xref: /openbmc/linux/drivers/md/md.c (revision d7603b7e)
1 /*
2    md.c : Multiple Devices driver for Linux
3 	  Copyright (C) 1998, 1999, 2000 Ingo Molnar
4 
5      completely rewritten, based on the MD driver code from Marc Zyngier
6 
7    Changes:
8 
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16 
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19 
20      Neil Brown <neilb@cse.unsw.edu.au>.
21 
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24 
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29 
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34 
35 #include <linux/module.h>
36 #include <linux/config.h>
37 #include <linux/kthread.h>
38 #include <linux/linkage.h>
39 #include <linux/raid/md.h>
40 #include <linux/raid/bitmap.h>
41 #include <linux/sysctl.h>
42 #include <linux/devfs_fs_kernel.h>
43 #include <linux/buffer_head.h> /* for invalidate_bdev */
44 #include <linux/suspend.h>
45 #include <linux/poll.h>
46 
47 #include <linux/init.h>
48 
49 #include <linux/file.h>
50 
51 #ifdef CONFIG_KMOD
52 #include <linux/kmod.h>
53 #endif
54 
55 #include <asm/unaligned.h>
56 
57 #define MAJOR_NR MD_MAJOR
58 #define MD_DRIVER
59 
60 /* 63 partitions with the alternate major number (mdp) */
61 #define MdpMinorShift 6
62 
63 #define DEBUG 0
64 #define dprintk(x...) ((void)(DEBUG && printk(x)))
65 
66 
67 #ifndef MODULE
68 static void autostart_arrays (int part);
69 #endif
70 
71 static mdk_personality_t *pers[MAX_PERSONALITY];
72 static DEFINE_SPINLOCK(pers_lock);
73 
74 /*
75  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
76  * is 1000 KB/sec, so the extra system load does not show up that much.
77  * Increase it if you want to have more _guaranteed_ speed. Note that
78  * the RAID driver will use the maximum available bandwidth if the IO
79  * subsystem is idle. There is also an 'absolute maximum' reconstruction
80  * speed limit - in case reconstruction slows down your system despite
81  * idle IO detection.
82  *
83  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
84  */
85 
86 static int sysctl_speed_limit_min = 1000;
87 static int sysctl_speed_limit_max = 200000;
88 
89 static struct ctl_table_header *raid_table_header;
90 
91 static ctl_table raid_table[] = {
92 	{
93 		.ctl_name	= DEV_RAID_SPEED_LIMIT_MIN,
94 		.procname	= "speed_limit_min",
95 		.data		= &sysctl_speed_limit_min,
96 		.maxlen		= sizeof(int),
97 		.mode		= 0644,
98 		.proc_handler	= &proc_dointvec,
99 	},
100 	{
101 		.ctl_name	= DEV_RAID_SPEED_LIMIT_MAX,
102 		.procname	= "speed_limit_max",
103 		.data		= &sysctl_speed_limit_max,
104 		.maxlen		= sizeof(int),
105 		.mode		= 0644,
106 		.proc_handler	= &proc_dointvec,
107 	},
108 	{ .ctl_name = 0 }
109 };
110 
111 static ctl_table raid_dir_table[] = {
112 	{
113 		.ctl_name	= DEV_RAID,
114 		.procname	= "raid",
115 		.maxlen		= 0,
116 		.mode		= 0555,
117 		.child		= raid_table,
118 	},
119 	{ .ctl_name = 0 }
120 };
121 
122 static ctl_table raid_root_table[] = {
123 	{
124 		.ctl_name	= CTL_DEV,
125 		.procname	= "dev",
126 		.maxlen		= 0,
127 		.mode		= 0555,
128 		.child		= raid_dir_table,
129 	},
130 	{ .ctl_name = 0 }
131 };
132 
133 static struct block_device_operations md_fops;
134 
135 static int start_readonly;
136 
137 /*
138  * We have a system wide 'event count' that is incremented
139  * on any 'interesting' event, and readers of /proc/mdstat
140  * can use 'poll' or 'select' to find out when the event
141  * count increases.
142  *
143  * Events are:
144  *  start array, stop array, error, add device, remove device,
145  *  start build, activate spare
146  */
147 DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
148 static atomic_t md_event_count;
149 void md_new_event(mddev_t *mddev)
150 {
151 	atomic_inc(&md_event_count);
152 	wake_up(&md_event_waiters);
153 }
154 
155 /*
156  * Enables to iterate over all existing md arrays
157  * all_mddevs_lock protects this list.
158  */
159 static LIST_HEAD(all_mddevs);
160 static DEFINE_SPINLOCK(all_mddevs_lock);
161 
162 
163 /*
164  * iterates through all used mddevs in the system.
165  * We take care to grab the all_mddevs_lock whenever navigating
166  * the list, and to always hold a refcount when unlocked.
167  * Any code which breaks out of this loop while own
168  * a reference to the current mddev and must mddev_put it.
169  */
170 #define ITERATE_MDDEV(mddev,tmp)					\
171 									\
172 	for (({ spin_lock(&all_mddevs_lock); 				\
173 		tmp = all_mddevs.next;					\
174 		mddev = NULL;});					\
175 	     ({ if (tmp != &all_mddevs)					\
176 			mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
177 		spin_unlock(&all_mddevs_lock);				\
178 		if (mddev) mddev_put(mddev);				\
179 		mddev = list_entry(tmp, mddev_t, all_mddevs);		\
180 		tmp != &all_mddevs;});					\
181 	     ({ spin_lock(&all_mddevs_lock);				\
182 		tmp = tmp->next;})					\
183 		)
184 
185 
186 static int md_fail_request (request_queue_t *q, struct bio *bio)
187 {
188 	bio_io_error(bio, bio->bi_size);
189 	return 0;
190 }
191 
192 static inline mddev_t *mddev_get(mddev_t *mddev)
193 {
194 	atomic_inc(&mddev->active);
195 	return mddev;
196 }
197 
198 static void mddev_put(mddev_t *mddev)
199 {
200 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
201 		return;
202 	if (!mddev->raid_disks && list_empty(&mddev->disks)) {
203 		list_del(&mddev->all_mddevs);
204 		blk_put_queue(mddev->queue);
205 		kobject_unregister(&mddev->kobj);
206 	}
207 	spin_unlock(&all_mddevs_lock);
208 }
209 
210 static mddev_t * mddev_find(dev_t unit)
211 {
212 	mddev_t *mddev, *new = NULL;
213 
214  retry:
215 	spin_lock(&all_mddevs_lock);
216 	list_for_each_entry(mddev, &all_mddevs, all_mddevs)
217 		if (mddev->unit == unit) {
218 			mddev_get(mddev);
219 			spin_unlock(&all_mddevs_lock);
220 			kfree(new);
221 			return mddev;
222 		}
223 
224 	if (new) {
225 		list_add(&new->all_mddevs, &all_mddevs);
226 		spin_unlock(&all_mddevs_lock);
227 		return new;
228 	}
229 	spin_unlock(&all_mddevs_lock);
230 
231 	new = (mddev_t *) kmalloc(sizeof(*new), GFP_KERNEL);
232 	if (!new)
233 		return NULL;
234 
235 	memset(new, 0, sizeof(*new));
236 
237 	new->unit = unit;
238 	if (MAJOR(unit) == MD_MAJOR)
239 		new->md_minor = MINOR(unit);
240 	else
241 		new->md_minor = MINOR(unit) >> MdpMinorShift;
242 
243 	init_MUTEX(&new->reconfig_sem);
244 	INIT_LIST_HEAD(&new->disks);
245 	INIT_LIST_HEAD(&new->all_mddevs);
246 	init_timer(&new->safemode_timer);
247 	atomic_set(&new->active, 1);
248 	spin_lock_init(&new->write_lock);
249 	init_waitqueue_head(&new->sb_wait);
250 
251 	new->queue = blk_alloc_queue(GFP_KERNEL);
252 	if (!new->queue) {
253 		kfree(new);
254 		return NULL;
255 	}
256 
257 	blk_queue_make_request(new->queue, md_fail_request);
258 
259 	goto retry;
260 }
261 
262 static inline int mddev_lock(mddev_t * mddev)
263 {
264 	return down_interruptible(&mddev->reconfig_sem);
265 }
266 
267 static inline void mddev_lock_uninterruptible(mddev_t * mddev)
268 {
269 	down(&mddev->reconfig_sem);
270 }
271 
272 static inline int mddev_trylock(mddev_t * mddev)
273 {
274 	return down_trylock(&mddev->reconfig_sem);
275 }
276 
277 static inline void mddev_unlock(mddev_t * mddev)
278 {
279 	up(&mddev->reconfig_sem);
280 
281 	md_wakeup_thread(mddev->thread);
282 }
283 
284 mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
285 {
286 	mdk_rdev_t * rdev;
287 	struct list_head *tmp;
288 
289 	ITERATE_RDEV(mddev,rdev,tmp) {
290 		if (rdev->desc_nr == nr)
291 			return rdev;
292 	}
293 	return NULL;
294 }
295 
296 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
297 {
298 	struct list_head *tmp;
299 	mdk_rdev_t *rdev;
300 
301 	ITERATE_RDEV(mddev,rdev,tmp) {
302 		if (rdev->bdev->bd_dev == dev)
303 			return rdev;
304 	}
305 	return NULL;
306 }
307 
308 static inline sector_t calc_dev_sboffset(struct block_device *bdev)
309 {
310 	sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
311 	return MD_NEW_SIZE_BLOCKS(size);
312 }
313 
314 static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
315 {
316 	sector_t size;
317 
318 	size = rdev->sb_offset;
319 
320 	if (chunk_size)
321 		size &= ~((sector_t)chunk_size/1024 - 1);
322 	return size;
323 }
324 
325 static int alloc_disk_sb(mdk_rdev_t * rdev)
326 {
327 	if (rdev->sb_page)
328 		MD_BUG();
329 
330 	rdev->sb_page = alloc_page(GFP_KERNEL);
331 	if (!rdev->sb_page) {
332 		printk(KERN_ALERT "md: out of memory.\n");
333 		return -EINVAL;
334 	}
335 
336 	return 0;
337 }
338 
339 static void free_disk_sb(mdk_rdev_t * rdev)
340 {
341 	if (rdev->sb_page) {
342 		page_cache_release(rdev->sb_page);
343 		rdev->sb_loaded = 0;
344 		rdev->sb_page = NULL;
345 		rdev->sb_offset = 0;
346 		rdev->size = 0;
347 	}
348 }
349 
350 
351 static int super_written(struct bio *bio, unsigned int bytes_done, int error)
352 {
353 	mdk_rdev_t *rdev = bio->bi_private;
354 	mddev_t *mddev = rdev->mddev;
355 	if (bio->bi_size)
356 		return 1;
357 
358 	if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags))
359 		md_error(mddev, rdev);
360 
361 	if (atomic_dec_and_test(&mddev->pending_writes))
362 		wake_up(&mddev->sb_wait);
363 	bio_put(bio);
364 	return 0;
365 }
366 
367 static int super_written_barrier(struct bio *bio, unsigned int bytes_done, int error)
368 {
369 	struct bio *bio2 = bio->bi_private;
370 	mdk_rdev_t *rdev = bio2->bi_private;
371 	mddev_t *mddev = rdev->mddev;
372 	if (bio->bi_size)
373 		return 1;
374 
375 	if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
376 	    error == -EOPNOTSUPP) {
377 		unsigned long flags;
378 		/* barriers don't appear to be supported :-( */
379 		set_bit(BarriersNotsupp, &rdev->flags);
380 		mddev->barriers_work = 0;
381 		spin_lock_irqsave(&mddev->write_lock, flags);
382 		bio2->bi_next = mddev->biolist;
383 		mddev->biolist = bio2;
384 		spin_unlock_irqrestore(&mddev->write_lock, flags);
385 		wake_up(&mddev->sb_wait);
386 		bio_put(bio);
387 		return 0;
388 	}
389 	bio_put(bio2);
390 	bio->bi_private = rdev;
391 	return super_written(bio, bytes_done, error);
392 }
393 
394 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
395 		   sector_t sector, int size, struct page *page)
396 {
397 	/* write first size bytes of page to sector of rdev
398 	 * Increment mddev->pending_writes before returning
399 	 * and decrement it on completion, waking up sb_wait
400 	 * if zero is reached.
401 	 * If an error occurred, call md_error
402 	 *
403 	 * As we might need to resubmit the request if BIO_RW_BARRIER
404 	 * causes ENOTSUPP, we allocate a spare bio...
405 	 */
406 	struct bio *bio = bio_alloc(GFP_NOIO, 1);
407 	int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNC);
408 
409 	bio->bi_bdev = rdev->bdev;
410 	bio->bi_sector = sector;
411 	bio_add_page(bio, page, size, 0);
412 	bio->bi_private = rdev;
413 	bio->bi_end_io = super_written;
414 	bio->bi_rw = rw;
415 
416 	atomic_inc(&mddev->pending_writes);
417 	if (!test_bit(BarriersNotsupp, &rdev->flags)) {
418 		struct bio *rbio;
419 		rw |= (1<<BIO_RW_BARRIER);
420 		rbio = bio_clone(bio, GFP_NOIO);
421 		rbio->bi_private = bio;
422 		rbio->bi_end_io = super_written_barrier;
423 		submit_bio(rw, rbio);
424 	} else
425 		submit_bio(rw, bio);
426 }
427 
428 void md_super_wait(mddev_t *mddev)
429 {
430 	/* wait for all superblock writes that were scheduled to complete.
431 	 * if any had to be retried (due to BARRIER problems), retry them
432 	 */
433 	DEFINE_WAIT(wq);
434 	for(;;) {
435 		prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
436 		if (atomic_read(&mddev->pending_writes)==0)
437 			break;
438 		while (mddev->biolist) {
439 			struct bio *bio;
440 			spin_lock_irq(&mddev->write_lock);
441 			bio = mddev->biolist;
442 			mddev->biolist = bio->bi_next ;
443 			bio->bi_next = NULL;
444 			spin_unlock_irq(&mddev->write_lock);
445 			submit_bio(bio->bi_rw, bio);
446 		}
447 		schedule();
448 	}
449 	finish_wait(&mddev->sb_wait, &wq);
450 }
451 
452 static int bi_complete(struct bio *bio, unsigned int bytes_done, int error)
453 {
454 	if (bio->bi_size)
455 		return 1;
456 
457 	complete((struct completion*)bio->bi_private);
458 	return 0;
459 }
460 
461 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
462 		   struct page *page, int rw)
463 {
464 	struct bio *bio = bio_alloc(GFP_NOIO, 1);
465 	struct completion event;
466 	int ret;
467 
468 	rw |= (1 << BIO_RW_SYNC);
469 
470 	bio->bi_bdev = bdev;
471 	bio->bi_sector = sector;
472 	bio_add_page(bio, page, size, 0);
473 	init_completion(&event);
474 	bio->bi_private = &event;
475 	bio->bi_end_io = bi_complete;
476 	submit_bio(rw, bio);
477 	wait_for_completion(&event);
478 
479 	ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
480 	bio_put(bio);
481 	return ret;
482 }
483 EXPORT_SYMBOL(sync_page_io);
484 
485 static int read_disk_sb(mdk_rdev_t * rdev, int size)
486 {
487 	char b[BDEVNAME_SIZE];
488 	if (!rdev->sb_page) {
489 		MD_BUG();
490 		return -EINVAL;
491 	}
492 	if (rdev->sb_loaded)
493 		return 0;
494 
495 
496 	if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, size, rdev->sb_page, READ))
497 		goto fail;
498 	rdev->sb_loaded = 1;
499 	return 0;
500 
501 fail:
502 	printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
503 		bdevname(rdev->bdev,b));
504 	return -EINVAL;
505 }
506 
507 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
508 {
509 	if (	(sb1->set_uuid0 == sb2->set_uuid0) &&
510 		(sb1->set_uuid1 == sb2->set_uuid1) &&
511 		(sb1->set_uuid2 == sb2->set_uuid2) &&
512 		(sb1->set_uuid3 == sb2->set_uuid3))
513 
514 		return 1;
515 
516 	return 0;
517 }
518 
519 
520 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
521 {
522 	int ret;
523 	mdp_super_t *tmp1, *tmp2;
524 
525 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
526 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
527 
528 	if (!tmp1 || !tmp2) {
529 		ret = 0;
530 		printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
531 		goto abort;
532 	}
533 
534 	*tmp1 = *sb1;
535 	*tmp2 = *sb2;
536 
537 	/*
538 	 * nr_disks is not constant
539 	 */
540 	tmp1->nr_disks = 0;
541 	tmp2->nr_disks = 0;
542 
543 	if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
544 		ret = 0;
545 	else
546 		ret = 1;
547 
548 abort:
549 	kfree(tmp1);
550 	kfree(tmp2);
551 	return ret;
552 }
553 
554 static unsigned int calc_sb_csum(mdp_super_t * sb)
555 {
556 	unsigned int disk_csum, csum;
557 
558 	disk_csum = sb->sb_csum;
559 	sb->sb_csum = 0;
560 	csum = csum_partial((void *)sb, MD_SB_BYTES, 0);
561 	sb->sb_csum = disk_csum;
562 	return csum;
563 }
564 
565 
566 /*
567  * Handle superblock details.
568  * We want to be able to handle multiple superblock formats
569  * so we have a common interface to them all, and an array of
570  * different handlers.
571  * We rely on user-space to write the initial superblock, and support
572  * reading and updating of superblocks.
573  * Interface methods are:
574  *   int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
575  *      loads and validates a superblock on dev.
576  *      if refdev != NULL, compare superblocks on both devices
577  *    Return:
578  *      0 - dev has a superblock that is compatible with refdev
579  *      1 - dev has a superblock that is compatible and newer than refdev
580  *          so dev should be used as the refdev in future
581  *     -EINVAL superblock incompatible or invalid
582  *     -othererror e.g. -EIO
583  *
584  *   int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
585  *      Verify that dev is acceptable into mddev.
586  *       The first time, mddev->raid_disks will be 0, and data from
587  *       dev should be merged in.  Subsequent calls check that dev
588  *       is new enough.  Return 0 or -EINVAL
589  *
590  *   void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
591  *     Update the superblock for rdev with data in mddev
592  *     This does not write to disc.
593  *
594  */
595 
596 struct super_type  {
597 	char 		*name;
598 	struct module	*owner;
599 	int		(*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
600 	int		(*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
601 	void		(*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
602 };
603 
604 /*
605  * load_super for 0.90.0
606  */
607 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
608 {
609 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
610 	mdp_super_t *sb;
611 	int ret;
612 	sector_t sb_offset;
613 
614 	/*
615 	 * Calculate the position of the superblock,
616 	 * it's at the end of the disk.
617 	 *
618 	 * It also happens to be a multiple of 4Kb.
