 
2491 static int get_disk_info(mddev_t * mddev, void __user * arg)
2492 {
2493 	mdu_disk_info_t info;
2494 	unsigned int nr;
2495 	mdk_rdev_t *rdev;
2496 
2497 	if (copy_from_user(&info, arg, sizeof(info)))
2498 		return -EFAULT;
2499 
2500 	nr = info.number;
2501 
2502 	rdev = find_rdev_nr(mddev, nr);
2503 	if (rdev) {
2504 		info.major = MAJOR(rdev->bdev->bd_dev);
2505 		info.minor = MINOR(rdev->bdev->bd_dev);
2506 		info.raid_disk = rdev->raid_disk;
2507 		info.state = 0;
2508 		if (test_bit(Faulty, &rdev->flags))
2509 			info.state |= (1<<MD_DISK_FAULTY);
2510 		else if (test_bit(In_sync, &rdev->flags)) {
2511 			info.state |= (1<<MD_DISK_ACTIVE);
2512 			info.state |= (1<<MD_DISK_SYNC);
2513 		}
2514 		if (test_bit(WriteMostly, &rdev->flags))
2515 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
2516 	} else {
2517 		info.major = info.minor = 0;
2518 		info.raid_disk = -1;
2519 		info.state = (1<<MD_DISK_REMOVED);
2520 	}
2521 
2522 	if (copy_to_user(arg, &info, sizeof(info)))
2523 		return -EFAULT;
2524 
2525 	return 0;
2526 }
2527 
2528 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
2529 {
2530 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
2531 	mdk_rdev_t *rdev;
2532 	dev_t dev = MKDEV(info->major,info->minor);
2533 
2534 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
2535 		return -EOVERFLOW;
2536 
2537 	if (!mddev->raid_disks) {
2538 		int err;
2539 		/* expecting a device which has a superblock */
2540 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
2541 		if (IS_ERR(rdev)) {
2542 			printk(KERN_WARNING
2543 				"md: md_import_device returned %ld\n",
2544 				PTR_ERR(rdev));
2545 			return PTR_ERR(rdev);
2546 		}
2547 		if (!list_empty(&mddev->disks)) {
2548 			mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
2549 							mdk_rdev_t, same_set);
2550 			int err = super_types[mddev->major_version]
2551 				.load_super(rdev, rdev0, mddev->minor_version);
2552 			if (err < 0) {
2553 				printk(KERN_WARNING
2554 					"md: %s has different UUID to %s\n",
2555 					bdevname(rdev->bdev,b),
2556 					bdevname(rdev0->bdev,b2));
2557 				export_rdev(rdev);
2558 				return -EINVAL;
2559 			}
2560 		}
2561 		err = bind_rdev_to_array(rdev, mddev);
2562 		if (err)
2563 			export_rdev(rdev);
2564 		return err;
2565 	}
2566 
2567 	/*
2568 	 * add_new_disk can be used once the array is assembled
2569 	 * to add "hot spares".  They must already have a superblock
2570 	 * written
2571 	 */
2572 	if (mddev->pers) {
2573 		int err;
2574 		if (!mddev->pers->hot_add_disk) {
2575 			printk(KERN_WARNING
2576 				"%s: personality does not support diskops!\n",
2577 			       mdname(mddev));
2578 			return -EINVAL;
2579 		}
2580 		if (mddev->persistent)
2581 			rdev = md_import_device(dev, mddev->major_version,
2582 						mddev->minor_version);
2583 		else
2584 			rdev = md_import_device(dev, -1, -1);
2585 		if (IS_ERR(rdev)) {
2586 			printk(KERN_WARNING
2587 				"md: md_import_device returned %ld\n",
2588 				PTR_ERR(rdev));
2589 			return PTR_ERR(rdev);
2590 		}
2591 		/* set save_raid_disk if appropriate */
2592 		if (!mddev->persistent) {
2593 			if (info->state & (1<<MD_DISK_SYNC)  &&
2594 			    info->raid_disk < mddev->raid_disks)
2595 				rdev->raid_disk = info->raid_disk;
2596 			else
2597 				rdev->raid_disk = -1;
2598 		} else
2599 			super_types[mddev->major_version].
2600 				validate_super(mddev, rdev);
2601 		rdev->saved_raid_disk = rdev->raid_disk;
2602 
2603 		clear_bit(In_sync, &rdev->flags); /* just to be sure */
2604 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
2605 			set_bit(WriteMostly, &rdev->flags);
2606 
2607 		rdev->raid_disk = -1;
2608 		err = bind_rdev_to_array(rdev, mddev);
2609 		if (err)
2610 			export_rdev(rdev);
2611 
2612 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2613 		md_wakeup_thread(mddev->thread);
2614 		return err;
2615 	}
2616 
2617 	/* otherwise, add_new_disk is only allowed
2618 	 * for major_version==0 superblocks
2619 	 */
2620 	if (mddev->major_version != 0) {
2621 		printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
2622 		       mdname(mddev));
2623 		return -EINVAL;
2624 	}
2625 
2626 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
2627 		int err;
2628 		rdev = md_import_device (dev, -1, 0);
2629 		if (IS_ERR(rdev)) {
2630 			printk(KERN_WARNING
2631 				"md: error, md_import_device() returned %ld\n",
2632 				PTR_ERR(rdev));
2633 			return PTR_ERR(rdev);
2634 		}
2635 		rdev->desc_nr = info->number;
2636 		if (info->raid_disk < mddev->raid_disks)
2637 			rdev->raid_disk = info->raid_disk;
2638 		else
2639 			rdev->raid_disk = -1;
2640 
2641 		rdev->flags = 0;
2642 
2643 		if (rdev->raid_disk < mddev->raid_disks)
2644 			if (info->state & (1<<MD_DISK_SYNC))
2645 				set_bit(In_sync, &rdev->flags);
2646 
2647 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
2648 			set_bit(WriteMostly, &rdev->flags);
2649 
2650 		err = bind_rdev_to_array(rdev, mddev);
2651 		if (err) {
2652 			export_rdev(rdev);
2653 			return err;
2654 		}
2655 
2656 		if (!mddev->persistent) {
2657 			printk(KERN_INFO "md: nonpersistent superblock ...\n");
2658 			rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2659 		} else
2660 			rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
2661 		rdev->size = calc_dev_size(rdev, mddev->chunk_size);
2662 
2663 		if (!mddev->size || (mddev->size > rdev->size))
2664 			mddev->size = rdev->size;
2665 	}
2666 
2667 	return 0;
2668 }
2669 
2670 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
2671 {
2672 	char b[BDEVNAME_SIZE];
2673 	mdk_rdev_t *rdev;
2674 
2675 	if (!mddev->pers)
2676 		return -ENODEV;
2677 
2678 	rdev = find_rdev(mddev, dev);
2679 	if (!rdev)
2680 		return -ENXIO;
2681 
2682 	if (rdev->raid_disk >= 0)
2683 		goto busy;
2684 
2685 	kick_rdev_from_array(rdev);
2686 	md_update_sb(mddev);
2687 
2688 	return 0;
2689 busy:
2690 	printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
2691 		bdevname(rdev->bdev,b), mdname(mddev));
2692 	return -EBUSY;
2693 }
2694 
2695 static int hot_add_disk(mddev_t * mddev, dev_t dev)
2696 {
2697 	char b[BDEVNAME_SIZE];
2698 	int err;
2699 	unsigned int size;
2700 	mdk_rdev_t *rdev;
2701 
2702 	if (!mddev->pers)
2703 		return -ENODEV;
2704 
2705 	if (mddev->major_version != 0) {
2706 		printk(KERN_WARNING "%s: HOT_ADD may only be used with"
2707 			" version-0 superblocks.\n",
2708 			mdname(mddev));
2709 		return -EINVAL;
2710 	}
2711 	if (!mddev->pers->hot_add_disk) {
2712 		printk(KERN_WARNING
2713 			"%s: personality does not support diskops!\n",
2714 			mdname(mddev));
2715 		return -EINVAL;
2716 	}
2717 
2718 	rdev = md_import_device (dev, -1, 0);
2719 	if (IS_ERR(rdev)) {
2720 		printk(KERN_WARNING
2721 			"md: error, md_import_device() returned %ld\n",
2722 			PTR_ERR(rdev));
2723 		return -EINVAL;
2724 	}
2725 
2726 	if (mddev->persistent)
2727 		rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
2728 	else
2729 		rdev->sb_offset =
2730 			rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2731 
2732 	size = calc_dev_size(rdev, mddev->chunk_size);
2733 	rdev->size = size;
2734 
2735 	if (size < mddev->size) {
2736 		printk(KERN_WARNING
2737 			"%s: disk size %llu blocks < array size %llu\n",
2738 			mdname(mddev), (unsigned long long)size,
2739 			(unsigned long long)mddev->size);
2740 		err = -ENOSPC;
2741 		goto abort_export;
2742 	}
2743 
2744 	if (test_bit(Faulty, &rdev->flags)) {
2745 		printk(KERN_WARNING
2746 			"md: can not hot-add faulty %s disk to %s!\n",
2747 			bdevname(rdev->bdev,b), mdname(mddev));
2748 		err = -EINVAL;
2749 		goto abort_export;
2750 	}
2751 	clear_bit(In_sync, &rdev->flags);
2752 	rdev->desc_nr = -1;
2753 	bind_rdev_to_array(rdev, mddev);
2754 
2755 	/*
2756 	 * The rest should better be atomic, we can have disk failures
2757 	 * noticed in interrupt contexts ...
