1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 md.c : Multiple Devices driver for Linux 4 Copyright (C) 1998, 1999, 2000 Ingo Molnar 5 6 completely rewritten, based on the MD driver code from Marc Zyngier 7 8 Changes: 9 10 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar 11 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> 12 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> 13 - kerneld support by Boris Tobotras <boris@xtalk.msk.su> 14 - kmod support by: Cyrus Durgin 15 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> 16 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> 17 18 - lots of fixes and improvements to the RAID1/RAID5 and generic 19 RAID code (such as request based resynchronization): 20 21 Neil Brown <neilb@cse.unsw.edu.au>. 22 23 - persistent bitmap code 24 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. 25 26 27 Errors, Warnings, etc. 28 Please use: 29 pr_crit() for error conditions that risk data loss 30 pr_err() for error conditions that are unexpected, like an IO error 31 or internal inconsistency 32 pr_warn() for error conditions that could have been predicated, like 33 adding a device to an array when it has incompatible metadata 34 pr_info() for every interesting, very rare events, like an array starting 35 or stopping, or resync starting or stopping 36 pr_debug() for everything else. 37 38 */ 39 40 #include <linux/sched/mm.h> 41 #include <linux/sched/signal.h> 42 #include <linux/kthread.h> 43 #include <linux/blkdev.h> 44 #include <linux/badblocks.h> 45 #include <linux/sysctl.h> 46 #include <linux/seq_file.h> 47 #include <linux/fs.h> 48 #include <linux/poll.h> 49 #include <linux/ctype.h> 50 #include <linux/string.h> 51 #include <linux/hdreg.h> 52 #include <linux/proc_fs.h> 53 #include <linux/random.h> 54 #include <linux/module.h> 55 #include <linux/reboot.h> 56 #include <linux/file.h> 57 #include <linux/compat.h> 58 #include <linux/delay.h> 59 #include <linux/raid/md_p.h> 60 #include <linux/raid/md_u.h> 61 #include <linux/raid/detect.h> 62 #include <linux/slab.h> 63 #include <linux/percpu-refcount.h> 64 #include <linux/part_stat.h> 65 66 #include <trace/events/block.h> 67 #include "md.h" 68 #include "md-bitmap.h" 69 #include "md-cluster.h" 70 71 /* pers_list is a list of registered personalities protected 72 * by pers_lock. 73 * pers_lock does extra service to protect accesses to 74 * mddev->thread when the mutex cannot be held. 75 */ 76 static LIST_HEAD(pers_list); 77 static DEFINE_SPINLOCK(pers_lock); 78 79 static struct kobj_type md_ktype; 80 81 struct md_cluster_operations *md_cluster_ops; 82 EXPORT_SYMBOL(md_cluster_ops); 83 static struct module *md_cluster_mod; 84 85 static DECLARE_WAIT_QUEUE_HEAD(resync_wait); 86 static struct workqueue_struct *md_wq; 87 static struct workqueue_struct *md_misc_wq; 88 static struct workqueue_struct *md_rdev_misc_wq; 89 90 static int remove_and_add_spares(struct mddev *mddev, 91 struct md_rdev *this); 92 static void mddev_detach(struct mddev *mddev); 93 94 /* 95 * Default number of read corrections we'll attempt on an rdev 96 * before ejecting it from the array. We divide the read error 97 * count by 2 for every hour elapsed between read errors. 98 */ 99 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20 100 /* Default safemode delay: 200 msec */ 101 #define DEFAULT_SAFEMODE_DELAY ((200 * HZ)/1000 +1) 102 /* 103 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' 104 * is 1000 KB/sec, so the extra system load does not show up that much. 105 * Increase it if you want to have more _guaranteed_ speed. Note that 106 * the RAID driver will use the maximum available bandwidth if the IO 107 * subsystem is idle. There is also an 'absolute maximum' reconstruction 108 * speed limit - in case reconstruction slows down your system despite 109 * idle IO detection. 110 * 111 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. 112 * or /sys/block/mdX/md/sync_speed_{min,max} 113 */ 114 115 static int sysctl_speed_limit_min = 1000; 116 static int sysctl_speed_limit_max = 200000; 117 static inline int speed_min(struct mddev *mddev) 118 { 119 return mddev->sync_speed_min ? 120 mddev->sync_speed_min : sysctl_speed_limit_min; 121 } 122 123 static inline int speed_max(struct mddev *mddev) 124 { 125 return mddev->sync_speed_max ? 126 mddev->sync_speed_max : sysctl_speed_limit_max; 127 } 128 129 static void rdev_uninit_serial(struct md_rdev *rdev) 130 { 131 if (!test_and_clear_bit(CollisionCheck, &rdev->flags)) 132 return; 133 134 kvfree(rdev->serial); 135 rdev->serial = NULL; 136 } 137 138 static void rdevs_uninit_serial(struct mddev *mddev) 139 { 140 struct md_rdev *rdev; 141 142 rdev_for_each(rdev, mddev) 143 rdev_uninit_serial(rdev); 144 } 145 146 static int rdev_init_serial(struct md_rdev *rdev) 147 { 148 /* serial_nums equals with BARRIER_BUCKETS_NR */ 149 int i, serial_nums = 1 << ((PAGE_SHIFT - ilog2(sizeof(atomic_t)))); 150 struct serial_in_rdev *serial = NULL; 151 152 if (test_bit(CollisionCheck, &rdev->flags)) 153 return 0; 154 155 serial = kvmalloc(sizeof(struct serial_in_rdev) * serial_nums, 156 GFP_KERNEL); 157 if (!serial) 158 return -ENOMEM; 159 160 for (i = 0; i < serial_nums; i++) { 161 struct serial_in_rdev *serial_tmp = &serial[i]; 162 163 spin_lock_init(&serial_tmp->serial_lock); 164 serial_tmp->serial_rb = RB_ROOT_CACHED; 165 init_waitqueue_head(&serial_tmp->serial_io_wait); 166 } 167 168 rdev->serial = serial; 169 set_bit(CollisionCheck, &rdev->flags); 170 171 return 0; 172 } 173 174 static int rdevs_init_serial(struct mddev *mddev) 175 { 176 struct md_rdev *rdev; 177 int ret = 0; 178 179 rdev_for_each(rdev, mddev) { 180 ret = rdev_init_serial(rdev); 181 if (ret) 182 break; 183 } 184 185 /* Free all resources if pool is not existed */ 186 if (ret && !mddev->serial_info_pool) 187 rdevs_uninit_serial(mddev); 188 189 return ret; 190 } 191 192 /* 193 * rdev needs to enable serial stuffs if it meets the conditions: 194 * 1. it is multi-queue device flaged with writemostly. 195 * 2. the write-behind mode is enabled. 196 */ 197 static int rdev_need_serial(struct md_rdev *rdev) 198 { 199 return (rdev && rdev->mddev->bitmap_info.max_write_behind > 0 && 200 rdev->bdev->bd_disk->queue->nr_hw_queues != 1 && 201 test_bit(WriteMostly, &rdev->flags)); 202 } 203 204 /* 205 * Init resource for rdev(s), then create serial_info_pool if: 206 * 1. rdev is the first device which return true from rdev_enable_serial. 207 * 2. rdev is NULL, means we want to enable serialization for all rdevs. 208 */ 209 void mddev_create_serial_pool(struct mddev *mddev, struct md_rdev *rdev, 210 bool is_suspend) 211 { 212 int ret = 0; 213 214 if (rdev && !rdev_need_serial(rdev) && 215 !test_bit(CollisionCheck, &rdev->flags)) 216 return; 217 218 if (!is_suspend) 219 mddev_suspend(mddev); 220 221 if (!rdev) 222 ret = rdevs_init_serial(mddev); 223 else 224 ret = rdev_init_serial(rdev); 225 if (ret) 226 goto abort; 227 228 if (mddev->serial_info_pool == NULL) { 229 /* 230 * already in memalloc noio context by 231 * mddev_suspend() 232 */ 233 mddev->serial_info_pool = 234 mempool_create_kmalloc_pool(NR_SERIAL_INFOS, 235 sizeof(struct serial_info)); 236 if (!mddev->serial_info_pool) { 237 rdevs_uninit_serial(mddev); 238 pr_err("can't alloc memory pool for serialization\n"); 239 } 240 } 241 242 abort: 243 if (!is_suspend) 244 mddev_resume(mddev); 245 } 246 247 /* 248 * Free resource from rdev(s), and destroy serial_info_pool under conditions: 249 * 1. rdev is the last device flaged with CollisionCheck. 250 * 2. when bitmap is destroyed while policy is not enabled. 251 * 3. for disable policy, the pool is destroyed only when no rdev needs it. 252 */ 253 void mddev_destroy_serial_pool(struct mddev *mddev, struct md_rdev *rdev, 254 bool is_suspend) 255 { 256 if (rdev && !test_bit(CollisionCheck, &rdev->flags)) 257 return; 258 259 if (mddev->serial_info_pool) { 260 struct md_rdev *temp; 261 int num = 0; /* used to track if other rdevs need the pool */ 262 263 if (!is_suspend) 264 mddev_suspend(mddev); 265 rdev_for_each(temp, mddev) { 266 if (!rdev) { 267 if (!mddev->serialize_policy || 268 !rdev_need_serial(temp)) 269 rdev_uninit_serial(temp); 270 else 271 num++; 272 } else if (temp != rdev && 273 test_bit(CollisionCheck, &temp->flags)) 274 num++; 275 } 276 277 if (rdev) 278 rdev_uninit_serial(rdev); 279 280 if (num) 281 pr_info("The mempool could be used by other devices\n"); 282 else { 283 mempool_destroy(mddev->serial_info_pool); 284 mddev->serial_info_pool = NULL; 285 } 286 if (!is_suspend) 287 mddev_resume(mddev); 288 } 289 } 290 291 static struct ctl_table_header *raid_table_header; 292 293 static struct ctl_table raid_table[] = { 294 { 295 .procname = "speed_limit_min", 296 .data = &sysctl_speed_limit_min, 297 .maxlen = sizeof(int), 298 .mode = S_IRUGO|S_IWUSR, 299 .proc_handler = proc_dointvec, 300 }, 301 { 302 .procname = "speed_limit_max", 303 .data = &sysctl_speed_limit_max, 304 .maxlen = sizeof(int), 305 .mode = S_IRUGO|S_IWUSR, 306 .proc_handler = proc_dointvec, 307 }, 308 { } 309 }; 310 311 static struct ctl_table raid_dir_table[] = { 312 { 313 .procname = "raid", 314 .maxlen = 0, 315 .mode = S_IRUGO|S_IXUGO, 316 .child = raid_table, 317 }, 318 { } 319 }; 320 321 static struct ctl_table raid_root_table[] = { 322 { 323 .procname = "dev", 324 .maxlen = 0, 325 .mode = 0555, 326 .child = raid_dir_table, 327 }, 328 { } 329 }; 330 331 static int start_readonly; 332 333 /* 334 * The original mechanism for creating an md device is to create 335 * a device node in /dev and to open it. This causes races with device-close. 336 * The preferred method is to write to the "new_array" module parameter. 337 * This can avoid races. 338 * Setting create_on_open to false disables the original mechanism 339 * so all the races disappear. 340 */ 341 static bool create_on_open = true; 342 343 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs, 344 struct mddev *mddev) 345 { 346 if (!mddev || !bioset_initialized(&mddev->bio_set)) 347 return bio_alloc(gfp_mask, nr_iovecs); 348 349 return bio_alloc_bioset(gfp_mask, nr_iovecs, &mddev->bio_set); 350 } 351 EXPORT_SYMBOL_GPL(bio_alloc_mddev); 352 353 static struct bio *md_bio_alloc_sync(struct mddev *mddev) 354 { 355 if (!mddev || !bioset_initialized(&mddev->sync_set)) 356 return bio_alloc(GFP_NOIO, 1); 357 358 return bio_alloc_bioset(GFP_NOIO, 1, &mddev->sync_set); 359 } 360 361 /* 362 * We have a system wide 'event count' that is incremented 363 * on any 'interesting' event, and readers of /proc/mdstat 364 * can use 'poll' or 'select' to find out when the event 365 * count increases. 366 * 367 * Events are: 368 * start array, stop array, error, add device, remove device, 369 * start build, activate spare 370 */ 371 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); 372 static atomic_t md_event_count; 373 void md_new_event(struct mddev *mddev) 374 { 375 atomic_inc(&md_event_count); 376 wake_up(&md_event_waiters); 377 } 378 EXPORT_SYMBOL_GPL(md_new_event); 379 380 /* 381 * Enables to iterate over all existing md arrays 382 * all_mddevs_lock protects this list. 383 */ 384 static LIST_HEAD(all_mddevs); 385 static DEFINE_SPINLOCK(all_mddevs_lock); 386 387 /* 388 * iterates through all used mddevs in the system. 389 * We take care to grab the all_mddevs_lock whenever navigating 390 * the list, and to always hold a refcount when unlocked. 391 * Any code which breaks out of this loop while own 392 * a reference to the current mddev and must mddev_put it. 393 */ 394 #define for_each_mddev(_mddev,_tmp) \ 395 \ 396 for (({ spin_lock(&all_mddevs_lock); \ 397 _tmp = all_mddevs.next; \ 398 _mddev = NULL;}); \ 399 ({ if (_tmp != &all_mddevs) \ 400 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\ 401 spin_unlock(&all_mddevs_lock); \ 402 if (_mddev) mddev_put(_mddev); \ 403 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \ 404 _tmp != &all_mddevs;}); \ 405 ({ spin_lock(&all_mddevs_lock); \ 406 _tmp = _tmp->next;}) \ 407 ) 408 409 /* Rather than calling directly into the personality make_request function, 410 * IO requests come here first so that we can check if the device is 411 * being suspended pending a reconfiguration. 412 * We hold a refcount over the call to ->make_request. By the time that 413 * call has finished, the bio has been linked into some internal structure 414 * and so is visible to ->quiesce(), so we don't need the refcount any more. 415 */ 416 static bool is_suspended(struct mddev *mddev, struct bio *bio) 417 { 418 if (mddev->suspended) 419 return true; 420 if (bio_data_dir(bio) != WRITE) 421 return false; 422 if (mddev->suspend_lo >= mddev->suspend_hi) 423 return false; 424 if (bio->bi_iter.bi_sector >= mddev->suspend_hi) 425 return false; 426 if (bio_end_sector(bio) < mddev->suspend_lo) 427 return false; 428 return true; 429 } 430 431 void md_handle_request(struct mddev *mddev, struct bio *bio) 432 { 433 check_suspended: 434 rcu_read_lock(); 435 if (is_suspended(mddev, bio)) { 436 DEFINE_WAIT(__wait); 437 for (;;) { 438 prepare_to_wait(&mddev->sb_wait, &__wait, 439 TASK_UNINTERRUPTIBLE); 440 if (!is_suspended(mddev, bio)) 441 break; 442 rcu_read_unlock(); 443 schedule(); 444 rcu_read_lock(); 445 } 446 finish_wait(&mddev->sb_wait, &__wait); 447 } 448 atomic_inc(&mddev->active_io); 449 rcu_read_unlock(); 450 451 if (!mddev->pers->make_request(mddev, bio)) { 452 atomic_dec(&mddev->active_io); 453 wake_up(&mddev->sb_wait); 454 goto check_suspended; 455 } 456 457 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended) 458 wake_up(&mddev->sb_wait); 459 } 460 EXPORT_SYMBOL(md_handle_request); 461 462 struct md_io { 463 struct mddev *mddev; 464 bio_end_io_t *orig_bi_end_io; 465 void *orig_bi_private; 466 unsigned long start_time; 467 struct hd_struct *part; 468 }; 469 470 static void md_end_io(struct bio *bio) 471 { 472 struct md_io *md_io = bio->bi_private; 473 struct mddev *mddev = md_io->mddev; 474 475 part_end_io_acct(md_io->part, bio, md_io->start_time); 476 477 bio->bi_end_io = md_io->orig_bi_end_io; 478 bio->bi_private = md_io->orig_bi_private; 479 480 mempool_free(md_io, &mddev->md_io_pool); 481 482 if (bio->bi_end_io) 483 bio->bi_end_io(bio); 484 } 485 486 static blk_qc_t md_submit_bio(struct bio *bio) 487 { 488 const int rw = bio_data_dir(bio); 489 struct mddev *mddev = bio->bi_disk->private_data; 490 491 if (mddev == NULL || mddev->pers == NULL) { 492 bio_io_error(bio); 493 return BLK_QC_T_NONE; 494 } 495 496 if (unlikely(test_bit(MD_BROKEN, &mddev->flags)) && (rw == WRITE)) { 497 bio_io_error(bio); 498 return BLK_QC_T_NONE; 499 } 500 501 blk_queue_split(&bio); 502 503 if (mddev->ro == 1 && unlikely(rw == WRITE)) { 504 if (bio_sectors(bio) != 0) 505 bio->bi_status = BLK_STS_IOERR; 506 bio_endio(bio); 507 return BLK_QC_T_NONE; 508 } 509 510 if (bio->bi_end_io != md_end_io) { 511 struct md_io *md_io; 512 513 md_io = mempool_alloc(&mddev->md_io_pool, GFP_NOIO); 514 md_io->mddev = mddev; 515 md_io->orig_bi_end_io = bio->bi_end_io; 516 md_io->orig_bi_private = bio->bi_private; 517 518 bio->bi_end_io = md_end_io; 519 bio->bi_private = md_io; 520 521 md_io->start_time = part_start_io_acct(mddev->gendisk, 522 &md_io->part, bio); 523 } 524 525 /* bio could be mergeable after passing to underlayer */ 526 bio->bi_opf &= ~REQ_NOMERGE; 527 528 md_handle_request(mddev, bio); 529 530 return BLK_QC_T_NONE; 531 } 532 533 /* mddev_suspend makes sure no new requests are submitted 534 * to the device, and that any requests that have been submitted 535 * are completely handled. 536 * Once mddev_detach() is called and completes, the module will be 537 * completely unused. 538 */ 539 void mddev_suspend(struct mddev *mddev) 540 { 541 WARN_ON_ONCE(mddev->thread && current == mddev->thread->tsk); 542 lockdep_assert_held(&mddev->reconfig_mutex); 543 if (mddev->suspended++) 544 return; 545 synchronize_rcu(); 546 wake_up(&mddev->sb_wait); 547 set_bit(MD_ALLOW_SB_UPDATE, &mddev->flags); 548 smp_mb__after_atomic(); 549 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0); 550 mddev->pers->quiesce(mddev, 1); 551 clear_bit_unlock(MD_ALLOW_SB_UPDATE, &mddev->flags); 552 wait_event(mddev->sb_wait, !test_bit(MD_UPDATING_SB, &mddev->flags)); 553 554 del_timer_sync(&mddev->safemode_timer); 555 /* restrict memory reclaim I/O during raid array is suspend */ 556 mddev->noio_flag = memalloc_noio_save(); 557 } 558 EXPORT_SYMBOL_GPL(mddev_suspend); 559 560 void mddev_resume(struct mddev *mddev) 561 { 562 /* entred the memalloc scope from mddev_suspend() */ 563 memalloc_noio_restore(mddev->noio_flag); 564 lockdep_assert_held(&mddev->reconfig_mutex); 565 if (--mddev->suspended) 566 return; 567 wake_up(&mddev->sb_wait); 568 mddev->pers->quiesce(mddev, 0); 569 570 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 571 md_wakeup_thread(mddev->thread); 572 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 573 } 574 EXPORT_SYMBOL_GPL(mddev_resume); 575 576 /* 577 * Generic flush handling for md 578 */ 579 580 static void md_end_flush(struct bio *bio) 581 { 582 struct md_rdev *rdev = bio->bi_private; 583 struct mddev *mddev = rdev->mddev; 584 585 rdev_dec_pending(rdev, mddev); 586 587 if (atomic_dec_and_test(&mddev->flush_pending)) { 588 /* The pre-request flush has finished */ 589 queue_work(md_wq, &mddev->flush_work); 590 } 591 bio_put(bio); 592 } 593 594 static void md_submit_flush_data(struct work_struct *ws); 595 596 static void submit_flushes(struct work_struct *ws) 597 { 598 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 599 struct md_rdev *rdev; 600 601 mddev->start_flush = ktime_get_boottime(); 602 INIT_WORK(&mddev->flush_work, md_submit_flush_data); 603 atomic_set(&mddev->flush_pending, 1); 604 rcu_read_lock(); 605 rdev_for_each_rcu(rdev, mddev) 606 if (rdev->raid_disk >= 0 && 607 !test_bit(Faulty, &rdev->flags)) { 608 /* Take two references, one is dropped 609 * when request finishes, one after 610 * we reclaim rcu_read_lock 611 */ 612 struct bio *bi; 613 atomic_inc(&rdev->nr_pending); 614 atomic_inc(&rdev->nr_pending); 615 rcu_read_unlock(); 616 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev); 617 bi->bi_end_io = md_end_flush; 618 bi->bi_private = rdev; 619 bio_set_dev(bi, rdev->bdev); 620 bi->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH; 621 atomic_inc(&mddev->flush_pending); 622 submit_bio(bi); 623 rcu_read_lock(); 624 rdev_dec_pending(rdev, mddev); 625 } 626 rcu_read_unlock(); 627 if (atomic_dec_and_test(&mddev->flush_pending)) 628 queue_work(md_wq, &mddev->flush_work); 629 } 630 631 static void md_submit_flush_data(struct work_struct *ws) 632 { 633 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 634 struct bio *bio = mddev->flush_bio; 635 636 /* 637 * must reset flush_bio before calling into md_handle_request to avoid a 638 * deadlock, because other bios passed md_handle_request suspend check 639 * could wait for this and below md_handle_request could wait for those 640 * bios because of suspend check 641 */ 642 mddev->last_flush = mddev->start_flush; 643 mddev->flush_bio = NULL; 644 wake_up(&mddev->sb_wait); 645 646 if (bio->bi_iter.bi_size == 0) { 647 /* an empty barrier - all done */ 648 bio_endio(bio); 649 } else { 650 bio->bi_opf &= ~REQ_PREFLUSH; 651 md_handle_request(mddev, bio); 652 } 653 } 654 655 /* 656 * Manages consolidation of flushes and submitting any flushes needed for 657 * a bio with REQ_PREFLUSH. Returns true if the bio is finished or is 658 * being finished in another context. Returns false if the flushing is 659 * complete but still needs the I/O portion of the bio to be processed. 660 */ 661 bool md_flush_request(struct mddev *mddev, struct bio *bio) 662 { 663 ktime_t start = ktime_get_boottime(); 664 spin_lock_irq(&mddev->lock); 665 wait_event_lock_irq(mddev->sb_wait, 666 !mddev->flush_bio || 667 ktime_after(mddev->last_flush, start), 668 mddev->lock); 669 if (!ktime_after(mddev->last_flush, start)) { 670 WARN_ON(mddev->flush_bio); 671 mddev->flush_bio = bio; 672 bio = NULL; 673 } 674 spin_unlock_irq(&mddev->lock); 675 676 if (!bio) { 677 INIT_WORK(&mddev->flush_work, submit_flushes); 678 queue_work(md_wq, &mddev->flush_work); 679 } else { 680 /* flush was performed for some other bio while we waited. */ 681 if (bio->bi_iter.bi_size == 0) 682 /* an empty barrier - all done */ 683 bio_endio(bio); 684 else { 685 bio->bi_opf &= ~REQ_PREFLUSH; 686 return false; 687 } 688 } 689 return true; 690 } 691 EXPORT_SYMBOL(md_flush_request); 692 693 static inline struct mddev *mddev_get(struct mddev *mddev) 694 { 695 atomic_inc(&mddev->active); 696 return mddev; 697 } 698 699 static void mddev_delayed_delete(struct work_struct *ws); 700 701 static void mddev_put(struct mddev *mddev) 702 { 703 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) 704 return; 705 if (!mddev->raid_disks && list_empty(&mddev->disks) && 706 mddev->ctime == 0 && !mddev->hold_active) { 707 /* Array is not configured at all, and not held active, 708 * so destroy it */ 709 list_del_init(&mddev->all_mddevs); 710 711 /* 712 * Call queue_work inside the spinlock so that 713 * flush_workqueue() after mddev_find will succeed in waiting 714 * for the work to be done. 715 */ 716 INIT_WORK(&mddev->del_work, mddev_delayed_delete); 717 queue_work(md_misc_wq, &mddev->del_work); 718 } 719 spin_unlock(&all_mddevs_lock); 720 } 721 722 static void md_safemode_timeout(struct timer_list *t); 723 724 void mddev_init(struct mddev *mddev) 725 { 726 kobject_init(&mddev->kobj, &md_ktype); 727 mutex_init(&mddev->open_mutex); 728 mutex_init(&mddev->reconfig_mutex); 729 mutex_init(&mddev->bitmap_info.mutex); 730 INIT_LIST_HEAD(&mddev->disks); 731 INIT_LIST_HEAD(&mddev->all_mddevs); 732 timer_setup(&mddev->safemode_timer, md_safemode_timeout, 0); 733 atomic_set(&mddev->active, 1); 734 atomic_set(&mddev->openers, 0); 735 atomic_set(&mddev->active_io, 0); 736 spin_lock_init(&mddev->lock); 737 atomic_set(&mddev->flush_pending, 0); 738 init_waitqueue_head(&mddev->sb_wait); 739 init_waitqueue_head(&mddev->recovery_wait); 740 mddev->reshape_position = MaxSector; 741 mddev->reshape_backwards = 0; 742 mddev->last_sync_action = "none"; 743 mddev->resync_min = 0; 744 mddev->resync_max = MaxSector; 745 mddev->level = LEVEL_NONE; 746 } 747 EXPORT_SYMBOL_GPL(mddev_init); 748 749 static struct mddev *mddev_find(dev_t unit) 750 { 751 struct mddev *mddev, *new = NULL; 752 753 if (unit && MAJOR(unit) != MD_MAJOR) 754 unit &= ~((1<<MdpMinorShift)-1); 755 756 retry: 757 spin_lock(&all_mddevs_lock); 758 759 if (unit) { 760 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 761 if (mddev->unit == unit) { 762 mddev_get(mddev); 763 spin_unlock(&all_mddevs_lock); 764 kfree(new); 765 return mddev; 766 } 767 768 if (new) { 769 list_add(&new->all_mddevs, &all_mddevs); 770 spin_unlock(&all_mddevs_lock); 771 new->hold_active = UNTIL_IOCTL; 772 return new; 773 } 774 } else if (new) { 775 /* find an unused unit number */ 776 static int next_minor = 512; 777 int start = next_minor; 778 int is_free = 0; 779 int dev = 0; 780 while (!is_free) { 781 dev = MKDEV(MD_MAJOR, next_minor); 782 next_minor++; 783 if (next_minor > MINORMASK) 784 next_minor = 0; 785 if (next_minor == start) { 786 /* Oh dear, all in use. */ 787 spin_unlock(&all_mddevs_lock); 788 kfree(new); 789 return NULL; 790 } 791 792 is_free = 1; 793 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 794 if (mddev->unit == dev) { 795 is_free = 0; 796 break; 797 } 798 } 799 new->unit = dev; 800 new->md_minor = MINOR(dev); 801 new->hold_active = UNTIL_STOP; 802 list_add(&new->all_mddevs, &all_mddevs); 803 spin_unlock(&all_mddevs_lock); 804 return new; 805 } 806 spin_unlock(&all_mddevs_lock); 807 808 new = kzalloc(sizeof(*new), GFP_KERNEL); 809 if (!new) 810 return NULL; 811 812 new->unit = unit; 813 if (MAJOR(unit) == MD_MAJOR) 814 new->md_minor = MINOR(unit); 815 else 816 new->md_minor = MINOR(unit) >> MdpMinorShift; 817 818 mddev_init(new); 819 820 goto retry; 821 } 822 823 static struct attribute_group md_redundancy_group; 824 825 void mddev_unlock(struct mddev *mddev) 826 { 827 if (mddev->to_remove) { 828 /* These cannot be removed under reconfig_mutex as 829 * an access to the files will try to take reconfig_mutex 830 * while holding the file unremovable, which leads to 831 * a deadlock. 832 * So hold set sysfs_active while the remove in happeing, 833 * and anything else which might set ->to_remove or my 834 * otherwise change the sysfs namespace will fail with 835 * -EBUSY if sysfs_active is still set. 836 * We set sysfs_active under reconfig_mutex and elsewhere 837 * test it under the same mutex to ensure its correct value 838 * is seen. 839 */ 840 struct attribute_group *to_remove = mddev->to_remove; 841 mddev->to_remove = NULL; 842 mddev->sysfs_active = 1; 843 mutex_unlock(&mddev->reconfig_mutex); 844 845 if (mddev->kobj.sd) { 846 if (to_remove != &md_redundancy_group) 847 sysfs_remove_group(&mddev->kobj, to_remove); 848 if (mddev->pers == NULL || 849 mddev->pers->sync_request == NULL) { 850 sysfs_remove_group(&mddev->kobj, &md_redundancy_group); 851 if (mddev->sysfs_action) 852 sysfs_put(mddev->sysfs_action); 853 if (mddev->sysfs_completed) 854 sysfs_put(mddev->sysfs_completed); 855 if (mddev->sysfs_degraded) 856 sysfs_put(mddev->sysfs_degraded); 857 mddev->sysfs_action = NULL; 858 mddev->sysfs_completed = NULL; 859 mddev->sysfs_degraded = NULL; 860 } 861 } 862 mddev->sysfs_active = 0; 863 } else 864 mutex_unlock(&mddev->reconfig_mutex); 865 866 /* As we've dropped the mutex we need a spinlock to 867 * make sure the thread doesn't disappear 868 */ 869 spin_lock(&pers_lock); 870 md_wakeup_thread(mddev->thread); 871 wake_up(&mddev->sb_wait); 872 spin_unlock(&pers_lock); 873 } 874 EXPORT_SYMBOL_GPL(mddev_unlock); 875 876 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr) 877 { 878 struct md_rdev *rdev; 879 880 rdev_for_each_rcu(rdev, mddev) 881 if (rdev->desc_nr == nr) 882 return rdev; 883 884 return NULL; 885 } 886 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu); 887 888 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev) 889 { 890 struct md_rdev *rdev; 891 892 rdev_for_each(rdev, mddev) 893 if (rdev->bdev->bd_dev == dev) 894 return rdev; 895 896 return NULL; 897 } 898 899 struct md_rdev *md_find_rdev_rcu(struct mddev *mddev, dev_t dev) 900 { 901 struct md_rdev *rdev; 902 903 rdev_for_each_rcu(rdev, mddev) 904 if (rdev->bdev->bd_dev == dev) 905 return rdev; 906 907 return NULL; 908 } 909 EXPORT_SYMBOL_GPL(md_find_rdev_rcu); 910 911 static struct md_personality *find_pers(int level, char *clevel) 912 { 913 struct md_personality *pers; 914 list_for_each_entry(pers, &pers_list, list) { 915 if (level != LEVEL_NONE && pers->level == level) 916 return pers; 917 if (strcmp(pers->name, clevel)==0) 918 return pers; 919 } 920 return NULL; 921 } 922 923 /* return the offset of the super block in 512byte sectors */ 924 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev) 925 { 926 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512; 927 return MD_NEW_SIZE_SECTORS(num_sectors); 928 } 929 930 static int alloc_disk_sb(struct md_rdev *rdev) 931 { 932 rdev->sb_page = alloc_page(GFP_KERNEL); 933 if (!rdev->sb_page) 934 return -ENOMEM; 935 return 0; 936 } 937 938 void md_rdev_clear(struct md_rdev *rdev) 939 { 940 if (rdev->sb_page) { 941 put_page(rdev->sb_page); 942 rdev->sb_loaded = 0; 943 rdev->sb_page = NULL; 944 rdev->sb_start = 0; 945 rdev->sectors = 0; 946 } 947 if (rdev->bb_page) { 948 put_page(rdev->bb_page); 949 rdev->bb_page = NULL; 950 } 951 badblocks_exit(&rdev->badblocks); 952 } 953 EXPORT_SYMBOL_GPL(md_rdev_clear); 954 955 static void super_written(struct bio *bio) 956 { 957 struct md_rdev *rdev = bio->bi_private; 958 struct mddev *mddev = rdev->mddev; 959 960 if (bio->bi_status) { 961 pr_err("md: %s gets error=%d\n", __func__, 962 blk_status_to_errno(bio->bi_status)); 963 md_error(mddev, rdev); 964 if (!test_bit(Faulty, &rdev->flags) 965 && (bio->bi_opf & MD_FAILFAST)) { 966 set_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags); 967 set_bit(LastDev, &rdev->flags); 968 } 969 } else 970 clear_bit(LastDev, &rdev->flags); 971 972 if (atomic_dec_and_test(&mddev->pending_writes)) 973 wake_up(&mddev->sb_wait); 974 rdev_dec_pending(rdev, mddev); 975 bio_put(bio); 976 } 977 978 void md_super_write(struct mddev *mddev, struct md_rdev *rdev, 979 sector_t sector, int size, struct page *page) 980 { 981 /* write first size bytes of page to sector of rdev 982 * Increment mddev->pending_writes before returning 983 * and decrement it on completion, waking up sb_wait 984 * if zero is reached. 985 * If an error occurred, call md_error 986 */ 987 struct bio *bio; 988 int ff = 0; 989 990 if (!page) 991 return; 992 993 if (test_bit(Faulty, &rdev->flags)) 994 return; 995 996 bio = md_bio_alloc_sync(mddev); 997 998 atomic_inc(&rdev->nr_pending); 999 1000 bio_set_dev(bio, rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev); 1001 bio->bi_iter.bi_sector = sector; 1002 bio_add_page(bio, page, size, 0); 1003 bio->bi_private = rdev; 1004 bio->bi_end_io = super_written; 1005 1006 if (test_bit(MD_FAILFAST_SUPPORTED, &mddev->flags) && 1007 test_bit(FailFast, &rdev->flags) && 1008 !test_bit(LastDev, &rdev->flags)) 1009 ff = MD_FAILFAST; 1010 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH | REQ_FUA | ff; 1011 1012 atomic_inc(&mddev->pending_writes); 1013 submit_bio(bio); 1014 } 1015 1016 int md_super_wait(struct mddev *mddev) 1017 { 1018 /* wait for all superblock writes that were scheduled to complete */ 1019 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0); 1020 if (test_and_clear_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags)) 1021 return -EAGAIN; 1022 return 0; 1023 } 1024 1025 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size, 1026 struct page *page, int op, int op_flags, bool metadata_op) 1027 { 1028 struct bio *bio = md_bio_alloc_sync(rdev->mddev); 1029 int ret; 1030 1031 if (metadata_op && rdev->meta_bdev) 1032 bio_set_dev(bio, rdev->meta_bdev); 1033 else 1034 bio_set_dev(bio, rdev->bdev); 1035 bio_set_op_attrs(bio, op, op_flags); 1036 if (metadata_op) 1037 bio->bi_iter.bi_sector = sector + rdev->sb_start; 1038 else if (rdev->mddev->reshape_position != MaxSector && 1039 (rdev->mddev->reshape_backwards == 1040 (sector >= rdev->mddev->reshape_position))) 1041 bio->bi_iter.bi_sector = sector + rdev->new_data_offset; 1042 else 1043 bio->bi_iter.bi_sector = sector + rdev->data_offset; 1044 bio_add_page(bio, page, size, 0); 1045 1046 submit_bio_wait(bio); 1047 1048 ret = !bio->bi_status; 1049 bio_put(bio); 1050 return ret; 1051 } 1052 EXPORT_SYMBOL_GPL(sync_page_io); 1053 1054 static int read_disk_sb(struct md_rdev *rdev, int size) 1055 { 1056 char b[BDEVNAME_SIZE]; 1057 1058 if (rdev->sb_loaded) 1059 return 0; 1060 1061 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true)) 1062 goto fail; 1063 rdev->sb_loaded = 1; 1064 return 0; 1065 1066 fail: 1067 pr_err("md: disabled device %s, could not read superblock.\n", 1068 bdevname(rdev->bdev,b)); 1069 return -EINVAL; 1070 } 1071 1072 static int md_uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) 1073 { 1074 return sb1->set_uuid0 == sb2->set_uuid0 && 1075 sb1->set_uuid1 == sb2->set_uuid1 && 1076 sb1->set_uuid2 == sb2->set_uuid2 && 1077 sb1->set_uuid3 == sb2->set_uuid3; 1078 } 1079 1080 static int md_sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) 1081 { 1082 int ret; 1083 mdp_super_t *tmp1, *tmp2; 1084 1085 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); 1086 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); 1087 1088 if (!tmp1 || !tmp2) { 1089 ret = 0; 1090 goto abort; 1091 } 1092 1093 *tmp1 = *sb1; 1094 *tmp2 = *sb2; 1095 1096 /* 1097 * nr_disks is not constant 1098 */ 1099 tmp1->nr_disks = 0; 1100 tmp2->nr_disks = 0; 1101 1102 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0); 1103 abort: 1104 kfree(tmp1); 1105 kfree(tmp2); 1106 return ret; 1107 } 1108 1109 static u32 md_csum_fold(u32 csum) 1110 { 1111 csum = (csum & 0xffff) + (csum >> 16); 1112 return (csum & 0xffff) + (csum >> 16); 1113 } 1114 1115 static unsigned int calc_sb_csum(mdp_super_t *sb) 1116 { 1117 u64 newcsum = 0; 1118 u32 *sb32 = (u32*)sb; 1119 int i; 1120 unsigned int disk_csum, csum; 1121 1122 disk_csum = sb->sb_csum; 1123 sb->sb_csum = 0; 1124 1125 for (i = 0; i < MD_SB_BYTES/4 ; i++) 1126 newcsum += sb32[i]; 1127 csum = (newcsum & 0xffffffff) + (newcsum>>32); 1128 1129 #ifdef CONFIG_ALPHA 1130 /* This used to use csum_partial, which was wrong for several 1131 * reasons including that different results are returned on 1132 * different architectures. It isn't critical that we get exactly 1133 * the same return value as before (we always csum_fold before 1134 * testing, and that removes any differences). However as we 1135 * know that csum_partial always returned a 16bit value on 1136 * alphas, do a fold to maximise conformity to previous behaviour. 1137 */ 1138 sb->sb_csum = md_csum_fold(disk_csum); 1139 #else 1140 sb->sb_csum = disk_csum; 1141 #endif 1142 return csum; 1143 } 1144 1145 /* 1146 * Handle superblock details. 1147 * We want to be able to handle multiple superblock formats 1148 * so we have a common interface to them all, and an array of 1149 * different handlers. 1150 * We rely on user-space to write the initial superblock, and support 1151 * reading and updating of superblocks. 1152 * Interface methods are: 1153 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version) 1154 * loads and validates a superblock on dev. 1155 * if refdev != NULL, compare superblocks on both devices 1156 * Return: 1157 * 0 - dev has a superblock that is compatible with refdev 1158 * 1 - dev has a superblock that is compatible and newer than refdev 1159 * so dev should be used as the refdev in future 1160 * -EINVAL superblock incompatible or invalid 1161 * -othererror e.g. -EIO 1162 * 1163 * int validate_super(struct mddev *mddev, struct md_rdev *dev) 1164 * Verify that dev is acceptable into mddev. 1165 * The first time, mddev->raid_disks will be 0, and data from 1166 * dev should be merged in. Subsequent calls check that dev 1167 * is new enough. Return 0 or -EINVAL 1168 * 1169 * void sync_super(struct mddev *mddev, struct md_rdev *dev) 1170 * Update the superblock for rdev with data in mddev 1171 * This does not write to disc. 1172 * 1173 */ 1174 1175 struct super_type { 1176 char *name; 1177 struct module *owner; 1178 int (*load_super)(struct md_rdev *rdev, 1179 struct md_rdev *refdev, 1180 int minor_version); 1181 int (*validate_super)(struct mddev *mddev, 1182 struct md_rdev *rdev); 1183 void (*sync_super)(struct mddev *mddev, 1184 struct md_rdev *rdev); 1185 unsigned long long (*rdev_size_change)(struct md_rdev *rdev, 1186 sector_t num_sectors); 1187 int (*allow_new_offset)(struct md_rdev *rdev, 1188 unsigned long long new_offset); 1189 }; 1190 1191 /* 1192 * Check that the given mddev has no bitmap. 1193 * 1194 * This function is called from the run method of all personalities that do not 1195 * support bitmaps. It prints an error message and returns non-zero if mddev 1196 * has a bitmap. Otherwise, it returns 0. 1197 * 1198 */ 1199 int md_check_no_bitmap(struct mddev *mddev) 1200 { 1201 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset) 1202 return 0; 1203 pr_warn("%s: bitmaps are not supported for %s\n", 1204 mdname(mddev), mddev->pers->name); 1205 return 1; 1206 } 1207 EXPORT_SYMBOL(md_check_no_bitmap); 1208 1209 /* 1210 * load_super for 0.90.0 1211 */ 1212 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1213 { 1214 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1215 mdp_super_t *sb; 1216 int ret; 1217 bool spare_disk = true; 1218 1219 /* 1220 * Calculate the position of the superblock (512byte sectors), 1221 * it's at the end of the disk. 1222 * 1223 * It also happens to be a multiple of 4Kb. 1224 */ 1225 rdev->sb_start = calc_dev_sboffset(rdev); 1226 1227 ret = read_disk_sb(rdev, MD_SB_BYTES); 1228 if (ret) 1229 return ret; 1230 1231 ret = -EINVAL; 1232 1233 bdevname(rdev->bdev, b); 1234 sb = page_address(rdev->sb_page); 1235 1236 if (sb->md_magic != MD_SB_MAGIC) { 1237 pr_warn("md: invalid raid superblock magic on %s\n", b); 1238 goto abort; 1239 } 1240 1241 if (sb->major_version != 0 || 1242 sb->minor_version < 90 || 1243 sb->minor_version > 91) { 1244 pr_warn("Bad version number %d.