1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 md.c : Multiple Devices driver for Linux 4 Copyright (C) 1998, 1999, 2000 Ingo Molnar 5 6 completely rewritten, based on the MD driver code from Marc Zyngier 7 8 Changes: 9 10 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar 11 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> 12 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> 13 - kerneld support by Boris Tobotras <boris@xtalk.msk.su> 14 - kmod support by: Cyrus Durgin 15 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> 16 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> 17 18 - lots of fixes and improvements to the RAID1/RAID5 and generic 19 RAID code (such as request based resynchronization): 20 21 Neil Brown <neilb@cse.unsw.edu.au>. 22 23 - persistent bitmap code 24 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. 25 26 27 Errors, Warnings, etc. 28 Please use: 29 pr_crit() for error conditions that risk data loss 30 pr_err() for error conditions that are unexpected, like an IO error 31 or internal inconsistency 32 pr_warn() for error conditions that could have been predicated, like 33 adding a device to an array when it has incompatible metadata 34 pr_info() for every interesting, very rare events, like an array starting 35 or stopping, or resync starting or stopping 36 pr_debug() for everything else. 37 38 */ 39 40 #include <linux/sched/mm.h> 41 #include <linux/sched/signal.h> 42 #include <linux/kthread.h> 43 #include <linux/blkdev.h> 44 #include <linux/badblocks.h> 45 #include <linux/sysctl.h> 46 #include <linux/seq_file.h> 47 #include <linux/fs.h> 48 #include <linux/poll.h> 49 #include <linux/ctype.h> 50 #include <linux/string.h> 51 #include <linux/hdreg.h> 52 #include <linux/proc_fs.h> 53 #include <linux/random.h> 54 #include <linux/module.h> 55 #include <linux/reboot.h> 56 #include <linux/file.h> 57 #include <linux/compat.h> 58 #include <linux/delay.h> 59 #include <linux/raid/md_p.h> 60 #include <linux/raid/md_u.h> 61 #include <linux/raid/detect.h> 62 #include <linux/slab.h> 63 #include <linux/percpu-refcount.h> 64 #include <linux/part_stat.h> 65 66 #include <trace/events/block.h> 67 #include "md.h" 68 #include "md-bitmap.h" 69 #include "md-cluster.h" 70 71 /* pers_list is a list of registered personalities protected 72 * by pers_lock. 73 * pers_lock does extra service to protect accesses to 74 * mddev->thread when the mutex cannot be held. 75 */ 76 static LIST_HEAD(pers_list); 77 static DEFINE_SPINLOCK(pers_lock); 78 79 static struct kobj_type md_ktype; 80 81 struct md_cluster_operations *md_cluster_ops; 82 EXPORT_SYMBOL(md_cluster_ops); 83 static struct module *md_cluster_mod; 84 85 static DECLARE_WAIT_QUEUE_HEAD(resync_wait); 86 static struct workqueue_struct *md_wq; 87 static struct workqueue_struct *md_misc_wq; 88 static struct workqueue_struct *md_rdev_misc_wq; 89 90 static int remove_and_add_spares(struct mddev *mddev, 91 struct md_rdev *this); 92 static void mddev_detach(struct mddev *mddev); 93 94 /* 95 * Default number of read corrections we'll attempt on an rdev 96 * before ejecting it from the array. We divide the read error 97 * count by 2 for every hour elapsed between read errors. 98 */ 99 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20 100 /* Default safemode delay: 200 msec */ 101 #define DEFAULT_SAFEMODE_DELAY ((200 * HZ)/1000 +1) 102 /* 103 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' 104 * is 1000 KB/sec, so the extra system load does not show up that much. 105 * Increase it if you want to have more _guaranteed_ speed. Note that 106 * the RAID driver will use the maximum available bandwidth if the IO 107 * subsystem is idle. There is also an 'absolute maximum' reconstruction 108 * speed limit - in case reconstruction slows down your system despite 109 * idle IO detection. 110 * 111 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. 112 * or /sys/block/mdX/md/sync_speed_{min,max} 113 */ 114 115 static int sysctl_speed_limit_min = 1000; 116 static int sysctl_speed_limit_max = 200000; 117 static inline int speed_min(struct mddev *mddev) 118 { 119 return mddev->sync_speed_min ? 120 mddev->sync_speed_min : sysctl_speed_limit_min; 121 } 122 123 static inline int speed_max(struct mddev *mddev) 124 { 125 return mddev->sync_speed_max ? 126 mddev->sync_speed_max : sysctl_speed_limit_max; 127 } 128 129 static void rdev_uninit_serial(struct md_rdev *rdev) 130 { 131 if (!test_and_clear_bit(CollisionCheck, &rdev->flags)) 132 return; 133 134 kvfree(rdev->serial); 135 rdev->serial = NULL; 136 } 137 138 static void rdevs_uninit_serial(struct mddev *mddev) 139 { 140 struct md_rdev *rdev; 141 142 rdev_for_each(rdev, mddev) 143 rdev_uninit_serial(rdev); 144 } 145 146 static int rdev_init_serial(struct md_rdev *rdev) 147 { 148 /* serial_nums equals with BARRIER_BUCKETS_NR */ 149 int i, serial_nums = 1 << ((PAGE_SHIFT - ilog2(sizeof(atomic_t)))); 150 struct serial_in_rdev *serial = NULL; 151 152 if (test_bit(CollisionCheck, &rdev->flags)) 153 return 0; 154 155 serial = kvmalloc(sizeof(struct serial_in_rdev) * serial_nums, 156 GFP_KERNEL); 157 if (!serial) 158 return -ENOMEM; 159 160 for (i = 0; i < serial_nums; i++) { 161 struct serial_in_rdev *serial_tmp = &serial[i]; 162 163 spin_lock_init(&serial_tmp->serial_lock); 164 serial_tmp->serial_rb = RB_ROOT_CACHED; 165 init_waitqueue_head(&serial_tmp->serial_io_wait); 166 } 167 168 rdev->serial = serial; 169 set_bit(CollisionCheck, &rdev->flags); 170 171 return 0; 172 } 173 174 static int rdevs_init_serial(struct mddev *mddev) 175 { 176 struct md_rdev *rdev; 177 int ret = 0; 178 179 rdev_for_each(rdev, mddev) { 180 ret = rdev_init_serial(rdev); 181 if (ret) 182 break; 183 } 184 185 /* Free all resources if pool is not existed */ 186 if (ret && !mddev->serial_info_pool) 187 rdevs_uninit_serial(mddev); 188 189 return ret; 190 } 191 192 /* 193 * rdev needs to enable serial stuffs if it meets the conditions: 194 * 1. it is multi-queue device flaged with writemostly. 195 * 2. the write-behind mode is enabled. 196 */ 197 static int rdev_need_serial(struct md_rdev *rdev) 198 { 199 return (rdev && rdev->mddev->bitmap_info.max_write_behind > 0 && 200 rdev->bdev->bd_disk->queue->nr_hw_queues != 1 && 201 test_bit(WriteMostly, &rdev->flags)); 202 } 203 204 /* 205 * Init resource for rdev(s), then create serial_info_pool if: 206 * 1. rdev is the first device which return true from rdev_enable_serial. 207 * 2. rdev is NULL, means we want to enable serialization for all rdevs. 208 */ 209 void mddev_create_serial_pool(struct mddev *mddev, struct md_rdev *rdev, 210 bool is_suspend) 211 { 212 int ret = 0; 213 214 if (rdev && !rdev_need_serial(rdev) && 215 !test_bit(CollisionCheck, &rdev->flags)) 216 return; 217 218 if (!is_suspend) 219 mddev_suspend(mddev); 220 221 if (!rdev) 222 ret = rdevs_init_serial(mddev); 223 else 224 ret = rdev_init_serial(rdev); 225 if (ret) 226 goto abort; 227 228 if (mddev->serial_info_pool == NULL) { 229 /* 230 * already in memalloc noio context by 231 * mddev_suspend() 232 */ 233 mddev->serial_info_pool = 234 mempool_create_kmalloc_pool(NR_SERIAL_INFOS, 235 sizeof(struct serial_info)); 236 if (!mddev->serial_info_pool) { 237 rdevs_uninit_serial(mddev); 238 pr_err("can't alloc memory pool for serialization\n"); 239 } 240 } 241 242 abort: 243 if (!is_suspend) 244 mddev_resume(mddev); 245 } 246 247 /* 248 * Free resource from rdev(s), and destroy serial_info_pool under conditions: 249 * 1. rdev is the last device flaged with CollisionCheck. 250 * 2. when bitmap is destroyed while policy is not enabled. 251 * 3. for disable policy, the pool is destroyed only when no rdev needs it. 252 */ 253 void mddev_destroy_serial_pool(struct mddev *mddev, struct md_rdev *rdev, 254 bool is_suspend) 255 { 256 if (rdev && !test_bit(CollisionCheck, &rdev->flags)) 257 return; 258 259 if (mddev->serial_info_pool) { 260 struct md_rdev *temp; 261 int num = 0; /* used to track if other rdevs need the pool */ 262 263 if (!is_suspend) 264 mddev_suspend(mddev); 265 rdev_for_each(temp, mddev) { 266 if (!rdev) { 267 if (!mddev->serialize_policy || 268 !rdev_need_serial(temp)) 269 rdev_uninit_serial(temp); 270 else 271 num++; 272 } else if (temp != rdev && 273 test_bit(CollisionCheck, &temp->flags)) 274 num++; 275 } 276 277 if (rdev) 278 rdev_uninit_serial(rdev); 279 280 if (num) 281 pr_info("The mempool could be used by other devices\n"); 282 else { 283 mempool_destroy(mddev->serial_info_pool); 284 mddev->serial_info_pool = NULL; 285 } 286 if (!is_suspend) 287 mddev_resume(mddev); 288 } 289 } 290 291 static struct ctl_table_header *raid_table_header; 292 293 static struct ctl_table raid_table[] = { 294 { 295 .procname = "speed_limit_min", 296 .data = &sysctl_speed_limit_min, 297 .maxlen = sizeof(int), 298 .mode = S_IRUGO|S_IWUSR, 299 .proc_handler = proc_dointvec, 300 }, 301 { 302 .procname = "speed_limit_max", 303 .data = &sysctl_speed_limit_max, 304 .maxlen = sizeof(int), 305 .mode = S_IRUGO|S_IWUSR, 306 .proc_handler = proc_dointvec, 307 }, 308 { } 309 }; 310 311 static struct ctl_table raid_dir_table[] = { 312 { 313 .procname = "raid", 314 .maxlen = 0, 315 .mode = S_IRUGO|S_IXUGO, 316 .child = raid_table, 317 }, 318 { } 319 }; 320 321 static struct ctl_table raid_root_table[] = { 322 { 323 .procname = "dev", 324 .maxlen = 0, 325 .mode = 0555, 326 .child = raid_dir_table, 327 }, 328 { } 329 }; 330 331 static int start_readonly; 332 333 /* 334 * The original mechanism for creating an md device is to create 335 * a device node in /dev and to open it. This causes races with device-close. 336 * The preferred method is to write to the "new_array" module parameter. 337 * This can avoid races. 338 * Setting create_on_open to false disables the original mechanism 339 * so all the races disappear. 340 */ 341 static bool create_on_open = true; 342 343 /* 344 * We have a system wide 'event count' that is incremented 345 * on any 'interesting' event, and readers of /proc/mdstat 346 * can use 'poll' or 'select' to find out when the event 347 * count increases. 348 * 349 * Events are: 350 * start array, stop array, error, add device, remove device, 351 * start build, activate spare 352 */ 353 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); 354 static atomic_t md_event_count; 355 void md_new_event(struct mddev *mddev) 356 { 357 atomic_inc(&md_event_count); 358 wake_up(&md_event_waiters); 359 } 360 EXPORT_SYMBOL_GPL(md_new_event); 361 362 /* 363 * Enables to iterate over all existing md arrays 364 * all_mddevs_lock protects this list. 365 */ 366 static LIST_HEAD(all_mddevs); 367 static DEFINE_SPINLOCK(all_mddevs_lock); 368 369 /* 370 * iterates through all used mddevs in the system. 371 * We take care to grab the all_mddevs_lock whenever navigating 372 * the list, and to always hold a refcount when unlocked. 373 * Any code which breaks out of this loop while own 374 * a reference to the current mddev and must mddev_put it. 375 */ 376 #define for_each_mddev(_mddev,_tmp) \ 377 \ 378 for (({ spin_lock(&all_mddevs_lock); \ 379 _tmp = all_mddevs.next; \ 380 _mddev = NULL;}); \ 381 ({ if (_tmp != &all_mddevs) \ 382 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\ 383 spin_unlock(&all_mddevs_lock); \ 384 if (_mddev) mddev_put(_mddev); \ 385 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \ 386 _tmp != &all_mddevs;}); \ 387 ({ spin_lock(&all_mddevs_lock); \ 388 _tmp = _tmp->next;}) \ 389 ) 390 391 /* Rather than calling directly into the personality make_request function, 392 * IO requests come here first so that we can check if the device is 393 * being suspended pending a reconfiguration. 394 * We hold a refcount over the call to ->make_request. By the time that 395 * call has finished, the bio has been linked into some internal structure 396 * and so is visible to ->quiesce(), so we don't need the refcount any more. 397 */ 398 static bool is_suspended(struct mddev *mddev, struct bio *bio) 399 { 400 if (mddev->suspended) 401 return true; 402 if (bio_data_dir(bio) != WRITE) 403 return false; 404 if (mddev->suspend_lo >= mddev->suspend_hi) 405 return false; 406 if (bio->bi_iter.bi_sector >= mddev->suspend_hi) 407 return false; 408 if (bio_end_sector(bio) < mddev->suspend_lo) 409 return false; 410 return true; 411 } 412 413 void md_handle_request(struct mddev *mddev, struct bio *bio) 414 { 415 check_suspended: 416 rcu_read_lock(); 417 if (is_suspended(mddev, bio)) { 418 DEFINE_WAIT(__wait); 419 for (;;) { 420 prepare_to_wait(&mddev->sb_wait, &__wait, 421 TASK_UNINTERRUPTIBLE); 422 if (!is_suspended(mddev, bio)) 423 break; 424 rcu_read_unlock(); 425 schedule(); 426 rcu_read_lock(); 427 } 428 finish_wait(&mddev->sb_wait, &__wait); 429 } 430 atomic_inc(&mddev->active_io); 431 rcu_read_unlock(); 432 433 if (!mddev->pers->make_request(mddev, bio)) { 434 atomic_dec(&mddev->active_io); 435 wake_up(&mddev->sb_wait); 436 goto check_suspended; 437 } 438 439 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended) 440 wake_up(&mddev->sb_wait); 441 } 442 EXPORT_SYMBOL(md_handle_request); 443 444 static blk_qc_t md_submit_bio(struct bio *bio) 445 { 446 const int rw = bio_data_dir(bio); 447 struct mddev *mddev = bio->bi_bdev->bd_disk->private_data; 448 449 if (mddev == NULL || mddev->pers == NULL) { 450 bio_io_error(bio); 451 return BLK_QC_T_NONE; 452 } 453 454 if (unlikely(test_bit(MD_BROKEN, &mddev->flags)) && (rw == WRITE)) { 455 bio_io_error(bio); 456 return BLK_QC_T_NONE; 457 } 458 459 blk_queue_split(&bio); 460 461 if (mddev->ro == 1 && unlikely(rw == WRITE)) { 462 if (bio_sectors(bio) != 0) 463 bio->bi_status = BLK_STS_IOERR; 464 bio_endio(bio); 465 return BLK_QC_T_NONE; 466 } 467 468 /* bio could be mergeable after passing to underlayer */ 469 bio->bi_opf &= ~REQ_NOMERGE; 470 471 md_handle_request(mddev, bio); 472 473 return BLK_QC_T_NONE; 474 } 475 476 /* mddev_suspend makes sure no new requests are submitted 477 * to the device, and that any requests that have been submitted 478 * are completely handled. 479 * Once mddev_detach() is called and completes, the module will be 480 * completely unused. 481 */ 482 void mddev_suspend(struct mddev *mddev) 483 { 484 WARN_ON_ONCE(mddev->thread && current == mddev->thread->tsk); 485 lockdep_assert_held(&mddev->reconfig_mutex); 486 if (mddev->suspended++) 487 return; 488 synchronize_rcu(); 489 wake_up(&mddev->sb_wait); 490 set_bit(MD_ALLOW_SB_UPDATE, &mddev->flags); 491 smp_mb__after_atomic(); 492 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0); 493 mddev->pers->quiesce(mddev, 1); 494 clear_bit_unlock(MD_ALLOW_SB_UPDATE, &mddev->flags); 495 wait_event(mddev->sb_wait, !test_bit(MD_UPDATING_SB, &mddev->flags)); 496 497 del_timer_sync(&mddev->safemode_timer); 498 /* restrict memory reclaim I/O during raid array is suspend */ 499 mddev->noio_flag = memalloc_noio_save(); 500 } 501 EXPORT_SYMBOL_GPL(mddev_suspend); 502 503 void mddev_resume(struct mddev *mddev) 504 { 505 /* entred the memalloc scope from mddev_suspend() */ 506 memalloc_noio_restore(mddev->noio_flag); 507 lockdep_assert_held(&mddev->reconfig_mutex); 508 if (--mddev->suspended) 509 return; 510 wake_up(&mddev->sb_wait); 511 mddev->pers->quiesce(mddev, 0); 512 513 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 514 md_wakeup_thread(mddev->thread); 515 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 516 } 517 EXPORT_SYMBOL_GPL(mddev_resume); 518 519 /* 520 * Generic flush handling for md 521 */ 522 523 static void md_end_flush(struct bio *bio) 524 { 525 struct md_rdev *rdev = bio->bi_private; 526 struct mddev *mddev = rdev->mddev; 527 528 rdev_dec_pending(rdev, mddev); 529 530 if (atomic_dec_and_test(&mddev->flush_pending)) { 531 /* The pre-request flush has finished */ 532 queue_work(md_wq, &mddev->flush_work); 533 } 534 bio_put(bio); 535 } 536 537 static void md_submit_flush_data(struct work_struct *ws); 538 539 static void submit_flushes(struct work_struct *ws) 540 { 541 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 542 struct md_rdev *rdev; 543 544 mddev->start_flush = ktime_get_boottime(); 545 INIT_WORK(&mddev->flush_work, md_submit_flush_data); 546 atomic_set(&mddev->flush_pending, 1); 547 rcu_read_lock(); 548 rdev_for_each_rcu(rdev, mddev) 549 if (rdev->raid_disk >= 0 && 550 !test_bit(Faulty, &rdev->flags)) { 551 /* Take two references, one is dropped 552 * when request finishes, one after 553 * we reclaim rcu_read_lock 554 */ 555 struct bio *bi; 556 atomic_inc(&rdev->nr_pending); 557 atomic_inc(&rdev->nr_pending); 558 rcu_read_unlock(); 559 bi = bio_alloc_bioset(GFP_NOIO, 0, &mddev->bio_set); 560 bi->bi_end_io = md_end_flush; 561 bi->bi_private = rdev; 562 bio_set_dev(bi, rdev->bdev); 563 bi->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH; 564 atomic_inc(&mddev->flush_pending); 565 submit_bio(bi); 566 rcu_read_lock(); 567 rdev_dec_pending(rdev, mddev); 568 } 569 rcu_read_unlock(); 570 if (atomic_dec_and_test(&mddev->flush_pending)) 571 queue_work(md_wq, &mddev->flush_work); 572 } 573 574 static void md_submit_flush_data(struct work_struct *ws) 575 { 576 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 577 struct bio *bio = mddev->flush_bio; 578 579 /* 580 * must reset flush_bio before calling into md_handle_request to avoid a 581 * deadlock, because other bios passed md_handle_request suspend check 582 * could wait for this and below md_handle_request could wait for those 583 * bios because of suspend check 584 */ 585 spin_lock_irq(&mddev->lock); 586 mddev->prev_flush_start = mddev->start_flush; 587 mddev->flush_bio = NULL; 588 spin_unlock_irq(&mddev->lock); 589 wake_up(&mddev->sb_wait); 590 591 if (bio->bi_iter.bi_size == 0) { 592 /* an empty barrier - all done */ 593 bio_endio(bio); 594 } else { 595 bio->bi_opf &= ~REQ_PREFLUSH; 596 md_handle_request(mddev, bio); 597 } 598 } 599 600 /* 601 * Manages consolidation of flushes and submitting any flushes needed for 602 * a bio with REQ_PREFLUSH. Returns true if the bio is finished or is 603 * being finished in another context. Returns false if the flushing is 604 * complete but still needs the I/O portion of the bio to be processed. 605 */ 606 bool md_flush_request(struct mddev *mddev, struct bio *bio) 607 { 608 ktime_t req_start = ktime_get_boottime(); 609 spin_lock_irq(&mddev->lock); 610 /* flush requests wait until ongoing flush completes, 611 * hence coalescing all the pending requests. 612 */ 613 wait_event_lock_irq(mddev->sb_wait, 614 !mddev->flush_bio || 615 ktime_before(req_start, mddev->prev_flush_start), 616 mddev->lock); 617 /* new request after previous flush is completed */ 618 if (ktime_after(req_start, mddev->prev_flush_start)) { 619 WARN_ON(mddev->flush_bio); 620 mddev->flush_bio = bio; 621 bio = NULL; 622 } 623 spin_unlock_irq(&mddev->lock); 624 625 if (!bio) { 626 INIT_WORK(&mddev->flush_work, submit_flushes); 627 queue_work(md_wq, &mddev->flush_work); 628 } else { 629 /* flush was performed for some other bio while we waited. */ 630 if (bio->bi_iter.bi_size == 0) 631 /* an empty barrier - all done */ 632 bio_endio(bio); 633 else { 634 bio->bi_opf &= ~REQ_PREFLUSH; 635 return false; 636 } 637 } 638 return true; 639 } 640 EXPORT_SYMBOL(md_flush_request); 641 642 static inline struct mddev *mddev_get(struct mddev *mddev) 643 { 644 atomic_inc(&mddev->active); 645 return mddev; 646 } 647 648 static void mddev_delayed_delete(struct work_struct *ws); 649 650 static void mddev_put(struct mddev *mddev) 651 { 652 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) 653 return; 654 if (!mddev->raid_disks && list_empty(&mddev->disks) && 655 mddev->ctime == 0 && !mddev->hold_active) { 656 /* Array is not configured at all, and not held active, 657 * so destroy it */ 658 list_del_init(&mddev->all_mddevs); 659 660 /* 661 * Call queue_work inside the spinlock so that 662 * flush_workqueue() after mddev_find will succeed in waiting 663 * for the work to be done. 664 */ 665 INIT_WORK(&mddev->del_work, mddev_delayed_delete); 666 queue_work(md_misc_wq, &mddev->del_work); 667 } 668 spin_unlock(&all_mddevs_lock); 669 } 670 671 static void md_safemode_timeout(struct timer_list *t); 672 673 void mddev_init(struct mddev *mddev) 674 { 675 kobject_init(&mddev->kobj, &md_ktype); 676 mutex_init(&mddev->open_mutex); 677 mutex_init(&mddev->reconfig_mutex); 678 mutex_init(&mddev->bitmap_info.mutex); 679 INIT_LIST_HEAD(&mddev->disks); 680 INIT_LIST_HEAD(&mddev->all_mddevs); 681 timer_setup(&mddev->safemode_timer, md_safemode_timeout, 0); 682 atomic_set(&mddev->active, 1); 683 atomic_set(&mddev->openers, 0); 684 atomic_set(&mddev->active_io, 0); 685 spin_lock_init(&mddev->lock); 686 atomic_set(&mddev->flush_pending, 0); 687 init_waitqueue_head(&mddev->sb_wait); 688 init_waitqueue_head(&mddev->recovery_wait); 689 mddev->reshape_position = MaxSector; 690 mddev->reshape_backwards = 0; 691 mddev->last_sync_action = "none"; 692 mddev->resync_min = 0; 693 mddev->resync_max = MaxSector; 694 mddev->level = LEVEL_NONE; 695 } 696 EXPORT_SYMBOL_GPL(mddev_init); 697 698 static struct mddev *mddev_find_locked(dev_t unit) 699 { 700 struct mddev *mddev; 701 702 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 703 if (mddev->unit == unit) 704 return mddev; 705 706 return NULL; 707 } 708 709 /* find an unused unit number */ 710 static dev_t mddev_alloc_unit(void) 711 { 712 static int next_minor = 512; 713 int start = next_minor; 714 bool is_free = 0; 715 dev_t dev = 0; 716 717 while (!is_free) { 718 dev = MKDEV(MD_MAJOR, next_minor); 719 next_minor++; 720 if (next_minor > MINORMASK) 721 next_minor = 0; 722 if (next_minor == start) 723 return 0; /* Oh dear, all in use. */ 724 is_free = !mddev_find_locked(dev); 725 } 726 727 return dev; 728 } 729 730 static struct mddev *mddev_find(dev_t unit) 731 { 732 struct mddev *mddev; 733 734 if (MAJOR(unit) != MD_MAJOR) 735 unit &= ~((1 << MdpMinorShift) - 1); 736 737 spin_lock(&all_mddevs_lock); 738 mddev = mddev_find_locked(unit); 739 if (mddev) 740 mddev_get(mddev); 741 spin_unlock(&all_mddevs_lock); 742 743 return mddev; 744 } 745 746 static struct mddev *mddev_alloc(dev_t unit) 747 { 748 struct mddev *new; 749 int error; 750 751 if (unit && MAJOR(unit) != MD_MAJOR) 752 unit &= ~((1 << MdpMinorShift) - 1); 753 754 new = kzalloc(sizeof(*new), GFP_KERNEL); 755 if (!new) 756 return ERR_PTR(-ENOMEM); 757 mddev_init(new); 758 759 spin_lock(&all_mddevs_lock); 760 if (unit) { 761 error = -EEXIST; 762 if (mddev_find_locked(unit)) 763 goto out_free_new; 764 new->unit = unit; 765 if (MAJOR(unit) == MD_MAJOR) 766 new->md_minor = MINOR(unit); 767 else 768 new->md_minor = MINOR(unit) >> MdpMinorShift; 769 new->hold_active = UNTIL_IOCTL; 770 } else { 771 error = -ENODEV; 772 new->unit = mddev_alloc_unit(); 773 if (!new->unit) 774 goto out_free_new; 775 new->md_minor = MINOR(new->unit); 776 new->hold_active = UNTIL_STOP; 777 } 778 779 list_add(&new->all_mddevs, &all_mddevs); 780 spin_unlock(&all_mddevs_lock); 781 return new; 782 out_free_new: 783 spin_unlock(&all_mddevs_lock); 784 kfree(new); 785 return ERR_PTR(error); 786 } 787 788 static const struct attribute_group md_redundancy_group; 789 790 void mddev_unlock(struct mddev *mddev) 791 { 792 if (mddev->to_remove) { 793 /* These cannot be removed under reconfig_mutex as 794 * an access to the files will try to take reconfig_mutex 795 * while holding the file unremovable, which leads to 796 * a deadlock. 797 * So hold set sysfs_active while the remove in happeing, 798 * and anything else which might set ->to_remove or my 799 * otherwise change the sysfs namespace will fail with 800 * -EBUSY if sysfs_active is still set. 801 * We set sysfs_active under reconfig_mutex and elsewhere 802 * test it under the same mutex to ensure its correct value 803 * is seen. 804 */ 805 const struct attribute_group *to_remove = mddev->to_remove; 806 mddev->to_remove = NULL; 807 mddev->sysfs_active = 1; 808 mutex_unlock(&mddev->reconfig_mutex); 809 810 if (mddev->kobj.sd) { 811 if (to_remove != &md_redundancy_group) 812 sysfs_remove_group(&mddev->kobj, to_remove); 813 if (mddev->pers == NULL || 814 mddev->pers->sync_request == NULL) { 815 sysfs_remove_group(&mddev->kobj, &md_redundancy_group); 816 if (mddev->sysfs_action) 817 sysfs_put(mddev->sysfs_action); 818 if (mddev->sysfs_completed) 819 sysfs_put(mddev->sysfs_completed); 820 if (mddev->sysfs_degraded) 821 sysfs_put(mddev->sysfs_degraded); 822 mddev->sysfs_action = NULL; 823 mddev->sysfs_completed = NULL; 824 mddev->sysfs_degraded = NULL; 825 } 826 } 827 mddev->sysfs_active = 0; 828 } else 829 mutex_unlock(&mddev->reconfig_mutex); 830 831 /* As we've dropped the mutex we need a spinlock to 832 * make sure the thread doesn't disappear 833 */ 834 spin_lock(&pers_lock); 835 md_wakeup_thread(mddev->thread); 836 wake_up(&mddev->sb_wait); 837 spin_unlock(&pers_lock); 838 } 839 EXPORT_SYMBOL_GPL(mddev_unlock); 840 841 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr) 842 { 843 struct md_rdev *rdev; 844 845 rdev_for_each_rcu(rdev, mddev) 846 if (rdev->desc_nr == nr) 847 return rdev; 848 849 return NULL; 850 } 851 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu); 852 853 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev) 854 { 855 struct md_rdev *rdev; 856 857 rdev_for_each(rdev, mddev) 858 if (rdev->bdev->bd_dev == dev) 859 return rdev; 860 861 return NULL; 862 } 863 864 struct md_rdev *md_find_rdev_rcu(struct mddev *mddev, dev_t dev) 865 { 866 struct md_rdev *rdev; 867 868 rdev_for_each_rcu(rdev, mddev) 869 if (rdev->bdev->bd_dev == dev) 870 return rdev; 871 872 return NULL; 873 } 874 EXPORT_SYMBOL_GPL(md_find_rdev_rcu); 875 876 static struct md_personality *find_pers(int level, char *clevel) 877 { 878 struct md_personality *pers; 879 list_for_each_entry(pers, &pers_list, list) { 880 if (level != LEVEL_NONE && pers->level == level) 881 return pers; 882 if (strcmp(pers->name, clevel)==0) 883 return pers; 884 } 885 return NULL; 886 } 887 888 /* return the offset of the super block in 512byte sectors */ 889 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev) 890 { 891 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512; 892 return MD_NEW_SIZE_SECTORS(num_sectors); 893 } 894 895 static int alloc_disk_sb(struct md_rdev *rdev) 896 { 897 rdev->sb_page = alloc_page(GFP_KERNEL); 898 if (!rdev->sb_page) 899 return -ENOMEM; 900 return 0; 901 } 902 903 void md_rdev_clear(struct md_rdev *rdev) 904 { 905 if (rdev->sb_page) { 906 put_page(rdev->sb_page); 907 rdev->sb_loaded = 0; 908 rdev->sb_page = NULL; 909 rdev->sb_start = 0; 910 rdev->sectors = 0; 911 } 912 if (rdev->bb_page) { 913 put_page(rdev->bb_page); 914 rdev->bb_page = NULL; 915 } 916 badblocks_exit(&rdev->badblocks); 917 } 918 EXPORT_SYMBOL_GPL(md_rdev_clear); 919 920 static void super_written(struct bio *bio) 921 { 922 struct md_rdev *rdev = bio->bi_private; 923 struct mddev *mddev = rdev->mddev; 924 925 if (bio->bi_status) { 926 pr_err("md: %s gets error=%d\n", __func__, 927 blk_status_to_errno(bio->bi_status)); 928 md_error(mddev, rdev); 929 if (!test_bit(Faulty, &rdev->flags) 930 && (bio->bi_opf & MD_FAILFAST)) { 931 set_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags); 932 set_bit(LastDev, &rdev->flags); 933 } 934 } else 935 clear_bit(LastDev, &rdev->flags); 936 937 if (atomic_dec_and_test(&mddev->pending_writes)) 938 wake_up(&mddev->sb_wait); 939 rdev_dec_pending(rdev, mddev); 940 bio_put(bio); 941 } 942 943 void md_super_write(struct mddev *mddev, struct md_rdev *rdev, 944 sector_t sector, int size, struct page *page) 945 { 946 /* write first size bytes of page to sector of rdev 947 * Increment mddev->pending_writes before returning 948 * and decrement it on completion, waking up sb_wait 949 * if zero is reached. 950 * If an error occurred, call md_error 951 */ 952 struct bio *bio; 953 int ff = 0; 954 955 if (!page) 956 return; 957 958 if (test_bit(Faulty, &rdev->flags)) 959 return; 960 961 bio = bio_alloc_bioset(GFP_NOIO, 1, &mddev->sync_set); 962 963 atomic_inc(&rdev->nr_pending); 964 965 bio_set_dev(bio, rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev); 966 bio->bi_iter.bi_sector = sector; 967 bio_add_page(bio, page, size, 0); 968 bio->bi_private = rdev; 969 bio->bi_end_io = super_written; 970 971 if (test_bit(MD_FAILFAST_SUPPORTED, &mddev->flags) && 972 test_bit(FailFast, &rdev->flags) && 973 !test_bit(LastDev, &rdev->flags)) 974 ff = MD_FAILFAST; 975 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH | REQ_FUA | ff; 976 977 atomic_inc(&mddev->pending_writes); 978 submit_bio(bio); 979 } 980 981 int md_super_wait(struct mddev *mddev) 982 { 983 /* wait for all superblock writes that were scheduled to complete */ 984 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0); 985 if (test_and_clear_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags)) 986 return -EAGAIN; 987 return 0; 988 } 989 990 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size, 991 struct page *page, int op, int op_flags, bool metadata_op) 992 { 993 struct bio bio; 994 struct bio_vec bvec; 995 996 bio_init(&bio, &bvec, 1); 997 998 if (metadata_op && rdev->meta_bdev) 999 bio_set_dev(&bio, rdev->meta_bdev); 1000 else 1001 bio_set_dev(&bio, rdev->bdev); 1002 bio.bi_opf = op | op_flags; 1003 if (metadata_op) 1004 bio.bi_iter.bi_sector = sector + rdev->sb_start; 1005 else if (rdev->mddev->reshape_position != MaxSector && 1006 (rdev->mddev->reshape_backwards == 1007 (sector >= rdev->mddev->reshape_position))) 1008 bio.bi_iter.bi_sector = sector + rdev->new_data_offset; 1009 else 1010 bio.bi_iter.bi_sector = sector + rdev->data_offset; 1011 bio_add_page(&bio, page, size, 0); 1012 1013 submit_bio_wait(&bio); 1014 1015 return !bio.bi_status; 1016 } 1017 EXPORT_SYMBOL_GPL(sync_page_io); 1018 1019 static int read_disk_sb(struct md_rdev *rdev, int size) 1020 { 1021 char b[BDEVNAME_SIZE]; 1022 1023 if (rdev->sb_loaded) 1024 return 0; 1025 1026 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true)) 1027 goto fail; 1028 rdev->sb_loaded = 1; 1029 return 0; 1030 1031 fail: 1032 pr_err("md: disabled device %s, could not read superblock.\n", 1033 bdevname(rdev->bdev,b)); 1034 return -EINVAL; 1035 } 1036 1037 static int md_uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) 1038 { 1039 return sb1->set_uuid0 == sb2->set_uuid0 && 1040 sb1->set_uuid1 == sb2->set_uuid1 && 1041 sb1->set_uuid2 == sb2->set_uuid2 && 1042 sb1->set_uuid3 == sb2->set_uuid3; 1043 } 1044 1045 static int md_sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) 1046 { 1047 int ret; 1048 mdp_super_t *tmp1, *tmp2; 1049 1050 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); 1051 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); 1052 1053 if (!tmp1 || !tmp2) { 1054 ret = 0; 1055 goto abort; 1056 } 1057 1058 *tmp1 = *sb1; 1059 *tmp2 = *sb2; 1060 1061 /* 1062 * nr_disks is not constant 1063 */ 1064 tmp1->nr_disks = 0; 1065 tmp2->nr_disks = 0; 1066 1067 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0); 1068 abort: 1069 kfree(tmp1); 1070 kfree(tmp2); 1071 return ret; 1072 } 1073 1074 static u32 md_csum_fold(u32 csum) 1075 { 1076 csum = (csum & 0xffff) + (csum >> 16); 1077 return (csum & 0xffff) + (csum >> 16); 1078 } 1079 1080 static unsigned int calc_sb_csum(mdp_super_t *sb) 1081 { 1082 u64 newcsum = 0; 1083 u32 *sb32 = (u32*)sb; 1084 int i; 1085 unsigned int disk_csum, csum; 1086 1087 disk_csum = sb->sb_csum; 1088 sb->sb_csum = 0; 1089 1090 for (i = 0; i < MD_SB_BYTES/4 ; i++) 1091 newcsum += sb32[i]; 1092 csum = (newcsum & 0xffffffff) + (newcsum>>32); 1093 1094 #ifdef CONFIG_ALPHA 1095 /* This used to use csum_partial, which was wrong for several 1096 * reasons including that different results are returned on 1097 * different architectures. It isn't critical that we get exactly 1098 * the same return value as before (we always csum_fold before 1099 * testing, and that removes any differences). However as we 1100 * know that csum_partial always returned a 16bit value on 1101 * alphas, do a fold to maximise conformity to previous behaviour. 1102 */ 1103 sb->sb_csum = md_csum_fold(disk_csum); 1104 #else 1105 sb->sb_csum = disk_csum; 1106 #endif 1107 return csum; 1108 } 1109 1110 /* 1111 * Handle superblock details. 1112 * We want to be able to handle multiple superblock formats 1113 * so we have a common interface to them all, and an array of 1114 * different handlers. 1115 * We rely on user-space to write the initial superblock, and support 1116 * reading and updating of superblocks. 1117 * Interface methods are: 1118 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version) 1119 * loads and validates a superblock on dev. 1120 * if refdev != NULL, compare superblocks on both devices 1121 * Return: 1122 * 0 - dev has a superblock that is compatible with refdev 1123 * 1 - dev has a superblock that is compatible and newer than refdev 1124 * so dev should be used as the refdev in future 1125 * -EINVAL superblock incompatible or invalid 1126 * -othererror e.g. -EIO 1127 * 1128 * int validate_super(struct mddev *mddev, struct md_rdev *dev) 1129 * Verify that dev is acceptable into mddev. 1130 * The first time, mddev->raid_disks will be 0, and data from 1131 * dev should be merged in. Subsequent calls check that dev 1132 * is new enough. Return 0 or -EINVAL 1133 * 1134 * void sync_super(struct mddev *mddev, struct md_rdev *dev) 1135 * Update the superblock for rdev with data in mddev 1136 * This does not write to disc. 1137 * 1138 */ 1139 1140 struct super_type { 1141 char *name; 1142 struct module *owner; 1143 int (*load_super)(struct md_rdev *rdev, 1144 struct md_rdev *refdev, 1145 int minor_version); 1146 int (*validate_super)(struct mddev *mddev, 1147 struct md_rdev *rdev); 1148 void (*sync_super)(struct mddev *mddev, 1149 struct md_rdev *rdev); 1150 unsigned long long (*rdev_size_change)(struct md_rdev *rdev, 1151 sector_t num_sectors); 1152 int (*allow_new_offset)(struct md_rdev *rdev, 1153 unsigned long long new_offset); 1154 }; 1155 1156 /* 1157 * Check that the given mddev has no bitmap. 1158 * 1159 * This function is called from the run method of all personalities that do not 1160 * support bitmaps. It prints an error message and returns non-zero if mddev 1161 * has a bitmap. Otherwise, it returns 0. 1162 * 1163 */ 1164 int md_check_no_bitmap(struct mddev *mddev) 1165 { 1166 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset) 1167 return 0; 1168 pr_warn("%s: bitmaps are not supported for %s\n", 1169 mdname(mddev), mddev->pers->name); 1170 return 1; 1171 } 1172 EXPORT_SYMBOL(md_check_no_bitmap); 1173 1174 /* 1175 * load_super for 0.90.0 1176 */ 1177 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1178 { 1179 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1180 mdp_super_t *sb; 1181 int ret; 1182 bool spare_disk = true; 1183 1184 /* 1185 * Calculate the position of the superblock (512byte sectors), 1186 * it's at the end of the disk. 1187 * 1188 * It also happens to be a multiple of 4Kb. 1189 */ 1190 rdev->sb_start = calc_dev_sboffset(rdev); 1191 1192 ret = read_disk_sb(rdev, MD_SB_BYTES); 1193 if (ret) 1194 return ret; 1195 1196 ret = -EINVAL; 1197 1198 bdevname(rdev->bdev, b); 1199 sb = page_address(rdev->sb_page); 1200 1201 if (sb->md_magic != MD_SB_MAGIC) { 1202 pr_warn("md: invalid raid superblock magic on %s\n", b); 1203 goto abort; 1204 } 1205 1206 if (sb->major_version != 0 || 1207 sb->minor_version < 90 || 1208 sb->minor_version > 91) { 1209 pr_warn("Bad version number %d.