619 	 */
620 	sb_offset = calc_dev_sboffset(rdev->bdev);
621 	rdev->sb_offset = sb_offset;
622 
623 	ret = read_disk_sb(rdev, MD_SB_BYTES);
624 	if (ret) return ret;
625 
626 	ret = -EINVAL;
627 
628 	bdevname(rdev->bdev, b);
629 	sb = (mdp_super_t*)page_address(rdev->sb_page);
630 
631 	if (sb->md_magic != MD_SB_MAGIC) {
632 		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
633 		       b);
634 		goto abort;
635 	}
636 
637 	if (sb->major_version != 0 ||
638 	    sb->minor_version != 90) {
639 		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
640 			sb->major_version, sb->minor_version,
641 			b);
642 		goto abort;
643 	}
644 
645 	if (sb->raid_disks <= 0)
646 		goto abort;
647 
648 	if (csum_fold(calc_sb_csum(sb)) != csum_fold(sb->sb_csum)) {
649 		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
650 			b);
651 		goto abort;
652 	}
653 
654 	rdev->preferred_minor = sb->md_minor;
655 	rdev->data_offset = 0;
656 	rdev->sb_size = MD_SB_BYTES;
657 
658 	if (sb->level == LEVEL_MULTIPATH)
659 		rdev->desc_nr = -1;
660 	else
661 		rdev->desc_nr = sb->this_disk.number;
662 
663 	if (refdev == 0)
664 		ret = 1;
665 	else {
666 		__u64 ev1, ev2;
667 		mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
668 		if (!uuid_equal(refsb, sb)) {
669 			printk(KERN_WARNING "md: %s has different UUID to %s\n",
670 				b, bdevname(refdev->bdev,b2));
671 			goto abort;
672 		}
673 		if (!sb_equal(refsb, sb)) {
674 			printk(KERN_WARNING "md: %s has same UUID"
675 			       " but different superblock to %s\n",
676 			       b, bdevname(refdev->bdev, b2));
677 			goto abort;
678 		}
679 		ev1 = md_event(sb);
680 		ev2 = md_event(refsb);
681 		if (ev1 > ev2)
682 			ret = 1;
683 		else
684 			ret = 0;
685 	}
686 	rdev->size = calc_dev_size(rdev, sb->chunk_size);
687 
688  abort:
689 	return ret;
690 }
691 
692 /*
693  * validate_super for 0.90.0
694  */
695 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
696 {
697 	mdp_disk_t *desc;
698 	mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
699 
700 	rdev->raid_disk = -1;
701 	rdev->flags = 0;
702 	if (mddev->raid_disks == 0) {
703 		mddev->major_version = 0;
704 		mddev->minor_version = sb->minor_version;
705 		mddev->patch_version = sb->patch_version;
706 		mddev->persistent = ! sb->not_persistent;
707 		mddev->chunk_size = sb->chunk_size;
708 		mddev->ctime = sb->ctime;
709 		mddev->utime = sb->utime;
710 		mddev->level = sb->level;
711 		mddev->layout = sb->layout;
712 		mddev->raid_disks = sb->raid_disks;
713 		mddev->size = sb->size;
714 		mddev->events = md_event(sb);
715 		mddev->bitmap_offset = 0;
716 		mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
717 
718 		if (sb->state & (1<<MD_SB_CLEAN))
719 			mddev->recovery_cp = MaxSector;
720 		else {
721 			if (sb->events_hi == sb->cp_events_hi &&
722 				sb->events_lo == sb->cp_events_lo) {
723 				mddev->recovery_cp = sb->recovery_cp;
724 			} else
725 				mddev->recovery_cp = 0;
726 		}
727 
728 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
729 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
730 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
731 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
732 
733 		mddev->max_disks = MD_SB_DISKS;
734 
735 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
736 		    mddev->bitmap_file == NULL) {
737 			if (mddev->level != 1 && mddev->level != 5 && mddev->level != 6
738 			    && mddev->level != 10) {
739 				/* FIXME use a better test */
740 				printk(KERN_WARNING "md: bitmaps not supported for this level.\n");
741 				return -EINVAL;
742 			}
743 			mddev->bitmap_offset = mddev->default_bitmap_offset;
744 		}
745 
746 	} else if (mddev->pers == NULL) {
747 		/* Insist on good event counter while assembling */
748 		__u64 ev1 = md_event(sb);
749 		++ev1;
750 		if (ev1 < mddev->events)
751 			return -EINVAL;
752 	} else if (mddev->bitmap) {
753 		/* if adding to array with a bitmap, then we can accept an
754 		 * older device ... but not too old.
755 		 */
756 		__u64 ev1 = md_event(sb);
757 		if (ev1 < mddev->bitmap->events_cleared)
758 			return 0;
759 	} else /* just a hot-add of a new device, leave raid_disk at -1 */
760 		return 0;
761 
762 	if (mddev->level != LEVEL_MULTIPATH) {
763 		desc = sb->disks + rdev->desc_nr;
764 
765 		if (desc->state & (1<<MD_DISK_FAULTY))
766 			set_bit(Faulty, &rdev->flags);
767 		else if (desc->state & (1<<MD_DISK_SYNC) &&
768 			 desc->raid_disk < mddev->raid_disks) {
769 			set_bit(In_sync, &rdev->flags);
770 			rdev->raid_disk = desc->raid_disk;
771 		}
772 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
773 			set_bit(WriteMostly, &rdev->flags);
774 	} else /* MULTIPATH are always insync */
775 		set_bit(In_sync, &rdev->flags);
776 	return 0;
777 }
778 
779 /*
780  * sync_super for 0.90.0
781  */
782 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
783 {
784 	mdp_super_t *sb;
785 	struct list_head *tmp;
786 	mdk_rdev_t *rdev2;
787 	int next_spare = mddev->raid_disks;
788 
789 
790 	/* make rdev->sb match mddev data..
791 	 *
792 	 * 1/ zero out disks
793 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
794 	 * 3/ any empty disks < next_spare become removed
795 	 *
796 	 * disks[0] gets initialised to REMOVED because
797 	 * we cannot be sure from other fields if it has
798 	 * been initialised or not.
799 	 */
800 	int i;
801 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
802 
803 	rdev->sb_size = MD_SB_BYTES;
804 
805 	sb = (mdp_super_t*)page_address(rdev->sb_page);
806 
807 	memset(sb, 0, sizeof(*sb));
808 
809 	sb->md_magic = MD_SB_MAGIC;
810 	sb->major_version = mddev->major_version;
811 	sb->minor_version = mddev->minor_version;
812 	sb->patch_version = mddev->patch_version;
813 	sb->gvalid_words  = 0; /* ignored */
814 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
815 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
816 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
817 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
818 
819 	sb->ctime = mddev->ctime;
820 	sb->level = mddev->level;
821 	sb->size  = mddev->size;
822 	sb->raid_disks = mddev->raid_disks;
823 	sb->md_minor = mddev->md_minor;
824 	sb->not_persistent = !mddev->persistent;
825 	sb->utime = mddev->utime;
826 	sb->state = 0;
827 	sb->events_hi = (mddev->events>>32);
828 	sb->events_lo = (u32)mddev->events;
829 
830 	if (mddev->in_sync)
831 	{
832 		sb->recovery_cp = mddev->recovery_cp;
833 		sb->cp_events_hi = (mddev->events>>32);
834 		sb->cp_events_lo = (u32)mddev->events;
835 		if (mddev->recovery_cp == MaxSector)
836 			sb->state = (1<< MD_SB_CLEAN);
837 	} else
838 		sb->recovery_cp = 0;
839 
840 	sb->layout = mddev->layout;
841 	sb->chunk_size = mddev->chunk_size;
842 
843 	if (mddev->bitmap && mddev->bitmap_file == NULL)
844 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
845 
846 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
847 	ITERATE_RDEV(mddev,rdev2,tmp) {
848 		mdp_disk_t *d;
849 		int desc_nr;
850 		if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
851 		    && !test_bit(Faulty, &rdev2->flags))
852 			desc_nr = rdev2->raid_disk;
853 		else
854 			desc_nr = next_spare++;
855 		rdev2->desc_nr = desc_nr;
856 		d = &sb->disks[rdev2->desc_nr];
857 		nr_disks++;
858 		d->number = rdev2->desc_nr;
859 		d->major = MAJOR(rdev2->bdev->bd_dev);
860 		d->minor = MINOR(rdev2->bdev->bd_dev);
861 		if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
862 		    && !test_bit(Faulty, &rdev2->flags))
863 			d->raid_disk = rdev2->raid_disk;
864 		else
865 			d->raid_disk = rdev2->desc_nr; /* compatibility */
866 		if (test_bit(Faulty, &rdev2->flags)) {
867 			d->state = (1<<MD_DISK_FAULTY);
868 			failed++;
869 		} else if (test_bit(In_sync, &rdev2->flags)) {
870 			d->state = (1<<MD_DISK_ACTIVE);
871 			d->state |= (1<<MD_DISK_SYNC);
872 			active++;
873 			working++;
874 		} else {
875 			d->state = 0;
876 			spare++;
877 			working++;
878 		}
879 		if (test_bit(WriteMostly, &rdev2->flags))
880 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
881 	}
882 	/* now set the "removed" and "faulty" bits on any missing devices */
883 	for (i=0 ; i < mddev->raid_disks ; i++) {
884 		mdp_disk_t *d = &sb->disks[i];
885 		if (d->state == 0 && d->number == 0) {
886 			d->number = i;
887 			d->raid_disk = i;
888 			d->state = (1<<MD_DISK_REMOVED);
889 			d->state |= (1<<MD_DISK_FAULTY);
890 			failed++;
891 		}
892 	}
893 	sb->nr_disks = nr_disks;
894 	sb->active_disks = active;
895 	sb->working_disks = working;
896 	sb->failed_disks = failed;
897 	sb->spare_disks = spare;
898 
899 	sb->this_disk = sb->disks[rdev->desc_nr];
900 	sb->sb_csum = calc_sb_csum(sb);
901 }
902 
903 /*
904  * version 1 superblock
905  */
906 
907 static unsigned int calc_sb_1_csum(struct mdp_superblock_1 * sb)
908 {
909 	unsigned int disk_csum, csum;
910 	unsigned long long newcsum;
911 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
912 	unsigned int *isuper = (unsigned int*)sb;
913 	int i;
914 
915 	disk_csum = sb->sb_csum;
916 	sb->sb_csum = 0;
917 	newcsum = 0;
918 	for (i=0; size>=4; size -= 4 )
919 		newcsum += le32_to_cpu(*isuper++);
920 
921 	if (size == 2)
922 		newcsum += le16_to_cpu(*(unsigned short*) isuper);
923 
924 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
925 	sb->sb_csum = disk_csum;
926 	return cpu_to_le32(csum);
927 }
928 
929 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
930 {
931 	struct mdp_superblock_1 *sb;
932 	int ret;
933 	sector_t sb_offset;
934 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
935 	int bmask;
936 
937 	/*
938 	 * Calculate the position of the superblock.
939 	 * It is always aligned to a 4K boundary and
940 	 * depeding on minor_version, it can be:
941 	 * 0: At least 8K, but less than 12K, from end of device
942 	 * 1: At start of device
943 	 * 2: 4K from start of device.
944 	 */
945 	switch(minor_version) {
946 	case 0:
947 		sb_offset = rdev->bdev->bd_inode->i_size >> 9;
948 		sb_offset -= 8*2;
949 		sb_offset &= ~(sector_t)(4*2-1);
950 		/* convert from sectors to K */
951 		sb_offset /= 2;
952 		break;
953 	case 1:
954 		sb_offset = 0;
955 		break;
956 	case 2:
957 		sb_offset = 4;
958 		break;
959 	default:
960 		return -EINVAL;
961 	}
962 	rdev->sb_offset = sb_offset;
963 
964 	/* superblock is rarely larger than 1K, but it can be larger,
965 	 * and it is safe to read 4k, so we do that
966 	 */
967 	ret = read_disk_sb(rdev, 4096);
968 	if (ret) return ret;
969 
970 
971 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
972 
973 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
974 	    sb->major_version != cpu_to_le32(1) ||
975 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
976 	    le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
977 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
978 		return -EINVAL;
979 
980 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
981 		printk("md: invalid superblock checksum on %s\n",
982 			bdevname(rdev->bdev,b));
983 		return -EINVAL;
984 	}
985 	if (le64_to_cpu(sb->data_size) < 10) {
986 		printk("md: data_size too small on %s\n",
987 		       bdevname(rdev->bdev,b));
988 		return -EINVAL;
989 	}
990 	rdev->preferred_minor = 0xffff;
991 	rdev->data_offset = le64_to_cpu(sb->data_offset);
992 
993 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
994 	bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
995 	if (rdev->sb_size & bmask)
996 		rdev-> sb_size = (rdev->sb_size | bmask)+1;
997 
998 	if (refdev == 0)
999 		return 1;
1000 	else {
1001 		__u64 ev1, ev2;
1002 		struct mdp_superblock_1 *refsb =
1003 			(struct mdp_superblock_1*)page_address(refdev->sb_page);
1004 
1005 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1006 		    sb->level != refsb->level ||
1007 		    sb->layout != refsb->layout ||
1008 		    sb->chunksize != refsb->chunksize) {
1009 			printk(KERN_WARNING "md: %s has strangely different"
1010 				" superblock to %s\n",
1011 				bdevname(rdev->bdev,b),
1012 				bdevname(refdev->bdev,b2));
1013 			return -EINVAL;
1014 		}
1015 		ev1 = le64_to_cpu(sb->events);
1016 		ev2 = le64_to_cpu(refsb->events);
1017 
1018 		if (ev1 > ev2)
1019 			return 1;
1020 	}
1021 	if (minor_version)
1022 		rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
1023 	else
1024 		rdev->size = rdev->sb_offset;
1025 	if (rdev->size < le64_to_cpu(sb->data_size)/2)
1026 		return -EINVAL;
1027 	rdev->size = le64_to_cpu(sb->data_size)/2;
1028 	if (le32_to_cpu(sb->chunksize))
1029 		rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
1030 	return 0;
1031 }
1032 
1033 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1034 {
1035 	struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1036 
1037 	rdev->raid_disk = -1;
1038 	rdev->flags = 0;
1039 	if (mddev->raid_disks == 0) {
1040 		mddev->major_version = 1;
1041 		mddev->patch_version = 0;
1042 		mddev->persistent = 1;
1043 		mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
1044 		mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1045 		mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1046 		mddev->level = le32_to_cpu(sb->level);
1047 		mddev->layout = le32_to_cpu(sb->layout);
1048 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1049 		mddev->size = le64_to_cpu(sb->size)/2;
1050 		mddev->events = le64_to_cpu(sb->events);
1051 		mddev->bitmap_offset = 0;
1052 		mddev->default_bitmap_offset = 1024;
1053 
1054 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1055 		memcpy(mddev->uuid, sb->set_uuid, 16);
1056 
1057 		mddev->max_disks =  (4096-256)/2;
1058 
1059 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1060 		    mddev->bitmap_file == NULL ) {
1061 			if (mddev->level != 1 && mddev->level != 5 && mddev->level != 6
1062 			    && mddev->level != 10) {
1063 				printk(KERN_WARNING "md: bitmaps not supported for this level.\n");
1064 				return -EINVAL;
1065 			}
1066 			mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
1067 		}
1068 	} else if (mddev->pers == NULL) {
1069 		/* Insist of good event counter while assembling */
1070 		__u64 ev1 = le64_to_cpu(sb->events);
1071 		++ev1;
1072 		if (ev1 < mddev->events)
1073 			return -EINVAL;
1074 	} else if (mddev->bitmap) {
1075 		/* If adding to array with a bitmap, then we can accept an
1076 		 * older device, but not too old.
1077 		 */
1078 		__u64 ev1 = le64_to_cpu(sb->events);
1079 		if (ev1 < mddev->bitmap->events_cleared)
1080 			return 0;
1081 	} else /* just a hot-add of a new device, leave raid_disk at -1 */
1082 		return 0;
1083 
1084 	if (mddev->level != LEVEL_MULTIPATH) {
1085 		int role;
1086 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1087 		role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1088 		switch(role) {
1089 		case 0xffff: /* spare */
1090 			break;
1091 		case 0xfffe: /* faulty */
1092 			set_bit(Faulty, &rdev->flags);
1093 			break;
1094 		default:
1095 			set_bit(In_sync, &rdev->flags);
1096 			rdev->raid_disk = role;
1097 			break;
1098 		}
1099 		if (sb->devflags & WriteMostly1)
1100 			set_bit(WriteMostly, &rdev->flags);
1101 	} else /* MULTIPATH are always insync */
1102 		set_bit(In_sync, &rdev->flags);
1103 
1104 	return 0;
1105 }
1106 
1107 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1108 {
1109 	struct mdp_superblock_1 *sb;
1110 	struct list_head *tmp;
1111 	mdk_rdev_t *rdev2;
1112 	int max_dev, i;
1113 	/* make rdev->sb match mddev and rdev data. */
1114 
1115 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1116 
1117 	sb->feature_map = 0;
1118 	sb->pad0 = 0;
1119 	memset(sb->pad1, 0, sizeof(sb->pad1));
1120 	memset(sb->pad2, 0, sizeof(sb->pad2));
1121 	memset(sb->pad3, 0, sizeof(sb->pad3));
1122 
1123 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1124 	sb->events = cpu_to_le64(mddev->events);
1125 	if (mddev->in_sync)
1126 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1127 	else
1128 		sb->resync_offset = cpu_to_le64(0);
1129 
1130 	if (mddev->bitmap && mddev->bitmap_file == NULL) {
1131 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
1132 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1133 	}
1134 
1135 	max_dev = 0;
1136 	ITERATE_RDEV(mddev,rdev2,tmp)
1137 		if (rdev2->desc_nr+1 > max_dev)
1138 			max_dev = rdev2->desc_nr+1;
1139 
1140 	sb->max_dev = cpu_to_le32(max_dev);
1141 	for (i=0; i<max_dev;i++)
1142 		sb->dev_roles[i] = cpu_to_le16(0xfffe);
1143 
1144 	ITERATE_RDEV(mddev,rdev2,tmp) {
1145 		i = rdev2->desc_nr;
1146 		if (test_bit(Faulty, &rdev2->flags))
1147 			sb->dev_roles[i] = cpu_to_le16(0xfffe);
1148 		else if (test_bit(In_sync, &rdev2->flags))
1149 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1150 		else
1151 			sb->dev_roles[i] = cpu_to_le16(0xffff);
1152 	}
1153 
1154 	sb->recovery_offset = cpu_to_le64(0); /* not supported yet */
1155 	sb->sb_csum = calc_sb_1_csum(sb);
1156 }
1157 
1158 
1159 static struct super_type super_types[] = {
1160 	[0] = {
1161 		.name	= "0.90.0",
1162 		.owner	= THIS_MODULE,
1163 		.load_super	= super_90_load,
1164 		.validate_super	= super_90_validate,
1165 		.sync_super	= super_90_sync,
1166 	},
1167 	[1] = {
1168 		.name	= "md-1",
1169 		.owner	= THIS_MODULE,
1170 		.load_super	= super_1_load,
1171 		.validate_super	= super_1_validate,
1172 		.sync_super	= super_1_sync,
1173 	},
1174 };
1175 
1176 static mdk_rdev_t * match_dev_unit(mddev_t *mddev, mdk_rdev_t *dev)
1177 {
1178 	struct list_head *tmp;
1179 	mdk_rdev_t *rdev;
1180 
1181 	ITERATE_RDEV(mddev,rdev,tmp)
1182 		if (rdev->bdev->bd_contains == dev->bdev->bd_contains)
1183 			return rdev;
1184 
1185 	return NULL;
1186 }
1187 
1188 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1189 {
1190 	struct list_head *tmp;
1191 	mdk_rdev_t *rdev;
1192 
1193 	ITERATE_RDEV(mddev1,rdev,tmp)
1194 		if (match_dev_unit(mddev2, rdev))
1195 			return 1;
1196 
1197 	return 0;
1198 }
1199 
1200 static LIST_HEAD(pending_raid_disks);
1201 
1202 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1203 {
1204 	mdk_rdev_t *same_pdev;
1205 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1206 	struct kobject *ko;
1207 
1208 	if (rdev->mddev) {
1209 		MD_BUG();
1210 		return -EINVAL;
1211 	}
1212 	same_pdev = match_dev_unit(mddev, rdev);
1213 	if (same_pdev)
1214 		printk(KERN_WARNING
1215 			"%s: WARNING: %s appears to be on the same physical"
1216 	 		" disk as %s. True\n     protection against single-disk"
1217 			" failure might be compromised.\n",
1218 			mdname(mddev), bdevname(rdev->bdev,b),
1219 			bdevname(same_pdev->bdev,b2));
1220 
1221 	/* Verify rdev->desc_nr is unique.