%d on %s\n", 1245 sb->major_version, sb->minor_version, b); 1246 goto abort; 1247 } 1248 1249 if (sb->raid_disks <= 0) 1250 goto abort; 1251 1252 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) { 1253 pr_warn("md: invalid superblock checksum on %s\n", b); 1254 goto abort; 1255 } 1256 1257 rdev->preferred_minor = sb->md_minor; 1258 rdev->data_offset = 0; 1259 rdev->new_data_offset = 0; 1260 rdev->sb_size = MD_SB_BYTES; 1261 rdev->badblocks.shift = -1; 1262 1263 if (sb->level == LEVEL_MULTIPATH) 1264 rdev->desc_nr = -1; 1265 else 1266 rdev->desc_nr = sb->this_disk.number; 1267 1268 /* not spare disk, or LEVEL_MULTIPATH */ 1269 if (sb->level == LEVEL_MULTIPATH || 1270 (rdev->desc_nr >= 0 && 1271 rdev->desc_nr < MD_SB_DISKS && 1272 sb->disks[rdev->desc_nr].state & 1273 ((1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))) 1274 spare_disk = false; 1275 1276 if (!refdev) { 1277 if (!spare_disk) 1278 ret = 1; 1279 else 1280 ret = 0; 1281 } else { 1282 __u64 ev1, ev2; 1283 mdp_super_t *refsb = page_address(refdev->sb_page); 1284 if (!md_uuid_equal(refsb, sb)) { 1285 pr_warn("md: %s has different UUID to %s\n", 1286 b, bdevname(refdev->bdev,b2)); 1287 goto abort; 1288 } 1289 if (!md_sb_equal(refsb, sb)) { 1290 pr_warn("md: %s has same UUID but different superblock to %s\n", 1291 b, bdevname(refdev->bdev, b2)); 1292 goto abort; 1293 } 1294 ev1 = md_event(sb); 1295 ev2 = md_event(refsb); 1296 1297 if (!spare_disk && ev1 > ev2) 1298 ret = 1; 1299 else 1300 ret = 0; 1301 } 1302 rdev->sectors = rdev->sb_start; 1303 /* Limit to 4TB as metadata cannot record more than that. 1304 * (not needed for Linear and RAID0 as metadata doesn't 1305 * record this size) 1306 */ 1307 if ((u64)rdev->sectors >= (2ULL << 32) && sb->level >= 1) 1308 rdev->sectors = (sector_t)(2ULL << 32) - 2; 1309 1310 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1) 1311 /* "this cannot possibly happen" ... */ 1312 ret = -EINVAL; 1313 1314 abort: 1315 return ret; 1316 } 1317 1318 /* 1319 * validate_super for 0.90.0 1320 */ 1321 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev) 1322 { 1323 mdp_disk_t *desc; 1324 mdp_super_t *sb = page_address(rdev->sb_page); 1325 __u64 ev1 = md_event(sb); 1326 1327 rdev->raid_disk = -1; 1328 clear_bit(Faulty, &rdev->flags); 1329 clear_bit(In_sync, &rdev->flags); 1330 clear_bit(Bitmap_sync, &rdev->flags); 1331 clear_bit(WriteMostly, &rdev->flags); 1332 1333 if (mddev->raid_disks == 0) { 1334 mddev->major_version = 0; 1335 mddev->minor_version = sb->minor_version; 1336 mddev->patch_version = sb->patch_version; 1337 mddev->external = 0; 1338 mddev->chunk_sectors = sb->chunk_size >> 9; 1339 mddev->ctime = sb->ctime; 1340 mddev->utime = sb->utime; 1341 mddev->level = sb->level; 1342 mddev->clevel[0] = 0; 1343 mddev->layout = sb->layout; 1344 mddev->raid_disks = sb->raid_disks; 1345 mddev->dev_sectors = ((sector_t)sb->size) * 2; 1346 mddev->events = ev1; 1347 mddev->bitmap_info.offset = 0; 1348 mddev->bitmap_info.space = 0; 1349 /* bitmap can use 60 K after the 4K superblocks */ 1350 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 1351 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 1352 mddev->reshape_backwards = 0; 1353 1354 if (mddev->minor_version >= 91) { 1355 mddev->reshape_position = sb->reshape_position; 1356 mddev->delta_disks = sb->delta_disks; 1357 mddev->new_level = sb->new_level; 1358 mddev->new_layout = sb->new_layout; 1359 mddev->new_chunk_sectors = sb->new_chunk >> 9; 1360 if (mddev->delta_disks < 0) 1361 mddev->reshape_backwards = 1; 1362 } else { 1363 mddev->reshape_position = MaxSector; 1364 mddev->delta_disks = 0; 1365 mddev->new_level = mddev->level; 1366 mddev->new_layout = mddev->layout; 1367 mddev->new_chunk_sectors = mddev->chunk_sectors; 1368 } 1369 if (mddev->level == 0) 1370 mddev->layout = -1; 1371 1372 if (sb->state & (1<<MD_SB_CLEAN)) 1373 mddev->recovery_cp = MaxSector; 1374 else { 1375 if (sb->events_hi == sb->cp_events_hi && 1376 sb->events_lo == sb->cp_events_lo) { 1377 mddev->recovery_cp = sb->recovery_cp; 1378 } else 1379 mddev->recovery_cp = 0; 1380 } 1381 1382 memcpy(mddev->uuid+0, &sb->set_uuid0, 4); 1383 memcpy(mddev->uuid+4, &sb->set_uuid1, 4); 1384 memcpy(mddev->uuid+8, &sb->set_uuid2, 4); 1385 memcpy(mddev->uuid+12,&sb->set_uuid3, 4); 1386 1387 mddev->max_disks = MD_SB_DISKS; 1388 1389 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && 1390 mddev->bitmap_info.file == NULL) { 1391 mddev->bitmap_info.offset = 1392 mddev->bitmap_info.default_offset; 1393 mddev->bitmap_info.space = 1394 mddev->bitmap_info.default_space; 1395 } 1396 1397 } else if (mddev->pers == NULL) { 1398 /* Insist on good event counter while assembling, except 1399 * for spares (which don't need an event count) */ 1400 ++ev1; 1401 if (sb->disks[rdev->desc_nr].state & ( 1402 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))) 1403 if (ev1 < mddev->events) 1404 return -EINVAL; 1405 } else if (mddev->bitmap) { 1406 /* if adding to array with a bitmap, then we can accept an 1407 * older device ... but not too old. 1408 */ 1409 if (ev1 < mddev->bitmap->events_cleared) 1410 return 0; 1411 if (ev1 < mddev->events) 1412 set_bit(Bitmap_sync, &rdev->flags); 1413 } else { 1414 if (ev1 < mddev->events) 1415 /* just a hot-add of a new device, leave raid_disk at -1 */ 1416 return 0; 1417 } 1418 1419 if (mddev->level != LEVEL_MULTIPATH) { 1420 desc = sb->disks + rdev->desc_nr; 1421 1422 if (desc->state & (1<<MD_DISK_FAULTY)) 1423 set_bit(Faulty, &rdev->flags); 1424 else if (desc->state & (1<<MD_DISK_SYNC) /* && 1425 desc->raid_disk < mddev->raid_disks */) { 1426 set_bit(In_sync, &rdev->flags); 1427 rdev->raid_disk = desc->raid_disk; 1428 rdev->saved_raid_disk = desc->raid_disk; 1429 } else if (desc->state & (1<<MD_DISK_ACTIVE)) { 1430 /* active but not in sync implies recovery up to 1431 * reshape position. We don't know exactly where 1432 * that is, so set to zero for now */ 1433 if (mddev->minor_version >= 91) { 1434 rdev->recovery_offset = 0; 1435 rdev->raid_disk = desc->raid_disk; 1436 } 1437 } 1438 if (desc->state & (1<<MD_DISK_WRITEMOSTLY)) 1439 set_bit(WriteMostly, &rdev->flags); 1440 if (desc->state & (1<<MD_DISK_FAILFAST)) 1441 set_bit(FailFast, &rdev->flags); 1442 } else /* MULTIPATH are always insync */ 1443 set_bit(In_sync, &rdev->flags); 1444 return 0; 1445 } 1446 1447 /* 1448 * sync_super for 0.90.0 1449 */ 1450 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev) 1451 { 1452 mdp_super_t *sb; 1453 struct md_rdev *rdev2; 1454 int next_spare = mddev->raid_disks; 1455 1456 /* make rdev->sb match mddev data.. 1457 * 1458 * 1/ zero out disks 1459 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); 1460 * 3/ any empty disks < next_spare become removed 1461 * 1462 * disks[0] gets initialised to REMOVED because 1463 * we cannot be sure from other fields if it has 1464 * been initialised or not. 1465 */ 1466 int i; 1467 int active=0, working=0,failed=0,spare=0,nr_disks=0; 1468 1469 rdev->sb_size = MD_SB_BYTES; 1470 1471 sb = page_address(rdev->sb_page); 1472 1473 memset(sb, 0, sizeof(*sb)); 1474 1475 sb->md_magic = MD_SB_MAGIC; 1476 sb->major_version = mddev->major_version; 1477 sb->patch_version = mddev->patch_version; 1478 sb->gvalid_words = 0; /* ignored */ 1479 memcpy(&sb->set_uuid0, mddev->uuid+0, 4); 1480 memcpy(&sb->set_uuid1, mddev->uuid+4, 4); 1481 memcpy(&sb->set_uuid2, mddev->uuid+8, 4); 1482 memcpy(&sb->set_uuid3, mddev->uuid+12,4); 1483 1484 sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 1485 sb->level = mddev->level; 1486 sb->size = mddev->dev_sectors / 2; 1487 sb->raid_disks = mddev->raid_disks; 1488 sb->md_minor = mddev->md_minor; 1489 sb->not_persistent = 0; 1490 sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 1491 sb->state = 0; 1492 sb->events_hi = (mddev->events>>32); 1493 sb->events_lo = (u32)mddev->events; 1494 1495 if (mddev->reshape_position == MaxSector) 1496 sb->minor_version = 90; 1497 else { 1498 sb->minor_version = 91; 1499 sb->reshape_position = mddev->reshape_position; 1500 sb->new_level = mddev->new_level; 1501 sb->delta_disks = mddev->delta_disks; 1502 sb->new_layout = mddev->new_layout; 1503 sb->new_chunk = mddev->new_chunk_sectors << 9; 1504 } 1505 mddev->minor_version = sb->minor_version; 1506 if (mddev->in_sync) 1507 { 1508 sb->recovery_cp = mddev->recovery_cp; 1509 sb->cp_events_hi = (mddev->events>>32); 1510 sb->cp_events_lo = (u32)mddev->events; 1511 if (mddev->recovery_cp == MaxSector) 1512 sb->state = (1<< MD_SB_CLEAN); 1513 } else 1514 sb->recovery_cp = 0; 1515 1516 sb->layout = mddev->layout; 1517 sb->chunk_size = mddev->chunk_sectors << 9; 1518 1519 if (mddev->bitmap && mddev->bitmap_info.file == NULL) 1520 sb->state |= (1<<MD_SB_BITMAP_PRESENT); 1521 1522 sb->disks[0].state = (1<<MD_DISK_REMOVED); 1523 rdev_for_each(rdev2, mddev) { 1524 mdp_disk_t *d; 1525 int desc_nr; 1526 int is_active = test_bit(In_sync, &rdev2->flags); 1527 1528 if (rdev2->raid_disk >= 0 && 1529 sb->minor_version >= 91) 1530 /* we have nowhere to store the recovery_offset, 1531 * but if it is not below the reshape_position, 1532 * we can piggy-back on that. 1533 */ 1534 is_active = 1; 1535 if (rdev2->raid_disk < 0 || 1536 test_bit(Faulty, &rdev2->flags)) 1537 is_active = 0; 1538 if (is_active) 1539 desc_nr = rdev2->raid_disk; 1540 else 1541 desc_nr = next_spare++; 1542 rdev2->desc_nr = desc_nr; 1543 d = &sb->disks[rdev2->desc_nr]; 1544 nr_disks++; 1545 d->number = rdev2->desc_nr; 1546 d->major = MAJOR(rdev2->bdev->bd_dev); 1547 d->minor = MINOR(rdev2->bdev->bd_dev); 1548 if (is_active) 1549 d->raid_disk = rdev2->raid_disk; 1550 else 1551 d->raid_disk = rdev2->desc_nr; /* compatibility */ 1552 if (test_bit(Faulty, &rdev2->flags)) 1553 d->state = (1<<MD_DISK_FAULTY); 1554 else if (is_active) { 1555 d->state = (1<<MD_DISK_ACTIVE); 1556 if (test_bit(In_sync, &rdev2->flags)) 1557 d->state |= (1<<MD_DISK_SYNC); 1558 active++; 1559 working++; 1560 } else { 1561 d->state = 0; 1562 spare++; 1563 working++; 1564 } 1565 if (test_bit(WriteMostly, &rdev2->flags)) 1566 d->state |= (1<<MD_DISK_WRITEMOSTLY); 1567 if (test_bit(FailFast, &rdev2->flags)) 1568 d->state |= (1<<MD_DISK_FAILFAST); 1569 } 1570 /* now set the "removed" and "faulty" bits on any missing devices */ 1571 for (i=0 ; i < mddev->raid_disks ; i++) { 1572 mdp_disk_t *d = &sb->disks[i]; 1573 if (d->state == 0 && d->number == 0) { 1574 d->number = i; 1575 d->raid_disk = i; 1576 d->state = (1<<MD_DISK_REMOVED); 1577 d->state |= (1<<MD_DISK_FAULTY); 1578 failed++; 1579 } 1580 } 1581 sb->nr_disks = nr_disks; 1582 sb->active_disks = active; 1583 sb->working_disks = working; 1584 sb->failed_disks = failed; 1585 sb->spare_disks = spare; 1586 1587 sb->this_disk = sb->disks[rdev->desc_nr]; 1588 sb->sb_csum = calc_sb_csum(sb); 1589 } 1590 1591 /* 1592 * rdev_size_change for 0.90.0 1593 */ 1594 static unsigned long long 1595 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1596 { 1597 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1598 return 0; /* component must fit device */ 1599 if (rdev->mddev->bitmap_info.offset) 1600 return 0; /* can't move bitmap */ 1601 rdev->sb_start = calc_dev_sboffset(rdev); 1602 if (!num_sectors || num_sectors > rdev->sb_start) 1603 num_sectors = rdev->sb_start; 1604 /* Limit to 4TB as metadata cannot record more than that. 1605 * 4TB == 2^32 KB, or 2*2^32 sectors. 1606 */ 1607 if ((u64)num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1) 1608 num_sectors = (sector_t)(2ULL << 32) - 2; 1609 do { 1610 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1611 rdev->sb_page); 1612 } while (md_super_wait(rdev->mddev) < 0); 1613 return num_sectors; 1614 } 1615 1616 static int 1617 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset) 1618 { 1619 /* non-zero offset changes not possible with v0.90 */ 1620 return new_offset == 0; 1621 } 1622 1623 /* 1624 * version 1 superblock 1625 */ 1626 1627 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb) 1628 { 1629 __le32 disk_csum; 1630 u32 csum; 1631 unsigned long long newcsum; 1632 int size = 256 + le32_to_cpu(sb->max_dev)*2; 1633 __le32 *isuper = (__le32*)sb; 1634 1635 disk_csum = sb->sb_csum; 1636 sb->sb_csum = 0; 1637 newcsum = 0; 1638 for (; size >= 4; size -= 4) 1639 newcsum += le32_to_cpu(*isuper++); 1640 1641 if (size == 2) 1642 newcsum += le16_to_cpu(*(__le16*) isuper); 1643 1644 csum = (newcsum & 0xffffffff) + (newcsum >> 32); 1645 sb->sb_csum = disk_csum; 1646 return cpu_to_le32(csum); 1647 } 1648 1649 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1650 { 1651 struct mdp_superblock_1 *sb; 1652 int ret; 1653 sector_t sb_start; 1654 sector_t sectors; 1655 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1656 int bmask; 1657 bool spare_disk = true; 1658 1659 /* 1660 * Calculate the position of the superblock in 512byte sectors. 1661 * It is always aligned to a 4K boundary and 1662 * depeding on minor_version, it can be: 1663 * 0: At least 8K, but less than 12K, from end of device 1664 * 1: At start of device 1665 * 2: 4K from start of device. 1666 */ 1667 switch(minor_version) { 1668 case 0: 1669 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9; 1670 sb_start -= 8*2; 1671 sb_start &= ~(sector_t)(4*2-1); 1672 break; 1673 case 1: 1674 sb_start = 0; 1675 break; 1676 case 2: 1677 sb_start = 8; 1678 break; 1679 default: 1680 return -EINVAL; 1681 } 1682 rdev->sb_start = sb_start; 1683 1684 /* superblock is rarely larger than 1K, but it can be larger, 1685 * and it is safe to read 4k, so we do that 1686 */ 1687 ret = read_disk_sb(rdev, 4096); 1688 if (ret) return ret; 1689 1690 sb = page_address(rdev->sb_page); 1691 1692 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || 1693 sb->major_version != cpu_to_le32(1) || 1694 le32_to_cpu(sb->max_dev) > (4096-256)/2 || 1695 le64_to_cpu(sb->super_offset) != rdev->sb_start || 1696 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) 1697 return -EINVAL; 1698 1699 if (calc_sb_1_csum(sb) != sb->sb_csum) { 1700 pr_warn("md: invalid superblock checksum on %s\n", 1701 bdevname(rdev->bdev,b)); 1702 return -EINVAL; 1703 } 1704 if (le64_to_cpu(sb->data_size) < 10) { 1705 pr_warn("md: data_size too small on %s\n", 1706 bdevname(rdev->bdev,b)); 1707 return -EINVAL; 1708 } 1709 if (sb->pad0 || 1710 sb->pad3[0] || 1711 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1]))) 1712 /* Some padding is non-zero, might be a new feature */ 1713 return -EINVAL; 1714 1715 rdev->preferred_minor = 0xffff; 1716 rdev->data_offset = le64_to_cpu(sb->data_offset); 1717 rdev->new_data_offset = rdev->data_offset; 1718 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) && 1719 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET)) 1720 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset); 1721 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); 1722 1723 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; 1724 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1725 if (rdev->sb_size & bmask) 1726 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1727 1728 if (minor_version 1729 && rdev->data_offset < sb_start + (rdev->sb_size/512)) 1730 return -EINVAL; 1731 if (minor_version 1732 && rdev->new_data_offset < sb_start + (rdev->sb_size/512)) 1733 return -EINVAL; 1734 1735 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH)) 1736 rdev->desc_nr = -1; 1737 else 1738 rdev->desc_nr = le32_to_cpu(sb->dev_number); 1739 1740 if (!rdev->bb_page) { 1741 rdev->bb_page = alloc_page(GFP_KERNEL); 1742 if (!rdev->bb_page) 1743 return -ENOMEM; 1744 } 1745 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) && 1746 rdev->badblocks.count == 0) { 1747 /* need to load the bad block list. 1748 * Currently we limit it to one page. 1749 */ 1750 s32 offset; 1751 sector_t bb_sector; 1752 __le64 *bbp; 1753 int i; 1754 int sectors = le16_to_cpu(sb->bblog_size); 1755 if (sectors > (PAGE_SIZE / 512)) 1756 return -EINVAL; 1757 offset = le32_to_cpu(sb->bblog_offset); 1758 if (offset == 0) 1759 return -EINVAL; 1760 bb_sector = (long long)offset; 1761 if (!sync_page_io(rdev, bb_sector, sectors << 9, 1762 rdev->bb_page, REQ_OP_READ, 0, true)) 1763 return -EIO; 1764 bbp = (__le64 *)page_address(rdev->bb_page); 1765 rdev->badblocks.shift = sb->bblog_shift; 1766 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) { 1767 u64 bb = le64_to_cpu(*bbp); 1768 int count = bb & (0x3ff); 1769 u64 sector = bb >> 10; 1770 sector <<= sb->bblog_shift; 1771 count <<= sb->bblog_shift; 1772 if (bb + 1 == 0) 1773 break; 1774 if (badblocks_set(&rdev->badblocks, sector, count, 1)) 1775 return -EINVAL; 1776 } 1777 } else if (sb->bblog_offset != 0) 1778 rdev->badblocks.shift = 0; 1779 1780 if ((le32_to_cpu(sb->feature_map) & 1781 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS))) { 1782 rdev->ppl.offset = (__s16)le16_to_cpu(sb->ppl.offset); 1783 rdev->ppl.size = le16_to_cpu(sb->ppl.size); 1784 rdev->ppl.sector = rdev->sb_start + rdev->ppl.offset; 1785 } 1786 1787 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT) && 1788 sb->level != 0) 1789 return -EINVAL; 1790 1791 /* not spare disk, or LEVEL_MULTIPATH */ 1792 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH) || 1793 (rdev->desc_nr >= 0 && 1794 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1795 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX || 1796 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))) 1797 spare_disk = false; 1798 1799 if (!refdev) { 1800 if (!spare_disk) 1801 ret = 1; 1802 else 1803 ret = 0; 1804 } else { 1805 __u64 ev1, ev2; 1806 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page); 1807 1808 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || 1809 sb->level != refsb->level || 1810 sb->layout != refsb->layout || 1811 sb->chunksize != refsb->chunksize) { 1812 pr_warn("md: %s has strangely different superblock to %s\n", 1813 bdevname(rdev->bdev,b), 1814 bdevname(refdev->bdev,b2)); 1815 return -EINVAL; 1816 } 1817 ev1 = le64_to_cpu(sb->events); 1818 ev2 = le64_to_cpu(refsb->events); 1819 1820 if (!spare_disk && ev1 > ev2) 1821 ret = 1; 1822 else 1823 ret = 0; 1824 } 1825 if (minor_version) { 1826 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9); 1827 sectors -= rdev->data_offset; 1828 } else 1829 sectors = rdev->sb_start; 1830 if (sectors < le64_to_cpu(sb->data_size)) 1831 return -EINVAL; 1832 rdev->sectors = le64_to_cpu(sb->data_size); 1833 return ret; 1834 } 1835 1836 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev) 1837 { 1838 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 1839 __u64 ev1 = le64_to_cpu(sb->events); 1840 1841 rdev->raid_disk = -1; 1842 clear_bit(Faulty, &rdev->flags); 1843 clear_bit(In_sync, &rdev->flags); 1844 clear_bit(Bitmap_sync, &rdev->flags); 1845 clear_bit(WriteMostly, &rdev->flags); 1846 1847 if (mddev->raid_disks == 0) { 1848 mddev->major_version = 1; 1849 mddev->patch_version = 0; 1850 mddev->external = 0; 1851 mddev->chunk_sectors = le32_to_cpu(sb->chunksize); 1852 mddev->ctime = le64_to_cpu(sb->ctime); 1853 mddev->utime = le64_to_cpu(sb->utime); 1854 mddev->level = le32_to_cpu(sb->level); 1855 mddev->clevel[0] = 0; 1856 mddev->layout = le32_to_cpu(sb->layout); 1857 mddev->raid_disks = le32_to_cpu(sb->raid_disks); 1858 mddev->dev_sectors = le64_to_cpu(sb->size); 1859 mddev->events = ev1; 1860 mddev->bitmap_info.offset = 0; 1861 mddev->bitmap_info.space = 0; 1862 /* Default location for bitmap is 1K after superblock 1863 * using 3K - total of 4K 1864 */ 1865 mddev->bitmap_info.default_offset = 1024 >> 9; 1866 mddev->bitmap_info.default_space = (4096-1024) >> 9; 1867 mddev->reshape_backwards = 0; 1868 1869 mddev->recovery_cp = le64_to_cpu(sb->resync_offset); 1870 memcpy(mddev->uuid, sb->set_uuid, 16); 1871 1872 mddev->max_disks = (4096-256)/2; 1873 1874 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && 1875 mddev->bitmap_info.file == NULL) { 1876 mddev->bitmap_info.offset = 1877 (__s32)le32_to_cpu(sb->bitmap_offset); 1878 /* Metadata doesn't record how much space is available. 1879 * For 1.0, we assume we can use up to the superblock 1880 * if before, else to 4K beyond superblock. 1881 * For others, assume no change is possible. 1882 */ 1883 if (mddev->minor_version > 0) 1884 mddev->bitmap_info.space = 0; 1885 else if (mddev->bitmap_info.offset > 0) 1886 mddev->bitmap_info.space = 1887 8 - mddev->bitmap_info.offset; 1888 else 1889 mddev->bitmap_info.space = 1890 -mddev->bitmap_info.offset; 1891 } 1892 1893 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 1894 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 1895 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 1896 mddev->new_level = le32_to_cpu(sb->new_level); 1897 mddev->new_layout = le32_to_cpu(sb->new_layout); 1898 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk); 1899 if (mddev->delta_disks < 0 || 1900 (mddev->delta_disks == 0 && 1901 (le32_to_cpu(sb->feature_map) 1902 & MD_FEATURE_RESHAPE_BACKWARDS))) 1903 mddev->reshape_backwards = 1; 1904 } else { 1905 mddev->reshape_position = MaxSector; 1906 mddev->delta_disks = 0; 1907 mddev->new_level = mddev->level; 1908 mddev->new_layout = mddev->layout; 1909 mddev->new_chunk_sectors = mddev->chunk_sectors; 1910 } 1911 1912 if (mddev->level == 0 && 1913 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT)) 1914 mddev->layout = -1; 1915 1916 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL) 1917 set_bit(MD_HAS_JOURNAL, &mddev->flags); 1918 1919 if (le32_to_cpu(sb->feature_map) & 1920 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS)) { 1921 if (le32_to_cpu(sb->feature_map) & 1922 (MD_FEATURE_BITMAP_OFFSET | MD_FEATURE_JOURNAL)) 1923 return -EINVAL; 1924 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_PPL) && 1925 (le32_to_cpu(sb->feature_map) & 1926 MD_FEATURE_MULTIPLE_PPLS)) 1927 return -EINVAL; 1928 set_bit(MD_HAS_PPL, &mddev->flags); 1929 } 1930 } else if (mddev->pers == NULL) { 1931 /* Insist of good event counter while assembling, except for 1932 * spares (which don't need an event count) */ 1933 ++ev1; 1934 if (rdev->desc_nr >= 0 && 1935 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1936 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX || 1937 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL)) 1938 if (ev1 < mddev->events) 1939 return -EINVAL; 1940 } else if (mddev->bitmap) { 1941 /* If adding to array with a bitmap, then we can accept an 1942 * older device, but not too old. 1943 */ 1944 if (ev1 < mddev->bitmap->events_cleared) 1945 return 0; 1946 if (ev1 < mddev->events) 1947 set_bit(Bitmap_sync, &rdev->flags); 1948 } else { 1949 if (ev1 < mddev->events) 1950 /* just a hot-add of a new device, leave raid_disk at -1 */ 1951 return 0; 1952 } 1953 if (mddev->level != LEVEL_MULTIPATH) { 1954 int role; 1955 if (rdev->desc_nr < 0 || 1956 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) { 1957 role = MD_DISK_ROLE_SPARE; 1958 rdev->desc_nr = -1; 1959 } else 1960 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 1961 switch(role) { 1962 case MD_DISK_ROLE_SPARE: /* spare */ 1963 break; 1964 case MD_DISK_ROLE_FAULTY: /* faulty */ 1965 set_bit(Faulty, &rdev->flags); 1966 break; 1967 case MD_DISK_ROLE_JOURNAL: /* journal device */ 1968 if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) { 1969 /* journal device without journal feature */ 1970 pr_warn("md: journal device provided without journal feature, ignoring the device\n"); 1971 return -EINVAL; 1972 } 1973 set_bit(Journal, &rdev->flags); 1974 rdev->journal_tail = le64_to_cpu(sb->journal_tail); 1975 rdev->raid_disk = 0; 1976 break; 1977 default: 1978 rdev->saved_raid_disk = role; 1979 if ((le32_to_cpu(sb->feature_map) & 1980 MD_FEATURE_RECOVERY_OFFSET)) { 1981 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 1982 if (!(le32_to_cpu(sb->feature_map) & 1983 MD_FEATURE_RECOVERY_BITMAP)) 1984 rdev->saved_raid_disk = -1; 1985 } else { 1986 /* 1987 * If the array is FROZEN, then the device can't 1988 * be in_sync with rest of array. 1989 */ 1990 if (!test_bit(MD_RECOVERY_FROZEN, 1991 &mddev->recovery)) 1992 set_bit(In_sync, &rdev->flags); 1993 } 1994 rdev->raid_disk = role; 1995 break; 1996 } 1997 if (sb->devflags & WriteMostly1) 1998 set_bit(WriteMostly, &rdev->flags); 1999 if (sb->devflags & FailFast1) 2000 set_bit(FailFast, &rdev->flags); 2001 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT) 2002 set_bit(Replacement, &rdev->flags); 2003 } else /* MULTIPATH are always insync */ 2004 set_bit(In_sync, &rdev->flags); 2005 2006 return 0; 2007 } 2008 2009 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev) 2010 { 2011 struct mdp_superblock_1 *sb; 2012 struct md_rdev *rdev2; 2013 int max_dev, i; 2014 /* make rdev->sb match mddev and rdev data. */ 2015 2016 sb = page_address(rdev->sb_page); 2017 2018 sb->feature_map = 0; 2019 sb->pad0 = 0; 2020 sb->recovery_offset = cpu_to_le64(0); 2021 memset(sb->pad3, 0, sizeof(sb->pad3)); 2022 2023 sb->utime = cpu_to_le64((__u64)mddev->utime); 2024 sb->events = cpu_to_le64(mddev->events); 2025 if (mddev->in_sync) 2026 sb->resync_offset = cpu_to_le64(mddev->recovery_cp); 2027 else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags)) 2028 sb->resync_offset = cpu_to_le64(MaxSector); 2029 else 2030 sb->resync_offset = cpu_to_le64(0); 2031 2032 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); 2033 2034 sb->raid_disks = cpu_to_le32(mddev->raid_disks); 2035 sb->size = cpu_to_le64(mddev->dev_sectors); 2036 sb->chunksize = cpu_to_le32(mddev->chunk_sectors); 2037 sb->level = cpu_to_le32(mddev->level); 2038 sb->layout = cpu_to_le32(mddev->layout); 2039 if (test_bit(FailFast, &rdev->flags)) 2040 sb->devflags |= FailFast1; 2041 else 2042 sb->devflags &= ~FailFast1; 2043 2044 if (test_bit(WriteMostly, &rdev->flags)) 2045 sb->devflags |= WriteMostly1; 2046 else 2047 sb->devflags &= ~WriteMostly1; 2048 sb->data_offset = cpu_to_le64(rdev->data_offset); 2049 sb->data_size = cpu_to_le64(rdev->sectors); 2050 2051 if (mddev->bitmap && mddev->bitmap_info.file == NULL) { 2052 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset); 2053 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); 2054 } 2055 2056 if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) && 2057 !test_bit(In_sync, &rdev->flags)) { 2058 sb->feature_map |= 2059 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); 2060 sb->recovery_offset = 2061 cpu_to_le64(rdev->recovery_offset); 2062 if (rdev->saved_raid_disk >= 0 && mddev->bitmap) 2063 sb->feature_map |= 2064 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP); 2065 } 2066 /* Note: recovery_offset and journal_tail share space */ 2067 if (test_bit(Journal, &rdev->flags)) 2068 sb->journal_tail = cpu_to_le64(rdev->journal_tail); 2069 if (test_bit(Replacement, &rdev->flags)) 2070 sb->feature_map |= 2071 cpu_to_le32(MD_FEATURE_REPLACEMENT); 2072 2073 if (mddev->reshape_position != MaxSector) { 2074 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); 2075 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 2076 sb->new_layout = cpu_to_le32(mddev->new_layout); 2077 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 2078 sb->new_level = cpu_to_le32(mddev->new_level); 2079 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors); 2080 if (mddev->delta_disks == 0 && 2081 mddev->reshape_backwards) 2082 sb->feature_map 2083 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS); 2084 if (rdev->new_data_offset != rdev->data_offset) { 2085 sb->feature_map 2086 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET); 2087 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset 2088 - rdev->data_offset)); 2089 } 2090 } 2091 2092 if (mddev_is_clustered(mddev)) 2093 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED); 2094 2095 if (rdev->badblocks.count == 0) 2096 /* Nothing to do for bad blocks*/ ; 2097 else if (sb->bblog_offset == 0) 2098 /* Cannot record bad blocks on this device */ 2099 md_error(mddev, rdev); 2100 else { 2101 struct badblocks *bb = &rdev->badblocks; 2102 __le64 *bbp = (__le64 *)page_address(rdev->bb_page); 2103 u64 *p = bb->page; 2104 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS); 2105 if (bb->changed) { 2106 unsigned seq; 2107 2108 retry: 2109 seq = read_seqbegin(&bb->lock); 2110 2111 memset(bbp, 0xff, PAGE_SIZE); 2112 2113 for (i = 0 ; i < bb->count ; i++) { 2114 u64 internal_bb = p[i]; 2115 u64 store_bb = ((BB_OFFSET(internal_bb) << 10) 2116 | BB_LEN(internal_bb)); 2117 bbp[i] = cpu_to_le64(store_bb); 2118 } 2119 bb->changed = 0; 2120 if (read_seqretry(&bb->lock, seq)) 2121 goto retry; 2122 2123 bb->sector = (rdev->sb_start + 2124 (int)le32_to_cpu(sb->bblog_offset)); 2125 bb->size = le16_to_cpu(sb->bblog_size); 2126 } 2127 } 2128 2129 max_dev = 0; 2130 rdev_for_each(rdev2, mddev) 2131 if (rdev2->desc_nr+1 > max_dev) 2132 max_dev = rdev2->desc_nr+1; 2133 2134 if (max_dev > le32_to_cpu(sb->max_dev)) { 2135 int bmask; 2136 sb->max_dev = cpu_to_le32(max_dev); 2137 rdev->sb_size = max_dev * 2 + 256; 2138 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 2139 if (rdev->sb_size & bmask) 2140 rdev->sb_size = (rdev->sb_size | bmask) + 1; 2141 } else 2142 max_dev = le32_to_cpu(sb->max_dev); 2143 2144 for (i=0; i<max_dev;i++) 2145 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 2146 2147 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) 2148 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL); 2149 2150 if (test_bit(MD_HAS_PPL, &mddev->flags)) { 2151 if (test_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags)) 2152 sb->feature_map |= 2153 cpu_to_le32(MD_FEATURE_MULTIPLE_PPLS); 2154 else 2155 sb->feature_map |= cpu_to_le32(MD_FEATURE_PPL); 2156 sb->ppl.offset = cpu_to_le16(rdev->ppl.offset); 2157 sb->ppl.size = cpu_to_le16(rdev->ppl.size); 2158 } 2159 2160 rdev_for_each(rdev2, mddev) { 2161 i = rdev2->desc_nr; 2162 if (test_bit(Faulty, &rdev2->flags)) 2163 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY); 2164 else if (test_bit(In_sync, &rdev2->flags)) 2165 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 2166 else if (test_bit(Journal, &rdev2->flags)) 2167 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL); 2168 else if (rdev2->raid_disk >= 0) 2169 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 2170 else 2171 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 2172 } 2173 2174 sb->sb_csum = calc_sb_1_csum(sb); 2175 } 2176 2177 static sector_t super_1_choose_bm_space(sector_t dev_size) 2178 { 2179 sector_t bm_space; 2180 2181 /* if the device is bigger than 8Gig, save 64k for bitmap 2182 * usage, if bigger than 200Gig, save 128k 2183 */ 2184 if (dev_size < 64*2) 2185 bm_space = 0; 2186 else if (dev_size - 64*2 >= 200*1024*1024*2) 2187 bm_space = 128*2; 2188 else if (dev_size - 4*2 > 8*1024*1024*2) 2189 bm_space = 64*2; 2190 else 2191 bm_space = 4*2; 2192 return bm_space; 2193 } 2194 2195 static unsigned long long 2196 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 2197 { 2198 struct mdp_superblock_1 *sb; 2199 sector_t max_sectors; 2200 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 2201 return 0; /* component must fit device */ 2202 if (rdev->data_offset != rdev->new_data_offset) 2203 return 0; /* too confusing */ 2204 if (rdev->sb_start < rdev->data_offset) { 2205 /* minor versions 1 and 2; superblock before data */ 2206 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9; 2207 max_sectors -= rdev->data_offset; 2208 if (!num_sectors || num_sectors > max_sectors) 2209 num_sectors = max_sectors; 2210 } else if (rdev->mddev->bitmap_info.offset) { 2211 /* minor version 0 with bitmap we can't move */ 2212 return 0; 2213 } else { 2214 /* minor version 0; superblock after data */ 2215 sector_t sb_start, bm_space; 2216 sector_t dev_size = i_size_read(rdev->bdev->bd_inode) >> 9; 2217 2218 /* 8K is for superblock */ 2219 sb_start = dev_size - 8*2; 2220 sb_start &= ~(sector_t)(4*2 - 1); 2221 2222 bm_space = super_1_choose_bm_space(dev_size); 2223 2224 /* Space that can be used to store date needs to decrease 2225 * superblock bitmap space and bad block space(4K) 2226 */ 2227 max_sectors = sb_start - bm_space - 4*2; 2228 2229 if (!num_sectors || num_sectors > max_sectors) 2230 num_sectors = max_sectors; 2231 } 2232 sb = page_address(rdev->sb_page); 2233 sb->data_size = cpu_to_le64(num_sectors); 2234 sb->super_offset = cpu_to_le64(rdev->sb_start); 2235 sb->sb_csum = calc_sb_1_csum(sb); 2236 do { 2237 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 2238 rdev->sb_page); 2239 } while (md_super_wait(rdev->mddev) < 0); 2240 return num_sectors; 2241 2242 } 2243 2244 static int 2245 super_1_allow_new_offset(struct md_rdev *rdev, 2246 unsigned long long new_offset) 2247 { 2248 /* All necessary checks on new >= old have been done */ 2249 struct bitmap *bitmap; 2250 if (new_offset >= rdev->data_offset) 2251 return 1; 2252 2253 /* with 1.0 metadata, there is no metadata to tread on 2254 * so we can always move back */ 2255 if (rdev->mddev->minor_version == 0) 2256 return 1; 2257 2258 /* otherwise we must be sure not to step on 2259 * any metadata, so stay: 2260 * 36K beyond start of superblock 2261 * beyond end of badblocks 2262 * beyond write-intent bitmap 2263 */ 2264 if (rdev->sb_start + (32+4)*2 > new_offset) 2265 return 0; 2266 bitmap = rdev->mddev->bitmap; 2267 if (bitmap && !rdev->mddev->bitmap_info.file && 2268 rdev->sb_start + rdev->mddev->bitmap_info.offset + 2269 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset) 2270 return 0; 2271 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset) 2272 return 0; 2273 2274 return 1; 2275 } 2276 2277 static struct super_type super_types[] = { 2278 [0] = { 2279 .name = "0.90.0", 2280 .owner = THIS_MODULE, 2281 .load_super = super_90_load, 2282 .validate_super = super_90_validate, 2283 .sync_super = super_90_sync, 2284 .rdev_size_change = super_90_rdev_size_change, 2285 .allow_new_offset = super_90_allow_new_offset, 2286 }, 2287 [1] = { 2288 .name = "md-1", 2289 .owner = THIS_MODULE, 2290 .load_super = super_1_load, 2291 .validate_super = super_1_validate, 2292 .sync_super = super_1_sync, 2293 .rdev_size_change = super_1_rdev_size_change, 2294 .allow_new_offset = super_1_allow_new_offset, 2295 }, 2296 }; 2297 2298 static void sync_super(struct mddev *mddev, struct md_rdev *rdev) 2299 { 2300 if (mddev->sync_super) { 2301 mddev->sync_super(mddev, rdev); 2302 return; 2303 } 2304 2305 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types)); 2306 2307 super_types[mddev->major_version].sync_super(mddev, rdev); 2308 } 2309 2310 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2) 2311 { 2312 struct md_rdev *rdev, *rdev2; 2313 2314 rcu_read_lock(); 2315 rdev_for_each_rcu(rdev, mddev1) { 2316 if (test_bit(Faulty, &rdev->flags) || 2317 test_bit(Journal, &rdev->flags) || 2318 rdev->raid_disk == -1) 2319 continue; 2320 rdev_for_each_rcu(rdev2, mddev2) { 2321 if (test_bit(Faulty, &rdev2->flags) || 2322 test_bit(Journal, &rdev2->flags) || 2323 rdev2->raid_disk == -1) 2324 continue; 2325 if (rdev->bdev->bd_disk == rdev2->bdev->bd_disk) { 2326 rcu_read_unlock(); 2327 return 1; 2328 } 2329 } 2330 } 2331 rcu_read_unlock(); 2332 return 0; 2333 } 2334 2335 static LIST_HEAD(pending_raid_disks); 2336 2337 /* 2338 * Try to register data integrity profile for an mddev 2339 * 2340 * This is called when an array is started and after a disk has been kicked 2341 * from the array. It only succeeds if all working and active component devices 2342 * are integrity capable with matching profiles. 2343 */ 2344 int md_integrity_register(struct mddev *mddev) 2345 { 2346 struct md_rdev *rdev, *reference = NULL; 2347 2348 if (list_empty(&mddev->disks)) 2349 return 0; /* nothing to do */ 2350 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk)) 2351 return 0; /* shouldn't register, or already is */ 2352 rdev_for_each(rdev, mddev) { 2353 /* skip spares and non-functional disks */ 2354 if (test_bit(Faulty, &rdev->flags)) 2355 continue; 2356 if (rdev->raid_disk < 0) 2357 continue; 2358 if (!reference) { 2359 /* Use the first rdev as the reference */ 2360 reference = rdev; 2361 continue; 2362 } 2363 /* does this rdev's profile match the reference profile? */ 2364 if (blk_integrity_compare(reference->bdev->bd_disk, 2365 rdev->bdev->bd_disk) < 0) 2366 return -EINVAL; 2367 } 2368 if (!reference || !bdev_get_integrity(reference->bdev)) 2369 return 0; 2370 /* 2371 * All component devices are integrity capable and have matching 2372 * profiles, register the common profile for the md device. 2373 */ 2374 blk_integrity_register(mddev->gendisk, 2375 bdev_get_integrity(reference->bdev)); 2376 2377 pr_debug("md: data integrity enabled on %s\n", mdname(mddev)); 2378 if (bioset_integrity_create(&mddev->bio_set, BIO_POOL_SIZE)) { 2379 pr_err("md: failed to create integrity pool for %s\n", 2380 mdname(mddev)); 2381 return -EINVAL; 2382 } 2383 return 0; 2384 } 2385 EXPORT_SYMBOL(md_integrity_register); 2386 2387 /* 2388 * Attempt to add an rdev, but only if it is consistent with the current 2389 * integrity profile 2390 */ 2391 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev) 2392 { 2393 struct blk_integrity *bi_mddev; 2394 char name[BDEVNAME_SIZE]; 2395 2396 if (!mddev->gendisk) 2397 return 0; 2398 2399 bi_mddev = blk_get_integrity(mddev->gendisk); 2400 2401 if (!bi_mddev) /* nothing to do */ 2402 return 0; 2403 2404 if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) { 2405 pr_err("%s: incompatible integrity profile for %s\n", 2406 mdname(mddev), bdevname(rdev->bdev, name)); 2407 return -ENXIO; 2408 } 2409 2410 return 0; 2411 } 2412 EXPORT_SYMBOL(md_integrity_add_rdev); 2413 2414 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev) 2415 { 2416 char b[BDEVNAME_SIZE]; 2417 struct kobject *ko; 2418 int err; 2419 2420 /* prevent duplicates */ 2421 if (find_rdev(mddev, rdev->bdev->bd_dev)) 2422 return -EEXIST; 2423 2424 if ((bdev_read_only(rdev->bdev) || bdev_read_only(rdev->meta_bdev)) && 2425 mddev->pers) 2426 return -EROFS; 2427 2428 /* make sure rdev->sectors exceeds mddev->dev_sectors */ 2429 if (!test_bit(Journal, &rdev->flags) && 2430 rdev->sectors && 2431 (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) { 2432 if (mddev->pers) { 2433 /* Cannot change size, so fail 2434 * If mddev->level <= 0, then we don't care 2435 * about aligning sizes (e.g. linear) 2436 */ 2437 if (mddev->level > 0) 2438 return -ENOSPC; 2439 } else 2440 mddev->dev_sectors = rdev->sectors; 2441 } 2442 2443 /* Verify rdev->desc_nr is unique. 