xref: /openbmc/linux/drivers/md/md.c (revision e8e0929d)
1 /*
2    md.c : Multiple Devices driver for Linux
3 	  Copyright (C) 1998, 1999, 2000 Ingo Molnar
4 
5      completely rewritten, based on the MD driver code from Marc Zyngier
6 
7    Changes:
8 
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16 
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19 
20      Neil Brown <neilb@cse.unsw.edu.au>.
21 
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24 
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29 
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34 
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/buffer_head.h> /* for invalidate_bdev */
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/hdreg.h>
43 #include <linux/proc_fs.h>
44 #include <linux/random.h>
45 #include <linux/reboot.h>
46 #include <linux/file.h>
47 #include <linux/delay.h>
48 #include <linux/raid/md_p.h>
49 #include <linux/raid/md_u.h>
50 #include "md.h"
51 #include "bitmap.h"
52 
53 #define DEBUG 0
54 #define dprintk(x...) ((void)(DEBUG && printk(x)))
55 
56 
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
60 
61 static LIST_HEAD(pers_list);
62 static DEFINE_SPINLOCK(pers_lock);
63 
64 static void md_print_devices(void);
65 
66 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
67 
68 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
69 
70 /*
71  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
72  * is 1000 KB/sec, so the extra system load does not show up that much.
73  * Increase it if you want to have more _guaranteed_ speed. Note that
74  * the RAID driver will use the maximum available bandwidth if the IO
75  * subsystem is idle. There is also an 'absolute maximum' reconstruction
76  * speed limit - in case reconstruction slows down your system despite
77  * idle IO detection.
78  *
79  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
80  * or /sys/block/mdX/md/sync_speed_{min,max}
81  */
82 
83 static int sysctl_speed_limit_min = 1000;
84 static int sysctl_speed_limit_max = 200000;
85 static inline int speed_min(mddev_t *mddev)
86 {
87 	return mddev->sync_speed_min ?
88 		mddev->sync_speed_min : sysctl_speed_limit_min;
89 }
90 
91 static inline int speed_max(mddev_t *mddev)
92 {
93 	return mddev->sync_speed_max ?
94 		mddev->sync_speed_max : sysctl_speed_limit_max;
95 }
96 
97 static struct ctl_table_header *raid_table_header;
98 
99 static ctl_table raid_table[] = {
100 	{
101 		.ctl_name	= DEV_RAID_SPEED_LIMIT_MIN,
102 		.procname	= "speed_limit_min",
103 		.data		= &sysctl_speed_limit_min,
104 		.maxlen		= sizeof(int),
105 		.mode		= S_IRUGO|S_IWUSR,
106 		.proc_handler	= &proc_dointvec,
107 	},
108 	{
109 		.ctl_name	= DEV_RAID_SPEED_LIMIT_MAX,
110 		.procname	= "speed_limit_max",
111 		.data		= &sysctl_speed_limit_max,
112 		.maxlen		= sizeof(int),
113 		.mode		= S_IRUGO|S_IWUSR,
114 		.proc_handler	= &proc_dointvec,
115 	},
116 	{ .ctl_name = 0 }
117 };
118 
119 static ctl_table raid_dir_table[] = {
120 	{
121 		.ctl_name	= DEV_RAID,
122 		.procname	= "raid",
123 		.maxlen		= 0,
124 		.mode		= S_IRUGO|S_IXUGO,
125 		.child		= raid_table,
126 	},
127 	{ .ctl_name = 0 }
128 };
129 
130 static ctl_table raid_root_table[] = {
131 	{
132 		.ctl_name	= CTL_DEV,
133 		.procname	= "dev",
134 		.maxlen		= 0,
135 		.mode		= 0555,
136 		.child		= raid_dir_table,
137 	},
138 	{ .ctl_name = 0 }
139 };
140 
141 static const struct block_device_operations md_fops;
142 
143 static int start_readonly;
144 
145 /*
146  * We have a system wide 'event count' that is incremented
147  * on any 'interesting' event, and readers of /proc/mdstat
148  * can use 'poll' or 'select' to find out when the event
149  * count increases.
150  *
151  * Events are:
152  *  start array, stop array, error, add device, remove device,
153  *  start build, activate spare
154  */
155 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
156 static atomic_t md_event_count;
157 void md_new_event(mddev_t *mddev)
158 {
159 	atomic_inc(&md_event_count);
160 	wake_up(&md_event_waiters);
161 }
162 EXPORT_SYMBOL_GPL(md_new_event);
163 
164 /* Alternate version that can be called from interrupts
165  * when calling sysfs_notify isn't needed.
166  */
167 static void md_new_event_inintr(mddev_t *mddev)
168 {
169 	atomic_inc(&md_event_count);
170 	wake_up(&md_event_waiters);
171 }
172 
173 /*
174  * Enables to iterate over all existing md arrays
175  * all_mddevs_lock protects this list.
176  */
177 static LIST_HEAD(all_mddevs);
178 static DEFINE_SPINLOCK(all_mddevs_lock);
179 
180 
181 /*
182  * iterates through all used mddevs in the system.
183  * We take care to grab the all_mddevs_lock whenever navigating
184  * the list, and to always hold a refcount when unlocked.
185  * Any code which breaks out of this loop while own
186  * a reference to the current mddev and must mddev_put it.
187  */
188 #define for_each_mddev(mddev,tmp)					\
189 									\
190 	for (({ spin_lock(&all_mddevs_lock); 				\
191 		tmp = all_mddevs.next;					\
192 		mddev = NULL;});					\
193 	     ({ if (tmp != &all_mddevs)					\
194 			mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
195 		spin_unlock(&all_mddevs_lock);				\
196 		if (mddev) mddev_put(mddev);				\
197 		mddev = list_entry(tmp, mddev_t, all_mddevs);		\
198 		tmp != &all_mddevs;});					\
199 	     ({ spin_lock(&all_mddevs_lock);				\
200 		tmp = tmp->next;})					\
201 		)
202 
203 
204 /* Rather than calling directly into the personality make_request function,
205  * IO requests come here first so that we can check if the device is
206  * being suspended pending a reconfiguration.
207  * We hold a refcount over the call to ->make_request.  By the time that
208  * call has finished, the bio has been linked into some internal structure
209  * and so is visible to ->quiesce(), so we don't need the refcount any more.
210  */
211 static int md_make_request(struct request_queue *q, struct bio *bio)
212 {
213 	mddev_t *mddev = q->queuedata;
214 	int rv;
215 	if (mddev == NULL || mddev->pers == NULL) {
216 		bio_io_error(bio);
217 		return 0;
218 	}
219 	rcu_read_lock();
220 	if (mddev->suspended) {
221 		DEFINE_WAIT(__wait);
222 		for (;;) {
223 			prepare_to_wait(&mddev->sb_wait, &__wait,
224 					TASK_UNINTERRUPTIBLE);
225 			if (!mddev->suspended)
226 				break;
227 			rcu_read_unlock();
228 			schedule();
229 			rcu_read_lock();
230 		}
231 		finish_wait(&mddev->sb_wait, &__wait);
232 	}
233 	atomic_inc(&mddev->active_io);
234 	rcu_read_unlock();
235 	rv = mddev->pers->make_request(q, bio);
236 	if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
237 		wake_up(&mddev->sb_wait);
238 
239 	return rv;
240 }
241 
242 static void mddev_suspend(mddev_t *mddev)
243 {
244 	BUG_ON(mddev->suspended);
245 	mddev->suspended = 1;
246 	synchronize_rcu();
247 	wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
248 	mddev->pers->quiesce(mddev, 1);
249 	md_unregister_thread(mddev->thread);
250 	mddev->thread = NULL;
251 	/* we now know that no code is executing in the personality module,
252 	 * except possibly the tail end of a ->bi_end_io function, but that
253 	 * is certain to complete before the module has a chance to get
254 	 * unloaded
255 	 */
256 }
257 
258 static void mddev_resume(mddev_t *mddev)
259 {
260 	mddev->suspended = 0;
261 	wake_up(&mddev->sb_wait);
262 	mddev->pers->quiesce(mddev, 0);
263 }
264 
265 int mddev_congested(mddev_t *mddev, int bits)
266 {
267 	return mddev->suspended;
268 }
269 EXPORT_SYMBOL(mddev_congested);
270 
271 
272 static inline mddev_t *mddev_get(mddev_t *mddev)
273 {
274 	atomic_inc(&mddev->active);
275 	return mddev;
276 }
277 
278 static void mddev_delayed_delete(struct work_struct *ws);
279 
280 static void mddev_put(mddev_t *mddev)
281 {
282 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
283 		return;
284 	if (!mddev->raid_disks && list_empty(&mddev->disks) &&
285 	    !mddev->hold_active) {
286 		list_del(&mddev->all_mddevs);
287 		if (mddev->gendisk) {
288 			/* we did a probe so need to clean up.
289 			 * Call schedule_work inside the spinlock
290 			 * so that flush_scheduled_work() after
291 			 * mddev_find will succeed in waiting for the
292 			 * work to be done.
293 			 */
294 			INIT_WORK(&mddev->del_work, mddev_delayed_delete);
295 			schedule_work(&mddev->del_work);
296 		} else
297 			kfree(mddev);
298 	}
299 	spin_unlock(&all_mddevs_lock);
300 }
301 
302 static mddev_t * mddev_find(dev_t unit)
303 {
304 	mddev_t *mddev, *new = NULL;
305 
306  retry:
307 	spin_lock(&all_mddevs_lock);
308 
309 	if (unit) {
310 		list_for_each_entry(mddev, &all_mddevs, all_mddevs)
311 			if (mddev->unit == unit) {
312 				mddev_get(mddev);
313 				spin_unlock(&all_mddevs_lock);
314 				kfree(new);
315 				return mddev;
316 			}
317 
318 		if (new) {
319 			list_add(&new->all_mddevs, &all_mddevs);
320 			spin_unlock(&all_mddevs_lock);
321 			new->hold_active = UNTIL_IOCTL;
322 			return new;
323 		}
324 	} else if (new) {
325 		/* find an unused unit number */
326 		static int next_minor = 512;
327 		int start = next_minor;
328 		int is_free = 0;
329 		int dev = 0;
330 		while (!is_free) {
331 			dev = MKDEV(MD_MAJOR, next_minor);
332 			next_minor++;
333 			if (next_minor > MINORMASK)
334 				next_minor = 0;
335 			if (next_minor == start) {
336 				/* Oh dear, all in use. */
337 				spin_unlock(&all_mddevs_lock);
338 				kfree(new);
339 				return NULL;
340 			}
341 
342 			is_free = 1;
343 			list_for_each_entry(mddev, &all_mddevs, all_mddevs)
344 				if (mddev->unit == dev) {
345 					is_free = 0;
346 					break;
347 				}
348 		}
349 		new->unit = dev;
350 		new->md_minor = MINOR(dev);
351 		new->hold_active = UNTIL_STOP;
352 		list_add(&new->all_mddevs, &all_mddevs);
353 		spin_unlock(&all_mddevs_lock);
354 		return new;
355 	}
356 	spin_unlock(&all_mddevs_lock);
357 
358 	new = kzalloc(sizeof(*new), GFP_KERNEL);
359 	if (!new)
360 		return NULL;
361 
362 	new->unit = unit;
363 	if (MAJOR(unit) == MD_MAJOR)
364 		new->md_minor = MINOR(unit);
365 	else
366 		new->md_minor = MINOR(unit) >> MdpMinorShift;
367 
368 	mutex_init(&new->open_mutex);
369 	mutex_init(&new->reconfig_mutex);
370 	INIT_LIST_HEAD(&new->disks);
371 	INIT_LIST_HEAD(&new->all_mddevs);
372 	init_timer(&new->safemode_timer);
373 	atomic_set(&new->active, 1);
374 	atomic_set(&new->openers, 0);
375 	atomic_set(&new->active_io, 0);
376 	spin_lock_init(&new->write_lock);
377 	init_waitqueue_head(&new->sb_wait);
378 	init_waitqueue_head(&new->recovery_wait);
379 	new->reshape_position = MaxSector;
380 	new->resync_min = 0;
381 	new->resync_max = MaxSector;
382 	new->level = LEVEL_NONE;
383 
384 	goto retry;
385 }
386 
387 static inline int mddev_lock(mddev_t * mddev)
388 {
389 	return mutex_lock_interruptible(&mddev->reconfig_mutex);
390 }
391 
392 static inline int mddev_is_locked(mddev_t *mddev)
393 {
394 	return mutex_is_locked(&mddev->reconfig_mutex);
395 }
396 
397 static inline int mddev_trylock(mddev_t * mddev)
398 {
399 	return mutex_trylock(&mddev->reconfig_mutex);
400 }
401 
402 static inline void mddev_unlock(mddev_t * mddev)
403 {
404 	mutex_unlock(&mddev->reconfig_mutex);
405 
406 	md_wakeup_thread(mddev->thread);
407 }
408 
409 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
410 {
411 	mdk_rdev_t *rdev;
412 
413 	list_for_each_entry(rdev, &mddev->disks, same_set)
414 		if (rdev->desc_nr == nr)
415 			return rdev;
416 
417 	return NULL;
418 }
419 
420 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
421 {
422 	mdk_rdev_t *rdev;
423 
424 	list_for_each_entry(rdev, &mddev->disks, same_set)
425 		if (rdev->bdev->bd_dev == dev)
426 			return rdev;
427 
428 	return NULL;
429 }
430 
431 static struct mdk_personality *find_pers(int level, char *clevel)
432 {
433 	struct mdk_personality *pers;
434 	list_for_each_entry(pers, &pers_list, list) {
435 		if (level != LEVEL_NONE && pers->level == level)
436 			return pers;
437 		if (strcmp(pers->name, clevel)==0)
438 			return pers;
439 	}
440 	return NULL;
441 }
442 
443 /* return the offset of the super block in 512byte sectors */
444 static inline sector_t calc_dev_sboffset(struct block_device *bdev)
445 {
446 	sector_t num_sectors = bdev->bd_inode->i_size / 512;
447 	return MD_NEW_SIZE_SECTORS(num_sectors);
448 }
449 
450 static int alloc_disk_sb(mdk_rdev_t * rdev)
451 {
452 	if (rdev->sb_page)
453 		MD_BUG();
454 
455 	rdev->sb_page = alloc_page(GFP_KERNEL);
456 	if (!rdev->sb_page) {
457 		printk(KERN_ALERT "md: out of memory.\n");
458 		return -ENOMEM;
459 	}
460 
461 	return 0;
462 }
463 
464 static void free_disk_sb(mdk_rdev_t * rdev)
465 {
466 	if (rdev->sb_page) {
467 		put_page(rdev->sb_page);
468 		rdev->sb_loaded = 0;
469 		rdev->sb_page = NULL;
470 		rdev->sb_start = 0;
471 		rdev->sectors = 0;
472 	}
473 }
474 
475 
476 static void super_written(struct bio *bio, int error)
477 {
478 	mdk_rdev_t *rdev = bio->bi_private;
479 	mddev_t *mddev = rdev->mddev;
480 
481 	if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
482 		printk("md: super_written gets error=%d, uptodate=%d\n",
483 		       error, test_bit(BIO_UPTODATE, &bio->bi_flags));
484 		WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
485 		md_error(mddev, rdev);
486 	}
487 
488 	if (atomic_dec_and_test(&mddev->pending_writes))
489 		wake_up(&mddev->sb_wait);
490 	bio_put(bio);
491 }
492 
493 static void super_written_barrier(struct bio *bio, int error)
494 {
495 	struct bio *bio2 = bio->bi_private;
496 	mdk_rdev_t *rdev = bio2->bi_private;
497 	mddev_t *mddev = rdev->mddev;
498 
499 	if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
500 	    error == -EOPNOTSUPP) {
501 		unsigned long flags;
502 		/* barriers don't appear to be supported :-( */
503 		set_bit(BarriersNotsupp, &rdev->flags);
504 		mddev->barriers_work = 0;
505 		spin_lock_irqsave(&mddev->write_lock, flags);
506 		bio2->bi_next = mddev->biolist;
507 		mddev->biolist = bio2;
508 		spin_unlock_irqrestore(&mddev->write_lock, flags);
509 		wake_up(&mddev->sb_wait);
510 		bio_put(bio);
511 	} else {
512 		bio_put(bio2);
513 		bio->bi_private = rdev;
514 		super_written(bio, error);
515 	}
516 }
517 
518 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
519 		   sector_t sector, int size, struct page *page)
520 {
521 	/* write first size bytes of page to sector of rdev
522 	 * Increment mddev->pending_writes before returning
523 	 * and decrement it on completion, waking up sb_wait
524 	 * if zero is reached.
525 	 * If an error occurred, call md_error
526 	 *
527 	 * As we might need to resubmit the request if BIO_RW_BARRIER
528 	 * causes ENOTSUPP, we allocate a spare bio...
529 	 */
530 	struct bio *bio = bio_alloc(GFP_NOIO, 1);
531 	int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNCIO) | (1<<BIO_RW_UNPLUG);
532 
533 	bio->bi_bdev = rdev->bdev;
534 	bio->bi_sector = sector;
535 	bio_add_page(bio, page, size, 0);
536 	bio->bi_private = rdev;
537 	bio->bi_end_io = super_written;
538 	bio->bi_rw = rw;
539 
540 	atomic_inc(&mddev->pending_writes);
541 	if (!test_bit(BarriersNotsupp, &rdev->flags)) {
542 		struct bio *rbio;
543 		rw |= (1<<BIO_RW_BARRIER);
544 		rbio = bio_clone(bio, GFP_NOIO);
545 		rbio->bi_private = bio;
546 		rbio->bi_end_io = super_written_barrier;
547 		submit_bio(rw, rbio);
548 	} else
549 		submit_bio(rw, bio);
550 }
551 
552 void md_super_wait(mddev_t *mddev)
553 {
554 	/* wait for all superblock writes that were scheduled to complete.
555 	 * if any had to be retried (due to BARRIER problems), retry them
556 	 */
557 	DEFINE_WAIT(wq);
558 	for(;;) {
559 		prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
560 		if (atomic_read(&mddev->pending_writes)==0)
561 			break;
562 		while (mddev->biolist) {
563 			struct bio *bio;
564 			spin_lock_irq(&mddev->write_lock);
565 			bio = mddev->biolist;
566 			mddev->biolist = bio->bi_next ;
567 			bio->bi_next = NULL;
568 			spin_unlock_irq(&mddev->write_lock);
569 			submit_bio(bio->bi_rw, bio);
570 		}
571 		schedule();
572 	}
573 	finish_wait(&mddev->sb_wait, &wq);
574 }
575 
576 static void bi_complete(struct bio *bio, int error)
577 {
578 	complete((struct completion*)bio->bi_private);
579 }
580 
581 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
582 		   struct page *page, int rw)
583 {
584 	struct bio *bio = bio_alloc(GFP_NOIO, 1);
585 	struct completion event;
586 	int ret;
587 
588 	rw |= (1 << BIO_RW_SYNCIO) | (1 << BIO_RW_UNPLUG);
589 
590 	bio->bi_bdev = bdev;
591 	bio->bi_sector = sector;
592 	bio_add_page(bio, page, size, 0);
593 	init_completion(&event);
594 	bio->bi_private = &event;
595 	bio->bi_end_io = bi_complete;
596 	submit_bio(rw, bio);
597 	wait_for_completion(&event);
598 
599 	ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
600 	bio_put(bio);
601 	return ret;
602 }
603 EXPORT_SYMBOL_GPL(sync_page_io);
604 
605 static int read_disk_sb(mdk_rdev_t * rdev, int size)
606 {
607 	char b[BDEVNAME_SIZE];
608 	if (!rdev->sb_page) {
609 		MD_BUG();
610 		return -EINVAL;
611 	}
612 	if (rdev->sb_loaded)
613 		return 0;
614 
615 
616 	if (!sync_page_io(rdev->bdev, rdev->sb_start, size, rdev->sb_page, READ))
617 		goto fail;
618 	rdev->sb_loaded = 1;
619 	return 0;
620 
621 fail:
622 	printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
623 		bdevname(rdev->bdev,b));
624 	return -EINVAL;
625 }
626 
627 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
628 {
629 	return 	sb1->set_uuid0 == sb2->set_uuid0 &&
630 		sb1->set_uuid1 == sb2->set_uuid1 &&
631 		sb1->set_uuid2 == sb2->set_uuid2 &&
632 		sb1->set_uuid3 == sb2->set_uuid3;
633 }
634 
635 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
636 {
637 	int ret;
638 	mdp_super_t *tmp1, *tmp2;
639 
640 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
641 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
642 
643 	if (!tmp1 || !tmp2) {
644 		ret = 0;
645 		printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
646 		goto abort;
647 	}
648 
649 	*tmp1 = *sb1;
650 	*tmp2 = *sb2;
651 
652 	/*
653 	 * nr_disks is not constant
654 	 */
655 	tmp1->nr_disks = 0;
656 	tmp2->nr_disks = 0;
657 
658 	ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
659 abort:
660 	kfree(tmp1);
661 	kfree(tmp2);
662 	return ret;
663 }
664 
665 
666 static u32 md_csum_fold(u32 csum)
667 {
668 	csum = (csum & 0xffff) + (csum >> 16);
669 	return (csum & 0xffff) + (csum >> 16);
670 }
671 
672 static unsigned int calc_sb_csum(mdp_super_t * sb)
673 {
674 	u64 newcsum = 0;
675 	u32 *sb32 = (u32*)sb;
676 	int i;
677 	unsigned int disk_csum, csum;
678 
679 	disk_csum = sb->sb_csum;
680 	sb->sb_csum = 0;
681 
682 	for (i = 0; i < MD_SB_BYTES/4 ; i++)
683 		newcsum += sb32[i];
684 	csum = (newcsum & 0xffffffff) + (newcsum>>32);
685 
686 
687 #ifdef CONFIG_ALPHA
688 	/* This used to use csum_partial, which was wrong for several
689 	 * reasons including that different results are returned on
690 	 * different architectures.  It isn't critical that we get exactly
691 	 * the same return value as before (we always csum_fold before
692 	 * testing, and that removes any differences).  However as we
693 	 * know that csum_partial always returned a 16bit value on
694 	 * alphas, do a fold to maximise conformity to previous behaviour.
695 	 */
696 	sb->sb_csum = md_csum_fold(disk_csum);
697 #else
698 	sb->sb_csum = disk_csum;
699 #endif
700 	return csum;
701 }
702 
703 
704 /*
705  * Handle superblock details.
706  * We want to be able to handle multiple superblock formats
707  * so we have a common interface to them all, and an array of
708  * different handlers.
709  * We rely on user-space to write the initial superblock, and support
710  * reading and updating of superblocks.
711  * Interface methods are:
712  *   int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
713  *      loads and validates a superblock on dev.
714  *      if refdev != NULL, compare superblocks on both devices
715  *    Return:
716  *      0 - dev has a superblock that is compatible with refdev
717  *      1 - dev has a superblock that is compatible and newer than refdev
718  *          so dev should be used as the refdev in future
719  *     -EINVAL superblock incompatible or invalid
720  *     -othererror e.g. -EIO
721  *
722  *   int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
723  *      Verify that dev is acceptable into mddev.
724  *       The first time, mddev->raid_disks will be 0, and data from
725  *       dev should be merged in.  Subsequent calls check that dev
726  *       is new enough.  Return 0 or -EINVAL
727  *
728  *   void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
729  *     Update the superblock for rdev with data in mddev
730  *     This does not write to disc.
731  *
732  */
733 
734 struct super_type  {
735 	char		    *name;
736 	struct module	    *owner;
737 	int		    (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev,
738 					  int minor_version);
739 	int		    (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
740 	void		    (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
741 	unsigned long long  (*rdev_size_change)(mdk_rdev_t *rdev,
742 						sector_t num_sectors);
743 };
744 
745 /*
746  * Check that the given mddev has no bitmap.
747  *
748  * This function is called from the run method of all personalities that do not
749  * support bitmaps. It prints an error message and returns non-zero if mddev
750  * has a bitmap. Otherwise, it returns 0.
751  *
752  */
753 int md_check_no_bitmap(mddev_t *mddev)
754 {
755 	if (!mddev->bitmap_file && !mddev->bitmap_offset)
756 		return 0;
757 	printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
758 		mdname(mddev), mddev->pers->name);
759 	return 1;
760 }
761 EXPORT_SYMBOL(md_check_no_bitmap);
762 
763 /*
764  * load_super for 0.90.0
765  */
766 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
767 {
768 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
769 	mdp_super_t *sb;
770 	int ret;
771 
772 	/*
773 	 * Calculate the position of the superblock (512byte sectors),
774 	 * it's at the end of the disk.
775 	 *
776 	 * It also happens to be a multiple of 4Kb.
777 	 */
778 	rdev->sb_start = calc_dev_sboffset(rdev->bdev);
779 
780 	ret = read_disk_sb(rdev, MD_SB_BYTES);
781 	if (ret) return ret;
782 
783 	ret = -EINVAL;
784 
785 	bdevname(rdev->bdev, b);
786 	sb = (mdp_super_t*)page_address(rdev->sb_page);
787 
788 	if (sb->md_magic != MD_SB_MAGIC) {
789 		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
790 		       b);
791 		goto abort;
792 	}
793 
794 	if (sb->major_version != 0 ||
795 	    sb->minor_version < 90 ||
796 	    sb->minor_version > 91) {
797 		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
798 			sb->major_version, sb->minor_version,
799 			b);
800 		goto abort;
801 	}
802 
803 	if (sb->raid_disks <= 0)
804 		goto abort;
805 
806 	if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
807 		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
808 			b);
809 		goto abort;
810 	}
811 
812 	rdev->preferred_minor = sb->md_minor;
813 	rdev->data_offset = 0;
814 	rdev->sb_size = MD_SB_BYTES;
815 
816 	if (sb->level == LEVEL_MULTIPATH)
817 		rdev->desc_nr = -1;
818 	else
819 		rdev->desc_nr = sb->this_disk.number;
820 
821 	if (!refdev) {
822 		ret = 1;
823 	} else {
824 		__u64 ev1, ev2;
825 		mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
826 		if (!uuid_equal(refsb, sb)) {
827 			printk(KERN_WARNING "md: %s has different UUID to %s\n",
828 				b, bdevname(refdev->bdev,b2));
829 			goto abort;
830 		}
831 		if (!sb_equal(refsb, sb)) {
832 			printk(KERN_WARNING "md: %s has same UUID"
833 			       " but different superblock to %s\n",
834 			       b, bdevname(refdev->bdev, b2));
835 			goto abort;
836 		}
837 		ev1 = md_event(sb);
838 		ev2 = md_event(refsb);
839 		if (ev1 > ev2)
840 			ret = 1;
841 		else
842 			ret = 0;
843 	}
844 	rdev->sectors = rdev->sb_start;
845 
846 	if (rdev->sectors < sb->size * 2 && sb->level > 1)
847 		/* "this cannot possibly happen" ... */
848 		ret = -EINVAL;
849 
850  abort:
851 	return ret;
852 }
853 
854 /*
855  * validate_super for 0.90.0
856  */
857 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
858 {
859 	mdp_disk_t *desc;
860 	mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
861 	__u64 ev1 = md_event(sb);
862 
863 	rdev->raid_disk = -1;
864 	clear_bit(Faulty, &rdev->flags);
865 	clear_bit(In_sync, &rdev->flags);
866 	clear_bit(WriteMostly, &rdev->flags);
867 	clear_bit(BarriersNotsupp, &rdev->flags);
868 
869 	if (mddev->raid_disks == 0) {
870 		mddev->major_version = 0;
871 		mddev->minor_version = sb->minor_version;
872 		mddev->patch_version = sb->patch_version;
873 		mddev->external = 0;
874 		mddev->chunk_sectors = sb->chunk_size >> 9;
875 		mddev->ctime = sb->ctime;
876 		mddev->utime = sb->utime;
877 		mddev->level = sb->level;
878 		mddev->clevel[0] = 0;
879 		mddev->layout = sb->layout;
880 		mddev->raid_disks = sb->raid_disks;
881 		mddev->dev_sectors = sb->size * 2;
882 		mddev->events = ev1;
883 		mddev->bitmap_offset = 0;
884 		mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
885 
886 		if (mddev->minor_version >= 91) {
887 			mddev->reshape_position = sb->reshape_position;
888 			mddev->delta_disks = sb->delta_disks;
889 			mddev->new_level = sb->new_level;
890 			mddev->new_layout = sb->new_layout;
891 			mddev->new_chunk_sectors = sb->new_chunk >> 9;
892 		} else {
893 			mddev->reshape_position = MaxSector;
894 			mddev->delta_disks = 0;
895 			mddev->new_level = mddev->level;
896 			mddev->new_layout = mddev->layout;
897 			mddev->new_chunk_sectors = mddev->chunk_sectors;
898 		}
899 
900 		if (sb->state & (1<<MD_SB_CLEAN))
901 			mddev->recovery_cp = MaxSector;
902 		else {
903 			if (sb->events_hi == sb->cp_events_hi &&
904 				sb->events_lo == sb->cp_events_lo) {
905 				mddev->recovery_cp = sb->recovery_cp;
906 			} else
907 				mddev->recovery_cp = 0;
908 		}
909 
910 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
911 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
912 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
913 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
914 
915 		mddev->max_disks = MD_SB_DISKS;
916 
917 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
918 		    mddev->bitmap_file == NULL)
919 			mddev->bitmap_offset = mddev->default_bitmap_offset;
920 
921 	} else if (mddev->pers == NULL) {
922 		/* Insist on good event counter while assembling */
923 		++ev1;
924 		if (ev1 < mddev->events)
925 			return -EINVAL;
926 	} else if (mddev->bitmap) {
927 		/* if adding to array with a bitmap, then we can accept an
928 		 * older device ... but not too old.
