1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 md.c : Multiple Devices driver for Linux 4 Copyright (C) 1998, 1999, 2000 Ingo Molnar 5 6 completely rewritten, based on the MD driver code from Marc Zyngier 7 8 Changes: 9 10 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar 11 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> 12 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> 13 - kerneld support by Boris Tobotras <boris@xtalk.msk.su> 14 - kmod support by: Cyrus Durgin 15 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> 16 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> 17 18 - lots of fixes and improvements to the RAID1/RAID5 and generic 19 RAID code (such as request based resynchronization): 20 21 Neil Brown <neilb@cse.unsw.edu.au>. 22 23 - persistent bitmap code 24 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. 25 26 27 Errors, Warnings, etc. 28 Please use: 29 pr_crit() for error conditions that risk data loss 30 pr_err() for error conditions that are unexpected, like an IO error 31 or internal inconsistency 32 pr_warn() for error conditions that could have been predicated, like 33 adding a device to an array when it has incompatible metadata 34 pr_info() for every interesting, very rare events, like an array starting 35 or stopping, or resync starting or stopping 36 pr_debug() for everything else. 37 38 */ 39 40 #include <linux/sched/mm.h> 41 #include <linux/sched/signal.h> 42 #include <linux/kthread.h> 43 #include <linux/blkdev.h> 44 #include <linux/blk-integrity.h> 45 #include <linux/badblocks.h> 46 #include <linux/sysctl.h> 47 #include <linux/seq_file.h> 48 #include <linux/fs.h> 49 #include <linux/poll.h> 50 #include <linux/ctype.h> 51 #include <linux/string.h> 52 #include <linux/hdreg.h> 53 #include <linux/proc_fs.h> 54 #include <linux/random.h> 55 #include <linux/major.h> 56 #include <linux/module.h> 57 #include <linux/reboot.h> 58 #include <linux/file.h> 59 #include <linux/compat.h> 60 #include <linux/delay.h> 61 #include <linux/raid/md_p.h> 62 #include <linux/raid/md_u.h> 63 #include <linux/raid/detect.h> 64 #include <linux/slab.h> 65 #include <linux/percpu-refcount.h> 66 #include <linux/part_stat.h> 67 68 #include <trace/events/block.h> 69 #include "md.h" 70 #include "md-bitmap.h" 71 #include "md-cluster.h" 72 73 /* pers_list is a list of registered personalities protected by pers_lock. */ 74 static LIST_HEAD(pers_list); 75 static DEFINE_SPINLOCK(pers_lock); 76 77 static const struct kobj_type md_ktype; 78 79 struct md_cluster_operations *md_cluster_ops; 80 EXPORT_SYMBOL(md_cluster_ops); 81 static struct module *md_cluster_mod; 82 83 static DECLARE_WAIT_QUEUE_HEAD(resync_wait); 84 static struct workqueue_struct *md_wq; 85 static struct workqueue_struct *md_misc_wq; 86 struct workqueue_struct *md_bitmap_wq; 87 88 static int remove_and_add_spares(struct mddev *mddev, 89 struct md_rdev *this); 90 static void mddev_detach(struct mddev *mddev); 91 static void export_rdev(struct md_rdev *rdev, struct mddev *mddev); 92 static void md_wakeup_thread_directly(struct md_thread __rcu *thread); 93 94 /* 95 * Default number of read corrections we'll attempt on an rdev 96 * before ejecting it from the array. We divide the read error 97 * count by 2 for every hour elapsed between read errors. 98 */ 99 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20 100 /* Default safemode delay: 200 msec */ 101 #define DEFAULT_SAFEMODE_DELAY ((200 * HZ)/1000 +1) 102 /* 103 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' 104 * is 1000 KB/sec, so the extra system load does not show up that much. 105 * Increase it if you want to have more _guaranteed_ speed. Note that 106 * the RAID driver will use the maximum available bandwidth if the IO 107 * subsystem is idle. There is also an 'absolute maximum' reconstruction 108 * speed limit - in case reconstruction slows down your system despite 109 * idle IO detection. 110 * 111 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. 112 * or /sys/block/mdX/md/sync_speed_{min,max} 113 */ 114 115 static int sysctl_speed_limit_min = 1000; 116 static int sysctl_speed_limit_max = 200000; 117 static inline int speed_min(struct mddev *mddev) 118 { 119 return mddev->sync_speed_min ? 120 mddev->sync_speed_min : sysctl_speed_limit_min; 121 } 122 123 static inline int speed_max(struct mddev *mddev) 124 { 125 return mddev->sync_speed_max ? 126 mddev->sync_speed_max : sysctl_speed_limit_max; 127 } 128 129 static void rdev_uninit_serial(struct md_rdev *rdev) 130 { 131 if (!test_and_clear_bit(CollisionCheck, &rdev->flags)) 132 return; 133 134 kvfree(rdev->serial); 135 rdev->serial = NULL; 136 } 137 138 static void rdevs_uninit_serial(struct mddev *mddev) 139 { 140 struct md_rdev *rdev; 141 142 rdev_for_each(rdev, mddev) 143 rdev_uninit_serial(rdev); 144 } 145 146 static int rdev_init_serial(struct md_rdev *rdev) 147 { 148 /* serial_nums equals with BARRIER_BUCKETS_NR */ 149 int i, serial_nums = 1 << ((PAGE_SHIFT - ilog2(sizeof(atomic_t)))); 150 struct serial_in_rdev *serial = NULL; 151 152 if (test_bit(CollisionCheck, &rdev->flags)) 153 return 0; 154 155 serial = kvmalloc(sizeof(struct serial_in_rdev) * serial_nums, 156 GFP_KERNEL); 157 if (!serial) 158 return -ENOMEM; 159 160 for (i = 0; i < serial_nums; i++) { 161 struct serial_in_rdev *serial_tmp = &serial[i]; 162 163 spin_lock_init(&serial_tmp->serial_lock); 164 serial_tmp->serial_rb = RB_ROOT_CACHED; 165 init_waitqueue_head(&serial_tmp->serial_io_wait); 166 } 167 168 rdev->serial = serial; 169 set_bit(CollisionCheck, &rdev->flags); 170 171 return 0; 172 } 173 174 static int rdevs_init_serial(struct mddev *mddev) 175 { 176 struct md_rdev *rdev; 177 int ret = 0; 178 179 rdev_for_each(rdev, mddev) { 180 ret = rdev_init_serial(rdev); 181 if (ret) 182 break; 183 } 184 185 /* Free all resources if pool is not existed */ 186 if (ret && !mddev->serial_info_pool) 187 rdevs_uninit_serial(mddev); 188 189 return ret; 190 } 191 192 /* 193 * rdev needs to enable serial stuffs if it meets the conditions: 194 * 1. it is multi-queue device flaged with writemostly. 195 * 2. the write-behind mode is enabled. 196 */ 197 static int rdev_need_serial(struct md_rdev *rdev) 198 { 199 return (rdev && rdev->mddev->bitmap_info.max_write_behind > 0 && 200 rdev->bdev->bd_disk->queue->nr_hw_queues != 1 && 201 test_bit(WriteMostly, &rdev->flags)); 202 } 203 204 /* 205 * Init resource for rdev(s), then create serial_info_pool if: 206 * 1. rdev is the first device which return true from rdev_enable_serial. 207 * 2. rdev is NULL, means we want to enable serialization for all rdevs. 208 */ 209 void mddev_create_serial_pool(struct mddev *mddev, struct md_rdev *rdev, 210 bool is_suspend) 211 { 212 int ret = 0; 213 214 if (rdev && !rdev_need_serial(rdev) && 215 !test_bit(CollisionCheck, &rdev->flags)) 216 return; 217 218 if (!is_suspend) 219 mddev_suspend(mddev); 220 221 if (!rdev) 222 ret = rdevs_init_serial(mddev); 223 else 224 ret = rdev_init_serial(rdev); 225 if (ret) 226 goto abort; 227 228 if (mddev->serial_info_pool == NULL) { 229 /* 230 * already in memalloc noio context by 231 * mddev_suspend() 232 */ 233 mddev->serial_info_pool = 234 mempool_create_kmalloc_pool(NR_SERIAL_INFOS, 235 sizeof(struct serial_info)); 236 if (!mddev->serial_info_pool) { 237 rdevs_uninit_serial(mddev); 238 pr_err("can't alloc memory pool for serialization\n"); 239 } 240 } 241 242 abort: 243 if (!is_suspend) 244 mddev_resume(mddev); 245 } 246 247 /* 248 * Free resource from rdev(s), and destroy serial_info_pool under conditions: 249 * 1. rdev is the last device flaged with CollisionCheck. 250 * 2. when bitmap is destroyed while policy is not enabled. 251 * 3. for disable policy, the pool is destroyed only when no rdev needs it. 252 */ 253 void mddev_destroy_serial_pool(struct mddev *mddev, struct md_rdev *rdev, 254 bool is_suspend) 255 { 256 if (rdev && !test_bit(CollisionCheck, &rdev->flags)) 257 return; 258 259 if (mddev->serial_info_pool) { 260 struct md_rdev *temp; 261 int num = 0; /* used to track if other rdevs need the pool */ 262 263 if (!is_suspend) 264 mddev_suspend(mddev); 265 rdev_for_each(temp, mddev) { 266 if (!rdev) { 267 if (!mddev->serialize_policy || 268 !rdev_need_serial(temp)) 269 rdev_uninit_serial(temp); 270 else 271 num++; 272 } else if (temp != rdev && 273 test_bit(CollisionCheck, &temp->flags)) 274 num++; 275 } 276 277 if (rdev) 278 rdev_uninit_serial(rdev); 279 280 if (num) 281 pr_info("The mempool could be used by other devices\n"); 282 else { 283 mempool_destroy(mddev->serial_info_pool); 284 mddev->serial_info_pool = NULL; 285 } 286 if (!is_suspend) 287 mddev_resume(mddev); 288 } 289 } 290 291 static struct ctl_table_header *raid_table_header; 292 293 static struct ctl_table raid_table[] = { 294 { 295 .procname = "speed_limit_min", 296 .data = &sysctl_speed_limit_min, 297 .maxlen = sizeof(int), 298 .mode = S_IRUGO|S_IWUSR, 299 .proc_handler = proc_dointvec, 300 }, 301 { 302 .procname = "speed_limit_max", 303 .data = &sysctl_speed_limit_max, 304 .maxlen = sizeof(int), 305 .mode = S_IRUGO|S_IWUSR, 306 .proc_handler = proc_dointvec, 307 }, 308 { } 309 }; 310 311 static int start_readonly; 312 313 /* 314 * The original mechanism for creating an md device is to create 315 * a device node in /dev and to open it. This causes races with device-close. 316 * The preferred method is to write to the "new_array" module parameter. 317 * This can avoid races. 318 * Setting create_on_open to false disables the original mechanism 319 * so all the races disappear. 320 */ 321 static bool create_on_open = true; 322 323 /* 324 * We have a system wide 'event count' that is incremented 325 * on any 'interesting' event, and readers of /proc/mdstat 326 * can use 'poll' or 'select' to find out when the event 327 * count increases. 328 * 329 * Events are: 330 * start array, stop array, error, add device, remove device, 331 * start build, activate spare 332 */ 333 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); 334 static atomic_t md_event_count; 335 void md_new_event(void) 336 { 337 atomic_inc(&md_event_count); 338 wake_up(&md_event_waiters); 339 } 340 EXPORT_SYMBOL_GPL(md_new_event); 341 342 /* 343 * Enables to iterate over all existing md arrays 344 * all_mddevs_lock protects this list. 345 */ 346 static LIST_HEAD(all_mddevs); 347 static DEFINE_SPINLOCK(all_mddevs_lock); 348 349 /* Rather than calling directly into the personality make_request function, 350 * IO requests come here first so that we can check if the device is 351 * being suspended pending a reconfiguration. 352 * We hold a refcount over the call to ->make_request. By the time that 353 * call has finished, the bio has been linked into some internal structure 354 * and so is visible to ->quiesce(), so we don't need the refcount any more. 355 */ 356 static bool is_suspended(struct mddev *mddev, struct bio *bio) 357 { 358 if (is_md_suspended(mddev)) 359 return true; 360 if (bio_data_dir(bio) != WRITE) 361 return false; 362 if (mddev->suspend_lo >= mddev->suspend_hi) 363 return false; 364 if (bio->bi_iter.bi_sector >= mddev->suspend_hi) 365 return false; 366 if (bio_end_sector(bio) < mddev->suspend_lo) 367 return false; 368 return true; 369 } 370 371 void md_handle_request(struct mddev *mddev, struct bio *bio) 372 { 373 check_suspended: 374 if (is_suspended(mddev, bio)) { 375 DEFINE_WAIT(__wait); 376 /* Bail out if REQ_NOWAIT is set for the bio */ 377 if (bio->bi_opf & REQ_NOWAIT) { 378 bio_wouldblock_error(bio); 379 return; 380 } 381 for (;;) { 382 prepare_to_wait(&mddev->sb_wait, &__wait, 383 TASK_UNINTERRUPTIBLE); 384 if (!is_suspended(mddev, bio)) 385 break; 386 schedule(); 387 } 388 finish_wait(&mddev->sb_wait, &__wait); 389 } 390 if (!percpu_ref_tryget_live(&mddev->active_io)) 391 goto check_suspended; 392 393 if (!mddev->pers->make_request(mddev, bio)) { 394 percpu_ref_put(&mddev->active_io); 395 goto check_suspended; 396 } 397 398 percpu_ref_put(&mddev->active_io); 399 } 400 EXPORT_SYMBOL(md_handle_request); 401 402 static void md_submit_bio(struct bio *bio) 403 { 404 const int rw = bio_data_dir(bio); 405 struct mddev *mddev = bio->bi_bdev->bd_disk->private_data; 406 407 if (mddev == NULL || mddev->pers == NULL) { 408 bio_io_error(bio); 409 return; 410 } 411 412 if (unlikely(test_bit(MD_BROKEN, &mddev->flags)) && (rw == WRITE)) { 413 bio_io_error(bio); 414 return; 415 } 416 417 bio = bio_split_to_limits(bio); 418 if (!bio) 419 return; 420 421 if (mddev->ro == MD_RDONLY && unlikely(rw == WRITE)) { 422 if (bio_sectors(bio) != 0) 423 bio->bi_status = BLK_STS_IOERR; 424 bio_endio(bio); 425 return; 426 } 427 428 /* bio could be mergeable after passing to underlayer */ 429 bio->bi_opf &= ~REQ_NOMERGE; 430 431 md_handle_request(mddev, bio); 432 } 433 434 /* mddev_suspend makes sure no new requests are submitted 435 * to the device, and that any requests that have been submitted 436 * are completely handled. 437 * Once mddev_detach() is called and completes, the module will be 438 * completely unused. 439 */ 440 void mddev_suspend(struct mddev *mddev) 441 { 442 struct md_thread *thread = rcu_dereference_protected(mddev->thread, 443 lockdep_is_held(&mddev->reconfig_mutex)); 444 445 WARN_ON_ONCE(thread && current == thread->tsk); 446 if (mddev->suspended++) 447 return; 448 wake_up(&mddev->sb_wait); 449 set_bit(MD_ALLOW_SB_UPDATE, &mddev->flags); 450 percpu_ref_kill(&mddev->active_io); 451 452 if (mddev->pers && mddev->pers->prepare_suspend) 453 mddev->pers->prepare_suspend(mddev); 454 455 wait_event(mddev->sb_wait, percpu_ref_is_zero(&mddev->active_io)); 456 clear_bit_unlock(MD_ALLOW_SB_UPDATE, &mddev->flags); 457 wait_event(mddev->sb_wait, !test_bit(MD_UPDATING_SB, &mddev->flags)); 458 459 /* restrict memory reclaim I/O during raid array is suspend */ 460 mddev->noio_flag = memalloc_noio_save(); 461 } 462 EXPORT_SYMBOL_GPL(mddev_suspend); 463 464 void mddev_resume(struct mddev *mddev) 465 { 466 lockdep_assert_held(&mddev->reconfig_mutex); 467 if (--mddev->suspended) 468 return; 469 470 /* entred the memalloc scope from mddev_suspend() */ 471 memalloc_noio_restore(mddev->noio_flag); 472 473 percpu_ref_resurrect(&mddev->active_io); 474 wake_up(&mddev->sb_wait); 475 476 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 477 md_wakeup_thread(mddev->thread); 478 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 479 } 480 EXPORT_SYMBOL_GPL(mddev_resume); 481 482 /* 483 * Generic flush handling for md 484 */ 485 486 static void md_end_flush(struct bio *bio) 487 { 488 struct md_rdev *rdev = bio->bi_private; 489 struct mddev *mddev = rdev->mddev; 490 491 bio_put(bio); 492 493 rdev_dec_pending(rdev, mddev); 494 495 if (atomic_dec_and_test(&mddev->flush_pending)) 496 /* The pre-request flush has finished */ 497 queue_work(md_wq, &mddev->flush_work); 498 } 499 500 static void md_submit_flush_data(struct work_struct *ws); 501 502 static void submit_flushes(struct work_struct *ws) 503 { 504 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 505 struct md_rdev *rdev; 506 507 mddev->start_flush = ktime_get_boottime(); 508 INIT_WORK(&mddev->flush_work, md_submit_flush_data); 509 atomic_set(&mddev->flush_pending, 1); 510 rcu_read_lock(); 511 rdev_for_each_rcu(rdev, mddev) 512 if (rdev->raid_disk >= 0 && 513 !test_bit(Faulty, &rdev->flags)) { 514 struct bio *bi; 515 516 atomic_inc(&rdev->nr_pending); 517 rcu_read_unlock(); 518 bi = bio_alloc_bioset(rdev->bdev, 0, 519 REQ_OP_WRITE | REQ_PREFLUSH, 520 GFP_NOIO, &mddev->bio_set); 521 bi->bi_end_io = md_end_flush; 522 bi->bi_private = rdev; 523 atomic_inc(&mddev->flush_pending); 524 submit_bio(bi); 525 rcu_read_lock(); 526 } 527 rcu_read_unlock(); 528 if (atomic_dec_and_test(&mddev->flush_pending)) 529 queue_work(md_wq, &mddev->flush_work); 530 } 531 532 static void md_submit_flush_data(struct work_struct *ws) 533 { 534 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 535 struct bio *bio = mddev->flush_bio; 536 537 /* 538 * must reset flush_bio before calling into md_handle_request to avoid a 539 * deadlock, because other bios passed md_handle_request suspend check 540 * could wait for this and below md_handle_request could wait for those 541 * bios because of suspend check 542 */ 543 spin_lock_irq(&mddev->lock); 544 mddev->prev_flush_start = mddev->start_flush; 545 mddev->flush_bio = NULL; 546 spin_unlock_irq(&mddev->lock); 547 wake_up(&mddev->sb_wait); 548 549 if (bio->bi_iter.bi_size == 0) { 550 /* an empty barrier - all done */ 551 bio_endio(bio); 552 } else { 553 bio->bi_opf &= ~REQ_PREFLUSH; 554 555 /* 556 * make_requst() will never return error here, it only 557 * returns error in raid5_make_request() by dm-raid. 558 * Since dm always splits data and flush operation into 559 * two separate io, io size of flush submitted by dm 560 * always is 0, make_request() will not be called here. 561 */ 562 if (WARN_ON_ONCE(!mddev->pers->make_request(mddev, bio))) 563 bio_io_error(bio);; 564 } 565 566 /* The pair is percpu_ref_get() from md_flush_request() */ 567 percpu_ref_put(&mddev->active_io); 568 } 569 570 /* 571 * Manages consolidation of flushes and submitting any flushes needed for 572 * a bio with REQ_PREFLUSH. Returns true if the bio is finished or is 573 * being finished in another context. Returns false if the flushing is 574 * complete but still needs the I/O portion of the bio to be processed. 575 */ 576 bool md_flush_request(struct mddev *mddev, struct bio *bio) 577 { 578 ktime_t req_start = ktime_get_boottime(); 579 spin_lock_irq(&mddev->lock); 580 /* flush requests wait until ongoing flush completes, 581 * hence coalescing all the pending requests. 