2444 * If it is -1, assign a free number, else 2445 * check number is not in use 2446 */ 2447 rcu_read_lock(); 2448 if (rdev->desc_nr < 0) { 2449 int choice = 0; 2450 if (mddev->pers) 2451 choice = mddev->raid_disks; 2452 while (md_find_rdev_nr_rcu(mddev, choice)) 2453 choice++; 2454 rdev->desc_nr = choice; 2455 } else { 2456 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) { 2457 rcu_read_unlock(); 2458 return -EBUSY; 2459 } 2460 } 2461 rcu_read_unlock(); 2462 if (!test_bit(Journal, &rdev->flags) && 2463 mddev->max_disks && rdev->desc_nr >= mddev->max_disks) { 2464 pr_warn("md: %s: array is limited to %d devices\n", 2465 mdname(mddev), mddev->max_disks); 2466 return -EBUSY; 2467 } 2468 bdevname(rdev->bdev,b); 2469 strreplace(b, '/', '!'); 2470 2471 rdev->mddev = mddev; 2472 pr_debug("md: bind<%s>\n", b); 2473 2474 if (mddev->raid_disks) 2475 mddev_create_serial_pool(mddev, rdev, false); 2476 2477 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b))) 2478 goto fail; 2479 2480 ko = &part_to_dev(rdev->bdev->bd_part)->kobj; 2481 /* failure here is OK */ 2482 err = sysfs_create_link(&rdev->kobj, ko, "block"); 2483 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state"); 2484 rdev->sysfs_unack_badblocks = 2485 sysfs_get_dirent_safe(rdev->kobj.sd, "unacknowledged_bad_blocks"); 2486 rdev->sysfs_badblocks = 2487 sysfs_get_dirent_safe(rdev->kobj.sd, "bad_blocks"); 2488 2489 list_add_rcu(&rdev->same_set, &mddev->disks); 2490 bd_link_disk_holder(rdev->bdev, mddev->gendisk); 2491 2492 /* May as well allow recovery to be retried once */ 2493 mddev->recovery_disabled++; 2494 2495 return 0; 2496 2497 fail: 2498 pr_warn("md: failed to register dev-%s for %s\n", 2499 b, mdname(mddev)); 2500 return err; 2501 } 2502 2503 static void rdev_delayed_delete(struct work_struct *ws) 2504 { 2505 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work); 2506 kobject_del(&rdev->kobj); 2507 kobject_put(&rdev->kobj); 2508 } 2509 2510 static void unbind_rdev_from_array(struct md_rdev *rdev) 2511 { 2512 char b[BDEVNAME_SIZE]; 2513 2514 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk); 2515 list_del_rcu(&rdev->same_set); 2516 pr_debug("md: unbind<%s>\n", bdevname(rdev->bdev,b)); 2517 mddev_destroy_serial_pool(rdev->mddev, rdev, false); 2518 rdev->mddev = NULL; 2519 sysfs_remove_link(&rdev->kobj, "block"); 2520 sysfs_put(rdev->sysfs_state); 2521 sysfs_put(rdev->sysfs_unack_badblocks); 2522 sysfs_put(rdev->sysfs_badblocks); 2523 rdev->sysfs_state = NULL; 2524 rdev->sysfs_unack_badblocks = NULL; 2525 rdev->sysfs_badblocks = NULL; 2526 rdev->badblocks.count = 0; 2527 /* We need to delay this, otherwise we can deadlock when 2528 * writing to 'remove' to "dev/state". We also need 2529 * to delay it due to rcu usage. 2530 */ 2531 synchronize_rcu(); 2532 INIT_WORK(&rdev->del_work, rdev_delayed_delete); 2533 kobject_get(&rdev->kobj); 2534 queue_work(md_rdev_misc_wq, &rdev->del_work); 2535 } 2536 2537 /* 2538 * prevent the device from being mounted, repartitioned or 2539 * otherwise reused by a RAID array (or any other kernel 2540 * subsystem), by bd_claiming the device. 2541 */ 2542 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared) 2543 { 2544 int err = 0; 2545 struct block_device *bdev; 2546 2547 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, 2548 shared ? (struct md_rdev *)lock_rdev : rdev); 2549 if (IS_ERR(bdev)) { 2550 pr_warn("md: could not open device unknown-block(%u,%u).\n", 2551 MAJOR(dev), MINOR(dev)); 2552 return PTR_ERR(bdev); 2553 } 2554 rdev->bdev = bdev; 2555 return err; 2556 } 2557 2558 static void unlock_rdev(struct md_rdev *rdev) 2559 { 2560 struct block_device *bdev = rdev->bdev; 2561 rdev->bdev = NULL; 2562 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 2563 } 2564 2565 void md_autodetect_dev(dev_t dev); 2566 2567 static void export_rdev(struct md_rdev *rdev) 2568 { 2569 char b[BDEVNAME_SIZE]; 2570 2571 pr_debug("md: export_rdev(%s)\n", bdevname(rdev->bdev,b)); 2572 md_rdev_clear(rdev); 2573 #ifndef MODULE 2574 if (test_bit(AutoDetected, &rdev->flags)) 2575 md_autodetect_dev(rdev->bdev->bd_dev); 2576 #endif 2577 unlock_rdev(rdev); 2578 kobject_put(&rdev->kobj); 2579 } 2580 2581 void md_kick_rdev_from_array(struct md_rdev *rdev) 2582 { 2583 unbind_rdev_from_array(rdev); 2584 export_rdev(rdev); 2585 } 2586 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array); 2587 2588 static void export_array(struct mddev *mddev) 2589 { 2590 struct md_rdev *rdev; 2591 2592 while (!list_empty(&mddev->disks)) { 2593 rdev = list_first_entry(&mddev->disks, struct md_rdev, 2594 same_set); 2595 md_kick_rdev_from_array(rdev); 2596 } 2597 mddev->raid_disks = 0; 2598 mddev->major_version = 0; 2599 } 2600 2601 static bool set_in_sync(struct mddev *mddev) 2602 { 2603 lockdep_assert_held(&mddev->lock); 2604 if (!mddev->in_sync) { 2605 mddev->sync_checkers++; 2606 spin_unlock(&mddev->lock); 2607 percpu_ref_switch_to_atomic_sync(&mddev->writes_pending); 2608 spin_lock(&mddev->lock); 2609 if (!mddev->in_sync && 2610 percpu_ref_is_zero(&mddev->writes_pending)) { 2611 mddev->in_sync = 1; 2612 /* 2613 * Ensure ->in_sync is visible before we clear 2614 * ->sync_checkers. 2615 */ 2616 smp_mb(); 2617 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2618 sysfs_notify_dirent_safe(mddev->sysfs_state); 2619 } 2620 if (--mddev->sync_checkers == 0) 2621 percpu_ref_switch_to_percpu(&mddev->writes_pending); 2622 } 2623 if (mddev->safemode == 1) 2624 mddev->safemode = 0; 2625 return mddev->in_sync; 2626 } 2627 2628 static void sync_sbs(struct mddev *mddev, int nospares) 2629 { 2630 /* Update each superblock (in-memory image), but 2631 * if we are allowed to, skip spares which already 2632 * have the right event counter, or have one earlier 2633 * (which would mean they aren't being marked as dirty 2634 * with the rest of the array) 2635 */ 2636 struct md_rdev *rdev; 2637 rdev_for_each(rdev, mddev) { 2638 if (rdev->sb_events == mddev->events || 2639 (nospares && 2640 rdev->raid_disk < 0 && 2641 rdev->sb_events+1 == mddev->events)) { 2642 /* Don't update this superblock */ 2643 rdev->sb_loaded = 2; 2644 } else { 2645 sync_super(mddev, rdev); 2646 rdev->sb_loaded = 1; 2647 } 2648 } 2649 } 2650 2651 static bool does_sb_need_changing(struct mddev *mddev) 2652 { 2653 struct md_rdev *rdev; 2654 struct mdp_superblock_1 *sb; 2655 int role; 2656 2657 /* Find a good rdev */ 2658 rdev_for_each(rdev, mddev) 2659 if ((rdev->raid_disk >= 0) && !test_bit(Faulty, &rdev->flags)) 2660 break; 2661 2662 /* No good device found. */ 2663 if (!rdev) 2664 return false; 2665 2666 sb = page_address(rdev->sb_page); 2667 /* Check if a device has become faulty or a spare become active */ 2668 rdev_for_each(rdev, mddev) { 2669 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 2670 /* Device activated? */ 2671 if (role == 0xffff && rdev->raid_disk >=0 && 2672 !test_bit(Faulty, &rdev->flags)) 2673 return true; 2674 /* Device turned faulty? */ 2675 if (test_bit(Faulty, &rdev->flags) && (role < 0xfffd)) 2676 return true; 2677 } 2678 2679 /* Check if any mddev parameters have changed */ 2680 if ((mddev->dev_sectors != le64_to_cpu(sb->size)) || 2681 (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) || 2682 (mddev->layout != le32_to_cpu(sb->layout)) || 2683 (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) || 2684 (mddev->chunk_sectors != le32_to_cpu(sb->chunksize))) 2685 return true; 2686 2687 return false; 2688 } 2689 2690 void md_update_sb(struct mddev *mddev, int force_change) 2691 { 2692 struct md_rdev *rdev; 2693 int sync_req; 2694 int nospares = 0; 2695 int any_badblocks_changed = 0; 2696 int ret = -1; 2697 2698 if (mddev->ro) { 2699 if (force_change) 2700 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2701 return; 2702 } 2703 2704 repeat: 2705 if (mddev_is_clustered(mddev)) { 2706 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2707 force_change = 1; 2708 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2709 nospares = 1; 2710 ret = md_cluster_ops->metadata_update_start(mddev); 2711 /* Has someone else has updated the sb */ 2712 if (!does_sb_need_changing(mddev)) { 2713 if (ret == 0) 2714 md_cluster_ops->metadata_update_cancel(mddev); 2715 bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2716 BIT(MD_SB_CHANGE_DEVS) | 2717 BIT(MD_SB_CHANGE_CLEAN)); 2718 return; 2719 } 2720 } 2721 2722 /* 2723 * First make sure individual recovery_offsets are correct 2724 * curr_resync_completed can only be used during recovery. 2725 * During reshape/resync it might use array-addresses rather 2726 * that device addresses. 2727 */ 2728 rdev_for_each(rdev, mddev) { 2729 if (rdev->raid_disk >= 0 && 2730 mddev->delta_disks >= 0 && 2731 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 2732 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery) && 2733 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 2734 !test_bit(Journal, &rdev->flags) && 2735 !test_bit(In_sync, &rdev->flags) && 2736 mddev->curr_resync_completed > rdev->recovery_offset) 2737 rdev->recovery_offset = mddev->curr_resync_completed; 2738 2739 } 2740 if (!mddev->persistent) { 2741 clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2742 clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2743 if (!mddev->external) { 2744 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 2745 rdev_for_each(rdev, mddev) { 2746 if (rdev->badblocks.changed) { 2747 rdev->badblocks.changed = 0; 2748 ack_all_badblocks(&rdev->badblocks); 2749 md_error(mddev, rdev); 2750 } 2751 clear_bit(Blocked, &rdev->flags); 2752 clear_bit(BlockedBadBlocks, &rdev->flags); 2753 wake_up(&rdev->blocked_wait); 2754 } 2755 } 2756 wake_up(&mddev->sb_wait); 2757 return; 2758 } 2759 2760 spin_lock(&mddev->lock); 2761 2762 mddev->utime = ktime_get_real_seconds(); 2763 2764 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2765 force_change = 1; 2766 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2767 /* just a clean<-> dirty transition, possibly leave spares alone, 2768 * though if events isn't the right even/odd, we will have to do 2769 * spares after all 2770 */ 2771 nospares = 1; 2772 if (force_change) 2773 nospares = 0; 2774 if (mddev->degraded) 2775 /* If the array is degraded, then skipping spares is both 2776 * dangerous and fairly pointless. 2777 * Dangerous because a device that was removed from the array 2778 * might have a event_count that still looks up-to-date, 2779 * so it can be re-added without a resync. 2780 * Pointless because if there are any spares to skip, 2781 * then a recovery will happen and soon that array won't 2782 * be degraded any more and the spare can go back to sleep then. 2783 */ 2784 nospares = 0; 2785 2786 sync_req = mddev->in_sync; 2787 2788 /* If this is just a dirty<->clean transition, and the array is clean 2789 * and 'events' is odd, we can roll back to the previous clean state */ 2790 if (nospares 2791 && (mddev->in_sync && mddev->recovery_cp == MaxSector) 2792 && mddev->can_decrease_events 2793 && mddev->events != 1) { 2794 mddev->events--; 2795 mddev->can_decrease_events = 0; 2796 } else { 2797 /* otherwise we have to go forward and ... */ 2798 mddev->events ++; 2799 mddev->can_decrease_events = nospares; 2800 } 2801 2802 /* 2803 * This 64-bit counter should never wrap. 2804 * Either we are in around ~1 trillion A.C., assuming 2805 * 1 reboot per second, or we have a bug... 2806 */ 2807 WARN_ON(mddev->events == 0); 2808 2809 rdev_for_each(rdev, mddev) { 2810 if (rdev->badblocks.changed) 2811 any_badblocks_changed++; 2812 if (test_bit(Faulty, &rdev->flags)) 2813 set_bit(FaultRecorded, &rdev->flags); 2814 } 2815 2816 sync_sbs(mddev, nospares); 2817 spin_unlock(&mddev->lock); 2818 2819 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n", 2820 mdname(mddev), mddev->in_sync); 2821 2822 if (mddev->queue) 2823 blk_add_trace_msg(mddev->queue, "md md_update_sb"); 2824 rewrite: 2825 md_bitmap_update_sb(mddev->bitmap); 2826 rdev_for_each(rdev, mddev) { 2827 char b[BDEVNAME_SIZE]; 2828 2829 if (rdev->sb_loaded != 1) 2830 continue; /* no noise on spare devices */ 2831 2832 if (!test_bit(Faulty, &rdev->flags)) { 2833 md_super_write(mddev,rdev, 2834 rdev->sb_start, rdev->sb_size, 2835 rdev->sb_page); 2836 pr_debug("md: (write) %s's sb offset: %llu\n", 2837 bdevname(rdev->bdev, b), 2838 (unsigned long long)rdev->sb_start); 2839 rdev->sb_events = mddev->events; 2840 if (rdev->badblocks.size) { 2841 md_super_write(mddev, rdev, 2842 rdev->badblocks.sector, 2843 rdev->badblocks.size << 9, 2844 rdev->bb_page); 2845 rdev->badblocks.size = 0; 2846 } 2847 2848 } else 2849 pr_debug("md: %s (skipping faulty)\n", 2850 bdevname(rdev->bdev, b)); 2851 2852 if (mddev->level == LEVEL_MULTIPATH) 2853 /* only need to write one superblock... */ 2854 break; 2855 } 2856 if (md_super_wait(mddev) < 0) 2857 goto rewrite; 2858 /* if there was a failure, MD_SB_CHANGE_DEVS was set, and we re-write super */ 2859 2860 if (mddev_is_clustered(mddev) && ret == 0) 2861 md_cluster_ops->metadata_update_finish(mddev); 2862 2863 if (mddev->in_sync != sync_req || 2864 !bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2865 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_CLEAN))) 2866 /* have to write it out again */ 2867 goto repeat; 2868 wake_up(&mddev->sb_wait); 2869 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 2870 sysfs_notify_dirent_safe(mddev->sysfs_completed); 2871 2872 rdev_for_each(rdev, mddev) { 2873 if (test_and_clear_bit(FaultRecorded, &rdev->flags)) 2874 clear_bit(Blocked, &rdev->flags); 2875 2876 if (any_badblocks_changed) 2877 ack_all_badblocks(&rdev->badblocks); 2878 clear_bit(BlockedBadBlocks, &rdev->flags); 2879 wake_up(&rdev->blocked_wait); 2880 } 2881 } 2882 EXPORT_SYMBOL(md_update_sb); 2883 2884 static int add_bound_rdev(struct md_rdev *rdev) 2885 { 2886 struct mddev *mddev = rdev->mddev; 2887 int err = 0; 2888 bool add_journal = test_bit(Journal, &rdev->flags); 2889 2890 if (!mddev->pers->hot_remove_disk || add_journal) { 2891 /* If there is hot_add_disk but no hot_remove_disk 2892 * then added disks for geometry changes, 2893 * and should be added immediately. 2894 */ 2895 super_types[mddev->major_version]. 2896 validate_super(mddev, rdev); 2897 if (add_journal) 2898 mddev_suspend(mddev); 2899 err = mddev->pers->hot_add_disk(mddev, rdev); 2900 if (add_journal) 2901 mddev_resume(mddev); 2902 if (err) { 2903 md_kick_rdev_from_array(rdev); 2904 return err; 2905 } 2906 } 2907 sysfs_notify_dirent_safe(rdev->sysfs_state); 2908 2909 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2910 if (mddev->degraded) 2911 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 2912 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2913 md_new_event(mddev); 2914 md_wakeup_thread(mddev->thread); 2915 return 0; 2916 } 2917 2918 /* words written to sysfs files may, or may not, be \n terminated. 2919 * We want to accept with case. For this we use cmd_match. 2920 */ 2921 static int cmd_match(const char *cmd, const char *str) 2922 { 2923 /* See if cmd, written into a sysfs file, matches 2924 * str. They must either be the same, or cmd can 2925 * have a trailing newline 2926 */ 2927 while (*cmd && *str && *cmd == *str) { 2928 cmd++; 2929 str++; 2930 } 2931 if (*cmd == '\n') 2932 cmd++; 2933 if (*str || *cmd) 2934 return 0; 2935 return 1; 2936 } 2937 2938 struct rdev_sysfs_entry { 2939 struct attribute attr; 2940 ssize_t (*show)(struct md_rdev *, char *); 2941 ssize_t (*store)(struct md_rdev *, const char *, size_t); 2942 }; 2943 2944 static ssize_t 2945 state_show(struct md_rdev *rdev, char *page) 2946 { 2947 char *sep = ","; 2948 size_t len = 0; 2949 unsigned long flags = READ_ONCE(rdev->flags); 2950 2951 if (test_bit(Faulty, &flags) || 2952 (!test_bit(ExternalBbl, &flags) && 2953 rdev->badblocks.unacked_exist)) 2954 len += sprintf(page+len, "faulty%s", sep); 2955 if (test_bit(In_sync, &flags)) 2956 len += sprintf(page+len, "in_sync%s", sep); 2957 if (test_bit(Journal, &flags)) 2958 len += sprintf(page+len, "journal%s", sep); 2959 if (test_bit(WriteMostly, &flags)) 2960 len += sprintf(page+len, "write_mostly%s", sep); 2961 if (test_bit(Blocked, &flags) || 2962 (rdev->badblocks.unacked_exist 2963 && !test_bit(Faulty, &flags))) 2964 len += sprintf(page+len, "blocked%s", sep); 2965 if (!test_bit(Faulty, &flags) && 2966 !test_bit(Journal, &flags) && 2967 !test_bit(In_sync, &flags)) 2968 len += sprintf(page+len, "spare%s", sep); 2969 if (test_bit(WriteErrorSeen, &flags)) 2970 len += sprintf(page+len, "write_error%s", sep); 2971 if (test_bit(WantReplacement, &flags)) 2972 len += sprintf(page+len, "want_replacement%s", sep); 2973 if (test_bit(Replacement, &flags)) 2974 len += sprintf(page+len, "replacement%s", sep); 2975 if (test_bit(ExternalBbl, &flags)) 2976 len += sprintf(page+len, "external_bbl%s", sep); 2977 if (test_bit(FailFast, &flags)) 2978 len += sprintf(page+len, "failfast%s", sep); 2979 2980 if (len) 2981 len -= strlen(sep); 2982 2983 return len+sprintf(page+len, "\n"); 2984 } 2985 2986 static ssize_t 2987 state_store(struct md_rdev *rdev, const char *buf, size_t len) 2988 { 2989 /* can write 2990 * faulty - simulates an error 2991 * remove - disconnects the device 2992 * writemostly - sets write_mostly 2993 * -writemostly - clears write_mostly 2994 * blocked - sets the Blocked flags 2995 * -blocked - clears the Blocked and possibly simulates an error 2996 * insync - sets Insync providing device isn't active 2997 * -insync - clear Insync for a device with a slot assigned, 2998 * so that it gets rebuilt based on bitmap 2999 * write_error - sets WriteErrorSeen 3000 * -write_error - clears WriteErrorSeen 3001 * {,-}failfast - set/clear FailFast 3002 */ 3003 int err = -EINVAL; 3004 if (cmd_match(buf, "faulty") && rdev->mddev->pers) { 3005 md_error(rdev->mddev, rdev); 3006 if (test_bit(Faulty, &rdev->flags)) 3007 err = 0; 3008 else 3009 err = -EBUSY; 3010 } else if (cmd_match(buf, "remove")) { 3011 if (rdev->mddev->pers) { 3012 clear_bit(Blocked, &rdev->flags); 3013 remove_and_add_spares(rdev->mddev, rdev); 3014 } 3015 if (rdev->raid_disk >= 0) 3016 err = -EBUSY; 3017 else { 3018 struct mddev *mddev = rdev->mddev; 3019 err = 0; 3020 if (mddev_is_clustered(mddev)) 3021 err = md_cluster_ops->remove_disk(mddev, rdev); 3022 3023 if (err == 0) { 3024 md_kick_rdev_from_array(rdev); 3025 if (mddev->pers) { 3026 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 3027 md_wakeup_thread(mddev->thread); 3028 } 3029 md_new_event(mddev); 3030 } 3031 } 3032 } else if (cmd_match(buf, "writemostly")) { 3033 set_bit(WriteMostly, &rdev->flags); 3034 mddev_create_serial_pool(rdev->mddev, rdev, false); 3035 err = 0; 3036 } else if (cmd_match(buf, "-writemostly")) { 3037 mddev_destroy_serial_pool(rdev->mddev, rdev, false); 3038 clear_bit(WriteMostly, &rdev->flags); 3039 err = 0; 3040 } else if (cmd_match(buf, "blocked")) { 3041 set_bit(Blocked, &rdev->flags); 3042 err = 0; 3043 } else if (cmd_match(buf, "-blocked")) { 3044 if (!test_bit(Faulty, &rdev->flags) && 3045 !test_bit(ExternalBbl, &rdev->flags) && 3046 rdev->badblocks.unacked_exist) { 3047 /* metadata handler doesn't understand badblocks, 3048 * so we need to fail the device 3049 */ 3050 md_error(rdev->mddev, rdev); 3051 } 3052 clear_bit(Blocked, &rdev->flags); 3053 clear_bit(BlockedBadBlocks, &rdev->flags); 3054 wake_up(&rdev->blocked_wait); 3055 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3056 md_wakeup_thread(rdev->mddev->thread); 3057 3058 err = 0; 3059 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) { 3060 set_bit(In_sync, &rdev->flags); 3061 err = 0; 3062 } else if (cmd_match(buf, "failfast")) { 3063 set_bit(FailFast, &rdev->flags); 3064 err = 0; 3065 } else if (cmd_match(buf, "-failfast")) { 3066 clear_bit(FailFast, &rdev->flags); 3067 err = 0; 3068 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 && 3069 !test_bit(Journal, &rdev->flags)) { 3070 if (rdev->mddev->pers == NULL) { 3071 clear_bit(In_sync, &rdev->flags); 3072 rdev->saved_raid_disk = rdev->raid_disk; 3073 rdev->raid_disk = -1; 3074 err = 0; 3075 } 3076 } else if (cmd_match(buf, "write_error")) { 3077 set_bit(WriteErrorSeen, &rdev->flags); 3078 err = 0; 3079 } else if (cmd_match(buf, "-write_error")) { 3080 clear_bit(WriteErrorSeen, &rdev->flags); 3081 err = 0; 3082 } else if (cmd_match(buf, "want_replacement")) { 3083 /* Any non-spare device that is not a replacement can 3084 * become want_replacement at any time, but we then need to 3085 * check if recovery is needed. 3086 */ 3087 if (rdev->raid_disk >= 0 && 3088 !test_bit(Journal, &rdev->flags) && 3089 !test_bit(Replacement, &rdev->flags)) 3090 set_bit(WantReplacement, &rdev->flags); 3091 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3092 md_wakeup_thread(rdev->mddev->thread); 3093 err = 0; 3094 } else if (cmd_match(buf, "-want_replacement")) { 3095 /* Clearing 'want_replacement' is always allowed. 3096 * Once replacements starts it is too late though. 3097 */ 3098 err = 0; 3099 clear_bit(WantReplacement, &rdev->flags); 3100 } else if (cmd_match(buf, "replacement")) { 3101 /* Can only set a device as a replacement when array has not 3102 * yet been started. Once running, replacement is automatic 3103 * from spares, or by assigning 'slot'. 3104 */ 3105 if (rdev->mddev->pers) 3106 err = -EBUSY; 3107 else { 3108 set_bit(Replacement, &rdev->flags); 3109 err = 0; 3110 } 3111 } else if (cmd_match(buf, "-replacement")) { 3112 /* Similarly, can only clear Replacement before start */ 3113 if (rdev->mddev->pers) 3114 err = -EBUSY; 3115 else { 3116 clear_bit(Replacement, &rdev->flags); 3117 err = 0; 3118 } 3119 } else if (cmd_match(buf, "re-add")) { 3120 if (!rdev->mddev->pers) 3121 err = -EINVAL; 3122 else if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1) && 3123 rdev->saved_raid_disk >= 0) { 3124 /* clear_bit is performed _after_ all the devices 3125 * have their local Faulty bit cleared. If any writes 3126 * happen in the meantime in the local node, they 3127 * will land in the local bitmap, which will be synced 3128 * by this node eventually 3129 */ 3130 if (!mddev_is_clustered(rdev->mddev) || 3131 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) { 3132 clear_bit(Faulty, &rdev->flags); 3133 err = add_bound_rdev(rdev); 3134 } 3135 } else 3136 err = -EBUSY; 3137 } else if (cmd_match(buf, "external_bbl") && (rdev->mddev->external)) { 3138 set_bit(ExternalBbl, &rdev->flags); 3139 rdev->badblocks.shift = 0; 3140 err = 0; 3141 } else if (cmd_match(buf, "-external_bbl") && (rdev->mddev->external)) { 3142 clear_bit(ExternalBbl, &rdev->flags); 3143 err = 0; 3144 } 3145 if (!err) 3146 sysfs_notify_dirent_safe(rdev->sysfs_state); 3147 return err ? err : len; 3148 } 3149 static struct rdev_sysfs_entry rdev_state = 3150 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store); 3151 3152 static ssize_t 3153 errors_show(struct md_rdev *rdev, char *page) 3154 { 3155 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); 3156 } 3157 3158 static ssize_t 3159 errors_store(struct md_rdev *rdev, const char *buf, size_t len) 3160 { 3161 unsigned int n; 3162 int rv; 3163 3164 rv = kstrtouint(buf, 10, &n); 3165 if (rv < 0) 3166 return rv; 3167 atomic_set(&rdev->corrected_errors, n); 3168 return len; 3169 } 3170 static struct rdev_sysfs_entry rdev_errors = 3171 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); 3172 3173 static ssize_t 3174 slot_show(struct md_rdev *rdev, char *page) 3175 { 3176 if (test_bit(Journal, &rdev->flags)) 3177 return sprintf(page, "journal\n"); 3178 else if (rdev->raid_disk < 0) 3179 return sprintf(page, "none\n"); 3180 else 3181 return sprintf(page, "%d\n", rdev->raid_disk); 3182 } 3183 3184 static ssize_t 3185 slot_store(struct md_rdev *rdev, const char *buf, size_t len) 3186 { 3187 int slot; 3188 int err; 3189 3190 if (test_bit(Journal, &rdev->flags)) 3191 return -EBUSY; 3192 if (strncmp(buf, "none", 4)==0) 3193 slot = -1; 3194 else { 3195 err = kstrtouint(buf, 10, (unsigned int *)&slot); 3196 if (err < 0) 3197 return err; 3198 } 3199 if (rdev->mddev->pers && slot == -1) { 3200 /* Setting 'slot' on an active array requires also 3201 * updating the 'rd%d' link, and communicating 3202 * with the personality with ->hot_*_disk. 3203 * For now we only support removing 3204 * failed/spare devices. This normally happens automatically, 3205 * but not when the metadata is externally managed. 3206 */ 3207 if (rdev->raid_disk == -1) 3208 return -EEXIST; 3209 /* personality does all needed checks */ 3210 if (rdev->mddev->pers->hot_remove_disk == NULL) 3211 return -EINVAL; 3212 clear_bit(Blocked, &rdev->flags); 3213 remove_and_add_spares(rdev->mddev, rdev); 3214 if (rdev->raid_disk >= 0) 3215 return -EBUSY; 3216 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3217 md_wakeup_thread(rdev->mddev->thread); 3218 } else if (rdev->mddev->pers) { 3219 /* Activating a spare .. or possibly reactivating 3220 * if we ever get bitmaps working here. 3221 */ 3222 int err; 3223 3224 if (rdev->raid_disk != -1) 3225 return -EBUSY; 3226 3227 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery)) 3228 return -EBUSY; 3229 3230 if (rdev->mddev->pers->hot_add_disk == NULL) 3231 return -EINVAL; 3232 3233 if (slot >= rdev->mddev->raid_disks && 3234 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 3235 return -ENOSPC; 3236 3237 rdev->raid_disk = slot; 3238 if (test_bit(In_sync, &rdev->flags)) 3239 rdev->saved_raid_disk = slot; 3240 else 3241 rdev->saved_raid_disk = -1; 3242 clear_bit(In_sync, &rdev->flags); 3243 clear_bit(Bitmap_sync, &rdev->flags); 3244 err = rdev->mddev->pers->hot_add_disk(rdev->mddev, rdev); 3245 if (err) { 3246 rdev->raid_disk = -1; 3247 return err; 3248 } else 3249 sysfs_notify_dirent_safe(rdev->sysfs_state); 3250 /* failure here is OK */; 3251 sysfs_link_rdev(rdev->mddev, rdev); 3252 /* don't wakeup anyone, leave that to userspace. */ 3253 } else { 3254 if (slot >= rdev->mddev->raid_disks && 3255 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 3256 return -ENOSPC; 3257 rdev->raid_disk = slot; 3258 /* assume it is working */ 3259 clear_bit(Faulty, &rdev->flags); 3260 clear_bit(WriteMostly, &rdev->flags); 3261 set_bit(In_sync, &rdev->flags); 3262 sysfs_notify_dirent_safe(rdev->sysfs_state); 3263 } 3264 return len; 3265 } 3266 3267 static struct rdev_sysfs_entry rdev_slot = 3268 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); 3269 3270 static ssize_t 3271 offset_show(struct md_rdev *rdev, char *page) 3272 { 3273 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); 3274 } 3275 3276 static ssize_t 3277 offset_store(struct md_rdev *rdev, const char *buf, size_t len) 3278 { 3279 unsigned long long offset; 3280 if (kstrtoull(buf, 10, &offset) < 0) 3281 return -EINVAL; 3282 if (rdev->mddev->pers && rdev->raid_disk >= 0) 3283 return -EBUSY; 3284 if (rdev->sectors && rdev->mddev->external) 3285 /* Must set offset before size, so overlap checks 3286 * can be sane */ 3287 return -EBUSY; 3288 rdev->data_offset = offset; 3289 rdev->new_data_offset = offset; 3290 return len; 3291 } 3292 3293 static struct rdev_sysfs_entry rdev_offset = 3294 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); 3295 3296 static ssize_t new_offset_show(struct md_rdev *rdev, char *page) 3297 { 3298 return sprintf(page, "%llu\n", 3299 (unsigned long long)rdev->new_data_offset); 3300 } 3301 3302 static ssize_t new_offset_store(struct md_rdev *rdev, 3303 const char *buf, size_t len) 3304 { 3305 unsigned long long new_offset; 3306 struct mddev *mddev = rdev->mddev; 3307 3308 if (kstrtoull(buf, 10, &new_offset) < 0) 3309 return -EINVAL; 3310 3311 if (mddev->sync_thread || 3312 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery)) 3313 return -EBUSY; 3314 if (new_offset == rdev->data_offset) 3315 /* reset is always permitted */ 3316 ; 3317 else if (new_offset > rdev->data_offset) { 3318 /* must not push array size beyond rdev_sectors */ 3319 if (new_offset - rdev->data_offset 3320 + mddev->dev_sectors > rdev->sectors) 3321 return -E2BIG; 3322 } 3323 /* Metadata worries about other space details. */ 3324 3325 /* decreasing the offset is inconsistent with a backwards 3326 * reshape. 3327 */ 3328 if (new_offset < rdev->data_offset && 3329 mddev->reshape_backwards) 3330 return -EINVAL; 3331 /* Increasing offset is inconsistent with forwards 3332 * reshape. reshape_direction should be set to 3333 * 'backwards' first. 3334 */ 3335 if (new_offset > rdev->data_offset && 3336 !mddev->reshape_backwards) 3337 return -EINVAL; 3338 3339 if (mddev->pers && mddev->persistent && 3340 !super_types[mddev->major_version] 3341 .allow_new_offset(rdev, new_offset)) 3342 return -E2BIG; 3343 rdev->new_data_offset = new_offset; 3344 if (new_offset > rdev->data_offset) 3345 mddev->reshape_backwards = 1; 3346 else if (new_offset < rdev->data_offset) 3347 mddev->reshape_backwards = 0; 3348 3349 return len; 3350 } 3351 static struct rdev_sysfs_entry rdev_new_offset = 3352 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store); 3353 3354 static ssize_t 3355 rdev_size_show(struct md_rdev *rdev, char *page) 3356 { 3357 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2); 3358 } 3359 3360 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2) 3361 { 3362 /* check if two start/length pairs overlap */ 3363 if (s1+l1 <= s2) 3364 return 0; 3365 if (s2+l2 <= s1) 3366 return 0; 3367 return 1; 3368 } 3369 3370 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors) 3371 { 3372 unsigned long long blocks; 3373 sector_t new; 3374 3375 if (kstrtoull(buf, 10, &blocks) < 0) 3376 return -EINVAL; 3377 3378 if (blocks & 1ULL << (8 * sizeof(blocks) - 1)) 3379 return -EINVAL; /* sector conversion overflow */ 3380 3381 new = blocks * 2; 3382 if (new != blocks * 2) 3383 return -EINVAL; /* unsigned long long to sector_t overflow */ 3384 3385 *sectors = new; 3386 return 0; 3387 } 3388 3389 static ssize_t 3390 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3391 { 3392 struct mddev *my_mddev = rdev->mddev; 3393 sector_t oldsectors = rdev->sectors; 3394 sector_t sectors; 3395 3396 if (test_bit(Journal, &rdev->flags)) 3397 return -EBUSY; 3398 if (strict_blocks_to_sectors(buf, §ors) < 0) 3399 return -EINVAL; 3400 if (rdev->data_offset != rdev->new_data_offset) 3401 return -EINVAL; /* too confusing */ 3402 if (my_mddev->pers && rdev->raid_disk >= 0) { 3403 if (my_mddev->persistent) { 3404 sectors = super_types[my_mddev->major_version]. 3405 rdev_size_change(rdev, sectors); 3406 if (!sectors) 3407 return -EBUSY; 3408 } else if (!sectors) 3409 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) - 3410 rdev->data_offset; 3411 if (!my_mddev->pers->resize) 3412 /* Cannot change size for RAID0 or Linear etc */ 3413 return -EINVAL; 3414 } 3415 if (sectors < my_mddev->dev_sectors) 3416 return -EINVAL; /* component must fit device */ 3417 3418 rdev->sectors = sectors; 3419 if (sectors > oldsectors && my_mddev->external) { 3420 /* Need to check that all other rdevs with the same 3421 * ->bdev do not overlap. 'rcu' is sufficient to walk 3422 * the rdev lists safely. 3423 * This check does not provide a hard guarantee, it 3424 * just helps avoid dangerous mistakes. 3425 */ 3426 struct mddev *mddev; 3427 int overlap = 0; 3428 struct list_head *tmp; 3429 3430 rcu_read_lock(); 3431 for_each_mddev(mddev, tmp) { 3432 struct md_rdev *rdev2; 3433 3434 rdev_for_each(rdev2, mddev) 3435 if (rdev->bdev == rdev2->bdev && 3436 rdev != rdev2 && 3437 overlaps(rdev->data_offset, rdev->sectors, 3438 rdev2->data_offset, 3439 rdev2->sectors)) { 3440 overlap = 1; 3441 break; 3442 } 3443 if (overlap) { 3444 mddev_put(mddev); 3445 break; 3446 } 3447 } 3448 rcu_read_unlock(); 3449 if (overlap) { 3450 /* Someone else could have slipped in a size 3451 * change here, but doing so is just silly. 3452 * We put oldsectors back because we *know* it is 3453 * safe, and trust userspace not to race with 3454 * itself 3455 */ 3456 rdev->sectors = oldsectors; 3457 return -EBUSY; 3458 } 3459 } 3460 return len; 3461 } 3462 3463 static struct rdev_sysfs_entry rdev_size = 3464 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); 3465 3466 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page) 3467 { 3468 unsigned long long recovery_start = rdev->recovery_offset; 3469 3470 if (test_bit(In_sync, &rdev->flags) || 3471 recovery_start == MaxSector) 3472 return sprintf(page, "none\n"); 3473 3474 return sprintf(page, "%llu\n", recovery_start); 3475 } 3476 3477 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len) 3478 { 3479 unsigned long long recovery_start; 3480 3481 if (cmd_match(buf, "none")) 3482 recovery_start = MaxSector; 3483 else if (kstrtoull(buf, 10, &recovery_start)) 3484 return -EINVAL; 3485 3486 if (rdev->mddev->pers && 3487 rdev->raid_disk >= 0) 3488 return -EBUSY; 3489 3490 rdev->recovery_offset = recovery_start; 3491 if (recovery_start == MaxSector) 3492 set_bit(In_sync, &rdev->flags); 3493 else 3494 clear_bit(In_sync, &rdev->flags); 3495 return len; 3496 } 3497 3498 static struct rdev_sysfs_entry rdev_recovery_start = 3499 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store); 3500 3501 /* sysfs access to bad-blocks list. 3502 * We present two files. 3503 * 'bad-blocks' lists sector numbers and lengths of ranges that 3504 * are recorded as bad. The list is truncated to fit within 3505 * the one-page limit of sysfs. 3506 * Writing "sector length" to this file adds an acknowledged 3507 * bad block list. 3508 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet 3509 * been acknowledged. Writing to this file adds bad blocks 3510 * without acknowledging them. This is largely for testing. 