1222 	 * If it is -1, assign a free number, else
1223 	 * check number is not in use
1224 	 */
1225 	if (rdev->desc_nr < 0) {
1226 		int choice = 0;
1227 		if (mddev->pers) choice = mddev->raid_disks;
1228 		while (find_rdev_nr(mddev, choice))
1229 			choice++;
1230 		rdev->desc_nr = choice;
1231 	} else {
1232 		if (find_rdev_nr(mddev, rdev->desc_nr))
1233 			return -EBUSY;
1234 	}
1235 	bdevname(rdev->bdev,b);
1236 	if (kobject_set_name(&rdev->kobj, "dev-%s", b) < 0)
1237 		return -ENOMEM;
1238 
1239 	list_add(&rdev->same_set, &mddev->disks);
1240 	rdev->mddev = mddev;
1241 	printk(KERN_INFO "md: bind<%s>\n", b);
1242 
1243 	rdev->kobj.parent = &mddev->kobj;
1244 	kobject_add(&rdev->kobj);
1245 
1246 	if (rdev->bdev->bd_part)
1247 		ko = &rdev->bdev->bd_part->kobj;
1248 	else
1249 		ko = &rdev->bdev->bd_disk->kobj;
1250 	sysfs_create_link(&rdev->kobj, ko, "block");
1251 	return 0;
1252 }
1253 
1254 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1255 {
1256 	char b[BDEVNAME_SIZE];
1257 	if (!rdev->mddev) {
1258 		MD_BUG();
1259 		return;
1260 	}
1261 	list_del_init(&rdev->same_set);
1262 	printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1263 	rdev->mddev = NULL;
1264 	sysfs_remove_link(&rdev->kobj, "block");
1265 	kobject_del(&rdev->kobj);
1266 }
1267 
1268 /*
1269  * prevent the device from being mounted, repartitioned or
1270  * otherwise reused by a RAID array (or any other kernel
1271  * subsystem), by bd_claiming the device.
1272  */
1273 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
1274 {
1275 	int err = 0;
1276 	struct block_device *bdev;
1277 	char b[BDEVNAME_SIZE];
1278 
1279 	bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1280 	if (IS_ERR(bdev)) {
1281 		printk(KERN_ERR "md: could not open %s.\n",
1282 			__bdevname(dev, b));
1283 		return PTR_ERR(bdev);
1284 	}
1285 	err = bd_claim(bdev, rdev);
1286 	if (err) {
1287 		printk(KERN_ERR "md: could not bd_claim %s.\n",
1288 			bdevname(bdev, b));
1289 		blkdev_put(bdev);
1290 		return err;
1291 	}
1292 	rdev->bdev = bdev;
1293 	return err;
1294 }
1295 
1296 static void unlock_rdev(mdk_rdev_t *rdev)
1297 {
1298 	struct block_device *bdev = rdev->bdev;
1299 	rdev->bdev = NULL;
1300 	if (!bdev)
1301 		MD_BUG();
1302 	bd_release(bdev);
1303 	blkdev_put(bdev);
1304 }
1305 
1306 void md_autodetect_dev(dev_t dev);
1307 
1308 static void export_rdev(mdk_rdev_t * rdev)
1309 {
1310 	char b[BDEVNAME_SIZE];
1311 	printk(KERN_INFO "md: export_rdev(%s)\n",
1312 		bdevname(rdev->bdev,b));
1313 	if (rdev->mddev)
1314 		MD_BUG();
1315 	free_disk_sb(rdev);
1316 	list_del_init(&rdev->same_set);
1317 #ifndef MODULE
1318 	md_autodetect_dev(rdev->bdev->bd_dev);
1319 #endif
1320 	unlock_rdev(rdev);
1321 	kobject_put(&rdev->kobj);
1322 }
1323 
1324 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1325 {
1326 	unbind_rdev_from_array(rdev);
1327 	export_rdev(rdev);
1328 }
1329 
1330 static void export_array(mddev_t *mddev)
1331 {
1332 	struct list_head *tmp;
1333 	mdk_rdev_t *rdev;
1334 
1335 	ITERATE_RDEV(mddev,rdev,tmp) {
1336 		if (!rdev->mddev) {
1337 			MD_BUG();
1338 			continue;
1339 		}
1340 		kick_rdev_from_array(rdev);
1341 	}
1342 	if (!list_empty(&mddev->disks))
1343 		MD_BUG();
1344 	mddev->raid_disks = 0;
1345 	mddev->major_version = 0;
1346 }
1347 
1348 static void print_desc(mdp_disk_t *desc)
1349 {
1350 	printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1351 		desc->major,desc->minor,desc->raid_disk,desc->state);
1352 }
1353 
1354 static void print_sb(mdp_super_t *sb)
1355 {
1356 	int i;
1357 
1358 	printk(KERN_INFO
1359 		"md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1360 		sb->major_version, sb->minor_version, sb->patch_version,
1361 		sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1362 		sb->ctime);
1363 	printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1364 		sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1365 		sb->md_minor, sb->layout, sb->chunk_size);
1366 	printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
1367 		" FD:%d SD:%d CSUM:%08x E:%08lx\n",
1368 		sb->utime, sb->state, sb->active_disks, sb->working_disks,
1369 		sb->failed_disks, sb->spare_disks,
1370 		sb->sb_csum, (unsigned long)sb->events_lo);
1371 
1372 	printk(KERN_INFO);
1373 	for (i = 0; i < MD_SB_DISKS; i++) {
1374 		mdp_disk_t *desc;
1375 
1376 		desc = sb->disks + i;
1377 		if (desc->number || desc->major || desc->minor ||
1378 		    desc->raid_disk || (desc->state && (desc->state != 4))) {
1379 			printk("     D %2d: ", i);
1380 			print_desc(desc);
1381 		}
1382 	}
1383 	printk(KERN_INFO "md:     THIS: ");
1384 	print_desc(&sb->this_disk);
1385 
1386 }
1387 
1388 static void print_rdev(mdk_rdev_t *rdev)
1389 {
1390 	char b[BDEVNAME_SIZE];
1391 	printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
1392 		bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
1393 	        test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
1394 	        rdev->desc_nr);
1395 	if (rdev->sb_loaded) {
1396 		printk(KERN_INFO "md: rdev superblock:\n");
1397 		print_sb((mdp_super_t*)page_address(rdev->sb_page));
1398 	} else
1399 		printk(KERN_INFO "md: no rdev superblock!\n");
1400 }
1401 
1402 void md_print_devices(void)
1403 {
1404 	struct list_head *tmp, *tmp2;
1405 	mdk_rdev_t *rdev;
1406 	mddev_t *mddev;
1407 	char b[BDEVNAME_SIZE];
1408 
1409 	printk("\n");
1410 	printk("md:	**********************************\n");
1411 	printk("md:	* <COMPLETE RAID STATE PRINTOUT> *\n");
1412 	printk("md:	**********************************\n");
1413 	ITERATE_MDDEV(mddev,tmp) {
1414 
1415 		if (mddev->bitmap)
1416 			bitmap_print_sb(mddev->bitmap);
1417 		else
1418 			printk("%s: ", mdname(mddev));
1419 		ITERATE_RDEV(mddev,rdev,tmp2)
1420 			printk("<%s>", bdevname(rdev->bdev,b));
1421 		printk("\n");
1422 
1423 		ITERATE_RDEV(mddev,rdev,tmp2)
1424 			print_rdev(rdev);
1425 	}
1426 	printk("md:	**********************************\n");
1427 	printk("\n");
1428 }
1429 
1430 
1431 static void sync_sbs(mddev_t * mddev)
1432 {
1433 	mdk_rdev_t *rdev;
1434 	struct list_head *tmp;
1435 
1436 	ITERATE_RDEV(mddev,rdev,tmp) {
1437 		super_types[mddev->major_version].
1438 			sync_super(mddev, rdev);
1439 		rdev->sb_loaded = 1;
1440 	}
1441 }
1442 
1443 static void md_update_sb(mddev_t * mddev)
1444 {
1445 	int err;
1446 	struct list_head *tmp;
1447 	mdk_rdev_t *rdev;
1448 	int sync_req;
1449 
1450 repeat:
1451 	spin_lock_irq(&mddev->write_lock);
1452 	sync_req = mddev->in_sync;
1453 	mddev->utime = get_seconds();
1454 	mddev->events ++;
1455 
1456 	if (!mddev->events) {
1457 		/*
1458 		 * oops, this 64-bit counter should never wrap.
1459 		 * Either we are in around ~1 trillion A.C., assuming
1460 		 * 1 reboot per second, or we have a bug:
1461 		 */
1462 		MD_BUG();
1463 		mddev->events --;
1464 	}
1465 	mddev->sb_dirty = 2;
1466 	sync_sbs(mddev);
1467 
1468 	/*
1469 	 * do not write anything to disk if using
1470 	 * nonpersistent superblocks
1471 	 */
1472 	if (!mddev->persistent) {
1473 		mddev->sb_dirty = 0;
1474 		spin_unlock_irq(&mddev->write_lock);
1475 		wake_up(&mddev->sb_wait);
1476 		return;
1477 	}
1478 	spin_unlock_irq(&mddev->write_lock);
1479 
1480 	dprintk(KERN_INFO
1481 		"md: updating %s RAID superblock on device (in sync %d)\n",
1482 		mdname(mddev),mddev->in_sync);
1483 
1484 	err = bitmap_update_sb(mddev->bitmap);
1485 	ITERATE_RDEV(mddev,rdev,tmp) {
1486 		char b[BDEVNAME_SIZE];
1487 		dprintk(KERN_INFO "md: ");
1488 		if (test_bit(Faulty, &rdev->flags))
1489 			dprintk("(skipping faulty ");
1490 
1491 		dprintk("%s ", bdevname(rdev->bdev,b));
1492 		if (!test_bit(Faulty, &rdev->flags)) {
1493 			md_super_write(mddev,rdev,
1494 				       rdev->sb_offset<<1, rdev->sb_size,
1495 				       rdev->sb_page);
1496 			dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
1497 				bdevname(rdev->bdev,b),
1498 				(unsigned long long)rdev->sb_offset);
1499 
1500 		} else
1501 			dprintk(")\n");
1502 		if (mddev->level == LEVEL_MULTIPATH)
1503 			/* only need to write one superblock... */
1504 			break;
1505 	}
1506 	md_super_wait(mddev);
1507 	/* if there was a failure, sb_dirty was set to 1, and we re-write super */
1508 
1509 	spin_lock_irq(&mddev->write_lock);
1510 	if (mddev->in_sync != sync_req|| mddev->sb_dirty == 1) {
1511 		/* have to write it out again */
1512 		spin_unlock_irq(&mddev->write_lock);
1513 		goto repeat;
1514 	}
1515 	mddev->sb_dirty = 0;
1516 	spin_unlock_irq(&mddev->write_lock);
1517 	wake_up(&mddev->sb_wait);
1518 
1519 }
1520 
1521 struct rdev_sysfs_entry {
1522 	struct attribute attr;
1523 	ssize_t (*show)(mdk_rdev_t *, char *);
1524 	ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
1525 };
1526 
1527 static ssize_t
1528 state_show(mdk_rdev_t *rdev, char *page)
1529 {
1530 	char *sep = "";
1531 	int len=0;
1532 
1533 	if (test_bit(Faulty, &rdev->flags)) {
1534 		len+= sprintf(page+len, "%sfaulty",sep);
1535 		sep = ",";
1536 	}
1537 	if (test_bit(In_sync, &rdev->flags)) {
1538 		len += sprintf(page+len, "%sin_sync",sep);
1539 		sep = ",";
1540 	}
1541 	if (!test_bit(Faulty, &rdev->flags) &&
1542 	    !test_bit(In_sync, &rdev->flags)) {
1543 		len += sprintf(page+len, "%sspare", sep);
1544 		sep = ",";
1545 	}
1546 	return len+sprintf(page+len, "\n");
1547 }
1548 
1549 static struct rdev_sysfs_entry
1550 rdev_state = __ATTR_RO(state);
1551 
1552 static ssize_t
1553 super_show(mdk_rdev_t *rdev, char *page)
1554 {
1555 	if (rdev->sb_loaded && rdev->sb_size) {
1556 		memcpy(page, page_address(rdev->sb_page), rdev->sb_size);
1557 		return rdev->sb_size;
1558 	} else
1559 		return 0;
1560 }
1561 static struct rdev_sysfs_entry rdev_super = __ATTR_RO(super);
1562 
1563 static struct attribute *rdev_default_attrs[] = {
1564 	&rdev_state.attr,
1565 	&rdev_super.attr,
1566 	NULL,
1567 };
1568 static ssize_t
1569 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
1570 {
1571 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1572 	mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1573 
1574 	if (!entry->show)
1575 		return -EIO;
1576 	return entry->show(rdev, page);
1577 }
1578 
1579 static ssize_t
1580 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
1581 	      const char *page, size_t length)
1582 {
1583 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1584 	mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1585 
1586 	if (!entry->store)
1587 		return -EIO;
1588 	return entry->store(rdev, page, length);
1589 }
1590 
1591 static void rdev_free(struct kobject *ko)
1592 {
1593 	mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
1594 	kfree(rdev);
1595 }
1596 static struct sysfs_ops rdev_sysfs_ops = {
1597 	.show		= rdev_attr_show,
1598 	.store		= rdev_attr_store,
1599 };
1600 static struct kobj_type rdev_ktype = {
1601 	.release	= rdev_free,
1602 	.sysfs_ops	= &rdev_sysfs_ops,
1603 	.default_attrs	= rdev_default_attrs,
1604 };
1605 
1606 /*
1607  * Import a device. If 'super_format' >= 0, then sanity check the superblock
1608  *
1609  * mark the device faulty if:
1610  *
1611  *   - the device is nonexistent (zero size)
1612  *   - the device has no valid superblock
1613  *
1614  * a faulty rdev _never_ has rdev->sb set.
1615  */
1616 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
1617 {
1618 	char b[BDEVNAME_SIZE];
1619 	int err;
1620 	mdk_rdev_t *rdev;
1621 	sector_t size;
1622 
1623 	rdev = (mdk_rdev_t *) kmalloc(sizeof(*rdev), GFP_KERNEL);
1624 	if (!rdev) {
1625 		printk(KERN_ERR "md: could not alloc mem for new device!\n");
1626 		return ERR_PTR(-ENOMEM);
1627 	}
1628 	memset(rdev, 0, sizeof(*rdev));
1629 
1630 	if ((err = alloc_disk_sb(rdev)))
1631 		goto abort_free;
1632 
1633 	err = lock_rdev(rdev, newdev);
1634 	if (err)
1635 		goto abort_free;
1636 
1637 	rdev->kobj.parent = NULL;
1638 	rdev->kobj.ktype = &rdev_ktype;
1639 	kobject_init(&rdev->kobj);
1640 
1641 	rdev->desc_nr = -1;
1642 	rdev->flags = 0;
1643 	rdev->data_offset = 0;
1644 	atomic_set(&rdev->nr_pending, 0);
1645 	atomic_set(&rdev->read_errors, 0);
1646 
1647 	size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
1648 	if (!size) {
1649 		printk(KERN_WARNING
1650 			"md: %s has zero or unknown size, marking faulty!\n",
1651 			bdevname(rdev->bdev,b));
1652 		err = -EINVAL;
1653 		goto abort_free;
1654 	}
1655 
1656 	if (super_format >= 0) {
1657 		err = super_types[super_format].
1658 			load_super(rdev, NULL, super_minor);
1659 		if (err == -EINVAL) {
1660 			printk(KERN_WARNING
1661 				"md: %s has invalid sb, not importing!\n",
1662 				bdevname(rdev->bdev,b));
1663 			goto abort_free;
1664 		}
1665 		if (err < 0) {
1666 			printk(KERN_WARNING
1667 				"md: could not read %s's sb, not importing!\n",
1668 				bdevname(rdev->bdev,b));
1669 			goto abort_free;
1670 		}
1671 	}
1672 	INIT_LIST_HEAD(&rdev->same_set);
1673 
1674 	return rdev;
1675 
1676 abort_free:
1677 	if (rdev->sb_page) {
1678 		if (rdev->bdev)
1679 			unlock_rdev(rdev);
1680 		free_disk_sb(rdev);
1681 	}
1682 	kfree(rdev);
1683 	return ERR_PTR(err);
1684 }
1685 
1686 /*
1687  * Check a full RAID array for plausibility
1688  */
1689 
1690 
1691 static void analyze_sbs(mddev_t * mddev)
1692 {
1693 	int i;
1694 	struct list_head *tmp;
1695 	mdk_rdev_t *rdev, *freshest;
1696 	char b[BDEVNAME_SIZE];
1697 
1698 	freshest = NULL;
1699 	ITERATE_RDEV(mddev,rdev,tmp)
1700 		switch (super_types[mddev->major_version].
1701 			load_super(rdev, freshest, mddev->minor_version)) {
1702 		case 1:
1703 			freshest = rdev;
1704 			break;
1705 		case 0:
1706 			break;
1707 		default:
1708 			printk( KERN_ERR \
1709 				"md: fatal superblock inconsistency in %s"
1710 				" -- removing from array\n",
1711 				bdevname(rdev->bdev,b));
1712 			kick_rdev_from_array(rdev);
1713 		}
1714 
1715 
1716 	super_types[mddev->major_version].
1717 		validate_super(mddev, freshest);
1718 
1719 	i = 0;
1720 	ITERATE_RDEV(mddev,rdev,tmp) {
1721 		if (rdev != freshest)
1722 			if (super_types[mddev->major_version].