582 */ 583 wait_event_lock_irq(mddev->sb_wait, 584 !mddev->flush_bio || 585 ktime_before(req_start, mddev->prev_flush_start), 586 mddev->lock); 587 /* new request after previous flush is completed */ 588 if (ktime_after(req_start, mddev->prev_flush_start)) { 589 WARN_ON(mddev->flush_bio); 590 /* 591 * Grab a reference to make sure mddev_suspend() will wait for 592 * this flush to be done. 593 * 594 * md_flush_reqeust() is called under md_handle_request() and 595 * 'active_io' is already grabbed, hence percpu_ref_is_zero() 596 * won't pass, percpu_ref_tryget_live() can't be used because 597 * percpu_ref_kill() can be called by mddev_suspend() 598 * concurrently. 599 */ 600 WARN_ON(percpu_ref_is_zero(&mddev->active_io)); 601 percpu_ref_get(&mddev->active_io); 602 mddev->flush_bio = bio; 603 bio = NULL; 604 } 605 spin_unlock_irq(&mddev->lock); 606 607 if (!bio) { 608 INIT_WORK(&mddev->flush_work, submit_flushes); 609 queue_work(md_wq, &mddev->flush_work); 610 } else { 611 /* flush was performed for some other bio while we waited. */ 612 if (bio->bi_iter.bi_size == 0) 613 /* an empty barrier - all done */ 614 bio_endio(bio); 615 else { 616 bio->bi_opf &= ~REQ_PREFLUSH; 617 return false; 618 } 619 } 620 return true; 621 } 622 EXPORT_SYMBOL(md_flush_request); 623 624 static inline struct mddev *mddev_get(struct mddev *mddev) 625 { 626 lockdep_assert_held(&all_mddevs_lock); 627 628 if (test_bit(MD_DELETED, &mddev->flags)) 629 return NULL; 630 atomic_inc(&mddev->active); 631 return mddev; 632 } 633 634 static void mddev_delayed_delete(struct work_struct *ws); 635 636 void mddev_put(struct mddev *mddev) 637 { 638 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) 639 return; 640 if (!mddev->raid_disks && list_empty(&mddev->disks) && 641 mddev->ctime == 0 && !mddev->hold_active) { 642 /* Array is not configured at all, and not held active, 643 * so destroy it */ 644 set_bit(MD_DELETED, &mddev->flags); 645 646 /* 647 * Call queue_work inside the spinlock so that 648 * flush_workqueue() after mddev_find will succeed in waiting 649 * for the work to be done. 650 */ 651 INIT_WORK(&mddev->del_work, mddev_delayed_delete); 652 queue_work(md_misc_wq, &mddev->del_work); 653 } 654 spin_unlock(&all_mddevs_lock); 655 } 656 657 static void md_safemode_timeout(struct timer_list *t); 658 659 void mddev_init(struct mddev *mddev) 660 { 661 mutex_init(&mddev->open_mutex); 662 mutex_init(&mddev->reconfig_mutex); 663 mutex_init(&mddev->sync_mutex); 664 mutex_init(&mddev->bitmap_info.mutex); 665 INIT_LIST_HEAD(&mddev->disks); 666 INIT_LIST_HEAD(&mddev->all_mddevs); 667 INIT_LIST_HEAD(&mddev->deleting); 668 timer_setup(&mddev->safemode_timer, md_safemode_timeout, 0); 669 atomic_set(&mddev->active, 1); 670 atomic_set(&mddev->openers, 0); 671 atomic_set(&mddev->sync_seq, 0); 672 spin_lock_init(&mddev->lock); 673 atomic_set(&mddev->flush_pending, 0); 674 init_waitqueue_head(&mddev->sb_wait); 675 init_waitqueue_head(&mddev->recovery_wait); 676 mddev->reshape_position = MaxSector; 677 mddev->reshape_backwards = 0; 678 mddev->last_sync_action = "none"; 679 mddev->resync_min = 0; 680 mddev->resync_max = MaxSector; 681 mddev->level = LEVEL_NONE; 682 } 683 EXPORT_SYMBOL_GPL(mddev_init); 684 685 static struct mddev *mddev_find_locked(dev_t unit) 686 { 687 struct mddev *mddev; 688 689 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 690 if (mddev->unit == unit) 691 return mddev; 692 693 return NULL; 694 } 695 696 /* find an unused unit number */ 697 static dev_t mddev_alloc_unit(void) 698 { 699 static int next_minor = 512; 700 int start = next_minor; 701 bool is_free = 0; 702 dev_t dev = 0; 703 704 while (!is_free) { 705 dev = MKDEV(MD_MAJOR, next_minor); 706 next_minor++; 707 if (next_minor > MINORMASK) 708 next_minor = 0; 709 if (next_minor == start) 710 return 0; /* Oh dear, all in use. */ 711 is_free = !mddev_find_locked(dev); 712 } 713 714 return dev; 715 } 716 717 static struct mddev *mddev_alloc(dev_t unit) 718 { 719 struct mddev *new; 720 int error; 721 722 if (unit && MAJOR(unit) != MD_MAJOR) 723 unit &= ~((1 << MdpMinorShift) - 1); 724 725 new = kzalloc(sizeof(*new), GFP_KERNEL); 726 if (!new) 727 return ERR_PTR(-ENOMEM); 728 mddev_init(new); 729 730 spin_lock(&all_mddevs_lock); 731 if (unit) { 732 error = -EEXIST; 733 if (mddev_find_locked(unit)) 734 goto out_free_new; 735 new->unit = unit; 736 if (MAJOR(unit) == MD_MAJOR) 737 new->md_minor = MINOR(unit); 738 else 739 new->md_minor = MINOR(unit) >> MdpMinorShift; 740 new->hold_active = UNTIL_IOCTL; 741 } else { 742 error = -ENODEV; 743 new->unit = mddev_alloc_unit(); 744 if (!new->unit) 745 goto out_free_new; 746 new->md_minor = MINOR(new->unit); 747 new->hold_active = UNTIL_STOP; 748 } 749 750 list_add(&new->all_mddevs, &all_mddevs); 751 spin_unlock(&all_mddevs_lock); 752 return new; 753 out_free_new: 754 spin_unlock(&all_mddevs_lock); 755 kfree(new); 756 return ERR_PTR(error); 757 } 758 759 static void mddev_free(struct mddev *mddev) 760 { 761 spin_lock(&all_mddevs_lock); 762 list_del(&mddev->all_mddevs); 763 spin_unlock(&all_mddevs_lock); 764 765 kfree(mddev); 766 } 767 768 static const struct attribute_group md_redundancy_group; 769 770 void mddev_unlock(struct mddev *mddev) 771 { 772 struct md_rdev *rdev; 773 struct md_rdev *tmp; 774 LIST_HEAD(delete); 775 776 if (!list_empty(&mddev->deleting)) 777 list_splice_init(&mddev->deleting, &delete); 778 779 if (mddev->to_remove) { 780 /* These cannot be removed under reconfig_mutex as 781 * an access to the files will try to take reconfig_mutex 782 * while holding the file unremovable, which leads to 783 * a deadlock. 784 * So hold set sysfs_active while the remove in happeing, 785 * and anything else which might set ->to_remove or my 786 * otherwise change the sysfs namespace will fail with 787 * -EBUSY if sysfs_active is still set. 788 * We set sysfs_active under reconfig_mutex and elsewhere 789 * test it under the same mutex to ensure its correct value 790 * is seen. 791 */ 792 const struct attribute_group *to_remove = mddev->to_remove; 793 mddev->to_remove = NULL; 794 mddev->sysfs_active = 1; 795 mutex_unlock(&mddev->reconfig_mutex); 796 797 if (mddev->kobj.sd) { 798 if (to_remove != &md_redundancy_group) 799 sysfs_remove_group(&mddev->kobj, to_remove); 800 if (mddev->pers == NULL || 801 mddev->pers->sync_request == NULL) { 802 sysfs_remove_group(&mddev->kobj, &md_redundancy_group); 803 if (mddev->sysfs_action) 804 sysfs_put(mddev->sysfs_action); 805 if (mddev->sysfs_completed) 806 sysfs_put(mddev->sysfs_completed); 807 if (mddev->sysfs_degraded) 808 sysfs_put(mddev->sysfs_degraded); 809 mddev->sysfs_action = NULL; 810 mddev->sysfs_completed = NULL; 811 mddev->sysfs_degraded = NULL; 812 } 813 } 814 mddev->sysfs_active = 0; 815 } else 816 mutex_unlock(&mddev->reconfig_mutex); 817 818 md_wakeup_thread(mddev->thread); 819 wake_up(&mddev->sb_wait); 820 821 list_for_each_entry_safe(rdev, tmp, &delete, same_set) { 822 list_del_init(&rdev->same_set); 823 kobject_del(&rdev->kobj); 824 export_rdev(rdev, mddev); 825 } 826 } 827 EXPORT_SYMBOL_GPL(mddev_unlock); 828 829 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr) 830 { 831 struct md_rdev *rdev; 832 833 rdev_for_each_rcu(rdev, mddev) 834 if (rdev->desc_nr == nr) 835 return rdev; 836 837 return NULL; 838 } 839 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu); 840 841 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev) 842 { 843 struct md_rdev *rdev; 844 845 rdev_for_each(rdev, mddev) 846 if (rdev->bdev->bd_dev == dev) 847 return rdev; 848 849 return NULL; 850 } 851 852 struct md_rdev *md_find_rdev_rcu(struct mddev *mddev, dev_t dev) 853 { 854 struct md_rdev *rdev; 855 856 rdev_for_each_rcu(rdev, mddev) 857 if (rdev->bdev->bd_dev == dev) 858 return rdev; 859 860 return NULL; 861 } 862 EXPORT_SYMBOL_GPL(md_find_rdev_rcu); 863 864 static struct md_personality *find_pers(int level, char *clevel) 865 { 866 struct md_personality *pers; 867 list_for_each_entry(pers, &pers_list, list) { 868 if (level != LEVEL_NONE && pers->level == level) 869 return pers; 870 if (strcmp(pers->name, clevel)==0) 871 return pers; 872 } 873 return NULL; 874 } 875 876 /* return the offset of the super block in 512byte sectors */ 877 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev) 878 { 879 return MD_NEW_SIZE_SECTORS(bdev_nr_sectors(rdev->bdev)); 880 } 881 882 static int alloc_disk_sb(struct md_rdev *rdev) 883 { 884 rdev->sb_page = alloc_page(GFP_KERNEL); 885 if (!rdev->sb_page) 886 return -ENOMEM; 887 return 0; 888 } 889 890 void md_rdev_clear(struct md_rdev *rdev) 891 { 892 if (rdev->sb_page) { 893 put_page(rdev->sb_page); 894 rdev->sb_loaded = 0; 895 rdev->sb_page = NULL; 896 rdev->sb_start = 0; 897 rdev->sectors = 0; 898 } 899 if (rdev->bb_page) { 900 put_page(rdev->bb_page); 901 rdev->bb_page = NULL; 902 } 903 badblocks_exit(&rdev->badblocks); 904 } 905 EXPORT_SYMBOL_GPL(md_rdev_clear); 906 907 static void super_written(struct bio *bio) 908 { 909 struct md_rdev *rdev = bio->bi_private; 910 struct mddev *mddev = rdev->mddev; 911 912 if (bio->bi_status) { 913 pr_err("md: %s gets error=%d\n", __func__, 914 blk_status_to_errno(bio->bi_status)); 915 md_error(mddev, rdev); 916 if (!test_bit(Faulty, &rdev->flags) 917 && (bio->bi_opf & MD_FAILFAST)) { 918 set_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags); 919 set_bit(LastDev, &rdev->flags); 920 } 921 } else 922 clear_bit(LastDev, &rdev->flags); 923 924 bio_put(bio); 925 926 rdev_dec_pending(rdev, mddev); 927 928 if (atomic_dec_and_test(&mddev->pending_writes)) 929 wake_up(&mddev->sb_wait); 930 } 931 932 void md_super_write(struct mddev *mddev, struct md_rdev *rdev, 933 sector_t sector, int size, struct page *page) 934 { 935 /* write first size bytes of page to sector of rdev 936 * Increment mddev->pending_writes before returning 937 * and decrement it on completion, waking up sb_wait 938 * if zero is reached. 939 * If an error occurred, call md_error 940 */ 941 struct bio *bio; 942 943 if (!page) 944 return; 945 946 if (test_bit(Faulty, &rdev->flags)) 947 return; 948 949 bio = bio_alloc_bioset(rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev, 950 1, 951 REQ_OP_WRITE | REQ_SYNC | REQ_IDLE | REQ_META 952 | REQ_PREFLUSH | REQ_FUA, 953 GFP_NOIO, &mddev->sync_set); 954 955 atomic_inc(&rdev->nr_pending); 956 957 bio->bi_iter.bi_sector = sector; 958 __bio_add_page(bio, page, size, 0); 959 bio->bi_private = rdev; 960 bio->bi_end_io = super_written; 961 962 if (test_bit(MD_FAILFAST_SUPPORTED, &mddev->flags) && 963 test_bit(FailFast, &rdev->flags) && 964 !test_bit(LastDev, &rdev->flags)) 965 bio->bi_opf |= MD_FAILFAST; 966 967 atomic_inc(&mddev->pending_writes); 968 submit_bio(bio); 969 } 970 971 int md_super_wait(struct mddev *mddev) 972 { 973 /* wait for all superblock writes that were scheduled to complete */ 974 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0); 975 if (test_and_clear_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags)) 976 return -EAGAIN; 977 return 0; 978 } 979 980 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size, 981 struct page *page, blk_opf_t opf, bool metadata_op) 982 { 983 struct bio bio; 984 struct bio_vec bvec; 985 986 if (metadata_op && rdev->meta_bdev) 987 bio_init(&bio, rdev->meta_bdev, &bvec, 1, opf); 988 else 989 bio_init(&bio, rdev->bdev, &bvec, 1, opf); 990 991 if (metadata_op) 992 bio.bi_iter.bi_sector = sector + rdev->sb_start; 993 else if (rdev->mddev->reshape_position != MaxSector && 994 (rdev->mddev->reshape_backwards == 995 (sector >= rdev->mddev->reshape_position))) 996 bio.bi_iter.bi_sector = sector + rdev->new_data_offset; 997 else 998 bio.bi_iter.bi_sector = sector + rdev->data_offset; 999 __bio_add_page(&bio, page, size, 0); 1000 1001 submit_bio_wait(&bio); 1002 1003 return !bio.bi_status; 1004 } 1005 EXPORT_SYMBOL_GPL(sync_page_io); 1006 1007 static int read_disk_sb(struct md_rdev *rdev, int size) 1008 { 1009 if (rdev->sb_loaded) 1010 return 0; 1011 1012 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, true)) 1013 goto fail; 1014 rdev->sb_loaded = 1; 1015 return 0; 1016 1017 fail: 1018 pr_err("md: disabled device %pg, could not read superblock.\n", 1019 rdev->bdev); 1020 return -EINVAL; 1021 } 1022 1023 static int md_uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) 1024 { 1025 return sb1->set_uuid0 == sb2->set_uuid0 && 1026 sb1->set_uuid1 == sb2->set_uuid1 && 1027 sb1->set_uuid2 == sb2->set_uuid2 && 1028 sb1->set_uuid3 == sb2->set_uuid3; 1029 } 1030 1031 static int md_sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) 1032 { 1033 int ret; 1034 mdp_super_t *tmp1, *tmp2; 1035 1036 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); 1037 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); 1038 1039 if (!tmp1 || !tmp2) { 1040 ret = 0; 1041 goto abort; 1042 } 1043 1044 *tmp1 = *sb1; 1045 *tmp2 = *sb2; 1046 1047 /* 1048 * nr_disks is not constant 1049 */ 1050 tmp1->nr_disks = 0; 1051 tmp2->nr_disks = 0; 1052 1053 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0); 1054 abort: 1055 kfree(tmp1); 1056 kfree(tmp2); 1057 return ret; 1058 } 1059 1060 static u32 md_csum_fold(u32 csum) 1061 { 1062 csum = (csum & 0xffff) + (csum >> 16); 1063 return (csum & 0xffff) + (csum >> 16); 1064 } 1065 1066 static unsigned int calc_sb_csum(mdp_super_t *sb) 1067 { 1068 u64 newcsum = 0; 1069 u32 *sb32 = (u32*)sb; 1070 int i; 1071 unsigned int disk_csum, csum; 1072 1073 disk_csum = sb->sb_csum; 1074 sb->sb_csum = 0; 1075 1076 for (i = 0; i < MD_SB_BYTES/4 ; i++) 1077 newcsum += sb32[i]; 1078 csum = (newcsum & 0xffffffff) + (newcsum>>32); 1079 1080 #ifdef CONFIG_ALPHA 1081 /* This used to use csum_partial, which was wrong for several 1082 * reasons including that different results are returned on 1083 * different architectures. It isn't critical that we get exactly 1084 * the same return value as before (we always csum_fold before 1085 * testing, and that removes any differences). However as we 1086 * know that csum_partial always returned a 16bit value on 1087 * alphas, do a fold to maximise conformity to previous behaviour. 1088 */ 1089 sb->sb_csum = md_csum_fold(disk_csum); 1090 #else 1091 sb->sb_csum = disk_csum; 1092 #endif 1093 return csum; 1094 } 1095 1096 /* 1097 * Handle superblock details. 1098 * We want to be able to handle multiple superblock formats 1099 * so we have a common interface to them all, and an array of 1100 * different handlers. 1101 * We rely on user-space to write the initial superblock, and support 1102 * reading and updating of superblocks. 1103 * Interface methods are: 1104 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version) 1105 * loads and validates a superblock on dev. 1106 * if refdev != NULL, compare superblocks on both devices 1107 * Return: 1108 * 0 - dev has a superblock that is compatible with refdev 1109 * 1 - dev has a superblock that is compatible and newer than refdev 1110 * so dev should be used as the refdev in future 1111 * -EINVAL superblock incompatible or invalid 1112 * -othererror e.g. -EIO 1113 * 1114 * int validate_super(struct mddev *mddev, struct md_rdev *dev) 1115 * Verify that dev is acceptable into mddev. 1116 * The first time, mddev->raid_disks will be 0, and data from 1117 * dev should be merged in. Subsequent calls check that dev 1118 * is new enough. Return 0 or -EINVAL 1119 * 1120 * void sync_super(struct mddev *mddev, struct md_rdev *dev) 1121 * Update the superblock for rdev with data in mddev 1122 * This does not write to disc. 1123 * 1124 */ 1125 1126 struct super_type { 1127 char *name; 1128 struct module *owner; 1129 int (*load_super)(struct md_rdev *rdev, 1130 struct md_rdev *refdev, 1131 int minor_version); 1132 int (*validate_super)(struct mddev *mddev, 1133 struct md_rdev *freshest, 1134 struct md_rdev *rdev); 1135 void (*sync_super)(struct mddev *mddev, 1136 struct md_rdev *rdev); 1137 unsigned long long (*rdev_size_change)(struct md_rdev *rdev, 1138 sector_t num_sectors); 1139 int (*allow_new_offset)(struct md_rdev *rdev, 1140 unsigned long long new_offset); 1141 }; 1142 1143 /* 1144 * Check that the given mddev has no bitmap. 1145 * 1146 * This function is called from the run method of all personalities that do not 1147 * support bitmaps. It prints an error message and returns non-zero if mddev 1148 * has a bitmap. Otherwise, it returns 0. 1149 * 1150 */ 1151 int md_check_no_bitmap(struct mddev *mddev) 1152 { 1153 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset) 1154 return 0; 1155 pr_warn("%s: bitmaps are not supported for %s\n", 1156 mdname(mddev), mddev->pers->name); 1157 return 1; 1158 } 1159 EXPORT_SYMBOL(md_check_no_bitmap); 1160 1161 /* 1162 * load_super for 0.90.0 1163 */ 1164 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1165 { 1166 mdp_super_t *sb; 1167 int ret; 1168 bool spare_disk = true; 1169 1170 /* 1171 * Calculate the position of the superblock (512byte sectors), 1172 * it's at the end of the disk. 1173 * 1174 * It also happens to be a multiple of 4Kb. 1175 */ 1176 rdev->sb_start = calc_dev_sboffset(rdev); 1177 1178 ret = read_disk_sb(rdev, MD_SB_BYTES); 1179 if (ret) 1180 return ret; 1181 1182 ret = -EINVAL; 1183 1184 sb = page_address(rdev->sb_page); 1185 1186 if (sb->md_magic != MD_SB_MAGIC) { 1187 pr_warn("md: invalid raid superblock magic on %pg\n", 1188 rdev->bdev); 1189 goto abort; 1190 } 1191 1192 if (sb->major_version != 0 || 1193 sb->minor_version < 90 || 1194 sb->minor_version > 91) { 1195 pr_warn("Bad version number %d.