1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 md.c : Multiple Devices driver for Linux 4 Copyright (C) 1998, 1999, 2000 Ingo Molnar 5 6 completely rewritten, based on the MD driver code from Marc Zyngier 7 8 Changes: 9 10 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar 11 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> 12 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> 13 - kerneld support by Boris Tobotras <boris@xtalk.msk.su> 14 - kmod support by: Cyrus Durgin 15 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> 16 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> 17 18 - lots of fixes and improvements to the RAID1/RAID5 and generic 19 RAID code (such as request based resynchronization): 20 21 Neil Brown <neilb@cse.unsw.edu.au>. 22 23 - persistent bitmap code 24 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. 25 26 27 Errors, Warnings, etc. 28 Please use: 29 pr_crit() for error conditions that risk data loss 30 pr_err() for error conditions that are unexpected, like an IO error 31 or internal inconsistency 32 pr_warn() for error conditions that could have been predicated, like 33 adding a device to an array when it has incompatible metadata 34 pr_info() for every interesting, very rare events, like an array starting 35 or stopping, or resync starting or stopping 36 pr_debug() for everything else. 37 38 */ 39 40 #include <linux/sched/mm.h> 41 #include <linux/sched/signal.h> 42 #include <linux/kthread.h> 43 #include <linux/blkdev.h> 44 #include <linux/blk-integrity.h> 45 #include <linux/badblocks.h> 46 #include <linux/sysctl.h> 47 #include <linux/seq_file.h> 48 #include <linux/fs.h> 49 #include <linux/poll.h> 50 #include <linux/ctype.h> 51 #include <linux/string.h> 52 #include <linux/hdreg.h> 53 #include <linux/proc_fs.h> 54 #include <linux/random.h> 55 #include <linux/major.h> 56 #include <linux/module.h> 57 #include <linux/reboot.h> 58 #include <linux/file.h> 59 #include <linux/compat.h> 60 #include <linux/delay.h> 61 #include <linux/raid/md_p.h> 62 #include <linux/raid/md_u.h> 63 #include <linux/raid/detect.h> 64 #include <linux/slab.h> 65 #include <linux/percpu-refcount.h> 66 #include <linux/part_stat.h> 67 68 #include <trace/events/block.h> 69 #include "md.h" 70 #include "md-bitmap.h" 71 #include "md-cluster.h" 72 73 /* pers_list is a list of registered personalities protected by pers_lock. */ 74 static LIST_HEAD(pers_list); 75 static DEFINE_SPINLOCK(pers_lock); 76 77 static const struct kobj_type md_ktype; 78 79 struct md_cluster_operations *md_cluster_ops; 80 EXPORT_SYMBOL(md_cluster_ops); 81 static struct module *md_cluster_mod; 82 83 static DECLARE_WAIT_QUEUE_HEAD(resync_wait); 84 static struct workqueue_struct *md_wq; 85 static struct workqueue_struct *md_misc_wq; 86 struct workqueue_struct *md_bitmap_wq; 87 88 static int remove_and_add_spares(struct mddev *mddev, 89 struct md_rdev *this); 90 static void mddev_detach(struct mddev *mddev); 91 static void export_rdev(struct md_rdev *rdev, struct mddev *mddev); 92 static void md_wakeup_thread_directly(struct md_thread __rcu *thread); 93 94 /* 95 * Default number of read corrections we'll attempt on an rdev 96 * before ejecting it from the array. We divide the read error 97 * count by 2 for every hour elapsed between read errors. 98 */ 99 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20 100 /* Default safemode delay: 200 msec */ 101 #define DEFAULT_SAFEMODE_DELAY ((200 * HZ)/1000 +1) 102 /* 103 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' 104 * is 1000 KB/sec, so the extra system load does not show up that much. 105 * Increase it if you want to have more _guaranteed_ speed. Note that 106 * the RAID driver will use the maximum available bandwidth if the IO 107 * subsystem is idle. There is also an 'absolute maximum' reconstruction 108 * speed limit - in case reconstruction slows down your system despite 109 * idle IO detection. 110 * 111 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. 112 * or /sys/block/mdX/md/sync_speed_{min,max} 113 */ 114 115 static int sysctl_speed_limit_min = 1000; 116 static int sysctl_speed_limit_max = 200000; 117 static inline int speed_min(struct mddev *mddev) 118 { 119 return mddev->sync_speed_min ? 120 mddev->sync_speed_min : sysctl_speed_limit_min; 121 } 122 123 static inline int speed_max(struct mddev *mddev) 124 { 125 return mddev->sync_speed_max ? 126 mddev->sync_speed_max : sysctl_speed_limit_max; 127 } 128 129 static void rdev_uninit_serial(struct md_rdev *rdev) 130 { 131 if (!test_and_clear_bit(CollisionCheck, &rdev->flags)) 132 return; 133 134 kvfree(rdev->serial); 135 rdev->serial = NULL; 136 } 137 138 static void rdevs_uninit_serial(struct mddev *mddev) 139 { 140 struct md_rdev *rdev; 141 142 rdev_for_each(rdev, mddev) 143 rdev_uninit_serial(rdev); 144 } 145 146 static int rdev_init_serial(struct md_rdev *rdev) 147 { 148 /* serial_nums equals with BARRIER_BUCKETS_NR */ 149 int i, serial_nums = 1 << ((PAGE_SHIFT - ilog2(sizeof(atomic_t)))); 150 struct serial_in_rdev *serial = NULL; 151 152 if (test_bit(CollisionCheck, &rdev->flags)) 153 return 0; 154 155 serial = kvmalloc(sizeof(struct serial_in_rdev) * serial_nums, 156 GFP_KERNEL); 157 if (!serial) 158 return -ENOMEM; 159 160 for (i = 0; i < serial_nums; i++) { 161 struct serial_in_rdev *serial_tmp = &serial[i]; 162 163 spin_lock_init(&serial_tmp->serial_lock); 164 serial_tmp->serial_rb = RB_ROOT_CACHED; 165 init_waitqueue_head(&serial_tmp->serial_io_wait); 166 } 167 168 rdev->serial = serial; 169 set_bit(CollisionCheck, &rdev->flags); 170 171 return 0; 172 } 173 174 static int rdevs_init_serial(struct mddev *mddev) 175 { 176 struct md_rdev *rdev; 177 int ret = 0; 178 179 rdev_for_each(rdev, mddev) { 180 ret = rdev_init_serial(rdev); 181 if (ret) 182 break; 183 } 184 185 /* Free all resources if pool is not existed */ 186 if (ret && !mddev->serial_info_pool) 187 rdevs_uninit_serial(mddev); 188 189 return ret; 190 } 191 192 /* 193 * rdev needs to enable serial stuffs if it meets the conditions: 194 * 1. it is multi-queue device flaged with writemostly. 195 * 2. the write-behind mode is enabled. 196 */ 197 static int rdev_need_serial(struct md_rdev *rdev) 198 { 199 return (rdev && rdev->mddev->bitmap_info.max_write_behind > 0 && 200 rdev->bdev->bd_disk->queue->nr_hw_queues != 1 && 201 test_bit(WriteMostly, &rdev->flags)); 202 } 203 204 /* 205 * Init resource for rdev(s), then create serial_info_pool if: 206 * 1. rdev is the first device which return true from rdev_enable_serial. 207 * 2. rdev is NULL, means we want to enable serialization for all rdevs. 208 */ 209 void mddev_create_serial_pool(struct mddev *mddev, struct md_rdev *rdev, 210 bool is_suspend) 211 { 212 int ret = 0; 213 214 if (rdev && !rdev_need_serial(rdev) && 215 !test_bit(CollisionCheck, &rdev->flags)) 216 return; 217 218 if (!is_suspend) 219 mddev_suspend(mddev); 220 221 if (!rdev) 222 ret = rdevs_init_serial(mddev); 223 else 224 ret = rdev_init_serial(rdev); 225 if (ret) 226 goto abort; 227 228 if (mddev->serial_info_pool == NULL) { 229 /* 230 * already in memalloc noio context by 231 * mddev_suspend() 232 */ 233 mddev->serial_info_pool = 234 mempool_create_kmalloc_pool(NR_SERIAL_INFOS, 235 sizeof(struct serial_info)); 236 if (!mddev->serial_info_pool) { 237 rdevs_uninit_serial(mddev); 238 pr_err("can't alloc memory pool for serialization\n"); 239 } 240 } 241 242 abort: 243 if (!is_suspend) 244 mddev_resume(mddev); 245 } 246 247 /* 248 * Free resource from rdev(s), and destroy serial_info_pool under conditions: 249 * 1. rdev is the last device flaged with CollisionCheck. 250 * 2. when bitmap is destroyed while policy is not enabled. 251 * 3. for disable policy, the pool is destroyed only when no rdev needs it. 252 */ 253 void mddev_destroy_serial_pool(struct mddev *mddev, struct md_rdev *rdev, 254 bool is_suspend) 255 { 256 if (rdev && !test_bit(CollisionCheck, &rdev->flags)) 257 return; 258 259 if (mddev->serial_info_pool) { 260 struct md_rdev *temp; 261 int num = 0; /* used to track if other rdevs need the pool */ 262 263 if (!is_suspend) 264 mddev_suspend(mddev); 265 rdev_for_each(temp, mddev) { 266 if (!rdev) { 267 if (!mddev->serialize_policy || 268 !rdev_need_serial(temp)) 269 rdev_uninit_serial(temp); 270 else 271 num++; 272 } else if (temp != rdev && 273 test_bit(CollisionCheck, &temp->flags)) 274 num++; 275 } 276 277 if (rdev) 278 rdev_uninit_serial(rdev); 279 280 if (num) 281 pr_info("The mempool could be used by other devices\n"); 282 else { 283 mempool_destroy(mddev->serial_info_pool); 284 mddev->serial_info_pool = NULL; 285 } 286 if (!is_suspend) 287 mddev_resume(mddev); 288 } 289 } 290 291 static struct ctl_table_header *raid_table_header; 292 293 static struct ctl_table raid_table[] = { 294 { 295 .procname = "speed_limit_min", 296 .data = &sysctl_speed_limit_min, 297 .maxlen = sizeof(int), 298 .mode = S_IRUGO|S_IWUSR, 299 .proc_handler = proc_dointvec, 300 }, 301 { 302 .procname = "speed_limit_max", 303 .data = &sysctl_speed_limit_max, 304 .maxlen = sizeof(int), 305 .mode = S_IRUGO|S_IWUSR, 306 .proc_handler = proc_dointvec, 307 }, 308 { } 309 }; 310 311 static int start_readonly; 312 313 /* 314 * The original mechanism for creating an md device is to create 315 * a device node in /dev and to open it. This causes races with device-close. 316 * The preferred method is to write to the "new_array" module parameter. 317 * This can avoid races. 318 * Setting create_on_open to false disables the original mechanism 319 * so all the races disappear. 320 */ 321 static bool create_on_open = true; 322 323 /* 324 * We have a system wide 'event count' that is incremented 325 * on any 'interesting' event, and readers of /proc/mdstat 326 * can use 'poll' or 'select' to find out when the event 327 * count increases. 328 * 329 * Events are: 330 * start array, stop array, error, add device, remove device, 331 * start build, activate spare 332 */ 333 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); 334 static atomic_t md_event_count; 335 void md_new_event(void) 336 { 337 atomic_inc(&md_event_count); 338 wake_up(&md_event_waiters); 339 } 340 EXPORT_SYMBOL_GPL(md_new_event); 341 342 /* 343 * Enables to iterate over all existing md arrays 344 * all_mddevs_lock protects this list. 345 */ 346 static LIST_HEAD(all_mddevs); 347 static DEFINE_SPINLOCK(all_mddevs_lock); 348 349 /* Rather than calling directly into the personality make_request function, 350 * IO requests come here first so that we can check if the device is 351 * being suspended pending a reconfiguration. 352 * We hold a refcount over the call to ->make_request. By the time that 353 * call has finished, the bio has been linked into some internal structure 354 * and so is visible to ->quiesce(), so we don't need the refcount any more. 355 */ 356 static bool is_suspended(struct mddev *mddev, struct bio *bio) 357 { 358 if (is_md_suspended(mddev)) 359 return true; 360 if (bio_data_dir(bio) != WRITE) 361 return false; 362 if (mddev->suspend_lo >= mddev->suspend_hi) 363 return false; 364 if (bio->bi_iter.bi_sector >= mddev->suspend_hi) 365 return false; 366 if (bio_end_sector(bio) < mddev->suspend_lo) 367 return false; 368 return true; 369 } 370 371 void md_handle_request(struct mddev *mddev, struct bio *bio) 372 { 373 check_suspended: 374 if (is_suspended(mddev, bio)) { 375 DEFINE_WAIT(__wait); 376 /* Bail out if REQ_NOWAIT is set for the bio */ 377 if (bio->bi_opf & REQ_NOWAIT) { 378 bio_wouldblock_error(bio); 379 return; 380 } 381 for (;;) { 382 prepare_to_wait(&mddev->sb_wait, &__wait, 383 TASK_UNINTERRUPTIBLE); 384 if (!is_suspended(mddev, bio)) 385 break; 386 schedule(); 387 } 388 finish_wait(&mddev->sb_wait, &__wait); 389 } 390 if (!percpu_ref_tryget_live(&mddev->active_io)) 391 goto check_suspended; 392 393 if (!mddev->pers->make_request(mddev, bio)) { 394 percpu_ref_put(&mddev->active_io); 395 goto check_suspended; 396 } 397 398 percpu_ref_put(&mddev->active_io); 399 } 400 EXPORT_SYMBOL(md_handle_request); 401 402 static void md_submit_bio(struct bio *bio) 403 { 404 const int rw = bio_data_dir(bio); 405 struct mddev *mddev = bio->bi_bdev->bd_disk->private_data; 406 407 if (mddev == NULL || mddev->pers == NULL) { 408 bio_io_error(bio); 409 return; 410 } 411 412 if (unlikely(test_bit(MD_BROKEN, &mddev->flags)) && (rw == WRITE)) { 413 bio_io_error(bio); 414 return; 415 } 416 417 bio = bio_split_to_limits(bio); 418 if (!bio) 419 return; 420 421 if (mddev->ro == MD_RDONLY && unlikely(rw == WRITE)) { 422 if (bio_sectors(bio) != 0) 423 bio->bi_status = BLK_STS_IOERR; 424 bio_endio(bio); 425 return; 426 } 427 428 /* bio could be mergeable after passing to underlayer */ 429 bio->bi_opf &= ~REQ_NOMERGE; 430 431 md_handle_request(mddev, bio); 432 } 433 434 /* mddev_suspend makes sure no new requests are submitted 435 * to the device, and that any requests that have been submitted 436 * are completely handled. 437 * Once mddev_detach() is called and completes, the module will be 438 * completely unused. 439 */ 440 void mddev_suspend(struct mddev *mddev) 441 { 442 struct md_thread *thread = rcu_dereference_protected(mddev->thread, 443 lockdep_is_held(&mddev->reconfig_mutex)); 444 445 WARN_ON_ONCE(thread && current == thread->tsk); 446 if (mddev->suspended++) 447 return; 448 wake_up(&mddev->sb_wait); 449 set_bit(MD_ALLOW_SB_UPDATE, &mddev->flags); 450 percpu_ref_kill(&mddev->active_io); 451 452 if (mddev->pers && mddev->pers->prepare_suspend) 453 mddev->pers->prepare_suspend(mddev); 454 455 wait_event(mddev->sb_wait, percpu_ref_is_zero(&mddev->active_io)); 456 clear_bit_unlock(MD_ALLOW_SB_UPDATE, &mddev->flags); 457 wait_event(mddev->sb_wait, !test_bit(MD_UPDATING_SB, &mddev->flags)); 458 459 del_timer_sync(&mddev->safemode_timer); 460 /* restrict memory reclaim I/O during raid array is suspend */ 461 mddev->noio_flag = memalloc_noio_save(); 462 } 463 EXPORT_SYMBOL_GPL(mddev_suspend); 464 465 void mddev_resume(struct mddev *mddev) 466 { 467 lockdep_assert_held(&mddev->reconfig_mutex); 468 if (--mddev->suspended) 469 return; 470 471 /* entred the memalloc scope from mddev_suspend() */ 472 memalloc_noio_restore(mddev->noio_flag); 473 474 percpu_ref_resurrect(&mddev->active_io); 475 wake_up(&mddev->sb_wait); 476 477 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 478 md_wakeup_thread(mddev->thread); 479 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 480 } 481 EXPORT_SYMBOL_GPL(mddev_resume); 482 483 /* 484 * Generic flush handling for md 485 */ 486 487 static void md_end_flush(struct bio *bio) 488 { 489 struct md_rdev *rdev = bio->bi_private; 490 struct mddev *mddev = rdev->mddev; 491 492 bio_put(bio); 493 494 rdev_dec_pending(rdev, mddev); 495 496 if (atomic_dec_and_test(&mddev->flush_pending)) { 497 /* The pair is percpu_ref_get() from md_flush_request() */ 498 percpu_ref_put(&mddev->active_io); 499 500 /* The pre-request flush has finished */ 501 queue_work(md_wq, &mddev->flush_work); 502 } 503 } 504 505 static void md_submit_flush_data(struct work_struct *ws); 506 507 static void submit_flushes(struct work_struct *ws) 508 { 509 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 510 struct md_rdev *rdev; 511 512 mddev->start_flush = ktime_get_boottime(); 513 INIT_WORK(&mddev->flush_work, md_submit_flush_data); 514 atomic_set(&mddev->flush_pending, 1); 515 rcu_read_lock(); 516 rdev_for_each_rcu(rdev, mddev) 517 if (rdev->raid_disk >= 0 && 518 !test_bit(Faulty, &rdev->flags)) { 519 struct bio *bi; 520 521 atomic_inc(&rdev->nr_pending); 522 rcu_read_unlock(); 523 bi = bio_alloc_bioset(rdev->bdev, 0, 524 REQ_OP_WRITE | REQ_PREFLUSH, 525 GFP_NOIO, &mddev->bio_set); 526 bi->bi_end_io = md_end_flush; 527 bi->bi_private = rdev; 528 atomic_inc(&mddev->flush_pending); 529 submit_bio(bi); 530 rcu_read_lock(); 531 } 532 rcu_read_unlock(); 533 if (atomic_dec_and_test(&mddev->flush_pending)) { 534 /* The pair is percpu_ref_get() from md_flush_request() */ 535 percpu_ref_put(&mddev->active_io); 536 537 queue_work(md_wq, &mddev->flush_work); 538 } 539 } 540 541 static void md_submit_flush_data(struct work_struct *ws) 542 { 543 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 544 struct bio *bio = mddev->flush_bio; 545 546 /* 547 * must reset flush_bio before calling into md_handle_request to avoid a 548 * deadlock, because other bios passed md_handle_request suspend check 549 * could wait for this and below md_handle_request could wait for those 550 * bios because of suspend check 551 */ 552 spin_lock_irq(&mddev->lock); 553 mddev->prev_flush_start = mddev->start_flush; 554 mddev->flush_bio = NULL; 555 spin_unlock_irq(&mddev->lock); 556 wake_up(&mddev->sb_wait); 557 558 if (bio->bi_iter.bi_size == 0) { 559 /* an empty barrier - all done */ 560 bio_endio(bio); 561 } else { 562 bio->bi_opf &= ~REQ_PREFLUSH; 563 md_handle_request(mddev, bio); 564 } 565 } 566 567 /* 568 * Manages consolidation of flushes and submitting any flushes needed for 569 * a bio with REQ_PREFLUSH. Returns true if the bio is finished or is 570 * being finished in another context. Returns false if the flushing is 571 * complete but still needs the I/O portion of the bio to be processed. 572 */ 573 bool md_flush_request(struct mddev *mddev, struct bio *bio) 574 { 575 ktime_t req_start = ktime_get_boottime(); 576 spin_lock_irq(&mddev->lock); 577 /* flush requests wait until ongoing flush completes, 578 * hence coalescing all the pending requests. 579 */ 580 wait_event_lock_irq(mddev->sb_wait, 581 !mddev->flush_bio || 582 ktime_before(req_start, mddev->prev_flush_start), 583 mddev->lock); 584 /* new request after previous flush is completed */ 585 if (ktime_after(req_start, mddev->prev_flush_start)) { 586 WARN_ON(mddev->flush_bio); 587 /* 588 * Grab a reference to make sure mddev_suspend() will wait for 589 * this flush to be done. 590 * 591 * md_flush_reqeust() is called under md_handle_request() and 592 * 'active_io' is already grabbed, hence percpu_ref_is_zero() 593 * won't pass, percpu_ref_tryget_live() can't be used because 594 * percpu_ref_kill() can be called by mddev_suspend() 595 * concurrently. 596 */ 597 WARN_ON(percpu_ref_is_zero(&mddev->active_io)); 598 percpu_ref_get(&mddev->active_io); 599 mddev->flush_bio = bio; 600 bio = NULL; 601 } 602 spin_unlock_irq(&mddev->lock); 603 604 if (!bio) { 605 INIT_WORK(&mddev->flush_work, submit_flushes); 606 queue_work(md_wq, &mddev->flush_work); 607 } else { 608 /* flush was performed for some other bio while we waited. */ 609 if (bio->bi_iter.bi_size == 0) 610 /* an empty barrier - all done */ 611 bio_endio(bio); 612 else { 613 bio->bi_opf &= ~REQ_PREFLUSH; 614 return false; 615 } 616 } 617 return true; 618 } 619 EXPORT_SYMBOL(md_flush_request); 620 621 static inline struct mddev *mddev_get(struct mddev *mddev) 622 { 623 lockdep_assert_held(&all_mddevs_lock); 624 625 if (test_bit(MD_DELETED, &mddev->flags)) 626 return NULL; 627 atomic_inc(&mddev->active); 628 return mddev; 629 } 630 631 static void mddev_delayed_delete(struct work_struct *ws); 632 633 void mddev_put(struct mddev *mddev) 634 { 635 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) 636 return; 637 if (!mddev->raid_disks && list_empty(&mddev->disks) && 638 mddev->ctime == 0 && !mddev->hold_active) { 639 /* Array is not configured at all, and not held active, 640 * so destroy it */ 641 set_bit(MD_DELETED, &mddev->flags); 642 643 /* 644 * Call queue_work inside the spinlock so that 645 * flush_workqueue() after mddev_find will succeed in waiting 646 * for the work to be done. 647 */ 648 INIT_WORK(&mddev->del_work, mddev_delayed_delete); 649 queue_work(md_misc_wq, &mddev->del_work); 650 } 651 spin_unlock(&all_mddevs_lock); 652 } 653 654 static void md_safemode_timeout(struct timer_list *t); 655 656 void mddev_init(struct mddev *mddev) 657 { 658 mutex_init(&mddev->open_mutex); 659 mutex_init(&mddev->reconfig_mutex); 660 mutex_init(&mddev->sync_mutex); 661 mutex_init(&mddev->bitmap_info.mutex); 662 INIT_LIST_HEAD(&mddev->disks); 663 INIT_LIST_HEAD(&mddev->all_mddevs); 664 INIT_LIST_HEAD(&mddev->deleting); 665 timer_setup(&mddev->safemode_timer, md_safemode_timeout, 0); 666 atomic_set(&mddev->active, 1); 667 atomic_set(&mddev->openers, 0); 668 atomic_set(&mddev->sync_seq, 0); 669 spin_lock_init(&mddev->lock); 670 atomic_set(&mddev->flush_pending, 0); 671 init_waitqueue_head(&mddev->sb_wait); 672 init_waitqueue_head(&mddev->recovery_wait); 673 mddev->reshape_position = MaxSector; 674 mddev->reshape_backwards = 0; 675 mddev->last_sync_action = "none"; 676 mddev->resync_min = 0; 677 mddev->resync_max = MaxSector; 678 mddev->level = LEVEL_NONE; 679 } 680 EXPORT_SYMBOL_GPL(mddev_init); 681 682 static struct mddev *mddev_find_locked(dev_t unit) 683 { 684 struct mddev *mddev; 685 686 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 687 if (mddev->unit == unit) 688 return mddev; 689 690 return NULL; 691 } 692 693 /* find an unused unit number */ 694 static dev_t mddev_alloc_unit(void) 695 { 696 static int next_minor = 512; 697 int start = next_minor; 698 bool is_free = 0; 699 dev_t dev = 0; 700 701 while (!is_free) { 702 dev = MKDEV(MD_MAJOR, next_minor); 703 next_minor++; 704 if (next_minor > MINORMASK) 705 next_minor = 0; 706 if (next_minor == start) 707 return 0; /* Oh dear, all in use. */ 708 is_free = !mddev_find_locked(dev); 709 } 710 711 return dev; 712 } 713 714 static struct mddev *mddev_alloc(dev_t unit) 715 { 716 struct mddev *new; 717 int error; 718 719 if (unit && MAJOR(unit) != MD_MAJOR) 720 unit &= ~((1 << MdpMinorShift) - 1); 721 722 new = kzalloc(sizeof(*new), GFP_KERNEL); 723 if (!new) 724 return ERR_PTR(-ENOMEM); 725 mddev_init(new); 726 727 spin_lock(&all_mddevs_lock); 728 if (unit) { 729 error = -EEXIST; 730 if (mddev_find_locked(unit)) 731 goto out_free_new; 732 new->unit = unit; 733 if (MAJOR(unit) == MD_MAJOR) 734 new->md_minor = MINOR(unit); 735 else 736 new->md_minor = MINOR(unit) >> MdpMinorShift; 737 new->hold_active = UNTIL_IOCTL; 738 } else { 739 error = -ENODEV; 740 new->unit = mddev_alloc_unit(); 741 if (!new->unit) 742 goto out_free_new; 743 new->md_minor = MINOR(new->unit); 744 new->hold_active = UNTIL_STOP; 745 } 746 747 list_add(&new->all_mddevs, &all_mddevs); 748 spin_unlock(&all_mddevs_lock); 749 return new; 750 out_free_new: 751 spin_unlock(&all_mddevs_lock); 752 kfree(new); 753 return ERR_PTR(error); 754 } 755 756 static void mddev_free(struct mddev *mddev) 757 { 758 spin_lock(&all_mddevs_lock); 759 list_del(&mddev->all_mddevs); 760 spin_unlock(&all_mddevs_lock); 761 762 kfree(mddev); 763 } 764 765 static const struct attribute_group md_redundancy_group; 766 767 void mddev_unlock(struct mddev *mddev) 768 { 769 struct md_rdev *rdev; 770 struct md_rdev *tmp; 771 LIST_HEAD(delete); 772 773 if (!list_empty(&mddev->deleting)) 774 list_splice_init(&mddev->deleting, &delete); 775 776 if (mddev->to_remove) { 777 /* These cannot be removed under reconfig_mutex as 778 * an access to the files will try to take reconfig_mutex 779 * while holding the file unremovable, which leads to 780 * a deadlock. 781 * So hold set sysfs_active while the remove in happeing, 782 * and anything else which might set ->to_remove or my 783 * otherwise change the sysfs namespace will fail with 784 * -EBUSY if sysfs_active is still set. 785 * We set sysfs_active under reconfig_mutex and elsewhere 786 * test it under the same mutex to ensure its correct value 787 * is seen. 788 */ 789 const struct attribute_group *to_remove = mddev->to_remove; 790 mddev->to_remove = NULL; 791 mddev->sysfs_active = 1; 792 mutex_unlock(&mddev->reconfig_mutex); 793 794 if (mddev->kobj.sd) { 795 if (to_remove != &md_redundancy_group) 796 sysfs_remove_group(&mddev->kobj, to_remove); 797 if (mddev->pers == NULL || 798 mddev->pers->sync_request == NULL) { 799 sysfs_remove_group(&mddev->kobj, &md_redundancy_group); 800 if (mddev->sysfs_action) 801 sysfs_put(mddev->sysfs_action); 802 if (mddev->sysfs_completed) 803 sysfs_put(mddev->sysfs_completed); 804 if (mddev->sysfs_degraded) 805 sysfs_put(mddev->sysfs_degraded); 806 mddev->sysfs_action = NULL; 807 mddev->sysfs_completed = NULL; 808 mddev->sysfs_degraded = NULL; 809 } 810 } 811 mddev->sysfs_active = 0; 812 } else 813 mutex_unlock(&mddev->reconfig_mutex); 814 815 md_wakeup_thread(mddev->thread); 816 wake_up(&mddev->sb_wait); 817 818 list_for_each_entry_safe(rdev, tmp, &delete, same_set) { 819 list_del_init(&rdev->same_set); 820 kobject_del(&rdev->kobj); 821 export_rdev(rdev, mddev); 822 } 823 } 824 EXPORT_SYMBOL_GPL(mddev_unlock); 825 826 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr) 827 { 828 struct md_rdev *rdev; 829 830 rdev_for_each_rcu(rdev, mddev) 831 if (rdev->desc_nr == nr) 832 return rdev; 833 834 return NULL; 835 } 836 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu); 837 838 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev) 839 { 840 struct md_rdev *rdev; 841 842 rdev_for_each(rdev, mddev) 843 if (rdev->bdev->bd_dev == dev) 844 return rdev; 845 846 return NULL; 847 } 848 849 struct md_rdev *md_find_rdev_rcu(struct mddev *mddev, dev_t dev) 850 { 851 struct md_rdev *rdev; 852 853 rdev_for_each_rcu(rdev, mddev) 854 if (rdev->bdev->bd_dev == dev) 855 return rdev; 856 857 return NULL; 858 } 859 EXPORT_SYMBOL_GPL(md_find_rdev_rcu); 860 861 static struct md_personality *find_pers(int level, char *clevel) 862 { 863 struct md_personality *pers; 864 list_for_each_entry(pers, &pers_list, list) { 865 if (level != LEVEL_NONE && pers->level == level) 866 return pers; 867 if (strcmp(pers->name, clevel)==0) 868 return pers; 869 } 870 return NULL; 871 } 872 873 /* return the offset of the super block in 512byte sectors */ 874 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev) 875 { 876 return MD_NEW_SIZE_SECTORS(bdev_nr_sectors(rdev->bdev)); 877 } 878 879 static int alloc_disk_sb(struct md_rdev *rdev) 880 { 881 rdev->sb_page = alloc_page(GFP_KERNEL); 882 if (!rdev->sb_page) 883 return -ENOMEM; 884 return 0; 885 } 886 887 void md_rdev_clear(struct md_rdev *rdev) 888 { 889 if (rdev->sb_page) { 890 put_page(rdev->sb_page); 891 rdev->sb_loaded = 0; 892 rdev->sb_page = NULL; 893 rdev->sb_start = 0; 894 rdev->sectors = 0; 895 } 896 if (rdev->bb_page) { 897 put_page(rdev->bb_page); 898 rdev->bb_page = NULL; 899 } 900 badblocks_exit(&rdev->badblocks); 901 } 902 EXPORT_SYMBOL_GPL(md_rdev_clear); 903 904 static void super_written(struct bio *bio) 905 { 906 struct md_rdev *rdev = bio->bi_private; 907 struct mddev *mddev = rdev->mddev; 908 909 if (bio->bi_status) { 910 pr_err("md: %s gets error=%d\n", __func__, 911 blk_status_to_errno(bio->bi_status)); 912 md_error(mddev, rdev); 913 if (!test_bit(Faulty, &rdev->flags) 914 && (bio->bi_opf & MD_FAILFAST)) { 915 set_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags); 916 set_bit(LastDev, &rdev->flags); 917 } 918 } else 919 clear_bit(LastDev, &rdev->flags); 920 921 bio_put(bio); 922 923 rdev_dec_pending(rdev, mddev); 924 925 if (atomic_dec_and_test(&mddev->pending_writes)) 926 wake_up(&mddev->sb_wait); 927 } 928 929 void md_super_write(struct mddev *mddev, struct md_rdev *rdev, 930 sector_t sector, int size, struct page *page) 931 { 932 /* write first size bytes of page to sector of rdev 933 * Increment mddev->pending_writes before returning 934 * and decrement it on completion, waking up sb_wait 935 * if zero is reached. 936 * If an error occurred, call md_error 937 */ 938 struct bio *bio; 939 940 if (!page) 941 return; 942 943 if (test_bit(Faulty, &rdev->flags)) 944 return; 945 946 bio = bio_alloc_bioset(rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev, 947 1, 948 REQ_OP_WRITE | REQ_SYNC | REQ_IDLE | REQ_META 949 | REQ_PREFLUSH | REQ_FUA, 950 GFP_NOIO, &mddev->sync_set); 951 952 atomic_inc(&rdev->nr_pending); 953 954 bio->bi_iter.bi_sector = sector; 955 __bio_add_page(bio, page, size, 0); 956 bio->bi_private = rdev; 957 bio->bi_end_io = super_written; 958 959 if (test_bit(MD_FAILFAST_SUPPORTED, &mddev->flags) && 960 test_bit(FailFast, &rdev->flags) && 961 !test_bit(LastDev, &rdev->flags)) 962 bio->bi_opf |= MD_FAILFAST; 963 964 atomic_inc(&mddev->pending_writes); 965 submit_bio(bio); 966 } 967 968 int md_super_wait(struct mddev *mddev) 969 { 970 /* wait for all superblock writes that were scheduled to complete */ 971 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0); 972 if (test_and_clear_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags)) 973 return -EAGAIN; 974 return 0; 975 } 976 977 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size, 978 struct page *page, blk_opf_t opf, bool metadata_op) 979 { 980 struct bio bio; 981 struct bio_vec bvec; 982 983 if (metadata_op && rdev->meta_bdev) 984 bio_init(&bio, rdev->meta_bdev, &bvec, 1, opf); 985 else 986 bio_init(&bio, rdev->bdev, &bvec, 1, opf); 987 988 if (metadata_op) 989 bio.bi_iter.bi_sector = sector + rdev->sb_start; 990 else if (rdev->mddev->reshape_position != MaxSector && 991 (rdev->mddev->reshape_backwards == 992 (sector >= rdev->mddev->reshape_position))) 993 bio.bi_iter.bi_sector = sector + rdev->new_data_offset; 994 else 995 bio.bi_iter.bi_sector = sector + rdev->data_offset; 996 __bio_add_page(&bio, page, size, 0); 997 998 submit_bio_wait(&bio); 999 1000 return !bio.bi_status; 1001 } 1002 EXPORT_SYMBOL_GPL(sync_page_io); 1003 1004 static int read_disk_sb(struct md_rdev *rdev, int size) 1005 { 1006 if (rdev->sb_loaded) 1007 return 0; 1008 1009 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, true)) 1010 goto fail; 1011 rdev->sb_loaded = 1; 1012 return 0; 1013 1014 fail: 1015 pr_err("md: disabled device %pg, could not read superblock.\n", 1016 rdev->bdev); 1017 return -EINVAL; 1018 } 1019 1020 static int md_uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) 1021 { 1022 return sb1->set_uuid0 == sb2->set_uuid0 && 1023 sb1->set_uuid1 == sb2->set_uuid1 && 1024 sb1->set_uuid2 == sb2->set_uuid2 && 1025 sb1->set_uuid3 == sb2->set_uuid3; 1026 } 1027 1028 static int md_sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) 1029 { 1030 int ret; 1031 mdp_super_t *tmp1, *tmp2; 1032 1033 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); 1034 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); 1035 1036 if (!tmp1 || !tmp2) { 1037 ret = 0; 1038 goto abort; 1039 } 1040 1041 *tmp1 = *sb1; 1042 *tmp2 = *sb2; 1043 1044 /* 1045 * nr_disks is not constant 1046 */ 1047 tmp1->nr_disks = 0; 1048 tmp2->nr_disks = 0; 1049 1050 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0); 1051 abort: 1052 kfree(tmp1); 1053 kfree(tmp2); 1054 return ret; 1055 } 1056 1057 static u32 md_csum_fold(u32 csum) 1058 { 1059 csum = (csum & 0xffff) + (csum >> 16); 1060 return (csum & 0xffff) + (csum >> 16); 1061 } 1062 1063 static unsigned int calc_sb_csum(mdp_super_t *sb) 1064 { 1065 u64 newcsum = 0; 1066 u32 *sb32 = (u32*)sb; 1067 int i; 1068 unsigned int disk_csum, csum; 1069 1070 disk_csum = sb->sb_csum; 1071 sb->sb_csum = 0; 1072 1073 for (i = 0; i < MD_SB_BYTES/4 ; i++) 1074 newcsum += sb32[i]; 1075 csum = (newcsum & 0xffffffff) + (newcsum>>32); 1076 1077 #ifdef CONFIG_ALPHA 1078 /* This used to use csum_partial, which was wrong for several 1079 * reasons including that different results are returned on 1080 * different architectures. It isn't critical that we get exactly 1081 * the same return value as before (we always csum_fold before 1082 * testing, and that removes any differences). However as we 1083 * know that csum_partial always returned a 16bit value on 1084 * alphas, do a fold to maximise conformity to previous behaviour. 1085 */ 1086 sb->sb_csum = md_csum_fold(disk_csum); 1087 #else 1088 sb->sb_csum = disk_csum; 1089 #endif 1090 return csum; 1091 } 1092 1093 /* 1094 * Handle superblock details. 1095 * We want to be able to handle multiple superblock formats 1096 * so we have a common interface to them all, and an array of 1097 * different handlers. 1098 * We rely on user-space to write the initial superblock, and support 1099 * reading and updating of superblocks. 1100 * Interface methods are: 1101 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version) 1102 * loads and validates a superblock on dev. 1103 * if refdev != NULL, compare superblocks on both devices 1104 * Return: 1105 * 0 - dev has a superblock that is compatible with refdev 1106 * 1 - dev has a superblock that is compatible and newer than refdev 1107 * so dev should be used as the refdev in future 1108 * -EINVAL superblock incompatible or invalid 1109 * -othererror e.g. -EIO 1110 * 1111 * int validate_super(struct mddev *mddev, struct md_rdev *dev) 1112 * Verify that dev is acceptable into mddev. 1113 * The first time, mddev->raid_disks will be 0, and data from 1114 * dev should be merged in. Subsequent calls check that dev 1115 * is new enough. Return 0 or -EINVAL 1116 * 1117 * void sync_super(struct mddev *mddev, struct md_rdev *dev) 1118 * Update the superblock for rdev with data in mddev 1119 * This does not write to disc. 1120 * 1121 */ 1122 1123 struct super_type { 1124 char *name; 1125 struct module *owner; 1126 int (*load_super)(struct md_rdev *rdev, 1127 struct md_rdev *refdev, 1128 int minor_version); 1129 int (*validate_super)(struct mddev *mddev, 1130 struct md_rdev *freshest, 1131 struct md_rdev *rdev); 1132 void (*sync_super)(struct mddev *mddev, 1133 struct md_rdev *rdev); 1134 unsigned long long (*rdev_size_change)(struct md_rdev *rdev, 1135 sector_t num_sectors); 1136 int (*allow_new_offset)(struct md_rdev *rdev, 1137 unsigned long long new_offset); 1138 }; 1139 1140 /* 1141 * Check that the given mddev has no bitmap. 1142 * 1143 * This function is called from the run method of all personalities that do not 1144 * support bitmaps. It prints an error message and returns non-zero if mddev 1145 * has a bitmap. Otherwise, it returns 0. 1146 * 1147 */ 1148 int md_check_no_bitmap(struct mddev *mddev) 1149 { 1150 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset) 1151 return 0; 1152 pr_warn("%s: bitmaps are not supported for %s\n", 1153 mdname(mddev), mddev->pers->name); 1154 return 1; 1155 } 1156 EXPORT_SYMBOL(md_check_no_bitmap); 1157 1158 /* 1159 * load_super for 0.90.0 1160 */ 1161 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1162 { 1163 mdp_super_t *sb; 1164 int ret; 1165 bool spare_disk = true; 1166 1167 /* 1168 * Calculate the position of the superblock (512byte sectors), 1169 * it's at the end of the disk. 1170 * 1171 * It also happens to be a multiple of 4Kb. 1172 */ 1173 rdev->sb_start = calc_dev_sboffset(rdev); 1174 1175 ret = read_disk_sb(rdev, MD_SB_BYTES); 1176 if (ret) 1177 return ret; 1178 1179 ret = -EINVAL; 1180 1181 sb = page_address(rdev->sb_page); 1182 1183 if (sb->md_magic != MD_SB_MAGIC) { 1184 pr_warn("md: invalid raid superblock magic on %pg\n", 1185 rdev->bdev); 1186 goto abort; 1187 } 1188 1189 if (sb->major_version != 0 || 1190 sb->minor_version < 90 || 1191 sb->minor_version > 91) { 1192 pr_warn("Bad version number %d.