1723 			    validate_super(mddev, rdev)) {
1724 				printk(KERN_WARNING "md: kicking non-fresh %s"
1725 					" from array!\n",
1726 					bdevname(rdev->bdev,b));
1727 				kick_rdev_from_array(rdev);
1728 				continue;
1729 			}
1730 		if (mddev->level == LEVEL_MULTIPATH) {
1731 			rdev->desc_nr = i++;
1732 			rdev->raid_disk = rdev->desc_nr;
1733 			set_bit(In_sync, &rdev->flags);
1734 		}
1735 	}
1736 
1737 
1738 
1739 	if (mddev->recovery_cp != MaxSector &&
1740 	    mddev->level >= 1)
1741 		printk(KERN_ERR "md: %s: raid array is not clean"
1742 		       " -- starting background reconstruction\n",
1743 		       mdname(mddev));
1744 
1745 }
1746 
1747 static ssize_t
1748 level_show(mddev_t *mddev, char *page)
1749 {
1750 	mdk_personality_t *p = mddev->pers;
1751 	if (p == NULL && mddev->raid_disks == 0)
1752 		return 0;
1753 	if (mddev->level >= 0)
1754 		return sprintf(page, "raid%d\n", mddev->level);
1755 	else
1756 		return sprintf(page, "%s\n", p->name);
1757 }
1758 
1759 static struct md_sysfs_entry md_level = __ATTR_RO(level);
1760 
1761 static ssize_t
1762 raid_disks_show(mddev_t *mddev, char *page)
1763 {
1764 	if (mddev->raid_disks == 0)
1765 		return 0;
1766 	return sprintf(page, "%d\n", mddev->raid_disks);
1767 }
1768 
1769 static struct md_sysfs_entry md_raid_disks = __ATTR_RO(raid_disks);
1770 
1771 static ssize_t
1772 action_show(mddev_t *mddev, char *page)
1773 {
1774 	char *type = "idle";
1775 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
1776 	    test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) {
1777 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
1778 			if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1779 				type = "resync";
1780 			else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1781 				type = "check";
1782 			else
1783 				type = "repair";
1784 		} else
1785 			type = "recover";
1786 	}
1787 	return sprintf(page, "%s\n", type);
1788 }
1789 
1790 static ssize_t
1791 action_store(mddev_t *mddev, const char *page, size_t len)
1792 {
1793 	if (!mddev->pers || !mddev->pers->sync_request)
1794 		return -EINVAL;
1795 
1796 	if (strcmp(page, "idle")==0 || strcmp(page, "idle\n")==0) {
1797 		if (mddev->sync_thread) {
1798 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1799 			md_unregister_thread(mddev->sync_thread);
1800 			mddev->sync_thread = NULL;
1801 			mddev->recovery = 0;
1802 		}
1803 		return len;
1804 	}
1805 
1806 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
1807 	    test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
1808 		return -EBUSY;
1809 	if (strcmp(page, "resync")==0 || strcmp(page, "resync\n")==0 ||
1810 	    strcmp(page, "recover")==0 || strcmp(page, "recover\n")==0)
1811 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1812 	else {
1813 		if (strcmp(page, "check")==0 || strcmp(page, "check\n")==0)
1814 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
1815 		else if (strcmp(page, "repair")!=0 && strcmp(page, "repair\n")!=0)
1816 			return -EINVAL;
1817 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
1818 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
1819 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1820 	}
1821 	md_wakeup_thread(mddev->thread);
1822 	return len;
1823 }
1824 
1825 static ssize_t
1826 mismatch_cnt_show(mddev_t *mddev, char *page)
1827 {
1828 	return sprintf(page, "%llu\n",
1829 		       (unsigned long long) mddev->resync_mismatches);
1830 }
1831 
1832 static struct md_sysfs_entry
1833 md_scan_mode = __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
1834 
1835 
1836 static struct md_sysfs_entry
1837 md_mismatches = __ATTR_RO(mismatch_cnt);
1838 
1839 static struct attribute *md_default_attrs[] = {
1840 	&md_level.attr,
1841 	&md_raid_disks.attr,
1842 	NULL,
1843 };
1844 
1845 static struct attribute *md_redundancy_attrs[] = {
1846 	&md_scan_mode.attr,
1847 	&md_mismatches.attr,
1848 	NULL,
1849 };
1850 static struct attribute_group md_redundancy_group = {
1851 	.name = NULL,
1852 	.attrs = md_redundancy_attrs,
1853 };
1854 
1855 
1856 static ssize_t
1857 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
1858 {
1859 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
1860 	mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
1861 	ssize_t rv;
1862 
1863 	if (!entry->show)
1864 		return -EIO;
1865 	mddev_lock(mddev);
1866 	rv = entry->show(mddev, page);
1867 	mddev_unlock(mddev);
1868 	return rv;
1869 }
1870 
1871 static ssize_t
1872 md_attr_store(struct kobject *kobj, struct attribute *attr,
1873 	      const char *page, size_t length)
1874 {
1875 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
1876 	mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
1877 	ssize_t rv;
1878 
1879 	if (!entry->store)
1880 		return -EIO;
1881 	mddev_lock(mddev);
1882 	rv = entry->store(mddev, page, length);
1883 	mddev_unlock(mddev);
1884 	return rv;
1885 }
1886 
1887 static void md_free(struct kobject *ko)
1888 {
1889 	mddev_t *mddev = container_of(ko, mddev_t, kobj);
1890 	kfree(mddev);
1891 }
1892 
1893 static struct sysfs_ops md_sysfs_ops = {
1894 	.show	= md_attr_show,
1895 	.store	= md_attr_store,
1896 };
1897 static struct kobj_type md_ktype = {
1898 	.release	= md_free,
1899 	.sysfs_ops	= &md_sysfs_ops,
1900 	.default_attrs	= md_default_attrs,
1901 };
1902 
1903 int mdp_major = 0;
1904 
1905 static struct kobject *md_probe(dev_t dev, int *part, void *data)
1906 {
1907 	static DECLARE_MUTEX(disks_sem);
1908 	mddev_t *mddev = mddev_find(dev);
1909 	struct gendisk *disk;
1910 	int partitioned = (MAJOR(dev) != MD_MAJOR);
1911 	int shift = partitioned ? MdpMinorShift : 0;
1912 	int unit = MINOR(dev) >> shift;
1913 
1914 	if (!mddev)
1915 		return NULL;
1916 
1917 	down(&disks_sem);
1918 	if (mddev->gendisk) {
1919 		up(&disks_sem);
1920 		mddev_put(mddev);
1921 		return NULL;
1922 	}
1923 	disk = alloc_disk(1 << shift);
1924 	if (!disk) {
1925 		up(&disks_sem);
1926 		mddev_put(mddev);
1927 		return NULL;
1928 	}
1929 	disk->major = MAJOR(dev);
1930 	disk->first_minor = unit << shift;
1931 	if (partitioned) {
1932 		sprintf(disk->disk_name, "md_d%d", unit);
1933 		sprintf(disk->devfs_name, "md/d%d", unit);
1934 	} else {
1935 		sprintf(disk->disk_name, "md%d", unit);
1936 		sprintf(disk->devfs_name, "md/%d", unit);
1937 	}
1938 	disk->fops = &md_fops;
1939 	disk->private_data = mddev;
1940 	disk->queue = mddev->queue;
1941 	add_disk(disk);
1942 	mddev->gendisk = disk;
1943 	up(&disks_sem);
1944 	mddev->kobj.parent = &disk->kobj;
1945 	mddev->kobj.k_name = NULL;
1946 	snprintf(mddev->kobj.name, KOBJ_NAME_LEN, "%s", "md");
1947 	mddev->kobj.ktype = &md_ktype;
1948 	kobject_register(&mddev->kobj);
1949 	return NULL;
1950 }
1951 
1952 void md_wakeup_thread(mdk_thread_t *thread);
1953 
1954 static void md_safemode_timeout(unsigned long data)
1955 {
1956 	mddev_t *mddev = (mddev_t *) data;
1957 
1958 	mddev->safemode = 1;
1959 	md_wakeup_thread(mddev->thread);
1960 }
1961 
1962 static int start_dirty_degraded;
1963 
1964 static int do_md_run(mddev_t * mddev)
1965 {
1966 	int pnum, err;
1967 	int chunk_size;
1968 	struct list_head *tmp;
1969 	mdk_rdev_t *rdev;
1970 	struct gendisk *disk;
1971 	char b[BDEVNAME_SIZE];
1972 
1973 	if (list_empty(&mddev->disks))
1974 		/* cannot run an array with no devices.. */
1975 		return -EINVAL;
1976 
1977 	if (mddev->pers)
1978 		return -EBUSY;
1979 
1980 	/*
1981 	 * Analyze all RAID superblock(s)
1982 	 */
1983 	if (!mddev->raid_disks)
1984 		analyze_sbs(mddev);
1985 
1986 	chunk_size = mddev->chunk_size;
1987 	pnum = level_to_pers(mddev->level);
1988 
1989 	if ((pnum != MULTIPATH) && (pnum != RAID1)) {
1990 		if (!chunk_size) {
1991 			/*
1992 			 * 'default chunksize' in the old md code used to
1993 			 * be PAGE_SIZE, baaad.
1994 			 * we abort here to be on the safe side. We don't
1995 			 * want to continue the bad practice.
1996 			 */
1997 			printk(KERN_ERR
1998 				"no chunksize specified, see 'man raidtab'\n");
1999 			return -EINVAL;
2000 		}
2001 		if (chunk_size > MAX_CHUNK_SIZE) {
2002 			printk(KERN_ERR "too big chunk_size: %d > %d\n",
2003 				chunk_size, MAX_CHUNK_SIZE);
2004 			return -EINVAL;
2005 		}
2006 		/*
2007 		 * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
2008 		 */
2009 		if ( (1 << ffz(~chunk_size)) != chunk_size) {
2010 			printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
2011 			return -EINVAL;
2012 		}
2013 		if (chunk_size < PAGE_SIZE) {
2014 			printk(KERN_ERR "too small chunk_size: %d < %ld\n",
2015 				chunk_size, PAGE_SIZE);
2016 			return -EINVAL;
2017 		}
2018 
2019 		/* devices must have minimum size of one chunk */
2020 		ITERATE_RDEV(mddev,rdev,tmp) {
2021 			if (test_bit(Faulty, &rdev->flags))
2022 				continue;
2023 			if (rdev->size < chunk_size / 1024) {
2024 				printk(KERN_WARNING
2025 					"md: Dev %s smaller than chunk_size:"
2026 					" %lluk < %dk\n",
2027 					bdevname(rdev->bdev,b),
2028 					(unsigned long long)rdev->size,
2029 					chunk_size / 1024);
2030 				return -EINVAL;
2031 			}
2032 		}
2033 	}
2034 
2035 #ifdef CONFIG_KMOD
2036 	if (!pers[pnum])
2037 	{
2038 		request_module("md-personality-%d", pnum);
2039 	}
2040 #endif
2041 
2042 	/*
2043 	 * Drop all container device buffers, from now on
2044 	 * the only valid external interface is through the md
2045 	 * device.
2046 	 * Also find largest hardsector size
2047 	 */
2048 	ITERATE_RDEV(mddev,rdev,tmp) {
2049 		if (test_bit(Faulty, &rdev->flags))
2050 			continue;
2051 		sync_blockdev(rdev->bdev);
2052 		invalidate_bdev(rdev->bdev, 0);
2053 	}
2054 
2055 	md_probe(mddev->unit, NULL, NULL);
2056 	disk = mddev->gendisk;
2057 	if (!disk)
2058 		return -ENOMEM;
2059 
2060 	spin_lock(&pers_lock);
2061 	if (!pers[pnum] || !try_module_get(pers[pnum]->owner)) {
2062 		spin_unlock(&pers_lock);
2063 		printk(KERN_WARNING "md: personality %d is not loaded!\n",
2064 		       pnum);
2065 		return -EINVAL;
2066 	}
2067 
2068 	mddev->pers = pers[pnum];
2069 	spin_unlock(&pers_lock);
2070 
2071 	mddev->recovery = 0;
2072 	mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
2073 	mddev->barriers_work = 1;
2074 	mddev->ok_start_degraded = start_dirty_degraded;
2075 
2076 	if (start_readonly)
2077 		mddev->ro = 2; /* read-only, but switch on first write */
2078 
2079 	err = mddev->pers->run(mddev);
2080 	if (!err && mddev->pers->sync_request) {
2081 		err = bitmap_create(mddev);
2082 		if (err) {
2083 			printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
2084 			       mdname(mddev), err);
2085 			mddev->pers->stop(mddev);
2086 		}
2087 	}
2088 	if (err) {
2089 		printk(KERN_ERR "md: pers->run() failed ...\n");
2090 		module_put(mddev->pers->owner);
2091 		mddev->pers = NULL;
2092 		bitmap_destroy(mddev);
2093 		return err;
2094 	}
2095 	if (mddev->pers->sync_request)
2096 		sysfs_create_group(&mddev->kobj, &md_redundancy_group);
2097 	else if (mddev->ro == 2) /* auto-readonly not meaningful */
2098 		mddev->ro = 0;
2099 
2100  	atomic_set(&mddev->writes_pending,0);
2101 	mddev->safemode = 0;
2102 	mddev->safemode_timer.function = md_safemode_timeout;
2103 	mddev->safemode_timer.data = (unsigned long) mddev;
2104 	mddev->safemode_delay = (20 * HZ)/1000 +1; /* 20 msec delay */
2105 	mddev->in_sync = 1;
2106 
2107 	ITERATE_RDEV(mddev,rdev,tmp)
2108 		if (rdev->raid_disk >= 0) {
2109 			char nm[20];
2110 			sprintf(nm, "rd%d", rdev->raid_disk);
2111 			sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
2112 		}
2113 
2114 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2115 	md_wakeup_thread(mddev->thread);
2116 
2117 	if (mddev->sb_dirty)
2118 		md_update_sb(mddev);
2119 
2120 	set_capacity(disk, mddev->array_size<<1);
2121 
2122 	/* If we call blk_queue_make_request here, it will
2123 	 * re-initialise max_sectors etc which may have been
2124 	 * refined inside -> run.  So just set the bits we need to set.
2125 	 * Most initialisation happended when we called
2126 	 * blk_queue_make_request(..., md_fail_request)
2127 	 * earlier.
2128 	 */
2129 	mddev->queue->queuedata = mddev;
2130 	mddev->queue->make_request_fn = mddev->pers->make_request;
2131 
2132 	mddev->changed = 1;
2133 	md_new_event(mddev);
2134 	return 0;
2135 }
2136 
2137 static int restart_array(mddev_t *mddev)
2138 {
2139 	struct gendisk *disk = mddev->gendisk;
2140 	int err;
2141 
2142 	/*
2143 	 * Complain if it has no devices
2144 	 */
2145 	err = -ENXIO;
2146 	if (list_empty(&mddev->disks))
2147 		goto out;
2148 
2149 	if (mddev->pers) {
2150 		err = -EBUSY;
2151 		if (!mddev->ro)
2152 			goto out;
2153 
2154 		mddev->safemode = 0;
2155 		mddev->ro = 0;
2156 		set_disk_ro(disk, 0);
2157 
2158 		printk(KERN_INFO "md: %s switched to read-write mode.\n",
2159 			mdname(mddev));
2160 		/*
2161 		 * Kick recovery or resync if necessary
2162 		 */
2163 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2164 		md_wakeup_thread(mddev->thread);
2165 		err = 0;
2166 	} else {
2167 		printk(KERN_ERR "md: %s has no personality assigned.\n",
2168 			mdname(mddev));
2169 		err = -EINVAL;
2170 	}
2171 
2172 out:
2173 	return err;
2174 }
2175 
2176 static int do_md_stop(mddev_t * mddev, int ro)
2177 {
2178 	int err = 0;
2179 	struct gendisk *disk = mddev->gendisk;
2180 
2181 	if (mddev->pers) {
2182 		if (atomic_read(&mddev->active)>2) {
2183 			printk("md: %s still in use.\n",mdname(mddev));
2184 			return -EBUSY;
2185 		}
2186 
2187 		if (mddev->sync_thread) {
2188 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2189 			md_unregister_thread(mddev->sync_thread);
2190 			mddev->sync_thread = NULL;
2191 		}
2192 
2193 		del_timer_sync(&mddev->safemode_timer);
2194 
2195 		invalidate_partition(disk, 0);
2196 
2197 		if (ro) {
2198 			err  = -ENXIO;
2199 			if (mddev->ro==1)
2200 				goto out;
2201 			mddev->ro = 1;
2202 		} else {
2203 			bitmap_flush(mddev);
2204 			md_super_wait(mddev);
2205 			if (mddev->ro)
2206 				set_disk_ro(disk, 0);
2207 			blk_queue_make_request(mddev->queue, md_fail_request);
2208 			mddev->pers->stop(mddev);
2209 			if (mddev->pers->sync_request)
2210 				sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
2211 
2212 			module_put(mddev->pers->owner);
2213 			mddev->pers = NULL;
2214 			if (mddev->ro)
2215 				mddev->ro = 0;
2216 		}
2217 		if (!mddev->in_sync) {
2218 			/* mark array as shutdown cleanly */
2219 			mddev->in_sync = 1;
2220 			md_update_sb(mddev);
2221 		}
2222 		if (ro)
2223 			set_disk_ro(disk, 1);
2224 	}
2225 
2226 	bitmap_destroy(mddev);
2227 	if (mddev->bitmap_file) {
2228 		atomic_set(&mddev->bitmap_file->f_dentry->d_inode->i_writecount, 1);
2229 		fput(mddev->bitmap_file);
2230 		mddev->bitmap_file = NULL;
2231 	}
2232 	mddev->bitmap_offset = 0;
2233 
2234 	/*
2235 	 * Free resources if final stop
2236 	 */
2237 	if (!ro) {
2238 		mdk_rdev_t *rdev;
2239 		struct list_head *tmp;
2240 		struct gendisk *disk;
2241 		printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
2242 
2243 		ITERATE_RDEV(mddev,rdev,tmp)
2244 			if (rdev->raid_disk >= 0) {
2245 				char nm[20];
2246 				sprintf(nm, "rd%d", rdev->raid_disk);
2247 				sysfs_remove_link(&mddev->kobj, nm);
2248 			}
2249 
2250 		export_array(mddev);
2251 
2252 		mddev->array_size = 0;
2253 		disk = mddev->gendisk;
2254 		if (disk)
2255 			set_capacity(disk, 0);
2256 		mddev->changed = 1;
2257 	} else
2258 		printk(KERN_INFO "md: %s switched to read-only mode.\n",
2259 			mdname(mddev));
2260 	err = 0;
2261 	md_new_event(mddev);
2262 out:
2263 	return err;
2264 }
2265 
2266 static void autorun_array(mddev_t *mddev)
2267 {
2268 	mdk_rdev_t *rdev;
2269 	struct list_head *tmp;
2270 	int err;
2271 
2272 	if (list_empty(&mddev->disks))
2273 		return;
2274 
2275 	printk(KERN_INFO "md: running: ");
2276 
2277 	ITERATE_RDEV(mddev,rdev,tmp) {
2278 		char b[BDEVNAME_SIZE];
2279 		printk("<%s>", bdevname(rdev->bdev,b));
2280 	}
2281 	printk("\n");
2282 
2283 	err = do_md_run (mddev);
2284 	if (err) {
2285 		printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
2286 		do_md_stop (mddev, 0);
2287 	}
2288 }
2289 
2290 /*
2291  * lets try to run arrays based on all disks that have arrived
2292  * until now. (those are in pending_raid_disks)
2293  *
2294  * the method: pick the first pending disk, collect all disks with
2295  * the same UUID, remove all from the pending list and put them into
2296  * the 'same_array' list. Then order this list based on superblock
2297  * update time (freshest comes first), kick out 'old' disks and
2298  * compare superblocks. If everything's fine then run it.
2299  *
2300  * If "unit" is allocated, then bump its reference count
2301  */
2302 static void autorun_devices(int part)
2303 {
2304 	struct list_head candidates;
2305 	struct list_head *tmp;
2306 	mdk_rdev_t *rdev0, *rdev;
2307 	mddev_t *mddev;
2308 	char b[BDEVNAME_SIZE];
2309 
2310 	printk(KERN_INFO "md: autorun ...\n");
2311 	while (!list_empty(&pending_raid_disks)) {
2312 		dev_t dev;
2313 		rdev0 = list_entry(pending_raid_disks.next,
2314 					 mdk_rdev_t, same_set);
2315 
2316 		printk(KERN_INFO "md: considering %s ...\n",
2317 			bdevname(rdev0->bdev,b));
2318 		INIT_LIST_HEAD(&candidates);
2319 		ITERATE_RDEV_PENDING(rdev,tmp)
2320 			if (super_90_load(rdev, rdev0, 0) >= 0) {
2321 				printk(KERN_INFO "md:  adding %s ...\n",
2322 					bdevname(rdev->bdev,b));
2323 				list_move(&rdev->same_set, &candidates);
2324 			}
2325 		/*
2326 		 * now we have a set of devices, with all of them having
2327 		 * mostly sane superblocks. It's time to allocate the
2328 		 * mddev.
2329 		 */
2330 		if (rdev0->preferred_minor < 0 || rdev0->preferred_minor >= MAX_MD_DEVS) {
2331 			printk(KERN_INFO "md: unit number in %s is bad: %d\n",
2332 			       bdevname(rdev0->bdev, b), rdev0->preferred_minor);
2333 			break;
2334 		}
2335 		if (part)
2336 			dev = MKDEV(mdp_major,
2337 				    rdev0->preferred_minor << MdpMinorShift);
2338 		else
2339 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
2340 
2341 		md_probe(dev, NULL, NULL);
2342 		mddev = mddev_find(dev);
2343 		if (!mddev) {
2344 			printk(KERN_ERR
2345 				"md: cannot allocate memory for md drive.\n");
2346 			break;
2347 		}
2348 		if (mddev_lock(mddev))
2349 			printk(KERN_WARNING "md: %s locked, cannot run\n",
2350 			       mdname(mddev));
2351 		else if (mddev->raid_disks || mddev->major_version
2352 			 || !list_empty(&mddev->disks)) {
2353 			printk(KERN_WARNING
2354 				"md: %s already running, cannot run %s\n",
2355 				mdname(mddev), bdevname(rdev0->bdev,b));
2356 			mddev_unlock(mddev);
2357 		} else {
2358 			printk(KERN_INFO "md: created %s\n", mdname(mddev));
2359 			ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
2360 				list_del_init(&rdev->same_set);
2361 				if (bind_rdev_to_array(rdev, mddev))
2362 					export_rdev(rdev);
2363 			}
2364 			autorun_array(mddev);
2365 			mddev_unlock(mddev);
2366 		}
2367 		/* on success, candidates will be empty, on error
2368 		 * it won't...