%d on %pg\n", 1196 sb->major_version, sb->minor_version, rdev->bdev); 1197 goto abort; 1198 } 1199 1200 if (sb->raid_disks <= 0) 1201 goto abort; 1202 1203 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) { 1204 pr_warn("md: invalid superblock checksum on %pg\n", rdev->bdev); 1205 goto abort; 1206 } 1207 1208 rdev->preferred_minor = sb->md_minor; 1209 rdev->data_offset = 0; 1210 rdev->new_data_offset = 0; 1211 rdev->sb_size = MD_SB_BYTES; 1212 rdev->badblocks.shift = -1; 1213 1214 if (sb->level == LEVEL_MULTIPATH) 1215 rdev->desc_nr = -1; 1216 else 1217 rdev->desc_nr = sb->this_disk.number; 1218 1219 /* not spare disk, or LEVEL_MULTIPATH */ 1220 if (sb->level == LEVEL_MULTIPATH || 1221 (rdev->desc_nr >= 0 && 1222 rdev->desc_nr < MD_SB_DISKS && 1223 sb->disks[rdev->desc_nr].state & 1224 ((1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))) 1225 spare_disk = false; 1226 1227 if (!refdev) { 1228 if (!spare_disk) 1229 ret = 1; 1230 else 1231 ret = 0; 1232 } else { 1233 __u64 ev1, ev2; 1234 mdp_super_t *refsb = page_address(refdev->sb_page); 1235 if (!md_uuid_equal(refsb, sb)) { 1236 pr_warn("md: %pg has different UUID to %pg\n", 1237 rdev->bdev, refdev->bdev); 1238 goto abort; 1239 } 1240 if (!md_sb_equal(refsb, sb)) { 1241 pr_warn("md: %pg has same UUID but different superblock to %pg\n", 1242 rdev->bdev, refdev->bdev); 1243 goto abort; 1244 } 1245 ev1 = md_event(sb); 1246 ev2 = md_event(refsb); 1247 1248 if (!spare_disk && ev1 > ev2) 1249 ret = 1; 1250 else 1251 ret = 0; 1252 } 1253 rdev->sectors = rdev->sb_start; 1254 /* Limit to 4TB as metadata cannot record more than that. 1255 * (not needed for Linear and RAID0 as metadata doesn't 1256 * record this size) 1257 */ 1258 if ((u64)rdev->sectors >= (2ULL << 32) && sb->level >= 1) 1259 rdev->sectors = (sector_t)(2ULL << 32) - 2; 1260 1261 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1) 1262 /* "this cannot possibly happen" ... */ 1263 ret = -EINVAL; 1264 1265 abort: 1266 return ret; 1267 } 1268 1269 /* 1270 * validate_super for 0.90.0 1271 * note: we are not using "freshest" for 0.9 superblock 1272 */ 1273 static int super_90_validate(struct mddev *mddev, struct md_rdev *freshest, struct md_rdev *rdev) 1274 { 1275 mdp_disk_t *desc; 1276 mdp_super_t *sb = page_address(rdev->sb_page); 1277 __u64 ev1 = md_event(sb); 1278 1279 rdev->raid_disk = -1; 1280 clear_bit(Faulty, &rdev->flags); 1281 clear_bit(In_sync, &rdev->flags); 1282 clear_bit(Bitmap_sync, &rdev->flags); 1283 clear_bit(WriteMostly, &rdev->flags); 1284 1285 if (mddev->raid_disks == 0) { 1286 mddev->major_version = 0; 1287 mddev->minor_version = sb->minor_version; 1288 mddev->patch_version = sb->patch_version; 1289 mddev->external = 0; 1290 mddev->chunk_sectors = sb->chunk_size >> 9; 1291 mddev->ctime = sb->ctime; 1292 mddev->utime = sb->utime; 1293 mddev->level = sb->level; 1294 mddev->clevel[0] = 0; 1295 mddev->layout = sb->layout; 1296 mddev->raid_disks = sb->raid_disks; 1297 mddev->dev_sectors = ((sector_t)sb->size) * 2; 1298 mddev->events = ev1; 1299 mddev->bitmap_info.offset = 0; 1300 mddev->bitmap_info.space = 0; 1301 /* bitmap can use 60 K after the 4K superblocks */ 1302 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 1303 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 1304 mddev->reshape_backwards = 0; 1305 1306 if (mddev->minor_version >= 91) { 1307 mddev->reshape_position = sb->reshape_position; 1308 mddev->delta_disks = sb->delta_disks; 1309 mddev->new_level = sb->new_level; 1310 mddev->new_layout = sb->new_layout; 1311 mddev->new_chunk_sectors = sb->new_chunk >> 9; 1312 if (mddev->delta_disks < 0) 1313 mddev->reshape_backwards = 1; 1314 } else { 1315 mddev->reshape_position = MaxSector; 1316 mddev->delta_disks = 0; 1317 mddev->new_level = mddev->level; 1318 mddev->new_layout = mddev->layout; 1319 mddev->new_chunk_sectors = mddev->chunk_sectors; 1320 } 1321 if (mddev->level == 0) 1322 mddev->layout = -1; 1323 1324 if (sb->state & (1<<MD_SB_CLEAN)) 1325 mddev->recovery_cp = MaxSector; 1326 else { 1327 if (sb->events_hi == sb->cp_events_hi && 1328 sb->events_lo == sb->cp_events_lo) { 1329 mddev->recovery_cp = sb->recovery_cp; 1330 } else 1331 mddev->recovery_cp = 0; 1332 } 1333 1334 memcpy(mddev->uuid+0, &sb->set_uuid0, 4); 1335 memcpy(mddev->uuid+4, &sb->set_uuid1, 4); 1336 memcpy(mddev->uuid+8, &sb->set_uuid2, 4); 1337 memcpy(mddev->uuid+12,&sb->set_uuid3, 4); 1338 1339 mddev->max_disks = MD_SB_DISKS; 1340 1341 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && 1342 mddev->bitmap_info.file == NULL) { 1343 mddev->bitmap_info.offset = 1344 mddev->bitmap_info.default_offset; 1345 mddev->bitmap_info.space = 1346 mddev->bitmap_info.default_space; 1347 } 1348 1349 } else if (mddev->pers == NULL) { 1350 /* Insist on good event counter while assembling, except 1351 * for spares (which don't need an event count) */ 1352 ++ev1; 1353 if (sb->disks[rdev->desc_nr].state & ( 1354 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))) 1355 if (ev1 < mddev->events) 1356 return -EINVAL; 1357 } else if (mddev->bitmap) { 1358 /* if adding to array with a bitmap, then we can accept an 1359 * older device ... but not too old. 1360 */ 1361 if (ev1 < mddev->bitmap->events_cleared) 1362 return 0; 1363 if (ev1 < mddev->events) 1364 set_bit(Bitmap_sync, &rdev->flags); 1365 } else { 1366 if (ev1 < mddev->events) 1367 /* just a hot-add of a new device, leave raid_disk at -1 */ 1368 return 0; 1369 } 1370 1371 if (mddev->level != LEVEL_MULTIPATH) { 1372 desc = sb->disks + rdev->desc_nr; 1373 1374 if (desc->state & (1<<MD_DISK_FAULTY)) 1375 set_bit(Faulty, &rdev->flags); 1376 else if (desc->state & (1<<MD_DISK_SYNC) /* && 1377 desc->raid_disk < mddev->raid_disks */) { 1378 set_bit(In_sync, &rdev->flags); 1379 rdev->raid_disk = desc->raid_disk; 1380 rdev->saved_raid_disk = desc->raid_disk; 1381 } else if (desc->state & (1<<MD_DISK_ACTIVE)) { 1382 /* active but not in sync implies recovery up to 1383 * reshape position. We don't know exactly where 1384 * that is, so set to zero for now */ 1385 if (mddev->minor_version >= 91) { 1386 rdev->recovery_offset = 0; 1387 rdev->raid_disk = desc->raid_disk; 1388 } 1389 } 1390 if (desc->state & (1<<MD_DISK_WRITEMOSTLY)) 1391 set_bit(WriteMostly, &rdev->flags); 1392 if (desc->state & (1<<MD_DISK_FAILFAST)) 1393 set_bit(FailFast, &rdev->flags); 1394 } else /* MULTIPATH are always insync */ 1395 set_bit(In_sync, &rdev->flags); 1396 return 0; 1397 } 1398 1399 /* 1400 * sync_super for 0.90.0 1401 */ 1402 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev) 1403 { 1404 mdp_super_t *sb; 1405 struct md_rdev *rdev2; 1406 int next_spare = mddev->raid_disks; 1407 1408 /* make rdev->sb match mddev data.. 1409 * 1410 * 1/ zero out disks 1411 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); 1412 * 3/ any empty disks < next_spare become removed 1413 * 1414 * disks[0] gets initialised to REMOVED because 1415 * we cannot be sure from other fields if it has 1416 * been initialised or not. 1417 */ 1418 int i; 1419 int active=0, working=0,failed=0,spare=0,nr_disks=0; 1420 1421 rdev->sb_size = MD_SB_BYTES; 1422 1423 sb = page_address(rdev->sb_page); 1424 1425 memset(sb, 0, sizeof(*sb)); 1426 1427 sb->md_magic = MD_SB_MAGIC; 1428 sb->major_version = mddev->major_version; 1429 sb->patch_version = mddev->patch_version; 1430 sb->gvalid_words = 0; /* ignored */ 1431 memcpy(&sb->set_uuid0, mddev->uuid+0, 4); 1432 memcpy(&sb->set_uuid1, mddev->uuid+4, 4); 1433 memcpy(&sb->set_uuid2, mddev->uuid+8, 4); 1434 memcpy(&sb->set_uuid3, mddev->uuid+12,4); 1435 1436 sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 1437 sb->level = mddev->level; 1438 sb->size = mddev->dev_sectors / 2; 1439 sb->raid_disks = mddev->raid_disks; 1440 sb->md_minor = mddev->md_minor; 1441 sb->not_persistent = 0; 1442 sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 1443 sb->state = 0; 1444 sb->events_hi = (mddev->events>>32); 1445 sb->events_lo = (u32)mddev->events; 1446 1447 if (mddev->reshape_position == MaxSector) 1448 sb->minor_version = 90; 1449 else { 1450 sb->minor_version = 91; 1451 sb->reshape_position = mddev->reshape_position; 1452 sb->new_level = mddev->new_level; 1453 sb->delta_disks = mddev->delta_disks; 1454 sb->new_layout = mddev->new_layout; 1455 sb->new_chunk = mddev->new_chunk_sectors << 9; 1456 } 1457 mddev->minor_version = sb->minor_version; 1458 if (mddev->in_sync) 1459 { 1460 sb->recovery_cp = mddev->recovery_cp; 1461 sb->cp_events_hi = (mddev->events>>32); 1462 sb->cp_events_lo = (u32)mddev->events; 1463 if (mddev->recovery_cp == MaxSector) 1464 sb->state = (1<< MD_SB_CLEAN); 1465 } else 1466 sb->recovery_cp = 0; 1467 1468 sb->layout = mddev->layout; 1469 sb->chunk_size = mddev->chunk_sectors << 9; 1470 1471 if (mddev->bitmap && mddev->bitmap_info.file == NULL) 1472 sb->state |= (1<<MD_SB_BITMAP_PRESENT); 1473 1474 sb->disks[0].state = (1<<MD_DISK_REMOVED); 1475 rdev_for_each(rdev2, mddev) { 1476 mdp_disk_t *d; 1477 int desc_nr; 1478 int is_active = test_bit(In_sync, &rdev2->flags); 1479 1480 if (rdev2->raid_disk >= 0 && 1481 sb->minor_version >= 91) 1482 /* we have nowhere to store the recovery_offset, 1483 * but if it is not below the reshape_position, 1484 * we can piggy-back on that. 1485 */ 1486 is_active = 1; 1487 if (rdev2->raid_disk < 0 || 1488 test_bit(Faulty, &rdev2->flags)) 1489 is_active = 0; 1490 if (is_active) 1491 desc_nr = rdev2->raid_disk; 1492 else 1493 desc_nr = next_spare++; 1494 rdev2->desc_nr = desc_nr; 1495 d = &sb->disks[rdev2->desc_nr]; 1496 nr_disks++; 1497 d->number = rdev2->desc_nr; 1498 d->major = MAJOR(rdev2->bdev->bd_dev); 1499 d->minor = MINOR(rdev2->bdev->bd_dev); 1500 if (is_active) 1501 d->raid_disk = rdev2->raid_disk; 1502 else 1503 d->raid_disk = rdev2->desc_nr; /* compatibility */ 1504 if (test_bit(Faulty, &rdev2->flags)) 1505 d->state = (1<<MD_DISK_FAULTY); 1506 else if (is_active) { 1507 d->state = (1<<MD_DISK_ACTIVE); 1508 if (test_bit(In_sync, &rdev2->flags)) 1509 d->state |= (1<<MD_DISK_SYNC); 1510 active++; 1511 working++; 1512 } else { 1513 d->state = 0; 1514 spare++; 1515 working++; 1516 } 1517 if (test_bit(WriteMostly, &rdev2->flags)) 1518 d->state |= (1<<MD_DISK_WRITEMOSTLY); 1519 if (test_bit(FailFast, &rdev2->flags)) 1520 d->state |= (1<<MD_DISK_FAILFAST); 1521 } 1522 /* now set the "removed" and "faulty" bits on any missing devices */ 1523 for (i=0 ; i < mddev->raid_disks ; i++) { 1524 mdp_disk_t *d = &sb->disks[i]; 1525 if (d->state == 0 && d->number == 0) { 1526 d->number = i; 1527 d->raid_disk = i; 1528 d->state = (1<<MD_DISK_REMOVED); 1529 d->state |= (1<<MD_DISK_FAULTY); 1530 failed++; 1531 } 1532 } 1533 sb->nr_disks = nr_disks; 1534 sb->active_disks = active; 1535 sb->working_disks = working; 1536 sb->failed_disks = failed; 1537 sb->spare_disks = spare; 1538 1539 sb->this_disk = sb->disks[rdev->desc_nr]; 1540 sb->sb_csum = calc_sb_csum(sb); 1541 } 1542 1543 /* 1544 * rdev_size_change for 0.90.0 1545 */ 1546 static unsigned long long 1547 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1548 { 1549 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1550 return 0; /* component must fit device */ 1551 if (rdev->mddev->bitmap_info.offset) 1552 return 0; /* can't move bitmap */ 1553 rdev->sb_start = calc_dev_sboffset(rdev); 1554 if (!num_sectors || num_sectors > rdev->sb_start) 1555 num_sectors = rdev->sb_start; 1556 /* Limit to 4TB as metadata cannot record more than that. 1557 * 4TB == 2^32 KB, or 2*2^32 sectors. 1558 */ 1559 if ((u64)num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1) 1560 num_sectors = (sector_t)(2ULL << 32) - 2; 1561 do { 1562 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1563 rdev->sb_page); 1564 } while (md_super_wait(rdev->mddev) < 0); 1565 return num_sectors; 1566 } 1567 1568 static int 1569 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset) 1570 { 1571 /* non-zero offset changes not possible with v0.90 */ 1572 return new_offset == 0; 1573 } 1574 1575 /* 1576 * version 1 superblock 1577 */ 1578 1579 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb) 1580 { 1581 __le32 disk_csum; 1582 u32 csum; 1583 unsigned long long newcsum; 1584 int size = 256 + le32_to_cpu(sb->max_dev)*2; 1585 __le32 *isuper = (__le32*)sb; 1586 1587 disk_csum = sb->sb_csum; 1588 sb->sb_csum = 0; 1589 newcsum = 0; 1590 for (; size >= 4; size -= 4) 1591 newcsum += le32_to_cpu(*isuper++); 1592 1593 if (size == 2) 1594 newcsum += le16_to_cpu(*(__le16*) isuper); 1595 1596 csum = (newcsum & 0xffffffff) + (newcsum >> 32); 1597 sb->sb_csum = disk_csum; 1598 return cpu_to_le32(csum); 1599 } 1600 1601 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1602 { 1603 struct mdp_superblock_1 *sb; 1604 int ret; 1605 sector_t sb_start; 1606 sector_t sectors; 1607 int bmask; 1608 bool spare_disk = true; 1609 1610 /* 1611 * Calculate the position of the superblock in 512byte sectors. 1612 * It is always aligned to a 4K boundary and 1613 * depeding on minor_version, it can be: 1614 * 0: At least 8K, but less than 12K, from end of device 1615 * 1: At start of device 1616 * 2: 4K from start of device. 1617 */ 1618 switch(minor_version) { 1619 case 0: 1620 sb_start = bdev_nr_sectors(rdev->bdev) - 8 * 2; 1621 sb_start &= ~(sector_t)(4*2-1); 1622 break; 1623 case 1: 1624 sb_start = 0; 1625 break; 1626 case 2: 1627 sb_start = 8; 1628 break; 1629 default: 1630 return -EINVAL; 1631 } 1632 rdev->sb_start = sb_start; 1633 1634 /* superblock is rarely larger than 1K, but it can be larger, 1635 * and it is safe to read 4k, so we do that 1636 */ 1637 ret = read_disk_sb(rdev, 4096); 1638 if (ret) return ret; 1639 1640 sb = page_address(rdev->sb_page); 1641 1642 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || 1643 sb->major_version != cpu_to_le32(1) || 1644 le32_to_cpu(sb->max_dev) > (4096-256)/2 || 1645 le64_to_cpu(sb->super_offset) != rdev->sb_start || 1646 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) 1647 return -EINVAL; 1648 1649 if (calc_sb_1_csum(sb) != sb->sb_csum) { 1650 pr_warn("md: invalid superblock checksum on %pg\n", 1651 rdev->bdev); 1652 return -EINVAL; 1653 } 1654 if (le64_to_cpu(sb->data_size) < 10) { 1655 pr_warn("md: data_size too small on %pg\n", 1656 rdev->bdev); 1657 return -EINVAL; 1658 } 1659 if (sb->pad0 || 1660 sb->pad3[0] || 1661 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1]))) 1662 /* Some padding is non-zero, might be a new feature */ 1663 return -EINVAL; 1664 1665 rdev->preferred_minor = 0xffff; 1666 rdev->data_offset = le64_to_cpu(sb->data_offset); 1667 rdev->new_data_offset = rdev->data_offset; 1668 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) && 1669 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET)) 1670 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset); 1671 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); 1672 1673 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; 1674 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1675 if (rdev->sb_size & bmask) 1676 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1677 1678 if (minor_version 1679 && rdev->data_offset < sb_start + (rdev->sb_size/512)) 1680 return -EINVAL; 1681 if (minor_version 1682 && rdev->new_data_offset < sb_start + (rdev->sb_size/512)) 1683 return -EINVAL; 1684 1685 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH)) 1686 rdev->desc_nr = -1; 1687 else 1688 rdev->desc_nr = le32_to_cpu(sb->dev_number); 1689 1690 if (!rdev->bb_page) { 1691 rdev->bb_page = alloc_page(GFP_KERNEL); 1692 if (!rdev->bb_page) 1693 return -ENOMEM; 1694 } 1695 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) && 1696 rdev->badblocks.count == 0) { 1697 /* need to load the bad block list. 1698 * Currently we limit it to one page. 1699 */ 1700 s32 offset; 1701 sector_t bb_sector; 1702 __le64 *bbp; 1703 int i; 1704 int sectors = le16_to_cpu(sb->bblog_size); 1705 if (sectors > (PAGE_SIZE / 512)) 1706 return -EINVAL; 1707 offset = le32_to_cpu(sb->bblog_offset); 1708 if (offset == 0) 1709 return -EINVAL; 1710 bb_sector = (long long)offset; 1711 if (!sync_page_io(rdev, bb_sector, sectors << 9, 1712 rdev->bb_page, REQ_OP_READ, true)) 1713 return -EIO; 1714 bbp = (__le64 *)page_address(rdev->bb_page); 1715 rdev->badblocks.shift = sb->bblog_shift; 1716 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) { 1717 u64 bb = le64_to_cpu(*bbp); 1718 int count = bb & (0x3ff); 1719 u64 sector = bb >> 10; 1720 sector <<= sb->bblog_shift; 1721 count <<= sb->bblog_shift; 1722 if (bb + 1 == 0) 1723 break; 1724 if (badblocks_set(&rdev->badblocks, sector, count, 1)) 1725 return -EINVAL; 1726 } 1727 } else if (sb->bblog_offset != 0) 1728 rdev->badblocks.shift = 0; 1729 1730 if ((le32_to_cpu(sb->feature_map) & 1731 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS))) { 1732 rdev->ppl.offset = (__s16)le16_to_cpu(sb->ppl.offset); 1733 rdev->ppl.size = le16_to_cpu(sb->ppl.size); 1734 rdev->ppl.sector = rdev->sb_start + rdev->ppl.offset; 1735 } 1736 1737 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT) && 1738 sb->level != 0) 1739 return -EINVAL; 1740 1741 /* not spare disk, or LEVEL_MULTIPATH */ 1742 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH) || 1743 (rdev->desc_nr >= 0 && 1744 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1745 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX || 1746 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))) 1747 spare_disk = false; 1748 1749 if (!refdev) { 1750 if (!spare_disk) 1751 ret = 1; 1752 else 1753 ret = 0; 1754 } else { 1755 __u64 ev1, ev2; 1756 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page); 1757 1758 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || 1759 sb->level != refsb->level || 1760 sb->layout != refsb->layout || 1761 sb->chunksize != refsb->chunksize) { 1762 pr_warn("md: %pg has strangely different superblock to %pg\n", 1763 rdev->bdev, 1764 refdev->bdev); 1765 return -EINVAL; 1766 } 1767 ev1 = le64_to_cpu(sb->events); 1768 ev2 = le64_to_cpu(refsb->events); 1769 1770 if (!spare_disk && ev1 > ev2) 1771 ret = 1; 1772 else 1773 ret = 0; 1774 } 1775 if (minor_version) 1776 sectors = bdev_nr_sectors(rdev->bdev) - rdev->data_offset; 1777 else 1778 sectors = rdev->sb_start; 1779 if (sectors < le64_to_cpu(sb->data_size)) 1780 return -EINVAL; 1781 rdev->sectors = le64_to_cpu(sb->data_size); 1782 return ret; 1783 } 1784 1785 static int super_1_validate(struct mddev *mddev, struct md_rdev *freshest, struct md_rdev *rdev) 1786 { 1787 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 1788 __u64 ev1 = le64_to_cpu(sb->events); 1789 1790 rdev->raid_disk = -1; 1791 clear_bit(Faulty, &rdev->flags); 1792 clear_bit(In_sync, &rdev->flags); 1793 clear_bit(Bitmap_sync, &rdev->flags); 1794 clear_bit(WriteMostly, &rdev->flags); 1795 1796 if (mddev->raid_disks == 0) { 1797 mddev->major_version = 1; 1798 mddev->patch_version = 0; 1799 mddev->external = 0; 1800 mddev->chunk_sectors = le32_to_cpu(sb->chunksize); 1801 mddev->ctime = le64_to_cpu(sb->ctime); 1802 mddev->utime = le64_to_cpu(sb->utime); 1803 mddev->level = le32_to_cpu(sb->level); 1804 mddev->clevel[0] = 0; 1805 mddev->layout = le32_to_cpu(sb->layout); 1806 mddev->raid_disks = le32_to_cpu(sb->raid_disks); 1807 mddev->dev_sectors = le64_to_cpu(sb->size); 1808 mddev->events = ev1; 1809 mddev->bitmap_info.offset = 0; 1810 mddev->bitmap_info.space = 0; 1811 /* Default location for bitmap is 1K after superblock 1812 * using 3K - total of 4K 1813 */ 1814 mddev->bitmap_info.default_offset = 1024 >> 9; 1815 mddev->bitmap_info.default_space = (4096-1024) >> 9; 1816 mddev->reshape_backwards = 0; 1817 1818 mddev->recovery_cp = le64_to_cpu(sb->resync_offset); 1819 memcpy(mddev->uuid, sb->set_uuid, 16); 1820 1821 mddev->max_disks = (4096-256)/2; 1822 1823 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && 1824 mddev->bitmap_info.file == NULL) { 1825 mddev->bitmap_info.offset = 1826 (__s32)le32_to_cpu(sb->bitmap_offset); 1827 /* Metadata doesn't record how much space is available. 