%d on %s\n", 1210 sb->major_version, sb->minor_version, b); 1211 goto abort; 1212 } 1213 1214 if (sb->raid_disks <= 0) 1215 goto abort; 1216 1217 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) { 1218 pr_warn("md: invalid superblock checksum on %s\n", b); 1219 goto abort; 1220 } 1221 1222 rdev->preferred_minor = sb->md_minor; 1223 rdev->data_offset = 0; 1224 rdev->new_data_offset = 0; 1225 rdev->sb_size = MD_SB_BYTES; 1226 rdev->badblocks.shift = -1; 1227 1228 if (sb->level == LEVEL_MULTIPATH) 1229 rdev->desc_nr = -1; 1230 else 1231 rdev->desc_nr = sb->this_disk.number; 1232 1233 /* not spare disk, or LEVEL_MULTIPATH */ 1234 if (sb->level == LEVEL_MULTIPATH || 1235 (rdev->desc_nr >= 0 && 1236 rdev->desc_nr < MD_SB_DISKS && 1237 sb->disks[rdev->desc_nr].state & 1238 ((1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))) 1239 spare_disk = false; 1240 1241 if (!refdev) { 1242 if (!spare_disk) 1243 ret = 1; 1244 else 1245 ret = 0; 1246 } else { 1247 __u64 ev1, ev2; 1248 mdp_super_t *refsb = page_address(refdev->sb_page); 1249 if (!md_uuid_equal(refsb, sb)) { 1250 pr_warn("md: %s has different UUID to %s\n", 1251 b, bdevname(refdev->bdev,b2)); 1252 goto abort; 1253 } 1254 if (!md_sb_equal(refsb, sb)) { 1255 pr_warn("md: %s has same UUID but different superblock to %s\n", 1256 b, bdevname(refdev->bdev, b2)); 1257 goto abort; 1258 } 1259 ev1 = md_event(sb); 1260 ev2 = md_event(refsb); 1261 1262 if (!spare_disk && ev1 > ev2) 1263 ret = 1; 1264 else 1265 ret = 0; 1266 } 1267 rdev->sectors = rdev->sb_start; 1268 /* Limit to 4TB as metadata cannot record more than that. 1269 * (not needed for Linear and RAID0 as metadata doesn't 1270 * record this size) 1271 */ 1272 if ((u64)rdev->sectors >= (2ULL << 32) && sb->level >= 1) 1273 rdev->sectors = (sector_t)(2ULL << 32) - 2; 1274 1275 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1) 1276 /* "this cannot possibly happen" ... */ 1277 ret = -EINVAL; 1278 1279 abort: 1280 return ret; 1281 } 1282 1283 /* 1284 * validate_super for 0.90.0 1285 */ 1286 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev) 1287 { 1288 mdp_disk_t *desc; 1289 mdp_super_t *sb = page_address(rdev->sb_page); 1290 __u64 ev1 = md_event(sb); 1291 1292 rdev->raid_disk = -1; 1293 clear_bit(Faulty, &rdev->flags); 1294 clear_bit(In_sync, &rdev->flags); 1295 clear_bit(Bitmap_sync, &rdev->flags); 1296 clear_bit(WriteMostly, &rdev->flags); 1297 1298 if (mddev->raid_disks == 0) { 1299 mddev->major_version = 0; 1300 mddev->minor_version = sb->minor_version; 1301 mddev->patch_version = sb->patch_version; 1302 mddev->external = 0; 1303 mddev->chunk_sectors = sb->chunk_size >> 9; 1304 mddev->ctime = sb->ctime; 1305 mddev->utime = sb->utime; 1306 mddev->level = sb->level; 1307 mddev->clevel[0] = 0; 1308 mddev->layout = sb->layout; 1309 mddev->raid_disks = sb->raid_disks; 1310 mddev->dev_sectors = ((sector_t)sb->size) * 2; 1311 mddev->events = ev1; 1312 mddev->bitmap_info.offset = 0; 1313 mddev->bitmap_info.space = 0; 1314 /* bitmap can use 60 K after the 4K superblocks */ 1315 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 1316 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 1317 mddev->reshape_backwards = 0; 1318 1319 if (mddev->minor_version >= 91) { 1320 mddev->reshape_position = sb->reshape_position; 1321 mddev->delta_disks = sb->delta_disks; 1322 mddev->new_level = sb->new_level; 1323 mddev->new_layout = sb->new_layout; 1324 mddev->new_chunk_sectors = sb->new_chunk >> 9; 1325 if (mddev->delta_disks < 0) 1326 mddev->reshape_backwards = 1; 1327 } else { 1328 mddev->reshape_position = MaxSector; 1329 mddev->delta_disks = 0; 1330 mddev->new_level = mddev->level; 1331 mddev->new_layout = mddev->layout; 1332 mddev->new_chunk_sectors = mddev->chunk_sectors; 1333 } 1334 if (mddev->level == 0) 1335 mddev->layout = -1; 1336 1337 if (sb->state & (1<<MD_SB_CLEAN)) 1338 mddev->recovery_cp = MaxSector; 1339 else { 1340 if (sb->events_hi == sb->cp_events_hi && 1341 sb->events_lo == sb->cp_events_lo) { 1342 mddev->recovery_cp = sb->recovery_cp; 1343 } else 1344 mddev->recovery_cp = 0; 1345 } 1346 1347 memcpy(mddev->uuid+0, &sb->set_uuid0, 4); 1348 memcpy(mddev->uuid+4, &sb->set_uuid1, 4); 1349 memcpy(mddev->uuid+8, &sb->set_uuid2, 4); 1350 memcpy(mddev->uuid+12,&sb->set_uuid3, 4); 1351 1352 mddev->max_disks = MD_SB_DISKS; 1353 1354 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && 1355 mddev->bitmap_info.file == NULL) { 1356 mddev->bitmap_info.offset = 1357 mddev->bitmap_info.default_offset; 1358 mddev->bitmap_info.space = 1359 mddev->bitmap_info.default_space; 1360 } 1361 1362 } else if (mddev->pers == NULL) { 1363 /* Insist on good event counter while assembling, except 1364 * for spares (which don't need an event count) */ 1365 ++ev1; 1366 if (sb->disks[rdev->desc_nr].state & ( 1367 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))) 1368 if (ev1 < mddev->events) 1369 return -EINVAL; 1370 } else if (mddev->bitmap) { 1371 /* if adding to array with a bitmap, then we can accept an 1372 * older device ... but not too old. 1373 */ 1374 if (ev1 < mddev->bitmap->events_cleared) 1375 return 0; 1376 if (ev1 < mddev->events) 1377 set_bit(Bitmap_sync, &rdev->flags); 1378 } else { 1379 if (ev1 < mddev->events) 1380 /* just a hot-add of a new device, leave raid_disk at -1 */ 1381 return 0; 1382 } 1383 1384 if (mddev->level != LEVEL_MULTIPATH) { 1385 desc = sb->disks + rdev->desc_nr; 1386 1387 if (desc->state & (1<<MD_DISK_FAULTY)) 1388 set_bit(Faulty, &rdev->flags); 1389 else if (desc->state & (1<<MD_DISK_SYNC) /* && 1390 desc->raid_disk < mddev->raid_disks */) { 1391 set_bit(In_sync, &rdev->flags); 1392 rdev->raid_disk = desc->raid_disk; 1393 rdev->saved_raid_disk = desc->raid_disk; 1394 } else if (desc->state & (1<<MD_DISK_ACTIVE)) { 1395 /* active but not in sync implies recovery up to 1396 * reshape position. We don't know exactly where 1397 * that is, so set to zero for now */ 1398 if (mddev->minor_version >= 91) { 1399 rdev->recovery_offset = 0; 1400 rdev->raid_disk = desc->raid_disk; 1401 } 1402 } 1403 if (desc->state & (1<<MD_DISK_WRITEMOSTLY)) 1404 set_bit(WriteMostly, &rdev->flags); 1405 if (desc->state & (1<<MD_DISK_FAILFAST)) 1406 set_bit(FailFast, &rdev->flags); 1407 } else /* MULTIPATH are always insync */ 1408 set_bit(In_sync, &rdev->flags); 1409 return 0; 1410 } 1411 1412 /* 1413 * sync_super for 0.90.0 1414 */ 1415 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev) 1416 { 1417 mdp_super_t *sb; 1418 struct md_rdev *rdev2; 1419 int next_spare = mddev->raid_disks; 1420 1421 /* make rdev->sb match mddev data.. 1422 * 1423 * 1/ zero out disks 1424 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); 1425 * 3/ any empty disks < next_spare become removed 1426 * 1427 * disks[0] gets initialised to REMOVED because 1428 * we cannot be sure from other fields if it has 1429 * been initialised or not. 1430 */ 1431 int i; 1432 int active=0, working=0,failed=0,spare=0,nr_disks=0; 1433 1434 rdev->sb_size = MD_SB_BYTES; 1435 1436 sb = page_address(rdev->sb_page); 1437 1438 memset(sb, 0, sizeof(*sb)); 1439 1440 sb->md_magic = MD_SB_MAGIC; 1441 sb->major_version = mddev->major_version; 1442 sb->patch_version = mddev->patch_version; 1443 sb->gvalid_words = 0; /* ignored */ 1444 memcpy(&sb->set_uuid0, mddev->uuid+0, 4); 1445 memcpy(&sb->set_uuid1, mddev->uuid+4, 4); 1446 memcpy(&sb->set_uuid2, mddev->uuid+8, 4); 1447 memcpy(&sb->set_uuid3, mddev->uuid+12,4); 1448 1449 sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 1450 sb->level = mddev->level; 1451 sb->size = mddev->dev_sectors / 2; 1452 sb->raid_disks = mddev->raid_disks; 1453 sb->md_minor = mddev->md_minor; 1454 sb->not_persistent = 0; 1455 sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 1456 sb->state = 0; 1457 sb->events_hi = (mddev->events>>32); 1458 sb->events_lo = (u32)mddev->events; 1459 1460 if (mddev->reshape_position == MaxSector) 1461 sb->minor_version = 90; 1462 else { 1463 sb->minor_version = 91; 1464 sb->reshape_position = mddev->reshape_position; 1465 sb->new_level = mddev->new_level; 1466 sb->delta_disks = mddev->delta_disks; 1467 sb->new_layout = mddev->new_layout; 1468 sb->new_chunk = mddev->new_chunk_sectors << 9; 1469 } 1470 mddev->minor_version = sb->minor_version; 1471 if (mddev->in_sync) 1472 { 1473 sb->recovery_cp = mddev->recovery_cp; 1474 sb->cp_events_hi = (mddev->events>>32); 1475 sb->cp_events_lo = (u32)mddev->events; 1476 if (mddev->recovery_cp == MaxSector) 1477 sb->state = (1<< MD_SB_CLEAN); 1478 } else 1479 sb->recovery_cp = 0; 1480 1481 sb->layout = mddev->layout; 1482 sb->chunk_size = mddev->chunk_sectors << 9; 1483 1484 if (mddev->bitmap && mddev->bitmap_info.file == NULL) 1485 sb->state |= (1<<MD_SB_BITMAP_PRESENT); 1486 1487 sb->disks[0].state = (1<<MD_DISK_REMOVED); 1488 rdev_for_each(rdev2, mddev) { 1489 mdp_disk_t *d; 1490 int desc_nr; 1491 int is_active = test_bit(In_sync, &rdev2->flags); 1492 1493 if (rdev2->raid_disk >= 0 && 1494 sb->minor_version >= 91) 1495 /* we have nowhere to store the recovery_offset, 1496 * but if it is not below the reshape_position, 1497 * we can piggy-back on that. 1498 */ 1499 is_active = 1; 1500 if (rdev2->raid_disk < 0 || 1501 test_bit(Faulty, &rdev2->flags)) 1502 is_active = 0; 1503 if (is_active) 1504 desc_nr = rdev2->raid_disk; 1505 else 1506 desc_nr = next_spare++; 1507 rdev2->desc_nr = desc_nr; 1508 d = &sb->disks[rdev2->desc_nr]; 1509 nr_disks++; 1510 d->number = rdev2->desc_nr; 1511 d->major = MAJOR(rdev2->bdev->bd_dev); 1512 d->minor = MINOR(rdev2->bdev->bd_dev); 1513 if (is_active) 1514 d->raid_disk = rdev2->raid_disk; 1515 else 1516 d->raid_disk = rdev2->desc_nr; /* compatibility */ 1517 if (test_bit(Faulty, &rdev2->flags)) 1518 d->state = (1<<MD_DISK_FAULTY); 1519 else if (is_active) { 1520 d->state = (1<<MD_DISK_ACTIVE); 1521 if (test_bit(In_sync, &rdev2->flags)) 1522 d->state |= (1<<MD_DISK_SYNC); 1523 active++; 1524 working++; 1525 } else { 1526 d->state = 0; 1527 spare++; 1528 working++; 1529 } 1530 if (test_bit(WriteMostly, &rdev2->flags)) 1531 d->state |= (1<<MD_DISK_WRITEMOSTLY); 1532 if (test_bit(FailFast, &rdev2->flags)) 1533 d->state |= (1<<MD_DISK_FAILFAST); 1534 } 1535 /* now set the "removed" and "faulty" bits on any missing devices */ 1536 for (i=0 ; i < mddev->raid_disks ; i++) { 1537 mdp_disk_t *d = &sb->disks[i]; 1538 if (d->state == 0 && d->number == 0) { 1539 d->number = i; 1540 d->raid_disk = i; 1541 d->state = (1<<MD_DISK_REMOVED); 1542 d->state |= (1<<MD_DISK_FAULTY); 1543 failed++; 1544 } 1545 } 1546 sb->nr_disks = nr_disks; 1547 sb->active_disks = active; 1548 sb->working_disks = working; 1549 sb->failed_disks = failed; 1550 sb->spare_disks = spare; 1551 1552 sb->this_disk = sb->disks[rdev->desc_nr]; 1553 sb->sb_csum = calc_sb_csum(sb); 1554 } 1555 1556 /* 1557 * rdev_size_change for 0.90.0 1558 */ 1559 static unsigned long long 1560 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1561 { 1562 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1563 return 0; /* component must fit device */ 1564 if (rdev->mddev->bitmap_info.offset) 1565 return 0; /* can't move bitmap */ 1566 rdev->sb_start = calc_dev_sboffset(rdev); 1567 if (!num_sectors || num_sectors > rdev->sb_start) 1568 num_sectors = rdev->sb_start; 1569 /* Limit to 4TB as metadata cannot record more than that. 1570 * 4TB == 2^32 KB, or 2*2^32 sectors. 1571 */ 1572 if ((u64)num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1) 1573 num_sectors = (sector_t)(2ULL << 32) - 2; 1574 do { 1575 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1576 rdev->sb_page); 1577 } while (md_super_wait(rdev->mddev) < 0); 1578 return num_sectors; 1579 } 1580 1581 static int 1582 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset) 1583 { 1584 /* non-zero offset changes not possible with v0.90 */ 1585 return new_offset == 0; 1586 } 1587 1588 /* 1589 * version 1 superblock 1590 */ 1591 1592 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb) 1593 { 1594 __le32 disk_csum; 1595 u32 csum; 1596 unsigned long long newcsum; 1597 int size = 256 + le32_to_cpu(sb->max_dev)*2; 1598 __le32 *isuper = (__le32*)sb; 1599 1600 disk_csum = sb->sb_csum; 1601 sb->sb_csum = 0; 1602 newcsum = 0; 1603 for (; size >= 4; size -= 4) 1604 newcsum += le32_to_cpu(*isuper++); 1605 1606 if (size == 2) 1607 newcsum += le16_to_cpu(*(__le16*) isuper); 1608 1609 csum = (newcsum & 0xffffffff) + (newcsum >> 32); 1610 sb->sb_csum = disk_csum; 1611 return cpu_to_le32(csum); 1612 } 1613 1614 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1615 { 1616 struct mdp_superblock_1 *sb; 1617 int ret; 1618 sector_t sb_start; 1619 sector_t sectors; 1620 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1621 int bmask; 1622 bool spare_disk = true; 1623 1624 /* 1625 * Calculate the position of the superblock in 512byte sectors. 1626 * It is always aligned to a 4K boundary and 1627 * depeding on minor_version, it can be: 1628 * 0: At least 8K, but less than 12K, from end of device 1629 * 1: At start of device 1630 * 2: 4K from start of device. 1631 */ 1632 switch(minor_version) { 1633 case 0: 1634 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9; 1635 sb_start -= 8*2; 1636 sb_start &= ~(sector_t)(4*2-1); 1637 break; 1638 case 1: 1639 sb_start = 0; 1640 break; 1641 case 2: 1642 sb_start = 8; 1643 break; 1644 default: 1645 return -EINVAL; 1646 } 1647 rdev->sb_start = sb_start; 1648 1649 /* superblock is rarely larger than 1K, but it can be larger, 1650 * and it is safe to read 4k, so we do that 1651 */ 1652 ret = read_disk_sb(rdev, 4096); 1653 if (ret) return ret; 1654 1655 sb = page_address(rdev->sb_page); 1656 1657 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || 1658 sb->major_version != cpu_to_le32(1) || 1659 le32_to_cpu(sb->max_dev) > (4096-256)/2 || 1660 le64_to_cpu(sb->super_offset) != rdev->sb_start || 1661 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) 1662 return -EINVAL; 1663 1664 if (calc_sb_1_csum(sb) != sb->sb_csum) { 1665 pr_warn("md: invalid superblock checksum on %s\n", 1666 bdevname(rdev->bdev,b)); 1667 return -EINVAL; 1668 } 1669 if (le64_to_cpu(sb->data_size) < 10) { 1670 pr_warn("md: data_size too small on %s\n", 1671 bdevname(rdev->bdev,b)); 1672 return -EINVAL; 1673 } 1674 if (sb->pad0 || 1675 sb->pad3[0] || 1676 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1]))) 1677 /* Some padding is non-zero, might be a new feature */ 1678 return -EINVAL; 1679 1680 rdev->preferred_minor = 0xffff; 1681 rdev->data_offset = le64_to_cpu(sb->data_offset); 1682 rdev->new_data_offset = rdev->data_offset; 1683 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) && 1684 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET)) 1685 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset); 1686 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); 1687 1688 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; 1689 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1690 if (rdev->sb_size & bmask) 1691 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1692 1693 if (minor_version 1694 && rdev->data_offset < sb_start + (rdev->sb_size/512)) 1695 return -EINVAL; 1696 if (minor_version 1697 && rdev->new_data_offset < sb_start + (rdev->sb_size/512)) 1698 return -EINVAL; 1699 1700 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH)) 1701 rdev->desc_nr = -1; 1702 else 1703 rdev->desc_nr = le32_to_cpu(sb->dev_number); 1704 1705 if (!rdev->bb_page) { 1706 rdev->bb_page = alloc_page(GFP_KERNEL); 1707 if (!rdev->bb_page) 1708 return -ENOMEM; 1709 } 1710 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) && 1711 rdev->badblocks.count == 0) { 1712 /* need to load the bad block list. 1713 * Currently we limit it to one page. 1714 */ 1715 s32 offset; 1716 sector_t bb_sector; 1717 __le64 *bbp; 1718 int i; 1719 int sectors = le16_to_cpu(sb->bblog_size); 1720 if (sectors > (PAGE_SIZE / 512)) 1721 return -EINVAL; 1722 offset = le32_to_cpu(sb->bblog_offset); 1723 if (offset == 0) 1724 return -EINVAL; 1725 bb_sector = (long long)offset; 1726 if (!sync_page_io(rdev, bb_sector, sectors << 9, 1727 rdev->bb_page, REQ_OP_READ, 0, true)) 1728 return -EIO; 1729 bbp = (__le64 *)page_address(rdev->bb_page); 1730 rdev->badblocks.shift = sb->bblog_shift; 1731 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) { 1732 u64 bb = le64_to_cpu(*bbp); 1733 int count = bb & (0x3ff); 1734 u64 sector = bb >> 10; 1735 sector <<= sb->bblog_shift; 1736 count <<= sb->bblog_shift; 1737 if (bb + 1 == 0) 1738 break; 1739 if (badblocks_set(&rdev->badblocks, sector, count, 1)) 1740 return -EINVAL; 1741 } 1742 } else if (sb->bblog_offset != 0) 1743 rdev->badblocks.shift = 0; 1744 1745 if ((le32_to_cpu(sb->feature_map) & 1746 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS))) { 1747 rdev->ppl.offset = (__s16)le16_to_cpu(sb->ppl.offset); 1748 rdev->ppl.size = le16_to_cpu(sb->ppl.size); 1749 rdev->ppl.sector = rdev->sb_start + rdev->ppl.offset; 1750 } 1751 1752 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT) && 1753 sb->level != 0) 1754 return -EINVAL; 1755 1756 /* not spare disk, or LEVEL_MULTIPATH */ 1757 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH) || 1758 (rdev->desc_nr >= 0 && 1759 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1760 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX || 1761 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))) 1762 spare_disk = false; 1763 1764 if (!refdev) { 1765 if (!spare_disk) 1766 ret = 1; 1767 else 1768 ret = 0; 1769 } else { 1770 __u64 ev1, ev2; 1771 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page); 1772 1773 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || 1774 sb->level != refsb->level || 1775 sb->layout != refsb->layout || 1776 sb->chunksize != refsb->chunksize) { 1777 pr_warn("md: %s has strangely different superblock to %s\n", 1778 bdevname(rdev->bdev,b), 1779 bdevname(refdev->bdev,b2)); 1780 return -EINVAL; 1781 } 1782 ev1 = le64_to_cpu(sb->events); 1783 ev2 = le64_to_cpu(refsb->events); 1784 1785 if (!spare_disk && ev1 > ev2) 1786 ret = 1; 1787 else 1788 ret = 0; 1789 } 1790 if (minor_version) { 1791 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9); 1792 sectors -= rdev->data_offset; 1793 } else 1794 sectors = rdev->sb_start; 1795 if (sectors < le64_to_cpu(sb->data_size)) 1796 return -EINVAL; 1797 rdev->sectors = le64_to_cpu(sb->data_size); 1798 return ret; 1799 } 1800 1801 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev) 1802 { 1803 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 1804 __u64 ev1 = le64_to_cpu(sb->events); 1805 1806 rdev->raid_disk = -1; 1807 clear_bit(Faulty, &rdev->flags); 1808 clear_bit(In_sync, &rdev->flags); 1809 clear_bit(Bitmap_sync, &rdev->flags); 1810 clear_bit(WriteMostly, &rdev->flags); 1811 1812 if (mddev->raid_disks == 0) { 1813 mddev->major_version = 1; 1814 mddev->patch_version = 0; 1815 mddev->external = 0; 1816 mddev->chunk_sectors = le32_to_cpu(sb->chunksize); 1817 mddev->ctime = le64_to_cpu(sb->ctime); 1818 mddev->utime = le64_to_cpu(sb->utime); 1819 mddev->level = le32_to_cpu(sb->level); 1820 mddev->clevel[0] = 0; 1821 mddev->layout = le32_to_cpu(sb->layout); 1822 mddev->raid_disks = le32_to_cpu(sb->raid_disks); 1823 mddev->dev_sectors = le64_to_cpu(sb->size); 1824 mddev->events = ev1; 1825 mddev->bitmap_info.offset = 0; 1826 mddev->bitmap_info.space = 0; 1827 /* Default location for bitmap is 1K after superblock 1828 * using 3K - total of 4K 1829 */ 1830 mddev->bitmap_info.default_offset = 1024 >> 9; 1831 mddev->bitmap_info.default_space = (4096-1024) >> 9; 1832 mddev->reshape_backwards = 0; 1833 1834 mddev->recovery_cp = le64_to_cpu(sb->resync_offset); 1835 memcpy(mddev->uuid, sb->set_uuid, 16); 1836 1837 mddev->max_disks = (4096-256)/2; 1838 1839 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && 1840 mddev->bitmap_info.file == NULL) { 1841 mddev->bitmap_info.offset = 1842 (__s32)le32_to_cpu(sb->bitmap_offset); 1843 /* Metadata doesn't record how much space is available. 1844 * For 1.0, we assume we can use up to the superblock 1845 * if before, else to 4K beyond superblock. 1846 * For others, assume no change is possible. 1847 */ 1848 if (mddev->minor_version > 0) 1849 mddev->bitmap_info.space = 0; 1850 else if (mddev->bitmap_info.offset > 0) 1851 mddev->bitmap_info.space = 1852 8 - mddev->bitmap_info.offset; 1853 else 1854 mddev->bitmap_info.space = 1855 -mddev->bitmap_info.offset; 1856 } 1857 1858 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 1859 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 1860 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 1861 mddev->new_level = le32_to_cpu(sb->new_level); 1862 mddev->new_layout = le32_to_cpu(sb->new_layout); 1863 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk); 1864 if (mddev->delta_disks < 0 || 1865 (mddev->delta_disks == 0 && 1866 (le32_to_cpu(sb->feature_map) 1867 & MD_FEATURE_RESHAPE_BACKWARDS))) 1868 mddev->reshape_backwards = 1; 1869 } else { 1870 mddev->reshape_position = MaxSector; 1871 mddev->delta_disks = 0; 1872 mddev->new_level = mddev->level; 1873 mddev->new_layout = mddev->layout; 1874 mddev->new_chunk_sectors = mddev->chunk_sectors; 1875 } 1876 1877 if (mddev->level == 0 && 1878 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT)) 1879 mddev->layout = -1; 1880 1881 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL) 1882 set_bit(MD_HAS_JOURNAL, &mddev->flags); 1883 1884 if (le32_to_cpu(sb->feature_map) & 1885 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS)) { 1886 if (le32_to_cpu(sb->feature_map) & 1887 (MD_FEATURE_BITMAP_OFFSET | MD_FEATURE_JOURNAL)) 1888 return -EINVAL; 1889 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_PPL) && 1890 (le32_to_cpu(sb->feature_map) & 1891 MD_FEATURE_MULTIPLE_PPLS)) 1892 return -EINVAL; 1893 set_bit(MD_HAS_PPL, &mddev->flags); 1894 } 1895 } else if (mddev->pers == NULL) { 1896 /* Insist of good event counter while assembling, except for 1897 * spares (which don't need an event count) */ 1898 ++ev1; 1899 if (rdev->desc_nr >= 0 && 1900 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1901 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX || 1902 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL)) 1903 if (ev1 < mddev->events) 1904 return -EINVAL; 1905 } else if (mddev->bitmap) { 1906 /* If adding to array with a bitmap, then we can accept an 1907 * older device, but not too old. 1908 */ 1909 if (ev1 < mddev->bitmap->events_cleared) 1910 return 0; 1911 if (ev1 < mddev->events) 1912 set_bit(Bitmap_sync, &rdev->flags); 1913 } else { 1914 if (ev1 < mddev->events) 1915 /* just a hot-add of a new device, leave raid_disk at -1 */ 1916 return 0; 1917 } 1918 if (mddev->level != LEVEL_MULTIPATH) { 1919 int role; 1920 if (rdev->desc_nr < 0 || 1921 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) { 1922 role = MD_DISK_ROLE_SPARE; 1923 rdev->desc_nr = -1; 1924 } else 1925 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 1926 switch(role) { 1927 case MD_DISK_ROLE_SPARE: /* spare */ 1928 break; 1929 case MD_DISK_ROLE_FAULTY: /* faulty */ 1930 set_bit(Faulty, &rdev->flags); 1931 break; 1932 case MD_DISK_ROLE_JOURNAL: /* journal device */ 1933 if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) { 1934 /* journal device without journal feature */ 1935 pr_warn("md: journal device provided without journal feature, ignoring the device\n"); 1936 return -EINVAL; 1937 } 1938 set_bit(Journal, &rdev->flags); 1939 rdev->journal_tail = le64_to_cpu(sb->journal_tail); 1940 rdev->raid_disk = 0; 1941 break; 1942 default: 1943 rdev->saved_raid_disk = role; 1944 if ((le32_to_cpu(sb->feature_map) & 1945 MD_FEATURE_RECOVERY_OFFSET)) { 1946 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 1947 if (!(le32_to_cpu(sb->feature_map) & 1948 MD_FEATURE_RECOVERY_BITMAP)) 1949 rdev->saved_raid_disk = -1; 1950 } else { 1951 /* 1952 * If the array is FROZEN, then the device can't 1953 * be in_sync with rest of array. 1954 */ 1955 if (!test_bit(MD_RECOVERY_FROZEN, 1956 &mddev->recovery)) 1957 set_bit(In_sync, &rdev->flags); 1958 } 1959 rdev->raid_disk = role; 1960 break; 1961 } 1962 if (sb->devflags & WriteMostly1) 1963 set_bit(WriteMostly, &rdev->flags); 1964 if (sb->devflags & FailFast1) 1965 set_bit(FailFast, &rdev->flags); 1966 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT) 1967 set_bit(Replacement, &rdev->flags); 1968 } else /* MULTIPATH are always insync */ 1969 set_bit(In_sync, &rdev->flags); 1970 1971 return 0; 1972 } 1973 1974 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev) 1975 { 1976 struct mdp_superblock_1 *sb; 1977 struct md_rdev *rdev2; 1978 int max_dev, i; 1979 /* make rdev->sb match mddev and rdev data. */ 1980 1981 sb = page_address(rdev->sb_page); 1982 1983 sb->feature_map = 0; 1984 sb->pad0 = 0; 1985 sb->recovery_offset = cpu_to_le64(0); 1986 memset(sb->pad3, 0, sizeof(sb->pad3)); 1987 1988 sb->utime = cpu_to_le64((__u64)mddev->utime); 1989 sb->events = cpu_to_le64(mddev->events); 1990 if (mddev->in_sync) 1991 sb->resync_offset = cpu_to_le64(mddev->recovery_cp); 1992 else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags)) 1993 sb->resync_offset = cpu_to_le64(MaxSector); 1994 else 1995 sb->resync_offset = cpu_to_le64(0); 1996 1997 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); 1998 1999 sb->raid_disks = cpu_to_le32(mddev->raid_disks); 2000 sb->size = cpu_to_le64(mddev->dev_sectors); 2001 sb->chunksize = cpu_to_le32(mddev->chunk_sectors); 2002 sb->level = cpu_to_le32(mddev->level); 2003 sb->layout = cpu_to_le32(mddev->layout); 2004 if (test_bit(FailFast, &rdev->flags)) 2005 sb->devflags |= FailFast1; 2006 else 2007 sb->devflags &= ~FailFast1; 2008 2009 if (test_bit(WriteMostly, &rdev->flags)) 2010 sb->devflags |= WriteMostly1; 2011 else 2012 sb->devflags &= ~WriteMostly1; 2013 sb->data_offset = cpu_to_le64(rdev->data_offset); 2014 sb->data_size = cpu_to_le64(rdev->sectors); 2015 2016 if (mddev->bitmap && mddev->bitmap_info.file == NULL) { 2017 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset); 2018 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); 2019 } 2020 2021 if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) && 2022 !test_bit(In_sync, &rdev->flags)) { 2023 sb->feature_map |= 2024 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); 2025 sb->recovery_offset = 2026 cpu_to_le64(rdev->recovery_offset); 2027 if (rdev->saved_raid_disk >= 0 && mddev->bitmap) 2028 sb->feature_map |= 2029 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP); 2030 } 2031 /* Note: recovery_offset and journal_tail share space */ 2032 if (test_bit(Journal, &rdev->flags)) 2033 sb->journal_tail = cpu_to_le64(rdev->journal_tail); 2034 if (test_bit(Replacement, &rdev->flags)) 2035 sb->feature_map |= 2036 cpu_to_le32(MD_FEATURE_REPLACEMENT); 2037 2038 if (mddev->reshape_position != MaxSector) { 2039 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); 2040 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 2041 sb->new_layout = cpu_to_le32(mddev->new_layout); 2042 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 2043 sb->new_level = cpu_to_le32(mddev->new_level); 2044 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors); 2045 if (mddev->delta_disks == 0 && 2046 mddev->reshape_backwards) 2047 sb->feature_map 2048 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS); 2049 if (rdev->new_data_offset != rdev->data_offset) { 2050 sb->feature_map 2051 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET); 2052 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset 2053 - rdev->data_offset)); 2054 } 2055 } 2056 2057 if (mddev_is_clustered(mddev)) 2058 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED); 2059 2060 if (rdev->badblocks.count == 0) 2061 /* Nothing to do for bad blocks*/ ; 2062 else if (sb->bblog_offset == 0) 2063 /* Cannot record bad blocks on this device */ 2064 md_error(mddev, rdev); 2065 else { 2066 struct badblocks *bb = &rdev->badblocks; 2067 __le64 *bbp = (__le64 *)page_address(rdev->bb_page); 2068 u64 *p = bb->page; 2069 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS); 2070 if (bb->changed) { 2071 unsigned seq; 2072 2073 retry: 2074 seq = read_seqbegin(&bb->lock); 2075 2076 memset(bbp, 0xff, PAGE_SIZE); 2077 2078 for (i = 0 ; i < bb->count ; i++) { 2079 u64 internal_bb = p[i]; 2080 u64 store_bb = ((BB_OFFSET(internal_bb) << 10) 2081 | BB_LEN(internal_bb)); 2082 bbp[i] = cpu_to_le64(store_bb); 2083 } 2084 bb->changed = 0; 2085 if (read_seqretry(&bb->lock, seq)) 2086 goto retry; 2087 2088 bb->sector = (rdev->sb_start + 2089 (int)le32_to_cpu(sb->bblog_offset)); 2090 bb->size = le16_to_cpu(sb->bblog_size); 2091 } 2092 } 2093 2094 max_dev = 0; 2095 rdev_for_each(rdev2, mddev) 2096 if (rdev2->desc_nr+1 > max_dev) 2097 max_dev = rdev2->desc_nr+1; 2098 2099 if (max_dev > le32_to_cpu(sb->max_dev)) { 2100 int bmask; 2101 sb->max_dev = cpu_to_le32(max_dev); 2102 rdev->sb_size = max_dev * 2 + 256; 2103 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 2104 if (rdev->sb_size & bmask) 2105 rdev->sb_size = (rdev->sb_size | bmask) + 1; 2106 } else 2107 max_dev = le32_to_cpu(sb->max_dev); 2108 2109 for (i=0; i<max_dev;i++) 2110 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 2111 2112 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) 2113 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL); 2114 2115 if (test_bit(MD_HAS_PPL, &mddev->flags)) { 2116 if (test_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags)) 2117 sb->feature_map |= 2118 cpu_to_le32(MD_FEATURE_MULTIPLE_PPLS); 2119 else 2120 sb->feature_map |= cpu_to_le32(MD_FEATURE_PPL); 2121 sb->ppl.offset = cpu_to_le16(rdev->ppl.offset); 2122 sb->ppl.size = cpu_to_le16(rdev->ppl.size); 2123 } 2124 2125 rdev_for_each(rdev2, mddev) { 2126 i = rdev2->desc_nr; 2127 if (test_bit(Faulty, &rdev2->flags)) 2128 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY); 2129 else if (test_bit(In_sync, &rdev2->flags)) 2130 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 2131 else if (test_bit(Journal, &rdev2->flags)) 2132 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL); 2133 else if (rdev2->raid_disk >= 0) 2134 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 2135 else 2136 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 2137 } 2138 2139 sb->sb_csum = calc_sb_1_csum(sb); 2140 } 2141 2142 static sector_t super_1_choose_bm_space(sector_t dev_size) 2143 { 2144 sector_t bm_space; 2145 2146 /* if the device is bigger than 8Gig, save 64k for bitmap 2147 * usage, if bigger than 200Gig, save 128k 2148 */ 2149 if (dev_size < 64*2) 2150 bm_space = 0; 2151 else if (dev_size - 64*2 >= 200*1024*1024*2) 2152 bm_space = 128*2; 2153 else if (dev_size - 4*2 > 8*1024*1024*2) 2154 bm_space = 64*2; 2155 else 2156 bm_space = 4*2; 2157 return bm_space; 2158 } 2159 2160 static unsigned long long 2161 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 2162 { 2163 struct mdp_superblock_1 *sb; 2164 sector_t max_sectors; 2165 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 2166 return 0; /* component must fit device */ 2167 if (rdev->data_offset != rdev->new_data_offset) 2168 return 0; /* too confusing */ 2169 if (rdev->sb_start < rdev->data_offset) { 2170 /* minor versions 1 and 2; superblock before data */ 2171 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9; 2172 max_sectors -= rdev->data_offset; 2173 if (!num_sectors || num_sectors > max_sectors) 2174 num_sectors = max_sectors; 2175 } else if (rdev->mddev->bitmap_info.offset) { 2176 /* minor version 0 with bitmap we can't move */ 2177 return 0; 2178 } else { 2179 /* minor version 0; superblock after data */ 2180 sector_t sb_start, bm_space; 2181 sector_t dev_size = i_size_read(rdev->bdev->bd_inode) >> 9; 2182 2183 /* 8K is for superblock */ 2184 sb_start = dev_size - 8*2; 2185 sb_start &= ~(sector_t)(4*2 - 1); 2186 2187 bm_space = super_1_choose_bm_space(dev_size); 2188 2189 /* Space that can be used to store date needs to decrease 2190 * superblock bitmap space and bad block space(4K) 2191 */ 2192 max_sectors = sb_start - bm_space - 4*2; 2193 2194 if (!num_sectors || num_sectors > max_sectors) 2195 num_sectors = max_sectors; 2196 } 2197 sb = page_address(rdev->sb_page); 2198 sb->data_size = cpu_to_le64(num_sectors); 2199 sb->super_offset = cpu_to_le64(rdev->sb_start); 2200 sb->sb_csum = calc_sb_1_csum(sb); 2201 do { 2202 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 2203 rdev->sb_page); 2204 } while (md_super_wait(rdev->mddev) < 0); 2205 return num_sectors; 2206 2207 } 2208 2209 static int 2210 super_1_allow_new_offset(struct md_rdev *rdev, 2211 unsigned long long new_offset) 2212 { 2213 /* All necessary checks on new >= old have been done */ 2214 struct bitmap *bitmap; 2215 if (new_offset >= rdev->data_offset) 2216 return 1; 2217 2218 /* with 1.0 metadata, there is no metadata to tread on 2219 * so we can always move back */ 2220 if (rdev->mddev->minor_version == 0) 2221 return 1; 2222 2223 /* otherwise we must be sure not to step on 2224 * any metadata, so stay: 2225 * 36K beyond start of superblock 2226 * beyond end of badblocks 2227 * beyond write-intent bitmap 2228 */ 2229 if (rdev->sb_start + (32+4)*2 > new_offset) 2230 return 0; 2231 bitmap = rdev->mddev->bitmap; 2232 if (bitmap && !rdev->mddev->bitmap_info.file && 2233 rdev->sb_start + rdev->mddev->bitmap_info.offset + 2234 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset) 2235 return 0; 2236 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset) 2237 return 0; 2238 2239 return 1; 2240 } 2241 2242 static struct super_type super_types[] = { 2243 [0] = { 2244 .name = "0.90.0", 2245 .owner = THIS_MODULE, 2246 .load_super = super_90_load, 2247 .validate_super = super_90_validate, 2248 .sync_super = super_90_sync, 2249 .rdev_size_change = super_90_rdev_size_change, 2250 .allow_new_offset = super_90_allow_new_offset, 2251 }, 2252 [1] = { 2253 .name = "md-1", 2254 .owner = THIS_MODULE, 2255 .load_super = super_1_load, 2256 .validate_super = super_1_validate, 2257 .sync_super = super_1_sync, 2258 .rdev_size_change = super_1_rdev_size_change, 2259 .allow_new_offset = super_1_allow_new_offset, 2260 }, 2261 }; 2262 2263 static void sync_super(struct mddev *mddev, struct md_rdev *rdev) 2264 { 2265 if (mddev->sync_super) { 2266 mddev->sync_super(mddev, rdev); 2267 return; 2268 } 2269 2270 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types)); 2271 2272 super_types[mddev->major_version].sync_super(mddev, rdev); 2273 } 2274 2275 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2) 2276 { 2277 struct md_rdev *rdev, *rdev2; 2278 2279 rcu_read_lock(); 2280 rdev_for_each_rcu(rdev, mddev1) { 2281 if (test_bit(Faulty, &rdev->flags) || 2282 test_bit(Journal, &rdev->flags) || 2283 rdev->raid_disk == -1) 2284 continue; 2285 rdev_for_each_rcu(rdev2, mddev2) { 2286 if (test_bit(Faulty, &rdev2->flags) || 2287 test_bit(Journal, &rdev2->flags) || 2288 rdev2->raid_disk == -1) 2289 continue; 2290 if (rdev->bdev->bd_disk == rdev2->bdev->bd_disk) { 2291 rcu_read_unlock(); 2292 return 1; 2293 } 2294 } 2295 } 2296 rcu_read_unlock(); 2297 return 0; 2298 } 2299 2300 static LIST_HEAD(pending_raid_disks); 2301 2302 /* 2303 * Try to register data integrity profile for an mddev 2304 * 2305 * This is called when an array is started and after a disk has been kicked 2306 * from the array. It only succeeds if all working and active component devices 2307 * are integrity capable with matching profiles. 2308 */ 2309 int md_integrity_register(struct mddev *mddev) 2310 { 2311 struct md_rdev *rdev, *reference = NULL; 2312 2313 if (list_empty(&mddev->disks)) 2314 return 0; /* nothing to do */ 2315 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk)) 2316 return 0; /* shouldn't register, or already is */ 2317 rdev_for_each(rdev, mddev) { 2318 /* skip spares and non-functional disks */ 2319 if (test_bit(Faulty, &rdev->flags)) 2320 continue; 2321 if (rdev->raid_disk < 0) 2322 continue; 2323 if (!reference) { 2324 /* Use the first rdev as the reference */ 2325 reference = rdev; 2326 continue; 2327 } 2328 /* does this rdev's profile match the reference profile? */ 2329 if (blk_integrity_compare(reference->bdev->bd_disk, 2330 rdev->bdev->bd_disk) < 0) 2331 return -EINVAL; 2332 } 2333 if (!reference || !bdev_get_integrity(reference->bdev)) 2334 return 0; 2335 /* 2336 * All component devices are integrity capable and have matching 2337 * profiles, register the common profile for the md device. 2338 */ 2339 blk_integrity_register(mddev->gendisk, 2340 bdev_get_integrity(reference->bdev)); 2341 2342 pr_debug("md: data integrity enabled on %s\n", mdname(mddev)); 2343 if (bioset_integrity_create(&mddev->bio_set, BIO_POOL_SIZE) || 2344 (mddev->level != 1 && mddev->level != 10 && 2345 bioset_integrity_create(&mddev->io_acct_set, BIO_POOL_SIZE))) { 2346 /* 2347 * No need to handle the failure of bioset_integrity_create, 2348 * because the function is called by md_run() -> pers->run(), 2349 * md_run calls bioset_exit -> bioset_integrity_free in case 2350 * of failure case. 2351 */ 2352 pr_err("md: failed to create integrity pool for %s\n", 2353 mdname(mddev)); 2354 return -EINVAL; 2355 } 2356 return 0; 2357 } 2358 EXPORT_SYMBOL(md_integrity_register); 2359 2360 /* 2361 * Attempt to add an rdev, but only if it is consistent with the current 2362 * integrity profile 2363 */ 2364 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev) 2365 { 2366 struct blk_integrity *bi_mddev; 2367 char name[BDEVNAME_SIZE]; 2368 2369 if (!mddev->gendisk) 2370 return 0; 2371 2372 bi_mddev = blk_get_integrity(mddev->gendisk); 2373 2374 if (!bi_mddev) /* nothing to do */ 2375 return 0; 2376 2377 if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) { 2378 pr_err("%s: incompatible integrity profile for %s\n", 2379 mdname(mddev), bdevname(rdev->bdev, name)); 2380 return -ENXIO; 2381 } 2382 2383 return 0; 2384 } 2385 EXPORT_SYMBOL(md_integrity_add_rdev); 2386 2387 static bool rdev_read_only(struct md_rdev *rdev) 2388 { 2389 return bdev_read_only(rdev->bdev) || 2390 (rdev->meta_bdev && bdev_read_only(rdev->meta_bdev)); 2391 } 2392 2393 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev) 2394 { 2395 char b[BDEVNAME_SIZE]; 2396 int err; 2397 2398 /* prevent duplicates */ 2399 if (find_rdev(mddev, rdev->bdev->bd_dev)) 2400 return -EEXIST; 2401 2402 if (rdev_read_only(rdev) && mddev->pers) 2403 return -EROFS; 2404 2405 /* make sure rdev->sectors exceeds mddev->dev_sectors */ 2406 if (!test_bit(Journal, &rdev->flags) && 2407 rdev->sectors && 2408 (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) { 2409 if (mddev->pers) { 2410 /* Cannot change size, so fail 2411 * If mddev->level <= 0, then we don't care 2412 * about aligning sizes (e.g. linear) 2413 */ 2414 if (mddev->level > 0) 2415 return -ENOSPC; 2416 } else 2417 mddev->dev_sectors = rdev->sectors; 2418 } 2419 2420 /* Verify rdev->desc_nr is unique. 