2369 		 */
2370 		ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
2371 			export_rdev(rdev);
2372 		mddev_put(mddev);
2373 	}
2374 	printk(KERN_INFO "md: ... autorun DONE.\n");
2375 }
2376 
2377 /*
2378  * import RAID devices based on one partition
2379  * if possible, the array gets run as well.
2380  */
2381 
2382 static int autostart_array(dev_t startdev)
2383 {
2384 	char b[BDEVNAME_SIZE];
2385 	int err = -EINVAL, i;
2386 	mdp_super_t *sb = NULL;
2387 	mdk_rdev_t *start_rdev = NULL, *rdev;
2388 
2389 	start_rdev = md_import_device(startdev, 0, 0);
2390 	if (IS_ERR(start_rdev))
2391 		return err;
2392 
2393 
2394 	/* NOTE: this can only work for 0.90.0 superblocks */
2395 	sb = (mdp_super_t*)page_address(start_rdev->sb_page);
2396 	if (sb->major_version != 0 ||
2397 	    sb->minor_version != 90 ) {
2398 		printk(KERN_WARNING "md: can only autostart 0.90.0 arrays\n");
2399 		export_rdev(start_rdev);
2400 		return err;
2401 	}
2402 
2403 	if (test_bit(Faulty, &start_rdev->flags)) {
2404 		printk(KERN_WARNING
2405 			"md: can not autostart based on faulty %s!\n",
2406 			bdevname(start_rdev->bdev,b));
2407 		export_rdev(start_rdev);
2408 		return err;
2409 	}
2410 	list_add(&start_rdev->same_set, &pending_raid_disks);
2411 
2412 	for (i = 0; i < MD_SB_DISKS; i++) {
2413 		mdp_disk_t *desc = sb->disks + i;
2414 		dev_t dev = MKDEV(desc->major, desc->minor);
2415 
2416 		if (!dev)
2417 			continue;
2418 		if (dev == startdev)
2419 			continue;
2420 		if (MAJOR(dev) != desc->major || MINOR(dev) != desc->minor)
2421 			continue;
2422 		rdev = md_import_device(dev, 0, 0);
2423 		if (IS_ERR(rdev))
2424 			continue;
2425 
2426 		list_add(&rdev->same_set, &pending_raid_disks);
2427 	}
2428 
2429 	/*
2430 	 * possibly return codes
2431 	 */
2432 	autorun_devices(0);
2433 	return 0;
2434 
2435 }
2436 
2437 
2438 static int get_version(void __user * arg)
2439 {
2440 	mdu_version_t ver;
2441 
2442 	ver.major = MD_MAJOR_VERSION;
2443 	ver.minor = MD_MINOR_VERSION;
2444 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
2445 
2446 	if (copy_to_user(arg, &ver, sizeof(ver)))
2447 		return -EFAULT;
2448 
2449 	return 0;
2450 }
2451 
2452 static int get_array_info(mddev_t * mddev, void __user * arg)
2453 {
2454 	mdu_array_info_t info;
2455 	int nr,working,active,failed,spare;
2456 	mdk_rdev_t *rdev;
2457 	struct list_head *tmp;
2458 
2459 	nr=working=active=failed=spare=0;
2460 	ITERATE_RDEV(mddev,rdev,tmp) {
2461 		nr++;
2462 		if (test_bit(Faulty, &rdev->flags))
2463 			failed++;
2464 		else {
2465 			working++;
2466 			if (test_bit(In_sync, &rdev->flags))
2467 				active++;
2468 			else
2469 				spare++;
2470 		}
2471 	}
2472 
2473 	info.major_version = mddev->major_version;
2474 	info.minor_version = mddev->minor_version;
2475 	info.patch_version = MD_PATCHLEVEL_VERSION;
2476 	info.ctime         = mddev->ctime;
2477 	info.level         = mddev->level;
2478 	info.size          = mddev->size;
2479 	info.nr_disks      = nr;
2480 	info.raid_disks    = mddev->raid_disks;
2481 	info.md_minor      = mddev->md_minor;
2482 	info.not_persistent= !mddev->persistent;
2483 
2484 	info.utime         = mddev->utime;
2485 	info.state         = 0;
2486 	if (mddev->in_sync)
2487 		info.state = (1<<MD_SB_CLEAN);
2488 	if (mddev->bitmap && mddev->bitmap_offset)
2489 		info.state = (1<<MD_SB_BITMAP_PRESENT);
2490 	info.active_disks  = active;
2491 	info.working_disks = working;
2492 	info.failed_disks  = failed;
2493 	info.spare_disks   = spare;
2494 
2495 	info.layout        = mddev->layout;
2496 	info.chunk_size    = mddev->chunk_size;
2497 
2498 	if (copy_to_user(arg, &info, sizeof(info)))
2499 		return -EFAULT;
2500 
2501 	return 0;
2502 }
2503 
2504 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
2505 {
2506 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
2507 	char *ptr, *buf = NULL;
2508 	int err = -ENOMEM;
2509 
2510 	file = kmalloc(sizeof(*file), GFP_KERNEL);
2511 	if (!file)
2512 		goto out;
2513 
2514 	/* bitmap disabled, zero the first byte and copy out */
2515 	if (!mddev->bitmap || !mddev->bitmap->file) {
2516 		file->pathname[0] = '\0';
2517 		goto copy_out;
2518 	}
2519 
2520 	buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
2521 	if (!buf)
2522 		goto out;
2523 
2524 	ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
2525 	if (!ptr)
2526 		goto out;
2527 
2528 	strcpy(file->pathname, ptr);
2529 
2530 copy_out:
2531 	err = 0;
2532 	if (copy_to_user(arg, file, sizeof(*file)))
2533 		err = -EFAULT;
2534 out:
2535 	kfree(buf);
2536 	kfree(file);
2537 	return err;
2538 }
2539 
2540 static int get_disk_info(mddev_t * mddev, void __user * arg)
2541 {
2542 	mdu_disk_info_t info;
2543 	unsigned int nr;
2544 	mdk_rdev_t *rdev;
2545 
2546 	if (copy_from_user(&info, arg, sizeof(info)))
2547 		return -EFAULT;
2548 
2549 	nr = info.number;
2550 
2551 	rdev = find_rdev_nr(mddev, nr);
2552 	if (rdev) {
2553 		info.major = MAJOR(rdev->bdev->bd_dev);
2554 		info.minor = MINOR(rdev->bdev->bd_dev);
2555 		info.raid_disk = rdev->raid_disk;
2556 		info.state = 0;
2557 		if (test_bit(Faulty, &rdev->flags))
2558 			info.state |= (1<<MD_DISK_FAULTY);
2559 		else if (test_bit(In_sync, &rdev->flags)) {
2560 			info.state |= (1<<MD_DISK_ACTIVE);
2561 			info.state |= (1<<MD_DISK_SYNC);
2562 		}
2563 		if (test_bit(WriteMostly, &rdev->flags))
2564 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
2565 	} else {
2566 		info.major = info.minor = 0;
2567 		info.raid_disk = -1;
2568 		info.state = (1<<MD_DISK_REMOVED);
2569 	}
2570 
2571 	if (copy_to_user(arg, &info, sizeof(info)))
2572 		return -EFAULT;
2573 
2574 	return 0;
2575 }
2576 
2577 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
2578 {
2579 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
2580 	mdk_rdev_t *rdev;
2581 	dev_t dev = MKDEV(info->major,info->minor);
2582 
2583 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
2584 		return -EOVERFLOW;
2585 
2586 	if (!mddev->raid_disks) {
2587 		int err;
2588 		/* expecting a device which has a superblock */
2589 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
2590 		if (IS_ERR(rdev)) {
2591 			printk(KERN_WARNING
2592 				"md: md_import_device returned %ld\n",
2593 				PTR_ERR(rdev));
2594 			return PTR_ERR(rdev);
2595 		}
2596 		if (!list_empty(&mddev->disks)) {
2597 			mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
2598 							mdk_rdev_t, same_set);
2599 			int err = super_types[mddev->major_version]
2600 				.load_super(rdev, rdev0, mddev->minor_version);
2601 			if (err < 0) {
2602 				printk(KERN_WARNING
2603 					"md: %s has different UUID to %s\n",
2604 					bdevname(rdev->bdev,b),
2605 					bdevname(rdev0->bdev,b2));
2606 				export_rdev(rdev);
2607 				return -EINVAL;
2608 			}
2609 		}
2610 		err = bind_rdev_to_array(rdev, mddev);
2611 		if (err)
2612 			export_rdev(rdev);
2613 		return err;
2614 	}
2615 
2616 	/*
2617 	 * add_new_disk can be used once the array is assembled
2618 	 * to add "hot spares".  They must already have a superblock
2619 	 * written
2620 	 */
2621 	if (mddev->pers) {
2622 		int err;
2623 		if (!mddev->pers->hot_add_disk) {
2624 			printk(KERN_WARNING
2625 				"%s: personality does not support diskops!\n",
2626 			       mdname(mddev));
2627 			return -EINVAL;
2628 		}
2629 		if (mddev->persistent)
2630 			rdev = md_import_device(dev, mddev->major_version,
2631 						mddev->minor_version);
2632 		else
2633 			rdev = md_import_device(dev, -1, -1);
2634 		if (IS_ERR(rdev)) {
2635 			printk(KERN_WARNING
2636 				"md: md_import_device returned %ld\n",
2637 				PTR_ERR(rdev));
2638 			return PTR_ERR(rdev);
2639 		}
2640 		/* set save_raid_disk if appropriate */
2641 		if (!mddev->persistent) {
2642 			if (info->state & (1<<MD_DISK_SYNC)  &&
2643 			    info->raid_disk < mddev->raid_disks)
2644 				rdev->raid_disk = info->raid_disk;
2645 			else
2646 				rdev->raid_disk = -1;
2647 		} else
2648 			super_types[mddev->major_version].
2649 				validate_super(mddev, rdev);
2650 		rdev->saved_raid_disk = rdev->raid_disk;
2651 
2652 		clear_bit(In_sync, &rdev->flags); /* just to be sure */
2653 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
2654 			set_bit(WriteMostly, &rdev->flags);
2655 
2656 		rdev->raid_disk = -1;
2657 		err = bind_rdev_to_array(rdev, mddev);
2658 		if (err)
2659 			export_rdev(rdev);
2660 
2661 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2662 		md_wakeup_thread(mddev->thread);
2663 		return err;
2664 	}
2665 
2666 	/* otherwise, add_new_disk is only allowed
2667 	 * for major_version==0 superblocks
2668 	 */
2669 	if (mddev->major_version != 0) {
2670 		printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
2671 		       mdname(mddev));
2672 		return -EINVAL;
2673 	}
2674 
2675 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
2676 		int err;
2677 		rdev = md_import_device (dev, -1, 0);
2678 		if (IS_ERR(rdev)) {
2679 			printk(KERN_WARNING
2680 				"md: error, md_import_device() returned %ld\n",
2681 				PTR_ERR(rdev));
2682 			return PTR_ERR(rdev);
2683 		}
2684 		rdev->desc_nr = info->number;
2685 		if (info->raid_disk < mddev->raid_disks)
2686 			rdev->raid_disk = info->raid_disk;
2687 		else
2688 			rdev->raid_disk = -1;
2689 
2690 		rdev->flags = 0;
2691 
2692 		if (rdev->raid_disk < mddev->raid_disks)
2693 			if (info->state & (1<<MD_DISK_SYNC))
2694 				set_bit(In_sync, &rdev->flags);
2695 
2696 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
2697 			set_bit(WriteMostly, &rdev->flags);
2698 
2699 		err = bind_rdev_to_array(rdev, mddev);
2700 		if (err) {
2701 			export_rdev(rdev);
2702 			return err;
2703 		}
2704 
2705 		if (!mddev->persistent) {
2706 			printk(KERN_INFO "md: nonpersistent superblock ...\n");
2707 			rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2708 		} else
2709 			rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
2710 		rdev->size = calc_dev_size(rdev, mddev->chunk_size);
2711 
2712 		if (!mddev->size || (mddev->size > rdev->size))
2713 			mddev->size = rdev->size;
2714 	}
2715 
2716 	return 0;
2717 }
2718 
2719 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
2720 {
2721 	char b[BDEVNAME_SIZE];
2722 	mdk_rdev_t *rdev;
2723 
2724 	if (!mddev->pers)
2725 		return -ENODEV;
2726 
2727 	rdev = find_rdev(mddev, dev);
2728 	if (!rdev)
2729 		return -ENXIO;
2730 
2731 	if (rdev->raid_disk >= 0)
2732 		goto busy;
2733 
2734 	kick_rdev_from_array(rdev);
2735 	md_update_sb(mddev);
2736 	md_new_event(mddev);
2737 
2738 	return 0;
2739 busy:
2740 	printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
2741 		bdevname(rdev->bdev,b), mdname(mddev));
2742 	return -EBUSY;
2743 }
2744 
2745 static int hot_add_disk(mddev_t * mddev, dev_t dev)
2746 {
2747 	char b[BDEVNAME_SIZE];
2748 	int err;
2749 	unsigned int size;
2750 	mdk_rdev_t *rdev;
2751 
2752 	if (!mddev->pers)
2753 		return -ENODEV;
2754 
2755 	if (mddev->major_version != 0) {
2756 		printk(KERN_WARNING "%s: HOT_ADD may only be used with"
2757 			" version-0 superblocks.\n",
2758 			mdname(mddev));
2759 		return -EINVAL;
2760 	}
2761 	if (!mddev->pers->hot_add_disk) {
2762 		printk(KERN_WARNING
2763 			"%s: personality does not support diskops!\n",
2764 			mdname(mddev));
2765 		return -EINVAL;
2766 	}
2767 
2768 	rdev = md_import_device (dev, -1, 0);
2769 	if (IS_ERR(rdev)) {
2770 		printk(KERN_WARNING
2771 			"md: error, md_import_device() returned %ld\n",
2772 			PTR_ERR(rdev));
2773 		return -EINVAL;
2774 	}
2775 
2776 	if (mddev->persistent)
2777 		rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
2778 	else
2779 		rdev->sb_offset =
2780 			rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2781 
2782 	size = calc_dev_size(rdev, mddev->chunk_size);
2783 	rdev->size = size;
2784 
2785 	if (size < mddev->size) {
2786 		printk(KERN_WARNING
2787 			"%s: disk size %llu blocks < array size %llu\n",
2788 			mdname(mddev), (unsigned long long)size,
2789 			(unsigned long long)mddev->size);
2790 		err = -ENOSPC;
2791 		goto abort_export;
2792 	}
2793 
2794 	if (test_bit(Faulty, &rdev->flags)) {
2795 		printk(KERN_WARNING
2796 			"md: can not hot-add faulty %s disk to %s!\n",
2797 			bdevname(rdev->bdev,b), mdname(mddev));
2798 		err = -EINVAL;
2799 		goto abort_export;
2800 	}
2801 	clear_bit(In_sync, &rdev->flags);
2802 	rdev->desc_nr = -1;
2803 	bind_rdev_to_array(rdev, mddev);
2804 
2805 	/*
2806 	 * The rest should better be atomic, we can have disk failures
2807 	 * noticed in interrupt contexts ...
2808 	 */
2809 
2810 	if (rdev->desc_nr == mddev->max_disks) {
2811 		printk(KERN_WARNING "%s: can not hot-add to full array!\n",
2812 			mdname(mddev));
2813 		err = -EBUSY;
2814 		goto abort_unbind_export;
2815 	}
2816 
2817 	rdev->raid_disk = -1;
2818 
2819 	md_update_sb(mddev);
2820 
2821 	/*
2822 	 * Kick recovery, maybe this spare has to be added to the
2823 	 * array immediately.
2824 	 */
2825 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2826 	md_wakeup_thread(mddev->thread);
2827 	md_new_event(mddev);
2828 	return 0;
2829 
2830 abort_unbind_export:
2831 	unbind_rdev_from_array(rdev);
2832 
2833 abort_export:
2834 	export_rdev(rdev);
2835 	return err;
2836 }
2837 
2838 /* similar to deny_write_access, but accounts for our holding a reference
2839  * to the file ourselves */
2840 static int deny_bitmap_write_access(struct file * file)
2841 {
2842 	struct inode *inode = file->f_mapping->host;
2843 
2844 	spin_lock(&inode->i_lock);
2845 	if (atomic_read(&inode->i_writecount) > 1) {
2846 		spin_unlock(&inode->i_lock);
2847 		return -ETXTBSY;
2848 	}
2849 	atomic_set(&inode->i_writecount, -1);
2850 	spin_unlock(&inode->i_lock);
2851 
2852 	return 0;
2853 }
2854 
2855 static int set_bitmap_file(mddev_t *mddev, int fd)
2856 {
2857 	int err;
2858 
2859 	if (mddev->pers) {
2860 		if (!mddev->pers->quiesce)
2861 			return -EBUSY;
2862 		if (mddev->recovery || mddev->sync_thread)
2863 			return -EBUSY;
2864 		/* we should be able to change the bitmap.. */
2865 	}
2866 
2867 
2868 	if (fd >= 0) {
2869 		if (mddev->bitmap)
2870 			return -EEXIST; /* cannot add when bitmap is present */
2871 		mddev->bitmap_file = fget(fd);
2872 
2873 		if (mddev->bitmap_file == NULL) {
2874 			printk(KERN_ERR "%s: error: failed to get bitmap file\n",
2875 			       mdname(mddev));
2876 			return -EBADF;
2877 		}
2878 
2879 		err = deny_bitmap_write_access(mddev->bitmap_file);
2880 		if (err) {
2881 			printk(KERN_ERR "%s: error: bitmap file is already in use\n",
2882 			       mdname(mddev));
2883 			fput(mddev->bitmap_file);
2884 			mddev->bitmap_file = NULL;
2885 			return err;
2886 		}
2887 		mddev->bitmap_offset = 0; /* file overrides offset */
2888 	} else if (mddev->bitmap == NULL)
2889 		return -ENOENT; /* cannot remove what isn't there */
2890 	err = 0;
2891 	if (mddev->pers) {
2892 		mddev->pers->quiesce(mddev, 1);
2893 		if (fd >= 0)
2894 			err = bitmap_create(mddev);
2895 		if (fd < 0 || err)
2896 			bitmap_destroy(mddev);
2897 		mddev->pers->quiesce(mddev, 0);
2898 	} else if (fd < 0) {
2899 		if (mddev->bitmap_file)
2900 			fput(mddev->bitmap_file);
2901 		mddev->bitmap_file = NULL;
2902 	}
2903 
2904 	return err;
2905 }
2906 
2907 /*
2908  * set_array_info is used two different ways
2909  * The original usage is when creating a new array.
2910  * In this usage, raid_disks is > 0 and it together with
2911  *  level, size, not_persistent,layout,chunksize determine the
2912  *  shape of the array.
2913  *  This will always create an array with a type-0.90.0 superblock.
2914  * The newer usage is when assembling an array.
2915  *  In this case raid_disks will be 0, and the major_version field is
2916  *  use to determine which style super-blocks are to be found on the devices.
2917  *  The minor and patch _version numbers are also kept incase the
2918  *  super_block handler wishes to interpret them.