2758 	 */
2759 
2760 	if (rdev->desc_nr == mddev->max_disks) {
2761 		printk(KERN_WARNING "%s: can not hot-add to full array!\n",
2762 			mdname(mddev));
2763 		err = -EBUSY;
2764 		goto abort_unbind_export;
2765 	}
2766 
2767 	rdev->raid_disk = -1;
2768 
2769 	md_update_sb(mddev);
2770 
2771 	/*
2772 	 * Kick recovery, maybe this spare has to be added to the
2773 	 * array immediately.
2774 	 */
2775 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2776 	md_wakeup_thread(mddev->thread);
2777 
2778 	return 0;
2779 
2780 abort_unbind_export:
2781 	unbind_rdev_from_array(rdev);
2782 
2783 abort_export:
2784 	export_rdev(rdev);
2785 	return err;
2786 }
2787 
2788 /* similar to deny_write_access, but accounts for our holding a reference
2789  * to the file ourselves */
2790 static int deny_bitmap_write_access(struct file * file)
2791 {
2792 	struct inode *inode = file->f_mapping->host;
2793 
2794 	spin_lock(&inode->i_lock);
2795 	if (atomic_read(&inode->i_writecount) > 1) {
2796 		spin_unlock(&inode->i_lock);
2797 		return -ETXTBSY;
2798 	}
2799 	atomic_set(&inode->i_writecount, -1);
2800 	spin_unlock(&inode->i_lock);
2801 
2802 	return 0;
2803 }
2804 
2805 static int set_bitmap_file(mddev_t *mddev, int fd)
2806 {
2807 	int err;
2808 
2809 	if (mddev->pers) {
2810 		if (!mddev->pers->quiesce)
2811 			return -EBUSY;
2812 		if (mddev->recovery || mddev->sync_thread)
2813 			return -EBUSY;
2814 		/* we should be able to change the bitmap.. */
2815 	}
2816 
2817 
2818 	if (fd >= 0) {
2819 		if (mddev->bitmap)
2820 			return -EEXIST; /* cannot add when bitmap is present */
2821 		mddev->bitmap_file = fget(fd);
2822 
2823 		if (mddev->bitmap_file == NULL) {
2824 			printk(KERN_ERR "%s: error: failed to get bitmap file\n",
2825 			       mdname(mddev));
2826 			return -EBADF;
2827 		}
2828 
2829 		err = deny_bitmap_write_access(mddev->bitmap_file);
2830 		if (err) {
2831 			printk(KERN_ERR "%s: error: bitmap file is already in use\n",
2832 			       mdname(mddev));
2833 			fput(mddev->bitmap_file);
2834 			mddev->bitmap_file = NULL;
2835 			return err;
2836 		}
2837 		mddev->bitmap_offset = 0; /* file overrides offset */
2838 	} else if (mddev->bitmap == NULL)
2839 		return -ENOENT; /* cannot remove what isn't there */
2840 	err = 0;
2841 	if (mddev->pers) {
2842 		mddev->pers->quiesce(mddev, 1);
2843 		if (fd >= 0)
2844 			err = bitmap_create(mddev);
2845 		if (fd < 0 || err)
2846 			bitmap_destroy(mddev);
2847 		mddev->pers->quiesce(mddev, 0);
2848 	} else if (fd < 0) {
2849 		if (mddev->bitmap_file)
2850 			fput(mddev->bitmap_file);
2851 		mddev->bitmap_file = NULL;
2852 	}
2853 
2854 	return err;
2855 }
2856 
2857 /*
2858  * set_array_info is used two different ways
2859  * The original usage is when creating a new array.
2860  * In this usage, raid_disks is > 0 and it together with
2861  *  level, size, not_persistent,layout,chunksize determine the
2862  *  shape of the array.
2863  *  This will always create an array with a type-0.90.0 superblock.
2864  * The newer usage is when assembling an array.
2865  *  In this case raid_disks will be 0, and the major_version field is
2866  *  use to determine which style super-blocks are to be found on the devices.
2867  *  The minor and patch _version numbers are also kept incase the
2868  *  super_block handler wishes to interpret them.
2869  */
2870 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
2871 {
2872 
2873 	if (info->raid_disks == 0) {
2874 		/* just setting version number for superblock loading */
2875 		if (info->major_version < 0 ||
2876 		    info->major_version >= sizeof(super_types)/sizeof(super_types[0]) ||
2877 		    super_types[info->major_version].name == NULL) {
2878 			/* maybe try to auto-load a module? */
2879 			printk(KERN_INFO
2880 				"md: superblock version %d not known\n",
2881 				info->major_version);
2882 			return -EINVAL;
2883 		}
2884 		mddev->major_version = info->major_version;
2885 		mddev->minor_version = info->minor_version;
2886 		mddev->patch_version = info->patch_version;
2887 		return 0;
2888 	}
2889 	mddev->major_version = MD_MAJOR_VERSION;
2890 	mddev->minor_version = MD_MINOR_VERSION;
2891 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
2892 	mddev->ctime         = get_seconds();
2893 
2894 	mddev->level         = info->level;
2895 	mddev->size          = info->size;
2896 	mddev->raid_disks    = info->raid_disks;
2897 	/* don't set md_minor, it is determined by which /dev/md* was
2898 	 * openned
2899 	 */
2900 	if (info->state & (1<<MD_SB_CLEAN))
2901 		mddev->recovery_cp = MaxSector;
2902 	else
2903 		mddev->recovery_cp = 0;
2904 	mddev->persistent    = ! info->not_persistent;
2905 
2906 	mddev->layout        = info->layout;
2907 	mddev->chunk_size    = info->chunk_size;
2908 
2909 	mddev->max_disks     = MD_SB_DISKS;
2910 
2911 	mddev->sb_dirty      = 1;
2912 
2913 	/*
2914 	 * Generate a 128 bit UUID
2915 	 */
2916 	get_random_bytes(mddev->uuid, 16);
2917 
2918 	return 0;
2919 }
2920 
2921 /*
2922  * update_array_info is used to change the configuration of an
2923  * on-line array.
2924  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
2925  * fields in the info are checked against the array.
2926  * Any differences that cannot be handled will cause an error.
2927  * Normally, only one change can be managed at a time.
2928  */
2929 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
2930 {
2931 	int rv = 0;
2932 	int cnt = 0;
2933 	int state = 0;
2934 
2935 	/* calculate expected state,ignoring low bits */
2936 	if (mddev->bitmap && mddev->bitmap_offset)
2937 		state |= (1 << MD_SB_BITMAP_PRESENT);
2938 
2939 	if (mddev->major_version != info->major_version ||
2940 	    mddev->minor_version != info->minor_version ||
2941 /*	    mddev->patch_version != info->patch_version || */
2942 	    mddev->ctime         != info->ctime         ||
2943 	    mddev->level         != info->level         ||
2944 /*	    mddev->layout        != info->layout        || */
2945 	    !mddev->persistent	 != info->not_persistent||
2946 	    mddev->chunk_size    != info->chunk_size    ||
2947 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
2948 	    ((state^info->state) & 0xfffffe00)
2949 		)
2950 		return -EINVAL;
2951 	/* Check there is only one change */
2952 	if (mddev->size != info->size) cnt++;
2953 	if (mddev->raid_disks != info->raid_disks) cnt++;
2954 	if (mddev->layout != info->layout) cnt++;
2955 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++;
2956 	if (cnt == 0) return 0;
2957 	if (cnt > 1) return -EINVAL;
2958 
2959 	if (mddev->layout != info->layout) {
2960 		/* Change layout
2961 		 * we don't need to do anything at the md level, the
2962 		 * personality will take care of it all.
2963 		 */
2964 		if (mddev->pers->reconfig == NULL)
2965 			return -EINVAL;
2966 		else
2967 			return mddev->pers->reconfig(mddev, info->layout, -1);
2968 	}
2969 	if (mddev->size != info->size) {
2970 		mdk_rdev_t * rdev;
2971 		struct list_head *tmp;
2972 		if (mddev->pers->resize == NULL)
2973 			return -EINVAL;
2974 		/* The "size" is the amount of each device that is used.
2975 		 * This can only make sense for arrays with redundancy.
2976 		 * linear and raid0 always use whatever space is available
2977 		 * We can only consider changing the size if no resync
2978 		 * or reconstruction is happening, and if the new size
2979 		 * is acceptable. It must fit before the sb_offset or,
2980 		 * if that is <data_offset, it must fit before the
2981 		 * size of each device.