3511 */ 3512 static ssize_t bb_show(struct md_rdev *rdev, char *page) 3513 { 3514 return badblocks_show(&rdev->badblocks, page, 0); 3515 } 3516 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len) 3517 { 3518 int rv = badblocks_store(&rdev->badblocks, page, len, 0); 3519 /* Maybe that ack was all we needed */ 3520 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags)) 3521 wake_up(&rdev->blocked_wait); 3522 return rv; 3523 } 3524 static struct rdev_sysfs_entry rdev_bad_blocks = 3525 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store); 3526 3527 static ssize_t ubb_show(struct md_rdev *rdev, char *page) 3528 { 3529 return badblocks_show(&rdev->badblocks, page, 1); 3530 } 3531 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len) 3532 { 3533 return badblocks_store(&rdev->badblocks, page, len, 1); 3534 } 3535 static struct rdev_sysfs_entry rdev_unack_bad_blocks = 3536 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store); 3537 3538 static ssize_t 3539 ppl_sector_show(struct md_rdev *rdev, char *page) 3540 { 3541 return sprintf(page, "%llu\n", (unsigned long long)rdev->ppl.sector); 3542 } 3543 3544 static ssize_t 3545 ppl_sector_store(struct md_rdev *rdev, const char *buf, size_t len) 3546 { 3547 unsigned long long sector; 3548 3549 if (kstrtoull(buf, 10, §or) < 0) 3550 return -EINVAL; 3551 if (sector != (sector_t)sector) 3552 return -EINVAL; 3553 3554 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3555 rdev->raid_disk >= 0) 3556 return -EBUSY; 3557 3558 if (rdev->mddev->persistent) { 3559 if (rdev->mddev->major_version == 0) 3560 return -EINVAL; 3561 if ((sector > rdev->sb_start && 3562 sector - rdev->sb_start > S16_MAX) || 3563 (sector < rdev->sb_start && 3564 rdev->sb_start - sector > -S16_MIN)) 3565 return -EINVAL; 3566 rdev->ppl.offset = sector - rdev->sb_start; 3567 } else if (!rdev->mddev->external) { 3568 return -EBUSY; 3569 } 3570 rdev->ppl.sector = sector; 3571 return len; 3572 } 3573 3574 static struct rdev_sysfs_entry rdev_ppl_sector = 3575 __ATTR(ppl_sector, S_IRUGO|S_IWUSR, ppl_sector_show, ppl_sector_store); 3576 3577 static ssize_t 3578 ppl_size_show(struct md_rdev *rdev, char *page) 3579 { 3580 return sprintf(page, "%u\n", rdev->ppl.size); 3581 } 3582 3583 static ssize_t 3584 ppl_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3585 { 3586 unsigned int size; 3587 3588 if (kstrtouint(buf, 10, &size) < 0) 3589 return -EINVAL; 3590 3591 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3592 rdev->raid_disk >= 0) 3593 return -EBUSY; 3594 3595 if (rdev->mddev->persistent) { 3596 if (rdev->mddev->major_version == 0) 3597 return -EINVAL; 3598 if (size > U16_MAX) 3599 return -EINVAL; 3600 } else if (!rdev->mddev->external) { 3601 return -EBUSY; 3602 } 3603 rdev->ppl.size = size; 3604 return len; 3605 } 3606 3607 static struct rdev_sysfs_entry rdev_ppl_size = 3608 __ATTR(ppl_size, S_IRUGO|S_IWUSR, ppl_size_show, ppl_size_store); 3609 3610 static struct attribute *rdev_default_attrs[] = { 3611 &rdev_state.attr, 3612 &rdev_errors.attr, 3613 &rdev_slot.attr, 3614 &rdev_offset.attr, 3615 &rdev_new_offset.attr, 3616 &rdev_size.attr, 3617 &rdev_recovery_start.attr, 3618 &rdev_bad_blocks.attr, 3619 &rdev_unack_bad_blocks.attr, 3620 &rdev_ppl_sector.attr, 3621 &rdev_ppl_size.attr, 3622 NULL, 3623 }; 3624 static ssize_t 3625 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 3626 { 3627 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3628 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3629 3630 if (!entry->show) 3631 return -EIO; 3632 if (!rdev->mddev) 3633 return -ENODEV; 3634 return entry->show(rdev, page); 3635 } 3636 3637 static ssize_t 3638 rdev_attr_store(struct kobject *kobj, struct attribute *attr, 3639 const char *page, size_t length) 3640 { 3641 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3642 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3643 ssize_t rv; 3644 struct mddev *mddev = rdev->mddev; 3645 3646 if (!entry->store) 3647 return -EIO; 3648 if (!capable(CAP_SYS_ADMIN)) 3649 return -EACCES; 3650 rv = mddev ? mddev_lock(mddev) : -ENODEV; 3651 if (!rv) { 3652 if (rdev->mddev == NULL) 3653 rv = -ENODEV; 3654 else 3655 rv = entry->store(rdev, page, length); 3656 mddev_unlock(mddev); 3657 } 3658 return rv; 3659 } 3660 3661 static void rdev_free(struct kobject *ko) 3662 { 3663 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj); 3664 kfree(rdev); 3665 } 3666 static const struct sysfs_ops rdev_sysfs_ops = { 3667 .show = rdev_attr_show, 3668 .store = rdev_attr_store, 3669 }; 3670 static struct kobj_type rdev_ktype = { 3671 .release = rdev_free, 3672 .sysfs_ops = &rdev_sysfs_ops, 3673 .default_attrs = rdev_default_attrs, 3674 }; 3675 3676 int md_rdev_init(struct md_rdev *rdev) 3677 { 3678 rdev->desc_nr = -1; 3679 rdev->saved_raid_disk = -1; 3680 rdev->raid_disk = -1; 3681 rdev->flags = 0; 3682 rdev->data_offset = 0; 3683 rdev->new_data_offset = 0; 3684 rdev->sb_events = 0; 3685 rdev->last_read_error = 0; 3686 rdev->sb_loaded = 0; 3687 rdev->bb_page = NULL; 3688 atomic_set(&rdev->nr_pending, 0); 3689 atomic_set(&rdev->read_errors, 0); 3690 atomic_set(&rdev->corrected_errors, 0); 3691 3692 INIT_LIST_HEAD(&rdev->same_set); 3693 init_waitqueue_head(&rdev->blocked_wait); 3694 3695 /* Add space to store bad block list. 3696 * This reserves the space even on arrays where it cannot 3697 * be used - I wonder if that matters 3698 */ 3699 return badblocks_init(&rdev->badblocks, 0); 3700 } 3701 EXPORT_SYMBOL_GPL(md_rdev_init); 3702 /* 3703 * Import a device. If 'super_format' >= 0, then sanity check the superblock 3704 * 3705 * mark the device faulty if: 3706 * 3707 * - the device is nonexistent (zero size) 3708 * - the device has no valid superblock 3709 * 3710 * a faulty rdev _never_ has rdev->sb set. 3711 */ 3712 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor) 3713 { 3714 char b[BDEVNAME_SIZE]; 3715 int err; 3716 struct md_rdev *rdev; 3717 sector_t size; 3718 3719 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 3720 if (!rdev) 3721 return ERR_PTR(-ENOMEM); 3722 3723 err = md_rdev_init(rdev); 3724 if (err) 3725 goto abort_free; 3726 err = alloc_disk_sb(rdev); 3727 if (err) 3728 goto abort_free; 3729 3730 err = lock_rdev(rdev, newdev, super_format == -2); 3731 if (err) 3732 goto abort_free; 3733 3734 kobject_init(&rdev->kobj, &rdev_ktype); 3735 3736 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS; 3737 if (!size) { 3738 pr_warn("md: %s has zero or unknown size, marking faulty!\n", 3739 bdevname(rdev->bdev,b)); 3740 err = -EINVAL; 3741 goto abort_free; 3742 } 3743 3744 if (super_format >= 0) { 3745 err = super_types[super_format]. 3746 load_super(rdev, NULL, super_minor); 3747 if (err == -EINVAL) { 3748 pr_warn("md: %s does not have a valid v%d.%d superblock, not importing!\n", 3749 bdevname(rdev->bdev,b), 3750 super_format, super_minor); 3751 goto abort_free; 3752 } 3753 if (err < 0) { 3754 pr_warn("md: could not read %s's sb, not importing!\n", 3755 bdevname(rdev->bdev,b)); 3756 goto abort_free; 3757 } 3758 } 3759 3760 return rdev; 3761 3762 abort_free: 3763 if (rdev->bdev) 3764 unlock_rdev(rdev); 3765 md_rdev_clear(rdev); 3766 kfree(rdev); 3767 return ERR_PTR(err); 3768 } 3769 3770 /* 3771 * Check a full RAID array for plausibility 3772 */ 3773 3774 static int analyze_sbs(struct mddev *mddev) 3775 { 3776 int i; 3777 struct md_rdev *rdev, *freshest, *tmp; 3778 char b[BDEVNAME_SIZE]; 3779 3780 freshest = NULL; 3781 rdev_for_each_safe(rdev, tmp, mddev) 3782 switch (super_types[mddev->major_version]. 3783 load_super(rdev, freshest, mddev->minor_version)) { 3784 case 1: 3785 freshest = rdev; 3786 break; 3787 case 0: 3788 break; 3789 default: 3790 pr_warn("md: fatal superblock inconsistency in %s -- removing from array\n", 3791 bdevname(rdev->bdev,b)); 3792 md_kick_rdev_from_array(rdev); 3793 } 3794 3795 /* Cannot find a valid fresh disk */ 3796 if (!freshest) { 3797 pr_warn("md: cannot find a valid disk\n"); 3798 return -EINVAL; 3799 } 3800 3801 super_types[mddev->major_version]. 3802 validate_super(mddev, freshest); 3803 3804 i = 0; 3805 rdev_for_each_safe(rdev, tmp, mddev) { 3806 if (mddev->max_disks && 3807 (rdev->desc_nr >= mddev->max_disks || 3808 i > mddev->max_disks)) { 3809 pr_warn("md: %s: %s: only %d devices permitted\n", 3810 mdname(mddev), bdevname(rdev->bdev, b), 3811 mddev->max_disks); 3812 md_kick_rdev_from_array(rdev); 3813 continue; 3814 } 3815 if (rdev != freshest) { 3816 if (super_types[mddev->major_version]. 3817 validate_super(mddev, rdev)) { 3818 pr_warn("md: kicking non-fresh %s from array!\n", 3819 bdevname(rdev->bdev,b)); 3820 md_kick_rdev_from_array(rdev); 3821 continue; 3822 } 3823 } 3824 if (mddev->level == LEVEL_MULTIPATH) { 3825 rdev->desc_nr = i++; 3826 rdev->raid_disk = rdev->desc_nr; 3827 set_bit(In_sync, &rdev->flags); 3828 } else if (rdev->raid_disk >= 3829 (mddev->raid_disks - min(0, mddev->delta_disks)) && 3830 !test_bit(Journal, &rdev->flags)) { 3831 rdev->raid_disk = -1; 3832 clear_bit(In_sync, &rdev->flags); 3833 } 3834 } 3835 3836 return 0; 3837 } 3838 3839 /* Read a fixed-point number. 3840 * Numbers in sysfs attributes should be in "standard" units where 3841 * possible, so time should be in seconds. 3842 * However we internally use a a much smaller unit such as 3843 * milliseconds or jiffies. 3844 * This function takes a decimal number with a possible fractional 3845 * component, and produces an integer which is the result of 3846 * multiplying that number by 10^'scale'. 3847 * all without any floating-point arithmetic. 3848 */ 3849 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale) 3850 { 3851 unsigned long result = 0; 3852 long decimals = -1; 3853 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) { 3854 if (*cp == '.') 3855 decimals = 0; 3856 else if (decimals < scale) { 3857 unsigned int value; 3858 value = *cp - '0'; 3859 result = result * 10 + value; 3860 if (decimals >= 0) 3861 decimals++; 3862 } 3863 cp++; 3864 } 3865 if (*cp == '\n') 3866 cp++; 3867 if (*cp) 3868 return -EINVAL; 3869 if (decimals < 0) 3870 decimals = 0; 3871 *res = result * int_pow(10, scale - decimals); 3872 return 0; 3873 } 3874 3875 static ssize_t 3876 safe_delay_show(struct mddev *mddev, char *page) 3877 { 3878 int msec = (mddev->safemode_delay*1000)/HZ; 3879 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000); 3880 } 3881 static ssize_t 3882 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len) 3883 { 3884 unsigned long msec; 3885 3886 if (mddev_is_clustered(mddev)) { 3887 pr_warn("md: Safemode is disabled for clustered mode\n"); 3888 return -EINVAL; 3889 } 3890 3891 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0) 3892 return -EINVAL; 3893 if (msec == 0) 3894 mddev->safemode_delay = 0; 3895 else { 3896 unsigned long old_delay = mddev->safemode_delay; 3897 unsigned long new_delay = (msec*HZ)/1000; 3898 3899 if (new_delay == 0) 3900 new_delay = 1; 3901 mddev->safemode_delay = new_delay; 3902 if (new_delay < old_delay || old_delay == 0) 3903 mod_timer(&mddev->safemode_timer, jiffies+1); 3904 } 3905 return len; 3906 } 3907 static struct md_sysfs_entry md_safe_delay = 3908 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); 3909 3910 static ssize_t 3911 level_show(struct mddev *mddev, char *page) 3912 { 3913 struct md_personality *p; 3914 int ret; 3915 spin_lock(&mddev->lock); 3916 p = mddev->pers; 3917 if (p) 3918 ret = sprintf(page, "%s\n", p->name); 3919 else if (mddev->clevel[0]) 3920 ret = sprintf(page, "%s\n", mddev->clevel); 3921 else if (mddev->level != LEVEL_NONE) 3922 ret = sprintf(page, "%d\n", mddev->level); 3923 else 3924 ret = 0; 3925 spin_unlock(&mddev->lock); 3926 return ret; 3927 } 3928 3929 static ssize_t 3930 level_store(struct mddev *mddev, const char *buf, size_t len) 3931 { 3932 char clevel[16]; 3933 ssize_t rv; 3934 size_t slen = len; 3935 struct md_personality *pers, *oldpers; 3936 long level; 3937 void *priv, *oldpriv; 3938 struct md_rdev *rdev; 3939 3940 if (slen == 0 || slen >= sizeof(clevel)) 3941 return -EINVAL; 3942 3943 rv = mddev_lock(mddev); 3944 if (rv) 3945 return rv; 3946 3947 if (mddev->pers == NULL) { 3948 strncpy(mddev->clevel, buf, slen); 3949 if (mddev->clevel[slen-1] == '\n') 3950 slen--; 3951 mddev->clevel[slen] = 0; 3952 mddev->level = LEVEL_NONE; 3953 rv = len; 3954 goto out_unlock; 3955 } 3956 rv = -EROFS; 3957 if (mddev->ro) 3958 goto out_unlock; 3959 3960 /* request to change the personality. Need to ensure: 3961 * - array is not engaged in resync/recovery/reshape 3962 * - old personality can be suspended 3963 * - new personality will access other array. 3964 */ 3965 3966 rv = -EBUSY; 3967 if (mddev->sync_thread || 3968 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 3969 mddev->reshape_position != MaxSector || 3970 mddev->sysfs_active) 3971 goto out_unlock; 3972 3973 rv = -EINVAL; 3974 if (!mddev->pers->quiesce) { 3975 pr_warn("md: %s: %s does not support online personality change\n", 3976 mdname(mddev), mddev->pers->name); 3977 goto out_unlock; 3978 } 3979 3980 /* Now find the new personality */ 3981 strncpy(clevel, buf, slen); 3982 if (clevel[slen-1] == '\n') 3983 slen--; 3984 clevel[slen] = 0; 3985 if (kstrtol(clevel, 10, &level)) 3986 level = LEVEL_NONE; 3987 3988 if (request_module("md-%s", clevel) != 0) 3989 request_module("md-level-%s", clevel); 3990 spin_lock(&pers_lock); 3991 pers = find_pers(level, clevel); 3992 if (!pers || !try_module_get(pers->owner)) { 3993 spin_unlock(&pers_lock); 3994 pr_warn("md: personality %s not loaded\n", clevel); 3995 rv = -EINVAL; 3996 goto out_unlock; 3997 } 3998 spin_unlock(&pers_lock); 3999 4000 if (pers == mddev->pers) { 4001 /* Nothing to do! */ 4002 module_put(pers->owner); 4003 rv = len; 4004 goto out_unlock; 4005 } 4006 if (!pers->takeover) { 4007 module_put(pers->owner); 4008 pr_warn("md: %s: %s does not support personality takeover\n", 4009 mdname(mddev), clevel); 4010 rv = -EINVAL; 4011 goto out_unlock; 4012 } 4013 4014 rdev_for_each(rdev, mddev) 4015 rdev->new_raid_disk = rdev->raid_disk; 4016 4017 /* ->takeover must set new_* and/or delta_disks 4018 * if it succeeds, and may set them when it fails. 4019 */ 4020 priv = pers->takeover(mddev); 4021 if (IS_ERR(priv)) { 4022 mddev->new_level = mddev->level; 4023 mddev->new_layout = mddev->layout; 4024 mddev->new_chunk_sectors = mddev->chunk_sectors; 4025 mddev->raid_disks -= mddev->delta_disks; 4026 mddev->delta_disks = 0; 4027 mddev->reshape_backwards = 0; 4028 module_put(pers->owner); 4029 pr_warn("md: %s: %s would not accept array\n", 4030 mdname(mddev), clevel); 4031 rv = PTR_ERR(priv); 4032 goto out_unlock; 4033 } 4034 4035 /* Looks like we have a winner */ 4036 mddev_suspend(mddev); 4037 mddev_detach(mddev); 4038 4039 spin_lock(&mddev->lock); 4040 oldpers = mddev->pers; 4041 oldpriv = mddev->private; 4042 mddev->pers = pers; 4043 mddev->private = priv; 4044 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 4045 mddev->level = mddev->new_level; 4046 mddev->layout = mddev->new_layout; 4047 mddev->chunk_sectors = mddev->new_chunk_sectors; 4048 mddev->delta_disks = 0; 4049 mddev->reshape_backwards = 0; 4050 mddev->degraded = 0; 4051 spin_unlock(&mddev->lock); 4052 4053 if (oldpers->sync_request == NULL && 4054 mddev->external) { 4055 /* We are converting from a no-redundancy array 4056 * to a redundancy array and metadata is managed 4057 * externally so we need to be sure that writes 4058 * won't block due to a need to transition 4059 * clean->dirty 4060 * until external management is started. 4061 */ 4062 mddev->in_sync = 0; 4063 mddev->safemode_delay = 0; 4064 mddev->safemode = 0; 4065 } 4066 4067 oldpers->free(mddev, oldpriv); 4068 4069 if (oldpers->sync_request == NULL && 4070 pers->sync_request != NULL) { 4071 /* need to add the md_redundancy_group */ 4072 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 4073 pr_warn("md: cannot register extra attributes for %s\n", 4074 mdname(mddev)); 4075 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action"); 4076 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed"); 4077 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded"); 4078 } 4079 if (oldpers->sync_request != NULL && 4080 pers->sync_request == NULL) { 4081 /* need to remove the md_redundancy_group */ 4082 if (mddev->to_remove == NULL) 4083 mddev->to_remove = &md_redundancy_group; 4084 } 4085 4086 module_put(oldpers->owner); 4087 4088 rdev_for_each(rdev, mddev) { 4089 if (rdev->raid_disk < 0) 4090 continue; 4091 if (rdev->new_raid_disk >= mddev->raid_disks) 4092 rdev->new_raid_disk = -1; 4093 if (rdev->new_raid_disk == rdev->raid_disk) 4094 continue; 4095 sysfs_unlink_rdev(mddev, rdev); 4096 } 4097 rdev_for_each(rdev, mddev) { 4098 if (rdev->raid_disk < 0) 4099 continue; 4100 if (rdev->new_raid_disk == rdev->raid_disk) 4101 continue; 4102 rdev->raid_disk = rdev->new_raid_disk; 4103 if (rdev->raid_disk < 0) 4104 clear_bit(In_sync, &rdev->flags); 4105 else { 4106 if (sysfs_link_rdev(mddev, rdev)) 4107 pr_warn("md: cannot register rd%d for %s after level change\n", 4108 rdev->raid_disk, mdname(mddev)); 4109 } 4110 } 4111 4112 if (pers->sync_request == NULL) { 4113 /* this is now an array without redundancy, so 4114 * it must always be in_sync 4115 */ 4116 mddev->in_sync = 1; 4117 del_timer_sync(&mddev->safemode_timer); 4118 } 4119 blk_set_stacking_limits(&mddev->queue->limits); 4120 pers->run(mddev); 4121 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4122 mddev_resume(mddev); 4123 if (!mddev->thread) 4124 md_update_sb(mddev, 1); 4125 sysfs_notify_dirent_safe(mddev->sysfs_level); 4126 md_new_event(mddev); 4127 rv = len; 4128 out_unlock: 4129 mddev_unlock(mddev); 4130 return rv; 4131 } 4132 4133 static struct md_sysfs_entry md_level = 4134 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); 4135 4136 static ssize_t 4137 layout_show(struct mddev *mddev, char *page) 4138 { 4139 /* just a number, not meaningful for all levels */ 4140 if (mddev->reshape_position != MaxSector && 4141 mddev->layout != mddev->new_layout) 4142 return sprintf(page, "%d (%d)\n", 4143 mddev->new_layout, mddev->layout); 4144 return sprintf(page, "%d\n", mddev->layout); 4145 } 4146 4147 static ssize_t 4148 layout_store(struct mddev *mddev, const char *buf, size_t len) 4149 { 4150 unsigned int n; 4151 int err; 4152 4153 err = kstrtouint(buf, 10, &n); 4154 if (err < 0) 4155 return err; 4156 err = mddev_lock(mddev); 4157 if (err) 4158 return err; 4159 4160 if (mddev->pers) { 4161 if (mddev->pers->check_reshape == NULL) 4162 err = -EBUSY; 4163 else if (mddev->ro) 4164 err = -EROFS; 4165 else { 4166 mddev->new_layout = n; 4167 err = mddev->pers->check_reshape(mddev); 4168 if (err) 4169 mddev->new_layout = mddev->layout; 4170 } 4171 } else { 4172 mddev->new_layout = n; 4173 if (mddev->reshape_position == MaxSector) 4174 mddev->layout = n; 4175 } 4176 mddev_unlock(mddev); 4177 return err ?: len; 4178 } 4179 static struct md_sysfs_entry md_layout = 4180 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); 4181 4182 static ssize_t 4183 raid_disks_show(struct mddev *mddev, char *page) 4184 { 4185 if (mddev->raid_disks == 0) 4186 return 0; 4187 if (mddev->reshape_position != MaxSector && 4188 mddev->delta_disks != 0) 4189 return sprintf(page, "%d (%d)\n", mddev->raid_disks, 4190 mddev->raid_disks - mddev->delta_disks); 4191 return sprintf(page, "%d\n", mddev->raid_disks); 4192 } 4193 4194 static int update_raid_disks(struct mddev *mddev, int raid_disks); 4195 4196 static ssize_t 4197 raid_disks_store(struct mddev *mddev, const char *buf, size_t len) 4198 { 4199 unsigned int n; 4200 int err; 4201 4202 err = kstrtouint(buf, 10, &n); 4203 if (err < 0) 4204 return err; 4205 4206 err = mddev_lock(mddev); 4207 if (err) 4208 return err; 4209 if (mddev->pers) 4210 err = update_raid_disks(mddev, n); 4211 else if (mddev->reshape_position != MaxSector) { 4212 struct md_rdev *rdev; 4213 int olddisks = mddev->raid_disks - mddev->delta_disks; 4214 4215 err = -EINVAL; 4216 rdev_for_each(rdev, mddev) { 4217 if (olddisks < n && 4218 rdev->data_offset < rdev->new_data_offset) 4219 goto out_unlock; 4220 if (olddisks > n && 4221 rdev->data_offset > rdev->new_data_offset) 4222 goto out_unlock; 4223 } 4224 err = 0; 4225 mddev->delta_disks = n - olddisks; 4226 mddev->raid_disks = n; 4227 mddev->reshape_backwards = (mddev->delta_disks < 0); 4228 } else 4229 mddev->raid_disks = n; 4230 out_unlock: 4231 mddev_unlock(mddev); 4232 return err ? err : len; 4233 } 4234 static struct md_sysfs_entry md_raid_disks = 4235 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); 4236 4237 static ssize_t 4238 uuid_show(struct mddev *mddev, char *page) 4239 { 4240 return sprintf(page, "%pU\n", mddev->uuid); 4241 } 4242 static struct md_sysfs_entry md_uuid = 4243 __ATTR(uuid, S_IRUGO, uuid_show, NULL); 4244 4245 static ssize_t 4246 chunk_size_show(struct mddev *mddev, char *page) 4247 { 4248 if (mddev->reshape_position != MaxSector && 4249 mddev->chunk_sectors != mddev->new_chunk_sectors) 4250 return sprintf(page, "%d (%d)\n", 4251 mddev->new_chunk_sectors << 9, 4252 mddev->chunk_sectors << 9); 4253 return sprintf(page, "%d\n", mddev->chunk_sectors << 9); 4254 } 4255 4256 static ssize_t 4257 chunk_size_store(struct mddev *mddev, const char *buf, size_t len) 4258 { 4259 unsigned long n; 4260 int err; 4261 4262 err = kstrtoul(buf, 10, &n); 4263 if (err < 0) 4264 return err; 4265 4266 err = mddev_lock(mddev); 4267 if (err) 4268 return err; 4269 if (mddev->pers) { 4270 if (mddev->pers->check_reshape == NULL) 4271 err = -EBUSY; 4272 else if (mddev->ro) 4273 err = -EROFS; 4274 else { 4275 mddev->new_chunk_sectors = n >> 9; 4276 err = mddev->pers->check_reshape(mddev); 4277 if (err) 4278 mddev->new_chunk_sectors = mddev->chunk_sectors; 4279 } 4280 } else { 4281 mddev->new_chunk_sectors = n >> 9; 4282 if (mddev->reshape_position == MaxSector) 4283 mddev->chunk_sectors = n >> 9; 4284 } 4285 mddev_unlock(mddev); 4286 return err ?: len; 4287 } 4288 static struct md_sysfs_entry md_chunk_size = 4289 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); 4290 4291 static ssize_t 4292 resync_start_show(struct mddev *mddev, char *page) 4293 { 4294 if (mddev->recovery_cp == MaxSector) 4295 return sprintf(page, "none\n"); 4296 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); 4297 } 4298 4299 static ssize_t 4300 resync_start_store(struct mddev *mddev, const char *buf, size_t len) 4301 { 4302 unsigned long long n; 4303 int err; 4304 4305 if (cmd_match(buf, "none")) 4306 n = MaxSector; 4307 else { 4308 err = kstrtoull(buf, 10, &n); 4309 if (err < 0) 4310 return err; 4311 if (n != (sector_t)n) 4312 return -EINVAL; 4313 } 4314 4315 err = mddev_lock(mddev); 4316 if (err) 4317 return err; 4318 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 4319 err = -EBUSY; 4320 4321 if (!err) { 4322 mddev->recovery_cp = n; 4323 if (mddev->pers) 4324 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 4325 } 4326 mddev_unlock(mddev); 4327 return err ?: len; 4328 } 4329 static struct md_sysfs_entry md_resync_start = 4330 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR, 4331 resync_start_show, resync_start_store); 4332 4333 /* 4334 * The array state can be: 4335 * 4336 * clear 4337 * No devices, no size, no level 4338 * Equivalent to STOP_ARRAY ioctl 4339 * inactive 4340 * May have some settings, but array is not active 4341 * all IO results in error 4342 * When written, doesn't tear down array, but just stops it 4343 * suspended (not supported yet) 4344 * All IO requests will block. The array can be reconfigured. 4345 * Writing this, if accepted, will block until array is quiescent 4346 * readonly 4347 * no resync can happen. no superblocks get written. 4348 * write requests fail 4349 * read-auto 4350 * like readonly, but behaves like 'clean' on a write request. 4351 * 4352 * clean - no pending writes, but otherwise active. 4353 * When written to inactive array, starts without resync 4354 * If a write request arrives then 4355 * if metadata is known, mark 'dirty' and switch to 'active'. 4356 * if not known, block and switch to write-pending 4357 * If written to an active array that has pending writes, then fails. 4358 * active 4359 * fully active: IO and resync can be happening. 4360 * When written to inactive array, starts with resync 4361 * 4362 * write-pending 4363 * clean, but writes are blocked waiting for 'active' to be written. 4364 * 4365 * active-idle 4366 * like active, but no writes have been seen for a while (100msec). 4367 * 4368 * broken 4369 * RAID0/LINEAR-only: same as clean, but array is missing a member. 4370 * It's useful because RAID0/LINEAR mounted-arrays aren't stopped 4371 * when a member is gone, so this state will at least alert the 4372 * user that something is wrong. 4373 */ 4374 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, 4375 write_pending, active_idle, broken, bad_word}; 4376 static char *array_states[] = { 4377 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", 4378 "write-pending", "active-idle", "broken", NULL }; 4379 4380 static int match_word(const char *word, char **list) 4381 { 4382 int n; 4383 for (n=0; list[n]; n++) 4384 if (cmd_match(word, list[n])) 4385 break; 4386 return n; 4387 } 4388 4389 static ssize_t 4390 array_state_show(struct mddev *mddev, char *page) 4391 { 4392 enum array_state st = inactive; 4393 4394 if (mddev->pers && !test_bit(MD_NOT_READY, &mddev->flags)) { 4395 switch(mddev->ro) { 4396 case 1: 4397 st = readonly; 4398 break; 4399 case 2: 4400 st = read_auto; 4401 break; 4402 case 0: 4403 spin_lock(&mddev->lock); 4404 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 4405 st = write_pending; 4406 else if (mddev->in_sync) 4407 st = clean; 4408 else if (mddev->safemode) 4409 st = active_idle; 4410 else 4411 st = active; 4412 spin_unlock(&mddev->lock); 4413 } 4414 4415 if (test_bit(MD_BROKEN, &mddev->flags) && st == clean) 4416 st = broken; 4417 } else { 4418 if (list_empty(&mddev->disks) && 4419 mddev->raid_disks == 0 && 4420 mddev->dev_sectors == 0) 4421 st = clear; 4422 else 4423 st = inactive; 4424 } 4425 return sprintf(page, "%s\n", array_states[st]); 4426 } 4427 4428 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev); 4429 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev); 4430 static int restart_array(struct mddev *mddev); 4431 4432 static ssize_t 4433 array_state_store(struct mddev *mddev, const char *buf, size_t len) 4434 { 4435 int err = 0; 4436 enum array_state st = match_word(buf, array_states); 4437 4438 if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) { 4439 /* don't take reconfig_mutex when toggling between 4440 * clean and active 4441 */ 4442 spin_lock(&mddev->lock); 4443 if (st == active) { 4444 restart_array(mddev); 4445 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4446 md_wakeup_thread(mddev->thread); 4447 wake_up(&mddev->sb_wait); 4448 } else /* st == clean */ { 4449 restart_array(mddev); 4450 if (!set_in_sync(mddev)) 4451 err = -EBUSY; 4452 } 4453 if (!err) 4454 sysfs_notify_dirent_safe(mddev->sysfs_state); 4455 spin_unlock(&mddev->lock); 4456 return err ?: len; 4457 } 4458 err = mddev_lock(mddev); 4459 if (err) 4460 return err; 4461 err = -EINVAL; 4462 switch(st) { 4463 case bad_word: 4464 break; 4465 case clear: 4466 /* stopping an active array */ 4467 err = do_md_stop(mddev, 0, NULL); 4468 break; 4469 case inactive: 4470 /* stopping an active array */ 4471 if (mddev->pers) 4472 err = do_md_stop(mddev, 2, NULL); 4473 else 4474 err = 0; /* already inactive */ 4475 break; 4476 case suspended: 4477 break; /* not supported yet */ 4478 case readonly: 4479 if (mddev->pers) 4480 err = md_set_readonly(mddev, NULL); 4481 else { 4482 mddev->ro = 1; 4483 set_disk_ro(mddev->gendisk, 1); 4484 err = do_md_run(mddev); 4485 } 4486 break; 4487 case read_auto: 4488 if (mddev->pers) { 4489 if (mddev->ro == 0) 4490 err = md_set_readonly(mddev, NULL); 4491 else if (mddev->ro == 1) 4492 err = restart_array(mddev); 4493 if (err == 0) { 4494 mddev->ro = 2; 4495 set_disk_ro(mddev->gendisk, 0); 4496 } 4497 } else { 4498 mddev->ro = 2; 4499 err = do_md_run(mddev); 4500 } 4501 break; 4502 case clean: 4503 if (mddev->pers) { 4504 err = restart_array(mddev); 4505 if (err) 4506 break; 4507 spin_lock(&mddev->lock); 4508 if (!set_in_sync(mddev)) 4509 err = -EBUSY; 4510 spin_unlock(&mddev->lock); 4511 } else 4512 err = -EINVAL; 4513 break; 4514 case active: 4515 if (mddev->pers) { 4516 err = restart_array(mddev); 4517 if (err) 4518 break; 4519 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4520 wake_up(&mddev->sb_wait); 4521 err = 0; 4522 } else { 4523 mddev->ro = 0; 4524 set_disk_ro(mddev->gendisk, 0); 4525 err = do_md_run(mddev); 4526 } 4527 break; 4528 case write_pending: 4529 case active_idle: 4530 case broken: 4531 /* these cannot be set */ 4532 break; 4533 } 4534 4535 if (!err) { 4536 if (mddev->hold_active == UNTIL_IOCTL) 4537 mddev->hold_active = 0; 4538 sysfs_notify_dirent_safe(mddev->sysfs_state); 4539 } 4540 mddev_unlock(mddev); 4541 return err ?: len; 4542 } 4543 static struct md_sysfs_entry md_array_state = 4544 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); 4545 4546 static ssize_t 4547 max_corrected_read_errors_show(struct mddev *mddev, char *page) { 4548 return sprintf(page, "%d\n", 4549 atomic_read(&mddev->max_corr_read_errors)); 4550 } 4551 4552 static ssize_t 4553 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len) 4554 { 4555 unsigned int n; 4556 int rv; 4557 4558 rv = kstrtouint(buf, 10, &n); 4559 if (rv < 0) 4560 return rv; 4561 atomic_set(&mddev->max_corr_read_errors, n); 4562 return len; 4563 } 4564 4565 static struct md_sysfs_entry max_corr_read_errors = 4566 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show, 4567 max_corrected_read_errors_store); 4568 4569 static ssize_t 4570 null_show(struct mddev *mddev, char *page) 4571 { 4572 return -EINVAL; 4573 } 4574 4575 /* need to ensure rdev_delayed_delete() has completed */ 4576 static void flush_rdev_wq(struct mddev *mddev) 4577 { 4578 struct md_rdev *rdev; 4579 4580 rcu_read_lock(); 4581 rdev_for_each_rcu(rdev, mddev) 4582 if (work_pending(&rdev->del_work)) { 4583 flush_workqueue(md_rdev_misc_wq); 4584 break; 4585 } 4586 rcu_read_unlock(); 4587 } 4588 4589 static ssize_t 4590 new_dev_store(struct mddev *mddev, const char *buf, size_t len) 4591 { 4592 /* buf must be %d:%d\n? giving major and minor numbers */ 4593 /* The new device is added to the array. 4594 * If the array has a persistent superblock, we read the 4595 * superblock to initialise info and check validity. 4596 * Otherwise, only checking done is that in bind_rdev_to_array, 4597 * which mainly checks size. 4598 */ 4599 char *e; 4600 int major = simple_strtoul(buf, &e, 10); 4601 int minor; 4602 dev_t dev; 4603 struct md_rdev *rdev; 4604 int err; 4605 4606 if (!*buf || *e != ':' || !e[1] || e[1] == '\n') 4607 return -EINVAL; 4608 minor = simple_strtoul(e+1, &e, 10); 4609 if (*e && *e != '\n') 4610 return -EINVAL; 4611 dev = MKDEV(major, minor); 4612 if (major != MAJOR(dev) || 4613 minor != MINOR(dev)) 4614 return -EOVERFLOW; 4615 4616 flush_rdev_wq(mddev); 4617 err = mddev_lock(mddev); 4618 if (err) 4619 return err; 4620 if (mddev->persistent) { 4621 rdev = md_import_device(dev, mddev->major_version, 4622 mddev->minor_version); 4623 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { 4624 struct md_rdev *rdev0 4625 = list_entry(mddev->disks.next, 4626 struct md_rdev, same_set); 4627 err = super_types[mddev->major_version] 4628 .load_super(rdev, rdev0, mddev->minor_version); 4629 if (err < 0) 4630 goto out; 4631 } 4632 } else if (mddev->external) 4633 rdev = md_import_device(dev, -2, -1); 4634 else 4635 rdev = md_import_device(dev, -1, -1); 4636 4637 if (IS_ERR(rdev)) { 4638 mddev_unlock(mddev); 4639 return PTR_ERR(rdev); 4640 } 4641 err = bind_rdev_to_array(rdev, mddev); 4642 out: 4643 if (err) 4644 export_rdev(rdev); 4645 mddev_unlock(mddev); 4646 if (!err) 4647 md_new_event(mddev); 4648 return err ? err : len; 4649 } 4650 4651 static struct md_sysfs_entry md_new_device = 4652 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store); 4653 4654 static ssize_t 4655 bitmap_store(struct mddev *mddev, const char *buf, size_t len) 4656 { 4657 char *end; 4658 unsigned long chunk, end_chunk; 4659 int err; 4660 4661 err = mddev_lock(mddev); 4662 if (err) 4663 return err; 4664 if (!mddev->bitmap) 4665 goto out; 4666 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */ 4667 while (*buf) { 4668 chunk = end_chunk = simple_strtoul(buf, &end, 0); 4669 if (buf == end) break; 4670 if (*end == '-') { /* range */ 4671 buf = end + 1; 4672 end_chunk = simple_strtoul(buf, &end, 0); 4673 if (buf == end) break; 4674 } 4675 if (*end && !isspace(*end)) break; 4676 md_bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk); 4677 buf = skip_spaces(end); 4678 } 4679 md_bitmap_unplug(mddev->bitmap); /* flush the bits to disk */ 4680 out: 4681 mddev_unlock(mddev); 4682 return len; 4683 } 4684 4685 static struct md_sysfs_entry md_bitmap = 4686 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); 4687 4688 static ssize_t 4689 size_show(struct mddev *mddev, char *page) 4690 { 4691 return sprintf(page, "%llu\n", 4692 (unsigned long long)mddev->dev_sectors / 2); 4693 } 4694 4695 static int update_size(struct mddev *mddev, sector_t num_sectors); 4696 4697 static ssize_t 4698 size_store(struct mddev *mddev, const char *buf, size_t len) 4699 { 4700 /* If array is inactive, we can reduce the component size, but 4701 * not increase it (except from 0). 4702 * If array is active, we can try an on-line resize 4703 */ 4704 sector_t sectors; 4705 int err = strict_blocks_to_sectors(buf, §ors); 4706 4707 if (err < 0) 4708 return err; 4709 err = mddev_lock(mddev); 4710 if (err) 4711 return err; 4712 if (mddev->pers) { 4713 err = update_size(mddev, sectors); 4714 if (err == 0) 4715 md_update_sb(mddev, 1); 4716 } else { 4717 if (mddev->dev_sectors == 0 || 4718 mddev->dev_sectors > sectors) 4719 mddev->dev_sectors = sectors; 4720 else 4721 err = -ENOSPC; 4722 } 4723 mddev_unlock(mddev); 4724 return err ? err : len; 4725 } 4726 4727 static struct md_sysfs_entry md_size = 4728 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); 4729 4730 /* Metadata version. 4731 * This is one of 4732 * 'none' for arrays with no metadata (good luck...) 4733 * 'external' for arrays with externally managed metadata, 4734 * or N.M for internally known formats 4735 */ 4736 static ssize_t 4737 metadata_show(struct mddev *mddev, char *page) 4738 { 4739 if (mddev->persistent) 4740 return sprintf(page, "%d.%d\n", 4741 mddev->major_version, mddev->minor_version); 4742 else if (mddev->external) 4743 return sprintf(page, "external:%s\n", mddev->metadata_type); 4744 else 4745 return sprintf(page, "none\n"); 4746 } 4747 4748 static ssize_t 4749 metadata_store(struct mddev *mddev, const char *buf, size_t len) 4750 { 4751 int major, minor; 4752 char *e; 4753 int err; 4754 /* Changing the details of 'external' metadata is 4755 * always permitted. Otherwise there must be 4756 * no devices attached to the array. 4757 */ 4758 4759 err = mddev_lock(mddev); 4760 if (err) 4761 return err; 4762 err = -EBUSY; 4763 if (mddev->external && strncmp(buf, "external:", 9) == 0) 4764 ; 4765 else if (!list_empty(&mddev->disks)) 4766 goto out_unlock; 4767 4768 err = 0; 4769 if (cmd_match(buf, "none")) { 4770 mddev->persistent = 0; 4771 mddev->external = 0; 4772 mddev->major_version = 0; 4773 mddev->minor_version = 90; 4774 goto out_unlock; 4775 } 4776 if (strncmp(buf, "external:", 9) == 0) { 4777 size_t namelen = len-9; 4778 if (namelen >= sizeof(mddev->metadata_type)) 4779 namelen = sizeof(mddev->metadata_type)-1; 4780 strncpy(mddev->metadata_type, buf+9, namelen); 4781 mddev->metadata_type[namelen] = 0; 4782 if (namelen && mddev->metadata_type[namelen-1] == '\n') 4783 mddev->metadata_type[--namelen] = 0; 4784 mddev->persistent = 0; 4785 mddev->external = 1; 4786 mddev->major_version = 0; 4787 mddev->minor_version = 90; 4788 goto out_unlock; 4789 } 4790 major = simple_strtoul(buf, &e, 10); 4791 err = -EINVAL; 4792 if (e==buf || *e != '.') 