2421 * If it is -1, assign a free number, else 2422 * check number is not in use 2423 */ 2424 rcu_read_lock(); 2425 if (rdev->desc_nr < 0) { 2426 int choice = 0; 2427 if (mddev->pers) 2428 choice = mddev->raid_disks; 2429 while (md_find_rdev_nr_rcu(mddev, choice)) 2430 choice++; 2431 rdev->desc_nr = choice; 2432 } else { 2433 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) { 2434 rcu_read_unlock(); 2435 return -EBUSY; 2436 } 2437 } 2438 rcu_read_unlock(); 2439 if (!test_bit(Journal, &rdev->flags) && 2440 mddev->max_disks && rdev->desc_nr >= mddev->max_disks) { 2441 pr_warn("md: %s: array is limited to %d devices\n", 2442 mdname(mddev), mddev->max_disks); 2443 return -EBUSY; 2444 } 2445 bdevname(rdev->bdev,b); 2446 strreplace(b, '/', '!'); 2447 2448 rdev->mddev = mddev; 2449 pr_debug("md: bind<%s>\n", b); 2450 2451 if (mddev->raid_disks) 2452 mddev_create_serial_pool(mddev, rdev, false); 2453 2454 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b))) 2455 goto fail; 2456 2457 /* failure here is OK */ 2458 err = sysfs_create_link(&rdev->kobj, bdev_kobj(rdev->bdev), "block"); 2459 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state"); 2460 rdev->sysfs_unack_badblocks = 2461 sysfs_get_dirent_safe(rdev->kobj.sd, "unacknowledged_bad_blocks"); 2462 rdev->sysfs_badblocks = 2463 sysfs_get_dirent_safe(rdev->kobj.sd, "bad_blocks"); 2464 2465 list_add_rcu(&rdev->same_set, &mddev->disks); 2466 bd_link_disk_holder(rdev->bdev, mddev->gendisk); 2467 2468 /* May as well allow recovery to be retried once */ 2469 mddev->recovery_disabled++; 2470 2471 return 0; 2472 2473 fail: 2474 pr_warn("md: failed to register dev-%s for %s\n", 2475 b, mdname(mddev)); 2476 return err; 2477 } 2478 2479 static void rdev_delayed_delete(struct work_struct *ws) 2480 { 2481 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work); 2482 kobject_del(&rdev->kobj); 2483 kobject_put(&rdev->kobj); 2484 } 2485 2486 static void unbind_rdev_from_array(struct md_rdev *rdev) 2487 { 2488 char b[BDEVNAME_SIZE]; 2489 2490 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk); 2491 list_del_rcu(&rdev->same_set); 2492 pr_debug("md: unbind<%s>\n", bdevname(rdev->bdev,b)); 2493 mddev_destroy_serial_pool(rdev->mddev, rdev, false); 2494 rdev->mddev = NULL; 2495 sysfs_remove_link(&rdev->kobj, "block"); 2496 sysfs_put(rdev->sysfs_state); 2497 sysfs_put(rdev->sysfs_unack_badblocks); 2498 sysfs_put(rdev->sysfs_badblocks); 2499 rdev->sysfs_state = NULL; 2500 rdev->sysfs_unack_badblocks = NULL; 2501 rdev->sysfs_badblocks = NULL; 2502 rdev->badblocks.count = 0; 2503 /* We need to delay this, otherwise we can deadlock when 2504 * writing to 'remove' to "dev/state". We also need 2505 * to delay it due to rcu usage. 2506 */ 2507 synchronize_rcu(); 2508 INIT_WORK(&rdev->del_work, rdev_delayed_delete); 2509 kobject_get(&rdev->kobj); 2510 queue_work(md_rdev_misc_wq, &rdev->del_work); 2511 } 2512 2513 /* 2514 * prevent the device from being mounted, repartitioned or 2515 * otherwise reused by a RAID array (or any other kernel 2516 * subsystem), by bd_claiming the device. 2517 */ 2518 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared) 2519 { 2520 int err = 0; 2521 struct block_device *bdev; 2522 2523 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, 2524 shared ? (struct md_rdev *)lock_rdev : rdev); 2525 if (IS_ERR(bdev)) { 2526 pr_warn("md: could not open device unknown-block(%u,%u).\n", 2527 MAJOR(dev), MINOR(dev)); 2528 return PTR_ERR(bdev); 2529 } 2530 rdev->bdev = bdev; 2531 return err; 2532 } 2533 2534 static void unlock_rdev(struct md_rdev *rdev) 2535 { 2536 struct block_device *bdev = rdev->bdev; 2537 rdev->bdev = NULL; 2538 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 2539 } 2540 2541 void md_autodetect_dev(dev_t dev); 2542 2543 static void export_rdev(struct md_rdev *rdev) 2544 { 2545 char b[BDEVNAME_SIZE]; 2546 2547 pr_debug("md: export_rdev(%s)\n", bdevname(rdev->bdev,b)); 2548 md_rdev_clear(rdev); 2549 #ifndef MODULE 2550 if (test_bit(AutoDetected, &rdev->flags)) 2551 md_autodetect_dev(rdev->bdev->bd_dev); 2552 #endif 2553 unlock_rdev(rdev); 2554 kobject_put(&rdev->kobj); 2555 } 2556 2557 void md_kick_rdev_from_array(struct md_rdev *rdev) 2558 { 2559 unbind_rdev_from_array(rdev); 2560 export_rdev(rdev); 2561 } 2562 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array); 2563 2564 static void export_array(struct mddev *mddev) 2565 { 2566 struct md_rdev *rdev; 2567 2568 while (!list_empty(&mddev->disks)) { 2569 rdev = list_first_entry(&mddev->disks, struct md_rdev, 2570 same_set); 2571 md_kick_rdev_from_array(rdev); 2572 } 2573 mddev->raid_disks = 0; 2574 mddev->major_version = 0; 2575 } 2576 2577 static bool set_in_sync(struct mddev *mddev) 2578 { 2579 lockdep_assert_held(&mddev->lock); 2580 if (!mddev->in_sync) { 2581 mddev->sync_checkers++; 2582 spin_unlock(&mddev->lock); 2583 percpu_ref_switch_to_atomic_sync(&mddev->writes_pending); 2584 spin_lock(&mddev->lock); 2585 if (!mddev->in_sync && 2586 percpu_ref_is_zero(&mddev->writes_pending)) { 2587 mddev->in_sync = 1; 2588 /* 2589 * Ensure ->in_sync is visible before we clear 2590 * ->sync_checkers. 2591 */ 2592 smp_mb(); 2593 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2594 sysfs_notify_dirent_safe(mddev->sysfs_state); 2595 } 2596 if (--mddev->sync_checkers == 0) 2597 percpu_ref_switch_to_percpu(&mddev->writes_pending); 2598 } 2599 if (mddev->safemode == 1) 2600 mddev->safemode = 0; 2601 return mddev->in_sync; 2602 } 2603 2604 static void sync_sbs(struct mddev *mddev, int nospares) 2605 { 2606 /* Update each superblock (in-memory image), but 2607 * if we are allowed to, skip spares which already 2608 * have the right event counter, or have one earlier 2609 * (which would mean they aren't being marked as dirty 2610 * with the rest of the array) 2611 */ 2612 struct md_rdev *rdev; 2613 rdev_for_each(rdev, mddev) { 2614 if (rdev->sb_events == mddev->events || 2615 (nospares && 2616 rdev->raid_disk < 0 && 2617 rdev->sb_events+1 == mddev->events)) { 2618 /* Don't update this superblock */ 2619 rdev->sb_loaded = 2; 2620 } else { 2621 sync_super(mddev, rdev); 2622 rdev->sb_loaded = 1; 2623 } 2624 } 2625 } 2626 2627 static bool does_sb_need_changing(struct mddev *mddev) 2628 { 2629 struct md_rdev *rdev; 2630 struct mdp_superblock_1 *sb; 2631 int role; 2632 2633 /* Find a good rdev */ 2634 rdev_for_each(rdev, mddev) 2635 if ((rdev->raid_disk >= 0) && !test_bit(Faulty, &rdev->flags)) 2636 break; 2637 2638 /* No good device found. */ 2639 if (!rdev) 2640 return false; 2641 2642 sb = page_address(rdev->sb_page); 2643 /* Check if a device has become faulty or a spare become active */ 2644 rdev_for_each(rdev, mddev) { 2645 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 2646 /* Device activated? */ 2647 if (role == 0xffff && rdev->raid_disk >=0 && 2648 !test_bit(Faulty, &rdev->flags)) 2649 return true; 2650 /* Device turned faulty? */ 2651 if (test_bit(Faulty, &rdev->flags) && (role < 0xfffd)) 2652 return true; 2653 } 2654 2655 /* Check if any mddev parameters have changed */ 2656 if ((mddev->dev_sectors != le64_to_cpu(sb->size)) || 2657 (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) || 2658 (mddev->layout != le32_to_cpu(sb->layout)) || 2659 (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) || 2660 (mddev->chunk_sectors != le32_to_cpu(sb->chunksize))) 2661 return true; 2662 2663 return false; 2664 } 2665 2666 void md_update_sb(struct mddev *mddev, int force_change) 2667 { 2668 struct md_rdev *rdev; 2669 int sync_req; 2670 int nospares = 0; 2671 int any_badblocks_changed = 0; 2672 int ret = -1; 2673 2674 if (mddev->ro) { 2675 if (force_change) 2676 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2677 return; 2678 } 2679 2680 repeat: 2681 if (mddev_is_clustered(mddev)) { 2682 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2683 force_change = 1; 2684 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2685 nospares = 1; 2686 ret = md_cluster_ops->metadata_update_start(mddev); 2687 /* Has someone else has updated the sb */ 2688 if (!does_sb_need_changing(mddev)) { 2689 if (ret == 0) 2690 md_cluster_ops->metadata_update_cancel(mddev); 2691 bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2692 BIT(MD_SB_CHANGE_DEVS) | 2693 BIT(MD_SB_CHANGE_CLEAN)); 2694 return; 2695 } 2696 } 2697 2698 /* 2699 * First make sure individual recovery_offsets are correct 2700 * curr_resync_completed can only be used during recovery. 2701 * During reshape/resync it might use array-addresses rather 2702 * that device addresses. 2703 */ 2704 rdev_for_each(rdev, mddev) { 2705 if (rdev->raid_disk >= 0 && 2706 mddev->delta_disks >= 0 && 2707 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 2708 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery) && 2709 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 2710 !test_bit(Journal, &rdev->flags) && 2711 !test_bit(In_sync, &rdev->flags) && 2712 mddev->curr_resync_completed > rdev->recovery_offset) 2713 rdev->recovery_offset = mddev->curr_resync_completed; 2714 2715 } 2716 if (!mddev->persistent) { 2717 clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2718 clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2719 if (!mddev->external) { 2720 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 2721 rdev_for_each(rdev, mddev) { 2722 if (rdev->badblocks.changed) { 2723 rdev->badblocks.changed = 0; 2724 ack_all_badblocks(&rdev->badblocks); 2725 md_error(mddev, rdev); 2726 } 2727 clear_bit(Blocked, &rdev->flags); 2728 clear_bit(BlockedBadBlocks, &rdev->flags); 2729 wake_up(&rdev->blocked_wait); 2730 } 2731 } 2732 wake_up(&mddev->sb_wait); 2733 return; 2734 } 2735 2736 spin_lock(&mddev->lock); 2737 2738 mddev->utime = ktime_get_real_seconds(); 2739 2740 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2741 force_change = 1; 2742 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2743 /* just a clean<-> dirty transition, possibly leave spares alone, 2744 * though if events isn't the right even/odd, we will have to do 2745 * spares after all 2746 */ 2747 nospares = 1; 2748 if (force_change) 2749 nospares = 0; 2750 if (mddev->degraded) 2751 /* If the array is degraded, then skipping spares is both 2752 * dangerous and fairly pointless. 2753 * Dangerous because a device that was removed from the array 2754 * might have a event_count that still looks up-to-date, 2755 * so it can be re-added without a resync. 2756 * Pointless because if there are any spares to skip, 2757 * then a recovery will happen and soon that array won't 2758 * be degraded any more and the spare can go back to sleep then. 2759 */ 2760 nospares = 0; 2761 2762 sync_req = mddev->in_sync; 2763 2764 /* If this is just a dirty<->clean transition, and the array is clean 2765 * and 'events' is odd, we can roll back to the previous clean state */ 2766 if (nospares 2767 && (mddev->in_sync && mddev->recovery_cp == MaxSector) 2768 && mddev->can_decrease_events 2769 && mddev->events != 1) { 2770 mddev->events--; 2771 mddev->can_decrease_events = 0; 2772 } else { 2773 /* otherwise we have to go forward and ... */ 2774 mddev->events ++; 2775 mddev->can_decrease_events = nospares; 2776 } 2777 2778 /* 2779 * This 64-bit counter should never wrap. 2780 * Either we are in around ~1 trillion A.C., assuming 2781 * 1 reboot per second, or we have a bug... 2782 */ 2783 WARN_ON(mddev->events == 0); 2784 2785 rdev_for_each(rdev, mddev) { 2786 if (rdev->badblocks.changed) 2787 any_badblocks_changed++; 2788 if (test_bit(Faulty, &rdev->flags)) 2789 set_bit(FaultRecorded, &rdev->flags); 2790 } 2791 2792 sync_sbs(mddev, nospares); 2793 spin_unlock(&mddev->lock); 2794 2795 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n", 2796 mdname(mddev), mddev->in_sync); 2797 2798 if (mddev->queue) 2799 blk_add_trace_msg(mddev->queue, "md md_update_sb"); 2800 rewrite: 2801 md_bitmap_update_sb(mddev->bitmap); 2802 rdev_for_each(rdev, mddev) { 2803 char b[BDEVNAME_SIZE]; 2804 2805 if (rdev->sb_loaded != 1) 2806 continue; /* no noise on spare devices */ 2807 2808 if (!test_bit(Faulty, &rdev->flags)) { 2809 md_super_write(mddev,rdev, 2810 rdev->sb_start, rdev->sb_size, 2811 rdev->sb_page); 2812 pr_debug("md: (write) %s's sb offset: %llu\n", 2813 bdevname(rdev->bdev, b), 2814 (unsigned long long)rdev->sb_start); 2815 rdev->sb_events = mddev->events; 2816 if (rdev->badblocks.size) { 2817 md_super_write(mddev, rdev, 2818 rdev->badblocks.sector, 2819 rdev->badblocks.size << 9, 2820 rdev->bb_page); 2821 rdev->badblocks.size = 0; 2822 } 2823 2824 } else 2825 pr_debug("md: %s (skipping faulty)\n", 2826 bdevname(rdev->bdev, b)); 2827 2828 if (mddev->level == LEVEL_MULTIPATH) 2829 /* only need to write one superblock... */ 2830 break; 2831 } 2832 if (md_super_wait(mddev) < 0) 2833 goto rewrite; 2834 /* if there was a failure, MD_SB_CHANGE_DEVS was set, and we re-write super */ 2835 2836 if (mddev_is_clustered(mddev) && ret == 0) 2837 md_cluster_ops->metadata_update_finish(mddev); 2838 2839 if (mddev->in_sync != sync_req || 2840 !bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2841 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_CLEAN))) 2842 /* have to write it out again */ 2843 goto repeat; 2844 wake_up(&mddev->sb_wait); 2845 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 2846 sysfs_notify_dirent_safe(mddev->sysfs_completed); 2847 2848 rdev_for_each(rdev, mddev) { 2849 if (test_and_clear_bit(FaultRecorded, &rdev->flags)) 2850 clear_bit(Blocked, &rdev->flags); 2851 2852 if (any_badblocks_changed) 2853 ack_all_badblocks(&rdev->badblocks); 2854 clear_bit(BlockedBadBlocks, &rdev->flags); 2855 wake_up(&rdev->blocked_wait); 2856 } 2857 } 2858 EXPORT_SYMBOL(md_update_sb); 2859 2860 static int add_bound_rdev(struct md_rdev *rdev) 2861 { 2862 struct mddev *mddev = rdev->mddev; 2863 int err = 0; 2864 bool add_journal = test_bit(Journal, &rdev->flags); 2865 2866 if (!mddev->pers->hot_remove_disk || add_journal) { 2867 /* If there is hot_add_disk but no hot_remove_disk 2868 * then added disks for geometry changes, 2869 * and should be added immediately. 2870 */ 2871 super_types[mddev->major_version]. 2872 validate_super(mddev, rdev); 2873 if (add_journal) 2874 mddev_suspend(mddev); 2875 err = mddev->pers->hot_add_disk(mddev, rdev); 2876 if (add_journal) 2877 mddev_resume(mddev); 2878 if (err) { 2879 md_kick_rdev_from_array(rdev); 2880 return err; 2881 } 2882 } 2883 sysfs_notify_dirent_safe(rdev->sysfs_state); 2884 2885 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2886 if (mddev->degraded) 2887 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 2888 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2889 md_new_event(mddev); 2890 md_wakeup_thread(mddev->thread); 2891 return 0; 2892 } 2893 2894 /* words written to sysfs files may, or may not, be \n terminated. 2895 * We want to accept with case. For this we use cmd_match. 2896 */ 2897 static int cmd_match(const char *cmd, const char *str) 2898 { 2899 /* See if cmd, written into a sysfs file, matches 2900 * str. They must either be the same, or cmd can 2901 * have a trailing newline 2902 */ 2903 while (*cmd && *str && *cmd == *str) { 2904 cmd++; 2905 str++; 2906 } 2907 if (*cmd == '\n') 2908 cmd++; 2909 if (*str || *cmd) 2910 return 0; 2911 return 1; 2912 } 2913 2914 struct rdev_sysfs_entry { 2915 struct attribute attr; 2916 ssize_t (*show)(struct md_rdev *, char *); 2917 ssize_t (*store)(struct md_rdev *, const char *, size_t); 2918 }; 2919 2920 static ssize_t 2921 state_show(struct md_rdev *rdev, char *page) 2922 { 2923 char *sep = ","; 2924 size_t len = 0; 2925 unsigned long flags = READ_ONCE(rdev->flags); 2926 2927 if (test_bit(Faulty, &flags) || 2928 (!test_bit(ExternalBbl, &flags) && 2929 rdev->badblocks.unacked_exist)) 2930 len += sprintf(page+len, "faulty%s", sep); 2931 if (test_bit(In_sync, &flags)) 2932 len += sprintf(page+len, "in_sync%s", sep); 2933 if (test_bit(Journal, &flags)) 2934 len += sprintf(page+len, "journal%s", sep); 2935 if (test_bit(WriteMostly, &flags)) 2936 len += sprintf(page+len, "write_mostly%s", sep); 2937 if (test_bit(Blocked, &flags) || 2938 (rdev->badblocks.unacked_exist 2939 && !test_bit(Faulty, &flags))) 2940 len += sprintf(page+len, "blocked%s", sep); 2941 if (!test_bit(Faulty, &flags) && 2942 !test_bit(Journal, &flags) && 2943 !test_bit(In_sync, &flags)) 2944 len += sprintf(page+len, "spare%s", sep); 2945 if (test_bit(WriteErrorSeen, &flags)) 2946 len += sprintf(page+len, "write_error%s", sep); 2947 if (test_bit(WantReplacement, &flags)) 2948 len += sprintf(page+len, "want_replacement%s", sep); 2949 if (test_bit(Replacement, &flags)) 2950 len += sprintf(page+len, "replacement%s", sep); 2951 if (test_bit(ExternalBbl, &flags)) 2952 len += sprintf(page+len, "external_bbl%s", sep); 2953 if (test_bit(FailFast, &flags)) 2954 len += sprintf(page+len, "failfast%s", sep); 2955 2956 if (len) 2957 len -= strlen(sep); 2958 2959 return len+sprintf(page+len, "\n"); 2960 } 2961 2962 static ssize_t 2963 state_store(struct md_rdev *rdev, const char *buf, size_t len) 2964 { 2965 /* can write 2966 * faulty - simulates an error 2967 * remove - disconnects the device 2968 * writemostly - sets write_mostly 2969 * -writemostly - clears write_mostly 2970 * blocked - sets the Blocked flags 2971 * -blocked - clears the Blocked and possibly simulates an error 2972 * insync - sets Insync providing device isn't active 2973 * -insync - clear Insync for a device with a slot assigned, 2974 * so that it gets rebuilt based on bitmap 2975 * write_error - sets WriteErrorSeen 2976 * -write_error - clears WriteErrorSeen 2977 * {,-}failfast - set/clear FailFast 2978 */ 2979 int err = -EINVAL; 2980 if (cmd_match(buf, "faulty") && rdev->mddev->pers) { 2981 md_error(rdev->mddev, rdev); 2982 if (test_bit(Faulty, &rdev->flags)) 2983 err = 0; 2984 else 2985 err = -EBUSY; 2986 } else if (cmd_match(buf, "remove")) { 2987 if (rdev->mddev->pers) { 2988 clear_bit(Blocked, &rdev->flags); 2989 remove_and_add_spares(rdev->mddev, rdev); 2990 } 2991 if (rdev->raid_disk >= 0) 2992 err = -EBUSY; 2993 else { 2994 struct mddev *mddev = rdev->mddev; 2995 err = 0; 2996 if (mddev_is_clustered(mddev)) 2997 err = md_cluster_ops->remove_disk(mddev, rdev); 2998 2999 if (err == 0) { 3000 md_kick_rdev_from_array(rdev); 3001 if (mddev->pers) { 3002 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 3003 md_wakeup_thread(mddev->thread); 3004 } 3005 md_new_event(mddev); 3006 } 3007 } 3008 } else if (cmd_match(buf, "writemostly")) { 3009 set_bit(WriteMostly, &rdev->flags); 3010 mddev_create_serial_pool(rdev->mddev, rdev, false); 3011 err = 0; 3012 } else if (cmd_match(buf, "-writemostly")) { 3013 mddev_destroy_serial_pool(rdev->mddev, rdev, false); 3014 clear_bit(WriteMostly, &rdev->flags); 3015 err = 0; 3016 } else if (cmd_match(buf, "blocked")) { 3017 set_bit(Blocked, &rdev->flags); 3018 err = 0; 3019 } else if (cmd_match(buf, "-blocked")) { 3020 if (!test_bit(Faulty, &rdev->flags) && 3021 !test_bit(ExternalBbl, &rdev->flags) && 3022 rdev->badblocks.unacked_exist) { 3023 /* metadata handler doesn't understand badblocks, 3024 * so we need to fail the device 3025 */ 3026 md_error(rdev->mddev, rdev); 3027 } 3028 clear_bit(Blocked, &rdev->flags); 3029 clear_bit(BlockedBadBlocks, &rdev->flags); 3030 wake_up(&rdev->blocked_wait); 3031 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3032 md_wakeup_thread(rdev->mddev->thread); 3033 3034 err = 0; 3035 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) { 3036 set_bit(In_sync, &rdev->flags); 3037 err = 0; 3038 } else if (cmd_match(buf, "failfast")) { 3039 set_bit(FailFast, &rdev->flags); 3040 err = 0; 3041 } else if (cmd_match(buf, "-failfast")) { 3042 clear_bit(FailFast, &rdev->flags); 3043 err = 0; 3044 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 && 3045 !test_bit(Journal, &rdev->flags)) { 3046 if (rdev->mddev->pers == NULL) { 3047 clear_bit(In_sync, &rdev->flags); 3048 rdev->saved_raid_disk = rdev->raid_disk; 3049 rdev->raid_disk = -1; 3050 err = 0; 3051 } 3052 } else if (cmd_match(buf, "write_error")) { 3053 set_bit(WriteErrorSeen, &rdev->flags); 3054 err = 0; 3055 } else if (cmd_match(buf, "-write_error")) { 3056 clear_bit(WriteErrorSeen, &rdev->flags); 3057 err = 0; 3058 } else if (cmd_match(buf, "want_replacement")) { 3059 /* Any non-spare device that is not a replacement can 3060 * become want_replacement at any time, but we then need to 3061 * check if recovery is needed. 3062 */ 3063 if (rdev->raid_disk >= 0 && 3064 !test_bit(Journal, &rdev->flags) && 3065 !test_bit(Replacement, &rdev->flags)) 3066 set_bit(WantReplacement, &rdev->flags); 3067 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3068 md_wakeup_thread(rdev->mddev->thread); 3069 err = 0; 3070 } else if (cmd_match(buf, "-want_replacement")) { 3071 /* Clearing 'want_replacement' is always allowed. 3072 * Once replacements starts it is too late though. 3073 */ 3074 err = 0; 3075 clear_bit(WantReplacement, &rdev->flags); 3076 } else if (cmd_match(buf, "replacement")) { 3077 /* Can only set a device as a replacement when array has not 3078 * yet been started. Once running, replacement is automatic 3079 * from spares, or by assigning 'slot'. 3080 */ 3081 if (rdev->mddev->pers) 3082 err = -EBUSY; 3083 else { 3084 set_bit(Replacement, &rdev->flags); 3085 err = 0; 3086 } 3087 } else if (cmd_match(buf, "-replacement")) { 3088 /* Similarly, can only clear Replacement before start */ 3089 if (rdev->mddev->pers) 3090 err = -EBUSY; 3091 else { 3092 clear_bit(Replacement, &rdev->flags); 3093 err = 0; 3094 } 3095 } else if (cmd_match(buf, "re-add")) { 3096 if (!rdev->mddev->pers) 3097 err = -EINVAL; 3098 else if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1) && 3099 rdev->saved_raid_disk >= 0) { 3100 /* clear_bit is performed _after_ all the devices 3101 * have their local Faulty bit cleared. If any writes 3102 * happen in the meantime in the local node, they 3103 * will land in the local bitmap, which will be synced 3104 * by this node eventually 3105 */ 3106 if (!mddev_is_clustered(rdev->mddev) || 3107 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) { 3108 clear_bit(Faulty, &rdev->flags); 3109 err = add_bound_rdev(rdev); 3110 } 3111 } else 3112 err = -EBUSY; 3113 } else if (cmd_match(buf, "external_bbl") && (rdev->mddev->external)) { 3114 set_bit(ExternalBbl, &rdev->flags); 3115 rdev->badblocks.shift = 0; 3116 err = 0; 3117 } else if (cmd_match(buf, "-external_bbl") && (rdev->mddev->external)) { 3118 clear_bit(ExternalBbl, &rdev->flags); 3119 err = 0; 3120 } 3121 if (!err) 3122 sysfs_notify_dirent_safe(rdev->sysfs_state); 3123 return err ? err : len; 3124 } 3125 static struct rdev_sysfs_entry rdev_state = 3126 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store); 3127 3128 static ssize_t 3129 errors_show(struct md_rdev *rdev, char *page) 3130 { 3131 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); 3132 } 3133 3134 static ssize_t 3135 errors_store(struct md_rdev *rdev, const char *buf, size_t len) 3136 { 3137 unsigned int n; 3138 int rv; 3139 3140 rv = kstrtouint(buf, 10, &n); 3141 if (rv < 0) 3142 return rv; 3143 atomic_set(&rdev->corrected_errors, n); 3144 return len; 3145 } 3146 static struct rdev_sysfs_entry rdev_errors = 3147 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); 3148 3149 static ssize_t 3150 slot_show(struct md_rdev *rdev, char *page) 3151 { 3152 if (test_bit(Journal, &rdev->flags)) 3153 return sprintf(page, "journal\n"); 3154 else if (rdev->raid_disk < 0) 3155 return sprintf(page, "none\n"); 3156 else 3157 return sprintf(page, "%d\n", rdev->raid_disk); 3158 } 3159 3160 static ssize_t 3161 slot_store(struct md_rdev *rdev, const char *buf, size_t len) 3162 { 3163 int slot; 3164 int err; 3165 3166 if (test_bit(Journal, &rdev->flags)) 3167 return -EBUSY; 3168 if (strncmp(buf, "none", 4)==0) 3169 slot = -1; 3170 else { 3171 err = kstrtouint(buf, 10, (unsigned int *)&slot); 3172 if (err < 0) 3173 return err; 3174 } 3175 if (rdev->mddev->pers && slot == -1) { 3176 /* Setting 'slot' on an active array requires also 3177 * updating the 'rd%d' link, and communicating 3178 * with the personality with ->hot_*_disk. 3179 * For now we only support removing 3180 * failed/spare devices. This normally happens automatically, 3181 * but not when the metadata is externally managed. 3182 */ 3183 if (rdev->raid_disk == -1) 3184 return -EEXIST; 3185 /* personality does all needed checks */ 3186 if (rdev->mddev->pers->hot_remove_disk == NULL) 3187 return -EINVAL; 3188 clear_bit(Blocked, &rdev->flags); 3189 remove_and_add_spares(rdev->mddev, rdev); 3190 if (rdev->raid_disk >= 0) 3191 return -EBUSY; 3192 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3193 md_wakeup_thread(rdev->mddev->thread); 3194 } else if (rdev->mddev->pers) { 3195 /* Activating a spare .. or possibly reactivating 3196 * if we ever get bitmaps working here. 3197 */ 3198 int err; 3199 3200 if (rdev->raid_disk != -1) 3201 return -EBUSY; 3202 3203 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery)) 3204 return -EBUSY; 3205 3206 if (rdev->mddev->pers->hot_add_disk == NULL) 3207 return -EINVAL; 3208 3209 if (slot >= rdev->mddev->raid_disks && 3210 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 3211 return -ENOSPC; 3212 3213 rdev->raid_disk = slot; 3214 if (test_bit(In_sync, &rdev->flags)) 3215 rdev->saved_raid_disk = slot; 3216 else 3217 rdev->saved_raid_disk = -1; 3218 clear_bit(In_sync, &rdev->flags); 3219 clear_bit(Bitmap_sync, &rdev->flags); 3220 err = rdev->mddev->pers->hot_add_disk(rdev->mddev, rdev); 3221 if (err) { 3222 rdev->raid_disk = -1; 3223 return err; 3224 } else 3225 sysfs_notify_dirent_safe(rdev->sysfs_state); 3226 /* failure here is OK */; 3227 sysfs_link_rdev(rdev->mddev, rdev); 3228 /* don't wakeup anyone, leave that to userspace. */ 3229 } else { 3230 if (slot >= rdev->mddev->raid_disks && 3231 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 3232 return -ENOSPC; 3233 rdev->raid_disk = slot; 3234 /* assume it is working */ 3235 clear_bit(Faulty, &rdev->flags); 3236 clear_bit(WriteMostly, &rdev->flags); 3237 set_bit(In_sync, &rdev->flags); 3238 sysfs_notify_dirent_safe(rdev->sysfs_state); 3239 } 3240 return len; 3241 } 3242 3243 static struct rdev_sysfs_entry rdev_slot = 3244 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); 3245 3246 static ssize_t 3247 offset_show(struct md_rdev *rdev, char *page) 3248 { 3249 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); 3250 } 3251 3252 static ssize_t 3253 offset_store(struct md_rdev *rdev, const char *buf, size_t len) 3254 { 3255 unsigned long long offset; 3256 if (kstrtoull(buf, 10, &offset) < 0) 3257 return -EINVAL; 3258 if (rdev->mddev->pers && rdev->raid_disk >= 0) 3259 return -EBUSY; 3260 if (rdev->sectors && rdev->mddev->external) 3261 /* Must set offset before size, so overlap checks 3262 * can be sane */ 3263 return -EBUSY; 3264 rdev->data_offset = offset; 3265 rdev->new_data_offset = offset; 3266 return len; 3267 } 3268 3269 static struct rdev_sysfs_entry rdev_offset = 3270 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); 3271 3272 static ssize_t new_offset_show(struct md_rdev *rdev, char *page) 3273 { 3274 return sprintf(page, "%llu\n", 3275 (unsigned long long)rdev->new_data_offset); 3276 } 3277 3278 static ssize_t new_offset_store(struct md_rdev *rdev, 3279 const char *buf, size_t len) 3280 { 3281 unsigned long long new_offset; 3282 struct mddev *mddev = rdev->mddev; 3283 3284 if (kstrtoull(buf, 10, &new_offset) < 0) 3285 return -EINVAL; 3286 3287 if (mddev->sync_thread || 3288 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery)) 3289 return -EBUSY; 3290 if (new_offset == rdev->data_offset) 3291 /* reset is always permitted */ 3292 ; 3293 else if (new_offset > rdev->data_offset) { 3294 /* must not push array size beyond rdev_sectors */ 3295 if (new_offset - rdev->data_offset 3296 + mddev->dev_sectors > rdev->sectors) 3297 return -E2BIG; 3298 } 3299 /* Metadata worries about other space details. */ 3300 3301 /* decreasing the offset is inconsistent with a backwards 3302 * reshape. 3303 */ 3304 if (new_offset < rdev->data_offset && 3305 mddev->reshape_backwards) 3306 return -EINVAL; 3307 /* Increasing offset is inconsistent with forwards 3308 * reshape. reshape_direction should be set to 3309 * 'backwards' first. 3310 */ 3311 if (new_offset > rdev->data_offset && 3312 !mddev->reshape_backwards) 3313 return -EINVAL; 3314 3315 if (mddev->pers && mddev->persistent && 3316 !super_types[mddev->major_version] 3317 .allow_new_offset(rdev, new_offset)) 3318 return -E2BIG; 3319 rdev->new_data_offset = new_offset; 3320 if (new_offset > rdev->data_offset) 3321 mddev->reshape_backwards = 1; 3322 else if (new_offset < rdev->data_offset) 3323 mddev->reshape_backwards = 0; 3324 3325 return len; 3326 } 3327 static struct rdev_sysfs_entry rdev_new_offset = 3328 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store); 3329 3330 static ssize_t 3331 rdev_size_show(struct md_rdev *rdev, char *page) 3332 { 3333 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2); 3334 } 3335 3336 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2) 3337 { 3338 /* check if two start/length pairs overlap */ 3339 if (s1+l1 <= s2) 3340 return 0; 3341 if (s2+l2 <= s1) 3342 return 0; 3343 return 1; 3344 } 3345 3346 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors) 3347 { 3348 unsigned long long blocks; 3349 sector_t new; 3350 3351 if (kstrtoull(buf, 10, &blocks) < 0) 3352 return -EINVAL; 3353 3354 if (blocks & 1ULL << (8 * sizeof(blocks) - 1)) 3355 return -EINVAL; /* sector conversion overflow */ 3356 3357 new = blocks * 2; 3358 if (new != blocks * 2) 3359 return -EINVAL; /* unsigned long long to sector_t overflow */ 3360 3361 *sectors = new; 3362 return 0; 3363 } 3364 3365 static ssize_t 3366 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3367 { 3368 struct mddev *my_mddev = rdev->mddev; 3369 sector_t oldsectors = rdev->sectors; 3370 sector_t sectors; 3371 3372 if (test_bit(Journal, &rdev->flags)) 3373 return -EBUSY; 3374 if (strict_blocks_to_sectors(buf, §ors) < 0) 3375 return -EINVAL; 3376 if (rdev->data_offset != rdev->new_data_offset) 3377 return -EINVAL; /* too confusing */ 3378 if (my_mddev->pers && rdev->raid_disk >= 0) { 3379 if (my_mddev->persistent) { 3380 sectors = super_types[my_mddev->major_version]. 3381 rdev_size_change(rdev, sectors); 3382 if (!sectors) 3383 return -EBUSY; 3384 } else if (!sectors) 3385 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) - 3386 rdev->data_offset; 3387 if (!my_mddev->pers->resize) 3388 /* Cannot change size for RAID0 or Linear etc */ 3389 return -EINVAL; 3390 } 3391 if (sectors < my_mddev->dev_sectors) 3392 return -EINVAL; /* component must fit device */ 3393 3394 rdev->sectors = sectors; 3395 if (sectors > oldsectors && my_mddev->external) { 3396 /* Need to check that all other rdevs with the same 3397 * ->bdev do not overlap. 'rcu' is sufficient to walk 3398 * the rdev lists safely. 3399 * This check does not provide a hard guarantee, it 3400 * just helps avoid dangerous mistakes. 3401 */ 3402 struct mddev *mddev; 3403 int overlap = 0; 3404 struct list_head *tmp; 3405 3406 rcu_read_lock(); 3407 for_each_mddev(mddev, tmp) { 3408 struct md_rdev *rdev2; 3409 3410 rdev_for_each(rdev2, mddev) 3411 if (rdev->bdev == rdev2->bdev && 3412 rdev != rdev2 && 3413 overlaps(rdev->data_offset, rdev->sectors, 3414 rdev2->data_offset, 3415 rdev2->sectors)) { 3416 overlap = 1; 3417 break; 3418 } 3419 if (overlap) { 3420 mddev_put(mddev); 3421 break; 3422 } 3423 } 3424 rcu_read_unlock(); 3425 if (overlap) { 3426 /* Someone else could have slipped in a size 3427 * change here, but doing so is just silly. 3428 * We put oldsectors back because we *know* it is 3429 * safe, and trust userspace not to race with 3430 * itself 3431 */ 3432 rdev->sectors = oldsectors; 3433 return -EBUSY; 3434 } 3435 } 3436 return len; 3437 } 3438 3439 static struct rdev_sysfs_entry rdev_size = 3440 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); 3441 3442 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page) 3443 { 3444 unsigned long long recovery_start = rdev->recovery_offset; 3445 3446 if (test_bit(In_sync, &rdev->flags) || 3447 recovery_start == MaxSector) 3448 return sprintf(page, "none\n"); 3449 3450 return sprintf(page, "%llu\n", recovery_start); 3451 } 3452 3453 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len) 3454 { 3455 unsigned long long recovery_start; 3456 3457 if (cmd_match(buf, "none")) 3458 recovery_start = MaxSector; 3459 else if (kstrtoull(buf, 10, &recovery_start)) 3460 return -EINVAL; 3461 3462 if (rdev->mddev->pers && 3463 rdev->raid_disk >= 0) 3464 return -EBUSY; 3465 3466 rdev->recovery_offset = recovery_start; 3467 if (recovery_start == MaxSector) 3468 set_bit(In_sync, &rdev->flags); 3469 else 3470 clear_bit(In_sync, &rdev->flags); 3471 return len; 3472 } 3473 3474 static struct rdev_sysfs_entry rdev_recovery_start = 3475 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store); 3476 3477 /* sysfs access to bad-blocks list. 3478 * We present two files. 3479 * 'bad-blocks' lists sector numbers and lengths of ranges that 3480 * are recorded as bad. The list is truncated to fit within 3481 * the one-page limit of sysfs. 3482 * Writing "sector length" to this file adds an acknowledged 3483 * bad block list. 3484 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet 3485 * been acknowledged. Writing to this file adds bad blocks 3486 * without acknowledging them. This is largely for testing. 