1828 * For 1.0, we assume we can use up to the superblock 1829 * if before, else to 4K beyond superblock. 1830 * For others, assume no change is possible. 1831 */ 1832 if (mddev->minor_version > 0) 1833 mddev->bitmap_info.space = 0; 1834 else if (mddev->bitmap_info.offset > 0) 1835 mddev->bitmap_info.space = 1836 8 - mddev->bitmap_info.offset; 1837 else 1838 mddev->bitmap_info.space = 1839 -mddev->bitmap_info.offset; 1840 } 1841 1842 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 1843 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 1844 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 1845 mddev->new_level = le32_to_cpu(sb->new_level); 1846 mddev->new_layout = le32_to_cpu(sb->new_layout); 1847 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk); 1848 if (mddev->delta_disks < 0 || 1849 (mddev->delta_disks == 0 && 1850 (le32_to_cpu(sb->feature_map) 1851 & MD_FEATURE_RESHAPE_BACKWARDS))) 1852 mddev->reshape_backwards = 1; 1853 } else { 1854 mddev->reshape_position = MaxSector; 1855 mddev->delta_disks = 0; 1856 mddev->new_level = mddev->level; 1857 mddev->new_layout = mddev->layout; 1858 mddev->new_chunk_sectors = mddev->chunk_sectors; 1859 } 1860 1861 if (mddev->level == 0 && 1862 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT)) 1863 mddev->layout = -1; 1864 1865 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL) 1866 set_bit(MD_HAS_JOURNAL, &mddev->flags); 1867 1868 if (le32_to_cpu(sb->feature_map) & 1869 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS)) { 1870 if (le32_to_cpu(sb->feature_map) & 1871 (MD_FEATURE_BITMAP_OFFSET | MD_FEATURE_JOURNAL)) 1872 return -EINVAL; 1873 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_PPL) && 1874 (le32_to_cpu(sb->feature_map) & 1875 MD_FEATURE_MULTIPLE_PPLS)) 1876 return -EINVAL; 1877 set_bit(MD_HAS_PPL, &mddev->flags); 1878 } 1879 } else if (mddev->pers == NULL) { 1880 /* Insist of good event counter while assembling, except for 1881 * spares (which don't need an event count). 1882 * Similar to mdadm, we allow event counter difference of 1 1883 * from the freshest device. 1884 */ 1885 if (rdev->desc_nr >= 0 && 1886 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1887 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX || 1888 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL)) 1889 if (ev1 + 1 < mddev->events) 1890 return -EINVAL; 1891 } else if (mddev->bitmap) { 1892 /* If adding to array with a bitmap, then we can accept an 1893 * older device, but not too old. 1894 */ 1895 if (ev1 < mddev->bitmap->events_cleared) 1896 return 0; 1897 if (ev1 < mddev->events) 1898 set_bit(Bitmap_sync, &rdev->flags); 1899 } else { 1900 if (ev1 < mddev->events) 1901 /* just a hot-add of a new device, leave raid_disk at -1 */ 1902 return 0; 1903 } 1904 if (mddev->level != LEVEL_MULTIPATH) { 1905 int role; 1906 if (rdev->desc_nr < 0 || 1907 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) { 1908 role = MD_DISK_ROLE_SPARE; 1909 rdev->desc_nr = -1; 1910 } else if (mddev->pers == NULL && freshest && ev1 < mddev->events) { 1911 /* 1912 * If we are assembling, and our event counter is smaller than the 1913 * highest event counter, we cannot trust our superblock about the role. 1914 * It could happen that our rdev was marked as Faulty, and all other 1915 * superblocks were updated with +1 event counter. 1916 * Then, before the next superblock update, which typically happens when 1917 * remove_and_add_spares() removes the device from the array, there was 1918 * a crash or reboot. 1919 * If we allow current rdev without consulting the freshest superblock, 1920 * we could cause data corruption. 1921 * Note that in this case our event counter is smaller by 1 than the 1922 * highest, otherwise, this rdev would not be allowed into array; 1923 * both kernel and mdadm allow event counter difference of 1. 1924 */ 1925 struct mdp_superblock_1 *freshest_sb = page_address(freshest->sb_page); 1926 u32 freshest_max_dev = le32_to_cpu(freshest_sb->max_dev); 1927 1928 if (rdev->desc_nr >= freshest_max_dev) { 1929 /* this is unexpected, better not proceed */ 1930 pr_warn("md: %s: rdev[%pg]: desc_nr(%d) >= freshest(%pg)->sb->max_dev(%u)\n", 1931 mdname(mddev), rdev->bdev, rdev->desc_nr, 1932 freshest->bdev, freshest_max_dev); 1933 return -EUCLEAN; 1934 } 1935 1936 role = le16_to_cpu(freshest_sb->dev_roles[rdev->desc_nr]); 1937 pr_debug("md: %s: rdev[%pg]: role=%d(0x%x) according to freshest %pg\n", 1938 mdname(mddev), rdev->bdev, role, role, freshest->bdev); 1939 } else { 1940 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 1941 } 1942 switch(role) { 1943 case MD_DISK_ROLE_SPARE: /* spare */ 1944 break; 1945 case MD_DISK_ROLE_FAULTY: /* faulty */ 1946 set_bit(Faulty, &rdev->flags); 1947 break; 1948 case MD_DISK_ROLE_JOURNAL: /* journal device */ 1949 if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) { 1950 /* journal device without journal feature */ 1951 pr_warn("md: journal device provided without journal feature, ignoring the device\n"); 1952 return -EINVAL; 1953 } 1954 set_bit(Journal, &rdev->flags); 1955 rdev->journal_tail = le64_to_cpu(sb->journal_tail); 1956 rdev->raid_disk = 0; 1957 break; 1958 default: 1959 rdev->saved_raid_disk = role; 1960 if ((le32_to_cpu(sb->feature_map) & 1961 MD_FEATURE_RECOVERY_OFFSET)) { 1962 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 1963 if (!(le32_to_cpu(sb->feature_map) & 1964 MD_FEATURE_RECOVERY_BITMAP)) 1965 rdev->saved_raid_disk = -1; 1966 } else { 1967 /* 1968 * If the array is FROZEN, then the device can't 1969 * be in_sync with rest of array. 1970 */ 1971 if (!test_bit(MD_RECOVERY_FROZEN, 1972 &mddev->recovery)) 1973 set_bit(In_sync, &rdev->flags); 1974 } 1975 rdev->raid_disk = role; 1976 break; 1977 } 1978 if (sb->devflags & WriteMostly1) 1979 set_bit(WriteMostly, &rdev->flags); 1980 if (sb->devflags & FailFast1) 1981 set_bit(FailFast, &rdev->flags); 1982 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT) 1983 set_bit(Replacement, &rdev->flags); 1984 } else /* MULTIPATH are always insync */ 1985 set_bit(In_sync, &rdev->flags); 1986 1987 return 0; 1988 } 1989 1990 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev) 1991 { 1992 struct mdp_superblock_1 *sb; 1993 struct md_rdev *rdev2; 1994 int max_dev, i; 1995 /* make rdev->sb match mddev and rdev data. */ 1996 1997 sb = page_address(rdev->sb_page); 1998 1999 sb->feature_map = 0; 2000 sb->pad0 = 0; 2001 sb->recovery_offset = cpu_to_le64(0); 2002 memset(sb->pad3, 0, sizeof(sb->pad3)); 2003 2004 sb->utime = cpu_to_le64((__u64)mddev->utime); 2005 sb->events = cpu_to_le64(mddev->events); 2006 if (mddev->in_sync) 2007 sb->resync_offset = cpu_to_le64(mddev->recovery_cp); 2008 else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags)) 2009 sb->resync_offset = cpu_to_le64(MaxSector); 2010 else 2011 sb->resync_offset = cpu_to_le64(0); 2012 2013 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); 2014 2015 sb->raid_disks = cpu_to_le32(mddev->raid_disks); 2016 sb->size = cpu_to_le64(mddev->dev_sectors); 2017 sb->chunksize = cpu_to_le32(mddev->chunk_sectors); 2018 sb->level = cpu_to_le32(mddev->level); 2019 sb->layout = cpu_to_le32(mddev->layout); 2020 if (test_bit(FailFast, &rdev->flags)) 2021 sb->devflags |= FailFast1; 2022 else 2023 sb->devflags &= ~FailFast1; 2024 2025 if (test_bit(WriteMostly, &rdev->flags)) 2026 sb->devflags |= WriteMostly1; 2027 else 2028 sb->devflags &= ~WriteMostly1; 2029 sb->data_offset = cpu_to_le64(rdev->data_offset); 2030 sb->data_size = cpu_to_le64(rdev->sectors); 2031 2032 if (mddev->bitmap && mddev->bitmap_info.file == NULL) { 2033 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset); 2034 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); 2035 } 2036 2037 if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) && 2038 !test_bit(In_sync, &rdev->flags)) { 2039 sb->feature_map |= 2040 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); 2041 sb->recovery_offset = 2042 cpu_to_le64(rdev->recovery_offset); 2043 if (rdev->saved_raid_disk >= 0 && mddev->bitmap) 2044 sb->feature_map |= 2045 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP); 2046 } 2047 /* Note: recovery_offset and journal_tail share space */ 2048 if (test_bit(Journal, &rdev->flags)) 2049 sb->journal_tail = cpu_to_le64(rdev->journal_tail); 2050 if (test_bit(Replacement, &rdev->flags)) 2051 sb->feature_map |= 2052 cpu_to_le32(MD_FEATURE_REPLACEMENT); 2053 2054 if (mddev->reshape_position != MaxSector) { 2055 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); 2056 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 2057 sb->new_layout = cpu_to_le32(mddev->new_layout); 2058 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 2059 sb->new_level = cpu_to_le32(mddev->new_level); 2060 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors); 2061 if (mddev->delta_disks == 0 && 2062 mddev->reshape_backwards) 2063 sb->feature_map 2064 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS); 2065 if (rdev->new_data_offset != rdev->data_offset) { 2066 sb->feature_map 2067 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET); 2068 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset 2069 - rdev->data_offset)); 2070 } 2071 } 2072 2073 if (mddev_is_clustered(mddev)) 2074 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED); 2075 2076 if (rdev->badblocks.count == 0) 2077 /* Nothing to do for bad blocks*/ ; 2078 else if (sb->bblog_offset == 0) 2079 /* Cannot record bad blocks on this device */ 2080 md_error(mddev, rdev); 2081 else { 2082 struct badblocks *bb = &rdev->badblocks; 2083 __le64 *bbp = (__le64 *)page_address(rdev->bb_page); 2084 u64 *p = bb->page; 2085 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS); 2086 if (bb->changed) { 2087 unsigned seq; 2088 2089 retry: 2090 seq = read_seqbegin(&bb->lock); 2091 2092 memset(bbp, 0xff, PAGE_SIZE); 2093 2094 for (i = 0 ; i < bb->count ; i++) { 2095 u64 internal_bb = p[i]; 2096 u64 store_bb = ((BB_OFFSET(internal_bb) << 10) 2097 | BB_LEN(internal_bb)); 2098 bbp[i] = cpu_to_le64(store_bb); 2099 } 2100 bb->changed = 0; 2101 if (read_seqretry(&bb->lock, seq)) 2102 goto retry; 2103 2104 bb->sector = (rdev->sb_start + 2105 (int)le32_to_cpu(sb->bblog_offset)); 2106 bb->size = le16_to_cpu(sb->bblog_size); 2107 } 2108 } 2109 2110 max_dev = 0; 2111 rdev_for_each(rdev2, mddev) 2112 if (rdev2->desc_nr+1 > max_dev) 2113 max_dev = rdev2->desc_nr+1; 2114 2115 if (max_dev > le32_to_cpu(sb->max_dev)) { 2116 int bmask; 2117 sb->max_dev = cpu_to_le32(max_dev); 2118 rdev->sb_size = max_dev * 2 + 256; 2119 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 2120 if (rdev->sb_size & bmask) 2121 rdev->sb_size = (rdev->sb_size | bmask) + 1; 2122 } else 2123 max_dev = le32_to_cpu(sb->max_dev); 2124 2125 for (i=0; i<max_dev;i++) 2126 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 2127 2128 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) 2129 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL); 2130 2131 if (test_bit(MD_HAS_PPL, &mddev->flags)) { 2132 if (test_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags)) 2133 sb->feature_map |= 2134 cpu_to_le32(MD_FEATURE_MULTIPLE_PPLS); 2135 else 2136 sb->feature_map |= cpu_to_le32(MD_FEATURE_PPL); 2137 sb->ppl.offset = cpu_to_le16(rdev->ppl.offset); 2138 sb->ppl.size = cpu_to_le16(rdev->ppl.size); 2139 } 2140 2141 rdev_for_each(rdev2, mddev) { 2142 i = rdev2->desc_nr; 2143 if (test_bit(Faulty, &rdev2->flags)) 2144 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY); 2145 else if (test_bit(In_sync, &rdev2->flags)) 2146 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 2147 else if (test_bit(Journal, &rdev2->flags)) 2148 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL); 2149 else if (rdev2->raid_disk >= 0) 2150 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 2151 else 2152 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 2153 } 2154 2155 sb->sb_csum = calc_sb_1_csum(sb); 2156 } 2157 2158 static sector_t super_1_choose_bm_space(sector_t dev_size) 2159 { 2160 sector_t bm_space; 2161 2162 /* if the device is bigger than 8Gig, save 64k for bitmap 2163 * usage, if bigger than 200Gig, save 128k 2164 */ 2165 if (dev_size < 64*2) 2166 bm_space = 0; 2167 else if (dev_size - 64*2 >= 200*1024*1024*2) 2168 bm_space = 128*2; 2169 else if (dev_size - 4*2 > 8*1024*1024*2) 2170 bm_space = 64*2; 2171 else 2172 bm_space = 4*2; 2173 return bm_space; 2174 } 2175 2176 static unsigned long long 2177 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 2178 { 2179 struct mdp_superblock_1 *sb; 2180 sector_t max_sectors; 2181 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 2182 return 0; /* component must fit device */ 2183 if (rdev->data_offset != rdev->new_data_offset) 2184 return 0; /* too confusing */ 2185 if (rdev->sb_start < rdev->data_offset) { 2186 /* minor versions 1 and 2; superblock before data */ 2187 max_sectors = bdev_nr_sectors(rdev->bdev) - rdev->data_offset; 2188 if (!num_sectors || num_sectors > max_sectors) 2189 num_sectors = max_sectors; 2190 } else if (rdev->mddev->bitmap_info.offset) { 2191 /* minor version 0 with bitmap we can't move */ 2192 return 0; 2193 } else { 2194 /* minor version 0; superblock after data */ 2195 sector_t sb_start, bm_space; 2196 sector_t dev_size = bdev_nr_sectors(rdev->bdev); 2197 2198 /* 8K is for superblock */ 2199 sb_start = dev_size - 8*2; 2200 sb_start &= ~(sector_t)(4*2 - 1); 2201 2202 bm_space = super_1_choose_bm_space(dev_size); 2203 2204 /* Space that can be used to store date needs to decrease 2205 * superblock bitmap space and bad block space(4K) 2206 */ 2207 max_sectors = sb_start - bm_space - 4*2; 2208 2209 if (!num_sectors || num_sectors > max_sectors) 2210 num_sectors = max_sectors; 2211 rdev->sb_start = sb_start; 2212 } 2213 sb = page_address(rdev->sb_page); 2214 sb->data_size = cpu_to_le64(num_sectors); 2215 sb->super_offset = cpu_to_le64(rdev->sb_start); 2216 sb->sb_csum = calc_sb_1_csum(sb); 2217 do { 2218 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 2219 rdev->sb_page); 2220 } while (md_super_wait(rdev->mddev) < 0); 2221 return num_sectors; 2222 2223 } 2224 2225 static int 2226 super_1_allow_new_offset(struct md_rdev *rdev, 2227 unsigned long long new_offset) 2228 { 2229 /* All necessary checks on new >= old have been done */ 2230 struct bitmap *bitmap; 2231 if (new_offset >= rdev->data_offset) 2232 return 1; 2233 2234 /* with 1.0 metadata, there is no metadata to tread on 2235 * so we can always move back */ 2236 if (rdev->mddev->minor_version == 0) 2237 return 1; 2238 2239 /* otherwise we must be sure not to step on 2240 * any metadata, so stay: 2241 * 36K beyond start of superblock 2242 * beyond end of badblocks 2243 * beyond write-intent bitmap 2244 */ 2245 if (rdev->sb_start + (32+4)*2 > new_offset) 2246 return 0; 2247 bitmap = rdev->mddev->bitmap; 2248 if (bitmap && !rdev->mddev->bitmap_info.file && 2249 rdev->sb_start + rdev->mddev->bitmap_info.offset + 2250 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset) 2251 return 0; 2252 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset) 2253 return 0; 2254 2255 return 1; 2256 } 2257 2258 static struct super_type super_types[] = { 2259 [0] = { 2260 .name = "0.90.0", 2261 .owner = THIS_MODULE, 2262 .load_super = super_90_load, 2263 .validate_super = super_90_validate, 2264 .sync_super = super_90_sync, 2265 .rdev_size_change = super_90_rdev_size_change, 2266 .allow_new_offset = super_90_allow_new_offset, 2267 }, 2268 [1] = { 2269 .name = "md-1", 2270 .owner = THIS_MODULE, 2271 .load_super = super_1_load, 2272 .validate_super = super_1_validate, 2273 .sync_super = super_1_sync, 2274 .rdev_size_change = super_1_rdev_size_change, 2275 .allow_new_offset = super_1_allow_new_offset, 2276 }, 2277 }; 2278 2279 static void sync_super(struct mddev *mddev, struct md_rdev *rdev) 2280 { 2281 if (mddev->sync_super) { 2282 mddev->sync_super(mddev, rdev); 2283 return; 2284 } 2285 2286 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types)); 2287 2288 super_types[mddev->major_version].sync_super(mddev, rdev); 2289 } 2290 2291 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2) 2292 { 2293 struct md_rdev *rdev, *rdev2; 2294 2295 rcu_read_lock(); 2296 rdev_for_each_rcu(rdev, mddev1) { 2297 if (test_bit(Faulty, &rdev->flags) || 2298 test_bit(Journal, &rdev->flags) || 2299 rdev->raid_disk == -1) 2300 continue; 2301 rdev_for_each_rcu(rdev2, mddev2) { 2302 if (test_bit(Faulty, &rdev2->flags) || 2303 test_bit(Journal, &rdev2->flags) || 2304 rdev2->raid_disk == -1) 2305 continue; 2306 if (rdev->bdev->bd_disk == rdev2->bdev->bd_disk) { 2307 rcu_read_unlock(); 2308 return 1; 2309 } 2310 } 2311 } 2312 rcu_read_unlock(); 2313 return 0; 2314 } 2315 2316 static LIST_HEAD(pending_raid_disks); 2317 2318 /* 2319 * Try to register data integrity profile for an mddev 2320 * 2321 * This is called when an array is started and after a disk has been kicked 2322 * from the array. It only succeeds if all working and active component devices 2323 * are integrity capable with matching profiles. 