2919  */
2920 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
2921 {
2922 
2923 	if (info->raid_disks == 0) {
2924 		/* just setting version number for superblock loading */
2925 		if (info->major_version < 0 ||
2926 		    info->major_version >= sizeof(super_types)/sizeof(super_types[0]) ||
2927 		    super_types[info->major_version].name == NULL) {
2928 			/* maybe try to auto-load a module? */
2929 			printk(KERN_INFO
2930 				"md: superblock version %d not known\n",
2931 				info->major_version);
2932 			return -EINVAL;
2933 		}
2934 		mddev->major_version = info->major_version;
2935 		mddev->minor_version = info->minor_version;
2936 		mddev->patch_version = info->patch_version;
2937 		return 0;
2938 	}
2939 	mddev->major_version = MD_MAJOR_VERSION;
2940 	mddev->minor_version = MD_MINOR_VERSION;
2941 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
2942 	mddev->ctime         = get_seconds();
2943 
2944 	mddev->level         = info->level;
2945 	mddev->size          = info->size;
2946 	mddev->raid_disks    = info->raid_disks;
2947 	/* don't set md_minor, it is determined by which /dev/md* was
2948 	 * openned
2949 	 */
2950 	if (info->state & (1<<MD_SB_CLEAN))
2951 		mddev->recovery_cp = MaxSector;
2952 	else
2953 		mddev->recovery_cp = 0;
2954 	mddev->persistent    = ! info->not_persistent;
2955 
2956 	mddev->layout        = info->layout;
2957 	mddev->chunk_size    = info->chunk_size;
2958 
2959 	mddev->max_disks     = MD_SB_DISKS;
2960 
2961 	mddev->sb_dirty      = 1;
2962 
2963 	mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
2964 	mddev->bitmap_offset = 0;
2965 
2966 	/*
2967 	 * Generate a 128 bit UUID
2968 	 */
2969 	get_random_bytes(mddev->uuid, 16);
2970 
2971 	return 0;
2972 }
2973 
2974 /*
2975  * update_array_info is used to change the configuration of an
2976  * on-line array.
2977  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
2978  * fields in the info are checked against the array.
2979  * Any differences that cannot be handled will cause an error.
2980  * Normally, only one change can be managed at a time.
2981  */
2982 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
2983 {
2984 	int rv = 0;
2985 	int cnt = 0;
2986 	int state = 0;
2987 
2988 	/* calculate expected state,ignoring low bits */
2989 	if (mddev->bitmap && mddev->bitmap_offset)
2990 		state |= (1 << MD_SB_BITMAP_PRESENT);
2991 
2992 	if (mddev->major_version != info->major_version ||
2993 	    mddev->minor_version != info->minor_version ||
2994 /*	    mddev->patch_version != info->patch_version || */
2995 	    mddev->ctime         != info->ctime         ||
2996 	    mddev->level         != info->level         ||
2997 /*	    mddev->layout        != info->layout        || */
2998 	    !mddev->persistent	 != info->not_persistent||
2999 	    mddev->chunk_size    != info->chunk_size    ||
3000 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
3001 	    ((state^info->state) & 0xfffffe00)
3002 		)
3003 		return -EINVAL;
3004 	/* Check there is only one change */
3005 	if (mddev->size != info->size) cnt++;
3006 	if (mddev->raid_disks != info->raid_disks) cnt++;
3007 	if (mddev->layout != info->layout) cnt++;
3008 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++;
3009 	if (cnt == 0) return 0;
3010 	if (cnt > 1) return -EINVAL;
3011 
3012 	if (mddev->layout != info->layout) {
3013 		/* Change layout
3014 		 * we don't need to do anything at the md level, the
3015 		 * personality will take care of it all.
3016 		 */
3017 		if (mddev->pers->reconfig == NULL)
3018 			return -EINVAL;
3019 		else
3020 			return mddev->pers->reconfig(mddev, info->layout, -1);
3021 	}
3022 	if (mddev->size != info->size) {
3023 		mdk_rdev_t * rdev;
3024 		struct list_head *tmp;
3025 		if (mddev->pers->resize == NULL)
3026 			return -EINVAL;
3027 		/* The "size" is the amount of each device that is used.
3028 		 * This can only make sense for arrays with redundancy.
3029 		 * linear and raid0 always use whatever space is available
3030 		 * We can only consider changing the size if no resync
3031 		 * or reconstruction is happening, and if the new size
3032 		 * is acceptable. It must fit before the sb_offset or,
3033 		 * if that is <data_offset, it must fit before the
3034 		 * size of each device.
3035 		 * If size is zero, we find the largest size that fits.
3036 		 */
3037 		if (mddev->sync_thread)
3038 			return -EBUSY;
3039 		ITERATE_RDEV(mddev,rdev,tmp) {
3040 			sector_t avail;
3041 			int fit = (info->size == 0);
3042 			if (rdev->sb_offset > rdev->data_offset)
3043 				avail = (rdev->sb_offset*2) - rdev->data_offset;
3044 			else
3045 				avail = get_capacity(rdev->bdev->bd_disk)
3046 					- rdev->data_offset;
3047 			if (fit && (info->size == 0 || info->size > avail/2))
3048 				info->size = avail/2;
3049 			if (avail < ((sector_t)info->size << 1))
3050 				return -ENOSPC;
3051 		}
3052 		rv = mddev->pers->resize(mddev, (sector_t)info->size *2);
3053 		if (!rv) {
3054 			struct block_device *bdev;
3055 
3056 			bdev = bdget_disk(mddev->gendisk, 0);
3057 			if (bdev) {
3058 				down(&bdev->bd_inode->i_sem);
3059 				i_size_write(bdev->bd_inode, mddev->array_size << 10);
3060 				up(&bdev->bd_inode->i_sem);
3061 				bdput(bdev);
3062 			}
3063 		}
3064 	}
3065 	if (mddev->raid_disks    != info->raid_disks) {
3066 		/* change the number of raid disks */
3067 		if (mddev->pers->reshape == NULL)
3068 			return -EINVAL;
3069 		if (info->raid_disks <= 0 ||
3070 		    info->raid_disks >= mddev->max_disks)
3071 			return -EINVAL;
3072 		if (mddev->sync_thread)
3073 			return -EBUSY;
3074 		rv = mddev->pers->reshape(mddev, info->raid_disks);
3075 		if (!rv) {
3076 			struct block_device *bdev;
3077 
3078 			bdev = bdget_disk(mddev->gendisk, 0);
3079 			if (bdev) {
3080 				down(&bdev->bd_inode->i_sem);
3081 				i_size_write(bdev->bd_inode, mddev->array_size << 10);
3082 				up(&bdev->bd_inode->i_sem);
3083 				bdput(bdev);
3084 			}
3085 		}
3086 	}
3087 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
3088 		if (mddev->pers->quiesce == NULL)
3089 			return -EINVAL;
3090 		if (mddev->recovery || mddev->sync_thread)
3091 			return -EBUSY;
3092 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
3093 			/* add the bitmap */
3094 			if (mddev->bitmap)
3095 				return -EEXIST;
3096 			if (mddev->default_bitmap_offset == 0)
3097 				return -EINVAL;
3098 			mddev->bitmap_offset = mddev->default_bitmap_offset;
3099 			mddev->pers->quiesce(mddev, 1);
3100 			rv = bitmap_create(mddev);
3101 			if (rv)
3102 				bitmap_destroy(mddev);
3103 			mddev->pers->quiesce(mddev, 0);
3104 		} else {
3105 			/* remove the bitmap */
3106 			if (!mddev->bitmap)
3107 				return -ENOENT;
3108 			if (mddev->bitmap->file)
3109 				return -EINVAL;
3110 			mddev->pers->quiesce(mddev, 1);
3111 			bitmap_destroy(mddev);
3112 			mddev->pers->quiesce(mddev, 0);
3113 			mddev->bitmap_offset = 0;
3114 		}
3115 	}
3116 	md_update_sb(mddev);
3117 	return rv;
3118 }
3119 
3120 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
3121 {
3122 	mdk_rdev_t *rdev;
3123 
3124 	if (mddev->pers == NULL)
3125 		return -ENODEV;
3126 
3127 	rdev = find_rdev(mddev, dev);
3128 	if (!rdev)
3129 		return -ENODEV;
3130 
3131 	md_error(mddev, rdev);
3132 	return 0;
3133 }
3134 
3135 static int md_ioctl(struct inode *inode, struct file *file,
3136 			unsigned int cmd, unsigned long arg)
3137 {
3138 	int err = 0;
3139 	void __user *argp = (void __user *)arg;
3140 	struct hd_geometry __user *loc = argp;
3141 	mddev_t *mddev = NULL;
3142 
3143 	if (!capable(CAP_SYS_ADMIN))
3144 		return -EACCES;
3145 
3146 	/*
3147 	 * Commands dealing with the RAID driver but not any
3148 	 * particular array:
3149 	 */
3150 	switch (cmd)
3151 	{
3152 		case RAID_VERSION:
3153 			err = get_version(argp);
3154 			goto done;
3155 
3156 		case PRINT_RAID_DEBUG:
3157 			err = 0;
3158 			md_print_devices();
3159 			goto done;
3160 
3161 #ifndef MODULE
3162 		case RAID_AUTORUN:
3163 			err = 0;
3164 			autostart_arrays(arg);
3165 			goto done;
3166 #endif
3167 		default:;
3168 	}
3169 
3170 	/*
3171 	 * Commands creating/starting a new array:
3172 	 */
3173 
3174 	mddev = inode->i_bdev->bd_disk->private_data;
3175 
3176 	if (!mddev) {
3177 		BUG();
3178 		goto abort;
3179 	}
3180 
3181 
3182 	if (cmd == START_ARRAY) {
3183 		/* START_ARRAY doesn't need to lock the array as autostart_array
3184 		 * does the locking, and it could even be a different array
3185 		 */
3186 		static int cnt = 3;
3187 		if (cnt > 0 ) {
3188 			printk(KERN_WARNING
3189 			       "md: %s(pid %d) used deprecated START_ARRAY ioctl. "
3190 			       "This will not be supported beyond July 2006\n",
3191 			       current->comm, current->pid);
3192 			cnt--;
3193 		}
3194 		err = autostart_array(new_decode_dev(arg));
3195 		if (err) {
3196 			printk(KERN_WARNING "md: autostart failed!\n");
3197 			goto abort;
3198 		}
3199 		goto done;
3200 	}
3201 
3202 	err = mddev_lock(mddev);
3203 	if (err) {
3204 		printk(KERN_INFO
3205 			"md: ioctl lock interrupted, reason %d, cmd %d\n",
3206 			err, cmd);
3207 		goto abort;
3208 	}
3209 
3210 	switch (cmd)
3211 	{
3212 		case SET_ARRAY_INFO:
3213 			{
3214 				mdu_array_info_t info;
3215 				if (!arg)
3216 					memset(&info, 0, sizeof(info));
3217 				else if (copy_from_user(&info, argp, sizeof(info))) {
3218 					err = -EFAULT;
3219 					goto abort_unlock;
3220 				}
3221 				if (mddev->pers) {
3222 					err = update_array_info(mddev, &info);
3223 					if (err) {
3224 						printk(KERN_WARNING "md: couldn't update"
3225 						       " array info. %d\n", err);
3226 						goto abort_unlock;
3227 					}
3228 					goto done_unlock;
3229 				}
3230 				if (!list_empty(&mddev->disks)) {
3231 					printk(KERN_WARNING
3232 					       "md: array %s already has disks!\n",
3233 					       mdname(mddev));
3234 					err = -EBUSY;
3235 					goto abort_unlock;
3236 				}
3237 				if (mddev->raid_disks) {
3238 					printk(KERN_WARNING
3239 					       "md: array %s already initialised!\n",
3240 					       mdname(mddev));
3241 					err = -EBUSY;
3242 					goto abort_unlock;
3243 				}
3244 				err = set_array_info(mddev, &info);
3245 				if (err) {
3246 					printk(KERN_WARNING "md: couldn't set"
3247 					       " array info. %d\n", err);
3248 					goto abort_unlock;
3249 				}
3250 			}
3251 			goto done_unlock;
3252 
3253 		default:;
3254 	}
3255 
3256 	/*
3257 	 * Commands querying/configuring an existing array:
3258 	 */
3259 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
3260 	 * RUN_ARRAY, and SET_BITMAP_FILE are allowed */
3261 	if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
3262 			&& cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE) {
3263 		err = -ENODEV;
3264 		goto abort_unlock;
3265 	}
3266 
3267 	/*
3268 	 * Commands even a read-only array can execute:
3269 	 */
3270 	switch (cmd)
3271 	{
3272 		case GET_ARRAY_INFO:
3273 			err = get_array_info(mddev, argp);
3274 			goto done_unlock;
3275 
3276 		case GET_BITMAP_FILE:
3277 			err = get_bitmap_file(mddev, argp);
3278 			goto done_unlock;
3279 
3280 		case GET_DISK_INFO:
3281 			err = get_disk_info(mddev, argp);
3282 			goto done_unlock;
3283 
3284 		case RESTART_ARRAY_RW:
3285 			err = restart_array(mddev);
3286 			goto done_unlock;
3287 
3288 		case STOP_ARRAY:
3289 			err = do_md_stop (mddev, 0);
3290 			goto done_unlock;
3291 
3292 		case STOP_ARRAY_RO:
3293 			err = do_md_stop (mddev, 1);
3294 			goto done_unlock;
3295 
3296 	/*
3297 	 * We have a problem here : there is no easy way to give a CHS
3298 	 * virtual geometry. We currently pretend that we have a 2 heads
3299 	 * 4 sectors (with a BIG number of cylinders...). This drives
3300 	 * dosfs just mad... ;-)
3301 	 */
3302 		case HDIO_GETGEO:
3303 			if (!loc) {
3304 				err = -EINVAL;
3305 				goto abort_unlock;
3306 			}
3307 			err = put_user (2, (char __user *) &loc->heads);
3308 			if (err)
3309 				goto abort_unlock;
3310 			err = put_user (4, (char __user *) &loc->sectors);
3311 			if (err)
3312 				goto abort_unlock;
3313 			err = put_user(get_capacity(mddev->gendisk)/8,
3314 					(short __user *) &loc->cylinders);
3315 			if (err)
3316 				goto abort_unlock;
3317 			err = put_user (get_start_sect(inode->i_bdev),
3318 						(long __user *) &loc->start);
3319 			goto done_unlock;
3320 	}
3321 
3322 	/*
3323 	 * The remaining ioctls are changing the state of the
3324 	 * superblock, so we do not allow them on read-only arrays.
3325 	 * However non-MD ioctls (e.g. get-size) will still come through
3326 	 * here and hit the 'default' below, so only disallow
3327 	 * 'md' ioctls, and switch to rw mode if started auto-readonly.
3328 	 */
3329 	if (_IOC_TYPE(cmd) == MD_MAJOR &&
3330 	    mddev->ro && mddev->pers) {
3331 		if (mddev->ro == 2) {
3332 			mddev->ro = 0;
3333 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3334 		md_wakeup_thread(mddev->thread);
3335 
3336 		} else {
3337 			err = -EROFS;
3338 			goto abort_unlock;
3339 		}
3340 	}
3341 
3342 	switch (cmd)
3343 	{
3344 		case ADD_NEW_DISK:
3345 		{
3346 			mdu_disk_info_t info;
3347 			if (copy_from_user(&info, argp, sizeof(info)))
3348 				err = -EFAULT;
3349 			else
3350 				err = add_new_disk(mddev, &info);
3351 			goto done_unlock;
3352 		}
3353 
3354 		case HOT_REMOVE_DISK:
3355 			err = hot_remove_disk(mddev, new_decode_dev(arg));
3356 			goto done_unlock;
3357 
3358 		case HOT_ADD_DISK:
3359 			err = hot_add_disk(mddev, new_decode_dev(arg));
3360 			goto done_unlock;
3361 
3362 		case SET_DISK_FAULTY:
3363 			err = set_disk_faulty(mddev, new_decode_dev(arg));
3364 			goto done_unlock;
3365 
3366 		case RUN_ARRAY:
3367 			err = do_md_run (mddev);
3368 			goto done_unlock;
3369 
3370 		case SET_BITMAP_FILE:
3371 			err = set_bitmap_file(mddev, (int)arg);
3372 			goto done_unlock;
3373 
3374 		default:
3375 			if (_IOC_TYPE(cmd) == MD_MAJOR)
3376 				printk(KERN_WARNING "md: %s(pid %d) used"
3377 					" obsolete MD ioctl, upgrade your"
3378 					" software to use new ictls.\n",
3379 					current->comm, current->pid);
3380 			err = -EINVAL;
3381 			goto abort_unlock;
3382 	}
3383 
3384 done_unlock:
3385 abort_unlock:
3386 	mddev_unlock(mddev);
3387 
3388 	return err;
3389 done:
3390 	if (err)
3391 		MD_BUG();
3392 abort:
3393 	return err;
3394 }
3395 
3396 static int md_open(struct inode *inode, struct file *file)
3397 {
3398 	/*
3399 	 * Succeed if we can lock the mddev, which confirms that
3400 	 * it isn't being stopped right now.
3401 	 */
3402 	mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
3403 	int err;
3404 
3405 	if ((err = mddev_lock(mddev)))
3406 		goto out;
3407 
3408 	err = 0;
3409 	mddev_get(mddev);
3410 	mddev_unlock(mddev);
3411 
3412 	check_disk_change(inode->i_bdev);
3413  out:
3414 	return err;
3415 }
3416 
3417 static int md_release(struct inode *inode, struct file * file)
3418 {
3419  	mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
3420 
3421 	if (!mddev)
3422 		BUG();
3423 	mddev_put(mddev);
3424 
3425 	return 0;
3426 }
3427 
3428 static int md_media_changed(struct gendisk *disk)
3429 {
3430 	mddev_t *mddev = disk->private_data;
3431 
3432 	return mddev->changed;
3433 }
3434 
3435 static int md_revalidate(struct gendisk *disk)
3436 {
3437 	mddev_t *mddev = disk->private_data;
3438 
3439 	mddev->changed = 0;
3440 	return 0;
3441 }
3442 static struct block_device_operations md_fops =
3443 {
3444 	.owner		= THIS_MODULE,
3445 	.open		= md_open,
3446 	.release	= md_release,
3447 	.ioctl		= md_ioctl,
3448 	.media_changed	= md_media_changed,
3449 	.revalidate_disk= md_revalidate,
3450 };
3451 
3452 static int md_thread(void * arg)
3453 {
3454 	mdk_thread_t *thread = arg;
3455 
3456 	/*
3457 	 * md_thread is a 'system-thread', it's priority should be very
3458 	 * high. We avoid resource deadlocks individually in each
3459 	 * raid personality. (RAID5 does preallocation) We also use RR and
3460 	 * the very same RT priority as kswapd, thus we will never get
3461 	 * into a priority inversion deadlock.
3462 	 *
3463 	 * we definitely have to have equal or higher priority than
3464 	 * bdflush, otherwise bdflush will deadlock if there are too
3465 	 * many dirty RAID5 blocks.
3466 	 */
3467 
3468 	allow_signal(SIGKILL);
3469 	while (!kthread_should_stop()) {
3470 
3471 		/* We need to wait INTERRUPTIBLE so that
3472 		 * we don't add to the load-average.