3487 */ 3488 static ssize_t bb_show(struct md_rdev *rdev, char *page) 3489 { 3490 return badblocks_show(&rdev->badblocks, page, 0); 3491 } 3492 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len) 3493 { 3494 int rv = badblocks_store(&rdev->badblocks, page, len, 0); 3495 /* Maybe that ack was all we needed */ 3496 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags)) 3497 wake_up(&rdev->blocked_wait); 3498 return rv; 3499 } 3500 static struct rdev_sysfs_entry rdev_bad_blocks = 3501 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store); 3502 3503 static ssize_t ubb_show(struct md_rdev *rdev, char *page) 3504 { 3505 return badblocks_show(&rdev->badblocks, page, 1); 3506 } 3507 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len) 3508 { 3509 return badblocks_store(&rdev->badblocks, page, len, 1); 3510 } 3511 static struct rdev_sysfs_entry rdev_unack_bad_blocks = 3512 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store); 3513 3514 static ssize_t 3515 ppl_sector_show(struct md_rdev *rdev, char *page) 3516 { 3517 return sprintf(page, "%llu\n", (unsigned long long)rdev->ppl.sector); 3518 } 3519 3520 static ssize_t 3521 ppl_sector_store(struct md_rdev *rdev, const char *buf, size_t len) 3522 { 3523 unsigned long long sector; 3524 3525 if (kstrtoull(buf, 10, §or) < 0) 3526 return -EINVAL; 3527 if (sector != (sector_t)sector) 3528 return -EINVAL; 3529 3530 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3531 rdev->raid_disk >= 0) 3532 return -EBUSY; 3533 3534 if (rdev->mddev->persistent) { 3535 if (rdev->mddev->major_version == 0) 3536 return -EINVAL; 3537 if ((sector > rdev->sb_start && 3538 sector - rdev->sb_start > S16_MAX) || 3539 (sector < rdev->sb_start && 3540 rdev->sb_start - sector > -S16_MIN)) 3541 return -EINVAL; 3542 rdev->ppl.offset = sector - rdev->sb_start; 3543 } else if (!rdev->mddev->external) { 3544 return -EBUSY; 3545 } 3546 rdev->ppl.sector = sector; 3547 return len; 3548 } 3549 3550 static struct rdev_sysfs_entry rdev_ppl_sector = 3551 __ATTR(ppl_sector, S_IRUGO|S_IWUSR, ppl_sector_show, ppl_sector_store); 3552 3553 static ssize_t 3554 ppl_size_show(struct md_rdev *rdev, char *page) 3555 { 3556 return sprintf(page, "%u\n", rdev->ppl.size); 3557 } 3558 3559 static ssize_t 3560 ppl_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3561 { 3562 unsigned int size; 3563 3564 if (kstrtouint(buf, 10, &size) < 0) 3565 return -EINVAL; 3566 3567 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3568 rdev->raid_disk >= 0) 3569 return -EBUSY; 3570 3571 if (rdev->mddev->persistent) { 3572 if (rdev->mddev->major_version == 0) 3573 return -EINVAL; 3574 if (size > U16_MAX) 3575 return -EINVAL; 3576 } else if (!rdev->mddev->external) { 3577 return -EBUSY; 3578 } 3579 rdev->ppl.size = size; 3580 return len; 3581 } 3582 3583 static struct rdev_sysfs_entry rdev_ppl_size = 3584 __ATTR(ppl_size, S_IRUGO|S_IWUSR, ppl_size_show, ppl_size_store); 3585 3586 static struct attribute *rdev_default_attrs[] = { 3587 &rdev_state.attr, 3588 &rdev_errors.attr, 3589 &rdev_slot.attr, 3590 &rdev_offset.attr, 3591 &rdev_new_offset.attr, 3592 &rdev_size.attr, 3593 &rdev_recovery_start.attr, 3594 &rdev_bad_blocks.attr, 3595 &rdev_unack_bad_blocks.attr, 3596 &rdev_ppl_sector.attr, 3597 &rdev_ppl_size.attr, 3598 NULL, 3599 }; 3600 static ssize_t 3601 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 3602 { 3603 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3604 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3605 3606 if (!entry->show) 3607 return -EIO; 3608 if (!rdev->mddev) 3609 return -ENODEV; 3610 return entry->show(rdev, page); 3611 } 3612 3613 static ssize_t 3614 rdev_attr_store(struct kobject *kobj, struct attribute *attr, 3615 const char *page, size_t length) 3616 { 3617 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3618 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3619 ssize_t rv; 3620 struct mddev *mddev = rdev->mddev; 3621 3622 if (!entry->store) 3623 return -EIO; 3624 if (!capable(CAP_SYS_ADMIN)) 3625 return -EACCES; 3626 rv = mddev ? mddev_lock(mddev) : -ENODEV; 3627 if (!rv) { 3628 if (rdev->mddev == NULL) 3629 rv = -ENODEV; 3630 else 3631 rv = entry->store(rdev, page, length); 3632 mddev_unlock(mddev); 3633 } 3634 return rv; 3635 } 3636 3637 static void rdev_free(struct kobject *ko) 3638 { 3639 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj); 3640 kfree(rdev); 3641 } 3642 static const struct sysfs_ops rdev_sysfs_ops = { 3643 .show = rdev_attr_show, 3644 .store = rdev_attr_store, 3645 }; 3646 static struct kobj_type rdev_ktype = { 3647 .release = rdev_free, 3648 .sysfs_ops = &rdev_sysfs_ops, 3649 .default_attrs = rdev_default_attrs, 3650 }; 3651 3652 int md_rdev_init(struct md_rdev *rdev) 3653 { 3654 rdev->desc_nr = -1; 3655 rdev->saved_raid_disk = -1; 3656 rdev->raid_disk = -1; 3657 rdev->flags = 0; 3658 rdev->data_offset = 0; 3659 rdev->new_data_offset = 0; 3660 rdev->sb_events = 0; 3661 rdev->last_read_error = 0; 3662 rdev->sb_loaded = 0; 3663 rdev->bb_page = NULL; 3664 atomic_set(&rdev->nr_pending, 0); 3665 atomic_set(&rdev->read_errors, 0); 3666 atomic_set(&rdev->corrected_errors, 0); 3667 3668 INIT_LIST_HEAD(&rdev->same_set); 3669 init_waitqueue_head(&rdev->blocked_wait); 3670 3671 /* Add space to store bad block list. 3672 * This reserves the space even on arrays where it cannot 3673 * be used - I wonder if that matters 3674 */ 3675 return badblocks_init(&rdev->badblocks, 0); 3676 } 3677 EXPORT_SYMBOL_GPL(md_rdev_init); 3678 /* 3679 * Import a device. If 'super_format' >= 0, then sanity check the superblock 3680 * 3681 * mark the device faulty if: 3682 * 3683 * - the device is nonexistent (zero size) 3684 * - the device has no valid superblock 3685 * 3686 * a faulty rdev _never_ has rdev->sb set. 3687 */ 3688 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor) 3689 { 3690 char b[BDEVNAME_SIZE]; 3691 int err; 3692 struct md_rdev *rdev; 3693 sector_t size; 3694 3695 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 3696 if (!rdev) 3697 return ERR_PTR(-ENOMEM); 3698 3699 err = md_rdev_init(rdev); 3700 if (err) 3701 goto abort_free; 3702 err = alloc_disk_sb(rdev); 3703 if (err) 3704 goto abort_free; 3705 3706 err = lock_rdev(rdev, newdev, super_format == -2); 3707 if (err) 3708 goto abort_free; 3709 3710 kobject_init(&rdev->kobj, &rdev_ktype); 3711 3712 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS; 3713 if (!size) { 3714 pr_warn("md: %s has zero or unknown size, marking faulty!\n", 3715 bdevname(rdev->bdev,b)); 3716 err = -EINVAL; 3717 goto abort_free; 3718 } 3719 3720 if (super_format >= 0) { 3721 err = super_types[super_format]. 3722 load_super(rdev, NULL, super_minor); 3723 if (err == -EINVAL) { 3724 pr_warn("md: %s does not have a valid v%d.%d superblock, not importing!\n", 3725 bdevname(rdev->bdev,b), 3726 super_format, super_minor); 3727 goto abort_free; 3728 } 3729 if (err < 0) { 3730 pr_warn("md: could not read %s's sb, not importing!\n", 3731 bdevname(rdev->bdev,b)); 3732 goto abort_free; 3733 } 3734 } 3735 3736 return rdev; 3737 3738 abort_free: 3739 if (rdev->bdev) 3740 unlock_rdev(rdev); 3741 md_rdev_clear(rdev); 3742 kfree(rdev); 3743 return ERR_PTR(err); 3744 } 3745 3746 /* 3747 * Check a full RAID array for plausibility 3748 */ 3749 3750 static int analyze_sbs(struct mddev *mddev) 3751 { 3752 int i; 3753 struct md_rdev *rdev, *freshest, *tmp; 3754 char b[BDEVNAME_SIZE]; 3755 3756 freshest = NULL; 3757 rdev_for_each_safe(rdev, tmp, mddev) 3758 switch (super_types[mddev->major_version]. 3759 load_super(rdev, freshest, mddev->minor_version)) { 3760 case 1: 3761 freshest = rdev; 3762 break; 3763 case 0: 3764 break; 3765 default: 3766 pr_warn("md: fatal superblock inconsistency in %s -- removing from array\n", 3767 bdevname(rdev->bdev,b)); 3768 md_kick_rdev_from_array(rdev); 3769 } 3770 3771 /* Cannot find a valid fresh disk */ 3772 if (!freshest) { 3773 pr_warn("md: cannot find a valid disk\n"); 3774 return -EINVAL; 3775 } 3776 3777 super_types[mddev->major_version]. 3778 validate_super(mddev, freshest); 3779 3780 i = 0; 3781 rdev_for_each_safe(rdev, tmp, mddev) { 3782 if (mddev->max_disks && 3783 (rdev->desc_nr >= mddev->max_disks || 3784 i > mddev->max_disks)) { 3785 pr_warn("md: %s: %s: only %d devices permitted\n", 3786 mdname(mddev), bdevname(rdev->bdev, b), 3787 mddev->max_disks); 3788 md_kick_rdev_from_array(rdev); 3789 continue; 3790 } 3791 if (rdev != freshest) { 3792 if (super_types[mddev->major_version]. 3793 validate_super(mddev, rdev)) { 3794 pr_warn("md: kicking non-fresh %s from array!\n", 3795 bdevname(rdev->bdev,b)); 3796 md_kick_rdev_from_array(rdev); 3797 continue; 3798 } 3799 } 3800 if (mddev->level == LEVEL_MULTIPATH) { 3801 rdev->desc_nr = i++; 3802 rdev->raid_disk = rdev->desc_nr; 3803 set_bit(In_sync, &rdev->flags); 3804 } else if (rdev->raid_disk >= 3805 (mddev->raid_disks - min(0, mddev->delta_disks)) && 3806 !test_bit(Journal, &rdev->flags)) { 3807 rdev->raid_disk = -1; 3808 clear_bit(In_sync, &rdev->flags); 3809 } 3810 } 3811 3812 return 0; 3813 } 3814 3815 /* Read a fixed-point number. 3816 * Numbers in sysfs attributes should be in "standard" units where 3817 * possible, so time should be in seconds. 3818 * However we internally use a a much smaller unit such as 3819 * milliseconds or jiffies. 3820 * This function takes a decimal number with a possible fractional 3821 * component, and produces an integer which is the result of 3822 * multiplying that number by 10^'scale'. 3823 * all without any floating-point arithmetic. 3824 */ 3825 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale) 3826 { 3827 unsigned long result = 0; 3828 long decimals = -1; 3829 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) { 3830 if (*cp == '.') 3831 decimals = 0; 3832 else if (decimals < scale) { 3833 unsigned int value; 3834 value = *cp - '0'; 3835 result = result * 10 + value; 3836 if (decimals >= 0) 3837 decimals++; 3838 } 3839 cp++; 3840 } 3841 if (*cp == '\n') 3842 cp++; 3843 if (*cp) 3844 return -EINVAL; 3845 if (decimals < 0) 3846 decimals = 0; 3847 *res = result * int_pow(10, scale - decimals); 3848 return 0; 3849 } 3850 3851 static ssize_t 3852 safe_delay_show(struct mddev *mddev, char *page) 3853 { 3854 int msec = (mddev->safemode_delay*1000)/HZ; 3855 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000); 3856 } 3857 static ssize_t 3858 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len) 3859 { 3860 unsigned long msec; 3861 3862 if (mddev_is_clustered(mddev)) { 3863 pr_warn("md: Safemode is disabled for clustered mode\n"); 3864 return -EINVAL; 3865 } 3866 3867 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0) 3868 return -EINVAL; 3869 if (msec == 0) 3870 mddev->safemode_delay = 0; 3871 else { 3872 unsigned long old_delay = mddev->safemode_delay; 3873 unsigned long new_delay = (msec*HZ)/1000; 3874 3875 if (new_delay == 0) 3876 new_delay = 1; 3877 mddev->safemode_delay = new_delay; 3878 if (new_delay < old_delay || old_delay == 0) 3879 mod_timer(&mddev->safemode_timer, jiffies+1); 3880 } 3881 return len; 3882 } 3883 static struct md_sysfs_entry md_safe_delay = 3884 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); 3885 3886 static ssize_t 3887 level_show(struct mddev *mddev, char *page) 3888 { 3889 struct md_personality *p; 3890 int ret; 3891 spin_lock(&mddev->lock); 3892 p = mddev->pers; 3893 if (p) 3894 ret = sprintf(page, "%s\n", p->name); 3895 else if (mddev->clevel[0]) 3896 ret = sprintf(page, "%s\n", mddev->clevel); 3897 else if (mddev->level != LEVEL_NONE) 3898 ret = sprintf(page, "%d\n", mddev->level); 3899 else 3900 ret = 0; 3901 spin_unlock(&mddev->lock); 3902 return ret; 3903 } 3904 3905 static ssize_t 3906 level_store(struct mddev *mddev, const char *buf, size_t len) 3907 { 3908 char clevel[16]; 3909 ssize_t rv; 3910 size_t slen = len; 3911 struct md_personality *pers, *oldpers; 3912 long level; 3913 void *priv, *oldpriv; 3914 struct md_rdev *rdev; 3915 3916 if (slen == 0 || slen >= sizeof(clevel)) 3917 return -EINVAL; 3918 3919 rv = mddev_lock(mddev); 3920 if (rv) 3921 return rv; 3922 3923 if (mddev->pers == NULL) { 3924 strncpy(mddev->clevel, buf, slen); 3925 if (mddev->clevel[slen-1] == '\n') 3926 slen--; 3927 mddev->clevel[slen] = 0; 3928 mddev->level = LEVEL_NONE; 3929 rv = len; 3930 goto out_unlock; 3931 } 3932 rv = -EROFS; 3933 if (mddev->ro) 3934 goto out_unlock; 3935 3936 /* request to change the personality. Need to ensure: 3937 * - array is not engaged in resync/recovery/reshape 3938 * - old personality can be suspended 3939 * - new personality will access other array. 3940 */ 3941 3942 rv = -EBUSY; 3943 if (mddev->sync_thread || 3944 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 3945 mddev->reshape_position != MaxSector || 3946 mddev->sysfs_active) 3947 goto out_unlock; 3948 3949 rv = -EINVAL; 3950 if (!mddev->pers->quiesce) { 3951 pr_warn("md: %s: %s does not support online personality change\n", 3952 mdname(mddev), mddev->pers->name); 3953 goto out_unlock; 3954 } 3955 3956 /* Now find the new personality */ 3957 strncpy(clevel, buf, slen); 3958 if (clevel[slen-1] == '\n') 3959 slen--; 3960 clevel[slen] = 0; 3961 if (kstrtol(clevel, 10, &level)) 3962 level = LEVEL_NONE; 3963 3964 if (request_module("md-%s", clevel) != 0) 3965 request_module("md-level-%s", clevel); 3966 spin_lock(&pers_lock); 3967 pers = find_pers(level, clevel); 3968 if (!pers || !try_module_get(pers->owner)) { 3969 spin_unlock(&pers_lock); 3970 pr_warn("md: personality %s not loaded\n", clevel); 3971 rv = -EINVAL; 3972 goto out_unlock; 3973 } 3974 spin_unlock(&pers_lock); 3975 3976 if (pers == mddev->pers) { 3977 /* Nothing to do! */ 3978 module_put(pers->owner); 3979 rv = len; 3980 goto out_unlock; 3981 } 3982 if (!pers->takeover) { 3983 module_put(pers->owner); 3984 pr_warn("md: %s: %s does not support personality takeover\n", 3985 mdname(mddev), clevel); 3986 rv = -EINVAL; 3987 goto out_unlock; 3988 } 3989 3990 rdev_for_each(rdev, mddev) 3991 rdev->new_raid_disk = rdev->raid_disk; 3992 3993 /* ->takeover must set new_* and/or delta_disks 3994 * if it succeeds, and may set them when it fails. 3995 */ 3996 priv = pers->takeover(mddev); 3997 if (IS_ERR(priv)) { 3998 mddev->new_level = mddev->level; 3999 mddev->new_layout = mddev->layout; 4000 mddev->new_chunk_sectors = mddev->chunk_sectors; 4001 mddev->raid_disks -= mddev->delta_disks; 4002 mddev->delta_disks = 0; 4003 mddev->reshape_backwards = 0; 4004 module_put(pers->owner); 4005 pr_warn("md: %s: %s would not accept array\n", 4006 mdname(mddev), clevel); 4007 rv = PTR_ERR(priv); 4008 goto out_unlock; 4009 } 4010 4011 /* Looks like we have a winner */ 4012 mddev_suspend(mddev); 4013 mddev_detach(mddev); 4014 4015 spin_lock(&mddev->lock); 4016 oldpers = mddev->pers; 4017 oldpriv = mddev->private; 4018 mddev->pers = pers; 4019 mddev->private = priv; 4020 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 4021 mddev->level = mddev->new_level; 4022 mddev->layout = mddev->new_layout; 4023 mddev->chunk_sectors = mddev->new_chunk_sectors; 4024 mddev->delta_disks = 0; 4025 mddev->reshape_backwards = 0; 4026 mddev->degraded = 0; 4027 spin_unlock(&mddev->lock); 4028 4029 if (oldpers->sync_request == NULL && 4030 mddev->external) { 4031 /* We are converting from a no-redundancy array 4032 * to a redundancy array and metadata is managed 4033 * externally so we need to be sure that writes 4034 * won't block due to a need to transition 4035 * clean->dirty 4036 * until external management is started. 4037 */ 4038 mddev->in_sync = 0; 4039 mddev->safemode_delay = 0; 4040 mddev->safemode = 0; 4041 } 4042 4043 oldpers->free(mddev, oldpriv); 4044 4045 if (oldpers->sync_request == NULL && 4046 pers->sync_request != NULL) { 4047 /* need to add the md_redundancy_group */ 4048 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 4049 pr_warn("md: cannot register extra attributes for %s\n", 4050 mdname(mddev)); 4051 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action"); 4052 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed"); 4053 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded"); 4054 } 4055 if (oldpers->sync_request != NULL && 4056 pers->sync_request == NULL) { 4057 /* need to remove the md_redundancy_group */ 4058 if (mddev->to_remove == NULL) 4059 mddev->to_remove = &md_redundancy_group; 4060 } 4061 4062 module_put(oldpers->owner); 4063 4064 rdev_for_each(rdev, mddev) { 4065 if (rdev->raid_disk < 0) 4066 continue; 4067 if (rdev->new_raid_disk >= mddev->raid_disks) 4068 rdev->new_raid_disk = -1; 4069 if (rdev->new_raid_disk == rdev->raid_disk) 4070 continue; 4071 sysfs_unlink_rdev(mddev, rdev); 4072 } 4073 rdev_for_each(rdev, mddev) { 4074 if (rdev->raid_disk < 0) 4075 continue; 4076 if (rdev->new_raid_disk == rdev->raid_disk) 4077 continue; 4078 rdev->raid_disk = rdev->new_raid_disk; 4079 if (rdev->raid_disk < 0) 4080 clear_bit(In_sync, &rdev->flags); 4081 else { 4082 if (sysfs_link_rdev(mddev, rdev)) 4083 pr_warn("md: cannot register rd%d for %s after level change\n", 4084 rdev->raid_disk, mdname(mddev)); 4085 } 4086 } 4087 4088 if (pers->sync_request == NULL) { 4089 /* this is now an array without redundancy, so 4090 * it must always be in_sync 4091 */ 4092 mddev->in_sync = 1; 4093 del_timer_sync(&mddev->safemode_timer); 4094 } 4095 blk_set_stacking_limits(&mddev->queue->limits); 4096 pers->run(mddev); 4097 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4098 mddev_resume(mddev); 4099 if (!mddev->thread) 4100 md_update_sb(mddev, 1); 4101 sysfs_notify_dirent_safe(mddev->sysfs_level); 4102 md_new_event(mddev); 4103 rv = len; 4104 out_unlock: 4105 mddev_unlock(mddev); 4106 return rv; 4107 } 4108 4109 static struct md_sysfs_entry md_level = 4110 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); 4111 4112 static ssize_t 4113 layout_show(struct mddev *mddev, char *page) 4114 { 4115 /* just a number, not meaningful for all levels */ 4116 if (mddev->reshape_position != MaxSector && 4117 mddev->layout != mddev->new_layout) 4118 return sprintf(page, "%d (%d)\n", 4119 mddev->new_layout, mddev->layout); 4120 return sprintf(page, "%d\n", mddev->layout); 4121 } 4122 4123 static ssize_t 4124 layout_store(struct mddev *mddev, const char *buf, size_t len) 4125 { 4126 unsigned int n; 4127 int err; 4128 4129 err = kstrtouint(buf, 10, &n); 4130 if (err < 0) 4131 return err; 4132 err = mddev_lock(mddev); 4133 if (err) 4134 return err; 4135 4136 if (mddev->pers) { 4137 if (mddev->pers->check_reshape == NULL) 4138 err = -EBUSY; 4139 else if (mddev->ro) 4140 err = -EROFS; 4141 else { 4142 mddev->new_layout = n; 4143 err = mddev->pers->check_reshape(mddev); 4144 if (err) 4145 mddev->new_layout = mddev->layout; 4146 } 4147 } else { 4148 mddev->new_layout = n; 4149 if (mddev->reshape_position == MaxSector) 4150 mddev->layout = n; 4151 } 4152 mddev_unlock(mddev); 4153 return err ?: len; 4154 } 4155 static struct md_sysfs_entry md_layout = 4156 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); 4157 4158 static ssize_t 4159 raid_disks_show(struct mddev *mddev, char *page) 4160 { 4161 if (mddev->raid_disks == 0) 4162 return 0; 4163 if (mddev->reshape_position != MaxSector && 4164 mddev->delta_disks != 0) 4165 return sprintf(page, "%d (%d)\n", mddev->raid_disks, 4166 mddev->raid_disks - mddev->delta_disks); 4167 return sprintf(page, "%d\n", mddev->raid_disks); 4168 } 4169 4170 static int update_raid_disks(struct mddev *mddev, int raid_disks); 4171 4172 static ssize_t 4173 raid_disks_store(struct mddev *mddev, const char *buf, size_t len) 4174 { 4175 unsigned int n; 4176 int err; 4177 4178 err = kstrtouint(buf, 10, &n); 4179 if (err < 0) 4180 return err; 4181 4182 err = mddev_lock(mddev); 4183 if (err) 4184 return err; 4185 if (mddev->pers) 4186 err = update_raid_disks(mddev, n); 4187 else if (mddev->reshape_position != MaxSector) { 4188 struct md_rdev *rdev; 4189 int olddisks = mddev->raid_disks - mddev->delta_disks; 4190 4191 err = -EINVAL; 4192 rdev_for_each(rdev, mddev) { 4193 if (olddisks < n && 4194 rdev->data_offset < rdev->new_data_offset) 4195 goto out_unlock; 4196 if (olddisks > n && 4197 rdev->data_offset > rdev->new_data_offset) 4198 goto out_unlock; 4199 } 4200 err = 0; 4201 mddev->delta_disks = n - olddisks; 4202 mddev->raid_disks = n; 4203 mddev->reshape_backwards = (mddev->delta_disks < 0); 4204 } else 4205 mddev->raid_disks = n; 4206 out_unlock: 4207 mddev_unlock(mddev); 4208 return err ? err : len; 4209 } 4210 static struct md_sysfs_entry md_raid_disks = 4211 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); 4212 4213 static ssize_t 4214 uuid_show(struct mddev *mddev, char *page) 4215 { 4216 return sprintf(page, "%pU\n", mddev->uuid); 4217 } 4218 static struct md_sysfs_entry md_uuid = 4219 __ATTR(uuid, S_IRUGO, uuid_show, NULL); 4220 4221 static ssize_t 4222 chunk_size_show(struct mddev *mddev, char *page) 4223 { 4224 if (mddev->reshape_position != MaxSector && 4225 mddev->chunk_sectors != mddev->new_chunk_sectors) 4226 return sprintf(page, "%d (%d)\n", 4227 mddev->new_chunk_sectors << 9, 4228 mddev->chunk_sectors << 9); 4229 return sprintf(page, "%d\n", mddev->chunk_sectors << 9); 4230 } 4231 4232 static ssize_t 4233 chunk_size_store(struct mddev *mddev, const char *buf, size_t len) 4234 { 4235 unsigned long n; 4236 int err; 4237 4238 err = kstrtoul(buf, 10, &n); 4239 if (err < 0) 4240 return err; 4241 4242 err = mddev_lock(mddev); 4243 if (err) 4244 return err; 4245 if (mddev->pers) { 4246 if (mddev->pers->check_reshape == NULL) 4247 err = -EBUSY; 4248 else if (mddev->ro) 4249 err = -EROFS; 4250 else { 4251 mddev->new_chunk_sectors = n >> 9; 4252 err = mddev->pers->check_reshape(mddev); 4253 if (err) 4254 mddev->new_chunk_sectors = mddev->chunk_sectors; 4255 } 4256 } else { 4257 mddev->new_chunk_sectors = n >> 9; 4258 if (mddev->reshape_position == MaxSector) 4259 mddev->chunk_sectors = n >> 9; 4260 } 4261 mddev_unlock(mddev); 4262 return err ?: len; 4263 } 4264 static struct md_sysfs_entry md_chunk_size = 4265 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); 4266 4267 static ssize_t 4268 resync_start_show(struct mddev *mddev, char *page) 4269 { 4270 if (mddev->recovery_cp == MaxSector) 4271 return sprintf(page, "none\n"); 4272 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); 4273 } 4274 4275 static ssize_t 4276 resync_start_store(struct mddev *mddev, const char *buf, size_t len) 4277 { 4278 unsigned long long n; 4279 int err; 4280 4281 if (cmd_match(buf, "none")) 4282 n = MaxSector; 4283 else { 4284 err = kstrtoull(buf, 10, &n); 4285 if (err < 0) 4286 return err; 4287 if (n != (sector_t)n) 4288 return -EINVAL; 4289 } 4290 4291 err = mddev_lock(mddev); 4292 if (err) 4293 return err; 4294 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 4295 err = -EBUSY; 4296 4297 if (!err) { 4298 mddev->recovery_cp = n; 4299 if (mddev->pers) 4300 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 4301 } 4302 mddev_unlock(mddev); 4303 return err ?: len; 4304 } 4305 static struct md_sysfs_entry md_resync_start = 4306 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR, 4307 resync_start_show, resync_start_store); 4308 4309 /* 4310 * The array state can be: 4311 * 4312 * clear 4313 * No devices, no size, no level 4314 * Equivalent to STOP_ARRAY ioctl 4315 * inactive 4316 * May have some settings, but array is not active 4317 * all IO results in error 4318 * When written, doesn't tear down array, but just stops it 4319 * suspended (not supported yet) 4320 * All IO requests will block. The array can be reconfigured. 4321 * Writing this, if accepted, will block until array is quiescent 4322 * readonly 4323 * no resync can happen. no superblocks get written. 4324 * write requests fail 4325 * read-auto 4326 * like readonly, but behaves like 'clean' on a write request. 4327 * 4328 * clean - no pending writes, but otherwise active. 4329 * When written to inactive array, starts without resync 4330 * If a write request arrives then 4331 * if metadata is known, mark 'dirty' and switch to 'active'. 4332 * if not known, block and switch to write-pending 4333 * If written to an active array that has pending writes, then fails. 4334 * active 4335 * fully active: IO and resync can be happening. 4336 * When written to inactive array, starts with resync 4337 * 4338 * write-pending 4339 * clean, but writes are blocked waiting for 'active' to be written. 4340 * 4341 * active-idle 4342 * like active, but no writes have been seen for a while (100msec). 4343 * 4344 * broken 4345 * RAID0/LINEAR-only: same as clean, but array is missing a member. 4346 * It's useful because RAID0/LINEAR mounted-arrays aren't stopped 4347 * when a member is gone, so this state will at least alert the 4348 * user that something is wrong. 4349 */ 4350 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, 4351 write_pending, active_idle, broken, bad_word}; 4352 static char *array_states[] = { 4353 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", 4354 "write-pending", "active-idle", "broken", NULL }; 4355 4356 static int match_word(const char *word, char **list) 4357 { 4358 int n; 4359 for (n=0; list[n]; n++) 4360 if (cmd_match(word, list[n])) 4361 break; 4362 return n; 4363 } 4364 4365 static ssize_t 4366 array_state_show(struct mddev *mddev, char *page) 4367 { 4368 enum array_state st = inactive; 4369 4370 if (mddev->pers && !test_bit(MD_NOT_READY, &mddev->flags)) { 4371 switch(mddev->ro) { 4372 case 1: 4373 st = readonly; 4374 break; 4375 case 2: 4376 st = read_auto; 4377 break; 4378 case 0: 4379 spin_lock(&mddev->lock); 4380 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 4381 st = write_pending; 4382 else if (mddev->in_sync) 4383 st = clean; 4384 else if (mddev->safemode) 4385 st = active_idle; 4386 else 4387 st = active; 4388 spin_unlock(&mddev->lock); 4389 } 4390 4391 if (test_bit(MD_BROKEN, &mddev->flags) && st == clean) 4392 st = broken; 4393 } else { 4394 if (list_empty(&mddev->disks) && 4395 mddev->raid_disks == 0 && 4396 mddev->dev_sectors == 0) 4397 st = clear; 4398 else 4399 st = inactive; 4400 } 4401 return sprintf(page, "%s\n", array_states[st]); 4402 } 4403 4404 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev); 4405 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev); 4406 static int restart_array(struct mddev *mddev); 4407 4408 static ssize_t 4409 array_state_store(struct mddev *mddev, const char *buf, size_t len) 4410 { 4411 int err = 0; 4412 enum array_state st = match_word(buf, array_states); 4413 4414 if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) { 4415 /* don't take reconfig_mutex when toggling between 4416 * clean and active 4417 */ 4418 spin_lock(&mddev->lock); 4419 if (st == active) { 4420 restart_array(mddev); 4421 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4422 md_wakeup_thread(mddev->thread); 4423 wake_up(&mddev->sb_wait); 4424 } else /* st == clean */ { 4425 restart_array(mddev); 4426 if (!set_in_sync(mddev)) 4427 err = -EBUSY; 4428 } 4429 if (!err) 4430 sysfs_notify_dirent_safe(mddev->sysfs_state); 4431 spin_unlock(&mddev->lock); 4432 return err ?: len; 4433 } 4434 err = mddev_lock(mddev); 4435 if (err) 4436 return err; 4437 err = -EINVAL; 4438 switch(st) { 4439 case bad_word: 4440 break; 4441 case clear: 4442 /* stopping an active array */ 4443 err = do_md_stop(mddev, 0, NULL); 4444 break; 4445 case inactive: 4446 /* stopping an active array */ 4447 if (mddev->pers) 4448 err = do_md_stop(mddev, 2, NULL); 4449 else 4450 err = 0; /* already inactive */ 4451 break; 4452 case suspended: 4453 break; /* not supported yet */ 4454 case readonly: 4455 if (mddev->pers) 4456 err = md_set_readonly(mddev, NULL); 4457 else { 4458 mddev->ro = 1; 4459 set_disk_ro(mddev->gendisk, 1); 4460 err = do_md_run(mddev); 4461 } 4462 break; 4463 case read_auto: 4464 if (mddev->pers) { 4465 if (mddev->ro == 0) 4466 err = md_set_readonly(mddev, NULL); 4467 else if (mddev->ro == 1) 4468 err = restart_array(mddev); 4469 if (err == 0) { 4470 mddev->ro = 2; 4471 set_disk_ro(mddev->gendisk, 0); 4472 } 4473 } else { 4474 mddev->ro = 2; 4475 err = do_md_run(mddev); 4476 } 4477 break; 4478 case clean: 4479 if (mddev->pers) { 4480 err = restart_array(mddev); 4481 if (err) 4482 break; 4483 spin_lock(&mddev->lock); 4484 if (!set_in_sync(mddev)) 4485 err = -EBUSY; 4486 spin_unlock(&mddev->lock); 4487 } else 4488 err = -EINVAL; 4489 break; 4490 case active: 4491 if (mddev->pers) { 4492 err = restart_array(mddev); 4493 if (err) 4494 break; 4495 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4496 wake_up(&mddev->sb_wait); 4497 err = 0; 4498 } else { 4499 mddev->ro = 0; 4500 set_disk_ro(mddev->gendisk, 0); 4501 err = do_md_run(mddev); 4502 } 4503 break; 4504 case write_pending: 4505 case active_idle: 4506 case broken: 4507 /* these cannot be set */ 4508 break; 4509 } 4510 4511 if (!err) { 4512 if (mddev->hold_active == UNTIL_IOCTL) 4513 mddev->hold_active = 0; 4514 sysfs_notify_dirent_safe(mddev->sysfs_state); 4515 } 4516 mddev_unlock(mddev); 4517 return err ?: len; 4518 } 4519 static struct md_sysfs_entry md_array_state = 4520 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); 4521 4522 static ssize_t 4523 max_corrected_read_errors_show(struct mddev *mddev, char *page) { 4524 return sprintf(page, "%d\n", 4525 atomic_read(&mddev->max_corr_read_errors)); 4526 } 4527 4528 static ssize_t 4529 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len) 4530 { 4531 unsigned int n; 4532 int rv; 4533 4534 rv = kstrtouint(buf, 10, &n); 4535 if (rv < 0) 4536 return rv; 4537 atomic_set(&mddev->max_corr_read_errors, n); 4538 return len; 4539 } 4540 4541 static struct md_sysfs_entry max_corr_read_errors = 4542 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show, 4543 max_corrected_read_errors_store); 4544 4545 static ssize_t 4546 null_show(struct mddev *mddev, char *page) 4547 { 4548 return -EINVAL; 4549 } 4550 4551 /* need to ensure rdev_delayed_delete() has completed */ 4552 static void flush_rdev_wq(struct mddev *mddev) 4553 { 4554 struct md_rdev *rdev; 4555 4556 rcu_read_lock(); 4557 rdev_for_each_rcu(rdev, mddev) 4558 if (work_pending(&rdev->del_work)) { 4559 flush_workqueue(md_rdev_misc_wq); 4560 break; 4561 } 4562 rcu_read_unlock(); 4563 } 4564 4565 static ssize_t 4566 new_dev_store(struct mddev *mddev, const char *buf, size_t len) 4567 { 4568 /* buf must be %d:%d\n? giving major and minor numbers */ 4569 /* The new device is added to the array. 4570 * If the array has a persistent superblock, we read the 4571 * superblock to initialise info and check validity. 4572 * Otherwise, only checking done is that in bind_rdev_to_array, 4573 * which mainly checks size. 4574 */ 4575 char *e; 4576 int major = simple_strtoul(buf, &e, 10); 4577 int minor; 4578 dev_t dev; 4579 struct md_rdev *rdev; 4580 int err; 4581 4582 if (!*buf || *e != ':' || !e[1] || e[1] == '\n') 4583 return -EINVAL; 4584 minor = simple_strtoul(e+1, &e, 10); 4585 if (*e && *e != '\n') 4586 return -EINVAL; 4587 dev = MKDEV(major, minor); 4588 if (major != MAJOR(dev) || 4589 minor != MINOR(dev)) 4590 return -EOVERFLOW; 4591 4592 flush_rdev_wq(mddev); 4593 err = mddev_lock(mddev); 4594 if (err) 4595 return err; 4596 if (mddev->persistent) { 4597 rdev = md_import_device(dev, mddev->major_version, 4598 mddev->minor_version); 4599 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { 4600 struct md_rdev *rdev0 4601 = list_entry(mddev->disks.next, 4602 struct md_rdev, same_set); 4603 err = super_types[mddev->major_version] 4604 .load_super(rdev, rdev0, mddev->minor_version); 4605 if (err < 0) 4606 goto out; 4607 } 4608 } else if (mddev->external) 4609 rdev = md_import_device(dev, -2, -1); 4610 else 4611 rdev = md_import_device(dev, -1, -1); 4612 4613 if (IS_ERR(rdev)) { 4614 mddev_unlock(mddev); 4615 return PTR_ERR(rdev); 4616 } 4617 err = bind_rdev_to_array(rdev, mddev); 4618 out: 4619 if (err) 4620 export_rdev(rdev); 4621 mddev_unlock(mddev); 4622 if (!err) 4623 md_new_event(mddev); 4624 return err ? err : len; 4625 } 4626 4627 static struct md_sysfs_entry md_new_device = 4628 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store); 4629 4630 static ssize_t 4631 bitmap_store(struct mddev *mddev, const char *buf, size_t len) 4632 { 4633 char *end; 4634 unsigned long chunk, end_chunk; 4635 int err; 4636 4637 err = mddev_lock(mddev); 4638 if (err) 4639 return err; 4640 if (!mddev->bitmap) 4641 goto out; 4642 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */ 4643 while (*buf) { 4644 chunk = end_chunk = simple_strtoul(buf, &end, 0); 4645 if (buf == end) break; 4646 if (*end == '-') { /* range */ 4647 buf = end + 1; 4648 end_chunk = simple_strtoul(buf, &end, 0); 4649 if (buf == end) break; 4650 } 4651 if (*end && !isspace(*end)) break; 4652 md_bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk); 4653 buf = skip_spaces(end); 4654 } 4655 md_bitmap_unplug(mddev->bitmap); /* flush the bits to disk */ 4656 out: 4657 mddev_unlock(mddev); 4658 return len; 4659 } 4660 4661 static struct md_sysfs_entry md_bitmap = 4662 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); 4663 4664 static ssize_t 4665 size_show(struct mddev *mddev, char *page) 4666 { 4667 return sprintf(page, "%llu\n", 4668 (unsigned long long)mddev->dev_sectors / 2); 4669 } 4670 4671 static int update_size(struct mddev *mddev, sector_t num_sectors); 4672 4673 static ssize_t 4674 size_store(struct mddev *mddev, const char *buf, size_t len) 4675 { 4676 /* If array is inactive, we can reduce the component size, but 4677 * not increase it (except from 0). 4678 * If array is active, we can try an on-line resize 4679 */ 4680 sector_t sectors; 4681 int err = strict_blocks_to_sectors(buf, §ors); 4682 4683 if (err < 0) 4684 return err; 4685 err = mddev_lock(mddev); 4686 if (err) 4687 return err; 4688 if (mddev->pers) { 4689 err = update_size(mddev, sectors); 4690 if (err == 0) 4691 md_update_sb(mddev, 1); 4692 } else { 4693 if (mddev->dev_sectors == 0 || 4694 mddev->dev_sectors > sectors) 4695 mddev->dev_sectors = sectors; 4696 else 4697 err = -ENOSPC; 4698 } 4699 mddev_unlock(mddev); 4700 return err ? err : len; 4701 } 4702 4703 static struct md_sysfs_entry md_size = 4704 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); 4705 4706 /* Metadata version. 4707 * This is one of 4708 * 'none' for arrays with no metadata (good luck...) 4709 * 'external' for arrays with externally managed metadata, 4710 * or N.M for internally known formats 4711 */ 4712 static ssize_t 4713 metadata_show(struct mddev *mddev, char *page) 4714 { 4715 if (mddev->persistent) 4716 return sprintf(page, "%d.%d\n", 4717 mddev->major_version, mddev->minor_version); 4718 else if (mddev->external) 4719 return sprintf(page, "external:%s\n", mddev->metadata_type); 4720 else 4721 return sprintf(page, "none\n"); 4722 } 4723 4724 static ssize_t 4725 metadata_store(struct mddev *mddev, const char *buf, size_t len) 4726 { 4727 int major, minor; 4728 char *e; 4729 int err; 4730 /* Changing the details of 'external' metadata is 4731 * always permitted. Otherwise there must be 4732 * no devices attached to the array. 4733 */ 4734 4735 err = mddev_lock(mddev); 4736 if (err) 4737 return err; 4738 err = -EBUSY; 4739 if (mddev->external && strncmp(buf, "external:", 9) == 0) 4740 ; 4741 else if (!list_empty(&mddev->disks)) 4742 goto out_unlock; 4743 4744 err = 0; 4745 if (cmd_match(buf, "none")) { 4746 mddev->persistent = 0; 4747 mddev->external = 0; 4748 mddev->major_version = 0; 4749 mddev->minor_version = 90; 4750 goto out_unlock; 4751 } 4752 if (strncmp(buf, "external:", 9) == 0) { 4753 size_t namelen = len-9; 4754 if (namelen >= sizeof(mddev->metadata_type)) 4755 namelen = sizeof(mddev->metadata_type)-1; 4756 strncpy(mddev->metadata_type, buf+9, namelen); 4757 mddev->metadata_type[namelen] = 0; 4758 if (namelen && mddev->metadata_type[namelen-1] == '\n') 4759 mddev->metadata_type[--namelen] = 0; 4760 mddev->persistent = 0; 4761 mddev->external = 1; 4762 mddev->major_version = 0; 4763 mddev->minor_version = 90; 4764 goto out_unlock; 4765 } 4766 major = simple_strtoul(buf, &e, 10); 4767 err = -EINVAL; 4768 if (e==buf || *e != '.') 