4793 goto out_unlock; 4794 buf = e+1; 4795 minor = simple_strtoul(buf, &e, 10); 4796 if (e==buf || (*e && *e != '\n') ) 4797 goto out_unlock; 4798 err = -ENOENT; 4799 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL) 4800 goto out_unlock; 4801 mddev->major_version = major; 4802 mddev->minor_version = minor; 4803 mddev->persistent = 1; 4804 mddev->external = 0; 4805 err = 0; 4806 out_unlock: 4807 mddev_unlock(mddev); 4808 return err ?: len; 4809 } 4810 4811 static struct md_sysfs_entry md_metadata = 4812 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 4813 4814 static ssize_t 4815 action_show(struct mddev *mddev, char *page) 4816 { 4817 char *type = "idle"; 4818 unsigned long recovery = mddev->recovery; 4819 if (test_bit(MD_RECOVERY_FROZEN, &recovery)) 4820 type = "frozen"; 4821 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) || 4822 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) { 4823 if (test_bit(MD_RECOVERY_RESHAPE, &recovery)) 4824 type = "reshape"; 4825 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) { 4826 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery)) 4827 type = "resync"; 4828 else if (test_bit(MD_RECOVERY_CHECK, &recovery)) 4829 type = "check"; 4830 else 4831 type = "repair"; 4832 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery)) 4833 type = "recover"; 4834 else if (mddev->reshape_position != MaxSector) 4835 type = "reshape"; 4836 } 4837 return sprintf(page, "%s\n", type); 4838 } 4839 4840 static ssize_t 4841 action_store(struct mddev *mddev, const char *page, size_t len) 4842 { 4843 if (!mddev->pers || !mddev->pers->sync_request) 4844 return -EINVAL; 4845 4846 4847 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) { 4848 if (cmd_match(page, "frozen")) 4849 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4850 else 4851 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4852 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 4853 mddev_lock(mddev) == 0) { 4854 if (work_pending(&mddev->del_work)) 4855 flush_workqueue(md_misc_wq); 4856 if (mddev->sync_thread) { 4857 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4858 md_reap_sync_thread(mddev); 4859 } 4860 mddev_unlock(mddev); 4861 } 4862 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4863 return -EBUSY; 4864 else if (cmd_match(page, "resync")) 4865 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4866 else if (cmd_match(page, "recover")) { 4867 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4868 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 4869 } else if (cmd_match(page, "reshape")) { 4870 int err; 4871 if (mddev->pers->start_reshape == NULL) 4872 return -EINVAL; 4873 err = mddev_lock(mddev); 4874 if (!err) { 4875 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4876 err = -EBUSY; 4877 else { 4878 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4879 err = mddev->pers->start_reshape(mddev); 4880 } 4881 mddev_unlock(mddev); 4882 } 4883 if (err) 4884 return err; 4885 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 4886 } else { 4887 if (cmd_match(page, "check")) 4888 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4889 else if (!cmd_match(page, "repair")) 4890 return -EINVAL; 4891 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4892 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 4893 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4894 } 4895 if (mddev->ro == 2) { 4896 /* A write to sync_action is enough to justify 4897 * canceling read-auto mode 4898 */ 4899 mddev->ro = 0; 4900 md_wakeup_thread(mddev->sync_thread); 4901 } 4902 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4903 md_wakeup_thread(mddev->thread); 4904 sysfs_notify_dirent_safe(mddev->sysfs_action); 4905 return len; 4906 } 4907 4908 static struct md_sysfs_entry md_scan_mode = 4909 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); 4910 4911 static ssize_t 4912 last_sync_action_show(struct mddev *mddev, char *page) 4913 { 4914 return sprintf(page, "%s\n", mddev->last_sync_action); 4915 } 4916 4917 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action); 4918 4919 static ssize_t 4920 mismatch_cnt_show(struct mddev *mddev, char *page) 4921 { 4922 return sprintf(page, "%llu\n", 4923 (unsigned long long) 4924 atomic64_read(&mddev->resync_mismatches)); 4925 } 4926 4927 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); 4928 4929 static ssize_t 4930 sync_min_show(struct mddev *mddev, char *page) 4931 { 4932 return sprintf(page, "%d (%s)\n", speed_min(mddev), 4933 mddev->sync_speed_min ? "local": "system"); 4934 } 4935 4936 static ssize_t 4937 sync_min_store(struct mddev *mddev, const char *buf, size_t len) 4938 { 4939 unsigned int min; 4940 int rv; 4941 4942 if (strncmp(buf, "system", 6)==0) { 4943 min = 0; 4944 } else { 4945 rv = kstrtouint(buf, 10, &min); 4946 if (rv < 0) 4947 return rv; 4948 if (min == 0) 4949 return -EINVAL; 4950 } 4951 mddev->sync_speed_min = min; 4952 return len; 4953 } 4954 4955 static struct md_sysfs_entry md_sync_min = 4956 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); 4957 4958 static ssize_t 4959 sync_max_show(struct mddev *mddev, char *page) 4960 { 4961 return sprintf(page, "%d (%s)\n", speed_max(mddev), 4962 mddev->sync_speed_max ? "local": "system"); 4963 } 4964 4965 static ssize_t 4966 sync_max_store(struct mddev *mddev, const char *buf, size_t len) 4967 { 4968 unsigned int max; 4969 int rv; 4970 4971 if (strncmp(buf, "system", 6)==0) { 4972 max = 0; 4973 } else { 4974 rv = kstrtouint(buf, 10, &max); 4975 if (rv < 0) 4976 return rv; 4977 if (max == 0) 4978 return -EINVAL; 4979 } 4980 mddev->sync_speed_max = max; 4981 return len; 4982 } 4983 4984 static struct md_sysfs_entry md_sync_max = 4985 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); 4986 4987 static ssize_t 4988 degraded_show(struct mddev *mddev, char *page) 4989 { 4990 return sprintf(page, "%d\n", mddev->degraded); 4991 } 4992 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded); 4993 4994 static ssize_t 4995 sync_force_parallel_show(struct mddev *mddev, char *page) 4996 { 4997 return sprintf(page, "%d\n", mddev->parallel_resync); 4998 } 4999 5000 static ssize_t 5001 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len) 5002 { 5003 long n; 5004 5005 if (kstrtol(buf, 10, &n)) 5006 return -EINVAL; 5007 5008 if (n != 0 && n != 1) 5009 return -EINVAL; 5010 5011 mddev->parallel_resync = n; 5012 5013 if (mddev->sync_thread) 5014 wake_up(&resync_wait); 5015 5016 return len; 5017 } 5018 5019 /* force parallel resync, even with shared block devices */ 5020 static struct md_sysfs_entry md_sync_force_parallel = 5021 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR, 5022 sync_force_parallel_show, sync_force_parallel_store); 5023 5024 static ssize_t 5025 sync_speed_show(struct mddev *mddev, char *page) 5026 { 5027 unsigned long resync, dt, db; 5028 if (mddev->curr_resync == 0) 5029 return sprintf(page, "none\n"); 5030 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active); 5031 dt = (jiffies - mddev->resync_mark) / HZ; 5032 if (!dt) dt++; 5033 db = resync - mddev->resync_mark_cnt; 5034 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */ 5035 } 5036 5037 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); 5038 5039 static ssize_t 5040 sync_completed_show(struct mddev *mddev, char *page) 5041 { 5042 unsigned long long max_sectors, resync; 5043 5044 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5045 return sprintf(page, "none\n"); 5046 5047 if (mddev->curr_resync == 1 || 5048 mddev->curr_resync == 2) 5049 return sprintf(page, "delayed\n"); 5050 5051 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 5052 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 5053 max_sectors = mddev->resync_max_sectors; 5054 else 5055 max_sectors = mddev->dev_sectors; 5056 5057 resync = mddev->curr_resync_completed; 5058 return sprintf(page, "%llu / %llu\n", resync, max_sectors); 5059 } 5060 5061 static struct md_sysfs_entry md_sync_completed = 5062 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL); 5063 5064 static ssize_t 5065 min_sync_show(struct mddev *mddev, char *page) 5066 { 5067 return sprintf(page, "%llu\n", 5068 (unsigned long long)mddev->resync_min); 5069 } 5070 static ssize_t 5071 min_sync_store(struct mddev *mddev, const char *buf, size_t len) 5072 { 5073 unsigned long long min; 5074 int err; 5075 5076 if (kstrtoull(buf, 10, &min)) 5077 return -EINVAL; 5078 5079 spin_lock(&mddev->lock); 5080 err = -EINVAL; 5081 if (min > mddev->resync_max) 5082 goto out_unlock; 5083 5084 err = -EBUSY; 5085 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5086 goto out_unlock; 5087 5088 /* Round down to multiple of 4K for safety */ 5089 mddev->resync_min = round_down(min, 8); 5090 err = 0; 5091 5092 out_unlock: 5093 spin_unlock(&mddev->lock); 5094 return err ?: len; 5095 } 5096 5097 static struct md_sysfs_entry md_min_sync = 5098 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store); 5099 5100 static ssize_t 5101 max_sync_show(struct mddev *mddev, char *page) 5102 { 5103 if (mddev->resync_max == MaxSector) 5104 return sprintf(page, "max\n"); 5105 else 5106 return sprintf(page, "%llu\n", 5107 (unsigned long long)mddev->resync_max); 5108 } 5109 static ssize_t 5110 max_sync_store(struct mddev *mddev, const char *buf, size_t len) 5111 { 5112 int err; 5113 spin_lock(&mddev->lock); 5114 if (strncmp(buf, "max", 3) == 0) 5115 mddev->resync_max = MaxSector; 5116 else { 5117 unsigned long long max; 5118 int chunk; 5119 5120 err = -EINVAL; 5121 if (kstrtoull(buf, 10, &max)) 5122 goto out_unlock; 5123 if (max < mddev->resync_min) 5124 goto out_unlock; 5125 5126 err = -EBUSY; 5127 if (max < mddev->resync_max && 5128 mddev->ro == 0 && 5129 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5130 goto out_unlock; 5131 5132 /* Must be a multiple of chunk_size */ 5133 chunk = mddev->chunk_sectors; 5134 if (chunk) { 5135 sector_t temp = max; 5136 5137 err = -EINVAL; 5138 if (sector_div(temp, chunk)) 5139 goto out_unlock; 5140 } 5141 mddev->resync_max = max; 5142 } 5143 wake_up(&mddev->recovery_wait); 5144 err = 0; 5145 out_unlock: 5146 spin_unlock(&mddev->lock); 5147 return err ?: len; 5148 } 5149 5150 static struct md_sysfs_entry md_max_sync = 5151 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store); 5152 5153 static ssize_t 5154 suspend_lo_show(struct mddev *mddev, char *page) 5155 { 5156 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo); 5157 } 5158 5159 static ssize_t 5160 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len) 5161 { 5162 unsigned long long new; 5163 int err; 5164 5165 err = kstrtoull(buf, 10, &new); 5166 if (err < 0) 5167 return err; 5168 if (new != (sector_t)new) 5169 return -EINVAL; 5170 5171 err = mddev_lock(mddev); 5172 if (err) 5173 return err; 5174 err = -EINVAL; 5175 if (mddev->pers == NULL || 5176 mddev->pers->quiesce == NULL) 5177 goto unlock; 5178 mddev_suspend(mddev); 5179 mddev->suspend_lo = new; 5180 mddev_resume(mddev); 5181 5182 err = 0; 5183 unlock: 5184 mddev_unlock(mddev); 5185 return err ?: len; 5186 } 5187 static struct md_sysfs_entry md_suspend_lo = 5188 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); 5189 5190 static ssize_t 5191 suspend_hi_show(struct mddev *mddev, char *page) 5192 { 5193 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi); 5194 } 5195 5196 static ssize_t 5197 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len) 5198 { 5199 unsigned long long new; 5200 int err; 5201 5202 err = kstrtoull(buf, 10, &new); 5203 if (err < 0) 5204 return err; 5205 if (new != (sector_t)new) 5206 return -EINVAL; 5207 5208 err = mddev_lock(mddev); 5209 if (err) 5210 return err; 5211 err = -EINVAL; 5212 if (mddev->pers == NULL) 5213 goto unlock; 5214 5215 mddev_suspend(mddev); 5216 mddev->suspend_hi = new; 5217 mddev_resume(mddev); 5218 5219 err = 0; 5220 unlock: 5221 mddev_unlock(mddev); 5222 return err ?: len; 5223 } 5224 static struct md_sysfs_entry md_suspend_hi = 5225 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); 5226 5227 static ssize_t 5228 reshape_position_show(struct mddev *mddev, char *page) 5229 { 5230 if (mddev->reshape_position != MaxSector) 5231 return sprintf(page, "%llu\n", 5232 (unsigned long long)mddev->reshape_position); 5233 strcpy(page, "none\n"); 5234 return 5; 5235 } 5236 5237 static ssize_t 5238 reshape_position_store(struct mddev *mddev, const char *buf, size_t len) 5239 { 5240 struct md_rdev *rdev; 5241 unsigned long long new; 5242 int err; 5243 5244 err = kstrtoull(buf, 10, &new); 5245 if (err < 0) 5246 return err; 5247 if (new != (sector_t)new) 5248 return -EINVAL; 5249 err = mddev_lock(mddev); 5250 if (err) 5251 return err; 5252 err = -EBUSY; 5253 if (mddev->pers) 5254 goto unlock; 5255 mddev->reshape_position = new; 5256 mddev->delta_disks = 0; 5257 mddev->reshape_backwards = 0; 5258 mddev->new_level = mddev->level; 5259 mddev->new_layout = mddev->layout; 5260 mddev->new_chunk_sectors = mddev->chunk_sectors; 5261 rdev_for_each(rdev, mddev) 5262 rdev->new_data_offset = rdev->data_offset; 5263 err = 0; 5264 unlock: 5265 mddev_unlock(mddev); 5266 return err ?: len; 5267 } 5268 5269 static struct md_sysfs_entry md_reshape_position = 5270 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show, 5271 reshape_position_store); 5272 5273 static ssize_t 5274 reshape_direction_show(struct mddev *mddev, char *page) 5275 { 5276 return sprintf(page, "%s\n", 5277 mddev->reshape_backwards ? "backwards" : "forwards"); 5278 } 5279 5280 static ssize_t 5281 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len) 5282 { 5283 int backwards = 0; 5284 int err; 5285 5286 if (cmd_match(buf, "forwards")) 5287 backwards = 0; 5288 else if (cmd_match(buf, "backwards")) 5289 backwards = 1; 5290 else 5291 return -EINVAL; 5292 if (mddev->reshape_backwards == backwards) 5293 return len; 5294 5295 err = mddev_lock(mddev); 5296 if (err) 5297 return err; 5298 /* check if we are allowed to change */ 5299 if (mddev->delta_disks) 5300 err = -EBUSY; 5301 else if (mddev->persistent && 5302 mddev->major_version == 0) 5303 err = -EINVAL; 5304 else 5305 mddev->reshape_backwards = backwards; 5306 mddev_unlock(mddev); 5307 return err ?: len; 5308 } 5309 5310 static struct md_sysfs_entry md_reshape_direction = 5311 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show, 5312 reshape_direction_store); 5313 5314 static ssize_t 5315 array_size_show(struct mddev *mddev, char *page) 5316 { 5317 if (mddev->external_size) 5318 return sprintf(page, "%llu\n", 5319 (unsigned long long)mddev->array_sectors/2); 5320 else 5321 return sprintf(page, "default\n"); 5322 } 5323 5324 static ssize_t 5325 array_size_store(struct mddev *mddev, const char *buf, size_t len) 5326 { 5327 sector_t sectors; 5328 int err; 5329 5330 err = mddev_lock(mddev); 5331 if (err) 5332 return err; 5333 5334 /* cluster raid doesn't support change array_sectors */ 5335 if (mddev_is_clustered(mddev)) { 5336 mddev_unlock(mddev); 5337 return -EINVAL; 5338 } 5339 5340 if (strncmp(buf, "default", 7) == 0) { 5341 if (mddev->pers) 5342 sectors = mddev->pers->size(mddev, 0, 0); 5343 else 5344 sectors = mddev->array_sectors; 5345 5346 mddev->external_size = 0; 5347 } else { 5348 if (strict_blocks_to_sectors(buf, §ors) < 0) 5349 err = -EINVAL; 5350 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors) 5351 err = -E2BIG; 5352 else 5353 mddev->external_size = 1; 5354 } 5355 5356 if (!err) { 5357 mddev->array_sectors = sectors; 5358 if (mddev->pers) { 5359 set_capacity(mddev->gendisk, mddev->array_sectors); 5360 revalidate_disk_size(mddev->gendisk, true); 5361 } 5362 } 5363 mddev_unlock(mddev); 5364 return err ?: len; 5365 } 5366 5367 static struct md_sysfs_entry md_array_size = 5368 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show, 5369 array_size_store); 5370 5371 static ssize_t 5372 consistency_policy_show(struct mddev *mddev, char *page) 5373 { 5374 int ret; 5375 5376 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { 5377 ret = sprintf(page, "journal\n"); 5378 } else if (test_bit(MD_HAS_PPL, &mddev->flags)) { 5379 ret = sprintf(page, "ppl\n"); 5380 } else if (mddev->bitmap) { 5381 ret = sprintf(page, "bitmap\n"); 5382 } else if (mddev->pers) { 5383 if (mddev->pers->sync_request) 5384 ret = sprintf(page, "resync\n"); 5385 else 5386 ret = sprintf(page, "none\n"); 5387 } else { 5388 ret = sprintf(page, "unknown\n"); 5389 } 5390 5391 return ret; 5392 } 5393 5394 static ssize_t 5395 consistency_policy_store(struct mddev *mddev, const char *buf, size_t len) 5396 { 5397 int err = 0; 5398 5399 if (mddev->pers) { 5400 if (mddev->pers->change_consistency_policy) 5401 err = mddev->pers->change_consistency_policy(mddev, buf); 5402 else 5403 err = -EBUSY; 5404 } else if (mddev->external && strncmp(buf, "ppl", 3) == 0) { 5405 set_bit(MD_HAS_PPL, &mddev->flags); 5406 } else { 5407 err = -EINVAL; 5408 } 5409 5410 return err ? err : len; 5411 } 5412 5413 static struct md_sysfs_entry md_consistency_policy = 5414 __ATTR(consistency_policy, S_IRUGO | S_IWUSR, consistency_policy_show, 5415 consistency_policy_store); 5416 5417 static ssize_t fail_last_dev_show(struct mddev *mddev, char *page) 5418 { 5419 return sprintf(page, "%d\n", mddev->fail_last_dev); 5420 } 5421 5422 /* 5423 * Setting fail_last_dev to true to allow last device to be forcibly removed 5424 * from RAID1/RAID10. 5425 */ 5426 static ssize_t 5427 fail_last_dev_store(struct mddev *mddev, const char *buf, size_t len) 5428 { 5429 int ret; 5430 bool value; 5431 5432 ret = kstrtobool(buf, &value); 5433 if (ret) 5434 return ret; 5435 5436 if (value != mddev->fail_last_dev) 5437 mddev->fail_last_dev = value; 5438 5439 return len; 5440 } 5441 static struct md_sysfs_entry md_fail_last_dev = 5442 __ATTR(fail_last_dev, S_IRUGO | S_IWUSR, fail_last_dev_show, 5443 fail_last_dev_store); 5444 5445 static ssize_t serialize_policy_show(struct mddev *mddev, char *page) 5446 { 5447 if (mddev->pers == NULL || (mddev->pers->level != 1)) 5448 return sprintf(page, "n/a\n"); 5449 else 5450 return sprintf(page, "%d\n", mddev->serialize_policy); 5451 } 5452 5453 /* 5454 * Setting serialize_policy to true to enforce write IO is not reordered 5455 * for raid1. 5456 */ 5457 static ssize_t 5458 serialize_policy_store(struct mddev *mddev, const char *buf, size_t len) 5459 { 5460 int err; 5461 bool value; 5462 5463 err = kstrtobool(buf, &value); 5464 if (err) 5465 return err; 5466 5467 if (value == mddev->serialize_policy) 5468 return len; 5469 5470 err = mddev_lock(mddev); 5471 if (err) 5472 return err; 5473 if (mddev->pers == NULL || (mddev->pers->level != 1)) { 5474 pr_err("md: serialize_policy is only effective for raid1\n"); 5475 err = -EINVAL; 5476 goto unlock; 5477 } 5478 5479 mddev_suspend(mddev); 5480 if (value) 5481 mddev_create_serial_pool(mddev, NULL, true); 5482 else 5483 mddev_destroy_serial_pool(mddev, NULL, true); 5484 mddev->serialize_policy = value; 5485 mddev_resume(mddev); 5486 unlock: 5487 mddev_unlock(mddev); 5488 return err ?: len; 5489 } 5490 5491 static struct md_sysfs_entry md_serialize_policy = 5492 __ATTR(serialize_policy, S_IRUGO | S_IWUSR, serialize_policy_show, 5493 serialize_policy_store); 5494 5495 5496 static struct attribute *md_default_attrs[] = { 5497 &md_level.attr, 5498 &md_layout.attr, 5499 &md_raid_disks.attr, 5500 &md_uuid.attr, 5501 &md_chunk_size.attr, 5502 &md_size.attr, 5503 &md_resync_start.attr, 5504 &md_metadata.attr, 5505 &md_new_device.attr, 5506 &md_safe_delay.attr, 5507 &md_array_state.attr, 5508 &md_reshape_position.attr, 5509 &md_reshape_direction.attr, 5510 &md_array_size.attr, 5511 &max_corr_read_errors.attr, 5512 &md_consistency_policy.attr, 5513 &md_fail_last_dev.attr, 5514 &md_serialize_policy.attr, 5515 NULL, 5516 }; 5517 5518 static struct attribute *md_redundancy_attrs[] = { 5519 &md_scan_mode.attr, 5520 &md_last_scan_mode.attr, 5521 &md_mismatches.attr, 5522 &md_sync_min.attr, 5523 &md_sync_max.attr, 5524 &md_sync_speed.attr, 5525 &md_sync_force_parallel.attr, 5526 &md_sync_completed.attr, 5527 &md_min_sync.attr, 5528 &md_max_sync.attr, 5529 &md_suspend_lo.attr, 5530 &md_suspend_hi.attr, 5531 &md_bitmap.attr, 5532 &md_degraded.attr, 5533 NULL, 5534 }; 5535 static struct attribute_group md_redundancy_group = { 5536 .name = NULL, 5537 .attrs = md_redundancy_attrs, 5538 }; 5539 5540 static ssize_t 5541 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 5542 { 5543 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5544 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5545 ssize_t rv; 5546 5547 if (!entry->show) 5548 return -EIO; 5549 spin_lock(&all_mddevs_lock); 5550 if (list_empty(&mddev->all_mddevs)) { 5551 spin_unlock(&all_mddevs_lock); 5552 return -EBUSY; 5553 } 5554 mddev_get(mddev); 5555 spin_unlock(&all_mddevs_lock); 5556 5557 rv = entry->show(mddev, page); 5558 mddev_put(mddev); 5559 return rv; 5560 } 5561 5562 static ssize_t 5563 md_attr_store(struct kobject *kobj, struct attribute *attr, 5564 const char *page, size_t length) 5565 { 5566 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5567 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5568 ssize_t rv; 5569 5570 if (!entry->store) 5571 return -EIO; 5572 if (!capable(CAP_SYS_ADMIN)) 5573 return -EACCES; 5574 spin_lock(&all_mddevs_lock); 5575 if (list_empty(&mddev->all_mddevs)) { 5576 spin_unlock(&all_mddevs_lock); 5577 return -EBUSY; 5578 } 5579 mddev_get(mddev); 5580 spin_unlock(&all_mddevs_lock); 5581 rv = entry->store(mddev, page, length); 5582 mddev_put(mddev); 5583 return rv; 5584 } 5585 5586 static void md_free(struct kobject *ko) 5587 { 5588 struct mddev *mddev = container_of(ko, struct mddev, kobj); 5589 5590 if (mddev->sysfs_state) 5591 sysfs_put(mddev->sysfs_state); 5592 if (mddev->sysfs_level) 5593 sysfs_put(mddev->sysfs_level); 5594 5595 if (mddev->gendisk) 5596 del_gendisk(mddev->gendisk); 5597 if (mddev->queue) 5598 blk_cleanup_queue(mddev->queue); 5599 if (mddev->gendisk) 5600 put_disk(mddev->gendisk); 5601 percpu_ref_exit(&mddev->writes_pending); 5602 5603 bioset_exit(&mddev->bio_set); 5604 bioset_exit(&mddev->sync_set); 5605 mempool_exit(&mddev->md_io_pool); 5606 kfree(mddev); 5607 } 5608 5609 static const struct sysfs_ops md_sysfs_ops = { 5610 .show = md_attr_show, 5611 .store = md_attr_store, 5612 }; 5613 static struct kobj_type md_ktype = { 5614 .release = md_free, 5615 .sysfs_ops = &md_sysfs_ops, 5616 .default_attrs = md_default_attrs, 5617 }; 5618 5619 int mdp_major = 0; 5620 5621 static void mddev_delayed_delete(struct work_struct *ws) 5622 { 5623 struct mddev *mddev = container_of(ws, struct mddev, del_work); 5624 5625 sysfs_remove_group(&mddev->kobj, &md_bitmap_group); 5626 kobject_del(&mddev->kobj); 5627 kobject_put(&mddev->kobj); 5628 } 5629 5630 static void no_op(struct percpu_ref *r) {} 5631 5632 int mddev_init_writes_pending(struct mddev *mddev) 5633 { 5634 if (mddev->writes_pending.percpu_count_ptr) 5635 return 0; 5636 if (percpu_ref_init(&mddev->writes_pending, no_op, 5637 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL) < 0) 5638 return -ENOMEM; 5639 /* We want to start with the refcount at zero */ 5640 percpu_ref_put(&mddev->writes_pending); 5641 return 0; 5642 } 5643 EXPORT_SYMBOL_GPL(mddev_init_writes_pending); 5644 5645 static int md_alloc(dev_t dev, char *name) 5646 { 5647 /* 5648 * If dev is zero, name is the name of a device to allocate with 5649 * an arbitrary minor number. It will be "md_???" 5650 * If dev is non-zero it must be a device number with a MAJOR of 5651 * MD_MAJOR or mdp_major. In this case, if "name" is NULL, then 5652 * the device is being created by opening a node in /dev. 5653 * If "name" is not NULL, the device is being created by 5654 * writing to /sys/module/md_mod/parameters/new_array. 5655 */ 5656 static DEFINE_MUTEX(disks_mutex); 5657 struct mddev *mddev = mddev_find(dev); 5658 struct gendisk *disk; 5659 int partitioned; 5660 int shift; 5661 int unit; 5662 int error; 5663 5664 if (!mddev) 5665 return -ENODEV; 5666 5667 partitioned = (MAJOR(mddev->unit) != MD_MAJOR); 5668 shift = partitioned ? MdpMinorShift : 0; 5669 unit = MINOR(mddev->unit) >> shift; 5670 5671 /* wait for any previous instance of this device to be 5672 * completely removed (mddev_delayed_delete). 5673 */ 5674 flush_workqueue(md_misc_wq); 5675 5676 mutex_lock(&disks_mutex); 5677 error = -EEXIST; 5678 if (mddev->gendisk) 5679 goto abort; 5680 5681 if (name && !dev) { 5682 /* Need to ensure that 'name' is not a duplicate. 5683 */ 5684 struct mddev *mddev2; 5685 spin_lock(&all_mddevs_lock); 5686 5687 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) 5688 if (mddev2->gendisk && 5689 strcmp(mddev2->gendisk->disk_name, name) == 0) { 5690 spin_unlock(&all_mddevs_lock); 5691 goto abort; 5692 } 5693 spin_unlock(&all_mddevs_lock); 5694 } 5695 if (name && dev) 5696 /* 5697 * Creating /dev/mdNNN via "newarray", so adjust hold_active. 5698 */ 5699 mddev->hold_active = UNTIL_STOP; 5700 5701 error = mempool_init_kmalloc_pool(&mddev->md_io_pool, BIO_POOL_SIZE, 5702 sizeof(struct md_io)); 5703 if (error) 5704 goto abort; 5705 5706 error = -ENOMEM; 5707 mddev->queue = blk_alloc_queue(NUMA_NO_NODE); 5708 if (!mddev->queue) 5709 goto abort; 5710 5711 blk_set_stacking_limits(&mddev->queue->limits); 5712 5713 disk = alloc_disk(1 << shift); 5714 if (!disk) { 5715 blk_cleanup_queue(mddev->queue); 5716 mddev->queue = NULL; 5717 goto abort; 5718 } 5719 disk->major = MAJOR(mddev->unit); 5720 disk->first_minor = unit << shift; 5721 if (name) 5722 strcpy(disk->disk_name, name); 5723 else if (partitioned) 5724 sprintf(disk->disk_name, "md_d%d", unit); 5725 else 5726 sprintf(disk->disk_name, "md%d", unit); 5727 disk->fops = &md_fops; 5728 disk->private_data = mddev; 5729 disk->queue = mddev->queue; 5730 blk_queue_write_cache(mddev->queue, true, true); 5731 /* Allow extended partitions. This makes the 5732 * 'mdp' device redundant, but we can't really 5733 * remove it now. 5734 */ 5735 disk->flags |= GENHD_FL_EXT_DEVT; 5736 disk->events |= DISK_EVENT_MEDIA_CHANGE; 5737 mddev->gendisk = disk; 5738 /* As soon as we call add_disk(), another thread could get 5739 * through to md_open, so make sure it doesn't get too far 5740 */ 5741 mutex_lock(&mddev->open_mutex); 5742 add_disk(disk); 5743 5744 error = kobject_add(&mddev->kobj, &disk_to_dev(disk)->kobj, "%s", "md"); 5745 if (error) { 5746 /* This isn't possible, but as kobject_init_and_add is marked 5747 * __must_check, we must do something with the result 5748 */ 5749 pr_debug("md: cannot register %s/md - name in use\n", 5750 disk->disk_name); 5751 error = 0; 5752 } 5753 if (mddev->kobj.sd && 5754 sysfs_create_group(&mddev->kobj, &md_bitmap_group)) 5755 pr_debug("pointless warning\n"); 5756 mutex_unlock(&mddev->open_mutex); 5757 abort: 5758 mutex_unlock(&disks_mutex); 5759 if (!error && mddev->kobj.sd) { 5760 kobject_uevent(&mddev->kobj, KOBJ_ADD); 5761 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state"); 5762 mddev->sysfs_level = sysfs_get_dirent_safe(mddev->kobj.sd, "level"); 5763 } 5764 mddev_put(mddev); 5765 return error; 5766 } 5767 5768 static struct kobject *md_probe(dev_t dev, int *part, void *data) 5769 { 5770 if (create_on_open) 5771 md_alloc(dev, NULL); 5772 return NULL; 5773 } 5774 5775 static int add_named_array(const char *val, const struct kernel_param *kp) 5776 { 5777 /* 5778 * val must be "md_*" or "mdNNN". 5779 * For "md_*" we allocate an array with a large free minor number, and 5780 * set the name to val. val must not already be an active name. 5781 * For "mdNNN" we allocate an array with the minor number NNN 5782 * which must not already be in use. 5783 */ 5784 int len = strlen(val); 5785 char buf[DISK_NAME_LEN]; 5786 unsigned long devnum; 5787 5788 while (len && val[len-1] == '\n') 5789 len--; 5790 if (len >= DISK_NAME_LEN) 5791 return -E2BIG; 5792 strlcpy(buf, val, len+1); 5793 if (strncmp(buf, "md_", 3) == 0) 5794 return md_alloc(0, buf); 5795 if (strncmp(buf, "md", 2) == 0 && 5796 isdigit(buf[2]) && 5797 kstrtoul(buf+2, 10, &devnum) == 0 && 5798 devnum <= MINORMASK) 5799 return md_alloc(MKDEV(MD_MAJOR, devnum), NULL); 5800 5801 return -EINVAL; 5802 } 5803 5804 static void md_safemode_timeout(struct timer_list *t) 5805 { 5806 struct mddev *mddev = from_timer(mddev, t, safemode_timer); 5807 5808 mddev->safemode = 1; 5809 if (mddev->external) 5810 sysfs_notify_dirent_safe(mddev->sysfs_state); 5811 5812 md_wakeup_thread(mddev->thread); 5813 } 5814 5815 static int start_dirty_degraded; 5816 5817 int md_run(struct mddev *mddev) 5818 { 5819 int err; 5820 struct md_rdev *rdev; 5821 struct md_personality *pers; 5822 5823 if (list_empty(&mddev->disks)) 5824 /* cannot run an array with no devices.. */ 5825 return -EINVAL; 5826 5827 if (mddev->pers) 5828 return -EBUSY; 5829 /* Cannot run until previous stop completes properly */ 5830 if (mddev->sysfs_active) 5831 return -EBUSY; 5832 5833 /* 5834 * Analyze all RAID superblock(s) 5835 */ 5836 if (!mddev->raid_disks) { 5837 if (!mddev->persistent) 5838 return -EINVAL; 5839 err = analyze_sbs(mddev); 5840 if (err) 5841 return -EINVAL; 5842 } 5843 5844 if (mddev->level != LEVEL_NONE) 5845 request_module("md-level-%d", mddev->level); 5846 else if (mddev->clevel[0]) 5847 request_module("md-%s", mddev->clevel); 5848 5849 /* 5850 * Drop all container device buffers, from now on 5851 * the only valid external interface is through the md 5852 * device. 5853 */ 5854 mddev->has_superblocks = false; 5855 rdev_for_each(rdev, mddev) { 5856 if (test_bit(Faulty, &rdev->flags)) 5857 continue; 5858 sync_blockdev(rdev->bdev); 5859 invalidate_bdev(rdev->bdev); 5860 if (mddev->ro != 1 && 5861 (bdev_read_only(rdev->bdev) || 5862 bdev_read_only(rdev->meta_bdev))) { 5863 mddev->ro = 1; 5864 if (mddev->gendisk) 5865 set_disk_ro(mddev->gendisk, 1); 5866 } 5867 5868 if (rdev->sb_page) 5869 mddev->has_superblocks = true; 5870 5871 /* perform some consistency tests on the device. 5872 * We don't want the data to overlap the metadata, 5873 * Internal Bitmap issues have been handled elsewhere. 5874 */ 5875 if (rdev->meta_bdev) { 5876 /* Nothing to check */; 5877 } else if (rdev->data_offset < rdev->sb_start) { 5878 if (mddev->dev_sectors && 5879 rdev->data_offset + mddev->dev_sectors 5880 > rdev->sb_start) { 5881 pr_warn("md: %s: data overlaps metadata\n", 5882 mdname(mddev)); 5883 return -EINVAL; 5884 } 5885 } else { 5886 if (rdev->sb_start + rdev->sb_size/512 5887 > rdev->data_offset) { 5888 pr_warn("md: %s: metadata overlaps data\n", 5889 mdname(mddev)); 5890 return -EINVAL; 5891 } 5892 } 5893 sysfs_notify_dirent_safe(rdev->sysfs_state); 5894 } 5895 5896 if (!bioset_initialized(&mddev->bio_set)) { 5897 err = bioset_init(&mddev->bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5898 if (err) 5899 return err; 5900 } 5901 if (!bioset_initialized(&mddev->sync_set)) { 5902 err = bioset_init(&mddev->sync_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5903 if (err) 5904 return err; 5905 } 5906 5907 spin_lock(&pers_lock); 5908 pers = find_pers(mddev->level, mddev->clevel); 5909 if (!pers || !try_module_get(pers->owner)) { 5910 spin_unlock(&pers_lock); 5911 if (mddev->level != LEVEL_NONE) 5912 pr_warn("md: personality for level %d is not loaded!\n", 5913 mddev->level); 5914 else 5915 pr_warn("md: personality for level %s is not loaded!\n", 5916 mddev->clevel); 5917 err = -EINVAL; 5918 goto abort; 5919 } 5920 spin_unlock(&pers_lock); 5921 if (mddev->level != pers->level) { 5922 mddev->level = pers->level; 5923 mddev->new_level = pers->level; 5924 } 5925 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 5926 5927 if (mddev->reshape_position != MaxSector && 5928 pers->start_reshape == NULL) { 5929 /* This personality cannot handle reshaping... */ 5930 module_put(pers->owner); 5931 err = -EINVAL; 5932 goto abort; 5933 } 5934 5935 if (pers->sync_request) { 5936 /* Warn if this is a potentially silly 5937 * configuration. 5938 */ 5939 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 5940 struct md_rdev *rdev2; 5941 int warned = 0; 5942 5943 rdev_for_each(rdev, mddev) 5944 rdev_for_each(rdev2, mddev) { 5945 if (rdev < rdev2 && 5946 rdev->bdev->bd_disk == 5947 rdev2->bdev->bd_disk) { 5948 pr_warn("%s: WARNING: %s appears to be on the same physical disk as %s.\n", 5949 mdname(mddev), 5950 bdevname(rdev->bdev,b), 5951 bdevname(rdev2->bdev,b2)); 5952 warned = 1; 5953 } 5954 } 5955 5956 if (warned) 5957 pr_warn("True protection against single-disk failure might be compromised.\n"); 5958 } 5959 5960 mddev->recovery = 0; 5961 /* may be over-ridden by personality */ 5962 mddev->resync_max_sectors = mddev->dev_sectors; 5963 5964 mddev->ok_start_degraded = start_dirty_degraded; 5965 5966 if (start_readonly && mddev->ro == 0) 5967 mddev->ro = 2; /* read-only, but switch on first write */ 5968 5969 err = pers->run(mddev); 5970 if (err) 5971 pr_warn("md: pers->run() failed ...\n"); 5972 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) { 5973 WARN_ONCE(!mddev->external_size, 5974 "%s: default size too small, but 'external_size' not in effect?\n", 5975 __func__); 5976 pr_warn("md: invalid array_size %llu > default size %llu\n", 5977 (unsigned long long)mddev->array_sectors / 2, 5978 (unsigned long long)pers->size(mddev, 0, 0) / 2); 5979 err = -EINVAL; 5980 } 5981 if (err == 0 && pers->sync_request && 5982 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) { 5983 struct bitmap *bitmap; 5984 5985 bitmap = md_bitmap_create(mddev, -1); 5986 if (IS_ERR(bitmap)) { 5987 err = PTR_ERR(bitmap); 5988 pr_warn("%s: failed to create bitmap (%d)\n", 5989 mdname(mddev), err); 5990 } else 5991 mddev->bitmap = bitmap; 5992 5993 } 5994 if (err) 5995 goto bitmap_abort; 5996 5997 if (mddev->bitmap_info.max_write_behind > 0) { 5998 bool create_pool = false; 5999 6000 rdev_for_each(rdev, mddev) { 6001 if (test_bit(WriteMostly, &rdev->flags) && 6002 rdev_init_serial(rdev)) 6003 create_pool = true; 6004 } 6005 if (create_pool && mddev->serial_info_pool == NULL) { 6006 mddev->serial_info_pool = 6007 mempool_create_kmalloc_pool(NR_SERIAL_INFOS, 6008 sizeof(struct serial_info)); 6009 if (!mddev->serial_info_pool) { 6010 err = -ENOMEM; 6011 goto bitmap_abort; 6012 } 6013 } 6014 } 6015 6016 if (mddev->queue) { 6017 bool nonrot = true; 6018 6019 rdev_for_each(rdev, mddev) { 6020 if (rdev->raid_disk >= 0 && 6021 !blk_queue_nonrot(bdev_get_queue(rdev->bdev))) { 6022 nonrot = false; 6023 break; 6024 } 6025 } 6026 if (mddev->degraded) 6027 nonrot = false; 6028 if (nonrot) 6029 blk_queue_flag_set(QUEUE_FLAG_NONROT, mddev->queue); 6030 else 6031 blk_queue_flag_clear(QUEUE_FLAG_NONROT, mddev->queue); 6032 } 6033 if (pers->sync_request) { 6034 if (mddev->kobj.sd && 6035 sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 6036 pr_warn("md: cannot register extra attributes for %s\n", 6037 mdname(mddev)); 6038 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action"); 6039 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed"); 6040 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded"); 6041 } else if (mddev->ro == 2) /* auto-readonly not meaningful */ 6042 mddev->ro = 0; 6043 6044 atomic_set(&mddev->max_corr_read_errors, 6045 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS); 6046 mddev->safemode = 0; 6047 if (mddev_is_clustered(mddev)) 6048 mddev->safemode_delay = 0; 6049 else 6050 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY; 6051 mddev->in_sync = 1; 6052 smp_wmb(); 6053 spin_lock(&mddev->lock); 6054 mddev->pers = pers; 6055 spin_unlock(&mddev->lock); 6056 rdev_for_each(rdev, mddev) 6057 if (rdev->raid_disk >= 0) 6058 sysfs_link_rdev(mddev, rdev); /* failure here is OK */ 6059 6060 if (mddev->degraded && !mddev->ro) 6061 /* This ensures that recovering status is reported immediately 6062 * via sysfs - until a lack of spares is confirmed. 6063 */ 6064 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 6065 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6066 6067 if (mddev->sb_flags) 6068 md_update_sb(mddev, 0); 6069 6070 md_new_event(mddev); 6071 return 0; 6072 6073 bitmap_abort: 6074 mddev_detach(mddev); 6075 if (mddev->private) 6076 pers->free(mddev, mddev->private); 6077 mddev->private = NULL; 6078 module_put(pers->owner); 6079 md_bitmap_destroy(mddev); 6080 abort: 6081 bioset_exit(&mddev->bio_set); 6082 bioset_exit(&mddev->sync_set); 6083 return err; 6084 } 6085 EXPORT_SYMBOL_GPL(md_run); 6086 6087 int do_md_run(struct mddev *mddev) 6088 { 6089 int err; 6090 6091 set_bit(MD_NOT_READY, &mddev->flags); 6092 err = md_run(mddev); 6093 if (err) 6094 goto out; 6095 err = md_bitmap_load(mddev); 6096 if (err) { 6097 md_bitmap_destroy(mddev); 6098 goto out; 6099 } 6100 6101 if (mddev_is_clustered(mddev)) 6102 md_allow_write(mddev); 6103 6104 /* run start up tasks that require md_thread */ 6105 md_start(mddev); 6106 6107 md_wakeup_thread(mddev->thread); 6108 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 6109 6110 set_capacity(mddev->gendisk, mddev->array_sectors); 6111 revalidate_disk_size(mddev->gendisk, true); 6112 clear_bit(MD_NOT_READY, &mddev->flags); 6113 mddev->changed = 1; 6114 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 6115 sysfs_notify_dirent_safe(mddev->sysfs_state); 6116 sysfs_notify_dirent_safe(mddev->sysfs_action); 6117 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 6118 out: 6119 clear_bit(MD_NOT_READY, &mddev->flags); 6120 return err; 6121 } 6122 6123 int md_start(struct mddev *mddev) 6124 { 6125 int ret = 0; 6126 6127 if (mddev->pers->start) { 6128 set_bit(MD_RECOVERY_WAIT, &mddev->recovery); 6129 md_wakeup_thread(mddev->thread); 6130 ret = mddev->pers->start(mddev); 6131 clear_bit(MD_RECOVERY_WAIT, &mddev->recovery); 6132 md_wakeup_thread(mddev->sync_thread); 6133 } 6134 return ret; 6135 } 6136 EXPORT_SYMBOL_GPL(md_start); 6137 6138 static int restart_array(struct mddev *mddev) 6139 { 6140 struct gendisk *disk = mddev->gendisk; 6141 struct md_rdev *rdev; 6142 bool has_journal = false; 6143 bool has_readonly = false; 6144 6145 /* Complain if it has no devices */ 6146 if (list_empty(&mddev->disks)) 6147 return -ENXIO; 6148 if (!mddev->pers) 6149 return -EINVAL; 6150 if (!mddev->ro) 6151 return -EBUSY; 6152 6153 rcu_read_lock(); 6154 rdev_for_each_rcu(rdev, mddev) { 6155 if (test_bit(Journal, &rdev->flags) && 6156 !test_bit(Faulty, &rdev->flags)) 6157 has_journal = true; 6158 if (bdev_read_only(rdev->bdev)) 6159 has_readonly = true; 6160 } 6161 rcu_read_unlock(); 6162 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !has_journal) 6163 /* Don't restart rw with journal missing/faulty */ 6164 return -EINVAL; 6165 if (has_readonly) 6166 return -EROFS; 6167 6168 mddev->safemode = 0; 6169 mddev->ro = 0; 6170 set_disk_ro(disk, 0); 6171 pr_debug("md: %s switched to read-write mode.