929 		 */
930 		if (ev1 < mddev->bitmap->events_cleared)
931 			return 0;
932 	} else {
933 		if (ev1 < mddev->events)
934 			/* just a hot-add of a new device, leave raid_disk at -1 */
935 			return 0;
936 	}
937 
938 	if (mddev->level != LEVEL_MULTIPATH) {
939 		desc = sb->disks + rdev->desc_nr;
940 
941 		if (desc->state & (1<<MD_DISK_FAULTY))
942 			set_bit(Faulty, &rdev->flags);
943 		else if (desc->state & (1<<MD_DISK_SYNC) /* &&
944 			    desc->raid_disk < mddev->raid_disks */) {
945 			set_bit(In_sync, &rdev->flags);
946 			rdev->raid_disk = desc->raid_disk;
947 		}
948 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
949 			set_bit(WriteMostly, &rdev->flags);
950 	} else /* MULTIPATH are always insync */
951 		set_bit(In_sync, &rdev->flags);
952 	return 0;
953 }
954 
955 /*
956  * sync_super for 0.90.0
957  */
958 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
959 {
960 	mdp_super_t *sb;
961 	mdk_rdev_t *rdev2;
962 	int next_spare = mddev->raid_disks;
963 
964 
965 	/* make rdev->sb match mddev data..
966 	 *
967 	 * 1/ zero out disks
968 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
969 	 * 3/ any empty disks < next_spare become removed
970 	 *
971 	 * disks[0] gets initialised to REMOVED because
972 	 * we cannot be sure from other fields if it has
973 	 * been initialised or not.
974 	 */
975 	int i;
976 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
977 
978 	rdev->sb_size = MD_SB_BYTES;
979 
980 	sb = (mdp_super_t*)page_address(rdev->sb_page);
981 
982 	memset(sb, 0, sizeof(*sb));
983 
984 	sb->md_magic = MD_SB_MAGIC;
985 	sb->major_version = mddev->major_version;
986 	sb->patch_version = mddev->patch_version;
987 	sb->gvalid_words  = 0; /* ignored */
988 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
989 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
990 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
991 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
992 
993 	sb->ctime = mddev->ctime;
994 	sb->level = mddev->level;
995 	sb->size = mddev->dev_sectors / 2;
996 	sb->raid_disks = mddev->raid_disks;
997 	sb->md_minor = mddev->md_minor;
998 	sb->not_persistent = 0;
999 	sb->utime = mddev->utime;
1000 	sb->state = 0;
1001 	sb->events_hi = (mddev->events>>32);
1002 	sb->events_lo = (u32)mddev->events;
1003 
1004 	if (mddev->reshape_position == MaxSector)
1005 		sb->minor_version = 90;
1006 	else {
1007 		sb->minor_version = 91;
1008 		sb->reshape_position = mddev->reshape_position;
1009 		sb->new_level = mddev->new_level;
1010 		sb->delta_disks = mddev->delta_disks;
1011 		sb->new_layout = mddev->new_layout;
1012 		sb->new_chunk = mddev->new_chunk_sectors << 9;
1013 	}
1014 	mddev->minor_version = sb->minor_version;
1015 	if (mddev->in_sync)
1016 	{
1017 		sb->recovery_cp = mddev->recovery_cp;
1018 		sb->cp_events_hi = (mddev->events>>32);
1019 		sb->cp_events_lo = (u32)mddev->events;
1020 		if (mddev->recovery_cp == MaxSector)
1021 			sb->state = (1<< MD_SB_CLEAN);
1022 	} else
1023 		sb->recovery_cp = 0;
1024 
1025 	sb->layout = mddev->layout;
1026 	sb->chunk_size = mddev->chunk_sectors << 9;
1027 
1028 	if (mddev->bitmap && mddev->bitmap_file == NULL)
1029 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1030 
1031 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
1032 	list_for_each_entry(rdev2, &mddev->disks, same_set) {
1033 		mdp_disk_t *d;
1034 		int desc_nr;
1035 		if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
1036 		    && !test_bit(Faulty, &rdev2->flags))
1037 			desc_nr = rdev2->raid_disk;
1038 		else
1039 			desc_nr = next_spare++;
1040 		rdev2->desc_nr = desc_nr;
1041 		d = &sb->disks[rdev2->desc_nr];
1042 		nr_disks++;
1043 		d->number = rdev2->desc_nr;
1044 		d->major = MAJOR(rdev2->bdev->bd_dev);
1045 		d->minor = MINOR(rdev2->bdev->bd_dev);
1046 		if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
1047 		    && !test_bit(Faulty, &rdev2->flags))
1048 			d->raid_disk = rdev2->raid_disk;
1049 		else
1050 			d->raid_disk = rdev2->desc_nr; /* compatibility */
1051 		if (test_bit(Faulty, &rdev2->flags))
1052 			d->state = (1<<MD_DISK_FAULTY);
1053 		else if (test_bit(In_sync, &rdev2->flags)) {
1054 			d->state = (1<<MD_DISK_ACTIVE);
1055 			d->state |= (1<<MD_DISK_SYNC);
1056 			active++;
1057 			working++;
1058 		} else {
1059 			d->state = 0;
1060 			spare++;
1061 			working++;
1062 		}
1063 		if (test_bit(WriteMostly, &rdev2->flags))
1064 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
1065 	}
1066 	/* now set the "removed" and "faulty" bits on any missing devices */
1067 	for (i=0 ; i < mddev->raid_disks ; i++) {
1068 		mdp_disk_t *d = &sb->disks[i];
1069 		if (d->state == 0 && d->number == 0) {
1070 			d->number = i;
1071 			d->raid_disk = i;
1072 			d->state = (1<<MD_DISK_REMOVED);
1073 			d->state |= (1<<MD_DISK_FAULTY);
1074 			failed++;
1075 		}
1076 	}
1077 	sb->nr_disks = nr_disks;
1078 	sb->active_disks = active;
1079 	sb->working_disks = working;
1080 	sb->failed_disks = failed;
1081 	sb->spare_disks = spare;
1082 
1083 	sb->this_disk = sb->disks[rdev->desc_nr];
1084 	sb->sb_csum = calc_sb_csum(sb);
1085 }
1086 
1087 /*
1088  * rdev_size_change for 0.90.0
1089  */
1090 static unsigned long long
1091 super_90_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1092 {
1093 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1094 		return 0; /* component must fit device */
1095 	if (rdev->mddev->bitmap_offset)
1096 		return 0; /* can't move bitmap */
1097 	rdev->sb_start = calc_dev_sboffset(rdev->bdev);
1098 	if (!num_sectors || num_sectors > rdev->sb_start)
1099 		num_sectors = rdev->sb_start;
1100 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1101 		       rdev->sb_page);
1102 	md_super_wait(rdev->mddev);
1103 	return num_sectors / 2; /* kB for sysfs */
1104 }
1105 
1106 
1107 /*
1108  * version 1 superblock
1109  */
1110 
1111 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1112 {
1113 	__le32 disk_csum;
1114 	u32 csum;
1115 	unsigned long long newcsum;
1116 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
1117 	__le32 *isuper = (__le32*)sb;
1118 	int i;
1119 
1120 	disk_csum = sb->sb_csum;
1121 	sb->sb_csum = 0;
1122 	newcsum = 0;
1123 	for (i=0; size>=4; size -= 4 )
1124 		newcsum += le32_to_cpu(*isuper++);
1125 
1126 	if (size == 2)
1127 		newcsum += le16_to_cpu(*(__le16*) isuper);
1128 
1129 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1130 	sb->sb_csum = disk_csum;
1131 	return cpu_to_le32(csum);
1132 }
1133 
1134 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
1135 {
1136 	struct mdp_superblock_1 *sb;
1137 	int ret;
1138 	sector_t sb_start;
1139 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1140 	int bmask;
1141 
1142 	/*
1143 	 * Calculate the position of the superblock in 512byte sectors.
1144 	 * It is always aligned to a 4K boundary and
1145 	 * depeding on minor_version, it can be:
1146 	 * 0: At least 8K, but less than 12K, from end of device
1147 	 * 1: At start of device
1148 	 * 2: 4K from start of device.
1149 	 */
1150 	switch(minor_version) {
1151 	case 0:
1152 		sb_start = rdev->bdev->bd_inode->i_size >> 9;
1153 		sb_start -= 8*2;
1154 		sb_start &= ~(sector_t)(4*2-1);
1155 		break;
1156 	case 1:
1157 		sb_start = 0;
1158 		break;
1159 	case 2:
1160 		sb_start = 8;
1161 		break;
1162 	default:
1163 		return -EINVAL;
1164 	}
1165 	rdev->sb_start = sb_start;
1166 
1167 	/* superblock is rarely larger than 1K, but it can be larger,
1168 	 * and it is safe to read 4k, so we do that
1169 	 */
1170 	ret = read_disk_sb(rdev, 4096);
1171 	if (ret) return ret;
1172 
1173 
1174 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1175 
1176 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1177 	    sb->major_version != cpu_to_le32(1) ||
1178 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1179 	    le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1180 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1181 		return -EINVAL;
1182 
1183 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
1184 		printk("md: invalid superblock checksum on %s\n",
1185 			bdevname(rdev->bdev,b));
1186 		return -EINVAL;
1187 	}
1188 	if (le64_to_cpu(sb->data_size) < 10) {
1189 		printk("md: data_size too small on %s\n",
1190 		       bdevname(rdev->bdev,b));
1191 		return -EINVAL;
1192 	}
1193 
1194 	rdev->preferred_minor = 0xffff;
1195 	rdev->data_offset = le64_to_cpu(sb->data_offset);
1196 	atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1197 
1198 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1199 	bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1200 	if (rdev->sb_size & bmask)
1201 		rdev->sb_size = (rdev->sb_size | bmask) + 1;
1202 
1203 	if (minor_version
1204 	    && rdev->data_offset < sb_start + (rdev->sb_size/512))
1205 		return -EINVAL;
1206 
1207 	if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1208 		rdev->desc_nr = -1;
1209 	else
1210 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1211 
1212 	if (!refdev) {
1213 		ret = 1;
1214 	} else {
1215 		__u64 ev1, ev2;
1216 		struct mdp_superblock_1 *refsb =
1217 			(struct mdp_superblock_1*)page_address(refdev->sb_page);
1218 
1219 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1220 		    sb->level != refsb->level ||
1221 		    sb->layout != refsb->layout ||
1222 		    sb->chunksize != refsb->chunksize) {
1223 			printk(KERN_WARNING "md: %s has strangely different"
1224 				" superblock to %s\n",
1225 				bdevname(rdev->bdev,b),
1226 				bdevname(refdev->bdev,b2));
1227 			return -EINVAL;
1228 		}
1229 		ev1 = le64_to_cpu(sb->events);
1230 		ev2 = le64_to_cpu(refsb->events);
1231 
1232 		if (ev1 > ev2)
1233 			ret = 1;
1234 		else
1235 			ret = 0;
1236 	}
1237 	if (minor_version)
1238 		rdev->sectors = (rdev->bdev->bd_inode->i_size >> 9) -
1239 			le64_to_cpu(sb->data_offset);
1240 	else
1241 		rdev->sectors = rdev->sb_start;
1242 	if (rdev->sectors < le64_to_cpu(sb->data_size))
1243 		return -EINVAL;
1244 	rdev->sectors = le64_to_cpu(sb->data_size);
1245 	if (le64_to_cpu(sb->size) > rdev->sectors)
1246 		return -EINVAL;
1247 	return ret;
1248 }
1249 
1250 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1251 {
1252 	struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1253 	__u64 ev1 = le64_to_cpu(sb->events);
1254 
1255 	rdev->raid_disk = -1;
1256 	clear_bit(Faulty, &rdev->flags);
1257 	clear_bit(In_sync, &rdev->flags);
1258 	clear_bit(WriteMostly, &rdev->flags);
1259 	clear_bit(BarriersNotsupp, &rdev->flags);
1260 
1261 	if (mddev->raid_disks == 0) {
1262 		mddev->major_version = 1;
1263 		mddev->patch_version = 0;
1264 		mddev->external = 0;
1265 		mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1266 		mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1267 		mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1268 		mddev->level = le32_to_cpu(sb->level);
1269 		mddev->clevel[0] = 0;
1270 		mddev->layout = le32_to_cpu(sb->layout);
1271 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1272 		mddev->dev_sectors = le64_to_cpu(sb->size);
1273 		mddev->events = ev1;
1274 		mddev->bitmap_offset = 0;
1275 		mddev->default_bitmap_offset = 1024 >> 9;
1276 
1277 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1278 		memcpy(mddev->uuid, sb->set_uuid, 16);
1279 
1280 		mddev->max_disks =  (4096-256)/2;
1281 
1282 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1283 		    mddev->bitmap_file == NULL )
1284 			mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
1285 
1286 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1287 			mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1288 			mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1289 			mddev->new_level = le32_to_cpu(sb->new_level);
1290 			mddev->new_layout = le32_to_cpu(sb->new_layout);
1291 			mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1292 		} else {
1293 			mddev->reshape_position = MaxSector;
1294 			mddev->delta_disks = 0;
1295 			mddev->new_level = mddev->level;
1296 			mddev->new_layout = mddev->layout;
1297 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1298 		}
1299 
1300 	} else if (mddev->pers == NULL) {
1301 		/* Insist of good event counter while assembling */
1302 		++ev1;
1303 		if (ev1 < mddev->events)
1304 			return -EINVAL;
1305 	} else if (mddev->bitmap) {
1306 		/* If adding to array with a bitmap, then we can accept an
1307 		 * older device, but not too old.
1308 		 */
1309 		if (ev1 < mddev->bitmap->events_cleared)
1310 			return 0;
1311 	} else {
1312 		if (ev1 < mddev->events)
1313 			/* just a hot-add of a new device, leave raid_disk at -1 */
1314 			return 0;
1315 	}
1316 	if (mddev->level != LEVEL_MULTIPATH) {
1317 		int role;
1318 		if (rdev->desc_nr < 0 ||
1319 		    rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1320 			role = 0xffff;
1321 			rdev->desc_nr = -1;
1322 		} else
1323 			role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1324 		switch(role) {
1325 		case 0xffff: /* spare */
1326 			break;
1327 		case 0xfffe: /* faulty */
1328 			set_bit(Faulty, &rdev->flags);
1329 			break;
1330 		default:
1331 			if ((le32_to_cpu(sb->feature_map) &
1332 			     MD_FEATURE_RECOVERY_OFFSET))
1333 				rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1334 			else
1335 				set_bit(In_sync, &rdev->flags);
1336 			rdev->raid_disk = role;
1337 			break;
1338 		}
1339 		if (sb->devflags & WriteMostly1)
1340 			set_bit(WriteMostly, &rdev->flags);
1341 	} else /* MULTIPATH are always insync */
1342 		set_bit(In_sync, &rdev->flags);
1343 
1344 	return 0;
1345 }
1346 
1347 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1348 {
1349 	struct mdp_superblock_1 *sb;
1350 	mdk_rdev_t *rdev2;
1351 	int max_dev, i;
1352 	/* make rdev->sb match mddev and rdev data. */
1353 
1354 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1355 
1356 	sb->feature_map = 0;
1357 	sb->pad0 = 0;
1358 	sb->recovery_offset = cpu_to_le64(0);
1359 	memset(sb->pad1, 0, sizeof(sb->pad1));
1360 	memset(sb->pad2, 0, sizeof(sb->pad2));
1361 	memset(sb->pad3, 0, sizeof(sb->pad3));
1362 
1363 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1364 	sb->events = cpu_to_le64(mddev->events);
1365 	if (mddev->in_sync)
1366 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1367 	else
1368 		sb->resync_offset = cpu_to_le64(0);
1369 
1370 	sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1371 
1372 	sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1373 	sb->size = cpu_to_le64(mddev->dev_sectors);
1374 	sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1375 	sb->level = cpu_to_le32(mddev->level);
1376 	sb->layout = cpu_to_le32(mddev->layout);
1377 
1378 	if (mddev->bitmap && mddev->bitmap_file == NULL) {
1379 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
1380 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1381 	}
1382 
1383 	if (rdev->raid_disk >= 0 &&
1384 	    !test_bit(In_sync, &rdev->flags)) {
1385 		if (mddev->curr_resync_completed > rdev->recovery_offset)
1386 			rdev->recovery_offset = mddev->curr_resync_completed;
1387 		if (rdev->recovery_offset > 0) {
1388 			sb->feature_map |=
1389 				cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1390 			sb->recovery_offset =
1391 				cpu_to_le64(rdev->recovery_offset);
1392 		}
1393 	}
1394 
1395 	if (mddev->reshape_position != MaxSector) {
1396 		sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1397 		sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1398 		sb->new_layout = cpu_to_le32(mddev->new_layout);
1399 		sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1400 		sb->new_level = cpu_to_le32(mddev->new_level);
1401 		sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1402 	}
1403 
1404 	max_dev = 0;
1405 	list_for_each_entry(rdev2, &mddev->disks, same_set)
1406 		if (rdev2->desc_nr+1 > max_dev)
1407 			max_dev = rdev2->desc_nr+1;
1408 
1409 	if (max_dev > le32_to_cpu(sb->max_dev)) {
1410 		int bmask;
1411 		sb->max_dev = cpu_to_le32(max_dev);
1412 		rdev->sb_size = max_dev * 2 + 256;
1413 		bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1414 		if (rdev->sb_size & bmask)
1415 			rdev->sb_size = (rdev->sb_size | bmask) + 1;
1416 	}
1417 	for (i=0; i<max_dev;i++)
1418 		sb->dev_roles[i] = cpu_to_le16(0xfffe);
1419 
1420 	list_for_each_entry(rdev2, &mddev->disks, same_set) {
1421 		i = rdev2->desc_nr;
1422 		if (test_bit(Faulty, &rdev2->flags))
1423 			sb->dev_roles[i] = cpu_to_le16(0xfffe);
1424 		else if (test_bit(In_sync, &rdev2->flags))
1425 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1426 		else if (rdev2->raid_disk >= 0 && rdev2->recovery_offset > 0)
1427 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1428 		else
1429 			sb->dev_roles[i] = cpu_to_le16(0xffff);
1430 	}
1431 
1432 	sb->sb_csum = calc_sb_1_csum(sb);
1433 }
1434 
1435 static unsigned long long
1436 super_1_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1437 {
1438 	struct mdp_superblock_1 *sb;
1439 	sector_t max_sectors;
1440 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1441 		return 0; /* component must fit device */
1442 	if (rdev->sb_start < rdev->data_offset) {
1443 		/* minor versions 1 and 2; superblock before data */
1444 		max_sectors = rdev->bdev->bd_inode->i_size >> 9;
1445 		max_sectors -= rdev->data_offset;
1446 		if (!num_sectors || num_sectors > max_sectors)
1447 			num_sectors = max_sectors;
1448 	} else if (rdev->mddev->bitmap_offset) {
1449 		/* minor version 0 with bitmap we can't move */
1450 		return 0;
1451 	} else {
1452 		/* minor version 0; superblock after data */
1453 		sector_t sb_start;
1454 		sb_start = (rdev->bdev->bd_inode->i_size >> 9) - 8*2;
1455 		sb_start &= ~(sector_t)(4*2 - 1);
1456 		max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1457 		if (!num_sectors || num_sectors > max_sectors)
1458 			num_sectors = max_sectors;
1459 		rdev->sb_start = sb_start;
1460 	}
1461 	sb = (struct mdp_superblock_1 *) page_address(rdev->sb_page);
1462 	sb->data_size = cpu_to_le64(num_sectors);
1463 	sb->super_offset = rdev->sb_start;
1464 	sb->sb_csum = calc_sb_1_csum(sb);
1465 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1466 		       rdev->sb_page);
1467 	md_super_wait(rdev->mddev);
1468 	return num_sectors / 2; /* kB for sysfs */
1469 }
1470 
1471 static struct super_type super_types[] = {
1472 	[0] = {
1473 		.name	= "0.90.0",
1474 		.owner	= THIS_MODULE,
1475 		.load_super	    = super_90_load,
1476 		.validate_super	    = super_90_validate,
1477 		.sync_super	    = super_90_sync,
1478 		.rdev_size_change   = super_90_rdev_size_change,
1479 	},
1480 	[1] = {
1481 		.name	= "md-1",
1482 		.owner	= THIS_MODULE,
1483 		.load_super	    = super_1_load,
1484 		.validate_super	    = super_1_validate,
1485 		.sync_super	    = super_1_sync,
1486 		.rdev_size_change   = super_1_rdev_size_change,
1487 	},
1488 };
1489 
1490 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1491 {
1492 	mdk_rdev_t *rdev, *rdev2;
1493 
1494 	rcu_read_lock();
1495 	rdev_for_each_rcu(rdev, mddev1)
1496 		rdev_for_each_rcu(rdev2, mddev2)
1497 			if (rdev->bdev->bd_contains ==
1498 			    rdev2->bdev->bd_contains) {
1499 				rcu_read_unlock();
1500 				return 1;
1501 			}
1502 	rcu_read_unlock();
1503 	return 0;
1504 }
1505 
1506 static LIST_HEAD(pending_raid_disks);
1507 
1508 /*
1509  * Try to register data integrity profile for an mddev
1510  *
1511  * This is called when an array is started and after a disk has been kicked
1512  * from the array. It only succeeds if all working and active component devices
1513  * are integrity capable with matching profiles.
1514  */
1515 int md_integrity_register(mddev_t *mddev)
1516 {
1517 	mdk_rdev_t *rdev, *reference = NULL;
1518 
1519 	if (list_empty(&mddev->disks))
1520 		return 0; /* nothing to do */
1521 	if (blk_get_integrity(mddev->gendisk))
1522 		return 0; /* already registered */
1523 	list_for_each_entry(rdev, &mddev->disks, same_set) {
1524 		/* skip spares and non-functional disks */
1525 		if (test_bit(Faulty, &rdev->flags))
1526 			continue;
1527 		if (rdev->raid_disk < 0)
1528 			continue;
1529 		/*
1530 		 * If at least one rdev is not integrity capable, we can not
1531 		 * enable data integrity for the md device.
1532 		 */
1533 		if (!bdev_get_integrity(rdev->bdev))
1534 			return -EINVAL;
1535 		if (!reference) {
1536 			/* Use the first rdev as the reference */
1537 			reference = rdev;
1538 			continue;
1539 		}
1540 		/* does this rdev's profile match the reference profile? */
1541 		if (blk_integrity_compare(reference->bdev->bd_disk,
1542 				rdev->bdev->bd_disk) < 0)
1543 			return -EINVAL;
1544 	}
1545 	/*
1546 	 * All component devices are integrity capable and have matching
1547 	 * profiles, register the common profile for the md device.
1548 	 */
1549 	if (blk_integrity_register(mddev->gendisk,
1550 			bdev_get_integrity(reference->bdev)) != 0) {
1551 		printk(KERN_ERR "md: failed to register integrity for %s\n",
1552 			mdname(mddev));
1553 		return -EINVAL;
1554 	}
1555 	printk(KERN_NOTICE "md: data integrity on %s enabled\n",
1556 		mdname(mddev));
1557 	return 0;
1558 }
1559 EXPORT_SYMBOL(md_integrity_register);
1560 
1561 /* Disable data integrity if non-capable/non-matching disk is being added */
1562 void md_integrity_add_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
1563 {
1564 	struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
1565 	struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
1566 
1567 	if (!bi_mddev) /* nothing to do */
1568 		return;
1569 	if (rdev->raid_disk < 0) /* skip spares */
1570 		return;
1571 	if (bi_rdev && blk_integrity_compare(mddev->gendisk,
1572 					     rdev->bdev->bd_disk) >= 0)
1573 		return;
1574 	printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
1575 	blk_integrity_unregister(mddev->gendisk);
1576 }
1577 EXPORT_SYMBOL(md_integrity_add_rdev);
1578 
1579 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1580 {
1581 	char b[BDEVNAME_SIZE];
1582 	struct kobject *ko;
1583 	char *s;
1584 	int err;
1585 
1586 	if (rdev->mddev) {
1587 		MD_BUG();
1588 		return -EINVAL;
1589 	}
1590 
1591 	/* prevent duplicates */
1592 	if (find_rdev(mddev, rdev->bdev->bd_dev))
1593 		return -EEXIST;
1594 
1595 	/* make sure rdev->sectors exceeds mddev->dev_sectors */
1596 	if (rdev->sectors && (mddev->dev_sectors == 0 ||
1597 			rdev->sectors < mddev->dev_sectors)) {
1598 		if (mddev->pers) {
1599 			/* Cannot change size, so fail
1600 			 * If mddev->level <= 0, then we don't care
1601 			 * about aligning sizes (e.g. linear)
1602 			 */
1603 			if (mddev->level > 0)
1604 				return -ENOSPC;
1605 		} else
1606 			mddev->dev_sectors = rdev->sectors;
1607 	}
1608 
1609 	/* Verify rdev->desc_nr is unique.
1610 	 * If it is -1, assign a free number, else
1611 	 * check number is not in use
1612 	 */
1613 	if (rdev->desc_nr < 0) {
1614 		int choice = 0;
1615 		if (mddev->pers) choice = mddev->raid_disks;
1616 		while (find_rdev_nr(mddev, choice))
1617 			choice++;
1618 		rdev->desc_nr = choice;
1619 	} else {
1620 		if (find_rdev_nr(mddev, rdev->desc_nr))
1621 			return -EBUSY;
1622 	}
1623 	if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
1624 		printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
1625 		       mdname(mddev), mddev->max_disks);
1626 		return -EBUSY;
1627 	}
1628 	bdevname(rdev->bdev,b);
1629 	while ( (s=strchr(b, '/')) != NULL)
1630 		*s = '!';
1631 
1632 	rdev->mddev = mddev;
1633 	printk(KERN_INFO "md: bind<%s>\n", b);
1634 
1635 	if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
1636 		goto fail;
1637 
1638 	ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
1639 	if ((err = sysfs_create_link(&rdev->kobj, ko, "block"))) {
1640 		kobject_del(&rdev->kobj);
1641 		goto fail;
1642 	}
1643 	rdev->sysfs_state = sysfs_get_dirent(rdev->kobj.sd, "state");
1644 
1645 	list_add_rcu(&rdev->same_set, &mddev->disks);
1646 	bd_claim_by_disk(rdev->bdev, rdev->bdev->bd_holder, mddev->gendisk);
1647 
1648 	/* May as well allow recovery to be retried once */
1649 	mddev->recovery_disabled = 0;
1650 
1651 	return 0;
1652 
1653  fail:
1654 	printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
1655 	       b, mdname(mddev));
1656 	return err;
1657 }
1658 
1659 static void md_delayed_delete(struct work_struct *ws)
1660 {
1661 	mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work);
1662 	kobject_del(&rdev->kobj);
1663 	kobject_put(&rdev->kobj);
1664 }
1665 
1666 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1667 {
1668 	char b[BDEVNAME_SIZE];
1669 	if (!rdev->mddev) {
1670 		MD_BUG();
1671 		return;
1672 	}
1673 	bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk);
1674 	list_del_rcu(&rdev->same_set);
1675 	printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1676 	rdev->mddev = NULL;
1677 	sysfs_remove_link(&rdev->kobj, "block");
1678 	sysfs_put(rdev->sysfs_state);
1679 	rdev->sysfs_state = NULL;
1680 	/* We need to delay this, otherwise we can deadlock when
1681 	 * writing to 'remove' to "dev/state".  We also need
1682 	 * to delay it due to rcu usage.
1683 	 */
1684 	synchronize_rcu();
1685 	INIT_WORK(&rdev->del_work, md_delayed_delete);
1686 	kobject_get(&rdev->kobj);
1687 	schedule_work(&rdev->del_work);
1688 }
1689 
1690 /*
1691  * prevent the device from being mounted, repartitioned or
1692  * otherwise reused by a RAID array (or any other kernel
1693  * subsystem), by bd_claiming the device.