4769 goto out_unlock; 4770 buf = e+1; 4771 minor = simple_strtoul(buf, &e, 10); 4772 if (e==buf || (*e && *e != '\n') ) 4773 goto out_unlock; 4774 err = -ENOENT; 4775 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL) 4776 goto out_unlock; 4777 mddev->major_version = major; 4778 mddev->minor_version = minor; 4779 mddev->persistent = 1; 4780 mddev->external = 0; 4781 err = 0; 4782 out_unlock: 4783 mddev_unlock(mddev); 4784 return err ?: len; 4785 } 4786 4787 static struct md_sysfs_entry md_metadata = 4788 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 4789 4790 static ssize_t 4791 action_show(struct mddev *mddev, char *page) 4792 { 4793 char *type = "idle"; 4794 unsigned long recovery = mddev->recovery; 4795 if (test_bit(MD_RECOVERY_FROZEN, &recovery)) 4796 type = "frozen"; 4797 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) || 4798 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) { 4799 if (test_bit(MD_RECOVERY_RESHAPE, &recovery)) 4800 type = "reshape"; 4801 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) { 4802 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery)) 4803 type = "resync"; 4804 else if (test_bit(MD_RECOVERY_CHECK, &recovery)) 4805 type = "check"; 4806 else 4807 type = "repair"; 4808 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery)) 4809 type = "recover"; 4810 else if (mddev->reshape_position != MaxSector) 4811 type = "reshape"; 4812 } 4813 return sprintf(page, "%s\n", type); 4814 } 4815 4816 static ssize_t 4817 action_store(struct mddev *mddev, const char *page, size_t len) 4818 { 4819 if (!mddev->pers || !mddev->pers->sync_request) 4820 return -EINVAL; 4821 4822 4823 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) { 4824 if (cmd_match(page, "frozen")) 4825 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4826 else 4827 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4828 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 4829 mddev_lock(mddev) == 0) { 4830 if (work_pending(&mddev->del_work)) 4831 flush_workqueue(md_misc_wq); 4832 if (mddev->sync_thread) { 4833 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4834 md_reap_sync_thread(mddev); 4835 } 4836 mddev_unlock(mddev); 4837 } 4838 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4839 return -EBUSY; 4840 else if (cmd_match(page, "resync")) 4841 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4842 else if (cmd_match(page, "recover")) { 4843 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4844 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 4845 } else if (cmd_match(page, "reshape")) { 4846 int err; 4847 if (mddev->pers->start_reshape == NULL) 4848 return -EINVAL; 4849 err = mddev_lock(mddev); 4850 if (!err) { 4851 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4852 err = -EBUSY; 4853 else { 4854 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4855 err = mddev->pers->start_reshape(mddev); 4856 } 4857 mddev_unlock(mddev); 4858 } 4859 if (err) 4860 return err; 4861 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 4862 } else { 4863 if (cmd_match(page, "check")) 4864 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4865 else if (!cmd_match(page, "repair")) 4866 return -EINVAL; 4867 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4868 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 4869 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4870 } 4871 if (mddev->ro == 2) { 4872 /* A write to sync_action is enough to justify 4873 * canceling read-auto mode 4874 */ 4875 mddev->ro = 0; 4876 md_wakeup_thread(mddev->sync_thread); 4877 } 4878 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4879 md_wakeup_thread(mddev->thread); 4880 sysfs_notify_dirent_safe(mddev->sysfs_action); 4881 return len; 4882 } 4883 4884 static struct md_sysfs_entry md_scan_mode = 4885 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); 4886 4887 static ssize_t 4888 last_sync_action_show(struct mddev *mddev, char *page) 4889 { 4890 return sprintf(page, "%s\n", mddev->last_sync_action); 4891 } 4892 4893 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action); 4894 4895 static ssize_t 4896 mismatch_cnt_show(struct mddev *mddev, char *page) 4897 { 4898 return sprintf(page, "%llu\n", 4899 (unsigned long long) 4900 atomic64_read(&mddev->resync_mismatches)); 4901 } 4902 4903 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); 4904 4905 static ssize_t 4906 sync_min_show(struct mddev *mddev, char *page) 4907 { 4908 return sprintf(page, "%d (%s)\n", speed_min(mddev), 4909 mddev->sync_speed_min ? "local": "system"); 4910 } 4911 4912 static ssize_t 4913 sync_min_store(struct mddev *mddev, const char *buf, size_t len) 4914 { 4915 unsigned int min; 4916 int rv; 4917 4918 if (strncmp(buf, "system", 6)==0) { 4919 min = 0; 4920 } else { 4921 rv = kstrtouint(buf, 10, &min); 4922 if (rv < 0) 4923 return rv; 4924 if (min == 0) 4925 return -EINVAL; 4926 } 4927 mddev->sync_speed_min = min; 4928 return len; 4929 } 4930 4931 static struct md_sysfs_entry md_sync_min = 4932 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); 4933 4934 static ssize_t 4935 sync_max_show(struct mddev *mddev, char *page) 4936 { 4937 return sprintf(page, "%d (%s)\n", speed_max(mddev), 4938 mddev->sync_speed_max ? "local": "system"); 4939 } 4940 4941 static ssize_t 4942 sync_max_store(struct mddev *mddev, const char *buf, size_t len) 4943 { 4944 unsigned int max; 4945 int rv; 4946 4947 if (strncmp(buf, "system", 6)==0) { 4948 max = 0; 4949 } else { 4950 rv = kstrtouint(buf, 10, &max); 4951 if (rv < 0) 4952 return rv; 4953 if (max == 0) 4954 return -EINVAL; 4955 } 4956 mddev->sync_speed_max = max; 4957 return len; 4958 } 4959 4960 static struct md_sysfs_entry md_sync_max = 4961 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); 4962 4963 static ssize_t 4964 degraded_show(struct mddev *mddev, char *page) 4965 { 4966 return sprintf(page, "%d\n", mddev->degraded); 4967 } 4968 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded); 4969 4970 static ssize_t 4971 sync_force_parallel_show(struct mddev *mddev, char *page) 4972 { 4973 return sprintf(page, "%d\n", mddev->parallel_resync); 4974 } 4975 4976 static ssize_t 4977 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len) 4978 { 4979 long n; 4980 4981 if (kstrtol(buf, 10, &n)) 4982 return -EINVAL; 4983 4984 if (n != 0 && n != 1) 4985 return -EINVAL; 4986 4987 mddev->parallel_resync = n; 4988 4989 if (mddev->sync_thread) 4990 wake_up(&resync_wait); 4991 4992 return len; 4993 } 4994 4995 /* force parallel resync, even with shared block devices */ 4996 static struct md_sysfs_entry md_sync_force_parallel = 4997 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR, 4998 sync_force_parallel_show, sync_force_parallel_store); 4999 5000 static ssize_t 5001 sync_speed_show(struct mddev *mddev, char *page) 5002 { 5003 unsigned long resync, dt, db; 5004 if (mddev->curr_resync == 0) 5005 return sprintf(page, "none\n"); 5006 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active); 5007 dt = (jiffies - mddev->resync_mark) / HZ; 5008 if (!dt) dt++; 5009 db = resync - mddev->resync_mark_cnt; 5010 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */ 5011 } 5012 5013 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); 5014 5015 static ssize_t 5016 sync_completed_show(struct mddev *mddev, char *page) 5017 { 5018 unsigned long long max_sectors, resync; 5019 5020 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5021 return sprintf(page, "none\n"); 5022 5023 if (mddev->curr_resync == 1 || 5024 mddev->curr_resync == 2) 5025 return sprintf(page, "delayed\n"); 5026 5027 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 5028 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 5029 max_sectors = mddev->resync_max_sectors; 5030 else 5031 max_sectors = mddev->dev_sectors; 5032 5033 resync = mddev->curr_resync_completed; 5034 return sprintf(page, "%llu / %llu\n", resync, max_sectors); 5035 } 5036 5037 static struct md_sysfs_entry md_sync_completed = 5038 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL); 5039 5040 static ssize_t 5041 min_sync_show(struct mddev *mddev, char *page) 5042 { 5043 return sprintf(page, "%llu\n", 5044 (unsigned long long)mddev->resync_min); 5045 } 5046 static ssize_t 5047 min_sync_store(struct mddev *mddev, const char *buf, size_t len) 5048 { 5049 unsigned long long min; 5050 int err; 5051 5052 if (kstrtoull(buf, 10, &min)) 5053 return -EINVAL; 5054 5055 spin_lock(&mddev->lock); 5056 err = -EINVAL; 5057 if (min > mddev->resync_max) 5058 goto out_unlock; 5059 5060 err = -EBUSY; 5061 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5062 goto out_unlock; 5063 5064 /* Round down to multiple of 4K for safety */ 5065 mddev->resync_min = round_down(min, 8); 5066 err = 0; 5067 5068 out_unlock: 5069 spin_unlock(&mddev->lock); 5070 return err ?: len; 5071 } 5072 5073 static struct md_sysfs_entry md_min_sync = 5074 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store); 5075 5076 static ssize_t 5077 max_sync_show(struct mddev *mddev, char *page) 5078 { 5079 if (mddev->resync_max == MaxSector) 5080 return sprintf(page, "max\n"); 5081 else 5082 return sprintf(page, "%llu\n", 5083 (unsigned long long)mddev->resync_max); 5084 } 5085 static ssize_t 5086 max_sync_store(struct mddev *mddev, const char *buf, size_t len) 5087 { 5088 int err; 5089 spin_lock(&mddev->lock); 5090 if (strncmp(buf, "max", 3) == 0) 5091 mddev->resync_max = MaxSector; 5092 else { 5093 unsigned long long max; 5094 int chunk; 5095 5096 err = -EINVAL; 5097 if (kstrtoull(buf, 10, &max)) 5098 goto out_unlock; 5099 if (max < mddev->resync_min) 5100 goto out_unlock; 5101 5102 err = -EBUSY; 5103 if (max < mddev->resync_max && 5104 mddev->ro == 0 && 5105 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5106 goto out_unlock; 5107 5108 /* Must be a multiple of chunk_size */ 5109 chunk = mddev->chunk_sectors; 5110 if (chunk) { 5111 sector_t temp = max; 5112 5113 err = -EINVAL; 5114 if (sector_div(temp, chunk)) 5115 goto out_unlock; 5116 } 5117 mddev->resync_max = max; 5118 } 5119 wake_up(&mddev->recovery_wait); 5120 err = 0; 5121 out_unlock: 5122 spin_unlock(&mddev->lock); 5123 return err ?: len; 5124 } 5125 5126 static struct md_sysfs_entry md_max_sync = 5127 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store); 5128 5129 static ssize_t 5130 suspend_lo_show(struct mddev *mddev, char *page) 5131 { 5132 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo); 5133 } 5134 5135 static ssize_t 5136 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len) 5137 { 5138 unsigned long long new; 5139 int err; 5140 5141 err = kstrtoull(buf, 10, &new); 5142 if (err < 0) 5143 return err; 5144 if (new != (sector_t)new) 5145 return -EINVAL; 5146 5147 err = mddev_lock(mddev); 5148 if (err) 5149 return err; 5150 err = -EINVAL; 5151 if (mddev->pers == NULL || 5152 mddev->pers->quiesce == NULL) 5153 goto unlock; 5154 mddev_suspend(mddev); 5155 mddev->suspend_lo = new; 5156 mddev_resume(mddev); 5157 5158 err = 0; 5159 unlock: 5160 mddev_unlock(mddev); 5161 return err ?: len; 5162 } 5163 static struct md_sysfs_entry md_suspend_lo = 5164 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); 5165 5166 static ssize_t 5167 suspend_hi_show(struct mddev *mddev, char *page) 5168 { 5169 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi); 5170 } 5171 5172 static ssize_t 5173 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len) 5174 { 5175 unsigned long long new; 5176 int err; 5177 5178 err = kstrtoull(buf, 10, &new); 5179 if (err < 0) 5180 return err; 5181 if (new != (sector_t)new) 5182 return -EINVAL; 5183 5184 err = mddev_lock(mddev); 5185 if (err) 5186 return err; 5187 err = -EINVAL; 5188 if (mddev->pers == NULL) 5189 goto unlock; 5190 5191 mddev_suspend(mddev); 5192 mddev->suspend_hi = new; 5193 mddev_resume(mddev); 5194 5195 err = 0; 5196 unlock: 5197 mddev_unlock(mddev); 5198 return err ?: len; 5199 } 5200 static struct md_sysfs_entry md_suspend_hi = 5201 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); 5202 5203 static ssize_t 5204 reshape_position_show(struct mddev *mddev, char *page) 5205 { 5206 if (mddev->reshape_position != MaxSector) 5207 return sprintf(page, "%llu\n", 5208 (unsigned long long)mddev->reshape_position); 5209 strcpy(page, "none\n"); 5210 return 5; 5211 } 5212 5213 static ssize_t 5214 reshape_position_store(struct mddev *mddev, const char *buf, size_t len) 5215 { 5216 struct md_rdev *rdev; 5217 unsigned long long new; 5218 int err; 5219 5220 err = kstrtoull(buf, 10, &new); 5221 if (err < 0) 5222 return err; 5223 if (new != (sector_t)new) 5224 return -EINVAL; 5225 err = mddev_lock(mddev); 5226 if (err) 5227 return err; 5228 err = -EBUSY; 5229 if (mddev->pers) 5230 goto unlock; 5231 mddev->reshape_position = new; 5232 mddev->delta_disks = 0; 5233 mddev->reshape_backwards = 0; 5234 mddev->new_level = mddev->level; 5235 mddev->new_layout = mddev->layout; 5236 mddev->new_chunk_sectors = mddev->chunk_sectors; 5237 rdev_for_each(rdev, mddev) 5238 rdev->new_data_offset = rdev->data_offset; 5239 err = 0; 5240 unlock: 5241 mddev_unlock(mddev); 5242 return err ?: len; 5243 } 5244 5245 static struct md_sysfs_entry md_reshape_position = 5246 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show, 5247 reshape_position_store); 5248 5249 static ssize_t 5250 reshape_direction_show(struct mddev *mddev, char *page) 5251 { 5252 return sprintf(page, "%s\n", 5253 mddev->reshape_backwards ? "backwards" : "forwards"); 5254 } 5255 5256 static ssize_t 5257 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len) 5258 { 5259 int backwards = 0; 5260 int err; 5261 5262 if (cmd_match(buf, "forwards")) 5263 backwards = 0; 5264 else if (cmd_match(buf, "backwards")) 5265 backwards = 1; 5266 else 5267 return -EINVAL; 5268 if (mddev->reshape_backwards == backwards) 5269 return len; 5270 5271 err = mddev_lock(mddev); 5272 if (err) 5273 return err; 5274 /* check if we are allowed to change */ 5275 if (mddev->delta_disks) 5276 err = -EBUSY; 5277 else if (mddev->persistent && 5278 mddev->major_version == 0) 5279 err = -EINVAL; 5280 else 5281 mddev->reshape_backwards = backwards; 5282 mddev_unlock(mddev); 5283 return err ?: len; 5284 } 5285 5286 static struct md_sysfs_entry md_reshape_direction = 5287 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show, 5288 reshape_direction_store); 5289 5290 static ssize_t 5291 array_size_show(struct mddev *mddev, char *page) 5292 { 5293 if (mddev->external_size) 5294 return sprintf(page, "%llu\n", 5295 (unsigned long long)mddev->array_sectors/2); 5296 else 5297 return sprintf(page, "default\n"); 5298 } 5299 5300 static ssize_t 5301 array_size_store(struct mddev *mddev, const char *buf, size_t len) 5302 { 5303 sector_t sectors; 5304 int err; 5305 5306 err = mddev_lock(mddev); 5307 if (err) 5308 return err; 5309 5310 /* cluster raid doesn't support change array_sectors */ 5311 if (mddev_is_clustered(mddev)) { 5312 mddev_unlock(mddev); 5313 return -EINVAL; 5314 } 5315 5316 if (strncmp(buf, "default", 7) == 0) { 5317 if (mddev->pers) 5318 sectors = mddev->pers->size(mddev, 0, 0); 5319 else 5320 sectors = mddev->array_sectors; 5321 5322 mddev->external_size = 0; 5323 } else { 5324 if (strict_blocks_to_sectors(buf, §ors) < 0) 5325 err = -EINVAL; 5326 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors) 5327 err = -E2BIG; 5328 else 5329 mddev->external_size = 1; 5330 } 5331 5332 if (!err) { 5333 mddev->array_sectors = sectors; 5334 if (mddev->pers) 5335 set_capacity_and_notify(mddev->gendisk, 5336 mddev->array_sectors); 5337 } 5338 mddev_unlock(mddev); 5339 return err ?: len; 5340 } 5341 5342 static struct md_sysfs_entry md_array_size = 5343 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show, 5344 array_size_store); 5345 5346 static ssize_t 5347 consistency_policy_show(struct mddev *mddev, char *page) 5348 { 5349 int ret; 5350 5351 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { 5352 ret = sprintf(page, "journal\n"); 5353 } else if (test_bit(MD_HAS_PPL, &mddev->flags)) { 5354 ret = sprintf(page, "ppl\n"); 5355 } else if (mddev->bitmap) { 5356 ret = sprintf(page, "bitmap\n"); 5357 } else if (mddev->pers) { 5358 if (mddev->pers->sync_request) 5359 ret = sprintf(page, "resync\n"); 5360 else 5361 ret = sprintf(page, "none\n"); 5362 } else { 5363 ret = sprintf(page, "unknown\n"); 5364 } 5365 5366 return ret; 5367 } 5368 5369 static ssize_t 5370 consistency_policy_store(struct mddev *mddev, const char *buf, size_t len) 5371 { 5372 int err = 0; 5373 5374 if (mddev->pers) { 5375 if (mddev->pers->change_consistency_policy) 5376 err = mddev->pers->change_consistency_policy(mddev, buf); 5377 else 5378 err = -EBUSY; 5379 } else if (mddev->external && strncmp(buf, "ppl", 3) == 0) { 5380 set_bit(MD_HAS_PPL, &mddev->flags); 5381 } else { 5382 err = -EINVAL; 5383 } 5384 5385 return err ? err : len; 5386 } 5387 5388 static struct md_sysfs_entry md_consistency_policy = 5389 __ATTR(consistency_policy, S_IRUGO | S_IWUSR, consistency_policy_show, 5390 consistency_policy_store); 5391 5392 static ssize_t fail_last_dev_show(struct mddev *mddev, char *page) 5393 { 5394 return sprintf(page, "%d\n", mddev->fail_last_dev); 5395 } 5396 5397 /* 5398 * Setting fail_last_dev to true to allow last device to be forcibly removed 5399 * from RAID1/RAID10. 5400 */ 5401 static ssize_t 5402 fail_last_dev_store(struct mddev *mddev, const char *buf, size_t len) 5403 { 5404 int ret; 5405 bool value; 5406 5407 ret = kstrtobool(buf, &value); 5408 if (ret) 5409 return ret; 5410 5411 if (value != mddev->fail_last_dev) 5412 mddev->fail_last_dev = value; 5413 5414 return len; 5415 } 5416 static struct md_sysfs_entry md_fail_last_dev = 5417 __ATTR(fail_last_dev, S_IRUGO | S_IWUSR, fail_last_dev_show, 5418 fail_last_dev_store); 5419 5420 static ssize_t serialize_policy_show(struct mddev *mddev, char *page) 5421 { 5422 if (mddev->pers == NULL || (mddev->pers->level != 1)) 5423 return sprintf(page, "n/a\n"); 5424 else 5425 return sprintf(page, "%d\n", mddev->serialize_policy); 5426 } 5427 5428 /* 5429 * Setting serialize_policy to true to enforce write IO is not reordered 5430 * for raid1. 5431 */ 5432 static ssize_t 5433 serialize_policy_store(struct mddev *mddev, const char *buf, size_t len) 5434 { 5435 int err; 5436 bool value; 5437 5438 err = kstrtobool(buf, &value); 5439 if (err) 5440 return err; 5441 5442 if (value == mddev->serialize_policy) 5443 return len; 5444 5445 err = mddev_lock(mddev); 5446 if (err) 5447 return err; 5448 if (mddev->pers == NULL || (mddev->pers->level != 1)) { 5449 pr_err("md: serialize_policy is only effective for raid1\n"); 5450 err = -EINVAL; 5451 goto unlock; 5452 } 5453 5454 mddev_suspend(mddev); 5455 if (value) 5456 mddev_create_serial_pool(mddev, NULL, true); 5457 else 5458 mddev_destroy_serial_pool(mddev, NULL, true); 5459 mddev->serialize_policy = value; 5460 mddev_resume(mddev); 5461 unlock: 5462 mddev_unlock(mddev); 5463 return err ?: len; 5464 } 5465 5466 static struct md_sysfs_entry md_serialize_policy = 5467 __ATTR(serialize_policy, S_IRUGO | S_IWUSR, serialize_policy_show, 5468 serialize_policy_store); 5469 5470 5471 static struct attribute *md_default_attrs[] = { 5472 &md_level.attr, 5473 &md_layout.attr, 5474 &md_raid_disks.attr, 5475 &md_uuid.attr, 5476 &md_chunk_size.attr, 5477 &md_size.attr, 5478 &md_resync_start.attr, 5479 &md_metadata.attr, 5480 &md_new_device.attr, 5481 &md_safe_delay.attr, 5482 &md_array_state.attr, 5483 &md_reshape_position.attr, 5484 &md_reshape_direction.attr, 5485 &md_array_size.attr, 5486 &max_corr_read_errors.attr, 5487 &md_consistency_policy.attr, 5488 &md_fail_last_dev.attr, 5489 &md_serialize_policy.attr, 5490 NULL, 5491 }; 5492 5493 static struct attribute *md_redundancy_attrs[] = { 5494 &md_scan_mode.attr, 5495 &md_last_scan_mode.attr, 5496 &md_mismatches.attr, 5497 &md_sync_min.attr, 5498 &md_sync_max.attr, 5499 &md_sync_speed.attr, 5500 &md_sync_force_parallel.attr, 5501 &md_sync_completed.attr, 5502 &md_min_sync.attr, 5503 &md_max_sync.attr, 5504 &md_suspend_lo.attr, 5505 &md_suspend_hi.attr, 5506 &md_bitmap.attr, 5507 &md_degraded.attr, 5508 NULL, 5509 }; 5510 static const struct attribute_group md_redundancy_group = { 5511 .name = NULL, 5512 .attrs = md_redundancy_attrs, 5513 }; 5514 5515 static ssize_t 5516 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 5517 { 5518 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5519 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5520 ssize_t rv; 5521 5522 if (!entry->show) 5523 return -EIO; 5524 spin_lock(&all_mddevs_lock); 5525 if (list_empty(&mddev->all_mddevs)) { 5526 spin_unlock(&all_mddevs_lock); 5527 return -EBUSY; 5528 } 5529 mddev_get(mddev); 5530 spin_unlock(&all_mddevs_lock); 5531 5532 rv = entry->show(mddev, page); 5533 mddev_put(mddev); 5534 return rv; 5535 } 5536 5537 static ssize_t 5538 md_attr_store(struct kobject *kobj, struct attribute *attr, 5539 const char *page, size_t length) 5540 { 5541 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5542 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5543 ssize_t rv; 5544 5545 if (!entry->store) 5546 return -EIO; 5547 if (!capable(CAP_SYS_ADMIN)) 5548 return -EACCES; 5549 spin_lock(&all_mddevs_lock); 5550 if (list_empty(&mddev->all_mddevs)) { 5551 spin_unlock(&all_mddevs_lock); 5552 return -EBUSY; 5553 } 5554 mddev_get(mddev); 5555 spin_unlock(&all_mddevs_lock); 5556 rv = entry->store(mddev, page, length); 5557 mddev_put(mddev); 5558 return rv; 5559 } 5560 5561 static void md_free(struct kobject *ko) 5562 { 5563 struct mddev *mddev = container_of(ko, struct mddev, kobj); 5564 5565 if (mddev->sysfs_state) 5566 sysfs_put(mddev->sysfs_state); 5567 if (mddev->sysfs_level) 5568 sysfs_put(mddev->sysfs_level); 5569 5570 if (mddev->gendisk) { 5571 del_gendisk(mddev->gendisk); 5572 blk_cleanup_disk(mddev->gendisk); 5573 } 5574 percpu_ref_exit(&mddev->writes_pending); 5575 5576 bioset_exit(&mddev->bio_set); 5577 bioset_exit(&mddev->sync_set); 5578 if (mddev->level != 1 && mddev->level != 10) 5579 bioset_exit(&mddev->io_acct_set); 5580 kfree(mddev); 5581 } 5582 5583 static const struct sysfs_ops md_sysfs_ops = { 5584 .show = md_attr_show, 5585 .store = md_attr_store, 5586 }; 5587 static struct kobj_type md_ktype = { 5588 .release = md_free, 5589 .sysfs_ops = &md_sysfs_ops, 5590 .default_attrs = md_default_attrs, 5591 }; 5592 5593 int mdp_major = 0; 5594 5595 static void mddev_delayed_delete(struct work_struct *ws) 5596 { 5597 struct mddev *mddev = container_of(ws, struct mddev, del_work); 5598 5599 sysfs_remove_group(&mddev->kobj, &md_bitmap_group); 5600 kobject_del(&mddev->kobj); 5601 kobject_put(&mddev->kobj); 5602 } 5603 5604 static void no_op(struct percpu_ref *r) {} 5605 5606 int mddev_init_writes_pending(struct mddev *mddev) 5607 { 5608 if (mddev->writes_pending.percpu_count_ptr) 5609 return 0; 5610 if (percpu_ref_init(&mddev->writes_pending, no_op, 5611 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL) < 0) 5612 return -ENOMEM; 5613 /* We want to start with the refcount at zero */ 5614 percpu_ref_put(&mddev->writes_pending); 5615 return 0; 5616 } 5617 EXPORT_SYMBOL_GPL(mddev_init_writes_pending); 5618 5619 static int md_alloc(dev_t dev, char *name) 5620 { 5621 /* 5622 * If dev is zero, name is the name of a device to allocate with 5623 * an arbitrary minor number. It will be "md_???" 5624 * If dev is non-zero it must be a device number with a MAJOR of 5625 * MD_MAJOR or mdp_major. In this case, if "name" is NULL, then 5626 * the device is being created by opening a node in /dev. 5627 * If "name" is not NULL, the device is being created by 5628 * writing to /sys/module/md_mod/parameters/new_array. 5629 */ 5630 static DEFINE_MUTEX(disks_mutex); 5631 struct mddev *mddev; 5632 struct gendisk *disk; 5633 int partitioned; 5634 int shift; 5635 int unit; 5636 int error ; 5637 5638 /* 5639 * Wait for any previous instance of this device to be completely 5640 * removed (mddev_delayed_delete). 5641 */ 5642 flush_workqueue(md_misc_wq); 5643 5644 mutex_lock(&disks_mutex); 5645 mddev = mddev_alloc(dev); 5646 if (IS_ERR(mddev)) { 5647 mutex_unlock(&disks_mutex); 5648 return PTR_ERR(mddev); 5649 } 5650 5651 partitioned = (MAJOR(mddev->unit) != MD_MAJOR); 5652 shift = partitioned ? MdpMinorShift : 0; 5653 unit = MINOR(mddev->unit) >> shift; 5654 5655 if (name && !dev) { 5656 /* Need to ensure that 'name' is not a duplicate. 5657 */ 5658 struct mddev *mddev2; 5659 spin_lock(&all_mddevs_lock); 5660 5661 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) 5662 if (mddev2->gendisk && 5663 strcmp(mddev2->gendisk->disk_name, name) == 0) { 5664 spin_unlock(&all_mddevs_lock); 5665 error = -EEXIST; 5666 goto abort; 5667 } 5668 spin_unlock(&all_mddevs_lock); 5669 } 5670 if (name && dev) 5671 /* 5672 * Creating /dev/mdNNN via "newarray", so adjust hold_active. 5673 */ 5674 mddev->hold_active = UNTIL_STOP; 5675 5676 error = -ENOMEM; 5677 disk = blk_alloc_disk(NUMA_NO_NODE); 5678 if (!disk) 5679 goto abort; 5680 5681 disk->major = MAJOR(mddev->unit); 5682 disk->first_minor = unit << shift; 5683 disk->minors = 1 << shift; 5684 if (name) 5685 strcpy(disk->disk_name, name); 5686 else if (partitioned) 5687 sprintf(disk->disk_name, "md_d%d", unit); 5688 else 5689 sprintf(disk->disk_name, "md%d", unit); 5690 disk->fops = &md_fops; 5691 disk->private_data = mddev; 5692 5693 mddev->queue = disk->queue; 5694 blk_set_stacking_limits(&mddev->queue->limits); 5695 blk_queue_write_cache(mddev->queue, true, true); 5696 /* Allow extended partitions. This makes the 5697 * 'mdp' device redundant, but we can't really 5698 * remove it now. 5699 */ 5700 disk->flags |= GENHD_FL_EXT_DEVT; 5701 disk->events |= DISK_EVENT_MEDIA_CHANGE; 5702 mddev->gendisk = disk; 5703 add_disk(disk); 5704 5705 error = kobject_add(&mddev->kobj, &disk_to_dev(disk)->kobj, "%s", "md"); 5706 if (error) { 5707 /* This isn't possible, but as kobject_init_and_add is marked 5708 * __must_check, we must do something with the result 5709 */ 5710 pr_debug("md: cannot register %s/md - name in use\n", 5711 disk->disk_name); 5712 error = 0; 5713 } 5714 if (mddev->kobj.sd && 5715 sysfs_create_group(&mddev->kobj, &md_bitmap_group)) 5716 pr_debug("pointless warning\n"); 5717 abort: 5718 mutex_unlock(&disks_mutex); 5719 if (!error && mddev->kobj.sd) { 5720 kobject_uevent(&mddev->kobj, KOBJ_ADD); 5721 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state"); 5722 mddev->sysfs_level = sysfs_get_dirent_safe(mddev->kobj.sd, "level"); 5723 } 5724 mddev_put(mddev); 5725 return error; 5726 } 5727 5728 static void md_probe(dev_t dev) 5729 { 5730 if (MAJOR(dev) == MD_MAJOR && MINOR(dev) >= 512) 5731 return; 5732 if (create_on_open) 5733 md_alloc(dev, NULL); 5734 } 5735 5736 static int add_named_array(const char *val, const struct kernel_param *kp) 5737 { 5738 /* 5739 * val must be "md_*" or "mdNNN". 5740 * For "md_*" we allocate an array with a large free minor number, and 5741 * set the name to val. val must not already be an active name. 5742 * For "mdNNN" we allocate an array with the minor number NNN 5743 * which must not already be in use. 5744 */ 5745 int len = strlen(val); 5746 char buf[DISK_NAME_LEN]; 5747 unsigned long devnum; 5748 5749 while (len && val[len-1] == '\n') 5750 len--; 5751 if (len >= DISK_NAME_LEN) 5752 return -E2BIG; 5753 strlcpy(buf, val, len+1); 5754 if (strncmp(buf, "md_", 3) == 0) 5755 return md_alloc(0, buf); 5756 if (strncmp(buf, "md", 2) == 0 && 5757 isdigit(buf[2]) && 5758 kstrtoul(buf+2, 10, &devnum) == 0 && 5759 devnum <= MINORMASK) 5760 return md_alloc(MKDEV(MD_MAJOR, devnum), NULL); 5761 5762 return -EINVAL; 5763 } 5764 5765 static void md_safemode_timeout(struct timer_list *t) 5766 { 5767 struct mddev *mddev = from_timer(mddev, t, safemode_timer); 5768 5769 mddev->safemode = 1; 5770 if (mddev->external) 5771 sysfs_notify_dirent_safe(mddev->sysfs_state); 5772 5773 md_wakeup_thread(mddev->thread); 5774 } 5775 5776 static int start_dirty_degraded; 5777 5778 int md_run(struct mddev *mddev) 5779 { 5780 int err; 5781 struct md_rdev *rdev; 5782 struct md_personality *pers; 5783 5784 if (list_empty(&mddev->disks)) 5785 /* cannot run an array with no devices.. */ 5786 return -EINVAL; 5787 5788 if (mddev->pers) 5789 return -EBUSY; 5790 /* Cannot run until previous stop completes properly */ 5791 if (mddev->sysfs_active) 5792 return -EBUSY; 5793 5794 /* 5795 * Analyze all RAID superblock(s) 5796 */ 5797 if (!mddev->raid_disks) { 5798 if (!mddev->persistent) 5799 return -EINVAL; 5800 err = analyze_sbs(mddev); 5801 if (err) 5802 return -EINVAL; 5803 } 5804 5805 if (mddev->level != LEVEL_NONE) 5806 request_module("md-level-%d", mddev->level); 5807 else if (mddev->clevel[0]) 5808 request_module("md-%s", mddev->clevel); 5809 5810 /* 5811 * Drop all container device buffers, from now on 5812 * the only valid external interface is through the md 5813 * device. 5814 */ 5815 mddev->has_superblocks = false; 5816 rdev_for_each(rdev, mddev) { 5817 if (test_bit(Faulty, &rdev->flags)) 5818 continue; 5819 sync_blockdev(rdev->bdev); 5820 invalidate_bdev(rdev->bdev); 5821 if (mddev->ro != 1 && rdev_read_only(rdev)) { 5822 mddev->ro = 1; 5823 if (mddev->gendisk) 5824 set_disk_ro(mddev->gendisk, 1); 5825 } 5826 5827 if (rdev->sb_page) 5828 mddev->has_superblocks = true; 5829 5830 /* perform some consistency tests on the device. 5831 * We don't want the data to overlap the metadata, 5832 * Internal Bitmap issues have been handled elsewhere. 5833 */ 5834 if (rdev->meta_bdev) { 5835 /* Nothing to check */; 5836 } else if (rdev->data_offset < rdev->sb_start) { 5837 if (mddev->dev_sectors && 5838 rdev->data_offset + mddev->dev_sectors 5839 > rdev->sb_start) { 5840 pr_warn("md: %s: data overlaps metadata\n", 5841 mdname(mddev)); 5842 return -EINVAL; 5843 } 5844 } else { 5845 if (rdev->sb_start + rdev->sb_size/512 5846 > rdev->data_offset) { 5847 pr_warn("md: %s: metadata overlaps data\n", 5848 mdname(mddev)); 5849 return -EINVAL; 5850 } 5851 } 5852 sysfs_notify_dirent_safe(rdev->sysfs_state); 5853 } 5854 5855 if (!bioset_initialized(&mddev->bio_set)) { 5856 err = bioset_init(&mddev->bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5857 if (err) 5858 return err; 5859 } 5860 if (!bioset_initialized(&mddev->sync_set)) { 5861 err = bioset_init(&mddev->sync_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5862 if (err) 5863 goto exit_bio_set; 5864 } 5865 if (mddev->level != 1 && mddev->level != 10 && 5866 !bioset_initialized(&mddev->io_acct_set)) { 5867 err = bioset_init(&mddev->io_acct_set, BIO_POOL_SIZE, 5868 offsetof(struct md_io_acct, bio_clone), 0); 5869 if (err) 5870 goto exit_sync_set; 5871 } 5872 5873 spin_lock(&pers_lock); 5874 pers = find_pers(mddev->level, mddev->clevel); 5875 if (!pers || !try_module_get(pers->owner)) { 5876 spin_unlock(&pers_lock); 5877 if (mddev->level != LEVEL_NONE) 5878 pr_warn("md: personality for level %d is not loaded!\n", 5879 mddev->level); 5880 else 5881 pr_warn("md: personality for level %s is not loaded!\n", 5882 mddev->clevel); 5883 err = -EINVAL; 5884 goto abort; 5885 } 5886 spin_unlock(&pers_lock); 5887 if (mddev->level != pers->level) { 5888 mddev->level = pers->level; 5889 mddev->new_level = pers->level; 5890 } 5891 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 5892 5893 if (mddev->reshape_position != MaxSector && 5894 pers->start_reshape == NULL) { 5895 /* This personality cannot handle reshaping... */ 5896 module_put(pers->owner); 5897 err = -EINVAL; 5898 goto abort; 5899 } 5900 5901 if (pers->sync_request) { 5902 /* Warn if this is a potentially silly 5903 * configuration. 5904 */ 5905 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 5906 struct md_rdev *rdev2; 5907 int warned = 0; 5908 5909 rdev_for_each(rdev, mddev) 5910 rdev_for_each(rdev2, mddev) { 5911 if (rdev < rdev2 && 5912 rdev->bdev->bd_disk == 5913 rdev2->bdev->bd_disk) { 5914 pr_warn("%s: WARNING: %s appears to be on the same physical disk as %s.\n", 5915 mdname(mddev), 5916 bdevname(rdev->bdev,b), 5917 bdevname(rdev2->bdev,b2)); 5918 warned = 1; 5919 } 5920 } 5921 5922 if (warned) 5923 pr_warn("True protection against single-disk failure might be compromised.\n"); 5924 } 5925 5926 mddev->recovery = 0; 5927 /* may be over-ridden by personality */ 5928 mddev->resync_max_sectors = mddev->dev_sectors; 5929 5930 mddev->ok_start_degraded = start_dirty_degraded; 5931 5932 if (start_readonly && mddev->ro == 0) 5933 mddev->ro = 2; /* read-only, but switch on first write */ 5934 5935 err = pers->run(mddev); 5936 if (err) 5937 pr_warn("md: pers->run() failed ...\n"); 5938 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) { 5939 WARN_ONCE(!mddev->external_size, 5940 "%s: default size too small, but 'external_size' not in effect?\n", 5941 __func__); 5942 pr_warn("md: invalid array_size %llu > default size %llu\n", 5943 (unsigned long long)mddev->array_sectors / 2, 5944 (unsigned long long)pers->size(mddev, 0, 0) / 2); 5945 err = -EINVAL; 5946 } 5947 if (err == 0 && pers->sync_request && 5948 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) { 5949 struct bitmap *bitmap; 5950 5951 bitmap = md_bitmap_create(mddev, -1); 5952 if (IS_ERR(bitmap)) { 5953 err = PTR_ERR(bitmap); 5954 pr_warn("%s: failed to create bitmap (%d)\n", 5955 mdname(mddev), err); 5956 } else 5957 mddev->bitmap = bitmap; 5958 5959 } 5960 if (err) 5961 goto bitmap_abort; 5962 5963 if (mddev->bitmap_info.max_write_behind > 0) { 5964 bool create_pool = false; 5965 5966 rdev_for_each(rdev, mddev) { 5967 if (test_bit(WriteMostly, &rdev->flags) && 5968 rdev_init_serial(rdev)) 5969 create_pool = true; 5970 } 5971 if (create_pool && mddev->serial_info_pool == NULL) { 5972 mddev->serial_info_pool = 5973 mempool_create_kmalloc_pool(NR_SERIAL_INFOS, 5974 sizeof(struct serial_info)); 5975 if (!mddev->serial_info_pool) { 5976 err = -ENOMEM; 5977 goto bitmap_abort; 5978 } 5979 } 5980 } 5981 5982 if (mddev->queue) { 5983 bool nonrot = true; 5984 5985 rdev_for_each(rdev, mddev) { 5986 if (rdev->raid_disk >= 0 && 5987 !blk_queue_nonrot(bdev_get_queue(rdev->bdev))) { 5988 nonrot = false; 5989 break; 5990 } 5991 } 5992 if (mddev->degraded) 5993 nonrot = false; 5994 if (nonrot) 5995 blk_queue_flag_set(QUEUE_FLAG_NONROT, mddev->queue); 5996 else 5997 blk_queue_flag_clear(QUEUE_FLAG_NONROT, mddev->queue); 5998 blk_queue_flag_set(QUEUE_FLAG_IO_STAT, mddev->queue); 5999 } 6000 if (pers->sync_request) { 6001 if (mddev->kobj.sd && 6002 sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 6003 pr_warn("md: cannot register extra attributes for %s\n", 6004 mdname(mddev)); 6005 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action"); 6006 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed"); 6007 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded"); 6008 } else if (mddev->ro == 2) /* auto-readonly not meaningful */ 6009 mddev->ro = 0; 6010 6011 atomic_set(&mddev->max_corr_read_errors, 6012 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS); 6013 mddev->safemode = 0; 6014 if (mddev_is_clustered(mddev)) 6015 mddev->safemode_delay = 0; 6016 else 6017 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY; 6018 mddev->in_sync = 1; 6019 smp_wmb(); 6020 spin_lock(&mddev->lock); 6021 mddev->pers = pers; 6022 spin_unlock(&mddev->lock); 6023 rdev_for_each(rdev, mddev) 6024 if (rdev->raid_disk >= 0) 6025 sysfs_link_rdev(mddev, rdev); /* failure here is OK */ 6026 6027 if (mddev->degraded && !mddev->ro) 6028 /* This ensures that recovering status is reported immediately 6029 * via sysfs - until a lack of spares is confirmed. 6030 */ 6031 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 6032 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6033 6034 if (mddev->sb_flags) 6035 md_update_sb(mddev, 0); 6036 6037 md_new_event(mddev); 6038 return 0; 6039 6040 bitmap_abort: 6041 mddev_detach(mddev); 6042 if (mddev->private) 6043 pers->free(mddev, mddev->private); 6044 mddev->private = NULL; 6045 module_put(pers->owner); 6046 md_bitmap_destroy(mddev); 6047 abort: 6048 if (mddev->level != 1 && mddev->level != 10) 6049 bioset_exit(&mddev->io_acct_set); 6050 exit_sync_set: 6051 bioset_exit(&mddev->sync_set); 6052 exit_bio_set: 6053 bioset_exit(&mddev->bio_set); 6054 return err; 6055 } 6056 EXPORT_SYMBOL_GPL(md_run); 6057 6058 int do_md_run(struct mddev *mddev) 6059 { 6060 int err; 6061 6062 set_bit(MD_NOT_READY, &mddev->flags); 6063 err = md_run(mddev); 6064 if (err) 6065 goto out; 6066 err = md_bitmap_load(mddev); 6067 if (err) { 6068 md_bitmap_destroy(mddev); 6069 goto out; 6070 } 6071 6072 if (mddev_is_clustered(mddev)) 6073 md_allow_write(mddev); 6074 6075 /* run start up tasks that require md_thread */ 6076 md_start(mddev); 6077 6078 md_wakeup_thread(mddev->thread); 6079 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 6080 6081 set_capacity_and_notify(mddev->gendisk, mddev->array_sectors); 6082 clear_bit(MD_NOT_READY, &mddev->flags); 6083 mddev->changed = 1; 6084 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 6085 sysfs_notify_dirent_safe(mddev->sysfs_state); 6086 sysfs_notify_dirent_safe(mddev->sysfs_action); 6087 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 6088 out: 6089 clear_bit(MD_NOT_READY, &mddev->flags); 6090 return err; 6091 } 6092 6093 int md_start(struct mddev *mddev) 6094 { 6095 int ret = 0; 6096 6097 if (mddev->pers->start) { 6098 set_bit(MD_RECOVERY_WAIT, &mddev->recovery); 6099 md_wakeup_thread(mddev->thread); 6100 ret = mddev->pers->start(mddev); 6101 clear_bit(MD_RECOVERY_WAIT, &mddev->recovery); 6102 md_wakeup_thread(mddev->sync_thread); 6103 } 6104 return ret; 6105 } 6106 EXPORT_SYMBOL_GPL(md_start); 6107 6108 static int restart_array(struct mddev *mddev) 6109 { 6110 struct gendisk *disk = mddev->gendisk; 6111 struct md_rdev *rdev; 6112 bool has_journal = false; 6113 bool has_readonly = false; 6114 6115 /* Complain if it has no devices */ 6116 if (list_empty(&mddev->disks)) 6117 return -ENXIO; 6118 if (!mddev->pers) 6119 return -EINVAL; 6120 if (!mddev->ro) 6121 return -EBUSY; 6122 6123 rcu_read_lock(); 6124 rdev_for_each_rcu(rdev, mddev) { 6125 if (test_bit(Journal, &rdev->flags) && 6126 !test_bit(Faulty, &rdev->flags)) 6127 has_journal = true; 6128 if (rdev_read_only(rdev)) 6129 has_readonly = true; 6130 } 6131 rcu_read_unlock(); 6132 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !has_journal) 6133 /* Don't restart rw with journal missing/faulty */ 6134 return -EINVAL; 6135 if (has_readonly) 6136 return -EROFS; 6137 6138 mddev->safemode = 0; 6139 mddev->ro = 0; 6140 set_disk_ro(disk, 0); 6141 pr_debug("md: %s switched to read-write mode.\n", mdname(mddev)); 6142 /* Kick recovery or resync if necessary */ 6143 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6144 md_wakeup_thread(mddev->thread); 6145 md_wakeup_thread(mddev->sync_thread); 6146 sysfs_notify_dirent_safe(mddev->sysfs_state); 6147 return 0; 6148 } 6149 6150 static void md_clean(struct mddev *mddev) 6151 { 6152 mddev->array_sectors = 0; 6153 mddev->external_size = 0; 6154 mddev->dev_sectors = 0; 6155 mddev->raid_disks = 0; 6156 mddev->recovery_cp = 0; 6157 mddev->resync_min = 0; 6158 mddev->resync_max = MaxSector; 6159 mddev->reshape_position = MaxSector; 6160 mddev->external = 0; 6161 mddev->persistent = 0; 6162 mddev->level = LEVEL_NONE; 6163 mddev->clevel[0] = 0; 6164 mddev->flags = 0; 6165 mddev->sb_flags = 0; 6166 mddev->ro = 0; 6167 mddev->metadata_type[0] = 0; 6168 mddev->chunk_sectors = 0; 6169 mddev->ctime = mddev->utime = 0; 6170 mddev->layout = 0; 6171 mddev->max_disks = 0; 6172 mddev->events = 0; 6173 mddev->can_decrease_events = 0; 6174 mddev->delta_disks = 0; 6175 mddev->reshape_backwards = 0; 6176 mddev->new_level = LEVEL_NONE; 6177 mddev->new_layout = 0; 6178 mddev->new_chunk_sectors = 0; 6179 mddev->curr_resync = 0; 6180 atomic64_set(&mddev->resync_mismatches, 0); 6181 mddev->suspend_lo = mddev->suspend_hi = 0; 6182 mddev->sync_speed_min = mddev->sync_speed_max = 0; 6183 mddev->recovery = 0; 6184 mddev->in_sync = 0; 6185 mddev->changed = 0; 6186 mddev->degraded = 0; 6187 mddev->safemode = 0; 6188 mddev->private = NULL; 6189 mddev->cluster_info = NULL; 6190 mddev->bitmap_info.offset = 0; 6191 mddev->bitmap_info.default_offset = 0; 6192 mddev->bitmap_info.default_space = 0; 6193 mddev->bitmap_info.chunksize = 0; 6194 mddev->bitmap_info.daemon_sleep = 0; 6195 mddev->bitmap_info.max_write_behind = 0; 6196 mddev->bitmap_info.nodes = 0; 6197 } 6198 6199 static void __md_stop_writes(struct mddev *mddev) 6200 { 6201 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6202 if (work_pending(&mddev->del_work)) 6203 flush_workqueue(md_misc_wq); 6204 if (mddev->sync_thread) { 6205 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6206 md_reap_sync_thread(mddev); 6207 } 6208 6209 del_timer_sync(&mddev->safemode_timer); 6210 6211 if (mddev->pers && mddev->pers->quiesce) { 6212 mddev->pers->quiesce(mddev, 1); 6213 mddev->pers->quiesce(mddev, 0); 6214 } 6215 md_bitmap_flush(mddev); 6216 6217 if (mddev->ro == 0 && 6218 ((!mddev->in_sync && !mddev_is_clustered(mddev)) || 6219 mddev->sb_flags)) { 6220 /* mark array as shutdown cleanly */ 6221 if (!mddev_is_clustered(mddev)) 6222 mddev->in_sync = 1; 6223 md_update_sb(mddev, 1); 6224 } 6225 /* disable policy to guarantee rdevs free resources for serialization */ 6226 mddev->serialize_policy = 0; 6227 mddev_destroy_serial_pool(mddev, NULL, true); 6228 } 6229 6230 void md_stop_writes(struct mddev *mddev) 6231 { 6232 mddev_lock_nointr(mddev); 6233 __md_stop_writes(mddev); 6234 mddev_unlock(mddev); 6235 } 6236 EXPORT_SYMBOL_GPL(md_stop_writes); 6237 6238 static void mddev_detach(struct mddev *mddev) 6239 { 6240 md_bitmap_wait_behind_writes(mddev); 6241 if (mddev->pers && mddev->pers->quiesce && !mddev->suspended) { 6242 mddev->pers->quiesce(mddev, 1); 6243 mddev->pers->quiesce(mddev, 0); 6244 } 6245 md_unregister_thread(&mddev->thread); 6246 if (mddev->queue) 6247 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 6248 } 6249 6250 static void __md_stop(struct mddev *mddev) 6251 { 6252 struct md_personality *pers = mddev->pers; 6253 md_bitmap_destroy(mddev); 6254 mddev_detach(mddev); 6255 /* Ensure ->event_work is done */ 6256 if (mddev->event_work.func) 6257 flush_workqueue(md_misc_wq); 6258 spin_lock(&mddev->lock); 6259 mddev->pers = NULL; 6260 spin_unlock(&mddev->lock); 6261 pers->free(mddev, mddev->private); 6262 mddev->private = NULL; 6263 if (pers->sync_request && mddev->to_remove == NULL) 6264 mddev->to_remove = &md_redundancy_group; 6265 module_put(pers->owner); 6266 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6267 } 6268 6269 void md_stop(struct mddev *mddev) 6270 { 6271 /* stop the array and free an attached data structures. 