\n", mdname(mddev)); 6172 /* Kick recovery or resync if necessary */ 6173 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6174 md_wakeup_thread(mddev->thread); 6175 md_wakeup_thread(mddev->sync_thread); 6176 sysfs_notify_dirent_safe(mddev->sysfs_state); 6177 return 0; 6178 } 6179 6180 static void md_clean(struct mddev *mddev) 6181 { 6182 mddev->array_sectors = 0; 6183 mddev->external_size = 0; 6184 mddev->dev_sectors = 0; 6185 mddev->raid_disks = 0; 6186 mddev->recovery_cp = 0; 6187 mddev->resync_min = 0; 6188 mddev->resync_max = MaxSector; 6189 mddev->reshape_position = MaxSector; 6190 mddev->external = 0; 6191 mddev->persistent = 0; 6192 mddev->level = LEVEL_NONE; 6193 mddev->clevel[0] = 0; 6194 mddev->flags = 0; 6195 mddev->sb_flags = 0; 6196 mddev->ro = 0; 6197 mddev->metadata_type[0] = 0; 6198 mddev->chunk_sectors = 0; 6199 mddev->ctime = mddev->utime = 0; 6200 mddev->layout = 0; 6201 mddev->max_disks = 0; 6202 mddev->events = 0; 6203 mddev->can_decrease_events = 0; 6204 mddev->delta_disks = 0; 6205 mddev->reshape_backwards = 0; 6206 mddev->new_level = LEVEL_NONE; 6207 mddev->new_layout = 0; 6208 mddev->new_chunk_sectors = 0; 6209 mddev->curr_resync = 0; 6210 atomic64_set(&mddev->resync_mismatches, 0); 6211 mddev->suspend_lo = mddev->suspend_hi = 0; 6212 mddev->sync_speed_min = mddev->sync_speed_max = 0; 6213 mddev->recovery = 0; 6214 mddev->in_sync = 0; 6215 mddev->changed = 0; 6216 mddev->degraded = 0; 6217 mddev->safemode = 0; 6218 mddev->private = NULL; 6219 mddev->cluster_info = NULL; 6220 mddev->bitmap_info.offset = 0; 6221 mddev->bitmap_info.default_offset = 0; 6222 mddev->bitmap_info.default_space = 0; 6223 mddev->bitmap_info.chunksize = 0; 6224 mddev->bitmap_info.daemon_sleep = 0; 6225 mddev->bitmap_info.max_write_behind = 0; 6226 mddev->bitmap_info.nodes = 0; 6227 } 6228 6229 static void __md_stop_writes(struct mddev *mddev) 6230 { 6231 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6232 if (work_pending(&mddev->del_work)) 6233 flush_workqueue(md_misc_wq); 6234 if (mddev->sync_thread) { 6235 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6236 md_reap_sync_thread(mddev); 6237 } 6238 6239 del_timer_sync(&mddev->safemode_timer); 6240 6241 if (mddev->pers && mddev->pers->quiesce) { 6242 mddev->pers->quiesce(mddev, 1); 6243 mddev->pers->quiesce(mddev, 0); 6244 } 6245 md_bitmap_flush(mddev); 6246 6247 if (mddev->ro == 0 && 6248 ((!mddev->in_sync && !mddev_is_clustered(mddev)) || 6249 mddev->sb_flags)) { 6250 /* mark array as shutdown cleanly */ 6251 if (!mddev_is_clustered(mddev)) 6252 mddev->in_sync = 1; 6253 md_update_sb(mddev, 1); 6254 } 6255 /* disable policy to guarantee rdevs free resources for serialization */ 6256 mddev->serialize_policy = 0; 6257 mddev_destroy_serial_pool(mddev, NULL, true); 6258 } 6259 6260 void md_stop_writes(struct mddev *mddev) 6261 { 6262 mddev_lock_nointr(mddev); 6263 __md_stop_writes(mddev); 6264 mddev_unlock(mddev); 6265 } 6266 EXPORT_SYMBOL_GPL(md_stop_writes); 6267 6268 static void mddev_detach(struct mddev *mddev) 6269 { 6270 md_bitmap_wait_behind_writes(mddev); 6271 if (mddev->pers && mddev->pers->quiesce && !mddev->suspended) { 6272 mddev->pers->quiesce(mddev, 1); 6273 mddev->pers->quiesce(mddev, 0); 6274 } 6275 md_unregister_thread(&mddev->thread); 6276 if (mddev->queue) 6277 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 6278 } 6279 6280 static void __md_stop(struct mddev *mddev) 6281 { 6282 struct md_personality *pers = mddev->pers; 6283 md_bitmap_destroy(mddev); 6284 mddev_detach(mddev); 6285 /* Ensure ->event_work is done */ 6286 if (mddev->event_work.func) 6287 flush_workqueue(md_misc_wq); 6288 spin_lock(&mddev->lock); 6289 mddev->pers = NULL; 6290 spin_unlock(&mddev->lock); 6291 pers->free(mddev, mddev->private); 6292 mddev->private = NULL; 6293 if (pers->sync_request && mddev->to_remove == NULL) 6294 mddev->to_remove = &md_redundancy_group; 6295 module_put(pers->owner); 6296 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6297 } 6298 6299 void md_stop(struct mddev *mddev) 6300 { 6301 /* stop the array and free an attached data structures. 6302 * This is called from dm-raid 6303 */ 6304 __md_stop(mddev); 6305 bioset_exit(&mddev->bio_set); 6306 bioset_exit(&mddev->sync_set); 6307 } 6308 6309 EXPORT_SYMBOL_GPL(md_stop); 6310 6311 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev) 6312 { 6313 int err = 0; 6314 int did_freeze = 0; 6315 6316 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 6317 did_freeze = 1; 6318 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6319 md_wakeup_thread(mddev->thread); 6320 } 6321 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 6322 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6323 if (mddev->sync_thread) 6324 /* Thread might be blocked waiting for metadata update 6325 * which will now never happen */ 6326 wake_up_process(mddev->sync_thread->tsk); 6327 6328 if (mddev->external && test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 6329 return -EBUSY; 6330 mddev_unlock(mddev); 6331 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING, 6332 &mddev->recovery)); 6333 wait_event(mddev->sb_wait, 6334 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 6335 mddev_lock_nointr(mddev); 6336 6337 mutex_lock(&mddev->open_mutex); 6338 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 6339 mddev->sync_thread || 6340 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 6341 pr_warn("md: %s still in use.\n",mdname(mddev)); 6342 if (did_freeze) { 6343 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6344 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6345 md_wakeup_thread(mddev->thread); 6346 } 6347 err = -EBUSY; 6348 goto out; 6349 } 6350 if (mddev->pers) { 6351 __md_stop_writes(mddev); 6352 6353 err = -ENXIO; 6354 if (mddev->ro==1) 6355 goto out; 6356 mddev->ro = 1; 6357 set_disk_ro(mddev->gendisk, 1); 6358 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6359 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6360 md_wakeup_thread(mddev->thread); 6361 sysfs_notify_dirent_safe(mddev->sysfs_state); 6362 err = 0; 6363 } 6364 out: 6365 mutex_unlock(&mddev->open_mutex); 6366 return err; 6367 } 6368 6369 /* mode: 6370 * 0 - completely stop and dis-assemble array 6371 * 2 - stop but do not disassemble array 6372 */ 6373 static int do_md_stop(struct mddev *mddev, int mode, 6374 struct block_device *bdev) 6375 { 6376 struct gendisk *disk = mddev->gendisk; 6377 struct md_rdev *rdev; 6378 int did_freeze = 0; 6379 6380 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 6381 did_freeze = 1; 6382 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6383 md_wakeup_thread(mddev->thread); 6384 } 6385 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 6386 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6387 if (mddev->sync_thread) 6388 /* Thread might be blocked waiting for metadata update 6389 * which will now never happen */ 6390 wake_up_process(mddev->sync_thread->tsk); 6391 6392 mddev_unlock(mddev); 6393 wait_event(resync_wait, (mddev->sync_thread == NULL && 6394 !test_bit(MD_RECOVERY_RUNNING, 6395 &mddev->recovery))); 6396 mddev_lock_nointr(mddev); 6397 6398 mutex_lock(&mddev->open_mutex); 6399 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 6400 mddev->sysfs_active || 6401 mddev->sync_thread || 6402 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 6403 pr_warn("md: %s still in use.\n",mdname(mddev)); 6404 mutex_unlock(&mddev->open_mutex); 6405 if (did_freeze) { 6406 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6407 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6408 md_wakeup_thread(mddev->thread); 6409 } 6410 return -EBUSY; 6411 } 6412 if (mddev->pers) { 6413 if (mddev->ro) 6414 set_disk_ro(disk, 0); 6415 6416 __md_stop_writes(mddev); 6417 __md_stop(mddev); 6418 6419 /* tell userspace to handle 'inactive' */ 6420 sysfs_notify_dirent_safe(mddev->sysfs_state); 6421 6422 rdev_for_each(rdev, mddev) 6423 if (rdev->raid_disk >= 0) 6424 sysfs_unlink_rdev(mddev, rdev); 6425 6426 set_capacity(disk, 0); 6427 mutex_unlock(&mddev->open_mutex); 6428 mddev->changed = 1; 6429 revalidate_disk_size(disk, true); 6430 6431 if (mddev->ro) 6432 mddev->ro = 0; 6433 } else 6434 mutex_unlock(&mddev->open_mutex); 6435 /* 6436 * Free resources if final stop 6437 */ 6438 if (mode == 0) { 6439 pr_info("md: %s stopped.\n", mdname(mddev)); 6440 6441 if (mddev->bitmap_info.file) { 6442 struct file *f = mddev->bitmap_info.file; 6443 spin_lock(&mddev->lock); 6444 mddev->bitmap_info.file = NULL; 6445 spin_unlock(&mddev->lock); 6446 fput(f); 6447 } 6448 mddev->bitmap_info.offset = 0; 6449 6450 export_array(mddev); 6451 6452 md_clean(mddev); 6453 if (mddev->hold_active == UNTIL_STOP) 6454 mddev->hold_active = 0; 6455 } 6456 md_new_event(mddev); 6457 sysfs_notify_dirent_safe(mddev->sysfs_state); 6458 return 0; 6459 } 6460 6461 #ifndef MODULE 6462 static void autorun_array(struct mddev *mddev) 6463 { 6464 struct md_rdev *rdev; 6465 int err; 6466 6467 if (list_empty(&mddev->disks)) 6468 return; 6469 6470 pr_info("md: running: "); 6471 6472 rdev_for_each(rdev, mddev) { 6473 char b[BDEVNAME_SIZE]; 6474 pr_cont("<%s>", bdevname(rdev->bdev,b)); 6475 } 6476 pr_cont("\n"); 6477 6478 err = do_md_run(mddev); 6479 if (err) { 6480 pr_warn("md: do_md_run() returned %d\n", err); 6481 do_md_stop(mddev, 0, NULL); 6482 } 6483 } 6484 6485 /* 6486 * lets try to run arrays based on all disks that have arrived 6487 * until now. (those are in pending_raid_disks) 6488 * 6489 * the method: pick the first pending disk, collect all disks with 6490 * the same UUID, remove all from the pending list and put them into 6491 * the 'same_array' list. Then order this list based on superblock 6492 * update time (freshest comes first), kick out 'old' disks and 6493 * compare superblocks. If everything's fine then run it. 6494 * 6495 * If "unit" is allocated, then bump its reference count 6496 */ 6497 static void autorun_devices(int part) 6498 { 6499 struct md_rdev *rdev0, *rdev, *tmp; 6500 struct mddev *mddev; 6501 char b[BDEVNAME_SIZE]; 6502 6503 pr_info("md: autorun ...\n"); 6504 while (!list_empty(&pending_raid_disks)) { 6505 int unit; 6506 dev_t dev; 6507 LIST_HEAD(candidates); 6508 rdev0 = list_entry(pending_raid_disks.next, 6509 struct md_rdev, same_set); 6510 6511 pr_debug("md: considering %s ...\n", bdevname(rdev0->bdev,b)); 6512 INIT_LIST_HEAD(&candidates); 6513 rdev_for_each_list(rdev, tmp, &pending_raid_disks) 6514 if (super_90_load(rdev, rdev0, 0) >= 0) { 6515 pr_debug("md: adding %s ...\n", 6516 bdevname(rdev->bdev,b)); 6517 list_move(&rdev->same_set, &candidates); 6518 } 6519 /* 6520 * now we have a set of devices, with all of them having 6521 * mostly sane superblocks. It's time to allocate the 6522 * mddev. 6523 */ 6524 if (part) { 6525 dev = MKDEV(mdp_major, 6526 rdev0->preferred_minor << MdpMinorShift); 6527 unit = MINOR(dev) >> MdpMinorShift; 6528 } else { 6529 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); 6530 unit = MINOR(dev); 6531 } 6532 if (rdev0->preferred_minor != unit) { 6533 pr_warn("md: unit number in %s is bad: %d\n", 6534 bdevname(rdev0->bdev, b), rdev0->preferred_minor); 6535 break; 6536 } 6537 6538 md_probe(dev, NULL, NULL); 6539 mddev = mddev_find(dev); 6540 if (!mddev || !mddev->gendisk) { 6541 if (mddev) 6542 mddev_put(mddev); 6543 break; 6544 } 6545 if (mddev_lock(mddev)) 6546 pr_warn("md: %s locked, cannot run\n", mdname(mddev)); 6547 else if (mddev->raid_disks || mddev->major_version 6548 || !list_empty(&mddev->disks)) { 6549 pr_warn("md: %s already running, cannot run %s\n", 6550 mdname(mddev), bdevname(rdev0->bdev,b)); 6551 mddev_unlock(mddev); 6552 } else { 6553 pr_debug("md: created %s\n", mdname(mddev)); 6554 mddev->persistent = 1; 6555 rdev_for_each_list(rdev, tmp, &candidates) { 6556 list_del_init(&rdev->same_set); 6557 if (bind_rdev_to_array(rdev, mddev)) 6558 export_rdev(rdev); 6559 } 6560 autorun_array(mddev); 6561 mddev_unlock(mddev); 6562 } 6563 /* on success, candidates will be empty, on error 6564 * it won't... 6565 */ 6566 rdev_for_each_list(rdev, tmp, &candidates) { 6567 list_del_init(&rdev->same_set); 6568 export_rdev(rdev); 6569 } 6570 mddev_put(mddev); 6571 } 6572 pr_info("md: ... autorun DONE.\n"); 6573 } 6574 #endif /* !MODULE */ 6575 6576 static int get_version(void __user *arg) 6577 { 6578 mdu_version_t ver; 6579 6580 ver.major = MD_MAJOR_VERSION; 6581 ver.minor = MD_MINOR_VERSION; 6582 ver.patchlevel = MD_PATCHLEVEL_VERSION; 6583 6584 if (copy_to_user(arg, &ver, sizeof(ver))) 6585 return -EFAULT; 6586 6587 return 0; 6588 } 6589 6590 static int get_array_info(struct mddev *mddev, void __user *arg) 6591 { 6592 mdu_array_info_t info; 6593 int nr,working,insync,failed,spare; 6594 struct md_rdev *rdev; 6595 6596 nr = working = insync = failed = spare = 0; 6597 rcu_read_lock(); 6598 rdev_for_each_rcu(rdev, mddev) { 6599 nr++; 6600 if (test_bit(Faulty, &rdev->flags)) 6601 failed++; 6602 else { 6603 working++; 6604 if (test_bit(In_sync, &rdev->flags)) 6605 insync++; 6606 else if (test_bit(Journal, &rdev->flags)) 6607 /* TODO: add journal count to md_u.h */ 6608 ; 6609 else 6610 spare++; 6611 } 6612 } 6613 rcu_read_unlock(); 6614 6615 info.major_version = mddev->major_version; 6616 info.minor_version = mddev->minor_version; 6617 info.patch_version = MD_PATCHLEVEL_VERSION; 6618 info.ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 6619 info.level = mddev->level; 6620 info.size = mddev->dev_sectors / 2; 6621 if (info.size != mddev->dev_sectors / 2) /* overflow */ 6622 info.size = -1; 6623 info.nr_disks = nr; 6624 info.raid_disks = mddev->raid_disks; 6625 info.md_minor = mddev->md_minor; 6626 info.not_persistent= !mddev->persistent; 6627 6628 info.utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 6629 info.state = 0; 6630 if (mddev->in_sync) 6631 info.state = (1<<MD_SB_CLEAN); 6632 if (mddev->bitmap && mddev->bitmap_info.offset) 6633 info.state |= (1<<MD_SB_BITMAP_PRESENT); 6634 if (mddev_is_clustered(mddev)) 6635 info.state |= (1<<MD_SB_CLUSTERED); 6636 info.active_disks = insync; 6637 info.working_disks = working; 6638 info.failed_disks = failed; 6639 info.spare_disks = spare; 6640 6641 info.layout = mddev->layout; 6642 info.chunk_size = mddev->chunk_sectors << 9; 6643 6644 if (copy_to_user(arg, &info, sizeof(info))) 6645 return -EFAULT; 6646 6647 return 0; 6648 } 6649 6650 static int get_bitmap_file(struct mddev *mddev, void __user * arg) 6651 { 6652 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ 6653 char *ptr; 6654 int err; 6655 6656 file = kzalloc(sizeof(*file), GFP_NOIO); 6657 if (!file) 6658 return -ENOMEM; 6659 6660 err = 0; 6661 spin_lock(&mddev->lock); 6662 /* bitmap enabled */ 6663 if (mddev->bitmap_info.file) { 6664 ptr = file_path(mddev->bitmap_info.file, file->pathname, 6665 sizeof(file->pathname)); 6666 if (IS_ERR(ptr)) 6667 err = PTR_ERR(ptr); 6668 else 6669 memmove(file->pathname, ptr, 6670 sizeof(file->pathname)-(ptr-file->pathname)); 6671 } 6672 spin_unlock(&mddev->lock); 6673 6674 if (err == 0 && 6675 copy_to_user(arg, file, sizeof(*file))) 6676 err = -EFAULT; 6677 6678 kfree(file); 6679 return err; 6680 } 6681 6682 static int get_disk_info(struct mddev *mddev, void __user * arg) 6683 { 6684 mdu_disk_info_t info; 6685 struct md_rdev *rdev; 6686 6687 if (copy_from_user(&info, arg, sizeof(info))) 6688 return -EFAULT; 6689 6690 rcu_read_lock(); 6691 rdev = md_find_rdev_nr_rcu(mddev, info.number); 6692 if (rdev) { 6693 info.major = MAJOR(rdev->bdev->bd_dev); 6694 info.minor = MINOR(rdev->bdev->bd_dev); 6695 info.raid_disk = rdev->raid_disk; 6696 info.state = 0; 6697 if (test_bit(Faulty, &rdev->flags)) 6698 info.state |= (1<<MD_DISK_FAULTY); 6699 else if (test_bit(In_sync, &rdev->flags)) { 6700 info.state |= (1<<MD_DISK_ACTIVE); 6701 info.state |= (1<<MD_DISK_SYNC); 6702 } 6703 if (test_bit(Journal, &rdev->flags)) 6704 info.state |= (1<<MD_DISK_JOURNAL); 6705 if (test_bit(WriteMostly, &rdev->flags)) 6706 info.state |= (1<<MD_DISK_WRITEMOSTLY); 6707 if (test_bit(FailFast, &rdev->flags)) 6708 info.state |= (1<<MD_DISK_FAILFAST); 6709 } else { 6710 info.major = info.minor = 0; 6711 info.raid_disk = -1; 6712 info.state = (1<<MD_DISK_REMOVED); 6713 } 6714 rcu_read_unlock(); 6715 6716 if (copy_to_user(arg, &info, sizeof(info))) 6717 return -EFAULT; 6718 6719 return 0; 6720 } 6721 6722 int md_add_new_disk(struct mddev *mddev, struct mdu_disk_info_s *info) 6723 { 6724 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 6725 struct md_rdev *rdev; 6726 dev_t dev = MKDEV(info->major,info->minor); 6727 6728 if (mddev_is_clustered(mddev) && 6729 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) { 6730 pr_warn("%s: Cannot add to clustered mddev.\n", 6731 mdname(mddev)); 6732 return -EINVAL; 6733 } 6734 6735 if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) 6736 return -EOVERFLOW; 6737 6738 if (!mddev->raid_disks) { 6739 int err; 6740 /* expecting a device which has a superblock */ 6741 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); 6742 if (IS_ERR(rdev)) { 6743 pr_warn("md: md_import_device returned %ld\n", 6744 PTR_ERR(rdev)); 6745 return PTR_ERR(rdev); 6746 } 6747 if (!list_empty(&mddev->disks)) { 6748 struct md_rdev *rdev0 6749 = list_entry(mddev->disks.next, 6750 struct md_rdev, same_set); 6751 err = super_types[mddev->major_version] 6752 .load_super(rdev, rdev0, mddev->minor_version); 6753 if (err < 0) { 6754 pr_warn("md: %s has different UUID to %s\n", 6755 bdevname(rdev->bdev,b), 6756 bdevname(rdev0->bdev,b2)); 6757 export_rdev(rdev); 6758 return -EINVAL; 6759 } 6760 } 6761 err = bind_rdev_to_array(rdev, mddev); 6762 if (err) 6763 export_rdev(rdev); 6764 return err; 6765 } 6766 6767 /* 6768 * md_add_new_disk can be used once the array is assembled 6769 * to add "hot spares". They must already have a superblock 6770 * written 6771 */ 6772 if (mddev->pers) { 6773 int err; 6774 if (!mddev->pers->hot_add_disk) { 6775 pr_warn("%s: personality does not support diskops!\n", 6776 mdname(mddev)); 6777 return -EINVAL; 6778 } 6779 if (mddev->persistent) 6780 rdev = md_import_device(dev, mddev->major_version, 6781 mddev->minor_version); 6782 else 6783 rdev = md_import_device(dev, -1, -1); 6784 if (IS_ERR(rdev)) { 6785 pr_warn("md: md_import_device returned %ld\n", 6786 PTR_ERR(rdev)); 6787 return PTR_ERR(rdev); 6788 } 6789 /* set saved_raid_disk if appropriate */ 6790 if (!mddev->persistent) { 6791 if (info->state & (1<<MD_DISK_SYNC) && 6792 info->raid_disk < mddev->raid_disks) { 6793 rdev->raid_disk = info->raid_disk; 6794 set_bit(In_sync, &rdev->flags); 6795 clear_bit(Bitmap_sync, &rdev->flags); 6796 } else 6797 rdev->raid_disk = -1; 6798 rdev->saved_raid_disk = rdev->raid_disk; 6799 } else 6800 super_types[mddev->major_version]. 6801 validate_super(mddev, rdev); 6802 if ((info->state & (1<<MD_DISK_SYNC)) && 6803 rdev->raid_disk != info->raid_disk) { 6804 /* This was a hot-add request, but events doesn't 6805 * match, so reject it. 6806 */ 6807 export_rdev(rdev); 6808 return -EINVAL; 6809 } 6810 6811 clear_bit(In_sync, &rdev->flags); /* just to be sure */ 6812 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6813 set_bit(WriteMostly, &rdev->flags); 6814 else 6815 clear_bit(WriteMostly, &rdev->flags); 6816 if (info->state & (1<<MD_DISK_FAILFAST)) 6817 set_bit(FailFast, &rdev->flags); 6818 else 6819 clear_bit(FailFast, &rdev->flags); 6820 6821 if (info->state & (1<<MD_DISK_JOURNAL)) { 6822 struct md_rdev *rdev2; 6823 bool has_journal = false; 6824 6825 /* make sure no existing journal disk */ 6826 rdev_for_each(rdev2, mddev) { 6827 if (test_bit(Journal, &rdev2->flags)) { 6828 has_journal = true; 6829 break; 6830 } 6831 } 6832 if (has_journal || mddev->bitmap) { 6833 export_rdev(rdev); 6834 return -EBUSY; 6835 } 6836 set_bit(Journal, &rdev->flags); 6837 } 6838 /* 6839 * check whether the device shows up in other nodes 6840 */ 6841 if (mddev_is_clustered(mddev)) { 6842 if (info->state & (1 << MD_DISK_CANDIDATE)) 6843 set_bit(Candidate, &rdev->flags); 6844 else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) { 6845 /* --add initiated by this node */ 6846 err = md_cluster_ops->add_new_disk(mddev, rdev); 6847 if (err) { 6848 export_rdev(rdev); 6849 return err; 6850 } 6851 } 6852 } 6853 6854 rdev->raid_disk = -1; 6855 err = bind_rdev_to_array(rdev, mddev); 6856 6857 if (err) 6858 export_rdev(rdev); 6859 6860 if (mddev_is_clustered(mddev)) { 6861 if (info->state & (1 << MD_DISK_CANDIDATE)) { 6862 if (!err) { 6863 err = md_cluster_ops->new_disk_ack(mddev, 6864 err == 0); 6865 if (err) 6866 md_kick_rdev_from_array(rdev); 6867 } 6868 } else { 6869 if (err) 6870 md_cluster_ops->add_new_disk_cancel(mddev); 6871 else 6872 err = add_bound_rdev(rdev); 6873 } 6874 6875 } else if (!err) 6876 err = add_bound_rdev(rdev); 6877 6878 return err; 6879 } 6880 6881 /* otherwise, md_add_new_disk is only allowed 6882 * for major_version==0 superblocks 6883 */ 6884 if (mddev->major_version != 0) { 6885 pr_warn("%s: ADD_NEW_DISK not supported\n", mdname(mddev)); 6886 return -EINVAL; 6887 } 6888 6889 if (!(info->state & (1<<MD_DISK_FAULTY))) { 6890 int err; 6891 rdev = md_import_device(dev, -1, 0); 6892 if (IS_ERR(rdev)) { 6893 pr_warn("md: error, md_import_device() returned %ld\n", 6894 PTR_ERR(rdev)); 6895 return PTR_ERR(rdev); 6896 } 6897 rdev->desc_nr = info->number; 6898 if (info->raid_disk < mddev->raid_disks) 6899 rdev->raid_disk = info->raid_disk; 6900 else 6901 rdev->raid_disk = -1; 6902 6903 if (rdev->raid_disk < mddev->raid_disks) 6904 if (info->state & (1<<MD_DISK_SYNC)) 6905 set_bit(In_sync, &rdev->flags); 6906 6907 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6908 set_bit(WriteMostly, &rdev->flags); 6909 if (info->state & (1<<MD_DISK_FAILFAST)) 6910 set_bit(FailFast, &rdev->flags); 6911 6912 if (!mddev->persistent) { 6913 pr_debug("md: nonpersistent superblock ...\n"); 6914 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 6915 } else 6916 rdev->sb_start = calc_dev_sboffset(rdev); 6917 rdev->sectors = rdev->sb_start; 6918 6919 err = bind_rdev_to_array(rdev, mddev); 6920 if (err) { 6921 export_rdev(rdev); 6922 return err; 6923 } 6924 } 6925 6926 return 0; 6927 } 6928 6929 static int hot_remove_disk(struct mddev *mddev, dev_t dev) 6930 { 6931 char b[BDEVNAME_SIZE]; 6932 struct md_rdev *rdev; 6933 6934 if (!mddev->pers) 6935 return -ENODEV; 6936 6937 rdev = find_rdev(mddev, dev); 6938 if (!rdev) 6939 return -ENXIO; 6940 6941 if (rdev->raid_disk < 0) 6942 goto kick_rdev; 6943 6944 clear_bit(Blocked, &rdev->flags); 6945 remove_and_add_spares(mddev, rdev); 6946 6947 if (rdev->raid_disk >= 0) 6948 goto busy; 6949 6950 kick_rdev: 6951 if (mddev_is_clustered(mddev)) 6952 md_cluster_ops->remove_disk(mddev, rdev); 6953 6954 md_kick_rdev_from_array(rdev); 6955 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6956 if (mddev->thread) 6957 md_wakeup_thread(mddev->thread); 6958 else 6959 md_update_sb(mddev, 1); 6960 md_new_event(mddev); 6961 6962 return 0; 6963 busy: 6964 pr_debug("md: cannot remove active disk %s from %s ...\n", 6965 bdevname(rdev->bdev,b), mdname(mddev)); 6966 return -EBUSY; 6967 } 6968 6969 static int hot_add_disk(struct mddev *mddev, dev_t dev) 6970 { 6971 char b[BDEVNAME_SIZE]; 6972 int err; 6973 struct md_rdev *rdev; 6974 6975 if (!mddev->pers) 6976 return -ENODEV; 6977 6978 if (mddev->major_version != 0) { 6979 pr_warn("%s: HOT_ADD may only be used with version-0 superblocks.\n", 6980 mdname(mddev)); 6981 return -EINVAL; 6982 } 6983 if (!mddev->pers->hot_add_disk) { 6984 pr_warn("%s: personality does not support diskops!\n", 6985 mdname(mddev)); 6986 return -EINVAL; 6987 } 6988 6989 rdev = md_import_device(dev, -1, 0); 6990 if (IS_ERR(rdev)) { 6991 pr_warn("md: error, md_import_device() returned %ld\n", 6992 PTR_ERR(rdev)); 6993 return -EINVAL; 6994 } 6995 6996 if (mddev->persistent) 6997 rdev->sb_start = calc_dev_sboffset(rdev); 6998 else 6999 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 7000 7001 rdev->sectors = rdev->sb_start; 7002 7003 if (test_bit(Faulty, &rdev->flags)) { 7004 pr_warn("md: can not hot-add faulty %s disk to %s!\n", 7005 bdevname(rdev->bdev,b), mdname(mddev)); 7006 err = -EINVAL; 7007 goto abort_export; 7008 } 7009 7010 clear_bit(In_sync, &rdev->flags); 7011 rdev->desc_nr = -1; 7012 rdev->saved_raid_disk = -1; 7013 err = bind_rdev_to_array(rdev, mddev); 7014 if (err) 7015 goto abort_export; 7016 7017 /* 7018 * The rest should better be atomic, we can have disk failures 7019 * noticed in interrupt contexts ... 7020 */ 7021 7022 rdev->raid_disk = -1; 7023 7024 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 7025 if (!mddev->thread) 7026 md_update_sb(mddev, 1); 7027 /* 7028 * Kick recovery, maybe this spare has to be added to the 7029 * array immediately. 7030 */ 7031 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7032 md_wakeup_thread(mddev->thread); 7033 md_new_event(mddev); 7034 return 0; 7035 7036 abort_export: 7037 export_rdev(rdev); 7038 return err; 7039 } 7040 7041 static int set_bitmap_file(struct mddev *mddev, int fd) 7042 { 7043 int err = 0; 7044 7045 if (mddev->pers) { 7046 if (!mddev->pers->quiesce || !mddev->thread) 7047 return -EBUSY; 7048 if (mddev->recovery || mddev->sync_thread) 7049 return -EBUSY; 7050 /* we should be able to change the bitmap.. */ 7051 } 7052 7053 if (fd >= 0) { 7054 struct inode *inode; 7055 struct file *f; 7056 7057 if (mddev->bitmap || mddev->bitmap_info.file) 7058 return -EEXIST; /* cannot add when bitmap is present */ 7059 f = fget(fd); 7060 7061 if (f == NULL) { 7062 pr_warn("%s: error: failed to get bitmap file\n", 7063 mdname(mddev)); 7064 return -EBADF; 7065 } 7066 7067 inode = f->f_mapping->host; 7068 if (!S_ISREG(inode->i_mode)) { 7069 pr_warn("%s: error: bitmap file must be a regular file\n", 7070 mdname(mddev)); 7071 err = -EBADF; 7072 } else if (!(f->f_mode & FMODE_WRITE)) { 7073 pr_warn("%s: error: bitmap file must open for write\n", 7074 mdname(mddev)); 7075 err = -EBADF; 7076 } else if (atomic_read(&inode->i_writecount) != 1) { 7077 pr_warn("%s: error: bitmap file is already in use\n", 7078 mdname(mddev)); 7079 err = -EBUSY; 7080 } 7081 if (err) { 7082 fput(f); 7083 return err; 7084 } 7085 mddev->bitmap_info.file = f; 7086 mddev->bitmap_info.offset = 0; /* file overrides offset */ 7087 } else if (mddev->bitmap == NULL) 7088 return -ENOENT; /* cannot remove what isn't there */ 7089 err = 0; 7090 if (mddev->pers) { 7091 if (fd >= 0) { 7092 struct bitmap *bitmap; 7093 7094 bitmap = md_bitmap_create(mddev, -1); 7095 mddev_suspend(mddev); 7096 if (!IS_ERR(bitmap)) { 7097 mddev->bitmap = bitmap; 7098 err = md_bitmap_load(mddev); 7099 } else 7100 err = PTR_ERR(bitmap); 7101 if (err) { 7102 md_bitmap_destroy(mddev); 7103 fd = -1; 7104 } 7105 mddev_resume(mddev); 7106 } else if (fd < 0) { 7107 mddev_suspend(mddev); 7108 md_bitmap_destroy(mddev); 7109 mddev_resume(mddev); 7110 } 7111 } 7112 if (fd < 0) { 7113 struct file *f = mddev->bitmap_info.file; 7114 if (f) { 7115 spin_lock(&mddev->lock); 7116 mddev->bitmap_info.file = NULL; 7117 spin_unlock(&mddev->lock); 7118 fput(f); 7119 } 7120 } 7121 7122 return err; 7123 } 7124 7125 /* 7126 * md_set_array_info is used two different ways 7127 * The original usage is when creating a new array. 7128 * In this usage, raid_disks is > 0 and it together with 7129 * level, size, not_persistent,layout,chunksize determine the 7130 * shape of the array. 7131 * This will always create an array with a type-0.90.0 superblock. 7132 * The newer usage is when assembling an array. 7133 * In this case raid_disks will be 0, and the major_version field is 7134 * use to determine which style super-blocks are to be found on the devices. 7135 * The minor and patch _version numbers are also kept incase the 7136 * super_block handler wishes to interpret them. 7137 */ 7138 int md_set_array_info(struct mddev *mddev, struct mdu_array_info_s *info) 7139 { 7140 if (info->raid_disks == 0) { 7141 /* just setting version number for superblock loading */ 7142 if (info->major_version < 0 || 7143 info->major_version >= ARRAY_SIZE(super_types) || 7144 super_types[info->major_version].name == NULL) { 7145 /* maybe try to auto-load a module? */ 7146 pr_warn("md: superblock version %d not known\n", 7147 info->major_version); 7148 return -EINVAL; 7149 } 7150 mddev->major_version = info->major_version; 7151 mddev->minor_version = info->minor_version; 7152 mddev->patch_version = info->patch_version; 7153 mddev->persistent = !info->not_persistent; 7154 /* ensure mddev_put doesn't delete this now that there 7155 * is some minimal configuration. 7156 */ 7157 mddev->ctime = ktime_get_real_seconds(); 7158 return 0; 7159 } 7160 mddev->major_version = MD_MAJOR_VERSION; 7161 mddev->minor_version = MD_MINOR_VERSION; 7162 mddev->patch_version = MD_PATCHLEVEL_VERSION; 7163 mddev->ctime = ktime_get_real_seconds(); 7164 7165 mddev->level = info->level; 7166 mddev->clevel[0] = 0; 7167 mddev->dev_sectors = 2 * (sector_t)info->size; 7168 mddev->raid_disks = info->raid_disks; 7169 /* don't set md_minor, it is determined by which /dev/md* was 7170 * openned 7171 */ 7172 if (info->state & (1<<MD_SB_CLEAN)) 7173 mddev->recovery_cp = MaxSector; 7174 else 7175 mddev->recovery_cp = 0; 7176 mddev->persistent = ! info->not_persistent; 7177 mddev->external = 0; 7178 7179 mddev->layout = info->layout; 7180 if (mddev->level == 0) 7181 /* Cannot trust RAID0 layout info here */ 7182 mddev->layout = -1; 7183 mddev->chunk_sectors = info->chunk_size >> 9; 7184 7185 if (mddev->persistent) { 7186 mddev->max_disks = MD_SB_DISKS; 7187 mddev->flags = 0; 7188 mddev->sb_flags = 0; 7189 } 7190 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 7191 7192 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 7193 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 7194 mddev->bitmap_info.offset = 0; 7195 7196 mddev->reshape_position = MaxSector; 7197 7198 /* 7199 * Generate a 128 bit UUID 7200 */ 7201 get_random_bytes(mddev->uuid, 16); 7202 7203 mddev->new_level = mddev->level; 7204 mddev->new_chunk_sectors = mddev->chunk_sectors; 7205 mddev->new_layout = mddev->layout; 7206 mddev->delta_disks = 0; 7207 mddev->reshape_backwards = 0; 7208 7209 return 0; 7210 } 7211 7212 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors) 7213 { 7214 lockdep_assert_held(&mddev->reconfig_mutex); 7215 7216 if (mddev->external_size) 7217 return; 7218 7219 mddev->array_sectors = array_sectors; 7220 } 7221 EXPORT_SYMBOL(md_set_array_sectors); 7222 7223 static int update_size(struct mddev *mddev, sector_t num_sectors) 7224 { 7225 struct md_rdev *rdev; 7226 int rv; 7227 int fit = (num_sectors == 0); 7228 sector_t old_dev_sectors = mddev->dev_sectors; 7229 7230 if (mddev->pers->resize == NULL) 7231 return -EINVAL; 7232 /* The "num_sectors" is the number of sectors of each device that 7233 * is used. This can only make sense for arrays with redundancy. 7234 * linear and raid0 always use whatever space is available. We can only 7235 * consider changing this number if no resync or reconstruction is 7236 * happening, and if the new size is acceptable. It must fit before the 7237 * sb_start or, if that is <data_offset, it must fit before the size 7238 * of each device. If num_sectors is zero, we find the largest size 7239 * that fits. 7240 */ 7241 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 7242 mddev->sync_thread) 7243 return -EBUSY; 7244 if (mddev->ro) 7245 return -EROFS; 7246 7247 rdev_for_each(rdev, mddev) { 7248 sector_t avail = rdev->sectors; 7249 7250 if (fit && (num_sectors == 0 || num_sectors > avail)) 7251 num_sectors = avail; 7252 if (avail < num_sectors) 7253 return -ENOSPC; 7254 } 7255 rv = mddev->pers->resize(mddev, num_sectors); 7256 if (!rv) { 7257 if (mddev_is_clustered(mddev)) 7258 md_cluster_ops->update_size(mddev, old_dev_sectors); 7259 else if (mddev->queue) { 7260 set_capacity(mddev->gendisk, mddev->array_sectors); 7261 revalidate_disk_size(mddev->gendisk, true); 7262 } 7263 } 7264 return rv; 7265 } 7266 7267 static int update_raid_disks(struct mddev *mddev, int raid_disks) 7268 { 7269 int rv; 7270 struct md_rdev *rdev; 7271 /* change the number of raid disks */ 7272 if (mddev->pers->check_reshape == NULL) 7273 return -EINVAL; 7274 if (mddev->ro) 7275 return -EROFS; 7276 if (raid_disks <= 0 || 7277 (mddev->max_disks && raid_disks >= mddev->max_disks)) 7278 return -EINVAL; 7279 if (mddev->sync_thread || 7280 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 7281 mddev->reshape_position != MaxSector) 7282 return -EBUSY; 7283 7284 rdev_for_each(rdev, mddev) { 7285 if (mddev->raid_disks < raid_disks && 7286 rdev->data_offset < rdev->new_data_offset) 7287 return -EINVAL; 7288 if (mddev->raid_disks > raid_disks && 7289 rdev->data_offset > rdev->new_data_offset) 7290 return -EINVAL; 7291 } 7292 7293 mddev->delta_disks = raid_disks - mddev->raid_disks; 7294 if (mddev->delta_disks < 0) 7295 mddev->reshape_backwards = 1; 7296 else if (mddev->delta_disks > 0) 7297 mddev->reshape_backwards = 0; 7298 7299 rv = mddev->pers->check_reshape(mddev); 7300 if (rv < 0) { 7301 mddev->delta_disks = 0; 7302 mddev->reshape_backwards = 0; 7303 } 7304 return rv; 7305 } 7306 7307 /* 7308 * update_array_info is used to change the configuration of an 7309 * on-line array. 7310 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size 7311 * fields in the info are checked against the array. 7312 * Any differences that cannot be handled will cause an error. 7313 * Normally, only one change can be managed at a time. 7314 */ 7315 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info) 7316 { 7317 int rv = 0; 7318 int cnt = 0; 7319 int state = 0; 7320 7321 /* calculate expected state,ignoring low bits */ 7322 if (mddev->bitmap && mddev->bitmap_info.offset) 7323 state |= (1 << MD_SB_BITMAP_PRESENT); 7324 7325 if (mddev->major_version != info->major_version || 7326 mddev->minor_version != info->minor_version || 7327 /* mddev->patch_version != info->patch_version || */ 7328 mddev->ctime != info->ctime || 7329 mddev->level != info->level || 7330 /* mddev->layout != info->layout || */ 7331 mddev->persistent != !info->not_persistent || 7332 mddev->chunk_sectors != info->chunk_size >> 9 || 7333 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ 7334 ((state^info->state) & 0xfffffe00) 7335 ) 7336 return -EINVAL; 7337 /* Check there is only one change */ 7338 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 7339 cnt++; 7340 if (mddev->raid_disks != info->raid_disks) 7341 cnt++; 7342 if (mddev->layout != info->layout) 7343 cnt++; 7344 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) 7345 cnt++; 7346 if (cnt == 0) 7347 return 0; 7348 if (cnt > 1) 7349 return -EINVAL; 7350 7351 if (mddev->layout != info->layout) { 7352 /* Change layout 7353 * we don't need to do anything at the md level, the 7354 * personality will take care of it all. 7355 */ 7356 if (mddev->pers->check_reshape == NULL) 7357 return -EINVAL; 7358 else { 7359 mddev->new_layout = info->layout; 7360 rv = mddev->pers->check_reshape(mddev); 7361 if (rv) 7362 mddev->new_layout = mddev->layout; 7363 return rv; 7364 } 7365 } 7366 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 7367 rv = update_size(mddev, (sector_t)info->size * 2); 7368 7369 if (mddev->raid_disks != info->raid_disks) 7370 rv = update_raid_disks(mddev, info->raid_disks); 7371 7372 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { 7373 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) { 7374 rv = -EINVAL; 7375 goto err; 7376 } 7377 if (mddev->recovery || mddev->sync_thread) { 7378 rv = -EBUSY; 7379 goto err; 7380 } 7381 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { 7382 struct bitmap *bitmap; 7383 /* add the bitmap */ 7384 if (mddev->bitmap) { 7385 rv = -EEXIST; 7386 goto err; 7387 } 7388 if (mddev->bitmap_info.default_offset == 0) { 7389 rv = -EINVAL; 7390 goto err; 7391 } 7392 mddev->bitmap_info.offset = 7393 mddev->bitmap_info.default_offset; 7394 mddev->bitmap_info.space = 7395 mddev->bitmap_info.default_space; 7396 bitmap = md_bitmap_create(mddev, -1); 7397 mddev_suspend(mddev); 7398 if (!IS_ERR(bitmap)) { 7399 mddev->bitmap = bitmap; 7400 rv = md_bitmap_load(mddev); 7401 } else 7402 rv = PTR_ERR(bitmap); 7403 if (rv) 7404 md_bitmap_destroy(mddev); 7405 mddev_resume(mddev); 7406 } else { 7407 /* remove the bitmap */ 7408 if (!mddev->bitmap) { 7409 rv = -ENOENT; 7410 goto err; 7411 } 7412 if (mddev->bitmap->storage.file) { 7413 rv = -EINVAL; 7414 goto err; 7415 } 7416 if (mddev->bitmap_info.nodes) { 7417 /* hold PW on all the bitmap lock */ 7418 if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) { 7419 pr_warn("md: can't change bitmap to none since the array is in use by more than one node\n"); 7420 rv = -EPERM; 7421 md_cluster_ops->unlock_all_bitmaps(mddev); 7422 goto err; 7423 } 7424 7425 mddev->bitmap_info.nodes = 0; 7426 md_cluster_ops->leave(mddev); 7427 module_put(md_cluster_mod); 7428 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY; 7429 } 7430 mddev_suspend(mddev); 7431 md_bitmap_destroy(mddev); 7432 mddev_resume(mddev); 7433 mddev->bitmap_info.offset = 0; 7434 } 7435 } 7436 md_update_sb(mddev, 1); 7437 return rv; 7438 err: 7439 return rv; 7440 } 7441 7442 static int set_disk_faulty(struct mddev *mddev, dev_t dev) 7443 { 7444 struct md_rdev *rdev; 7445 int err = 0; 7446 7447 if (mddev->pers == NULL) 7448 return -ENODEV; 7449 7450 rcu_read_lock(); 7451 rdev = md_find_rdev_rcu(mddev, dev); 7452 if (!rdev) 7453 err = -ENODEV; 7454 else { 7455 md_error(mddev, rdev); 7456 if (!test_bit(Faulty, &rdev->flags)) 7457 err = -EBUSY; 7458 } 7459 rcu_read_unlock(); 7460 return err; 7461 } 7462 7463 /* 7464 * We have a problem here : there is no easy way to give a CHS 7465 * virtual geometry. We currently pretend that we have a 2 heads 7466 * 4 sectors (with a BIG number of cylinders...). This drives 7467 * dosfs just mad... ;-) 7468 */ 7469 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) 7470 { 7471 struct mddev *mddev = bdev->bd_disk->private_data; 7472 7473 geo->heads = 2; 7474 geo->sectors = 4; 7475 geo->cylinders = mddev->array_sectors / 8; 7476 return 0; 7477 } 7478 7479 static inline bool md_ioctl_valid(unsigned int cmd) 7480 { 7481 switch (cmd) { 7482 case ADD_NEW_DISK: 7483 case BLKROSET: 7484 case GET_ARRAY_INFO: 7485 case GET_BITMAP_FILE: 7486 case GET_DISK_INFO: 7487 case HOT_ADD_DISK: 7488 case HOT_REMOVE_DISK: 7489 case RAID_VERSION: 7490 case RESTART_ARRAY_RW: 7491 case RUN_ARRAY: 7492 case SET_ARRAY_INFO: 7493 case SET_BITMAP_FILE: 7494 case SET_DISK_FAULTY: 7495 case STOP_ARRAY: 7496 case STOP_ARRAY_RO: 7497 case CLUSTERED_DISK_NACK: 7498 return true; 7499 default: 7500 return false; 7501 } 7502 } 7503 7504 static int md_ioctl(struct block_device *bdev, fmode_t mode, 7505 unsigned int cmd, unsigned long arg) 7506 { 7507 int err = 0; 7508 void __user *argp = (void __user *)arg; 7509 struct mddev *mddev = NULL; 7510 int ro; 7511 bool did_set_md_closing = false; 7512 7513 if (!md_ioctl_valid(cmd)) 7514 return -ENOTTY; 7515 7516 switch (cmd) { 7517 case RAID_VERSION: 7518 case GET_ARRAY_INFO: 7519 case GET_DISK_INFO: 7520 break; 7521 default: 7522 if (!capable(CAP_SYS_ADMIN)) 7523 return -EACCES; 7524 } 7525 7526 /* 7527 * Commands dealing with the RAID driver but not any 7528 * particular array: 7529 */ 7530 switch (cmd) { 7531 case RAID_VERSION: 7532 err = get_version(argp); 7533 goto out; 7534 default:; 7535 } 7536 7537 /* 7538 * Commands creating/starting a new array: 7539 */ 7540 7541 mddev = bdev->bd_disk->private_data; 7542 7543 if (!mddev) { 7544 BUG(); 7545 goto out; 7546 } 7547 7548 /* Some actions do not requires the mutex */ 7549 switch (cmd) { 7550 case GET_ARRAY_INFO: 7551 if (!mddev->raid_disks && !mddev->external) 7552 err = -ENODEV; 7553 else 7554 err = get_array_info(mddev, argp); 7555 goto out; 7556 7557 case GET_DISK_INFO: 7558 if (!mddev->raid_disks && !mddev->external) 7559 err = -ENODEV; 7560 else 7561 err = get_disk_info(mddev, argp); 7562 goto out; 7563 7564 case SET_DISK_FAULTY: 7565 err = set_disk_faulty(mddev, new_decode_dev(arg)); 7566 goto out; 7567 7568 case GET_BITMAP_FILE: 7569 err = get_bitmap_file(mddev, argp); 7570 goto out; 7571 7572 } 7573 7574 if (cmd == ADD_NEW_DISK || cmd == HOT_ADD_DISK) 7575 flush_rdev_wq(mddev); 7576 7577 if (cmd == HOT_REMOVE_DISK) 7578 /* need to ensure recovery thread has run */ 7579 wait_event_interruptible_timeout(mddev->sb_wait, 7580 !test_bit(MD_RECOVERY_NEEDED, 7581 &mddev->recovery), 7582 msecs_to_jiffies(5000)); 7583 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) { 7584 /* Need to flush page cache, and ensure no-one else opens 7585 * and writes 7586 */ 7587 mutex_lock(&mddev->open_mutex); 7588 if (mddev->pers && atomic_read(&mddev->openers) > 1) { 7589 mutex_unlock(&mddev->open_mutex); 7590 err = -EBUSY; 7591 goto out; 7592 } 7593 WARN_ON_ONCE(test_bit(MD_CLOSING, &mddev->flags)); 7594 set_bit(MD_CLOSING, &mddev->flags); 7595 did_set_md_closing = true; 7596 mutex_unlock(&mddev->open_mutex); 7597 sync_blockdev(bdev); 7598 } 7599 err = mddev_lock(mddev); 7600 if (err) { 7601 pr_debug("md: ioctl lock interrupted, reason %d, cmd %d\n", 7602 err, cmd); 7603 goto out; 7604 } 7605 7606 if (cmd == SET_ARRAY_INFO) { 7607 mdu_array_info_t info; 7608 if (!arg) 7609 memset(&info, 0, sizeof(info)); 7610 else if (copy_from_user(&info, argp, sizeof(info))) { 7611 err = -EFAULT; 7612 goto unlock; 7613 } 7614 if (mddev->pers) { 7615 err = update_array_info(mddev, &info); 7616 if (err) { 7617 pr_warn("md: couldn't update array info. %d\n", err); 7618 goto unlock; 7619 } 7620 goto unlock; 7621 } 7622 if (!list_empty(&mddev->disks)) { 7623 pr_warn("md: array %s already has disks!