%d on %pg\n", 1193 sb->major_version, sb->minor_version, rdev->bdev); 1194 goto abort; 1195 } 1196 1197 if (sb->raid_disks <= 0) 1198 goto abort; 1199 1200 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) { 1201 pr_warn("md: invalid superblock checksum on %pg\n", rdev->bdev); 1202 goto abort; 1203 } 1204 1205 rdev->preferred_minor = sb->md_minor; 1206 rdev->data_offset = 0; 1207 rdev->new_data_offset = 0; 1208 rdev->sb_size = MD_SB_BYTES; 1209 rdev->badblocks.shift = -1; 1210 1211 if (sb->level == LEVEL_MULTIPATH) 1212 rdev->desc_nr = -1; 1213 else 1214 rdev->desc_nr = sb->this_disk.number; 1215 1216 /* not spare disk, or LEVEL_MULTIPATH */ 1217 if (sb->level == LEVEL_MULTIPATH || 1218 (rdev->desc_nr >= 0 && 1219 rdev->desc_nr < MD_SB_DISKS && 1220 sb->disks[rdev->desc_nr].state & 1221 ((1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))) 1222 spare_disk = false; 1223 1224 if (!refdev) { 1225 if (!spare_disk) 1226 ret = 1; 1227 else 1228 ret = 0; 1229 } else { 1230 __u64 ev1, ev2; 1231 mdp_super_t *refsb = page_address(refdev->sb_page); 1232 if (!md_uuid_equal(refsb, sb)) { 1233 pr_warn("md: %pg has different UUID to %pg\n", 1234 rdev->bdev, refdev->bdev); 1235 goto abort; 1236 } 1237 if (!md_sb_equal(refsb, sb)) { 1238 pr_warn("md: %pg has same UUID but different superblock to %pg\n", 1239 rdev->bdev, refdev->bdev); 1240 goto abort; 1241 } 1242 ev1 = md_event(sb); 1243 ev2 = md_event(refsb); 1244 1245 if (!spare_disk && ev1 > ev2) 1246 ret = 1; 1247 else 1248 ret = 0; 1249 } 1250 rdev->sectors = rdev->sb_start; 1251 /* Limit to 4TB as metadata cannot record more than that. 1252 * (not needed for Linear and RAID0 as metadata doesn't 1253 * record this size) 1254 */ 1255 if ((u64)rdev->sectors >= (2ULL << 32) && sb->level >= 1) 1256 rdev->sectors = (sector_t)(2ULL << 32) - 2; 1257 1258 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1) 1259 /* "this cannot possibly happen" ... */ 1260 ret = -EINVAL; 1261 1262 abort: 1263 return ret; 1264 } 1265 1266 /* 1267 * validate_super for 0.90.0 1268 * note: we are not using "freshest" for 0.9 superblock 1269 */ 1270 static int super_90_validate(struct mddev *mddev, struct md_rdev *freshest, struct md_rdev *rdev) 1271 { 1272 mdp_disk_t *desc; 1273 mdp_super_t *sb = page_address(rdev->sb_page); 1274 __u64 ev1 = md_event(sb); 1275 1276 rdev->raid_disk = -1; 1277 clear_bit(Faulty, &rdev->flags); 1278 clear_bit(In_sync, &rdev->flags); 1279 clear_bit(Bitmap_sync, &rdev->flags); 1280 clear_bit(WriteMostly, &rdev->flags); 1281 1282 if (mddev->raid_disks == 0) { 1283 mddev->major_version = 0; 1284 mddev->minor_version = sb->minor_version; 1285 mddev->patch_version = sb->patch_version; 1286 mddev->external = 0; 1287 mddev->chunk_sectors = sb->chunk_size >> 9; 1288 mddev->ctime = sb->ctime; 1289 mddev->utime = sb->utime; 1290 mddev->level = sb->level; 1291 mddev->clevel[0] = 0; 1292 mddev->layout = sb->layout; 1293 mddev->raid_disks = sb->raid_disks; 1294 mddev->dev_sectors = ((sector_t)sb->size) * 2; 1295 mddev->events = ev1; 1296 mddev->bitmap_info.offset = 0; 1297 mddev->bitmap_info.space = 0; 1298 /* bitmap can use 60 K after the 4K superblocks */ 1299 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 1300 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 1301 mddev->reshape_backwards = 0; 1302 1303 if (mddev->minor_version >= 91) { 1304 mddev->reshape_position = sb->reshape_position; 1305 mddev->delta_disks = sb->delta_disks; 1306 mddev->new_level = sb->new_level; 1307 mddev->new_layout = sb->new_layout; 1308 mddev->new_chunk_sectors = sb->new_chunk >> 9; 1309 if (mddev->delta_disks < 0) 1310 mddev->reshape_backwards = 1; 1311 } else { 1312 mddev->reshape_position = MaxSector; 1313 mddev->delta_disks = 0; 1314 mddev->new_level = mddev->level; 1315 mddev->new_layout = mddev->layout; 1316 mddev->new_chunk_sectors = mddev->chunk_sectors; 1317 } 1318 if (mddev->level == 0) 1319 mddev->layout = -1; 1320 1321 if (sb->state & (1<<MD_SB_CLEAN)) 1322 mddev->recovery_cp = MaxSector; 1323 else { 1324 if (sb->events_hi == sb->cp_events_hi && 1325 sb->events_lo == sb->cp_events_lo) { 1326 mddev->recovery_cp = sb->recovery_cp; 1327 } else 1328 mddev->recovery_cp = 0; 1329 } 1330 1331 memcpy(mddev->uuid+0, &sb->set_uuid0, 4); 1332 memcpy(mddev->uuid+4, &sb->set_uuid1, 4); 1333 memcpy(mddev->uuid+8, &sb->set_uuid2, 4); 1334 memcpy(mddev->uuid+12,&sb->set_uuid3, 4); 1335 1336 mddev->max_disks = MD_SB_DISKS; 1337 1338 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && 1339 mddev->bitmap_info.file == NULL) { 1340 mddev->bitmap_info.offset = 1341 mddev->bitmap_info.default_offset; 1342 mddev->bitmap_info.space = 1343 mddev->bitmap_info.default_space; 1344 } 1345 1346 } else if (mddev->pers == NULL) { 1347 /* Insist on good event counter while assembling, except 1348 * for spares (which don't need an event count) */ 1349 ++ev1; 1350 if (sb->disks[rdev->desc_nr].state & ( 1351 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))) 1352 if (ev1 < mddev->events) 1353 return -EINVAL; 1354 } else if (mddev->bitmap) { 1355 /* if adding to array with a bitmap, then we can accept an 1356 * older device ... but not too old. 1357 */ 1358 if (ev1 < mddev->bitmap->events_cleared) 1359 return 0; 1360 if (ev1 < mddev->events) 1361 set_bit(Bitmap_sync, &rdev->flags); 1362 } else { 1363 if (ev1 < mddev->events) 1364 /* just a hot-add of a new device, leave raid_disk at -1 */ 1365 return 0; 1366 } 1367 1368 if (mddev->level != LEVEL_MULTIPATH) { 1369 desc = sb->disks + rdev->desc_nr; 1370 1371 if (desc->state & (1<<MD_DISK_FAULTY)) 1372 set_bit(Faulty, &rdev->flags); 1373 else if (desc->state & (1<<MD_DISK_SYNC) /* && 1374 desc->raid_disk < mddev->raid_disks */) { 1375 set_bit(In_sync, &rdev->flags); 1376 rdev->raid_disk = desc->raid_disk; 1377 rdev->saved_raid_disk = desc->raid_disk; 1378 } else if (desc->state & (1<<MD_DISK_ACTIVE)) { 1379 /* active but not in sync implies recovery up to 1380 * reshape position. We don't know exactly where 1381 * that is, so set to zero for now */ 1382 if (mddev->minor_version >= 91) { 1383 rdev->recovery_offset = 0; 1384 rdev->raid_disk = desc->raid_disk; 1385 } 1386 } 1387 if (desc->state & (1<<MD_DISK_WRITEMOSTLY)) 1388 set_bit(WriteMostly, &rdev->flags); 1389 if (desc->state & (1<<MD_DISK_FAILFAST)) 1390 set_bit(FailFast, &rdev->flags); 1391 } else /* MULTIPATH are always insync */ 1392 set_bit(In_sync, &rdev->flags); 1393 return 0; 1394 } 1395 1396 /* 1397 * sync_super for 0.90.0 1398 */ 1399 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev) 1400 { 1401 mdp_super_t *sb; 1402 struct md_rdev *rdev2; 1403 int next_spare = mddev->raid_disks; 1404 1405 /* make rdev->sb match mddev data.. 1406 * 1407 * 1/ zero out disks 1408 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); 1409 * 3/ any empty disks < next_spare become removed 1410 * 1411 * disks[0] gets initialised to REMOVED because 1412 * we cannot be sure from other fields if it has 1413 * been initialised or not. 1414 */ 1415 int i; 1416 int active=0, working=0,failed=0,spare=0,nr_disks=0; 1417 1418 rdev->sb_size = MD_SB_BYTES; 1419 1420 sb = page_address(rdev->sb_page); 1421 1422 memset(sb, 0, sizeof(*sb)); 1423 1424 sb->md_magic = MD_SB_MAGIC; 1425 sb->major_version = mddev->major_version; 1426 sb->patch_version = mddev->patch_version; 1427 sb->gvalid_words = 0; /* ignored */ 1428 memcpy(&sb->set_uuid0, mddev->uuid+0, 4); 1429 memcpy(&sb->set_uuid1, mddev->uuid+4, 4); 1430 memcpy(&sb->set_uuid2, mddev->uuid+8, 4); 1431 memcpy(&sb->set_uuid3, mddev->uuid+12,4); 1432 1433 sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 1434 sb->level = mddev->level; 1435 sb->size = mddev->dev_sectors / 2; 1436 sb->raid_disks = mddev->raid_disks; 1437 sb->md_minor = mddev->md_minor; 1438 sb->not_persistent = 0; 1439 sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 1440 sb->state = 0; 1441 sb->events_hi = (mddev->events>>32); 1442 sb->events_lo = (u32)mddev->events; 1443 1444 if (mddev->reshape_position == MaxSector) 1445 sb->minor_version = 90; 1446 else { 1447 sb->minor_version = 91; 1448 sb->reshape_position = mddev->reshape_position; 1449 sb->new_level = mddev->new_level; 1450 sb->delta_disks = mddev->delta_disks; 1451 sb->new_layout = mddev->new_layout; 1452 sb->new_chunk = mddev->new_chunk_sectors << 9; 1453 } 1454 mddev->minor_version = sb->minor_version; 1455 if (mddev->in_sync) 1456 { 1457 sb->recovery_cp = mddev->recovery_cp; 1458 sb->cp_events_hi = (mddev->events>>32); 1459 sb->cp_events_lo = (u32)mddev->events; 1460 if (mddev->recovery_cp == MaxSector) 1461 sb->state = (1<< MD_SB_CLEAN); 1462 } else 1463 sb->recovery_cp = 0; 1464 1465 sb->layout = mddev->layout; 1466 sb->chunk_size = mddev->chunk_sectors << 9; 1467 1468 if (mddev->bitmap && mddev->bitmap_info.file == NULL) 1469 sb->state |= (1<<MD_SB_BITMAP_PRESENT); 1470 1471 sb->disks[0].state = (1<<MD_DISK_REMOVED); 1472 rdev_for_each(rdev2, mddev) { 1473 mdp_disk_t *d; 1474 int desc_nr; 1475 int is_active = test_bit(In_sync, &rdev2->flags); 1476 1477 if (rdev2->raid_disk >= 0 && 1478 sb->minor_version >= 91) 1479 /* we have nowhere to store the recovery_offset, 1480 * but if it is not below the reshape_position, 1481 * we can piggy-back on that. 1482 */ 1483 is_active = 1; 1484 if (rdev2->raid_disk < 0 || 1485 test_bit(Faulty, &rdev2->flags)) 1486 is_active = 0; 1487 if (is_active) 1488 desc_nr = rdev2->raid_disk; 1489 else 1490 desc_nr = next_spare++; 1491 rdev2->desc_nr = desc_nr; 1492 d = &sb->disks[rdev2->desc_nr]; 1493 nr_disks++; 1494 d->number = rdev2->desc_nr; 1495 d->major = MAJOR(rdev2->bdev->bd_dev); 1496 d->minor = MINOR(rdev2->bdev->bd_dev); 1497 if (is_active) 1498 d->raid_disk = rdev2->raid_disk; 1499 else 1500 d->raid_disk = rdev2->desc_nr; /* compatibility */ 1501 if (test_bit(Faulty, &rdev2->flags)) 1502 d->state = (1<<MD_DISK_FAULTY); 1503 else if (is_active) { 1504 d->state = (1<<MD_DISK_ACTIVE); 1505 if (test_bit(In_sync, &rdev2->flags)) 1506 d->state |= (1<<MD_DISK_SYNC); 1507 active++; 1508 working++; 1509 } else { 1510 d->state = 0; 1511 spare++; 1512 working++; 1513 } 1514 if (test_bit(WriteMostly, &rdev2->flags)) 1515 d->state |= (1<<MD_DISK_WRITEMOSTLY); 1516 if (test_bit(FailFast, &rdev2->flags)) 1517 d->state |= (1<<MD_DISK_FAILFAST); 1518 } 1519 /* now set the "removed" and "faulty" bits on any missing devices */ 1520 for (i=0 ; i < mddev->raid_disks ; i++) { 1521 mdp_disk_t *d = &sb->disks[i]; 1522 if (d->state == 0 && d->number == 0) { 1523 d->number = i; 1524 d->raid_disk = i; 1525 d->state = (1<<MD_DISK_REMOVED); 1526 d->state |= (1<<MD_DISK_FAULTY); 1527 failed++; 1528 } 1529 } 1530 sb->nr_disks = nr_disks; 1531 sb->active_disks = active; 1532 sb->working_disks = working; 1533 sb->failed_disks = failed; 1534 sb->spare_disks = spare; 1535 1536 sb->this_disk = sb->disks[rdev->desc_nr]; 1537 sb->sb_csum = calc_sb_csum(sb); 1538 } 1539 1540 /* 1541 * rdev_size_change for 0.90.0 1542 */ 1543 static unsigned long long 1544 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1545 { 1546 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1547 return 0; /* component must fit device */ 1548 if (rdev->mddev->bitmap_info.offset) 1549 return 0; /* can't move bitmap */ 1550 rdev->sb_start = calc_dev_sboffset(rdev); 1551 if (!num_sectors || num_sectors > rdev->sb_start) 1552 num_sectors = rdev->sb_start; 1553 /* Limit to 4TB as metadata cannot record more than that. 1554 * 4TB == 2^32 KB, or 2*2^32 sectors. 1555 */ 1556 if ((u64)num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1) 1557 num_sectors = (sector_t)(2ULL << 32) - 2; 1558 do { 1559 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1560 rdev->sb_page); 1561 } while (md_super_wait(rdev->mddev) < 0); 1562 return num_sectors; 1563 } 1564 1565 static int 1566 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset) 1567 { 1568 /* non-zero offset changes not possible with v0.90 */ 1569 return new_offset == 0; 1570 } 1571 1572 /* 1573 * version 1 superblock 1574 */ 1575 1576 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb) 1577 { 1578 __le32 disk_csum; 1579 u32 csum; 1580 unsigned long long newcsum; 1581 int size = 256 + le32_to_cpu(sb->max_dev)*2; 1582 __le32 *isuper = (__le32*)sb; 1583 1584 disk_csum = sb->sb_csum; 1585 sb->sb_csum = 0; 1586 newcsum = 0; 1587 for (; size >= 4; size -= 4) 1588 newcsum += le32_to_cpu(*isuper++); 1589 1590 if (size == 2) 1591 newcsum += le16_to_cpu(*(__le16*) isuper); 1592 1593 csum = (newcsum & 0xffffffff) + (newcsum >> 32); 1594 sb->sb_csum = disk_csum; 1595 return cpu_to_le32(csum); 1596 } 1597 1598 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1599 { 1600 struct mdp_superblock_1 *sb; 1601 int ret; 1602 sector_t sb_start; 1603 sector_t sectors; 1604 int bmask; 1605 bool spare_disk = true; 1606 1607 /* 1608 * Calculate the position of the superblock in 512byte sectors. 1609 * It is always aligned to a 4K boundary and 1610 * depeding on minor_version, it can be: 1611 * 0: At least 8K, but less than 12K, from end of device 1612 * 1: At start of device 1613 * 2: 4K from start of device. 1614 */ 1615 switch(minor_version) { 1616 case 0: 1617 sb_start = bdev_nr_sectors(rdev->bdev) - 8 * 2; 1618 sb_start &= ~(sector_t)(4*2-1); 1619 break; 1620 case 1: 1621 sb_start = 0; 1622 break; 1623 case 2: 1624 sb_start = 8; 1625 break; 1626 default: 1627 return -EINVAL; 1628 } 1629 rdev->sb_start = sb_start; 1630 1631 /* superblock is rarely larger than 1K, but it can be larger, 1632 * and it is safe to read 4k, so we do that 1633 */ 1634 ret = read_disk_sb(rdev, 4096); 1635 if (ret) return ret; 1636 1637 sb = page_address(rdev->sb_page); 1638 1639 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || 1640 sb->major_version != cpu_to_le32(1) || 1641 le32_to_cpu(sb->max_dev) > (4096-256)/2 || 1642 le64_to_cpu(sb->super_offset) != rdev->sb_start || 1643 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) 1644 return -EINVAL; 1645 1646 if (calc_sb_1_csum(sb) != sb->sb_csum) { 1647 pr_warn("md: invalid superblock checksum on %pg\n", 1648 rdev->bdev); 1649 return -EINVAL; 1650 } 1651 if (le64_to_cpu(sb->data_size) < 10) { 1652 pr_warn("md: data_size too small on %pg\n", 1653 rdev->bdev); 1654 return -EINVAL; 1655 } 1656 if (sb->pad0 || 1657 sb->pad3[0] || 1658 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1]))) 1659 /* Some padding is non-zero, might be a new feature */ 1660 return -EINVAL; 1661 1662 rdev->preferred_minor = 0xffff; 1663 rdev->data_offset = le64_to_cpu(sb->data_offset); 1664 rdev->new_data_offset = rdev->data_offset; 1665 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) && 1666 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET)) 1667 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset); 1668 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); 1669 1670 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; 1671 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1672 if (rdev->sb_size & bmask) 1673 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1674 1675 if (minor_version 1676 && rdev->data_offset < sb_start + (rdev->sb_size/512)) 1677 return -EINVAL; 1678 if (minor_version 1679 && rdev->new_data_offset < sb_start + (rdev->sb_size/512)) 1680 return -EINVAL; 1681 1682 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH)) 1683 rdev->desc_nr = -1; 1684 else 1685 rdev->desc_nr = le32_to_cpu(sb->dev_number); 1686 1687 if (!rdev->bb_page) { 1688 rdev->bb_page = alloc_page(GFP_KERNEL); 1689 if (!rdev->bb_page) 1690 return -ENOMEM; 1691 } 1692 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) && 1693 rdev->badblocks.count == 0) { 1694 /* need to load the bad block list. 1695 * Currently we limit it to one page. 1696 */ 1697 s32 offset; 1698 sector_t bb_sector; 1699 __le64 *bbp; 1700 int i; 1701 int sectors = le16_to_cpu(sb->bblog_size); 1702 if (sectors > (PAGE_SIZE / 512)) 1703 return -EINVAL; 1704 offset = le32_to_cpu(sb->bblog_offset); 1705 if (offset == 0) 1706 return -EINVAL; 1707 bb_sector = (long long)offset; 1708 if (!sync_page_io(rdev, bb_sector, sectors << 9, 1709 rdev->bb_page, REQ_OP_READ, true)) 1710 return -EIO; 1711 bbp = (__le64 *)page_address(rdev->bb_page); 1712 rdev->badblocks.shift = sb->bblog_shift; 1713 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) { 1714 u64 bb = le64_to_cpu(*bbp); 1715 int count = bb & (0x3ff); 1716 u64 sector = bb >> 10; 1717 sector <<= sb->bblog_shift; 1718 count <<= sb->bblog_shift; 1719 if (bb + 1 == 0) 1720 break; 1721 if (badblocks_set(&rdev->badblocks, sector, count, 1)) 1722 return -EINVAL; 1723 } 1724 } else if (sb->bblog_offset != 0) 1725 rdev->badblocks.shift = 0; 1726 1727 if ((le32_to_cpu(sb->feature_map) & 1728 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS))) { 1729 rdev->ppl.offset = (__s16)le16_to_cpu(sb->ppl.offset); 1730 rdev->ppl.size = le16_to_cpu(sb->ppl.size); 1731 rdev->ppl.sector = rdev->sb_start + rdev->ppl.offset; 1732 } 1733 1734 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT) && 1735 sb->level != 0) 1736 return -EINVAL; 1737 1738 /* not spare disk, or LEVEL_MULTIPATH */ 1739 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH) || 1740 (rdev->desc_nr >= 0 && 1741 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1742 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX || 1743 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))) 1744 spare_disk = false; 1745 1746 if (!refdev) { 1747 if (!spare_disk) 1748 ret = 1; 1749 else 1750 ret = 0; 1751 } else { 1752 __u64 ev1, ev2; 1753 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page); 1754 1755 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || 1756 sb->level != refsb->level || 1757 sb->layout != refsb->layout || 1758 sb->chunksize != refsb->chunksize) { 1759 pr_warn("md: %pg has strangely different superblock to %pg\n", 1760 rdev->bdev, 1761 refdev->bdev); 1762 return -EINVAL; 1763 } 1764 ev1 = le64_to_cpu(sb->events); 1765 ev2 = le64_to_cpu(refsb->events); 1766 1767 if (!spare_disk && ev1 > ev2) 1768 ret = 1; 1769 else 1770 ret = 0; 1771 } 1772 if (minor_version) 1773 sectors = bdev_nr_sectors(rdev->bdev) - rdev->data_offset; 1774 else 1775 sectors = rdev->sb_start; 1776 if (sectors < le64_to_cpu(sb->data_size)) 1777 return -EINVAL; 1778 rdev->sectors = le64_to_cpu(sb->data_size); 1779 return ret; 1780 } 1781 1782 static int super_1_validate(struct mddev *mddev, struct md_rdev *freshest, struct md_rdev *rdev) 1783 { 1784 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 1785 __u64 ev1 = le64_to_cpu(sb->events); 1786 1787 rdev->raid_disk = -1; 1788 clear_bit(Faulty, &rdev->flags); 1789 clear_bit(In_sync, &rdev->flags); 1790 clear_bit(Bitmap_sync, &rdev->flags); 1791 clear_bit(WriteMostly, &rdev->flags); 1792 1793 if (mddev->raid_disks == 0) { 1794 mddev->major_version = 1; 1795 mddev->patch_version = 0; 1796 mddev->external = 0; 1797 mddev->chunk_sectors = le32_to_cpu(sb->chunksize); 1798 mddev->ctime = le64_to_cpu(sb->ctime); 1799 mddev->utime = le64_to_cpu(sb->utime); 1800 mddev->level = le32_to_cpu(sb->level); 1801 mddev->clevel[0] = 0; 1802 mddev->layout = le32_to_cpu(sb->layout); 1803 mddev->raid_disks = le32_to_cpu(sb->raid_disks); 1804 mddev->dev_sectors = le64_to_cpu(sb->size); 1805 mddev->events = ev1; 1806 mddev->bitmap_info.offset = 0; 1807 mddev->bitmap_info.space = 0; 1808 /* Default location for bitmap is 1K after superblock 1809 * using 3K - total of 4K 1810 */ 1811 mddev->bitmap_info.default_offset = 1024 >> 9; 1812 mddev->bitmap_info.default_space = (4096-1024) >> 9; 1813 mddev->reshape_backwards = 0; 1814 1815 mddev->recovery_cp = le64_to_cpu(sb->resync_offset); 1816 memcpy(mddev->uuid, sb->set_uuid, 16); 1817 1818 mddev->max_disks = (4096-256)/2; 1819 1820 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && 1821 mddev->bitmap_info.file == NULL) { 1822 mddev->bitmap_info.offset = 1823 (__s32)le32_to_cpu(sb->bitmap_offset); 1824 /* Metadata doesn't record how much space is available. 1825 * For 1.0, we assume we can use up to the superblock 1826 * if before, else to 4K beyond superblock. 1827 * For others, assume no change is possible. 1828 */ 1829 if (mddev->minor_version > 0) 1830 mddev->bitmap_info.space = 0; 1831 else if (mddev->bitmap_info.offset > 0) 1832 mddev->bitmap_info.space = 1833 8 - mddev->bitmap_info.offset; 1834 else 1835 mddev->bitmap_info.space = 1836 -mddev->bitmap_info.offset; 1837 } 1838 1839 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 1840 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 1841 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 1842 mddev->new_level = le32_to_cpu(sb->new_level); 1843 mddev->new_layout = le32_to_cpu(sb->new_layout); 1844 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk); 1845 if (mddev->delta_disks < 0 || 1846 (mddev->delta_disks == 0 && 1847 (le32_to_cpu(sb->feature_map) 1848 & MD_FEATURE_RESHAPE_BACKWARDS))) 1849 mddev->reshape_backwards = 1; 1850 } else { 1851 mddev->reshape_position = MaxSector; 1852 mddev->delta_disks = 0; 1853 mddev->new_level = mddev->level; 1854 mddev->new_layout = mddev->layout; 1855 mddev->new_chunk_sectors = mddev->chunk_sectors; 1856 } 1857 1858 if (mddev->level == 0 && 1859 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT)) 1860 mddev->layout = -1; 1861 1862 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL) 1863 set_bit(MD_HAS_JOURNAL, &mddev->flags); 1864 1865 if (le32_to_cpu(sb->feature_map) & 1866 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS)) { 1867 if (le32_to_cpu(sb->feature_map) & 1868 (MD_FEATURE_BITMAP_OFFSET | MD_FEATURE_JOURNAL)) 1869 return -EINVAL; 1870 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_PPL) && 1871 (le32_to_cpu(sb->feature_map) & 1872 MD_FEATURE_MULTIPLE_PPLS)) 1873 return -EINVAL; 1874 set_bit(MD_HAS_PPL, &mddev->flags); 1875 } 1876 } else if (mddev->pers == NULL) { 1877 /* Insist of good event counter while assembling, except for 1878 * spares (which don't need an event count). 1879 * Similar to mdadm, we allow event counter difference of 1 1880 * from the freshest device. 1881 */ 1882 if (rdev->desc_nr >= 0 && 1883 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1884 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX || 1885 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL)) 1886 if (ev1 + 1 < mddev->events) 1887 return -EINVAL; 1888 } else if (mddev->bitmap) { 1889 /* If adding to array with a bitmap, then we can accept an 1890 * older device, but not too old. 1891 */ 1892 if (ev1 < mddev->bitmap->events_cleared) 1893 return 0; 1894 if (ev1 < mddev->events) 1895 set_bit(Bitmap_sync, &rdev->flags); 1896 } else { 1897 if (ev1 < mddev->events) 1898 /* just a hot-add of a new device, leave raid_disk at -1 */ 1899 return 0; 1900 } 1901 if (mddev->level != LEVEL_MULTIPATH) { 1902 int role; 1903 if (rdev->desc_nr < 0 || 1904 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) { 1905 role = MD_DISK_ROLE_SPARE; 1906 rdev->desc_nr = -1; 1907 } else if (mddev->pers == NULL && freshest && ev1 < mddev->events) { 1908 /* 1909 * If we are assembling, and our event counter is smaller than the 1910 * highest event counter, we cannot trust our superblock about the role. 1911 * It could happen that our rdev was marked as Faulty, and all other 1912 * superblocks were updated with +1 event counter. 1913 * Then, before the next superblock update, which typically happens when 1914 * remove_and_add_spares() removes the device from the array, there was 1915 * a crash or reboot. 1916 * If we allow current rdev without consulting the freshest superblock, 1917 * we could cause data corruption. 1918 * Note that in this case our event counter is smaller by 1 than the 1919 * highest, otherwise, this rdev would not be allowed into array; 1920 * both kernel and mdadm allow event counter difference of 1. 1921 */ 1922 struct mdp_superblock_1 *freshest_sb = page_address(freshest->sb_page); 1923 u32 freshest_max_dev = le32_to_cpu(freshest_sb->max_dev); 1924 1925 if (rdev->desc_nr >= freshest_max_dev) { 1926 /* this is unexpected, better not proceed */ 1927 pr_warn("md: %s: rdev[%pg]: desc_nr(%d) >= freshest(%pg)->sb->max_dev(%u)\n", 1928 mdname(mddev), rdev->bdev, rdev->desc_nr, 1929 freshest->bdev, freshest_max_dev); 1930 return -EUCLEAN; 1931 } 1932 1933 role = le16_to_cpu(freshest_sb->dev_roles[rdev->desc_nr]); 1934 pr_debug("md: %s: rdev[%pg]: role=%d(0x%x) according to freshest %pg\n", 1935 mdname(mddev), rdev->bdev, role, role, freshest->bdev); 1936 } else { 1937 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 1938 } 1939 switch(role) { 1940 case MD_DISK_ROLE_SPARE: /* spare */ 1941 break; 1942 case MD_DISK_ROLE_FAULTY: /* faulty */ 1943 set_bit(Faulty, &rdev->flags); 1944 break; 1945 case MD_DISK_ROLE_JOURNAL: /* journal device */ 1946 if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) { 1947 /* journal device without journal feature */ 1948 pr_warn("md: journal device provided without journal feature, ignoring the device\n"); 1949 return -EINVAL; 1950 } 1951 set_bit(Journal, &rdev->flags); 1952 rdev->journal_tail = le64_to_cpu(sb->journal_tail); 1953 rdev->raid_disk = 0; 1954 break; 1955 default: 1956 rdev->saved_raid_disk = role; 1957 if ((le32_to_cpu(sb->feature_map) & 1958 MD_FEATURE_RECOVERY_OFFSET)) { 1959 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 1960 if (!(le32_to_cpu(sb->feature_map) & 1961 MD_FEATURE_RECOVERY_BITMAP)) 1962 rdev->saved_raid_disk = -1; 1963 } else { 1964 /* 1965 * If the array is FROZEN, then the device can't 1966 * be in_sync with rest of array. 1967 */ 1968 if (!test_bit(MD_RECOVERY_FROZEN, 1969 &mddev->recovery)) 1970 set_bit(In_sync, &rdev->flags); 1971 } 1972 rdev->raid_disk = role; 1973 break; 1974 } 1975 if (sb->devflags & WriteMostly1) 1976 set_bit(WriteMostly, &rdev->flags); 1977 if (sb->devflags & FailFast1) 1978 set_bit(FailFast, &rdev->flags); 1979 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT) 1980 set_bit(Replacement, &rdev->flags); 1981 } else /* MULTIPATH are always insync */ 1982 set_bit(In_sync, &rdev->flags); 1983 1984 return 0; 1985 } 1986 1987 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev) 1988 { 1989 struct mdp_superblock_1 *sb; 1990 struct md_rdev *rdev2; 1991 int max_dev, i; 1992 /* make rdev->sb match mddev and rdev data. */ 1993 1994 sb = page_address(rdev->sb_page); 1995 1996 sb->feature_map = 0; 1997 sb->pad0 = 0; 1998 sb->recovery_offset = cpu_to_le64(0); 1999 memset(sb->pad3, 0, sizeof(sb->pad3)); 2000 2001 sb->utime = cpu_to_le64((__u64)mddev->utime); 2002 sb->events = cpu_to_le64(mddev->events); 2003 if (mddev->in_sync) 2004 sb->resync_offset = cpu_to_le64(mddev->recovery_cp); 2005 else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags)) 2006 sb->resync_offset = cpu_to_le64(MaxSector); 2007 else 2008 sb->resync_offset = cpu_to_le64(0); 2009 2010 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); 2011 2012 sb->raid_disks = cpu_to_le32(mddev->raid_disks); 2013 sb->size = cpu_to_le64(mddev->dev_sectors); 2014 sb->chunksize = cpu_to_le32(mddev->chunk_sectors); 2015 sb->level = cpu_to_le32(mddev->level); 2016 sb->layout = cpu_to_le32(mddev->layout); 2017 if (test_bit(FailFast, &rdev->flags)) 2018 sb->devflags |= FailFast1; 2019 else 2020 sb->devflags &= ~FailFast1; 2021 2022 if (test_bit(WriteMostly, &rdev->flags)) 2023 sb->devflags |= WriteMostly1; 2024 else 2025 sb->devflags &= ~WriteMostly1; 2026 sb->data_offset = cpu_to_le64(rdev->data_offset); 2027 sb->data_size = cpu_to_le64(rdev->sectors); 2028 2029 if (mddev->bitmap && mddev->bitmap_info.file == NULL) { 2030 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset); 2031 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); 2032 } 2033 2034 if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) && 2035 !test_bit(In_sync, &rdev->flags)) { 2036 sb->feature_map |= 2037 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); 2038 sb->recovery_offset = 2039 cpu_to_le64(rdev->recovery_offset); 2040 if (rdev->saved_raid_disk >= 0 && mddev->bitmap) 2041 sb->feature_map |= 2042 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP); 2043 } 2044 /* Note: recovery_offset and journal_tail share space */ 2045 if (test_bit(Journal, &rdev->flags)) 2046 sb->journal_tail = cpu_to_le64(rdev->journal_tail); 2047 if (test_bit(Replacement, &rdev->flags)) 2048 sb->feature_map |= 2049 cpu_to_le32(MD_FEATURE_REPLACEMENT); 2050 2051 if (mddev->reshape_position != MaxSector) { 2052 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); 2053 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 2054 sb->new_layout = cpu_to_le32(mddev->new_layout); 2055 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 2056 sb->new_level = cpu_to_le32(mddev->new_level); 2057 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors); 2058 if (mddev->delta_disks == 0 && 2059 mddev->reshape_backwards) 2060 sb->feature_map 2061 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS); 2062 if (rdev->new_data_offset != rdev->data_offset) { 2063 sb->feature_map 2064 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET); 2065 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset 2066 - rdev->data_offset)); 2067 } 2068 } 2069 2070 if (mddev_is_clustered(mddev)) 2071 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED); 2072 2073 if (rdev->badblocks.count == 0) 2074 /* Nothing to do for bad blocks*/ ; 2075 else if (sb->bblog_offset == 0) 2076 /* Cannot record bad blocks on this device */ 2077 md_error(mddev, rdev); 2078 else { 2079 struct badblocks *bb = &rdev->badblocks; 2080 __le64 *bbp = (__le64 *)page_address(rdev->bb_page); 2081 u64 *p = bb->page; 2082 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS); 2083 if (bb->changed) { 2084 unsigned seq; 2085 2086 retry: 2087 seq = read_seqbegin(&bb->lock); 2088 2089 memset(bbp, 0xff, PAGE_SIZE); 2090 2091 for (i = 0 ; i < bb->count ; i++) { 2092 u64 internal_bb = p[i]; 2093 u64 store_bb = ((BB_OFFSET(internal_bb) << 10) 2094 | BB_LEN(internal_bb)); 2095 bbp[i] = cpu_to_le64(store_bb); 2096 } 2097 bb->changed = 0; 2098 if (read_seqretry(&bb->lock, seq)) 2099 goto retry; 2100 2101 bb->sector = (rdev->sb_start + 2102 (int)le32_to_cpu(sb->bblog_offset)); 2103 bb->size = le16_to_cpu(sb->bblog_size); 2104 } 2105 } 2106 2107 max_dev = 0; 2108 rdev_for_each(rdev2, mddev) 2109 if (rdev2->desc_nr+1 > max_dev) 2110 max_dev = rdev2->desc_nr+1; 2111 2112 if (max_dev > le32_to_cpu(sb->max_dev)) { 2113 int bmask; 2114 sb->max_dev = cpu_to_le32(max_dev); 2115 rdev->sb_size = max_dev * 2 + 256; 2116 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 2117 if (rdev->sb_size & bmask) 2118 rdev->sb_size = (rdev->sb_size | bmask) + 1; 2119 } else 2120 max_dev = le32_to_cpu(sb->max_dev); 2121 2122 for (i=0; i<max_dev;i++) 2123 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 2124 2125 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) 2126 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL); 2127 2128 if (test_bit(MD_HAS_PPL, &mddev->flags)) { 2129 if (test_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags)) 2130 sb->feature_map |= 2131 cpu_to_le32(MD_FEATURE_MULTIPLE_PPLS); 2132 else 2133 sb->feature_map |= cpu_to_le32(MD_FEATURE_PPL); 2134 sb->ppl.offset = cpu_to_le16(rdev->ppl.offset); 2135 sb->ppl.size = cpu_to_le16(rdev->ppl.size); 2136 } 2137 2138 rdev_for_each(rdev2, mddev) { 2139 i = rdev2->desc_nr; 2140 if (test_bit(Faulty, &rdev2->flags)) 2141 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY); 2142 else if (test_bit(In_sync, &rdev2->flags)) 2143 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 2144 else if (test_bit(Journal, &rdev2->flags)) 2145 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL); 2146 else if (rdev2->raid_disk >= 0) 2147 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 2148 else 2149 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 2150 } 2151 2152 sb->sb_csum = calc_sb_1_csum(sb); 2153 } 2154 2155 static sector_t super_1_choose_bm_space(sector_t dev_size) 2156 { 2157 sector_t bm_space; 2158 2159 /* if the device is bigger than 8Gig, save 64k for bitmap 2160 * usage, if bigger than 200Gig, save 128k 2161 */ 2162 if (dev_size < 64*2) 2163 bm_space = 0; 2164 else if (dev_size - 64*2 >= 200*1024*1024*2) 2165 bm_space = 128*2; 2166 else if (dev_size - 4*2 > 8*1024*1024*2) 2167 bm_space = 64*2; 2168 else 2169 bm_space = 4*2; 2170 return bm_space; 2171 } 2172 2173 static unsigned long long 2174 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 2175 { 2176 struct mdp_superblock_1 *sb; 2177 sector_t max_sectors; 2178 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 2179 return 0; /* component must fit device */ 2180 if (rdev->data_offset != rdev->new_data_offset) 2181 return 0; /* too confusing */ 2182 if (rdev->sb_start < rdev->data_offset) { 2183 /* minor versions 1 and 2; superblock before data */ 2184 max_sectors = bdev_nr_sectors(rdev->bdev) - rdev->data_offset; 2185 if (!num_sectors || num_sectors > max_sectors) 2186 num_sectors = max_sectors; 2187 } else if (rdev->mddev->bitmap_info.offset) { 2188 /* minor version 0 with bitmap we can't move */ 2189 return 0; 2190 } else { 2191 /* minor version 0; superblock after data */ 2192 sector_t sb_start, bm_space; 2193 sector_t dev_size = bdev_nr_sectors(rdev->bdev); 2194 2195 /* 8K is for superblock */ 2196 sb_start = dev_size - 8*2; 2197 sb_start &= ~(sector_t)(4*2 - 1); 2198 2199 bm_space = super_1_choose_bm_space(dev_size); 2200 2201 /* Space that can be used to store date needs to decrease 2202 * superblock bitmap space and bad block space(4K) 2203 */ 2204 max_sectors = sb_start - bm_space - 4*2; 2205 2206 if (!num_sectors || num_sectors > max_sectors) 2207 num_sectors = max_sectors; 2208 rdev->sb_start = sb_start; 2209 } 2210 sb = page_address(rdev->sb_page); 2211 sb->data_size = cpu_to_le64(num_sectors); 2212 sb->super_offset = cpu_to_le64(rdev->sb_start); 2213 sb->sb_csum = calc_sb_1_csum(sb); 2214 do { 2215 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 2216 rdev->sb_page); 2217 } while (md_super_wait(rdev->mddev) < 0); 2218 return num_sectors; 2219 2220 } 2221 2222 static int 2223 super_1_allow_new_offset(struct md_rdev *rdev, 2224 unsigned long long new_offset) 2225 { 2226 /* All necessary checks on new >= old have been done */ 2227 struct bitmap *bitmap; 2228 if (new_offset >= rdev->data_offset) 2229 return 1; 2230 2231 /* with 1.0 metadata, there is no metadata to tread on 2232 * so we can always move back */ 2233 if (rdev->mddev->minor_version == 0) 2234 return 1; 2235 2236 /* otherwise we must be sure not to step on 2237 * any metadata, so stay: 2238 * 36K beyond start of superblock 2239 * beyond end of badblocks 2240 * beyond write-intent bitmap 2241 */ 2242 if (rdev->sb_start + (32+4)*2 > new_offset) 2243 return 0; 2244 bitmap = rdev->mddev->bitmap; 2245 if (bitmap && !rdev->mddev->bitmap_info.file && 2246 rdev->sb_start + rdev->mddev->bitmap_info.offset + 2247 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset) 2248 return 0; 2249 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset) 2250 return 0; 2251 2252 return 1; 2253 } 2254 2255 static struct super_type super_types[] = { 2256 [0] = { 2257 .name = "0.90.0", 2258 .owner = THIS_MODULE, 2259 .load_super = super_90_load, 2260 .validate_super = super_90_validate, 2261 .sync_super = super_90_sync, 2262 .rdev_size_change = super_90_rdev_size_change, 2263 .allow_new_offset = super_90_allow_new_offset, 2264 }, 2265 [1] = { 2266 .name = "md-1", 2267 .owner = THIS_MODULE, 2268 .load_super = super_1_load, 2269 .validate_super = super_1_validate, 2270 .sync_super = super_1_sync, 2271 .rdev_size_change = super_1_rdev_size_change, 2272 .allow_new_offset = super_1_allow_new_offset, 2273 }, 2274 }; 2275 2276 static void sync_super(struct mddev *mddev, struct md_rdev *rdev) 2277 { 2278 if (mddev->sync_super) { 2279 mddev->sync_super(mddev, rdev); 2280 return; 2281 } 2282 2283 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types)); 2284 2285 super_types[mddev->major_version].sync_super(mddev, rdev); 2286 } 2287 2288 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2) 2289 { 2290 struct md_rdev *rdev, *rdev2; 2291 2292 rcu_read_lock(); 2293 rdev_for_each_rcu(rdev, mddev1) { 2294 if (test_bit(Faulty, &rdev->flags) || 2295 test_bit(Journal, &rdev->flags) || 2296 rdev->raid_disk == -1) 2297 continue; 2298 rdev_for_each_rcu(rdev2, mddev2) { 2299 if (test_bit(Faulty, &rdev2->flags) || 2300 test_bit(Journal, &rdev2->flags) || 2301 rdev2->raid_disk == -1) 2302 continue; 2303 if (rdev->bdev->bd_disk == rdev2->bdev->bd_disk) { 2304 rcu_read_unlock(); 2305 return 1; 2306 } 2307 } 2308 } 2309 rcu_read_unlock(); 2310 return 0; 2311 } 2312 2313 static LIST_HEAD(pending_raid_disks); 2314 2315 /* 2316 * Try to register data integrity profile for an mddev 2317 * 2318 * This is called when an array is started and after a disk has been kicked 2319 * from the array. It only succeeds if all working and active component devices 2320 * are integrity capable with matching profiles. 2321 */ 2322 int md_integrity_register(struct mddev *mddev) 2323 { 2324 struct md_rdev *rdev, *reference = NULL; 2325 2326 if (list_empty(&mddev->disks)) 2327 return 0; /* nothing to do */ 2328 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk)) 2329 return 0; /* shouldn't register, or already is */ 2330 rdev_for_each(rdev, mddev) { 2331 /* skip spares and non-functional disks */ 2332 if (test_bit(Faulty, &rdev->flags)) 2333 continue; 2334 if (rdev->raid_disk < 0) 2335 continue; 2336 if (!reference) { 2337 /* Use the first rdev as the reference */ 2338 reference = rdev; 2339 continue; 2340 } 2341 /* does this rdev's profile match the reference profile? */ 2342 if (blk_integrity_compare(reference->bdev->bd_disk, 2343 rdev->bdev->bd_disk) < 0) 2344 return -EINVAL; 2345 } 2346 if (!reference || !bdev_get_integrity(reference->bdev)) 2347 return 0; 2348 /* 2349 * All component devices are integrity capable and have matching 2350 * profiles, register the common profile for the md device. 2351 */ 2352 blk_integrity_register(mddev->gendisk, 2353 bdev_get_integrity(reference->bdev)); 2354 2355 pr_debug("md: data integrity enabled on %s\n", mdname(mddev)); 2356 if (bioset_integrity_create(&mddev->bio_set, BIO_POOL_SIZE) || 2357 (mddev->level != 1 && mddev->level != 10 && 2358 bioset_integrity_create(&mddev->io_clone_set, BIO_POOL_SIZE))) { 2359 /* 2360 * No need to handle the failure of bioset_integrity_create, 2361 * because the function is called by md_run() -> pers->run(), 2362 * md_run calls bioset_exit -> bioset_integrity_free in case 2363 * of failure case. 2364 */ 2365 pr_err("md: failed to create integrity pool for %s\n", 2366 mdname(mddev)); 2367 return -EINVAL; 2368 } 2369 return 0; 2370 } 2371 EXPORT_SYMBOL(md_integrity_register); 2372 2373 /* 2374 * Attempt to add an rdev, but only if it is consistent with the current 2375 * integrity profile 2376 */ 2377 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev) 2378 { 2379 struct blk_integrity *bi_mddev; 2380 2381 if (!mddev->gendisk) 2382 return 0; 2383 2384 bi_mddev = blk_get_integrity(mddev->gendisk); 2385 2386 if (!bi_mddev) /* nothing to do */ 2387 return 0; 2388 2389 if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) { 2390 pr_err("%s: incompatible integrity profile for %pg\n", 2391 mdname(mddev), rdev->bdev); 2392 return -ENXIO; 2393 } 2394 2395 return 0; 2396 } 2397 EXPORT_SYMBOL(md_integrity_add_rdev); 2398 2399 static bool rdev_read_only(struct md_rdev *rdev) 2400 { 2401 return bdev_read_only(rdev->bdev) || 2402 (rdev->meta_bdev && bdev_read_only(rdev->meta_bdev)); 2403 } 2404 2405 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev) 2406 { 2407 char b[BDEVNAME_SIZE]; 2408 int err; 2409 2410 /* prevent duplicates */ 2411 if (find_rdev(mddev, rdev->bdev->bd_dev)) 2412 return -EEXIST; 2413 2414 if (rdev_read_only(rdev) && mddev->pers) 2415 return -EROFS; 2416 2417 /* make sure rdev->sectors exceeds mddev->dev_sectors */ 2418 if (!test_bit(Journal, &rdev->flags) && 2419 rdev->sectors && 2420 (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) { 2421 if (mddev->pers) { 2422 /* Cannot change size, so fail 2423 * If mddev->level <= 0, then we don't care 2424 * about aligning sizes (e.g. linear) 2425 */ 2426 if (mddev->level > 0) 2427 return -ENOSPC; 2428 } else 2429 mddev->dev_sectors = rdev->sectors; 2430 } 2431 2432 /* Verify rdev->desc_nr is unique. 