2982 		 * If size is zero, we find the largest size that fits.
2983 		 */
2984 		if (mddev->sync_thread)
2985 			return -EBUSY;
2986 		ITERATE_RDEV(mddev,rdev,tmp) {
2987 			sector_t avail;
2988 			int fit = (info->size == 0);
2989 			if (rdev->sb_offset > rdev->data_offset)
2990 				avail = (rdev->sb_offset*2) - rdev->data_offset;
2991 			else
2992 				avail = get_capacity(rdev->bdev->bd_disk)
2993 					- rdev->data_offset;
2994 			if (fit && (info->size == 0 || info->size > avail/2))
2995 				info->size = avail/2;
2996 			if (avail < ((sector_t)info->size << 1))
2997 				return -ENOSPC;
2998 		}
2999 		rv = mddev->pers->resize(mddev, (sector_t)info->size *2);
3000 		if (!rv) {
3001 			struct block_device *bdev;
3002 
3003 			bdev = bdget_disk(mddev->gendisk, 0);
3004 			if (bdev) {
3005 				down(&bdev->bd_inode->i_sem);
3006 				i_size_write(bdev->bd_inode, mddev->array_size << 10);
3007 				up(&bdev->bd_inode->i_sem);
3008 				bdput(bdev);
3009 			}
3010 		}
3011 	}
3012 	if (mddev->raid_disks    != info->raid_disks) {
3013 		/* change the number of raid disks */
3014 		if (mddev->pers->reshape == NULL)
3015 			return -EINVAL;
3016 		if (info->raid_disks <= 0 ||
3017 		    info->raid_disks >= mddev->max_disks)
3018 			return -EINVAL;
3019 		if (mddev->sync_thread)
3020 			return -EBUSY;
3021 		rv = mddev->pers->reshape(mddev, info->raid_disks);
3022 		if (!rv) {
3023 			struct block_device *bdev;
3024 
3025 			bdev = bdget_disk(mddev->gendisk, 0);
3026 			if (bdev) {
3027 				down(&bdev->bd_inode->i_sem);
3028 				i_size_write(bdev->bd_inode, mddev->array_size << 10);
3029 				up(&bdev->bd_inode->i_sem);
3030 				bdput(bdev);
3031 			}
3032 		}
3033 	}
3034 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
3035 		if (mddev->pers->quiesce == NULL)
3036 			return -EINVAL;
3037 		if (mddev->recovery || mddev->sync_thread)
3038 			return -EBUSY;
3039 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
3040 			/* add the bitmap */
3041 			if (mddev->bitmap)
3042 				return -EEXIST;
3043 			if (mddev->default_bitmap_offset == 0)
3044 				return -EINVAL;
3045 			mddev->bitmap_offset = mddev->default_bitmap_offset;
3046 			mddev->pers->quiesce(mddev, 1);
3047 			rv = bitmap_create(mddev);
3048 			if (rv)
3049 				bitmap_destroy(mddev);
3050 			mddev->pers->quiesce(mddev, 0);
3051 		} else {
3052 			/* remove the bitmap */
3053 			if (!mddev->bitmap)
3054 				return -ENOENT;
3055 			if (mddev->bitmap->file)
3056 				return -EINVAL;
3057 			mddev->pers->quiesce(mddev, 1);
3058 			bitmap_destroy(mddev);
3059 			mddev->pers->quiesce(mddev, 0);
3060 			mddev->bitmap_offset = 0;
3061 		}
3062 	}
3063 	md_update_sb(mddev);
3064 	return rv;
3065 }
3066 
3067 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
3068 {
3069 	mdk_rdev_t *rdev;
3070 
3071 	if (mddev->pers == NULL)
3072 		return -ENODEV;
3073 
3074 	rdev = find_rdev(mddev, dev);
3075 	if (!rdev)
3076 		return -ENODEV;
3077 
3078 	md_error(mddev, rdev);
3079 	return 0;
3080 }
3081 
3082 static int md_ioctl(struct inode *inode, struct file *file,
3083 			unsigned int cmd, unsigned long arg)
3084 {
3085 	int err = 0;
3086 	void __user *argp = (void __user *)arg;
3087 	struct hd_geometry __user *loc = argp;
3088 	mddev_t *mddev = NULL;
3089 
3090 	if (!capable(CAP_SYS_ADMIN))
3091 		return -EACCES;
3092 
3093 	/*
3094 	 * Commands dealing with the RAID driver but not any
3095 	 * particular array:
3096 	 */
3097 	switch (cmd)
3098 	{
3099 		case RAID_VERSION:
3100 			err = get_version(argp);
3101 			goto done;
3102 
3103 		case PRINT_RAID_DEBUG:
3104 			err = 0;
3105 			md_print_devices();
3106 			goto done;
3107 
3108 #ifndef MODULE
3109 		case RAID_AUTORUN:
3110 			err = 0;
3111 			autostart_arrays(arg);
3112 			goto done;
3113 #endif
3114 		default:;
3115 	}
3116 
3117 	/*
3118 	 * Commands creating/starting a new array:
3119 	 */
3120 
3121 	mddev = inode->i_bdev->bd_disk->private_data;
3122 
3123 	if (!mddev) {
3124 		BUG();
3125 		goto abort;
3126 	}
3127 
3128 
3129 	if (cmd == START_ARRAY) {
3130 		/* START_ARRAY doesn't need to lock the array as autostart_array
3131 		 * does the locking, and it could even be a different array
3132 		 */
3133 		static int cnt = 3;
3134 		if (cnt > 0 ) {
3135 			printk(KERN_WARNING
3136 			       "md: %s(pid %d) used deprecated START_ARRAY ioctl. "
3137 			       "This will not be supported beyond 2.6\n",
3138 			       current->comm, current->pid);
3139 			cnt--;
3140 		}
3141 		err = autostart_array(new_decode_dev(arg));
3142 		if (err) {
3143 			printk(KERN_WARNING "md: autostart failed!\n");
3144 			goto abort;
3145 		}
3146 		goto done;
3147 	}
3148 
3149 	err = mddev_lock(mddev);
3150 	if (err) {
3151 		printk(KERN_INFO
3152 			"md: ioctl lock interrupted, reason %d, cmd %d\n",
3153 			err, cmd);
3154 		goto abort;
3155 	}
3156 
3157 	switch (cmd)
3158 	{
3159 		case SET_ARRAY_INFO:
3160 			{
3161 				mdu_array_info_t info;
3162 				if (!arg)
3163 					memset(&info, 0, sizeof(info));
3164 				else if (copy_from_user(&info, argp, sizeof(info))) {
3165 					err = -EFAULT;
3166 					goto abort_unlock;
3167 				}
3168 				if (mddev->pers) {
3169 					err = update_array_info(mddev, &info);
3170 					if (err) {
3171 						printk(KERN_WARNING "md: couldn't update"
3172 						       " array info. %d\n", err);
3173 						goto abort_unlock;
3174 					}
3175 					goto done_unlock;
3176 				}
3177 				if (!list_empty(&mddev->disks)) {
3178 					printk(KERN_WARNING
3179 					       "md: array %s already has disks!\n",
3180 					       mdname(mddev));
3181 					err = -EBUSY;
3182 					goto abort_unlock;
3183 				}
3184 				if (mddev->raid_disks) {
3185 					printk(KERN_WARNING
3186 					       "md: array %s already initialised!\n",
3187 					       mdname(mddev));
3188 					err = -EBUSY;
3189 					goto abort_unlock;
3190 				}
3191 				err = set_array_info(mddev, &info);
3192 				if (err) {
3193 					printk(KERN_WARNING "md: couldn't set"
3194 					       " array info. %d\n", err);
3195 					goto abort_unlock;
3196 				}
3197 			}
3198 			goto done_unlock;
3199 
3200 		default:;
3201 	}
3202 
3203 	/*
3204 	 * Commands querying/configuring an existing array:
3205 	 */
3206 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
3207 	 * RUN_ARRAY, and SET_BITMAP_FILE are allowed */
3208 	if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
3209 			&& cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE) {
3210 		err = -ENODEV;
3211 		goto abort_unlock;
3212 	}
3213 
3214 	/*
3215 	 * Commands even a read-only array can execute:
3216 	 */
3217 	switch (cmd)
3218 	{
3219 		case GET_ARRAY_INFO:
3220 			err = get_array_info(mddev, argp);
3221 			goto done_unlock;
3222 
3223 		case GET_BITMAP_FILE:
3224 			err = get_bitmap_file(mddev, argp);
3225 			goto done_unlock;
3226 
3227 		case GET_DISK_INFO:
3228 			err = get_disk_info(mddev, argp);
3229 			goto done_unlock;
3230 
3231 		case RESTART_ARRAY_RW:
3232 			err = restart_array(mddev);
3233 			goto done_unlock;
3234 
3235 		case STOP_ARRAY:
3236 			err = do_md_stop (mddev, 0);
3237 			goto done_unlock;
3238 
3239 		case STOP_ARRAY_RO:
3240 			err = do_md_stop (mddev, 1);
3241 			goto done_unlock;
3242 
3243 	/*
3244 	 * We have a problem here : there is no easy way to give a CHS
3245 	 * virtual geometry. We currently pretend that we have a 2 heads
3246 	 * 4 sectors (with a BIG number of cylinders...). This drives
3247 	 * dosfs just mad... ;-)
3248 	 */
3249 		case HDIO_GETGEO:
3250 			if (!loc) {
3251 				err = -EINVAL;
3252 				goto abort_unlock;
3253 			}
3254 			err = put_user (2, (char __user *) &loc->heads);
3255 			if (err)
3256 				goto abort_unlock;
3257 			err = put_user (4, (char __user *) &loc->sectors);
3258 			if (err)
3259 				goto abort_unlock;
3260 			err = put_user(get_capacity(mddev->gendisk)/8,
3261 					(short __user *) &loc->cylinders);
3262 			if (err)
3263 				goto abort_unlock;
3264 			err = put_user (get_start_sect(inode->i_bdev),
3265 						(long __user *) &loc->start);
3266 			goto done_unlock;
3267 	}
3268 
3269 	/*
3270 	 * The remaining ioctls are changing the state of the
3271 	 * superblock, so we do not allow them on read-only arrays.