6272 * This is called from dm-raid 6273 */ 6274 __md_stop(mddev); 6275 bioset_exit(&mddev->bio_set); 6276 bioset_exit(&mddev->sync_set); 6277 if (mddev->level != 1 && mddev->level != 10) 6278 bioset_exit(&mddev->io_acct_set); 6279 } 6280 6281 EXPORT_SYMBOL_GPL(md_stop); 6282 6283 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev) 6284 { 6285 int err = 0; 6286 int did_freeze = 0; 6287 6288 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 6289 did_freeze = 1; 6290 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6291 md_wakeup_thread(mddev->thread); 6292 } 6293 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 6294 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6295 if (mddev->sync_thread) 6296 /* Thread might be blocked waiting for metadata update 6297 * which will now never happen */ 6298 wake_up_process(mddev->sync_thread->tsk); 6299 6300 if (mddev->external && test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 6301 return -EBUSY; 6302 mddev_unlock(mddev); 6303 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING, 6304 &mddev->recovery)); 6305 wait_event(mddev->sb_wait, 6306 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 6307 mddev_lock_nointr(mddev); 6308 6309 mutex_lock(&mddev->open_mutex); 6310 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 6311 mddev->sync_thread || 6312 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 6313 pr_warn("md: %s still in use.\n",mdname(mddev)); 6314 if (did_freeze) { 6315 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6316 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6317 md_wakeup_thread(mddev->thread); 6318 } 6319 err = -EBUSY; 6320 goto out; 6321 } 6322 if (mddev->pers) { 6323 __md_stop_writes(mddev); 6324 6325 err = -ENXIO; 6326 if (mddev->ro==1) 6327 goto out; 6328 mddev->ro = 1; 6329 set_disk_ro(mddev->gendisk, 1); 6330 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6331 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6332 md_wakeup_thread(mddev->thread); 6333 sysfs_notify_dirent_safe(mddev->sysfs_state); 6334 err = 0; 6335 } 6336 out: 6337 mutex_unlock(&mddev->open_mutex); 6338 return err; 6339 } 6340 6341 /* mode: 6342 * 0 - completely stop and dis-assemble array 6343 * 2 - stop but do not disassemble array 6344 */ 6345 static int do_md_stop(struct mddev *mddev, int mode, 6346 struct block_device *bdev) 6347 { 6348 struct gendisk *disk = mddev->gendisk; 6349 struct md_rdev *rdev; 6350 int did_freeze = 0; 6351 6352 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 6353 did_freeze = 1; 6354 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6355 md_wakeup_thread(mddev->thread); 6356 } 6357 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 6358 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6359 if (mddev->sync_thread) 6360 /* Thread might be blocked waiting for metadata update 6361 * which will now never happen */ 6362 wake_up_process(mddev->sync_thread->tsk); 6363 6364 mddev_unlock(mddev); 6365 wait_event(resync_wait, (mddev->sync_thread == NULL && 6366 !test_bit(MD_RECOVERY_RUNNING, 6367 &mddev->recovery))); 6368 mddev_lock_nointr(mddev); 6369 6370 mutex_lock(&mddev->open_mutex); 6371 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 6372 mddev->sysfs_active || 6373 mddev->sync_thread || 6374 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 6375 pr_warn("md: %s still in use.\n",mdname(mddev)); 6376 mutex_unlock(&mddev->open_mutex); 6377 if (did_freeze) { 6378 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6379 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6380 md_wakeup_thread(mddev->thread); 6381 } 6382 return -EBUSY; 6383 } 6384 if (mddev->pers) { 6385 if (mddev->ro) 6386 set_disk_ro(disk, 0); 6387 6388 __md_stop_writes(mddev); 6389 __md_stop(mddev); 6390 6391 /* tell userspace to handle 'inactive' */ 6392 sysfs_notify_dirent_safe(mddev->sysfs_state); 6393 6394 rdev_for_each(rdev, mddev) 6395 if (rdev->raid_disk >= 0) 6396 sysfs_unlink_rdev(mddev, rdev); 6397 6398 set_capacity_and_notify(disk, 0); 6399 mutex_unlock(&mddev->open_mutex); 6400 mddev->changed = 1; 6401 6402 if (mddev->ro) 6403 mddev->ro = 0; 6404 } else 6405 mutex_unlock(&mddev->open_mutex); 6406 /* 6407 * Free resources if final stop 6408 */ 6409 if (mode == 0) { 6410 pr_info("md: %s stopped.\n", mdname(mddev)); 6411 6412 if (mddev->bitmap_info.file) { 6413 struct file *f = mddev->bitmap_info.file; 6414 spin_lock(&mddev->lock); 6415 mddev->bitmap_info.file = NULL; 6416 spin_unlock(&mddev->lock); 6417 fput(f); 6418 } 6419 mddev->bitmap_info.offset = 0; 6420 6421 export_array(mddev); 6422 6423 md_clean(mddev); 6424 if (mddev->hold_active == UNTIL_STOP) 6425 mddev->hold_active = 0; 6426 } 6427 md_new_event(mddev); 6428 sysfs_notify_dirent_safe(mddev->sysfs_state); 6429 return 0; 6430 } 6431 6432 #ifndef MODULE 6433 static void autorun_array(struct mddev *mddev) 6434 { 6435 struct md_rdev *rdev; 6436 int err; 6437 6438 if (list_empty(&mddev->disks)) 6439 return; 6440 6441 pr_info("md: running: "); 6442 6443 rdev_for_each(rdev, mddev) { 6444 char b[BDEVNAME_SIZE]; 6445 pr_cont("<%s>", bdevname(rdev->bdev,b)); 6446 } 6447 pr_cont("\n"); 6448 6449 err = do_md_run(mddev); 6450 if (err) { 6451 pr_warn("md: do_md_run() returned %d\n", err); 6452 do_md_stop(mddev, 0, NULL); 6453 } 6454 } 6455 6456 /* 6457 * lets try to run arrays based on all disks that have arrived 6458 * until now. (those are in pending_raid_disks) 6459 * 6460 * the method: pick the first pending disk, collect all disks with 6461 * the same UUID, remove all from the pending list and put them into 6462 * the 'same_array' list. Then order this list based on superblock 6463 * update time (freshest comes first), kick out 'old' disks and 6464 * compare superblocks. If everything's fine then run it. 6465 * 6466 * If "unit" is allocated, then bump its reference count 6467 */ 6468 static void autorun_devices(int part) 6469 { 6470 struct md_rdev *rdev0, *rdev, *tmp; 6471 struct mddev *mddev; 6472 char b[BDEVNAME_SIZE]; 6473 6474 pr_info("md: autorun ...\n"); 6475 while (!list_empty(&pending_raid_disks)) { 6476 int unit; 6477 dev_t dev; 6478 LIST_HEAD(candidates); 6479 rdev0 = list_entry(pending_raid_disks.next, 6480 struct md_rdev, same_set); 6481 6482 pr_debug("md: considering %s ...\n", bdevname(rdev0->bdev,b)); 6483 INIT_LIST_HEAD(&candidates); 6484 rdev_for_each_list(rdev, tmp, &pending_raid_disks) 6485 if (super_90_load(rdev, rdev0, 0) >= 0) { 6486 pr_debug("md: adding %s ...\n", 6487 bdevname(rdev->bdev,b)); 6488 list_move(&rdev->same_set, &candidates); 6489 } 6490 /* 6491 * now we have a set of devices, with all of them having 6492 * mostly sane superblocks. It's time to allocate the 6493 * mddev. 6494 */ 6495 if (part) { 6496 dev = MKDEV(mdp_major, 6497 rdev0->preferred_minor << MdpMinorShift); 6498 unit = MINOR(dev) >> MdpMinorShift; 6499 } else { 6500 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); 6501 unit = MINOR(dev); 6502 } 6503 if (rdev0->preferred_minor != unit) { 6504 pr_warn("md: unit number in %s is bad: %d\n", 6505 bdevname(rdev0->bdev, b), rdev0->preferred_minor); 6506 break; 6507 } 6508 6509 md_probe(dev); 6510 mddev = mddev_find(dev); 6511 if (!mddev) 6512 break; 6513 6514 if (mddev_lock(mddev)) 6515 pr_warn("md: %s locked, cannot run\n", mdname(mddev)); 6516 else if (mddev->raid_disks || mddev->major_version 6517 || !list_empty(&mddev->disks)) { 6518 pr_warn("md: %s already running, cannot run %s\n", 6519 mdname(mddev), bdevname(rdev0->bdev,b)); 6520 mddev_unlock(mddev); 6521 } else { 6522 pr_debug("md: created %s\n", mdname(mddev)); 6523 mddev->persistent = 1; 6524 rdev_for_each_list(rdev, tmp, &candidates) { 6525 list_del_init(&rdev->same_set); 6526 if (bind_rdev_to_array(rdev, mddev)) 6527 export_rdev(rdev); 6528 } 6529 autorun_array(mddev); 6530 mddev_unlock(mddev); 6531 } 6532 /* on success, candidates will be empty, on error 6533 * it won't... 6534 */ 6535 rdev_for_each_list(rdev, tmp, &candidates) { 6536 list_del_init(&rdev->same_set); 6537 export_rdev(rdev); 6538 } 6539 mddev_put(mddev); 6540 } 6541 pr_info("md: ... autorun DONE.\n"); 6542 } 6543 #endif /* !MODULE */ 6544 6545 static int get_version(void __user *arg) 6546 { 6547 mdu_version_t ver; 6548 6549 ver.major = MD_MAJOR_VERSION; 6550 ver.minor = MD_MINOR_VERSION; 6551 ver.patchlevel = MD_PATCHLEVEL_VERSION; 6552 6553 if (copy_to_user(arg, &ver, sizeof(ver))) 6554 return -EFAULT; 6555 6556 return 0; 6557 } 6558 6559 static int get_array_info(struct mddev *mddev, void __user *arg) 6560 { 6561 mdu_array_info_t info; 6562 int nr,working,insync,failed,spare; 6563 struct md_rdev *rdev; 6564 6565 nr = working = insync = failed = spare = 0; 6566 rcu_read_lock(); 6567 rdev_for_each_rcu(rdev, mddev) { 6568 nr++; 6569 if (test_bit(Faulty, &rdev->flags)) 6570 failed++; 6571 else { 6572 working++; 6573 if (test_bit(In_sync, &rdev->flags)) 6574 insync++; 6575 else if (test_bit(Journal, &rdev->flags)) 6576 /* TODO: add journal count to md_u.h */ 6577 ; 6578 else 6579 spare++; 6580 } 6581 } 6582 rcu_read_unlock(); 6583 6584 info.major_version = mddev->major_version; 6585 info.minor_version = mddev->minor_version; 6586 info.patch_version = MD_PATCHLEVEL_VERSION; 6587 info.ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 6588 info.level = mddev->level; 6589 info.size = mddev->dev_sectors / 2; 6590 if (info.size != mddev->dev_sectors / 2) /* overflow */ 6591 info.size = -1; 6592 info.nr_disks = nr; 6593 info.raid_disks = mddev->raid_disks; 6594 info.md_minor = mddev->md_minor; 6595 info.not_persistent= !mddev->persistent; 6596 6597 info.utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 6598 info.state = 0; 6599 if (mddev->in_sync) 6600 info.state = (1<<MD_SB_CLEAN); 6601 if (mddev->bitmap && mddev->bitmap_info.offset) 6602 info.state |= (1<<MD_SB_BITMAP_PRESENT); 6603 if (mddev_is_clustered(mddev)) 6604 info.state |= (1<<MD_SB_CLUSTERED); 6605 info.active_disks = insync; 6606 info.working_disks = working; 6607 info.failed_disks = failed; 6608 info.spare_disks = spare; 6609 6610 info.layout = mddev->layout; 6611 info.chunk_size = mddev->chunk_sectors << 9; 6612 6613 if (copy_to_user(arg, &info, sizeof(info))) 6614 return -EFAULT; 6615 6616 return 0; 6617 } 6618 6619 static int get_bitmap_file(struct mddev *mddev, void __user * arg) 6620 { 6621 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ 6622 char *ptr; 6623 int err; 6624 6625 file = kzalloc(sizeof(*file), GFP_NOIO); 6626 if (!file) 6627 return -ENOMEM; 6628 6629 err = 0; 6630 spin_lock(&mddev->lock); 6631 /* bitmap enabled */ 6632 if (mddev->bitmap_info.file) { 6633 ptr = file_path(mddev->bitmap_info.file, file->pathname, 6634 sizeof(file->pathname)); 6635 if (IS_ERR(ptr)) 6636 err = PTR_ERR(ptr); 6637 else 6638 memmove(file->pathname, ptr, 6639 sizeof(file->pathname)-(ptr-file->pathname)); 6640 } 6641 spin_unlock(&mddev->lock); 6642 6643 if (err == 0 && 6644 copy_to_user(arg, file, sizeof(*file))) 6645 err = -EFAULT; 6646 6647 kfree(file); 6648 return err; 6649 } 6650 6651 static int get_disk_info(struct mddev *mddev, void __user * arg) 6652 { 6653 mdu_disk_info_t info; 6654 struct md_rdev *rdev; 6655 6656 if (copy_from_user(&info, arg, sizeof(info))) 6657 return -EFAULT; 6658 6659 rcu_read_lock(); 6660 rdev = md_find_rdev_nr_rcu(mddev, info.number); 6661 if (rdev) { 6662 info.major = MAJOR(rdev->bdev->bd_dev); 6663 info.minor = MINOR(rdev->bdev->bd_dev); 6664 info.raid_disk = rdev->raid_disk; 6665 info.state = 0; 6666 if (test_bit(Faulty, &rdev->flags)) 6667 info.state |= (1<<MD_DISK_FAULTY); 6668 else if (test_bit(In_sync, &rdev->flags)) { 6669 info.state |= (1<<MD_DISK_ACTIVE); 6670 info.state |= (1<<MD_DISK_SYNC); 6671 } 6672 if (test_bit(Journal, &rdev->flags)) 6673 info.state |= (1<<MD_DISK_JOURNAL); 6674 if (test_bit(WriteMostly, &rdev->flags)) 6675 info.state |= (1<<MD_DISK_WRITEMOSTLY); 6676 if (test_bit(FailFast, &rdev->flags)) 6677 info.state |= (1<<MD_DISK_FAILFAST); 6678 } else { 6679 info.major = info.minor = 0; 6680 info.raid_disk = -1; 6681 info.state = (1<<MD_DISK_REMOVED); 6682 } 6683 rcu_read_unlock(); 6684 6685 if (copy_to_user(arg, &info, sizeof(info))) 6686 return -EFAULT; 6687 6688 return 0; 6689 } 6690 6691 int md_add_new_disk(struct mddev *mddev, struct mdu_disk_info_s *info) 6692 { 6693 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 6694 struct md_rdev *rdev; 6695 dev_t dev = MKDEV(info->major,info->minor); 6696 6697 if (mddev_is_clustered(mddev) && 6698 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) { 6699 pr_warn("%s: Cannot add to clustered mddev.\n", 6700 mdname(mddev)); 6701 return -EINVAL; 6702 } 6703 6704 if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) 6705 return -EOVERFLOW; 6706 6707 if (!mddev->raid_disks) { 6708 int err; 6709 /* expecting a device which has a superblock */ 6710 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); 6711 if (IS_ERR(rdev)) { 6712 pr_warn("md: md_import_device returned %ld\n", 6713 PTR_ERR(rdev)); 6714 return PTR_ERR(rdev); 6715 } 6716 if (!list_empty(&mddev->disks)) { 6717 struct md_rdev *rdev0 6718 = list_entry(mddev->disks.next, 6719 struct md_rdev, same_set); 6720 err = super_types[mddev->major_version] 6721 .load_super(rdev, rdev0, mddev->minor_version); 6722 if (err < 0) { 6723 pr_warn("md: %s has different UUID to %s\n", 6724 bdevname(rdev->bdev,b), 6725 bdevname(rdev0->bdev,b2)); 6726 export_rdev(rdev); 6727 return -EINVAL; 6728 } 6729 } 6730 err = bind_rdev_to_array(rdev, mddev); 6731 if (err) 6732 export_rdev(rdev); 6733 return err; 6734 } 6735 6736 /* 6737 * md_add_new_disk can be used once the array is assembled 6738 * to add "hot spares". They must already have a superblock 6739 * written 6740 */ 6741 if (mddev->pers) { 6742 int err; 6743 if (!mddev->pers->hot_add_disk) { 6744 pr_warn("%s: personality does not support diskops!\n", 6745 mdname(mddev)); 6746 return -EINVAL; 6747 } 6748 if (mddev->persistent) 6749 rdev = md_import_device(dev, mddev->major_version, 6750 mddev->minor_version); 6751 else 6752 rdev = md_import_device(dev, -1, -1); 6753 if (IS_ERR(rdev)) { 6754 pr_warn("md: md_import_device returned %ld\n", 6755 PTR_ERR(rdev)); 6756 return PTR_ERR(rdev); 6757 } 6758 /* set saved_raid_disk if appropriate */ 6759 if (!mddev->persistent) { 6760 if (info->state & (1<<MD_DISK_SYNC) && 6761 info->raid_disk < mddev->raid_disks) { 6762 rdev->raid_disk = info->raid_disk; 6763 set_bit(In_sync, &rdev->flags); 6764 clear_bit(Bitmap_sync, &rdev->flags); 6765 } else 6766 rdev->raid_disk = -1; 6767 rdev->saved_raid_disk = rdev->raid_disk; 6768 } else 6769 super_types[mddev->major_version]. 6770 validate_super(mddev, rdev); 6771 if ((info->state & (1<<MD_DISK_SYNC)) && 6772 rdev->raid_disk != info->raid_disk) { 6773 /* This was a hot-add request, but events doesn't 6774 * match, so reject it. 6775 */ 6776 export_rdev(rdev); 6777 return -EINVAL; 6778 } 6779 6780 clear_bit(In_sync, &rdev->flags); /* just to be sure */ 6781 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6782 set_bit(WriteMostly, &rdev->flags); 6783 else 6784 clear_bit(WriteMostly, &rdev->flags); 6785 if (info->state & (1<<MD_DISK_FAILFAST)) 6786 set_bit(FailFast, &rdev->flags); 6787 else 6788 clear_bit(FailFast, &rdev->flags); 6789 6790 if (info->state & (1<<MD_DISK_JOURNAL)) { 6791 struct md_rdev *rdev2; 6792 bool has_journal = false; 6793 6794 /* make sure no existing journal disk */ 6795 rdev_for_each(rdev2, mddev) { 6796 if (test_bit(Journal, &rdev2->flags)) { 6797 has_journal = true; 6798 break; 6799 } 6800 } 6801 if (has_journal || mddev->bitmap) { 6802 export_rdev(rdev); 6803 return -EBUSY; 6804 } 6805 set_bit(Journal, &rdev->flags); 6806 } 6807 /* 6808 * check whether the device shows up in other nodes 6809 */ 6810 if (mddev_is_clustered(mddev)) { 6811 if (info->state & (1 << MD_DISK_CANDIDATE)) 6812 set_bit(Candidate, &rdev->flags); 6813 else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) { 6814 /* --add initiated by this node */ 6815 err = md_cluster_ops->add_new_disk(mddev, rdev); 6816 if (err) { 6817 export_rdev(rdev); 6818 return err; 6819 } 6820 } 6821 } 6822 6823 rdev->raid_disk = -1; 6824 err = bind_rdev_to_array(rdev, mddev); 6825 6826 if (err) 6827 export_rdev(rdev); 6828 6829 if (mddev_is_clustered(mddev)) { 6830 if (info->state & (1 << MD_DISK_CANDIDATE)) { 6831 if (!err) { 6832 err = md_cluster_ops->new_disk_ack(mddev, 6833 err == 0); 6834 if (err) 6835 md_kick_rdev_from_array(rdev); 6836 } 6837 } else { 6838 if (err) 6839 md_cluster_ops->add_new_disk_cancel(mddev); 6840 else 6841 err = add_bound_rdev(rdev); 6842 } 6843 6844 } else if (!err) 6845 err = add_bound_rdev(rdev); 6846 6847 return err; 6848 } 6849 6850 /* otherwise, md_add_new_disk is only allowed 6851 * for major_version==0 superblocks 6852 */ 6853 if (mddev->major_version != 0) { 6854 pr_warn("%s: ADD_NEW_DISK not supported\n", mdname(mddev)); 6855 return -EINVAL; 6856 } 6857 6858 if (!(info->state & (1<<MD_DISK_FAULTY))) { 6859 int err; 6860 rdev = md_import_device(dev, -1, 0); 6861 if (IS_ERR(rdev)) { 6862 pr_warn("md: error, md_import_device() returned %ld\n", 6863 PTR_ERR(rdev)); 6864 return PTR_ERR(rdev); 6865 } 6866 rdev->desc_nr = info->number; 6867 if (info->raid_disk < mddev->raid_disks) 6868 rdev->raid_disk = info->raid_disk; 6869 else 6870 rdev->raid_disk = -1; 6871 6872 if (rdev->raid_disk < mddev->raid_disks) 6873 if (info->state & (1<<MD_DISK_SYNC)) 6874 set_bit(In_sync, &rdev->flags); 6875 6876 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6877 set_bit(WriteMostly, &rdev->flags); 6878 if (info->state & (1<<MD_DISK_FAILFAST)) 6879 set_bit(FailFast, &rdev->flags); 6880 6881 if (!mddev->persistent) { 6882 pr_debug("md: nonpersistent superblock ...\n"); 6883 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 6884 } else 6885 rdev->sb_start = calc_dev_sboffset(rdev); 6886 rdev->sectors = rdev->sb_start; 6887 6888 err = bind_rdev_to_array(rdev, mddev); 6889 if (err) { 6890 export_rdev(rdev); 6891 return err; 6892 } 6893 } 6894 6895 return 0; 6896 } 6897 6898 static int hot_remove_disk(struct mddev *mddev, dev_t dev) 6899 { 6900 char b[BDEVNAME_SIZE]; 6901 struct md_rdev *rdev; 6902 6903 if (!mddev->pers) 6904 return -ENODEV; 6905 6906 rdev = find_rdev(mddev, dev); 6907 if (!rdev) 6908 return -ENXIO; 6909 6910 if (rdev->raid_disk < 0) 6911 goto kick_rdev; 6912 6913 clear_bit(Blocked, &rdev->flags); 6914 remove_and_add_spares(mddev, rdev); 6915 6916 if (rdev->raid_disk >= 0) 6917 goto busy; 6918 6919 kick_rdev: 6920 if (mddev_is_clustered(mddev)) { 6921 if (md_cluster_ops->remove_disk(mddev, rdev)) 6922 goto busy; 6923 } 6924 6925 md_kick_rdev_from_array(rdev); 6926 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6927 if (mddev->thread) 6928 md_wakeup_thread(mddev->thread); 6929 else 6930 md_update_sb(mddev, 1); 6931 md_new_event(mddev); 6932 6933 return 0; 6934 busy: 6935 pr_debug("md: cannot remove active disk %s from %s ...\n", 6936 bdevname(rdev->bdev,b), mdname(mddev)); 6937 return -EBUSY; 6938 } 6939 6940 static int hot_add_disk(struct mddev *mddev, dev_t dev) 6941 { 6942 char b[BDEVNAME_SIZE]; 6943 int err; 6944 struct md_rdev *rdev; 6945 6946 if (!mddev->pers) 6947 return -ENODEV; 6948 6949 if (mddev->major_version != 0) { 6950 pr_warn("%s: HOT_ADD may only be used with version-0 superblocks.\n", 6951 mdname(mddev)); 6952 return -EINVAL; 6953 } 6954 if (!mddev->pers->hot_add_disk) { 6955 pr_warn("%s: personality does not support diskops!\n", 6956 mdname(mddev)); 6957 return -EINVAL; 6958 } 6959 6960 rdev = md_import_device(dev, -1, 0); 6961 if (IS_ERR(rdev)) { 6962 pr_warn("md: error, md_import_device() returned %ld\n", 6963 PTR_ERR(rdev)); 6964 return -EINVAL; 6965 } 6966 6967 if (mddev->persistent) 6968 rdev->sb_start = calc_dev_sboffset(rdev); 6969 else 6970 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 6971 6972 rdev->sectors = rdev->sb_start; 6973 6974 if (test_bit(Faulty, &rdev->flags)) { 6975 pr_warn("md: can not hot-add faulty %s disk to %s!\n", 6976 bdevname(rdev->bdev,b), mdname(mddev)); 6977 err = -EINVAL; 6978 goto abort_export; 6979 } 6980 6981 clear_bit(In_sync, &rdev->flags); 6982 rdev->desc_nr = -1; 6983 rdev->saved_raid_disk = -1; 6984 err = bind_rdev_to_array(rdev, mddev); 6985 if (err) 6986 goto abort_export; 6987 6988 /* 6989 * The rest should better be atomic, we can have disk failures 6990 * noticed in interrupt contexts ... 6991 */ 6992 6993 rdev->raid_disk = -1; 6994 6995 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6996 if (!mddev->thread) 6997 md_update_sb(mddev, 1); 6998 /* 6999 * Kick recovery, maybe this spare has to be added to the 7000 * array immediately. 7001 */ 7002 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7003 md_wakeup_thread(mddev->thread); 7004 md_new_event(mddev); 7005 return 0; 7006 7007 abort_export: 7008 export_rdev(rdev); 7009 return err; 7010 } 7011 7012 static int set_bitmap_file(struct mddev *mddev, int fd) 7013 { 7014 int err = 0; 7015 7016 if (mddev->pers) { 7017 if (!mddev->pers->quiesce || !mddev->thread) 7018 return -EBUSY; 7019 if (mddev->recovery || mddev->sync_thread) 7020 return -EBUSY; 7021 /* we should be able to change the bitmap.. */ 7022 } 7023 7024 if (fd >= 0) { 7025 struct inode *inode; 7026 struct file *f; 7027 7028 if (mddev->bitmap || mddev->bitmap_info.file) 7029 return -EEXIST; /* cannot add when bitmap is present */ 7030 f = fget(fd); 7031 7032 if (f == NULL) { 7033 pr_warn("%s: error: failed to get bitmap file\n", 7034 mdname(mddev)); 7035 return -EBADF; 7036 } 7037 7038 inode = f->f_mapping->host; 7039 if (!S_ISREG(inode->i_mode)) { 7040 pr_warn("%s: error: bitmap file must be a regular file\n", 7041 mdname(mddev)); 7042 err = -EBADF; 7043 } else if (!(f->f_mode & FMODE_WRITE)) { 7044 pr_warn("%s: error: bitmap file must open for write\n", 7045 mdname(mddev)); 7046 err = -EBADF; 7047 } else if (atomic_read(&inode->i_writecount) != 1) { 7048 pr_warn("%s: error: bitmap file is already in use\n", 7049 mdname(mddev)); 7050 err = -EBUSY; 7051 } 7052 if (err) { 7053 fput(f); 7054 return err; 7055 } 7056 mddev->bitmap_info.file = f; 7057 mddev->bitmap_info.offset = 0; /* file overrides offset */ 7058 } else if (mddev->bitmap == NULL) 7059 return -ENOENT; /* cannot remove what isn't there */ 7060 err = 0; 7061 if (mddev->pers) { 7062 if (fd >= 0) { 7063 struct bitmap *bitmap; 7064 7065 bitmap = md_bitmap_create(mddev, -1); 7066 mddev_suspend(mddev); 7067 if (!IS_ERR(bitmap)) { 7068 mddev->bitmap = bitmap; 7069 err = md_bitmap_load(mddev); 7070 } else 7071 err = PTR_ERR(bitmap); 7072 if (err) { 7073 md_bitmap_destroy(mddev); 7074 fd = -1; 7075 } 7076 mddev_resume(mddev); 7077 } else if (fd < 0) { 7078 mddev_suspend(mddev); 7079 md_bitmap_destroy(mddev); 7080 mddev_resume(mddev); 7081 } 7082 } 7083 if (fd < 0) { 7084 struct file *f = mddev->bitmap_info.file; 7085 if (f) { 7086 spin_lock(&mddev->lock); 7087 mddev->bitmap_info.file = NULL; 7088 spin_unlock(&mddev->lock); 7089 fput(f); 7090 } 7091 } 7092 7093 return err; 7094 } 7095 7096 /* 7097 * md_set_array_info is used two different ways 7098 * The original usage is when creating a new array. 7099 * In this usage, raid_disks is > 0 and it together with 7100 * level, size, not_persistent,layout,chunksize determine the 7101 * shape of the array. 7102 * This will always create an array with a type-0.90.0 superblock. 7103 * The newer usage is when assembling an array. 7104 * In this case raid_disks will be 0, and the major_version field is 7105 * use to determine which style super-blocks are to be found on the devices. 7106 * The minor and patch _version numbers are also kept incase the 7107 * super_block handler wishes to interpret them. 7108 */ 7109 int md_set_array_info(struct mddev *mddev, struct mdu_array_info_s *info) 7110 { 7111 if (info->raid_disks == 0) { 7112 /* just setting version number for superblock loading */ 7113 if (info->major_version < 0 || 7114 info->major_version >= ARRAY_SIZE(super_types) || 7115 super_types[info->major_version].name == NULL) { 7116 /* maybe try to auto-load a module? */ 7117 pr_warn("md: superblock version %d not known\n", 7118 info->major_version); 7119 return -EINVAL; 7120 } 7121 mddev->major_version = info->major_version; 7122 mddev->minor_version = info->minor_version; 7123 mddev->patch_version = info->patch_version; 7124 mddev->persistent = !info->not_persistent; 7125 /* ensure mddev_put doesn't delete this now that there 7126 * is some minimal configuration. 7127 */ 7128 mddev->ctime = ktime_get_real_seconds(); 7129 return 0; 7130 } 7131 mddev->major_version = MD_MAJOR_VERSION; 7132 mddev->minor_version = MD_MINOR_VERSION; 7133 mddev->patch_version = MD_PATCHLEVEL_VERSION; 7134 mddev->ctime = ktime_get_real_seconds(); 7135 7136 mddev->level = info->level; 7137 mddev->clevel[0] = 0; 7138 mddev->dev_sectors = 2 * (sector_t)info->size; 7139 mddev->raid_disks = info->raid_disks; 7140 /* don't set md_minor, it is determined by which /dev/md* was 7141 * openned 7142 */ 7143 if (info->state & (1<<MD_SB_CLEAN)) 7144 mddev->recovery_cp = MaxSector; 7145 else 7146 mddev->recovery_cp = 0; 7147 mddev->persistent = ! info->not_persistent; 7148 mddev->external = 0; 7149 7150 mddev->layout = info->layout; 7151 if (mddev->level == 0) 7152 /* Cannot trust RAID0 layout info here */ 7153 mddev->layout = -1; 7154 mddev->chunk_sectors = info->chunk_size >> 9; 7155 7156 if (mddev->persistent) { 7157 mddev->max_disks = MD_SB_DISKS; 7158 mddev->flags = 0; 7159 mddev->sb_flags = 0; 7160 } 7161 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 7162 7163 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 7164 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 7165 mddev->bitmap_info.offset = 0; 7166 7167 mddev->reshape_position = MaxSector; 7168 7169 /* 7170 * Generate a 128 bit UUID 7171 */ 7172 get_random_bytes(mddev->uuid, 16); 7173 7174 mddev->new_level = mddev->level; 7175 mddev->new_chunk_sectors = mddev->chunk_sectors; 7176 mddev->new_layout = mddev->layout; 7177 mddev->delta_disks = 0; 7178 mddev->reshape_backwards = 0; 7179 7180 return 0; 7181 } 7182 7183 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors) 7184 { 7185 lockdep_assert_held(&mddev->reconfig_mutex); 7186 7187 if (mddev->external_size) 7188 return; 7189 7190 mddev->array_sectors = array_sectors; 7191 } 7192 EXPORT_SYMBOL(md_set_array_sectors); 7193 7194 static int update_size(struct mddev *mddev, sector_t num_sectors) 7195 { 7196 struct md_rdev *rdev; 7197 int rv; 7198 int fit = (num_sectors == 0); 7199 sector_t old_dev_sectors = mddev->dev_sectors; 7200 7201 if (mddev->pers->resize == NULL) 7202 return -EINVAL; 7203 /* The "num_sectors" is the number of sectors of each device that 7204 * is used. This can only make sense for arrays with redundancy. 7205 * linear and raid0 always use whatever space is available. We can only 7206 * consider changing this number if no resync or reconstruction is 7207 * happening, and if the new size is acceptable. It must fit before the 7208 * sb_start or, if that is <data_offset, it must fit before the size 7209 * of each device. If num_sectors is zero, we find the largest size 7210 * that fits. 7211 */ 7212 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 7213 mddev->sync_thread) 7214 return -EBUSY; 7215 if (mddev->ro) 7216 return -EROFS; 7217 7218 rdev_for_each(rdev, mddev) { 7219 sector_t avail = rdev->sectors; 7220 7221 if (fit && (num_sectors == 0 || num_sectors > avail)) 7222 num_sectors = avail; 7223 if (avail < num_sectors) 7224 return -ENOSPC; 7225 } 7226 rv = mddev->pers->resize(mddev, num_sectors); 7227 if (!rv) { 7228 if (mddev_is_clustered(mddev)) 7229 md_cluster_ops->update_size(mddev, old_dev_sectors); 7230 else if (mddev->queue) { 7231 set_capacity_and_notify(mddev->gendisk, 7232 mddev->array_sectors); 7233 } 7234 } 7235 return rv; 7236 } 7237 7238 static int update_raid_disks(struct mddev *mddev, int raid_disks) 7239 { 7240 int rv; 7241 struct md_rdev *rdev; 7242 /* change the number of raid disks */ 7243 if (mddev->pers->check_reshape == NULL) 7244 return -EINVAL; 7245 if (mddev->ro) 7246 return -EROFS; 7247 if (raid_disks <= 0 || 7248 (mddev->max_disks && raid_disks >= mddev->max_disks)) 7249 return -EINVAL; 7250 if (mddev->sync_thread || 7251 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 7252 test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) || 7253 mddev->reshape_position != MaxSector) 7254 return -EBUSY; 7255 7256 rdev_for_each(rdev, mddev) { 7257 if (mddev->raid_disks < raid_disks && 7258 rdev->data_offset < rdev->new_data_offset) 7259 return -EINVAL; 7260 if (mddev->raid_disks > raid_disks && 7261 rdev->data_offset > rdev->new_data_offset) 7262 return -EINVAL; 7263 } 7264 7265 mddev->delta_disks = raid_disks - mddev->raid_disks; 7266 if (mddev->delta_disks < 0) 7267 mddev->reshape_backwards = 1; 7268 else if (mddev->delta_disks > 0) 7269 mddev->reshape_backwards = 0; 7270 7271 rv = mddev->pers->check_reshape(mddev); 7272 if (rv < 0) { 7273 mddev->delta_disks = 0; 7274 mddev->reshape_backwards = 0; 7275 } 7276 return rv; 7277 } 7278 7279 /* 7280 * update_array_info is used to change the configuration of an 7281 * on-line array. 7282 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size 7283 * fields in the info are checked against the array. 7284 * Any differences that cannot be handled will cause an error. 7285 * Normally, only one change can be managed at a time. 7286 */ 7287 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info) 7288 { 7289 int rv = 0; 7290 int cnt = 0; 7291 int state = 0; 7292 7293 /* calculate expected state,ignoring low bits */ 7294 if (mddev->bitmap && mddev->bitmap_info.offset) 7295 state |= (1 << MD_SB_BITMAP_PRESENT); 7296 7297 if (mddev->major_version != info->major_version || 7298 mddev->minor_version != info->minor_version || 7299 /* mddev->patch_version != info->patch_version || */ 7300 mddev->ctime != info->ctime || 7301 mddev->level != info->level || 7302 /* mddev->layout != info->layout || */ 7303 mddev->persistent != !info->not_persistent || 7304 mddev->chunk_sectors != info->chunk_size >> 9 || 7305 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ 7306 ((state^info->state) & 0xfffffe00) 7307 ) 7308 return -EINVAL; 7309 /* Check there is only one change */ 7310 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 7311 cnt++; 7312 if (mddev->raid_disks != info->raid_disks) 7313 cnt++; 7314 if (mddev->layout != info->layout) 7315 cnt++; 7316 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) 7317 cnt++; 7318 if (cnt == 0) 7319 return 0; 7320 if (cnt > 1) 7321 return -EINVAL; 7322 7323 if (mddev->layout != info->layout) { 7324 /* Change layout 7325 * we don't need to do anything at the md level, the 7326 * personality will take care of it all. 7327 */ 7328 if (mddev->pers->check_reshape == NULL) 7329 return -EINVAL; 7330 else { 7331 mddev->new_layout = info->layout; 7332 rv = mddev->pers->check_reshape(mddev); 7333 if (rv) 7334 mddev->new_layout = mddev->layout; 7335 return rv; 7336 } 7337 } 7338 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 7339 rv = update_size(mddev, (sector_t)info->size * 2); 7340 7341 if (mddev->raid_disks != info->raid_disks) 7342 rv = update_raid_disks(mddev, info->raid_disks); 7343 7344 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { 7345 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) { 7346 rv = -EINVAL; 7347 goto err; 7348 } 7349 if (mddev->recovery || mddev->sync_thread) { 7350 rv = -EBUSY; 7351 goto err; 7352 } 7353 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { 7354 struct bitmap *bitmap; 7355 /* add the bitmap */ 7356 if (mddev->bitmap) { 7357 rv = -EEXIST; 7358 goto err; 7359 } 7360 if (mddev->bitmap_info.default_offset == 0) { 7361 rv = -EINVAL; 7362 goto err; 7363 } 7364 mddev->bitmap_info.offset = 7365 mddev->bitmap_info.default_offset; 7366 mddev->bitmap_info.space = 7367 mddev->bitmap_info.default_space; 7368 bitmap = md_bitmap_create(mddev, -1); 7369 mddev_suspend(mddev); 7370 if (!IS_ERR(bitmap)) { 7371 mddev->bitmap = bitmap; 7372 rv = md_bitmap_load(mddev); 7373 } else 7374 rv = PTR_ERR(bitmap); 7375 if (rv) 7376 md_bitmap_destroy(mddev); 7377 mddev_resume(mddev); 7378 } else { 7379 /* remove the bitmap */ 7380 if (!mddev->bitmap) { 7381 rv = -ENOENT; 7382 goto err; 7383 } 7384 if (mddev->bitmap->storage.file) { 7385 rv = -EINVAL; 7386 goto err; 7387 } 7388 if (mddev->bitmap_info.nodes) { 7389 /* hold PW on all the bitmap lock */ 7390 if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) { 7391 pr_warn("md: can't change bitmap to none since the array is in use by more than one node\n"); 7392 rv = -EPERM; 7393 md_cluster_ops->unlock_all_bitmaps(mddev); 7394 goto err; 7395 } 7396 7397 mddev->bitmap_info.nodes = 0; 7398 md_cluster_ops->leave(mddev); 7399 module_put(md_cluster_mod); 7400 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY; 7401 } 7402 mddev_suspend(mddev); 7403 md_bitmap_destroy(mddev); 7404 mddev_resume(mddev); 7405 mddev->bitmap_info.offset = 0; 7406 } 7407 } 7408 md_update_sb(mddev, 1); 7409 return rv; 7410 err: 7411 return rv; 7412 } 7413 7414 static int set_disk_faulty(struct mddev *mddev, dev_t dev) 7415 { 7416 struct md_rdev *rdev; 7417 int err = 0; 7418 7419 if (mddev->pers == NULL) 7420 return -ENODEV; 7421 7422 rcu_read_lock(); 7423 rdev = md_find_rdev_rcu(mddev, dev); 7424 if (!rdev) 7425 err = -ENODEV; 7426 else { 7427 md_error(mddev, rdev); 7428 if (!test_bit(Faulty, &rdev->flags)) 7429 err = -EBUSY; 7430 } 7431 rcu_read_unlock(); 7432 return err; 7433 } 7434 7435 /* 7436 * We have a problem here : there is no easy way to give a CHS 7437 * virtual geometry. We currently pretend that we have a 2 heads 7438 * 4 sectors (with a BIG number of cylinders...). This drives 7439 * dosfs just mad... ;-) 7440 */ 7441 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) 7442 { 7443 struct mddev *mddev = bdev->bd_disk->private_data; 7444 7445 geo->heads = 2; 7446 geo->sectors = 4; 7447 geo->cylinders = mddev->array_sectors / 8; 7448 return 0; 7449 } 7450 7451 static inline bool md_ioctl_valid(unsigned int cmd) 7452 { 7453 switch (cmd) { 7454 case ADD_NEW_DISK: 7455 case GET_ARRAY_INFO: 7456 case GET_BITMAP_FILE: 7457 case GET_DISK_INFO: 7458 case HOT_ADD_DISK: 7459 case HOT_REMOVE_DISK: 7460 case RAID_VERSION: 7461 case RESTART_ARRAY_RW: 7462 case RUN_ARRAY: 7463 case SET_ARRAY_INFO: 7464 case SET_BITMAP_FILE: 7465 case SET_DISK_FAULTY: 7466 case STOP_ARRAY: 7467 case STOP_ARRAY_RO: 7468 case CLUSTERED_DISK_NACK: 7469 return true; 7470 default: 7471 return false; 7472 } 7473 } 7474 7475 static int md_ioctl(struct block_device *bdev, fmode_t mode, 7476 unsigned int cmd, unsigned long arg) 7477 { 7478 int err = 0; 7479 void __user *argp = (void __user *)arg; 7480 struct mddev *mddev = NULL; 7481 bool did_set_md_closing = false; 7482 7483 if (!md_ioctl_valid(cmd)) 7484 return -ENOTTY; 7485 7486 switch (cmd) { 7487 case RAID_VERSION: 7488 case GET_ARRAY_INFO: 7489 case GET_DISK_INFO: 7490 break; 7491 default: 7492 if (!capable(CAP_SYS_ADMIN)) 7493 return -EACCES; 7494 } 7495 7496 /* 7497 * Commands dealing with the RAID driver but not any 7498 * particular array: 7499 */ 7500 switch (cmd) { 7501 case RAID_VERSION: 7502 err = get_version(argp); 7503 goto out; 7504 default:; 7505 } 7506 7507 /* 7508 * Commands creating/starting a new array: 7509 */ 7510 7511 mddev = bdev->bd_disk->private_data; 7512 7513 if (!mddev) { 7514 BUG(); 7515 goto out; 7516 } 7517 7518 /* Some actions do not requires the mutex */ 7519 switch (cmd) { 7520 case GET_ARRAY_INFO: 7521 if (!mddev->raid_disks && !mddev->external) 7522 err = -ENODEV; 7523 else 7524 err = get_array_info(mddev, argp); 7525 goto out; 7526 7527 case GET_DISK_INFO: 7528 if (!mddev->raid_disks && !mddev->external) 7529 err = -ENODEV; 7530 else 7531 err = get_disk_info(mddev, argp); 7532 goto out; 7533 7534 case SET_DISK_FAULTY: 7535 err = set_disk_faulty(mddev, new_decode_dev(arg)); 7536 goto out; 7537 7538 case GET_BITMAP_FILE: 7539 err = get_bitmap_file(mddev, argp); 7540 goto out; 7541 7542 } 7543 7544 if (cmd == ADD_NEW_DISK || cmd == HOT_ADD_DISK) 7545 flush_rdev_wq(mddev); 7546 7547 if (cmd == HOT_REMOVE_DISK) 7548 /* need to ensure recovery thread has run */ 7549 wait_event_interruptible_timeout(mddev->sb_wait, 7550 !test_bit(MD_RECOVERY_NEEDED, 7551 &mddev->recovery), 7552 msecs_to_jiffies(5000)); 7553 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) { 7554 /* Need to flush page cache, and ensure no-one else opens 7555 * and writes 7556 */ 7557 mutex_lock(&mddev->open_mutex); 7558 if (mddev->pers && atomic_read(&mddev->openers) > 1) { 7559 mutex_unlock(&mddev->open_mutex); 7560 err = -EBUSY; 7561 goto out; 7562 } 7563 if (test_and_set_bit(MD_CLOSING, &mddev->flags)) { 7564 mutex_unlock(&mddev->open_mutex); 7565 err = -EBUSY; 7566 goto out; 7567 } 7568 did_set_md_closing = true; 7569 mutex_unlock(&mddev->open_mutex); 7570 sync_blockdev(bdev); 7571 } 7572 err = mddev_lock(mddev); 7573 if (err) { 7574 pr_debug("md: ioctl lock interrupted, reason %d, cmd %d\n", 7575 err, cmd); 7576 goto out; 7577 } 7578 7579 if (cmd == SET_ARRAY_INFO) { 7580 mdu_array_info_t info; 7581 if (!arg) 7582 memset(&info, 0, sizeof(info)); 7583 else if (copy_from_user(&info, argp, sizeof(info))) { 7584 err = -EFAULT; 7585 goto unlock; 7586 } 7587 if (mddev->pers) { 7588 err = update_array_info(mddev, &info); 7589 if (err) { 7590 pr_warn("md: couldn't update array info. %d\n", err); 7591 goto unlock; 7592 } 7593 goto unlock; 7594 } 7595 if (!list_empty(&mddev->disks)) { 7596 pr_warn("md: array %s already has disks!