\n", mdname(mddev)); 7624 err = -EBUSY; 7625 goto unlock; 7626 } 7627 if (mddev->raid_disks) { 7628 pr_warn("md: array %s already initialised!\n", mdname(mddev)); 7629 err = -EBUSY; 7630 goto unlock; 7631 } 7632 err = md_set_array_info(mddev, &info); 7633 if (err) { 7634 pr_warn("md: couldn't set array info. %d\n", err); 7635 goto unlock; 7636 } 7637 goto unlock; 7638 } 7639 7640 /* 7641 * Commands querying/configuring an existing array: 7642 */ 7643 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, 7644 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ 7645 if ((!mddev->raid_disks && !mddev->external) 7646 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY 7647 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE 7648 && cmd != GET_BITMAP_FILE) { 7649 err = -ENODEV; 7650 goto unlock; 7651 } 7652 7653 /* 7654 * Commands even a read-only array can execute: 7655 */ 7656 switch (cmd) { 7657 case RESTART_ARRAY_RW: 7658 err = restart_array(mddev); 7659 goto unlock; 7660 7661 case STOP_ARRAY: 7662 err = do_md_stop(mddev, 0, bdev); 7663 goto unlock; 7664 7665 case STOP_ARRAY_RO: 7666 err = md_set_readonly(mddev, bdev); 7667 goto unlock; 7668 7669 case HOT_REMOVE_DISK: 7670 err = hot_remove_disk(mddev, new_decode_dev(arg)); 7671 goto unlock; 7672 7673 case ADD_NEW_DISK: 7674 /* We can support ADD_NEW_DISK on read-only arrays 7675 * only if we are re-adding a preexisting device. 7676 * So require mddev->pers and MD_DISK_SYNC. 7677 */ 7678 if (mddev->pers) { 7679 mdu_disk_info_t info; 7680 if (copy_from_user(&info, argp, sizeof(info))) 7681 err = -EFAULT; 7682 else if (!(info.state & (1<<MD_DISK_SYNC))) 7683 /* Need to clear read-only for this */ 7684 break; 7685 else 7686 err = md_add_new_disk(mddev, &info); 7687 goto unlock; 7688 } 7689 break; 7690 7691 case BLKROSET: 7692 if (get_user(ro, (int __user *)(arg))) { 7693 err = -EFAULT; 7694 goto unlock; 7695 } 7696 err = -EINVAL; 7697 7698 /* if the bdev is going readonly the value of mddev->ro 7699 * does not matter, no writes are coming 7700 */ 7701 if (ro) 7702 goto unlock; 7703 7704 /* are we are already prepared for writes? */ 7705 if (mddev->ro != 1) 7706 goto unlock; 7707 7708 /* transitioning to readauto need only happen for 7709 * arrays that call md_write_start 7710 */ 7711 if (mddev->pers) { 7712 err = restart_array(mddev); 7713 if (err == 0) { 7714 mddev->ro = 2; 7715 set_disk_ro(mddev->gendisk, 0); 7716 } 7717 } 7718 goto unlock; 7719 } 7720 7721 /* 7722 * The remaining ioctls are changing the state of the 7723 * superblock, so we do not allow them on read-only arrays. 7724 */ 7725 if (mddev->ro && mddev->pers) { 7726 if (mddev->ro == 2) { 7727 mddev->ro = 0; 7728 sysfs_notify_dirent_safe(mddev->sysfs_state); 7729 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7730 /* mddev_unlock will wake thread */ 7731 /* If a device failed while we were read-only, we 7732 * need to make sure the metadata is updated now. 7733 */ 7734 if (test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) { 7735 mddev_unlock(mddev); 7736 wait_event(mddev->sb_wait, 7737 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) && 7738 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 7739 mddev_lock_nointr(mddev); 7740 } 7741 } else { 7742 err = -EROFS; 7743 goto unlock; 7744 } 7745 } 7746 7747 switch (cmd) { 7748 case ADD_NEW_DISK: 7749 { 7750 mdu_disk_info_t info; 7751 if (copy_from_user(&info, argp, sizeof(info))) 7752 err = -EFAULT; 7753 else 7754 err = md_add_new_disk(mddev, &info); 7755 goto unlock; 7756 } 7757 7758 case CLUSTERED_DISK_NACK: 7759 if (mddev_is_clustered(mddev)) 7760 md_cluster_ops->new_disk_ack(mddev, false); 7761 else 7762 err = -EINVAL; 7763 goto unlock; 7764 7765 case HOT_ADD_DISK: 7766 err = hot_add_disk(mddev, new_decode_dev(arg)); 7767 goto unlock; 7768 7769 case RUN_ARRAY: 7770 err = do_md_run(mddev); 7771 goto unlock; 7772 7773 case SET_BITMAP_FILE: 7774 err = set_bitmap_file(mddev, (int)arg); 7775 goto unlock; 7776 7777 default: 7778 err = -EINVAL; 7779 goto unlock; 7780 } 7781 7782 unlock: 7783 if (mddev->hold_active == UNTIL_IOCTL && 7784 err != -EINVAL) 7785 mddev->hold_active = 0; 7786 mddev_unlock(mddev); 7787 out: 7788 if(did_set_md_closing) 7789 clear_bit(MD_CLOSING, &mddev->flags); 7790 return err; 7791 } 7792 #ifdef CONFIG_COMPAT 7793 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode, 7794 unsigned int cmd, unsigned long arg) 7795 { 7796 switch (cmd) { 7797 case HOT_REMOVE_DISK: 7798 case HOT_ADD_DISK: 7799 case SET_DISK_FAULTY: 7800 case SET_BITMAP_FILE: 7801 /* These take in integer arg, do not convert */ 7802 break; 7803 default: 7804 arg = (unsigned long)compat_ptr(arg); 7805 break; 7806 } 7807 7808 return md_ioctl(bdev, mode, cmd, arg); 7809 } 7810 #endif /* CONFIG_COMPAT */ 7811 7812 static int md_open(struct block_device *bdev, fmode_t mode) 7813 { 7814 /* 7815 * Succeed if we can lock the mddev, which confirms that 7816 * it isn't being stopped right now. 7817 */ 7818 struct mddev *mddev = mddev_find(bdev->bd_dev); 7819 int err; 7820 7821 if (!mddev) 7822 return -ENODEV; 7823 7824 if (mddev->gendisk != bdev->bd_disk) { 7825 /* we are racing with mddev_put which is discarding this 7826 * bd_disk. 7827 */ 7828 mddev_put(mddev); 7829 /* Wait until bdev->bd_disk is definitely gone */ 7830 if (work_pending(&mddev->del_work)) 7831 flush_workqueue(md_misc_wq); 7832 /* Then retry the open from the top */ 7833 return -ERESTARTSYS; 7834 } 7835 BUG_ON(mddev != bdev->bd_disk->private_data); 7836 7837 if ((err = mutex_lock_interruptible(&mddev->open_mutex))) 7838 goto out; 7839 7840 if (test_bit(MD_CLOSING, &mddev->flags)) { 7841 mutex_unlock(&mddev->open_mutex); 7842 err = -ENODEV; 7843 goto out; 7844 } 7845 7846 err = 0; 7847 atomic_inc(&mddev->openers); 7848 mutex_unlock(&mddev->open_mutex); 7849 7850 bdev_check_media_change(bdev); 7851 out: 7852 if (err) 7853 mddev_put(mddev); 7854 return err; 7855 } 7856 7857 static void md_release(struct gendisk *disk, fmode_t mode) 7858 { 7859 struct mddev *mddev = disk->private_data; 7860 7861 BUG_ON(!mddev); 7862 atomic_dec(&mddev->openers); 7863 mddev_put(mddev); 7864 } 7865 7866 static unsigned int md_check_events(struct gendisk *disk, unsigned int clearing) 7867 { 7868 struct mddev *mddev = disk->private_data; 7869 unsigned int ret = 0; 7870 7871 if (mddev->changed) 7872 ret = DISK_EVENT_MEDIA_CHANGE; 7873 mddev->changed = 0; 7874 return ret; 7875 } 7876 7877 const struct block_device_operations md_fops = 7878 { 7879 .owner = THIS_MODULE, 7880 .submit_bio = md_submit_bio, 7881 .open = md_open, 7882 .release = md_release, 7883 .ioctl = md_ioctl, 7884 #ifdef CONFIG_COMPAT 7885 .compat_ioctl = md_compat_ioctl, 7886 #endif 7887 .getgeo = md_getgeo, 7888 .check_events = md_check_events, 7889 }; 7890 7891 static int md_thread(void *arg) 7892 { 7893 struct md_thread *thread = arg; 7894 7895 /* 7896 * md_thread is a 'system-thread', it's priority should be very 7897 * high. We avoid resource deadlocks individually in each 7898 * raid personality. (RAID5 does preallocation) We also use RR and 7899 * the very same RT priority as kswapd, thus we will never get 7900 * into a priority inversion deadlock. 7901 * 7902 * we definitely have to have equal or higher priority than 7903 * bdflush, otherwise bdflush will deadlock if there are too 7904 * many dirty RAID5 blocks. 7905 */ 7906 7907 allow_signal(SIGKILL); 7908 while (!kthread_should_stop()) { 7909 7910 /* We need to wait INTERRUPTIBLE so that 7911 * we don't add to the load-average. 7912 * That means we need to be sure no signals are 7913 * pending 7914 */ 7915 if (signal_pending(current)) 7916 flush_signals(current); 7917 7918 wait_event_interruptible_timeout 7919 (thread->wqueue, 7920 test_bit(THREAD_WAKEUP, &thread->flags) 7921 || kthread_should_stop() || kthread_should_park(), 7922 thread->timeout); 7923 7924 clear_bit(THREAD_WAKEUP, &thread->flags); 7925 if (kthread_should_park()) 7926 kthread_parkme(); 7927 if (!kthread_should_stop()) 7928 thread->run(thread); 7929 } 7930 7931 return 0; 7932 } 7933 7934 void md_wakeup_thread(struct md_thread *thread) 7935 { 7936 if (thread) { 7937 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm); 7938 set_bit(THREAD_WAKEUP, &thread->flags); 7939 wake_up(&thread->wqueue); 7940 } 7941 } 7942 EXPORT_SYMBOL(md_wakeup_thread); 7943 7944 struct md_thread *md_register_thread(void (*run) (struct md_thread *), 7945 struct mddev *mddev, const char *name) 7946 { 7947 struct md_thread *thread; 7948 7949 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL); 7950 if (!thread) 7951 return NULL; 7952 7953 init_waitqueue_head(&thread->wqueue); 7954 7955 thread->run = run; 7956 thread->mddev = mddev; 7957 thread->timeout = MAX_SCHEDULE_TIMEOUT; 7958 thread->tsk = kthread_run(md_thread, thread, 7959 "%s_%s", 7960 mdname(thread->mddev), 7961 name); 7962 if (IS_ERR(thread->tsk)) { 7963 kfree(thread); 7964 return NULL; 7965 } 7966 return thread; 7967 } 7968 EXPORT_SYMBOL(md_register_thread); 7969 7970 void md_unregister_thread(struct md_thread **threadp) 7971 { 7972 struct md_thread *thread = *threadp; 7973 if (!thread) 7974 return; 7975 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk)); 7976 /* Locking ensures that mddev_unlock does not wake_up a 7977 * non-existent thread 7978 */ 7979 spin_lock(&pers_lock); 7980 *threadp = NULL; 7981 spin_unlock(&pers_lock); 7982 7983 kthread_stop(thread->tsk); 7984 kfree(thread); 7985 } 7986 EXPORT_SYMBOL(md_unregister_thread); 7987 7988 void md_error(struct mddev *mddev, struct md_rdev *rdev) 7989 { 7990 if (!rdev || test_bit(Faulty, &rdev->flags)) 7991 return; 7992 7993 if (!mddev->pers || !mddev->pers->error_handler) 7994 return; 7995 mddev->pers->error_handler(mddev,rdev); 7996 if (mddev->degraded) 7997 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7998 sysfs_notify_dirent_safe(rdev->sysfs_state); 7999 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8000 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8001 md_wakeup_thread(mddev->thread); 8002 if (mddev->event_work.func) 8003 queue_work(md_misc_wq, &mddev->event_work); 8004 md_new_event(mddev); 8005 } 8006 EXPORT_SYMBOL(md_error); 8007 8008 /* seq_file implementation /proc/mdstat */ 8009 8010 static void status_unused(struct seq_file *seq) 8011 { 8012 int i = 0; 8013 struct md_rdev *rdev; 8014 8015 seq_printf(seq, "unused devices: "); 8016 8017 list_for_each_entry(rdev, &pending_raid_disks, same_set) { 8018 char b[BDEVNAME_SIZE]; 8019 i++; 8020 seq_printf(seq, "%s ", 8021 bdevname(rdev->bdev,b)); 8022 } 8023 if (!i) 8024 seq_printf(seq, "<none>"); 8025 8026 seq_printf(seq, "\n"); 8027 } 8028 8029 static int status_resync(struct seq_file *seq, struct mddev *mddev) 8030 { 8031 sector_t max_sectors, resync, res; 8032 unsigned long dt, db = 0; 8033 sector_t rt, curr_mark_cnt, resync_mark_cnt; 8034 int scale, recovery_active; 8035 unsigned int per_milli; 8036 8037 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 8038 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 8039 max_sectors = mddev->resync_max_sectors; 8040 else 8041 max_sectors = mddev->dev_sectors; 8042 8043 resync = mddev->curr_resync; 8044 if (resync <= 3) { 8045 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 8046 /* Still cleaning up */ 8047 resync = max_sectors; 8048 } else if (resync > max_sectors) 8049 resync = max_sectors; 8050 else 8051 resync -= atomic_read(&mddev->recovery_active); 8052 8053 if (resync == 0) { 8054 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery)) { 8055 struct md_rdev *rdev; 8056 8057 rdev_for_each(rdev, mddev) 8058 if (rdev->raid_disk >= 0 && 8059 !test_bit(Faulty, &rdev->flags) && 8060 rdev->recovery_offset != MaxSector && 8061 rdev->recovery_offset) { 8062 seq_printf(seq, "\trecover=REMOTE"); 8063 return 1; 8064 } 8065 if (mddev->reshape_position != MaxSector) 8066 seq_printf(seq, "\treshape=REMOTE"); 8067 else 8068 seq_printf(seq, "\tresync=REMOTE"); 8069 return 1; 8070 } 8071 if (mddev->recovery_cp < MaxSector) { 8072 seq_printf(seq, "\tresync=PENDING"); 8073 return 1; 8074 } 8075 return 0; 8076 } 8077 if (resync < 3) { 8078 seq_printf(seq, "\tresync=DELAYED"); 8079 return 1; 8080 } 8081 8082 WARN_ON(max_sectors == 0); 8083 /* Pick 'scale' such that (resync>>scale)*1000 will fit 8084 * in a sector_t, and (max_sectors>>scale) will fit in a 8085 * u32, as those are the requirements for sector_div. 8086 * Thus 'scale' must be at least 10 8087 */ 8088 scale = 10; 8089 if (sizeof(sector_t) > sizeof(unsigned long)) { 8090 while ( max_sectors/2 > (1ULL<<(scale+32))) 8091 scale++; 8092 } 8093 res = (resync>>scale)*1000; 8094 sector_div(res, (u32)((max_sectors>>scale)+1)); 8095 8096 per_milli = res; 8097 { 8098 int i, x = per_milli/50, y = 20-x; 8099 seq_printf(seq, "["); 8100 for (i = 0; i < x; i++) 8101 seq_printf(seq, "="); 8102 seq_printf(seq, ">"); 8103 for (i = 0; i < y; i++) 8104 seq_printf(seq, "."); 8105 seq_printf(seq, "] "); 8106 } 8107 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", 8108 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? 8109 "reshape" : 8110 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? 8111 "check" : 8112 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? 8113 "resync" : "recovery"))), 8114 per_milli/10, per_milli % 10, 8115 (unsigned long long) resync/2, 8116 (unsigned long long) max_sectors/2); 8117 8118 /* 8119 * dt: time from mark until now 8120 * db: blocks written from mark until now 8121 * rt: remaining time 8122 * 8123 * rt is a sector_t, which is always 64bit now. We are keeping 8124 * the original algorithm, but it is not really necessary. 8125 * 8126 * Original algorithm: 8127 * So we divide before multiply in case it is 32bit and close 8128 * to the limit. 8129 * We scale the divisor (db) by 32 to avoid losing precision 8130 * near the end of resync when the number of remaining sectors 8131 * is close to 'db'. 8132 * We then divide rt by 32 after multiplying by db to compensate. 8133 * The '+1' avoids division by zero if db is very small. 8134 */ 8135 dt = ((jiffies - mddev->resync_mark) / HZ); 8136 if (!dt) dt++; 8137 8138 curr_mark_cnt = mddev->curr_mark_cnt; 8139 recovery_active = atomic_read(&mddev->recovery_active); 8140 resync_mark_cnt = mddev->resync_mark_cnt; 8141 8142 if (curr_mark_cnt >= (recovery_active + resync_mark_cnt)) 8143 db = curr_mark_cnt - (recovery_active + resync_mark_cnt); 8144 8145 rt = max_sectors - resync; /* number of remaining sectors */ 8146 rt = div64_u64(rt, db/32+1); 8147 rt *= dt; 8148 rt >>= 5; 8149 8150 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60, 8151 ((unsigned long)rt % 60)/6); 8152 8153 seq_printf(seq, " speed=%ldK/sec", db/2/dt); 8154 return 1; 8155 } 8156 8157 static void *md_seq_start(struct seq_file *seq, loff_t *pos) 8158 { 8159 struct list_head *tmp; 8160 loff_t l = *pos; 8161 struct mddev *mddev; 8162 8163 if (l >= 0x10000) 8164 return NULL; 8165 if (!l--) 8166 /* header */ 8167 return (void*)1; 8168 8169 spin_lock(&all_mddevs_lock); 8170 list_for_each(tmp,&all_mddevs) 8171 if (!l--) { 8172 mddev = list_entry(tmp, struct mddev, all_mddevs); 8173 mddev_get(mddev); 8174 spin_unlock(&all_mddevs_lock); 8175 return mddev; 8176 } 8177 spin_unlock(&all_mddevs_lock); 8178 if (!l--) 8179 return (void*)2;/* tail */ 8180 return NULL; 8181 } 8182 8183 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) 8184 { 8185 struct list_head *tmp; 8186 struct mddev *next_mddev, *mddev = v; 8187 8188 ++*pos; 8189 if (v == (void*)2) 8190 return NULL; 8191 8192 spin_lock(&all_mddevs_lock); 8193 if (v == (void*)1) 8194 tmp = all_mddevs.next; 8195 else 8196 tmp = mddev->all_mddevs.next; 8197 if (tmp != &all_mddevs) 8198 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs)); 8199 else { 8200 next_mddev = (void*)2; 8201 *pos = 0x10000; 8202 } 8203 spin_unlock(&all_mddevs_lock); 8204 8205 if (v != (void*)1) 8206 mddev_put(mddev); 8207 return next_mddev; 8208 8209 } 8210 8211 static void md_seq_stop(struct seq_file *seq, void *v) 8212 { 8213 struct mddev *mddev = v; 8214 8215 if (mddev && v != (void*)1 && v != (void*)2) 8216 mddev_put(mddev); 8217 } 8218 8219 static int md_seq_show(struct seq_file *seq, void *v) 8220 { 8221 struct mddev *mddev = v; 8222 sector_t sectors; 8223 struct md_rdev *rdev; 8224 8225 if (v == (void*)1) { 8226 struct md_personality *pers; 8227 seq_printf(seq, "Personalities : "); 8228 spin_lock(&pers_lock); 8229 list_for_each_entry(pers, &pers_list, list) 8230 seq_printf(seq, "[%s] ", pers->name); 8231 8232 spin_unlock(&pers_lock); 8233 seq_printf(seq, "\n"); 8234 seq->poll_event = atomic_read(&md_event_count); 8235 return 0; 8236 } 8237 if (v == (void*)2) { 8238 status_unused(seq); 8239 return 0; 8240 } 8241 8242 spin_lock(&mddev->lock); 8243 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { 8244 seq_printf(seq, "%s : %sactive", mdname(mddev), 8245 mddev->pers ? "" : "in"); 8246 if (mddev->pers) { 8247 if (mddev->ro==1) 8248 seq_printf(seq, " (read-only)"); 8249 if (mddev->ro==2) 8250 seq_printf(seq, " (auto-read-only)"); 8251 seq_printf(seq, " %s", mddev->pers->name); 8252 } 8253 8254 sectors = 0; 8255 rcu_read_lock(); 8256 rdev_for_each_rcu(rdev, mddev) { 8257 char b[BDEVNAME_SIZE]; 8258 seq_printf(seq, " %s[%d]", 8259 bdevname(rdev->bdev,b), rdev->desc_nr); 8260 if (test_bit(WriteMostly, &rdev->flags)) 8261 seq_printf(seq, "(W)"); 8262 if (test_bit(Journal, &rdev->flags)) 8263 seq_printf(seq, "(J)"); 8264 if (test_bit(Faulty, &rdev->flags)) { 8265 seq_printf(seq, "(F)"); 8266 continue; 8267 } 8268 if (rdev->raid_disk < 0) 8269 seq_printf(seq, "(S)"); /* spare */ 8270 if (test_bit(Replacement, &rdev->flags)) 8271 seq_printf(seq, "(R)"); 8272 sectors += rdev->sectors; 8273 } 8274 rcu_read_unlock(); 8275 8276 if (!list_empty(&mddev->disks)) { 8277 if (mddev->pers) 8278 seq_printf(seq, "\n %llu blocks", 8279 (unsigned long long) 8280 mddev->array_sectors / 2); 8281 else 8282 seq_printf(seq, "\n %llu blocks", 8283 (unsigned long long)sectors / 2); 8284 } 8285 if (mddev->persistent) { 8286 if (mddev->major_version != 0 || 8287 mddev->minor_version != 90) { 8288 seq_printf(seq," super %d.%d", 8289 mddev->major_version, 8290 mddev->minor_version); 8291 } 8292 } else if (mddev->external) 8293 seq_printf(seq, " super external:%s", 8294 mddev->metadata_type); 8295 else 8296 seq_printf(seq, " super non-persistent"); 8297 8298 if (mddev->pers) { 8299 mddev->pers->status(seq, mddev); 8300 seq_printf(seq, "\n "); 8301 if (mddev->pers->sync_request) { 8302 if (status_resync(seq, mddev)) 8303 seq_printf(seq, "\n "); 8304 } 8305 } else 8306 seq_printf(seq, "\n "); 8307 8308 md_bitmap_status(seq, mddev->bitmap); 8309 8310 seq_printf(seq, "\n"); 8311 } 8312 spin_unlock(&mddev->lock); 8313 8314 return 0; 8315 } 8316 8317 static const struct seq_operations md_seq_ops = { 8318 .start = md_seq_start, 8319 .next = md_seq_next, 8320 .stop = md_seq_stop, 8321 .show = md_seq_show, 8322 }; 8323 8324 static int md_seq_open(struct inode *inode, struct file *file) 8325 { 8326 struct seq_file *seq; 8327 int error; 8328 8329 error = seq_open(file, &md_seq_ops); 8330 if (error) 8331 return error; 8332 8333 seq = file->private_data; 8334 seq->poll_event = atomic_read(&md_event_count); 8335 return error; 8336 } 8337 8338 static int md_unloading; 8339 static __poll_t mdstat_poll(struct file *filp, poll_table *wait) 8340 { 8341 struct seq_file *seq = filp->private_data; 8342 __poll_t mask; 8343 8344 if (md_unloading) 8345 return EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI; 8346 poll_wait(filp, &md_event_waiters, wait); 8347 8348 /* always allow read */ 8349 mask = EPOLLIN | EPOLLRDNORM; 8350 8351 if (seq->poll_event != atomic_read(&md_event_count)) 8352 mask |= EPOLLERR | EPOLLPRI; 8353 return mask; 8354 } 8355 8356 static const struct proc_ops mdstat_proc_ops = { 8357 .proc_open = md_seq_open, 8358 .proc_read = seq_read, 8359 .proc_lseek = seq_lseek, 8360 .proc_release = seq_release, 8361 .proc_poll = mdstat_poll, 8362 }; 8363 8364 int register_md_personality(struct md_personality *p) 8365 { 8366 pr_debug("md: %s personality registered for level %d\n", 8367 p->name, p->level); 8368 spin_lock(&pers_lock); 8369 list_add_tail(&p->list, &pers_list); 8370 spin_unlock(&pers_lock); 8371 return 0; 8372 } 8373 EXPORT_SYMBOL(register_md_personality); 8374 8375 int unregister_md_personality(struct md_personality *p) 8376 { 8377 pr_debug("md: %s personality unregistered\n", p->name); 8378 spin_lock(&pers_lock); 8379 list_del_init(&p->list); 8380 spin_unlock(&pers_lock); 8381 return 0; 8382 } 8383 EXPORT_SYMBOL(unregister_md_personality); 8384 8385 int register_md_cluster_operations(struct md_cluster_operations *ops, 8386 struct module *module) 8387 { 8388 int ret = 0; 8389 spin_lock(&pers_lock); 8390 if (md_cluster_ops != NULL) 8391 ret = -EALREADY; 8392 else { 8393 md_cluster_ops = ops; 8394 md_cluster_mod = module; 8395 } 8396 spin_unlock(&pers_lock); 8397 return ret; 8398 } 8399 EXPORT_SYMBOL(register_md_cluster_operations); 8400 8401 int unregister_md_cluster_operations(void) 8402 { 8403 spin_lock(&pers_lock); 8404 md_cluster_ops = NULL; 8405 spin_unlock(&pers_lock); 8406 return 0; 8407 } 8408 EXPORT_SYMBOL(unregister_md_cluster_operations); 8409 8410 int md_setup_cluster(struct mddev *mddev, int nodes) 8411 { 8412 int ret; 8413 if (!md_cluster_ops) 8414 request_module("md-cluster"); 8415 spin_lock(&pers_lock); 8416 /* ensure module won't be unloaded */ 8417 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) { 8418 pr_warn("can't find md-cluster module or get it's reference.\n"); 8419 spin_unlock(&pers_lock); 8420 return -ENOENT; 8421 } 8422 spin_unlock(&pers_lock); 8423 8424 ret = md_cluster_ops->join(mddev, nodes); 8425 if (!ret) 8426 mddev->safemode_delay = 0; 8427 return ret; 8428 } 8429 8430 void md_cluster_stop(struct mddev *mddev) 8431 { 8432 if (!md_cluster_ops) 8433 return; 8434 md_cluster_ops->leave(mddev); 8435 module_put(md_cluster_mod); 8436 } 8437 8438 static int is_mddev_idle(struct mddev *mddev, int init) 8439 { 8440 struct md_rdev *rdev; 8441 int idle; 8442 int curr_events; 8443 8444 idle = 1; 8445 rcu_read_lock(); 8446 rdev_for_each_rcu(rdev, mddev) { 8447 struct gendisk *disk = rdev->bdev->bd_disk; 8448 curr_events = (int)part_stat_read_accum(&disk->part0, sectors) - 8449 atomic_read(&disk->sync_io); 8450 /* sync IO will cause sync_io to increase before the disk_stats 8451 * as sync_io is counted when a request starts, and 8452 * disk_stats is counted when it completes. 8453 * So resync activity will cause curr_events to be smaller than 8454 * when there was no such activity. 8455 * non-sync IO will cause disk_stat to increase without 8456 * increasing sync_io so curr_events will (eventually) 8457 * be larger than it was before. Once it becomes 8458 * substantially larger, the test below will cause 8459 * the array to appear non-idle, and resync will slow 8460 * down. 8461 * If there is a lot of outstanding resync activity when 8462 * we set last_event to curr_events, then all that activity 8463 * completing might cause the array to appear non-idle 8464 * and resync will be slowed down even though there might 8465 * not have been non-resync activity. This will only 8466 * happen once though. 'last_events' will soon reflect 8467 * the state where there is little or no outstanding 8468 * resync requests, and further resync activity will 8469 * always make curr_events less than last_events. 8470 * 8471 */ 8472 if (init || curr_events - rdev->last_events > 64) { 8473 rdev->last_events = curr_events; 8474 idle = 0; 8475 } 8476 } 8477 rcu_read_unlock(); 8478 return idle; 8479 } 8480 8481 void md_done_sync(struct mddev *mddev, int blocks, int ok) 8482 { 8483 /* another "blocks" (512byte) blocks have been synced */ 8484 atomic_sub(blocks, &mddev->recovery_active); 8485 wake_up(&mddev->recovery_wait); 8486 if (!ok) { 8487 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8488 set_bit(MD_RECOVERY_ERROR, &mddev->recovery); 8489 md_wakeup_thread(mddev->thread); 8490 // stop recovery, signal do_sync .... 8491 } 8492 } 8493 EXPORT_SYMBOL(md_done_sync); 8494 8495 /* md_write_start(mddev, bi) 8496 * If we need to update some array metadata (e.g. 'active' flag 8497 * in superblock) before writing, schedule a superblock update 8498 * and wait for it to complete. 8499 * A return value of 'false' means that the write wasn't recorded 8500 * and cannot proceed as the array is being suspend. 8501 */ 8502 bool md_write_start(struct mddev *mddev, struct bio *bi) 8503 { 8504 int did_change = 0; 8505 8506 if (bio_data_dir(bi) != WRITE) 8507 return true; 8508 8509 BUG_ON(mddev->ro == 1); 8510 if (mddev->ro == 2) { 8511 /* need to switch to read/write */ 8512 mddev->ro = 0; 8513 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8514 md_wakeup_thread(mddev->thread); 8515 md_wakeup_thread(mddev->sync_thread); 8516 did_change = 1; 8517 } 8518 rcu_read_lock(); 8519 percpu_ref_get(&mddev->writes_pending); 8520 smp_mb(); /* Match smp_mb in set_in_sync() */ 8521 if (mddev->safemode == 1) 8522 mddev->safemode = 0; 8523 /* sync_checkers is always 0 when writes_pending is in per-cpu mode */ 8524 if (mddev->in_sync || mddev->sync_checkers) { 8525 spin_lock(&mddev->lock); 8526 if (mddev->in_sync) { 8527 mddev->in_sync = 0; 8528 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8529 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8530 md_wakeup_thread(mddev->thread); 8531 did_change = 1; 8532 } 8533 spin_unlock(&mddev->lock); 8534 } 8535 rcu_read_unlock(); 8536 if (did_change) 8537 sysfs_notify_dirent_safe(mddev->sysfs_state); 8538 if (!mddev->has_superblocks) 8539 return true; 8540 wait_event(mddev->sb_wait, 8541 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) || 8542 mddev->suspended); 8543 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 8544 percpu_ref_put(&mddev->writes_pending); 8545 return false; 8546 } 8547 return true; 8548 } 8549 EXPORT_SYMBOL(md_write_start); 8550 8551 /* md_write_inc can only be called when md_write_start() has 8552 * already been called at least once of the current request. 8553 * It increments the counter and is useful when a single request 8554 * is split into several parts. Each part causes an increment and 8555 * so needs a matching md_write_end(). 8556 * Unlike md_write_start(), it is safe to call md_write_inc() inside 8557 * a spinlocked region. 8558 */ 8559 void md_write_inc(struct mddev *mddev, struct bio *bi) 8560 { 8561 if (bio_data_dir(bi) != WRITE) 8562 return; 8563 WARN_ON_ONCE(mddev->in_sync || mddev->ro); 8564 percpu_ref_get(&mddev->writes_pending); 8565 } 8566 EXPORT_SYMBOL(md_write_inc); 8567 8568 void md_write_end(struct mddev *mddev) 8569 { 8570 percpu_ref_put(&mddev->writes_pending); 8571 8572 if (mddev->safemode == 2) 8573 md_wakeup_thread(mddev->thread); 8574 else if (mddev->safemode_delay) 8575 /* The roundup() ensures this only performs locking once 8576 * every ->safemode_delay jiffies 8577 */ 8578 mod_timer(&mddev->safemode_timer, 8579 roundup(jiffies, mddev->safemode_delay) + 8580 mddev->safemode_delay); 8581 } 8582 8583 EXPORT_SYMBOL(md_write_end); 8584 8585 /* This is used by raid0 and raid10 */ 8586 void md_submit_discard_bio(struct mddev *mddev, struct md_rdev *rdev, 8587 struct bio *bio, sector_t start, sector_t size) 8588 { 8589 struct bio *discard_bio = NULL; 8590 8591 if (__blkdev_issue_discard(rdev->bdev, start, size, 8592 GFP_NOIO, 0, &discard_bio) || !discard_bio) 8593 return; 8594 8595 bio_chain(discard_bio, bio); 8596 bio_clone_blkg_association(discard_bio, bio); 8597 if (mddev->gendisk) 8598 trace_block_bio_remap(bdev_get_queue(rdev->bdev), 8599 discard_bio, disk_devt(mddev->gendisk), 8600 bio->bi_iter.bi_sector); 8601 submit_bio_noacct(discard_bio); 8602 } 8603 EXPORT_SYMBOL(md_submit_discard_bio); 8604 8605 /* md_allow_write(mddev) 8606 * Calling this ensures that the array is marked 'active' so that writes 8607 * may proceed without blocking. It is important to call this before 8608 * attempting a GFP_KERNEL allocation while holding the mddev lock. 8609 * Must be called with mddev_lock held. 8610 */ 8611 void md_allow_write(struct mddev *mddev) 8612 { 8613 if (!mddev->pers) 8614 return; 8615 if (mddev->ro) 8616 return; 8617 if (!mddev->pers->sync_request) 8618 return; 8619 8620 spin_lock(&mddev->lock); 8621 if (mddev->in_sync) { 8622 mddev->in_sync = 0; 8623 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8624 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8625 if (mddev->safemode_delay && 8626 mddev->safemode == 0) 8627 mddev->safemode = 1; 8628 spin_unlock(&mddev->lock); 8629 md_update_sb(mddev, 0); 8630 sysfs_notify_dirent_safe(mddev->sysfs_state); 8631 /* wait for the dirty state to be recorded in the metadata */ 8632 wait_event(mddev->sb_wait, 8633 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 8634 } else 8635 spin_unlock(&mddev->lock); 8636 } 8637 EXPORT_SYMBOL_GPL(md_allow_write); 8638 8639 #define SYNC_MARKS 10 8640 #define SYNC_MARK_STEP (3*HZ) 8641 #define UPDATE_FREQUENCY (5*60*HZ) 8642 void md_do_sync(struct md_thread *thread) 8643 { 8644 struct mddev *mddev = thread->mddev; 8645 struct mddev *mddev2; 8646 unsigned int currspeed = 0, window; 8647 sector_t max_sectors,j, io_sectors, recovery_done; 8648 unsigned long mark[SYNC_MARKS]; 8649 unsigned long update_time; 8650 sector_t mark_cnt[SYNC_MARKS]; 8651 int last_mark,m; 8652 struct list_head *tmp; 8653 sector_t last_check; 8654 int skipped = 0; 8655 struct md_rdev *rdev; 8656 char *desc, *action = NULL; 8657 struct blk_plug plug; 8658 int ret; 8659 8660 /* just incase thread restarts... */ 8661 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 8662 test_bit(MD_RECOVERY_WAIT, &mddev->recovery)) 8663 return; 8664 if (mddev->ro) {/* never try to sync a read-only array */ 8665 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8666 return; 8667 } 8668 8669 if (mddev_is_clustered(mddev)) { 8670 ret = md_cluster_ops->resync_start(mddev); 8671 if (ret) 8672 goto skip; 8673 8674 set_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags); 8675 if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 8676 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) || 8677 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) 8678 && ((unsigned long long)mddev->curr_resync_completed 8679 < (unsigned long long)mddev->resync_max_sectors)) 8680 goto skip; 8681 } 8682 8683 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8684 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 8685 desc = "data-check"; 8686 action = "check"; 8687 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 8688 desc = "requested-resync"; 8689 action = "repair"; 8690 } else 8691 desc = "resync"; 8692 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 8693 desc = "reshape"; 8694 else 8695 desc = "recovery"; 8696 8697 mddev->last_sync_action = action ?: desc; 8698 8699 /* we overload curr_resync somewhat here. 8700 * 0 == not engaged in resync at all 8701 * 2 == checking that there is no conflict with another sync 8702 * 1 == like 2, but have yielded to allow conflicting resync to 8703 * commence 8704 * other == active in resync - this many blocks 8705 * 8706 * Before starting a resync we must have set curr_resync to 8707 * 2, and then checked that every "conflicting" array has curr_resync 8708 * less than ours. When we find one that is the same or higher 8709 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync 8710 * to 1 if we choose to yield (based arbitrarily on address of mddev structure). 8711 * This will mean we have to start checking from the beginning again. 8712 * 8713 */ 8714 8715 do { 8716 int mddev2_minor = -1; 8717 mddev->curr_resync = 2; 8718 8719 try_again: 8720 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8721 goto skip; 8722 for_each_mddev(mddev2, tmp) { 8723 if (mddev2 == mddev) 8724 continue; 8725 if (!mddev->parallel_resync 8726 && mddev2->curr_resync 8727 && match_mddev_units(mddev, mddev2)) { 8728 DEFINE_WAIT(wq); 8729 if (mddev < mddev2 && mddev->curr_resync == 2) { 8730 /* arbitrarily yield */ 8731 mddev->curr_resync = 1; 8732 wake_up(&resync_wait); 8733 } 8734 if (mddev > mddev2 && mddev->curr_resync == 1) 8735 /* no need to wait here, we can wait the next 8736 * time 'round when curr_resync == 2 8737 */ 8738 continue; 8739 /* We need to wait 'interruptible' so as not to 8740 * contribute to the load average, and not to 8741 * be caught by 'softlockup' 8742 */ 8743 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE); 8744 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8745 mddev2->curr_resync >= mddev->curr_resync) { 8746 if (mddev2_minor != mddev2->md_minor) { 8747 mddev2_minor = mddev2->md_minor; 8748 pr_info("md: delaying %s of %s until %s has finished (they share one or more physical units)\n", 8749 desc, mdname(mddev), 8750 mdname(mddev2)); 8751 } 8752 mddev_put(mddev2); 8753 if (signal_pending(current)) 8754 flush_signals(current); 8755 schedule(); 8756 finish_wait(&resync_wait, &wq); 8757 goto try_again; 8758 } 8759 finish_wait(&resync_wait, &wq); 8760 } 8761 } 8762 } while (mddev->curr_resync < 2); 8763 8764 j = 0; 8765 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8766 /* resync follows the size requested by the personality, 8767 * which defaults to physical size, but can be virtual size 8768 */ 8769 max_sectors = mddev->resync_max_sectors; 8770 atomic64_set(&mddev->resync_mismatches, 0); 8771 /* we don't use the checkpoint if there's a bitmap */ 8772 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 8773 j = mddev->resync_min; 8774 else if (!mddev->bitmap) 8775 j = mddev->recovery_cp; 8776 8777 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 8778 max_sectors = mddev->resync_max_sectors; 8779 /* 8780 * If the original node aborts reshaping then we continue the 8781 * reshaping, so set j again to avoid restart reshape from the 8782 * first beginning 8783 */ 8784 if (mddev_is_clustered(mddev) && 8785 mddev->reshape_position != MaxSector) 8786 j = mddev->reshape_position; 8787 } else { 8788 /* recovery follows the physical size of devices */ 8789 max_sectors = mddev->dev_sectors; 8790 j = MaxSector; 8791 rcu_read_lock(); 8792 rdev_for_each_rcu(rdev, mddev) 8793 if (rdev->raid_disk >= 0 && 8794 !test_bit(Journal, &rdev->flags) && 8795 !test_bit(Faulty, &rdev->flags) && 8796 !test_bit(In_sync, &rdev->flags) && 8797 rdev->recovery_offset < j) 8798 j = rdev->recovery_offset; 8799 rcu_read_unlock(); 8800 8801 /* If there is a bitmap, we need to make sure all 8802 * writes that started before we added a spare 8803 * complete before we start doing a recovery. 