3473 		 * That means we need to be sure no signals are
3474 		 * pending
3475 		 */
3476 		if (signal_pending(current))
3477 			flush_signals(current);
3478 
3479 		wait_event_interruptible_timeout
3480 			(thread->wqueue,
3481 			 test_bit(THREAD_WAKEUP, &thread->flags)
3482 			 || kthread_should_stop(),
3483 			 thread->timeout);
3484 		try_to_freeze();
3485 
3486 		clear_bit(THREAD_WAKEUP, &thread->flags);
3487 
3488 		thread->run(thread->mddev);
3489 	}
3490 
3491 	return 0;
3492 }
3493 
3494 void md_wakeup_thread(mdk_thread_t *thread)
3495 {
3496 	if (thread) {
3497 		dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
3498 		set_bit(THREAD_WAKEUP, &thread->flags);
3499 		wake_up(&thread->wqueue);
3500 	}
3501 }
3502 
3503 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
3504 				 const char *name)
3505 {
3506 	mdk_thread_t *thread;
3507 
3508 	thread = kmalloc(sizeof(mdk_thread_t), GFP_KERNEL);
3509 	if (!thread)
3510 		return NULL;
3511 
3512 	memset(thread, 0, sizeof(mdk_thread_t));
3513 	init_waitqueue_head(&thread->wqueue);
3514 
3515 	thread->run = run;
3516 	thread->mddev = mddev;
3517 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
3518 	thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
3519 	if (IS_ERR(thread->tsk)) {
3520 		kfree(thread);
3521 		return NULL;
3522 	}
3523 	return thread;
3524 }
3525 
3526 void md_unregister_thread(mdk_thread_t *thread)
3527 {
3528 	dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
3529 
3530 	kthread_stop(thread->tsk);
3531 	kfree(thread);
3532 }
3533 
3534 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
3535 {
3536 	if (!mddev) {
3537 		MD_BUG();
3538 		return;
3539 	}
3540 
3541 	if (!rdev || test_bit(Faulty, &rdev->flags))
3542 		return;
3543 /*
3544 	dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
3545 		mdname(mddev),
3546 		MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
3547 		__builtin_return_address(0),__builtin_return_address(1),
3548 		__builtin_return_address(2),__builtin_return_address(3));
3549 */
3550 	if (!mddev->pers->error_handler)
3551 		return;
3552 	mddev->pers->error_handler(mddev,rdev);
3553 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3554 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3555 	md_wakeup_thread(mddev->thread);
3556 	md_new_event(mddev);
3557 }
3558 
3559 /* seq_file implementation /proc/mdstat */
3560 
3561 static void status_unused(struct seq_file *seq)
3562 {
3563 	int i = 0;
3564 	mdk_rdev_t *rdev;
3565 	struct list_head *tmp;
3566 
3567 	seq_printf(seq, "unused devices: ");
3568 
3569 	ITERATE_RDEV_PENDING(rdev,tmp) {
3570 		char b[BDEVNAME_SIZE];
3571 		i++;
3572 		seq_printf(seq, "%s ",
3573 			      bdevname(rdev->bdev,b));
3574 	}
3575 	if (!i)
3576 		seq_printf(seq, "<none>");
3577 
3578 	seq_printf(seq, "\n");
3579 }
3580 
3581 
3582 static void status_resync(struct seq_file *seq, mddev_t * mddev)
3583 {
3584 	unsigned long max_blocks, resync, res, dt, db, rt;
3585 
3586 	resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
3587 
3588 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3589 		max_blocks = mddev->resync_max_sectors >> 1;
3590 	else
3591 		max_blocks = mddev->size;
3592 
3593 	/*
3594 	 * Should not happen.
3595 	 */
3596 	if (!max_blocks) {
3597 		MD_BUG();
3598 		return;
3599 	}
3600 	res = (resync/1024)*1000/(max_blocks/1024 + 1);
3601 	{
3602 		int i, x = res/50, y = 20-x;
3603 		seq_printf(seq, "[");
3604 		for (i = 0; i < x; i++)
3605 			seq_printf(seq, "=");
3606 		seq_printf(seq, ">");
3607 		for (i = 0; i < y; i++)
3608 			seq_printf(seq, ".");
3609 		seq_printf(seq, "] ");
3610 	}
3611 	seq_printf(seq, " %s =%3lu.%lu%% (%lu/%lu)",
3612 		      (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
3613 		       "resync" : "recovery"),
3614 		      res/10, res % 10, resync, max_blocks);
3615 
3616 	/*
3617 	 * We do not want to overflow, so the order of operands and
3618 	 * the * 100 / 100 trick are important. We do a +1 to be
3619 	 * safe against division by zero. We only estimate anyway.
3620 	 *
3621 	 * dt: time from mark until now
3622 	 * db: blocks written from mark until now
3623 	 * rt: remaining time
3624 	 */
3625 	dt = ((jiffies - mddev->resync_mark) / HZ);
3626 	if (!dt) dt++;
3627 	db = resync - (mddev->resync_mark_cnt/2);
3628 	rt = (dt * ((max_blocks-resync) / (db/100+1)))/100;
3629 
3630 	seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
3631 
3632 	seq_printf(seq, " speed=%ldK/sec", db/dt);
3633 }
3634 
3635 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
3636 {
3637 	struct list_head *tmp;
3638 	loff_t l = *pos;
3639 	mddev_t *mddev;
3640 
3641 	if (l >= 0x10000)
3642 		return NULL;
3643 	if (!l--)
3644 		/* header */
3645 		return (void*)1;
3646 
3647 	spin_lock(&all_mddevs_lock);
3648 	list_for_each(tmp,&all_mddevs)
3649 		if (!l--) {
3650 			mddev = list_entry(tmp, mddev_t, all_mddevs);
3651 			mddev_get(mddev);
3652 			spin_unlock(&all_mddevs_lock);
3653 			return mddev;
3654 		}
3655 	spin_unlock(&all_mddevs_lock);
3656 	if (!l--)
3657 		return (void*)2;/* tail */
3658 	return NULL;
3659 }
3660 
3661 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3662 {
3663 	struct list_head *tmp;
3664 	mddev_t *next_mddev, *mddev = v;
3665 
3666 	++*pos;
3667 	if (v == (void*)2)
3668 		return NULL;
3669 
3670 	spin_lock(&all_mddevs_lock);
3671 	if (v == (void*)1)
3672 		tmp = all_mddevs.next;
3673 	else
3674 		tmp = mddev->all_mddevs.next;
3675 	if (tmp != &all_mddevs)
3676 		next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
3677 	else {
3678 		next_mddev = (void*)2;
3679 		*pos = 0x10000;
3680 	}
3681 	spin_unlock(&all_mddevs_lock);
3682 
3683 	if (v != (void*)1)
3684 		mddev_put(mddev);
3685 	return next_mddev;
3686 
3687 }
3688 
3689 static void md_seq_stop(struct seq_file *seq, void *v)
3690 {
3691 	mddev_t *mddev = v;
3692 
3693 	if (mddev && v != (void*)1 && v != (void*)2)
3694 		mddev_put(mddev);
3695 }
3696 
3697 struct mdstat_info {
3698 	int event;
3699 };
3700 
3701 static int md_seq_show(struct seq_file *seq, void *v)
3702 {
3703 	mddev_t *mddev = v;
3704 	sector_t size;
3705 	struct list_head *tmp2;
3706 	mdk_rdev_t *rdev;
3707 	struct mdstat_info *mi = seq->private;
3708 	int i;
3709 	struct bitmap *bitmap;
3710 
3711 	if (v == (void*)1) {
3712 		seq_printf(seq, "Personalities : ");
3713 		spin_lock(&pers_lock);
3714 		for (i = 0; i < MAX_PERSONALITY; i++)
3715 			if (pers[i])
3716 				seq_printf(seq, "[%s] ", pers[i]->name);
3717 
3718 		spin_unlock(&pers_lock);
3719 		seq_printf(seq, "\n");
3720 		mi->event = atomic_read(&md_event_count);
3721 		return 0;
3722 	}
3723 	if (v == (void*)2) {
3724 		status_unused(seq);
3725 		return 0;
3726 	}
3727 
3728 	if (mddev_lock(mddev)!=0)
3729 		return -EINTR;
3730 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
3731 		seq_printf(seq, "%s : %sactive", mdname(mddev),
3732 						mddev->pers ? "" : "in");
3733 		if (mddev->pers) {
3734 			if (mddev->ro==1)
3735 				seq_printf(seq, " (read-only)");
3736 			if (mddev->ro==2)
3737 				seq_printf(seq, "(auto-read-only)");
3738 			seq_printf(seq, " %s", mddev->pers->name);
3739 		}
3740 
3741 		size = 0;
3742 		ITERATE_RDEV(mddev,rdev,tmp2) {
3743 			char b[BDEVNAME_SIZE];
3744 			seq_printf(seq, " %s[%d]",
3745 				bdevname(rdev->bdev,b), rdev->desc_nr);
3746 			if (test_bit(WriteMostly, &rdev->flags))
3747 				seq_printf(seq, "(W)");
3748 			if (test_bit(Faulty, &rdev->flags)) {
3749 				seq_printf(seq, "(F)");
3750 				continue;
3751 			} else if (rdev->raid_disk < 0)
3752 				seq_printf(seq, "(S)"); /* spare */
3753 			size += rdev->size;
3754 		}
3755 
3756 		if (!list_empty(&mddev->disks)) {
3757 			if (mddev->pers)
3758 				seq_printf(seq, "\n      %llu blocks",
3759 					(unsigned long long)mddev->array_size);
3760 			else
3761 				seq_printf(seq, "\n      %llu blocks",
3762 					(unsigned long long)size);
3763 		}
3764 		if (mddev->persistent) {
3765 			if (mddev->major_version != 0 ||
3766 			    mddev->minor_version != 90) {
3767 				seq_printf(seq," super %d.%d",
3768 					   mddev->major_version,
3769 					   mddev->minor_version);
3770 			}
3771 		} else
3772 			seq_printf(seq, " super non-persistent");
3773 
3774 		if (mddev->pers) {
3775 			mddev->pers->status (seq, mddev);
3776 	 		seq_printf(seq, "\n      ");
3777 			if (mddev->pers->sync_request) {
3778 				if (mddev->curr_resync > 2) {
3779 					status_resync (seq, mddev);
3780 					seq_printf(seq, "\n      ");
3781 				} else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
3782 					seq_printf(seq, "\tresync=DELAYED\n      ");
3783 				else if (mddev->recovery_cp < MaxSector)
3784 					seq_printf(seq, "\tresync=PENDING\n      ");
3785 			}
3786 		} else
3787 			seq_printf(seq, "\n       ");
3788 
3789 		if ((bitmap = mddev->bitmap)) {
3790 			unsigned long chunk_kb;
3791 			unsigned long flags;
3792 			spin_lock_irqsave(&bitmap->lock, flags);
3793 			chunk_kb = bitmap->chunksize >> 10;
3794 			seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
3795 				"%lu%s chunk",
3796 				bitmap->pages - bitmap->missing_pages,
3797 				bitmap->pages,
3798 				(bitmap->pages - bitmap->missing_pages)
3799 					<< (PAGE_SHIFT - 10),
3800 				chunk_kb ? chunk_kb : bitmap->chunksize,
3801 				chunk_kb ? "KB" : "B");
3802 			if (bitmap->file) {
3803 				seq_printf(seq, ", file: ");
3804 				seq_path(seq, bitmap->file->f_vfsmnt,
3805 					 bitmap->file->f_dentry," \t\n");
3806 			}
3807 
3808 			seq_printf(seq, "\n");
3809 			spin_unlock_irqrestore(&bitmap->lock, flags);
3810 		}
3811 
3812 		seq_printf(seq, "\n");
3813 	}
3814 	mddev_unlock(mddev);
3815 
3816 	return 0;
3817 }
3818 
3819 static struct seq_operations md_seq_ops = {
3820 	.start  = md_seq_start,
3821 	.next   = md_seq_next,
3822 	.stop   = md_seq_stop,
3823 	.show   = md_seq_show,
3824 };
3825 
3826 static int md_seq_open(struct inode *inode, struct file *file)
3827 {
3828 	int error;
3829 	struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
3830 	if (mi == NULL)
3831 		return -ENOMEM;
3832 
3833 	error = seq_open(file, &md_seq_ops);
3834 	if (error)
3835 		kfree(mi);
3836 	else {
3837 		struct seq_file *p = file->private_data;
3838 		p->private = mi;
3839 		mi->event = atomic_read(&md_event_count);
3840 	}
3841 	return error;
3842 }
3843 
3844 static int md_seq_release(struct inode *inode, struct file *file)
3845 {
3846 	struct seq_file *m = file->private_data;
3847 	struct mdstat_info *mi = m->private;
3848 	m->private = NULL;
3849 	kfree(mi);
3850 	return seq_release(inode, file);
3851 }
3852 
3853 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
3854 {
3855 	struct seq_file *m = filp->private_data;
3856 	struct mdstat_info *mi = m->private;
3857 	int mask;
3858 
3859 	poll_wait(filp, &md_event_waiters, wait);
3860 
3861 	/* always allow read */
3862 	mask = POLLIN | POLLRDNORM;
3863 
3864 	if (mi->event != atomic_read(&md_event_count))
3865 		mask |= POLLERR | POLLPRI;
3866 	return mask;
3867 }
3868 
3869 static struct file_operations md_seq_fops = {
3870 	.open           = md_seq_open,
3871 	.read           = seq_read,
3872 	.llseek         = seq_lseek,
3873 	.release	= md_seq_release,
3874 	.poll		= mdstat_poll,
3875 };
3876 
3877 int register_md_personality(int pnum, mdk_personality_t *p)
3878 {
3879 	if (pnum >= MAX_PERSONALITY) {
3880 		printk(KERN_ERR
3881 		       "md: tried to install personality %s as nr %d, but max is %lu\n",
3882 		       p->name, pnum, MAX_PERSONALITY-1);
3883 		return -EINVAL;
3884 	}
3885 
3886 	spin_lock(&pers_lock);
3887 	if (pers[pnum]) {
3888 		spin_unlock(&pers_lock);
3889 		return -EBUSY;
3890 	}
3891 
3892 	pers[pnum] = p;
3893 	printk(KERN_INFO "md: %s personality registered as nr %d\n", p->name, pnum);
3894 	spin_unlock(&pers_lock);
3895 	return 0;
3896 }
3897 
3898 int unregister_md_personality(int pnum)
3899 {
3900 	if (pnum >= MAX_PERSONALITY)
3901 		return -EINVAL;
3902 
3903 	printk(KERN_INFO "md: %s personality unregistered\n", pers[pnum]->name);
3904 	spin_lock(&pers_lock);
3905 	pers[pnum] = NULL;
3906 	spin_unlock(&pers_lock);
3907 	return 0;
3908 }
3909 
3910 static int is_mddev_idle(mddev_t *mddev)
3911 {
3912 	mdk_rdev_t * rdev;
3913 	struct list_head *tmp;
3914 	int idle;
3915 	unsigned long curr_events;
3916 
3917 	idle = 1;
3918 	ITERATE_RDEV(mddev,rdev,tmp) {
3919 		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
3920 		curr_events = disk_stat_read(disk, sectors[0]) +
3921 				disk_stat_read(disk, sectors[1]) -
3922 				atomic_read(&disk->sync_io);
3923 		/* The difference between curr_events and last_events
3924 		 * will be affected by any new non-sync IO (making
3925 		 * curr_events bigger) and any difference in the amount of
3926 		 * in-flight syncio (making current_events bigger or smaller)
3927 		 * The amount in-flight is currently limited to
3928 		 * 32*64K in raid1/10 and 256*PAGE_SIZE in raid5/6
3929 		 * which is at most 4096 sectors.
3930 		 * These numbers are fairly fragile and should be made
3931 		 * more robust, probably by enforcing the
3932 		 * 'window size' that md_do_sync sort-of uses.
3933 		 *
3934 		 * Note: the following is an unsigned comparison.
3935 		 */
3936 		if ((curr_events - rdev->last_events + 4096) > 8192) {
3937 			rdev->last_events = curr_events;
3938 			idle = 0;
3939 		}
3940 	}
3941 	return idle;
3942 }
3943 
3944 void md_done_sync(mddev_t *mddev, int blocks, int ok)
3945 {
3946 	/* another "blocks" (512byte) blocks have been synced */
3947 	atomic_sub(blocks, &mddev->recovery_active);
3948 	wake_up(&mddev->recovery_wait);
3949 	if (!ok) {
3950 		set_bit(MD_RECOVERY_ERR, &mddev->recovery);
3951 		md_wakeup_thread(mddev->thread);
3952 		// stop recovery, signal do_sync ....
3953 	}
3954 }
3955 
3956 
3957 /* md_write_start(mddev, bi)
3958  * If we need to update some array metadata (e.g. 'active' flag
3959  * in superblock) before writing, schedule a superblock update
3960  * and wait for it to complete.
3961  */
3962 void md_write_start(mddev_t *mddev, struct bio *bi)
3963 {
3964 	if (bio_data_dir(bi) != WRITE)
3965 		return;
3966 
3967 	BUG_ON(mddev->ro == 1);
3968 	if (mddev->ro == 2) {
3969 		/* need to switch to read/write */
3970 		mddev->ro = 0;
3971 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3972 		md_wakeup_thread(mddev->thread);
3973 	}
3974 	atomic_inc(&mddev->writes_pending);
3975 	if (mddev->in_sync) {
3976 		spin_lock_irq(&mddev->write_lock);
3977 		if (mddev->in_sync) {
3978 			mddev->in_sync = 0;
3979 			mddev->sb_dirty = 1;
3980 			md_wakeup_thread(mddev->thread);
3981 		}
3982 		spin_unlock_irq(&mddev->write_lock);
3983 	}
3984 	wait_event(mddev->sb_wait, mddev->sb_dirty==0);
3985 }
3986 
3987 void md_write_end(mddev_t *mddev)
3988 {
3989 	if (atomic_dec_and_test(&mddev->writes_pending)) {
3990 		if (mddev->safemode == 2)
3991 			md_wakeup_thread(mddev->thread);
3992 		else
3993 			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
3994 	}
3995 }
3996 
3997 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
3998 
3999 #define SYNC_MARKS	10
4000 #define	SYNC_MARK_STEP	(3*HZ)
4001 static void md_do_sync(mddev_t *mddev)
4002 {
4003 	mddev_t *mddev2;
4004 	unsigned int currspeed = 0,
4005 		 window;
4006 	sector_t max_sectors,j, io_sectors;
4007 	unsigned long mark[SYNC_MARKS];
4008 	sector_t mark_cnt[SYNC_MARKS];
4009 	int last_mark,m;
4010 	struct list_head *tmp;
4011 	sector_t last_check;
4012 	int skipped = 0;
4013 
4014 	/* just incase thread restarts... */
4015 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
4016 		return;
4017 
4018 	/* we overload curr_resync somewhat here.
4019 	 * 0 == not engaged in resync at all
4020 	 * 2 == checking that there is no conflict with another sync
4021 	 * 1 == like 2, but have yielded to allow conflicting resync to
4022 	 *		commense
4023 	 * other == active in resync - this many blocks
4024 	 *
4025 	 * Before starting a resync we must have set curr_resync to
4026 	 * 2, and then checked that every "conflicting" array has curr_resync
4027 	 * less than ours.  When we find one that is the same or higher
4028 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
4029 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
4030 	 * This will mean we have to start checking from the beginning again.