3272 	 * However non-MD ioctls (e.g. get-size) will still come through
3273 	 * here and hit the 'default' below, so only disallow
3274 	 * 'md' ioctls, and switch to rw mode if started auto-readonly.
3275 	 */
3276 	if (_IOC_TYPE(cmd) == MD_MAJOR &&
3277 	    mddev->ro && mddev->pers) {
3278 		if (mddev->ro == 2) {
3279 			mddev->ro = 0;
3280 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3281 		md_wakeup_thread(mddev->thread);
3282 
3283 		} else {
3284 			err = -EROFS;
3285 			goto abort_unlock;
3286 		}
3287 	}
3288 
3289 	switch (cmd)
3290 	{
3291 		case ADD_NEW_DISK:
3292 		{
3293 			mdu_disk_info_t info;
3294 			if (copy_from_user(&info, argp, sizeof(info)))
3295 				err = -EFAULT;
3296 			else
3297 				err = add_new_disk(mddev, &info);
3298 			goto done_unlock;
3299 		}
3300 
3301 		case HOT_REMOVE_DISK:
3302 			err = hot_remove_disk(mddev, new_decode_dev(arg));
3303 			goto done_unlock;
3304 
3305 		case HOT_ADD_DISK:
3306 			err = hot_add_disk(mddev, new_decode_dev(arg));
3307 			goto done_unlock;
3308 
3309 		case SET_DISK_FAULTY:
3310 			err = set_disk_faulty(mddev, new_decode_dev(arg));
3311 			goto done_unlock;
3312 
3313 		case RUN_ARRAY:
3314 			err = do_md_run (mddev);
3315 			goto done_unlock;
3316 
3317 		case SET_BITMAP_FILE:
3318 			err = set_bitmap_file(mddev, (int)arg);
3319 			goto done_unlock;
3320 
3321 		default:
3322 			if (_IOC_TYPE(cmd) == MD_MAJOR)
3323 				printk(KERN_WARNING "md: %s(pid %d) used"
3324 					" obsolete MD ioctl, upgrade your"
3325 					" software to use new ictls.\n",
3326 					current->comm, current->pid);
3327 			err = -EINVAL;
3328 			goto abort_unlock;
3329 	}
3330 
3331 done_unlock:
3332 abort_unlock:
3333 	mddev_unlock(mddev);
3334 
3335 	return err;
3336 done:
3337 	if (err)
3338 		MD_BUG();
3339 abort:
3340 	return err;
3341 }
3342 
3343 static int md_open(struct inode *inode, struct file *file)
3344 {
3345 	/*
3346 	 * Succeed if we can lock the mddev, which confirms that
3347 	 * it isn't being stopped right now.
3348 	 */
3349 	mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
3350 	int err;
3351 
3352 	if ((err = mddev_lock(mddev)))
3353 		goto out;
3354 
3355 	err = 0;
3356 	mddev_get(mddev);
3357 	mddev_unlock(mddev);
3358 
3359 	check_disk_change(inode->i_bdev);
3360  out:
3361 	return err;
3362 }
3363 
3364 static int md_release(struct inode *inode, struct file * file)
3365 {
3366  	mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
3367 
3368 	if (!mddev)
3369 		BUG();
3370 	mddev_put(mddev);
3371 
3372 	return 0;
3373 }
3374 
3375 static int md_media_changed(struct gendisk *disk)
3376 {
3377 	mddev_t *mddev = disk->private_data;
3378 
3379 	return mddev->changed;
3380 }
3381 
3382 static int md_revalidate(struct gendisk *disk)
3383 {
3384 	mddev_t *mddev = disk->private_data;
3385 
3386 	mddev->changed = 0;
3387 	return 0;
3388 }
3389 static struct block_device_operations md_fops =
3390 {
3391 	.owner		= THIS_MODULE,
3392 	.open		= md_open,
3393 	.release	= md_release,
3394 	.ioctl		= md_ioctl,
3395 	.media_changed	= md_media_changed,
3396 	.revalidate_disk= md_revalidate,
3397 };
3398 
3399 static int md_thread(void * arg)
3400 {
3401 	mdk_thread_t *thread = arg;
3402 
3403 	/*
3404 	 * md_thread is a 'system-thread', it's priority should be very
3405 	 * high. We avoid resource deadlocks individually in each
3406 	 * raid personality. (RAID5 does preallocation) We also use RR and
3407 	 * the very same RT priority as kswapd, thus we will never get
3408 	 * into a priority inversion deadlock.
3409 	 *
3410 	 * we definitely have to have equal or higher priority than
3411 	 * bdflush, otherwise bdflush will deadlock if there are too
3412 	 * many dirty RAID5 blocks.
3413 	 */
3414 
3415 	allow_signal(SIGKILL);
3416 	complete(thread->event);
3417 	while (!kthread_should_stop()) {
3418 		void (*run)(mddev_t *);
3419 
3420 		wait_event_interruptible_timeout(thread->wqueue,
3421 						 test_bit(THREAD_WAKEUP, &thread->flags)
3422 						 || kthread_should_stop(),
3423 						 thread->timeout);
3424 		try_to_freeze();
3425 
3426 		clear_bit(THREAD_WAKEUP, &thread->flags);
3427 
3428 		run = thread->run;
3429 		if (run)
3430 			run(thread->mddev);
3431 	}
3432 
3433 	return 0;
3434 }
3435 
3436 void md_wakeup_thread(mdk_thread_t *thread)
3437 {
3438 	if (thread) {
3439 		dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
3440 		set_bit(THREAD_WAKEUP, &thread->flags);
3441 		wake_up(&thread->wqueue);
3442 	}
3443 }
3444 
3445 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
3446 				 const char *name)
3447 {
3448 	mdk_thread_t *thread;
3449 	struct completion event;
3450 
3451 	thread = kmalloc(sizeof(mdk_thread_t), GFP_KERNEL);
3452 	if (!thread)
3453 		return NULL;
3454 
3455 	memset(thread, 0, sizeof(mdk_thread_t));
3456 	init_waitqueue_head(&thread->wqueue);
3457 
3458 	init_completion(&event);
3459 	thread->event = &event;
3460 	thread->run = run;
3461 	thread->mddev = mddev;
3462 	thread->name = name;
3463 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
3464 	thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
3465 	if (IS_ERR(thread->tsk)) {
3466 		kfree(thread);
3467 		return NULL;
3468 	}
3469 	wait_for_completion(&event);
3470 	return thread;
3471 }
3472 
3473 void md_unregister_thread(mdk_thread_t *thread)
3474 {
3475 	dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
3476 
3477 	kthread_stop(thread->tsk);
3478 	kfree(thread);
3479 }
3480 
3481 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
3482 {
3483 	if (!mddev) {
3484 		MD_BUG();
3485 		return;
3486 	}
3487 
3488 	if (!rdev || test_bit(Faulty, &rdev->flags))
3489 		return;
3490 /*
3491 	dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
3492 		mdname(mddev),
3493 		MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
3494 		__builtin_return_address(0),__builtin_return_address(1),
3495 		__builtin_return_address(2),__builtin_return_address(3));
3496 */
3497 	if (!mddev->pers->error_handler)
3498 		return;
3499 	mddev->pers->error_handler(mddev,rdev);
3500 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3501 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3502 	md_wakeup_thread(mddev->thread);
3503 }
3504 
3505 /* seq_file implementation /proc/mdstat */
3506 
3507 static void status_unused(struct seq_file *seq)
3508 {
3509 	int i = 0;
3510 	mdk_rdev_t *rdev;
3511 	struct list_head *tmp;
3512 
3513 	seq_printf(seq, "unused devices: ");
3514 
3515 	ITERATE_RDEV_PENDING(rdev,tmp) {
3516 		char b[BDEVNAME_SIZE];
3517 		i++;
3518 		seq_printf(seq, "%s ",
3519 			      bdevname(rdev->bdev,b));
3520 	}
3521 	if (!i)
3522 		seq_printf(seq, "<none>");
3523 
3524 	seq_printf(seq, "\n");
3525 }
3526 
3527 
3528 static void status_resync(struct seq_file *seq, mddev_t * mddev)
3529 {
3530 	unsigned long max_blocks, resync, res, dt, db, rt;
3531 
3532 	resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
3533 
3534 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3535 		max_blocks = mddev->resync_max_sectors >> 1;
3536 	else
3537 		max_blocks = mddev->size;
3538 
3539 	/*
3540 	 * Should not happen.