1694  */
1695 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev, int shared)
1696 {
1697 	int err = 0;
1698 	struct block_device *bdev;
1699 	char b[BDEVNAME_SIZE];
1700 
1701 	bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1702 	if (IS_ERR(bdev)) {
1703 		printk(KERN_ERR "md: could not open %s.\n",
1704 			__bdevname(dev, b));
1705 		return PTR_ERR(bdev);
1706 	}
1707 	err = bd_claim(bdev, shared ? (mdk_rdev_t *)lock_rdev : rdev);
1708 	if (err) {
1709 		printk(KERN_ERR "md: could not bd_claim %s.\n",
1710 			bdevname(bdev, b));
1711 		blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
1712 		return err;
1713 	}
1714 	if (!shared)
1715 		set_bit(AllReserved, &rdev->flags);
1716 	rdev->bdev = bdev;
1717 	return err;
1718 }
1719 
1720 static void unlock_rdev(mdk_rdev_t *rdev)
1721 {
1722 	struct block_device *bdev = rdev->bdev;
1723 	rdev->bdev = NULL;
1724 	if (!bdev)
1725 		MD_BUG();
1726 	bd_release(bdev);
1727 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
1728 }
1729 
1730 void md_autodetect_dev(dev_t dev);
1731 
1732 static void export_rdev(mdk_rdev_t * rdev)
1733 {
1734 	char b[BDEVNAME_SIZE];
1735 	printk(KERN_INFO "md: export_rdev(%s)\n",
1736 		bdevname(rdev->bdev,b));
1737 	if (rdev->mddev)
1738 		MD_BUG();
1739 	free_disk_sb(rdev);
1740 #ifndef MODULE
1741 	if (test_bit(AutoDetected, &rdev->flags))
1742 		md_autodetect_dev(rdev->bdev->bd_dev);
1743 #endif
1744 	unlock_rdev(rdev);
1745 	kobject_put(&rdev->kobj);
1746 }
1747 
1748 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1749 {
1750 	unbind_rdev_from_array(rdev);
1751 	export_rdev(rdev);
1752 }
1753 
1754 static void export_array(mddev_t *mddev)
1755 {
1756 	mdk_rdev_t *rdev, *tmp;
1757 
1758 	rdev_for_each(rdev, tmp, mddev) {
1759 		if (!rdev->mddev) {
1760 			MD_BUG();
1761 			continue;
1762 		}
1763 		kick_rdev_from_array(rdev);
1764 	}
1765 	if (!list_empty(&mddev->disks))
1766 		MD_BUG();
1767 	mddev->raid_disks = 0;
1768 	mddev->major_version = 0;
1769 }
1770 
1771 static void print_desc(mdp_disk_t *desc)
1772 {
1773 	printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1774 		desc->major,desc->minor,desc->raid_disk,desc->state);
1775 }
1776 
1777 static void print_sb_90(mdp_super_t *sb)
1778 {
1779 	int i;
1780 
1781 	printk(KERN_INFO
1782 		"md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1783 		sb->major_version, sb->minor_version, sb->patch_version,
1784 		sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1785 		sb->ctime);
1786 	printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1787 		sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1788 		sb->md_minor, sb->layout, sb->chunk_size);
1789 	printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
1790 		" FD:%d SD:%d CSUM:%08x E:%08lx\n",
1791 		sb->utime, sb->state, sb->active_disks, sb->working_disks,
1792 		sb->failed_disks, sb->spare_disks,
1793 		sb->sb_csum, (unsigned long)sb->events_lo);
1794 
1795 	printk(KERN_INFO);
1796 	for (i = 0; i < MD_SB_DISKS; i++) {
1797 		mdp_disk_t *desc;
1798 
1799 		desc = sb->disks + i;
1800 		if (desc->number || desc->major || desc->minor ||
1801 		    desc->raid_disk || (desc->state && (desc->state != 4))) {
1802 			printk("     D %2d: ", i);
1803 			print_desc(desc);
1804 		}
1805 	}
1806 	printk(KERN_INFO "md:     THIS: ");
1807 	print_desc(&sb->this_disk);
1808 }
1809 
1810 static void print_sb_1(struct mdp_superblock_1 *sb)
1811 {
1812 	__u8 *uuid;
1813 
1814 	uuid = sb->set_uuid;
1815 	printk(KERN_INFO
1816 	       "md:  SB: (V:%u) (F:0x%08x) Array-ID:<%02x%02x%02x%02x"
1817 	       ":%02x%02x:%02x%02x:%02x%02x:%02x%02x%02x%02x%02x%02x>\n"
1818 	       "md:    Name: \"%s\" CT:%llu\n",
1819 		le32_to_cpu(sb->major_version),
1820 		le32_to_cpu(sb->feature_map),
1821 		uuid[0], uuid[1], uuid[2], uuid[3],
1822 		uuid[4], uuid[5], uuid[6], uuid[7],
1823 		uuid[8], uuid[9], uuid[10], uuid[11],
1824 		uuid[12], uuid[13], uuid[14], uuid[15],
1825 		sb->set_name,
1826 		(unsigned long long)le64_to_cpu(sb->ctime)
1827 		       & MD_SUPERBLOCK_1_TIME_SEC_MASK);
1828 
1829 	uuid = sb->device_uuid;
1830 	printk(KERN_INFO
1831 	       "md:       L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
1832 			" RO:%llu\n"
1833 	       "md:     Dev:%08x UUID: %02x%02x%02x%02x:%02x%02x:%02x%02x:%02x%02x"
1834 	                ":%02x%02x%02x%02x%02x%02x\n"
1835 	       "md:       (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
1836 	       "md:         (MaxDev:%u) \n",
1837 		le32_to_cpu(sb->level),
1838 		(unsigned long long)le64_to_cpu(sb->size),
1839 		le32_to_cpu(sb->raid_disks),
1840 		le32_to_cpu(sb->layout),
1841 		le32_to_cpu(sb->chunksize),
1842 		(unsigned long long)le64_to_cpu(sb->data_offset),
1843 		(unsigned long long)le64_to_cpu(sb->data_size),
1844 		(unsigned long long)le64_to_cpu(sb->super_offset),
1845 		(unsigned long long)le64_to_cpu(sb->recovery_offset),
1846 		le32_to_cpu(sb->dev_number),
1847 		uuid[0], uuid[1], uuid[2], uuid[3],
1848 		uuid[4], uuid[5], uuid[6], uuid[7],
1849 		uuid[8], uuid[9], uuid[10], uuid[11],
1850 		uuid[12], uuid[13], uuid[14], uuid[15],
1851 		sb->devflags,
1852 		(unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
1853 		(unsigned long long)le64_to_cpu(sb->events),
1854 		(unsigned long long)le64_to_cpu(sb->resync_offset),
1855 		le32_to_cpu(sb->sb_csum),
1856 		le32_to_cpu(sb->max_dev)
1857 		);
1858 }
1859 
1860 static void print_rdev(mdk_rdev_t *rdev, int major_version)
1861 {
1862 	char b[BDEVNAME_SIZE];
1863 	printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
1864 		bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
1865 	        test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
1866 	        rdev->desc_nr);
1867 	if (rdev->sb_loaded) {
1868 		printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
1869 		switch (major_version) {
1870 		case 0:
1871 			print_sb_90((mdp_super_t*)page_address(rdev->sb_page));
1872 			break;
1873 		case 1:
1874 			print_sb_1((struct mdp_superblock_1 *)page_address(rdev->sb_page));
1875 			break;
1876 		}
1877 	} else
1878 		printk(KERN_INFO "md: no rdev superblock!\n");
1879 }
1880 
1881 static void md_print_devices(void)
1882 {
1883 	struct list_head *tmp;
1884 	mdk_rdev_t *rdev;
1885 	mddev_t *mddev;
1886 	char b[BDEVNAME_SIZE];
1887 
1888 	printk("\n");
1889 	printk("md:	**********************************\n");
1890 	printk("md:	* <COMPLETE RAID STATE PRINTOUT> *\n");
1891 	printk("md:	**********************************\n");
1892 	for_each_mddev(mddev, tmp) {
1893 
1894 		if (mddev->bitmap)
1895 			bitmap_print_sb(mddev->bitmap);
1896 		else
1897 			printk("%s: ", mdname(mddev));
1898 		list_for_each_entry(rdev, &mddev->disks, same_set)
1899 			printk("<%s>", bdevname(rdev->bdev,b));
1900 		printk("\n");
1901 
1902 		list_for_each_entry(rdev, &mddev->disks, same_set)
1903 			print_rdev(rdev, mddev->major_version);
1904 	}
1905 	printk("md:	**********************************\n");
1906 	printk("\n");
1907 }
1908 
1909 
1910 static void sync_sbs(mddev_t * mddev, int nospares)
1911 {
1912 	/* Update each superblock (in-memory image), but
1913 	 * if we are allowed to, skip spares which already
1914 	 * have the right event counter, or have one earlier
1915 	 * (which would mean they aren't being marked as dirty
1916 	 * with the rest of the array)
1917 	 */
1918 	mdk_rdev_t *rdev;
1919 
1920 	list_for_each_entry(rdev, &mddev->disks, same_set) {
1921 		if (rdev->sb_events == mddev->events ||
1922 		    (nospares &&
1923 		     rdev->raid_disk < 0 &&
1924 		     (rdev->sb_events&1)==0 &&
1925 		     rdev->sb_events+1 == mddev->events)) {
1926 			/* Don't update this superblock */
1927 			rdev->sb_loaded = 2;
1928 		} else {
1929 			super_types[mddev->major_version].
1930 				sync_super(mddev, rdev);
1931 			rdev->sb_loaded = 1;
1932 		}
1933 	}
1934 }
1935 
1936 static void md_update_sb(mddev_t * mddev, int force_change)
1937 {
1938 	mdk_rdev_t *rdev;
1939 	int sync_req;
1940 	int nospares = 0;
1941 
1942 	mddev->utime = get_seconds();
1943 	if (mddev->external)
1944 		return;
1945 repeat:
1946 	spin_lock_irq(&mddev->write_lock);
1947 
1948 	set_bit(MD_CHANGE_PENDING, &mddev->flags);
1949 	if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
1950 		force_change = 1;
1951 	if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
1952 		/* just a clean<-> dirty transition, possibly leave spares alone,
1953 		 * though if events isn't the right even/odd, we will have to do
1954 		 * spares after all
1955 		 */
1956 		nospares = 1;
1957 	if (force_change)
1958 		nospares = 0;
1959 	if (mddev->degraded)
1960 		/* If the array is degraded, then skipping spares is both
1961 		 * dangerous and fairly pointless.
1962 		 * Dangerous because a device that was removed from the array
1963 		 * might have a event_count that still looks up-to-date,
1964 		 * so it can be re-added without a resync.
1965 		 * Pointless because if there are any spares to skip,
1966 		 * then a recovery will happen and soon that array won't
1967 		 * be degraded any more and the spare can go back to sleep then.
1968 		 */
1969 		nospares = 0;
1970 
1971 	sync_req = mddev->in_sync;
1972 
1973 	/* If this is just a dirty<->clean transition, and the array is clean
1974 	 * and 'events' is odd, we can roll back to the previous clean state */
1975 	if (nospares
1976 	    && (mddev->in_sync && mddev->recovery_cp == MaxSector)
1977 	    && (mddev->events & 1)
1978 	    && mddev->events != 1)
1979 		mddev->events--;
1980 	else {
1981 		/* otherwise we have to go forward and ... */
1982 		mddev->events ++;
1983 		if (!mddev->in_sync || mddev->recovery_cp != MaxSector) { /* not clean */
1984 			/* .. if the array isn't clean, an 'even' event must also go
1985 			 * to spares. */
1986 			if ((mddev->events&1)==0)
1987 				nospares = 0;
1988 		} else {
1989 			/* otherwise an 'odd' event must go to spares */
1990 			if ((mddev->events&1))
1991 				nospares = 0;
1992 		}
1993 	}
1994 
1995 	if (!mddev->events) {
1996 		/*
1997 		 * oops, this 64-bit counter should never wrap.
1998 		 * Either we are in around ~1 trillion A.C., assuming
1999 		 * 1 reboot per second, or we have a bug:
2000 		 */
2001 		MD_BUG();
2002 		mddev->events --;
2003 	}
2004 
2005 	/*
2006 	 * do not write anything to disk if using
2007 	 * nonpersistent superblocks
2008 	 */
2009 	if (!mddev->persistent) {
2010 		if (!mddev->external)
2011 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2012 
2013 		spin_unlock_irq(&mddev->write_lock);
2014 		wake_up(&mddev->sb_wait);
2015 		return;
2016 	}
2017 	sync_sbs(mddev, nospares);
2018 	spin_unlock_irq(&mddev->write_lock);
2019 
2020 	dprintk(KERN_INFO
2021 		"md: updating %s RAID superblock on device (in sync %d)\n",
2022 		mdname(mddev),mddev->in_sync);
2023 
2024 	bitmap_update_sb(mddev->bitmap);
2025 	list_for_each_entry(rdev, &mddev->disks, same_set) {
2026 		char b[BDEVNAME_SIZE];
2027 		dprintk(KERN_INFO "md: ");
2028 		if (rdev->sb_loaded != 1)
2029 			continue; /* no noise on spare devices */
2030 		if (test_bit(Faulty, &rdev->flags))
2031 			dprintk("(skipping faulty ");
2032 
2033 		dprintk("%s ", bdevname(rdev->bdev,b));
2034 		if (!test_bit(Faulty, &rdev->flags)) {
2035 			md_super_write(mddev,rdev,
2036 				       rdev->sb_start, rdev->sb_size,
2037 				       rdev->sb_page);
2038 			dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
2039 				bdevname(rdev->bdev,b),
2040 				(unsigned long long)rdev->sb_start);
2041 			rdev->sb_events = mddev->events;
2042 
2043 		} else
2044 			dprintk(")\n");
2045 		if (mddev->level == LEVEL_MULTIPATH)
2046 			/* only need to write one superblock... */
2047 			break;
2048 	}
2049 	md_super_wait(mddev);
2050 	/* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2051 
2052 	spin_lock_irq(&mddev->write_lock);
2053 	if (mddev->in_sync != sync_req ||
2054 	    test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2055 		/* have to write it out again */
2056 		spin_unlock_irq(&mddev->write_lock);
2057 		goto repeat;
2058 	}
2059 	clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2060 	spin_unlock_irq(&mddev->write_lock);
2061 	wake_up(&mddev->sb_wait);
2062 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2063 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2064 
2065 }
2066 
2067 /* words written to sysfs files may, or may not, be \n terminated.
2068  * We want to accept with case. For this we use cmd_match.
2069  */
2070 static int cmd_match(const char *cmd, const char *str)
2071 {
2072 	/* See if cmd, written into a sysfs file, matches
2073 	 * str.  They must either be the same, or cmd can
2074 	 * have a trailing newline
2075 	 */
2076 	while (*cmd && *str && *cmd == *str) {
2077 		cmd++;
2078 		str++;
2079 	}
2080 	if (*cmd == '\n')
2081 		cmd++;
2082 	if (*str || *cmd)
2083 		return 0;
2084 	return 1;
2085 }
2086 
2087 struct rdev_sysfs_entry {
2088 	struct attribute attr;
2089 	ssize_t (*show)(mdk_rdev_t *, char *);
2090 	ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
2091 };
2092 
2093 static ssize_t
2094 state_show(mdk_rdev_t *rdev, char *page)
2095 {
2096 	char *sep = "";
2097 	size_t len = 0;
2098 
2099 	if (test_bit(Faulty, &rdev->flags)) {
2100 		len+= sprintf(page+len, "%sfaulty",sep);
2101 		sep = ",";
2102 	}
2103 	if (test_bit(In_sync, &rdev->flags)) {
2104 		len += sprintf(page+len, "%sin_sync",sep);
2105 		sep = ",";
2106 	}
2107 	if (test_bit(WriteMostly, &rdev->flags)) {
2108 		len += sprintf(page+len, "%swrite_mostly",sep);
2109 		sep = ",";
2110 	}
2111 	if (test_bit(Blocked, &rdev->flags)) {
2112 		len += sprintf(page+len, "%sblocked", sep);
2113 		sep = ",";
2114 	}
2115 	if (!test_bit(Faulty, &rdev->flags) &&
2116 	    !test_bit(In_sync, &rdev->flags)) {
2117 		len += sprintf(page+len, "%sspare", sep);
2118 		sep = ",";
2119 	}
2120 	return len+sprintf(page+len, "\n");
2121 }
2122 
2123 static ssize_t
2124 state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2125 {
2126 	/* can write
2127 	 *  faulty  - simulates and error
2128 	 *  remove  - disconnects the device
2129 	 *  writemostly - sets write_mostly
2130 	 *  -writemostly - clears write_mostly
2131 	 *  blocked - sets the Blocked flag
2132 	 *  -blocked - clears the Blocked flag
2133 	 *  insync - sets Insync providing device isn't active
2134 	 */
2135 	int err = -EINVAL;
2136 	if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2137 		md_error(rdev->mddev, rdev);
2138 		err = 0;
2139 	} else if (cmd_match(buf, "remove")) {
2140 		if (rdev->raid_disk >= 0)
2141 			err = -EBUSY;
2142 		else {
2143 			mddev_t *mddev = rdev->mddev;
2144 			kick_rdev_from_array(rdev);
2145 			if (mddev->pers)
2146 				md_update_sb(mddev, 1);
2147 			md_new_event(mddev);
2148 			err = 0;
2149 		}
2150 	} else if (cmd_match(buf, "writemostly")) {
2151 		set_bit(WriteMostly, &rdev->flags);
2152 		err = 0;
2153 	} else if (cmd_match(buf, "-writemostly")) {
2154 		clear_bit(WriteMostly, &rdev->flags);
2155 		err = 0;
2156 	} else if (cmd_match(buf, "blocked")) {
2157 		set_bit(Blocked, &rdev->flags);
2158 		err = 0;
2159 	} else if (cmd_match(buf, "-blocked")) {
2160 		clear_bit(Blocked, &rdev->flags);
2161 		wake_up(&rdev->blocked_wait);
2162 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2163 		md_wakeup_thread(rdev->mddev->thread);
2164 
2165 		err = 0;
2166 	} else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2167 		set_bit(In_sync, &rdev->flags);
2168 		err = 0;
2169 	}
2170 	if (!err && rdev->sysfs_state)
2171 		sysfs_notify_dirent(rdev->sysfs_state);
2172 	return err ? err : len;
2173 }
2174 static struct rdev_sysfs_entry rdev_state =
2175 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2176 
2177 static ssize_t
2178 errors_show(mdk_rdev_t *rdev, char *page)
2179 {
2180 	return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2181 }
2182 
2183 static ssize_t
2184 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2185 {
2186 	char *e;
2187 	unsigned long n = simple_strtoul(buf, &e, 10);
2188 	if (*buf && (*e == 0 || *e == '\n')) {
2189 		atomic_set(&rdev->corrected_errors, n);
2190 		return len;
2191 	}
2192 	return -EINVAL;
2193 }
2194 static struct rdev_sysfs_entry rdev_errors =
2195 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2196 
2197 static ssize_t
2198 slot_show(mdk_rdev_t *rdev, char *page)
2199 {
2200 	if (rdev->raid_disk < 0)
2201 		return sprintf(page, "none\n");
2202 	else
2203 		return sprintf(page, "%d\n", rdev->raid_disk);
2204 }
2205 
2206 static ssize_t
2207 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2208 {
2209 	char *e;
2210 	int err;
2211 	char nm[20];
2212 	int slot = simple_strtoul(buf, &e, 10);
2213 	if (strncmp(buf, "none", 4)==0)
2214 		slot = -1;
2215 	else if (e==buf || (*e && *e!= '\n'))
2216 		return -EINVAL;
2217 	if (rdev->mddev->pers && slot == -1) {
2218 		/* Setting 'slot' on an active array requires also
2219 		 * updating the 'rd%d' link, and communicating
2220 		 * with the personality with ->hot_*_disk.
2221 		 * For now we only support removing
2222 		 * failed/spare devices.  This normally happens automatically,
2223 		 * but not when the metadata is externally managed.
2224 		 */
2225 		if (rdev->raid_disk == -1)
2226 			return -EEXIST;
2227 		/* personality does all needed checks */
2228 		if (rdev->mddev->pers->hot_add_disk == NULL)
2229 			return -EINVAL;
2230 		err = rdev->mddev->pers->
2231 			hot_remove_disk(rdev->mddev, rdev->raid_disk);
2232 		if (err)
2233 			return err;
2234 		sprintf(nm, "rd%d", rdev->raid_disk);
2235 		sysfs_remove_link(&rdev->mddev->kobj, nm);
2236 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2237 		md_wakeup_thread(rdev->mddev->thread);
2238 	} else if (rdev->mddev->pers) {
2239 		mdk_rdev_t *rdev2;
2240 		/* Activating a spare .. or possibly reactivating
2241 		 * if we ever get bitmaps working here.
2242 		 */
2243 
2244 		if (rdev->raid_disk != -1)
2245 			return -EBUSY;
2246 
2247 		if (rdev->mddev->pers->hot_add_disk == NULL)
2248 			return -EINVAL;
2249 
2250 		list_for_each_entry(rdev2, &rdev->mddev->disks, same_set)
2251 			if (rdev2->raid_disk == slot)
2252 				return -EEXIST;
2253 
2254 		rdev->raid_disk = slot;
2255 		if (test_bit(In_sync, &rdev->flags))
2256 			rdev->saved_raid_disk = slot;
2257 		else
2258 			rdev->saved_raid_disk = -1;
2259 		err = rdev->mddev->pers->
2260 			hot_add_disk(rdev->mddev, rdev);
2261 		if (err) {
2262 			rdev->raid_disk = -1;
2263 			return err;
2264 		} else
2265 			sysfs_notify_dirent(rdev->sysfs_state);
2266 		sprintf(nm, "rd%d", rdev->raid_disk);
2267 		if (sysfs_create_link(&rdev->mddev->kobj, &rdev->kobj, nm))
2268 			printk(KERN_WARNING
2269 			       "md: cannot register "
2270 			       "%s for %s\n",
2271 			       nm, mdname(rdev->mddev));
2272 
2273 		/* don't wakeup anyone, leave that to userspace. */
2274 	} else {
2275 		if (slot >= rdev->mddev->raid_disks)
2276 			return -ENOSPC;
2277 		rdev->raid_disk = slot;
2278 		/* assume it is working */
2279 		clear_bit(Faulty, &rdev->flags);
2280 		clear_bit(WriteMostly, &rdev->flags);
2281 		set_bit(In_sync, &rdev->flags);
2282 		sysfs_notify_dirent(rdev->sysfs_state);
2283 	}
2284 	return len;
2285 }
2286 
2287 
2288 static struct rdev_sysfs_entry rdev_slot =
2289 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2290 
2291 static ssize_t
2292 offset_show(mdk_rdev_t *rdev, char *page)
2293 {
2294 	return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2295 }
2296 
2297 static ssize_t
2298 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2299 {
2300 	char *e;
2301 	unsigned long long offset = simple_strtoull(buf, &e, 10);
2302 	if (e==buf || (*e && *e != '\n'))
2303 		return -EINVAL;
2304 	if (rdev->mddev->pers && rdev->raid_disk >= 0)
2305 		return -EBUSY;
2306 	if (rdev->sectors && rdev->mddev->external)
2307 		/* Must set offset before size, so overlap checks
2308 		 * can be sane */
2309 		return -EBUSY;
2310 	rdev->data_offset = offset;
2311 	return len;
2312 }
2313 
2314 static struct rdev_sysfs_entry rdev_offset =
2315 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2316 
2317 static ssize_t
2318 rdev_size_show(mdk_rdev_t *rdev, char *page)
2319 {
2320 	return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2321 }
2322 
2323 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2324 {
2325 	/* check if two start/length pairs overlap */
2326 	if (s1+l1 <= s2)
2327 		return 0;
2328 	if (s2+l2 <= s1)
2329 		return 0;
2330 	return 1;
2331 }
2332 
2333 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2334 {
2335 	unsigned long long blocks;
2336 	sector_t new;
2337 
2338 	if (strict_strtoull(buf, 10, &blocks) < 0)
2339 		return -EINVAL;
2340 
2341 	if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2342 		return -EINVAL; /* sector conversion overflow */
2343 
2344 	new = blocks * 2;
2345 	if (new != blocks * 2)
2346 		return -EINVAL; /* unsigned long long to sector_t overflow */
2347 
2348 	*sectors = new;
2349 	return 0;
2350 }
2351 
2352 static ssize_t
2353 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2354 {
2355 	mddev_t *my_mddev = rdev->mddev;
2356 	sector_t oldsectors = rdev->sectors;
2357 	sector_t sectors;
2358 
2359 	if (strict_blocks_to_sectors(buf, &sectors) < 0)
2360 		return -EINVAL;
2361 	if (my_mddev->pers && rdev->raid_disk >= 0) {
2362 		if (my_mddev->persistent) {
2363 			sectors = super_types[my_mddev->major_version].
2364 				rdev_size_change(rdev, sectors);
2365 			if (!sectors)
2366 				return -EBUSY;
2367 		} else if (!sectors)
2368 			sectors = (rdev->bdev->bd_inode->i_size >> 9) -
2369 				rdev->data_offset;
2370 	}
2371 	if (sectors < my_mddev->dev_sectors)
2372 		return -EINVAL; /* component must fit device */
2373 
2374 	rdev->sectors = sectors;
2375 	if (sectors > oldsectors && my_mddev->external) {
2376 		/* need to check that all other rdevs with the same ->bdev
2377 		 * do not overlap.  We need to unlock the mddev to avoid
2378 		 * a deadlock.  We have already changed rdev->sectors, and if
2379 		 * we have to change it back, we will have the lock again.
2380 		 */
2381 		mddev_t *mddev;
2382 		int overlap = 0;
2383 		struct list_head *tmp;
2384 
2385 		mddev_unlock(my_mddev);
2386 		for_each_mddev(mddev, tmp) {
2387 			mdk_rdev_t *rdev2;
2388 
2389 			mddev_lock(mddev);
2390 			list_for_each_entry(rdev2, &mddev->disks, same_set)
2391 				if (test_bit(AllReserved, &rdev2->flags) ||
2392 				    (rdev->bdev == rdev2->bdev &&
2393 				     rdev != rdev2 &&
2394 				     overlaps(rdev->data_offset, rdev->sectors,
2395 					      rdev2->data_offset,
2396 					      rdev2->sectors))) {
2397 					overlap = 1;
2398 					break;
2399 				}
2400 			mddev_unlock(mddev);
2401 			if (overlap) {
2402 				mddev_put(mddev);
2403 				break;
2404 			}
2405 		}
2406 		mddev_lock(my_mddev);
2407 		if (overlap) {
2408 			/* Someone else could have slipped in a size
2409 			 * change here, but doing so is just silly.
2410 			 * We put oldsectors back because we *know* it is
2411 			 * safe, and trust userspace not to race with
2412 			 * itself
2413 			 */
2414 			rdev->sectors = oldsectors;
2415 			return -EBUSY;
2416 		}
2417 	}
2418 	return len;
2419 }
2420 
2421 static struct rdev_sysfs_entry rdev_size =
2422 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2423 
2424 static struct attribute *rdev_default_attrs[] = {
2425 	&rdev_state.attr,
2426 	&rdev_errors.attr,
2427 	&rdev_slot.attr,
2428 	&rdev_offset.attr,
2429 	&rdev_size.attr,
2430 	NULL,
2431 };
2432 static ssize_t
2433 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2434 {
2435 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2436 	mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2437 	mddev_t *mddev = rdev->mddev;
2438 	ssize_t rv;
2439 
2440 	if (!entry->show)
2441 		return -EIO;
2442 
2443 	rv = mddev ? mddev_lock(mddev) : -EBUSY;
2444 	if (!rv) {
2445 		if (rdev->mddev == NULL)
2446 			rv = -EBUSY;
2447 		else
2448 			rv = entry->show(rdev, page);
2449 		mddev_unlock(mddev);
2450 	}
2451 	return rv;
2452 }
2453 
2454 static ssize_t
2455 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
2456 	      const char *page, size_t length)
2457 {
2458 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2459 	mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2460 	ssize_t rv;
2461 	mddev_t *mddev = rdev->mddev;
2462 
2463 	if (!entry->store)
2464 		return -EIO;
2465 	if (!capable(CAP_SYS_ADMIN))
2466 		return -EACCES;
2467 	rv = mddev ? mddev_lock(mddev): -EBUSY;
2468 	if (!rv) {
2469 		if (rdev->mddev == NULL)
2470 			rv = -EBUSY;
2471 		else
2472 			rv = entry->store(rdev, page, length);
2473 		mddev_unlock(mddev);
2474 	}
2475 	return rv;
2476 }
2477 
2478 static void rdev_free(struct kobject *ko)
2479 {
2480 	mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
2481 	kfree(rdev);
2482 }
2483 static struct sysfs_ops rdev_sysfs_ops = {
2484 	.show		= rdev_attr_show,
2485 	.store		= rdev_attr_store,
2486 };
2487 static struct kobj_type rdev_ktype = {
2488 	.release	= rdev_free,
2489 	.sysfs_ops	= &rdev_sysfs_ops,
2490 	.default_attrs	= rdev_default_attrs,
2491 };
2492 
2493 /*
2494  * Import a device. If 'super_format' >= 0, then sanity check the superblock
2495  *
2496  * mark the device faulty if:
2497  *
2498  *   - the device is nonexistent (zero size)
2499  *   - the device has no valid superblock
2500  *
2501  * a faulty rdev _never_ has rdev->sb set.
2502  */
2503 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
2504 {
2505 	char b[BDEVNAME_SIZE];
2506 	int err;
2507 	mdk_rdev_t *rdev;
2508 	sector_t size;
2509 
2510 	rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
2511 	if (!rdev) {
2512 		printk(KERN_ERR "md: could not alloc mem for new device!\n");
2513 		return ERR_PTR(-ENOMEM);
2514 	}
2515 
2516 	if ((err = alloc_disk_sb(rdev)))
2517 		goto abort_free;
2518 
2519 	err = lock_rdev(rdev, newdev, super_format == -2);
2520 	if (err)
2521 		goto abort_free;
2522 
2523 	kobject_init(&rdev->kobj, &rdev_ktype);
2524 
2525 	rdev->desc_nr = -1;
2526 	rdev->saved_raid_disk = -1;
2527 	rdev->raid_disk = -1;
2528 	rdev->flags = 0;
2529 	rdev->data_offset = 0;
2530 	rdev->sb_events = 0;
2531 	atomic_set(&rdev->nr_pending, 0);
2532 	atomic_set(&rdev->read_errors, 0);
2533 	atomic_set(&rdev->corrected_errors, 0);
2534 
2535 	size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2536 	if (!size) {
2537 		printk(KERN_WARNING
2538 			"md: %s has zero or unknown size, marking faulty!\n",
2539 			bdevname(rdev->bdev,b));
2540 		err = -EINVAL;
2541 		goto abort_free;
2542 	}
2543 
2544 	if (super_format >= 0) {
2545 		err = super_types[super_format].
2546 			load_super(rdev, NULL, super_minor);
2547 		if (err == -EINVAL) {
2548 			printk(KERN_WARNING
2549 				"md: %s does not have a valid v%d.%d "
2550 			       "superblock, not importing!\n",
2551 				bdevname(rdev->bdev,b),
2552 			       super_format, super_minor);
2553 			goto abort_free;
2554 		}
2555 		if (err < 0) {
2556 			printk(KERN_WARNING
2557 				"md: could not read %s's sb, not importing!\n",
2558 				bdevname(rdev->bdev,b));
2559 			goto abort_free;
2560 		}
2561 	}
2562 
2563 	INIT_LIST_HEAD(&rdev->same_set);
2564 	init_waitqueue_head(&rdev->blocked_wait);
2565 
2566 	return rdev;
2567 
2568 abort_free:
2569 	if (rdev->sb_page) {
2570 		if (rdev->bdev)
2571 			unlock_rdev(rdev);
2572 		free_disk_sb(rdev);
2573 	}
2574 	kfree(rdev);
2575 	return ERR_PTR(err);
2576 }
2577 
2578 /*
2579  * Check a full RAID array for plausibility
2580  */
2581 
2582 
2583 static void analyze_sbs(mddev_t * mddev)
2584 {
2585 	int i;
2586 	mdk_rdev_t *rdev, *freshest, *tmp;
2587 	char b[BDEVNAME_SIZE];
2588 
2589 	freshest = NULL;
2590 	rdev_for_each(rdev, tmp, mddev)
2591 		switch (super_types[mddev->major_version].
2592 			load_super(rdev, freshest, mddev->minor_version)) {
2593 		case 1:
2594 			freshest = rdev;
2595 			break;
2596 		case 0:
2597 			break;
2598 		default:
2599 			printk( KERN_ERR \
2600 				"md: fatal superblock inconsistency in %s"
2601 				" -- removing from array\n",
2602 				bdevname(rdev->bdev,b));
2603 			kick_rdev_from_array(rdev);
2604 		}
2605 
2606 
2607 	super_types[mddev->major_version].