\n", mdname(mddev)); 7597 err = -EBUSY; 7598 goto unlock; 7599 } 7600 if (mddev->raid_disks) { 7601 pr_warn("md: array %s already initialised!\n", mdname(mddev)); 7602 err = -EBUSY; 7603 goto unlock; 7604 } 7605 err = md_set_array_info(mddev, &info); 7606 if (err) { 7607 pr_warn("md: couldn't set array info. %d\n", err); 7608 goto unlock; 7609 } 7610 goto unlock; 7611 } 7612 7613 /* 7614 * Commands querying/configuring an existing array: 7615 */ 7616 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, 7617 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ 7618 if ((!mddev->raid_disks && !mddev->external) 7619 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY 7620 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE 7621 && cmd != GET_BITMAP_FILE) { 7622 err = -ENODEV; 7623 goto unlock; 7624 } 7625 7626 /* 7627 * Commands even a read-only array can execute: 7628 */ 7629 switch (cmd) { 7630 case RESTART_ARRAY_RW: 7631 err = restart_array(mddev); 7632 goto unlock; 7633 7634 case STOP_ARRAY: 7635 err = do_md_stop(mddev, 0, bdev); 7636 goto unlock; 7637 7638 case STOP_ARRAY_RO: 7639 err = md_set_readonly(mddev, bdev); 7640 goto unlock; 7641 7642 case HOT_REMOVE_DISK: 7643 err = hot_remove_disk(mddev, new_decode_dev(arg)); 7644 goto unlock; 7645 7646 case ADD_NEW_DISK: 7647 /* We can support ADD_NEW_DISK on read-only arrays 7648 * only if we are re-adding a preexisting device. 7649 * So require mddev->pers and MD_DISK_SYNC. 7650 */ 7651 if (mddev->pers) { 7652 mdu_disk_info_t info; 7653 if (copy_from_user(&info, argp, sizeof(info))) 7654 err = -EFAULT; 7655 else if (!(info.state & (1<<MD_DISK_SYNC))) 7656 /* Need to clear read-only for this */ 7657 break; 7658 else 7659 err = md_add_new_disk(mddev, &info); 7660 goto unlock; 7661 } 7662 break; 7663 } 7664 7665 /* 7666 * The remaining ioctls are changing the state of the 7667 * superblock, so we do not allow them on read-only arrays. 7668 */ 7669 if (mddev->ro && mddev->pers) { 7670 if (mddev->ro == 2) { 7671 mddev->ro = 0; 7672 sysfs_notify_dirent_safe(mddev->sysfs_state); 7673 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7674 /* mddev_unlock will wake thread */ 7675 /* If a device failed while we were read-only, we 7676 * need to make sure the metadata is updated now. 7677 */ 7678 if (test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) { 7679 mddev_unlock(mddev); 7680 wait_event(mddev->sb_wait, 7681 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) && 7682 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 7683 mddev_lock_nointr(mddev); 7684 } 7685 } else { 7686 err = -EROFS; 7687 goto unlock; 7688 } 7689 } 7690 7691 switch (cmd) { 7692 case ADD_NEW_DISK: 7693 { 7694 mdu_disk_info_t info; 7695 if (copy_from_user(&info, argp, sizeof(info))) 7696 err = -EFAULT; 7697 else 7698 err = md_add_new_disk(mddev, &info); 7699 goto unlock; 7700 } 7701 7702 case CLUSTERED_DISK_NACK: 7703 if (mddev_is_clustered(mddev)) 7704 md_cluster_ops->new_disk_ack(mddev, false); 7705 else 7706 err = -EINVAL; 7707 goto unlock; 7708 7709 case HOT_ADD_DISK: 7710 err = hot_add_disk(mddev, new_decode_dev(arg)); 7711 goto unlock; 7712 7713 case RUN_ARRAY: 7714 err = do_md_run(mddev); 7715 goto unlock; 7716 7717 case SET_BITMAP_FILE: 7718 err = set_bitmap_file(mddev, (int)arg); 7719 goto unlock; 7720 7721 default: 7722 err = -EINVAL; 7723 goto unlock; 7724 } 7725 7726 unlock: 7727 if (mddev->hold_active == UNTIL_IOCTL && 7728 err != -EINVAL) 7729 mddev->hold_active = 0; 7730 mddev_unlock(mddev); 7731 out: 7732 if(did_set_md_closing) 7733 clear_bit(MD_CLOSING, &mddev->flags); 7734 return err; 7735 } 7736 #ifdef CONFIG_COMPAT 7737 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode, 7738 unsigned int cmd, unsigned long arg) 7739 { 7740 switch (cmd) { 7741 case HOT_REMOVE_DISK: 7742 case HOT_ADD_DISK: 7743 case SET_DISK_FAULTY: 7744 case SET_BITMAP_FILE: 7745 /* These take in integer arg, do not convert */ 7746 break; 7747 default: 7748 arg = (unsigned long)compat_ptr(arg); 7749 break; 7750 } 7751 7752 return md_ioctl(bdev, mode, cmd, arg); 7753 } 7754 #endif /* CONFIG_COMPAT */ 7755 7756 static int md_set_read_only(struct block_device *bdev, bool ro) 7757 { 7758 struct mddev *mddev = bdev->bd_disk->private_data; 7759 int err; 7760 7761 err = mddev_lock(mddev); 7762 if (err) 7763 return err; 7764 7765 if (!mddev->raid_disks && !mddev->external) { 7766 err = -ENODEV; 7767 goto out_unlock; 7768 } 7769 7770 /* 7771 * Transitioning to read-auto need only happen for arrays that call 7772 * md_write_start and which are not ready for writes yet. 7773 */ 7774 if (!ro && mddev->ro == 1 && mddev->pers) { 7775 err = restart_array(mddev); 7776 if (err) 7777 goto out_unlock; 7778 mddev->ro = 2; 7779 } 7780 7781 out_unlock: 7782 mddev_unlock(mddev); 7783 return err; 7784 } 7785 7786 static int md_open(struct block_device *bdev, fmode_t mode) 7787 { 7788 /* 7789 * Succeed if we can lock the mddev, which confirms that 7790 * it isn't being stopped right now. 7791 */ 7792 struct mddev *mddev = mddev_find(bdev->bd_dev); 7793 int err; 7794 7795 if (!mddev) 7796 return -ENODEV; 7797 7798 if (mddev->gendisk != bdev->bd_disk) { 7799 /* we are racing with mddev_put which is discarding this 7800 * bd_disk. 7801 */ 7802 mddev_put(mddev); 7803 /* Wait until bdev->bd_disk is definitely gone */ 7804 if (work_pending(&mddev->del_work)) 7805 flush_workqueue(md_misc_wq); 7806 return -EBUSY; 7807 } 7808 BUG_ON(mddev != bdev->bd_disk->private_data); 7809 7810 if ((err = mutex_lock_interruptible(&mddev->open_mutex))) 7811 goto out; 7812 7813 if (test_bit(MD_CLOSING, &mddev->flags)) { 7814 mutex_unlock(&mddev->open_mutex); 7815 err = -ENODEV; 7816 goto out; 7817 } 7818 7819 err = 0; 7820 atomic_inc(&mddev->openers); 7821 mutex_unlock(&mddev->open_mutex); 7822 7823 bdev_check_media_change(bdev); 7824 out: 7825 if (err) 7826 mddev_put(mddev); 7827 return err; 7828 } 7829 7830 static void md_release(struct gendisk *disk, fmode_t mode) 7831 { 7832 struct mddev *mddev = disk->private_data; 7833 7834 BUG_ON(!mddev); 7835 atomic_dec(&mddev->openers); 7836 mddev_put(mddev); 7837 } 7838 7839 static unsigned int md_check_events(struct gendisk *disk, unsigned int clearing) 7840 { 7841 struct mddev *mddev = disk->private_data; 7842 unsigned int ret = 0; 7843 7844 if (mddev->changed) 7845 ret = DISK_EVENT_MEDIA_CHANGE; 7846 mddev->changed = 0; 7847 return ret; 7848 } 7849 7850 const struct block_device_operations md_fops = 7851 { 7852 .owner = THIS_MODULE, 7853 .submit_bio = md_submit_bio, 7854 .open = md_open, 7855 .release = md_release, 7856 .ioctl = md_ioctl, 7857 #ifdef CONFIG_COMPAT 7858 .compat_ioctl = md_compat_ioctl, 7859 #endif 7860 .getgeo = md_getgeo, 7861 .check_events = md_check_events, 7862 .set_read_only = md_set_read_only, 7863 }; 7864 7865 static int md_thread(void *arg) 7866 { 7867 struct md_thread *thread = arg; 7868 7869 /* 7870 * md_thread is a 'system-thread', it's priority should be very 7871 * high. We avoid resource deadlocks individually in each 7872 * raid personality. (RAID5 does preallocation) We also use RR and 7873 * the very same RT priority as kswapd, thus we will never get 7874 * into a priority inversion deadlock. 7875 * 7876 * we definitely have to have equal or higher priority than 7877 * bdflush, otherwise bdflush will deadlock if there are too 7878 * many dirty RAID5 blocks. 7879 */ 7880 7881 allow_signal(SIGKILL); 7882 while (!kthread_should_stop()) { 7883 7884 /* We need to wait INTERRUPTIBLE so that 7885 * we don't add to the load-average. 7886 * That means we need to be sure no signals are 7887 * pending 7888 */ 7889 if (signal_pending(current)) 7890 flush_signals(current); 7891 7892 wait_event_interruptible_timeout 7893 (thread->wqueue, 7894 test_bit(THREAD_WAKEUP, &thread->flags) 7895 || kthread_should_stop() || kthread_should_park(), 7896 thread->timeout); 7897 7898 clear_bit(THREAD_WAKEUP, &thread->flags); 7899 if (kthread_should_park()) 7900 kthread_parkme(); 7901 if (!kthread_should_stop()) 7902 thread->run(thread); 7903 } 7904 7905 return 0; 7906 } 7907 7908 void md_wakeup_thread(struct md_thread *thread) 7909 { 7910 if (thread) { 7911 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm); 7912 set_bit(THREAD_WAKEUP, &thread->flags); 7913 wake_up(&thread->wqueue); 7914 } 7915 } 7916 EXPORT_SYMBOL(md_wakeup_thread); 7917 7918 struct md_thread *md_register_thread(void (*run) (struct md_thread *), 7919 struct mddev *mddev, const char *name) 7920 { 7921 struct md_thread *thread; 7922 7923 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL); 7924 if (!thread) 7925 return NULL; 7926 7927 init_waitqueue_head(&thread->wqueue); 7928 7929 thread->run = run; 7930 thread->mddev = mddev; 7931 thread->timeout = MAX_SCHEDULE_TIMEOUT; 7932 thread->tsk = kthread_run(md_thread, thread, 7933 "%s_%s", 7934 mdname(thread->mddev), 7935 name); 7936 if (IS_ERR(thread->tsk)) { 7937 kfree(thread); 7938 return NULL; 7939 } 7940 return thread; 7941 } 7942 EXPORT_SYMBOL(md_register_thread); 7943 7944 void md_unregister_thread(struct md_thread **threadp) 7945 { 7946 struct md_thread *thread = *threadp; 7947 if (!thread) 7948 return; 7949 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk)); 7950 /* Locking ensures that mddev_unlock does not wake_up a 7951 * non-existent thread 7952 */ 7953 spin_lock(&pers_lock); 7954 *threadp = NULL; 7955 spin_unlock(&pers_lock); 7956 7957 kthread_stop(thread->tsk); 7958 kfree(thread); 7959 } 7960 EXPORT_SYMBOL(md_unregister_thread); 7961 7962 void md_error(struct mddev *mddev, struct md_rdev *rdev) 7963 { 7964 if (!rdev || test_bit(Faulty, &rdev->flags)) 7965 return; 7966 7967 if (!mddev->pers || !mddev->pers->error_handler) 7968 return; 7969 mddev->pers->error_handler(mddev,rdev); 7970 if (mddev->degraded) 7971 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7972 sysfs_notify_dirent_safe(rdev->sysfs_state); 7973 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7974 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7975 md_wakeup_thread(mddev->thread); 7976 if (mddev->event_work.func) 7977 queue_work(md_misc_wq, &mddev->event_work); 7978 md_new_event(mddev); 7979 } 7980 EXPORT_SYMBOL(md_error); 7981 7982 /* seq_file implementation /proc/mdstat */ 7983 7984 static void status_unused(struct seq_file *seq) 7985 { 7986 int i = 0; 7987 struct md_rdev *rdev; 7988 7989 seq_printf(seq, "unused devices: "); 7990 7991 list_for_each_entry(rdev, &pending_raid_disks, same_set) { 7992 char b[BDEVNAME_SIZE]; 7993 i++; 7994 seq_printf(seq, "%s ", 7995 bdevname(rdev->bdev,b)); 7996 } 7997 if (!i) 7998 seq_printf(seq, "<none>"); 7999 8000 seq_printf(seq, "\n"); 8001 } 8002 8003 static int status_resync(struct seq_file *seq, struct mddev *mddev) 8004 { 8005 sector_t max_sectors, resync, res; 8006 unsigned long dt, db = 0; 8007 sector_t rt, curr_mark_cnt, resync_mark_cnt; 8008 int scale, recovery_active; 8009 unsigned int per_milli; 8010 8011 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 8012 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 8013 max_sectors = mddev->resync_max_sectors; 8014 else 8015 max_sectors = mddev->dev_sectors; 8016 8017 resync = mddev->curr_resync; 8018 if (resync <= 3) { 8019 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 8020 /* Still cleaning up */ 8021 resync = max_sectors; 8022 } else if (resync > max_sectors) 8023 resync = max_sectors; 8024 else 8025 resync -= atomic_read(&mddev->recovery_active); 8026 8027 if (resync == 0) { 8028 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery)) { 8029 struct md_rdev *rdev; 8030 8031 rdev_for_each(rdev, mddev) 8032 if (rdev->raid_disk >= 0 && 8033 !test_bit(Faulty, &rdev->flags) && 8034 rdev->recovery_offset != MaxSector && 8035 rdev->recovery_offset) { 8036 seq_printf(seq, "\trecover=REMOTE"); 8037 return 1; 8038 } 8039 if (mddev->reshape_position != MaxSector) 8040 seq_printf(seq, "\treshape=REMOTE"); 8041 else 8042 seq_printf(seq, "\tresync=REMOTE"); 8043 return 1; 8044 } 8045 if (mddev->recovery_cp < MaxSector) { 8046 seq_printf(seq, "\tresync=PENDING"); 8047 return 1; 8048 } 8049 return 0; 8050 } 8051 if (resync < 3) { 8052 seq_printf(seq, "\tresync=DELAYED"); 8053 return 1; 8054 } 8055 8056 WARN_ON(max_sectors == 0); 8057 /* Pick 'scale' such that (resync>>scale)*1000 will fit 8058 * in a sector_t, and (max_sectors>>scale) will fit in a 8059 * u32, as those are the requirements for sector_div. 8060 * Thus 'scale' must be at least 10 8061 */ 8062 scale = 10; 8063 if (sizeof(sector_t) > sizeof(unsigned long)) { 8064 while ( max_sectors/2 > (1ULL<<(scale+32))) 8065 scale++; 8066 } 8067 res = (resync>>scale)*1000; 8068 sector_div(res, (u32)((max_sectors>>scale)+1)); 8069 8070 per_milli = res; 8071 { 8072 int i, x = per_milli/50, y = 20-x; 8073 seq_printf(seq, "["); 8074 for (i = 0; i < x; i++) 8075 seq_printf(seq, "="); 8076 seq_printf(seq, ">"); 8077 for (i = 0; i < y; i++) 8078 seq_printf(seq, "."); 8079 seq_printf(seq, "] "); 8080 } 8081 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", 8082 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? 8083 "reshape" : 8084 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? 8085 "check" : 8086 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? 8087 "resync" : "recovery"))), 8088 per_milli/10, per_milli % 10, 8089 (unsigned long long) resync/2, 8090 (unsigned long long) max_sectors/2); 8091 8092 /* 8093 * dt: time from mark until now 8094 * db: blocks written from mark until now 8095 * rt: remaining time 8096 * 8097 * rt is a sector_t, which is always 64bit now. We are keeping 8098 * the original algorithm, but it is not really necessary. 8099 * 8100 * Original algorithm: 8101 * So we divide before multiply in case it is 32bit and close 8102 * to the limit. 8103 * We scale the divisor (db) by 32 to avoid losing precision 8104 * near the end of resync when the number of remaining sectors 8105 * is close to 'db'. 8106 * We then divide rt by 32 after multiplying by db to compensate. 8107 * The '+1' avoids division by zero if db is very small. 8108 */ 8109 dt = ((jiffies - mddev->resync_mark) / HZ); 8110 if (!dt) dt++; 8111 8112 curr_mark_cnt = mddev->curr_mark_cnt; 8113 recovery_active = atomic_read(&mddev->recovery_active); 8114 resync_mark_cnt = mddev->resync_mark_cnt; 8115 8116 if (curr_mark_cnt >= (recovery_active + resync_mark_cnt)) 8117 db = curr_mark_cnt - (recovery_active + resync_mark_cnt); 8118 8119 rt = max_sectors - resync; /* number of remaining sectors */ 8120 rt = div64_u64(rt, db/32+1); 8121 rt *= dt; 8122 rt >>= 5; 8123 8124 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60, 8125 ((unsigned long)rt % 60)/6); 8126 8127 seq_printf(seq, " speed=%ldK/sec", db/2/dt); 8128 return 1; 8129 } 8130 8131 static void *md_seq_start(struct seq_file *seq, loff_t *pos) 8132 { 8133 struct list_head *tmp; 8134 loff_t l = *pos; 8135 struct mddev *mddev; 8136 8137 if (l == 0x10000) { 8138 ++*pos; 8139 return (void *)2; 8140 } 8141 if (l > 0x10000) 8142 return NULL; 8143 if (!l--) 8144 /* header */ 8145 return (void*)1; 8146 8147 spin_lock(&all_mddevs_lock); 8148 list_for_each(tmp,&all_mddevs) 8149 if (!l--) { 8150 mddev = list_entry(tmp, struct mddev, all_mddevs); 8151 mddev_get(mddev); 8152 spin_unlock(&all_mddevs_lock); 8153 return mddev; 8154 } 8155 spin_unlock(&all_mddevs_lock); 8156 if (!l--) 8157 return (void*)2;/* tail */ 8158 return NULL; 8159 } 8160 8161 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) 8162 { 8163 struct list_head *tmp; 8164 struct mddev *next_mddev, *mddev = v; 8165 8166 ++*pos; 8167 if (v == (void*)2) 8168 return NULL; 8169 8170 spin_lock(&all_mddevs_lock); 8171 if (v == (void*)1) 8172 tmp = all_mddevs.next; 8173 else 8174 tmp = mddev->all_mddevs.next; 8175 if (tmp != &all_mddevs) 8176 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs)); 8177 else { 8178 next_mddev = (void*)2; 8179 *pos = 0x10000; 8180 } 8181 spin_unlock(&all_mddevs_lock); 8182 8183 if (v != (void*)1) 8184 mddev_put(mddev); 8185 return next_mddev; 8186 8187 } 8188 8189 static void md_seq_stop(struct seq_file *seq, void *v) 8190 { 8191 struct mddev *mddev = v; 8192 8193 if (mddev && v != (void*)1 && v != (void*)2) 8194 mddev_put(mddev); 8195 } 8196 8197 static int md_seq_show(struct seq_file *seq, void *v) 8198 { 8199 struct mddev *mddev = v; 8200 sector_t sectors; 8201 struct md_rdev *rdev; 8202 8203 if (v == (void*)1) { 8204 struct md_personality *pers; 8205 seq_printf(seq, "Personalities : "); 8206 spin_lock(&pers_lock); 8207 list_for_each_entry(pers, &pers_list, list) 8208 seq_printf(seq, "[%s] ", pers->name); 8209 8210 spin_unlock(&pers_lock); 8211 seq_printf(seq, "\n"); 8212 seq->poll_event = atomic_read(&md_event_count); 8213 return 0; 8214 } 8215 if (v == (void*)2) { 8216 status_unused(seq); 8217 return 0; 8218 } 8219 8220 spin_lock(&mddev->lock); 8221 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { 8222 seq_printf(seq, "%s : %sactive", mdname(mddev), 8223 mddev->pers ? "" : "in"); 8224 if (mddev->pers) { 8225 if (mddev->ro==1) 8226 seq_printf(seq, " (read-only)"); 8227 if (mddev->ro==2) 8228 seq_printf(seq, " (auto-read-only)"); 8229 seq_printf(seq, " %s", mddev->pers->name); 8230 } 8231 8232 sectors = 0; 8233 rcu_read_lock(); 8234 rdev_for_each_rcu(rdev, mddev) { 8235 char b[BDEVNAME_SIZE]; 8236 seq_printf(seq, " %s[%d]", 8237 bdevname(rdev->bdev,b), rdev->desc_nr); 8238 if (test_bit(WriteMostly, &rdev->flags)) 8239 seq_printf(seq, "(W)"); 8240 if (test_bit(Journal, &rdev->flags)) 8241 seq_printf(seq, "(J)"); 8242 if (test_bit(Faulty, &rdev->flags)) { 8243 seq_printf(seq, "(F)"); 8244 continue; 8245 } 8246 if (rdev->raid_disk < 0) 8247 seq_printf(seq, "(S)"); /* spare */ 8248 if (test_bit(Replacement, &rdev->flags)) 8249 seq_printf(seq, "(R)"); 8250 sectors += rdev->sectors; 8251 } 8252 rcu_read_unlock(); 8253 8254 if (!list_empty(&mddev->disks)) { 8255 if (mddev->pers) 8256 seq_printf(seq, "\n %llu blocks", 8257 (unsigned long long) 8258 mddev->array_sectors / 2); 8259 else 8260 seq_printf(seq, "\n %llu blocks", 8261 (unsigned long long)sectors / 2); 8262 } 8263 if (mddev->persistent) { 8264 if (mddev->major_version != 0 || 8265 mddev->minor_version != 90) { 8266 seq_printf(seq," super %d.%d", 8267 mddev->major_version, 8268 mddev->minor_version); 8269 } 8270 } else if (mddev->external) 8271 seq_printf(seq, " super external:%s", 8272 mddev->metadata_type); 8273 else 8274 seq_printf(seq, " super non-persistent"); 8275 8276 if (mddev->pers) { 8277 mddev->pers->status(seq, mddev); 8278 seq_printf(seq, "\n "); 8279 if (mddev->pers->sync_request) { 8280 if (status_resync(seq, mddev)) 8281 seq_printf(seq, "\n "); 8282 } 8283 } else 8284 seq_printf(seq, "\n "); 8285 8286 md_bitmap_status(seq, mddev->bitmap); 8287 8288 seq_printf(seq, "\n"); 8289 } 8290 spin_unlock(&mddev->lock); 8291 8292 return 0; 8293 } 8294 8295 static const struct seq_operations md_seq_ops = { 8296 .start = md_seq_start, 8297 .next = md_seq_next, 8298 .stop = md_seq_stop, 8299 .show = md_seq_show, 8300 }; 8301 8302 static int md_seq_open(struct inode *inode, struct file *file) 8303 { 8304 struct seq_file *seq; 8305 int error; 8306 8307 error = seq_open(file, &md_seq_ops); 8308 if (error) 8309 return error; 8310 8311 seq = file->private_data; 8312 seq->poll_event = atomic_read(&md_event_count); 8313 return error; 8314 } 8315 8316 static int md_unloading; 8317 static __poll_t mdstat_poll(struct file *filp, poll_table *wait) 8318 { 8319 struct seq_file *seq = filp->private_data; 8320 __poll_t mask; 8321 8322 if (md_unloading) 8323 return EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI; 8324 poll_wait(filp, &md_event_waiters, wait); 8325 8326 /* always allow read */ 8327 mask = EPOLLIN | EPOLLRDNORM; 8328 8329 if (seq->poll_event != atomic_read(&md_event_count)) 8330 mask |= EPOLLERR | EPOLLPRI; 8331 return mask; 8332 } 8333 8334 static const struct proc_ops mdstat_proc_ops = { 8335 .proc_open = md_seq_open, 8336 .proc_read = seq_read, 8337 .proc_lseek = seq_lseek, 8338 .proc_release = seq_release, 8339 .proc_poll = mdstat_poll, 8340 }; 8341 8342 int register_md_personality(struct md_personality *p) 8343 { 8344 pr_debug("md: %s personality registered for level %d\n", 8345 p->name, p->level); 8346 spin_lock(&pers_lock); 8347 list_add_tail(&p->list, &pers_list); 8348 spin_unlock(&pers_lock); 8349 return 0; 8350 } 8351 EXPORT_SYMBOL(register_md_personality); 8352 8353 int unregister_md_personality(struct md_personality *p) 8354 { 8355 pr_debug("md: %s personality unregistered\n", p->name); 8356 spin_lock(&pers_lock); 8357 list_del_init(&p->list); 8358 spin_unlock(&pers_lock); 8359 return 0; 8360 } 8361 EXPORT_SYMBOL(unregister_md_personality); 8362 8363 int register_md_cluster_operations(struct md_cluster_operations *ops, 8364 struct module *module) 8365 { 8366 int ret = 0; 8367 spin_lock(&pers_lock); 8368 if (md_cluster_ops != NULL) 8369 ret = -EALREADY; 8370 else { 8371 md_cluster_ops = ops; 8372 md_cluster_mod = module; 8373 } 8374 spin_unlock(&pers_lock); 8375 return ret; 8376 } 8377 EXPORT_SYMBOL(register_md_cluster_operations); 8378 8379 int unregister_md_cluster_operations(void) 8380 { 8381 spin_lock(&pers_lock); 8382 md_cluster_ops = NULL; 8383 spin_unlock(&pers_lock); 8384 return 0; 8385 } 8386 EXPORT_SYMBOL(unregister_md_cluster_operations); 8387 8388 int md_setup_cluster(struct mddev *mddev, int nodes) 8389 { 8390 int ret; 8391 if (!md_cluster_ops) 8392 request_module("md-cluster"); 8393 spin_lock(&pers_lock); 8394 /* ensure module won't be unloaded */ 8395 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) { 8396 pr_warn("can't find md-cluster module or get it's reference.\n"); 8397 spin_unlock(&pers_lock); 8398 return -ENOENT; 8399 } 8400 spin_unlock(&pers_lock); 8401 8402 ret = md_cluster_ops->join(mddev, nodes); 8403 if (!ret) 8404 mddev->safemode_delay = 0; 8405 return ret; 8406 } 8407 8408 void md_cluster_stop(struct mddev *mddev) 8409 { 8410 if (!md_cluster_ops) 8411 return; 8412 md_cluster_ops->leave(mddev); 8413 module_put(md_cluster_mod); 8414 } 8415 8416 static int is_mddev_idle(struct mddev *mddev, int init) 8417 { 8418 struct md_rdev *rdev; 8419 int idle; 8420 int curr_events; 8421 8422 idle = 1; 8423 rcu_read_lock(); 8424 rdev_for_each_rcu(rdev, mddev) { 8425 struct gendisk *disk = rdev->bdev->bd_disk; 8426 curr_events = (int)part_stat_read_accum(disk->part0, sectors) - 8427 atomic_read(&disk->sync_io); 8428 /* sync IO will cause sync_io to increase before the disk_stats 8429 * as sync_io is counted when a request starts, and 8430 * disk_stats is counted when it completes. 8431 * So resync activity will cause curr_events to be smaller than 8432 * when there was no such activity. 8433 * non-sync IO will cause disk_stat to increase without 8434 * increasing sync_io so curr_events will (eventually) 8435 * be larger than it was before. Once it becomes 8436 * substantially larger, the test below will cause 8437 * the array to appear non-idle, and resync will slow 8438 * down. 8439 * If there is a lot of outstanding resync activity when 8440 * we set last_event to curr_events, then all that activity 8441 * completing might cause the array to appear non-idle 8442 * and resync will be slowed down even though there might 8443 * not have been non-resync activity. This will only 8444 * happen once though. 'last_events' will soon reflect 8445 * the state where there is little or no outstanding 8446 * resync requests, and further resync activity will 8447 * always make curr_events less than last_events. 8448 * 8449 */ 8450 if (init || curr_events - rdev->last_events > 64) { 8451 rdev->last_events = curr_events; 8452 idle = 0; 8453 } 8454 } 8455 rcu_read_unlock(); 8456 return idle; 8457 } 8458 8459 void md_done_sync(struct mddev *mddev, int blocks, int ok) 8460 { 8461 /* another "blocks" (512byte) blocks have been synced */ 8462 atomic_sub(blocks, &mddev->recovery_active); 8463 wake_up(&mddev->recovery_wait); 8464 if (!ok) { 8465 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8466 set_bit(MD_RECOVERY_ERROR, &mddev->recovery); 8467 md_wakeup_thread(mddev->thread); 8468 // stop recovery, signal do_sync .... 8469 } 8470 } 8471 EXPORT_SYMBOL(md_done_sync); 8472 8473 /* md_write_start(mddev, bi) 8474 * If we need to update some array metadata (e.g. 'active' flag 8475 * in superblock) before writing, schedule a superblock update 8476 * and wait for it to complete. 8477 * A return value of 'false' means that the write wasn't recorded 8478 * and cannot proceed as the array is being suspend. 8479 */ 8480 bool md_write_start(struct mddev *mddev, struct bio *bi) 8481 { 8482 int did_change = 0; 8483 8484 if (bio_data_dir(bi) != WRITE) 8485 return true; 8486 8487 BUG_ON(mddev->ro == 1); 8488 if (mddev->ro == 2) { 8489 /* need to switch to read/write */ 8490 mddev->ro = 0; 8491 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8492 md_wakeup_thread(mddev->thread); 8493 md_wakeup_thread(mddev->sync_thread); 8494 did_change = 1; 8495 } 8496 rcu_read_lock(); 8497 percpu_ref_get(&mddev->writes_pending); 8498 smp_mb(); /* Match smp_mb in set_in_sync() */ 8499 if (mddev->safemode == 1) 8500 mddev->safemode = 0; 8501 /* sync_checkers is always 0 when writes_pending is in per-cpu mode */ 8502 if (mddev->in_sync || mddev->sync_checkers) { 8503 spin_lock(&mddev->lock); 8504 if (mddev->in_sync) { 8505 mddev->in_sync = 0; 8506 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8507 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8508 md_wakeup_thread(mddev->thread); 8509 did_change = 1; 8510 } 8511 spin_unlock(&mddev->lock); 8512 } 8513 rcu_read_unlock(); 8514 if (did_change) 8515 sysfs_notify_dirent_safe(mddev->sysfs_state); 8516 if (!mddev->has_superblocks) 8517 return true; 8518 wait_event(mddev->sb_wait, 8519 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) || 8520 mddev->suspended); 8521 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 8522 percpu_ref_put(&mddev->writes_pending); 8523 return false; 8524 } 8525 return true; 8526 } 8527 EXPORT_SYMBOL(md_write_start); 8528 8529 /* md_write_inc can only be called when md_write_start() has 8530 * already been called at least once of the current request. 8531 * It increments the counter and is useful when a single request 8532 * is split into several parts. Each part causes an increment and 8533 * so needs a matching md_write_end(). 8534 * Unlike md_write_start(), it is safe to call md_write_inc() inside 8535 * a spinlocked region. 8536 */ 8537 void md_write_inc(struct mddev *mddev, struct bio *bi) 8538 { 8539 if (bio_data_dir(bi) != WRITE) 8540 return; 8541 WARN_ON_ONCE(mddev->in_sync || mddev->ro); 8542 percpu_ref_get(&mddev->writes_pending); 8543 } 8544 EXPORT_SYMBOL(md_write_inc); 8545 8546 void md_write_end(struct mddev *mddev) 8547 { 8548 percpu_ref_put(&mddev->writes_pending); 8549 8550 if (mddev->safemode == 2) 8551 md_wakeup_thread(mddev->thread); 8552 else if (mddev->safemode_delay) 8553 /* The roundup() ensures this only performs locking once 8554 * every ->safemode_delay jiffies 8555 */ 8556 mod_timer(&mddev->safemode_timer, 8557 roundup(jiffies, mddev->safemode_delay) + 8558 mddev->safemode_delay); 8559 } 8560 8561 EXPORT_SYMBOL(md_write_end); 8562 8563 /* This is used by raid0 and raid10 */ 8564 void md_submit_discard_bio(struct mddev *mddev, struct md_rdev *rdev, 8565 struct bio *bio, sector_t start, sector_t size) 8566 { 8567 struct bio *discard_bio = NULL; 8568 8569 if (__blkdev_issue_discard(rdev->bdev, start, size, GFP_NOIO, 0, 8570 &discard_bio) || !discard_bio) 8571 return; 8572 8573 bio_chain(discard_bio, bio); 8574 bio_clone_blkg_association(discard_bio, bio); 8575 if (mddev->gendisk) 8576 trace_block_bio_remap(discard_bio, 8577 disk_devt(mddev->gendisk), 8578 bio->bi_iter.bi_sector); 8579 submit_bio_noacct(discard_bio); 8580 } 8581 EXPORT_SYMBOL_GPL(md_submit_discard_bio); 8582 8583 static void md_end_io_acct(struct bio *bio) 8584 { 8585 struct md_io_acct *md_io_acct = bio->bi_private; 8586 struct bio *orig_bio = md_io_acct->orig_bio; 8587 8588 orig_bio->bi_status = bio->bi_status; 8589 8590 bio_end_io_acct(orig_bio, md_io_acct->start_time); 8591 bio_put(bio); 8592 bio_endio(orig_bio); 8593 } 8594 8595 /* 8596 * Used by personalities that don't already clone the bio and thus can't 8597 * easily add the timestamp to their extended bio structure. 8598 */ 8599 void md_account_bio(struct mddev *mddev, struct bio **bio) 8600 { 8601 struct md_io_acct *md_io_acct; 8602 struct bio *clone; 8603 8604 if (!blk_queue_io_stat((*bio)->bi_bdev->bd_disk->queue)) 8605 return; 8606 8607 clone = bio_clone_fast(*bio, GFP_NOIO, &mddev->io_acct_set); 8608 md_io_acct = container_of(clone, struct md_io_acct, bio_clone); 8609 md_io_acct->orig_bio = *bio; 8610 md_io_acct->start_time = bio_start_io_acct(*bio); 8611 8612 clone->bi_end_io = md_end_io_acct; 8613 clone->bi_private = md_io_acct; 8614 *bio = clone; 8615 } 8616 EXPORT_SYMBOL_GPL(md_account_bio); 8617 8618 /* md_allow_write(mddev) 8619 * Calling this ensures that the array is marked 'active' so that writes 8620 * may proceed without blocking. It is important to call this before 8621 * attempting a GFP_KERNEL allocation while holding the mddev lock. 8622 * Must be called with mddev_lock held. 8623 */ 8624 void md_allow_write(struct mddev *mddev) 8625 { 8626 if (!mddev->pers) 8627 return; 8628 if (mddev->ro) 8629 return; 8630 if (!mddev->pers->sync_request) 8631 return; 8632 8633 spin_lock(&mddev->lock); 8634 if (mddev->in_sync) { 8635 mddev->in_sync = 0; 8636 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8637 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8638 if (mddev->safemode_delay && 8639 mddev->safemode == 0) 8640 mddev->safemode = 1; 8641 spin_unlock(&mddev->lock); 8642 md_update_sb(mddev, 0); 8643 sysfs_notify_dirent_safe(mddev->sysfs_state); 8644 /* wait for the dirty state to be recorded in the metadata */ 8645 wait_event(mddev->sb_wait, 8646 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 8647 } else 8648 spin_unlock(&mddev->lock); 8649 } 8650 EXPORT_SYMBOL_GPL(md_allow_write); 8651 8652 #define SYNC_MARKS 10 8653 #define SYNC_MARK_STEP (3*HZ) 8654 #define UPDATE_FREQUENCY (5*60*HZ) 8655 void md_do_sync(struct md_thread *thread) 8656 { 8657 struct mddev *mddev = thread->mddev; 8658 struct mddev *mddev2; 8659 unsigned int currspeed = 0, window; 8660 sector_t max_sectors,j, io_sectors, recovery_done; 8661 unsigned long mark[SYNC_MARKS]; 8662 unsigned long update_time; 8663 sector_t mark_cnt[SYNC_MARKS]; 8664 int last_mark,m; 8665 struct list_head *tmp; 8666 sector_t last_check; 8667 int skipped = 0; 8668 struct md_rdev *rdev; 8669 char *desc, *action = NULL; 8670 struct blk_plug plug; 8671 int ret; 8672 8673 /* just incase thread restarts... */ 8674 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 8675 test_bit(MD_RECOVERY_WAIT, &mddev->recovery)) 8676 return; 8677 if (mddev->ro) {/* never try to sync a read-only array */ 8678 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8679 return; 8680 } 8681 8682 if (mddev_is_clustered(mddev)) { 8683 ret = md_cluster_ops->resync_start(mddev); 8684 if (ret) 8685 goto skip; 8686 8687 set_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags); 8688 if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 8689 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) || 8690 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) 8691 && ((unsigned long long)mddev->curr_resync_completed 8692 < (unsigned long long)mddev->resync_max_sectors)) 8693 goto skip; 8694 } 8695 8696 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8697 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 8698 desc = "data-check"; 8699 action = "check"; 8700 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 8701 desc = "requested-resync"; 8702 action = "repair"; 8703 } else 8704 desc = "resync"; 8705 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 8706 desc = "reshape"; 8707 else 8708 desc = "recovery"; 8709 8710 mddev->last_sync_action = action ?: desc; 8711 8712 /* we overload curr_resync somewhat here. 8713 * 0 == not engaged in resync at all 8714 * 2 == checking that there is no conflict with another sync 8715 * 1 == like 2, but have yielded to allow conflicting resync to 8716 * commence 8717 * other == active in resync - this many blocks 8718 * 8719 * Before starting a resync we must have set curr_resync to 8720 * 2, and then checked that every "conflicting" array has curr_resync 8721 * less than ours. When we find one that is the same or higher 8722 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync 8723 * to 1 if we choose to yield (based arbitrarily on address of mddev structure). 8724 * This will mean we have to start checking from the beginning again. 