2433 * If it is -1, assign a free number, else 2434 * check number is not in use 2435 */ 2436 rcu_read_lock(); 2437 if (rdev->desc_nr < 0) { 2438 int choice = 0; 2439 if (mddev->pers) 2440 choice = mddev->raid_disks; 2441 while (md_find_rdev_nr_rcu(mddev, choice)) 2442 choice++; 2443 rdev->desc_nr = choice; 2444 } else { 2445 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) { 2446 rcu_read_unlock(); 2447 return -EBUSY; 2448 } 2449 } 2450 rcu_read_unlock(); 2451 if (!test_bit(Journal, &rdev->flags) && 2452 mddev->max_disks && rdev->desc_nr >= mddev->max_disks) { 2453 pr_warn("md: %s: array is limited to %d devices\n", 2454 mdname(mddev), mddev->max_disks); 2455 return -EBUSY; 2456 } 2457 snprintf(b, sizeof(b), "%pg", rdev->bdev); 2458 strreplace(b, '/', '!'); 2459 2460 rdev->mddev = mddev; 2461 pr_debug("md: bind<%s>\n", b); 2462 2463 if (mddev->raid_disks) 2464 mddev_create_serial_pool(mddev, rdev, false); 2465 2466 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b))) 2467 goto fail; 2468 2469 /* failure here is OK */ 2470 err = sysfs_create_link(&rdev->kobj, bdev_kobj(rdev->bdev), "block"); 2471 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state"); 2472 rdev->sysfs_unack_badblocks = 2473 sysfs_get_dirent_safe(rdev->kobj.sd, "unacknowledged_bad_blocks"); 2474 rdev->sysfs_badblocks = 2475 sysfs_get_dirent_safe(rdev->kobj.sd, "bad_blocks"); 2476 2477 list_add_rcu(&rdev->same_set, &mddev->disks); 2478 bd_link_disk_holder(rdev->bdev, mddev->gendisk); 2479 2480 /* May as well allow recovery to be retried once */ 2481 mddev->recovery_disabled++; 2482 2483 return 0; 2484 2485 fail: 2486 pr_warn("md: failed to register dev-%s for %s\n", 2487 b, mdname(mddev)); 2488 return err; 2489 } 2490 2491 void md_autodetect_dev(dev_t dev); 2492 2493 /* just for claiming the bdev */ 2494 static struct md_rdev claim_rdev; 2495 2496 static void export_rdev(struct md_rdev *rdev, struct mddev *mddev) 2497 { 2498 pr_debug("md: export_rdev(%pg)\n", rdev->bdev); 2499 md_rdev_clear(rdev); 2500 #ifndef MODULE 2501 if (test_bit(AutoDetected, &rdev->flags)) 2502 md_autodetect_dev(rdev->bdev->bd_dev); 2503 #endif 2504 blkdev_put(rdev->bdev, 2505 test_bit(Holder, &rdev->flags) ? rdev : &claim_rdev); 2506 rdev->bdev = NULL; 2507 kobject_put(&rdev->kobj); 2508 } 2509 2510 static void md_kick_rdev_from_array(struct md_rdev *rdev) 2511 { 2512 struct mddev *mddev = rdev->mddev; 2513 2514 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk); 2515 list_del_rcu(&rdev->same_set); 2516 pr_debug("md: unbind<%pg>\n", rdev->bdev); 2517 mddev_destroy_serial_pool(rdev->mddev, rdev, false); 2518 rdev->mddev = NULL; 2519 sysfs_remove_link(&rdev->kobj, "block"); 2520 sysfs_put(rdev->sysfs_state); 2521 sysfs_put(rdev->sysfs_unack_badblocks); 2522 sysfs_put(rdev->sysfs_badblocks); 2523 rdev->sysfs_state = NULL; 2524 rdev->sysfs_unack_badblocks = NULL; 2525 rdev->sysfs_badblocks = NULL; 2526 rdev->badblocks.count = 0; 2527 2528 synchronize_rcu(); 2529 2530 /* 2531 * kobject_del() will wait for all in progress writers to be done, where 2532 * reconfig_mutex is held, hence it can't be called under 2533 * reconfig_mutex and it's delayed to mddev_unlock(). 2534 */ 2535 list_add(&rdev->same_set, &mddev->deleting); 2536 } 2537 2538 static void export_array(struct mddev *mddev) 2539 { 2540 struct md_rdev *rdev; 2541 2542 while (!list_empty(&mddev->disks)) { 2543 rdev = list_first_entry(&mddev->disks, struct md_rdev, 2544 same_set); 2545 md_kick_rdev_from_array(rdev); 2546 } 2547 mddev->raid_disks = 0; 2548 mddev->major_version = 0; 2549 } 2550 2551 static bool set_in_sync(struct mddev *mddev) 2552 { 2553 lockdep_assert_held(&mddev->lock); 2554 if (!mddev->in_sync) { 2555 mddev->sync_checkers++; 2556 spin_unlock(&mddev->lock); 2557 percpu_ref_switch_to_atomic_sync(&mddev->writes_pending); 2558 spin_lock(&mddev->lock); 2559 if (!mddev->in_sync && 2560 percpu_ref_is_zero(&mddev->writes_pending)) { 2561 mddev->in_sync = 1; 2562 /* 2563 * Ensure ->in_sync is visible before we clear 2564 * ->sync_checkers. 2565 */ 2566 smp_mb(); 2567 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2568 sysfs_notify_dirent_safe(mddev->sysfs_state); 2569 } 2570 if (--mddev->sync_checkers == 0) 2571 percpu_ref_switch_to_percpu(&mddev->writes_pending); 2572 } 2573 if (mddev->safemode == 1) 2574 mddev->safemode = 0; 2575 return mddev->in_sync; 2576 } 2577 2578 static void sync_sbs(struct mddev *mddev, int nospares) 2579 { 2580 /* Update each superblock (in-memory image), but 2581 * if we are allowed to, skip spares which already 2582 * have the right event counter, or have one earlier 2583 * (which would mean they aren't being marked as dirty 2584 * with the rest of the array) 2585 */ 2586 struct md_rdev *rdev; 2587 rdev_for_each(rdev, mddev) { 2588 if (rdev->sb_events == mddev->events || 2589 (nospares && 2590 rdev->raid_disk < 0 && 2591 rdev->sb_events+1 == mddev->events)) { 2592 /* Don't update this superblock */ 2593 rdev->sb_loaded = 2; 2594 } else { 2595 sync_super(mddev, rdev); 2596 rdev->sb_loaded = 1; 2597 } 2598 } 2599 } 2600 2601 static bool does_sb_need_changing(struct mddev *mddev) 2602 { 2603 struct md_rdev *rdev = NULL, *iter; 2604 struct mdp_superblock_1 *sb; 2605 int role; 2606 2607 /* Find a good rdev */ 2608 rdev_for_each(iter, mddev) 2609 if ((iter->raid_disk >= 0) && !test_bit(Faulty, &iter->flags)) { 2610 rdev = iter; 2611 break; 2612 } 2613 2614 /* No good device found. */ 2615 if (!rdev) 2616 return false; 2617 2618 sb = page_address(rdev->sb_page); 2619 /* Check if a device has become faulty or a spare become active */ 2620 rdev_for_each(rdev, mddev) { 2621 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 2622 /* Device activated? */ 2623 if (role == MD_DISK_ROLE_SPARE && rdev->raid_disk >= 0 && 2624 !test_bit(Faulty, &rdev->flags)) 2625 return true; 2626 /* Device turned faulty? */ 2627 if (test_bit(Faulty, &rdev->flags) && (role < MD_DISK_ROLE_MAX)) 2628 return true; 2629 } 2630 2631 /* Check if any mddev parameters have changed */ 2632 if ((mddev->dev_sectors != le64_to_cpu(sb->size)) || 2633 (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) || 2634 (mddev->layout != le32_to_cpu(sb->layout)) || 2635 (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) || 2636 (mddev->chunk_sectors != le32_to_cpu(sb->chunksize))) 2637 return true; 2638 2639 return false; 2640 } 2641 2642 void md_update_sb(struct mddev *mddev, int force_change) 2643 { 2644 struct md_rdev *rdev; 2645 int sync_req; 2646 int nospares = 0; 2647 int any_badblocks_changed = 0; 2648 int ret = -1; 2649 2650 if (!md_is_rdwr(mddev)) { 2651 if (force_change) 2652 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2653 return; 2654 } 2655 2656 repeat: 2657 if (mddev_is_clustered(mddev)) { 2658 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2659 force_change = 1; 2660 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2661 nospares = 1; 2662 ret = md_cluster_ops->metadata_update_start(mddev); 2663 /* Has someone else has updated the sb */ 2664 if (!does_sb_need_changing(mddev)) { 2665 if (ret == 0) 2666 md_cluster_ops->metadata_update_cancel(mddev); 2667 bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2668 BIT(MD_SB_CHANGE_DEVS) | 2669 BIT(MD_SB_CHANGE_CLEAN)); 2670 return; 2671 } 2672 } 2673 2674 /* 2675 * First make sure individual recovery_offsets are correct 2676 * curr_resync_completed can only be used during recovery. 2677 * During reshape/resync it might use array-addresses rather 2678 * that device addresses. 2679 */ 2680 rdev_for_each(rdev, mddev) { 2681 if (rdev->raid_disk >= 0 && 2682 mddev->delta_disks >= 0 && 2683 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 2684 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery) && 2685 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 2686 !test_bit(Journal, &rdev->flags) && 2687 !test_bit(In_sync, &rdev->flags) && 2688 mddev->curr_resync_completed > rdev->recovery_offset) 2689 rdev->recovery_offset = mddev->curr_resync_completed; 2690 2691 } 2692 if (!mddev->persistent) { 2693 clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2694 clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2695 if (!mddev->external) { 2696 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 2697 rdev_for_each(rdev, mddev) { 2698 if (rdev->badblocks.changed) { 2699 rdev->badblocks.changed = 0; 2700 ack_all_badblocks(&rdev->badblocks); 2701 md_error(mddev, rdev); 2702 } 2703 clear_bit(Blocked, &rdev->flags); 2704 clear_bit(BlockedBadBlocks, &rdev->flags); 2705 wake_up(&rdev->blocked_wait); 2706 } 2707 } 2708 wake_up(&mddev->sb_wait); 2709 return; 2710 } 2711 2712 spin_lock(&mddev->lock); 2713 2714 mddev->utime = ktime_get_real_seconds(); 2715 2716 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2717 force_change = 1; 2718 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2719 /* just a clean<-> dirty transition, possibly leave spares alone, 2720 * though if events isn't the right even/odd, we will have to do 2721 * spares after all 2722 */ 2723 nospares = 1; 2724 if (force_change) 2725 nospares = 0; 2726 if (mddev->degraded) 2727 /* If the array is degraded, then skipping spares is both 2728 * dangerous and fairly pointless. 2729 * Dangerous because a device that was removed from the array 2730 * might have a event_count that still looks up-to-date, 2731 * so it can be re-added without a resync. 2732 * Pointless because if there are any spares to skip, 2733 * then a recovery will happen and soon that array won't 2734 * be degraded any more and the spare can go back to sleep then. 2735 */ 2736 nospares = 0; 2737 2738 sync_req = mddev->in_sync; 2739 2740 /* If this is just a dirty<->clean transition, and the array is clean 2741 * and 'events' is odd, we can roll back to the previous clean state */ 2742 if (nospares 2743 && (mddev->in_sync && mddev->recovery_cp == MaxSector) 2744 && mddev->can_decrease_events 2745 && mddev->events != 1) { 2746 mddev->events--; 2747 mddev->can_decrease_events = 0; 2748 } else { 2749 /* otherwise we have to go forward and ... */ 2750 mddev->events ++; 2751 mddev->can_decrease_events = nospares; 2752 } 2753 2754 /* 2755 * This 64-bit counter should never wrap. 2756 * Either we are in around ~1 trillion A.C., assuming 2757 * 1 reboot per second, or we have a bug... 2758 */ 2759 WARN_ON(mddev->events == 0); 2760 2761 rdev_for_each(rdev, mddev) { 2762 if (rdev->badblocks.changed) 2763 any_badblocks_changed++; 2764 if (test_bit(Faulty, &rdev->flags)) 2765 set_bit(FaultRecorded, &rdev->flags); 2766 } 2767 2768 sync_sbs(mddev, nospares); 2769 spin_unlock(&mddev->lock); 2770 2771 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n", 2772 mdname(mddev), mddev->in_sync); 2773 2774 if (mddev->queue) 2775 blk_add_trace_msg(mddev->queue, "md md_update_sb"); 2776 rewrite: 2777 md_bitmap_update_sb(mddev->bitmap); 2778 rdev_for_each(rdev, mddev) { 2779 if (rdev->sb_loaded != 1) 2780 continue; /* no noise on spare devices */ 2781 2782 if (!test_bit(Faulty, &rdev->flags)) { 2783 md_super_write(mddev,rdev, 2784 rdev->sb_start, rdev->sb_size, 2785 rdev->sb_page); 2786 pr_debug("md: (write) %pg's sb offset: %llu\n", 2787 rdev->bdev, 2788 (unsigned long long)rdev->sb_start); 2789 rdev->sb_events = mddev->events; 2790 if (rdev->badblocks.size) { 2791 md_super_write(mddev, rdev, 2792 rdev->badblocks.sector, 2793 rdev->badblocks.size << 9, 2794 rdev->bb_page); 2795 rdev->badblocks.size = 0; 2796 } 2797 2798 } else 2799 pr_debug("md: %pg (skipping faulty)\n", 2800 rdev->bdev); 2801 2802 if (mddev->level == LEVEL_MULTIPATH) 2803 /* only need to write one superblock... */ 2804 break; 2805 } 2806 if (md_super_wait(mddev) < 0) 2807 goto rewrite; 2808 /* if there was a failure, MD_SB_CHANGE_DEVS was set, and we re-write super */ 2809 2810 if (mddev_is_clustered(mddev) && ret == 0) 2811 md_cluster_ops->metadata_update_finish(mddev); 2812 2813 if (mddev->in_sync != sync_req || 2814 !bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2815 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_CLEAN))) 2816 /* have to write it out again */ 2817 goto repeat; 2818 wake_up(&mddev->sb_wait); 2819 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 2820 sysfs_notify_dirent_safe(mddev->sysfs_completed); 2821 2822 rdev_for_each(rdev, mddev) { 2823 if (test_and_clear_bit(FaultRecorded, &rdev->flags)) 2824 clear_bit(Blocked, &rdev->flags); 2825 2826 if (any_badblocks_changed) 2827 ack_all_badblocks(&rdev->badblocks); 2828 clear_bit(BlockedBadBlocks, &rdev->flags); 2829 wake_up(&rdev->blocked_wait); 2830 } 2831 } 2832 EXPORT_SYMBOL(md_update_sb); 2833 2834 static int add_bound_rdev(struct md_rdev *rdev) 2835 { 2836 struct mddev *mddev = rdev->mddev; 2837 int err = 0; 2838 bool add_journal = test_bit(Journal, &rdev->flags); 2839 2840 if (!mddev->pers->hot_remove_disk || add_journal) { 2841 /* If there is hot_add_disk but no hot_remove_disk 2842 * then added disks for geometry changes, 2843 * and should be added immediately. 2844 */ 2845 super_types[mddev->major_version]. 2846 validate_super(mddev, NULL/*freshest*/, rdev); 2847 if (add_journal) 2848 mddev_suspend(mddev); 2849 err = mddev->pers->hot_add_disk(mddev, rdev); 2850 if (add_journal) 2851 mddev_resume(mddev); 2852 if (err) { 2853 md_kick_rdev_from_array(rdev); 2854 return err; 2855 } 2856 } 2857 sysfs_notify_dirent_safe(rdev->sysfs_state); 2858 2859 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2860 if (mddev->degraded) 2861 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 2862 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2863 md_new_event(); 2864 md_wakeup_thread(mddev->thread); 2865 return 0; 2866 } 2867 2868 /* words written to sysfs files may, or may not, be \n terminated. 2869 * We want to accept with case. For this we use cmd_match. 2870 */ 2871 static int cmd_match(const char *cmd, const char *str) 2872 { 2873 /* See if cmd, written into a sysfs file, matches 2874 * str. They must either be the same, or cmd can 2875 * have a trailing newline 2876 */ 2877 while (*cmd && *str && *cmd == *str) { 2878 cmd++; 2879 str++; 2880 } 2881 if (*cmd == '\n') 2882 cmd++; 2883 if (*str || *cmd) 2884 return 0; 2885 return 1; 2886 } 2887 2888 struct rdev_sysfs_entry { 2889 struct attribute attr; 2890 ssize_t (*show)(struct md_rdev *, char *); 2891 ssize_t (*store)(struct md_rdev *, const char *, size_t); 2892 }; 2893 2894 static ssize_t 2895 state_show(struct md_rdev *rdev, char *page) 2896 { 2897 char *sep = ","; 2898 size_t len = 0; 2899 unsigned long flags = READ_ONCE(rdev->flags); 2900 2901 if (test_bit(Faulty, &flags) || 2902 (!test_bit(ExternalBbl, &flags) && 2903 rdev->badblocks.unacked_exist)) 2904 len += sprintf(page+len, "faulty%s", sep); 2905 if (test_bit(In_sync, &flags)) 2906 len += sprintf(page+len, "in_sync%s", sep); 2907 if (test_bit(Journal, &flags)) 2908 len += sprintf(page+len, "journal%s", sep); 2909 if (test_bit(WriteMostly, &flags)) 2910 len += sprintf(page+len, "write_mostly%s", sep); 2911 if (test_bit(Blocked, &flags) || 2912 (rdev->badblocks.unacked_exist 2913 && !test_bit(Faulty, &flags))) 2914 len += sprintf(page+len, "blocked%s", sep); 2915 if (!test_bit(Faulty, &flags) && 2916 !test_bit(Journal, &flags) && 2917 !test_bit(In_sync, &flags)) 2918 len += sprintf(page+len, "spare%s", sep); 2919 if (test_bit(WriteErrorSeen, &flags)) 2920 len += sprintf(page+len, "write_error%s", sep); 2921 if (test_bit(WantReplacement, &flags)) 2922 len += sprintf(page+len, "want_replacement%s", sep); 2923 if (test_bit(Replacement, &flags)) 2924 len += sprintf(page+len, "replacement%s", sep); 2925 if (test_bit(ExternalBbl, &flags)) 2926 len += sprintf(page+len, "external_bbl%s", sep); 2927 if (test_bit(FailFast, &flags)) 2928 len += sprintf(page+len, "failfast%s", sep); 2929 2930 if (len) 2931 len -= strlen(sep); 2932 2933 return len+sprintf(page+len, "\n"); 2934 } 2935 2936 static ssize_t 2937 state_store(struct md_rdev *rdev, const char *buf, size_t len) 2938 { 2939 /* can write 2940 * faulty - simulates an error 2941 * remove - disconnects the device 2942 * writemostly - sets write_mostly 2943 * -writemostly - clears write_mostly 2944 * blocked - sets the Blocked flags 2945 * -blocked - clears the Blocked and possibly simulates an error 2946 * insync - sets Insync providing device isn't active 2947 * -insync - clear Insync for a device with a slot assigned, 2948 * so that it gets rebuilt based on bitmap 2949 * write_error - sets WriteErrorSeen 2950 * -write_error - clears WriteErrorSeen 2951 * {,-}failfast - set/clear FailFast 2952 */ 2953 2954 struct mddev *mddev = rdev->mddev; 2955 int err = -EINVAL; 2956 bool need_update_sb = false; 2957 2958 if (cmd_match(buf, "faulty") && rdev->mddev->pers) { 2959 md_error(rdev->mddev, rdev); 2960 2961 if (test_bit(MD_BROKEN, &rdev->mddev->flags)) 2962 err = -EBUSY; 2963 else 2964 err = 0; 2965 } else if (cmd_match(buf, "remove")) { 2966 if (rdev->mddev->pers) { 2967 clear_bit(Blocked, &rdev->flags); 2968 remove_and_add_spares(rdev->mddev, rdev); 2969 } 2970 if (rdev->raid_disk >= 0) 2971 err = -EBUSY; 2972 else { 2973 err = 0; 2974 if (mddev_is_clustered(mddev)) 2975 err = md_cluster_ops->remove_disk(mddev, rdev); 2976 2977 if (err == 0) { 2978 md_kick_rdev_from_array(rdev); 2979 if (mddev->pers) { 2980 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2981 md_wakeup_thread(mddev->thread); 2982 } 2983 md_new_event(); 2984 } 2985 } 2986 } else if (cmd_match(buf, "writemostly")) { 2987 set_bit(WriteMostly, &rdev->flags); 2988 mddev_create_serial_pool(rdev->mddev, rdev, false); 2989 need_update_sb = true; 2990 err = 0; 2991 } else if (cmd_match(buf, "-writemostly")) { 2992 mddev_destroy_serial_pool(rdev->mddev, rdev, false); 2993 clear_bit(WriteMostly, &rdev->flags); 2994 need_update_sb = true; 2995 err = 0; 2996 } else if (cmd_match(buf, "blocked")) { 2997 set_bit(Blocked, &rdev->flags); 2998 err = 0; 2999 } else if (cmd_match(buf, "-blocked")) { 3000 if (!test_bit(Faulty, &rdev->flags) && 3001 !test_bit(ExternalBbl, &rdev->flags) && 3002 rdev->badblocks.unacked_exist) { 3003 /* metadata handler doesn't understand badblocks, 3004 * so we need to fail the device 3005 */ 3006 md_error(rdev->mddev, rdev); 3007 } 3008 clear_bit(Blocked, &rdev->flags); 3009 clear_bit(BlockedBadBlocks, &rdev->flags); 3010 wake_up(&rdev->blocked_wait); 3011 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3012 md_wakeup_thread(rdev->mddev->thread); 3013 3014 err = 0; 3015 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) { 3016 set_bit(In_sync, &rdev->flags); 3017 err = 0; 3018 } else if (cmd_match(buf, "failfast")) { 3019 set_bit(FailFast, &rdev->flags); 3020 need_update_sb = true; 3021 err = 0; 3022 } else if (cmd_match(buf, "-failfast")) { 3023 clear_bit(FailFast, &rdev->flags); 3024 need_update_sb = true; 3025 err = 0; 3026 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 && 3027 !test_bit(Journal, &rdev->flags)) { 3028 if (rdev->mddev->pers == NULL) { 3029 clear_bit(In_sync, &rdev->flags); 3030 rdev->saved_raid_disk = rdev->raid_disk; 3031 rdev->raid_disk = -1; 3032 err = 0; 3033 } 3034 } else if (cmd_match(buf, "write_error")) { 3035 set_bit(WriteErrorSeen, &rdev->flags); 3036 err = 0; 3037 } else if (cmd_match(buf, "-write_error")) { 3038 clear_bit(WriteErrorSeen, &rdev->flags); 3039 err = 0; 3040 } else if (cmd_match(buf, "want_replacement")) { 3041 /* Any non-spare device that is not a replacement can 3042 * become want_replacement at any time, but we then need to 3043 * check if recovery is needed. 3044 */ 3045 if (rdev->raid_disk >= 0 && 3046 !test_bit(Journal, &rdev->flags) && 3047 !test_bit(Replacement, &rdev->flags)) 3048 set_bit(WantReplacement, &rdev->flags); 3049 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3050 md_wakeup_thread(rdev->mddev->thread); 3051 err = 0; 3052 } else if (cmd_match(buf, "-want_replacement")) { 3053 /* Clearing 'want_replacement' is always allowed. 3054 * Once replacements starts it is too late though. 3055 */ 3056 err = 0; 3057 clear_bit(WantReplacement, &rdev->flags); 3058 } else if (cmd_match(buf, "replacement")) { 3059 /* Can only set a device as a replacement when array has not 3060 * yet been started. Once running, replacement is automatic 3061 * from spares, or by assigning 'slot'. 3062 */ 3063 if (rdev->mddev->pers) 3064 err = -EBUSY; 3065 else { 3066 set_bit(Replacement, &rdev->flags); 3067 err = 0; 3068 } 3069 } else if (cmd_match(buf, "-replacement")) { 3070 /* Similarly, can only clear Replacement before start */ 3071 if (rdev->mddev->pers) 3072 err = -EBUSY; 3073 else { 3074 clear_bit(Replacement, &rdev->flags); 3075 err = 0; 3076 } 3077 } else if (cmd_match(buf, "re-add")) { 3078 if (!rdev->mddev->pers) 3079 err = -EINVAL; 3080 else if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1) && 3081 rdev->saved_raid_disk >= 0) { 3082 /* clear_bit is performed _after_ all the devices 3083 * have their local Faulty bit cleared. If any writes 3084 * happen in the meantime in the local node, they 3085 * will land in the local bitmap, which will be synced 3086 * by this node eventually 3087 */ 3088 if (!mddev_is_clustered(rdev->mddev) || 3089 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) { 3090 clear_bit(Faulty, &rdev->flags); 3091 err = add_bound_rdev(rdev); 3092 } 3093 } else 3094 err = -EBUSY; 3095 } else if (cmd_match(buf, "external_bbl") && (rdev->mddev->external)) { 3096 set_bit(ExternalBbl, &rdev->flags); 3097 rdev->badblocks.shift = 0; 3098 err = 0; 3099 } else if (cmd_match(buf, "-external_bbl") && (rdev->mddev->external)) { 3100 clear_bit(ExternalBbl, &rdev->flags); 3101 err = 0; 3102 } 3103 if (need_update_sb) 3104 md_update_sb(mddev, 1); 3105 if (!err) 3106 sysfs_notify_dirent_safe(rdev->sysfs_state); 3107 return err ? err : len; 3108 } 3109 static struct rdev_sysfs_entry rdev_state = 3110 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store); 3111 3112 static ssize_t 3113 errors_show(struct md_rdev *rdev, char *page) 3114 { 3115 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); 3116 } 3117 3118 static ssize_t 3119 errors_store(struct md_rdev *rdev, const char *buf, size_t len) 3120 { 3121 unsigned int n; 3122 int rv; 3123 3124 rv = kstrtouint(buf, 10, &n); 3125 if (rv < 0) 3126 return rv; 3127 atomic_set(&rdev->corrected_errors, n); 3128 return len; 3129 } 3130 static struct rdev_sysfs_entry rdev_errors = 3131 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); 3132 3133 static ssize_t 3134 slot_show(struct md_rdev *rdev, char *page) 3135 { 3136 if (test_bit(Journal, &rdev->flags)) 3137 return sprintf(page, "journal\n"); 3138 else if (rdev->raid_disk < 0) 3139 return sprintf(page, "none\n"); 3140 else 3141 return sprintf(page, "%d\n", rdev->raid_disk); 3142 } 3143 3144 static ssize_t 3145 slot_store(struct md_rdev *rdev, const char *buf, size_t len) 3146 { 3147 int slot; 3148 int err; 3149 3150 if (test_bit(Journal, &rdev->flags)) 3151 return -EBUSY; 3152 if (strncmp(buf, "none", 4)==0) 3153 slot = -1; 3154 else { 3155 err = kstrtouint(buf, 10, (unsigned int *)&slot); 3156 if (err < 0) 3157 return err; 3158 if (slot < 0) 3159 /* overflow */ 3160 return -ENOSPC; 3161 } 3162 if (rdev->mddev->pers && slot == -1) { 3163 /* Setting 'slot' on an active array requires also 3164 * updating the 'rd%d' link, and communicating 3165 * with the personality with ->hot_*_disk. 3166 * For now we only support removing 3167 * failed/spare devices. This normally happens automatically, 3168 * but not when the metadata is externally managed. 3169 */ 3170 if (rdev->raid_disk == -1) 3171 return -EEXIST; 3172 /* personality does all needed checks */ 3173 if (rdev->mddev->pers->hot_remove_disk == NULL) 3174 return -EINVAL; 3175 clear_bit(Blocked, &rdev->flags); 3176 remove_and_add_spares(rdev->mddev, rdev); 3177 if (rdev->raid_disk >= 0) 3178 return -EBUSY; 3179 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3180 md_wakeup_thread(rdev->mddev->thread); 3181 } else if (rdev->mddev->pers) { 3182 /* Activating a spare .. or possibly reactivating 3183 * if we ever get bitmaps working here. 3184 */ 3185 int err; 3186 3187 if (rdev->raid_disk != -1) 3188 return -EBUSY; 3189 3190 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery)) 3191 return -EBUSY; 3192 3193 if (rdev->mddev->pers->hot_add_disk == NULL) 3194 return -EINVAL; 3195 3196 if (slot >= rdev->mddev->raid_disks && 3197 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 3198 return -ENOSPC; 3199 3200 rdev->raid_disk = slot; 3201 if (test_bit(In_sync, &rdev->flags)) 3202 rdev->saved_raid_disk = slot; 3203 else 3204 rdev->saved_raid_disk = -1; 3205 clear_bit(In_sync, &rdev->flags); 3206 clear_bit(Bitmap_sync, &rdev->flags); 3207 err = rdev->mddev->pers->hot_add_disk(rdev->mddev, rdev); 3208 if (err) { 3209 rdev->raid_disk = -1; 3210 return err; 3211 } else 3212 sysfs_notify_dirent_safe(rdev->sysfs_state); 3213 /* failure here is OK */; 3214 sysfs_link_rdev(rdev->mddev, rdev); 3215 /* don't wakeup anyone, leave that to userspace. */ 3216 } else { 3217 if (slot >= rdev->mddev->raid_disks && 3218 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 3219 return -ENOSPC; 3220 rdev->raid_disk = slot; 3221 /* assume it is working */ 3222 clear_bit(Faulty, &rdev->flags); 3223 clear_bit(WriteMostly, &rdev->flags); 3224 set_bit(In_sync, &rdev->flags); 3225 sysfs_notify_dirent_safe(rdev->sysfs_state); 3226 } 3227 return len; 3228 } 3229 3230 static struct rdev_sysfs_entry rdev_slot = 3231 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); 3232 3233 static ssize_t 3234 offset_show(struct md_rdev *rdev, char *page) 3235 { 3236 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); 3237 } 3238 3239 static ssize_t 3240 offset_store(struct md_rdev *rdev, const char *buf, size_t len) 3241 { 3242 unsigned long long offset; 3243 if (kstrtoull(buf, 10, &offset) < 0) 3244 return -EINVAL; 3245 if (rdev->mddev->pers && rdev->raid_disk >= 0) 3246 return -EBUSY; 3247 if (rdev->sectors && rdev->mddev->external) 3248 /* Must set offset before size, so overlap checks 3249 * can be sane */ 3250 return -EBUSY; 3251 rdev->data_offset = offset; 3252 rdev->new_data_offset = offset; 3253 return len; 3254 } 3255 3256 static struct rdev_sysfs_entry rdev_offset = 3257 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); 3258 3259 static ssize_t new_offset_show(struct md_rdev *rdev, char *page) 3260 { 3261 return sprintf(page, "%llu\n", 3262 (unsigned long long)rdev->new_data_offset); 3263 } 3264 3265 static ssize_t new_offset_store(struct md_rdev *rdev, 3266 const char *buf, size_t len) 3267 { 3268 unsigned long long new_offset; 3269 struct mddev *mddev = rdev->mddev; 3270 3271 if (kstrtoull(buf, 10, &new_offset) < 0) 3272 return -EINVAL; 3273 3274 if (mddev->sync_thread || 3275 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery)) 3276 return -EBUSY; 3277 if (new_offset == rdev->data_offset) 3278 /* reset is always permitted */ 3279 ; 3280 else if (new_offset > rdev->data_offset) { 3281 /* must not push array size beyond rdev_sectors */ 3282 if (new_offset - rdev->data_offset 3283 + mddev->dev_sectors > rdev->sectors) 3284 return -E2BIG; 3285 } 3286 /* Metadata worries about other space details. */ 3287 3288 /* decreasing the offset is inconsistent with a backwards 3289 * reshape. 3290 */ 3291 if (new_offset < rdev->data_offset && 3292 mddev->reshape_backwards) 3293 return -EINVAL; 3294 /* Increasing offset is inconsistent with forwards 3295 * reshape. reshape_direction should be set to 3296 * 'backwards' first. 3297 */ 3298 if (new_offset > rdev->data_offset && 3299 !mddev->reshape_backwards) 3300 return -EINVAL; 3301 3302 if (mddev->pers && mddev->persistent && 3303 !super_types[mddev->major_version] 3304 .allow_new_offset(rdev, new_offset)) 3305 return -E2BIG; 3306 rdev->new_data_offset = new_offset; 3307 if (new_offset > rdev->data_offset) 3308 mddev->reshape_backwards = 1; 3309 else if (new_offset < rdev->data_offset) 3310 mddev->reshape_backwards = 0; 3311 3312 return len; 3313 } 3314 static struct rdev_sysfs_entry rdev_new_offset = 3315 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store); 3316 3317 static ssize_t 3318 rdev_size_show(struct md_rdev *rdev, char *page) 3319 { 3320 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2); 3321 } 3322 3323 static int md_rdevs_overlap(struct md_rdev *a, struct md_rdev *b) 3324 { 3325 /* check if two start/length pairs overlap */ 3326 if (a->data_offset + a->sectors <= b->data_offset) 3327 return false; 3328 if (b->data_offset + b->sectors <= a->data_offset) 3329 return false; 3330 return true; 3331 } 3332 3333 static bool md_rdev_overlaps(struct md_rdev *rdev) 3334 { 3335 struct mddev *mddev; 3336 struct md_rdev *rdev2; 3337 3338 spin_lock(&all_mddevs_lock); 3339 list_for_each_entry(mddev, &all_mddevs, all_mddevs) { 3340 if (test_bit(MD_DELETED, &mddev->flags)) 3341 continue; 3342 rdev_for_each(rdev2, mddev) { 3343 if (rdev != rdev2 && rdev->bdev == rdev2->bdev && 3344 md_rdevs_overlap(rdev, rdev2)) { 3345 spin_unlock(&all_mddevs_lock); 3346 return true; 3347 } 3348 } 3349 } 3350 spin_unlock(&all_mddevs_lock); 3351 return false; 3352 } 3353 3354 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors) 3355 { 3356 unsigned long long blocks; 3357 sector_t new; 3358 3359 if (kstrtoull(buf, 10, &blocks) < 0) 3360 return -EINVAL; 3361 3362 if (blocks & 1ULL << (8 * sizeof(blocks) - 1)) 3363 return -EINVAL; /* sector conversion overflow */ 3364 3365 new = blocks * 2; 3366 if (new != blocks * 2) 3367 return -EINVAL; /* unsigned long long to sector_t overflow */ 3368 3369 *sectors = new; 3370 return 0; 3371 } 3372 3373 static ssize_t 3374 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3375 { 3376 struct mddev *my_mddev = rdev->mddev; 3377 sector_t oldsectors = rdev->sectors; 3378 sector_t sectors; 3379 3380 if (test_bit(Journal, &rdev->flags)) 3381 return -EBUSY; 3382 if (strict_blocks_to_sectors(buf, §ors) < 0) 3383 return -EINVAL; 3384 if (rdev->data_offset != rdev->new_data_offset) 3385 return -EINVAL; /* too confusing */ 3386 if (my_mddev->pers && rdev->raid_disk >= 0) { 3387 if (my_mddev->persistent) { 3388 sectors = super_types[my_mddev->major_version]. 3389 rdev_size_change(rdev, sectors); 3390 if (!sectors) 3391 return -EBUSY; 3392 } else if (!sectors) 3393 sectors = bdev_nr_sectors(rdev->bdev) - 3394 rdev->data_offset; 3395 if (!my_mddev->pers->resize) 3396 /* Cannot change size for RAID0 or Linear etc */ 3397 return -EINVAL; 3398 } 3399 if (sectors < my_mddev->dev_sectors) 3400 return -EINVAL; /* component must fit device */ 3401 3402 rdev->sectors = sectors; 3403 3404 /* 3405 * Check that all other rdevs with the same bdev do not overlap. This 3406 * check does not provide a hard guarantee, it just helps avoid 3407 * dangerous mistakes. 3408 */ 3409 if (sectors > oldsectors && my_mddev->external && 3410 md_rdev_overlaps(rdev)) { 3411 /* 3412 * Someone else could have slipped in a size change here, but 3413 * doing so is just silly. We put oldsectors back because we 3414 * know it is safe, and trust userspace not to race with itself. 3415 */ 3416 rdev->sectors = oldsectors; 3417 return -EBUSY; 3418 } 3419 return len; 3420 } 3421 3422 static struct rdev_sysfs_entry rdev_size = 3423 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); 3424 3425 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page) 3426 { 3427 unsigned long long recovery_start = rdev->recovery_offset; 3428 3429 if (test_bit(In_sync, &rdev->flags) || 3430 recovery_start == MaxSector) 3431 return sprintf(page, "none\n"); 3432 3433 return sprintf(page, "%llu\n", recovery_start); 3434 } 3435 3436 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len) 3437 { 3438 unsigned long long recovery_start; 3439 3440 if (cmd_match(buf, "none")) 3441 recovery_start = MaxSector; 3442 else if (kstrtoull(buf, 10, &recovery_start)) 3443 return -EINVAL; 3444 3445 if (rdev->mddev->pers && 3446 rdev->raid_disk >= 0) 3447 return -EBUSY; 3448 3449 rdev->recovery_offset = recovery_start; 3450 if (recovery_start == MaxSector) 3451 set_bit(In_sync, &rdev->flags); 3452 else 3453 clear_bit(In_sync, &rdev->flags); 3454 return len; 3455 } 3456 3457 static struct rdev_sysfs_entry rdev_recovery_start = 3458 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store); 3459 3460 /* sysfs access to bad-blocks list. 3461 * We present two files. 3462 * 'bad-blocks' lists sector numbers and lengths of ranges that 3463 * are recorded as bad. The list is truncated to fit within 3464 * the one-page limit of sysfs. 3465 * Writing "sector length" to this file adds an acknowledged 3466 * bad block list. 3467 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet 3468 * been acknowledged. Writing to this file adds bad blocks 3469 * without acknowledging them. This is largely for testing. 3470 */ 3471 static ssize_t bb_show(struct md_rdev *rdev, char *page) 3472 { 3473 return badblocks_show(&rdev->badblocks, page, 0); 3474 } 3475 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len) 3476 { 3477 int rv = badblocks_store(&rdev->badblocks, page, len, 0); 3478 /* Maybe that ack was all we needed */ 3479 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags)) 3480 wake_up(&rdev->blocked_wait); 3481 return rv; 3482 } 3483 static struct rdev_sysfs_entry rdev_bad_blocks = 3484 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store); 3485 3486 static ssize_t ubb_show(struct md_rdev *rdev, char *page) 3487 { 3488 return badblocks_show(&rdev->badblocks, page, 1); 3489 } 3490 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len) 3491 { 3492 return badblocks_store(&rdev->badblocks, page, len, 1); 3493 } 3494 static struct rdev_sysfs_entry rdev_unack_bad_blocks = 3495 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store); 3496 3497 static ssize_t 3498 ppl_sector_show(struct md_rdev *rdev, char *page) 3499 { 3500 return sprintf(page, "%llu\n", (unsigned long long)rdev->ppl.sector); 3501 } 3502 3503 static ssize_t 3504 ppl_sector_store(struct md_rdev *rdev, const char *buf, size_t len) 3505 { 3506 unsigned long long sector; 3507 3508 if (kstrtoull(buf, 10, §or) < 0) 3509 return -EINVAL; 3510 if (sector != (sector_t)sector) 3511 return -EINVAL; 3512 3513 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3514 rdev->raid_disk >= 0) 3515 return -EBUSY; 3516 3517 if (rdev->mddev->persistent) { 3518 if (rdev->mddev->major_version == 0) 3519 return -EINVAL; 3520 if ((sector > rdev->sb_start && 3521 sector - rdev->sb_start > S16_MAX) || 3522 (sector < rdev->sb_start && 3523 rdev->sb_start - sector > -S16_MIN)) 3524 return -EINVAL; 3525 rdev->ppl.offset = sector - rdev->sb_start; 3526 } else if (!rdev->mddev->external) { 3527 return -EBUSY; 3528 } 3529 rdev->ppl.sector = sector; 3530 return len; 3531 } 3532 3533 static struct rdev_sysfs_entry rdev_ppl_sector = 3534 __ATTR(ppl_sector, S_IRUGO|S_IWUSR, ppl_sector_show, ppl_sector_store); 3535 3536 static ssize_t 3537 ppl_size_show(struct md_rdev *rdev, char *page) 3538 { 3539 return sprintf(page, "%u\n", rdev->ppl.size); 3540 } 3541 3542 static ssize_t 3543 ppl_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3544 { 3545 unsigned int size; 3546 3547 if (kstrtouint(buf, 10, &size) < 0) 3548 return -EINVAL; 3549 3550 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3551 rdev->raid_disk >= 0) 3552 return -EBUSY; 3553 3554 if (rdev->mddev->persistent) { 3555 if (rdev->mddev->major_version == 0) 3556 return -EINVAL; 3557 if (size > U16_MAX) 3558 return -EINVAL; 3559 } else if (!rdev->mddev->external) { 3560 return -EBUSY; 3561 } 3562 rdev->ppl.size = size; 3563 return len; 3564 } 3565 3566 static struct rdev_sysfs_entry rdev_ppl_size = 3567 __ATTR(ppl_size, S_IRUGO|S_IWUSR, ppl_size_show, ppl_size_store); 3568 3569 static struct attribute *rdev_default_attrs[] = { 3570 &rdev_state.attr, 3571 &rdev_errors.attr, 3572 &rdev_slot.attr, 3573 &rdev_offset.attr, 3574 &rdev_new_offset.attr, 3575 &rdev_size.attr, 3576 &rdev_recovery_start.attr, 3577 &rdev_bad_blocks.attr, 3578 &rdev_unack_bad_blocks.attr, 3579 &rdev_ppl_sector.attr, 3580 &rdev_ppl_size.attr, 3581 NULL, 3582 }; 3583 ATTRIBUTE_GROUPS(rdev_default); 3584 static ssize_t 3585 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 3586 { 3587 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3588 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3589 3590 if (!entry->show) 3591 return -EIO; 3592 if (!rdev->mddev) 3593 return -ENODEV; 3594 return entry->show(rdev, page); 3595 } 3596 3597 static ssize_t 3598 rdev_attr_store(struct kobject *kobj, struct attribute *attr, 3599 const char *page, size_t length) 3600 { 3601 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3602 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3603 struct kernfs_node *kn = NULL; 3604 ssize_t rv; 3605 struct mddev *mddev = rdev->mddev; 3606 3607 if (!entry->store) 3608 return -EIO; 3609 if (!capable(CAP_SYS_ADMIN)) 3610 return -EACCES; 3611 3612 if (entry->store == state_store && cmd_match(page, "remove")) 3613 kn = sysfs_break_active_protection(kobj, attr); 3614 3615 rv = mddev ? mddev_lock(mddev) : -ENODEV; 3616 if (!rv) { 3617 if (rdev->mddev == NULL) 3618 rv = -ENODEV; 3619 else 3620 rv = entry->store(rdev, page, length); 3621 mddev_unlock(mddev); 3622 } 3623 3624 if (kn) 3625 sysfs_unbreak_active_protection(kn); 3626 3627 return rv; 3628 } 3629 3630 static void rdev_free(struct kobject *ko) 3631 { 3632 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj); 3633 kfree(rdev); 3634 } 3635 static const struct sysfs_ops rdev_sysfs_ops = { 3636 .show = rdev_attr_show, 3637 .store = rdev_attr_store, 3638 }; 3639 static const struct kobj_type rdev_ktype = { 3640 .release = rdev_free, 3641 .sysfs_ops = &rdev_sysfs_ops, 3642 .default_groups = rdev_default_groups, 3643 }; 3644 3645 int md_rdev_init(struct md_rdev *rdev) 3646 { 3647 rdev->desc_nr = -1; 3648 rdev->saved_raid_disk = -1; 3649 rdev->raid_disk = -1; 3650 rdev->flags = 0; 3651 rdev->data_offset = 0; 3652 rdev->new_data_offset = 0; 3653 rdev->sb_events = 0; 3654 rdev->last_read_error = 0; 3655 rdev->sb_loaded = 0; 3656 rdev->bb_page = NULL; 3657 atomic_set(&rdev->nr_pending, 0); 3658 atomic_set(&rdev->read_errors, 0); 3659 atomic_set(&rdev->corrected_errors, 0); 3660 3661 INIT_LIST_HEAD(&rdev->same_set); 3662 init_waitqueue_head(&rdev->blocked_wait); 3663 3664 /* Add space to store bad block list. 3665 * This reserves the space even on arrays where it cannot 3666 * be used - I wonder if that matters 3667 */ 3668 return badblocks_init(&rdev->badblocks, 0); 3669 } 3670 EXPORT_SYMBOL_GPL(md_rdev_init); 3671 3672 /* 3673 * Import a device. If 'super_format' >= 0, then sanity check the superblock 3674 * 3675 * mark the device faulty if: 3676 * 3677 * - the device is nonexistent (zero size) 3678 * - the device has no valid superblock 3679 * 3680 * a faulty rdev _never_ has rdev->sb set. 3681 */ 3682 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor) 3683 { 3684 struct md_rdev *rdev; 3685 struct md_rdev *holder; 3686 sector_t size; 3687 int err; 3688 3689 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 3690 if (!rdev) 3691 return ERR_PTR(-ENOMEM); 3692 3693 err = md_rdev_init(rdev); 3694 if (err) 3695 goto out_free_rdev; 3696 err = alloc_disk_sb(rdev); 3697 if (err) 3698 goto out_clear_rdev; 3699 3700 if (super_format == -2) { 3701 holder = &claim_rdev; 3702 } else { 3703 holder = rdev; 3704 set_bit(Holder, &rdev->flags); 3705 } 3706 3707 rdev->bdev = blkdev_get_by_dev(newdev, BLK_OPEN_READ | BLK_OPEN_WRITE, 3708 holder, NULL); 3709 if (IS_ERR(rdev->bdev)) { 3710 pr_warn("md: could not open device unknown-block(%u,%u).