2608 		validate_super(mddev, freshest);
2609 
2610 	i = 0;
2611 	rdev_for_each(rdev, tmp, mddev) {
2612 		if (rdev->desc_nr >= mddev->max_disks ||
2613 		    i > mddev->max_disks) {
2614 			printk(KERN_WARNING
2615 			       "md: %s: %s: only %d devices permitted\n",
2616 			       mdname(mddev), bdevname(rdev->bdev, b),
2617 			       mddev->max_disks);
2618 			kick_rdev_from_array(rdev);
2619 			continue;
2620 		}
2621 		if (rdev != freshest)
2622 			if (super_types[mddev->major_version].
2623 			    validate_super(mddev, rdev)) {
2624 				printk(KERN_WARNING "md: kicking non-fresh %s"
2625 					" from array!\n",
2626 					bdevname(rdev->bdev,b));
2627 				kick_rdev_from_array(rdev);
2628 				continue;
2629 			}
2630 		if (mddev->level == LEVEL_MULTIPATH) {
2631 			rdev->desc_nr = i++;
2632 			rdev->raid_disk = rdev->desc_nr;
2633 			set_bit(In_sync, &rdev->flags);
2634 		} else if (rdev->raid_disk >= mddev->raid_disks) {
2635 			rdev->raid_disk = -1;
2636 			clear_bit(In_sync, &rdev->flags);
2637 		}
2638 	}
2639 }
2640 
2641 static void md_safemode_timeout(unsigned long data);
2642 
2643 static ssize_t
2644 safe_delay_show(mddev_t *mddev, char *page)
2645 {
2646 	int msec = (mddev->safemode_delay*1000)/HZ;
2647 	return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
2648 }
2649 static ssize_t
2650 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
2651 {
2652 	int scale=1;
2653 	int dot=0;
2654 	int i;
2655 	unsigned long msec;
2656 	char buf[30];
2657 
2658 	/* remove a period, and count digits after it */
2659 	if (len >= sizeof(buf))
2660 		return -EINVAL;
2661 	strlcpy(buf, cbuf, sizeof(buf));
2662 	for (i=0; i<len; i++) {
2663 		if (dot) {
2664 			if (isdigit(buf[i])) {
2665 				buf[i-1] = buf[i];
2666 				scale *= 10;
2667 			}
2668 			buf[i] = 0;
2669 		} else if (buf[i] == '.') {
2670 			dot=1;
2671 			buf[i] = 0;
2672 		}
2673 	}
2674 	if (strict_strtoul(buf, 10, &msec) < 0)
2675 		return -EINVAL;
2676 	msec = (msec * 1000) / scale;
2677 	if (msec == 0)
2678 		mddev->safemode_delay = 0;
2679 	else {
2680 		unsigned long old_delay = mddev->safemode_delay;
2681 		mddev->safemode_delay = (msec*HZ)/1000;
2682 		if (mddev->safemode_delay == 0)
2683 			mddev->safemode_delay = 1;
2684 		if (mddev->safemode_delay < old_delay)
2685 			md_safemode_timeout((unsigned long)mddev);
2686 	}
2687 	return len;
2688 }
2689 static struct md_sysfs_entry md_safe_delay =
2690 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
2691 
2692 static ssize_t
2693 level_show(mddev_t *mddev, char *page)
2694 {
2695 	struct mdk_personality *p = mddev->pers;
2696 	if (p)
2697 		return sprintf(page, "%s\n", p->name);
2698 	else if (mddev->clevel[0])
2699 		return sprintf(page, "%s\n", mddev->clevel);
2700 	else if (mddev->level != LEVEL_NONE)
2701 		return sprintf(page, "%d\n", mddev->level);
2702 	else
2703 		return 0;
2704 }
2705 
2706 static ssize_t
2707 level_store(mddev_t *mddev, const char *buf, size_t len)
2708 {
2709 	char level[16];
2710 	ssize_t rv = len;
2711 	struct mdk_personality *pers;
2712 	void *priv;
2713 	mdk_rdev_t *rdev;
2714 
2715 	if (mddev->pers == NULL) {
2716 		if (len == 0)
2717 			return 0;
2718 		if (len >= sizeof(mddev->clevel))
2719 			return -ENOSPC;
2720 		strncpy(mddev->clevel, buf, len);
2721 		if (mddev->clevel[len-1] == '\n')
2722 			len--;
2723 		mddev->clevel[len] = 0;
2724 		mddev->level = LEVEL_NONE;
2725 		return rv;
2726 	}
2727 
2728 	/* request to change the personality.  Need to ensure:
2729 	 *  - array is not engaged in resync/recovery/reshape
2730 	 *  - old personality can be suspended
2731 	 *  - new personality will access other array.
2732 	 */
2733 
2734 	if (mddev->sync_thread || mddev->reshape_position != MaxSector)
2735 		return -EBUSY;
2736 
2737 	if (!mddev->pers->quiesce) {
2738 		printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
2739 		       mdname(mddev), mddev->pers->name);
2740 		return -EINVAL;
2741 	}
2742 
2743 	/* Now find the new personality */
2744 	if (len == 0 || len >= sizeof(level))
2745 		return -EINVAL;
2746 	strncpy(level, buf, len);
2747 	if (level[len-1] == '\n')
2748 		len--;
2749 	level[len] = 0;
2750 
2751 	request_module("md-%s", level);
2752 	spin_lock(&pers_lock);
2753 	pers = find_pers(LEVEL_NONE, level);
2754 	if (!pers || !try_module_get(pers->owner)) {
2755 		spin_unlock(&pers_lock);
2756 		printk(KERN_WARNING "md: personality %s not loaded\n", level);
2757 		return -EINVAL;
2758 	}
2759 	spin_unlock(&pers_lock);
2760 
2761 	if (pers == mddev->pers) {
2762 		/* Nothing to do! */
2763 		module_put(pers->owner);
2764 		return rv;
2765 	}
2766 	if (!pers->takeover) {
2767 		module_put(pers->owner);
2768 		printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
2769 		       mdname(mddev), level);
2770 		return -EINVAL;
2771 	}
2772 
2773 	/* ->takeover must set new_* and/or delta_disks
2774 	 * if it succeeds, and may set them when it fails.
2775 	 */
2776 	priv = pers->takeover(mddev);
2777 	if (IS_ERR(priv)) {
2778 		mddev->new_level = mddev->level;
2779 		mddev->new_layout = mddev->layout;
2780 		mddev->new_chunk_sectors = mddev->chunk_sectors;
2781 		mddev->raid_disks -= mddev->delta_disks;
2782 		mddev->delta_disks = 0;
2783 		module_put(pers->owner);
2784 		printk(KERN_WARNING "md: %s: %s would not accept array\n",
2785 		       mdname(mddev), level);
2786 		return PTR_ERR(priv);
2787 	}
2788 
2789 	/* Looks like we have a winner */
2790 	mddev_suspend(mddev);
2791 	mddev->pers->stop(mddev);
2792 	module_put(mddev->pers->owner);
2793 	/* Invalidate devices that are now superfluous */
2794 	list_for_each_entry(rdev, &mddev->disks, same_set)
2795 		if (rdev->raid_disk >= mddev->raid_disks) {
2796 			rdev->raid_disk = -1;
2797 			clear_bit(In_sync, &rdev->flags);
2798 		}
2799 	mddev->pers = pers;
2800 	mddev->private = priv;
2801 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
2802 	mddev->level = mddev->new_level;
2803 	mddev->layout = mddev->new_layout;
2804 	mddev->chunk_sectors = mddev->new_chunk_sectors;
2805 	mddev->delta_disks = 0;
2806 	pers->run(mddev);
2807 	mddev_resume(mddev);
2808 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
2809 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2810 	md_wakeup_thread(mddev->thread);
2811 	return rv;
2812 }
2813 
2814 static struct md_sysfs_entry md_level =
2815 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
2816 
2817 
2818 static ssize_t
2819 layout_show(mddev_t *mddev, char *page)
2820 {
2821 	/* just a number, not meaningful for all levels */
2822 	if (mddev->reshape_position != MaxSector &&
2823 	    mddev->layout != mddev->new_layout)
2824 		return sprintf(page, "%d (%d)\n",
2825 			       mddev->new_layout, mddev->layout);
2826 	return sprintf(page, "%d\n", mddev->layout);
2827 }
2828 
2829 static ssize_t
2830 layout_store(mddev_t *mddev, const char *buf, size_t len)
2831 {
2832 	char *e;
2833 	unsigned long n = simple_strtoul(buf, &e, 10);
2834 
2835 	if (!*buf || (*e && *e != '\n'))
2836 		return -EINVAL;
2837 
2838 	if (mddev->pers) {
2839 		int err;
2840 		if (mddev->pers->check_reshape == NULL)
2841 			return -EBUSY;
2842 		mddev->new_layout = n;
2843 		err = mddev->pers->check_reshape(mddev);
2844 		if (err) {
2845 			mddev->new_layout = mddev->layout;
2846 			return err;
2847 		}
2848 	} else {
2849 		mddev->new_layout = n;
2850 		if (mddev->reshape_position == MaxSector)
2851 			mddev->layout = n;
2852 	}
2853 	return len;
2854 }
2855 static struct md_sysfs_entry md_layout =
2856 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
2857 
2858 
2859 static ssize_t
2860 raid_disks_show(mddev_t *mddev, char *page)
2861 {
2862 	if (mddev->raid_disks == 0)
2863 		return 0;
2864 	if (mddev->reshape_position != MaxSector &&
2865 	    mddev->delta_disks != 0)
2866 		return sprintf(page, "%d (%d)\n", mddev->raid_disks,
2867 			       mddev->raid_disks - mddev->delta_disks);
2868 	return sprintf(page, "%d\n", mddev->raid_disks);
2869 }
2870 
2871 static int update_raid_disks(mddev_t *mddev, int raid_disks);
2872 
2873 static ssize_t
2874 raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
2875 {
2876 	char *e;
2877 	int rv = 0;
2878 	unsigned long n = simple_strtoul(buf, &e, 10);
2879 
2880 	if (!*buf || (*e && *e != '\n'))
2881 		return -EINVAL;
2882 
2883 	if (mddev->pers)
2884 		rv = update_raid_disks(mddev, n);
2885 	else if (mddev->reshape_position != MaxSector) {
2886 		int olddisks = mddev->raid_disks - mddev->delta_disks;
2887 		mddev->delta_disks = n - olddisks;
2888 		mddev->raid_disks = n;
2889 	} else
2890 		mddev->raid_disks = n;
2891 	return rv ? rv : len;
2892 }
2893 static struct md_sysfs_entry md_raid_disks =
2894 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
2895 
2896 static ssize_t
2897 chunk_size_show(mddev_t *mddev, char *page)
2898 {
2899 	if (mddev->reshape_position != MaxSector &&
2900 	    mddev->chunk_sectors != mddev->new_chunk_sectors)
2901 		return sprintf(page, "%d (%d)\n",
2902 			       mddev->new_chunk_sectors << 9,
2903 			       mddev->chunk_sectors << 9);
2904 	return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
2905 }
2906 
2907 static ssize_t
2908 chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
2909 {
2910 	char *e;
2911 	unsigned long n = simple_strtoul(buf, &e, 10);
2912 
2913 	if (!*buf || (*e && *e != '\n'))
2914 		return -EINVAL;
2915 
2916 	if (mddev->pers) {
2917 		int err;
2918 		if (mddev->pers->check_reshape == NULL)
2919 			return -EBUSY;
2920 		mddev->new_chunk_sectors = n >> 9;
2921 		err = mddev->pers->check_reshape(mddev);
2922 		if (err) {
2923 			mddev->new_chunk_sectors = mddev->chunk_sectors;
2924 			return err;
2925 		}
2926 	} else {
2927 		mddev->new_chunk_sectors = n >> 9;
2928 		if (mddev->reshape_position == MaxSector)
2929 			mddev->chunk_sectors = n >> 9;
2930 	}
2931 	return len;
2932 }
2933 static struct md_sysfs_entry md_chunk_size =
2934 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
2935 
2936 static ssize_t
2937 resync_start_show(mddev_t *mddev, char *page)
2938 {
2939 	if (mddev->recovery_cp == MaxSector)
2940 		return sprintf(page, "none\n");
2941 	return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
2942 }
2943 
2944 static ssize_t
2945 resync_start_store(mddev_t *mddev, const char *buf, size_t len)
2946 {
2947 	char *e;
2948 	unsigned long long n = simple_strtoull(buf, &e, 10);
2949 
2950 	if (mddev->pers)
2951 		return -EBUSY;
2952 	if (!*buf || (*e && *e != '\n'))
2953 		return -EINVAL;
2954 
2955 	mddev->recovery_cp = n;
2956 	return len;
2957 }
2958 static struct md_sysfs_entry md_resync_start =
2959 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
2960 
2961 /*
2962  * The array state can be:
2963  *
2964  * clear
2965  *     No devices, no size, no level
2966  *     Equivalent to STOP_ARRAY ioctl
2967  * inactive
2968  *     May have some settings, but array is not active
2969  *        all IO results in error
2970  *     When written, doesn't tear down array, but just stops it
2971  * suspended (not supported yet)
2972  *     All IO requests will block. The array can be reconfigured.
2973  *     Writing this, if accepted, will block until array is quiescent
2974  * readonly
2975  *     no resync can happen.  no superblocks get written.
2976  *     write requests fail
2977  * read-auto
2978  *     like readonly, but behaves like 'clean' on a write request.
2979  *
2980  * clean - no pending writes, but otherwise active.
2981  *     When written to inactive array, starts without resync
2982  *     If a write request arrives then
2983  *       if metadata is known, mark 'dirty' and switch to 'active'.
2984  *       if not known, block and switch to write-pending
2985  *     If written to an active array that has pending writes, then fails.
2986  * active
2987  *     fully active: IO and resync can be happening.
2988  *     When written to inactive array, starts with resync
2989  *
2990  * write-pending
2991  *     clean, but writes are blocked waiting for 'active' to be written.
2992  *
2993  * active-idle
2994  *     like active, but no writes have been seen for a while (100msec).
2995  *
2996  */
2997 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
2998 		   write_pending, active_idle, bad_word};
2999 static char *array_states[] = {
3000 	"clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3001 	"write-pending", "active-idle", NULL };
3002 
3003 static int match_word(const char *word, char **list)
3004 {
3005 	int n;
3006 	for (n=0; list[n]; n++)
3007 		if (cmd_match(word, list[n]))
3008 			break;
3009 	return n;
3010 }
3011 
3012 static ssize_t
3013 array_state_show(mddev_t *mddev, char *page)
3014 {
3015 	enum array_state st = inactive;
3016 
3017 	if (mddev->pers)
3018 		switch(mddev->ro) {
3019 		case 1:
3020 			st = readonly;
3021 			break;
3022 		case 2:
3023 			st = read_auto;
3024 			break;
3025 		case 0:
3026 			if (mddev->in_sync)
3027 				st = clean;
3028 			else if (test_bit(MD_CHANGE_CLEAN, &mddev->flags))
3029 				st = write_pending;
3030 			else if (mddev->safemode)
3031 				st = active_idle;
3032 			else
3033 				st = active;
3034 		}
3035 	else {
3036 		if (list_empty(&mddev->disks) &&
3037 		    mddev->raid_disks == 0 &&
3038 		    mddev->dev_sectors == 0)
3039 			st = clear;
3040 		else
3041 			st = inactive;
3042 	}
3043 	return sprintf(page, "%s\n", array_states[st]);
3044 }
3045 
3046 static int do_md_stop(mddev_t * mddev, int ro, int is_open);
3047 static int do_md_run(mddev_t * mddev);
3048 static int restart_array(mddev_t *mddev);
3049 
3050 static ssize_t
3051 array_state_store(mddev_t *mddev, const char *buf, size_t len)
3052 {
3053 	int err = -EINVAL;
3054 	enum array_state st = match_word(buf, array_states);
3055 	switch(st) {
3056 	case bad_word:
3057 		break;
3058 	case clear:
3059 		/* stopping an active array */
3060 		if (atomic_read(&mddev->openers) > 0)
3061 			return -EBUSY;
3062 		err = do_md_stop(mddev, 0, 0);
3063 		break;
3064 	case inactive:
3065 		/* stopping an active array */
3066 		if (mddev->pers) {
3067 			if (atomic_read(&mddev->openers) > 0)
3068 				return -EBUSY;
3069 			err = do_md_stop(mddev, 2, 0);
3070 		} else
3071 			err = 0; /* already inactive */
3072 		break;
3073 	case suspended:
3074 		break; /* not supported yet */
3075 	case readonly:
3076 		if (mddev->pers)
3077 			err = do_md_stop(mddev, 1, 0);
3078 		else {
3079 			mddev->ro = 1;
3080 			set_disk_ro(mddev->gendisk, 1);
3081 			err = do_md_run(mddev);
3082 		}
3083 		break;
3084 	case read_auto:
3085 		if (mddev->pers) {
3086 			if (mddev->ro == 0)
3087 				err = do_md_stop(mddev, 1, 0);
3088 			else if (mddev->ro == 1)
3089 				err = restart_array(mddev);
3090 			if (err == 0) {
3091 				mddev->ro = 2;
3092 				set_disk_ro(mddev->gendisk, 0);
3093 			}
3094 		} else {
3095 			mddev->ro = 2;
3096 			err = do_md_run(mddev);
3097 		}
3098 		break;
3099 	case clean:
3100 		if (mddev->pers) {
3101 			restart_array(mddev);
3102 			spin_lock_irq(&mddev->write_lock);
3103 			if (atomic_read(&mddev->writes_pending) == 0) {
3104 				if (mddev->in_sync == 0) {
3105 					mddev->in_sync = 1;
3106 					if (mddev->safemode == 1)
3107 						mddev->safemode = 0;
3108 					if (mddev->persistent)
3109 						set_bit(MD_CHANGE_CLEAN,
3110 							&mddev->flags);
3111 				}
3112 				err = 0;
3113 			} else
3114 				err = -EBUSY;
3115 			spin_unlock_irq(&mddev->write_lock);
3116 		} else
3117 			err = -EINVAL;
3118 		break;
3119 	case active:
3120 		if (mddev->pers) {
3121 			restart_array(mddev);
3122 			if (mddev->external)
3123 				clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
3124 			wake_up(&mddev->sb_wait);
3125 			err = 0;
3126 		} else {
3127 			mddev->ro = 0;
3128 			set_disk_ro(mddev->gendisk, 0);
3129 			err = do_md_run(mddev);
3130 		}
3131 		break;
3132 	case write_pending:
3133 	case active_idle:
3134 		/* these cannot be set */
3135 		break;
3136 	}
3137 	if (err)
3138 		return err;
3139 	else {
3140 		sysfs_notify_dirent(mddev->sysfs_state);
3141 		return len;
3142 	}
3143 }
3144 static struct md_sysfs_entry md_array_state =
3145 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3146 
3147 static ssize_t
3148 null_show(mddev_t *mddev, char *page)
3149 {
3150 	return -EINVAL;
3151 }
3152 
3153 static ssize_t
3154 new_dev_store(mddev_t *mddev, const char *buf, size_t len)
3155 {
3156 	/* buf must be %d:%d\n? giving major and minor numbers */
3157 	/* The new device is added to the array.
3158 	 * If the array has a persistent superblock, we read the
3159 	 * superblock to initialise info and check validity.
3160 	 * Otherwise, only checking done is that in bind_rdev_to_array,
3161 	 * which mainly checks size.
3162 	 */
3163 	char *e;
3164 	int major = simple_strtoul(buf, &e, 10);
3165 	int minor;
3166 	dev_t dev;
3167 	mdk_rdev_t *rdev;
3168 	int err;
3169 
3170 	if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3171 		return -EINVAL;
3172 	minor = simple_strtoul(e+1, &e, 10);
3173 	if (*e && *e != '\n')
3174 		return -EINVAL;
3175 	dev = MKDEV(major, minor);
3176 	if (major != MAJOR(dev) ||
3177 	    minor != MINOR(dev))
3178 		return -EOVERFLOW;
3179 
3180 
3181 	if (mddev->persistent) {
3182 		rdev = md_import_device(dev, mddev->major_version,
3183 					mddev->minor_version);
3184 		if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3185 			mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
3186 						       mdk_rdev_t, same_set);
3187 			err = super_types[mddev->major_version]
3188 				.load_super(rdev, rdev0, mddev->minor_version);
3189 			if (err < 0)
3190 				goto out;
3191 		}
3192 	} else if (mddev->external)
3193 		rdev = md_import_device(dev, -2, -1);
3194 	else
3195 		rdev = md_import_device(dev, -1, -1);
3196 
3197 	if (IS_ERR(rdev))
3198 		return PTR_ERR(rdev);
3199 	err = bind_rdev_to_array(rdev, mddev);
3200  out:
3201 	if (err)
3202 		export_rdev(rdev);
3203 	return err ? err : len;
3204 }
3205 
3206 static struct md_sysfs_entry md_new_device =
3207 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3208 
3209 static ssize_t
3210 bitmap_store(mddev_t *mddev, const char *buf, size_t len)
3211 {
3212 	char *end;
3213 	unsigned long chunk, end_chunk;
3214 
3215 	if (!mddev->bitmap)
3216 		goto out;
3217 	/* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3218 	while (*buf) {
3219 		chunk = end_chunk = simple_strtoul(buf, &end, 0);
3220 		if (buf == end) break;
3221 		if (*end == '-') { /* range */
3222 			buf = end + 1;
3223 			end_chunk = simple_strtoul(buf, &end, 0);
3224 			if (buf == end) break;
3225 		}
3226 		if (*end && !isspace(*end)) break;
3227 		bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3228 		buf = end;
3229 		while (isspace(*buf)) buf++;
3230 	}
3231 	bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3232 out:
3233 	return len;
3234 }
3235 
3236 static struct md_sysfs_entry md_bitmap =
3237 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3238 
3239 static ssize_t
3240 size_show(mddev_t *mddev, char *page)
3241 {
3242 	return sprintf(page, "%llu\n",
3243 		(unsigned long long)mddev->dev_sectors / 2);
3244 }
3245 
3246 static int update_size(mddev_t *mddev, sector_t num_sectors);
3247 
3248 static ssize_t
3249 size_store(mddev_t *mddev, const char *buf, size_t len)
3250 {
3251 	/* If array is inactive, we can reduce the component size, but
3252 	 * not increase it (except from 0).
3253 	 * If array is active, we can try an on-line resize
3254 	 */
3255 	sector_t sectors;
3256 	int err = strict_blocks_to_sectors(buf, &sectors);
3257 
3258 	if (err < 0)
3259 		return err;
3260 	if (mddev->pers) {
3261 		err = update_size(mddev, sectors);
3262 		md_update_sb(mddev, 1);
3263 	} else {
3264 		if (mddev->dev_sectors == 0 ||
3265 		    mddev->dev_sectors > sectors)
3266 			mddev->dev_sectors = sectors;
3267 		else
3268 			err = -ENOSPC;
3269 	}
3270 	return err ? err : len;
3271 }
3272 
3273 static struct md_sysfs_entry md_size =
3274 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
3275 
3276 
3277 /* Metdata version.
3278  * This is one of
3279  *   'none' for arrays with no metadata (good luck...)
3280  *   'external' for arrays with externally managed metadata,
3281  * or N.M for internally known formats
3282  */
3283 static ssize_t
3284 metadata_show(mddev_t *mddev, char *page)
3285 {
3286 	if (mddev->persistent)
3287 		return sprintf(page, "%d.%d\n",
3288 			       mddev->major_version, mddev->minor_version);
3289 	else if (mddev->external)
3290 		return sprintf(page, "external:%s\n", mddev->metadata_type);
3291 	else
3292 		return sprintf(page, "none\n");
3293 }
3294 
3295 static ssize_t
3296 metadata_store(mddev_t *mddev, const char *buf, size_t len)
3297 {
3298 	int major, minor;
3299 	char *e;
3300 	/* Changing the details of 'external' metadata is
3301 	 * always permitted.  Otherwise there must be
3302 	 * no devices attached to the array.
3303 	 */
3304 	if (mddev->external && strncmp(buf, "external:", 9) == 0)
3305 		;
3306 	else if (!list_empty(&mddev->disks))
3307 		return -EBUSY;
3308 
3309 	if (cmd_match(buf, "none")) {
3310 		mddev->persistent = 0;
3311 		mddev->external = 0;
3312 		mddev->major_version = 0;
3313 		mddev->minor_version = 90;
3314 		return len;
3315 	}
3316 	if (strncmp(buf, "external:", 9) == 0) {
3317 		size_t namelen = len-9;
3318 		if (namelen >= sizeof(mddev->metadata_type))
3319 			namelen = sizeof(mddev->metadata_type)-1;
3320 		strncpy(mddev->metadata_type, buf+9, namelen);
3321 		mddev->metadata_type[namelen] = 0;
3322 		if (namelen && mddev->metadata_type[namelen-1] == '\n')
3323 			mddev->metadata_type[--namelen] = 0;
3324 		mddev->persistent = 0;
3325 		mddev->external = 1;
3326 		mddev->major_version = 0;
3327 		mddev->minor_version = 90;
3328 		return len;
3329 	}
3330 	major = simple_strtoul(buf, &e, 10);
3331 	if (e==buf || *e != '.')