8804 * Otherwise the write might complete and (via 8805 * bitmap_endwrite) set a bit in the bitmap after the 8806 * recovery has checked that bit and skipped that 8807 * region. 8808 */ 8809 if (mddev->bitmap) { 8810 mddev->pers->quiesce(mddev, 1); 8811 mddev->pers->quiesce(mddev, 0); 8812 } 8813 } 8814 8815 pr_info("md: %s of RAID array %s\n", desc, mdname(mddev)); 8816 pr_debug("md: minimum _guaranteed_ speed: %d KB/sec/disk.\n", speed_min(mddev)); 8817 pr_debug("md: using maximum available idle IO bandwidth (but not more than %d KB/sec) for %s.\n", 8818 speed_max(mddev), desc); 8819 8820 is_mddev_idle(mddev, 1); /* this initializes IO event counters */ 8821 8822 io_sectors = 0; 8823 for (m = 0; m < SYNC_MARKS; m++) { 8824 mark[m] = jiffies; 8825 mark_cnt[m] = io_sectors; 8826 } 8827 last_mark = 0; 8828 mddev->resync_mark = mark[last_mark]; 8829 mddev->resync_mark_cnt = mark_cnt[last_mark]; 8830 8831 /* 8832 * Tune reconstruction: 8833 */ 8834 window = 32 * (PAGE_SIZE / 512); 8835 pr_debug("md: using %dk window, over a total of %lluk.\n", 8836 window/2, (unsigned long long)max_sectors/2); 8837 8838 atomic_set(&mddev->recovery_active, 0); 8839 last_check = 0; 8840 8841 if (j>2) { 8842 pr_debug("md: resuming %s of %s from checkpoint.\n", 8843 desc, mdname(mddev)); 8844 mddev->curr_resync = j; 8845 } else 8846 mddev->curr_resync = 3; /* no longer delayed */ 8847 mddev->curr_resync_completed = j; 8848 sysfs_notify_dirent_safe(mddev->sysfs_completed); 8849 md_new_event(mddev); 8850 update_time = jiffies; 8851 8852 blk_start_plug(&plug); 8853 while (j < max_sectors) { 8854 sector_t sectors; 8855 8856 skipped = 0; 8857 8858 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8859 ((mddev->curr_resync > mddev->curr_resync_completed && 8860 (mddev->curr_resync - mddev->curr_resync_completed) 8861 > (max_sectors >> 4)) || 8862 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) || 8863 (j - mddev->curr_resync_completed)*2 8864 >= mddev->resync_max - mddev->curr_resync_completed || 8865 mddev->curr_resync_completed > mddev->resync_max 8866 )) { 8867 /* time to update curr_resync_completed */ 8868 wait_event(mddev->recovery_wait, 8869 atomic_read(&mddev->recovery_active) == 0); 8870 mddev->curr_resync_completed = j; 8871 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 8872 j > mddev->recovery_cp) 8873 mddev->recovery_cp = j; 8874 update_time = jiffies; 8875 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8876 sysfs_notify_dirent_safe(mddev->sysfs_completed); 8877 } 8878 8879 while (j >= mddev->resync_max && 8880 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8881 /* As this condition is controlled by user-space, 8882 * we can block indefinitely, so use '_interruptible' 8883 * to avoid triggering warnings. 8884 */ 8885 flush_signals(current); /* just in case */ 8886 wait_event_interruptible(mddev->recovery_wait, 8887 mddev->resync_max > j 8888 || test_bit(MD_RECOVERY_INTR, 8889 &mddev->recovery)); 8890 } 8891 8892 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8893 break; 8894 8895 sectors = mddev->pers->sync_request(mddev, j, &skipped); 8896 if (sectors == 0) { 8897 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8898 break; 8899 } 8900 8901 if (!skipped) { /* actual IO requested */ 8902 io_sectors += sectors; 8903 atomic_add(sectors, &mddev->recovery_active); 8904 } 8905 8906 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8907 break; 8908 8909 j += sectors; 8910 if (j > max_sectors) 8911 /* when skipping, extra large numbers can be returned. */ 8912 j = max_sectors; 8913 if (j > 2) 8914 mddev->curr_resync = j; 8915 mddev->curr_mark_cnt = io_sectors; 8916 if (last_check == 0) 8917 /* this is the earliest that rebuild will be 8918 * visible in /proc/mdstat 8919 */ 8920 md_new_event(mddev); 8921 8922 if (last_check + window > io_sectors || j == max_sectors) 8923 continue; 8924 8925 last_check = io_sectors; 8926 repeat: 8927 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { 8928 /* step marks */ 8929 int next = (last_mark+1) % SYNC_MARKS; 8930 8931 mddev->resync_mark = mark[next]; 8932 mddev->resync_mark_cnt = mark_cnt[next]; 8933 mark[next] = jiffies; 8934 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); 8935 last_mark = next; 8936 } 8937 8938 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8939 break; 8940 8941 /* 8942 * this loop exits only if either when we are slower than 8943 * the 'hard' speed limit, or the system was IO-idle for 8944 * a jiffy. 8945 * the system might be non-idle CPU-wise, but we only care 8946 * about not overloading the IO subsystem. (things like an 8947 * e2fsck being done on the RAID array should execute fast) 8948 */ 8949 cond_resched(); 8950 8951 recovery_done = io_sectors - atomic_read(&mddev->recovery_active); 8952 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2 8953 /((jiffies-mddev->resync_mark)/HZ +1) +1; 8954 8955 if (currspeed > speed_min(mddev)) { 8956 if (currspeed > speed_max(mddev)) { 8957 msleep(500); 8958 goto repeat; 8959 } 8960 if (!is_mddev_idle(mddev, 0)) { 8961 /* 8962 * Give other IO more of a chance. 8963 * The faster the devices, the less we wait. 8964 */ 8965 wait_event(mddev->recovery_wait, 8966 !atomic_read(&mddev->recovery_active)); 8967 } 8968 } 8969 } 8970 pr_info("md: %s: %s %s.\n",mdname(mddev), desc, 8971 test_bit(MD_RECOVERY_INTR, &mddev->recovery) 8972 ? "interrupted" : "done"); 8973 /* 8974 * this also signals 'finished resyncing' to md_stop 8975 */ 8976 blk_finish_plug(&plug); 8977 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); 8978 8979 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8980 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8981 mddev->curr_resync > 3) { 8982 mddev->curr_resync_completed = mddev->curr_resync; 8983 sysfs_notify_dirent_safe(mddev->sysfs_completed); 8984 } 8985 mddev->pers->sync_request(mddev, max_sectors, &skipped); 8986 8987 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && 8988 mddev->curr_resync > 3) { 8989 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8990 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8991 if (mddev->curr_resync >= mddev->recovery_cp) { 8992 pr_debug("md: checkpointing %s of %s.\n", 8993 desc, mdname(mddev)); 8994 if (test_bit(MD_RECOVERY_ERROR, 8995 &mddev->recovery)) 8996 mddev->recovery_cp = 8997 mddev->curr_resync_completed; 8998 else 8999 mddev->recovery_cp = 9000 mddev->curr_resync; 9001 } 9002 } else 9003 mddev->recovery_cp = MaxSector; 9004 } else { 9005 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 9006 mddev->curr_resync = MaxSector; 9007 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9008 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) { 9009 rcu_read_lock(); 9010 rdev_for_each_rcu(rdev, mddev) 9011 if (rdev->raid_disk >= 0 && 9012 mddev->delta_disks >= 0 && 9013 !test_bit(Journal, &rdev->flags) && 9014 !test_bit(Faulty, &rdev->flags) && 9015 !test_bit(In_sync, &rdev->flags) && 9016 rdev->recovery_offset < mddev->curr_resync) 9017 rdev->recovery_offset = mddev->curr_resync; 9018 rcu_read_unlock(); 9019 } 9020 } 9021 } 9022 skip: 9023 /* set CHANGE_PENDING here since maybe another update is needed, 9024 * so other nodes are informed. It should be harmless for normal 9025 * raid */ 9026 set_mask_bits(&mddev->sb_flags, 0, 9027 BIT(MD_SB_CHANGE_PENDING) | BIT(MD_SB_CHANGE_DEVS)); 9028 9029 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9030 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 9031 mddev->delta_disks > 0 && 9032 mddev->pers->finish_reshape && 9033 mddev->pers->size && 9034 mddev->queue) { 9035 mddev_lock_nointr(mddev); 9036 md_set_array_sectors(mddev, mddev->pers->size(mddev, 0, 0)); 9037 mddev_unlock(mddev); 9038 if (!mddev_is_clustered(mddev)) { 9039 set_capacity(mddev->gendisk, mddev->array_sectors); 9040 revalidate_disk_size(mddev->gendisk, true); 9041 } 9042 } 9043 9044 spin_lock(&mddev->lock); 9045 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 9046 /* We completed so min/max setting can be forgotten if used. */ 9047 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 9048 mddev->resync_min = 0; 9049 mddev->resync_max = MaxSector; 9050 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 9051 mddev->resync_min = mddev->curr_resync_completed; 9052 set_bit(MD_RECOVERY_DONE, &mddev->recovery); 9053 mddev->curr_resync = 0; 9054 spin_unlock(&mddev->lock); 9055 9056 wake_up(&resync_wait); 9057 md_wakeup_thread(mddev->thread); 9058 return; 9059 } 9060 EXPORT_SYMBOL_GPL(md_do_sync); 9061 9062 static int remove_and_add_spares(struct mddev *mddev, 9063 struct md_rdev *this) 9064 { 9065 struct md_rdev *rdev; 9066 int spares = 0; 9067 int removed = 0; 9068 bool remove_some = false; 9069 9070 if (this && test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 9071 /* Mustn't remove devices when resync thread is running */ 9072 return 0; 9073 9074 rdev_for_each(rdev, mddev) { 9075 if ((this == NULL || rdev == this) && 9076 rdev->raid_disk >= 0 && 9077 !test_bit(Blocked, &rdev->flags) && 9078 test_bit(Faulty, &rdev->flags) && 9079 atomic_read(&rdev->nr_pending)==0) { 9080 /* Faulty non-Blocked devices with nr_pending == 0 9081 * never get nr_pending incremented, 9082 * never get Faulty cleared, and never get Blocked set. 9083 * So we can synchronize_rcu now rather than once per device 9084 */ 9085 remove_some = true; 9086 set_bit(RemoveSynchronized, &rdev->flags); 9087 } 9088 } 9089 9090 if (remove_some) 9091 synchronize_rcu(); 9092 rdev_for_each(rdev, mddev) { 9093 if ((this == NULL || rdev == this) && 9094 rdev->raid_disk >= 0 && 9095 !test_bit(Blocked, &rdev->flags) && 9096 ((test_bit(RemoveSynchronized, &rdev->flags) || 9097 (!test_bit(In_sync, &rdev->flags) && 9098 !test_bit(Journal, &rdev->flags))) && 9099 atomic_read(&rdev->nr_pending)==0)) { 9100 if (mddev->pers->hot_remove_disk( 9101 mddev, rdev) == 0) { 9102 sysfs_unlink_rdev(mddev, rdev); 9103 rdev->saved_raid_disk = rdev->raid_disk; 9104 rdev->raid_disk = -1; 9105 removed++; 9106 } 9107 } 9108 if (remove_some && test_bit(RemoveSynchronized, &rdev->flags)) 9109 clear_bit(RemoveSynchronized, &rdev->flags); 9110 } 9111 9112 if (removed && mddev->kobj.sd) 9113 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9114 9115 if (this && removed) 9116 goto no_add; 9117 9118 rdev_for_each(rdev, mddev) { 9119 if (this && this != rdev) 9120 continue; 9121 if (test_bit(Candidate, &rdev->flags)) 9122 continue; 9123 if (rdev->raid_disk >= 0 && 9124 !test_bit(In_sync, &rdev->flags) && 9125 !test_bit(Journal, &rdev->flags) && 9126 !test_bit(Faulty, &rdev->flags)) 9127 spares++; 9128 if (rdev->raid_disk >= 0) 9129 continue; 9130 if (test_bit(Faulty, &rdev->flags)) 9131 continue; 9132 if (!test_bit(Journal, &rdev->flags)) { 9133 if (mddev->ro && 9134 ! (rdev->saved_raid_disk >= 0 && 9135 !test_bit(Bitmap_sync, &rdev->flags))) 9136 continue; 9137 9138 rdev->recovery_offset = 0; 9139 } 9140 if (mddev->pers->hot_add_disk(mddev, rdev) == 0) { 9141 /* failure here is OK */ 9142 sysfs_link_rdev(mddev, rdev); 9143 if (!test_bit(Journal, &rdev->flags)) 9144 spares++; 9145 md_new_event(mddev); 9146 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9147 } 9148 } 9149 no_add: 9150 if (removed) 9151 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9152 return spares; 9153 } 9154 9155 static void md_start_sync(struct work_struct *ws) 9156 { 9157 struct mddev *mddev = container_of(ws, struct mddev, del_work); 9158 9159 mddev->sync_thread = md_register_thread(md_do_sync, 9160 mddev, 9161 "resync"); 9162 if (!mddev->sync_thread) { 9163 pr_warn("%s: could not start resync thread...\n", 9164 mdname(mddev)); 9165 /* leave the spares where they are, it shouldn't hurt */ 9166 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9167 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9168 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9169 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9170 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9171 wake_up(&resync_wait); 9172 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 9173 &mddev->recovery)) 9174 if (mddev->sysfs_action) 9175 sysfs_notify_dirent_safe(mddev->sysfs_action); 9176 } else 9177 md_wakeup_thread(mddev->sync_thread); 9178 sysfs_notify_dirent_safe(mddev->sysfs_action); 9179 md_new_event(mddev); 9180 } 9181 9182 /* 9183 * This routine is regularly called by all per-raid-array threads to 9184 * deal with generic issues like resync and super-block update. 9185 * Raid personalities that don't have a thread (linear/raid0) do not 9186 * need this as they never do any recovery or update the superblock. 9187 * 9188 * It does not do any resync itself, but rather "forks" off other threads 9189 * to do that as needed. 9190 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in 9191 * "->recovery" and create a thread at ->sync_thread. 9192 * When the thread finishes it sets MD_RECOVERY_DONE 9193 * and wakeups up this thread which will reap the thread and finish up. 9194 * This thread also removes any faulty devices (with nr_pending == 0). 9195 * 9196 * The overall approach is: 9197 * 1/ if the superblock needs updating, update it. 9198 * 2/ If a recovery thread is running, don't do anything else. 9199 * 3/ If recovery has finished, clean up, possibly marking spares active. 9200 * 4/ If there are any faulty devices, remove them. 9201 * 5/ If array is degraded, try to add spares devices 9202 * 6/ If array has spares or is not in-sync, start a resync thread. 9203 */ 9204 void md_check_recovery(struct mddev *mddev) 9205 { 9206 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags) && mddev->sb_flags) { 9207 /* Write superblock - thread that called mddev_suspend() 9208 * holds reconfig_mutex for us. 9209 */ 9210 set_bit(MD_UPDATING_SB, &mddev->flags); 9211 smp_mb__after_atomic(); 9212 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags)) 9213 md_update_sb(mddev, 0); 9214 clear_bit_unlock(MD_UPDATING_SB, &mddev->flags); 9215 wake_up(&mddev->sb_wait); 9216 } 9217 9218 if (mddev->suspended) 9219 return; 9220 9221 if (mddev->bitmap) 9222 md_bitmap_daemon_work(mddev); 9223 9224 if (signal_pending(current)) { 9225 if (mddev->pers->sync_request && !mddev->external) { 9226 pr_debug("md: %s in immediate safe mode\n", 9227 mdname(mddev)); 9228 mddev->safemode = 2; 9229 } 9230 flush_signals(current); 9231 } 9232 9233 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 9234 return; 9235 if ( ! ( 9236 (mddev->sb_flags & ~ (1<<MD_SB_CHANGE_PENDING)) || 9237 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 9238 test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 9239 (mddev->external == 0 && mddev->safemode == 1) || 9240 (mddev->safemode == 2 9241 && !mddev->in_sync && mddev->recovery_cp == MaxSector) 9242 )) 9243 return; 9244 9245 if (mddev_trylock(mddev)) { 9246 int spares = 0; 9247 bool try_set_sync = mddev->safemode != 0; 9248 9249 if (!mddev->external && mddev->safemode == 1) 9250 mddev->safemode = 0; 9251 9252 if (mddev->ro) { 9253 struct md_rdev *rdev; 9254 if (!mddev->external && mddev->in_sync) 9255 /* 'Blocked' flag not needed as failed devices 9256 * will be recorded if array switched to read/write. 9257 * Leaving it set will prevent the device 9258 * from being removed. 9259 */ 9260 rdev_for_each(rdev, mddev) 9261 clear_bit(Blocked, &rdev->flags); 9262 /* On a read-only array we can: 9263 * - remove failed devices 9264 * - add already-in_sync devices if the array itself 9265 * is in-sync. 9266 * As we only add devices that are already in-sync, 9267 * we can activate the spares immediately. 9268 */ 9269 remove_and_add_spares(mddev, NULL); 9270 /* There is no thread, but we need to call 9271 * ->spare_active and clear saved_raid_disk 9272 */ 9273 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 9274 md_reap_sync_thread(mddev); 9275 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9276 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9277 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 9278 goto unlock; 9279 } 9280 9281 if (mddev_is_clustered(mddev)) { 9282 struct md_rdev *rdev; 9283 /* kick the device if another node issued a 9284 * remove disk. 9285 */ 9286 rdev_for_each(rdev, mddev) { 9287 if (test_and_clear_bit(ClusterRemove, &rdev->flags) && 9288 rdev->raid_disk < 0) 9289 md_kick_rdev_from_array(rdev); 9290 } 9291 } 9292 9293 if (try_set_sync && !mddev->external && !mddev->in_sync) { 9294 spin_lock(&mddev->lock); 9295 set_in_sync(mddev); 9296 spin_unlock(&mddev->lock); 9297 } 9298 9299 if (mddev->sb_flags) 9300 md_update_sb(mddev, 0); 9301 9302 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 9303 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { 9304 /* resync/recovery still happening */ 9305 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9306 goto unlock; 9307 } 9308 if (mddev->sync_thread) { 9309 md_reap_sync_thread(mddev); 9310 goto unlock; 9311 } 9312 /* Set RUNNING before clearing NEEDED to avoid 9313 * any transients in the value of "sync_action". 9314 */ 9315 mddev->curr_resync_completed = 0; 9316 spin_lock(&mddev->lock); 9317 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9318 spin_unlock(&mddev->lock); 9319 /* Clear some bits that don't mean anything, but 9320 * might be left set 9321 */ 9322 clear_bit(MD_RECOVERY_INTR, &mddev->recovery); 9323 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 9324 9325 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 9326 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 9327 goto not_running; 9328 /* no recovery is running. 9329 * remove any failed drives, then 9330 * add spares if possible. 9331 * Spares are also removed and re-added, to allow 9332 * the personality to fail the re-add. 9333 */ 9334 9335 if (mddev->reshape_position != MaxSector) { 9336 if (mddev->pers->check_reshape == NULL || 9337 mddev->pers->check_reshape(mddev) != 0) 9338 /* Cannot proceed */ 9339 goto not_running; 9340 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9341 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9342 } else if ((spares = remove_and_add_spares(mddev, NULL))) { 9343 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9344 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9345 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9346 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9347 } else if (mddev->recovery_cp < MaxSector) { 9348 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9349 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9350 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 9351 /* nothing to be done ... */ 9352 goto not_running; 9353 9354 if (mddev->pers->sync_request) { 9355 if (spares) { 9356 /* We are adding a device or devices to an array 9357 * which has the bitmap stored on all devices. 9358 * So make sure all bitmap pages get written 9359 */ 9360 md_bitmap_write_all(mddev->bitmap); 9361 } 9362 INIT_WORK(&mddev->del_work, md_start_sync); 9363 queue_work(md_misc_wq, &mddev->del_work); 9364 goto unlock; 9365 } 9366 not_running: 9367 if (!mddev->sync_thread) { 9368 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9369 wake_up(&resync_wait); 9370 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 9371 &mddev->recovery)) 9372 if (mddev->sysfs_action) 9373 sysfs_notify_dirent_safe(mddev->sysfs_action); 9374 } 9375 unlock: 9376 wake_up(&mddev->sb_wait); 9377 mddev_unlock(mddev); 9378 } 9379 } 9380 EXPORT_SYMBOL(md_check_recovery); 9381 9382 void md_reap_sync_thread(struct mddev *mddev) 9383 { 9384 struct md_rdev *rdev; 9385 sector_t old_dev_sectors = mddev->dev_sectors; 9386 bool is_reshaped = false; 9387 9388 /* resync has finished, collect result */ 9389 md_unregister_thread(&mddev->sync_thread); 9390 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 9391 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 9392 mddev->degraded != mddev->raid_disks) { 9393 /* success...*/ 9394 /* activate any spares */ 9395 if (mddev->pers->spare_active(mddev)) { 9396 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9397 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9398 } 9399 } 9400 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9401 mddev->pers->finish_reshape) { 9402 mddev->pers->finish_reshape(mddev); 9403 if (mddev_is_clustered(mddev)) 9404 is_reshaped = true; 9405 } 9406 9407 /* If array is no-longer degraded, then any saved_raid_disk 9408 * information must be scrapped. 9409 */ 9410 if (!mddev->degraded) 9411 rdev_for_each(rdev, mddev) 9412 rdev->saved_raid_disk = -1; 9413 9414 md_update_sb(mddev, 1); 9415 /* MD_SB_CHANGE_PENDING should be cleared by md_update_sb, so we can 9416 * call resync_finish here if MD_CLUSTER_RESYNC_LOCKED is set by 9417 * clustered raid */ 9418 if (test_and_clear_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags)) 9419 md_cluster_ops->resync_finish(mddev); 9420 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9421 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 9422 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9423 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9424 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9425 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9426 /* 9427 * We call md_cluster_ops->update_size here because sync_size could 9428 * be changed by md_update_sb, and MD_RECOVERY_RESHAPE is cleared, 9429 * so it is time to update size across cluster. 9430 */ 9431 if (mddev_is_clustered(mddev) && is_reshaped 9432 && !test_bit(MD_CLOSING, &mddev->flags)) 9433 md_cluster_ops->update_size(mddev, old_dev_sectors); 9434 wake_up(&resync_wait); 9435 /* flag recovery needed just to double check */ 9436 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9437 sysfs_notify_dirent_safe(mddev->sysfs_action); 9438 md_new_event(mddev); 9439 if (mddev->event_work.func) 9440 queue_work(md_misc_wq, &mddev->event_work); 9441 } 9442 EXPORT_SYMBOL(md_reap_sync_thread); 9443 9444 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev) 9445 { 9446 sysfs_notify_dirent_safe(rdev->sysfs_state); 9447 wait_event_timeout(rdev->blocked_wait, 9448 !test_bit(Blocked, &rdev->flags) && 9449 !test_bit(BlockedBadBlocks, &rdev->flags), 9450 msecs_to_jiffies(5000)); 9451 rdev_dec_pending(rdev, mddev); 9452 } 9453 EXPORT_SYMBOL(md_wait_for_blocked_rdev); 9454 9455 void md_finish_reshape(struct mddev *mddev) 9456 { 9457 /* called be personality module when reshape completes. */ 9458 struct md_rdev *rdev; 9459 9460 rdev_for_each(rdev, mddev) { 9461 if (rdev->data_offset > rdev->new_data_offset) 9462 rdev->sectors += rdev->data_offset - rdev->new_data_offset; 9463 else 9464 rdev->sectors -= rdev->new_data_offset - rdev->data_offset; 9465 rdev->data_offset = rdev->new_data_offset; 9466 } 9467 } 9468 EXPORT_SYMBOL(md_finish_reshape); 9469 9470 /* Bad block management */ 9471 9472 /* Returns 1 on success, 0 on failure */ 9473 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 9474 int is_new) 9475 { 9476 struct mddev *mddev = rdev->mddev; 9477 int rv; 9478 if (is_new) 9479 s += rdev->new_data_offset; 9480 else 9481 s += rdev->data_offset; 9482 rv = badblocks_set(&rdev->badblocks, s, sectors, 0); 9483 if (rv == 0) { 9484 /* Make sure they get written out promptly */ 9485 if (test_bit(ExternalBbl, &rdev->flags)) 9486 sysfs_notify_dirent_safe(rdev->sysfs_unack_badblocks); 9487 sysfs_notify_dirent_safe(rdev->sysfs_state); 9488 set_mask_bits(&mddev->sb_flags, 0, 9489 BIT(MD_SB_CHANGE_CLEAN) | BIT(MD_SB_CHANGE_PENDING)); 9490 md_wakeup_thread(rdev->mddev->thread); 9491 return 1; 9492 } else 9493 return 0; 9494 } 9495 EXPORT_SYMBOL_GPL(rdev_set_badblocks); 9496 9497 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 9498 int is_new) 9499 { 9500 int rv; 9501 if (is_new) 9502 s += rdev->new_data_offset; 9503 else 9504 s += rdev->data_offset; 9505 rv = badblocks_clear(&rdev->badblocks, s, sectors); 9506 if ((rv == 0) && test_bit(ExternalBbl, &rdev->flags)) 9507 sysfs_notify_dirent_safe(rdev->sysfs_badblocks); 9508 return rv; 9509 } 9510 EXPORT_SYMBOL_GPL(rdev_clear_badblocks); 9511 9512 static int md_notify_reboot(struct notifier_block *this, 9513 unsigned long code, void *x) 9514 { 9515 struct list_head *tmp; 9516 struct mddev *mddev; 9517 int need_delay = 0; 9518 9519 for_each_mddev(mddev, tmp) { 9520 if (mddev_trylock(mddev)) { 9521 if (mddev->pers) 9522 __md_stop_writes(mddev); 9523 if (mddev->persistent) 9524 mddev->safemode = 2; 9525 mddev_unlock(mddev); 9526 } 9527 need_delay = 1; 9528 } 9529 /* 9530 * certain more exotic SCSI devices are known to be 9531 * volatile wrt too early system reboots. While the 9532 * right place to handle this issue is the given 9533 * driver, we do want to have a safe RAID driver ... 9534 */ 9535 if (need_delay) 9536 mdelay(1000*1); 9537 9538 return NOTIFY_DONE; 9539 } 9540 9541 static struct notifier_block md_notifier = { 9542 .notifier_call = md_notify_reboot, 9543 .next = NULL, 9544 .priority = INT_MAX, /* before any real devices */ 9545 }; 9546 9547 static void md_geninit(void) 9548 { 9549 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); 9550 9551 proc_create("mdstat", S_IRUGO, NULL, &mdstat_proc_ops); 9552 } 9553 9554 static int __init md_init(void) 9555 { 9556 int ret = -ENOMEM; 9557 9558 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0); 9559 if (!md_wq) 9560 goto err_wq; 9561 9562 md_misc_wq = alloc_workqueue("md_misc", 0, 0); 9563 if (!md_misc_wq) 9564 goto err_misc_wq; 9565 9566 md_rdev_misc_wq = alloc_workqueue("md_rdev_misc", 0, 0); 9567 if (!md_rdev_misc_wq) 9568 goto err_rdev_misc_wq; 9569 9570 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0) 9571 goto err_md; 9572 9573 if ((ret = register_blkdev(0, "mdp")) < 0) 9574 goto err_mdp; 9575 mdp_major = ret; 9576 9577 blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE, 9578 md_probe, NULL, NULL); 9579 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE, 9580 md_probe, NULL, NULL); 9581 9582 register_reboot_notifier(&md_notifier); 9583 raid_table_header = register_sysctl_table(raid_root_table); 9584 9585 md_geninit(); 9586 return 0; 9587 9588 err_mdp: 9589 unregister_blkdev(MD_MAJOR, "md"); 9590 err_md: 9591 destroy_workqueue(md_rdev_misc_wq); 9592 err_rdev_misc_wq: 9593 destroy_workqueue(md_misc_wq); 9594 err_misc_wq: 9595 destroy_workqueue(md_wq); 9596 err_wq: 9597 return ret; 9598 } 9599 9600 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev) 9601 { 9602 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 9603 struct md_rdev *rdev2; 9604 int role, ret; 9605 char b[BDEVNAME_SIZE]; 9606 9607 /* 9608 * If size is changed in another node then we need to 9609 * do resize as well. 9610 */ 9611 if (mddev->dev_sectors != le64_to_cpu(sb->size)) { 9612 ret = mddev->pers->resize(mddev, le64_to_cpu(sb->size)); 9613 if (ret) 9614 pr_info("md-cluster: resize failed\n"); 9615 else 9616 md_bitmap_update_sb(mddev->bitmap); 9617 } 9618 9619 /* Check for change of roles in the active devices */ 9620 rdev_for_each(rdev2, mddev) { 9621 if (test_bit(Faulty, &rdev2->flags)) 9622 continue; 9623 9624 /* Check if the roles changed */ 9625 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]); 9626 9627 if (test_bit(Candidate, &rdev2->flags)) { 9628 if (role == 0xfffe) { 9629 pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b)); 9630 md_kick_rdev_from_array(rdev2); 9631 continue; 9632 } 9633 else 9634 clear_bit(Candidate, &rdev2->flags); 9635 } 9636 9637 if (role != rdev2->raid_disk) { 9638 /* 9639 * got activated except reshape is happening. 9640 */ 9641 if (rdev2->raid_disk == -1 && role != 0xffff && 9642 !(le32_to_cpu(sb->feature_map) & 9643 MD_FEATURE_RESHAPE_ACTIVE)) { 9644 rdev2->saved_raid_disk = role; 9645 ret = remove_and_add_spares(mddev, rdev2); 9646 pr_info("Activated spare: %s\n", 9647 bdevname(rdev2->bdev,b)); 9648 /* wakeup mddev->thread here, so array could 9649 * perform resync with the new activated disk */ 9650 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9651 md_wakeup_thread(mddev->thread); 9652 } 9653 /* device faulty 9654 * We just want to do the minimum to mark the disk 9655 * as faulty. The recovery is performed by the 9656 * one who initiated the error. 9657 */ 9658 if ((role == 0xfffe) || (role == 0xfffd)) { 9659 md_error(mddev, rdev2); 9660 clear_bit(Blocked, &rdev2->flags); 9661 } 9662 } 9663 } 9664 9665 if (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) 9666 update_raid_disks(mddev, le32_to_cpu(sb->raid_disks)); 9667 9668 /* 9669 * Since mddev->delta_disks has already updated in update_raid_disks, 9670 * so it is time to check reshape. 9671 */ 9672 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) && 9673 (le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 9674 /* 9675 * reshape is happening in the remote node, we need to 9676 * update reshape_position and call start_reshape. 9677 */ 9678 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 9679 if (mddev->pers->update_reshape_pos) 9680 mddev->pers->update_reshape_pos(mddev); 9681 if (mddev->pers->start_reshape) 9682 mddev->pers->start_reshape(mddev); 9683 } else if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) && 9684 mddev->reshape_position != MaxSector && 9685 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 9686 /* reshape is just done in another node. */ 9687 mddev->reshape_position = MaxSector; 9688 if (mddev->pers->update_reshape_pos) 9689 mddev->pers->update_reshape_pos(mddev); 9690 } 9691 9692 /* Finally set the event to be up to date */ 9693 mddev->events = le64_to_cpu(sb->events); 9694 } 9695 9696 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev) 9697 { 9698 int err; 9699 struct page *swapout = rdev->sb_page; 9700 struct mdp_superblock_1 *sb; 9701 9702 /* Store the sb page of the rdev in the swapout temporary 9703 * variable in case we err in the future 9704 */ 9705 rdev->sb_page = NULL; 9706 err = alloc_disk_sb(rdev); 9707 if (err == 0) { 9708 ClearPageUptodate(rdev->sb_page); 9709 rdev->sb_loaded = 0; 9710 err = super_types[mddev->major_version]. 9711 load_super(rdev, NULL, mddev->minor_version); 9712 } 9713 if (err < 0) { 9714 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n", 9715 __func__, __LINE__, rdev->desc_nr, err); 9716 if (rdev->sb_page) 9717 put_page(rdev->sb_page); 9718 rdev->sb_page = swapout; 9719 rdev->sb_loaded = 1; 9720 return err; 9721 } 9722 9723 sb = page_address(rdev->sb_page); 9724 /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET 9725 * is not set 9726 */ 9727 9728 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET)) 9729 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 9730 9731 /* The other node finished recovery, call spare_active to set 9732 * device In_sync and mddev->degraded 9733 */ 9734 if (rdev->recovery_offset == MaxSector && 9735 !test_bit(In_sync, &rdev->flags) && 9736 mddev->pers->spare_active(mddev)) 9737 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9738 9739 put_page(swapout); 9740 return 0; 9741 } 9742 9743 void md_reload_sb(struct mddev *mddev, int nr) 9744 { 9745 struct md_rdev *rdev; 9746 int err; 9747 9748 /* Find the rdev */ 9749 rdev_for_each_rcu(rdev, mddev) { 9750 if (rdev->desc_nr == nr) 9751 break; 9752 } 9753 9754 if (!rdev || rdev->desc_nr != nr) { 9755 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr); 9756 return; 9757 } 9758 9759 err = read_rdev(mddev, rdev); 9760 if (err < 0) 9761 return; 9762 9763 check_sb_changes(mddev, rdev); 9764 9765 /* Read all rdev's to update recovery_offset */ 9766 rdev_for_each_rcu(rdev, mddev) { 9767 if (!test_bit(Faulty, &rdev->flags)) 9768 read_rdev(mddev, rdev); 9769 } 9770 } 9771 EXPORT_SYMBOL(md_reload_sb); 9772 9773 #ifndef MODULE 9774 9775 /* 9776 * Searches all registered partitions for autorun RAID arrays 9777 * at boot time. 9778 */ 9779 9780 static DEFINE_MUTEX(detected_devices_mutex); 9781 static LIST_HEAD(all_detected_devices); 9782 struct detected_devices_node { 9783 struct list_head list; 9784 dev_t dev; 9785 }; 9786 9787 void md_autodetect_dev(dev_t dev) 9788 { 9789 struct detected_devices_node *node_detected_dev; 9790 9791 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL); 9792 if (node_detected_dev) { 9793 node_detected_dev->dev = dev; 9794 mutex_lock(&detected_devices_mutex); 9795 list_add_tail(&node_detected_dev->list, &all_detected_devices); 9796 mutex_unlock(&detected_devices_mutex); 9797 } 9798 } 9799 9800 void md_autostart_arrays(int part) 9801 { 9802 struct md_rdev *rdev; 9803 struct detected_devices_node *node_detected_dev; 9804 dev_t dev; 9805 int i_scanned, i_passed; 9806 9807 i_scanned = 0; 9808 i_passed = 0; 9809 9810 pr_info("md: Autodetecting RAID arrays.\n"); 9811 9812 mutex_lock(&detected_devices_mutex); 9813 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) { 9814 i_scanned++; 9815 node_detected_dev = list_entry(all_detected_devices.next, 9816 struct detected_devices_node, list); 9817 list_del(&node_detected_dev->list); 9818 dev = node_detected_dev->dev; 9819 kfree(node_detected_dev); 9820 mutex_unlock(&detected_devices_mutex); 9821 rdev = md_import_device(dev,0, 90); 9822 mutex_lock(&detected_devices_mutex); 9823 if (IS_ERR(rdev)) 9824 continue; 9825 9826 if (test_bit(Faulty, &rdev->flags)) 9827 continue; 9828 9829 set_bit(AutoDetected, &rdev->flags); 9830 list_add(&rdev->same_set, &pending_raid_disks); 9831 i_passed++; 9832 } 9833 mutex_unlock(&detected_devices_mutex); 9834 9835 pr_debug("md: Scanned %d and added %d devices.\n", i_scanned, i_passed); 9836 9837 autorun_devices(part); 9838 } 9839 9840 #endif /* !MODULE */ 9841 9842 static __exit void md_exit(void) 9843 { 9844 struct mddev *mddev; 9845 struct list_head *tmp; 9846 int delay = 1; 9847 9848 blk_unregister_region(MKDEV(MD_MAJOR,0), 512); 9849 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS); 9850 9851 unregister_blkdev(MD_MAJOR,"md"); 9852 unregister_blkdev(mdp_major, "mdp"); 9853 unregister_reboot_notifier(&md_notifier); 9854 unregister_sysctl_table(raid_table_header); 9855 9856 /* We cannot unload the modules while some process is 9857 * waiting for us in select() or poll() - wake them up 9858 */ 9859 md_unloading = 1; 9860 while (waitqueue_active(&md_event_waiters)) { 9861 /* not safe to leave yet */ 9862 wake_up(&md_event_waiters); 9863 msleep(delay); 9864 delay += delay; 9865 } 9866 remove_proc_entry("mdstat", NULL); 9867 9868 for_each_mddev(mddev, tmp) { 9869 export_array(mddev); 9870 mddev->ctime = 0; 9871 mddev->hold_active = 0; 9872 /* 9873 * for_each_mddev() will call mddev_put() at the end of each 9874 * iteration. As the mddev is now fully clear, this will 9875 * schedule the mddev for destruction by a workqueue, and the 9876 * destroy_workqueue() below will wait for that to complete. 9877 */ 9878 } 9879 destroy_workqueue(md_rdev_misc_wq); 9880 destroy_workqueue(md_misc_wq); 9881 destroy_workqueue(md_wq); 9882 } 9883 9884 subsys_initcall(md_init); 9885 module_exit(md_exit) 9886 9887 static int get_ro(char *buffer, const struct kernel_param *kp) 9888 { 9889 return sprintf(buffer, "%d\n", start_readonly); 9890 } 9891 static int set_ro(const char *val, const struct kernel_param *kp) 9892 { 9893 return kstrtouint(val, 10, (unsigned int *)&start_readonly); 9894 } 9895 9896 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); 9897 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); 9898 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR); 9899 module_param(create_on_open, bool, S_IRUSR|S_IWUSR); 9900 9901 MODULE_LICENSE("GPL"); 9902 MODULE_DESCRIPTION("MD RAID framework"); 9903 MODULE_ALIAS("md"); 9904 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR); 9905