8725 * 8726 */ 8727 8728 do { 8729 int mddev2_minor = -1; 8730 mddev->curr_resync = 2; 8731 8732 try_again: 8733 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8734 goto skip; 8735 for_each_mddev(mddev2, tmp) { 8736 if (mddev2 == mddev) 8737 continue; 8738 if (!mddev->parallel_resync 8739 && mddev2->curr_resync 8740 && match_mddev_units(mddev, mddev2)) { 8741 DEFINE_WAIT(wq); 8742 if (mddev < mddev2 && mddev->curr_resync == 2) { 8743 /* arbitrarily yield */ 8744 mddev->curr_resync = 1; 8745 wake_up(&resync_wait); 8746 } 8747 if (mddev > mddev2 && mddev->curr_resync == 1) 8748 /* no need to wait here, we can wait the next 8749 * time 'round when curr_resync == 2 8750 */ 8751 continue; 8752 /* We need to wait 'interruptible' so as not to 8753 * contribute to the load average, and not to 8754 * be caught by 'softlockup' 8755 */ 8756 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE); 8757 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8758 mddev2->curr_resync >= mddev->curr_resync) { 8759 if (mddev2_minor != mddev2->md_minor) { 8760 mddev2_minor = mddev2->md_minor; 8761 pr_info("md: delaying %s of %s until %s has finished (they share one or more physical units)\n", 8762 desc, mdname(mddev), 8763 mdname(mddev2)); 8764 } 8765 mddev_put(mddev2); 8766 if (signal_pending(current)) 8767 flush_signals(current); 8768 schedule(); 8769 finish_wait(&resync_wait, &wq); 8770 goto try_again; 8771 } 8772 finish_wait(&resync_wait, &wq); 8773 } 8774 } 8775 } while (mddev->curr_resync < 2); 8776 8777 j = 0; 8778 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8779 /* resync follows the size requested by the personality, 8780 * which defaults to physical size, but can be virtual size 8781 */ 8782 max_sectors = mddev->resync_max_sectors; 8783 atomic64_set(&mddev->resync_mismatches, 0); 8784 /* we don't use the checkpoint if there's a bitmap */ 8785 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 8786 j = mddev->resync_min; 8787 else if (!mddev->bitmap) 8788 j = mddev->recovery_cp; 8789 8790 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 8791 max_sectors = mddev->resync_max_sectors; 8792 /* 8793 * If the original node aborts reshaping then we continue the 8794 * reshaping, so set j again to avoid restart reshape from the 8795 * first beginning 8796 */ 8797 if (mddev_is_clustered(mddev) && 8798 mddev->reshape_position != MaxSector) 8799 j = mddev->reshape_position; 8800 } else { 8801 /* recovery follows the physical size of devices */ 8802 max_sectors = mddev->dev_sectors; 8803 j = MaxSector; 8804 rcu_read_lock(); 8805 rdev_for_each_rcu(rdev, mddev) 8806 if (rdev->raid_disk >= 0 && 8807 !test_bit(Journal, &rdev->flags) && 8808 !test_bit(Faulty, &rdev->flags) && 8809 !test_bit(In_sync, &rdev->flags) && 8810 rdev->recovery_offset < j) 8811 j = rdev->recovery_offset; 8812 rcu_read_unlock(); 8813 8814 /* If there is a bitmap, we need to make sure all 8815 * writes that started before we added a spare 8816 * complete before we start doing a recovery. 8817 * Otherwise the write might complete and (via 8818 * bitmap_endwrite) set a bit in the bitmap after the 8819 * recovery has checked that bit and skipped that 8820 * region. 8821 */ 8822 if (mddev->bitmap) { 8823 mddev->pers->quiesce(mddev, 1); 8824 mddev->pers->quiesce(mddev, 0); 8825 } 8826 } 8827 8828 pr_info("md: %s of RAID array %s\n", desc, mdname(mddev)); 8829 pr_debug("md: minimum _guaranteed_ speed: %d KB/sec/disk.\n", speed_min(mddev)); 8830 pr_debug("md: using maximum available idle IO bandwidth (but not more than %d KB/sec) for %s.\n", 8831 speed_max(mddev), desc); 8832 8833 is_mddev_idle(mddev, 1); /* this initializes IO event counters */ 8834 8835 io_sectors = 0; 8836 for (m = 0; m < SYNC_MARKS; m++) { 8837 mark[m] = jiffies; 8838 mark_cnt[m] = io_sectors; 8839 } 8840 last_mark = 0; 8841 mddev->resync_mark = mark[last_mark]; 8842 mddev->resync_mark_cnt = mark_cnt[last_mark]; 8843 8844 /* 8845 * Tune reconstruction: 8846 */ 8847 window = 32 * (PAGE_SIZE / 512); 8848 pr_debug("md: using %dk window, over a total of %lluk.\n", 8849 window/2, (unsigned long long)max_sectors/2); 8850 8851 atomic_set(&mddev->recovery_active, 0); 8852 last_check = 0; 8853 8854 if (j>2) { 8855 pr_debug("md: resuming %s of %s from checkpoint.\n", 8856 desc, mdname(mddev)); 8857 mddev->curr_resync = j; 8858 } else 8859 mddev->curr_resync = 3; /* no longer delayed */ 8860 mddev->curr_resync_completed = j; 8861 sysfs_notify_dirent_safe(mddev->sysfs_completed); 8862 md_new_event(mddev); 8863 update_time = jiffies; 8864 8865 blk_start_plug(&plug); 8866 while (j < max_sectors) { 8867 sector_t sectors; 8868 8869 skipped = 0; 8870 8871 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8872 ((mddev->curr_resync > mddev->curr_resync_completed && 8873 (mddev->curr_resync - mddev->curr_resync_completed) 8874 > (max_sectors >> 4)) || 8875 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) || 8876 (j - mddev->curr_resync_completed)*2 8877 >= mddev->resync_max - mddev->curr_resync_completed || 8878 mddev->curr_resync_completed > mddev->resync_max 8879 )) { 8880 /* time to update curr_resync_completed */ 8881 wait_event(mddev->recovery_wait, 8882 atomic_read(&mddev->recovery_active) == 0); 8883 mddev->curr_resync_completed = j; 8884 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 8885 j > mddev->recovery_cp) 8886 mddev->recovery_cp = j; 8887 update_time = jiffies; 8888 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8889 sysfs_notify_dirent_safe(mddev->sysfs_completed); 8890 } 8891 8892 while (j >= mddev->resync_max && 8893 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8894 /* As this condition is controlled by user-space, 8895 * we can block indefinitely, so use '_interruptible' 8896 * to avoid triggering warnings. 8897 */ 8898 flush_signals(current); /* just in case */ 8899 wait_event_interruptible(mddev->recovery_wait, 8900 mddev->resync_max > j 8901 || test_bit(MD_RECOVERY_INTR, 8902 &mddev->recovery)); 8903 } 8904 8905 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8906 break; 8907 8908 sectors = mddev->pers->sync_request(mddev, j, &skipped); 8909 if (sectors == 0) { 8910 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8911 break; 8912 } 8913 8914 if (!skipped) { /* actual IO requested */ 8915 io_sectors += sectors; 8916 atomic_add(sectors, &mddev->recovery_active); 8917 } 8918 8919 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8920 break; 8921 8922 j += sectors; 8923 if (j > max_sectors) 8924 /* when skipping, extra large numbers can be returned. */ 8925 j = max_sectors; 8926 if (j > 2) 8927 mddev->curr_resync = j; 8928 mddev->curr_mark_cnt = io_sectors; 8929 if (last_check == 0) 8930 /* this is the earliest that rebuild will be 8931 * visible in /proc/mdstat 8932 */ 8933 md_new_event(mddev); 8934 8935 if (last_check + window > io_sectors || j == max_sectors) 8936 continue; 8937 8938 last_check = io_sectors; 8939 repeat: 8940 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { 8941 /* step marks */ 8942 int next = (last_mark+1) % SYNC_MARKS; 8943 8944 mddev->resync_mark = mark[next]; 8945 mddev->resync_mark_cnt = mark_cnt[next]; 8946 mark[next] = jiffies; 8947 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); 8948 last_mark = next; 8949 } 8950 8951 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8952 break; 8953 8954 /* 8955 * this loop exits only if either when we are slower than 8956 * the 'hard' speed limit, or the system was IO-idle for 8957 * a jiffy. 8958 * the system might be non-idle CPU-wise, but we only care 8959 * about not overloading the IO subsystem. (things like an 8960 * e2fsck being done on the RAID array should execute fast) 8961 */ 8962 cond_resched(); 8963 8964 recovery_done = io_sectors - atomic_read(&mddev->recovery_active); 8965 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2 8966 /((jiffies-mddev->resync_mark)/HZ +1) +1; 8967 8968 if (currspeed > speed_min(mddev)) { 8969 if (currspeed > speed_max(mddev)) { 8970 msleep(500); 8971 goto repeat; 8972 } 8973 if (!is_mddev_idle(mddev, 0)) { 8974 /* 8975 * Give other IO more of a chance. 8976 * The faster the devices, the less we wait. 8977 */ 8978 wait_event(mddev->recovery_wait, 8979 !atomic_read(&mddev->recovery_active)); 8980 } 8981 } 8982 } 8983 pr_info("md: %s: %s %s.\n",mdname(mddev), desc, 8984 test_bit(MD_RECOVERY_INTR, &mddev->recovery) 8985 ? "interrupted" : "done"); 8986 /* 8987 * this also signals 'finished resyncing' to md_stop 8988 */ 8989 blk_finish_plug(&plug); 8990 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); 8991 8992 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8993 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8994 mddev->curr_resync > 3) { 8995 mddev->curr_resync_completed = mddev->curr_resync; 8996 sysfs_notify_dirent_safe(mddev->sysfs_completed); 8997 } 8998 mddev->pers->sync_request(mddev, max_sectors, &skipped); 8999 9000 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && 9001 mddev->curr_resync > 3) { 9002 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 9003 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 9004 if (mddev->curr_resync >= mddev->recovery_cp) { 9005 pr_debug("md: checkpointing %s of %s.\n", 9006 desc, mdname(mddev)); 9007 if (test_bit(MD_RECOVERY_ERROR, 9008 &mddev->recovery)) 9009 mddev->recovery_cp = 9010 mddev->curr_resync_completed; 9011 else 9012 mddev->recovery_cp = 9013 mddev->curr_resync; 9014 } 9015 } else 9016 mddev->recovery_cp = MaxSector; 9017 } else { 9018 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 9019 mddev->curr_resync = MaxSector; 9020 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9021 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) { 9022 rcu_read_lock(); 9023 rdev_for_each_rcu(rdev, mddev) 9024 if (rdev->raid_disk >= 0 && 9025 mddev->delta_disks >= 0 && 9026 !test_bit(Journal, &rdev->flags) && 9027 !test_bit(Faulty, &rdev->flags) && 9028 !test_bit(In_sync, &rdev->flags) && 9029 rdev->recovery_offset < mddev->curr_resync) 9030 rdev->recovery_offset = mddev->curr_resync; 9031 rcu_read_unlock(); 9032 } 9033 } 9034 } 9035 skip: 9036 /* set CHANGE_PENDING here since maybe another update is needed, 9037 * so other nodes are informed. It should be harmless for normal 9038 * raid */ 9039 set_mask_bits(&mddev->sb_flags, 0, 9040 BIT(MD_SB_CHANGE_PENDING) | BIT(MD_SB_CHANGE_DEVS)); 9041 9042 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9043 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 9044 mddev->delta_disks > 0 && 9045 mddev->pers->finish_reshape && 9046 mddev->pers->size && 9047 mddev->queue) { 9048 mddev_lock_nointr(mddev); 9049 md_set_array_sectors(mddev, mddev->pers->size(mddev, 0, 0)); 9050 mddev_unlock(mddev); 9051 if (!mddev_is_clustered(mddev)) 9052 set_capacity_and_notify(mddev->gendisk, 9053 mddev->array_sectors); 9054 } 9055 9056 spin_lock(&mddev->lock); 9057 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 9058 /* We completed so min/max setting can be forgotten if used. */ 9059 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 9060 mddev->resync_min = 0; 9061 mddev->resync_max = MaxSector; 9062 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 9063 mddev->resync_min = mddev->curr_resync_completed; 9064 set_bit(MD_RECOVERY_DONE, &mddev->recovery); 9065 mddev->curr_resync = 0; 9066 spin_unlock(&mddev->lock); 9067 9068 wake_up(&resync_wait); 9069 md_wakeup_thread(mddev->thread); 9070 return; 9071 } 9072 EXPORT_SYMBOL_GPL(md_do_sync); 9073 9074 static int remove_and_add_spares(struct mddev *mddev, 9075 struct md_rdev *this) 9076 { 9077 struct md_rdev *rdev; 9078 int spares = 0; 9079 int removed = 0; 9080 bool remove_some = false; 9081 9082 if (this && test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 9083 /* Mustn't remove devices when resync thread is running */ 9084 return 0; 9085 9086 rdev_for_each(rdev, mddev) { 9087 if ((this == NULL || rdev == this) && 9088 rdev->raid_disk >= 0 && 9089 !test_bit(Blocked, &rdev->flags) && 9090 test_bit(Faulty, &rdev->flags) && 9091 atomic_read(&rdev->nr_pending)==0) { 9092 /* Faulty non-Blocked devices with nr_pending == 0 9093 * never get nr_pending incremented, 9094 * never get Faulty cleared, and never get Blocked set. 9095 * So we can synchronize_rcu now rather than once per device 9096 */ 9097 remove_some = true; 9098 set_bit(RemoveSynchronized, &rdev->flags); 9099 } 9100 } 9101 9102 if (remove_some) 9103 synchronize_rcu(); 9104 rdev_for_each(rdev, mddev) { 9105 if ((this == NULL || rdev == this) && 9106 rdev->raid_disk >= 0 && 9107 !test_bit(Blocked, &rdev->flags) && 9108 ((test_bit(RemoveSynchronized, &rdev->flags) || 9109 (!test_bit(In_sync, &rdev->flags) && 9110 !test_bit(Journal, &rdev->flags))) && 9111 atomic_read(&rdev->nr_pending)==0)) { 9112 if (mddev->pers->hot_remove_disk( 9113 mddev, rdev) == 0) { 9114 sysfs_unlink_rdev(mddev, rdev); 9115 rdev->saved_raid_disk = rdev->raid_disk; 9116 rdev->raid_disk = -1; 9117 removed++; 9118 } 9119 } 9120 if (remove_some && test_bit(RemoveSynchronized, &rdev->flags)) 9121 clear_bit(RemoveSynchronized, &rdev->flags); 9122 } 9123 9124 if (removed && mddev->kobj.sd) 9125 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9126 9127 if (this && removed) 9128 goto no_add; 9129 9130 rdev_for_each(rdev, mddev) { 9131 if (this && this != rdev) 9132 continue; 9133 if (test_bit(Candidate, &rdev->flags)) 9134 continue; 9135 if (rdev->raid_disk >= 0 && 9136 !test_bit(In_sync, &rdev->flags) && 9137 !test_bit(Journal, &rdev->flags) && 9138 !test_bit(Faulty, &rdev->flags)) 9139 spares++; 9140 if (rdev->raid_disk >= 0) 9141 continue; 9142 if (test_bit(Faulty, &rdev->flags)) 9143 continue; 9144 if (!test_bit(Journal, &rdev->flags)) { 9145 if (mddev->ro && 9146 ! (rdev->saved_raid_disk >= 0 && 9147 !test_bit(Bitmap_sync, &rdev->flags))) 9148 continue; 9149 9150 rdev->recovery_offset = 0; 9151 } 9152 if (mddev->pers->hot_add_disk(mddev, rdev) == 0) { 9153 /* failure here is OK */ 9154 sysfs_link_rdev(mddev, rdev); 9155 if (!test_bit(Journal, &rdev->flags)) 9156 spares++; 9157 md_new_event(mddev); 9158 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9159 } 9160 } 9161 no_add: 9162 if (removed) 9163 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9164 return spares; 9165 } 9166 9167 static void md_start_sync(struct work_struct *ws) 9168 { 9169 struct mddev *mddev = container_of(ws, struct mddev, del_work); 9170 9171 mddev->sync_thread = md_register_thread(md_do_sync, 9172 mddev, 9173 "resync"); 9174 if (!mddev->sync_thread) { 9175 pr_warn("%s: could not start resync thread...\n", 9176 mdname(mddev)); 9177 /* leave the spares where they are, it shouldn't hurt */ 9178 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9179 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9180 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9181 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9182 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9183 wake_up(&resync_wait); 9184 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 9185 &mddev->recovery)) 9186 if (mddev->sysfs_action) 9187 sysfs_notify_dirent_safe(mddev->sysfs_action); 9188 } else 9189 md_wakeup_thread(mddev->sync_thread); 9190 sysfs_notify_dirent_safe(mddev->sysfs_action); 9191 md_new_event(mddev); 9192 } 9193 9194 /* 9195 * This routine is regularly called by all per-raid-array threads to 9196 * deal with generic issues like resync and super-block update. 9197 * Raid personalities that don't have a thread (linear/raid0) do not 9198 * need this as they never do any recovery or update the superblock. 9199 * 9200 * It does not do any resync itself, but rather "forks" off other threads 9201 * to do that as needed. 9202 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in 9203 * "->recovery" and create a thread at ->sync_thread. 9204 * When the thread finishes it sets MD_RECOVERY_DONE 9205 * and wakeups up this thread which will reap the thread and finish up. 9206 * This thread also removes any faulty devices (with nr_pending == 0). 9207 * 9208 * The overall approach is: 9209 * 1/ if the superblock needs updating, update it. 9210 * 2/ If a recovery thread is running, don't do anything else. 9211 * 3/ If recovery has finished, clean up, possibly marking spares active. 9212 * 4/ If there are any faulty devices, remove them. 9213 * 5/ If array is degraded, try to add spares devices 9214 * 6/ If array has spares or is not in-sync, start a resync thread. 9215 */ 9216 void md_check_recovery(struct mddev *mddev) 9217 { 9218 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags) && mddev->sb_flags) { 9219 /* Write superblock - thread that called mddev_suspend() 9220 * holds reconfig_mutex for us. 9221 */ 9222 set_bit(MD_UPDATING_SB, &mddev->flags); 9223 smp_mb__after_atomic(); 9224 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags)) 9225 md_update_sb(mddev, 0); 9226 clear_bit_unlock(MD_UPDATING_SB, &mddev->flags); 9227 wake_up(&mddev->sb_wait); 9228 } 9229 9230 if (mddev->suspended) 9231 return; 9232 9233 if (mddev->bitmap) 9234 md_bitmap_daemon_work(mddev); 9235 9236 if (signal_pending(current)) { 9237 if (mddev->pers->sync_request && !mddev->external) { 9238 pr_debug("md: %s in immediate safe mode\n", 9239 mdname(mddev)); 9240 mddev->safemode = 2; 9241 } 9242 flush_signals(current); 9243 } 9244 9245 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 9246 return; 9247 if ( ! ( 9248 (mddev->sb_flags & ~ (1<<MD_SB_CHANGE_PENDING)) || 9249 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 9250 test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 9251 (mddev->external == 0 && mddev->safemode == 1) || 9252 (mddev->safemode == 2 9253 && !mddev->in_sync && mddev->recovery_cp == MaxSector) 9254 )) 9255 return; 9256 9257 if (mddev_trylock(mddev)) { 9258 int spares = 0; 9259 bool try_set_sync = mddev->safemode != 0; 9260 9261 if (!mddev->external && mddev->safemode == 1) 9262 mddev->safemode = 0; 9263 9264 if (mddev->ro) { 9265 struct md_rdev *rdev; 9266 if (!mddev->external && mddev->in_sync) 9267 /* 'Blocked' flag not needed as failed devices 9268 * will be recorded if array switched to read/write. 9269 * Leaving it set will prevent the device 9270 * from being removed. 9271 */ 9272 rdev_for_each(rdev, mddev) 9273 clear_bit(Blocked, &rdev->flags); 9274 /* On a read-only array we can: 9275 * - remove failed devices 9276 * - add already-in_sync devices if the array itself 9277 * is in-sync. 9278 * As we only add devices that are already in-sync, 9279 * we can activate the spares immediately. 9280 */ 9281 remove_and_add_spares(mddev, NULL); 9282 /* There is no thread, but we need to call 9283 * ->spare_active and clear saved_raid_disk 9284 */ 9285 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 9286 md_reap_sync_thread(mddev); 9287 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9288 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9289 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 9290 goto unlock; 9291 } 9292 9293 if (mddev_is_clustered(mddev)) { 9294 struct md_rdev *rdev, *tmp; 9295 /* kick the device if another node issued a 9296 * remove disk. 9297 */ 9298 rdev_for_each_safe(rdev, tmp, mddev) { 9299 if (test_and_clear_bit(ClusterRemove, &rdev->flags) && 9300 rdev->raid_disk < 0) 9301 md_kick_rdev_from_array(rdev); 9302 } 9303 } 9304 9305 if (try_set_sync && !mddev->external && !mddev->in_sync) { 9306 spin_lock(&mddev->lock); 9307 set_in_sync(mddev); 9308 spin_unlock(&mddev->lock); 9309 } 9310 9311 if (mddev->sb_flags) 9312 md_update_sb(mddev, 0); 9313 9314 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 9315 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { 9316 /* resync/recovery still happening */ 9317 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9318 goto unlock; 9319 } 9320 if (mddev->sync_thread) { 9321 md_reap_sync_thread(mddev); 9322 goto unlock; 9323 } 9324 /* Set RUNNING before clearing NEEDED to avoid 9325 * any transients in the value of "sync_action". 9326 */ 9327 mddev->curr_resync_completed = 0; 9328 spin_lock(&mddev->lock); 9329 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9330 spin_unlock(&mddev->lock); 9331 /* Clear some bits that don't mean anything, but 9332 * might be left set 9333 */ 9334 clear_bit(MD_RECOVERY_INTR, &mddev->recovery); 9335 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 9336 9337 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 9338 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 9339 goto not_running; 9340 /* no recovery is running. 9341 * remove any failed drives, then 9342 * add spares if possible. 9343 * Spares are also removed and re-added, to allow 9344 * the personality to fail the re-add. 9345 */ 9346 9347 if (mddev->reshape_position != MaxSector) { 9348 if (mddev->pers->check_reshape == NULL || 9349 mddev->pers->check_reshape(mddev) != 0) 9350 /* Cannot proceed */ 9351 goto not_running; 9352 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9353 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9354 } else if ((spares = remove_and_add_spares(mddev, NULL))) { 9355 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9356 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9357 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9358 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9359 } else if (mddev->recovery_cp < MaxSector) { 9360 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9361 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9362 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 9363 /* nothing to be done ... */ 9364 goto not_running; 9365 9366 if (mddev->pers->sync_request) { 9367 if (spares) { 9368 /* We are adding a device or devices to an array 9369 * which has the bitmap stored on all devices. 9370 * So make sure all bitmap pages get written 9371 */ 9372 md_bitmap_write_all(mddev->bitmap); 9373 } 9374 INIT_WORK(&mddev->del_work, md_start_sync); 9375 queue_work(md_misc_wq, &mddev->del_work); 9376 goto unlock; 9377 } 9378 not_running: 9379 if (!mddev->sync_thread) { 9380 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9381 wake_up(&resync_wait); 9382 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 9383 &mddev->recovery)) 9384 if (mddev->sysfs_action) 9385 sysfs_notify_dirent_safe(mddev->sysfs_action); 9386 } 9387 unlock: 9388 wake_up(&mddev->sb_wait); 9389 mddev_unlock(mddev); 9390 } 9391 } 9392 EXPORT_SYMBOL(md_check_recovery); 9393 9394 void md_reap_sync_thread(struct mddev *mddev) 9395 { 9396 struct md_rdev *rdev; 9397 sector_t old_dev_sectors = mddev->dev_sectors; 9398 bool is_reshaped = false; 9399 9400 /* resync has finished, collect result */ 9401 md_unregister_thread(&mddev->sync_thread); 9402 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 9403 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 9404 mddev->degraded != mddev->raid_disks) { 9405 /* success...*/ 9406 /* activate any spares */ 9407 if (mddev->pers->spare_active(mddev)) { 9408 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9409 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9410 } 9411 } 9412 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9413 mddev->pers->finish_reshape) { 9414 mddev->pers->finish_reshape(mddev); 9415 if (mddev_is_clustered(mddev)) 9416 is_reshaped = true; 9417 } 9418 9419 /* If array is no-longer degraded, then any saved_raid_disk 9420 * information must be scrapped. 9421 */ 9422 if (!mddev->degraded) 9423 rdev_for_each(rdev, mddev) 9424 rdev->saved_raid_disk = -1; 9425 9426 md_update_sb(mddev, 1); 9427 /* MD_SB_CHANGE_PENDING should be cleared by md_update_sb, so we can 9428 * call resync_finish here if MD_CLUSTER_RESYNC_LOCKED is set by 9429 * clustered raid */ 9430 if (test_and_clear_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags)) 9431 md_cluster_ops->resync_finish(mddev); 9432 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9433 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 9434 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9435 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9436 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9437 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9438 /* 9439 * We call md_cluster_ops->update_size here because sync_size could 9440 * be changed by md_update_sb, and MD_RECOVERY_RESHAPE is cleared, 9441 * so it is time to update size across cluster. 9442 */ 9443 if (mddev_is_clustered(mddev) && is_reshaped 9444 && !test_bit(MD_CLOSING, &mddev->flags)) 9445 md_cluster_ops->update_size(mddev, old_dev_sectors); 9446 wake_up(&resync_wait); 9447 /* flag recovery needed just to double check */ 9448 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9449 sysfs_notify_dirent_safe(mddev->sysfs_action); 9450 md_new_event(mddev); 9451 if (mddev->event_work.func) 9452 queue_work(md_misc_wq, &mddev->event_work); 9453 } 9454 EXPORT_SYMBOL(md_reap_sync_thread); 9455 9456 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev) 9457 { 9458 sysfs_notify_dirent_safe(rdev->sysfs_state); 9459 wait_event_timeout(rdev->blocked_wait, 9460 !test_bit(Blocked, &rdev->flags) && 9461 !test_bit(BlockedBadBlocks, &rdev->flags), 9462 msecs_to_jiffies(5000)); 9463 rdev_dec_pending(rdev, mddev); 9464 } 9465 EXPORT_SYMBOL(md_wait_for_blocked_rdev); 9466 9467 void md_finish_reshape(struct mddev *mddev) 9468 { 9469 /* called be personality module when reshape completes. */ 9470 struct md_rdev *rdev; 9471 9472 rdev_for_each(rdev, mddev) { 9473 if (rdev->data_offset > rdev->new_data_offset) 9474 rdev->sectors += rdev->data_offset - rdev->new_data_offset; 9475 else 9476 rdev->sectors -= rdev->new_data_offset - rdev->data_offset; 9477 rdev->data_offset = rdev->new_data_offset; 9478 } 9479 } 9480 EXPORT_SYMBOL(md_finish_reshape); 9481 9482 /* Bad block management */ 9483 9484 /* Returns 1 on success, 0 on failure */ 9485 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 9486 int is_new) 9487 { 9488 struct mddev *mddev = rdev->mddev; 9489 int rv; 9490 if (is_new) 9491 s += rdev->new_data_offset; 9492 else 9493 s += rdev->data_offset; 9494 rv = badblocks_set(&rdev->badblocks, s, sectors, 0); 9495 if (rv == 0) { 9496 /* Make sure they get written out promptly */ 9497 if (test_bit(ExternalBbl, &rdev->flags)) 9498 sysfs_notify_dirent_safe(rdev->sysfs_unack_badblocks); 9499 sysfs_notify_dirent_safe(rdev->sysfs_state); 9500 set_mask_bits(&mddev->sb_flags, 0, 9501 BIT(MD_SB_CHANGE_CLEAN) | BIT(MD_SB_CHANGE_PENDING)); 9502 md_wakeup_thread(rdev->mddev->thread); 9503 return 1; 9504 } else 9505 return 0; 9506 } 9507 EXPORT_SYMBOL_GPL(rdev_set_badblocks); 9508 9509 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 9510 int is_new) 9511 { 9512 int rv; 9513 if (is_new) 9514 s += rdev->new_data_offset; 9515 else 9516 s += rdev->data_offset; 9517 rv = badblocks_clear(&rdev->badblocks, s, sectors); 9518 if ((rv == 0) && test_bit(ExternalBbl, &rdev->flags)) 9519 sysfs_notify_dirent_safe(rdev->sysfs_badblocks); 9520 return rv; 9521 } 9522 EXPORT_SYMBOL_GPL(rdev_clear_badblocks); 9523 9524 static int md_notify_reboot(struct notifier_block *this, 9525 unsigned long code, void *x) 9526 { 9527 struct list_head *tmp; 9528 struct mddev *mddev; 9529 int need_delay = 0; 9530 9531 for_each_mddev(mddev, tmp) { 9532 if (mddev_trylock(mddev)) { 9533 if (mddev->pers) 9534 __md_stop_writes(mddev); 9535 if (mddev->persistent) 9536 mddev->safemode = 2; 9537 mddev_unlock(mddev); 9538 } 9539 need_delay = 1; 9540 } 9541 /* 9542 * certain more exotic SCSI devices are known to be 9543 * volatile wrt too early system reboots. While the 9544 * right place to handle this issue is the given 9545 * driver, we do want to have a safe RAID driver ... 9546 */ 9547 if (need_delay) 9548 mdelay(1000*1); 9549 9550 return NOTIFY_DONE; 9551 } 9552 9553 static struct notifier_block md_notifier = { 9554 .notifier_call = md_notify_reboot, 9555 .next = NULL, 9556 .priority = INT_MAX, /* before any real devices */ 9557 }; 9558 9559 static void md_geninit(void) 9560 { 9561 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); 9562 9563 proc_create("mdstat", S_IRUGO, NULL, &mdstat_proc_ops); 9564 } 9565 9566 static int __init md_init(void) 9567 { 9568 int ret = -ENOMEM; 9569 9570 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0); 9571 if (!md_wq) 9572 goto err_wq; 9573 9574 md_misc_wq = alloc_workqueue("md_misc", 0, 0); 9575 if (!md_misc_wq) 9576 goto err_misc_wq; 9577 9578 md_rdev_misc_wq = alloc_workqueue("md_rdev_misc", 0, 0); 9579 if (!md_rdev_misc_wq) 9580 goto err_rdev_misc_wq; 9581 9582 ret = __register_blkdev(MD_MAJOR, "md", md_probe); 9583 if (ret < 0) 9584 goto err_md; 9585 9586 ret = __register_blkdev(0, "mdp", md_probe); 9587 if (ret < 0) 9588 goto err_mdp; 9589 mdp_major = ret; 9590 9591 register_reboot_notifier(&md_notifier); 9592 raid_table_header = register_sysctl_table(raid_root_table); 9593 9594 md_geninit(); 9595 return 0; 9596 9597 err_mdp: 9598 unregister_blkdev(MD_MAJOR, "md"); 9599 err_md: 9600 destroy_workqueue(md_rdev_misc_wq); 9601 err_rdev_misc_wq: 9602 destroy_workqueue(md_misc_wq); 9603 err_misc_wq: 9604 destroy_workqueue(md_wq); 9605 err_wq: 9606 return ret; 9607 } 9608 9609 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev) 9610 { 9611 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 9612 struct md_rdev *rdev2, *tmp; 9613 int role, ret; 9614 char b[BDEVNAME_SIZE]; 9615 9616 /* 9617 * If size is changed in another node then we need to 9618 * do resize as well. 9619 */ 9620 if (mddev->dev_sectors != le64_to_cpu(sb->size)) { 9621 ret = mddev->pers->resize(mddev, le64_to_cpu(sb->size)); 9622 if (ret) 9623 pr_info("md-cluster: resize failed\n"); 9624 else 9625 md_bitmap_update_sb(mddev->bitmap); 9626 } 9627 9628 /* Check for change of roles in the active devices */ 9629 rdev_for_each_safe(rdev2, tmp, mddev) { 9630 if (test_bit(Faulty, &rdev2->flags)) 9631 continue; 9632 9633 /* Check if the roles changed */ 9634 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]); 9635 9636 if (test_bit(Candidate, &rdev2->flags)) { 9637 if (role == 0xfffe) { 9638 pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b)); 9639 md_kick_rdev_from_array(rdev2); 9640 continue; 9641 } 9642 else 9643 clear_bit(Candidate, &rdev2->flags); 9644 } 9645 9646 if (role != rdev2->raid_disk) { 9647 /* 9648 * got activated except reshape is happening. 9649 */ 9650 if (rdev2->raid_disk == -1 && role != 0xffff && 9651 !(le32_to_cpu(sb->feature_map) & 9652 MD_FEATURE_RESHAPE_ACTIVE)) { 9653 rdev2->saved_raid_disk = role; 9654 ret = remove_and_add_spares(mddev, rdev2); 9655 pr_info("Activated spare: %s\n", 9656 bdevname(rdev2->bdev,b)); 9657 /* wakeup mddev->thread here, so array could 9658 * perform resync with the new activated disk */ 9659 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9660 md_wakeup_thread(mddev->thread); 9661 } 9662 /* device faulty 9663 * We just want to do the minimum to mark the disk 9664 * as faulty. The recovery is performed by the 9665 * one who initiated the error. 9666 */ 9667 if ((role == 0xfffe) || (role == 0xfffd)) { 9668 md_error(mddev, rdev2); 9669 clear_bit(Blocked, &rdev2->flags); 9670 } 9671 } 9672 } 9673 9674 if (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) { 9675 ret = update_raid_disks(mddev, le32_to_cpu(sb->raid_disks)); 9676 if (ret) 9677 pr_warn("md: updating array disks failed. %d\n", ret); 9678 } 9679 9680 /* 9681 * Since mddev->delta_disks has already updated in update_raid_disks, 9682 * so it is time to check reshape. 9683 */ 9684 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) && 9685 (le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 9686 /* 9687 * reshape is happening in the remote node, we need to 9688 * update reshape_position and call start_reshape. 9689 */ 9690 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 9691 if (mddev->pers->update_reshape_pos) 9692 mddev->pers->update_reshape_pos(mddev); 9693 if (mddev->pers->start_reshape) 9694 mddev->pers->start_reshape(mddev); 9695 } else if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) && 9696 mddev->reshape_position != MaxSector && 9697 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 9698 /* reshape is just done in another node. */ 9699 mddev->reshape_position = MaxSector; 9700 if (mddev->pers->update_reshape_pos) 9701 mddev->pers->update_reshape_pos(mddev); 9702 } 9703 9704 /* Finally set the event to be up to date */ 9705 mddev->events = le64_to_cpu(sb->events); 9706 } 9707 9708 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev) 9709 { 9710 int err; 9711 struct page *swapout = rdev->sb_page; 9712 struct mdp_superblock_1 *sb; 9713 9714 /* Store the sb page of the rdev in the swapout temporary 9715 * variable in case we err in the future 9716 */ 9717 rdev->sb_page = NULL; 9718 err = alloc_disk_sb(rdev); 9719 if (err == 0) { 9720 ClearPageUptodate(rdev->sb_page); 9721 rdev->sb_loaded = 0; 9722 err = super_types[mddev->major_version]. 9723 load_super(rdev, NULL, mddev->minor_version); 9724 } 9725 if (err < 0) { 9726 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n", 9727 __func__, __LINE__, rdev->desc_nr, err); 9728 if (rdev->sb_page) 9729 put_page(rdev->sb_page); 9730 rdev->sb_page = swapout; 9731 rdev->sb_loaded = 1; 9732 return err; 9733 } 9734 9735 sb = page_address(rdev->sb_page); 9736 /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET 9737 * is not set 9738 */ 9739 9740 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET)) 9741 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 9742 9743 /* The other node finished recovery, call spare_active to set 9744 * device In_sync and mddev->degraded 9745 */ 9746 if (rdev->recovery_offset == MaxSector && 9747 !test_bit(In_sync, &rdev->flags) && 9748 mddev->pers->spare_active(mddev)) 9749 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9750 9751 put_page(swapout); 9752 return 0; 9753 } 9754 9755 void md_reload_sb(struct mddev *mddev, int nr) 9756 { 9757 struct md_rdev *rdev; 9758 int err; 9759 9760 /* Find the rdev */ 9761 rdev_for_each_rcu(rdev, mddev) { 9762 if (rdev->desc_nr == nr) 9763 break; 9764 } 9765 9766 if (!rdev || rdev->desc_nr != nr) { 9767 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr); 9768 return; 9769 } 9770 9771 err = read_rdev(mddev, rdev); 9772 if (err < 0) 9773 return; 9774 9775 check_sb_changes(mddev, rdev); 9776 9777 /* Read all rdev's to update recovery_offset */ 9778 rdev_for_each_rcu(rdev, mddev) { 9779 if (!test_bit(Faulty, &rdev->flags)) 9780 read_rdev(mddev, rdev); 9781 } 9782 } 9783 EXPORT_SYMBOL(md_reload_sb); 9784 9785 #ifndef MODULE 9786 9787 /* 9788 * Searches all registered partitions for autorun RAID arrays 9789 * at boot time. 9790 */ 9791 9792 static DEFINE_MUTEX(detected_devices_mutex); 9793 static LIST_HEAD(all_detected_devices); 9794 struct detected_devices_node { 9795 struct list_head list; 9796 dev_t dev; 9797 }; 9798 9799 void md_autodetect_dev(dev_t dev) 9800 { 9801 struct detected_devices_node *node_detected_dev; 9802 9803 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL); 9804 if (node_detected_dev) { 9805 node_detected_dev->dev = dev; 9806 mutex_lock(&detected_devices_mutex); 9807 list_add_tail(&node_detected_dev->list, &all_detected_devices); 9808 mutex_unlock(&detected_devices_mutex); 9809 } 9810 } 9811 9812 void md_autostart_arrays(int part) 9813 { 9814 struct md_rdev *rdev; 9815 struct detected_devices_node *node_detected_dev; 9816 dev_t dev; 9817 int i_scanned, i_passed; 9818 9819 i_scanned = 0; 9820 i_passed = 0; 9821 9822 pr_info("md: Autodetecting RAID arrays.\n"); 9823 9824 mutex_lock(&detected_devices_mutex); 9825 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) { 9826 i_scanned++; 9827 node_detected_dev = list_entry(all_detected_devices.next, 9828 struct detected_devices_node, list); 9829 list_del(&node_detected_dev->list); 9830 dev = node_detected_dev->dev; 9831 kfree(node_detected_dev); 9832 mutex_unlock(&detected_devices_mutex); 9833 rdev = md_import_device(dev,0, 90); 9834 mutex_lock(&detected_devices_mutex); 9835 if (IS_ERR(rdev)) 9836 continue; 9837 9838 if (test_bit(Faulty, &rdev->flags)) 9839 continue; 9840 9841 set_bit(AutoDetected, &rdev->flags); 9842 list_add(&rdev->same_set, &pending_raid_disks); 9843 i_passed++; 9844 } 9845 mutex_unlock(&detected_devices_mutex); 9846 9847 pr_debug("md: Scanned %d and added %d devices.\n", i_scanned, i_passed); 9848 9849 autorun_devices(part); 9850 } 9851 9852 #endif /* !MODULE */ 9853 9854 static __exit void md_exit(void) 9855 { 9856 struct mddev *mddev; 9857 struct list_head *tmp; 9858 int delay = 1; 9859 9860 unregister_blkdev(MD_MAJOR,"md"); 9861 unregister_blkdev(mdp_major, "mdp"); 9862 unregister_reboot_notifier(&md_notifier); 9863 unregister_sysctl_table(raid_table_header); 9864 9865 /* We cannot unload the modules while some process is 9866 * waiting for us in select() or poll() - wake them up 9867 */ 9868 md_unloading = 1; 9869 while (waitqueue_active(&md_event_waiters)) { 9870 /* not safe to leave yet */ 9871 wake_up(&md_event_waiters); 9872 msleep(delay); 9873 delay += delay; 9874 } 9875 remove_proc_entry("mdstat", NULL); 9876 9877 for_each_mddev(mddev, tmp) { 9878 export_array(mddev); 9879 mddev->ctime = 0; 9880 mddev->hold_active = 0; 9881 /* 9882 * for_each_mddev() will call mddev_put() at the end of each 9883 * iteration. As the mddev is now fully clear, this will 9884 * schedule the mddev for destruction by a workqueue, and the 9885 * destroy_workqueue() below will wait for that to complete. 9886 */ 9887 } 9888 destroy_workqueue(md_rdev_misc_wq); 9889 destroy_workqueue(md_misc_wq); 9890 destroy_workqueue(md_wq); 9891 } 9892 9893 subsys_initcall(md_init); 9894 module_exit(md_exit) 9895 9896 static int get_ro(char *buffer, const struct kernel_param *kp) 9897 { 9898 return sprintf(buffer, "%d\n", start_readonly); 9899 } 9900 static int set_ro(const char *val, const struct kernel_param *kp) 9901 { 9902 return kstrtouint(val, 10, (unsigned int *)&start_readonly); 9903 } 9904 9905 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); 9906 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); 9907 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR); 9908 module_param(create_on_open, bool, S_IRUSR|S_IWUSR); 9909 9910 MODULE_LICENSE("GPL"); 9911 MODULE_DESCRIPTION("MD RAID framework"); 9912 MODULE_ALIAS("md"); 9913 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR); 9914