3332 		return -EINVAL;
3333 	buf = e+1;
3334 	minor = simple_strtoul(buf, &e, 10);
3335 	if (e==buf || (*e && *e != '\n') )
3336 		return -EINVAL;
3337 	if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
3338 		return -ENOENT;
3339 	mddev->major_version = major;
3340 	mddev->minor_version = minor;
3341 	mddev->persistent = 1;
3342 	mddev->external = 0;
3343 	return len;
3344 }
3345 
3346 static struct md_sysfs_entry md_metadata =
3347 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
3348 
3349 static ssize_t
3350 action_show(mddev_t *mddev, char *page)
3351 {
3352 	char *type = "idle";
3353 	if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3354 		type = "frozen";
3355 	else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3356 	    (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
3357 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3358 			type = "reshape";
3359 		else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3360 			if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
3361 				type = "resync";
3362 			else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
3363 				type = "check";
3364 			else
3365 				type = "repair";
3366 		} else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
3367 			type = "recover";
3368 	}
3369 	return sprintf(page, "%s\n", type);
3370 }
3371 
3372 static ssize_t
3373 action_store(mddev_t *mddev, const char *page, size_t len)
3374 {
3375 	if (!mddev->pers || !mddev->pers->sync_request)
3376 		return -EINVAL;
3377 
3378 	if (cmd_match(page, "frozen"))
3379 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3380 	else
3381 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3382 
3383 	if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
3384 		if (mddev->sync_thread) {
3385 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3386 			md_unregister_thread(mddev->sync_thread);
3387 			mddev->sync_thread = NULL;
3388 			mddev->recovery = 0;
3389 		}
3390 	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3391 		   test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
3392 		return -EBUSY;
3393 	else if (cmd_match(page, "resync"))
3394 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3395 	else if (cmd_match(page, "recover")) {
3396 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3397 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3398 	} else if (cmd_match(page, "reshape")) {
3399 		int err;
3400 		if (mddev->pers->start_reshape == NULL)
3401 			return -EINVAL;
3402 		err = mddev->pers->start_reshape(mddev);
3403 		if (err)
3404 			return err;
3405 		sysfs_notify(&mddev->kobj, NULL, "degraded");
3406 	} else {
3407 		if (cmd_match(page, "check"))
3408 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3409 		else if (!cmd_match(page, "repair"))
3410 			return -EINVAL;
3411 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3412 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3413 	}
3414 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3415 	md_wakeup_thread(mddev->thread);
3416 	sysfs_notify_dirent(mddev->sysfs_action);
3417 	return len;
3418 }
3419 
3420 static ssize_t
3421 mismatch_cnt_show(mddev_t *mddev, char *page)
3422 {
3423 	return sprintf(page, "%llu\n",
3424 		       (unsigned long long) mddev->resync_mismatches);
3425 }
3426 
3427 static struct md_sysfs_entry md_scan_mode =
3428 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
3429 
3430 
3431 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
3432 
3433 static ssize_t
3434 sync_min_show(mddev_t *mddev, char *page)
3435 {
3436 	return sprintf(page, "%d (%s)\n", speed_min(mddev),
3437 		       mddev->sync_speed_min ? "local": "system");
3438 }
3439 
3440 static ssize_t
3441 sync_min_store(mddev_t *mddev, const char *buf, size_t len)
3442 {
3443 	int min;
3444 	char *e;
3445 	if (strncmp(buf, "system", 6)==0) {
3446 		mddev->sync_speed_min = 0;
3447 		return len;
3448 	}
3449 	min = simple_strtoul(buf, &e, 10);
3450 	if (buf == e || (*e && *e != '\n') || min <= 0)
3451 		return -EINVAL;
3452 	mddev->sync_speed_min = min;
3453 	return len;
3454 }
3455 
3456 static struct md_sysfs_entry md_sync_min =
3457 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
3458 
3459 static ssize_t
3460 sync_max_show(mddev_t *mddev, char *page)
3461 {
3462 	return sprintf(page, "%d (%s)\n", speed_max(mddev),
3463 		       mddev->sync_speed_max ? "local": "system");
3464 }
3465 
3466 static ssize_t
3467 sync_max_store(mddev_t *mddev, const char *buf, size_t len)
3468 {
3469 	int max;
3470 	char *e;
3471 	if (strncmp(buf, "system", 6)==0) {
3472 		mddev->sync_speed_max = 0;
3473 		return len;
3474 	}
3475 	max = simple_strtoul(buf, &e, 10);
3476 	if (buf == e || (*e && *e != '\n') || max <= 0)
3477 		return -EINVAL;
3478 	mddev->sync_speed_max = max;
3479 	return len;
3480 }
3481 
3482 static struct md_sysfs_entry md_sync_max =
3483 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
3484 
3485 static ssize_t
3486 degraded_show(mddev_t *mddev, char *page)
3487 {
3488 	return sprintf(page, "%d\n", mddev->degraded);
3489 }
3490 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
3491 
3492 static ssize_t
3493 sync_force_parallel_show(mddev_t *mddev, char *page)
3494 {
3495 	return sprintf(page, "%d\n", mddev->parallel_resync);
3496 }
3497 
3498 static ssize_t
3499 sync_force_parallel_store(mddev_t *mddev, const char *buf, size_t len)
3500 {
3501 	long n;
3502 
3503 	if (strict_strtol(buf, 10, &n))
3504 		return -EINVAL;
3505 
3506 	if (n != 0 && n != 1)
3507 		return -EINVAL;
3508 
3509 	mddev->parallel_resync = n;
3510 
3511 	if (mddev->sync_thread)
3512 		wake_up(&resync_wait);
3513 
3514 	return len;
3515 }
3516 
3517 /* force parallel resync, even with shared block devices */
3518 static struct md_sysfs_entry md_sync_force_parallel =
3519 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
3520        sync_force_parallel_show, sync_force_parallel_store);
3521 
3522 static ssize_t
3523 sync_speed_show(mddev_t *mddev, char *page)
3524 {
3525 	unsigned long resync, dt, db;
3526 	if (mddev->curr_resync == 0)
3527 		return sprintf(page, "none\n");
3528 	resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
3529 	dt = (jiffies - mddev->resync_mark) / HZ;
3530 	if (!dt) dt++;
3531 	db = resync - mddev->resync_mark_cnt;
3532 	return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
3533 }
3534 
3535 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
3536 
3537 static ssize_t
3538 sync_completed_show(mddev_t *mddev, char *page)
3539 {
3540 	unsigned long max_sectors, resync;
3541 
3542 	if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3543 		return sprintf(page, "none\n");
3544 
3545 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3546 		max_sectors = mddev->resync_max_sectors;
3547 	else
3548 		max_sectors = mddev->dev_sectors;
3549 
3550 	resync = mddev->curr_resync_completed;
3551 	return sprintf(page, "%lu / %lu\n", resync, max_sectors);
3552 }
3553 
3554 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
3555 
3556 static ssize_t
3557 min_sync_show(mddev_t *mddev, char *page)
3558 {
3559 	return sprintf(page, "%llu\n",
3560 		       (unsigned long long)mddev->resync_min);
3561 }
3562 static ssize_t
3563 min_sync_store(mddev_t *mddev, const char *buf, size_t len)
3564 {
3565 	unsigned long long min;
3566 	if (strict_strtoull(buf, 10, &min))
3567 		return -EINVAL;
3568 	if (min > mddev->resync_max)
3569 		return -EINVAL;
3570 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3571 		return -EBUSY;
3572 
3573 	/* Must be a multiple of chunk_size */
3574 	if (mddev->chunk_sectors) {
3575 		sector_t temp = min;
3576 		if (sector_div(temp, mddev->chunk_sectors))
3577 			return -EINVAL;
3578 	}
3579 	mddev->resync_min = min;
3580 
3581 	return len;
3582 }
3583 
3584 static struct md_sysfs_entry md_min_sync =
3585 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
3586 
3587 static ssize_t
3588 max_sync_show(mddev_t *mddev, char *page)
3589 {
3590 	if (mddev->resync_max == MaxSector)
3591 		return sprintf(page, "max\n");
3592 	else
3593 		return sprintf(page, "%llu\n",
3594 			       (unsigned long long)mddev->resync_max);
3595 }
3596 static ssize_t
3597 max_sync_store(mddev_t *mddev, const char *buf, size_t len)
3598 {
3599 	if (strncmp(buf, "max", 3) == 0)
3600 		mddev->resync_max = MaxSector;
3601 	else {
3602 		unsigned long long max;
3603 		if (strict_strtoull(buf, 10, &max))
3604 			return -EINVAL;
3605 		if (max < mddev->resync_min)
3606 			return -EINVAL;
3607 		if (max < mddev->resync_max &&
3608 		    mddev->ro == 0 &&
3609 		    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3610 			return -EBUSY;
3611 
3612 		/* Must be a multiple of chunk_size */
3613 		if (mddev->chunk_sectors) {
3614 			sector_t temp = max;
3615 			if (sector_div(temp, mddev->chunk_sectors))
3616 				return -EINVAL;
3617 		}
3618 		mddev->resync_max = max;
3619 	}
3620 	wake_up(&mddev->recovery_wait);
3621 	return len;
3622 }
3623 
3624 static struct md_sysfs_entry md_max_sync =
3625 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
3626 
3627 static ssize_t
3628 suspend_lo_show(mddev_t *mddev, char *page)
3629 {
3630 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
3631 }
3632 
3633 static ssize_t
3634 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
3635 {
3636 	char *e;
3637 	unsigned long long new = simple_strtoull(buf, &e, 10);
3638 
3639 	if (mddev->pers == NULL ||
3640 	    mddev->pers->quiesce == NULL)
3641 		return -EINVAL;
3642 	if (buf == e || (*e && *e != '\n'))
3643 		return -EINVAL;
3644 	if (new >= mddev->suspend_hi ||
3645 	    (new > mddev->suspend_lo && new < mddev->suspend_hi)) {
3646 		mddev->suspend_lo = new;
3647 		mddev->pers->quiesce(mddev, 2);
3648 		return len;
3649 	} else
3650 		return -EINVAL;
3651 }
3652 static struct md_sysfs_entry md_suspend_lo =
3653 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
3654 
3655 
3656 static ssize_t
3657 suspend_hi_show(mddev_t *mddev, char *page)
3658 {
3659 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
3660 }
3661 
3662 static ssize_t
3663 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
3664 {
3665 	char *e;
3666 	unsigned long long new = simple_strtoull(buf, &e, 10);
3667 
3668 	if (mddev->pers == NULL ||
3669 	    mddev->pers->quiesce == NULL)
3670 		return -EINVAL;
3671 	if (buf == e || (*e && *e != '\n'))
3672 		return -EINVAL;
3673 	if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) ||
3674 	    (new > mddev->suspend_lo && new > mddev->suspend_hi)) {
3675 		mddev->suspend_hi = new;
3676 		mddev->pers->quiesce(mddev, 1);
3677 		mddev->pers->quiesce(mddev, 0);
3678 		return len;
3679 	} else
3680 		return -EINVAL;
3681 }
3682 static struct md_sysfs_entry md_suspend_hi =
3683 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
3684 
3685 static ssize_t
3686 reshape_position_show(mddev_t *mddev, char *page)
3687 {
3688 	if (mddev->reshape_position != MaxSector)
3689 		return sprintf(page, "%llu\n",
3690 			       (unsigned long long)mddev->reshape_position);
3691 	strcpy(page, "none\n");
3692 	return 5;
3693 }
3694 
3695 static ssize_t
3696 reshape_position_store(mddev_t *mddev, const char *buf, size_t len)
3697 {
3698 	char *e;
3699 	unsigned long long new = simple_strtoull(buf, &e, 10);
3700 	if (mddev->pers)
3701 		return -EBUSY;
3702 	if (buf == e || (*e && *e != '\n'))
3703 		return -EINVAL;
3704 	mddev->reshape_position = new;
3705 	mddev->delta_disks = 0;
3706 	mddev->new_level = mddev->level;
3707 	mddev->new_layout = mddev->layout;
3708 	mddev->new_chunk_sectors = mddev->chunk_sectors;
3709 	return len;
3710 }
3711 
3712 static struct md_sysfs_entry md_reshape_position =
3713 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
3714        reshape_position_store);
3715 
3716 static ssize_t
3717 array_size_show(mddev_t *mddev, char *page)
3718 {
3719 	if (mddev->external_size)
3720 		return sprintf(page, "%llu\n",
3721 			       (unsigned long long)mddev->array_sectors/2);
3722 	else
3723 		return sprintf(page, "default\n");
3724 }
3725 
3726 static ssize_t
3727 array_size_store(mddev_t *mddev, const char *buf, size_t len)
3728 {
3729 	sector_t sectors;
3730 
3731 	if (strncmp(buf, "default", 7) == 0) {
3732 		if (mddev->pers)
3733 			sectors = mddev->pers->size(mddev, 0, 0);
3734 		else
3735 			sectors = mddev->array_sectors;
3736 
3737 		mddev->external_size = 0;
3738 	} else {
3739 		if (strict_blocks_to_sectors(buf, &sectors) < 0)
3740 			return -EINVAL;
3741 		if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
3742 			return -E2BIG;
3743 
3744 		mddev->external_size = 1;
3745 	}
3746 
3747 	mddev->array_sectors = sectors;
3748 	set_capacity(mddev->gendisk, mddev->array_sectors);
3749 	if (mddev->pers)
3750 		revalidate_disk(mddev->gendisk);
3751 
3752 	return len;
3753 }
3754 
3755 static struct md_sysfs_entry md_array_size =
3756 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
3757        array_size_store);
3758 
3759 static struct attribute *md_default_attrs[] = {
3760 	&md_level.attr,
3761 	&md_layout.attr,
3762 	&md_raid_disks.attr,
3763 	&md_chunk_size.attr,
3764 	&md_size.attr,
3765 	&md_resync_start.attr,
3766 	&md_metadata.attr,
3767 	&md_new_device.attr,
3768 	&md_safe_delay.attr,
3769 	&md_array_state.attr,
3770 	&md_reshape_position.attr,
3771 	&md_array_size.attr,
3772 	NULL,
3773 };
3774 
3775 static struct attribute *md_redundancy_attrs[] = {
3776 	&md_scan_mode.attr,
3777 	&md_mismatches.attr,
3778 	&md_sync_min.attr,
3779 	&md_sync_max.attr,
3780 	&md_sync_speed.attr,
3781 	&md_sync_force_parallel.attr,
3782 	&md_sync_completed.attr,
3783 	&md_min_sync.attr,
3784 	&md_max_sync.attr,
3785 	&md_suspend_lo.attr,
3786 	&md_suspend_hi.attr,
3787 	&md_bitmap.attr,
3788 	&md_degraded.attr,
3789 	NULL,
3790 };
3791 static struct attribute_group md_redundancy_group = {
3792 	.name = NULL,
3793 	.attrs = md_redundancy_attrs,
3794 };
3795 
3796 
3797 static ssize_t
3798 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3799 {
3800 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
3801 	mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
3802 	ssize_t rv;
3803 
3804 	if (!entry->show)
3805 		return -EIO;
3806 	rv = mddev_lock(mddev);
3807 	if (!rv) {
3808 		rv = entry->show(mddev, page);
3809 		mddev_unlock(mddev);
3810 	}
3811 	return rv;
3812 }
3813 
3814 static ssize_t
3815 md_attr_store(struct kobject *kobj, struct attribute *attr,
3816 	      const char *page, size_t length)
3817 {
3818 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
3819 	mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
3820 	ssize_t rv;
3821 
3822 	if (!entry->store)
3823 		return -EIO;
3824 	if (!capable(CAP_SYS_ADMIN))
3825 		return -EACCES;
3826 	rv = mddev_lock(mddev);
3827 	if (mddev->hold_active == UNTIL_IOCTL)
3828 		mddev->hold_active = 0;
3829 	if (!rv) {
3830 		rv = entry->store(mddev, page, length);
3831 		mddev_unlock(mddev);
3832 	}
3833 	return rv;
3834 }
3835 
3836 static void md_free(struct kobject *ko)
3837 {
3838 	mddev_t *mddev = container_of(ko, mddev_t, kobj);
3839 
3840 	if (mddev->sysfs_state)
3841 		sysfs_put(mddev->sysfs_state);
3842 
3843 	if (mddev->gendisk) {
3844 		del_gendisk(mddev->gendisk);
3845 		put_disk(mddev->gendisk);
3846 	}
3847 	if (mddev->queue)
3848 		blk_cleanup_queue(mddev->queue);
3849 
3850 	kfree(mddev);
3851 }
3852 
3853 static struct sysfs_ops md_sysfs_ops = {
3854 	.show	= md_attr_show,
3855 	.store	= md_attr_store,
3856 };
3857 static struct kobj_type md_ktype = {
3858 	.release	= md_free,
3859 	.sysfs_ops	= &md_sysfs_ops,
3860 	.default_attrs	= md_default_attrs,
3861 };
3862 
3863 int mdp_major = 0;
3864 
3865 static void mddev_delayed_delete(struct work_struct *ws)
3866 {
3867 	mddev_t *mddev = container_of(ws, mddev_t, del_work);
3868 
3869 	if (mddev->private == &md_redundancy_group) {
3870 		sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
3871 		if (mddev->sysfs_action)
3872 			sysfs_put(mddev->sysfs_action);
3873 		mddev->sysfs_action = NULL;
3874 		mddev->private = NULL;
3875 	}
3876 	kobject_del(&mddev->kobj);
3877 	kobject_put(&mddev->kobj);
3878 }
3879 
3880 static int md_alloc(dev_t dev, char *name)
3881 {
3882 	static DEFINE_MUTEX(disks_mutex);
3883 	mddev_t *mddev = mddev_find(dev);
3884 	struct gendisk *disk;
3885 	int partitioned;
3886 	int shift;
3887 	int unit;
3888 	int error;
3889 
3890 	if (!mddev)
3891 		return -ENODEV;
3892 
3893 	partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
3894 	shift = partitioned ? MdpMinorShift : 0;
3895 	unit = MINOR(mddev->unit) >> shift;
3896 
3897 	/* wait for any previous instance if this device
3898 	 * to be completed removed (mddev_delayed_delete).
3899 	 */
3900 	flush_scheduled_work();
3901 
3902 	mutex_lock(&disks_mutex);
3903 	error = -EEXIST;
3904 	if (mddev->gendisk)
3905 		goto abort;
3906 
3907 	if (name) {
3908 		/* Need to ensure that 'name' is not a duplicate.
3909 		 */
3910 		mddev_t *mddev2;
3911 		spin_lock(&all_mddevs_lock);
3912 
3913 		list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
3914 			if (mddev2->gendisk &&
3915 			    strcmp(mddev2->gendisk->disk_name, name) == 0) {
3916 				spin_unlock(&all_mddevs_lock);
3917 				goto abort;
3918 			}
3919 		spin_unlock(&all_mddevs_lock);
3920 	}
3921 
3922 	error = -ENOMEM;
3923 	mddev->queue = blk_alloc_queue(GFP_KERNEL);
3924 	if (!mddev->queue)
3925 		goto abort;
3926 	mddev->queue->queuedata = mddev;
3927 
3928 	/* Can be unlocked because the queue is new: no concurrency */
3929 	queue_flag_set_unlocked(QUEUE_FLAG_CLUSTER, mddev->queue);
3930 
3931 	blk_queue_make_request(mddev->queue, md_make_request);
3932 
3933 	disk = alloc_disk(1 << shift);
3934 	if (!disk) {
3935 		blk_cleanup_queue(mddev->queue);
3936 		mddev->queue = NULL;
3937 		goto abort;
3938 	}
3939 	disk->major = MAJOR(mddev->unit);
3940 	disk->first_minor = unit << shift;
3941 	if (name)
3942 		strcpy(disk->disk_name, name);
3943 	else if (partitioned)
3944 		sprintf(disk->disk_name, "md_d%d", unit);
3945 	else
3946 		sprintf(disk->disk_name, "md%d", unit);
3947 	disk->fops = &md_fops;
3948 	disk->private_data = mddev;
3949 	disk->queue = mddev->queue;
3950 	/* Allow extended partitions.  This makes the
3951 	 * 'mdp' device redundant, but we can't really
3952 	 * remove it now.
3953 	 */
3954 	disk->flags |= GENHD_FL_EXT_DEVT;
3955 	add_disk(disk);
3956 	mddev->gendisk = disk;
3957 	error = kobject_init_and_add(&mddev->kobj, &md_ktype,
3958 				     &disk_to_dev(disk)->kobj, "%s", "md");
3959 	if (error) {
3960 		/* This isn't possible, but as kobject_init_and_add is marked
3961 		 * __must_check, we must do something with the result
3962 		 */
3963 		printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
3964 		       disk->disk_name);
3965 		error = 0;
3966 	}
3967  abort:
3968 	mutex_unlock(&disks_mutex);
3969 	if (!error) {
3970 		kobject_uevent(&mddev->kobj, KOBJ_ADD);
3971 		mddev->sysfs_state = sysfs_get_dirent(mddev->kobj.sd, "array_state");
3972 	}
3973 	mddev_put(mddev);
3974 	return error;
3975 }
3976 
3977 static struct kobject *md_probe(dev_t dev, int *part, void *data)
3978 {
3979 	md_alloc(dev, NULL);
3980 	return NULL;
3981 }
3982 
3983 static int add_named_array(const char *val, struct kernel_param *kp)
3984 {
3985 	/* val must be "md_*" where * is not all digits.
3986 	 * We allocate an array with a large free minor number, and
3987 	 * set the name to val.  val must not already be an active name.
3988 	 */
3989 	int len = strlen(val);
3990 	char buf[DISK_NAME_LEN];
3991 
3992 	while (len && val[len-1] == '\n')
3993 		len--;
3994 	if (len >= DISK_NAME_LEN)
3995 		return -E2BIG;
3996 	strlcpy(buf, val, len+1);
3997 	if (strncmp(buf, "md_", 3) != 0)
3998 		return -EINVAL;
3999 	return md_alloc(0, buf);
4000 }
4001 
4002 static void md_safemode_timeout(unsigned long data)
4003 {
4004 	mddev_t *mddev = (mddev_t *) data;
4005 
4006 	if (!atomic_read(&mddev->writes_pending)) {
4007 		mddev->safemode = 1;
4008 		if (mddev->external)
4009 			sysfs_notify_dirent(mddev->sysfs_state);
4010 	}
4011 	md_wakeup_thread(mddev->thread);
4012 }
4013 
4014 static int start_dirty_degraded;
4015 
4016 static int do_md_run(mddev_t * mddev)
4017 {
4018 	int err;
4019 	mdk_rdev_t *rdev;
4020 	struct gendisk *disk;
4021 	struct mdk_personality *pers;
4022 
4023 	if (list_empty(&mddev->disks))
4024 		/* cannot run an array with no devices.. */
4025 		return -EINVAL;
4026 
4027 	if (mddev->pers)
4028 		return -EBUSY;
4029 
4030 	/*
4031 	 * Analyze all RAID superblock(s)
4032 	 */
4033 	if (!mddev->raid_disks) {
4034 		if (!mddev->persistent)
4035 			return -EINVAL;
4036 		analyze_sbs(mddev);
4037 	}
4038 
4039 	if (mddev->level != LEVEL_NONE)
4040 		request_module("md-level-%d", mddev->level);
4041 	else if (mddev->clevel[0])
4042 		request_module("md-%s", mddev->clevel);
4043 
4044 	/*
4045 	 * Drop all container device buffers, from now on
4046 	 * the only valid external interface is through the md
4047 	 * device.
4048 	 */
4049 	list_for_each_entry(rdev, &mddev->disks, same_set) {
4050 		if (test_bit(Faulty, &rdev->flags))
4051 			continue;
4052 		sync_blockdev(rdev->bdev);
4053 		invalidate_bdev(rdev->bdev);
4054 
4055 		/* perform some consistency tests on the device.
4056 		 * We don't want the data to overlap the metadata,
4057 		 * Internal Bitmap issues have been handled elsewhere.
4058 		 */
4059 		if (rdev->data_offset < rdev->sb_start) {
4060 			if (mddev->dev_sectors &&
4061 			    rdev->data_offset + mddev->dev_sectors
4062 			    > rdev->sb_start) {
4063 				printk("md: %s: data overlaps metadata\n",
4064 				       mdname(mddev));
4065 				return -EINVAL;
4066 			}
4067 		} else {
4068 			if (rdev->sb_start + rdev->sb_size/512
4069 			    > rdev->data_offset) {
4070 				printk("md: %s: metadata overlaps data\n",
4071 				       mdname(mddev));
4072 				return -EINVAL;
4073 			}
4074 		}
4075 		sysfs_notify_dirent(rdev->sysfs_state);
4076 	}
4077 
4078 	md_probe(mddev->unit, NULL, NULL);
4079 	disk = mddev->gendisk;
4080 	if (!disk)
4081 		return -ENOMEM;
4082 
4083 	spin_lock(&pers_lock);
4084 	pers = find_pers(mddev->level, mddev->clevel);
4085 	if (!pers || !try_module_get(pers->owner)) {
4086 		spin_unlock(&pers_lock);
4087 		if (mddev->level != LEVEL_NONE)
4088 			printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
4089 			       mddev->level);
4090 		else
4091 			printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
4092 			       mddev->clevel);
4093 		return -EINVAL;
4094 	}
4095 	mddev->pers = pers;
4096 	spin_unlock(&pers_lock);
4097 	if (mddev->level != pers->level) {
4098 		mddev->level = pers->level;
4099 		mddev->new_level = pers->level;
4100 	}
4101 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4102 
4103 	if (mddev->reshape_position != MaxSector &&
4104 	    pers->start_reshape == NULL) {
4105 		/* This personality cannot handle reshaping... */
4106 		mddev->pers = NULL;
4107 		module_put(pers->owner);
4108 		return -EINVAL;
4109 	}
4110 
4111 	if (pers->sync_request) {
4112 		/* Warn if this is a potentially silly
4113 		 * configuration.
4114 		 */
4115 		char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4116 		mdk_rdev_t *rdev2;
4117 		int warned = 0;
4118 
4119 		list_for_each_entry(rdev, &mddev->disks, same_set)
4120 			list_for_each_entry(rdev2, &mddev->disks, same_set) {
4121 				if (rdev < rdev2 &&
4122 				    rdev->bdev->bd_contains ==
4123 				    rdev2->bdev->bd_contains) {
4124 					printk(KERN_WARNING
4125 					       "%s: WARNING: %s appears to be"
4126 					       " on the same physical disk as"
4127 					       " %s.\n",
4128 					       mdname(mddev),
4129 					       bdevname(rdev->bdev,b),
4130 					       bdevname(rdev2->bdev,b2));
4131 					warned = 1;
4132 				}
4133 			}
4134 
4135 		if (warned)
4136 			printk(KERN_WARNING
4137 			       "True protection against single-disk"
4138 			       " failure might be compromised.\n");
4139 	}
4140 
4141 	mddev->recovery = 0;
4142 	/* may be over-ridden by personality */
4143 	mddev->resync_max_sectors = mddev->dev_sectors;
4144 
4145 	mddev->barriers_work = 1;
4146 	mddev->ok_start_degraded = start_dirty_degraded;
4147 
4148 	if (start_readonly)
4149 		mddev->ro = 2; /* read-only, but switch on first write */
4150 
4151 	err = mddev->pers->run(mddev);
4152 	if (err)
4153 		printk(KERN_ERR "md: pers->run() failed ...\n");
4154 	else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
4155 		WARN_ONCE(!mddev->external_size, "%s: default size too small,"
4156 			  " but 'external_size' not in effect?\n", __func__);
4157 		printk(KERN_ERR
4158 		       "md: invalid array_size %llu > default size %llu\n",
4159 		       (unsigned long long)mddev->array_sectors / 2,
4160 		       (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
4161 		err = -EINVAL;
4162 		mddev->pers->stop(mddev);
4163 	}
4164 	if (err == 0 && mddev->pers->sync_request) {
4165 		err = bitmap_create(mddev);
4166 		if (err) {
4167 			printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
4168 			       mdname(mddev), err);
4169 			mddev->pers->stop(mddev);
4170 		}
4171 	}
4172 	if (err) {
4173 		module_put(mddev->pers->owner);
4174 		mddev->pers = NULL;
4175 		bitmap_destroy(mddev);
4176 		return err;
4177 	}
4178 	if (mddev->pers->sync_request) {
4179 		if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4180 			printk(KERN_WARNING
4181 			       "md: cannot register extra attributes for %s\n",
4182 			       mdname(mddev));
4183 		mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
4184 	} else if (mddev->ro == 2) /* auto-readonly not meaningful */
4185 		mddev->ro = 0;
4186 
4187  	atomic_set(&mddev->writes_pending,0);
4188 	mddev->safemode = 0;
4189 	mddev->safemode_timer.function = md_safemode_timeout;
4190 	mddev->safemode_timer.data = (unsigned long) mddev;
4191 	mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
4192 	mddev->in_sync = 1;
4193 
4194 	list_for_each_entry(rdev, &mddev->disks, same_set)
4195 		if (rdev->raid_disk >= 0) {
4196 			char nm[20];
4197 			sprintf(nm, "rd%d", rdev->raid_disk);
4198 			if (sysfs_create_link(&mddev->kobj, &rdev->kobj, nm))
4199 				printk("md: cannot register %s for %s\n",
4200 				       nm, mdname(mddev));
4201 		}
4202 
4203 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4204 
4205 	if (mddev->flags)
4206 		md_update_sb(mddev, 0);
4207 
4208 	set_capacity(disk, mddev->array_sectors);
4209 
4210 	/* If there is a partially-recovered drive we need to
4211 	 * start recovery here.  If we leave it to md_check_recovery,
4212 	 * it will remove the drives and not do the right thing
4213 	 */
4214 	if (mddev->degraded && !mddev->sync_thread) {
4215 		int spares = 0;
4216 		list_for_each_entry(rdev, &mddev->disks, same_set)
4217 			if (rdev->raid_disk >= 0 &&
4218 			    !test_bit(In_sync, &rdev->flags) &&
4219 			    !test_bit(Faulty, &rdev->flags))
4220 				/* complete an interrupted recovery */
4221 				spares++;
4222 		if (spares && mddev->pers->sync_request) {
4223 			mddev->recovery = 0;
4224 			set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4225 			mddev->sync_thread = md_register_thread(md_do_sync,
4226 								mddev,
4227 								"resync");
4228 			if (!mddev->sync_thread) {
4229 				printk(KERN_ERR "%s: could not start resync"
4230 				       " thread...\n",
4231 				       mdname(mddev));
4232 				/* leave the spares where they are, it shouldn't hurt */
4233 				mddev->recovery = 0;
4234 			}
4235 		}
4236 	}
4237 	md_wakeup_thread(mddev->thread);
4238 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
4239 
4240 	revalidate_disk(mddev->gendisk);
4241 	mddev->changed = 1;
4242 	md_new_event(mddev);
4243 	sysfs_notify_dirent(mddev->sysfs_state);
4244 	if (mddev->sysfs_action)
4245 		sysfs_notify_dirent(mddev->sysfs_action);
4246 	sysfs_notify(&mddev->kobj, NULL, "degraded");
4247 	kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4248 	return 0;
4249 }
4250 
4251 static int restart_array(mddev_t *mddev)
4252 {
4253 	struct gendisk *disk = mddev->gendisk;
4254 
4255 	/* Complain if it has no devices */
4256 	if (list_empty(&mddev->disks))
4257 		return -ENXIO;
4258 	if (!mddev->pers)
4259 		return -EINVAL;
4260 	if (!mddev->ro)
4261 		return -EBUSY;
4262 	mddev->safemode = 0;
4263 	mddev->ro = 0;
4264 	set_disk_ro(disk, 0);
4265 	printk(KERN_INFO "md: %s switched to read-write mode.\n",
4266 		mdname(mddev));
4267 	/* Kick recovery or resync if necessary */
4268 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4269 	md_wakeup_thread(mddev->thread);
4270 	md_wakeup_thread(mddev->sync_thread);
4271 	sysfs_notify_dirent(mddev->sysfs_state);
4272 	return 0;
4273 }
4274 
4275 /* similar to deny_write_access, but accounts for our holding a reference
4276  * to the file ourselves */
4277 static int deny_bitmap_write_access(struct file * file)
4278 {
4279 	struct inode *inode = file->f_mapping->host;
4280 
4281 	spin_lock(&inode->i_lock);
4282 	if (atomic_read(&inode->i_writecount) > 1) {
4283 		spin_unlock(&inode->i_lock);
4284 		return -ETXTBSY;
4285 	}
4286 	atomic_set(&inode->i_writecount, -1);
4287 	spin_unlock(&inode->i_lock);
4288 
4289 	return 0;
4290 }
4291 
4292 static void restore_bitmap_write_access(struct file *file)
4293 {
4294 	struct inode *inode = file->f_mapping->host;
4295 
4296 	spin_lock(&inode->i_lock);
4297 	atomic_set(&inode->i_writecount, 1);
4298 	spin_unlock(&inode->i_lock);
4299 }
4300 
4301 /* mode:
4302  *   0 - completely stop and dis-assemble array
4303  *   1 - switch to readonly
4304  *   2 - stop but do not disassemble array
4305  */
4306 static int do_md_stop(mddev_t * mddev, int mode, int is_open)
4307 {
4308 	int err = 0;
4309 	struct gendisk *disk = mddev->gendisk;
4310 	mdk_rdev_t *rdev;
4311 
4312 	mutex_lock(&mddev->open_mutex);
4313 	if (atomic_read(&mddev->openers) > is_open) {
4314 		printk("md: %s still in use.\n",mdname(mddev));
4315 		err = -EBUSY;
4316 	} else if (mddev->pers) {
4317 
4318 		if (mddev->sync_thread) {
4319 			set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4320 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4321 			md_unregister_thread(mddev->sync_thread);
4322 			mddev->sync_thread = NULL;
4323 		}
4324 
4325 		del_timer_sync(&mddev->safemode_timer);
4326 
4327 		switch(mode) {
4328 		case 1: /* readonly */
4329 			err  = -ENXIO;
4330 			if (mddev->ro==1)
4331 				goto out;
4332 			mddev->ro = 1;
4333 			break;
4334 		case 0: /* disassemble */
4335 		case 2: /* stop */
4336 			bitmap_flush(mddev);
4337 			md_super_wait(mddev);
4338 			if (mddev->ro)
4339 				set_disk_ro(disk, 0);
4340 
4341 			mddev->pers->stop(mddev);
4342 			mddev->queue->merge_bvec_fn = NULL;
4343 			mddev->queue->unplug_fn = NULL;
4344 			mddev->queue->backing_dev_info.congested_fn = NULL;
4345 			module_put(mddev->pers->owner);
4346 			if (mddev->pers->sync_request)
4347 				mddev->private = &md_redundancy_group;
4348 			mddev->pers = NULL;
4349 			/* tell userspace to handle 'inactive' */
4350 			sysfs_notify_dirent(mddev->sysfs_state);
4351 
4352 			list_for_each_entry(rdev, &mddev->disks, same_set)
4353 				if (rdev->raid_disk >= 0) {
4354 					char nm[20];
4355 					sprintf(nm, "rd%d", rdev->raid_disk);
4356 					sysfs_remove_link(&mddev->kobj, nm);
4357 				}
4358 
4359 			set_capacity(disk, 0);
4360 			mddev->changed = 1;
4361 
4362 			if (mddev->ro)
4363 				mddev->ro = 0;
4364 		}
4365 		if (!mddev->in_sync || mddev->flags) {
4366 			/* mark array as shutdown cleanly */
4367 			mddev->in_sync = 1;
4368 			md_update_sb(mddev, 1);
4369 		}
4370 		if (mode == 1)
4371 			set_disk_ro(disk, 1);
4372 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4373 		err = 0;
4374 	}
4375 out:
4376 	mutex_unlock(&mddev->open_mutex);
4377 	if (err)
4378 		return err;
4379 	/*
4380 	 * Free resources if final stop
4381 	 */
4382 	if (mode == 0) {
4383 
4384 		printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
4385 
4386 		bitmap_destroy(mddev);
4387 		if (mddev->bitmap_file) {
4388 			restore_bitmap_write_access(mddev->bitmap_file);
4389 			fput(mddev->bitmap_file);
4390 			mddev->bitmap_file = NULL;
4391 		}
4392 		mddev->bitmap_offset = 0;
4393 
4394 		/* make sure all md_delayed_delete calls have finished */
4395 		flush_scheduled_work();
4396 
4397 		export_array(mddev);
4398 
4399 		mddev->array_sectors = 0;
4400 		mddev->external_size = 0;
4401 		mddev->dev_sectors = 0;
4402 		mddev->raid_disks = 0;
4403 		mddev->recovery_cp = 0;
4404 		mddev->resync_min = 0;
4405 		mddev->resync_max = MaxSector;
4406 		mddev->reshape_position = MaxSector;
4407 		mddev->external = 0;
4408 		mddev->persistent = 0;
4409 		mddev->level = LEVEL_NONE;
4410 		mddev->clevel[0] = 0;
4411 		mddev->flags = 0;
4412 		mddev->ro = 0;
4413 		mddev->metadata_type[0] = 0;
4414 		mddev->chunk_sectors = 0;
4415 		mddev->ctime = mddev->utime = 0;
4416 		mddev->layout = 0;
4417 		mddev->max_disks = 0;
4418 		mddev->events = 0;
4419 		mddev->delta_disks = 0;
4420 		mddev->new_level = LEVEL_NONE;
4421 		mddev->new_layout = 0;
4422 		mddev->new_chunk_sectors = 0;
4423 		mddev->curr_resync = 0;
4424 		mddev->resync_mismatches = 0;
4425 		mddev->suspend_lo = mddev->suspend_hi = 0;
4426 		mddev->sync_speed_min = mddev->sync_speed_max = 0;
4427 		mddev->recovery = 0;
4428 		mddev->in_sync = 0;
4429 		mddev->changed = 0;
4430 		mddev->degraded = 0;
4431 		mddev->barriers_work = 0;
4432 		mddev->safemode = 0;
4433 		kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4434 		if (mddev->hold_active == UNTIL_STOP)
4435 			mddev->hold_active = 0;
4436 
4437 	} else if (mddev->pers)
4438 		printk(KERN_INFO "md: %s switched to read-only mode.\n",
4439 			mdname(mddev));
4440 	err = 0;
4441 	blk_integrity_unregister(disk);
4442 	md_new_event(mddev);
4443 	sysfs_notify_dirent(mddev->sysfs_state);
4444 	return err;
4445 }
4446 
4447 #ifndef MODULE
4448 static void autorun_array(mddev_t *mddev)
4449 {
4450 	mdk_rdev_t *rdev;
4451 	int err;
4452 
4453 	if (list_empty(&mddev->disks))
4454 		return;
4455 
4456 	printk(KERN_INFO "md: running: ");
4457 
4458 	list_for_each_entry(rdev, &mddev->disks, same_set) {
4459 		char b[BDEVNAME_SIZE];
4460 		printk("<%s>", bdevname(rdev->bdev,b));
4461 	}
4462 	printk("\n");
4463 
4464 	err = do_md_run(mddev);
4465 	if (err) {
4466 		printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
4467 		do_md_stop(mddev, 0, 0);
4468 	}
4469 }
4470 
4471 /*
4472  * lets try to run arrays based on all disks that have arrived
4473  * until now. (those are in pending_raid_disks)
4474  *
4475  * the method: pick the first pending disk, collect all disks with
4476  * the same UUID, remove all from the pending list and put them into
4477  * the 'same_array' list. Then order this list based on superblock
4478  * update time (freshest comes first), kick out 'old' disks and
4479  * compare superblocks. If everything's fine then run it.