\n", 3711 MAJOR(newdev), MINOR(newdev)); 3712 err = PTR_ERR(rdev->bdev); 3713 goto out_clear_rdev; 3714 } 3715 3716 kobject_init(&rdev->kobj, &rdev_ktype); 3717 3718 size = bdev_nr_bytes(rdev->bdev) >> BLOCK_SIZE_BITS; 3719 if (!size) { 3720 pr_warn("md: %pg has zero or unknown size, marking faulty!\n", 3721 rdev->bdev); 3722 err = -EINVAL; 3723 goto out_blkdev_put; 3724 } 3725 3726 if (super_format >= 0) { 3727 err = super_types[super_format]. 3728 load_super(rdev, NULL, super_minor); 3729 if (err == -EINVAL) { 3730 pr_warn("md: %pg does not have a valid v%d.%d superblock, not importing!\n", 3731 rdev->bdev, 3732 super_format, super_minor); 3733 goto out_blkdev_put; 3734 } 3735 if (err < 0) { 3736 pr_warn("md: could not read %pg's sb, not importing!\n", 3737 rdev->bdev); 3738 goto out_blkdev_put; 3739 } 3740 } 3741 3742 return rdev; 3743 3744 out_blkdev_put: 3745 blkdev_put(rdev->bdev, holder); 3746 out_clear_rdev: 3747 md_rdev_clear(rdev); 3748 out_free_rdev: 3749 kfree(rdev); 3750 return ERR_PTR(err); 3751 } 3752 3753 /* 3754 * Check a full RAID array for plausibility 3755 */ 3756 3757 static int analyze_sbs(struct mddev *mddev) 3758 { 3759 int i; 3760 struct md_rdev *rdev, *freshest, *tmp; 3761 3762 freshest = NULL; 3763 rdev_for_each_safe(rdev, tmp, mddev) 3764 switch (super_types[mddev->major_version]. 3765 load_super(rdev, freshest, mddev->minor_version)) { 3766 case 1: 3767 freshest = rdev; 3768 break; 3769 case 0: 3770 break; 3771 default: 3772 pr_warn("md: fatal superblock inconsistency in %pg -- removing from array\n", 3773 rdev->bdev); 3774 md_kick_rdev_from_array(rdev); 3775 } 3776 3777 /* Cannot find a valid fresh disk */ 3778 if (!freshest) { 3779 pr_warn("md: cannot find a valid disk\n"); 3780 return -EINVAL; 3781 } 3782 3783 super_types[mddev->major_version]. 3784 validate_super(mddev, NULL/*freshest*/, freshest); 3785 3786 i = 0; 3787 rdev_for_each_safe(rdev, tmp, mddev) { 3788 if (mddev->max_disks && 3789 (rdev->desc_nr >= mddev->max_disks || 3790 i > mddev->max_disks)) { 3791 pr_warn("md: %s: %pg: only %d devices permitted\n", 3792 mdname(mddev), rdev->bdev, 3793 mddev->max_disks); 3794 md_kick_rdev_from_array(rdev); 3795 continue; 3796 } 3797 if (rdev != freshest) { 3798 if (super_types[mddev->major_version]. 3799 validate_super(mddev, freshest, rdev)) { 3800 pr_warn("md: kicking non-fresh %pg from array!\n", 3801 rdev->bdev); 3802 md_kick_rdev_from_array(rdev); 3803 continue; 3804 } 3805 } 3806 if (mddev->level == LEVEL_MULTIPATH) { 3807 rdev->desc_nr = i++; 3808 rdev->raid_disk = rdev->desc_nr; 3809 set_bit(In_sync, &rdev->flags); 3810 } else if (rdev->raid_disk >= 3811 (mddev->raid_disks - min(0, mddev->delta_disks)) && 3812 !test_bit(Journal, &rdev->flags)) { 3813 rdev->raid_disk = -1; 3814 clear_bit(In_sync, &rdev->flags); 3815 } 3816 } 3817 3818 return 0; 3819 } 3820 3821 /* Read a fixed-point number. 3822 * Numbers in sysfs attributes should be in "standard" units where 3823 * possible, so time should be in seconds. 3824 * However we internally use a a much smaller unit such as 3825 * milliseconds or jiffies. 3826 * This function takes a decimal number with a possible fractional 3827 * component, and produces an integer which is the result of 3828 * multiplying that number by 10^'scale'. 3829 * all without any floating-point arithmetic. 3830 */ 3831 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale) 3832 { 3833 unsigned long result = 0; 3834 long decimals = -1; 3835 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) { 3836 if (*cp == '.') 3837 decimals = 0; 3838 else if (decimals < scale) { 3839 unsigned int value; 3840 value = *cp - '0'; 3841 result = result * 10 + value; 3842 if (decimals >= 0) 3843 decimals++; 3844 } 3845 cp++; 3846 } 3847 if (*cp == '\n') 3848 cp++; 3849 if (*cp) 3850 return -EINVAL; 3851 if (decimals < 0) 3852 decimals = 0; 3853 *res = result * int_pow(10, scale - decimals); 3854 return 0; 3855 } 3856 3857 static ssize_t 3858 safe_delay_show(struct mddev *mddev, char *page) 3859 { 3860 unsigned int msec = ((unsigned long)mddev->safemode_delay*1000)/HZ; 3861 3862 return sprintf(page, "%u.%03u\n", msec/1000, msec%1000); 3863 } 3864 static ssize_t 3865 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len) 3866 { 3867 unsigned long msec; 3868 3869 if (mddev_is_clustered(mddev)) { 3870 pr_warn("md: Safemode is disabled for clustered mode\n"); 3871 return -EINVAL; 3872 } 3873 3874 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0 || msec > UINT_MAX / HZ) 3875 return -EINVAL; 3876 if (msec == 0) 3877 mddev->safemode_delay = 0; 3878 else { 3879 unsigned long old_delay = mddev->safemode_delay; 3880 unsigned long new_delay = (msec*HZ)/1000; 3881 3882 if (new_delay == 0) 3883 new_delay = 1; 3884 mddev->safemode_delay = new_delay; 3885 if (new_delay < old_delay || old_delay == 0) 3886 mod_timer(&mddev->safemode_timer, jiffies+1); 3887 } 3888 return len; 3889 } 3890 static struct md_sysfs_entry md_safe_delay = 3891 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); 3892 3893 static ssize_t 3894 level_show(struct mddev *mddev, char *page) 3895 { 3896 struct md_personality *p; 3897 int ret; 3898 spin_lock(&mddev->lock); 3899 p = mddev->pers; 3900 if (p) 3901 ret = sprintf(page, "%s\n", p->name); 3902 else if (mddev->clevel[0]) 3903 ret = sprintf(page, "%s\n", mddev->clevel); 3904 else if (mddev->level != LEVEL_NONE) 3905 ret = sprintf(page, "%d\n", mddev->level); 3906 else 3907 ret = 0; 3908 spin_unlock(&mddev->lock); 3909 return ret; 3910 } 3911 3912 static ssize_t 3913 level_store(struct mddev *mddev, const char *buf, size_t len) 3914 { 3915 char clevel[16]; 3916 ssize_t rv; 3917 size_t slen = len; 3918 struct md_personality *pers, *oldpers; 3919 long level; 3920 void *priv, *oldpriv; 3921 struct md_rdev *rdev; 3922 3923 if (slen == 0 || slen >= sizeof(clevel)) 3924 return -EINVAL; 3925 3926 rv = mddev_lock(mddev); 3927 if (rv) 3928 return rv; 3929 3930 if (mddev->pers == NULL) { 3931 strncpy(mddev->clevel, buf, slen); 3932 if (mddev->clevel[slen-1] == '\n') 3933 slen--; 3934 mddev->clevel[slen] = 0; 3935 mddev->level = LEVEL_NONE; 3936 rv = len; 3937 goto out_unlock; 3938 } 3939 rv = -EROFS; 3940 if (!md_is_rdwr(mddev)) 3941 goto out_unlock; 3942 3943 /* request to change the personality. Need to ensure: 3944 * - array is not engaged in resync/recovery/reshape 3945 * - old personality can be suspended 3946 * - new personality will access other array. 3947 */ 3948 3949 rv = -EBUSY; 3950 if (mddev->sync_thread || 3951 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 3952 mddev->reshape_position != MaxSector || 3953 mddev->sysfs_active) 3954 goto out_unlock; 3955 3956 rv = -EINVAL; 3957 if (!mddev->pers->quiesce) { 3958 pr_warn("md: %s: %s does not support online personality change\n", 3959 mdname(mddev), mddev->pers->name); 3960 goto out_unlock; 3961 } 3962 3963 /* Now find the new personality */ 3964 strncpy(clevel, buf, slen); 3965 if (clevel[slen-1] == '\n') 3966 slen--; 3967 clevel[slen] = 0; 3968 if (kstrtol(clevel, 10, &level)) 3969 level = LEVEL_NONE; 3970 3971 if (request_module("md-%s", clevel) != 0) 3972 request_module("md-level-%s", clevel); 3973 spin_lock(&pers_lock); 3974 pers = find_pers(level, clevel); 3975 if (!pers || !try_module_get(pers->owner)) { 3976 spin_unlock(&pers_lock); 3977 pr_warn("md: personality %s not loaded\n", clevel); 3978 rv = -EINVAL; 3979 goto out_unlock; 3980 } 3981 spin_unlock(&pers_lock); 3982 3983 if (pers == mddev->pers) { 3984 /* Nothing to do! */ 3985 module_put(pers->owner); 3986 rv = len; 3987 goto out_unlock; 3988 } 3989 if (!pers->takeover) { 3990 module_put(pers->owner); 3991 pr_warn("md: %s: %s does not support personality takeover\n", 3992 mdname(mddev), clevel); 3993 rv = -EINVAL; 3994 goto out_unlock; 3995 } 3996 3997 rdev_for_each(rdev, mddev) 3998 rdev->new_raid_disk = rdev->raid_disk; 3999 4000 /* ->takeover must set new_* and/or delta_disks 4001 * if it succeeds, and may set them when it fails. 4002 */ 4003 priv = pers->takeover(mddev); 4004 if (IS_ERR(priv)) { 4005 mddev->new_level = mddev->level; 4006 mddev->new_layout = mddev->layout; 4007 mddev->new_chunk_sectors = mddev->chunk_sectors; 4008 mddev->raid_disks -= mddev->delta_disks; 4009 mddev->delta_disks = 0; 4010 mddev->reshape_backwards = 0; 4011 module_put(pers->owner); 4012 pr_warn("md: %s: %s would not accept array\n", 4013 mdname(mddev), clevel); 4014 rv = PTR_ERR(priv); 4015 goto out_unlock; 4016 } 4017 4018 /* Looks like we have a winner */ 4019 mddev_suspend(mddev); 4020 mddev_detach(mddev); 4021 4022 spin_lock(&mddev->lock); 4023 oldpers = mddev->pers; 4024 oldpriv = mddev->private; 4025 mddev->pers = pers; 4026 mddev->private = priv; 4027 strscpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 4028 mddev->level = mddev->new_level; 4029 mddev->layout = mddev->new_layout; 4030 mddev->chunk_sectors = mddev->new_chunk_sectors; 4031 mddev->delta_disks = 0; 4032 mddev->reshape_backwards = 0; 4033 mddev->degraded = 0; 4034 spin_unlock(&mddev->lock); 4035 4036 if (oldpers->sync_request == NULL && 4037 mddev->external) { 4038 /* We are converting from a no-redundancy array 4039 * to a redundancy array and metadata is managed 4040 * externally so we need to be sure that writes 4041 * won't block due to a need to transition 4042 * clean->dirty 4043 * until external management is started. 4044 */ 4045 mddev->in_sync = 0; 4046 mddev->safemode_delay = 0; 4047 mddev->safemode = 0; 4048 } 4049 4050 oldpers->free(mddev, oldpriv); 4051 4052 if (oldpers->sync_request == NULL && 4053 pers->sync_request != NULL) { 4054 /* need to add the md_redundancy_group */ 4055 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 4056 pr_warn("md: cannot register extra attributes for %s\n", 4057 mdname(mddev)); 4058 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action"); 4059 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed"); 4060 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded"); 4061 } 4062 if (oldpers->sync_request != NULL && 4063 pers->sync_request == NULL) { 4064 /* need to remove the md_redundancy_group */ 4065 if (mddev->to_remove == NULL) 4066 mddev->to_remove = &md_redundancy_group; 4067 } 4068 4069 module_put(oldpers->owner); 4070 4071 rdev_for_each(rdev, mddev) { 4072 if (rdev->raid_disk < 0) 4073 continue; 4074 if (rdev->new_raid_disk >= mddev->raid_disks) 4075 rdev->new_raid_disk = -1; 4076 if (rdev->new_raid_disk == rdev->raid_disk) 4077 continue; 4078 sysfs_unlink_rdev(mddev, rdev); 4079 } 4080 rdev_for_each(rdev, mddev) { 4081 if (rdev->raid_disk < 0) 4082 continue; 4083 if (rdev->new_raid_disk == rdev->raid_disk) 4084 continue; 4085 rdev->raid_disk = rdev->new_raid_disk; 4086 if (rdev->raid_disk < 0) 4087 clear_bit(In_sync, &rdev->flags); 4088 else { 4089 if (sysfs_link_rdev(mddev, rdev)) 4090 pr_warn("md: cannot register rd%d for %s after level change\n", 4091 rdev->raid_disk, mdname(mddev)); 4092 } 4093 } 4094 4095 if (pers->sync_request == NULL) { 4096 /* this is now an array without redundancy, so 4097 * it must always be in_sync 4098 */ 4099 mddev->in_sync = 1; 4100 del_timer_sync(&mddev->safemode_timer); 4101 } 4102 blk_set_stacking_limits(&mddev->queue->limits); 4103 pers->run(mddev); 4104 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4105 mddev_resume(mddev); 4106 if (!mddev->thread) 4107 md_update_sb(mddev, 1); 4108 sysfs_notify_dirent_safe(mddev->sysfs_level); 4109 md_new_event(); 4110 rv = len; 4111 out_unlock: 4112 mddev_unlock(mddev); 4113 return rv; 4114 } 4115 4116 static struct md_sysfs_entry md_level = 4117 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); 4118 4119 static ssize_t 4120 layout_show(struct mddev *mddev, char *page) 4121 { 4122 /* just a number, not meaningful for all levels */ 4123 if (mddev->reshape_position != MaxSector && 4124 mddev->layout != mddev->new_layout) 4125 return sprintf(page, "%d (%d)\n", 4126 mddev->new_layout, mddev->layout); 4127 return sprintf(page, "%d\n", mddev->layout); 4128 } 4129 4130 static ssize_t 4131 layout_store(struct mddev *mddev, const char *buf, size_t len) 4132 { 4133 unsigned int n; 4134 int err; 4135 4136 err = kstrtouint(buf, 10, &n); 4137 if (err < 0) 4138 return err; 4139 err = mddev_lock(mddev); 4140 if (err) 4141 return err; 4142 4143 if (mddev->pers) { 4144 if (mddev->pers->check_reshape == NULL) 4145 err = -EBUSY; 4146 else if (!md_is_rdwr(mddev)) 4147 err = -EROFS; 4148 else { 4149 mddev->new_layout = n; 4150 err = mddev->pers->check_reshape(mddev); 4151 if (err) 4152 mddev->new_layout = mddev->layout; 4153 } 4154 } else { 4155 mddev->new_layout = n; 4156 if (mddev->reshape_position == MaxSector) 4157 mddev->layout = n; 4158 } 4159 mddev_unlock(mddev); 4160 return err ?: len; 4161 } 4162 static struct md_sysfs_entry md_layout = 4163 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); 4164 4165 static ssize_t 4166 raid_disks_show(struct mddev *mddev, char *page) 4167 { 4168 if (mddev->raid_disks == 0) 4169 return 0; 4170 if (mddev->reshape_position != MaxSector && 4171 mddev->delta_disks != 0) 4172 return sprintf(page, "%d (%d)\n", mddev->raid_disks, 4173 mddev->raid_disks - mddev->delta_disks); 4174 return sprintf(page, "%d\n", mddev->raid_disks); 4175 } 4176 4177 static int update_raid_disks(struct mddev *mddev, int raid_disks); 4178 4179 static ssize_t 4180 raid_disks_store(struct mddev *mddev, const char *buf, size_t len) 4181 { 4182 unsigned int n; 4183 int err; 4184 4185 err = kstrtouint(buf, 10, &n); 4186 if (err < 0) 4187 return err; 4188 4189 err = mddev_lock(mddev); 4190 if (err) 4191 return err; 4192 if (mddev->pers) 4193 err = update_raid_disks(mddev, n); 4194 else if (mddev->reshape_position != MaxSector) { 4195 struct md_rdev *rdev; 4196 int olddisks = mddev->raid_disks - mddev->delta_disks; 4197 4198 err = -EINVAL; 4199 rdev_for_each(rdev, mddev) { 4200 if (olddisks < n && 4201 rdev->data_offset < rdev->new_data_offset) 4202 goto out_unlock; 4203 if (olddisks > n && 4204 rdev->data_offset > rdev->new_data_offset) 4205 goto out_unlock; 4206 } 4207 err = 0; 4208 mddev->delta_disks = n - olddisks; 4209 mddev->raid_disks = n; 4210 mddev->reshape_backwards = (mddev->delta_disks < 0); 4211 } else 4212 mddev->raid_disks = n; 4213 out_unlock: 4214 mddev_unlock(mddev); 4215 return err ? err : len; 4216 } 4217 static struct md_sysfs_entry md_raid_disks = 4218 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); 4219 4220 static ssize_t 4221 uuid_show(struct mddev *mddev, char *page) 4222 { 4223 return sprintf(page, "%pU\n", mddev->uuid); 4224 } 4225 static struct md_sysfs_entry md_uuid = 4226 __ATTR(uuid, S_IRUGO, uuid_show, NULL); 4227 4228 static ssize_t 4229 chunk_size_show(struct mddev *mddev, char *page) 4230 { 4231 if (mddev->reshape_position != MaxSector && 4232 mddev->chunk_sectors != mddev->new_chunk_sectors) 4233 return sprintf(page, "%d (%d)\n", 4234 mddev->new_chunk_sectors << 9, 4235 mddev->chunk_sectors << 9); 4236 return sprintf(page, "%d\n", mddev->chunk_sectors << 9); 4237 } 4238 4239 static ssize_t 4240 chunk_size_store(struct mddev *mddev, const char *buf, size_t len) 4241 { 4242 unsigned long n; 4243 int err; 4244 4245 err = kstrtoul(buf, 10, &n); 4246 if (err < 0) 4247 return err; 4248 4249 err = mddev_lock(mddev); 4250 if (err) 4251 return err; 4252 if (mddev->pers) { 4253 if (mddev->pers->check_reshape == NULL) 4254 err = -EBUSY; 4255 else if (!md_is_rdwr(mddev)) 4256 err = -EROFS; 4257 else { 4258 mddev->new_chunk_sectors = n >> 9; 4259 err = mddev->pers->check_reshape(mddev); 4260 if (err) 4261 mddev->new_chunk_sectors = mddev->chunk_sectors; 4262 } 4263 } else { 4264 mddev->new_chunk_sectors = n >> 9; 4265 if (mddev->reshape_position == MaxSector) 4266 mddev->chunk_sectors = n >> 9; 4267 } 4268 mddev_unlock(mddev); 4269 return err ?: len; 4270 } 4271 static struct md_sysfs_entry md_chunk_size = 4272 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); 4273 4274 static ssize_t 4275 resync_start_show(struct mddev *mddev, char *page) 4276 { 4277 if (mddev->recovery_cp == MaxSector) 4278 return sprintf(page, "none\n"); 4279 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); 4280 } 4281 4282 static ssize_t 4283 resync_start_store(struct mddev *mddev, const char *buf, size_t len) 4284 { 4285 unsigned long long n; 4286 int err; 4287 4288 if (cmd_match(buf, "none")) 4289 n = MaxSector; 4290 else { 4291 err = kstrtoull(buf, 10, &n); 4292 if (err < 0) 4293 return err; 4294 if (n != (sector_t)n) 4295 return -EINVAL; 4296 } 4297 4298 err = mddev_lock(mddev); 4299 if (err) 4300 return err; 4301 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 4302 err = -EBUSY; 4303 4304 if (!err) { 4305 mddev->recovery_cp = n; 4306 if (mddev->pers) 4307 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 4308 } 4309 mddev_unlock(mddev); 4310 return err ?: len; 4311 } 4312 static struct md_sysfs_entry md_resync_start = 4313 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR, 4314 resync_start_show, resync_start_store); 4315 4316 /* 4317 * The array state can be: 4318 * 4319 * clear 4320 * No devices, no size, no level 4321 * Equivalent to STOP_ARRAY ioctl 4322 * inactive 4323 * May have some settings, but array is not active 4324 * all IO results in error 4325 * When written, doesn't tear down array, but just stops it 4326 * suspended (not supported yet) 4327 * All IO requests will block. The array can be reconfigured. 4328 * Writing this, if accepted, will block until array is quiescent 4329 * readonly 4330 * no resync can happen. no superblocks get written. 4331 * write requests fail 4332 * read-auto 4333 * like readonly, but behaves like 'clean' on a write request. 4334 * 4335 * clean - no pending writes, but otherwise active. 4336 * When written to inactive array, starts without resync 4337 * If a write request arrives then 4338 * if metadata is known, mark 'dirty' and switch to 'active'. 4339 * if not known, block and switch to write-pending 4340 * If written to an active array that has pending writes, then fails. 4341 * active 4342 * fully active: IO and resync can be happening. 4343 * When written to inactive array, starts with resync 4344 * 4345 * write-pending 4346 * clean, but writes are blocked waiting for 'active' to be written. 4347 * 4348 * active-idle 4349 * like active, but no writes have been seen for a while (100msec). 4350 * 4351 * broken 4352 * Array is failed. It's useful because mounted-arrays aren't stopped 4353 * when array is failed, so this state will at least alert the user that 4354 * something is wrong. 4355 */ 4356 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, 4357 write_pending, active_idle, broken, bad_word}; 4358 static char *array_states[] = { 4359 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", 4360 "write-pending", "active-idle", "broken", NULL }; 4361 4362 static int match_word(const char *word, char **list) 4363 { 4364 int n; 4365 for (n=0; list[n]; n++) 4366 if (cmd_match(word, list[n])) 4367 break; 4368 return n; 4369 } 4370 4371 static ssize_t 4372 array_state_show(struct mddev *mddev, char *page) 4373 { 4374 enum array_state st = inactive; 4375 4376 if (mddev->pers && !test_bit(MD_NOT_READY, &mddev->flags)) { 4377 switch(mddev->ro) { 4378 case MD_RDONLY: 4379 st = readonly; 4380 break; 4381 case MD_AUTO_READ: 4382 st = read_auto; 4383 break; 4384 case MD_RDWR: 4385 spin_lock(&mddev->lock); 4386 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 4387 st = write_pending; 4388 else if (mddev->in_sync) 4389 st = clean; 4390 else if (mddev->safemode) 4391 st = active_idle; 4392 else 4393 st = active; 4394 spin_unlock(&mddev->lock); 4395 } 4396 4397 if (test_bit(MD_BROKEN, &mddev->flags) && st == clean) 4398 st = broken; 4399 } else { 4400 if (list_empty(&mddev->disks) && 4401 mddev->raid_disks == 0 && 4402 mddev->dev_sectors == 0) 4403 st = clear; 4404 else 4405 st = inactive; 4406 } 4407 return sprintf(page, "%s\n", array_states[st]); 4408 } 4409 4410 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev); 4411 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev); 4412 static int restart_array(struct mddev *mddev); 4413 4414 static ssize_t 4415 array_state_store(struct mddev *mddev, const char *buf, size_t len) 4416 { 4417 int err = 0; 4418 enum array_state st = match_word(buf, array_states); 4419 4420 if (mddev->pers && (st == active || st == clean) && 4421 mddev->ro != MD_RDONLY) { 4422 /* don't take reconfig_mutex when toggling between 4423 * clean and active 4424 */ 4425 spin_lock(&mddev->lock); 4426 if (st == active) { 4427 restart_array(mddev); 4428 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4429 md_wakeup_thread(mddev->thread); 4430 wake_up(&mddev->sb_wait); 4431 } else /* st == clean */ { 4432 restart_array(mddev); 4433 if (!set_in_sync(mddev)) 4434 err = -EBUSY; 4435 } 4436 if (!err) 4437 sysfs_notify_dirent_safe(mddev->sysfs_state); 4438 spin_unlock(&mddev->lock); 4439 return err ?: len; 4440 } 4441 err = mddev_lock(mddev); 4442 if (err) 4443 return err; 4444 err = -EINVAL; 4445 switch(st) { 4446 case bad_word: 4447 break; 4448 case clear: 4449 /* stopping an active array */ 4450 err = do_md_stop(mddev, 0, NULL); 4451 break; 4452 case inactive: 4453 /* stopping an active array */ 4454 if (mddev->pers) 4455 err = do_md_stop(mddev, 2, NULL); 4456 else 4457 err = 0; /* already inactive */ 4458 break; 4459 case suspended: 4460 break; /* not supported yet */ 4461 case readonly: 4462 if (mddev->pers) 4463 err = md_set_readonly(mddev, NULL); 4464 else { 4465 mddev->ro = MD_RDONLY; 4466 set_disk_ro(mddev->gendisk, 1); 4467 err = do_md_run(mddev); 4468 } 4469 break; 4470 case read_auto: 4471 if (mddev->pers) { 4472 if (md_is_rdwr(mddev)) 4473 err = md_set_readonly(mddev, NULL); 4474 else if (mddev->ro == MD_RDONLY) 4475 err = restart_array(mddev); 4476 if (err == 0) { 4477 mddev->ro = MD_AUTO_READ; 4478 set_disk_ro(mddev->gendisk, 0); 4479 } 4480 } else { 4481 mddev->ro = MD_AUTO_READ; 4482 err = do_md_run(mddev); 4483 } 4484 break; 4485 case clean: 4486 if (mddev->pers) { 4487 err = restart_array(mddev); 4488 if (err) 4489 break; 4490 spin_lock(&mddev->lock); 4491 if (!set_in_sync(mddev)) 4492 err = -EBUSY; 4493 spin_unlock(&mddev->lock); 4494 } else 4495 err = -EINVAL; 4496 break; 4497 case active: 4498 if (mddev->pers) { 4499 err = restart_array(mddev); 4500 if (err) 4501 break; 4502 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4503 wake_up(&mddev->sb_wait); 4504 err = 0; 4505 } else { 4506 mddev->ro = MD_RDWR; 4507 set_disk_ro(mddev->gendisk, 0); 4508 err = do_md_run(mddev); 4509 } 4510 break; 4511 case write_pending: 4512 case active_idle: 4513 case broken: 4514 /* these cannot be set */ 4515 break; 4516 } 4517 4518 if (!err) { 4519 if (mddev->hold_active == UNTIL_IOCTL) 4520 mddev->hold_active = 0; 4521 sysfs_notify_dirent_safe(mddev->sysfs_state); 4522 } 4523 mddev_unlock(mddev); 4524 return err ?: len; 4525 } 4526 static struct md_sysfs_entry md_array_state = 4527 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); 4528 4529 static ssize_t 4530 max_corrected_read_errors_show(struct mddev *mddev, char *page) { 4531 return sprintf(page, "%d\n", 4532 atomic_read(&mddev->max_corr_read_errors)); 4533 } 4534 4535 static ssize_t 4536 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len) 4537 { 4538 unsigned int n; 4539 int rv; 4540 4541 rv = kstrtouint(buf, 10, &n); 4542 if (rv < 0) 4543 return rv; 4544 if (n > INT_MAX) 4545 return -EINVAL; 4546 atomic_set(&mddev->max_corr_read_errors, n); 4547 return len; 4548 } 4549 4550 static struct md_sysfs_entry max_corr_read_errors = 4551 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show, 4552 max_corrected_read_errors_store); 4553 4554 static ssize_t 4555 null_show(struct mddev *mddev, char *page) 4556 { 4557 return -EINVAL; 4558 } 4559 4560 static ssize_t 4561 new_dev_store(struct mddev *mddev, const char *buf, size_t len) 4562 { 4563 /* buf must be %d:%d\n? giving major and minor numbers */ 4564 /* The new device is added to the array. 4565 * If the array has a persistent superblock, we read the 4566 * superblock to initialise info and check validity. 4567 * Otherwise, only checking done is that in bind_rdev_to_array, 4568 * which mainly checks size. 4569 */ 4570 char *e; 4571 int major = simple_strtoul(buf, &e, 10); 4572 int minor; 4573 dev_t dev; 4574 struct md_rdev *rdev; 4575 int err; 4576 4577 if (!*buf || *e != ':' || !e[1] || e[1] == '\n') 4578 return -EINVAL; 4579 minor = simple_strtoul(e+1, &e, 10); 4580 if (*e && *e != '\n') 4581 return -EINVAL; 4582 dev = MKDEV(major, minor); 4583 if (major != MAJOR(dev) || 4584 minor != MINOR(dev)) 4585 return -EOVERFLOW; 4586 4587 err = mddev_lock(mddev); 4588 if (err) 4589 return err; 4590 if (mddev->persistent) { 4591 rdev = md_import_device(dev, mddev->major_version, 4592 mddev->minor_version); 4593 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { 4594 struct md_rdev *rdev0 4595 = list_entry(mddev->disks.next, 4596 struct md_rdev, same_set); 4597 err = super_types[mddev->major_version] 4598 .load_super(rdev, rdev0, mddev->minor_version); 4599 if (err < 0) 4600 goto out; 4601 } 4602 } else if (mddev->external) 4603 rdev = md_import_device(dev, -2, -1); 4604 else 4605 rdev = md_import_device(dev, -1, -1); 4606 4607 if (IS_ERR(rdev)) { 4608 mddev_unlock(mddev); 4609 return PTR_ERR(rdev); 4610 } 4611 err = bind_rdev_to_array(rdev, mddev); 4612 out: 4613 if (err) 4614 export_rdev(rdev, mddev); 4615 mddev_unlock(mddev); 4616 if (!err) 4617 md_new_event(); 4618 return err ? err : len; 4619 } 4620 4621 static struct md_sysfs_entry md_new_device = 4622 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store); 4623 4624 static ssize_t 4625 bitmap_store(struct mddev *mddev, const char *buf, size_t len) 4626 { 4627 char *end; 4628 unsigned long chunk, end_chunk; 4629 int err; 4630 4631 err = mddev_lock(mddev); 4632 if (err) 4633 return err; 4634 if (!mddev->bitmap) 4635 goto out; 4636 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */ 4637 while (*buf) { 4638 chunk = end_chunk = simple_strtoul(buf, &end, 0); 4639 if (buf == end) break; 4640 if (*end == '-') { /* range */ 4641 buf = end + 1; 4642 end_chunk = simple_strtoul(buf, &end, 0); 4643 if (buf == end) break; 4644 } 4645 if (*end && !isspace(*end)) break; 4646 md_bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk); 4647 buf = skip_spaces(end); 4648 } 4649 md_bitmap_unplug(mddev->bitmap); /* flush the bits to disk */ 4650 out: 4651 mddev_unlock(mddev); 4652 return len; 4653 } 4654 4655 static struct md_sysfs_entry md_bitmap = 4656 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); 4657 4658 static ssize_t 4659 size_show(struct mddev *mddev, char *page) 4660 { 4661 return sprintf(page, "%llu\n", 4662 (unsigned long long)mddev->dev_sectors / 2); 4663 } 4664 4665 static int update_size(struct mddev *mddev, sector_t num_sectors); 4666 4667 static ssize_t 4668 size_store(struct mddev *mddev, const char *buf, size_t len) 4669 { 4670 /* If array is inactive, we can reduce the component size, but 4671 * not increase it (except from 0). 4672 * If array is active, we can try an on-line resize 4673 */ 4674 sector_t sectors; 4675 int err = strict_blocks_to_sectors(buf, §ors); 4676 4677 if (err < 0) 4678 return err; 4679 err = mddev_lock(mddev); 4680 if (err) 4681 return err; 4682 if (mddev->pers) { 4683 err = update_size(mddev, sectors); 4684 if (err == 0) 4685 md_update_sb(mddev, 1); 4686 } else { 4687 if (mddev->dev_sectors == 0 || 4688 mddev->dev_sectors > sectors) 4689 mddev->dev_sectors = sectors; 4690 else 4691 err = -ENOSPC; 4692 } 4693 mddev_unlock(mddev); 4694 return err ? err : len; 4695 } 4696 4697 static struct md_sysfs_entry md_size = 4698 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); 4699 4700 /* Metadata version. 4701 * This is one of 4702 * 'none' for arrays with no metadata (good luck...) 4703 * 'external' for arrays with externally managed metadata, 4704 * or N.M for internally known formats 4705 */ 4706 static ssize_t 4707 metadata_show(struct mddev *mddev, char *page) 4708 { 4709 if (mddev->persistent) 4710 return sprintf(page, "%d.%d\n", 4711 mddev->major_version, mddev->minor_version); 4712 else if (mddev->external) 4713 return sprintf(page, "external:%s\n", mddev->metadata_type); 4714 else 4715 return sprintf(page, "none\n"); 4716 } 4717 4718 static ssize_t 4719 metadata_store(struct mddev *mddev, const char *buf, size_t len) 4720 { 4721 int major, minor; 4722 char *e; 4723 int err; 4724 /* Changing the details of 'external' metadata is 4725 * always permitted. Otherwise there must be 4726 * no devices attached to the array. 4727 */ 4728 4729 err = mddev_lock(mddev); 4730 if (err) 4731 return err; 4732 err = -EBUSY; 4733 if (mddev->external && strncmp(buf, "external:", 9) == 0) 4734 ; 4735 else if (!list_empty(&mddev->disks)) 4736 goto out_unlock; 4737 4738 err = 0; 4739 if (cmd_match(buf, "none")) { 4740 mddev->persistent = 0; 4741 mddev->external = 0; 4742 mddev->major_version = 0; 4743 mddev->minor_version = 90; 4744 goto out_unlock; 4745 } 4746 if (strncmp(buf, "external:", 9) == 0) { 4747 size_t namelen = len-9; 4748 if (namelen >= sizeof(mddev->metadata_type)) 4749 namelen = sizeof(mddev->metadata_type)-1; 4750 strncpy(mddev->metadata_type, buf+9, namelen); 4751 mddev->metadata_type[namelen] = 0; 4752 if (namelen && mddev->metadata_type[namelen-1] == '\n') 4753 mddev->metadata_type[--namelen] = 0; 4754 mddev->persistent = 0; 4755 mddev->external = 1; 4756 mddev->major_version = 0; 4757 mddev->minor_version = 90; 4758 goto out_unlock; 4759 } 4760 major = simple_strtoul(buf, &e, 10); 4761 err = -EINVAL; 4762 if (e==buf || *e != '.') 4763 goto out_unlock; 4764 buf = e+1; 4765 minor = simple_strtoul(buf, &e, 10); 4766 if (e==buf || (*e && *e != '\n') ) 4767 goto out_unlock; 4768 err = -ENOENT; 4769 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL) 4770 goto out_unlock; 4771 mddev->major_version = major; 4772 mddev->minor_version = minor; 4773 mddev->persistent = 1; 4774 mddev->external = 0; 4775 err = 0; 4776 out_unlock: 4777 mddev_unlock(mddev); 4778 return err ?: len; 4779 } 4780 4781 static struct md_sysfs_entry md_metadata = 4782 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 4783 4784 static ssize_t 4785 action_show(struct mddev *mddev, char *page) 4786 { 4787 char *type = "idle"; 4788 unsigned long recovery = mddev->recovery; 4789 if (test_bit(MD_RECOVERY_FROZEN, &recovery)) 4790 type = "frozen"; 4791 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) || 4792 (md_is_rdwr(mddev) && test_bit(MD_RECOVERY_NEEDED, &recovery))) { 4793 if (test_bit(MD_RECOVERY_RESHAPE, &recovery)) 4794 type = "reshape"; 4795 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) { 4796 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery)) 4797 type = "resync"; 4798 else if (test_bit(MD_RECOVERY_CHECK, &recovery)) 4799 type = "check"; 4800 else 4801 type = "repair"; 4802 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery)) 4803 type = "recover"; 4804 else if (mddev->reshape_position != MaxSector) 4805 type = "reshape"; 4806 } 4807 return sprintf(page, "%s\n", type); 4808 } 4809 4810 static void stop_sync_thread(struct mddev *mddev) 4811 { 4812 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4813 return; 4814 4815 if (mddev_lock(mddev)) 4816 return; 4817 4818 /* 4819 * Check again in case MD_RECOVERY_RUNNING is cleared before lock is 4820 * held. 4821 */ 4822 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 4823 mddev_unlock(mddev); 4824 return; 4825 } 4826 4827 if (work_pending(&mddev->del_work)) 4828 flush_workqueue(md_misc_wq); 4829 4830 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4831 /* 4832 * Thread might be blocked waiting for metadata update which will now 4833 * never happen 4834 */ 4835 md_wakeup_thread_directly(mddev->sync_thread); 4836 4837 mddev_unlock(mddev); 4838 } 4839 4840 static void idle_sync_thread(struct mddev *mddev) 4841 { 4842 int sync_seq = atomic_read(&mddev->sync_seq); 4843 4844 mutex_lock(&mddev->sync_mutex); 4845 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4846 stop_sync_thread(mddev); 4847 4848 wait_event(resync_wait, sync_seq != atomic_read(&mddev->sync_seq) || 4849 !test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)); 4850 4851 mutex_unlock(&mddev->sync_mutex); 4852 } 4853 4854 static void frozen_sync_thread(struct mddev *mddev) 4855 { 4856 mutex_lock(&mddev->sync_mutex); 4857 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4858 stop_sync_thread(mddev); 4859 4860 wait_event(resync_wait, mddev->sync_thread == NULL && 4861 !test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)); 4862 4863 mutex_unlock(&mddev->sync_mutex); 4864 } 4865 4866 static ssize_t 4867 action_store(struct mddev *mddev, const char *page, size_t len) 4868 { 4869 if (!mddev->pers || !mddev->pers->sync_request) 4870 return -EINVAL; 4871 4872 4873 if (cmd_match(page, "idle")) 4874 idle_sync_thread(mddev); 4875 else if (cmd_match(page, "frozen")) 4876 frozen_sync_thread(mddev); 4877 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4878 return -EBUSY; 4879 else if (cmd_match(page, "resync")) 4880 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4881 else if (cmd_match(page, "recover")) { 4882 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4883 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 4884 } else if (cmd_match(page, "reshape")) { 4885 int err; 4886 if (mddev->pers->start_reshape == NULL) 4887 return -EINVAL; 4888 err = mddev_lock(mddev); 4889 if (!err) { 4890 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 4891 err = -EBUSY; 4892 } else if (mddev->reshape_position == MaxSector || 4893 mddev->pers->check_reshape == NULL || 4894 mddev->pers->check_reshape(mddev)) { 4895 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4896 err = mddev->pers->start_reshape(mddev); 4897 } else { 4898 /* 4899 * If reshape is still in progress, and 4900 * md_check_recovery() can continue to reshape, 4901 * don't restart reshape because data can be 4902 * corrupted for raid456. 