4031 	 *
4032 	 */
4033 
4034 	do {
4035 		mddev->curr_resync = 2;
4036 
4037 	try_again:
4038 		if (kthread_should_stop()) {
4039 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4040 			goto skip;
4041 		}
4042 		ITERATE_MDDEV(mddev2,tmp) {
4043 			if (mddev2 == mddev)
4044 				continue;
4045 			if (mddev2->curr_resync &&
4046 			    match_mddev_units(mddev,mddev2)) {
4047 				DEFINE_WAIT(wq);
4048 				if (mddev < mddev2 && mddev->curr_resync == 2) {
4049 					/* arbitrarily yield */
4050 					mddev->curr_resync = 1;
4051 					wake_up(&resync_wait);
4052 				}
4053 				if (mddev > mddev2 && mddev->curr_resync == 1)
4054 					/* no need to wait here, we can wait the next
4055 					 * time 'round when curr_resync == 2
4056 					 */
4057 					continue;
4058 				prepare_to_wait(&resync_wait, &wq, TASK_UNINTERRUPTIBLE);
4059 				if (!kthread_should_stop() &&
4060 				    mddev2->curr_resync >= mddev->curr_resync) {
4061 					printk(KERN_INFO "md: delaying resync of %s"
4062 					       " until %s has finished resync (they"
4063 					       " share one or more physical units)\n",
4064 					       mdname(mddev), mdname(mddev2));
4065 					mddev_put(mddev2);
4066 					schedule();
4067 					finish_wait(&resync_wait, &wq);
4068 					goto try_again;
4069 				}
4070 				finish_wait(&resync_wait, &wq);
4071 			}
4072 		}
4073 	} while (mddev->curr_resync < 2);
4074 
4075 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4076 		/* resync follows the size requested by the personality,
4077 		 * which defaults to physical size, but can be virtual size
4078 		 */
4079 		max_sectors = mddev->resync_max_sectors;
4080 		mddev->resync_mismatches = 0;
4081 	} else
4082 		/* recovery follows the physical size of devices */
4083 		max_sectors = mddev->size << 1;
4084 
4085 	printk(KERN_INFO "md: syncing RAID array %s\n", mdname(mddev));
4086 	printk(KERN_INFO "md: minimum _guaranteed_ reconstruction speed:"
4087 		" %d KB/sec/disc.\n", sysctl_speed_limit_min);
4088 	printk(KERN_INFO "md: using maximum available idle IO bandwidth "
4089 	       "(but not more than %d KB/sec) for reconstruction.\n",
4090 	       sysctl_speed_limit_max);
4091 
4092 	is_mddev_idle(mddev); /* this also initializes IO event counters */
4093 	/* we don't use the checkpoint if there's a bitmap */
4094 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && !mddev->bitmap
4095 	    && ! test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4096 		j = mddev->recovery_cp;
4097 	else
4098 		j = 0;
4099 	io_sectors = 0;
4100 	for (m = 0; m < SYNC_MARKS; m++) {
4101 		mark[m] = jiffies;
4102 		mark_cnt[m] = io_sectors;
4103 	}
4104 	last_mark = 0;
4105 	mddev->resync_mark = mark[last_mark];
4106 	mddev->resync_mark_cnt = mark_cnt[last_mark];
4107 
4108 	/*
4109 	 * Tune reconstruction:
4110 	 */
4111 	window = 32*(PAGE_SIZE/512);
4112 	printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
4113 		window/2,(unsigned long long) max_sectors/2);
4114 
4115 	atomic_set(&mddev->recovery_active, 0);
4116 	init_waitqueue_head(&mddev->recovery_wait);
4117 	last_check = 0;
4118 
4119 	if (j>2) {
4120 		printk(KERN_INFO
4121 			"md: resuming recovery of %s from checkpoint.\n",
4122 			mdname(mddev));
4123 		mddev->curr_resync = j;
4124 	}
4125 
4126 	while (j < max_sectors) {
4127 		sector_t sectors;
4128 
4129 		skipped = 0;
4130 		sectors = mddev->pers->sync_request(mddev, j, &skipped,
4131 					    currspeed < sysctl_speed_limit_min);
4132 		if (sectors == 0) {
4133 			set_bit(MD_RECOVERY_ERR, &mddev->recovery);
4134 			goto out;
4135 		}
4136 
4137 		if (!skipped) { /* actual IO requested */
4138 			io_sectors += sectors;
4139 			atomic_add(sectors, &mddev->recovery_active);
4140 		}
4141 
4142 		j += sectors;
4143 		if (j>1) mddev->curr_resync = j;
4144 		if (last_check == 0)
4145 			/* this is the earliers that rebuilt will be
4146 			 * visible in /proc/mdstat
4147 			 */
4148 			md_new_event(mddev);
4149 
4150 		if (last_check + window > io_sectors || j == max_sectors)
4151 			continue;
4152 
4153 		last_check = io_sectors;
4154 
4155 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
4156 		    test_bit(MD_RECOVERY_ERR, &mddev->recovery))
4157 			break;
4158 
4159 	repeat:
4160 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
4161 			/* step marks */
4162 			int next = (last_mark+1) % SYNC_MARKS;
4163 
4164 			mddev->resync_mark = mark[next];
4165 			mddev->resync_mark_cnt = mark_cnt[next];
4166 			mark[next] = jiffies;
4167 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
4168 			last_mark = next;
4169 		}
4170 
4171 
4172 		if (kthread_should_stop()) {
4173 			/*
4174 			 * got a signal, exit.
4175 			 */
4176 			printk(KERN_INFO
4177 				"md: md_do_sync() got signal ... exiting\n");
4178 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4179 			goto out;
4180 		}
4181 
4182 		/*
4183 		 * this loop exits only if either when we are slower than
4184 		 * the 'hard' speed limit, or the system was IO-idle for
4185 		 * a jiffy.
4186 		 * the system might be non-idle CPU-wise, but we only care
4187 		 * about not overloading the IO subsystem. (things like an
4188 		 * e2fsck being done on the RAID array should execute fast)
4189 		 */
4190 		mddev->queue->unplug_fn(mddev->queue);
4191 		cond_resched();
4192 
4193 		currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
4194 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
4195 
4196 		if (currspeed > sysctl_speed_limit_min) {
4197 			if ((currspeed > sysctl_speed_limit_max) ||
4198 					!is_mddev_idle(mddev)) {
4199 				msleep(500);
4200 				goto repeat;
4201 			}
4202 		}
4203 	}
4204 	printk(KERN_INFO "md: %s: sync done.\n",mdname(mddev));
4205 	/*
4206 	 * this also signals 'finished resyncing' to md_stop
4207 	 */
4208  out:
4209 	mddev->queue->unplug_fn(mddev->queue);
4210 
4211 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
4212 
4213 	/* tell personality that we are finished */
4214 	mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
4215 
4216 	if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
4217 	    mddev->curr_resync > 2 &&
4218 	    mddev->curr_resync >= mddev->recovery_cp) {
4219 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4220 			printk(KERN_INFO
4221 				"md: checkpointing recovery of %s.\n",
4222 				mdname(mddev));
4223 			mddev->recovery_cp = mddev->curr_resync;
4224 		} else
4225 			mddev->recovery_cp = MaxSector;
4226 	}
4227 
4228  skip:
4229 	mddev->curr_resync = 0;
4230 	wake_up(&resync_wait);
4231 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
4232 	md_wakeup_thread(mddev->thread);
4233 }
4234 
4235 
4236 /*
4237  * This routine is regularly called by all per-raid-array threads to
4238  * deal with generic issues like resync and super-block update.
4239  * Raid personalities that don't have a thread (linear/raid0) do not
4240  * need this as they never do any recovery or update the superblock.
4241  *
4242  * It does not do any resync itself, but rather "forks" off other threads
4243  * to do that as needed.
4244  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
4245  * "->recovery" and create a thread at ->sync_thread.
4246  * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
4247  * and wakeups up this thread which will reap the thread and finish up.
4248  * This thread also removes any faulty devices (with nr_pending == 0).
4249  *
4250  * The overall approach is:
4251  *  1/ if the superblock needs updating, update it.
4252  *  2/ If a recovery thread is running, don't do anything else.
4253  *  3/ If recovery has finished, clean up, possibly marking spares active.
4254  *  4/ If there are any faulty devices, remove them.
4255  *  5/ If array is degraded, try to add spares devices
4256  *  6/ If array has spares or is not in-sync, start a resync thread.
4257  */
4258 void md_check_recovery(mddev_t *mddev)
4259 {
4260 	mdk_rdev_t *rdev;
4261 	struct list_head *rtmp;
4262 
4263 
4264 	if (mddev->bitmap)
4265 		bitmap_daemon_work(mddev->bitmap);
4266 
4267 	if (mddev->ro)
4268 		return;
4269 
4270 	if (signal_pending(current)) {
4271 		if (mddev->pers->sync_request) {
4272 			printk(KERN_INFO "md: %s in immediate safe mode\n",
4273 			       mdname(mddev));
4274 			mddev->safemode = 2;
4275 		}
4276 		flush_signals(current);
4277 	}
4278 
4279 	if ( ! (
4280 		mddev->sb_dirty ||
4281 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
4282 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
4283 		(mddev->safemode == 1) ||
4284 		(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
4285 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
4286 		))
4287 		return;
4288 
4289 	if (mddev_trylock(mddev)==0) {
4290 		int spares =0;
4291 
4292 		spin_lock_irq(&mddev->write_lock);
4293 		if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
4294 		    !mddev->in_sync && mddev->recovery_cp == MaxSector) {
4295 			mddev->in_sync = 1;
4296 			mddev->sb_dirty = 1;
4297 		}
4298 		if (mddev->safemode == 1)
4299 			mddev->safemode = 0;
4300 		spin_unlock_irq(&mddev->write_lock);
4301 
4302 		if (mddev->sb_dirty)
4303 			md_update_sb(mddev);
4304 
4305 
4306 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4307 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
4308 			/* resync/recovery still happening */
4309 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4310 			goto unlock;
4311 		}
4312 		if (mddev->sync_thread) {
4313 			/* resync has finished, collect result */
4314 			md_unregister_thread(mddev->sync_thread);
4315 			mddev->sync_thread = NULL;
4316 			if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
4317 			    !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4318 				/* success...*/
4319 				/* activate any spares */
4320 				mddev->pers->spare_active(mddev);
4321 			}
4322 			md_update_sb(mddev);
4323 
4324 			/* if array is no-longer degraded, then any saved_raid_disk
4325 			 * information must be scrapped
4326 			 */
4327 			if (!mddev->degraded)
4328 				ITERATE_RDEV(mddev,rdev,rtmp)
4329 					rdev->saved_raid_disk = -1;
4330 
4331 			mddev->recovery = 0;
4332 			/* flag recovery needed just to double check */
4333 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4334 			md_new_event(mddev);
4335 			goto unlock;
4336 		}
4337 		/* Clear some bits that don't mean anything, but
4338 		 * might be left set
4339 		 */
4340 		clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4341 		clear_bit(MD_RECOVERY_ERR, &mddev->recovery);
4342 		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
4343 		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4344 
4345 		/* no recovery is running.
4346 		 * remove any failed drives, then
4347 		 * add spares if possible.
4348 		 * Spare are also removed and re-added, to allow
4349 		 * the personality to fail the re-add.
4350 		 */
4351 		ITERATE_RDEV(mddev,rdev,rtmp)
4352 			if (rdev->raid_disk >= 0 &&
4353 			    (test_bit(Faulty, &rdev->flags) || ! test_bit(In_sync, &rdev->flags)) &&
4354 			    atomic_read(&rdev->nr_pending)==0) {
4355 				if (mddev->pers->hot_remove_disk(mddev, rdev->raid_disk)==0) {
4356 					char nm[20];
4357 					sprintf(nm,"rd%d", rdev->raid_disk);
4358 					sysfs_remove_link(&mddev->kobj, nm);
4359 					rdev->raid_disk = -1;
4360 				}
4361 			}
4362 
4363 		if (mddev->degraded) {
4364 			ITERATE_RDEV(mddev,rdev,rtmp)
4365 				if (rdev->raid_disk < 0
4366 				    && !test_bit(Faulty, &rdev->flags)) {
4367 					if (mddev->pers->hot_add_disk(mddev,rdev)) {
4368 						char nm[20];
4369 						sprintf(nm, "rd%d", rdev->raid_disk);
4370 						sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
4371 						spares++;
4372 						md_new_event(mddev);
4373 					} else
4374 						break;
4375 				}
4376 		}
4377 
4378 		if (spares) {
4379 			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4380 			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4381 		} else if (mddev->recovery_cp < MaxSector) {
4382 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4383 		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4384 			/* nothing to be done ... */
4385 			goto unlock;
4386 
4387 		if (mddev->pers->sync_request) {
4388 			set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4389 			if (spares && mddev->bitmap && ! mddev->bitmap->file) {
4390 				/* We are adding a device or devices to an array
4391 				 * which has the bitmap stored on all devices.
4392 				 * So make sure all bitmap pages get written
4393 				 */
4394 				bitmap_write_all(mddev->bitmap);
4395 			}
4396 			mddev->sync_thread = md_register_thread(md_do_sync,
4397 								mddev,
4398 								"%s_resync");
4399 			if (!mddev->sync_thread) {
4400 				printk(KERN_ERR "%s: could not start resync"
4401 					" thread...\n",
4402 					mdname(mddev));
4403 				/* leave the spares where they are, it shouldn't hurt */
4404 				mddev->recovery = 0;
4405 			} else
4406 				md_wakeup_thread(mddev->sync_thread);
4407 			md_new_event(mddev);
4408 		}
4409 	unlock:
4410 		mddev_unlock(mddev);
4411 	}
4412 }
4413 
4414 static int md_notify_reboot(struct notifier_block *this,
4415 			    unsigned long code, void *x)
4416 {
4417 	struct list_head *tmp;
4418 	mddev_t *mddev;
4419 
4420 	if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
4421 
4422 		printk(KERN_INFO "md: stopping all md devices.\n");
4423 
4424 		ITERATE_MDDEV(mddev,tmp)
4425 			if (mddev_trylock(mddev)==0)
4426 				do_md_stop (mddev, 1);
4427 		/*
4428 		 * certain more exotic SCSI devices are known to be
4429 		 * volatile wrt too early system reboots. While the
4430 		 * right place to handle this issue is the given
4431 		 * driver, we do want to have a safe RAID driver ...
4432 		 */
4433 		mdelay(1000*1);
4434 	}
4435 	return NOTIFY_DONE;
4436 }
4437 
4438 static struct notifier_block md_notifier = {
4439 	.notifier_call	= md_notify_reboot,
4440 	.next		= NULL,
4441 	.priority	= INT_MAX, /* before any real devices */
4442 };
4443 
4444 static void md_geninit(void)
4445 {
4446 	struct proc_dir_entry *p;
4447 
4448 	dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
4449 
4450 	p = create_proc_entry("mdstat", S_IRUGO, NULL);
4451 	if (p)
4452 		p->proc_fops = &md_seq_fops;
4453 }
4454 
4455 static int __init md_init(void)
4456 {
4457 	int minor;
4458 
4459 	printk(KERN_INFO "md: md driver %d.%d.%d MAX_MD_DEVS=%d,"
4460 			" MD_SB_DISKS=%d\n",
4461 			MD_MAJOR_VERSION, MD_MINOR_VERSION,
4462 			MD_PATCHLEVEL_VERSION, MAX_MD_DEVS, MD_SB_DISKS);
4463 	printk(KERN_INFO "md: bitmap version %d.%d\n", BITMAP_MAJOR_HI,
4464 			BITMAP_MINOR);
4465 
4466 	if (register_blkdev(MAJOR_NR, "md"))
4467 		return -1;
4468 	if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
4469 		unregister_blkdev(MAJOR_NR, "md");
4470 		return -1;
4471 	}
4472 	devfs_mk_dir("md");
4473 	blk_register_region(MKDEV(MAJOR_NR, 0), MAX_MD_DEVS, THIS_MODULE,
4474 				md_probe, NULL, NULL);
4475 	blk_register_region(MKDEV(mdp_major, 0), MAX_MD_DEVS<<MdpMinorShift, THIS_MODULE,
4476 			    md_probe, NULL, NULL);
4477 
4478 	for (minor=0; minor < MAX_MD_DEVS; ++minor)
4479 		devfs_mk_bdev(MKDEV(MAJOR_NR, minor),
4480 				S_IFBLK|S_IRUSR|S_IWUSR,
4481 				"md/%d", minor);
4482 
4483 	for (minor=0; minor < MAX_MD_DEVS; ++minor)
4484 		devfs_mk_bdev(MKDEV(mdp_major, minor<<MdpMinorShift),
4485 			      S_IFBLK|S_IRUSR|S_IWUSR,
4486 			      "md/mdp%d", minor);
4487 
4488 
4489 	register_reboot_notifier(&md_notifier);
4490 	raid_table_header = register_sysctl_table(raid_root_table, 1);
4491 
4492 	md_geninit();
4493 	return (0);
4494 }
4495 
4496 
4497 #ifndef MODULE
4498 
4499 /*
4500  * Searches all registered partitions for autorun RAID arrays
4501  * at boot time.
4502  */
4503 static dev_t detected_devices[128];
4504 static int dev_cnt;
4505 
4506 void md_autodetect_dev(dev_t dev)
4507 {
4508 	if (dev_cnt >= 0 && dev_cnt < 127)
4509 		detected_devices[dev_cnt++] = dev;
4510 }
4511 
4512 
4513 static void autostart_arrays(int part)
4514 {
4515 	mdk_rdev_t *rdev;
4516 	int i;
4517 
4518 	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
4519 
4520 	for (i = 0; i < dev_cnt; i++) {
4521 		dev_t dev = detected_devices[i];
4522 
4523 		rdev = md_import_device(dev,0, 0);
4524 		if (IS_ERR(rdev))
4525 			continue;
4526 
4527 		if (test_bit(Faulty, &rdev->flags)) {
4528 			MD_BUG();
4529 			continue;
4530 		}
4531 		list_add(&rdev->same_set, &pending_raid_disks);
4532 	}
4533 	dev_cnt = 0;
4534 
4535 	autorun_devices(part);
4536 }
4537 
4538 #endif
4539 
4540 static __exit void md_exit(void)
4541 {
4542 	mddev_t *mddev;
4543 	struct list_head *tmp;
4544 	int i;
4545 	blk_unregister_region(MKDEV(MAJOR_NR,0), MAX_MD_DEVS);
4546 	blk_unregister_region(MKDEV(mdp_major,0), MAX_MD_DEVS << MdpMinorShift);
4547 	for (i=0; i < MAX_MD_DEVS; i++)
4548 		devfs_remove("md/%d", i);
4549 	for (i=0; i < MAX_MD_DEVS; i++)
4550 		devfs_remove("md/d%d", i);
4551 
4552 	devfs_remove("md");
4553 
4554 	unregister_blkdev(MAJOR_NR,"md");
4555 	unregister_blkdev(mdp_major, "mdp");
4556 	unregister_reboot_notifier(&md_notifier);
4557 	unregister_sysctl_table(raid_table_header);
4558 	remove_proc_entry("mdstat", NULL);
4559 	ITERATE_MDDEV(mddev,tmp) {
4560 		struct gendisk *disk = mddev->gendisk;
4561 		if (!disk)
4562 			continue;
4563 		export_array(mddev);
4564 		del_gendisk(disk);
4565 		put_disk(disk);
4566 		mddev->gendisk = NULL;
4567 		mddev_put(mddev);
4568 	}
4569 }
4570 
4571 module_init(md_init)
4572 module_exit(md_exit)
4573 
4574 static int get_ro(char *buffer, struct kernel_param *kp)
4575 {
4576 	return sprintf(buffer, "%d", start_readonly);
4577 }
4578 static int set_ro(const char *val, struct kernel_param *kp)
4579 {
4580 	char *e;
4581 	int num = simple_strtoul(val, &e, 10);
4582 	if (*val && (*e == '\0' || *e == '\n')) {
4583 		start_readonly = num;
4584 		return 0;;
4585 	}
4586 	return -EINVAL;
4587 }
4588 
4589 module_param_call(start_ro, set_ro, get_ro, NULL, 0600);
4590 module_param(start_dirty_degraded, int, 0644);
4591 
4592 
4593 EXPORT_SYMBOL(register_md_personality);
4594 EXPORT_SYMBOL(unregister_md_personality);
4595 EXPORT_SYMBOL(md_error);
4596 EXPORT_SYMBOL(md_done_sync);
4597 EXPORT_SYMBOL(md_write_start);
4598 EXPORT_SYMBOL(md_write_end);
4599 EXPORT_SYMBOL(md_register_thread);
4600 EXPORT_SYMBOL(md_unregister_thread);
4601 EXPORT_SYMBOL(md_wakeup_thread);
4602 EXPORT_SYMBOL(md_print_devices);
4603 EXPORT_SYMBOL(md_check_recovery);
4604 MODULE_LICENSE("GPL");
4605 MODULE_ALIAS("md");
4606 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
4607