3541 	 */
3542 	if (!max_blocks) {
3543 		MD_BUG();
3544 		return;
3545 	}
3546 	res = (resync/1024)*1000/(max_blocks/1024 + 1);
3547 	{
3548 		int i, x = res/50, y = 20-x;
3549 		seq_printf(seq, "[");
3550 		for (i = 0; i < x; i++)
3551 			seq_printf(seq, "=");
3552 		seq_printf(seq, ">");
3553 		for (i = 0; i < y; i++)
3554 			seq_printf(seq, ".");
3555 		seq_printf(seq, "] ");
3556 	}
3557 	seq_printf(seq, " %s =%3lu.%lu%% (%lu/%lu)",
3558 		      (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
3559 		       "resync" : "recovery"),
3560 		      res/10, res % 10, resync, max_blocks);
3561 
3562 	/*
3563 	 * We do not want to overflow, so the order of operands and
3564 	 * the * 100 / 100 trick are important. We do a +1 to be
3565 	 * safe against division by zero. We only estimate anyway.
3566 	 *
3567 	 * dt: time from mark until now
3568 	 * db: blocks written from mark until now
3569 	 * rt: remaining time
3570 	 */
3571 	dt = ((jiffies - mddev->resync_mark) / HZ);
3572 	if (!dt) dt++;
3573 	db = resync - (mddev->resync_mark_cnt/2);
3574 	rt = (dt * ((max_blocks-resync) / (db/100+1)))/100;
3575 
3576 	seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
3577 
3578 	seq_printf(seq, " speed=%ldK/sec", db/dt);
3579 }
3580 
3581 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
3582 {
3583 	struct list_head *tmp;
3584 	loff_t l = *pos;
3585 	mddev_t *mddev;
3586 
3587 	if (l >= 0x10000)
3588 		return NULL;
3589 	if (!l--)
3590 		/* header */
3591 		return (void*)1;
3592 
3593 	spin_lock(&all_mddevs_lock);
3594 	list_for_each(tmp,&all_mddevs)
3595 		if (!l--) {
3596 			mddev = list_entry(tmp, mddev_t, all_mddevs);
3597 			mddev_get(mddev);
3598 			spin_unlock(&all_mddevs_lock);
3599 			return mddev;
3600 		}
3601 	spin_unlock(&all_mddevs_lock);
3602 	if (!l--)
3603 		return (void*)2;/* tail */
3604 	return NULL;
3605 }
3606 
3607 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3608 {
3609 	struct list_head *tmp;
3610 	mddev_t *next_mddev, *mddev = v;
3611 
3612 	++*pos;
3613 	if (v == (void*)2)
3614 		return NULL;
3615 
3616 	spin_lock(&all_mddevs_lock);
3617 	if (v == (void*)1)
3618 		tmp = all_mddevs.next;
3619 	else
3620 		tmp = mddev->all_mddevs.next;
3621 	if (tmp != &all_mddevs)
3622 		next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
3623 	else {
3624 		next_mddev = (void*)2;
3625 		*pos = 0x10000;
3626 	}
3627 	spin_unlock(&all_mddevs_lock);
3628 
3629 	if (v != (void*)1)
3630 		mddev_put(mddev);
3631 	return next_mddev;
3632 
3633 }
3634 
3635 static void md_seq_stop(struct seq_file *seq, void *v)
3636 {
3637 	mddev_t *mddev = v;
3638 
3639 	if (mddev && v != (void*)1 && v != (void*)2)
3640 		mddev_put(mddev);
3641 }
3642 
3643 static int md_seq_show(struct seq_file *seq, void *v)
3644 {
3645 	mddev_t *mddev = v;
3646 	sector_t size;
3647 	struct list_head *tmp2;
3648 	mdk_rdev_t *rdev;
3649 	int i;
3650 	struct bitmap *bitmap;
3651 
3652 	if (v == (void*)1) {
3653 		seq_printf(seq, "Personalities : ");
3654 		spin_lock(&pers_lock);
3655 		for (i = 0; i < MAX_PERSONALITY; i++)
3656 			if (pers[i])
3657 				seq_printf(seq, "[%s] ", pers[i]->name);
3658 
3659 		spin_unlock(&pers_lock);
3660 		seq_printf(seq, "\n");
3661 		return 0;
3662 	}
3663 	if (v == (void*)2) {
3664 		status_unused(seq);
3665 		return 0;
3666 	}
3667 
3668 	if (mddev_lock(mddev)!=0)
3669 		return -EINTR;
3670 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
3671 		seq_printf(seq, "%s : %sactive", mdname(mddev),
3672 						mddev->pers ? "" : "in");
3673 		if (mddev->pers) {
3674 			if (mddev->ro==1)
3675 				seq_printf(seq, " (read-only)");
3676 			if (mddev->ro==2)
3677 				seq_printf(seq, "(auto-read-only)");
3678 			seq_printf(seq, " %s", mddev->pers->name);
3679 		}
3680 
3681 		size = 0;
3682 		ITERATE_RDEV(mddev,rdev,tmp2) {
3683 			char b[BDEVNAME_SIZE];
3684 			seq_printf(seq, " %s[%d]",
3685 				bdevname(rdev->bdev,b), rdev->desc_nr);
3686 			if (test_bit(WriteMostly, &rdev->flags))
3687 				seq_printf(seq, "(W)");
3688 			if (test_bit(Faulty, &rdev->flags)) {
3689 				seq_printf(seq, "(F)");
3690 				continue;
3691 			} else if (rdev->raid_disk < 0)
3692 				seq_printf(seq, "(S)"); /* spare */
3693 			size += rdev->size;
3694 		}
3695 
3696 		if (!list_empty(&mddev->disks)) {
3697 			if (mddev->pers)
3698 				seq_printf(seq, "\n      %llu blocks",
3699 					(unsigned long long)mddev->array_size);
3700 			else
3701 				seq_printf(seq, "\n      %llu blocks",
3702 					(unsigned long long)size);
3703 		}
3704 		if (mddev->persistent) {
3705 			if (mddev->major_version != 0 ||
3706 			    mddev->minor_version != 90) {
3707 				seq_printf(seq," super %d.%d",
3708 					   mddev->major_version,
3709 					   mddev->minor_version);
3710 			}
3711 		} else
3712 			seq_printf(seq, " super non-persistent");
3713 
3714 		if (mddev->pers) {
3715 			mddev->pers->status (seq, mddev);
3716 	 		seq_printf(seq, "\n      ");
3717 			if (mddev->curr_resync > 2) {
3718 				status_resync (seq, mddev);
3719 				seq_printf(seq, "\n      ");
3720 			} else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
3721 				seq_printf(seq, "\tresync=DELAYED\n      ");
3722 			else if (mddev->recovery_cp < MaxSector)
3723 				seq_printf(seq, "\tresync=PENDING\n      ");
3724 		} else
3725 			seq_printf(seq, "\n       ");
3726 
3727 		if ((bitmap = mddev->bitmap)) {
3728 			unsigned long chunk_kb;
3729 			unsigned long flags;
3730 			spin_lock_irqsave(&bitmap->lock, flags);
3731 			chunk_kb = bitmap->chunksize >> 10;
3732 			seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
3733 				"%lu%s chunk",
3734 				bitmap->pages - bitmap->missing_pages,
3735 				bitmap->pages,
3736 				(bitmap->pages - bitmap->missing_pages)
3737 					<< (PAGE_SHIFT - 10),
3738 				chunk_kb ? chunk_kb : bitmap->chunksize,
3739 				chunk_kb ? "KB" : "B");
3740 			if (bitmap->file) {
3741 				seq_printf(seq, ", file: ");
3742 				seq_path(seq, bitmap->file->f_vfsmnt,
3743 					 bitmap->file->f_dentry," \t\n");
3744 			}
3745 
3746 			seq_printf(seq, "\n");
3747 			spin_unlock_irqrestore(&bitmap->lock, flags);
3748 		}
3749 
3750 		seq_printf(seq, "\n");
3751 	}
3752 	mddev_unlock(mddev);
3753 
3754 	return 0;
3755 }
3756 
3757 static struct seq_operations md_seq_ops = {
3758 	.start  = md_seq_start,
3759 	.next   = md_seq_next,
3760 	.stop   = md_seq_stop,
3761 	.show   = md_seq_show,
3762 };
3763 
3764 static int md_seq_open(struct inode *inode, struct file *file)
3765 {
3766 	int error;
3767 
3768 	error = seq_open(file, &md_seq_ops);
3769 	return error;
3770 }
3771 
3772 static struct file_operations md_seq_fops = {
3773 	.open           = md_seq_open,
3774 	.read           = seq_read,
3775 	.llseek         = seq_lseek,
3776 	.release	= seq_release,
3777 };
3778 
3779 int register_md_personality(int pnum, mdk_personality_t *p)
3780 {
3781 	if (pnum >= MAX_PERSONALITY) {
3782 		printk(KERN_ERR
3783 		       "md: tried to install personality %s as nr %d, but max is %lu\n",
3784 		       p->name, pnum, MAX_PERSONALITY-1);
3785 		return -EINVAL;
3786 	}
3787 
3788 	spin_lock(&pers_lock);
3789 	if (pers[pnum]) {
3790 		spin_unlock(&pers_lock);
3791 		return -EBUSY;
3792 	}
3793 
3794 	pers[pnum] = p;
3795 	printk(KERN_INFO "md: %s personality registered as nr %d\n", p->name, pnum);
3796 	spin_unlock(&pers_lock);
3797 	return 0;
3798 }
3799 
3800 int unregister_md_personality(int pnum)
3801 {
3802 	if (pnum >= MAX_PERSONALITY)
3803 		return -EINVAL;
3804 
3805 	printk(KERN_INFO "md: %s personality unregistered\n", pers[pnum]->name);
3806 	spin_lock(&pers_lock);
3807 	pers[pnum] = NULL;
3808 	spin_unlock(&pers_lock);
3809 	return 0;
3810 }
3811 
3812 static int is_mddev_idle(mddev_t *mddev)
3813 {
3814 	mdk_rdev_t * rdev;
3815 	struct list_head *tmp;
3816 	int idle;
3817 	unsigned long curr_events;
3818 
3819 	idle = 1;
3820 	ITERATE_RDEV(mddev,rdev,tmp) {
3821 		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
3822 		curr_events = disk_stat_read(disk, sectors[0]) +
3823 				disk_stat_read(disk, sectors[1]) -
3824 				atomic_read(&disk->sync_io);
3825 		/* Allow some slack between valud of curr_events and last_events,
3826 		 * as there are some uninteresting races.