4903 */ 4904 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4905 } 4906 mddev_unlock(mddev); 4907 } 4908 if (err) 4909 return err; 4910 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 4911 } else { 4912 if (cmd_match(page, "check")) 4913 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4914 else if (!cmd_match(page, "repair")) 4915 return -EINVAL; 4916 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4917 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 4918 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4919 } 4920 if (mddev->ro == MD_AUTO_READ) { 4921 /* A write to sync_action is enough to justify 4922 * canceling read-auto mode 4923 */ 4924 mddev->ro = MD_RDWR; 4925 md_wakeup_thread(mddev->sync_thread); 4926 } 4927 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4928 md_wakeup_thread(mddev->thread); 4929 sysfs_notify_dirent_safe(mddev->sysfs_action); 4930 return len; 4931 } 4932 4933 static struct md_sysfs_entry md_scan_mode = 4934 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); 4935 4936 static ssize_t 4937 last_sync_action_show(struct mddev *mddev, char *page) 4938 { 4939 return sprintf(page, "%s\n", mddev->last_sync_action); 4940 } 4941 4942 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action); 4943 4944 static ssize_t 4945 mismatch_cnt_show(struct mddev *mddev, char *page) 4946 { 4947 return sprintf(page, "%llu\n", 4948 (unsigned long long) 4949 atomic64_read(&mddev->resync_mismatches)); 4950 } 4951 4952 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); 4953 4954 static ssize_t 4955 sync_min_show(struct mddev *mddev, char *page) 4956 { 4957 return sprintf(page, "%d (%s)\n", speed_min(mddev), 4958 mddev->sync_speed_min ? "local": "system"); 4959 } 4960 4961 static ssize_t 4962 sync_min_store(struct mddev *mddev, const char *buf, size_t len) 4963 { 4964 unsigned int min; 4965 int rv; 4966 4967 if (strncmp(buf, "system", 6)==0) { 4968 min = 0; 4969 } else { 4970 rv = kstrtouint(buf, 10, &min); 4971 if (rv < 0) 4972 return rv; 4973 if (min == 0) 4974 return -EINVAL; 4975 } 4976 mddev->sync_speed_min = min; 4977 return len; 4978 } 4979 4980 static struct md_sysfs_entry md_sync_min = 4981 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); 4982 4983 static ssize_t 4984 sync_max_show(struct mddev *mddev, char *page) 4985 { 4986 return sprintf(page, "%d (%s)\n", speed_max(mddev), 4987 mddev->sync_speed_max ? "local": "system"); 4988 } 4989 4990 static ssize_t 4991 sync_max_store(struct mddev *mddev, const char *buf, size_t len) 4992 { 4993 unsigned int max; 4994 int rv; 4995 4996 if (strncmp(buf, "system", 6)==0) { 4997 max = 0; 4998 } else { 4999 rv = kstrtouint(buf, 10, &max); 5000 if (rv < 0) 5001 return rv; 5002 if (max == 0) 5003 return -EINVAL; 5004 } 5005 mddev->sync_speed_max = max; 5006 return len; 5007 } 5008 5009 static struct md_sysfs_entry md_sync_max = 5010 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); 5011 5012 static ssize_t 5013 degraded_show(struct mddev *mddev, char *page) 5014 { 5015 return sprintf(page, "%d\n", mddev->degraded); 5016 } 5017 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded); 5018 5019 static ssize_t 5020 sync_force_parallel_show(struct mddev *mddev, char *page) 5021 { 5022 return sprintf(page, "%d\n", mddev->parallel_resync); 5023 } 5024 5025 static ssize_t 5026 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len) 5027 { 5028 long n; 5029 5030 if (kstrtol(buf, 10, &n)) 5031 return -EINVAL; 5032 5033 if (n != 0 && n != 1) 5034 return -EINVAL; 5035 5036 mddev->parallel_resync = n; 5037 5038 if (mddev->sync_thread) 5039 wake_up(&resync_wait); 5040 5041 return len; 5042 } 5043 5044 /* force parallel resync, even with shared block devices */ 5045 static struct md_sysfs_entry md_sync_force_parallel = 5046 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR, 5047 sync_force_parallel_show, sync_force_parallel_store); 5048 5049 static ssize_t 5050 sync_speed_show(struct mddev *mddev, char *page) 5051 { 5052 unsigned long resync, dt, db; 5053 if (mddev->curr_resync == MD_RESYNC_NONE) 5054 return sprintf(page, "none\n"); 5055 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active); 5056 dt = (jiffies - mddev->resync_mark) / HZ; 5057 if (!dt) dt++; 5058 db = resync - mddev->resync_mark_cnt; 5059 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */ 5060 } 5061 5062 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); 5063 5064 static ssize_t 5065 sync_completed_show(struct mddev *mddev, char *page) 5066 { 5067 unsigned long long max_sectors, resync; 5068 5069 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5070 return sprintf(page, "none\n"); 5071 5072 if (mddev->curr_resync == MD_RESYNC_YIELDED || 5073 mddev->curr_resync == MD_RESYNC_DELAYED) 5074 return sprintf(page, "delayed\n"); 5075 5076 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 5077 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 5078 max_sectors = mddev->resync_max_sectors; 5079 else 5080 max_sectors = mddev->dev_sectors; 5081 5082 resync = mddev->curr_resync_completed; 5083 return sprintf(page, "%llu / %llu\n", resync, max_sectors); 5084 } 5085 5086 static struct md_sysfs_entry md_sync_completed = 5087 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL); 5088 5089 static ssize_t 5090 min_sync_show(struct mddev *mddev, char *page) 5091 { 5092 return sprintf(page, "%llu\n", 5093 (unsigned long long)mddev->resync_min); 5094 } 5095 static ssize_t 5096 min_sync_store(struct mddev *mddev, const char *buf, size_t len) 5097 { 5098 unsigned long long min; 5099 int err; 5100 5101 if (kstrtoull(buf, 10, &min)) 5102 return -EINVAL; 5103 5104 spin_lock(&mddev->lock); 5105 err = -EINVAL; 5106 if (min > mddev->resync_max) 5107 goto out_unlock; 5108 5109 err = -EBUSY; 5110 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5111 goto out_unlock; 5112 5113 /* Round down to multiple of 4K for safety */ 5114 mddev->resync_min = round_down(min, 8); 5115 err = 0; 5116 5117 out_unlock: 5118 spin_unlock(&mddev->lock); 5119 return err ?: len; 5120 } 5121 5122 static struct md_sysfs_entry md_min_sync = 5123 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store); 5124 5125 static ssize_t 5126 max_sync_show(struct mddev *mddev, char *page) 5127 { 5128 if (mddev->resync_max == MaxSector) 5129 return sprintf(page, "max\n"); 5130 else 5131 return sprintf(page, "%llu\n", 5132 (unsigned long long)mddev->resync_max); 5133 } 5134 static ssize_t 5135 max_sync_store(struct mddev *mddev, const char *buf, size_t len) 5136 { 5137 int err; 5138 spin_lock(&mddev->lock); 5139 if (strncmp(buf, "max", 3) == 0) 5140 mddev->resync_max = MaxSector; 5141 else { 5142 unsigned long long max; 5143 int chunk; 5144 5145 err = -EINVAL; 5146 if (kstrtoull(buf, 10, &max)) 5147 goto out_unlock; 5148 if (max < mddev->resync_min) 5149 goto out_unlock; 5150 5151 err = -EBUSY; 5152 if (max < mddev->resync_max && md_is_rdwr(mddev) && 5153 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5154 goto out_unlock; 5155 5156 /* Must be a multiple of chunk_size */ 5157 chunk = mddev->chunk_sectors; 5158 if (chunk) { 5159 sector_t temp = max; 5160 5161 err = -EINVAL; 5162 if (sector_div(temp, chunk)) 5163 goto out_unlock; 5164 } 5165 mddev->resync_max = max; 5166 } 5167 wake_up(&mddev->recovery_wait); 5168 err = 0; 5169 out_unlock: 5170 spin_unlock(&mddev->lock); 5171 return err ?: len; 5172 } 5173 5174 static struct md_sysfs_entry md_max_sync = 5175 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store); 5176 5177 static ssize_t 5178 suspend_lo_show(struct mddev *mddev, char *page) 5179 { 5180 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo); 5181 } 5182 5183 static ssize_t 5184 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len) 5185 { 5186 unsigned long long new; 5187 int err; 5188 5189 err = kstrtoull(buf, 10, &new); 5190 if (err < 0) 5191 return err; 5192 if (new != (sector_t)new) 5193 return -EINVAL; 5194 5195 err = mddev_lock(mddev); 5196 if (err) 5197 return err; 5198 err = -EINVAL; 5199 if (mddev->pers == NULL || 5200 mddev->pers->quiesce == NULL) 5201 goto unlock; 5202 mddev_suspend(mddev); 5203 mddev->suspend_lo = new; 5204 mddev_resume(mddev); 5205 5206 err = 0; 5207 unlock: 5208 mddev_unlock(mddev); 5209 return err ?: len; 5210 } 5211 static struct md_sysfs_entry md_suspend_lo = 5212 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); 5213 5214 static ssize_t 5215 suspend_hi_show(struct mddev *mddev, char *page) 5216 { 5217 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi); 5218 } 5219 5220 static ssize_t 5221 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len) 5222 { 5223 unsigned long long new; 5224 int err; 5225 5226 err = kstrtoull(buf, 10, &new); 5227 if (err < 0) 5228 return err; 5229 if (new != (sector_t)new) 5230 return -EINVAL; 5231 5232 err = mddev_lock(mddev); 5233 if (err) 5234 return err; 5235 err = -EINVAL; 5236 if (mddev->pers == NULL) 5237 goto unlock; 5238 5239 mddev_suspend(mddev); 5240 mddev->suspend_hi = new; 5241 mddev_resume(mddev); 5242 5243 err = 0; 5244 unlock: 5245 mddev_unlock(mddev); 5246 return err ?: len; 5247 } 5248 static struct md_sysfs_entry md_suspend_hi = 5249 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); 5250 5251 static ssize_t 5252 reshape_position_show(struct mddev *mddev, char *page) 5253 { 5254 if (mddev->reshape_position != MaxSector) 5255 return sprintf(page, "%llu\n", 5256 (unsigned long long)mddev->reshape_position); 5257 strcpy(page, "none\n"); 5258 return 5; 5259 } 5260 5261 static ssize_t 5262 reshape_position_store(struct mddev *mddev, const char *buf, size_t len) 5263 { 5264 struct md_rdev *rdev; 5265 unsigned long long new; 5266 int err; 5267 5268 err = kstrtoull(buf, 10, &new); 5269 if (err < 0) 5270 return err; 5271 if (new != (sector_t)new) 5272 return -EINVAL; 5273 err = mddev_lock(mddev); 5274 if (err) 5275 return err; 5276 err = -EBUSY; 5277 if (mddev->pers) 5278 goto unlock; 5279 mddev->reshape_position = new; 5280 mddev->delta_disks = 0; 5281 mddev->reshape_backwards = 0; 5282 mddev->new_level = mddev->level; 5283 mddev->new_layout = mddev->layout; 5284 mddev->new_chunk_sectors = mddev->chunk_sectors; 5285 rdev_for_each(rdev, mddev) 5286 rdev->new_data_offset = rdev->data_offset; 5287 err = 0; 5288 unlock: 5289 mddev_unlock(mddev); 5290 return err ?: len; 5291 } 5292 5293 static struct md_sysfs_entry md_reshape_position = 5294 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show, 5295 reshape_position_store); 5296 5297 static ssize_t 5298 reshape_direction_show(struct mddev *mddev, char *page) 5299 { 5300 return sprintf(page, "%s\n", 5301 mddev->reshape_backwards ? "backwards" : "forwards"); 5302 } 5303 5304 static ssize_t 5305 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len) 5306 { 5307 int backwards = 0; 5308 int err; 5309 5310 if (cmd_match(buf, "forwards")) 5311 backwards = 0; 5312 else if (cmd_match(buf, "backwards")) 5313 backwards = 1; 5314 else 5315 return -EINVAL; 5316 if (mddev->reshape_backwards == backwards) 5317 return len; 5318 5319 err = mddev_lock(mddev); 5320 if (err) 5321 return err; 5322 /* check if we are allowed to change */ 5323 if (mddev->delta_disks) 5324 err = -EBUSY; 5325 else if (mddev->persistent && 5326 mddev->major_version == 0) 5327 err = -EINVAL; 5328 else 5329 mddev->reshape_backwards = backwards; 5330 mddev_unlock(mddev); 5331 return err ?: len; 5332 } 5333 5334 static struct md_sysfs_entry md_reshape_direction = 5335 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show, 5336 reshape_direction_store); 5337 5338 static ssize_t 5339 array_size_show(struct mddev *mddev, char *page) 5340 { 5341 if (mddev->external_size) 5342 return sprintf(page, "%llu\n", 5343 (unsigned long long)mddev->array_sectors/2); 5344 else 5345 return sprintf(page, "default\n"); 5346 } 5347 5348 static ssize_t 5349 array_size_store(struct mddev *mddev, const char *buf, size_t len) 5350 { 5351 sector_t sectors; 5352 int err; 5353 5354 err = mddev_lock(mddev); 5355 if (err) 5356 return err; 5357 5358 /* cluster raid doesn't support change array_sectors */ 5359 if (mddev_is_clustered(mddev)) { 5360 mddev_unlock(mddev); 5361 return -EINVAL; 5362 } 5363 5364 if (strncmp(buf, "default", 7) == 0) { 5365 if (mddev->pers) 5366 sectors = mddev->pers->size(mddev, 0, 0); 5367 else 5368 sectors = mddev->array_sectors; 5369 5370 mddev->external_size = 0; 5371 } else { 5372 if (strict_blocks_to_sectors(buf, §ors) < 0) 5373 err = -EINVAL; 5374 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors) 5375 err = -E2BIG; 5376 else 5377 mddev->external_size = 1; 5378 } 5379 5380 if (!err) { 5381 mddev->array_sectors = sectors; 5382 if (mddev->pers) 5383 set_capacity_and_notify(mddev->gendisk, 5384 mddev->array_sectors); 5385 } 5386 mddev_unlock(mddev); 5387 return err ?: len; 5388 } 5389 5390 static struct md_sysfs_entry md_array_size = 5391 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show, 5392 array_size_store); 5393 5394 static ssize_t 5395 consistency_policy_show(struct mddev *mddev, char *page) 5396 { 5397 int ret; 5398 5399 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { 5400 ret = sprintf(page, "journal\n"); 5401 } else if (test_bit(MD_HAS_PPL, &mddev->flags)) { 5402 ret = sprintf(page, "ppl\n"); 5403 } else if (mddev->bitmap) { 5404 ret = sprintf(page, "bitmap\n"); 5405 } else if (mddev->pers) { 5406 if (mddev->pers->sync_request) 5407 ret = sprintf(page, "resync\n"); 5408 else 5409 ret = sprintf(page, "none\n"); 5410 } else { 5411 ret = sprintf(page, "unknown\n"); 5412 } 5413 5414 return ret; 5415 } 5416 5417 static ssize_t 5418 consistency_policy_store(struct mddev *mddev, const char *buf, size_t len) 5419 { 5420 int err = 0; 5421 5422 if (mddev->pers) { 5423 if (mddev->pers->change_consistency_policy) 5424 err = mddev->pers->change_consistency_policy(mddev, buf); 5425 else 5426 err = -EBUSY; 5427 } else if (mddev->external && strncmp(buf, "ppl", 3) == 0) { 5428 set_bit(MD_HAS_PPL, &mddev->flags); 5429 } else { 5430 err = -EINVAL; 5431 } 5432 5433 return err ? err : len; 5434 } 5435 5436 static struct md_sysfs_entry md_consistency_policy = 5437 __ATTR(consistency_policy, S_IRUGO | S_IWUSR, consistency_policy_show, 5438 consistency_policy_store); 5439 5440 static ssize_t fail_last_dev_show(struct mddev *mddev, char *page) 5441 { 5442 return sprintf(page, "%d\n", mddev->fail_last_dev); 5443 } 5444 5445 /* 5446 * Setting fail_last_dev to true to allow last device to be forcibly removed 5447 * from RAID1/RAID10. 5448 */ 5449 static ssize_t 5450 fail_last_dev_store(struct mddev *mddev, const char *buf, size_t len) 5451 { 5452 int ret; 5453 bool value; 5454 5455 ret = kstrtobool(buf, &value); 5456 if (ret) 5457 return ret; 5458 5459 if (value != mddev->fail_last_dev) 5460 mddev->fail_last_dev = value; 5461 5462 return len; 5463 } 5464 static struct md_sysfs_entry md_fail_last_dev = 5465 __ATTR(fail_last_dev, S_IRUGO | S_IWUSR, fail_last_dev_show, 5466 fail_last_dev_store); 5467 5468 static ssize_t serialize_policy_show(struct mddev *mddev, char *page) 5469 { 5470 if (mddev->pers == NULL || (mddev->pers->level != 1)) 5471 return sprintf(page, "n/a\n"); 5472 else 5473 return sprintf(page, "%d\n", mddev->serialize_policy); 5474 } 5475 5476 /* 5477 * Setting serialize_policy to true to enforce write IO is not reordered 5478 * for raid1. 5479 */ 5480 static ssize_t 5481 serialize_policy_store(struct mddev *mddev, const char *buf, size_t len) 5482 { 5483 int err; 5484 bool value; 5485 5486 err = kstrtobool(buf, &value); 5487 if (err) 5488 return err; 5489 5490 if (value == mddev->serialize_policy) 5491 return len; 5492 5493 err = mddev_lock(mddev); 5494 if (err) 5495 return err; 5496 if (mddev->pers == NULL || (mddev->pers->level != 1)) { 5497 pr_err("md: serialize_policy is only effective for raid1\n"); 5498 err = -EINVAL; 5499 goto unlock; 5500 } 5501 5502 mddev_suspend(mddev); 5503 if (value) 5504 mddev_create_serial_pool(mddev, NULL, true); 5505 else 5506 mddev_destroy_serial_pool(mddev, NULL, true); 5507 mddev->serialize_policy = value; 5508 mddev_resume(mddev); 5509 unlock: 5510 mddev_unlock(mddev); 5511 return err ?: len; 5512 } 5513 5514 static struct md_sysfs_entry md_serialize_policy = 5515 __ATTR(serialize_policy, S_IRUGO | S_IWUSR, serialize_policy_show, 5516 serialize_policy_store); 5517 5518 5519 static struct attribute *md_default_attrs[] = { 5520 &md_level.attr, 5521 &md_layout.attr, 5522 &md_raid_disks.attr, 5523 &md_uuid.attr, 5524 &md_chunk_size.attr, 5525 &md_size.attr, 5526 &md_resync_start.attr, 5527 &md_metadata.attr, 5528 &md_new_device.attr, 5529 &md_safe_delay.attr, 5530 &md_array_state.attr, 5531 &md_reshape_position.attr, 5532 &md_reshape_direction.attr, 5533 &md_array_size.attr, 5534 &max_corr_read_errors.attr, 5535 &md_consistency_policy.attr, 5536 &md_fail_last_dev.attr, 5537 &md_serialize_policy.attr, 5538 NULL, 5539 }; 5540 5541 static const struct attribute_group md_default_group = { 5542 .attrs = md_default_attrs, 5543 }; 5544 5545 static struct attribute *md_redundancy_attrs[] = { 5546 &md_scan_mode.attr, 5547 &md_last_scan_mode.attr, 5548 &md_mismatches.attr, 5549 &md_sync_min.attr, 5550 &md_sync_max.attr, 5551 &md_sync_speed.attr, 5552 &md_sync_force_parallel.attr, 5553 &md_sync_completed.attr, 5554 &md_min_sync.attr, 5555 &md_max_sync.attr, 5556 &md_suspend_lo.attr, 5557 &md_suspend_hi.attr, 5558 &md_bitmap.attr, 5559 &md_degraded.attr, 5560 NULL, 5561 }; 5562 static const struct attribute_group md_redundancy_group = { 5563 .name = NULL, 5564 .attrs = md_redundancy_attrs, 5565 }; 5566 5567 static const struct attribute_group *md_attr_groups[] = { 5568 &md_default_group, 5569 &md_bitmap_group, 5570 NULL, 5571 }; 5572 5573 static ssize_t 5574 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 5575 { 5576 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5577 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5578 ssize_t rv; 5579 5580 if (!entry->show) 5581 return -EIO; 5582 spin_lock(&all_mddevs_lock); 5583 if (!mddev_get(mddev)) { 5584 spin_unlock(&all_mddevs_lock); 5585 return -EBUSY; 5586 } 5587 spin_unlock(&all_mddevs_lock); 5588 5589 rv = entry->show(mddev, page); 5590 mddev_put(mddev); 5591 return rv; 5592 } 5593 5594 static ssize_t 5595 md_attr_store(struct kobject *kobj, struct attribute *attr, 5596 const char *page, size_t length) 5597 { 5598 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5599 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5600 ssize_t rv; 5601 5602 if (!entry->store) 5603 return -EIO; 5604 if (!capable(CAP_SYS_ADMIN)) 5605 return -EACCES; 5606 spin_lock(&all_mddevs_lock); 5607 if (!mddev_get(mddev)) { 5608 spin_unlock(&all_mddevs_lock); 5609 return -EBUSY; 5610 } 5611 spin_unlock(&all_mddevs_lock); 5612 rv = entry->store(mddev, page, length); 5613 mddev_put(mddev); 5614 return rv; 5615 } 5616 5617 static void md_kobj_release(struct kobject *ko) 5618 { 5619 struct mddev *mddev = container_of(ko, struct mddev, kobj); 5620 5621 if (mddev->sysfs_state) 5622 sysfs_put(mddev->sysfs_state); 5623 if (mddev->sysfs_level) 5624 sysfs_put(mddev->sysfs_level); 5625 5626 del_gendisk(mddev->gendisk); 5627 put_disk(mddev->gendisk); 5628 } 5629 5630 static const struct sysfs_ops md_sysfs_ops = { 5631 .show = md_attr_show, 5632 .store = md_attr_store, 5633 }; 5634 static const struct kobj_type md_ktype = { 5635 .release = md_kobj_release, 5636 .sysfs_ops = &md_sysfs_ops, 5637 .default_groups = md_attr_groups, 5638 }; 5639 5640 int mdp_major = 0; 5641 5642 static void mddev_delayed_delete(struct work_struct *ws) 5643 { 5644 struct mddev *mddev = container_of(ws, struct mddev, del_work); 5645 5646 kobject_put(&mddev->kobj); 5647 } 5648 5649 static void no_op(struct percpu_ref *r) {} 5650 5651 int mddev_init_writes_pending(struct mddev *mddev) 5652 { 5653 if (mddev->writes_pending.percpu_count_ptr) 5654 return 0; 5655 if (percpu_ref_init(&mddev->writes_pending, no_op, 5656 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL) < 0) 5657 return -ENOMEM; 5658 /* We want to start with the refcount at zero */ 5659 percpu_ref_put(&mddev->writes_pending); 5660 return 0; 5661 } 5662 EXPORT_SYMBOL_GPL(mddev_init_writes_pending); 5663 5664 struct mddev *md_alloc(dev_t dev, char *name) 5665 { 5666 /* 5667 * If dev is zero, name is the name of a device to allocate with 5668 * an arbitrary minor number. It will be "md_???" 5669 * If dev is non-zero it must be a device number with a MAJOR of 5670 * MD_MAJOR or mdp_major. In this case, if "name" is NULL, then 5671 * the device is being created by opening a node in /dev. 5672 * If "name" is not NULL, the device is being created by 5673 * writing to /sys/module/md_mod/parameters/new_array. 5674 */ 5675 static DEFINE_MUTEX(disks_mutex); 5676 struct mddev *mddev; 5677 struct gendisk *disk; 5678 int partitioned; 5679 int shift; 5680 int unit; 5681 int error ; 5682 5683 /* 5684 * Wait for any previous instance of this device to be completely 5685 * removed (mddev_delayed_delete). 5686 */ 5687 flush_workqueue(md_misc_wq); 5688 5689 mutex_lock(&disks_mutex); 5690 mddev = mddev_alloc(dev); 5691 if (IS_ERR(mddev)) { 5692 error = PTR_ERR(mddev); 5693 goto out_unlock; 5694 } 5695 5696 partitioned = (MAJOR(mddev->unit) != MD_MAJOR); 5697 shift = partitioned ? MdpMinorShift : 0; 5698 unit = MINOR(mddev->unit) >> shift; 5699 5700 if (name && !dev) { 5701 /* Need to ensure that 'name' is not a duplicate. 5702 */ 5703 struct mddev *mddev2; 5704 spin_lock(&all_mddevs_lock); 5705 5706 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) 5707 if (mddev2->gendisk && 5708 strcmp(mddev2->gendisk->disk_name, name) == 0) { 5709 spin_unlock(&all_mddevs_lock); 5710 error = -EEXIST; 5711 goto out_free_mddev; 5712 } 5713 spin_unlock(&all_mddevs_lock); 5714 } 5715 if (name && dev) 5716 /* 5717 * Creating /dev/mdNNN via "newarray", so adjust hold_active. 5718 */ 5719 mddev->hold_active = UNTIL_STOP; 5720 5721 error = -ENOMEM; 5722 disk = blk_alloc_disk(NUMA_NO_NODE); 5723 if (!disk) 5724 goto out_free_mddev; 5725 5726 disk->major = MAJOR(mddev->unit); 5727 disk->first_minor = unit << shift; 5728 disk->minors = 1 << shift; 5729 if (name) 5730 strcpy(disk->disk_name, name); 5731 else if (partitioned) 5732 sprintf(disk->disk_name, "md_d%d", unit); 5733 else 5734 sprintf(disk->disk_name, "md%d", unit); 5735 disk->fops = &md_fops; 5736 disk->private_data = mddev; 5737 5738 mddev->queue = disk->queue; 5739 blk_set_stacking_limits(&mddev->queue->limits); 5740 blk_queue_write_cache(mddev->queue, true, true); 5741 disk->events |= DISK_EVENT_MEDIA_CHANGE; 5742 mddev->gendisk = disk; 5743 error = add_disk(disk); 5744 if (error) 5745 goto out_put_disk; 5746 5747 kobject_init(&mddev->kobj, &md_ktype); 5748 error = kobject_add(&mddev->kobj, &disk_to_dev(disk)->kobj, "%s", "md"); 5749 if (error) { 5750 /* 5751 * The disk is already live at this point. Clear the hold flag 5752 * and let mddev_put take care of the deletion, as it isn't any 5753 * different from a normal close on last release now. 5754 */ 5755 mddev->hold_active = 0; 5756 mutex_unlock(&disks_mutex); 5757 mddev_put(mddev); 5758 return ERR_PTR(error); 5759 } 5760 5761 kobject_uevent(&mddev->kobj, KOBJ_ADD); 5762 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state"); 5763 mddev->sysfs_level = sysfs_get_dirent_safe(mddev->kobj.sd, "level"); 5764 mutex_unlock(&disks_mutex); 5765 return mddev; 5766 5767 out_put_disk: 5768 put_disk(disk); 5769 out_free_mddev: 5770 mddev_free(mddev); 5771 out_unlock: 5772 mutex_unlock(&disks_mutex); 5773 return ERR_PTR(error); 5774 } 5775 5776 static int md_alloc_and_put(dev_t dev, char *name) 5777 { 5778 struct mddev *mddev = md_alloc(dev, name); 5779 5780 if (IS_ERR(mddev)) 5781 return PTR_ERR(mddev); 5782 mddev_put(mddev); 5783 return 0; 5784 } 5785 5786 static void md_probe(dev_t dev) 5787 { 5788 if (MAJOR(dev) == MD_MAJOR && MINOR(dev) >= 512) 5789 return; 5790 if (create_on_open) 5791 md_alloc_and_put(dev, NULL); 5792 } 5793 5794 static int add_named_array(const char *val, const struct kernel_param *kp) 5795 { 5796 /* 5797 * val must be "md_*" or "mdNNN". 5798 * For "md_*" we allocate an array with a large free minor number, and 5799 * set the name to val. val must not already be an active name. 5800 * For "mdNNN" we allocate an array with the minor number NNN 5801 * which must not already be in use. 5802 */ 5803 int len = strlen(val); 5804 char buf[DISK_NAME_LEN]; 5805 unsigned long devnum; 5806 5807 while (len && val[len-1] == '\n') 5808 len--; 5809 if (len >= DISK_NAME_LEN) 5810 return -E2BIG; 5811 strscpy(buf, val, len+1); 5812 if (strncmp(buf, "md_", 3) == 0) 5813 return md_alloc_and_put(0, buf); 5814 if (strncmp(buf, "md", 2) == 0 && 5815 isdigit(buf[2]) && 5816 kstrtoul(buf+2, 10, &devnum) == 0 && 5817 devnum <= MINORMASK) 5818 return md_alloc_and_put(MKDEV(MD_MAJOR, devnum), NULL); 5819 5820 return -EINVAL; 5821 } 5822 5823 static void md_safemode_timeout(struct timer_list *t) 5824 { 5825 struct mddev *mddev = from_timer(mddev, t, safemode_timer); 5826 5827 mddev->safemode = 1; 5828 if (mddev->external) 5829 sysfs_notify_dirent_safe(mddev->sysfs_state); 5830 5831 md_wakeup_thread(mddev->thread); 5832 } 5833 5834 static int start_dirty_degraded; 5835 static void active_io_release(struct percpu_ref *ref) 5836 { 5837 struct mddev *mddev = container_of(ref, struct mddev, active_io); 5838 5839 wake_up(&mddev->sb_wait); 5840 } 5841 5842 int md_run(struct mddev *mddev) 5843 { 5844 int err; 5845 struct md_rdev *rdev; 5846 struct md_personality *pers; 5847 bool nowait = true; 5848 5849 if (list_empty(&mddev->disks)) 5850 /* cannot run an array with no devices.. */ 5851 return -EINVAL; 5852 5853 if (mddev->pers) 5854 return -EBUSY; 5855 /* Cannot run until previous stop completes properly */ 5856 if (mddev->sysfs_active) 5857 return -EBUSY; 5858 5859 /* 5860 * Analyze all RAID superblock(s) 5861 */ 5862 if (!mddev->raid_disks) { 5863 if (!mddev->persistent) 5864 return -EINVAL; 5865 err = analyze_sbs(mddev); 5866 if (err) 5867 return -EINVAL; 5868 } 5869 5870 if (mddev->level != LEVEL_NONE) 5871 request_module("md-level-%d", mddev->level); 5872 else if (mddev->clevel[0]) 5873 request_module("md-%s", mddev->clevel); 5874 5875 /* 5876 * Drop all container device buffers, from now on 5877 * the only valid external interface is through the md 5878 * device. 5879 */ 5880 mddev->has_superblocks = false; 5881 rdev_for_each(rdev, mddev) { 5882 if (test_bit(Faulty, &rdev->flags)) 5883 continue; 5884 sync_blockdev(rdev->bdev); 5885 invalidate_bdev(rdev->bdev); 5886 if (mddev->ro != MD_RDONLY && rdev_read_only(rdev)) { 5887 mddev->ro = MD_RDONLY; 5888 if (mddev->gendisk) 5889 set_disk_ro(mddev->gendisk, 1); 5890 } 5891 5892 if (rdev->sb_page) 5893 mddev->has_superblocks = true; 5894 5895 /* perform some consistency tests on the device. 5896 * We don't want the data to overlap the metadata, 5897 * Internal Bitmap issues have been handled elsewhere. 5898 */ 5899 if (rdev->meta_bdev) { 5900 /* Nothing to check */; 5901 } else if (rdev->data_offset < rdev->sb_start) { 5902 if (mddev->dev_sectors && 5903 rdev->data_offset + mddev->dev_sectors 5904 > rdev->sb_start) { 5905 pr_warn("md: %s: data overlaps metadata\n", 5906 mdname(mddev)); 5907 return -EINVAL; 5908 } 5909 } else { 5910 if (rdev->sb_start + rdev->sb_size/512 5911 > rdev->data_offset) { 5912 pr_warn("md: %s: metadata overlaps data\n", 5913 mdname(mddev)); 5914 return -EINVAL; 5915 } 5916 } 5917 sysfs_notify_dirent_safe(rdev->sysfs_state); 5918 nowait = nowait && bdev_nowait(rdev->bdev); 5919 } 5920 5921 err = percpu_ref_init(&mddev->active_io, active_io_release, 5922 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL); 5923 if (err) 5924 return err; 5925 5926 if (!bioset_initialized(&mddev->bio_set)) { 5927 err = bioset_init(&mddev->bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5928 if (err) 5929 goto exit_active_io; 5930 } 5931 if (!bioset_initialized(&mddev->sync_set)) { 5932 err = bioset_init(&mddev->sync_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5933 if (err) 5934 goto exit_bio_set; 5935 } 5936 5937 if (!bioset_initialized(&mddev->io_clone_set)) { 5938 err = bioset_init(&mddev->io_clone_set, BIO_POOL_SIZE, 5939 offsetof(struct md_io_clone, bio_clone), 0); 5940 if (err) 5941 goto exit_sync_set; 5942 } 5943 5944 spin_lock(&pers_lock); 5945 pers = find_pers(mddev->level, mddev->clevel); 5946 if (!pers || !try_module_get(pers->owner)) { 5947 spin_unlock(&pers_lock); 5948 if (mddev->level != LEVEL_NONE) 5949 pr_warn("md: personality for level %d is not loaded!\n", 5950 mddev->level); 5951 else 5952 pr_warn("md: personality for level %s is not loaded!\n", 5953 mddev->clevel); 5954 err = -EINVAL; 5955 goto abort; 5956 } 5957 spin_unlock(&pers_lock); 5958 if (mddev->level != pers->level) { 5959 mddev->level = pers->level; 5960 mddev->new_level = pers->level; 5961 } 5962 strscpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 5963 5964 if (mddev->reshape_position != MaxSector && 5965 pers->start_reshape == NULL) { 5966 /* This personality cannot handle reshaping... */ 5967 module_put(pers->owner); 5968 err = -EINVAL; 5969 goto abort; 5970 } 5971 5972 if (pers->sync_request) { 5973 /* Warn if this is a potentially silly 5974 * configuration. 5975 */ 5976 struct md_rdev *rdev2; 5977 int warned = 0; 5978 5979 rdev_for_each(rdev, mddev) 5980 rdev_for_each(rdev2, mddev) { 5981 if (rdev < rdev2 && 5982 rdev->bdev->bd_disk == 5983 rdev2->bdev->bd_disk) { 5984 pr_warn("%s: WARNING: %pg appears to be on the same physical disk as %pg.\n", 5985 mdname(mddev), 5986 rdev->bdev, 5987 rdev2->bdev); 5988 warned = 1; 5989 } 5990 } 5991 5992 if (warned) 5993 pr_warn("True protection against single-disk failure might be compromised.\n"); 5994 } 5995 5996 mddev->recovery = 0; 5997 /* may be over-ridden by personality */ 5998 mddev->resync_max_sectors = mddev->dev_sectors; 5999 6000 mddev->ok_start_degraded = start_dirty_degraded; 6001 6002 if (start_readonly && md_is_rdwr(mddev)) 6003 mddev->ro = MD_AUTO_READ; /* read-only, but switch on first write */ 6004 6005 err = pers->run(mddev); 6006 if (err) 6007 pr_warn("md: pers->run() failed ...\n"); 6008 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) { 6009 WARN_ONCE(!mddev->external_size, 6010 "%s: default size too small, but 'external_size' not in effect?\n", 6011 __func__); 6012 pr_warn("md: invalid array_size %llu > default size %llu\n", 6013 (unsigned long long)mddev->array_sectors / 2, 6014 (unsigned long long)pers->size(mddev, 0, 0) / 2); 6015 err = -EINVAL; 6016 } 6017 if (err == 0 && pers->sync_request && 6018 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) { 6019 struct bitmap *bitmap; 6020 6021 bitmap = md_bitmap_create(mddev, -1); 6022 if (IS_ERR(bitmap)) { 6023 err = PTR_ERR(bitmap); 6024 pr_warn("%s: failed to create bitmap (%d)\n", 6025 mdname(mddev), err); 6026 } else 6027 mddev->bitmap = bitmap; 6028 6029 } 6030 if (err) 6031 goto bitmap_abort; 6032 6033 if (mddev->bitmap_info.max_write_behind > 0) { 6034 bool create_pool = false; 6035 6036 rdev_for_each(rdev, mddev) { 6037 if (test_bit(WriteMostly, &rdev->flags) && 6038 rdev_init_serial(rdev)) 6039 create_pool = true; 6040 } 6041 if (create_pool && mddev->serial_info_pool == NULL) { 6042 mddev->serial_info_pool = 6043 mempool_create_kmalloc_pool(NR_SERIAL_INFOS, 6044 sizeof(struct serial_info)); 6045 if (!mddev->serial_info_pool) { 6046 err = -ENOMEM; 6047 goto bitmap_abort; 6048 } 6049 } 6050 } 6051 6052 if (mddev->queue) { 6053 bool nonrot = true; 6054 6055 rdev_for_each(rdev, mddev) { 6056 if (rdev->raid_disk >= 0 && !bdev_nonrot(rdev->bdev)) { 6057 nonrot = false; 6058 break; 6059 } 6060 } 6061 if (mddev->degraded) 6062 nonrot = false; 6063 if (nonrot) 6064 blk_queue_flag_set(QUEUE_FLAG_NONROT, mddev->queue); 6065 else 6066 blk_queue_flag_clear(QUEUE_FLAG_NONROT, mddev->queue); 6067 blk_queue_flag_set(QUEUE_FLAG_IO_STAT, mddev->queue); 6068 6069 /* Set the NOWAIT flags if all underlying devices support it */ 6070 if (nowait) 6071 blk_queue_flag_set(QUEUE_FLAG_NOWAIT, mddev->queue); 6072 } 6073 if (pers->sync_request) { 6074 if (mddev->kobj.sd && 6075 sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 6076 pr_warn("md: cannot register extra attributes for %s\n", 6077 mdname(mddev)); 6078 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action"); 6079 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed"); 6080 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded"); 6081 } else if (mddev->ro == MD_AUTO_READ) 6082 mddev->ro = MD_RDWR; 6083 6084 atomic_set(&mddev->max_corr_read_errors, 6085 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS); 6086 mddev->safemode = 0; 6087 if (mddev_is_clustered(mddev)) 6088 mddev->safemode_delay = 0; 6089 else 6090 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY; 6091 mddev->in_sync = 1; 6092 smp_wmb(); 6093 spin_lock(&mddev->lock); 6094 mddev->pers = pers; 6095 spin_unlock(&mddev->lock); 6096 rdev_for_each(rdev, mddev) 6097 if (rdev->raid_disk >= 0) 6098 sysfs_link_rdev(mddev, rdev); /* failure here is OK */ 6099 6100 if (mddev->degraded && md_is_rdwr(mddev)) 6101 /* This ensures that recovering status is reported immediately 6102 * via sysfs - until a lack of spares is confirmed. 6103 */ 6104 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 6105 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6106 6107 if (mddev->sb_flags) 6108 md_update_sb(mddev, 0); 6109 6110 md_new_event(); 6111 return 0; 6112 6113 bitmap_abort: 6114 mddev_detach(mddev); 6115 if (mddev->private) 6116 pers->free(mddev, mddev->private); 6117 mddev->private = NULL; 6118 module_put(pers->owner); 6119 md_bitmap_destroy(mddev); 6120 abort: 6121 bioset_exit(&mddev->io_clone_set); 6122 exit_sync_set: 6123 bioset_exit(&mddev->sync_set); 6124 exit_bio_set: 6125 bioset_exit(&mddev->bio_set); 6126 exit_active_io: 6127 percpu_ref_exit(&mddev->active_io); 6128 return err; 6129 } 6130 EXPORT_SYMBOL_GPL(md_run); 6131 6132 int do_md_run(struct mddev *mddev) 6133 { 6134 int err; 6135 6136 set_bit(MD_NOT_READY, &mddev->flags); 6137 err = md_run(mddev); 6138 if (err) 6139 goto out; 6140 err = md_bitmap_load(mddev); 6141 if (err) { 6142 md_bitmap_destroy(mddev); 6143 goto out; 6144 } 6145 6146 if (mddev_is_clustered(mddev)) 6147 md_allow_write(mddev); 6148 6149 /* run start up tasks that require md_thread */ 6150 md_start(mddev); 6151 6152 md_wakeup_thread(mddev->thread); 6153 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 6154 6155 set_capacity_and_notify(mddev->gendisk, mddev->array_sectors); 6156 clear_bit(MD_NOT_READY, &mddev->flags); 6157 mddev->changed = 1; 6158 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 6159 sysfs_notify_dirent_safe(mddev->sysfs_state); 6160 sysfs_notify_dirent_safe(mddev->sysfs_action); 6161 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 6162 out: 6163 clear_bit(MD_NOT_READY, &mddev->flags); 6164 return err; 6165 } 6166 6167 int md_start(struct mddev *mddev) 6168 { 6169 int ret = 0; 6170 6171 if (mddev->pers->start) { 6172 set_bit(MD_RECOVERY_WAIT, &mddev->recovery); 6173 md_wakeup_thread(mddev->thread); 6174 ret = mddev->pers->start(mddev); 6175 clear_bit(MD_RECOVERY_WAIT, &mddev->recovery); 6176 md_wakeup_thread(mddev->sync_thread); 6177 } 6178 return ret; 6179 } 6180 EXPORT_SYMBOL_GPL(md_start); 6181 6182 static int restart_array(struct mddev *mddev) 6183 { 6184 struct gendisk *disk = mddev->gendisk; 6185 struct md_rdev *rdev; 6186 bool has_journal = false; 6187 bool has_readonly = false; 6188 6189 /* Complain if it has no devices */ 6190 if (list_empty(&mddev->disks)) 6191 return -ENXIO; 6192 if (!mddev->pers) 6193 return -EINVAL; 6194 if (md_is_rdwr(mddev)) 6195 return -EBUSY; 6196 6197 rcu_read_lock(); 6198 rdev_for_each_rcu(rdev, mddev) { 6199 if (test_bit(Journal, &rdev->flags) && 6200 !test_bit(Faulty, &rdev->flags)) 6201 has_journal = true; 6202 if (rdev_read_only(rdev)) 6203 has_readonly = true; 6204 } 6205 rcu_read_unlock(); 6206 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !has_journal) 6207 /* Don't restart rw with journal missing/faulty */ 6208 return -EINVAL; 6209 if (has_readonly) 6210 return -EROFS; 6211 6212 mddev->safemode = 0; 6213 mddev->ro = MD_RDWR; 6214 set_disk_ro(disk, 0); 6215 pr_debug("md: %s switched to read-write mode.\n", mdname(mddev)); 6216 /* Kick recovery or resync if necessary */ 6217 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6218 md_wakeup_thread(mddev->thread); 6219 md_wakeup_thread(mddev->sync_thread); 6220 sysfs_notify_dirent_safe(mddev->sysfs_state); 6221 return 0; 6222 } 6223 6224 static void md_clean(struct mddev *mddev) 6225 { 6226 mddev->array_sectors = 0; 6227 mddev->external_size = 0; 6228 mddev->dev_sectors = 0; 6229 mddev->raid_disks = 0; 6230 mddev->recovery_cp = 0; 6231 mddev->resync_min = 0; 6232 mddev->resync_max = MaxSector; 6233 mddev->reshape_position = MaxSector; 6234 /* we still need mddev->external in export_rdev, do not clear it yet */ 6235 mddev->persistent = 0; 6236 mddev->level = LEVEL_NONE; 6237 mddev->clevel[0] = 0; 6238 /* 6239 * Don't clear MD_CLOSING, or mddev can be opened again. 6240 * 'hold_active != 0' means mddev is still in the creation 6241 * process and will be used later. 6242 */ 6243 if (mddev->hold_active) 6244 mddev->flags = 0; 6245 else 6246 mddev->flags &= BIT_ULL_MASK(MD_CLOSING); 6247 mddev->sb_flags = 0; 6248 mddev->ro = MD_RDWR; 6249 mddev->metadata_type[0] = 0; 6250 mddev->chunk_sectors = 0; 6251 mddev->ctime = mddev->utime = 0; 6252 mddev->layout = 0; 6253 mddev->max_disks = 0; 6254 mddev->events = 0; 6255 mddev->can_decrease_events = 0; 6256 mddev->delta_disks = 0; 6257 mddev->reshape_backwards = 0; 6258 mddev->new_level = LEVEL_NONE; 6259 mddev->new_layout = 0; 6260 mddev->new_chunk_sectors = 0; 6261 mddev->curr_resync = MD_RESYNC_NONE; 6262 atomic64_set(&mddev->resync_mismatches, 0); 6263 mddev->suspend_lo = mddev->suspend_hi = 0; 6264 mddev->sync_speed_min = mddev->sync_speed_max = 0; 6265 mddev->recovery = 0; 6266 mddev->in_sync = 0; 6267 mddev->changed = 0; 6268 mddev->degraded = 0; 6269 mddev->safemode = 0; 6270 mddev->private = NULL; 6271 mddev->cluster_info = NULL; 6272 mddev->bitmap_info.offset = 0; 6273 mddev->bitmap_info.default_offset = 0; 6274 mddev->bitmap_info.default_space = 0; 6275 mddev->bitmap_info.chunksize = 0; 6276 mddev->bitmap_info.daemon_sleep = 0; 6277 mddev->bitmap_info.max_write_behind = 0; 6278 mddev->bitmap_info.nodes = 0; 6279 } 6280 6281 static void __md_stop_writes(struct mddev *mddev) 6282 { 6283 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6284 if (work_pending(&mddev->del_work)) 6285 flush_workqueue(md_misc_wq); 6286 if (mddev->sync_thread) { 6287 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6288 md_reap_sync_thread(mddev); 6289 } 6290 6291 del_timer_sync(&mddev->safemode_timer); 6292 6293 if (mddev->pers && mddev->pers->quiesce) { 6294 mddev->pers->quiesce(mddev, 1); 6295 mddev->pers->quiesce(mddev, 0); 6296 } 6297 md_bitmap_flush(mddev); 6298 6299 if (md_is_rdwr(mddev) && 6300 ((!mddev->in_sync && !mddev_is_clustered(mddev)) || 6301 mddev->sb_flags)) { 6302 /* mark array as shutdown cleanly */ 6303 if (!mddev_is_clustered(mddev)) 6304 mddev->in_sync = 1; 6305 md_update_sb(mddev, 1); 6306 } 6307 /* disable policy to guarantee rdevs free resources for serialization */ 6308 mddev->serialize_policy = 0; 6309 mddev_destroy_serial_pool(mddev, NULL, true); 6310 } 6311 6312 void md_stop_writes(struct mddev *mddev) 6313 { 6314 mddev_lock_nointr(mddev); 6315 __md_stop_writes(mddev); 6316 mddev_unlock(mddev); 6317 } 6318 EXPORT_SYMBOL_GPL(md_stop_writes); 6319 6320 static void mddev_detach(struct mddev *mddev) 6321 { 6322 md_bitmap_wait_behind_writes(mddev); 6323 if (mddev->pers && mddev->pers->quiesce && !is_md_suspended(mddev)) { 6324 mddev->pers->quiesce(mddev, 1); 6325 mddev->pers->quiesce(mddev, 0); 6326 } 6327 md_unregister_thread(mddev, &mddev->thread); 6328 if (mddev->queue) 6329 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 6330 } 6331 6332 static void __md_stop(struct mddev *mddev) 6333 { 6334 struct md_personality *pers = mddev->pers; 6335 md_bitmap_destroy(mddev); 6336 mddev_detach(mddev); 6337 /* Ensure ->event_work is done */ 6338 if (mddev->event_work.func) 6339 flush_workqueue(md_misc_wq); 6340 spin_lock(&mddev->lock); 6341 mddev->pers = NULL; 6342 spin_unlock(&mddev->lock); 6343 if (mddev->private) 6344 pers->free(mddev, mddev->private); 6345 mddev->private = NULL; 6346 if (pers->sync_request && mddev->to_remove == NULL) 6347 mddev->to_remove = &md_redundancy_group; 6348 module_put(pers->owner); 6349 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6350 6351 percpu_ref_exit(&mddev->active_io); 6352 bioset_exit(&mddev->bio_set); 6353 bioset_exit(&mddev->sync_set); 6354 bioset_exit(&mddev->io_clone_set); 6355 } 6356 6357 void md_stop(struct mddev *mddev) 6358 { 6359 lockdep_assert_held(&mddev->reconfig_mutex); 6360 6361 /* stop the array and free an attached data structures. 