4480  *
4481  * If "unit" is allocated, then bump its reference count
4482  */
4483 static void autorun_devices(int part)
4484 {
4485 	mdk_rdev_t *rdev0, *rdev, *tmp;
4486 	mddev_t *mddev;
4487 	char b[BDEVNAME_SIZE];
4488 
4489 	printk(KERN_INFO "md: autorun ...\n");
4490 	while (!list_empty(&pending_raid_disks)) {
4491 		int unit;
4492 		dev_t dev;
4493 		LIST_HEAD(candidates);
4494 		rdev0 = list_entry(pending_raid_disks.next,
4495 					 mdk_rdev_t, same_set);
4496 
4497 		printk(KERN_INFO "md: considering %s ...\n",
4498 			bdevname(rdev0->bdev,b));
4499 		INIT_LIST_HEAD(&candidates);
4500 		rdev_for_each_list(rdev, tmp, &pending_raid_disks)
4501 			if (super_90_load(rdev, rdev0, 0) >= 0) {
4502 				printk(KERN_INFO "md:  adding %s ...\n",
4503 					bdevname(rdev->bdev,b));
4504 				list_move(&rdev->same_set, &candidates);
4505 			}
4506 		/*
4507 		 * now we have a set of devices, with all of them having
4508 		 * mostly sane superblocks. It's time to allocate the
4509 		 * mddev.
4510 		 */
4511 		if (part) {
4512 			dev = MKDEV(mdp_major,
4513 				    rdev0->preferred_minor << MdpMinorShift);
4514 			unit = MINOR(dev) >> MdpMinorShift;
4515 		} else {
4516 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
4517 			unit = MINOR(dev);
4518 		}
4519 		if (rdev0->preferred_minor != unit) {
4520 			printk(KERN_INFO "md: unit number in %s is bad: %d\n",
4521 			       bdevname(rdev0->bdev, b), rdev0->preferred_minor);
4522 			break;
4523 		}
4524 
4525 		md_probe(dev, NULL, NULL);
4526 		mddev = mddev_find(dev);
4527 		if (!mddev || !mddev->gendisk) {
4528 			if (mddev)
4529 				mddev_put(mddev);
4530 			printk(KERN_ERR
4531 				"md: cannot allocate memory for md drive.\n");
4532 			break;
4533 		}
4534 		if (mddev_lock(mddev))
4535 			printk(KERN_WARNING "md: %s locked, cannot run\n",
4536 			       mdname(mddev));
4537 		else if (mddev->raid_disks || mddev->major_version
4538 			 || !list_empty(&mddev->disks)) {
4539 			printk(KERN_WARNING
4540 				"md: %s already running, cannot run %s\n",
4541 				mdname(mddev), bdevname(rdev0->bdev,b));
4542 			mddev_unlock(mddev);
4543 		} else {
4544 			printk(KERN_INFO "md: created %s\n", mdname(mddev));
4545 			mddev->persistent = 1;
4546 			rdev_for_each_list(rdev, tmp, &candidates) {
4547 				list_del_init(&rdev->same_set);
4548 				if (bind_rdev_to_array(rdev, mddev))
4549 					export_rdev(rdev);
4550 			}
4551 			autorun_array(mddev);
4552 			mddev_unlock(mddev);
4553 		}
4554 		/* on success, candidates will be empty, on error
4555 		 * it won't...
4556 		 */
4557 		rdev_for_each_list(rdev, tmp, &candidates) {
4558 			list_del_init(&rdev->same_set);
4559 			export_rdev(rdev);
4560 		}
4561 		mddev_put(mddev);
4562 	}
4563 	printk(KERN_INFO "md: ... autorun DONE.\n");
4564 }
4565 #endif /* !MODULE */
4566 
4567 static int get_version(void __user * arg)
4568 {
4569 	mdu_version_t ver;
4570 
4571 	ver.major = MD_MAJOR_VERSION;
4572 	ver.minor = MD_MINOR_VERSION;
4573 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
4574 
4575 	if (copy_to_user(arg, &ver, sizeof(ver)))
4576 		return -EFAULT;
4577 
4578 	return 0;
4579 }
4580 
4581 static int get_array_info(mddev_t * mddev, void __user * arg)
4582 {
4583 	mdu_array_info_t info;
4584 	int nr,working,insync,failed,spare;
4585 	mdk_rdev_t *rdev;
4586 
4587 	nr=working=insync=failed=spare=0;
4588 	list_for_each_entry(rdev, &mddev->disks, same_set) {
4589 		nr++;
4590 		if (test_bit(Faulty, &rdev->flags))
4591 			failed++;
4592 		else {
4593 			working++;
4594 			if (test_bit(In_sync, &rdev->flags))
4595 				insync++;
4596 			else
4597 				spare++;
4598 		}
4599 	}
4600 
4601 	info.major_version = mddev->major_version;
4602 	info.minor_version = mddev->minor_version;
4603 	info.patch_version = MD_PATCHLEVEL_VERSION;
4604 	info.ctime         = mddev->ctime;
4605 	info.level         = mddev->level;
4606 	info.size          = mddev->dev_sectors / 2;
4607 	if (info.size != mddev->dev_sectors / 2) /* overflow */
4608 		info.size = -1;
4609 	info.nr_disks      = nr;
4610 	info.raid_disks    = mddev->raid_disks;
4611 	info.md_minor      = mddev->md_minor;
4612 	info.not_persistent= !mddev->persistent;
4613 
4614 	info.utime         = mddev->utime;
4615 	info.state         = 0;
4616 	if (mddev->in_sync)
4617 		info.state = (1<<MD_SB_CLEAN);
4618 	if (mddev->bitmap && mddev->bitmap_offset)
4619 		info.state = (1<<MD_SB_BITMAP_PRESENT);
4620 	info.active_disks  = insync;
4621 	info.working_disks = working;
4622 	info.failed_disks  = failed;
4623 	info.spare_disks   = spare;
4624 
4625 	info.layout        = mddev->layout;
4626 	info.chunk_size    = mddev->chunk_sectors << 9;
4627 
4628 	if (copy_to_user(arg, &info, sizeof(info)))
4629 		return -EFAULT;
4630 
4631 	return 0;
4632 }
4633 
4634 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
4635 {
4636 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
4637 	char *ptr, *buf = NULL;
4638 	int err = -ENOMEM;
4639 
4640 	if (md_allow_write(mddev))
4641 		file = kmalloc(sizeof(*file), GFP_NOIO);
4642 	else
4643 		file = kmalloc(sizeof(*file), GFP_KERNEL);
4644 
4645 	if (!file)
4646 		goto out;
4647 
4648 	/* bitmap disabled, zero the first byte and copy out */
4649 	if (!mddev->bitmap || !mddev->bitmap->file) {
4650 		file->pathname[0] = '\0';
4651 		goto copy_out;
4652 	}
4653 
4654 	buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
4655 	if (!buf)
4656 		goto out;
4657 
4658 	ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
4659 	if (IS_ERR(ptr))
4660 		goto out;
4661 
4662 	strcpy(file->pathname, ptr);
4663 
4664 copy_out:
4665 	err = 0;
4666 	if (copy_to_user(arg, file, sizeof(*file)))
4667 		err = -EFAULT;
4668 out:
4669 	kfree(buf);
4670 	kfree(file);
4671 	return err;
4672 }
4673 
4674 static int get_disk_info(mddev_t * mddev, void __user * arg)
4675 {
4676 	mdu_disk_info_t info;
4677 	mdk_rdev_t *rdev;
4678 
4679 	if (copy_from_user(&info, arg, sizeof(info)))
4680 		return -EFAULT;
4681 
4682 	rdev = find_rdev_nr(mddev, info.number);
4683 	if (rdev) {
4684 		info.major = MAJOR(rdev->bdev->bd_dev);
4685 		info.minor = MINOR(rdev->bdev->bd_dev);
4686 		info.raid_disk = rdev->raid_disk;
4687 		info.state = 0;
4688 		if (test_bit(Faulty, &rdev->flags))
4689 			info.state |= (1<<MD_DISK_FAULTY);
4690 		else if (test_bit(In_sync, &rdev->flags)) {
4691 			info.state |= (1<<MD_DISK_ACTIVE);
4692 			info.state |= (1<<MD_DISK_SYNC);
4693 		}
4694 		if (test_bit(WriteMostly, &rdev->flags))
4695 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
4696 	} else {
4697 		info.major = info.minor = 0;
4698 		info.raid_disk = -1;
4699 		info.state = (1<<MD_DISK_REMOVED);
4700 	}
4701 
4702 	if (copy_to_user(arg, &info, sizeof(info)))
4703 		return -EFAULT;
4704 
4705 	return 0;
4706 }
4707 
4708 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
4709 {
4710 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4711 	mdk_rdev_t *rdev;
4712 	dev_t dev = MKDEV(info->major,info->minor);
4713 
4714 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
4715 		return -EOVERFLOW;
4716 
4717 	if (!mddev->raid_disks) {
4718 		int err;
4719 		/* expecting a device which has a superblock */
4720 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
4721 		if (IS_ERR(rdev)) {
4722 			printk(KERN_WARNING
4723 				"md: md_import_device returned %ld\n",
4724 				PTR_ERR(rdev));
4725 			return PTR_ERR(rdev);
4726 		}
4727 		if (!list_empty(&mddev->disks)) {
4728 			mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
4729 							mdk_rdev_t, same_set);
4730 			err = super_types[mddev->major_version]
4731 				.load_super(rdev, rdev0, mddev->minor_version);
4732 			if (err < 0) {
4733 				printk(KERN_WARNING
4734 					"md: %s has different UUID to %s\n",
4735 					bdevname(rdev->bdev,b),
4736 					bdevname(rdev0->bdev,b2));
4737 				export_rdev(rdev);
4738 				return -EINVAL;
4739 			}
4740 		}
4741 		err = bind_rdev_to_array(rdev, mddev);
4742 		if (err)
4743 			export_rdev(rdev);
4744 		return err;
4745 	}
4746 
4747 	/*
4748 	 * add_new_disk can be used once the array is assembled
4749 	 * to add "hot spares".  They must already have a superblock
4750 	 * written
4751 	 */
4752 	if (mddev->pers) {
4753 		int err;
4754 		if (!mddev->pers->hot_add_disk) {
4755 			printk(KERN_WARNING
4756 				"%s: personality does not support diskops!\n",
4757 			       mdname(mddev));
4758 			return -EINVAL;
4759 		}
4760 		if (mddev->persistent)
4761 			rdev = md_import_device(dev, mddev->major_version,
4762 						mddev->minor_version);
4763 		else
4764 			rdev = md_import_device(dev, -1, -1);
4765 		if (IS_ERR(rdev)) {
4766 			printk(KERN_WARNING
4767 				"md: md_import_device returned %ld\n",
4768 				PTR_ERR(rdev));
4769 			return PTR_ERR(rdev);
4770 		}
4771 		/* set save_raid_disk if appropriate */
4772 		if (!mddev->persistent) {
4773 			if (info->state & (1<<MD_DISK_SYNC)  &&
4774 			    info->raid_disk < mddev->raid_disks)
4775 				rdev->raid_disk = info->raid_disk;
4776 			else
4777 				rdev->raid_disk = -1;
4778 		} else
4779 			super_types[mddev->major_version].
4780 				validate_super(mddev, rdev);
4781 		rdev->saved_raid_disk = rdev->raid_disk;
4782 
4783 		clear_bit(In_sync, &rdev->flags); /* just to be sure */
4784 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
4785 			set_bit(WriteMostly, &rdev->flags);
4786 		else
4787 			clear_bit(WriteMostly, &rdev->flags);
4788 
4789 		rdev->raid_disk = -1;
4790 		err = bind_rdev_to_array(rdev, mddev);
4791 		if (!err && !mddev->pers->hot_remove_disk) {
4792 			/* If there is hot_add_disk but no hot_remove_disk
4793 			 * then added disks for geometry changes,
4794 			 * and should be added immediately.
4795 			 */
4796 			super_types[mddev->major_version].
4797 				validate_super(mddev, rdev);
4798 			err = mddev->pers->hot_add_disk(mddev, rdev);
4799 			if (err)
4800 				unbind_rdev_from_array(rdev);
4801 		}
4802 		if (err)
4803 			export_rdev(rdev);
4804 		else
4805 			sysfs_notify_dirent(rdev->sysfs_state);
4806 
4807 		md_update_sb(mddev, 1);
4808 		if (mddev->degraded)
4809 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4810 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4811 		md_wakeup_thread(mddev->thread);
4812 		return err;
4813 	}
4814 
4815 	/* otherwise, add_new_disk is only allowed
4816 	 * for major_version==0 superblocks
4817 	 */
4818 	if (mddev->major_version != 0) {
4819 		printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
4820 		       mdname(mddev));
4821 		return -EINVAL;
4822 	}
4823 
4824 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
4825 		int err;
4826 		rdev = md_import_device(dev, -1, 0);
4827 		if (IS_ERR(rdev)) {
4828 			printk(KERN_WARNING
4829 				"md: error, md_import_device() returned %ld\n",
4830 				PTR_ERR(rdev));
4831 			return PTR_ERR(rdev);
4832 		}
4833 		rdev->desc_nr = info->number;
4834 		if (info->raid_disk < mddev->raid_disks)
4835 			rdev->raid_disk = info->raid_disk;
4836 		else
4837 			rdev->raid_disk = -1;
4838 
4839 		if (rdev->raid_disk < mddev->raid_disks)
4840 			if (info->state & (1<<MD_DISK_SYNC))
4841 				set_bit(In_sync, &rdev->flags);
4842 
4843 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
4844 			set_bit(WriteMostly, &rdev->flags);
4845 
4846 		if (!mddev->persistent) {
4847 			printk(KERN_INFO "md: nonpersistent superblock ...\n");
4848 			rdev->sb_start = rdev->bdev->bd_inode->i_size / 512;
4849 		} else
4850 			rdev->sb_start = calc_dev_sboffset(rdev->bdev);
4851 		rdev->sectors = rdev->sb_start;
4852 
4853 		err = bind_rdev_to_array(rdev, mddev);
4854 		if (err) {
4855 			export_rdev(rdev);
4856 			return err;
4857 		}
4858 	}
4859 
4860 	return 0;
4861 }
4862 
4863 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
4864 {
4865 	char b[BDEVNAME_SIZE];
4866 	mdk_rdev_t *rdev;
4867 
4868 	rdev = find_rdev(mddev, dev);
4869 	if (!rdev)
4870 		return -ENXIO;
4871 
4872 	if (rdev->raid_disk >= 0)
4873 		goto busy;
4874 
4875 	kick_rdev_from_array(rdev);
4876 	md_update_sb(mddev, 1);
4877 	md_new_event(mddev);
4878 
4879 	return 0;
4880 busy:
4881 	printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
4882 		bdevname(rdev->bdev,b), mdname(mddev));
4883 	return -EBUSY;
4884 }
4885 
4886 static int hot_add_disk(mddev_t * mddev, dev_t dev)
4887 {
4888 	char b[BDEVNAME_SIZE];
4889 	int err;
4890 	mdk_rdev_t *rdev;
4891 
4892 	if (!mddev->pers)
4893 		return -ENODEV;
4894 
4895 	if (mddev->major_version != 0) {
4896 		printk(KERN_WARNING "%s: HOT_ADD may only be used with"
4897 			" version-0 superblocks.\n",
4898 			mdname(mddev));
4899 		return -EINVAL;
4900 	}
4901 	if (!mddev->pers->hot_add_disk) {
4902 		printk(KERN_WARNING
4903 			"%s: personality does not support diskops!\n",
4904 			mdname(mddev));
4905 		return -EINVAL;
4906 	}
4907 
4908 	rdev = md_import_device(dev, -1, 0);
4909 	if (IS_ERR(rdev)) {
4910 		printk(KERN_WARNING
4911 			"md: error, md_import_device() returned %ld\n",
4912 			PTR_ERR(rdev));
4913 		return -EINVAL;
4914 	}
4915 
4916 	if (mddev->persistent)
4917 		rdev->sb_start = calc_dev_sboffset(rdev->bdev);
4918 	else
4919 		rdev->sb_start = rdev->bdev->bd_inode->i_size / 512;
4920 
4921 	rdev->sectors = rdev->sb_start;
4922 
4923 	if (test_bit(Faulty, &rdev->flags)) {
4924 		printk(KERN_WARNING
4925 			"md: can not hot-add faulty %s disk to %s!\n",
4926 			bdevname(rdev->bdev,b), mdname(mddev));
4927 		err = -EINVAL;
4928 		goto abort_export;
4929 	}
4930 	clear_bit(In_sync, &rdev->flags);
4931 	rdev->desc_nr = -1;
4932 	rdev->saved_raid_disk = -1;
4933 	err = bind_rdev_to_array(rdev, mddev);
4934 	if (err)
4935 		goto abort_export;
4936 
4937 	/*
4938 	 * The rest should better be atomic, we can have disk failures
4939 	 * noticed in interrupt contexts ...
4940 	 */
4941 
4942 	rdev->raid_disk = -1;
4943 
4944 	md_update_sb(mddev, 1);
4945 
4946 	/*
4947 	 * Kick recovery, maybe this spare has to be added to the
4948 	 * array immediately.
4949 	 */
4950 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4951 	md_wakeup_thread(mddev->thread);
4952 	md_new_event(mddev);
4953 	return 0;
4954 
4955 abort_export:
4956 	export_rdev(rdev);
4957 	return err;
4958 }
4959 
4960 static int set_bitmap_file(mddev_t *mddev, int fd)
4961 {
4962 	int err;
4963 
4964 	if (mddev->pers) {
4965 		if (!mddev->pers->quiesce)
4966 			return -EBUSY;
4967 		if (mddev->recovery || mddev->sync_thread)
4968 			return -EBUSY;
4969 		/* we should be able to change the bitmap.. */
4970 	}
4971 
4972 
4973 	if (fd >= 0) {
4974 		if (mddev->bitmap)
4975 			return -EEXIST; /* cannot add when bitmap is present */
4976 		mddev->bitmap_file = fget(fd);
4977 
4978 		if (mddev->bitmap_file == NULL) {
4979 			printk(KERN_ERR "%s: error: failed to get bitmap file\n",
4980 			       mdname(mddev));
4981 			return -EBADF;
4982 		}
4983 
4984 		err = deny_bitmap_write_access(mddev->bitmap_file);
4985 		if (err) {
4986 			printk(KERN_ERR "%s: error: bitmap file is already in use\n",
4987 			       mdname(mddev));
4988 			fput(mddev->bitmap_file);
4989 			mddev->bitmap_file = NULL;
4990 			return err;
4991 		}
4992 		mddev->bitmap_offset = 0; /* file overrides offset */
4993 	} else if (mddev->bitmap == NULL)
4994 		return -ENOENT; /* cannot remove what isn't there */
4995 	err = 0;
4996 	if (mddev->pers) {
4997 		mddev->pers->quiesce(mddev, 1);
4998 		if (fd >= 0)
4999 			err = bitmap_create(mddev);
5000 		if (fd < 0 || err) {
5001 			bitmap_destroy(mddev);
5002 			fd = -1; /* make sure to put the file */
5003 		}
5004 		mddev->pers->quiesce(mddev, 0);
5005 	}
5006 	if (fd < 0) {
5007 		if (mddev->bitmap_file) {
5008 			restore_bitmap_write_access(mddev->bitmap_file);
5009 			fput(mddev->bitmap_file);
5010 		}
5011 		mddev->bitmap_file = NULL;
5012 	}
5013 
5014 	return err;
5015 }
5016 
5017 /*
5018  * set_array_info is used two different ways
5019  * The original usage is when creating a new array.
5020  * In this usage, raid_disks is > 0 and it together with
5021  *  level, size, not_persistent,layout,chunksize determine the
5022  *  shape of the array.
5023  *  This will always create an array with a type-0.90.0 superblock.
5024  * The newer usage is when assembling an array.
5025  *  In this case raid_disks will be 0, and the major_version field is
5026  *  use to determine which style super-blocks are to be found on the devices.
5027  *  The minor and patch _version numbers are also kept incase the
5028  *  super_block handler wishes to interpret them.
5029  */
5030 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
5031 {
5032 
5033 	if (info->raid_disks == 0) {
5034 		/* just setting version number for superblock loading */
5035 		if (info->major_version < 0 ||
5036 		    info->major_version >= ARRAY_SIZE(super_types) ||
5037 		    super_types[info->major_version].name == NULL) {
5038 			/* maybe try to auto-load a module? */
5039 			printk(KERN_INFO
5040 				"md: superblock version %d not known\n",
5041 				info->major_version);
5042 			return -EINVAL;
5043 		}
5044 		mddev->major_version = info->major_version;
5045 		mddev->minor_version = info->minor_version;
5046 		mddev->patch_version = info->patch_version;
5047 		mddev->persistent = !info->not_persistent;
5048 		return 0;
5049 	}
5050 	mddev->major_version = MD_MAJOR_VERSION;
5051 	mddev->minor_version = MD_MINOR_VERSION;
5052 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
5053 	mddev->ctime         = get_seconds();
5054 
5055 	mddev->level         = info->level;
5056 	mddev->clevel[0]     = 0;
5057 	mddev->dev_sectors   = 2 * (sector_t)info->size;
5058 	mddev->raid_disks    = info->raid_disks;
5059 	/* don't set md_minor, it is determined by which /dev/md* was
5060 	 * openned
5061 	 */
5062 	if (info->state & (1<<MD_SB_CLEAN))
5063 		mddev->recovery_cp = MaxSector;
5064 	else
5065 		mddev->recovery_cp = 0;
5066 	mddev->persistent    = ! info->not_persistent;
5067 	mddev->external	     = 0;
5068 
5069 	mddev->layout        = info->layout;
5070 	mddev->chunk_sectors = info->chunk_size >> 9;
5071 
5072 	mddev->max_disks     = MD_SB_DISKS;
5073 
5074 	if (mddev->persistent)
5075 		mddev->flags         = 0;
5076 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
5077 
5078 	mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
5079 	mddev->bitmap_offset = 0;
5080 
5081 	mddev->reshape_position = MaxSector;
5082 
5083 	/*
5084 	 * Generate a 128 bit UUID
5085 	 */
5086 	get_random_bytes(mddev->uuid, 16);
5087 
5088 	mddev->new_level = mddev->level;
5089 	mddev->new_chunk_sectors = mddev->chunk_sectors;
5090 	mddev->new_layout = mddev->layout;
5091 	mddev->delta_disks = 0;
5092 
5093 	return 0;
5094 }
5095 
5096 void md_set_array_sectors(mddev_t *mddev, sector_t array_sectors)
5097 {
5098 	WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
5099 
5100 	if (mddev->external_size)
5101 		return;
5102 
5103 	mddev->array_sectors = array_sectors;
5104 }
5105 EXPORT_SYMBOL(md_set_array_sectors);
5106 
5107 static int update_size(mddev_t *mddev, sector_t num_sectors)
5108 {
5109 	mdk_rdev_t *rdev;
5110 	int rv;
5111 	int fit = (num_sectors == 0);
5112 
5113 	if (mddev->pers->resize == NULL)
5114 		return -EINVAL;
5115 	/* The "num_sectors" is the number of sectors of each device that
5116 	 * is used.  This can only make sense for arrays with redundancy.
5117 	 * linear and raid0 always use whatever space is available. We can only
5118 	 * consider changing this number if no resync or reconstruction is
5119 	 * happening, and if the new size is acceptable. It must fit before the
5120 	 * sb_start or, if that is <data_offset, it must fit before the size
5121 	 * of each device.  If num_sectors is zero, we find the largest size
5122 	 * that fits.
5123 
5124 	 */
5125 	if (mddev->sync_thread)
5126 		return -EBUSY;
5127 	if (mddev->bitmap)
5128 		/* Sorry, cannot grow a bitmap yet, just remove it,
5129 		 * grow, and re-add.
5130 		 */
5131 		return -EBUSY;
5132 	list_for_each_entry(rdev, &mddev->disks, same_set) {
5133 		sector_t avail = rdev->sectors;
5134 
5135 		if (fit && (num_sectors == 0 || num_sectors > avail))
5136 			num_sectors = avail;
5137 		if (avail < num_sectors)
5138 			return -ENOSPC;
5139 	}
5140 	rv = mddev->pers->resize(mddev, num_sectors);
5141 	if (!rv)
5142 		revalidate_disk(mddev->gendisk);
5143 	return rv;
5144 }
5145 
5146 static int update_raid_disks(mddev_t *mddev, int raid_disks)
5147 {
5148 	int rv;
5149 	/* change the number of raid disks */
5150 	if (mddev->pers->check_reshape == NULL)
5151 		return -EINVAL;
5152 	if (raid_disks <= 0 ||
5153 	    raid_disks >= mddev->max_disks)
5154 		return -EINVAL;
5155 	if (mddev->sync_thread || mddev->reshape_position != MaxSector)
5156 		return -EBUSY;
5157 	mddev->delta_disks = raid_disks - mddev->raid_disks;
5158 
5159 	rv = mddev->pers->check_reshape(mddev);
5160 	return rv;
5161 }
5162 
5163 
5164 /*
5165  * update_array_info is used to change the configuration of an
5166  * on-line array.
5167  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
5168  * fields in the info are checked against the array.
5169  * Any differences that cannot be handled will cause an error.
5170  * Normally, only one change can be managed at a time.
5171  */
5172 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
5173 {
5174 	int rv = 0;
5175 	int cnt = 0;
5176 	int state = 0;
5177 
5178 	/* calculate expected state,ignoring low bits */
5179 	if (mddev->bitmap && mddev->bitmap_offset)
5180 		state |= (1 << MD_SB_BITMAP_PRESENT);
5181 
5182 	if (mddev->major_version != info->major_version ||
5183 	    mddev->minor_version != info->minor_version ||
5184 /*	    mddev->patch_version != info->patch_version || */
5185 	    mddev->ctime         != info->ctime         ||
5186 	    mddev->level         != info->level         ||
5187 /*	    mddev->layout        != info->layout        || */
5188 	    !mddev->persistent	 != info->not_persistent||
5189 	    mddev->chunk_sectors != info->chunk_size >> 9 ||
5190 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
5191 	    ((state^info->state) & 0xfffffe00)
5192 		)
5193 		return -EINVAL;
5194 	/* Check there is only one change */
5195 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5196 		cnt++;
5197 	if (mddev->raid_disks != info->raid_disks)
5198 		cnt++;
5199 	if (mddev->layout != info->layout)
5200 		cnt++;
5201 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
5202 		cnt++;
5203 	if (cnt == 0)
5204 		return 0;
5205 	if (cnt > 1)
5206 		return -EINVAL;
5207 
5208 	if (mddev->layout != info->layout) {
5209 		/* Change layout
5210 		 * we don't need to do anything at the md level, the
5211 		 * personality will take care of it all.