3827 		 * Note: the following is an unsigned comparison.
3828 		 */
3829 		if ((curr_events - rdev->last_events + 32) > 64) {
3830 			rdev->last_events = curr_events;
3831 			idle = 0;
3832 		}
3833 	}
3834 	return idle;
3835 }
3836 
3837 void md_done_sync(mddev_t *mddev, int blocks, int ok)
3838 {
3839 	/* another "blocks" (512byte) blocks have been synced */
3840 	atomic_sub(blocks, &mddev->recovery_active);
3841 	wake_up(&mddev->recovery_wait);
3842 	if (!ok) {
3843 		set_bit(MD_RECOVERY_ERR, &mddev->recovery);
3844 		md_wakeup_thread(mddev->thread);
3845 		// stop recovery, signal do_sync ....
3846 	}
3847 }
3848 
3849 
3850 /* md_write_start(mddev, bi)
3851  * If we need to update some array metadata (e.g. 'active' flag
3852  * in superblock) before writing, schedule a superblock update
3853  * and wait for it to complete.
3854  */
3855 void md_write_start(mddev_t *mddev, struct bio *bi)
3856 {
3857 	if (bio_data_dir(bi) != WRITE)
3858 		return;
3859 
3860 	BUG_ON(mddev->ro == 1);
3861 	if (mddev->ro == 2) {
3862 		/* need to switch to read/write */
3863 		mddev->ro = 0;
3864 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3865 		md_wakeup_thread(mddev->thread);
3866 	}
3867 	atomic_inc(&mddev->writes_pending);
3868 	if (mddev->in_sync) {
3869 		spin_lock_irq(&mddev->write_lock);
3870 		if (mddev->in_sync) {
3871 			mddev->in_sync = 0;
3872 			mddev->sb_dirty = 1;
3873 			md_wakeup_thread(mddev->thread);
3874 		}
3875 		spin_unlock_irq(&mddev->write_lock);
3876 	}
3877 	wait_event(mddev->sb_wait, mddev->sb_dirty==0);
3878 }
3879 
3880 void md_write_end(mddev_t *mddev)
3881 {
3882 	if (atomic_dec_and_test(&mddev->writes_pending)) {
3883 		if (mddev->safemode == 2)
3884 			md_wakeup_thread(mddev->thread);
3885 		else
3886 			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
3887 	}
3888 }
3889 
3890 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
3891 
3892 #define SYNC_MARKS	10
3893 #define	SYNC_MARK_STEP	(3*HZ)
3894 static void md_do_sync(mddev_t *mddev)
3895 {
3896 	mddev_t *mddev2;
3897 	unsigned int currspeed = 0,
3898 		 window;
3899 	sector_t max_sectors,j, io_sectors;
3900 	unsigned long mark[SYNC_MARKS];
3901 	sector_t mark_cnt[SYNC_MARKS];
3902 	int last_mark,m;
3903 	struct list_head *tmp;
3904 	sector_t last_check;
3905 	int skipped = 0;
3906 
3907 	/* just incase thread restarts... */
3908 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
3909 		return;
3910 
3911 	/* we overload curr_resync somewhat here.
3912 	 * 0 == not engaged in resync at all
3913 	 * 2 == checking that there is no conflict with another sync
3914 	 * 1 == like 2, but have yielded to allow conflicting resync to
3915 	 *		commense
3916 	 * other == active in resync - this many blocks
3917 	 *
3918 	 * Before starting a resync we must have set curr_resync to
3919 	 * 2, and then checked that every "conflicting" array has curr_resync
3920 	 * less than ours.  When we find one that is the same or higher
3921 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
3922 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
3923 	 * This will mean we have to start checking from the beginning again.
3924 	 *
3925 	 */
3926 
3927 	do {
3928 		mddev->curr_resync = 2;
3929 
3930 	try_again:
3931 		if (signal_pending(current) ||
3932 		    kthread_should_stop()) {
3933 			flush_signals(current);
3934 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3935 			goto skip;
3936 		}
3937 		ITERATE_MDDEV(mddev2,tmp) {
3938 			if (mddev2 == mddev)
3939 				continue;
3940 			if (mddev2->curr_resync &&
3941 			    match_mddev_units(mddev,mddev2)) {
3942 				DEFINE_WAIT(wq);
3943 				if (mddev < mddev2 && mddev->curr_resync == 2) {
3944 					/* arbitrarily yield */
3945 					mddev->curr_resync = 1;
3946 					wake_up(&resync_wait);
3947 				}
3948 				if (mddev > mddev2 && mddev->curr_resync == 1)
3949 					/* no need to wait here, we can wait the next
3950 					 * time 'round when curr_resync == 2
3951 					 */
3952 					continue;
3953 				prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
3954 				if (!signal_pending(current) &&
3955 				    !kthread_should_stop() &&
3956 				    mddev2->curr_resync >= mddev->curr_resync) {
3957 					printk(KERN_INFO "md: delaying resync of %s"
3958 					       " until %s has finished resync (they"
3959 					       " share one or more physical units)\n",
3960 					       mdname(mddev), mdname(mddev2));
3961 					mddev_put(mddev2);
3962 					schedule();
3963 					finish_wait(&resync_wait, &wq);
3964 					goto try_again;
3965 				}
3966 				finish_wait(&resync_wait, &wq);
3967 			}
3968 		}
3969 	} while (mddev->curr_resync < 2);
3970 
3971 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3972 		/* resync follows the size requested by the personality,
3973 		 * which defaults to physical size, but can be virtual size
3974 		 */
3975 		max_sectors = mddev->resync_max_sectors;
3976 		mddev->resync_mismatches = 0;
3977 	} else
3978 		/* recovery follows the physical size of devices */
3979 		max_sectors = mddev->size << 1;
3980 
3981 	printk(KERN_INFO "md: syncing RAID array %s\n", mdname(mddev));
3982 	printk(KERN_INFO "md: minimum _guaranteed_ reconstruction speed:"
3983 		" %d KB/sec/disc.\n", sysctl_speed_limit_min);
3984 	printk(KERN_INFO "md: using maximum available idle IO bandwidth "
3985 	       "(but not more than %d KB/sec) for reconstruction.\n",
3986 	       sysctl_speed_limit_max);
3987 
3988 	is_mddev_idle(mddev); /* this also initializes IO event counters */
3989 	/* we don't use the checkpoint if there's a bitmap */
3990 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && !mddev->bitmap
3991 	    && ! test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
3992 		j = mddev->recovery_cp;
3993 	else
3994 		j = 0;
3995 	io_sectors = 0;
3996 	for (m = 0; m < SYNC_MARKS; m++) {
3997 		mark[m] = jiffies;
3998 		mark_cnt[m] = io_sectors;
3999 	}
4000 	last_mark = 0;
4001 	mddev->resync_mark = mark[last_mark];
4002 	mddev->resync_mark_cnt = mark_cnt[last_mark];
4003 
4004 	/*
4005 	 * Tune reconstruction:
4006 	 */
4007 	window = 32*(PAGE_SIZE/512);
4008 	printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
4009 		window/2,(unsigned long long) max_sectors/2);
4010 
4011 	atomic_set(&mddev->recovery_active, 0);
4012 	init_waitqueue_head(&mddev->recovery_wait);
4013 	last_check = 0;
4014 
4015 	if (j>2) {
4016 		printk(KERN_INFO
4017 			"md: resuming recovery of %s from checkpoint.\n",
4018 			mdname(mddev));
4019 		mddev->curr_resync = j;
4020 	}
4021 
4022 	while (j < max_sectors) {
4023 		sector_t sectors;
4024 
4025 		skipped = 0;
4026 		sectors = mddev->pers->sync_request(mddev, j, &skipped,
4027 					    currspeed < sysctl_speed_limit_min);
4028 		if (sectors == 0) {
4029 			set_bit(MD_RECOVERY_ERR, &mddev->recovery);
4030 			goto out;
4031 		}
4032 
4033 		if (!skipped) { /* actual IO requested */
4034 			io_sectors += sectors;
4035 			atomic_add(sectors, &mddev->recovery_active);
4036 		}
4037 
4038 		j += sectors;
4039 		if (j>1) mddev->curr_resync = j;
4040 
4041 
4042 		if (last_check + window > io_sectors || j == max_sectors)
4043 			continue;
4044 
4045 		last_check = io_sectors;
4046 
4047 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
4048 		    test_bit(MD_RECOVERY_ERR, &mddev->recovery))
4049 			break;
4050 
4051 	repeat:
4052 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
4053 			/* step marks */
4054 			int next = (last_mark+1) % SYNC_MARKS;
4055 
4056 			mddev->resync_mark = mark[next];
4057 			mddev->resync_mark_cnt = mark_cnt[next];
4058 			mark[next] = jiffies;
4059 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
4060 			last_mark = next;
4061 		}
4062 
4063 
4064 		if (signal_pending(current) || kthread_should_stop()) {
4065 			/*
4066 			 * got a signal, exit.