6362 * This is called from dm-raid 6363 */ 6364 __md_stop_writes(mddev); 6365 __md_stop(mddev); 6366 percpu_ref_exit(&mddev->writes_pending); 6367 } 6368 6369 EXPORT_SYMBOL_GPL(md_stop); 6370 6371 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev) 6372 { 6373 int err = 0; 6374 int did_freeze = 0; 6375 6376 if (mddev->external && test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 6377 return -EBUSY; 6378 6379 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 6380 did_freeze = 1; 6381 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6382 md_wakeup_thread(mddev->thread); 6383 } 6384 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 6385 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6386 6387 /* 6388 * Thread might be blocked waiting for metadata update which will now 6389 * never happen 6390 */ 6391 md_wakeup_thread_directly(mddev->sync_thread); 6392 6393 mddev_unlock(mddev); 6394 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING, 6395 &mddev->recovery)); 6396 wait_event(mddev->sb_wait, 6397 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 6398 mddev_lock_nointr(mddev); 6399 6400 mutex_lock(&mddev->open_mutex); 6401 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 6402 mddev->sync_thread || 6403 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 6404 pr_warn("md: %s still in use.\n",mdname(mddev)); 6405 err = -EBUSY; 6406 goto out; 6407 } 6408 6409 if (mddev->pers) { 6410 __md_stop_writes(mddev); 6411 6412 if (mddev->ro == MD_RDONLY) { 6413 err = -ENXIO; 6414 goto out; 6415 } 6416 6417 mddev->ro = MD_RDONLY; 6418 set_disk_ro(mddev->gendisk, 1); 6419 } 6420 6421 out: 6422 if ((mddev->pers && !err) || did_freeze) { 6423 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6424 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6425 md_wakeup_thread(mddev->thread); 6426 sysfs_notify_dirent_safe(mddev->sysfs_state); 6427 } 6428 6429 mutex_unlock(&mddev->open_mutex); 6430 return err; 6431 } 6432 6433 /* mode: 6434 * 0 - completely stop and dis-assemble array 6435 * 2 - stop but do not disassemble array 6436 */ 6437 static int do_md_stop(struct mddev *mddev, int mode, 6438 struct block_device *bdev) 6439 { 6440 struct gendisk *disk = mddev->gendisk; 6441 struct md_rdev *rdev; 6442 int did_freeze = 0; 6443 6444 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 6445 did_freeze = 1; 6446 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6447 md_wakeup_thread(mddev->thread); 6448 } 6449 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 6450 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6451 6452 /* 6453 * Thread might be blocked waiting for metadata update which will now 6454 * never happen 6455 */ 6456 md_wakeup_thread_directly(mddev->sync_thread); 6457 6458 mddev_unlock(mddev); 6459 wait_event(resync_wait, (mddev->sync_thread == NULL && 6460 !test_bit(MD_RECOVERY_RUNNING, 6461 &mddev->recovery))); 6462 mddev_lock_nointr(mddev); 6463 6464 mutex_lock(&mddev->open_mutex); 6465 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 6466 mddev->sysfs_active || 6467 mddev->sync_thread || 6468 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 6469 pr_warn("md: %s still in use.\n",mdname(mddev)); 6470 mutex_unlock(&mddev->open_mutex); 6471 if (did_freeze) { 6472 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6473 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6474 md_wakeup_thread(mddev->thread); 6475 } 6476 return -EBUSY; 6477 } 6478 if (mddev->pers) { 6479 if (!md_is_rdwr(mddev)) 6480 set_disk_ro(disk, 0); 6481 6482 __md_stop_writes(mddev); 6483 __md_stop(mddev); 6484 6485 /* tell userspace to handle 'inactive' */ 6486 sysfs_notify_dirent_safe(mddev->sysfs_state); 6487 6488 rdev_for_each(rdev, mddev) 6489 if (rdev->raid_disk >= 0) 6490 sysfs_unlink_rdev(mddev, rdev); 6491 6492 set_capacity_and_notify(disk, 0); 6493 mutex_unlock(&mddev->open_mutex); 6494 mddev->changed = 1; 6495 6496 if (!md_is_rdwr(mddev)) 6497 mddev->ro = MD_RDWR; 6498 } else 6499 mutex_unlock(&mddev->open_mutex); 6500 /* 6501 * Free resources if final stop 6502 */ 6503 if (mode == 0) { 6504 pr_info("md: %s stopped.\n", mdname(mddev)); 6505 6506 if (mddev->bitmap_info.file) { 6507 struct file *f = mddev->bitmap_info.file; 6508 spin_lock(&mddev->lock); 6509 mddev->bitmap_info.file = NULL; 6510 spin_unlock(&mddev->lock); 6511 fput(f); 6512 } 6513 mddev->bitmap_info.offset = 0; 6514 6515 export_array(mddev); 6516 6517 md_clean(mddev); 6518 if (mddev->hold_active == UNTIL_STOP) 6519 mddev->hold_active = 0; 6520 } 6521 md_new_event(); 6522 sysfs_notify_dirent_safe(mddev->sysfs_state); 6523 return 0; 6524 } 6525 6526 #ifndef MODULE 6527 static void autorun_array(struct mddev *mddev) 6528 { 6529 struct md_rdev *rdev; 6530 int err; 6531 6532 if (list_empty(&mddev->disks)) 6533 return; 6534 6535 pr_info("md: running: "); 6536 6537 rdev_for_each(rdev, mddev) { 6538 pr_cont("<%pg>", rdev->bdev); 6539 } 6540 pr_cont("\n"); 6541 6542 err = do_md_run(mddev); 6543 if (err) { 6544 pr_warn("md: do_md_run() returned %d\n", err); 6545 do_md_stop(mddev, 0, NULL); 6546 } 6547 } 6548 6549 /* 6550 * lets try to run arrays based on all disks that have arrived 6551 * until now. (those are in pending_raid_disks) 6552 * 6553 * the method: pick the first pending disk, collect all disks with 6554 * the same UUID, remove all from the pending list and put them into 6555 * the 'same_array' list. Then order this list based on superblock 6556 * update time (freshest comes first), kick out 'old' disks and 6557 * compare superblocks. If everything's fine then run it. 6558 * 6559 * If "unit" is allocated, then bump its reference count 6560 */ 6561 static void autorun_devices(int part) 6562 { 6563 struct md_rdev *rdev0, *rdev, *tmp; 6564 struct mddev *mddev; 6565 6566 pr_info("md: autorun ...\n"); 6567 while (!list_empty(&pending_raid_disks)) { 6568 int unit; 6569 dev_t dev; 6570 LIST_HEAD(candidates); 6571 rdev0 = list_entry(pending_raid_disks.next, 6572 struct md_rdev, same_set); 6573 6574 pr_debug("md: considering %pg ...\n", rdev0->bdev); 6575 INIT_LIST_HEAD(&candidates); 6576 rdev_for_each_list(rdev, tmp, &pending_raid_disks) 6577 if (super_90_load(rdev, rdev0, 0) >= 0) { 6578 pr_debug("md: adding %pg ...\n", 6579 rdev->bdev); 6580 list_move(&rdev->same_set, &candidates); 6581 } 6582 /* 6583 * now we have a set of devices, with all of them having 6584 * mostly sane superblocks. It's time to allocate the 6585 * mddev. 6586 */ 6587 if (part) { 6588 dev = MKDEV(mdp_major, 6589 rdev0->preferred_minor << MdpMinorShift); 6590 unit = MINOR(dev) >> MdpMinorShift; 6591 } else { 6592 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); 6593 unit = MINOR(dev); 6594 } 6595 if (rdev0->preferred_minor != unit) { 6596 pr_warn("md: unit number in %pg is bad: %d\n", 6597 rdev0->bdev, rdev0->preferred_minor); 6598 break; 6599 } 6600 6601 mddev = md_alloc(dev, NULL); 6602 if (IS_ERR(mddev)) 6603 break; 6604 6605 if (mddev_lock(mddev)) 6606 pr_warn("md: %s locked, cannot run\n", mdname(mddev)); 6607 else if (mddev->raid_disks || mddev->major_version 6608 || !list_empty(&mddev->disks)) { 6609 pr_warn("md: %s already running, cannot run %pg\n", 6610 mdname(mddev), rdev0->bdev); 6611 mddev_unlock(mddev); 6612 } else { 6613 pr_debug("md: created %s\n", mdname(mddev)); 6614 mddev->persistent = 1; 6615 rdev_for_each_list(rdev, tmp, &candidates) { 6616 list_del_init(&rdev->same_set); 6617 if (bind_rdev_to_array(rdev, mddev)) 6618 export_rdev(rdev, mddev); 6619 } 6620 autorun_array(mddev); 6621 mddev_unlock(mddev); 6622 } 6623 /* on success, candidates will be empty, on error 6624 * it won't... 6625 */ 6626 rdev_for_each_list(rdev, tmp, &candidates) { 6627 list_del_init(&rdev->same_set); 6628 export_rdev(rdev, mddev); 6629 } 6630 mddev_put(mddev); 6631 } 6632 pr_info("md: ... autorun DONE.\n"); 6633 } 6634 #endif /* !MODULE */ 6635 6636 static int get_version(void __user *arg) 6637 { 6638 mdu_version_t ver; 6639 6640 ver.major = MD_MAJOR_VERSION; 6641 ver.minor = MD_MINOR_VERSION; 6642 ver.patchlevel = MD_PATCHLEVEL_VERSION; 6643 6644 if (copy_to_user(arg, &ver, sizeof(ver))) 6645 return -EFAULT; 6646 6647 return 0; 6648 } 6649 6650 static int get_array_info(struct mddev *mddev, void __user *arg) 6651 { 6652 mdu_array_info_t info; 6653 int nr,working,insync,failed,spare; 6654 struct md_rdev *rdev; 6655 6656 nr = working = insync = failed = spare = 0; 6657 rcu_read_lock(); 6658 rdev_for_each_rcu(rdev, mddev) { 6659 nr++; 6660 if (test_bit(Faulty, &rdev->flags)) 6661 failed++; 6662 else { 6663 working++; 6664 if (test_bit(In_sync, &rdev->flags)) 6665 insync++; 6666 else if (test_bit(Journal, &rdev->flags)) 6667 /* TODO: add journal count to md_u.h */ 6668 ; 6669 else 6670 spare++; 6671 } 6672 } 6673 rcu_read_unlock(); 6674 6675 info.major_version = mddev->major_version; 6676 info.minor_version = mddev->minor_version; 6677 info.patch_version = MD_PATCHLEVEL_VERSION; 6678 info.ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 6679 info.level = mddev->level; 6680 info.size = mddev->dev_sectors / 2; 6681 if (info.size != mddev->dev_sectors / 2) /* overflow */ 6682 info.size = -1; 6683 info.nr_disks = nr; 6684 info.raid_disks = mddev->raid_disks; 6685 info.md_minor = mddev->md_minor; 6686 info.not_persistent= !mddev->persistent; 6687 6688 info.utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 6689 info.state = 0; 6690 if (mddev->in_sync) 6691 info.state = (1<<MD_SB_CLEAN); 6692 if (mddev->bitmap && mddev->bitmap_info.offset) 6693 info.state |= (1<<MD_SB_BITMAP_PRESENT); 6694 if (mddev_is_clustered(mddev)) 6695 info.state |= (1<<MD_SB_CLUSTERED); 6696 info.active_disks = insync; 6697 info.working_disks = working; 6698 info.failed_disks = failed; 6699 info.spare_disks = spare; 6700 6701 info.layout = mddev->layout; 6702 info.chunk_size = mddev->chunk_sectors << 9; 6703 6704 if (copy_to_user(arg, &info, sizeof(info))) 6705 return -EFAULT; 6706 6707 return 0; 6708 } 6709 6710 static int get_bitmap_file(struct mddev *mddev, void __user * arg) 6711 { 6712 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ 6713 char *ptr; 6714 int err; 6715 6716 file = kzalloc(sizeof(*file), GFP_NOIO); 6717 if (!file) 6718 return -ENOMEM; 6719 6720 err = 0; 6721 spin_lock(&mddev->lock); 6722 /* bitmap enabled */ 6723 if (mddev->bitmap_info.file) { 6724 ptr = file_path(mddev->bitmap_info.file, file->pathname, 6725 sizeof(file->pathname)); 6726 if (IS_ERR(ptr)) 6727 err = PTR_ERR(ptr); 6728 else 6729 memmove(file->pathname, ptr, 6730 sizeof(file->pathname)-(ptr-file->pathname)); 6731 } 6732 spin_unlock(&mddev->lock); 6733 6734 if (err == 0 && 6735 copy_to_user(arg, file, sizeof(*file))) 6736 err = -EFAULT; 6737 6738 kfree(file); 6739 return err; 6740 } 6741 6742 static int get_disk_info(struct mddev *mddev, void __user * arg) 6743 { 6744 mdu_disk_info_t info; 6745 struct md_rdev *rdev; 6746 6747 if (copy_from_user(&info, arg, sizeof(info))) 6748 return -EFAULT; 6749 6750 rcu_read_lock(); 6751 rdev = md_find_rdev_nr_rcu(mddev, info.number); 6752 if (rdev) { 6753 info.major = MAJOR(rdev->bdev->bd_dev); 6754 info.minor = MINOR(rdev->bdev->bd_dev); 6755 info.raid_disk = rdev->raid_disk; 6756 info.state = 0; 6757 if (test_bit(Faulty, &rdev->flags)) 6758 info.state |= (1<<MD_DISK_FAULTY); 6759 else if (test_bit(In_sync, &rdev->flags)) { 6760 info.state |= (1<<MD_DISK_ACTIVE); 6761 info.state |= (1<<MD_DISK_SYNC); 6762 } 6763 if (test_bit(Journal, &rdev->flags)) 6764 info.state |= (1<<MD_DISK_JOURNAL); 6765 if (test_bit(WriteMostly, &rdev->flags)) 6766 info.state |= (1<<MD_DISK_WRITEMOSTLY); 6767 if (test_bit(FailFast, &rdev->flags)) 6768 info.state |= (1<<MD_DISK_FAILFAST); 6769 } else { 6770 info.major = info.minor = 0; 6771 info.raid_disk = -1; 6772 info.state = (1<<MD_DISK_REMOVED); 6773 } 6774 rcu_read_unlock(); 6775 6776 if (copy_to_user(arg, &info, sizeof(info))) 6777 return -EFAULT; 6778 6779 return 0; 6780 } 6781 6782 int md_add_new_disk(struct mddev *mddev, struct mdu_disk_info_s *info) 6783 { 6784 struct md_rdev *rdev; 6785 dev_t dev = MKDEV(info->major,info->minor); 6786 6787 if (mddev_is_clustered(mddev) && 6788 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) { 6789 pr_warn("%s: Cannot add to clustered mddev.\n", 6790 mdname(mddev)); 6791 return -EINVAL; 6792 } 6793 6794 if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) 6795 return -EOVERFLOW; 6796 6797 if (!mddev->raid_disks) { 6798 int err; 6799 /* expecting a device which has a superblock */ 6800 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); 6801 if (IS_ERR(rdev)) { 6802 pr_warn("md: md_import_device returned %ld\n", 6803 PTR_ERR(rdev)); 6804 return PTR_ERR(rdev); 6805 } 6806 if (!list_empty(&mddev->disks)) { 6807 struct md_rdev *rdev0 6808 = list_entry(mddev->disks.next, 6809 struct md_rdev, same_set); 6810 err = super_types[mddev->major_version] 6811 .load_super(rdev, rdev0, mddev->minor_version); 6812 if (err < 0) { 6813 pr_warn("md: %pg has different UUID to %pg\n", 6814 rdev->bdev, 6815 rdev0->bdev); 6816 export_rdev(rdev, mddev); 6817 return -EINVAL; 6818 } 6819 } 6820 err = bind_rdev_to_array(rdev, mddev); 6821 if (err) 6822 export_rdev(rdev, mddev); 6823 return err; 6824 } 6825 6826 /* 6827 * md_add_new_disk can be used once the array is assembled 6828 * to add "hot spares". They must already have a superblock 6829 * written 6830 */ 6831 if (mddev->pers) { 6832 int err; 6833 if (!mddev->pers->hot_add_disk) { 6834 pr_warn("%s: personality does not support diskops!\n", 6835 mdname(mddev)); 6836 return -EINVAL; 6837 } 6838 if (mddev->persistent) 6839 rdev = md_import_device(dev, mddev->major_version, 6840 mddev->minor_version); 6841 else 6842 rdev = md_import_device(dev, -1, -1); 6843 if (IS_ERR(rdev)) { 6844 pr_warn("md: md_import_device returned %ld\n", 6845 PTR_ERR(rdev)); 6846 return PTR_ERR(rdev); 6847 } 6848 /* set saved_raid_disk if appropriate */ 6849 if (!mddev->persistent) { 6850 if (info->state & (1<<MD_DISK_SYNC) && 6851 info->raid_disk < mddev->raid_disks) { 6852 rdev->raid_disk = info->raid_disk; 6853 clear_bit(Bitmap_sync, &rdev->flags); 6854 } else 6855 rdev->raid_disk = -1; 6856 rdev->saved_raid_disk = rdev->raid_disk; 6857 } else 6858 super_types[mddev->major_version]. 6859 validate_super(mddev, NULL/*freshest*/, rdev); 6860 if ((info->state & (1<<MD_DISK_SYNC)) && 6861 rdev->raid_disk != info->raid_disk) { 6862 /* This was a hot-add request, but events doesn't 6863 * match, so reject it. 6864 */ 6865 export_rdev(rdev, mddev); 6866 return -EINVAL; 6867 } 6868 6869 clear_bit(In_sync, &rdev->flags); /* just to be sure */ 6870 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6871 set_bit(WriteMostly, &rdev->flags); 6872 else 6873 clear_bit(WriteMostly, &rdev->flags); 6874 if (info->state & (1<<MD_DISK_FAILFAST)) 6875 set_bit(FailFast, &rdev->flags); 6876 else 6877 clear_bit(FailFast, &rdev->flags); 6878 6879 if (info->state & (1<<MD_DISK_JOURNAL)) { 6880 struct md_rdev *rdev2; 6881 bool has_journal = false; 6882 6883 /* make sure no existing journal disk */ 6884 rdev_for_each(rdev2, mddev) { 6885 if (test_bit(Journal, &rdev2->flags)) { 6886 has_journal = true; 6887 break; 6888 } 6889 } 6890 if (has_journal || mddev->bitmap) { 6891 export_rdev(rdev, mddev); 6892 return -EBUSY; 6893 } 6894 set_bit(Journal, &rdev->flags); 6895 } 6896 /* 6897 * check whether the device shows up in other nodes 6898 */ 6899 if (mddev_is_clustered(mddev)) { 6900 if (info->state & (1 << MD_DISK_CANDIDATE)) 6901 set_bit(Candidate, &rdev->flags); 6902 else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) { 6903 /* --add initiated by this node */ 6904 err = md_cluster_ops->add_new_disk(mddev, rdev); 6905 if (err) { 6906 export_rdev(rdev, mddev); 6907 return err; 6908 } 6909 } 6910 } 6911 6912 rdev->raid_disk = -1; 6913 err = bind_rdev_to_array(rdev, mddev); 6914 6915 if (err) 6916 export_rdev(rdev, mddev); 6917 6918 if (mddev_is_clustered(mddev)) { 6919 if (info->state & (1 << MD_DISK_CANDIDATE)) { 6920 if (!err) { 6921 err = md_cluster_ops->new_disk_ack(mddev, 6922 err == 0); 6923 if (err) 6924 md_kick_rdev_from_array(rdev); 6925 } 6926 } else { 6927 if (err) 6928 md_cluster_ops->add_new_disk_cancel(mddev); 6929 else 6930 err = add_bound_rdev(rdev); 6931 } 6932 6933 } else if (!err) 6934 err = add_bound_rdev(rdev); 6935 6936 return err; 6937 } 6938 6939 /* otherwise, md_add_new_disk is only allowed 6940 * for major_version==0 superblocks 6941 */ 6942 if (mddev->major_version != 0) { 6943 pr_warn("%s: ADD_NEW_DISK not supported\n", mdname(mddev)); 6944 return -EINVAL; 6945 } 6946 6947 if (!(info->state & (1<<MD_DISK_FAULTY))) { 6948 int err; 6949 rdev = md_import_device(dev, -1, 0); 6950 if (IS_ERR(rdev)) { 6951 pr_warn("md: error, md_import_device() returned %ld\n", 6952 PTR_ERR(rdev)); 6953 return PTR_ERR(rdev); 6954 } 6955 rdev->desc_nr = info->number; 6956 if (info->raid_disk < mddev->raid_disks) 6957 rdev->raid_disk = info->raid_disk; 6958 else 6959 rdev->raid_disk = -1; 6960 6961 if (rdev->raid_disk < mddev->raid_disks) 6962 if (info->state & (1<<MD_DISK_SYNC)) 6963 set_bit(In_sync, &rdev->flags); 6964 6965 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6966 set_bit(WriteMostly, &rdev->flags); 6967 if (info->state & (1<<MD_DISK_FAILFAST)) 6968 set_bit(FailFast, &rdev->flags); 6969 6970 if (!mddev->persistent) { 6971 pr_debug("md: nonpersistent superblock ...\n"); 6972 rdev->sb_start = bdev_nr_sectors(rdev->bdev); 6973 } else 6974 rdev->sb_start = calc_dev_sboffset(rdev); 6975 rdev->sectors = rdev->sb_start; 6976 6977 err = bind_rdev_to_array(rdev, mddev); 6978 if (err) { 6979 export_rdev(rdev, mddev); 6980 return err; 6981 } 6982 } 6983 6984 return 0; 6985 } 6986 6987 static int hot_remove_disk(struct mddev *mddev, dev_t dev) 6988 { 6989 struct md_rdev *rdev; 6990 6991 if (!mddev->pers) 6992 return -ENODEV; 6993 6994 rdev = find_rdev(mddev, dev); 6995 if (!rdev) 6996 return -ENXIO; 6997 6998 if (rdev->raid_disk < 0) 6999 goto kick_rdev; 7000 7001 clear_bit(Blocked, &rdev->flags); 7002 remove_and_add_spares(mddev, rdev); 7003 7004 if (rdev->raid_disk >= 0) 7005 goto busy; 7006 7007 kick_rdev: 7008 if (mddev_is_clustered(mddev)) { 7009 if (md_cluster_ops->remove_disk(mddev, rdev)) 7010 goto busy; 7011 } 7012 7013 md_kick_rdev_from_array(rdev); 7014 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 7015 if (mddev->thread) 7016 md_wakeup_thread(mddev->thread); 7017 else 7018 md_update_sb(mddev, 1); 7019 md_new_event(); 7020 7021 return 0; 7022 busy: 7023 pr_debug("md: cannot remove active disk %pg from %s ...\n", 7024 rdev->bdev, mdname(mddev)); 7025 return -EBUSY; 7026 } 7027 7028 static int hot_add_disk(struct mddev *mddev, dev_t dev) 7029 { 7030 int err; 7031 struct md_rdev *rdev; 7032 7033 if (!mddev->pers) 7034 return -ENODEV; 7035 7036 if (mddev->major_version != 0) { 7037 pr_warn("%s: HOT_ADD may only be used with version-0 superblocks.\n", 7038 mdname(mddev)); 7039 return -EINVAL; 7040 } 7041 if (!mddev->pers->hot_add_disk) { 7042 pr_warn("%s: personality does not support diskops!\n", 7043 mdname(mddev)); 7044 return -EINVAL; 7045 } 7046 7047 rdev = md_import_device(dev, -1, 0); 7048 if (IS_ERR(rdev)) { 7049 pr_warn("md: error, md_import_device() returned %ld\n", 7050 PTR_ERR(rdev)); 7051 return -EINVAL; 7052 } 7053 7054 if (mddev->persistent) 7055 rdev->sb_start = calc_dev_sboffset(rdev); 7056 else 7057 rdev->sb_start = bdev_nr_sectors(rdev->bdev); 7058 7059 rdev->sectors = rdev->sb_start; 7060 7061 if (test_bit(Faulty, &rdev->flags)) { 7062 pr_warn("md: can not hot-add faulty %pg disk to %s!\n", 7063 rdev->bdev, mdname(mddev)); 7064 err = -EINVAL; 7065 goto abort_export; 7066 } 7067 7068 clear_bit(In_sync, &rdev->flags); 7069 rdev->desc_nr = -1; 7070 rdev->saved_raid_disk = -1; 7071 err = bind_rdev_to_array(rdev, mddev); 7072 if (err) 7073 goto abort_export; 7074 7075 /* 7076 * The rest should better be atomic, we can have disk failures 7077 * noticed in interrupt contexts ... 7078 */ 7079 7080 rdev->raid_disk = -1; 7081 7082 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 7083 if (!mddev->thread) 7084 md_update_sb(mddev, 1); 7085 /* 7086 * If the new disk does not support REQ_NOWAIT, 7087 * disable on the whole MD. 7088 */ 7089 if (!bdev_nowait(rdev->bdev)) { 7090 pr_info("%s: Disabling nowait because %pg does not support nowait\n", 7091 mdname(mddev), rdev->bdev); 7092 blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, mddev->queue); 7093 } 7094 /* 7095 * Kick recovery, maybe this spare has to be added to the 7096 * array immediately. 7097 */ 7098 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7099 md_wakeup_thread(mddev->thread); 7100 md_new_event(); 7101 return 0; 7102 7103 abort_export: 7104 export_rdev(rdev, mddev); 7105 return err; 7106 } 7107 7108 static int set_bitmap_file(struct mddev *mddev, int fd) 7109 { 7110 int err = 0; 7111 7112 if (mddev->pers) { 7113 if (!mddev->pers->quiesce || !mddev->thread) 7114 return -EBUSY; 7115 if (mddev->recovery || mddev->sync_thread) 7116 return -EBUSY; 7117 /* we should be able to change the bitmap.. */ 7118 } 7119 7120 if (fd >= 0) { 7121 struct inode *inode; 7122 struct file *f; 7123 7124 if (mddev->bitmap || mddev->bitmap_info.file) 7125 return -EEXIST; /* cannot add when bitmap is present */ 7126 7127 if (!IS_ENABLED(CONFIG_MD_BITMAP_FILE)) { 7128 pr_warn("%s: bitmap files not supported by this kernel\n", 7129 mdname(mddev)); 7130 return -EINVAL; 7131 } 7132 pr_warn("%s: using deprecated bitmap file support\n", 7133 mdname(mddev)); 7134 7135 f = fget(fd); 7136 7137 if (f == NULL) { 7138 pr_warn("%s: error: failed to get bitmap file\n", 7139 mdname(mddev)); 7140 return -EBADF; 7141 } 7142 7143 inode = f->f_mapping->host; 7144 if (!S_ISREG(inode->i_mode)) { 7145 pr_warn("%s: error: bitmap file must be a regular file\n", 7146 mdname(mddev)); 7147 err = -EBADF; 7148 } else if (!(f->f_mode & FMODE_WRITE)) { 7149 pr_warn("%s: error: bitmap file must open for write\n", 7150 mdname(mddev)); 7151 err = -EBADF; 7152 } else if (atomic_read(&inode->i_writecount) != 1) { 7153 pr_warn("%s: error: bitmap file is already in use\n", 7154 mdname(mddev)); 7155 err = -EBUSY; 7156 } 7157 if (err) { 7158 fput(f); 7159 return err; 7160 } 7161 mddev->bitmap_info.file = f; 7162 mddev->bitmap_info.offset = 0; /* file overrides offset */ 7163 } else if (mddev->bitmap == NULL) 7164 return -ENOENT; /* cannot remove what isn't there */ 7165 err = 0; 7166 if (mddev->pers) { 7167 if (fd >= 0) { 7168 struct bitmap *bitmap; 7169 7170 bitmap = md_bitmap_create(mddev, -1); 7171 mddev_suspend(mddev); 7172 if (!IS_ERR(bitmap)) { 7173 mddev->bitmap = bitmap; 7174 err = md_bitmap_load(mddev); 7175 } else 7176 err = PTR_ERR(bitmap); 7177 if (err) { 7178 md_bitmap_destroy(mddev); 7179 fd = -1; 7180 } 7181 mddev_resume(mddev); 7182 } else if (fd < 0) { 7183 mddev_suspend(mddev); 7184 md_bitmap_destroy(mddev); 7185 mddev_resume(mddev); 7186 } 7187 } 7188 if (fd < 0) { 7189 struct file *f = mddev->bitmap_info.file; 7190 if (f) { 7191 spin_lock(&mddev->lock); 7192 mddev->bitmap_info.file = NULL; 7193 spin_unlock(&mddev->lock); 7194 fput(f); 7195 } 7196 } 7197 7198 return err; 7199 } 7200 7201 /* 7202 * md_set_array_info is used two different ways 7203 * The original usage is when creating a new array. 7204 * In this usage, raid_disks is > 0 and it together with 7205 * level, size, not_persistent,layout,chunksize determine the 7206 * shape of the array. 7207 * This will always create an array with a type-0.90.0 superblock. 7208 * The newer usage is when assembling an array. 7209 * In this case raid_disks will be 0, and the major_version field is 7210 * use to determine which style super-blocks are to be found on the devices. 7211 * The minor and patch _version numbers are also kept incase the 7212 * super_block handler wishes to interpret them. 7213 */ 7214 int md_set_array_info(struct mddev *mddev, struct mdu_array_info_s *info) 7215 { 7216 if (info->raid_disks == 0) { 7217 /* just setting version number for superblock loading */ 7218 if (info->major_version < 0 || 7219 info->major_version >= ARRAY_SIZE(super_types) || 7220 super_types[info->major_version].name == NULL) { 7221 /* maybe try to auto-load a module? */ 7222 pr_warn("md: superblock version %d not known\n", 7223 info->major_version); 7224 return -EINVAL; 7225 } 7226 mddev->major_version = info->major_version; 7227 mddev->minor_version = info->minor_version; 7228 mddev->patch_version = info->patch_version; 7229 mddev->persistent = !info->not_persistent; 7230 /* ensure mddev_put doesn't delete this now that there 7231 * is some minimal configuration. 7232 */ 7233 mddev->ctime = ktime_get_real_seconds(); 7234 return 0; 7235 } 7236 mddev->major_version = MD_MAJOR_VERSION; 7237 mddev->minor_version = MD_MINOR_VERSION; 7238 mddev->patch_version = MD_PATCHLEVEL_VERSION; 7239 mddev->ctime = ktime_get_real_seconds(); 7240 7241 mddev->level = info->level; 7242 mddev->clevel[0] = 0; 7243 mddev->dev_sectors = 2 * (sector_t)info->size; 7244 mddev->raid_disks = info->raid_disks; 7245 /* don't set md_minor, it is determined by which /dev/md* was 7246 * openned 7247 */ 7248 if (info->state & (1<<MD_SB_CLEAN)) 7249 mddev->recovery_cp = MaxSector; 7250 else 7251 mddev->recovery_cp = 0; 7252 mddev->persistent = ! info->not_persistent; 7253 mddev->external = 0; 7254 7255 mddev->layout = info->layout; 7256 if (mddev->level == 0) 7257 /* Cannot trust RAID0 layout info here */ 7258 mddev->layout = -1; 7259 mddev->chunk_sectors = info->chunk_size >> 9; 7260 7261 if (mddev->persistent) { 7262 mddev->max_disks = MD_SB_DISKS; 7263 mddev->flags = 0; 7264 mddev->sb_flags = 0; 7265 } 7266 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 7267 7268 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 7269 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 7270 mddev->bitmap_info.offset = 0; 7271 7272 mddev->reshape_position = MaxSector; 7273 7274 /* 7275 * Generate a 128 bit UUID 7276 */ 7277 get_random_bytes(mddev->uuid, 16); 7278 7279 mddev->new_level = mddev->level; 7280 mddev->new_chunk_sectors = mddev->chunk_sectors; 7281 mddev->new_layout = mddev->layout; 7282 mddev->delta_disks = 0; 7283 mddev->reshape_backwards = 0; 7284 7285 return 0; 7286 } 7287 7288 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors) 7289 { 7290 lockdep_assert_held(&mddev->reconfig_mutex); 7291 7292 if (mddev->external_size) 7293 return; 7294 7295 mddev->array_sectors = array_sectors; 7296 } 7297 EXPORT_SYMBOL(md_set_array_sectors); 7298 7299 static int update_size(struct mddev *mddev, sector_t num_sectors) 7300 { 7301 struct md_rdev *rdev; 7302 int rv; 7303 int fit = (num_sectors == 0); 7304 sector_t old_dev_sectors = mddev->dev_sectors; 7305 7306 if (mddev->pers->resize == NULL) 7307 return -EINVAL; 7308 /* The "num_sectors" is the number of sectors of each device that 7309 * is used. This can only make sense for arrays with redundancy. 7310 * linear and raid0 always use whatever space is available. We can only 7311 * consider changing this number if no resync or reconstruction is 7312 * happening, and if the new size is acceptable. It must fit before the 7313 * sb_start or, if that is <data_offset, it must fit before the size 7314 * of each device. If num_sectors is zero, we find the largest size 7315 * that fits. 7316 */ 7317 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 7318 mddev->sync_thread) 7319 return -EBUSY; 7320 if (!md_is_rdwr(mddev)) 7321 return -EROFS; 7322 7323 rdev_for_each(rdev, mddev) { 7324 sector_t avail = rdev->sectors; 7325 7326 if (fit && (num_sectors == 0 || num_sectors > avail)) 7327 num_sectors = avail; 7328 if (avail < num_sectors) 7329 return -ENOSPC; 7330 } 7331 rv = mddev->pers->resize(mddev, num_sectors); 7332 if (!rv) { 7333 if (mddev_is_clustered(mddev)) 7334 md_cluster_ops->update_size(mddev, old_dev_sectors); 7335 else if (mddev->queue) { 7336 set_capacity_and_notify(mddev->gendisk, 7337 mddev->array_sectors); 7338 } 7339 } 7340 return rv; 7341 } 7342 7343 static int update_raid_disks(struct mddev *mddev, int raid_disks) 7344 { 7345 int rv; 7346 struct md_rdev *rdev; 7347 /* change the number of raid disks */ 7348 if (mddev->pers->check_reshape == NULL) 7349 return -EINVAL; 7350 if (!md_is_rdwr(mddev)) 7351 return -EROFS; 7352 if (raid_disks <= 0 || 7353 (mddev->max_disks && raid_disks >= mddev->max_disks)) 7354 return -EINVAL; 7355 if (mddev->sync_thread || 7356 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 7357 test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) || 7358 mddev->reshape_position != MaxSector) 7359 return -EBUSY; 7360 7361 rdev_for_each(rdev, mddev) { 7362 if (mddev->raid_disks < raid_disks && 7363 rdev->data_offset < rdev->new_data_offset) 7364 return -EINVAL; 7365 if (mddev->raid_disks > raid_disks && 7366 rdev->data_offset > rdev->new_data_offset) 7367 return -EINVAL; 7368 } 7369 7370 mddev->delta_disks = raid_disks - mddev->raid_disks; 7371 if (mddev->delta_disks < 0) 7372 mddev->reshape_backwards = 1; 7373 else if (mddev->delta_disks > 0) 7374 mddev->reshape_backwards = 0; 7375 7376 rv = mddev->pers->check_reshape(mddev); 7377 if (rv < 0) { 7378 mddev->delta_disks = 0; 7379 mddev->reshape_backwards = 0; 7380 } 7381 return rv; 7382 } 7383 7384 /* 7385 * update_array_info is used to change the configuration of an 7386 * on-line array. 7387 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size 7388 * fields in the info are checked against the array. 7389 * Any differences that cannot be handled will cause an error. 7390 * Normally, only one change can be managed at a time. 7391 */ 7392 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info) 7393 { 7394 int rv = 0; 7395 int cnt = 0; 7396 int state = 0; 7397 7398 /* calculate expected state,ignoring low bits */ 7399 if (mddev->bitmap && mddev->bitmap_info.offset) 7400 state |= (1 << MD_SB_BITMAP_PRESENT); 7401 7402 if (mddev->major_version != info->major_version || 7403 mddev->minor_version != info->minor_version || 7404 /* mddev->patch_version != info->patch_version || */ 7405 mddev->ctime != info->ctime || 7406 mddev->level != info->level || 7407 /* mddev->layout != info->layout || */ 7408 mddev->persistent != !info->not_persistent || 7409 mddev->chunk_sectors != info->chunk_size >> 9 || 7410 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ 7411 ((state^info->state) & 0xfffffe00) 7412 ) 7413 return -EINVAL; 7414 /* Check there is only one change */ 7415 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 7416 cnt++; 7417 if (mddev->raid_disks != info->raid_disks) 7418 cnt++; 7419 if (mddev->layout != info->layout) 7420 cnt++; 7421 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) 7422 cnt++; 7423 if (cnt == 0) 7424 return 0; 7425 if (cnt > 1) 7426 return -EINVAL; 7427 7428 if (mddev->layout != info->layout) { 7429 /* Change layout 7430 * we don't need to do anything at the md level, the 7431 * personality will take care of it all. 7432 */ 7433 if (mddev->pers->check_reshape == NULL) 7434 return -EINVAL; 7435 else { 7436 mddev->new_layout = info->layout; 7437 rv = mddev->pers->check_reshape(mddev); 7438 if (rv) 7439 mddev->new_layout = mddev->layout; 7440 return rv; 7441 } 7442 } 7443 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 7444 rv = update_size(mddev, (sector_t)info->size * 2); 7445 7446 if (mddev->raid_disks != info->raid_disks) 7447 rv = update_raid_disks(mddev, info->raid_disks); 7448 7449 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { 7450 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) { 7451 rv = -EINVAL; 7452 goto err; 7453 } 7454 if (mddev->recovery || mddev->sync_thread) { 7455 rv = -EBUSY; 7456 goto err; 7457 } 7458 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { 7459 struct bitmap *bitmap; 7460 /* add the bitmap */ 7461 if (mddev->bitmap) { 7462 rv = -EEXIST; 7463 goto err; 7464 } 7465 if (mddev->bitmap_info.default_offset == 0) { 7466 rv = -EINVAL; 7467 goto err; 7468 } 7469 mddev->bitmap_info.offset = 7470 mddev->bitmap_info.default_offset; 7471 mddev->bitmap_info.space = 7472 mddev->bitmap_info.default_space; 7473 bitmap = md_bitmap_create(mddev, -1); 7474 mddev_suspend(mddev); 7475 if (!IS_ERR(bitmap)) { 7476 mddev->bitmap = bitmap; 7477 rv = md_bitmap_load(mddev); 7478 } else 7479 rv = PTR_ERR(bitmap); 7480 if (rv) 7481 md_bitmap_destroy(mddev); 7482 mddev_resume(mddev); 7483 } else { 7484 /* remove the bitmap */ 7485 if (!mddev->bitmap) { 7486 rv = -ENOENT; 7487 goto err; 7488 } 7489 if (mddev->bitmap->storage.file) { 7490 rv = -EINVAL; 7491 goto err; 7492 } 7493 if (mddev->bitmap_info.nodes) { 7494 /* hold PW on all the bitmap lock */ 7495 if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) { 7496 pr_warn("md: can't change bitmap to none since the array is in use by more than one node\n"); 7497 rv = -EPERM; 7498 md_cluster_ops->unlock_all_bitmaps(mddev); 7499 goto err; 7500 } 7501 7502 mddev->bitmap_info.nodes = 0; 7503 md_cluster_ops->leave(mddev); 7504 module_put(md_cluster_mod); 7505 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY; 7506 } 7507 mddev_suspend(mddev); 7508 md_bitmap_destroy(mddev); 7509 mddev_resume(mddev); 7510 mddev->bitmap_info.offset = 0; 7511 } 7512 } 7513 md_update_sb(mddev, 1); 7514 return rv; 7515 err: 7516 return rv; 7517 } 7518 7519 static int set_disk_faulty(struct mddev *mddev, dev_t dev) 7520 { 7521 struct md_rdev *rdev; 7522 int err = 0; 7523 7524 if (mddev->pers == NULL) 7525 return -ENODEV; 7526 7527 rcu_read_lock(); 7528 rdev = md_find_rdev_rcu(mddev, dev); 7529 if (!rdev) 7530 err = -ENODEV; 7531 else { 7532 md_error(mddev, rdev); 7533 if (test_bit(MD_BROKEN, &mddev->flags)) 7534 err = -EBUSY; 7535 } 7536 rcu_read_unlock(); 7537 return err; 7538 } 7539 7540 /* 7541 * We have a problem here : there is no easy way to give a CHS 7542 * virtual geometry. We currently pretend that we have a 2 heads 7543 * 4 sectors (with a BIG number of cylinders...). This drives 7544 * dosfs just mad... ;-) 7545 */ 7546 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) 7547 { 7548 struct mddev *mddev = bdev->bd_disk->private_data; 7549 7550 geo->heads = 2; 7551 geo->sectors = 4; 7552 geo->cylinders = mddev->array_sectors / 8; 7553 return 0; 7554 } 7555 7556 static inline bool md_ioctl_valid(unsigned int cmd) 7557 { 7558 switch (cmd) { 7559 case ADD_NEW_DISK: 7560 case GET_ARRAY_INFO: 7561 case GET_BITMAP_FILE: 7562 case GET_DISK_INFO: 7563 case HOT_ADD_DISK: 7564 case HOT_REMOVE_DISK: 7565 case RAID_VERSION: 7566 case RESTART_ARRAY_RW: 7567 case RUN_ARRAY: 7568 case SET_ARRAY_INFO: 7569 case SET_BITMAP_FILE: 7570 case SET_DISK_FAULTY: 7571 case STOP_ARRAY: 7572 case STOP_ARRAY_RO: 7573 case CLUSTERED_DISK_NACK: 7574 return true; 7575 default: 7576 return false; 7577 } 7578 } 7579 7580 static int __md_set_array_info(struct mddev *mddev, void __user *argp) 7581 { 7582 mdu_array_info_t info; 7583 int err; 7584 7585 if (!argp) 7586 memset(&info, 0, sizeof(info)); 7587 else if (copy_from_user(&info, argp, sizeof(info))) 7588 return -EFAULT; 7589 7590 if (mddev->pers) { 7591 err = update_array_info(mddev, &info); 7592 if (err) 7593 pr_warn("md: couldn't update array info. %d\n", err); 7594 return err; 7595 } 7596 7597 if (!list_empty(&mddev->disks)) { 7598 pr_warn("md: array %s already has disks!\n", mdname(mddev)); 7599 return -EBUSY; 7600 } 7601 7602 if (mddev->raid_disks) { 7603 pr_warn("md: array %s already initialised!