2324 */ 2325 int md_integrity_register(struct mddev *mddev) 2326 { 2327 struct md_rdev *rdev, *reference = NULL; 2328 2329 if (list_empty(&mddev->disks)) 2330 return 0; /* nothing to do */ 2331 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk)) 2332 return 0; /* shouldn't register, or already is */ 2333 rdev_for_each(rdev, mddev) { 2334 /* skip spares and non-functional disks */ 2335 if (test_bit(Faulty, &rdev->flags)) 2336 continue; 2337 if (rdev->raid_disk < 0) 2338 continue; 2339 if (!reference) { 2340 /* Use the first rdev as the reference */ 2341 reference = rdev; 2342 continue; 2343 } 2344 /* does this rdev's profile match the reference profile? */ 2345 if (blk_integrity_compare(reference->bdev->bd_disk, 2346 rdev->bdev->bd_disk) < 0) 2347 return -EINVAL; 2348 } 2349 if (!reference || !bdev_get_integrity(reference->bdev)) 2350 return 0; 2351 /* 2352 * All component devices are integrity capable and have matching 2353 * profiles, register the common profile for the md device. 2354 */ 2355 blk_integrity_register(mddev->gendisk, 2356 bdev_get_integrity(reference->bdev)); 2357 2358 pr_debug("md: data integrity enabled on %s\n", mdname(mddev)); 2359 if (bioset_integrity_create(&mddev->bio_set, BIO_POOL_SIZE) || 2360 (mddev->level != 1 && mddev->level != 10 && 2361 bioset_integrity_create(&mddev->io_clone_set, BIO_POOL_SIZE))) { 2362 /* 2363 * No need to handle the failure of bioset_integrity_create, 2364 * because the function is called by md_run() -> pers->run(), 2365 * md_run calls bioset_exit -> bioset_integrity_free in case 2366 * of failure case. 2367 */ 2368 pr_err("md: failed to create integrity pool for %s\n", 2369 mdname(mddev)); 2370 return -EINVAL; 2371 } 2372 return 0; 2373 } 2374 EXPORT_SYMBOL(md_integrity_register); 2375 2376 /* 2377 * Attempt to add an rdev, but only if it is consistent with the current 2378 * integrity profile 2379 */ 2380 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev) 2381 { 2382 struct blk_integrity *bi_mddev; 2383 2384 if (!mddev->gendisk) 2385 return 0; 2386 2387 bi_mddev = blk_get_integrity(mddev->gendisk); 2388 2389 if (!bi_mddev) /* nothing to do */ 2390 return 0; 2391 2392 if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) { 2393 pr_err("%s: incompatible integrity profile for %pg\n", 2394 mdname(mddev), rdev->bdev); 2395 return -ENXIO; 2396 } 2397 2398 return 0; 2399 } 2400 EXPORT_SYMBOL(md_integrity_add_rdev); 2401 2402 static bool rdev_read_only(struct md_rdev *rdev) 2403 { 2404 return bdev_read_only(rdev->bdev) || 2405 (rdev->meta_bdev && bdev_read_only(rdev->meta_bdev)); 2406 } 2407 2408 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev) 2409 { 2410 char b[BDEVNAME_SIZE]; 2411 int err; 2412 2413 /* prevent duplicates */ 2414 if (find_rdev(mddev, rdev->bdev->bd_dev)) 2415 return -EEXIST; 2416 2417 if (rdev_read_only(rdev) && mddev->pers) 2418 return -EROFS; 2419 2420 /* make sure rdev->sectors exceeds mddev->dev_sectors */ 2421 if (!test_bit(Journal, &rdev->flags) && 2422 rdev->sectors && 2423 (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) { 2424 if (mddev->pers) { 2425 /* Cannot change size, so fail 2426 * If mddev->level <= 0, then we don't care 2427 * about aligning sizes (e.g. linear) 2428 */ 2429 if (mddev->level > 0) 2430 return -ENOSPC; 2431 } else 2432 mddev->dev_sectors = rdev->sectors; 2433 } 2434 2435 /* Verify rdev->desc_nr is unique. 2436 * If it is -1, assign a free number, else 2437 * check number is not in use 2438 */ 2439 rcu_read_lock(); 2440 if (rdev->desc_nr < 0) { 2441 int choice = 0; 2442 if (mddev->pers) 2443 choice = mddev->raid_disks; 2444 while (md_find_rdev_nr_rcu(mddev, choice)) 2445 choice++; 2446 rdev->desc_nr = choice; 2447 } else { 2448 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) { 2449 rcu_read_unlock(); 2450 return -EBUSY; 2451 } 2452 } 2453 rcu_read_unlock(); 2454 if (!test_bit(Journal, &rdev->flags) && 2455 mddev->max_disks && rdev->desc_nr >= mddev->max_disks) { 2456 pr_warn("md: %s: array is limited to %d devices\n", 2457 mdname(mddev), mddev->max_disks); 2458 return -EBUSY; 2459 } 2460 snprintf(b, sizeof(b), "%pg", rdev->bdev); 2461 strreplace(b, '/', '!'); 2462 2463 rdev->mddev = mddev; 2464 pr_debug("md: bind<%s>\n", b); 2465 2466 if (mddev->raid_disks) 2467 mddev_create_serial_pool(mddev, rdev, false); 2468 2469 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b))) 2470 goto fail; 2471 2472 /* failure here is OK */ 2473 err = sysfs_create_link(&rdev->kobj, bdev_kobj(rdev->bdev), "block"); 2474 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state"); 2475 rdev->sysfs_unack_badblocks = 2476 sysfs_get_dirent_safe(rdev->kobj.sd, "unacknowledged_bad_blocks"); 2477 rdev->sysfs_badblocks = 2478 sysfs_get_dirent_safe(rdev->kobj.sd, "bad_blocks"); 2479 2480 list_add_rcu(&rdev->same_set, &mddev->disks); 2481 bd_link_disk_holder(rdev->bdev, mddev->gendisk); 2482 2483 /* May as well allow recovery to be retried once */ 2484 mddev->recovery_disabled++; 2485 2486 return 0; 2487 2488 fail: 2489 pr_warn("md: failed to register dev-%s for %s\n", 2490 b, mdname(mddev)); 2491 mddev_destroy_serial_pool(mddev, rdev, false); 2492 return err; 2493 } 2494 2495 void md_autodetect_dev(dev_t dev); 2496 2497 /* just for claiming the bdev */ 2498 static struct md_rdev claim_rdev; 2499 2500 static void export_rdev(struct md_rdev *rdev, struct mddev *mddev) 2501 { 2502 pr_debug("md: export_rdev(%pg)\n", rdev->bdev); 2503 md_rdev_clear(rdev); 2504 #ifndef MODULE 2505 if (test_bit(AutoDetected, &rdev->flags)) 2506 md_autodetect_dev(rdev->bdev->bd_dev); 2507 #endif 2508 blkdev_put(rdev->bdev, 2509 test_bit(Holder, &rdev->flags) ? rdev : &claim_rdev); 2510 rdev->bdev = NULL; 2511 kobject_put(&rdev->kobj); 2512 } 2513 2514 static void md_kick_rdev_from_array(struct md_rdev *rdev) 2515 { 2516 struct mddev *mddev = rdev->mddev; 2517 2518 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk); 2519 list_del_rcu(&rdev->same_set); 2520 pr_debug("md: unbind<%pg>\n", rdev->bdev); 2521 mddev_destroy_serial_pool(rdev->mddev, rdev, false); 2522 rdev->mddev = NULL; 2523 sysfs_remove_link(&rdev->kobj, "block"); 2524 sysfs_put(rdev->sysfs_state); 2525 sysfs_put(rdev->sysfs_unack_badblocks); 2526 sysfs_put(rdev->sysfs_badblocks); 2527 rdev->sysfs_state = NULL; 2528 rdev->sysfs_unack_badblocks = NULL; 2529 rdev->sysfs_badblocks = NULL; 2530 rdev->badblocks.count = 0; 2531 2532 synchronize_rcu(); 2533 2534 /* 2535 * kobject_del() will wait for all in progress writers to be done, where 2536 * reconfig_mutex is held, hence it can't be called under 2537 * reconfig_mutex and it's delayed to mddev_unlock(). 2538 */ 2539 list_add(&rdev->same_set, &mddev->deleting); 2540 } 2541 2542 static void export_array(struct mddev *mddev) 2543 { 2544 struct md_rdev *rdev; 2545 2546 while (!list_empty(&mddev->disks)) { 2547 rdev = list_first_entry(&mddev->disks, struct md_rdev, 2548 same_set); 2549 md_kick_rdev_from_array(rdev); 2550 } 2551 mddev->raid_disks = 0; 2552 mddev->major_version = 0; 2553 } 2554 2555 static bool set_in_sync(struct mddev *mddev) 2556 { 2557 lockdep_assert_held(&mddev->lock); 2558 if (!mddev->in_sync) { 2559 mddev->sync_checkers++; 2560 spin_unlock(&mddev->lock); 2561 percpu_ref_switch_to_atomic_sync(&mddev->writes_pending); 2562 spin_lock(&mddev->lock); 2563 if (!mddev->in_sync && 2564 percpu_ref_is_zero(&mddev->writes_pending)) { 2565 mddev->in_sync = 1; 2566 /* 2567 * Ensure ->in_sync is visible before we clear 2568 * ->sync_checkers. 2569 */ 2570 smp_mb(); 2571 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2572 sysfs_notify_dirent_safe(mddev->sysfs_state); 2573 } 2574 if (--mddev->sync_checkers == 0) 2575 percpu_ref_switch_to_percpu(&mddev->writes_pending); 2576 } 2577 if (mddev->safemode == 1) 2578 mddev->safemode = 0; 2579 return mddev->in_sync; 2580 } 2581 2582 static void sync_sbs(struct mddev *mddev, int nospares) 2583 { 2584 /* Update each superblock (in-memory image), but 2585 * if we are allowed to, skip spares which already 2586 * have the right event counter, or have one earlier 2587 * (which would mean they aren't being marked as dirty 2588 * with the rest of the array) 2589 */ 2590 struct md_rdev *rdev; 2591 rdev_for_each(rdev, mddev) { 2592 if (rdev->sb_events == mddev->events || 2593 (nospares && 2594 rdev->raid_disk < 0 && 2595 rdev->sb_events+1 == mddev->events)) { 2596 /* Don't update this superblock */ 2597 rdev->sb_loaded = 2; 2598 } else { 2599 sync_super(mddev, rdev); 2600 rdev->sb_loaded = 1; 2601 } 2602 } 2603 } 2604 2605 static bool does_sb_need_changing(struct mddev *mddev) 2606 { 2607 struct md_rdev *rdev = NULL, *iter; 2608 struct mdp_superblock_1 *sb; 2609 int role; 2610 2611 /* Find a good rdev */ 2612 rdev_for_each(iter, mddev) 2613 if ((iter->raid_disk >= 0) && !test_bit(Faulty, &iter->flags)) { 2614 rdev = iter; 2615 break; 2616 } 2617 2618 /* No good device found. */ 2619 if (!rdev) 2620 return false; 2621 2622 sb = page_address(rdev->sb_page); 2623 /* Check if a device has become faulty or a spare become active */ 2624 rdev_for_each(rdev, mddev) { 2625 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 2626 /* Device activated? */ 2627 if (role == MD_DISK_ROLE_SPARE && rdev->raid_disk >= 0 && 2628 !test_bit(Faulty, &rdev->flags)) 2629 return true; 2630 /* Device turned faulty? */ 2631 if (test_bit(Faulty, &rdev->flags) && (role < MD_DISK_ROLE_MAX)) 2632 return true; 2633 } 2634 2635 /* Check if any mddev parameters have changed */ 2636 if ((mddev->dev_sectors != le64_to_cpu(sb->size)) || 2637 (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) || 2638 (mddev->layout != le32_to_cpu(sb->layout)) || 2639 (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) || 2640 (mddev->chunk_sectors != le32_to_cpu(sb->chunksize))) 2641 return true; 2642 2643 return false; 2644 } 2645 2646 void md_update_sb(struct mddev *mddev, int force_change) 2647 { 2648 struct md_rdev *rdev; 2649 int sync_req; 2650 int nospares = 0; 2651 int any_badblocks_changed = 0; 2652 int ret = -1; 2653 2654 if (!md_is_rdwr(mddev)) { 2655 if (force_change) 2656 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2657 return; 2658 } 2659 2660 repeat: 2661 if (mddev_is_clustered(mddev)) { 2662 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2663 force_change = 1; 2664 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2665 nospares = 1; 2666 ret = md_cluster_ops->metadata_update_start(mddev); 2667 /* Has someone else has updated the sb */ 2668 if (!does_sb_need_changing(mddev)) { 2669 if (ret == 0) 2670 md_cluster_ops->metadata_update_cancel(mddev); 2671 bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2672 BIT(MD_SB_CHANGE_DEVS) | 2673 BIT(MD_SB_CHANGE_CLEAN)); 2674 return; 2675 } 2676 } 2677 2678 /* 2679 * First make sure individual recovery_offsets are correct 2680 * curr_resync_completed can only be used during recovery. 2681 * During reshape/resync it might use array-addresses rather 2682 * that device addresses. 2683 */ 2684 rdev_for_each(rdev, mddev) { 2685 if (rdev->raid_disk >= 0 && 2686 mddev->delta_disks >= 0 && 2687 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 2688 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery) && 2689 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 2690 !test_bit(Journal, &rdev->flags) && 2691 !test_bit(In_sync, &rdev->flags) && 2692 mddev->curr_resync_completed > rdev->recovery_offset) 2693 rdev->recovery_offset = mddev->curr_resync_completed; 2694 2695 } 2696 if (!mddev->persistent) { 2697 clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2698 clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2699 if (!mddev->external) { 2700 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 2701 rdev_for_each(rdev, mddev) { 2702 if (rdev->badblocks.changed) { 2703 rdev->badblocks.changed = 0; 2704 ack_all_badblocks(&rdev->badblocks); 2705 md_error(mddev, rdev); 2706 } 2707 clear_bit(Blocked, &rdev->flags); 2708 clear_bit(BlockedBadBlocks, &rdev->flags); 2709 wake_up(&rdev->blocked_wait); 2710 } 2711 } 2712 wake_up(&mddev->sb_wait); 2713 return; 2714 } 2715 2716 spin_lock(&mddev->lock); 2717 2718 mddev->utime = ktime_get_real_seconds(); 2719 2720 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2721 force_change = 1; 2722 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2723 /* just a clean<-> dirty transition, possibly leave spares alone, 2724 * though if events isn't the right even/odd, we will have to do 2725 * spares after all 2726 */ 2727 nospares = 1; 2728 if (force_change) 2729 nospares = 0; 2730 if (mddev->degraded) 2731 /* If the array is degraded, then skipping spares is both 2732 * dangerous and fairly pointless. 2733 * Dangerous because a device that was removed from the array 2734 * might have a event_count that still looks up-to-date, 2735 * so it can be re-added without a resync. 2736 * Pointless because if there are any spares to skip, 2737 * then a recovery will happen and soon that array won't 2738 * be degraded any more and the spare can go back to sleep then. 2739 */ 2740 nospares = 0; 2741 2742 sync_req = mddev->in_sync; 2743 2744 /* If this is just a dirty<->clean transition, and the array is clean 2745 * and 'events' is odd, we can roll back to the previous clean state */ 2746 if (nospares 2747 && (mddev->in_sync && mddev->recovery_cp == MaxSector) 2748 && mddev->can_decrease_events 2749 && mddev->events != 1) { 2750 mddev->events--; 2751 mddev->can_decrease_events = 0; 2752 } else { 2753 /* otherwise we have to go forward and ... */ 2754 mddev->events ++; 2755 mddev->can_decrease_events = nospares; 2756 } 2757 2758 /* 2759 * This 64-bit counter should never wrap. 2760 * Either we are in around ~1 trillion A.C., assuming 2761 * 1 reboot per second, or we have a bug... 2762 */ 2763 WARN_ON(mddev->events == 0); 2764 2765 rdev_for_each(rdev, mddev) { 2766 if (rdev->badblocks.changed) 2767 any_badblocks_changed++; 2768 if (test_bit(Faulty, &rdev->flags)) 2769 set_bit(FaultRecorded, &rdev->flags); 2770 } 2771 2772 sync_sbs(mddev, nospares); 2773 spin_unlock(&mddev->lock); 2774 2775 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n", 2776 mdname(mddev), mddev->in_sync); 2777 2778 if (mddev->queue) 2779 blk_add_trace_msg(mddev->queue, "md md_update_sb"); 2780 rewrite: 2781 md_bitmap_update_sb(mddev->bitmap); 2782 rdev_for_each(rdev, mddev) { 2783 if (rdev->sb_loaded != 1) 2784 continue; /* no noise on spare devices */ 2785 2786 if (!test_bit(Faulty, &rdev->flags)) { 2787 md_super_write(mddev,rdev, 2788 rdev->sb_start, rdev->sb_size, 2789 rdev->sb_page); 2790 pr_debug("md: (write) %pg's sb offset: %llu\n", 2791 rdev->bdev, 2792 (unsigned long long)rdev->sb_start); 2793 rdev->sb_events = mddev->events; 2794 if (rdev->badblocks.size) { 2795 md_super_write(mddev, rdev, 2796 rdev->badblocks.sector, 2797 rdev->badblocks.size << 9, 2798 rdev->bb_page); 2799 rdev->badblocks.size = 0; 2800 } 2801 2802 } else 2803 pr_debug("md: %pg (skipping faulty)\n", 2804 rdev->bdev); 2805 2806 if (mddev->level == LEVEL_MULTIPATH) 2807 /* only need to write one superblock... */ 2808 break; 2809 } 2810 if (md_super_wait(mddev) < 0) 2811 goto rewrite; 2812 /* if there was a failure, MD_SB_CHANGE_DEVS was set, and we re-write super */ 2813 2814 if (mddev_is_clustered(mddev) && ret == 0) 2815 md_cluster_ops->metadata_update_finish(mddev); 2816 2817 if (mddev->in_sync != sync_req || 2818 !bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2819 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_CLEAN))) 2820 /* have to write it out again */ 2821 goto repeat; 2822 wake_up(&mddev->sb_wait); 2823 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 2824 sysfs_notify_dirent_safe(mddev->sysfs_completed); 2825 2826 rdev_for_each(rdev, mddev) { 2827 if (test_and_clear_bit(FaultRecorded, &rdev->flags)) 2828 clear_bit(Blocked, &rdev->flags); 2829 2830 if (any_badblocks_changed) 2831 ack_all_badblocks(&rdev->badblocks); 2832 clear_bit(BlockedBadBlocks, &rdev->flags); 2833 wake_up(&rdev->blocked_wait); 2834 } 2835 } 2836 EXPORT_SYMBOL(md_update_sb); 2837 2838 static int add_bound_rdev(struct md_rdev *rdev) 2839 { 2840 struct mddev *mddev = rdev->mddev; 2841 int err = 0; 2842 bool add_journal = test_bit(Journal, &rdev->flags); 2843 2844 if (!mddev->pers->hot_remove_disk || add_journal) { 2845 /* If there is hot_add_disk but no hot_remove_disk 2846 * then added disks for geometry changes, 2847 * and should be added immediately. 