4067 			 */
4068 			printk(KERN_INFO
4069 				"md: md_do_sync() got signal ... exiting\n");
4070 			flush_signals(current);
4071 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4072 			goto out;
4073 		}
4074 
4075 		/*
4076 		 * this loop exits only if either when we are slower than
4077 		 * the 'hard' speed limit, or the system was IO-idle for
4078 		 * a jiffy.
4079 		 * the system might be non-idle CPU-wise, but we only care
4080 		 * about not overloading the IO subsystem. (things like an
4081 		 * e2fsck being done on the RAID array should execute fast)
4082 		 */
4083 		mddev->queue->unplug_fn(mddev->queue);
4084 		cond_resched();
4085 
4086 		currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
4087 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
4088 
4089 		if (currspeed > sysctl_speed_limit_min) {
4090 			if ((currspeed > sysctl_speed_limit_max) ||
4091 					!is_mddev_idle(mddev)) {
4092 				msleep_interruptible(250);
4093 				goto repeat;
4094 			}
4095 		}
4096 	}
4097 	printk(KERN_INFO "md: %s: sync done.\n",mdname(mddev));
4098 	/*
4099 	 * this also signals 'finished resyncing' to md_stop
4100 	 */
4101  out:
4102 	mddev->queue->unplug_fn(mddev->queue);
4103 
4104 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
4105 
4106 	/* tell personality that we are finished */
4107 	mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
4108 
4109 	if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
4110 	    mddev->curr_resync > 2 &&
4111 	    mddev->curr_resync >= mddev->recovery_cp) {
4112 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4113 			printk(KERN_INFO
4114 				"md: checkpointing recovery of %s.\n",
4115 				mdname(mddev));
4116 			mddev->recovery_cp = mddev->curr_resync;
4117 		} else
4118 			mddev->recovery_cp = MaxSector;
4119 	}
4120 
4121  skip:
4122 	mddev->curr_resync = 0;
4123 	wake_up(&resync_wait);
4124 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
4125 	md_wakeup_thread(mddev->thread);
4126 }
4127 
4128 
4129 /*
4130  * This routine is regularly called by all per-raid-array threads to
4131  * deal with generic issues like resync and super-block update.
4132  * Raid personalities that don't have a thread (linear/raid0) do not
4133  * need this as they never do any recovery or update the superblock.
4134  *
4135  * It does not do any resync itself, but rather "forks" off other threads
4136  * to do that as needed.
4137  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
4138  * "->recovery" and create a thread at ->sync_thread.
4139  * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
4140  * and wakeups up this thread which will reap the thread and finish up.
4141  * This thread also removes any faulty devices (with nr_pending == 0).
4142  *
4143  * The overall approach is:
4144  *  1/ if the superblock needs updating, update it.
4145  *  2/ If a recovery thread is running, don't do anything else.
4146  *  3/ If recovery has finished, clean up, possibly marking spares active.
4147  *  4/ If there are any faulty devices, remove them.
4148  *  5/ If array is degraded, try to add spares devices
4149  *  6/ If array has spares or is not in-sync, start a resync thread.
4150  */
4151 void md_check_recovery(mddev_t *mddev)
4152 {
4153 	mdk_rdev_t *rdev;
4154 	struct list_head *rtmp;
4155 
4156 
4157 	if (mddev->bitmap)
4158 		bitmap_daemon_work(mddev->bitmap);
4159 
4160 	if (mddev->ro)
4161 		return;
4162 
4163 	if (signal_pending(current)) {
4164 		if (mddev->pers->sync_request) {
4165 			printk(KERN_INFO "md: %s in immediate safe mode\n",
4166 			       mdname(mddev));
4167 			mddev->safemode = 2;
4168 		}
4169 		flush_signals(current);
4170 	}
4171 
4172 	if ( ! (
4173 		mddev->sb_dirty ||
4174 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
4175 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
4176 		(mddev->safemode == 1) ||
4177 		(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
4178 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
4179 		))
4180 		return;
4181 
4182 	if (mddev_trylock(mddev)==0) {
4183 		int spares =0;
4184 
4185 		spin_lock_irq(&mddev->write_lock);
4186 		if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
4187 		    !mddev->in_sync && mddev->recovery_cp == MaxSector) {
4188 			mddev->in_sync = 1;
4189 			mddev->sb_dirty = 1;
4190 		}
4191 		if (mddev->safemode == 1)
4192 			mddev->safemode = 0;
4193 		spin_unlock_irq(&mddev->write_lock);
4194 
4195 		if (mddev->sb_dirty)
4196 			md_update_sb(mddev);
4197 
4198 
4199 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4200 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
4201 			/* resync/recovery still happening */
4202 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4203 			goto unlock;
4204 		}
4205 		if (mddev->sync_thread) {
4206 			/* resync has finished, collect result */
4207 			md_unregister_thread(mddev->sync_thread);
4208 			mddev->sync_thread = NULL;
4209 			if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
4210 			    !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4211 				/* success...*/
4212 				/* activate any spares */
4213 				mddev->pers->spare_active(mddev);
4214 			}
4215 			md_update_sb(mddev);
4216 
4217 			/* if array is no-longer degraded, then any saved_raid_disk
4218 			 * information must be scrapped
4219 			 */
4220 			if (!mddev->degraded)
4221 				ITERATE_RDEV(mddev,rdev,rtmp)
4222 					rdev->saved_raid_disk = -1;
4223 
4224 			mddev->recovery = 0;
4225 			/* flag recovery needed just to double check */
4226 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4227 			goto unlock;
4228 		}
4229 		/* Clear some bits that don't mean anything, but
4230 		 * might be left set
4231 		 */
4232 		clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4233 		clear_bit(MD_RECOVERY_ERR, &mddev->recovery);
4234 		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
4235 		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4236 
4237 		/* no recovery is running.
4238 		 * remove any failed drives, then
4239 		 * add spares if possible.
4240 		 * Spare are also removed and re-added, to allow
4241 		 * the personality to fail the re-add.
4242 		 */
4243 		ITERATE_RDEV(mddev,rdev,rtmp)
4244 			if (rdev->raid_disk >= 0 &&
4245 			    (test_bit(Faulty, &rdev->flags) || ! test_bit(In_sync, &rdev->flags)) &&
4246 			    atomic_read(&rdev->nr_pending)==0) {
4247 				if (mddev->pers->hot_remove_disk(mddev, rdev->raid_disk)==0) {
4248 					char nm[20];
4249 					sprintf(nm,"rd%d", rdev->raid_disk);
4250 					sysfs_remove_link(&mddev->kobj, nm);
4251 					rdev->raid_disk = -1;
4252 				}
4253 			}
4254 
4255 		if (mddev->degraded) {
4256 			ITERATE_RDEV(mddev,rdev,rtmp)
4257 				if (rdev->raid_disk < 0
4258 				    && !test_bit(Faulty, &rdev->flags)) {
4259 					if (mddev->pers->hot_add_disk(mddev,rdev)) {
4260 						char nm[20];
4261 						sprintf(nm, "rd%d", rdev->raid_disk);
4262 						sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
4263 						spares++;
4264 					} else
4265 						break;
4266 				}
4267 		}
4268 
4269 		if (spares) {
4270 			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4271 			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4272 		} else if (mddev->recovery_cp < MaxSector) {
4273 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4274 		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4275 			/* nothing to be done ... */
4276 			goto unlock;
4277 
4278 		if (mddev->pers->sync_request) {
4279 			set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4280 			if (spares && mddev->bitmap && ! mddev->bitmap->file) {
4281 				/* We are adding a device or devices to an array
4282 				 * which has the bitmap stored on all devices.