5212 		 */
5213 		if (mddev->pers->check_reshape == NULL)
5214 			return -EINVAL;
5215 		else {
5216 			mddev->new_layout = info->layout;
5217 			rv = mddev->pers->check_reshape(mddev);
5218 			if (rv)
5219 				mddev->new_layout = mddev->layout;
5220 			return rv;
5221 		}
5222 	}
5223 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5224 		rv = update_size(mddev, (sector_t)info->size * 2);
5225 
5226 	if (mddev->raid_disks    != info->raid_disks)
5227 		rv = update_raid_disks(mddev, info->raid_disks);
5228 
5229 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
5230 		if (mddev->pers->quiesce == NULL)
5231 			return -EINVAL;
5232 		if (mddev->recovery || mddev->sync_thread)
5233 			return -EBUSY;
5234 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
5235 			/* add the bitmap */
5236 			if (mddev->bitmap)
5237 				return -EEXIST;
5238 			if (mddev->default_bitmap_offset == 0)
5239 				return -EINVAL;
5240 			mddev->bitmap_offset = mddev->default_bitmap_offset;
5241 			mddev->pers->quiesce(mddev, 1);
5242 			rv = bitmap_create(mddev);
5243 			if (rv)
5244 				bitmap_destroy(mddev);
5245 			mddev->pers->quiesce(mddev, 0);
5246 		} else {
5247 			/* remove the bitmap */
5248 			if (!mddev->bitmap)
5249 				return -ENOENT;
5250 			if (mddev->bitmap->file)
5251 				return -EINVAL;
5252 			mddev->pers->quiesce(mddev, 1);
5253 			bitmap_destroy(mddev);
5254 			mddev->pers->quiesce(mddev, 0);
5255 			mddev->bitmap_offset = 0;
5256 		}
5257 	}
5258 	md_update_sb(mddev, 1);
5259 	return rv;
5260 }
5261 
5262 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
5263 {
5264 	mdk_rdev_t *rdev;
5265 
5266 	if (mddev->pers == NULL)
5267 		return -ENODEV;
5268 
5269 	rdev = find_rdev(mddev, dev);
5270 	if (!rdev)
5271 		return -ENODEV;
5272 
5273 	md_error(mddev, rdev);
5274 	return 0;
5275 }
5276 
5277 /*
5278  * We have a problem here : there is no easy way to give a CHS
5279  * virtual geometry. We currently pretend that we have a 2 heads
5280  * 4 sectors (with a BIG number of cylinders...). This drives
5281  * dosfs just mad... ;-)
5282  */
5283 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
5284 {
5285 	mddev_t *mddev = bdev->bd_disk->private_data;
5286 
5287 	geo->heads = 2;
5288 	geo->sectors = 4;
5289 	geo->cylinders = get_capacity(mddev->gendisk) / 8;
5290 	return 0;
5291 }
5292 
5293 static int md_ioctl(struct block_device *bdev, fmode_t mode,
5294 			unsigned int cmd, unsigned long arg)
5295 {
5296 	int err = 0;
5297 	void __user *argp = (void __user *)arg;
5298 	mddev_t *mddev = NULL;
5299 
5300 	if (!capable(CAP_SYS_ADMIN))
5301 		return -EACCES;
5302 
5303 	/*
5304 	 * Commands dealing with the RAID driver but not any
5305 	 * particular array:
5306 	 */
5307 	switch (cmd)
5308 	{
5309 		case RAID_VERSION:
5310 			err = get_version(argp);
5311 			goto done;
5312 
5313 		case PRINT_RAID_DEBUG:
5314 			err = 0;
5315 			md_print_devices();
5316 			goto done;
5317 
5318 #ifndef MODULE
5319 		case RAID_AUTORUN:
5320 			err = 0;
5321 			autostart_arrays(arg);
5322 			goto done;
5323 #endif
5324 		default:;
5325 	}
5326 
5327 	/*
5328 	 * Commands creating/starting a new array:
5329 	 */
5330 
5331 	mddev = bdev->bd_disk->private_data;
5332 
5333 	if (!mddev) {
5334 		BUG();
5335 		goto abort;
5336 	}
5337 
5338 	err = mddev_lock(mddev);
5339 	if (err) {
5340 		printk(KERN_INFO
5341 			"md: ioctl lock interrupted, reason %d, cmd %d\n",
5342 			err, cmd);
5343 		goto abort;
5344 	}
5345 
5346 	switch (cmd)
5347 	{
5348 		case SET_ARRAY_INFO:
5349 			{
5350 				mdu_array_info_t info;
5351 				if (!arg)
5352 					memset(&info, 0, sizeof(info));
5353 				else if (copy_from_user(&info, argp, sizeof(info))) {
5354 					err = -EFAULT;
5355 					goto abort_unlock;
5356 				}
5357 				if (mddev->pers) {
5358 					err = update_array_info(mddev, &info);
5359 					if (err) {
5360 						printk(KERN_WARNING "md: couldn't update"
5361 						       " array info. %d\n", err);
5362 						goto abort_unlock;
5363 					}
5364 					goto done_unlock;
5365 				}
5366 				if (!list_empty(&mddev->disks)) {
5367 					printk(KERN_WARNING
5368 					       "md: array %s already has disks!\n",
5369 					       mdname(mddev));
5370 					err = -EBUSY;
5371 					goto abort_unlock;
5372 				}
5373 				if (mddev->raid_disks) {
5374 					printk(KERN_WARNING
5375 					       "md: array %s already initialised!\n",
5376 					       mdname(mddev));
5377 					err = -EBUSY;
5378 					goto abort_unlock;
5379 				}
5380 				err = set_array_info(mddev, &info);
5381 				if (err) {
5382 					printk(KERN_WARNING "md: couldn't set"
5383 					       " array info. %d\n", err);
5384 					goto abort_unlock;
5385 				}
5386 			}
5387 			goto done_unlock;
5388 
5389 		default:;
5390 	}
5391 
5392 	/*
5393 	 * Commands querying/configuring an existing array:
5394 	 */
5395 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
5396 	 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
5397 	if ((!mddev->raid_disks && !mddev->external)
5398 	    && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
5399 	    && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
5400 	    && cmd != GET_BITMAP_FILE) {
5401 		err = -ENODEV;
5402 		goto abort_unlock;
5403 	}
5404 
5405 	/*
5406 	 * Commands even a read-only array can execute:
5407 	 */
5408 	switch (cmd)
5409 	{
5410 		case GET_ARRAY_INFO:
5411 			err = get_array_info(mddev, argp);
5412 			goto done_unlock;
5413 
5414 		case GET_BITMAP_FILE:
5415 			err = get_bitmap_file(mddev, argp);
5416 			goto done_unlock;
5417 
5418 		case GET_DISK_INFO:
5419 			err = get_disk_info(mddev, argp);
5420 			goto done_unlock;
5421 
5422 		case RESTART_ARRAY_RW:
5423 			err = restart_array(mddev);
5424 			goto done_unlock;
5425 
5426 		case STOP_ARRAY:
5427 			err = do_md_stop(mddev, 0, 1);
5428 			goto done_unlock;
5429 
5430 		case STOP_ARRAY_RO:
5431 			err = do_md_stop(mddev, 1, 1);
5432 			goto done_unlock;
5433 
5434 	}
5435 
5436 	/*
5437 	 * The remaining ioctls are changing the state of the
5438 	 * superblock, so we do not allow them on read-only arrays.
5439 	 * However non-MD ioctls (e.g. get-size) will still come through
5440 	 * here and hit the 'default' below, so only disallow
5441 	 * 'md' ioctls, and switch to rw mode if started auto-readonly.
5442 	 */
5443 	if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
5444 		if (mddev->ro == 2) {
5445 			mddev->ro = 0;
5446 			sysfs_notify_dirent(mddev->sysfs_state);
5447 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5448 			md_wakeup_thread(mddev->thread);
5449 		} else {
5450 			err = -EROFS;
5451 			goto abort_unlock;
5452 		}
5453 	}
5454 
5455 	switch (cmd)
5456 	{
5457 		case ADD_NEW_DISK:
5458 		{
5459 			mdu_disk_info_t info;
5460 			if (copy_from_user(&info, argp, sizeof(info)))
5461 				err = -EFAULT;
5462 			else
5463 				err = add_new_disk(mddev, &info);
5464 			goto done_unlock;
5465 		}
5466 
5467 		case HOT_REMOVE_DISK:
5468 			err = hot_remove_disk(mddev, new_decode_dev(arg));
5469 			goto done_unlock;
5470 
5471 		case HOT_ADD_DISK:
5472 			err = hot_add_disk(mddev, new_decode_dev(arg));
5473 			goto done_unlock;
5474 
5475 		case SET_DISK_FAULTY:
5476 			err = set_disk_faulty(mddev, new_decode_dev(arg));
5477 			goto done_unlock;
5478 
5479 		case RUN_ARRAY:
5480 			err = do_md_run(mddev);
5481 			goto done_unlock;
5482 
5483 		case SET_BITMAP_FILE:
5484 			err = set_bitmap_file(mddev, (int)arg);
5485 			goto done_unlock;
5486 
5487 		default:
5488 			err = -EINVAL;
5489 			goto abort_unlock;
5490 	}
5491 
5492 done_unlock:
5493 abort_unlock:
5494 	if (mddev->hold_active == UNTIL_IOCTL &&
5495 	    err != -EINVAL)
5496 		mddev->hold_active = 0;
5497 	mddev_unlock(mddev);
5498 
5499 	return err;
5500 done:
5501 	if (err)
5502 		MD_BUG();
5503 abort:
5504 	return err;
5505 }
5506 
5507 static int md_open(struct block_device *bdev, fmode_t mode)
5508 {
5509 	/*
5510 	 * Succeed if we can lock the mddev, which confirms that
5511 	 * it isn't being stopped right now.
5512 	 */
5513 	mddev_t *mddev = mddev_find(bdev->bd_dev);
5514 	int err;
5515 
5516 	if (mddev->gendisk != bdev->bd_disk) {
5517 		/* we are racing with mddev_put which is discarding this
5518 		 * bd_disk.
5519 		 */
5520 		mddev_put(mddev);
5521 		/* Wait until bdev->bd_disk is definitely gone */
5522 		flush_scheduled_work();
5523 		/* Then retry the open from the top */
5524 		return -ERESTARTSYS;
5525 	}
5526 	BUG_ON(mddev != bdev->bd_disk->private_data);
5527 
5528 	if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
5529 		goto out;
5530 
5531 	err = 0;
5532 	atomic_inc(&mddev->openers);
5533 	mutex_unlock(&mddev->open_mutex);
5534 
5535 	check_disk_change(bdev);
5536  out:
5537 	return err;
5538 }
5539 
5540 static int md_release(struct gendisk *disk, fmode_t mode)
5541 {
5542  	mddev_t *mddev = disk->private_data;
5543 
5544 	BUG_ON(!mddev);
5545 	atomic_dec(&mddev->openers);
5546 	mddev_put(mddev);
5547 
5548 	return 0;
5549 }
5550 
5551 static int md_media_changed(struct gendisk *disk)
5552 {
5553 	mddev_t *mddev = disk->private_data;
5554 
5555 	return mddev->changed;
5556 }
5557 
5558 static int md_revalidate(struct gendisk *disk)
5559 {
5560 	mddev_t *mddev = disk->private_data;
5561 
5562 	mddev->changed = 0;
5563 	return 0;
5564 }
5565 static const struct block_device_operations md_fops =
5566 {
5567 	.owner		= THIS_MODULE,
5568 	.open		= md_open,
5569 	.release	= md_release,
5570 	.ioctl		= md_ioctl,
5571 	.getgeo		= md_getgeo,
5572 	.media_changed	= md_media_changed,
5573 	.revalidate_disk= md_revalidate,
5574 };
5575 
5576 static int md_thread(void * arg)
5577 {
5578 	mdk_thread_t *thread = arg;
5579 
5580 	/*
5581 	 * md_thread is a 'system-thread', it's priority should be very
5582 	 * high. We avoid resource deadlocks individually in each
5583 	 * raid personality. (RAID5 does preallocation) We also use RR and
5584 	 * the very same RT priority as kswapd, thus we will never get
5585 	 * into a priority inversion deadlock.
5586 	 *
5587 	 * we definitely have to have equal or higher priority than
5588 	 * bdflush, otherwise bdflush will deadlock if there are too
5589 	 * many dirty RAID5 blocks.
5590 	 */
5591 
5592 	allow_signal(SIGKILL);
5593 	while (!kthread_should_stop()) {
5594 
5595 		/* We need to wait INTERRUPTIBLE so that
5596 		 * we don't add to the load-average.
5597 		 * That means we need to be sure no signals are
5598 		 * pending
5599 		 */
5600 		if (signal_pending(current))
5601 			flush_signals(current);
5602 
5603 		wait_event_interruptible_timeout
5604 			(thread->wqueue,
5605 			 test_bit(THREAD_WAKEUP, &thread->flags)
5606 			 || kthread_should_stop(),
5607 			 thread->timeout);
5608 
5609 		clear_bit(THREAD_WAKEUP, &thread->flags);
5610 
5611 		thread->run(thread->mddev);
5612 	}
5613 
5614 	return 0;
5615 }
5616 
5617 void md_wakeup_thread(mdk_thread_t *thread)
5618 {
5619 	if (thread) {
5620 		dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
5621 		set_bit(THREAD_WAKEUP, &thread->flags);
5622 		wake_up(&thread->wqueue);
5623 	}
5624 }
5625 
5626 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
5627 				 const char *name)
5628 {
5629 	mdk_thread_t *thread;
5630 
5631 	thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
5632 	if (!thread)
5633 		return NULL;
5634 
5635 	init_waitqueue_head(&thread->wqueue);
5636 
5637 	thread->run = run;
5638 	thread->mddev = mddev;
5639 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
5640 	thread->tsk = kthread_run(md_thread, thread,
5641 				  "%s_%s",
5642 				  mdname(thread->mddev),
5643 				  name ?: mddev->pers->name);
5644 	if (IS_ERR(thread->tsk)) {
5645 		kfree(thread);
5646 		return NULL;
5647 	}
5648 	return thread;
5649 }
5650 
5651 void md_unregister_thread(mdk_thread_t *thread)
5652 {
5653 	if (!thread)
5654 		return;
5655 	dprintk("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
5656 
5657 	kthread_stop(thread->tsk);
5658 	kfree(thread);
5659 }
5660 
5661 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
5662 {
5663 	if (!mddev) {
5664 		MD_BUG();
5665 		return;
5666 	}
5667 
5668 	if (!rdev || test_bit(Faulty, &rdev->flags))
5669 		return;
5670 
5671 	if (mddev->external)
5672 		set_bit(Blocked, &rdev->flags);
5673 /*
5674 	dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
5675 		mdname(mddev),
5676 		MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
5677 		__builtin_return_address(0),__builtin_return_address(1),
5678 		__builtin_return_address(2),__builtin_return_address(3));
5679 */
5680 	if (!mddev->pers)
5681 		return;
5682 	if (!mddev->pers->error_handler)
5683 		return;
5684 	mddev->pers->error_handler(mddev,rdev);
5685 	if (mddev->degraded)
5686 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5687 	set_bit(StateChanged, &rdev->flags);
5688 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5689 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5690 	md_wakeup_thread(mddev->thread);
5691 	md_new_event_inintr(mddev);
5692 }
5693 
5694 /* seq_file implementation /proc/mdstat */
5695 
5696 static void status_unused(struct seq_file *seq)
5697 {
5698 	int i = 0;
5699 	mdk_rdev_t *rdev;
5700 
5701 	seq_printf(seq, "unused devices: ");
5702 
5703 	list_for_each_entry(rdev, &pending_raid_disks, same_set) {
5704 		char b[BDEVNAME_SIZE];
5705 		i++;
5706 		seq_printf(seq, "%s ",
5707 			      bdevname(rdev->bdev,b));
5708 	}
5709 	if (!i)
5710 		seq_printf(seq, "<none>");
5711 
5712 	seq_printf(seq, "\n");
5713 }
5714 
5715 
5716 static void status_resync(struct seq_file *seq, mddev_t * mddev)
5717 {
5718 	sector_t max_sectors, resync, res;
5719 	unsigned long dt, db;
5720 	sector_t rt;
5721 	int scale;
5722 	unsigned int per_milli;
5723 
5724 	resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
5725 
5726 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
5727 		max_sectors = mddev->resync_max_sectors;
5728 	else
5729 		max_sectors = mddev->dev_sectors;
5730 
5731 	/*
5732 	 * Should not happen.
5733 	 */
5734 	if (!max_sectors) {
5735 		MD_BUG();
5736 		return;
5737 	}
5738 	/* Pick 'scale' such that (resync>>scale)*1000 will fit
5739 	 * in a sector_t, and (max_sectors>>scale) will fit in a
5740 	 * u32, as those are the requirements for sector_div.
5741 	 * Thus 'scale' must be at least 10
5742 	 */
5743 	scale = 10;
5744 	if (sizeof(sector_t) > sizeof(unsigned long)) {
5745 		while ( max_sectors/2 > (1ULL<<(scale+32)))
5746 			scale++;
5747 	}
5748 	res = (resync>>scale)*1000;
5749 	sector_div(res, (u32)((max_sectors>>scale)+1));
5750 
5751 	per_milli = res;
5752 	{
5753 		int i, x = per_milli/50, y = 20-x;
5754 		seq_printf(seq, "[");
5755 		for (i = 0; i < x; i++)
5756 			seq_printf(seq, "=");
5757 		seq_printf(seq, ">");
5758 		for (i = 0; i < y; i++)
5759 			seq_printf(seq, ".");
5760 		seq_printf(seq, "] ");
5761 	}
5762 	seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
5763 		   (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
5764 		    "reshape" :
5765 		    (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
5766 		     "check" :
5767 		     (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
5768 		      "resync" : "recovery"))),
5769 		   per_milli/10, per_milli % 10,
5770 		   (unsigned long long) resync/2,
5771 		   (unsigned long long) max_sectors/2);
5772 
5773 	/*
5774 	 * dt: time from mark until now
5775 	 * db: blocks written from mark until now
5776 	 * rt: remaining time
5777 	 *
5778 	 * rt is a sector_t, so could be 32bit or 64bit.
5779 	 * So we divide before multiply in case it is 32bit and close
5780 	 * to the limit.
5781 	 * We scale the divisor (db) by 32 to avoid loosing precision
5782 	 * near the end of resync when the number of remaining sectors
5783 	 * is close to 'db'.
5784 	 * We then divide rt by 32 after multiplying by db to compensate.
5785 	 * The '+1' avoids division by zero if db is very small.
5786 	 */
5787 	dt = ((jiffies - mddev->resync_mark) / HZ);
5788 	if (!dt) dt++;
5789 	db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
5790 		- mddev->resync_mark_cnt;
5791 
5792 	rt = max_sectors - resync;    /* number of remaining sectors */
5793 	sector_div(rt, db/32+1);
5794 	rt *= dt;
5795 	rt >>= 5;
5796 
5797 	seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
5798 		   ((unsigned long)rt % 60)/6);
5799 
5800 	seq_printf(seq, " speed=%ldK/sec", db/2/dt);
5801 }
5802 
5803 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
5804 {
5805 	struct list_head *tmp;
5806 	loff_t l = *pos;
5807 	mddev_t *mddev;
5808 
5809 	if (l >= 0x10000)
5810 		return NULL;
5811 	if (!l--)
5812 		/* header */
5813 		return (void*)1;
5814 
5815 	spin_lock(&all_mddevs_lock);
5816 	list_for_each(tmp,&all_mddevs)
5817 		if (!l--) {
5818 			mddev = list_entry(tmp, mddev_t, all_mddevs);
5819 			mddev_get(mddev);
5820 			spin_unlock(&all_mddevs_lock);
5821 			return mddev;
5822 		}
5823 	spin_unlock(&all_mddevs_lock);
5824 	if (!l--)
5825 		return (void*)2;/* tail */
5826 	return NULL;
5827 }
5828 
5829 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
5830 {
5831 	struct list_head *tmp;
5832 	mddev_t *next_mddev, *mddev = v;
5833 
5834 	++*pos;
5835 	if (v == (void*)2)
5836 		return NULL;
5837 
5838 	spin_lock(&all_mddevs_lock);
5839 	if (v == (void*)1)
5840 		tmp = all_mddevs.next;
5841 	else
5842 		tmp = mddev->all_mddevs.next;
5843 	if (tmp != &all_mddevs)
5844 		next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
5845 	else {
5846 		next_mddev = (void*)2;
5847 		*pos = 0x10000;
5848 	}
5849 	spin_unlock(&all_mddevs_lock);
5850 
5851 	if (v != (void*)1)
5852 		mddev_put(mddev);
5853 	return next_mddev;
5854 
5855 }
5856 
5857 static void md_seq_stop(struct seq_file *seq, void *v)
5858 {
5859 	mddev_t *mddev = v;
5860 
5861 	if (mddev && v != (void*)1 && v != (void*)2)
5862 		mddev_put(mddev);
5863 }
5864 
5865 struct mdstat_info {
5866 	int event;
5867 };
5868 
5869 static int md_seq_show(struct seq_file *seq, void *v)
5870 {
5871 	mddev_t *mddev = v;
5872 	sector_t sectors;
5873 	mdk_rdev_t *rdev;
5874 	struct mdstat_info *mi = seq->private;
5875 	struct bitmap *bitmap;
5876 
5877 	if (v == (void*)1) {
5878 		struct mdk_personality *pers;
5879 		seq_printf(seq, "Personalities : ");
5880 		spin_lock(&pers_lock);
5881 		list_for_each_entry(pers, &pers_list, list)
5882 			seq_printf(seq, "[%s] ", pers->name);
5883 
5884 		spin_unlock(&pers_lock);
5885 		seq_printf(seq, "\n");
5886 		mi->event = atomic_read(&md_event_count);
5887 		return 0;
5888 	}
5889 	if (v == (void*)2) {
5890 		status_unused(seq);
5891 		return 0;
5892 	}
5893 
5894 	if (mddev_lock(mddev) < 0)
5895 		return -EINTR;
5896 
5897 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
5898 		seq_printf(seq, "%s : %sactive", mdname(mddev),
5899 						mddev->pers ? "" : "in");
5900 		if (mddev->pers) {
5901 			if (mddev->ro==1)
5902 				seq_printf(seq, " (read-only)");
5903 			if (mddev->ro==2)
5904 				seq_printf(seq, " (auto-read-only)");
5905 			seq_printf(seq, " %s", mddev->pers->name);
5906 		}
5907 
5908 		sectors = 0;
5909 		list_for_each_entry(rdev, &mddev->disks, same_set) {
5910 			char b[BDEVNAME_SIZE];
5911 			seq_printf(seq, " %s[%d]",
5912 				bdevname(rdev->bdev,b), rdev->desc_nr);
5913 			if (test_bit(WriteMostly, &rdev->flags))
5914 				seq_printf(seq, "(W)");
5915 			if (test_bit(Faulty, &rdev->flags)) {
5916 				seq_printf(seq, "(F)");
5917 				continue;
5918 			} else if (rdev->raid_disk < 0)
5919 				seq_printf(seq, "(S)"); /* spare */
5920 			sectors += rdev->sectors;
5921 		}
5922 
5923 		if (!list_empty(&mddev->disks)) {
5924 			if (mddev->pers)
5925 				seq_printf(seq, "\n      %llu blocks",
5926 					   (unsigned long long)
5927 					   mddev->array_sectors / 2);
5928 			else
5929 				seq_printf(seq, "\n      %llu blocks",
5930 					   (unsigned long long)sectors / 2);
5931 		}
5932 		if (mddev->persistent) {
5933 			if (mddev->major_version != 0 ||
5934 			    mddev->minor_version != 90) {
5935 				seq_printf(seq," super %d.%d",
5936 					   mddev->major_version,
5937 					   mddev->minor_version);
5938 			}
5939 		} else if (mddev->external)
5940 			seq_printf(seq, " super external:%s",
5941 				   mddev->metadata_type);
5942 		else
5943 			seq_printf(seq, " super non-persistent");
5944 
5945 		if (mddev->pers) {
5946 			mddev->pers->status(seq, mddev);
5947 	 		seq_printf(seq, "\n      ");
5948 			if (mddev->pers->sync_request) {
5949 				if (mddev->curr_resync > 2) {
5950 					status_resync(seq, mddev);
5951 					seq_printf(seq, "\n      ");
5952 				} else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
5953 					seq_printf(seq, "\tresync=DELAYED\n      ");
5954 				else if (mddev->recovery_cp < MaxSector)
5955 					seq_printf(seq, "\tresync=PENDING\n      ");
5956 			}
5957 		} else
5958 			seq_printf(seq, "\n       ");
5959 
5960 		if ((bitmap = mddev->bitmap)) {
5961 			unsigned long chunk_kb;
5962 			unsigned long flags;
5963 			spin_lock_irqsave(&bitmap->lock, flags);
5964 			chunk_kb = bitmap->chunksize >> 10;
5965 			seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
5966 				"%lu%s chunk",
5967 				bitmap->pages - bitmap->missing_pages,
5968 				bitmap->pages,
5969 				(bitmap->pages - bitmap->missing_pages)
5970 					<< (PAGE_SHIFT - 10),
5971 				chunk_kb ? chunk_kb : bitmap->chunksize,
5972 				chunk_kb ? "KB" : "B");
5973 			if (bitmap->file) {
5974 				seq_printf(seq, ", file: ");
5975 				seq_path(seq, &bitmap->file->f_path, " \t\n");
5976 			}
5977 
5978 			seq_printf(seq, "\n");
5979 			spin_unlock_irqrestore(&bitmap->lock, flags);
5980 		}
5981 
5982 		seq_printf(seq, "\n");
5983 	}
5984 	mddev_unlock(mddev);
5985 
5986 	return 0;
5987 }
5988 
5989 static const struct seq_operations md_seq_ops = {
5990 	.start  = md_seq_start,
5991 	.next   = md_seq_next,
5992 	.stop   = md_seq_stop,
5993 	.show   = md_seq_show,
5994 };
5995 
5996 static int md_seq_open(struct inode *inode, struct file *file)
5997 {
5998 	int error;
5999 	struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
6000 	if (mi == NULL)
6001 		return -ENOMEM;
6002 
6003 	error = seq_open(file, &md_seq_ops);
6004 	if (error)
6005 		kfree(mi);
6006 	else {
6007 		struct seq_file *p = file->private_data;
6008 		p->private = mi;
6009 		mi->event = atomic_read(&md_event_count);
6010 	}
6011 	return error;
6012 }
6013 
6014 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
6015 {
6016 	struct seq_file *m = filp->private_data;
6017 	struct mdstat_info *mi = m->private;
6018 	int mask;
6019 
6020 	poll_wait(filp, &md_event_waiters, wait);
6021 
6022 	/* always allow read */
6023 	mask = POLLIN | POLLRDNORM;
6024 
6025 	if (mi->event != atomic_read(&md_event_count))
6026 		mask |= POLLERR | POLLPRI;
6027 	return mask;
6028 }
6029 
6030 static const struct file_operations md_seq_fops = {
6031 	.owner		= THIS_MODULE,
6032 	.open           = md_seq_open,
6033 	.read           = seq_read,
6034 	.llseek         = seq_lseek,
6035 	.release	= seq_release_private,
6036 	.poll		= mdstat_poll,
6037 };
6038 
6039 int register_md_personality(struct mdk_personality *p)
6040 {
6041 	spin_lock(&pers_lock);
6042 	list_add_tail(&p->list, &pers_list);
6043 	printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
6044 	spin_unlock(&pers_lock);
6045 	return 0;
6046 }
6047 
6048 int unregister_md_personality(struct mdk_personality *p)
6049 {
6050 	printk(KERN_INFO "md: %s personality unregistered\n", p->name);
6051 	spin_lock(&pers_lock);
6052 	list_del_init(&p->list);
6053 	spin_unlock(&pers_lock);
6054 	return 0;
6055 }
6056 
6057 static int is_mddev_idle(mddev_t *mddev, int init)
6058 {
6059 	mdk_rdev_t * rdev;
6060 	int idle;
6061 	int curr_events;
6062 
6063 	idle = 1;
6064 	rcu_read_lock();
6065 	rdev_for_each_rcu(rdev, mddev) {
6066 		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
6067 		curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
6068 			      (int)part_stat_read(&disk->part0, sectors[1]) -
6069 			      atomic_read(&disk->sync_io);
6070 		/* sync IO will cause sync_io to increase before the disk_stats
6071 		 * as sync_io is counted when a request starts, and
6072 		 * disk_stats is counted when it completes.
6073 		 * So resync activity will cause curr_events to be smaller than
6074 		 * when there was no such activity.
6075 		 * non-sync IO will cause disk_stat to increase without
6076 		 * increasing sync_io so curr_events will (eventually)
6077 		 * be larger than it was before.  Once it becomes
6078 		 * substantially larger, the test below will cause
6079 		 * the array to appear non-idle, and resync will slow
6080 		 * down.
6081 		 * If there is a lot of outstanding resync activity when
6082 		 * we set last_event to curr_events, then all that activity
6083 		 * completing might cause the array to appear non-idle
6084 		 * and resync will be slowed down even though there might
6085 		 * not have been non-resync activity.  This will only
6086 		 * happen once though.  'last_events' will soon reflect
6087 		 * the state where there is little or no outstanding
6088 		 * resync requests, and further resync activity will
6089 		 * always make curr_events less than last_events.
6090 		 *
6091 		 */
6092 		if (init || curr_events - rdev->last_events > 64) {
6093 			rdev->last_events = curr_events;
6094 			idle = 0;
6095 		}
6096 	}
6097 	rcu_read_unlock();
6098 	return idle;
6099 }
6100 
6101 void md_done_sync(mddev_t *mddev, int blocks, int ok)
6102 {
6103 	/* another "blocks" (512byte) blocks have been synced */
6104 	atomic_sub(blocks, &mddev->recovery_active);
6105 	wake_up(&mddev->recovery_wait);
6106 	if (!ok) {
6107 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6108 		md_wakeup_thread(mddev->thread);
6109 		// stop recovery, signal do_sync ....