\n", mdname(mddev)); 7604 return -EBUSY; 7605 } 7606 7607 err = md_set_array_info(mddev, &info); 7608 if (err) 7609 pr_warn("md: couldn't set array info. %d\n", err); 7610 7611 return err; 7612 } 7613 7614 static int md_ioctl(struct block_device *bdev, blk_mode_t mode, 7615 unsigned int cmd, unsigned long arg) 7616 { 7617 int err = 0; 7618 void __user *argp = (void __user *)arg; 7619 struct mddev *mddev = NULL; 7620 7621 if (!md_ioctl_valid(cmd)) 7622 return -ENOTTY; 7623 7624 switch (cmd) { 7625 case RAID_VERSION: 7626 case GET_ARRAY_INFO: 7627 case GET_DISK_INFO: 7628 break; 7629 default: 7630 if (!capable(CAP_SYS_ADMIN)) 7631 return -EACCES; 7632 } 7633 7634 /* 7635 * Commands dealing with the RAID driver but not any 7636 * particular array: 7637 */ 7638 switch (cmd) { 7639 case RAID_VERSION: 7640 err = get_version(argp); 7641 goto out; 7642 default:; 7643 } 7644 7645 /* 7646 * Commands creating/starting a new array: 7647 */ 7648 7649 mddev = bdev->bd_disk->private_data; 7650 7651 if (!mddev) { 7652 BUG(); 7653 goto out; 7654 } 7655 7656 /* Some actions do not requires the mutex */ 7657 switch (cmd) { 7658 case GET_ARRAY_INFO: 7659 if (!mddev->raid_disks && !mddev->external) 7660 err = -ENODEV; 7661 else 7662 err = get_array_info(mddev, argp); 7663 goto out; 7664 7665 case GET_DISK_INFO: 7666 if (!mddev->raid_disks && !mddev->external) 7667 err = -ENODEV; 7668 else 7669 err = get_disk_info(mddev, argp); 7670 goto out; 7671 7672 case SET_DISK_FAULTY: 7673 err = set_disk_faulty(mddev, new_decode_dev(arg)); 7674 goto out; 7675 7676 case GET_BITMAP_FILE: 7677 err = get_bitmap_file(mddev, argp); 7678 goto out; 7679 7680 } 7681 7682 if (cmd == HOT_REMOVE_DISK) 7683 /* need to ensure recovery thread has run */ 7684 wait_event_interruptible_timeout(mddev->sb_wait, 7685 !test_bit(MD_RECOVERY_NEEDED, 7686 &mddev->recovery), 7687 msecs_to_jiffies(5000)); 7688 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) { 7689 /* Need to flush page cache, and ensure no-one else opens 7690 * and writes 7691 */ 7692 mutex_lock(&mddev->open_mutex); 7693 if (mddev->pers && atomic_read(&mddev->openers) > 1) { 7694 mutex_unlock(&mddev->open_mutex); 7695 err = -EBUSY; 7696 goto out; 7697 } 7698 if (test_and_set_bit(MD_CLOSING, &mddev->flags)) { 7699 mutex_unlock(&mddev->open_mutex); 7700 err = -EBUSY; 7701 goto out; 7702 } 7703 mutex_unlock(&mddev->open_mutex); 7704 sync_blockdev(bdev); 7705 } 7706 err = mddev_lock(mddev); 7707 if (err) { 7708 pr_debug("md: ioctl lock interrupted, reason %d, cmd %d\n", 7709 err, cmd); 7710 goto out; 7711 } 7712 7713 if (cmd == SET_ARRAY_INFO) { 7714 err = __md_set_array_info(mddev, argp); 7715 goto unlock; 7716 } 7717 7718 /* 7719 * Commands querying/configuring an existing array: 7720 */ 7721 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, 7722 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ 7723 if ((!mddev->raid_disks && !mddev->external) 7724 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY 7725 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE 7726 && cmd != GET_BITMAP_FILE) { 7727 err = -ENODEV; 7728 goto unlock; 7729 } 7730 7731 /* 7732 * Commands even a read-only array can execute: 7733 */ 7734 switch (cmd) { 7735 case RESTART_ARRAY_RW: 7736 err = restart_array(mddev); 7737 goto unlock; 7738 7739 case STOP_ARRAY: 7740 err = do_md_stop(mddev, 0, bdev); 7741 goto unlock; 7742 7743 case STOP_ARRAY_RO: 7744 err = md_set_readonly(mddev, bdev); 7745 goto unlock; 7746 7747 case HOT_REMOVE_DISK: 7748 err = hot_remove_disk(mddev, new_decode_dev(arg)); 7749 goto unlock; 7750 7751 case ADD_NEW_DISK: 7752 /* We can support ADD_NEW_DISK on read-only arrays 7753 * only if we are re-adding a preexisting device. 7754 * So require mddev->pers and MD_DISK_SYNC. 7755 */ 7756 if (mddev->pers) { 7757 mdu_disk_info_t info; 7758 if (copy_from_user(&info, argp, sizeof(info))) 7759 err = -EFAULT; 7760 else if (!(info.state & (1<<MD_DISK_SYNC))) 7761 /* Need to clear read-only for this */ 7762 break; 7763 else 7764 err = md_add_new_disk(mddev, &info); 7765 goto unlock; 7766 } 7767 break; 7768 } 7769 7770 /* 7771 * The remaining ioctls are changing the state of the 7772 * superblock, so we do not allow them on read-only arrays. 7773 */ 7774 if (!md_is_rdwr(mddev) && mddev->pers) { 7775 if (mddev->ro != MD_AUTO_READ) { 7776 err = -EROFS; 7777 goto unlock; 7778 } 7779 mddev->ro = MD_RDWR; 7780 sysfs_notify_dirent_safe(mddev->sysfs_state); 7781 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7782 /* mddev_unlock will wake thread */ 7783 /* If a device failed while we were read-only, we 7784 * need to make sure the metadata is updated now. 7785 */ 7786 if (test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) { 7787 mddev_unlock(mddev); 7788 wait_event(mddev->sb_wait, 7789 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) && 7790 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 7791 mddev_lock_nointr(mddev); 7792 } 7793 } 7794 7795 switch (cmd) { 7796 case ADD_NEW_DISK: 7797 { 7798 mdu_disk_info_t info; 7799 if (copy_from_user(&info, argp, sizeof(info))) 7800 err = -EFAULT; 7801 else 7802 err = md_add_new_disk(mddev, &info); 7803 goto unlock; 7804 } 7805 7806 case CLUSTERED_DISK_NACK: 7807 if (mddev_is_clustered(mddev)) 7808 md_cluster_ops->new_disk_ack(mddev, false); 7809 else 7810 err = -EINVAL; 7811 goto unlock; 7812 7813 case HOT_ADD_DISK: 7814 err = hot_add_disk(mddev, new_decode_dev(arg)); 7815 goto unlock; 7816 7817 case RUN_ARRAY: 7818 err = do_md_run(mddev); 7819 goto unlock; 7820 7821 case SET_BITMAP_FILE: 7822 err = set_bitmap_file(mddev, (int)arg); 7823 goto unlock; 7824 7825 default: 7826 err = -EINVAL; 7827 goto unlock; 7828 } 7829 7830 unlock: 7831 if (mddev->hold_active == UNTIL_IOCTL && 7832 err != -EINVAL) 7833 mddev->hold_active = 0; 7834 mddev_unlock(mddev); 7835 out: 7836 if (cmd == STOP_ARRAY_RO || (err && cmd == STOP_ARRAY)) 7837 clear_bit(MD_CLOSING, &mddev->flags); 7838 return err; 7839 } 7840 #ifdef CONFIG_COMPAT 7841 static int md_compat_ioctl(struct block_device *bdev, blk_mode_t mode, 7842 unsigned int cmd, unsigned long arg) 7843 { 7844 switch (cmd) { 7845 case HOT_REMOVE_DISK: 7846 case HOT_ADD_DISK: 7847 case SET_DISK_FAULTY: 7848 case SET_BITMAP_FILE: 7849 /* These take in integer arg, do not convert */ 7850 break; 7851 default: 7852 arg = (unsigned long)compat_ptr(arg); 7853 break; 7854 } 7855 7856 return md_ioctl(bdev, mode, cmd, arg); 7857 } 7858 #endif /* CONFIG_COMPAT */ 7859 7860 static int md_set_read_only(struct block_device *bdev, bool ro) 7861 { 7862 struct mddev *mddev = bdev->bd_disk->private_data; 7863 int err; 7864 7865 err = mddev_lock(mddev); 7866 if (err) 7867 return err; 7868 7869 if (!mddev->raid_disks && !mddev->external) { 7870 err = -ENODEV; 7871 goto out_unlock; 7872 } 7873 7874 /* 7875 * Transitioning to read-auto need only happen for arrays that call 7876 * md_write_start and which are not ready for writes yet. 7877 */ 7878 if (!ro && mddev->ro == MD_RDONLY && mddev->pers) { 7879 err = restart_array(mddev); 7880 if (err) 7881 goto out_unlock; 7882 mddev->ro = MD_AUTO_READ; 7883 } 7884 7885 out_unlock: 7886 mddev_unlock(mddev); 7887 return err; 7888 } 7889 7890 static int md_open(struct gendisk *disk, blk_mode_t mode) 7891 { 7892 struct mddev *mddev; 7893 int err; 7894 7895 spin_lock(&all_mddevs_lock); 7896 mddev = mddev_get(disk->private_data); 7897 spin_unlock(&all_mddevs_lock); 7898 if (!mddev) 7899 return -ENODEV; 7900 7901 err = mutex_lock_interruptible(&mddev->open_mutex); 7902 if (err) 7903 goto out; 7904 7905 err = -ENODEV; 7906 if (test_bit(MD_CLOSING, &mddev->flags)) 7907 goto out_unlock; 7908 7909 atomic_inc(&mddev->openers); 7910 mutex_unlock(&mddev->open_mutex); 7911 7912 disk_check_media_change(disk); 7913 return 0; 7914 7915 out_unlock: 7916 mutex_unlock(&mddev->open_mutex); 7917 out: 7918 mddev_put(mddev); 7919 return err; 7920 } 7921 7922 static void md_release(struct gendisk *disk) 7923 { 7924 struct mddev *mddev = disk->private_data; 7925 7926 BUG_ON(!mddev); 7927 atomic_dec(&mddev->openers); 7928 mddev_put(mddev); 7929 } 7930 7931 static unsigned int md_check_events(struct gendisk *disk, unsigned int clearing) 7932 { 7933 struct mddev *mddev = disk->private_data; 7934 unsigned int ret = 0; 7935 7936 if (mddev->changed) 7937 ret = DISK_EVENT_MEDIA_CHANGE; 7938 mddev->changed = 0; 7939 return ret; 7940 } 7941 7942 static void md_free_disk(struct gendisk *disk) 7943 { 7944 struct mddev *mddev = disk->private_data; 7945 7946 percpu_ref_exit(&mddev->writes_pending); 7947 mddev_free(mddev); 7948 } 7949 7950 const struct block_device_operations md_fops = 7951 { 7952 .owner = THIS_MODULE, 7953 .submit_bio = md_submit_bio, 7954 .open = md_open, 7955 .release = md_release, 7956 .ioctl = md_ioctl, 7957 #ifdef CONFIG_COMPAT 7958 .compat_ioctl = md_compat_ioctl, 7959 #endif 7960 .getgeo = md_getgeo, 7961 .check_events = md_check_events, 7962 .set_read_only = md_set_read_only, 7963 .free_disk = md_free_disk, 7964 }; 7965 7966 static int md_thread(void *arg) 7967 { 7968 struct md_thread *thread = arg; 7969 7970 /* 7971 * md_thread is a 'system-thread', it's priority should be very 7972 * high. We avoid resource deadlocks individually in each 7973 * raid personality. (RAID5 does preallocation) We also use RR and 7974 * the very same RT priority as kswapd, thus we will never get 7975 * into a priority inversion deadlock. 7976 * 7977 * we definitely have to have equal or higher priority than 7978 * bdflush, otherwise bdflush will deadlock if there are too 7979 * many dirty RAID5 blocks. 7980 */ 7981 7982 allow_signal(SIGKILL); 7983 while (!kthread_should_stop()) { 7984 7985 /* We need to wait INTERRUPTIBLE so that 7986 * we don't add to the load-average. 7987 * That means we need to be sure no signals are 7988 * pending 7989 */ 7990 if (signal_pending(current)) 7991 flush_signals(current); 7992 7993 wait_event_interruptible_timeout 7994 (thread->wqueue, 7995 test_bit(THREAD_WAKEUP, &thread->flags) 7996 || kthread_should_stop() || kthread_should_park(), 7997 thread->timeout); 7998 7999 clear_bit(THREAD_WAKEUP, &thread->flags); 8000 if (kthread_should_park()) 8001 kthread_parkme(); 8002 if (!kthread_should_stop()) 8003 thread->run(thread); 8004 } 8005 8006 return 0; 8007 } 8008 8009 static void md_wakeup_thread_directly(struct md_thread __rcu *thread) 8010 { 8011 struct md_thread *t; 8012 8013 rcu_read_lock(); 8014 t = rcu_dereference(thread); 8015 if (t) 8016 wake_up_process(t->tsk); 8017 rcu_read_unlock(); 8018 } 8019 8020 void md_wakeup_thread(struct md_thread __rcu *thread) 8021 { 8022 struct md_thread *t; 8023 8024 rcu_read_lock(); 8025 t = rcu_dereference(thread); 8026 if (t) { 8027 pr_debug("md: waking up MD thread %s.\n", t->tsk->comm); 8028 set_bit(THREAD_WAKEUP, &t->flags); 8029 wake_up(&t->wqueue); 8030 } 8031 rcu_read_unlock(); 8032 } 8033 EXPORT_SYMBOL(md_wakeup_thread); 8034 8035 struct md_thread *md_register_thread(void (*run) (struct md_thread *), 8036 struct mddev *mddev, const char *name) 8037 { 8038 struct md_thread *thread; 8039 8040 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL); 8041 if (!thread) 8042 return NULL; 8043 8044 init_waitqueue_head(&thread->wqueue); 8045 8046 thread->run = run; 8047 thread->mddev = mddev; 8048 thread->timeout = MAX_SCHEDULE_TIMEOUT; 8049 thread->tsk = kthread_run(md_thread, thread, 8050 "%s_%s", 8051 mdname(thread->mddev), 8052 name); 8053 if (IS_ERR(thread->tsk)) { 8054 kfree(thread); 8055 return NULL; 8056 } 8057 return thread; 8058 } 8059 EXPORT_SYMBOL(md_register_thread); 8060 8061 void md_unregister_thread(struct mddev *mddev, struct md_thread __rcu **threadp) 8062 { 8063 struct md_thread *thread = rcu_dereference_protected(*threadp, 8064 lockdep_is_held(&mddev->reconfig_mutex)); 8065 8066 if (!thread) 8067 return; 8068 8069 rcu_assign_pointer(*threadp, NULL); 8070 synchronize_rcu(); 8071 8072 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk)); 8073 kthread_stop(thread->tsk); 8074 kfree(thread); 8075 } 8076 EXPORT_SYMBOL(md_unregister_thread); 8077 8078 void md_error(struct mddev *mddev, struct md_rdev *rdev) 8079 { 8080 if (!rdev || test_bit(Faulty, &rdev->flags)) 8081 return; 8082 8083 if (!mddev->pers || !mddev->pers->error_handler) 8084 return; 8085 mddev->pers->error_handler(mddev, rdev); 8086 8087 if (mddev->pers->level == 0 || mddev->pers->level == LEVEL_LINEAR) 8088 return; 8089 8090 if (mddev->degraded && !test_bit(MD_BROKEN, &mddev->flags)) 8091 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 8092 sysfs_notify_dirent_safe(rdev->sysfs_state); 8093 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8094 if (!test_bit(MD_BROKEN, &mddev->flags)) { 8095 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8096 md_wakeup_thread(mddev->thread); 8097 } 8098 if (mddev->event_work.func) 8099 queue_work(md_misc_wq, &mddev->event_work); 8100 md_new_event(); 8101 } 8102 EXPORT_SYMBOL(md_error); 8103 8104 /* seq_file implementation /proc/mdstat */ 8105 8106 static void status_unused(struct seq_file *seq) 8107 { 8108 int i = 0; 8109 struct md_rdev *rdev; 8110 8111 seq_printf(seq, "unused devices: "); 8112 8113 list_for_each_entry(rdev, &pending_raid_disks, same_set) { 8114 i++; 8115 seq_printf(seq, "%pg ", rdev->bdev); 8116 } 8117 if (!i) 8118 seq_printf(seq, "<none>"); 8119 8120 seq_printf(seq, "\n"); 8121 } 8122 8123 static int status_resync(struct seq_file *seq, struct mddev *mddev) 8124 { 8125 sector_t max_sectors, resync, res; 8126 unsigned long dt, db = 0; 8127 sector_t rt, curr_mark_cnt, resync_mark_cnt; 8128 int scale, recovery_active; 8129 unsigned int per_milli; 8130 8131 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 8132 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 8133 max_sectors = mddev->resync_max_sectors; 8134 else 8135 max_sectors = mddev->dev_sectors; 8136 8137 resync = mddev->curr_resync; 8138 if (resync < MD_RESYNC_ACTIVE) { 8139 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 8140 /* Still cleaning up */ 8141 resync = max_sectors; 8142 } else if (resync > max_sectors) { 8143 resync = max_sectors; 8144 } else { 8145 res = atomic_read(&mddev->recovery_active); 8146 /* 8147 * Resync has started, but the subtraction has overflowed or 8148 * yielded one of the special values. Force it to active to 8149 * ensure the status reports an active resync. 8150 */ 8151 if (resync < res || resync - res < MD_RESYNC_ACTIVE) 8152 resync = MD_RESYNC_ACTIVE; 8153 else 8154 resync -= res; 8155 } 8156 8157 if (resync == MD_RESYNC_NONE) { 8158 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery)) { 8159 struct md_rdev *rdev; 8160 8161 rdev_for_each(rdev, mddev) 8162 if (rdev->raid_disk >= 0 && 8163 !test_bit(Faulty, &rdev->flags) && 8164 rdev->recovery_offset != MaxSector && 8165 rdev->recovery_offset) { 8166 seq_printf(seq, "\trecover=REMOTE"); 8167 return 1; 8168 } 8169 if (mddev->reshape_position != MaxSector) 8170 seq_printf(seq, "\treshape=REMOTE"); 8171 else 8172 seq_printf(seq, "\tresync=REMOTE"); 8173 return 1; 8174 } 8175 if (mddev->recovery_cp < MaxSector) { 8176 seq_printf(seq, "\tresync=PENDING"); 8177 return 1; 8178 } 8179 return 0; 8180 } 8181 if (resync < MD_RESYNC_ACTIVE) { 8182 seq_printf(seq, "\tresync=DELAYED"); 8183 return 1; 8184 } 8185 8186 WARN_ON(max_sectors == 0); 8187 /* Pick 'scale' such that (resync>>scale)*1000 will fit 8188 * in a sector_t, and (max_sectors>>scale) will fit in a 8189 * u32, as those are the requirements for sector_div. 8190 * Thus 'scale' must be at least 10 8191 */ 8192 scale = 10; 8193 if (sizeof(sector_t) > sizeof(unsigned long)) { 8194 while ( max_sectors/2 > (1ULL<<(scale+32))) 8195 scale++; 8196 } 8197 res = (resync>>scale)*1000; 8198 sector_div(res, (u32)((max_sectors>>scale)+1)); 8199 8200 per_milli = res; 8201 { 8202 int i, x = per_milli/50, y = 20-x; 8203 seq_printf(seq, "["); 8204 for (i = 0; i < x; i++) 8205 seq_printf(seq, "="); 8206 seq_printf(seq, ">"); 8207 for (i = 0; i < y; i++) 8208 seq_printf(seq, "."); 8209 seq_printf(seq, "] "); 8210 } 8211 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", 8212 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? 8213 "reshape" : 8214 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? 8215 "check" : 8216 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? 8217 "resync" : "recovery"))), 8218 per_milli/10, per_milli % 10, 8219 (unsigned long long) resync/2, 8220 (unsigned long long) max_sectors/2); 8221 8222 /* 8223 * dt: time from mark until now 8224 * db: blocks written from mark until now 8225 * rt: remaining time 8226 * 8227 * rt is a sector_t, which is always 64bit now. We are keeping 8228 * the original algorithm, but it is not really necessary. 8229 * 8230 * Original algorithm: 8231 * So we divide before multiply in case it is 32bit and close 8232 * to the limit. 8233 * We scale the divisor (db) by 32 to avoid losing precision 8234 * near the end of resync when the number of remaining sectors 8235 * is close to 'db'. 8236 * We then divide rt by 32 after multiplying by db to compensate. 8237 * The '+1' avoids division by zero if db is very small. 8238 */ 8239 dt = ((jiffies - mddev->resync_mark) / HZ); 8240 if (!dt) dt++; 8241 8242 curr_mark_cnt = mddev->curr_mark_cnt; 8243 recovery_active = atomic_read(&mddev->recovery_active); 8244 resync_mark_cnt = mddev->resync_mark_cnt; 8245 8246 if (curr_mark_cnt >= (recovery_active + resync_mark_cnt)) 8247 db = curr_mark_cnt - (recovery_active + resync_mark_cnt); 8248 8249 rt = max_sectors - resync; /* number of remaining sectors */ 8250 rt = div64_u64(rt, db/32+1); 8251 rt *= dt; 8252 rt >>= 5; 8253 8254 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60, 8255 ((unsigned long)rt % 60)/6); 8256 8257 seq_printf(seq, " speed=%ldK/sec", db/2/dt); 8258 return 1; 8259 } 8260 8261 static void *md_seq_start(struct seq_file *seq, loff_t *pos) 8262 { 8263 struct list_head *tmp; 8264 loff_t l = *pos; 8265 struct mddev *mddev; 8266 8267 if (l == 0x10000) { 8268 ++*pos; 8269 return (void *)2; 8270 } 8271 if (l > 0x10000) 8272 return NULL; 8273 if (!l--) 8274 /* header */ 8275 return (void*)1; 8276 8277 spin_lock(&all_mddevs_lock); 8278 list_for_each(tmp,&all_mddevs) 8279 if (!l--) { 8280 mddev = list_entry(tmp, struct mddev, all_mddevs); 8281 if (!mddev_get(mddev)) 8282 continue; 8283 spin_unlock(&all_mddevs_lock); 8284 return mddev; 8285 } 8286 spin_unlock(&all_mddevs_lock); 8287 if (!l--) 8288 return (void*)2;/* tail */ 8289 return NULL; 8290 } 8291 8292 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) 8293 { 8294 struct list_head *tmp; 8295 struct mddev *next_mddev, *mddev = v; 8296 struct mddev *to_put = NULL; 8297 8298 ++*pos; 8299 if (v == (void*)2) 8300 return NULL; 8301 8302 spin_lock(&all_mddevs_lock); 8303 if (v == (void*)1) { 8304 tmp = all_mddevs.next; 8305 } else { 8306 to_put = mddev; 8307 tmp = mddev->all_mddevs.next; 8308 } 8309 8310 for (;;) { 8311 if (tmp == &all_mddevs) { 8312 next_mddev = (void*)2; 8313 *pos = 0x10000; 8314 break; 8315 } 8316 next_mddev = list_entry(tmp, struct mddev, all_mddevs); 8317 if (mddev_get(next_mddev)) 8318 break; 8319 mddev = next_mddev; 8320 tmp = mddev->all_mddevs.next; 8321 } 8322 spin_unlock(&all_mddevs_lock); 8323 8324 if (to_put) 8325 mddev_put(to_put); 8326 return next_mddev; 8327 8328 } 8329 8330 static void md_seq_stop(struct seq_file *seq, void *v) 8331 { 8332 struct mddev *mddev = v; 8333 8334 if (mddev && v != (void*)1 && v != (void*)2) 8335 mddev_put(mddev); 8336 } 8337 8338 static int md_seq_show(struct seq_file *seq, void *v) 8339 { 8340 struct mddev *mddev = v; 8341 sector_t sectors; 8342 struct md_rdev *rdev; 8343 8344 if (v == (void*)1) { 8345 struct md_personality *pers; 8346 seq_printf(seq, "Personalities : "); 8347 spin_lock(&pers_lock); 8348 list_for_each_entry(pers, &pers_list, list) 8349 seq_printf(seq, "[%s] ", pers->name); 8350 8351 spin_unlock(&pers_lock); 8352 seq_printf(seq, "\n"); 8353 seq->poll_event = atomic_read(&md_event_count); 8354 return 0; 8355 } 8356 if (v == (void*)2) { 8357 status_unused(seq); 8358 return 0; 8359 } 8360 8361 spin_lock(&mddev->lock); 8362 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { 8363 seq_printf(seq, "%s : %sactive", mdname(mddev), 8364 mddev->pers ? "" : "in"); 8365 if (mddev->pers) { 8366 if (mddev->ro == MD_RDONLY) 8367 seq_printf(seq, " (read-only)"); 8368 if (mddev->ro == MD_AUTO_READ) 8369 seq_printf(seq, " (auto-read-only)"); 8370 seq_printf(seq, " %s", mddev->pers->name); 8371 } 8372 8373 sectors = 0; 8374 rcu_read_lock(); 8375 rdev_for_each_rcu(rdev, mddev) { 8376 seq_printf(seq, " %pg[%d]", rdev->bdev, rdev->desc_nr); 8377 8378 if (test_bit(WriteMostly, &rdev->flags)) 8379 seq_printf(seq, "(W)"); 8380 if (test_bit(Journal, &rdev->flags)) 8381 seq_printf(seq, "(J)"); 8382 if (test_bit(Faulty, &rdev->flags)) { 8383 seq_printf(seq, "(F)"); 8384 continue; 8385 } 8386 if (rdev->raid_disk < 0) 8387 seq_printf(seq, "(S)"); /* spare */ 8388 if (test_bit(Replacement, &rdev->flags)) 8389 seq_printf(seq, "(R)"); 8390 sectors += rdev->sectors; 8391 } 8392 rcu_read_unlock(); 8393 8394 if (!list_empty(&mddev->disks)) { 8395 if (mddev->pers) 8396 seq_printf(seq, "\n %llu blocks", 8397 (unsigned long long) 8398 mddev->array_sectors / 2); 8399 else 8400 seq_printf(seq, "\n %llu blocks", 8401 (unsigned long long)sectors / 2); 8402 } 8403 if (mddev->persistent) { 8404 if (mddev->major_version != 0 || 8405 mddev->minor_version != 90) { 8406 seq_printf(seq," super %d.%d", 8407 mddev->major_version, 8408 mddev->minor_version); 8409 } 8410 } else if (mddev->external) 8411 seq_printf(seq, " super external:%s", 8412 mddev->metadata_type); 8413 else 8414 seq_printf(seq, " super non-persistent"); 8415 8416 if (mddev->pers) { 8417 mddev->pers->status(seq, mddev); 8418 seq_printf(seq, "\n "); 8419 if (mddev->pers->sync_request) { 8420 if (status_resync(seq, mddev)) 8421 seq_printf(seq, "\n "); 8422 } 8423 } else 8424 seq_printf(seq, "\n "); 8425 8426 md_bitmap_status(seq, mddev->bitmap); 8427 8428 seq_printf(seq, "\n"); 8429 } 8430 spin_unlock(&mddev->lock); 8431 8432 return 0; 8433 } 8434 8435 static const struct seq_operations md_seq_ops = { 8436 .start = md_seq_start, 8437 .next = md_seq_next, 8438 .stop = md_seq_stop, 8439 .show = md_seq_show, 8440 }; 8441 8442 static int md_seq_open(struct inode *inode, struct file *file) 8443 { 8444 struct seq_file *seq; 8445 int error; 8446 8447 error = seq_open(file, &md_seq_ops); 8448 if (error) 8449 return error; 8450 8451 seq = file->private_data; 8452 seq->poll_event = atomic_read(&md_event_count); 8453 return error; 8454 } 8455 8456 static int md_unloading; 8457 static __poll_t mdstat_poll(struct file *filp, poll_table *wait) 8458 { 8459 struct seq_file *seq = filp->private_data; 8460 __poll_t mask; 8461 8462 if (md_unloading) 8463 return EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI; 8464 poll_wait(filp, &md_event_waiters, wait); 8465 8466 /* always allow read */ 8467 mask = EPOLLIN | EPOLLRDNORM; 8468 8469 if (seq->poll_event != atomic_read(&md_event_count)) 8470 mask |= EPOLLERR | EPOLLPRI; 8471 return mask; 8472 } 8473 8474 static const struct proc_ops mdstat_proc_ops = { 8475 .proc_open = md_seq_open, 8476 .proc_read = seq_read, 8477 .proc_lseek = seq_lseek, 8478 .proc_release = seq_release, 8479 .proc_poll = mdstat_poll, 8480 }; 8481 8482 int register_md_personality(struct md_personality *p) 8483 { 8484 pr_debug("md: %s personality registered for level %d\n", 8485 p->name, p->level); 8486 spin_lock(&pers_lock); 8487 list_add_tail(&p->list, &pers_list); 8488 spin_unlock(&pers_lock); 8489 return 0; 8490 } 8491 EXPORT_SYMBOL(register_md_personality); 8492 8493 int unregister_md_personality(struct md_personality *p) 8494 { 8495 pr_debug("md: %s personality unregistered\n", p->name); 8496 spin_lock(&pers_lock); 8497 list_del_init(&p->list); 8498 spin_unlock(&pers_lock); 8499 return 0; 8500 } 8501 EXPORT_SYMBOL(unregister_md_personality); 8502 8503 int register_md_cluster_operations(struct md_cluster_operations *ops, 8504 struct module *module) 8505 { 8506 int ret = 0; 8507 spin_lock(&pers_lock); 8508 if (md_cluster_ops != NULL) 8509 ret = -EALREADY; 8510 else { 8511 md_cluster_ops = ops; 8512 md_cluster_mod = module; 8513 } 8514 spin_unlock(&pers_lock); 8515 return ret; 8516 } 8517 EXPORT_SYMBOL(register_md_cluster_operations); 8518 8519 int unregister_md_cluster_operations(void) 8520 { 8521 spin_lock(&pers_lock); 8522 md_cluster_ops = NULL; 8523 spin_unlock(&pers_lock); 8524 return 0; 8525 } 8526 EXPORT_SYMBOL(unregister_md_cluster_operations); 8527 8528 int md_setup_cluster(struct mddev *mddev, int nodes) 8529 { 8530 int ret; 8531 if (!md_cluster_ops) 8532 request_module("md-cluster"); 8533 spin_lock(&pers_lock); 8534 /* ensure module won't be unloaded */ 8535 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) { 8536 pr_warn("can't find md-cluster module or get its reference.\n"); 8537 spin_unlock(&pers_lock); 8538 return -ENOENT; 8539 } 8540 spin_unlock(&pers_lock); 8541 8542 ret = md_cluster_ops->join(mddev, nodes); 8543 if (!ret) 8544 mddev->safemode_delay = 0; 8545 return ret; 8546 } 8547 8548 void md_cluster_stop(struct mddev *mddev) 8549 { 8550 if (!md_cluster_ops) 8551 return; 8552 md_cluster_ops->leave(mddev); 8553 module_put(md_cluster_mod); 8554 } 8555 8556 static int is_mddev_idle(struct mddev *mddev, int init) 8557 { 8558 struct md_rdev *rdev; 8559 int idle; 8560 int curr_events; 8561 8562 idle = 1; 8563 rcu_read_lock(); 8564 rdev_for_each_rcu(rdev, mddev) { 8565 struct gendisk *disk = rdev->bdev->bd_disk; 8566 curr_events = (int)part_stat_read_accum(disk->part0, sectors) - 8567 atomic_read(&disk->sync_io); 8568 /* sync IO will cause sync_io to increase before the disk_stats 8569 * as sync_io is counted when a request starts, and 8570 * disk_stats is counted when it completes. 8571 * So resync activity will cause curr_events to be smaller than 8572 * when there was no such activity. 8573 * non-sync IO will cause disk_stat to increase without 8574 * increasing sync_io so curr_events will (eventually) 8575 * be larger than it was before. Once it becomes 8576 * substantially larger, the test below will cause 8577 * the array to appear non-idle, and resync will slow 8578 * down. 8579 * If there is a lot of outstanding resync activity when 8580 * we set last_event to curr_events, then all that activity 8581 * completing might cause the array to appear non-idle 8582 * and resync will be slowed down even though there might 8583 * not have been non-resync activity. This will only 8584 * happen once though. 'last_events' will soon reflect 8585 * the state where there is little or no outstanding 8586 * resync requests, and further resync activity will 8587 * always make curr_events less than last_events. 8588 * 8589 */ 8590 if (init || curr_events - rdev->last_events > 64) { 8591 rdev->last_events = curr_events; 8592 idle = 0; 8593 } 8594 } 8595 rcu_read_unlock(); 8596 return idle; 8597 } 8598 8599 void md_done_sync(struct mddev *mddev, int blocks, int ok) 8600 { 8601 /* another "blocks" (512byte) blocks have been synced */ 8602 atomic_sub(blocks, &mddev->recovery_active); 8603 wake_up(&mddev->recovery_wait); 8604 if (!ok) { 8605 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8606 set_bit(MD_RECOVERY_ERROR, &mddev->recovery); 8607 md_wakeup_thread(mddev->thread); 8608 // stop recovery, signal do_sync .... 8609 } 8610 } 8611 EXPORT_SYMBOL(md_done_sync); 8612 8613 /* md_write_start(mddev, bi) 8614 * If we need to update some array metadata (e.g. 'active' flag 8615 * in superblock) before writing, schedule a superblock update 8616 * and wait for it to complete. 8617 * A return value of 'false' means that the write wasn't recorded 8618 * and cannot proceed as the array is being suspend. 8619 */ 8620 bool md_write_start(struct mddev *mddev, struct bio *bi) 8621 { 8622 int did_change = 0; 8623 8624 if (bio_data_dir(bi) != WRITE) 8625 return true; 8626 8627 BUG_ON(mddev->ro == MD_RDONLY); 8628 if (mddev->ro == MD_AUTO_READ) { 8629 /* need to switch to read/write */ 8630 mddev->ro = MD_RDWR; 8631 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8632 md_wakeup_thread(mddev->thread); 8633 md_wakeup_thread(mddev->sync_thread); 8634 did_change = 1; 8635 } 8636 rcu_read_lock(); 8637 percpu_ref_get(&mddev->writes_pending); 8638 smp_mb(); /* Match smp_mb in set_in_sync() */ 8639 if (mddev->safemode == 1) 8640 mddev->safemode = 0; 8641 /* sync_checkers is always 0 when writes_pending is in per-cpu mode */ 8642 if (mddev->in_sync || mddev->sync_checkers) { 8643 spin_lock(&mddev->lock); 8644 if (mddev->in_sync) { 8645 mddev->in_sync = 0; 8646 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8647 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8648 md_wakeup_thread(mddev->thread); 8649 did_change = 1; 8650 } 8651 spin_unlock(&mddev->lock); 8652 } 8653 rcu_read_unlock(); 8654 if (did_change) 8655 sysfs_notify_dirent_safe(mddev->sysfs_state); 8656 if (!mddev->has_superblocks) 8657 return true; 8658 wait_event(mddev->sb_wait, 8659 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) || 8660 is_md_suspended(mddev)); 8661 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 8662 percpu_ref_put(&mddev->writes_pending); 8663 return false; 8664 } 8665 return true; 8666 } 8667 EXPORT_SYMBOL(md_write_start); 8668 8669 /* md_write_inc can only be called when md_write_start() has 8670 * already been called at least once of the current request. 8671 * It increments the counter and is useful when a single request 8672 * is split into several parts. Each part causes an increment and 8673 * so needs a matching md_write_end(). 8674 * Unlike md_write_start(), it is safe to call md_write_inc() inside 8675 * a spinlocked region. 8676 */ 8677 void md_write_inc(struct mddev *mddev, struct bio *bi) 8678 { 8679 if (bio_data_dir(bi) != WRITE) 8680 return; 8681 WARN_ON_ONCE(mddev->in_sync || !md_is_rdwr(mddev)); 8682 percpu_ref_get(&mddev->writes_pending); 8683 } 8684 EXPORT_SYMBOL(md_write_inc); 8685 8686 void md_write_end(struct mddev *mddev) 8687 { 8688 percpu_ref_put(&mddev->writes_pending); 8689 8690 if (mddev->safemode == 2) 8691 md_wakeup_thread(mddev->thread); 8692 else if (mddev->safemode_delay) 8693 /* The roundup() ensures this only performs locking once 8694 * every ->safemode_delay jiffies 8695 */ 8696 mod_timer(&mddev->safemode_timer, 8697 roundup(jiffies, mddev->safemode_delay) + 8698 mddev->safemode_delay); 8699 } 8700 8701 EXPORT_SYMBOL(md_write_end); 8702 8703 /* This is used by raid0 and raid10 */ 8704 void md_submit_discard_bio(struct mddev *mddev, struct md_rdev *rdev, 8705 struct bio *bio, sector_t start, sector_t size) 8706 { 8707 struct bio *discard_bio = NULL; 8708 8709 if (__blkdev_issue_discard(rdev->bdev, start, size, GFP_NOIO, 8710 &discard_bio) || !discard_bio) 8711 return; 8712 8713 bio_chain(discard_bio, bio); 8714 bio_clone_blkg_association(discard_bio, bio); 8715 if (mddev->gendisk) 8716 trace_block_bio_remap(discard_bio, 8717 disk_devt(mddev->gendisk), 8718 bio->bi_iter.bi_sector); 8719 submit_bio_noacct(discard_bio); 8720 } 8721 EXPORT_SYMBOL_GPL(md_submit_discard_bio); 8722 8723 static void md_end_clone_io(struct bio *bio) 8724 { 8725 struct md_io_clone *md_io_clone = bio->bi_private; 8726 struct bio *orig_bio = md_io_clone->orig_bio; 8727 struct mddev *mddev = md_io_clone->mddev; 8728 8729 if (bio->bi_status && !orig_bio->bi_status) 8730 orig_bio->bi_status = bio->bi_status; 8731 8732 if (md_io_clone->start_time) 8733 bio_end_io_acct(orig_bio, md_io_clone->start_time); 8734 8735 bio_put(bio); 8736 bio_endio(orig_bio); 8737 percpu_ref_put(&mddev->active_io); 8738 } 8739 8740 static void md_clone_bio(struct mddev *mddev, struct bio **bio) 8741 { 8742 struct block_device *bdev = (*bio)->bi_bdev; 8743 struct md_io_clone *md_io_clone; 8744 struct bio *clone = 8745 bio_alloc_clone(bdev, *bio, GFP_NOIO, &mddev->io_clone_set); 8746 8747 md_io_clone = container_of(clone, struct md_io_clone, bio_clone); 8748 md_io_clone->orig_bio = *bio; 8749 md_io_clone->mddev = mddev; 8750 if (blk_queue_io_stat(bdev->bd_disk->queue)) 8751 md_io_clone->start_time = bio_start_io_acct(*bio); 8752 8753 clone->bi_end_io = md_end_clone_io; 8754 clone->bi_private = md_io_clone; 8755 *bio = clone; 8756 } 8757 8758 void md_account_bio(struct mddev *mddev, struct bio **bio) 8759 { 8760 percpu_ref_get(&mddev->active_io); 8761 md_clone_bio(mddev, bio); 8762 } 8763 EXPORT_SYMBOL_GPL(md_account_bio); 8764 8765 /* md_allow_write(mddev) 8766 * Calling this ensures that the array is marked 'active' so that writes 8767 * may proceed without blocking. It is important to call this before 8768 * attempting a GFP_KERNEL allocation while holding the mddev lock. 8769 * Must be called with mddev_lock held. 8770 */ 8771 void md_allow_write(struct mddev *mddev) 8772 { 8773 if (!mddev->pers) 8774 return; 8775 if (!md_is_rdwr(mddev)) 8776 return; 8777 if (!mddev->pers->sync_request) 8778 return; 8779 8780 spin_lock(&mddev->lock); 8781 if (mddev->in_sync) { 8782 mddev->in_sync = 0; 8783 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8784 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8785 if (mddev->safemode_delay && 8786 mddev->safemode == 0) 8787 mddev->safemode = 1; 8788 spin_unlock(&mddev->lock); 8789 md_update_sb(mddev, 0); 8790 sysfs_notify_dirent_safe(mddev->sysfs_state); 8791 /* wait for the dirty state to be recorded in the metadata */ 8792 wait_event(mddev->sb_wait, 8793 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 8794 } else 8795 spin_unlock(&mddev->lock); 8796 } 8797 EXPORT_SYMBOL_GPL(md_allow_write); 8798 8799 #define SYNC_MARKS 10 8800 #define SYNC_MARK_STEP (3*HZ) 8801 #define UPDATE_FREQUENCY (5*60*HZ) 8802 void md_do_sync(struct md_thread *thread) 8803 { 8804 struct mddev *mddev = thread->mddev; 8805 struct mddev *mddev2; 8806 unsigned int currspeed = 0, window; 8807 sector_t max_sectors,j, io_sectors, recovery_done; 8808 unsigned long mark[SYNC_MARKS]; 8809 unsigned long update_time; 8810 sector_t mark_cnt[SYNC_MARKS]; 8811 int last_mark,m; 8812 sector_t last_check; 8813 int skipped = 0; 8814 struct md_rdev *rdev; 8815 char *desc, *action = NULL; 8816 struct blk_plug plug; 8817 int ret; 8818 8819 /* just incase thread restarts... */ 8820 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 8821 test_bit(MD_RECOVERY_WAIT, &mddev->recovery)) 8822 return; 8823 if (!md_is_rdwr(mddev)) {/* never try to sync a read-only array */ 8824 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8825 return; 8826 } 8827 8828 if (mddev_is_clustered(mddev)) { 8829 ret = md_cluster_ops->resync_start(mddev); 8830 if (ret) 8831 goto skip; 8832 8833 set_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags); 8834 if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 8835 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) || 8836 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) 8837 && ((unsigned long long)mddev->curr_resync_completed 8838 < (unsigned long long)mddev->resync_max_sectors)) 8839 goto skip; 8840 } 8841 8842 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8843 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 8844 desc = "data-check"; 8845 action = "check"; 8846 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 8847 desc = "requested-resync"; 8848 action = "repair"; 8849 } else 8850 desc = "resync"; 8851 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 8852 desc = "reshape"; 8853 else 8854 desc = "recovery"; 8855 8856 mddev->last_sync_action = action ?: desc; 8857 8858 /* 8859 * Before starting a resync we must have set curr_resync to 8860 * 2, and then checked that every "conflicting" array has curr_resync 8861 * less than ours. When we find one that is the same or higher 8862 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync 8863 * to 1 if we choose to yield (based arbitrarily on address of mddev structure). 8864 * This will mean we have to start checking from the beginning again. 8865 * 8866 */ 8867 8868 do { 8869 int mddev2_minor = -1; 8870 mddev->curr_resync = MD_RESYNC_DELAYED; 8871 8872 try_again: 8873 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8874 goto skip; 8875 spin_lock(&all_mddevs_lock); 8876 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) { 8877 if (test_bit(MD_DELETED, &mddev2->flags)) 8878 continue; 8879 if (mddev2 == mddev) 8880 continue; 8881 if (!mddev->parallel_resync 8882 && mddev2->curr_resync 8883 && match_mddev_units(mddev, mddev2)) { 8884 DEFINE_WAIT(wq); 8885 if (mddev < mddev2 && 8886 mddev->curr_resync == MD_RESYNC_DELAYED) { 8887 /* arbitrarily yield */ 8888 mddev->curr_resync = MD_RESYNC_YIELDED; 8889 wake_up(&resync_wait); 8890 } 8891 if (mddev > mddev2 && 8892 mddev->curr_resync == MD_RESYNC_YIELDED) 8893 /* no need to wait here, we can wait the next 8894 * time 'round when curr_resync == 2 8895 */ 8896 continue; 8897 /* We need to wait 'interruptible' so as not to 8898 * contribute to the load average, and not to 8899 * be caught by 'softlockup' 8900 */ 8901 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE); 8902 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8903 mddev2->curr_resync >= mddev->curr_resync) { 8904 if (mddev2_minor != mddev2->md_minor) { 8905 mddev2_minor = mddev2->md_minor; 8906 pr_info("md: delaying %s of %s until %s has finished (they share one or more physical units)\n", 8907 desc, mdname(mddev), 8908 mdname(mddev2)); 8909 } 8910 spin_unlock(&all_mddevs_lock); 8911 8912 if (signal_pending(current)) 8913 flush_signals(current); 8914 schedule(); 8915 finish_wait(&resync_wait, &wq); 8916 goto try_again; 8917 } 8918 finish_wait(&resync_wait, &wq); 8919 } 8920 } 8921 spin_unlock(&all_mddevs_lock); 8922 } while (mddev->curr_resync < MD_RESYNC_DELAYED); 8923 8924 j = 0; 8925 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8926 /* resync follows the size requested by the personality, 8927 * which defaults to physical size, but can be virtual size 8928 */ 8929 max_sectors = mddev->resync_max_sectors; 8930 atomic64_set(&mddev->resync_mismatches, 0); 8931 /* we don't use the checkpoint if there's a bitmap */ 8932 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 8933 j = mddev->resync_min; 8934 else if (!mddev->bitmap) 8935 j = mddev->recovery_cp; 8936 8937 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 8938 max_sectors = mddev->resync_max_sectors; 8939 /* 8940 * If the original node aborts reshaping then we continue the 8941 * reshaping, so set j again to avoid restart reshape from the 8942 * first beginning 8943 */ 8944 if (mddev_is_clustered(mddev) && 8945 mddev->reshape_position != MaxSector) 8946 j = mddev->reshape_position; 8947 } else { 8948 /* recovery follows the physical size of devices */ 8949 max_sectors = mddev->dev_sectors; 8950 j = MaxSector; 8951 rcu_read_lock(); 8952 rdev_for_each_rcu(rdev, mddev) 8953 if (rdev->raid_disk >= 0 && 8954 !test_bit(Journal, &rdev->flags) && 8955 !test_bit(Faulty, &rdev->flags) && 8956 !test_bit(In_sync, &rdev->flags) && 8957 rdev->recovery_offset < j) 8958 j = rdev->recovery_offset; 8959 rcu_read_unlock(); 8960 8961 /* If there is a bitmap, we need to make sure all 8962 * writes that started before we added a spare 8963 * complete before we start doing a recovery. 