2848 */ 2849 super_types[mddev->major_version]. 2850 validate_super(mddev, NULL/*freshest*/, rdev); 2851 if (add_journal) 2852 mddev_suspend(mddev); 2853 err = mddev->pers->hot_add_disk(mddev, rdev); 2854 if (add_journal) 2855 mddev_resume(mddev); 2856 if (err) { 2857 md_kick_rdev_from_array(rdev); 2858 return err; 2859 } 2860 } 2861 sysfs_notify_dirent_safe(rdev->sysfs_state); 2862 2863 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2864 if (mddev->degraded) 2865 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 2866 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2867 md_new_event(); 2868 md_wakeup_thread(mddev->thread); 2869 return 0; 2870 } 2871 2872 /* words written to sysfs files may, or may not, be \n terminated. 2873 * We want to accept with case. For this we use cmd_match. 2874 */ 2875 static int cmd_match(const char *cmd, const char *str) 2876 { 2877 /* See if cmd, written into a sysfs file, matches 2878 * str. They must either be the same, or cmd can 2879 * have a trailing newline 2880 */ 2881 while (*cmd && *str && *cmd == *str) { 2882 cmd++; 2883 str++; 2884 } 2885 if (*cmd == '\n') 2886 cmd++; 2887 if (*str || *cmd) 2888 return 0; 2889 return 1; 2890 } 2891 2892 struct rdev_sysfs_entry { 2893 struct attribute attr; 2894 ssize_t (*show)(struct md_rdev *, char *); 2895 ssize_t (*store)(struct md_rdev *, const char *, size_t); 2896 }; 2897 2898 static ssize_t 2899 state_show(struct md_rdev *rdev, char *page) 2900 { 2901 char *sep = ","; 2902 size_t len = 0; 2903 unsigned long flags = READ_ONCE(rdev->flags); 2904 2905 if (test_bit(Faulty, &flags) || 2906 (!test_bit(ExternalBbl, &flags) && 2907 rdev->badblocks.unacked_exist)) 2908 len += sprintf(page+len, "faulty%s", sep); 2909 if (test_bit(In_sync, &flags)) 2910 len += sprintf(page+len, "in_sync%s", sep); 2911 if (test_bit(Journal, &flags)) 2912 len += sprintf(page+len, "journal%s", sep); 2913 if (test_bit(WriteMostly, &flags)) 2914 len += sprintf(page+len, "write_mostly%s", sep); 2915 if (test_bit(Blocked, &flags) || 2916 (rdev->badblocks.unacked_exist 2917 && !test_bit(Faulty, &flags))) 2918 len += sprintf(page+len, "blocked%s", sep); 2919 if (!test_bit(Faulty, &flags) && 2920 !test_bit(Journal, &flags) && 2921 !test_bit(In_sync, &flags)) 2922 len += sprintf(page+len, "spare%s", sep); 2923 if (test_bit(WriteErrorSeen, &flags)) 2924 len += sprintf(page+len, "write_error%s", sep); 2925 if (test_bit(WantReplacement, &flags)) 2926 len += sprintf(page+len, "want_replacement%s", sep); 2927 if (test_bit(Replacement, &flags)) 2928 len += sprintf(page+len, "replacement%s", sep); 2929 if (test_bit(ExternalBbl, &flags)) 2930 len += sprintf(page+len, "external_bbl%s", sep); 2931 if (test_bit(FailFast, &flags)) 2932 len += sprintf(page+len, "failfast%s", sep); 2933 2934 if (len) 2935 len -= strlen(sep); 2936 2937 return len+sprintf(page+len, "\n"); 2938 } 2939 2940 static ssize_t 2941 state_store(struct md_rdev *rdev, const char *buf, size_t len) 2942 { 2943 /* can write 2944 * faulty - simulates an error 2945 * remove - disconnects the device 2946 * writemostly - sets write_mostly 2947 * -writemostly - clears write_mostly 2948 * blocked - sets the Blocked flags 2949 * -blocked - clears the Blocked and possibly simulates an error 2950 * insync - sets Insync providing device isn't active 2951 * -insync - clear Insync for a device with a slot assigned, 2952 * so that it gets rebuilt based on bitmap 2953 * write_error - sets WriteErrorSeen 2954 * -write_error - clears WriteErrorSeen 2955 * {,-}failfast - set/clear FailFast 2956 */ 2957 2958 struct mddev *mddev = rdev->mddev; 2959 int err = -EINVAL; 2960 bool need_update_sb = false; 2961 2962 if (cmd_match(buf, "faulty") && rdev->mddev->pers) { 2963 md_error(rdev->mddev, rdev); 2964 2965 if (test_bit(MD_BROKEN, &rdev->mddev->flags)) 2966 err = -EBUSY; 2967 else 2968 err = 0; 2969 } else if (cmd_match(buf, "remove")) { 2970 if (rdev->mddev->pers) { 2971 clear_bit(Blocked, &rdev->flags); 2972 remove_and_add_spares(rdev->mddev, rdev); 2973 } 2974 if (rdev->raid_disk >= 0) 2975 err = -EBUSY; 2976 else { 2977 err = 0; 2978 if (mddev_is_clustered(mddev)) 2979 err = md_cluster_ops->remove_disk(mddev, rdev); 2980 2981 if (err == 0) { 2982 md_kick_rdev_from_array(rdev); 2983 if (mddev->pers) { 2984 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2985 md_wakeup_thread(mddev->thread); 2986 } 2987 md_new_event(); 2988 } 2989 } 2990 } else if (cmd_match(buf, "writemostly")) { 2991 set_bit(WriteMostly, &rdev->flags); 2992 mddev_create_serial_pool(rdev->mddev, rdev, false); 2993 need_update_sb = true; 2994 err = 0; 2995 } else if (cmd_match(buf, "-writemostly")) { 2996 mddev_destroy_serial_pool(rdev->mddev, rdev, false); 2997 clear_bit(WriteMostly, &rdev->flags); 2998 need_update_sb = true; 2999 err = 0; 3000 } else if (cmd_match(buf, "blocked")) { 3001 set_bit(Blocked, &rdev->flags); 3002 err = 0; 3003 } else if (cmd_match(buf, "-blocked")) { 3004 if (!test_bit(Faulty, &rdev->flags) && 3005 !test_bit(ExternalBbl, &rdev->flags) && 3006 rdev->badblocks.unacked_exist) { 3007 /* metadata handler doesn't understand badblocks, 3008 * so we need to fail the device 3009 */ 3010 md_error(rdev->mddev, rdev); 3011 } 3012 clear_bit(Blocked, &rdev->flags); 3013 clear_bit(BlockedBadBlocks, &rdev->flags); 3014 wake_up(&rdev->blocked_wait); 3015 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3016 md_wakeup_thread(rdev->mddev->thread); 3017 3018 err = 0; 3019 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) { 3020 set_bit(In_sync, &rdev->flags); 3021 err = 0; 3022 } else if (cmd_match(buf, "failfast")) { 3023 set_bit(FailFast, &rdev->flags); 3024 need_update_sb = true; 3025 err = 0; 3026 } else if (cmd_match(buf, "-failfast")) { 3027 clear_bit(FailFast, &rdev->flags); 3028 need_update_sb = true; 3029 err = 0; 3030 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 && 3031 !test_bit(Journal, &rdev->flags)) { 3032 if (rdev->mddev->pers == NULL) { 3033 clear_bit(In_sync, &rdev->flags); 3034 rdev->saved_raid_disk = rdev->raid_disk; 3035 rdev->raid_disk = -1; 3036 err = 0; 3037 } 3038 } else if (cmd_match(buf, "write_error")) { 3039 set_bit(WriteErrorSeen, &rdev->flags); 3040 err = 0; 3041 } else if (cmd_match(buf, "-write_error")) { 3042 clear_bit(WriteErrorSeen, &rdev->flags); 3043 err = 0; 3044 } else if (cmd_match(buf, "want_replacement")) { 3045 /* Any non-spare device that is not a replacement can 3046 * become want_replacement at any time, but we then need to 3047 * check if recovery is needed. 3048 */ 3049 if (rdev->raid_disk >= 0 && 3050 !test_bit(Journal, &rdev->flags) && 3051 !test_bit(Replacement, &rdev->flags)) 3052 set_bit(WantReplacement, &rdev->flags); 3053 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3054 md_wakeup_thread(rdev->mddev->thread); 3055 err = 0; 3056 } else if (cmd_match(buf, "-want_replacement")) { 3057 /* Clearing 'want_replacement' is always allowed. 3058 * Once replacements starts it is too late though. 3059 */ 3060 err = 0; 3061 clear_bit(WantReplacement, &rdev->flags); 3062 } else if (cmd_match(buf, "replacement")) { 3063 /* Can only set a device as a replacement when array has not 3064 * yet been started. Once running, replacement is automatic 3065 * from spares, or by assigning 'slot'. 3066 */ 3067 if (rdev->mddev->pers) 3068 err = -EBUSY; 3069 else { 3070 set_bit(Replacement, &rdev->flags); 3071 err = 0; 3072 } 3073 } else if (cmd_match(buf, "-replacement")) { 3074 /* Similarly, can only clear Replacement before start */ 3075 if (rdev->mddev->pers) 3076 err = -EBUSY; 3077 else { 3078 clear_bit(Replacement, &rdev->flags); 3079 err = 0; 3080 } 3081 } else if (cmd_match(buf, "re-add")) { 3082 if (!rdev->mddev->pers) 3083 err = -EINVAL; 3084 else if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1) && 3085 rdev->saved_raid_disk >= 0) { 3086 /* clear_bit is performed _after_ all the devices 3087 * have their local Faulty bit cleared. If any writes 3088 * happen in the meantime in the local node, they 3089 * will land in the local bitmap, which will be synced 3090 * by this node eventually 3091 */ 3092 if (!mddev_is_clustered(rdev->mddev) || 3093 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) { 3094 clear_bit(Faulty, &rdev->flags); 3095 err = add_bound_rdev(rdev); 3096 } 3097 } else 3098 err = -EBUSY; 3099 } else if (cmd_match(buf, "external_bbl") && (rdev->mddev->external)) { 3100 set_bit(ExternalBbl, &rdev->flags); 3101 rdev->badblocks.shift = 0; 3102 err = 0; 3103 } else if (cmd_match(buf, "-external_bbl") && (rdev->mddev->external)) { 3104 clear_bit(ExternalBbl, &rdev->flags); 3105 err = 0; 3106 } 3107 if (need_update_sb) 3108 md_update_sb(mddev, 1); 3109 if (!err) 3110 sysfs_notify_dirent_safe(rdev->sysfs_state); 3111 return err ? err : len; 3112 } 3113 static struct rdev_sysfs_entry rdev_state = 3114 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store); 3115 3116 static ssize_t 3117 errors_show(struct md_rdev *rdev, char *page) 3118 { 3119 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); 3120 } 3121 3122 static ssize_t 3123 errors_store(struct md_rdev *rdev, const char *buf, size_t len) 3124 { 3125 unsigned int n; 3126 int rv; 3127 3128 rv = kstrtouint(buf, 10, &n); 3129 if (rv < 0) 3130 return rv; 3131 atomic_set(&rdev->corrected_errors, n); 3132 return len; 3133 } 3134 static struct rdev_sysfs_entry rdev_errors = 3135 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); 3136 3137 static ssize_t 3138 slot_show(struct md_rdev *rdev, char *page) 3139 { 3140 if (test_bit(Journal, &rdev->flags)) 3141 return sprintf(page, "journal\n"); 3142 else if (rdev->raid_disk < 0) 3143 return sprintf(page, "none\n"); 3144 else 3145 return sprintf(page, "%d\n", rdev->raid_disk); 3146 } 3147 3148 static ssize_t 3149 slot_store(struct md_rdev *rdev, const char *buf, size_t len) 3150 { 3151 int slot; 3152 int err; 3153 3154 if (test_bit(Journal, &rdev->flags)) 3155 return -EBUSY; 3156 if (strncmp(buf, "none", 4)==0) 3157 slot = -1; 3158 else { 3159 err = kstrtouint(buf, 10, (unsigned int *)&slot); 3160 if (err < 0) 3161 return err; 3162 if (slot < 0) 3163 /* overflow */ 3164 return -ENOSPC; 3165 } 3166 if (rdev->mddev->pers && slot == -1) { 3167 /* Setting 'slot' on an active array requires also 3168 * updating the 'rd%d' link, and communicating 3169 * with the personality with ->hot_*_disk. 3170 * For now we only support removing 3171 * failed/spare devices. This normally happens automatically, 3172 * but not when the metadata is externally managed. 3173 */ 3174 if (rdev->raid_disk == -1) 3175 return -EEXIST; 3176 /* personality does all needed checks */ 3177 if (rdev->mddev->pers->hot_remove_disk == NULL) 3178 return -EINVAL; 3179 clear_bit(Blocked, &rdev->flags); 3180 remove_and_add_spares(rdev->mddev, rdev); 3181 if (rdev->raid_disk >= 0) 3182 return -EBUSY; 3183 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3184 md_wakeup_thread(rdev->mddev->thread); 3185 } else if (rdev->mddev->pers) { 3186 /* Activating a spare .. or possibly reactivating 3187 * if we ever get bitmaps working here. 3188 */ 3189 int err; 3190 3191 if (rdev->raid_disk != -1) 3192 return -EBUSY; 3193 3194 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery)) 3195 return -EBUSY; 3196 3197 if (rdev->mddev->pers->hot_add_disk == NULL) 3198 return -EINVAL; 3199 3200 if (slot >= rdev->mddev->raid_disks && 3201 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 3202 return -ENOSPC; 3203 3204 rdev->raid_disk = slot; 3205 if (test_bit(In_sync, &rdev->flags)) 3206 rdev->saved_raid_disk = slot; 3207 else 3208 rdev->saved_raid_disk = -1; 3209 clear_bit(In_sync, &rdev->flags); 3210 clear_bit(Bitmap_sync, &rdev->flags); 3211 err = rdev->mddev->pers->hot_add_disk(rdev->mddev, rdev); 3212 if (err) { 3213 rdev->raid_disk = -1; 3214 return err; 3215 } else 3216 sysfs_notify_dirent_safe(rdev->sysfs_state); 3217 /* failure here is OK */; 3218 sysfs_link_rdev(rdev->mddev, rdev); 3219 /* don't wakeup anyone, leave that to userspace. */ 3220 } else { 3221 if (slot >= rdev->mddev->raid_disks && 3222 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 3223 return -ENOSPC; 3224 rdev->raid_disk = slot; 3225 /* assume it is working */ 3226 clear_bit(Faulty, &rdev->flags); 3227 clear_bit(WriteMostly, &rdev->flags); 3228 set_bit(In_sync, &rdev->flags); 3229 sysfs_notify_dirent_safe(rdev->sysfs_state); 3230 } 3231 return len; 3232 } 3233 3234 static struct rdev_sysfs_entry rdev_slot = 3235 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); 3236 3237 static ssize_t 3238 offset_show(struct md_rdev *rdev, char *page) 3239 { 3240 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); 3241 } 3242 3243 static ssize_t 3244 offset_store(struct md_rdev *rdev, const char *buf, size_t len) 3245 { 3246 unsigned long long offset; 3247 if (kstrtoull(buf, 10, &offset) < 0) 3248 return -EINVAL; 3249 if (rdev->mddev->pers && rdev->raid_disk >= 0) 3250 return -EBUSY; 3251 if (rdev->sectors && rdev->mddev->external) 3252 /* Must set offset before size, so overlap checks 3253 * can be sane */ 3254 return -EBUSY; 3255 rdev->data_offset = offset; 3256 rdev->new_data_offset = offset; 3257 return len; 3258 } 3259 3260 static struct rdev_sysfs_entry rdev_offset = 3261 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); 3262 3263 static ssize_t new_offset_show(struct md_rdev *rdev, char *page) 3264 { 3265 return sprintf(page, "%llu\n", 3266 (unsigned long long)rdev->new_data_offset); 3267 } 3268 3269 static ssize_t new_offset_store(struct md_rdev *rdev, 3270 const char *buf, size_t len) 3271 { 3272 unsigned long long new_offset; 3273 struct mddev *mddev = rdev->mddev; 3274 3275 if (kstrtoull(buf, 10, &new_offset) < 0) 3276 return -EINVAL; 3277 3278 if (mddev->sync_thread || 3279 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery)) 3280 return -EBUSY; 3281 if (new_offset == rdev->data_offset) 3282 /* reset is always permitted */ 3283 ; 3284 else if (new_offset > rdev->data_offset) { 3285 /* must not push array size beyond rdev_sectors */ 3286 if (new_offset - rdev->data_offset 3287 + mddev->dev_sectors > rdev->sectors) 3288 return -E2BIG; 3289 } 3290 /* Metadata worries about other space details. */ 3291 3292 /* decreasing the offset is inconsistent with a backwards 3293 * reshape. 3294 */ 3295 if (new_offset < rdev->data_offset && 3296 mddev->reshape_backwards) 3297 return -EINVAL; 3298 /* Increasing offset is inconsistent with forwards 3299 * reshape. reshape_direction should be set to 3300 * 'backwards' first. 3301 */ 3302 if (new_offset > rdev->data_offset && 3303 !mddev->reshape_backwards) 3304 return -EINVAL; 3305 3306 if (mddev->pers && mddev->persistent && 3307 !super_types[mddev->major_version] 3308 .allow_new_offset(rdev, new_offset)) 3309 return -E2BIG; 3310 rdev->new_data_offset = new_offset; 3311 if (new_offset > rdev->data_offset) 3312 mddev->reshape_backwards = 1; 3313 else if (new_offset < rdev->data_offset) 3314 mddev->reshape_backwards = 0; 3315 3316 return len; 3317 } 3318 static struct rdev_sysfs_entry rdev_new_offset = 3319 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store); 3320 3321 static ssize_t 3322 rdev_size_show(struct md_rdev *rdev, char *page) 3323 { 3324 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2); 3325 } 3326 3327 static int md_rdevs_overlap(struct md_rdev *a, struct md_rdev *b) 3328 { 3329 /* check if two start/length pairs overlap */ 3330 if (a->data_offset + a->sectors <= b->data_offset) 3331 return false; 3332 if (b->data_offset + b->sectors <= a->data_offset) 3333 return false; 3334 return true; 3335 } 3336 3337 static bool md_rdev_overlaps(struct md_rdev *rdev) 3338 { 3339 struct mddev *mddev; 3340 struct md_rdev *rdev2; 3341 3342 spin_lock(&all_mddevs_lock); 3343 list_for_each_entry(mddev, &all_mddevs, all_mddevs) { 3344 if (test_bit(MD_DELETED, &mddev->flags)) 3345 continue; 3346 rdev_for_each(rdev2, mddev) { 3347 if (rdev != rdev2 && rdev->bdev == rdev2->bdev && 3348 md_rdevs_overlap(rdev, rdev2)) { 3349 spin_unlock(&all_mddevs_lock); 3350 return true; 3351 } 3352 } 3353 } 3354 spin_unlock(&all_mddevs_lock); 3355 return false; 3356 } 3357 3358 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors) 3359 { 3360 unsigned long long blocks; 3361 sector_t new; 3362 3363 if (kstrtoull(buf, 10, &blocks) < 0) 3364 return -EINVAL; 3365 3366 if (blocks & 1ULL << (8 * sizeof(blocks) - 1)) 3367 return -EINVAL; /* sector conversion overflow */ 3368 3369 new = blocks * 2; 3370 if (new != blocks * 2) 3371 return -EINVAL; /* unsigned long long to sector_t overflow */ 3372 3373 *sectors = new; 3374 return 0; 3375 } 3376 3377 static ssize_t 3378 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3379 { 3380 struct mddev *my_mddev = rdev->mddev; 3381 sector_t oldsectors = rdev->sectors; 3382 sector_t sectors; 3383 3384 if (test_bit(Journal, &rdev->flags)) 3385 return -EBUSY; 3386 if (strict_blocks_to_sectors(buf, §ors) < 0) 3387 return -EINVAL; 3388 if (rdev->data_offset != rdev->new_data_offset) 3389 return -EINVAL; /* too confusing */ 3390 if (my_mddev->pers && rdev->raid_disk >= 0) { 3391 if (my_mddev->persistent) { 3392 sectors = super_types[my_mddev->major_version]. 