6110 	}
6111 }
6112 
6113 
6114 /* md_write_start(mddev, bi)
6115  * If we need to update some array metadata (e.g. 'active' flag
6116  * in superblock) before writing, schedule a superblock update
6117  * and wait for it to complete.
6118  */
6119 void md_write_start(mddev_t *mddev, struct bio *bi)
6120 {
6121 	int did_change = 0;
6122 	if (bio_data_dir(bi) != WRITE)
6123 		return;
6124 
6125 	BUG_ON(mddev->ro == 1);
6126 	if (mddev->ro == 2) {
6127 		/* need to switch to read/write */
6128 		mddev->ro = 0;
6129 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6130 		md_wakeup_thread(mddev->thread);
6131 		md_wakeup_thread(mddev->sync_thread);
6132 		did_change = 1;
6133 	}
6134 	atomic_inc(&mddev->writes_pending);
6135 	if (mddev->safemode == 1)
6136 		mddev->safemode = 0;
6137 	if (mddev->in_sync) {
6138 		spin_lock_irq(&mddev->write_lock);
6139 		if (mddev->in_sync) {
6140 			mddev->in_sync = 0;
6141 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6142 			md_wakeup_thread(mddev->thread);
6143 			did_change = 1;
6144 		}
6145 		spin_unlock_irq(&mddev->write_lock);
6146 	}
6147 	if (did_change)
6148 		sysfs_notify_dirent(mddev->sysfs_state);
6149 	wait_event(mddev->sb_wait,
6150 		   !test_bit(MD_CHANGE_CLEAN, &mddev->flags) &&
6151 		   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6152 }
6153 
6154 void md_write_end(mddev_t *mddev)
6155 {
6156 	if (atomic_dec_and_test(&mddev->writes_pending)) {
6157 		if (mddev->safemode == 2)
6158 			md_wakeup_thread(mddev->thread);
6159 		else if (mddev->safemode_delay)
6160 			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
6161 	}
6162 }
6163 
6164 /* md_allow_write(mddev)
6165  * Calling this ensures that the array is marked 'active' so that writes
6166  * may proceed without blocking.  It is important to call this before
6167  * attempting a GFP_KERNEL allocation while holding the mddev lock.
6168  * Must be called with mddev_lock held.
6169  *
6170  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
6171  * is dropped, so return -EAGAIN after notifying userspace.
6172  */
6173 int md_allow_write(mddev_t *mddev)
6174 {
6175 	if (!mddev->pers)
6176 		return 0;
6177 	if (mddev->ro)
6178 		return 0;
6179 	if (!mddev->pers->sync_request)
6180 		return 0;
6181 
6182 	spin_lock_irq(&mddev->write_lock);
6183 	if (mddev->in_sync) {
6184 		mddev->in_sync = 0;
6185 		set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6186 		if (mddev->safemode_delay &&
6187 		    mddev->safemode == 0)
6188 			mddev->safemode = 1;
6189 		spin_unlock_irq(&mddev->write_lock);
6190 		md_update_sb(mddev, 0);
6191 		sysfs_notify_dirent(mddev->sysfs_state);
6192 	} else
6193 		spin_unlock_irq(&mddev->write_lock);
6194 
6195 	if (test_bit(MD_CHANGE_CLEAN, &mddev->flags))
6196 		return -EAGAIN;
6197 	else
6198 		return 0;
6199 }
6200 EXPORT_SYMBOL_GPL(md_allow_write);
6201 
6202 #define SYNC_MARKS	10
6203 #define	SYNC_MARK_STEP	(3*HZ)
6204 void md_do_sync(mddev_t *mddev)
6205 {
6206 	mddev_t *mddev2;
6207 	unsigned int currspeed = 0,
6208 		 window;
6209 	sector_t max_sectors,j, io_sectors;
6210 	unsigned long mark[SYNC_MARKS];
6211 	sector_t mark_cnt[SYNC_MARKS];
6212 	int last_mark,m;
6213 	struct list_head *tmp;
6214 	sector_t last_check;
6215 	int skipped = 0;
6216 	mdk_rdev_t *rdev;
6217 	char *desc;
6218 
6219 	/* just incase thread restarts... */
6220 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
6221 		return;
6222 	if (mddev->ro) /* never try to sync a read-only array */
6223 		return;
6224 
6225 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6226 		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
6227 			desc = "data-check";
6228 		else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6229 			desc = "requested-resync";
6230 		else
6231 			desc = "resync";
6232 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6233 		desc = "reshape";
6234 	else
6235 		desc = "recovery";
6236 
6237 	/* we overload curr_resync somewhat here.
6238 	 * 0 == not engaged in resync at all
6239 	 * 2 == checking that there is no conflict with another sync
6240 	 * 1 == like 2, but have yielded to allow conflicting resync to
6241 	 *		commense
6242 	 * other == active in resync - this many blocks
6243 	 *
6244 	 * Before starting a resync we must have set curr_resync to
6245 	 * 2, and then checked that every "conflicting" array has curr_resync
6246 	 * less than ours.  When we find one that is the same or higher
6247 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
6248 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
6249 	 * This will mean we have to start checking from the beginning again.
6250 	 *
6251 	 */
6252 
6253 	do {
6254 		mddev->curr_resync = 2;
6255 
6256 	try_again:
6257 		if (kthread_should_stop()) {
6258 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6259 			goto skip;
6260 		}
6261 		for_each_mddev(mddev2, tmp) {
6262 			if (mddev2 == mddev)
6263 				continue;
6264 			if (!mddev->parallel_resync
6265 			&&  mddev2->curr_resync
6266 			&&  match_mddev_units(mddev, mddev2)) {
6267 				DEFINE_WAIT(wq);
6268 				if (mddev < mddev2 && mddev->curr_resync == 2) {
6269 					/* arbitrarily yield */
6270 					mddev->curr_resync = 1;
6271 					wake_up(&resync_wait);
6272 				}
6273 				if (mddev > mddev2 && mddev->curr_resync == 1)
6274 					/* no need to wait here, we can wait the next
6275 					 * time 'round when curr_resync == 2
6276 					 */
6277 					continue;
6278 				/* We need to wait 'interruptible' so as not to
6279 				 * contribute to the load average, and not to
6280 				 * be caught by 'softlockup'
6281 				 */
6282 				prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
6283 				if (!kthread_should_stop() &&
6284 				    mddev2->curr_resync >= mddev->curr_resync) {
6285 					printk(KERN_INFO "md: delaying %s of %s"
6286 					       " until %s has finished (they"
6287 					       " share one or more physical units)\n",
6288 					       desc, mdname(mddev), mdname(mddev2));
6289 					mddev_put(mddev2);
6290 					if (signal_pending(current))
6291 						flush_signals(current);
6292 					schedule();
6293 					finish_wait(&resync_wait, &wq);
6294 					goto try_again;
6295 				}
6296 				finish_wait(&resync_wait, &wq);
6297 			}
6298 		}
6299 	} while (mddev->curr_resync < 2);
6300 
6301 	j = 0;
6302 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6303 		/* resync follows the size requested by the personality,
6304 		 * which defaults to physical size, but can be virtual size
6305 		 */
6306 		max_sectors = mddev->resync_max_sectors;
6307 		mddev->resync_mismatches = 0;
6308 		/* we don't use the checkpoint if there's a bitmap */
6309 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6310 			j = mddev->resync_min;
6311 		else if (!mddev->bitmap)
6312 			j = mddev->recovery_cp;
6313 
6314 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6315 		max_sectors = mddev->dev_sectors;
6316 	else {
6317 		/* recovery follows the physical size of devices */
6318 		max_sectors = mddev->dev_sectors;
6319 		j = MaxSector;
6320 		list_for_each_entry(rdev, &mddev->disks, same_set)
6321 			if (rdev->raid_disk >= 0 &&
6322 			    !test_bit(Faulty, &rdev->flags) &&
6323 			    !test_bit(In_sync, &rdev->flags) &&
6324 			    rdev->recovery_offset < j)
6325 				j = rdev->recovery_offset;
6326 	}
6327 
6328 	printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
6329 	printk(KERN_INFO "md: minimum _guaranteed_  speed:"
6330 		" %d KB/sec/disk.\n", speed_min(mddev));
6331 	printk(KERN_INFO "md: using maximum available idle IO bandwidth "
6332 	       "(but not more than %d KB/sec) for %s.\n",
6333 	       speed_max(mddev), desc);
6334 
6335 	is_mddev_idle(mddev, 1); /* this initializes IO event counters */
6336 
6337 	io_sectors = 0;
6338 	for (m = 0; m < SYNC_MARKS; m++) {
6339 		mark[m] = jiffies;
6340 		mark_cnt[m] = io_sectors;
6341 	}
6342 	last_mark = 0;
6343 	mddev->resync_mark = mark[last_mark];
6344 	mddev->resync_mark_cnt = mark_cnt[last_mark];
6345 
6346 	/*
6347 	 * Tune reconstruction:
6348 	 */
6349 	window = 32*(PAGE_SIZE/512);
6350 	printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
6351 		window/2,(unsigned long long) max_sectors/2);
6352 
6353 	atomic_set(&mddev->recovery_active, 0);
6354 	last_check = 0;
6355 
6356 	if (j>2) {
6357 		printk(KERN_INFO
6358 		       "md: resuming %s of %s from checkpoint.\n",
6359 		       desc, mdname(mddev));
6360 		mddev->curr_resync = j;
6361 	}
6362 
6363 	while (j < max_sectors) {
6364 		sector_t sectors;
6365 
6366 		skipped = 0;
6367 
6368 		if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
6369 		    ((mddev->curr_resync > mddev->curr_resync_completed &&
6370 		      (mddev->curr_resync - mddev->curr_resync_completed)
6371 		      > (max_sectors >> 4)) ||
6372 		     (j - mddev->curr_resync_completed)*2
6373 		     >= mddev->resync_max - mddev->curr_resync_completed
6374 			    )) {
6375 			/* time to update curr_resync_completed */
6376 			blk_unplug(mddev->queue);
6377 			wait_event(mddev->recovery_wait,
6378 				   atomic_read(&mddev->recovery_active) == 0);
6379 			mddev->curr_resync_completed =
6380 				mddev->curr_resync;
6381 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6382 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
6383 		}
6384 
6385 		while (j >= mddev->resync_max && !kthread_should_stop()) {
6386 			/* As this condition is controlled by user-space,
6387 			 * we can block indefinitely, so use '_interruptible'
6388 			 * to avoid triggering warnings.
6389 			 */
6390 			flush_signals(current); /* just in case */
6391 			wait_event_interruptible(mddev->recovery_wait,
6392 						 mddev->resync_max > j
6393 						 || kthread_should_stop());
6394 		}
6395 
6396 		if (kthread_should_stop())
6397 			goto interrupted;
6398 
6399 		sectors = mddev->pers->sync_request(mddev, j, &skipped,
6400 						  currspeed < speed_min(mddev));
6401 		if (sectors == 0) {
6402 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6403 			goto out;
6404 		}
6405 
6406 		if (!skipped) { /* actual IO requested */
6407 			io_sectors += sectors;
6408 			atomic_add(sectors, &mddev->recovery_active);
6409 		}
6410 
6411 		j += sectors;
6412 		if (j>1) mddev->curr_resync = j;
6413 		mddev->curr_mark_cnt = io_sectors;
6414 		if (last_check == 0)
6415 			/* this is the earliers that rebuilt will be
6416 			 * visible in /proc/mdstat
6417 			 */
6418 			md_new_event(mddev);
6419 
6420 		if (last_check + window > io_sectors || j == max_sectors)
6421 			continue;
6422 
6423 		last_check = io_sectors;
6424 
6425 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6426 			break;
6427 
6428 	repeat:
6429 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
6430 			/* step marks */
6431 			int next = (last_mark+1) % SYNC_MARKS;
6432 
6433 			mddev->resync_mark = mark[next];
6434 			mddev->resync_mark_cnt = mark_cnt[next];
6435 			mark[next] = jiffies;
6436 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
6437 			last_mark = next;
6438 		}
6439 
6440 
6441 		if (kthread_should_stop())
6442 			goto interrupted;
6443 
6444 
6445 		/*
6446 		 * this loop exits only if either when we are slower than
6447 		 * the 'hard' speed limit, or the system was IO-idle for
6448 		 * a jiffy.
6449 		 * the system might be non-idle CPU-wise, but we only care
6450 		 * about not overloading the IO subsystem. (things like an
6451 		 * e2fsck being done on the RAID array should execute fast)
6452 		 */
6453 		blk_unplug(mddev->queue);
6454 		cond_resched();
6455 
6456 		currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
6457 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
6458 
6459 		if (currspeed > speed_min(mddev)) {
6460 			if ((currspeed > speed_max(mddev)) ||
6461 					!is_mddev_idle(mddev, 0)) {
6462 				msleep(500);
6463 				goto repeat;
6464 			}
6465 		}
6466 	}
6467 	printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
6468 	/*
6469 	 * this also signals 'finished resyncing' to md_stop
6470 	 */
6471  out:
6472 	blk_unplug(mddev->queue);
6473 
6474 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
6475 
6476 	/* tell personality that we are finished */
6477 	mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
6478 
6479 	if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
6480 	    mddev->curr_resync > 2) {
6481 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6482 			if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6483 				if (mddev->curr_resync >= mddev->recovery_cp) {
6484 					printk(KERN_INFO
6485 					       "md: checkpointing %s of %s.\n",
6486 					       desc, mdname(mddev));
6487 					mddev->recovery_cp = mddev->curr_resync;
6488 				}
6489 			} else
6490 				mddev->recovery_cp = MaxSector;
6491 		} else {
6492 			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6493 				mddev->curr_resync = MaxSector;
6494 			list_for_each_entry(rdev, &mddev->disks, same_set)
6495 				if (rdev->raid_disk >= 0 &&
6496 				    !test_bit(Faulty, &rdev->flags) &&
6497 				    !test_bit(In_sync, &rdev->flags) &&
6498 				    rdev->recovery_offset < mddev->curr_resync)
6499 					rdev->recovery_offset = mddev->curr_resync;
6500 		}
6501 	}
6502 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
6503 
6504  skip:
6505 	mddev->curr_resync = 0;
6506 	mddev->curr_resync_completed = 0;
6507 	mddev->resync_min = 0;
6508 	mddev->resync_max = MaxSector;
6509 	sysfs_notify(&mddev->kobj, NULL, "sync_completed");
6510 	wake_up(&resync_wait);
6511 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
6512 	md_wakeup_thread(mddev->thread);
6513 	return;
6514 
6515  interrupted:
6516 	/*
6517 	 * got a signal, exit.
6518 	 */
6519 	printk(KERN_INFO
6520 	       "md: md_do_sync() got signal ... exiting\n");
6521 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6522 	goto out;
6523 
6524 }
6525 EXPORT_SYMBOL_GPL(md_do_sync);
6526 
6527 
6528 static int remove_and_add_spares(mddev_t *mddev)
6529 {
6530 	mdk_rdev_t *rdev;
6531 	int spares = 0;
6532 
6533 	mddev->curr_resync_completed = 0;
6534 
6535 	list_for_each_entry(rdev, &mddev->disks, same_set)
6536 		if (rdev->raid_disk >= 0 &&
6537 		    !test_bit(Blocked, &rdev->flags) &&
6538 		    (test_bit(Faulty, &rdev->flags) ||
6539 		     ! test_bit(In_sync, &rdev->flags)) &&
6540 		    atomic_read(&rdev->nr_pending)==0) {
6541 			if (mddev->pers->hot_remove_disk(
6542 				    mddev, rdev->raid_disk)==0) {
6543 				char nm[20];
6544 				sprintf(nm,"rd%d", rdev->raid_disk);
6545 				sysfs_remove_link(&mddev->kobj, nm);
6546 				rdev->raid_disk = -1;
6547 			}
6548 		}
6549 
6550 	if (mddev->degraded && ! mddev->ro && !mddev->recovery_disabled) {
6551 		list_for_each_entry(rdev, &mddev->disks, same_set) {
6552 			if (rdev->raid_disk >= 0 &&
6553 			    !test_bit(In_sync, &rdev->flags) &&
6554 			    !test_bit(Blocked, &rdev->flags))
6555 				spares++;
6556 			if (rdev->raid_disk < 0
6557 			    && !test_bit(Faulty, &rdev->flags)) {
6558 				rdev->recovery_offset = 0;
6559 				if (mddev->pers->
6560 				    hot_add_disk(mddev, rdev) == 0) {
6561 					char nm[20];
6562 					sprintf(nm, "rd%d", rdev->raid_disk);
6563 					if (sysfs_create_link(&mddev->kobj,
6564 							      &rdev->kobj, nm))
6565 						printk(KERN_WARNING
6566 						       "md: cannot register "
6567 						       "%s for %s\n",
6568 						       nm, mdname(mddev));
6569 					spares++;
6570 					md_new_event(mddev);
6571 				} else
6572 					break;
6573 			}
6574 		}
6575 	}
6576 	return spares;
6577 }
6578 /*
6579  * This routine is regularly called by all per-raid-array threads to
6580  * deal with generic issues like resync and super-block update.
6581  * Raid personalities that don't have a thread (linear/raid0) do not
6582  * need this as they never do any recovery or update the superblock.
6583  *
6584  * It does not do any resync itself, but rather "forks" off other threads
6585  * to do that as needed.
6586  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
6587  * "->recovery" and create a thread at ->sync_thread.
6588  * When the thread finishes it sets MD_RECOVERY_DONE
6589  * and wakeups up this thread which will reap the thread and finish up.
6590  * This thread also removes any faulty devices (with nr_pending == 0).
6591  *
6592  * The overall approach is:
6593  *  1/ if the superblock needs updating, update it.
6594  *  2/ If a recovery thread is running, don't do anything else.
6595  *  3/ If recovery has finished, clean up, possibly marking spares active.
6596  *  4/ If there are any faulty devices, remove them.
6597  *  5/ If array is degraded, try to add spares devices
6598  *  6/ If array has spares or is not in-sync, start a resync thread.
6599  */
6600 void md_check_recovery(mddev_t *mddev)
6601 {
6602 	mdk_rdev_t *rdev;
6603 
6604 
6605 	if (mddev->bitmap)
6606 		bitmap_daemon_work(mddev->bitmap);
6607 
6608 	if (mddev->ro)
6609 		return;
6610 
6611 	if (signal_pending(current)) {
6612 		if (mddev->pers->sync_request && !mddev->external) {
6613 			printk(KERN_INFO "md: %s in immediate safe mode\n",
6614 			       mdname(mddev));
6615 			mddev->safemode = 2;
6616 		}
6617 		flush_signals(current);
6618 	}
6619 
6620 	if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
6621 		return;
6622 	if ( ! (
6623 		(mddev->flags && !mddev->external) ||
6624 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
6625 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
6626 		(mddev->external == 0 && mddev->safemode == 1) ||
6627 		(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
6628 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
6629 		))
6630 		return;
6631 
6632 	if (mddev_trylock(mddev)) {
6633 		int spares = 0;
6634 
6635 		if (mddev->ro) {
6636 			/* Only thing we do on a ro array is remove
6637 			 * failed devices.
6638 			 */
6639 			remove_and_add_spares(mddev);
6640 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6641 			goto unlock;
6642 		}
6643 
6644 		if (!mddev->external) {
6645 			int did_change = 0;
6646 			spin_lock_irq(&mddev->write_lock);
6647 			if (mddev->safemode &&
6648 			    !atomic_read(&mddev->writes_pending) &&
6649 			    !mddev->in_sync &&
6650 			    mddev->recovery_cp == MaxSector) {
6651 				mddev->in_sync = 1;
6652 				did_change = 1;
6653 				if (mddev->persistent)
6654 					set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6655 			}
6656 			if (mddev->safemode == 1)
6657 				mddev->safemode = 0;
6658 			spin_unlock_irq(&mddev->write_lock);
6659 			if (did_change)
6660 				sysfs_notify_dirent(mddev->sysfs_state);
6661 		}
6662 
6663 		if (mddev->flags)
6664 			md_update_sb(mddev, 0);
6665 
6666 		list_for_each_entry(rdev, &mddev->disks, same_set)
6667 			if (test_and_clear_bit(StateChanged, &rdev->flags))
6668 				sysfs_notify_dirent(rdev->sysfs_state);
6669 
6670 
6671 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
6672 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
6673 			/* resync/recovery still happening */
6674 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6675 			goto unlock;
6676 		}
6677 		if (mddev->sync_thread) {
6678 			/* resync has finished, collect result */
6679 			md_unregister_thread(mddev->sync_thread);
6680 			mddev->sync_thread = NULL;
6681 			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
6682 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
6683 				/* success...*/
6684 				/* activate any spares */
6685 				if (mddev->pers->spare_active(mddev))
6686 					sysfs_notify(&mddev->kobj, NULL,
6687 						     "degraded");
6688 			}
6689 			if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
6690 			    mddev->pers->finish_reshape)
6691 				mddev->pers->finish_reshape(mddev);
6692 			md_update_sb(mddev, 1);
6693 
6694 			/* if array is no-longer degraded, then any saved_raid_disk
6695 			 * information must be scrapped
6696 			 */
6697 			if (!mddev->degraded)
6698 				list_for_each_entry(rdev, &mddev->disks, same_set)
6699 					rdev->saved_raid_disk = -1;
6700 
6701 			mddev->recovery = 0;
6702 			/* flag recovery needed just to double check */
6703 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6704 			sysfs_notify_dirent(mddev->sysfs_action);
6705 			md_new_event(mddev);
6706 			goto unlock;
6707 		}
6708 		/* Set RUNNING before clearing NEEDED to avoid
6709 		 * any transients in the value of "sync_action".
6710 		 */
6711 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6712 		clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6713 		/* Clear some bits that don't mean anything, but
6714 		 * might be left set
6715 		 */
6716 		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
6717 		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
6718 
6719 		if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
6720 			goto unlock;
6721 		/* no recovery is running.
6722 		 * remove any failed drives, then
6723 		 * add spares if possible.
6724 		 * Spare are also removed and re-added, to allow
6725 		 * the personality to fail the re-add.
6726 		 */
6727 
6728 		if (mddev->reshape_position != MaxSector) {
6729 			if (mddev->pers->check_reshape == NULL ||
6730 			    mddev->pers->check_reshape(mddev) != 0)
6731 				/* Cannot proceed */
6732 				goto unlock;
6733 			set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6734 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6735 		} else if ((spares = remove_and_add_spares(mddev))) {
6736 			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6737 			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6738 			clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
6739 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6740 		} else if (mddev->recovery_cp < MaxSector) {
6741 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6742 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6743 		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
6744 			/* nothing to be done ... */
6745 			goto unlock;
6746 
6747 		if (mddev->pers->sync_request) {
6748 			if (spares && mddev->bitmap && ! mddev->bitmap->file) {
6749 				/* We are adding a device or devices to an array
6750 				 * which has the bitmap stored on all devices.
6751 				 * So make sure all bitmap pages get written
6752 				 */
6753 				bitmap_write_all(mddev->bitmap);
6754 			}
6755 			mddev->sync_thread = md_register_thread(md_do_sync,
6756 								mddev,
6757 								"resync");
6758 			if (!mddev->sync_thread) {
6759 				printk(KERN_ERR "%s: could not start resync"
6760 					" thread...\n",
6761 					mdname(mddev));
6762 				/* leave the spares where they are, it shouldn't hurt */
6763 				mddev->recovery = 0;
6764 			} else
6765 				md_wakeup_thread(mddev->sync_thread);
6766 			sysfs_notify_dirent(mddev->sysfs_action);
6767 			md_new_event(mddev);
6768 		}
6769 	unlock:
6770 		if (!mddev->sync_thread) {
6771 			clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6772 			if (test_and_clear_bit(MD_RECOVERY_RECOVER,
6773 					       &mddev->recovery))
6774 				if (mddev->sysfs_action)
6775 					sysfs_notify_dirent(mddev->sysfs_action);
6776 		}
6777 		mddev_unlock(mddev);
6778 	}
6779 }
6780 
6781 void md_wait_for_blocked_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
6782 {
6783 	sysfs_notify_dirent(rdev->sysfs_state);
6784 	wait_event_timeout(rdev->blocked_wait,
6785 			   !test_bit(Blocked, &rdev->flags),
6786 			   msecs_to_jiffies(5000));
6787 	rdev_dec_pending(rdev, mddev);
6788 }
6789 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
6790 
6791 static int md_notify_reboot(struct notifier_block *this,
6792 			    unsigned long code, void *x)
6793 {
6794 	struct list_head *tmp;
6795 	mddev_t *mddev;
6796 
6797 	if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
6798 
6799 		printk(KERN_INFO "md: stopping all md devices.\n");
6800 
6801 		for_each_mddev(mddev, tmp)
6802 			if (mddev_trylock(mddev)) {
6803 				/* Force a switch to readonly even array
6804 				 * appears to still be in use.  Hence
6805 				 * the '100'.
6806 				 */
6807 				do_md_stop(mddev, 1, 100);
6808 				mddev_unlock(mddev);
6809 			}
6810 		/*
6811 		 * certain more exotic SCSI devices are known to be
6812 		 * volatile wrt too early system reboots. While the
6813 		 * right place to handle this issue is the given
6814 		 * driver, we do want to have a safe RAID driver ...
6815 		 */
6816 		mdelay(1000*1);
6817 	}
6818 	return NOTIFY_DONE;
6819 }
6820 
6821 static struct notifier_block md_notifier = {
6822 	.notifier_call	= md_notify_reboot,
6823 	.next		= NULL,
6824 	.priority	= INT_MAX, /* before any real devices */
6825 };
6826 
6827 static void md_geninit(void)
6828 {
6829 	dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
6830 
6831 	proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
6832 }
6833 
6834 static int __init md_init(void)
6835 {
6836 	if (register_blkdev(MD_MAJOR, "md"))
6837 		return -1;
6838 	if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
6839 		unregister_blkdev(MD_MAJOR, "md");
6840 		return -1;
6841 	}
6842 	blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
6843 			    md_probe, NULL, NULL);
6844 	blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
6845 			    md_probe, NULL, NULL);
6846 
6847 	register_reboot_notifier(&md_notifier);
6848 	raid_table_header = register_sysctl_table(raid_root_table);
6849 
6850 	md_geninit();
6851 	return 0;
6852 }
6853 
6854 
6855 #ifndef MODULE
6856 
6857 /*
6858  * Searches all registered partitions for autorun RAID arrays
6859  * at boot time.
6860  */
6861 
6862 static LIST_HEAD(all_detected_devices);
6863 struct detected_devices_node {
6864 	struct list_head list;
6865 	dev_t dev;
6866 };
6867 
6868 void md_autodetect_dev(dev_t dev)
6869 {
6870 	struct detected_devices_node *node_detected_dev;
6871 
6872 	node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
6873 	if (node_detected_dev) {
6874 		node_detected_dev->dev = dev;
6875 		list_add_tail(&node_detected_dev->list, &all_detected_devices);
6876 	} else {
6877 		printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
6878 			", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
6879 	}
6880 }
6881 
6882 
6883 static void autostart_arrays(int part)
6884 {
6885 	mdk_rdev_t *rdev;
6886 	struct detected_devices_node *node_detected_dev;
6887 	dev_t dev;
6888 	int i_scanned, i_passed;
6889 
6890 	i_scanned = 0;
6891 	i_passed = 0;
6892 
6893 	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
6894 
6895 	while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
6896 		i_scanned++;
6897 		node_detected_dev = list_entry(all_detected_devices.next,
6898 					struct detected_devices_node, list);
6899 		list_del(&node_detected_dev->list);
6900 		dev = node_detected_dev->dev;
6901 		kfree(node_detected_dev);
6902 		rdev = md_import_device(dev,0, 90);
6903 		if (IS_ERR(rdev))
6904 			continue;
6905 
6906 		if (test_bit(Faulty, &rdev->flags)) {
6907 			MD_BUG();
6908 			continue;
6909 		}
6910 		set_bit(AutoDetected, &rdev->flags);
6911 		list_add(&rdev->same_set, &pending_raid_disks);
6912 		i_passed++;
6913 	}
6914 
6915 	printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
6916 						i_scanned, i_passed);
6917 
6918 	autorun_devices(part);
6919 }
6920 
6921 #endif /* !MODULE */
6922 
6923 static __exit void md_exit(void)
6924 {
6925 	mddev_t *mddev;
6926 	struct list_head *tmp;
6927 
6928 	blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
6929 	blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
6930 
6931 	unregister_blkdev(MD_MAJOR,"md");
6932 	unregister_blkdev(mdp_major, "mdp");
6933 	unregister_reboot_notifier(&md_notifier);
6934 	unregister_sysctl_table(raid_table_header);
6935 	remove_proc_entry("mdstat", NULL);
6936 	for_each_mddev(mddev, tmp) {
6937 		export_array(mddev);
6938 		mddev->hold_active = 0;
6939 	}
6940 }
6941 
6942 subsys_initcall(md_init);
6943 module_exit(md_exit)
6944 
6945 static int get_ro(char *buffer, struct kernel_param *kp)
6946 {
6947 	return sprintf(buffer, "%d", start_readonly);
6948 }
6949 static int set_ro(const char *val, struct kernel_param *kp)
6950 {
6951 	char *e;
6952 	int num = simple_strtoul(val, &e, 10);
6953 	if (*val && (*e == '\0' || *e == '\n')) {
6954 		start_readonly = num;
6955 		return 0;
6956 	}
6957 	return -EINVAL;
6958 }
6959 
6960 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
6961 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
6962 
6963 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
6964 
6965 EXPORT_SYMBOL(register_md_personality);
6966 EXPORT_SYMBOL(unregister_md_personality);
6967 EXPORT_SYMBOL(md_error);
6968 EXPORT_SYMBOL(md_done_sync);
6969 EXPORT_SYMBOL(md_write_start);
6970 EXPORT_SYMBOL(md_write_end);
6971 EXPORT_SYMBOL(md_register_thread);
6972 EXPORT_SYMBOL(md_unregister_thread);
6973 EXPORT_SYMBOL(md_wakeup_thread);
6974 EXPORT_SYMBOL(md_check_recovery);
6975 MODULE_LICENSE("GPL");
6976 MODULE_ALIAS("md");
6977 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
6978