8964 * Otherwise the write might complete and (via 8965 * bitmap_endwrite) set a bit in the bitmap after the 8966 * recovery has checked that bit and skipped that 8967 * region. 8968 */ 8969 if (mddev->bitmap) { 8970 mddev->pers->quiesce(mddev, 1); 8971 mddev->pers->quiesce(mddev, 0); 8972 } 8973 } 8974 8975 pr_info("md: %s of RAID array %s\n", desc, mdname(mddev)); 8976 pr_debug("md: minimum _guaranteed_ speed: %d KB/sec/disk.\n", speed_min(mddev)); 8977 pr_debug("md: using maximum available idle IO bandwidth (but not more than %d KB/sec) for %s.\n", 8978 speed_max(mddev), desc); 8979 8980 is_mddev_idle(mddev, 1); /* this initializes IO event counters */ 8981 8982 io_sectors = 0; 8983 for (m = 0; m < SYNC_MARKS; m++) { 8984 mark[m] = jiffies; 8985 mark_cnt[m] = io_sectors; 8986 } 8987 last_mark = 0; 8988 mddev->resync_mark = mark[last_mark]; 8989 mddev->resync_mark_cnt = mark_cnt[last_mark]; 8990 8991 /* 8992 * Tune reconstruction: 8993 */ 8994 window = 32 * (PAGE_SIZE / 512); 8995 pr_debug("md: using %dk window, over a total of %lluk.\n", 8996 window/2, (unsigned long long)max_sectors/2); 8997 8998 atomic_set(&mddev->recovery_active, 0); 8999 last_check = 0; 9000 9001 if (j >= MD_RESYNC_ACTIVE) { 9002 pr_debug("md: resuming %s of %s from checkpoint.\n", 9003 desc, mdname(mddev)); 9004 mddev->curr_resync = j; 9005 } else 9006 mddev->curr_resync = MD_RESYNC_ACTIVE; /* no longer delayed */ 9007 mddev->curr_resync_completed = j; 9008 sysfs_notify_dirent_safe(mddev->sysfs_completed); 9009 md_new_event(); 9010 update_time = jiffies; 9011 9012 blk_start_plug(&plug); 9013 while (j < max_sectors) { 9014 sector_t sectors; 9015 9016 skipped = 0; 9017 9018 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9019 ((mddev->curr_resync > mddev->curr_resync_completed && 9020 (mddev->curr_resync - mddev->curr_resync_completed) 9021 > (max_sectors >> 4)) || 9022 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) || 9023 (j - mddev->curr_resync_completed)*2 9024 >= mddev->resync_max - mddev->curr_resync_completed || 9025 mddev->curr_resync_completed > mddev->resync_max 9026 )) { 9027 /* time to update curr_resync_completed */ 9028 wait_event(mddev->recovery_wait, 9029 atomic_read(&mddev->recovery_active) == 0); 9030 mddev->curr_resync_completed = j; 9031 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 9032 j > mddev->recovery_cp) 9033 mddev->recovery_cp = j; 9034 update_time = jiffies; 9035 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 9036 sysfs_notify_dirent_safe(mddev->sysfs_completed); 9037 } 9038 9039 while (j >= mddev->resync_max && 9040 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 9041 /* As this condition is controlled by user-space, 9042 * we can block indefinitely, so use '_interruptible' 9043 * to avoid triggering warnings. 9044 */ 9045 flush_signals(current); /* just in case */ 9046 wait_event_interruptible(mddev->recovery_wait, 9047 mddev->resync_max > j 9048 || test_bit(MD_RECOVERY_INTR, 9049 &mddev->recovery)); 9050 } 9051 9052 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 9053 break; 9054 9055 sectors = mddev->pers->sync_request(mddev, j, &skipped); 9056 if (sectors == 0) { 9057 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 9058 break; 9059 } 9060 9061 if (!skipped) { /* actual IO requested */ 9062 io_sectors += sectors; 9063 atomic_add(sectors, &mddev->recovery_active); 9064 } 9065 9066 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 9067 break; 9068 9069 j += sectors; 9070 if (j > max_sectors) 9071 /* when skipping, extra large numbers can be returned. */ 9072 j = max_sectors; 9073 if (j >= MD_RESYNC_ACTIVE) 9074 mddev->curr_resync = j; 9075 mddev->curr_mark_cnt = io_sectors; 9076 if (last_check == 0) 9077 /* this is the earliest that rebuild will be 9078 * visible in /proc/mdstat 9079 */ 9080 md_new_event(); 9081 9082 if (last_check + window > io_sectors || j == max_sectors) 9083 continue; 9084 9085 last_check = io_sectors; 9086 repeat: 9087 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { 9088 /* step marks */ 9089 int next = (last_mark+1) % SYNC_MARKS; 9090 9091 mddev->resync_mark = mark[next]; 9092 mddev->resync_mark_cnt = mark_cnt[next]; 9093 mark[next] = jiffies; 9094 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); 9095 last_mark = next; 9096 } 9097 9098 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 9099 break; 9100 9101 /* 9102 * this loop exits only if either when we are slower than 9103 * the 'hard' speed limit, or the system was IO-idle for 9104 * a jiffy. 9105 * the system might be non-idle CPU-wise, but we only care 9106 * about not overloading the IO subsystem. (things like an 9107 * e2fsck being done on the RAID array should execute fast) 9108 */ 9109 cond_resched(); 9110 9111 recovery_done = io_sectors - atomic_read(&mddev->recovery_active); 9112 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2 9113 /((jiffies-mddev->resync_mark)/HZ +1) +1; 9114 9115 if (currspeed > speed_min(mddev)) { 9116 if (currspeed > speed_max(mddev)) { 9117 msleep(500); 9118 goto repeat; 9119 } 9120 if (!is_mddev_idle(mddev, 0)) { 9121 /* 9122 * Give other IO more of a chance. 9123 * The faster the devices, the less we wait. 9124 */ 9125 wait_event(mddev->recovery_wait, 9126 !atomic_read(&mddev->recovery_active)); 9127 } 9128 } 9129 } 9130 pr_info("md: %s: %s %s.\n",mdname(mddev), desc, 9131 test_bit(MD_RECOVERY_INTR, &mddev->recovery) 9132 ? "interrupted" : "done"); 9133 /* 9134 * this also signals 'finished resyncing' to md_stop 9135 */ 9136 blk_finish_plug(&plug); 9137 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); 9138 9139 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9140 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 9141 mddev->curr_resync >= MD_RESYNC_ACTIVE) { 9142 mddev->curr_resync_completed = mddev->curr_resync; 9143 sysfs_notify_dirent_safe(mddev->sysfs_completed); 9144 } 9145 mddev->pers->sync_request(mddev, max_sectors, &skipped); 9146 9147 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && 9148 mddev->curr_resync > MD_RESYNC_ACTIVE) { 9149 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 9150 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 9151 if (mddev->curr_resync >= mddev->recovery_cp) { 9152 pr_debug("md: checkpointing %s of %s.\n", 9153 desc, mdname(mddev)); 9154 if (test_bit(MD_RECOVERY_ERROR, 9155 &mddev->recovery)) 9156 mddev->recovery_cp = 9157 mddev->curr_resync_completed; 9158 else 9159 mddev->recovery_cp = 9160 mddev->curr_resync; 9161 } 9162 } else 9163 mddev->recovery_cp = MaxSector; 9164 } else { 9165 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 9166 mddev->curr_resync = MaxSector; 9167 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9168 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) { 9169 rcu_read_lock(); 9170 rdev_for_each_rcu(rdev, mddev) 9171 if (rdev->raid_disk >= 0 && 9172 mddev->delta_disks >= 0 && 9173 !test_bit(Journal, &rdev->flags) && 9174 !test_bit(Faulty, &rdev->flags) && 9175 !test_bit(In_sync, &rdev->flags) && 9176 rdev->recovery_offset < mddev->curr_resync) 9177 rdev->recovery_offset = mddev->curr_resync; 9178 rcu_read_unlock(); 9179 } 9180 } 9181 } 9182 skip: 9183 /* set CHANGE_PENDING here since maybe another update is needed, 9184 * so other nodes are informed. It should be harmless for normal 9185 * raid */ 9186 set_mask_bits(&mddev->sb_flags, 0, 9187 BIT(MD_SB_CHANGE_PENDING) | BIT(MD_SB_CHANGE_DEVS)); 9188 9189 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9190 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 9191 mddev->delta_disks > 0 && 9192 mddev->pers->finish_reshape && 9193 mddev->pers->size && 9194 mddev->queue) { 9195 mddev_lock_nointr(mddev); 9196 md_set_array_sectors(mddev, mddev->pers->size(mddev, 0, 0)); 9197 mddev_unlock(mddev); 9198 if (!mddev_is_clustered(mddev)) 9199 set_capacity_and_notify(mddev->gendisk, 9200 mddev->array_sectors); 9201 } 9202 9203 spin_lock(&mddev->lock); 9204 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 9205 /* We completed so min/max setting can be forgotten if used. */ 9206 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 9207 mddev->resync_min = 0; 9208 mddev->resync_max = MaxSector; 9209 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 9210 mddev->resync_min = mddev->curr_resync_completed; 9211 set_bit(MD_RECOVERY_DONE, &mddev->recovery); 9212 mddev->curr_resync = MD_RESYNC_NONE; 9213 spin_unlock(&mddev->lock); 9214 9215 wake_up(&resync_wait); 9216 wake_up(&mddev->sb_wait); 9217 md_wakeup_thread(mddev->thread); 9218 return; 9219 } 9220 EXPORT_SYMBOL_GPL(md_do_sync); 9221 9222 static int remove_and_add_spares(struct mddev *mddev, 9223 struct md_rdev *this) 9224 { 9225 struct md_rdev *rdev; 9226 int spares = 0; 9227 int removed = 0; 9228 bool remove_some = false; 9229 9230 if (this && test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 9231 /* Mustn't remove devices when resync thread is running */ 9232 return 0; 9233 9234 rdev_for_each(rdev, mddev) { 9235 if ((this == NULL || rdev == this) && 9236 rdev->raid_disk >= 0 && 9237 !test_bit(Blocked, &rdev->flags) && 9238 test_bit(Faulty, &rdev->flags) && 9239 atomic_read(&rdev->nr_pending)==0) { 9240 /* Faulty non-Blocked devices with nr_pending == 0 9241 * never get nr_pending incremented, 9242 * never get Faulty cleared, and never get Blocked set. 9243 * So we can synchronize_rcu now rather than once per device 9244 */ 9245 remove_some = true; 9246 set_bit(RemoveSynchronized, &rdev->flags); 9247 } 9248 } 9249 9250 if (remove_some) 9251 synchronize_rcu(); 9252 rdev_for_each(rdev, mddev) { 9253 if ((this == NULL || rdev == this) && 9254 rdev->raid_disk >= 0 && 9255 !test_bit(Blocked, &rdev->flags) && 9256 ((test_bit(RemoveSynchronized, &rdev->flags) || 9257 (!test_bit(In_sync, &rdev->flags) && 9258 !test_bit(Journal, &rdev->flags))) && 9259 atomic_read(&rdev->nr_pending)==0)) { 9260 if (mddev->pers->hot_remove_disk( 9261 mddev, rdev) == 0) { 9262 sysfs_unlink_rdev(mddev, rdev); 9263 rdev->saved_raid_disk = rdev->raid_disk; 9264 rdev->raid_disk = -1; 9265 removed++; 9266 } 9267 } 9268 if (remove_some && test_bit(RemoveSynchronized, &rdev->flags)) 9269 clear_bit(RemoveSynchronized, &rdev->flags); 9270 } 9271 9272 if (removed && mddev->kobj.sd) 9273 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9274 9275 if (this && removed) 9276 goto no_add; 9277 9278 rdev_for_each(rdev, mddev) { 9279 if (this && this != rdev) 9280 continue; 9281 if (test_bit(Candidate, &rdev->flags)) 9282 continue; 9283 if (rdev->raid_disk >= 0 && 9284 !test_bit(In_sync, &rdev->flags) && 9285 !test_bit(Journal, &rdev->flags) && 9286 !test_bit(Faulty, &rdev->flags)) 9287 spares++; 9288 if (rdev->raid_disk >= 0) 9289 continue; 9290 if (test_bit(Faulty, &rdev->flags)) 9291 continue; 9292 if (!test_bit(Journal, &rdev->flags)) { 9293 if (!md_is_rdwr(mddev) && 9294 !(rdev->saved_raid_disk >= 0 && 9295 !test_bit(Bitmap_sync, &rdev->flags))) 9296 continue; 9297 9298 rdev->recovery_offset = 0; 9299 } 9300 if (mddev->pers->hot_add_disk(mddev, rdev) == 0) { 9301 /* failure here is OK */ 9302 sysfs_link_rdev(mddev, rdev); 9303 if (!test_bit(Journal, &rdev->flags)) 9304 spares++; 9305 md_new_event(); 9306 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9307 } 9308 } 9309 no_add: 9310 if (removed) 9311 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9312 return spares; 9313 } 9314 9315 static void md_start_sync(struct work_struct *ws) 9316 { 9317 struct mddev *mddev = container_of(ws, struct mddev, del_work); 9318 9319 rcu_assign_pointer(mddev->sync_thread, 9320 md_register_thread(md_do_sync, mddev, "resync")); 9321 if (!mddev->sync_thread) { 9322 pr_warn("%s: could not start resync thread...\n", 9323 mdname(mddev)); 9324 /* leave the spares where they are, it shouldn't hurt */ 9325 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9326 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9327 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9328 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9329 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9330 wake_up(&resync_wait); 9331 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 9332 &mddev->recovery)) 9333 if (mddev->sysfs_action) 9334 sysfs_notify_dirent_safe(mddev->sysfs_action); 9335 } else 9336 md_wakeup_thread(mddev->sync_thread); 9337 sysfs_notify_dirent_safe(mddev->sysfs_action); 9338 md_new_event(); 9339 } 9340 9341 /* 9342 * This routine is regularly called by all per-raid-array threads to 9343 * deal with generic issues like resync and super-block update. 9344 * Raid personalities that don't have a thread (linear/raid0) do not 9345 * need this as they never do any recovery or update the superblock. 9346 * 9347 * It does not do any resync itself, but rather "forks" off other threads 9348 * to do that as needed. 9349 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in 9350 * "->recovery" and create a thread at ->sync_thread. 9351 * When the thread finishes it sets MD_RECOVERY_DONE 9352 * and wakeups up this thread which will reap the thread and finish up. 9353 * This thread also removes any faulty devices (with nr_pending == 0). 9354 * 9355 * The overall approach is: 9356 * 1/ if the superblock needs updating, update it. 9357 * 2/ If a recovery thread is running, don't do anything else. 9358 * 3/ If recovery has finished, clean up, possibly marking spares active. 9359 * 4/ If there are any faulty devices, remove them. 9360 * 5/ If array is degraded, try to add spares devices 9361 * 6/ If array has spares or is not in-sync, start a resync thread. 9362 */ 9363 void md_check_recovery(struct mddev *mddev) 9364 { 9365 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags) && mddev->sb_flags) { 9366 /* Write superblock - thread that called mddev_suspend() 9367 * holds reconfig_mutex for us. 9368 */ 9369 set_bit(MD_UPDATING_SB, &mddev->flags); 9370 smp_mb__after_atomic(); 9371 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags)) 9372 md_update_sb(mddev, 0); 9373 clear_bit_unlock(MD_UPDATING_SB, &mddev->flags); 9374 wake_up(&mddev->sb_wait); 9375 } 9376 9377 if (is_md_suspended(mddev)) 9378 return; 9379 9380 if (mddev->bitmap) 9381 md_bitmap_daemon_work(mddev); 9382 9383 if (signal_pending(current)) { 9384 if (mddev->pers->sync_request && !mddev->external) { 9385 pr_debug("md: %s in immediate safe mode\n", 9386 mdname(mddev)); 9387 mddev->safemode = 2; 9388 } 9389 flush_signals(current); 9390 } 9391 9392 if (!md_is_rdwr(mddev) && 9393 !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 9394 return; 9395 if ( ! ( 9396 (mddev->sb_flags & ~ (1<<MD_SB_CHANGE_PENDING)) || 9397 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 9398 test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 9399 (mddev->external == 0 && mddev->safemode == 1) || 9400 (mddev->safemode == 2 9401 && !mddev->in_sync && mddev->recovery_cp == MaxSector) 9402 )) 9403 return; 9404 9405 if (mddev_trylock(mddev)) { 9406 int spares = 0; 9407 bool try_set_sync = mddev->safemode != 0; 9408 9409 if (!mddev->external && mddev->safemode == 1) 9410 mddev->safemode = 0; 9411 9412 if (!md_is_rdwr(mddev)) { 9413 struct md_rdev *rdev; 9414 if (!mddev->external && mddev->in_sync) 9415 /* 'Blocked' flag not needed as failed devices 9416 * will be recorded if array switched to read/write. 9417 * Leaving it set will prevent the device 9418 * from being removed. 9419 */ 9420 rdev_for_each(rdev, mddev) 9421 clear_bit(Blocked, &rdev->flags); 9422 /* On a read-only array we can: 9423 * - remove failed devices 9424 * - add already-in_sync devices if the array itself 9425 * is in-sync. 9426 * As we only add devices that are already in-sync, 9427 * we can activate the spares immediately. 9428 */ 9429 remove_and_add_spares(mddev, NULL); 9430 /* There is no thread, but we need to call 9431 * ->spare_active and clear saved_raid_disk 9432 */ 9433 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 9434 md_reap_sync_thread(mddev); 9435 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9436 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9437 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 9438 goto unlock; 9439 } 9440 9441 if (mddev_is_clustered(mddev)) { 9442 struct md_rdev *rdev, *tmp; 9443 /* kick the device if another node issued a 9444 * remove disk. 9445 */ 9446 rdev_for_each_safe(rdev, tmp, mddev) { 9447 if (test_and_clear_bit(ClusterRemove, &rdev->flags) && 9448 rdev->raid_disk < 0) 9449 md_kick_rdev_from_array(rdev); 9450 } 9451 } 9452 9453 if (try_set_sync && !mddev->external && !mddev->in_sync) { 9454 spin_lock(&mddev->lock); 9455 set_in_sync(mddev); 9456 spin_unlock(&mddev->lock); 9457 } 9458 9459 if (mddev->sb_flags) 9460 md_update_sb(mddev, 0); 9461 9462 /* 9463 * Never start a new sync thread if MD_RECOVERY_RUNNING is 9464 * still set. 9465 */ 9466 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 9467 if (!test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { 9468 /* resync/recovery still happening */ 9469 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9470 goto unlock; 9471 } 9472 9473 if (WARN_ON_ONCE(!mddev->sync_thread)) 9474 goto unlock; 9475 9476 md_reap_sync_thread(mddev); 9477 goto unlock; 9478 } 9479 9480 /* Set RUNNING before clearing NEEDED to avoid 9481 * any transients in the value of "sync_action". 9482 */ 9483 mddev->curr_resync_completed = 0; 9484 spin_lock(&mddev->lock); 9485 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9486 spin_unlock(&mddev->lock); 9487 /* Clear some bits that don't mean anything, but 9488 * might be left set 9489 */ 9490 clear_bit(MD_RECOVERY_INTR, &mddev->recovery); 9491 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 9492 9493 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 9494 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 9495 goto not_running; 9496 /* no recovery is running. 9497 * remove any failed drives, then 9498 * add spares if possible. 9499 * Spares are also removed and re-added, to allow 9500 * the personality to fail the re-add. 9501 */ 9502 9503 if (mddev->reshape_position != MaxSector) { 9504 if (mddev->pers->check_reshape == NULL || 9505 mddev->pers->check_reshape(mddev) != 0) 9506 /* Cannot proceed */ 9507 goto not_running; 9508 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9509 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9510 } else if ((spares = remove_and_add_spares(mddev, NULL))) { 9511 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9512 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9513 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9514 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9515 } else if (mddev->recovery_cp < MaxSector) { 9516 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9517 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9518 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 9519 /* nothing to be done ... */ 9520 goto not_running; 9521 9522 if (mddev->pers->sync_request) { 9523 if (spares) { 9524 /* We are adding a device or devices to an array 9525 * which has the bitmap stored on all devices. 9526 * So make sure all bitmap pages get written 9527 */ 9528 md_bitmap_write_all(mddev->bitmap); 9529 } 9530 INIT_WORK(&mddev->del_work, md_start_sync); 9531 queue_work(md_misc_wq, &mddev->del_work); 9532 goto unlock; 9533 } 9534 not_running: 9535 if (!mddev->sync_thread) { 9536 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9537 wake_up(&resync_wait); 9538 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 9539 &mddev->recovery)) 9540 if (mddev->sysfs_action) 9541 sysfs_notify_dirent_safe(mddev->sysfs_action); 9542 } 9543 unlock: 9544 wake_up(&mddev->sb_wait); 9545 mddev_unlock(mddev); 9546 } 9547 } 9548 EXPORT_SYMBOL(md_check_recovery); 9549 9550 void md_reap_sync_thread(struct mddev *mddev) 9551 { 9552 struct md_rdev *rdev; 9553 sector_t old_dev_sectors = mddev->dev_sectors; 9554 bool is_reshaped = false; 9555 9556 /* resync has finished, collect result */ 9557 md_unregister_thread(mddev, &mddev->sync_thread); 9558 atomic_inc(&mddev->sync_seq); 9559 9560 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 9561 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 9562 mddev->degraded != mddev->raid_disks) { 9563 /* success...*/ 9564 /* activate any spares */ 9565 if (mddev->pers->spare_active(mddev)) { 9566 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9567 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9568 } 9569 } 9570 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9571 mddev->pers->finish_reshape) { 9572 mddev->pers->finish_reshape(mddev); 9573 if (mddev_is_clustered(mddev)) 9574 is_reshaped = true; 9575 } 9576 9577 /* If array is no-longer degraded, then any saved_raid_disk 9578 * information must be scrapped. 9579 */ 9580 if (!mddev->degraded) 9581 rdev_for_each(rdev, mddev) 9582 rdev->saved_raid_disk = -1; 9583 9584 md_update_sb(mddev, 1); 9585 /* MD_SB_CHANGE_PENDING should be cleared by md_update_sb, so we can 9586 * call resync_finish here if MD_CLUSTER_RESYNC_LOCKED is set by 9587 * clustered raid */ 9588 if (test_and_clear_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags)) 9589 md_cluster_ops->resync_finish(mddev); 9590 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9591 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 9592 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9593 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9594 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9595 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9596 /* 9597 * We call md_cluster_ops->update_size here because sync_size could 9598 * be changed by md_update_sb, and MD_RECOVERY_RESHAPE is cleared, 9599 * so it is time to update size across cluster. 9600 */ 9601 if (mddev_is_clustered(mddev) && is_reshaped 9602 && !test_bit(MD_CLOSING, &mddev->flags)) 9603 md_cluster_ops->update_size(mddev, old_dev_sectors); 9604 /* flag recovery needed just to double check */ 9605 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9606 sysfs_notify_dirent_safe(mddev->sysfs_completed); 9607 sysfs_notify_dirent_safe(mddev->sysfs_action); 9608 md_new_event(); 9609 if (mddev->event_work.func) 9610 queue_work(md_misc_wq, &mddev->event_work); 9611 wake_up(&resync_wait); 9612 } 9613 EXPORT_SYMBOL(md_reap_sync_thread); 9614 9615 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev) 9616 { 9617 sysfs_notify_dirent_safe(rdev->sysfs_state); 9618 wait_event_timeout(rdev->blocked_wait, 9619 !test_bit(Blocked, &rdev->flags) && 9620 !test_bit(BlockedBadBlocks, &rdev->flags), 9621 msecs_to_jiffies(5000)); 9622 rdev_dec_pending(rdev, mddev); 9623 } 9624 EXPORT_SYMBOL(md_wait_for_blocked_rdev); 9625 9626 void md_finish_reshape(struct mddev *mddev) 9627 { 9628 /* called be personality module when reshape completes. */ 9629 struct md_rdev *rdev; 9630 9631 rdev_for_each(rdev, mddev) { 9632 if (rdev->data_offset > rdev->new_data_offset) 9633 rdev->sectors += rdev->data_offset - rdev->new_data_offset; 9634 else 9635 rdev->sectors -= rdev->new_data_offset - rdev->data_offset; 9636 rdev->data_offset = rdev->new_data_offset; 9637 } 9638 } 9639 EXPORT_SYMBOL(md_finish_reshape); 9640 9641 /* Bad block management */ 9642 9643 /* Returns 1 on success, 0 on failure */ 9644 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 9645 int is_new) 9646 { 9647 struct mddev *mddev = rdev->mddev; 9648 int rv; 9649 if (is_new) 9650 s += rdev->new_data_offset; 9651 else 9652 s += rdev->data_offset; 9653 rv = badblocks_set(&rdev->badblocks, s, sectors, 0); 9654 if (rv == 0) { 9655 /* Make sure they get written out promptly */ 9656 if (test_bit(ExternalBbl, &rdev->flags)) 9657 sysfs_notify_dirent_safe(rdev->sysfs_unack_badblocks); 9658 sysfs_notify_dirent_safe(rdev->sysfs_state); 9659 set_mask_bits(&mddev->sb_flags, 0, 9660 BIT(MD_SB_CHANGE_CLEAN) | BIT(MD_SB_CHANGE_PENDING)); 9661 md_wakeup_thread(rdev->mddev->thread); 9662 return 1; 9663 } else 9664 return 0; 9665 } 9666 EXPORT_SYMBOL_GPL(rdev_set_badblocks); 9667 9668 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 9669 int is_new) 9670 { 9671 int rv; 9672 if (is_new) 9673 s += rdev->new_data_offset; 9674 else 9675 s += rdev->data_offset; 9676 rv = badblocks_clear(&rdev->badblocks, s, sectors); 9677 if ((rv == 0) && test_bit(ExternalBbl, &rdev->flags)) 9678 sysfs_notify_dirent_safe(rdev->sysfs_badblocks); 9679 return rv; 9680 } 9681 EXPORT_SYMBOL_GPL(rdev_clear_badblocks); 9682 9683 static int md_notify_reboot(struct notifier_block *this, 9684 unsigned long code, void *x) 9685 { 9686 struct mddev *mddev, *n; 9687 int need_delay = 0; 9688 9689 spin_lock(&all_mddevs_lock); 9690 list_for_each_entry_safe(mddev, n, &all_mddevs, all_mddevs) { 9691 if (!mddev_get(mddev)) 9692 continue; 9693 spin_unlock(&all_mddevs_lock); 9694 if (mddev_trylock(mddev)) { 9695 if (mddev->pers) 9696 __md_stop_writes(mddev); 9697 if (mddev->persistent) 9698 mddev->safemode = 2; 9699 mddev_unlock(mddev); 9700 } 9701 need_delay = 1; 9702 mddev_put(mddev); 9703 spin_lock(&all_mddevs_lock); 9704 } 9705 spin_unlock(&all_mddevs_lock); 9706 9707 /* 9708 * certain more exotic SCSI devices are known to be 9709 * volatile wrt too early system reboots. While the 9710 * right place to handle this issue is the given 9711 * driver, we do want to have a safe RAID driver ... 9712 */ 9713 if (need_delay) 9714 msleep(1000); 9715 9716 return NOTIFY_DONE; 9717 } 9718 9719 static struct notifier_block md_notifier = { 9720 .notifier_call = md_notify_reboot, 9721 .next = NULL, 9722 .priority = INT_MAX, /* before any real devices */ 9723 }; 9724 9725 static void md_geninit(void) 9726 { 9727 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); 9728 9729 proc_create("mdstat", S_IRUGO, NULL, &mdstat_proc_ops); 9730 } 9731 9732 static int __init md_init(void) 9733 { 9734 int ret = -ENOMEM; 9735 9736 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0); 9737 if (!md_wq) 9738 goto err_wq; 9739 9740 md_misc_wq = alloc_workqueue("md_misc", 0, 0); 9741 if (!md_misc_wq) 9742 goto err_misc_wq; 9743 9744 md_bitmap_wq = alloc_workqueue("md_bitmap", WQ_MEM_RECLAIM | WQ_UNBOUND, 9745 0); 9746 if (!md_bitmap_wq) 9747 goto err_bitmap_wq; 9748 9749 ret = __register_blkdev(MD_MAJOR, "md", md_probe); 9750 if (ret < 0) 9751 goto err_md; 9752 9753 ret = __register_blkdev(0, "mdp", md_probe); 9754 if (ret < 0) 9755 goto err_mdp; 9756 mdp_major = ret; 9757 9758 register_reboot_notifier(&md_notifier); 9759 raid_table_header = register_sysctl("dev/raid", raid_table); 9760 9761 md_geninit(); 9762 return 0; 9763 9764 err_mdp: 9765 unregister_blkdev(MD_MAJOR, "md"); 9766 err_md: 9767 destroy_workqueue(md_bitmap_wq); 9768 err_bitmap_wq: 9769 destroy_workqueue(md_misc_wq); 9770 err_misc_wq: 9771 destroy_workqueue(md_wq); 9772 err_wq: 9773 return ret; 9774 } 9775 9776 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev) 9777 { 9778 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 9779 struct md_rdev *rdev2, *tmp; 9780 int role, ret; 9781 9782 /* 9783 * If size is changed in another node then we need to 9784 * do resize as well. 9785 */ 9786 if (mddev->dev_sectors != le64_to_cpu(sb->size)) { 9787 ret = mddev->pers->resize(mddev, le64_to_cpu(sb->size)); 9788 if (ret) 9789 pr_info("md-cluster: resize failed\n"); 9790 else 9791 md_bitmap_update_sb(mddev->bitmap); 9792 } 9793 9794 /* Check for change of roles in the active devices */ 9795 rdev_for_each_safe(rdev2, tmp, mddev) { 9796 if (test_bit(Faulty, &rdev2->flags)) 9797 continue; 9798 9799 /* Check if the roles changed */ 9800 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]); 9801 9802 if (test_bit(Candidate, &rdev2->flags)) { 9803 if (role == MD_DISK_ROLE_FAULTY) { 9804 pr_info("md: Removing Candidate device %pg because add failed\n", 9805 rdev2->bdev); 9806 md_kick_rdev_from_array(rdev2); 9807 continue; 9808 } 9809 else 9810 clear_bit(Candidate, &rdev2->flags); 9811 } 9812 9813 if (role != rdev2->raid_disk) { 9814 /* 9815 * got activated except reshape is happening. 9816 */ 9817 if (rdev2->raid_disk == -1 && role != MD_DISK_ROLE_SPARE && 9818 !(le32_to_cpu(sb->feature_map) & 9819 MD_FEATURE_RESHAPE_ACTIVE)) { 9820 rdev2->saved_raid_disk = role; 9821 ret = remove_and_add_spares(mddev, rdev2); 9822 pr_info("Activated spare: %pg\n", 9823 rdev2->bdev); 9824 /* wakeup mddev->thread here, so array could 9825 * perform resync with the new activated disk */ 9826 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9827 md_wakeup_thread(mddev->thread); 9828 } 9829 /* device faulty 9830 * We just want to do the minimum to mark the disk 9831 * as faulty. The recovery is performed by the 9832 * one who initiated the error. 9833 */ 9834 if (role == MD_DISK_ROLE_FAULTY || 9835 role == MD_DISK_ROLE_JOURNAL) { 9836 md_error(mddev, rdev2); 9837 clear_bit(Blocked, &rdev2->flags); 9838 } 9839 } 9840 } 9841 9842 if (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) { 9843 ret = update_raid_disks(mddev, le32_to_cpu(sb->raid_disks)); 9844 if (ret) 9845 pr_warn("md: updating array disks failed. %d\n", ret); 9846 } 9847 9848 /* 9849 * Since mddev->delta_disks has already updated in update_raid_disks, 9850 * so it is time to check reshape. 9851 */ 9852 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) && 9853 (le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 9854 /* 9855 * reshape is happening in the remote node, we need to 9856 * update reshape_position and call start_reshape. 9857 */ 9858 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 9859 if (mddev->pers->update_reshape_pos) 9860 mddev->pers->update_reshape_pos(mddev); 9861 if (mddev->pers->start_reshape) 9862 mddev->pers->start_reshape(mddev); 9863 } else if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) && 9864 mddev->reshape_position != MaxSector && 9865 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 9866 /* reshape is just done in another node. */ 9867 mddev->reshape_position = MaxSector; 9868 if (mddev->pers->update_reshape_pos) 9869 mddev->pers->update_reshape_pos(mddev); 9870 } 9871 9872 /* Finally set the event to be up to date */ 9873 mddev->events = le64_to_cpu(sb->events); 9874 } 9875 9876 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev) 9877 { 9878 int err; 9879 struct page *swapout = rdev->sb_page; 9880 struct mdp_superblock_1 *sb; 9881 9882 /* Store the sb page of the rdev in the swapout temporary 9883 * variable in case we err in the future 9884 */ 9885 rdev->sb_page = NULL; 9886 err = alloc_disk_sb(rdev); 9887 if (err == 0) { 9888 ClearPageUptodate(rdev->sb_page); 9889 rdev->sb_loaded = 0; 9890 err = super_types[mddev->major_version]. 9891 load_super(rdev, NULL, mddev->minor_version); 9892 } 9893 if (err < 0) { 9894 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n", 9895 __func__, __LINE__, rdev->desc_nr, err); 9896 if (rdev->sb_page) 9897 put_page(rdev->sb_page); 9898 rdev->sb_page = swapout; 9899 rdev->sb_loaded = 1; 9900 return err; 9901 } 9902 9903 sb = page_address(rdev->sb_page); 9904 /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET 9905 * is not set 9906 */ 9907 9908 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET)) 9909 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 9910 9911 /* The other node finished recovery, call spare_active to set 9912 * device In_sync and mddev->degraded 9913 */ 9914 if (rdev->recovery_offset == MaxSector && 9915 !test_bit(In_sync, &rdev->flags) && 9916 mddev->pers->spare_active(mddev)) 9917 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9918 9919 put_page(swapout); 9920 return 0; 9921 } 9922 9923 void md_reload_sb(struct mddev *mddev, int nr) 9924 { 9925 struct md_rdev *rdev = NULL, *iter; 9926 int err; 9927 9928 /* Find the rdev */ 9929 rdev_for_each_rcu(iter, mddev) { 9930 if (iter->desc_nr == nr) { 9931 rdev = iter; 9932 break; 9933 } 9934 } 9935 9936 if (!rdev) { 9937 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr); 9938 return; 9939 } 9940 9941 err = read_rdev(mddev, rdev); 9942 if (err < 0) 9943 return; 9944 9945 check_sb_changes(mddev, rdev); 9946 9947 /* Read all rdev's to update recovery_offset */ 9948 rdev_for_each_rcu(rdev, mddev) { 9949 if (!test_bit(Faulty, &rdev->flags)) 9950 read_rdev(mddev, rdev); 9951 } 9952 } 9953 EXPORT_SYMBOL(md_reload_sb); 9954 9955 #ifndef MODULE 9956 9957 /* 9958 * Searches all registered partitions for autorun RAID arrays 9959 * at boot time. 9960 */ 9961 9962 static DEFINE_MUTEX(detected_devices_mutex); 9963 static LIST_HEAD(all_detected_devices); 9964 struct detected_devices_node { 9965 struct list_head list; 9966 dev_t dev; 9967 }; 9968 9969 void md_autodetect_dev(dev_t dev) 9970 { 9971 struct detected_devices_node *node_detected_dev; 9972 9973 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL); 9974 if (node_detected_dev) { 9975 node_detected_dev->dev = dev; 9976 mutex_lock(&detected_devices_mutex); 9977 list_add_tail(&node_detected_dev->list, &all_detected_devices); 9978 mutex_unlock(&detected_devices_mutex); 9979 } 9980 } 9981 9982 void md_autostart_arrays(int part) 9983 { 9984 struct md_rdev *rdev; 9985 struct detected_devices_node *node_detected_dev; 9986 dev_t dev; 9987 int i_scanned, i_passed; 9988 9989 i_scanned = 0; 9990 i_passed = 0; 9991 9992 pr_info("md: Autodetecting RAID arrays.\n"); 9993 9994 mutex_lock(&detected_devices_mutex); 9995 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) { 9996 i_scanned++; 9997 node_detected_dev = list_entry(all_detected_devices.next, 9998 struct detected_devices_node, list); 9999 list_del(&node_detected_dev->list); 10000 dev = node_detected_dev->dev; 10001 kfree(node_detected_dev); 10002 mutex_unlock(&detected_devices_mutex); 10003 rdev = md_import_device(dev,0, 90); 10004 mutex_lock(&detected_devices_mutex); 10005 if (IS_ERR(rdev)) 10006 continue; 10007 10008 if (test_bit(Faulty, &rdev->flags)) 10009 continue; 10010 10011 set_bit(AutoDetected, &rdev->flags); 10012 list_add(&rdev->same_set, &pending_raid_disks); 10013 i_passed++; 10014 } 10015 mutex_unlock(&detected_devices_mutex); 10016 10017 pr_debug("md: Scanned %d and added %d devices.\n", i_scanned, i_passed); 10018 10019 autorun_devices(part); 10020 } 10021 10022 #endif /* !MODULE */ 10023 10024 static __exit void md_exit(void) 10025 { 10026 struct mddev *mddev, *n; 10027 int delay = 1; 10028 10029 unregister_blkdev(MD_MAJOR,"md"); 10030 unregister_blkdev(mdp_major, "mdp"); 10031 unregister_reboot_notifier(&md_notifier); 10032 unregister_sysctl_table(raid_table_header); 10033 10034 /* We cannot unload the modules while some process is 10035 * waiting for us in select() or poll() - wake them up 10036 */ 10037 md_unloading = 1; 10038 while (waitqueue_active(&md_event_waiters)) { 10039 /* not safe to leave yet */ 10040 wake_up(&md_event_waiters); 10041 msleep(delay); 10042 delay += delay; 10043 } 10044 remove_proc_entry("mdstat", NULL); 10045 10046 spin_lock(&all_mddevs_lock); 10047 list_for_each_entry_safe(mddev, n, &all_mddevs, all_mddevs) { 10048 if (!mddev_get(mddev)) 10049 continue; 10050 spin_unlock(&all_mddevs_lock); 10051 export_array(mddev); 10052 mddev->ctime = 0; 10053 mddev->hold_active = 0; 10054 /* 10055 * As the mddev is now fully clear, mddev_put will schedule 10056 * the mddev for destruction by a workqueue, and the 10057 * destroy_workqueue() below will wait for that to complete. 10058 */ 10059 mddev_put(mddev); 10060 spin_lock(&all_mddevs_lock); 10061 } 10062 spin_unlock(&all_mddevs_lock); 10063 10064 destroy_workqueue(md_misc_wq); 10065 destroy_workqueue(md_bitmap_wq); 10066 destroy_workqueue(md_wq); 10067 } 10068 10069 subsys_initcall(md_init); 10070 module_exit(md_exit) 10071 10072 static int get_ro(char *buffer, const struct kernel_param *kp) 10073 { 10074 return sprintf(buffer, "%d\n", start_readonly); 10075 } 10076 static int set_ro(const char *val, const struct kernel_param *kp) 10077 { 10078 return kstrtouint(val, 10, (unsigned int *)&start_readonly); 10079 } 10080 10081 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); 10082 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); 10083 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR); 10084 module_param(create_on_open, bool, S_IRUSR|S_IWUSR); 10085 10086 MODULE_LICENSE("GPL"); 10087 MODULE_DESCRIPTION("MD RAID framework"); 10088 MODULE_ALIAS("md"); 10089 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR); 10090