3393 rdev_size_change(rdev, sectors); 3394 if (!sectors) 3395 return -EBUSY; 3396 } else if (!sectors) 3397 sectors = bdev_nr_sectors(rdev->bdev) - 3398 rdev->data_offset; 3399 if (!my_mddev->pers->resize) 3400 /* Cannot change size for RAID0 or Linear etc */ 3401 return -EINVAL; 3402 } 3403 if (sectors < my_mddev->dev_sectors) 3404 return -EINVAL; /* component must fit device */ 3405 3406 rdev->sectors = sectors; 3407 3408 /* 3409 * Check that all other rdevs with the same bdev do not overlap. This 3410 * check does not provide a hard guarantee, it just helps avoid 3411 * dangerous mistakes. 3412 */ 3413 if (sectors > oldsectors && my_mddev->external && 3414 md_rdev_overlaps(rdev)) { 3415 /* 3416 * Someone else could have slipped in a size change here, but 3417 * doing so is just silly. We put oldsectors back because we 3418 * know it is safe, and trust userspace not to race with itself. 3419 */ 3420 rdev->sectors = oldsectors; 3421 return -EBUSY; 3422 } 3423 return len; 3424 } 3425 3426 static struct rdev_sysfs_entry rdev_size = 3427 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); 3428 3429 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page) 3430 { 3431 unsigned long long recovery_start = rdev->recovery_offset; 3432 3433 if (test_bit(In_sync, &rdev->flags) || 3434 recovery_start == MaxSector) 3435 return sprintf(page, "none\n"); 3436 3437 return sprintf(page, "%llu\n", recovery_start); 3438 } 3439 3440 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len) 3441 { 3442 unsigned long long recovery_start; 3443 3444 if (cmd_match(buf, "none")) 3445 recovery_start = MaxSector; 3446 else if (kstrtoull(buf, 10, &recovery_start)) 3447 return -EINVAL; 3448 3449 if (rdev->mddev->pers && 3450 rdev->raid_disk >= 0) 3451 return -EBUSY; 3452 3453 rdev->recovery_offset = recovery_start; 3454 if (recovery_start == MaxSector) 3455 set_bit(In_sync, &rdev->flags); 3456 else 3457 clear_bit(In_sync, &rdev->flags); 3458 return len; 3459 } 3460 3461 static struct rdev_sysfs_entry rdev_recovery_start = 3462 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store); 3463 3464 /* sysfs access to bad-blocks list. 3465 * We present two files. 3466 * 'bad-blocks' lists sector numbers and lengths of ranges that 3467 * are recorded as bad. The list is truncated to fit within 3468 * the one-page limit of sysfs. 3469 * Writing "sector length" to this file adds an acknowledged 3470 * bad block list. 3471 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet 3472 * been acknowledged. Writing to this file adds bad blocks 3473 * without acknowledging them. This is largely for testing. 3474 */ 3475 static ssize_t bb_show(struct md_rdev *rdev, char *page) 3476 { 3477 return badblocks_show(&rdev->badblocks, page, 0); 3478 } 3479 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len) 3480 { 3481 int rv = badblocks_store(&rdev->badblocks, page, len, 0); 3482 /* Maybe that ack was all we needed */ 3483 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags)) 3484 wake_up(&rdev->blocked_wait); 3485 return rv; 3486 } 3487 static struct rdev_sysfs_entry rdev_bad_blocks = 3488 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store); 3489 3490 static ssize_t ubb_show(struct md_rdev *rdev, char *page) 3491 { 3492 return badblocks_show(&rdev->badblocks, page, 1); 3493 } 3494 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len) 3495 { 3496 return badblocks_store(&rdev->badblocks, page, len, 1); 3497 } 3498 static struct rdev_sysfs_entry rdev_unack_bad_blocks = 3499 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store); 3500 3501 static ssize_t 3502 ppl_sector_show(struct md_rdev *rdev, char *page) 3503 { 3504 return sprintf(page, "%llu\n", (unsigned long long)rdev->ppl.sector); 3505 } 3506 3507 static ssize_t 3508 ppl_sector_store(struct md_rdev *rdev, const char *buf, size_t len) 3509 { 3510 unsigned long long sector; 3511 3512 if (kstrtoull(buf, 10, §or) < 0) 3513 return -EINVAL; 3514 if (sector != (sector_t)sector) 3515 return -EINVAL; 3516 3517 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3518 rdev->raid_disk >= 0) 3519 return -EBUSY; 3520 3521 if (rdev->mddev->persistent) { 3522 if (rdev->mddev->major_version == 0) 3523 return -EINVAL; 3524 if ((sector > rdev->sb_start && 3525 sector - rdev->sb_start > S16_MAX) || 3526 (sector < rdev->sb_start && 3527 rdev->sb_start - sector > -S16_MIN)) 3528 return -EINVAL; 3529 rdev->ppl.offset = sector - rdev->sb_start; 3530 } else if (!rdev->mddev->external) { 3531 return -EBUSY; 3532 } 3533 rdev->ppl.sector = sector; 3534 return len; 3535 } 3536 3537 static struct rdev_sysfs_entry rdev_ppl_sector = 3538 __ATTR(ppl_sector, S_IRUGO|S_IWUSR, ppl_sector_show, ppl_sector_store); 3539 3540 static ssize_t 3541 ppl_size_show(struct md_rdev *rdev, char *page) 3542 { 3543 return sprintf(page, "%u\n", rdev->ppl.size); 3544 } 3545 3546 static ssize_t 3547 ppl_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3548 { 3549 unsigned int size; 3550 3551 if (kstrtouint(buf, 10, &size) < 0) 3552 return -EINVAL; 3553 3554 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3555 rdev->raid_disk >= 0) 3556 return -EBUSY; 3557 3558 if (rdev->mddev->persistent) { 3559 if (rdev->mddev->major_version == 0) 3560 return -EINVAL; 3561 if (size > U16_MAX) 3562 return -EINVAL; 3563 } else if (!rdev->mddev->external) { 3564 return -EBUSY; 3565 } 3566 rdev->ppl.size = size; 3567 return len; 3568 } 3569 3570 static struct rdev_sysfs_entry rdev_ppl_size = 3571 __ATTR(ppl_size, S_IRUGO|S_IWUSR, ppl_size_show, ppl_size_store); 3572 3573 static struct attribute *rdev_default_attrs[] = { 3574 &rdev_state.attr, 3575 &rdev_errors.attr, 3576 &rdev_slot.attr, 3577 &rdev_offset.attr, 3578 &rdev_new_offset.attr, 3579 &rdev_size.attr, 3580 &rdev_recovery_start.attr, 3581 &rdev_bad_blocks.attr, 3582 &rdev_unack_bad_blocks.attr, 3583 &rdev_ppl_sector.attr, 3584 &rdev_ppl_size.attr, 3585 NULL, 3586 }; 3587 ATTRIBUTE_GROUPS(rdev_default); 3588 static ssize_t 3589 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 3590 { 3591 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3592 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3593 3594 if (!entry->show) 3595 return -EIO; 3596 if (!rdev->mddev) 3597 return -ENODEV; 3598 return entry->show(rdev, page); 3599 } 3600 3601 static ssize_t 3602 rdev_attr_store(struct kobject *kobj, struct attribute *attr, 3603 const char *page, size_t length) 3604 { 3605 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3606 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3607 struct kernfs_node *kn = NULL; 3608 ssize_t rv; 3609 struct mddev *mddev = rdev->mddev; 3610 3611 if (!entry->store) 3612 return -EIO; 3613 if (!capable(CAP_SYS_ADMIN)) 3614 return -EACCES; 3615 3616 if (entry->store == state_store && cmd_match(page, "remove")) 3617 kn = sysfs_break_active_protection(kobj, attr); 3618 3619 rv = mddev ? mddev_lock(mddev) : -ENODEV; 3620 if (!rv) { 3621 if (rdev->mddev == NULL) 3622 rv = -ENODEV; 3623 else 3624 rv = entry->store(rdev, page, length); 3625 mddev_unlock(mddev); 3626 } 3627 3628 if (kn) 3629 sysfs_unbreak_active_protection(kn); 3630 3631 return rv; 3632 } 3633 3634 static void rdev_free(struct kobject *ko) 3635 { 3636 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj); 3637 kfree(rdev); 3638 } 3639 static const struct sysfs_ops rdev_sysfs_ops = { 3640 .show = rdev_attr_show, 3641 .store = rdev_attr_store, 3642 }; 3643 static const struct kobj_type rdev_ktype = { 3644 .release = rdev_free, 3645 .sysfs_ops = &rdev_sysfs_ops, 3646 .default_groups = rdev_default_groups, 3647 }; 3648 3649 int md_rdev_init(struct md_rdev *rdev) 3650 { 3651 rdev->desc_nr = -1; 3652 rdev->saved_raid_disk = -1; 3653 rdev->raid_disk = -1; 3654 rdev->flags = 0; 3655 rdev->data_offset = 0; 3656 rdev->new_data_offset = 0; 3657 rdev->sb_events = 0; 3658 rdev->last_read_error = 0; 3659 rdev->sb_loaded = 0; 3660 rdev->bb_page = NULL; 3661 atomic_set(&rdev->nr_pending, 0); 3662 atomic_set(&rdev->read_errors, 0); 3663 atomic_set(&rdev->corrected_errors, 0); 3664 3665 INIT_LIST_HEAD(&rdev->same_set); 3666 init_waitqueue_head(&rdev->blocked_wait); 3667 3668 /* Add space to store bad block list. 3669 * This reserves the space even on arrays where it cannot 3670 * be used - I wonder if that matters 3671 */ 3672 return badblocks_init(&rdev->badblocks, 0); 3673 } 3674 EXPORT_SYMBOL_GPL(md_rdev_init); 3675 3676 /* 3677 * Import a device. If 'super_format' >= 0, then sanity check the superblock 3678 * 3679 * mark the device faulty if: 3680 * 3681 * - the device is nonexistent (zero size) 3682 * - the device has no valid superblock 3683 * 3684 * a faulty rdev _never_ has rdev->sb set. 3685 */ 3686 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor) 3687 { 3688 struct md_rdev *rdev; 3689 struct md_rdev *holder; 3690 sector_t size; 3691 int err; 3692 3693 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 3694 if (!rdev) 3695 return ERR_PTR(-ENOMEM); 3696 3697 err = md_rdev_init(rdev); 3698 if (err) 3699 goto out_free_rdev; 3700 err = alloc_disk_sb(rdev); 3701 if (err) 3702 goto out_clear_rdev; 3703 3704 if (super_format == -2) { 3705 holder = &claim_rdev; 3706 } else { 3707 holder = rdev; 3708 set_bit(Holder, &rdev->flags); 3709 } 3710 3711 rdev->bdev = blkdev_get_by_dev(newdev, BLK_OPEN_READ | BLK_OPEN_WRITE, 3712 holder, NULL); 3713 if (IS_ERR(rdev->bdev)) { 3714 pr_warn("md: could not open device unknown-block(%u,%u).\n", 3715 MAJOR(newdev), MINOR(newdev)); 3716 err = PTR_ERR(rdev->bdev); 3717 goto out_clear_rdev; 3718 } 3719 3720 kobject_init(&rdev->kobj, &rdev_ktype); 3721 3722 size = bdev_nr_bytes(rdev->bdev) >> BLOCK_SIZE_BITS; 3723 if (!size) { 3724 pr_warn("md: %pg has zero or unknown size, marking faulty!\n", 3725 rdev->bdev); 3726 err = -EINVAL; 3727 goto out_blkdev_put; 3728 } 3729 3730 if (super_format >= 0) { 3731 err = super_types[super_format]. 3732 load_super(rdev, NULL, super_minor); 3733 if (err == -EINVAL) { 3734 pr_warn("md: %pg does not have a valid v%d.%d superblock, not importing!\n", 3735 rdev->bdev, 3736 super_format, super_minor); 3737 goto out_blkdev_put; 3738 } 3739 if (err < 0) { 3740 pr_warn("md: could not read %pg's sb, not importing!\n", 3741 rdev->bdev); 3742 goto out_blkdev_put; 3743 } 3744 } 3745 3746 return rdev; 3747 3748 out_blkdev_put: 3749 blkdev_put(rdev->bdev, holder); 3750 out_clear_rdev: 3751 md_rdev_clear(rdev); 3752 out_free_rdev: 3753 kfree(rdev); 3754 return ERR_PTR(err); 3755 } 3756 3757 /* 3758 * Check a full RAID array for plausibility 3759 */ 3760 3761 static int analyze_sbs(struct mddev *mddev) 3762 { 3763 int i; 3764 struct md_rdev *rdev, *freshest, *tmp; 3765 3766 freshest = NULL; 3767 rdev_for_each_safe(rdev, tmp, mddev) 3768 switch (super_types[mddev->major_version]. 3769 load_super(rdev, freshest, mddev->minor_version)) { 3770 case 1: 3771 freshest = rdev; 3772 break; 3773 case 0: 3774 break; 3775 default: 3776 pr_warn("md: fatal superblock inconsistency in %pg -- removing from array\n", 3777 rdev->bdev); 3778 md_kick_rdev_from_array(rdev); 3779 } 3780 3781 /* Cannot find a valid fresh disk */ 3782 if (!freshest) { 3783 pr_warn("md: cannot find a valid disk\n"); 3784 return -EINVAL; 3785 } 3786 3787 super_types[mddev->major_version]. 3788 validate_super(mddev, NULL/*freshest*/, freshest); 3789 3790 i = 0; 3791 rdev_for_each_safe(rdev, tmp, mddev) { 3792 if (mddev->max_disks && 3793 (rdev->desc_nr >= mddev->max_disks || 3794 i > mddev->max_disks)) { 3795 pr_warn("md: %s: %pg: only %d devices permitted\n", 3796 mdname(mddev), rdev->bdev, 3797 mddev->max_disks); 3798 md_kick_rdev_from_array(rdev); 3799 continue; 3800 } 3801 if (rdev != freshest) { 3802 if (super_types[mddev->major_version]. 3803 validate_super(mddev, freshest, rdev)) { 3804 pr_warn("md: kicking non-fresh %pg from array!\n", 3805 rdev->bdev); 3806 md_kick_rdev_from_array(rdev); 3807 continue; 3808 } 3809 } 3810 if (mddev->level == LEVEL_MULTIPATH) { 3811 rdev->desc_nr = i++; 3812 rdev->raid_disk = rdev->desc_nr; 3813 set_bit(In_sync, &rdev->flags); 3814 } else if (rdev->raid_disk >= 3815 (mddev->raid_disks - min(0, mddev->delta_disks)) && 3816 !test_bit(Journal, &rdev->flags)) { 3817 rdev->raid_disk = -1; 3818 clear_bit(In_sync, &rdev->flags); 3819 } 3820 } 3821 3822 return 0; 3823 } 3824 3825 /* Read a fixed-point number. 3826 * Numbers in sysfs attributes should be in "standard" units where 3827 * possible, so time should be in seconds. 3828 * However we internally use a a much smaller unit such as 3829 * milliseconds or jiffies. 3830 * This function takes a decimal number with a possible fractional 3831 * component, and produces an integer which is the result of 3832 * multiplying that number by 10^'scale'. 3833 * all without any floating-point arithmetic. 3834 */ 3835 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale) 3836 { 3837 unsigned long result = 0; 3838 long decimals = -1; 3839 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) { 3840 if (*cp == '.') 3841 decimals = 0; 3842 else if (decimals < scale) { 3843 unsigned int value; 3844 value = *cp - '0'; 3845 result = result * 10 + value; 3846 if (decimals >= 0) 3847 decimals++; 3848 } 3849 cp++; 3850 } 3851 if (*cp == '\n') 3852 cp++; 3853 if (*cp) 3854 return -EINVAL; 3855 if (decimals < 0) 3856 decimals = 0; 3857 *res = result * int_pow(10, scale - decimals); 3858 return 0; 3859 } 3860 3861 static ssize_t 3862 safe_delay_show(struct mddev *mddev, char *page) 3863 { 3864 unsigned int msec = ((unsigned long)mddev->safemode_delay*1000)/HZ; 3865 3866 return sprintf(page, "%u.%03u\n", msec/1000, msec%1000); 3867 } 3868 static ssize_t 3869 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len) 3870 { 3871 unsigned long msec; 3872 3873 if (mddev_is_clustered(mddev)) { 3874 pr_warn("md: Safemode is disabled for clustered mode\n"); 3875 return -EINVAL; 3876 } 3877 3878 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0 || msec > UINT_MAX / HZ) 3879 return -EINVAL; 3880 if (msec == 0) 3881 mddev->safemode_delay = 0; 3882 else { 3883 unsigned long old_delay = mddev->safemode_delay; 3884 unsigned long new_delay = (msec*HZ)/1000; 3885 3886 if (new_delay == 0) 3887 new_delay = 1; 3888 mddev->safemode_delay = new_delay; 3889 if (new_delay < old_delay || old_delay == 0) 3890 mod_timer(&mddev->safemode_timer, jiffies+1); 3891 } 3892 return len; 3893 } 3894 static struct md_sysfs_entry md_safe_delay = 3895 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); 3896 3897 static ssize_t 3898 level_show(struct mddev *mddev, char *page) 3899 { 3900 struct md_personality *p; 3901 int ret; 3902 spin_lock(&mddev->lock); 3903 p = mddev->pers; 3904 if (p) 3905 ret = sprintf(page, "%s\n", p->name); 3906 else if (mddev->clevel[0]) 3907 ret = sprintf(page, "%s\n", mddev->clevel); 3908 else if (mddev->level != LEVEL_NONE) 3909 ret = sprintf(page, "%d\n", mddev->level); 3910 else 3911 ret = 0; 3912 spin_unlock(&mddev->lock); 3913 return ret; 3914 } 3915 3916 static ssize_t 3917 level_store(struct mddev *mddev, const char *buf, size_t len) 3918 { 3919 char clevel[16]; 3920 ssize_t rv; 3921 size_t slen = len; 3922 struct md_personality *pers, *oldpers; 3923 long level; 3924 void *priv, *oldpriv; 3925 struct md_rdev *rdev; 3926 3927 if (slen == 0 || slen >= sizeof(clevel)) 3928 return -EINVAL; 3929 3930 rv = mddev_lock(mddev); 3931 if (rv) 3932 return rv; 3933 3934 if (mddev->pers == NULL) { 3935 strncpy(mddev->clevel, buf, slen); 3936 if (mddev->clevel[slen-1] == '\n') 3937 slen--; 3938 mddev->clevel[slen] = 0; 3939 mddev->level = LEVEL_NONE; 3940 rv = len; 3941 goto out_unlock; 3942 } 3943 rv = -EROFS; 3944 if (!md_is_rdwr(mddev)) 3945 goto out_unlock; 3946 3947 /* request to change the personality. Need to ensure: 3948 * - array is not engaged in resync/recovery/reshape 3949 * - old personality can be suspended 3950 * - new personality will access other array. 3951 */ 3952 3953 rv = -EBUSY; 3954 if (mddev->sync_thread || 3955 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 3956 mddev->reshape_position != MaxSector || 3957 mddev->sysfs_active) 3958 goto out_unlock; 3959 3960 rv = -EINVAL; 3961 if (!mddev->pers->quiesce) { 3962 pr_warn("md: %s: %s does not support online personality change\n", 3963 mdname(mddev), mddev->pers->name); 3964 goto out_unlock; 3965 } 3966 3967 /* Now find the new personality */ 3968 strncpy(clevel, buf, slen); 3969 if (clevel[slen-1] == '\n') 3970 slen--; 3971 clevel[slen] = 0; 3972 if (kstrtol(clevel, 10, &level)) 3973 level = LEVEL_NONE; 3974 3975 if (request_module("md-%s", clevel) != 0) 3976 request_module("md-level-%s", clevel); 3977 spin_lock(&pers_lock); 3978 pers = find_pers(level, clevel); 3979 if (!pers || !try_module_get(pers->owner)) { 3980 spin_unlock(&pers_lock); 3981 pr_warn("md: personality %s not loaded\n", clevel); 3982 rv = -EINVAL; 3983 goto out_unlock; 3984 } 3985 spin_unlock(&pers_lock); 3986 3987 if (pers == mddev->pers) { 3988 /* Nothing to do! */ 3989 module_put(pers->owner); 3990 rv = len; 3991 goto out_unlock; 3992 } 3993 if (!pers->takeover) { 3994 module_put(pers->owner); 3995 pr_warn("md: %s: %s does not support personality takeover\n", 3996 mdname(mddev), clevel); 3997 rv = -EINVAL; 3998 goto out_unlock; 3999 } 4000 4001 rdev_for_each(rdev, mddev) 4002 rdev->new_raid_disk = rdev->raid_disk; 4003 4004 /* ->takeover must set new_* and/or delta_disks 4005 * if it succeeds, and may set them when it fails. 