4283 				 * So make sure all bitmap pages get written
4284 				 */
4285 				bitmap_write_all(mddev->bitmap);
4286 			}
4287 			mddev->sync_thread = md_register_thread(md_do_sync,
4288 								mddev,
4289 								"%s_resync");
4290 			if (!mddev->sync_thread) {
4291 				printk(KERN_ERR "%s: could not start resync"
4292 					" thread...\n",
4293 					mdname(mddev));
4294 				/* leave the spares where they are, it shouldn't hurt */
4295 				mddev->recovery = 0;
4296 			} else {
4297 				md_wakeup_thread(mddev->sync_thread);
4298 			}
4299 		}
4300 	unlock:
4301 		mddev_unlock(mddev);
4302 	}
4303 }
4304 
4305 static int md_notify_reboot(struct notifier_block *this,
4306 			    unsigned long code, void *x)
4307 {
4308 	struct list_head *tmp;
4309 	mddev_t *mddev;
4310 
4311 	if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
4312 
4313 		printk(KERN_INFO "md: stopping all md devices.\n");
4314 
4315 		ITERATE_MDDEV(mddev,tmp)
4316 			if (mddev_trylock(mddev)==0)
4317 				do_md_stop (mddev, 1);
4318 		/*
4319 		 * certain more exotic SCSI devices are known to be
4320 		 * volatile wrt too early system reboots. While the
4321 		 * right place to handle this issue is the given
4322 		 * driver, we do want to have a safe RAID driver ...
4323 		 */
4324 		mdelay(1000*1);
4325 	}
4326 	return NOTIFY_DONE;
4327 }
4328 
4329 static struct notifier_block md_notifier = {
4330 	.notifier_call	= md_notify_reboot,
4331 	.next		= NULL,
4332 	.priority	= INT_MAX, /* before any real devices */
4333 };
4334 
4335 static void md_geninit(void)
4336 {
4337 	struct proc_dir_entry *p;
4338 
4339 	dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
4340 
4341 	p = create_proc_entry("mdstat", S_IRUGO, NULL);
4342 	if (p)
4343 		p->proc_fops = &md_seq_fops;
4344 }
4345 
4346 static int __init md_init(void)
4347 {
4348 	int minor;
4349 
4350 	printk(KERN_INFO "md: md driver %d.%d.%d MAX_MD_DEVS=%d,"
4351 			" MD_SB_DISKS=%d\n",
4352 			MD_MAJOR_VERSION, MD_MINOR_VERSION,
4353 			MD_PATCHLEVEL_VERSION, MAX_MD_DEVS, MD_SB_DISKS);
4354 	printk(KERN_INFO "md: bitmap version %d.%d\n", BITMAP_MAJOR_HI,
4355 			BITMAP_MINOR);
4356 
4357 	if (register_blkdev(MAJOR_NR, "md"))
4358 		return -1;
4359 	if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
4360 		unregister_blkdev(MAJOR_NR, "md");
4361 		return -1;
4362 	}
4363 	devfs_mk_dir("md");
4364 	blk_register_region(MKDEV(MAJOR_NR, 0), MAX_MD_DEVS, THIS_MODULE,
4365 				md_probe, NULL, NULL);
4366 	blk_register_region(MKDEV(mdp_major, 0), MAX_MD_DEVS<<MdpMinorShift, THIS_MODULE,
4367 			    md_probe, NULL, NULL);
4368 
4369 	for (minor=0; minor < MAX_MD_DEVS; ++minor)
4370 		devfs_mk_bdev(MKDEV(MAJOR_NR, minor),
4371 				S_IFBLK|S_IRUSR|S_IWUSR,
4372 				"md/%d", minor);
4373 
4374 	for (minor=0; minor < MAX_MD_DEVS; ++minor)
4375 		devfs_mk_bdev(MKDEV(mdp_major, minor<<MdpMinorShift),
4376 			      S_IFBLK|S_IRUSR|S_IWUSR,
4377 			      "md/mdp%d", minor);
4378 
4379 
4380 	register_reboot_notifier(&md_notifier);
4381 	raid_table_header = register_sysctl_table(raid_root_table, 1);
4382 
4383 	md_geninit();
4384 	return (0);
4385 }
4386 
4387 
4388 #ifndef MODULE
4389 
4390 /*
4391  * Searches all registered partitions for autorun RAID arrays
4392  * at boot time.
4393  */
4394 static dev_t detected_devices[128];
4395 static int dev_cnt;
4396 
4397 void md_autodetect_dev(dev_t dev)
4398 {
4399 	if (dev_cnt >= 0 && dev_cnt < 127)
4400 		detected_devices[dev_cnt++] = dev;
4401 }
4402 
4403 
4404 static void autostart_arrays(int part)
4405 {
4406 	mdk_rdev_t *rdev;
4407 	int i;
4408 
4409 	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
4410 
4411 	for (i = 0; i < dev_cnt; i++) {
4412 		dev_t dev = detected_devices[i];
4413 
4414 		rdev = md_import_device(dev,0, 0);
4415 		if (IS_ERR(rdev))
4416 			continue;
4417 
4418 		if (test_bit(Faulty, &rdev->flags)) {
4419 			MD_BUG();
4420 			continue;
4421 		}
4422 		list_add(&rdev->same_set, &pending_raid_disks);
4423 	}
4424 	dev_cnt = 0;
4425 
4426 	autorun_devices(part);
4427 }
4428 
4429 #endif
4430 
4431 static __exit void md_exit(void)
4432 {
4433 	mddev_t *mddev;
4434 	struct list_head *tmp;
4435 	int i;
4436 	blk_unregister_region(MKDEV(MAJOR_NR,0), MAX_MD_DEVS);
4437 	blk_unregister_region(MKDEV(mdp_major,0), MAX_MD_DEVS << MdpMinorShift);
4438 	for (i=0; i < MAX_MD_DEVS; i++)
4439 		devfs_remove("md/%d", i);
4440 	for (i=0; i < MAX_MD_DEVS; i++)
4441 		devfs_remove("md/d%d", i);
4442 
4443 	devfs_remove("md");
4444 
4445 	unregister_blkdev(MAJOR_NR,"md");
4446 	unregister_blkdev(mdp_major, "mdp");
4447 	unregister_reboot_notifier(&md_notifier);
4448 	unregister_sysctl_table(raid_table_header);
4449 	remove_proc_entry("mdstat", NULL);
4450 	ITERATE_MDDEV(mddev,tmp) {
4451 		struct gendisk *disk = mddev->gendisk;
4452 		if (!disk)
4453 			continue;
4454 		export_array(mddev);
4455 		del_gendisk(disk);
4456 		put_disk(disk);
4457 		mddev->gendisk = NULL;
4458 		mddev_put(mddev);
4459 	}
4460 }
4461 
4462 module_init(md_init)
4463 module_exit(md_exit)
4464 
4465 static int get_ro(char *buffer, struct kernel_param *kp)
4466 {
4467 	return sprintf(buffer, "%d", start_readonly);
4468 }
4469 static int set_ro(const char *val, struct kernel_param *kp)
4470 {
4471 	char *e;
4472 	int num = simple_strtoul(val, &e, 10);
4473 	if (*val && (*e == '\0' || *e == '\n')) {
4474 		start_readonly = num;
4475 		return 0;;
4476 	}
4477 	return -EINVAL;
4478 }
4479 
4480 module_param_call(start_ro, set_ro, get_ro, NULL, 0600);
4481 
4482 EXPORT_SYMBOL(register_md_personality);
4483 EXPORT_SYMBOL(unregister_md_personality);
4484 EXPORT_SYMBOL(md_error);
4485 EXPORT_SYMBOL(md_done_sync);
4486 EXPORT_SYMBOL(md_write_start);
4487 EXPORT_SYMBOL(md_write_end);
4488 EXPORT_SYMBOL(md_register_thread);
4489 EXPORT_SYMBOL(md_unregister_thread);
4490 EXPORT_SYMBOL(md_wakeup_thread);
4491 EXPORT_SYMBOL(md_print_devices);
4492 EXPORT_SYMBOL(md_check_recovery);
4493 MODULE_LICENSE("GPL");
4494 MODULE_ALIAS("md");
4495 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
4496