4006 */ 4007 priv = pers->takeover(mddev); 4008 if (IS_ERR(priv)) { 4009 mddev->new_level = mddev->level; 4010 mddev->new_layout = mddev->layout; 4011 mddev->new_chunk_sectors = mddev->chunk_sectors; 4012 mddev->raid_disks -= mddev->delta_disks; 4013 mddev->delta_disks = 0; 4014 mddev->reshape_backwards = 0; 4015 module_put(pers->owner); 4016 pr_warn("md: %s: %s would not accept array\n", 4017 mdname(mddev), clevel); 4018 rv = PTR_ERR(priv); 4019 goto out_unlock; 4020 } 4021 4022 /* Looks like we have a winner */ 4023 mddev_suspend(mddev); 4024 mddev_detach(mddev); 4025 4026 spin_lock(&mddev->lock); 4027 oldpers = mddev->pers; 4028 oldpriv = mddev->private; 4029 mddev->pers = pers; 4030 mddev->private = priv; 4031 strscpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 4032 mddev->level = mddev->new_level; 4033 mddev->layout = mddev->new_layout; 4034 mddev->chunk_sectors = mddev->new_chunk_sectors; 4035 mddev->delta_disks = 0; 4036 mddev->reshape_backwards = 0; 4037 mddev->degraded = 0; 4038 spin_unlock(&mddev->lock); 4039 4040 if (oldpers->sync_request == NULL && 4041 mddev->external) { 4042 /* We are converting from a no-redundancy array 4043 * to a redundancy array and metadata is managed 4044 * externally so we need to be sure that writes 4045 * won't block due to a need to transition 4046 * clean->dirty 4047 * until external management is started. 4048 */ 4049 mddev->in_sync = 0; 4050 mddev->safemode_delay = 0; 4051 mddev->safemode = 0; 4052 } 4053 4054 oldpers->free(mddev, oldpriv); 4055 4056 if (oldpers->sync_request == NULL && 4057 pers->sync_request != NULL) { 4058 /* need to add the md_redundancy_group */ 4059 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 4060 pr_warn("md: cannot register extra attributes for %s\n", 4061 mdname(mddev)); 4062 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action"); 4063 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed"); 4064 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded"); 4065 } 4066 if (oldpers->sync_request != NULL && 4067 pers->sync_request == NULL) { 4068 /* need to remove the md_redundancy_group */ 4069 if (mddev->to_remove == NULL) 4070 mddev->to_remove = &md_redundancy_group; 4071 } 4072 4073 module_put(oldpers->owner); 4074 4075 rdev_for_each(rdev, mddev) { 4076 if (rdev->raid_disk < 0) 4077 continue; 4078 if (rdev->new_raid_disk >= mddev->raid_disks) 4079 rdev->new_raid_disk = -1; 4080 if (rdev->new_raid_disk == rdev->raid_disk) 4081 continue; 4082 sysfs_unlink_rdev(mddev, rdev); 4083 } 4084 rdev_for_each(rdev, mddev) { 4085 if (rdev->raid_disk < 0) 4086 continue; 4087 if (rdev->new_raid_disk == rdev->raid_disk) 4088 continue; 4089 rdev->raid_disk = rdev->new_raid_disk; 4090 if (rdev->raid_disk < 0) 4091 clear_bit(In_sync, &rdev->flags); 4092 else { 4093 if (sysfs_link_rdev(mddev, rdev)) 4094 pr_warn("md: cannot register rd%d for %s after level change\n", 4095 rdev->raid_disk, mdname(mddev)); 4096 } 4097 } 4098 4099 if (pers->sync_request == NULL) { 4100 /* this is now an array without redundancy, so 4101 * it must always be in_sync 4102 */ 4103 mddev->in_sync = 1; 4104 del_timer_sync(&mddev->safemode_timer); 4105 } 4106 blk_set_stacking_limits(&mddev->queue->limits); 4107 pers->run(mddev); 4108 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4109 mddev_resume(mddev); 4110 if (!mddev->thread) 4111 md_update_sb(mddev, 1); 4112 sysfs_notify_dirent_safe(mddev->sysfs_level); 4113 md_new_event(); 4114 rv = len; 4115 out_unlock: 4116 mddev_unlock(mddev); 4117 return rv; 4118 } 4119 4120 static struct md_sysfs_entry md_level = 4121 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); 4122 4123 static ssize_t 4124 layout_show(struct mddev *mddev, char *page) 4125 { 4126 /* just a number, not meaningful for all levels */ 4127 if (mddev->reshape_position != MaxSector && 4128 mddev->layout != mddev->new_layout) 4129 return sprintf(page, "%d (%d)\n", 4130 mddev->new_layout, mddev->layout); 4131 return sprintf(page, "%d\n", mddev->layout); 4132 } 4133 4134 static ssize_t 4135 layout_store(struct mddev *mddev, const char *buf, size_t len) 4136 { 4137 unsigned int n; 4138 int err; 4139 4140 err = kstrtouint(buf, 10, &n); 4141 if (err < 0) 4142 return err; 4143 err = mddev_lock(mddev); 4144 if (err) 4145 return err; 4146 4147 if (mddev->pers) { 4148 if (mddev->pers->check_reshape == NULL) 4149 err = -EBUSY; 4150 else if (!md_is_rdwr(mddev)) 4151 err = -EROFS; 4152 else { 4153 mddev->new_layout = n; 4154 err = mddev->pers->check_reshape(mddev); 4155 if (err) 4156 mddev->new_layout = mddev->layout; 4157 } 4158 } else { 4159 mddev->new_layout = n; 4160 if (mddev->reshape_position == MaxSector) 4161 mddev->layout = n; 4162 } 4163 mddev_unlock(mddev); 4164 return err ?: len; 4165 } 4166 static struct md_sysfs_entry md_layout = 4167 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); 4168 4169 static ssize_t 4170 raid_disks_show(struct mddev *mddev, char *page) 4171 { 4172 if (mddev->raid_disks == 0) 4173 return 0; 4174 if (mddev->reshape_position != MaxSector && 4175 mddev->delta_disks != 0) 4176 return sprintf(page, "%d (%d)\n", mddev->raid_disks, 4177 mddev->raid_disks - mddev->delta_disks); 4178 return sprintf(page, "%d\n", mddev->raid_disks); 4179 } 4180 4181 static int update_raid_disks(struct mddev *mddev, int raid_disks); 4182 4183 static ssize_t 4184 raid_disks_store(struct mddev *mddev, const char *buf, size_t len) 4185 { 4186 unsigned int n; 4187 int err; 4188 4189 err = kstrtouint(buf, 10, &n); 4190 if (err < 0) 4191 return err; 4192 4193 err = mddev_lock(mddev); 4194 if (err) 4195 return err; 4196 if (mddev->pers) 4197 err = update_raid_disks(mddev, n); 4198 else if (mddev->reshape_position != MaxSector) { 4199 struct md_rdev *rdev; 4200 int olddisks = mddev->raid_disks - mddev->delta_disks; 4201 4202 err = -EINVAL; 4203 rdev_for_each(rdev, mddev) { 4204 if (olddisks < n && 4205 rdev->data_offset < rdev->new_data_offset) 4206 goto out_unlock; 4207 if (olddisks > n && 4208 rdev->data_offset > rdev->new_data_offset) 4209 goto out_unlock; 4210 } 4211 err = 0; 4212 mddev->delta_disks = n - olddisks; 4213 mddev->raid_disks = n; 4214 mddev->reshape_backwards = (mddev->delta_disks < 0); 4215 } else 4216 mddev->raid_disks = n; 4217 out_unlock: 4218 mddev_unlock(mddev); 4219 return err ? err : len; 4220 } 4221 static struct md_sysfs_entry md_raid_disks = 4222 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); 4223 4224 static ssize_t 4225 uuid_show(struct mddev *mddev, char *page) 4226 { 4227 return sprintf(page, "%pU\n", mddev->uuid); 4228 } 4229 static struct md_sysfs_entry md_uuid = 4230 __ATTR(uuid, S_IRUGO, uuid_show, NULL); 4231 4232 static ssize_t 4233 chunk_size_show(struct mddev *mddev, char *page) 4234 { 4235 if (mddev->reshape_position != MaxSector && 4236 mddev->chunk_sectors != mddev->new_chunk_sectors) 4237 return sprintf(page, "%d (%d)\n", 4238 mddev->new_chunk_sectors << 9, 4239 mddev->chunk_sectors << 9); 4240 return sprintf(page, "%d\n", mddev->chunk_sectors << 9); 4241 } 4242 4243 static ssize_t 4244 chunk_size_store(struct mddev *mddev, const char *buf, size_t len) 4245 { 4246 unsigned long n; 4247 int err; 4248 4249 err = kstrtoul(buf, 10, &n); 4250 if (err < 0) 4251 return err; 4252 4253 err = mddev_lock(mddev); 4254 if (err) 4255 return err; 4256 if (mddev->pers) { 4257 if (mddev->pers->check_reshape == NULL) 4258 err = -EBUSY; 4259 else if (!md_is_rdwr(mddev)) 4260 err = -EROFS; 4261 else { 4262 mddev->new_chunk_sectors = n >> 9; 4263 err = mddev->pers->check_reshape(mddev); 4264 if (err) 4265 mddev->new_chunk_sectors = mddev->chunk_sectors; 4266 } 4267 } else { 4268 mddev->new_chunk_sectors = n >> 9; 4269 if (mddev->reshape_position == MaxSector) 4270 mddev->chunk_sectors = n >> 9; 4271 } 4272 mddev_unlock(mddev); 4273 return err ?: len; 4274 } 4275 static struct md_sysfs_entry md_chunk_size = 4276 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); 4277 4278 static ssize_t 4279 resync_start_show(struct mddev *mddev, char *page) 4280 { 4281 if (mddev->recovery_cp == MaxSector) 4282 return sprintf(page, "none\n"); 4283 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); 4284 } 4285 4286 static ssize_t 4287 resync_start_store(struct mddev *mddev, const char *buf, size_t len) 4288 { 4289 unsigned long long n; 4290 int err; 4291 4292 if (cmd_match(buf, "none")) 4293 n = MaxSector; 4294 else { 4295 err = kstrtoull(buf, 10, &n); 4296 if (err < 0) 4297 return err; 4298 if (n != (sector_t)n) 4299 return -EINVAL; 4300 } 4301 4302 err = mddev_lock(mddev); 4303 if (err) 4304 return err; 4305 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 4306 err = -EBUSY; 4307 4308 if (!err) { 4309 mddev->recovery_cp = n; 4310 if (mddev->pers) 4311 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 4312 } 4313 mddev_unlock(mddev); 4314 return err ?: len; 4315 } 4316 static struct md_sysfs_entry md_resync_start = 4317 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR, 4318 resync_start_show, resync_start_store); 4319 4320 /* 4321 * The array state can be: 4322 * 4323 * clear 4324 * No devices, no size, no level 4325 * Equivalent to STOP_ARRAY ioctl 4326 * inactive 4327 * May have some settings, but array is not active 4328 * all IO results in error 4329 * When written, doesn't tear down array, but just stops it 4330 * suspended (not supported yet) 4331 * All IO requests will block. The array can be reconfigured. 4332 * Writing this, if accepted, will block until array is quiescent 4333 * readonly 4334 * no resync can happen. no superblocks get written. 4335 * write requests fail 4336 * read-auto 4337 * like readonly, but behaves like 'clean' on a write request. 4338 * 4339 * clean - no pending writes, but otherwise active. 4340 * When written to inactive array, starts without resync 4341 * If a write request arrives then 4342 * if metadata is known, mark 'dirty' and switch to 'active'. 4343 * if not known, block and switch to write-pending 4344 * If written to an active array that has pending writes, then fails. 4345 * active 4346 * fully active: IO and resync can be happening. 4347 * When written to inactive array, starts with resync 4348 * 4349 * write-pending 4350 * clean, but writes are blocked waiting for 'active' to be written. 4351 * 4352 * active-idle 4353 * like active, but no writes have been seen for a while (100msec). 4354 * 4355 * broken 4356 * Array is failed. It's useful because mounted-arrays aren't stopped 4357 * when array is failed, so this state will at least alert the user that 4358 * something is wrong. 4359 */ 4360 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, 4361 write_pending, active_idle, broken, bad_word}; 4362 static char *array_states[] = { 4363 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", 4364 "write-pending", "active-idle", "broken", NULL }; 4365 4366 static int match_word(const char *word, char **list) 4367 { 4368 int n; 4369 for (n=0; list[n]; n++) 4370 if (cmd_match(word, list[n])) 4371 break; 4372 return n; 4373 } 4374 4375 static ssize_t 4376 array_state_show(struct mddev *mddev, char *page) 4377 { 4378 enum array_state st = inactive; 4379 4380 if (mddev->pers && !test_bit(MD_NOT_READY, &mddev->flags)) { 4381 switch(mddev->ro) { 4382 case MD_RDONLY: 4383 st = readonly; 4384 break; 4385 case MD_AUTO_READ: 4386 st = read_auto; 4387 break; 4388 case MD_RDWR: 4389 spin_lock(&mddev->lock); 4390 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 4391 st = write_pending; 4392 else if (mddev->in_sync) 4393 st = clean; 4394 else if (mddev->safemode) 4395 st = active_idle; 4396 else 4397 st = active; 4398 spin_unlock(&mddev->lock); 4399 } 4400 4401 if (test_bit(MD_BROKEN, &mddev->flags) && st == clean) 4402 st = broken; 4403 } else { 4404 if (list_empty(&mddev->disks) && 4405 mddev->raid_disks == 0 && 4406 mddev->dev_sectors == 0) 4407 st = clear; 4408 else 4409 st = inactive; 4410 } 4411 return sprintf(page, "%s\n", array_states[st]); 4412 } 4413 4414 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev); 4415 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev); 4416 static int restart_array(struct mddev *mddev); 4417 4418 static ssize_t 4419 array_state_store(struct mddev *mddev, const char *buf, size_t len) 4420 { 4421 int err = 0; 4422 enum array_state st = match_word(buf, array_states); 4423 4424 if (mddev->pers && (st == active || st == clean) && 4425 mddev->ro != MD_RDONLY) { 4426 /* don't take reconfig_mutex when toggling between 4427 * clean and active 4428 */ 4429 spin_lock(&mddev->lock); 4430 if (st == active) { 4431 restart_array(mddev); 4432 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4433 md_wakeup_thread(mddev->thread); 4434 wake_up(&mddev->sb_wait); 4435 } else /* st == clean */ { 4436 restart_array(mddev); 4437 if (!set_in_sync(mddev)) 4438 err = -EBUSY; 4439 } 4440 if (!err) 4441 sysfs_notify_dirent_safe(mddev->sysfs_state); 4442 spin_unlock(&mddev->lock); 4443 return err ?: len; 4444 } 4445 err = mddev_lock(mddev); 4446 if (err) 4447 return err; 4448 err = -EINVAL; 4449 switch(st) { 4450 case bad_word: 4451 break; 4452 case clear: 4453 /* stopping an active array */ 4454 err = do_md_stop(mddev, 0, NULL); 4455 break; 4456 case inactive: 4457 /* stopping an active array */ 4458 if (mddev->pers) 4459 err = do_md_stop(mddev, 2, NULL); 4460 else 4461 err = 0; /* already inactive */ 4462 break; 4463 case suspended: 4464 break; /* not supported yet */ 4465 case readonly: 4466 if (mddev->pers) 4467 err = md_set_readonly(mddev, NULL); 4468 else { 4469 mddev->ro = MD_RDONLY; 4470 set_disk_ro(mddev->gendisk, 1); 4471 err = do_md_run(mddev); 4472 } 4473 break; 4474 case read_auto: 4475 if (mddev->pers) { 4476 if (md_is_rdwr(mddev)) 4477 err = md_set_readonly(mddev, NULL); 4478 else if (mddev->ro == MD_RDONLY) 4479 err = restart_array(mddev); 4480 if (err == 0) { 4481 mddev->ro = MD_AUTO_READ; 4482 set_disk_ro(mddev->gendisk, 0); 4483 } 4484 } else { 4485 mddev->ro = MD_AUTO_READ; 4486 err = do_md_run(mddev); 4487 } 4488 break; 4489 case clean: 4490 if (mddev->pers) { 4491 err = restart_array(mddev); 4492 if (err) 4493 break; 4494 spin_lock(&mddev->lock); 4495 if (!set_in_sync(mddev)) 4496 err = -EBUSY; 4497 spin_unlock(&mddev->lock); 4498 } else 4499 err = -EINVAL; 4500 break; 4501 case active: 4502 if (mddev->pers) { 4503 err = restart_array(mddev); 4504 if (err) 4505 break; 4506 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4507 wake_up(&mddev->sb_wait); 4508 err = 0; 4509 } else { 4510 mddev->ro = MD_RDWR; 4511 set_disk_ro(mddev->gendisk, 0); 4512 err = do_md_run(mddev); 4513 } 4514 break; 4515 case write_pending: 4516 case active_idle: 4517 case broken: 4518 /* these cannot be set */ 4519 break; 4520 } 4521 4522 if (!err) { 4523 if (mddev->hold_active == UNTIL_IOCTL) 4524 mddev->hold_active = 0; 4525 sysfs_notify_dirent_safe(mddev->sysfs_state); 4526 } 4527 mddev_unlock(mddev); 4528 return err ?: len; 4529 } 4530 static struct md_sysfs_entry md_array_state = 4531 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); 4532 4533 static ssize_t 4534 max_corrected_read_errors_show(struct mddev *mddev, char *page) { 4535 return sprintf(page, "%d\n", 4536 atomic_read(&mddev->max_corr_read_errors)); 4537 } 4538 4539 static ssize_t 4540 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len) 4541 { 4542 unsigned int n; 4543 int rv; 4544 4545 rv = kstrtouint(buf, 10, &n); 4546 if (rv < 0) 4547 return rv; 4548 if (n > INT_MAX) 4549 return -EINVAL; 4550 atomic_set(&mddev->max_corr_read_errors, n); 4551 return len; 4552 } 4553 4554 static struct md_sysfs_entry max_corr_read_errors = 4555 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show, 4556 max_corrected_read_errors_store); 4557 4558 static ssize_t 4559 null_show(struct mddev *mddev, char *page) 4560 { 4561 return -EINVAL; 4562 } 4563 4564 static ssize_t 4565 new_dev_store(struct mddev *mddev, const char *buf, size_t len) 4566 { 4567 /* buf must be %d:%d\n? giving major and minor numbers */ 4568 /* The new device is added to the array. 4569 * If the array has a persistent superblock, we read the 4570 * superblock to initialise info and check validity. 4571 * Otherwise, only checking done is that in bind_rdev_to_array, 4572 * which mainly checks size. 4573 */ 4574 char *e; 4575 int major = simple_strtoul(buf, &e, 10); 4576 int minor; 4577 dev_t dev; 4578 struct md_rdev *rdev; 4579 int err; 4580 4581 if (!*buf || *e != ':' || !e[1] || e[1] == '\n') 4582 return -EINVAL; 4583 minor = simple_strtoul(e+1, &e, 10); 4584 if (*e && *e != '\n') 4585 return -EINVAL; 4586 dev = MKDEV(major, minor); 4587 if (major != MAJOR(dev) || 4588 minor != MINOR(dev)) 4589 return -EOVERFLOW; 4590 4591 err = mddev_lock(mddev); 4592 if (err) 4593 return err; 4594 if (mddev->persistent) { 4595 rdev = md_import_device(dev, mddev->major_version, 4596 mddev->minor_version); 4597 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { 4598 struct md_rdev *rdev0 4599 = list_entry(mddev->disks.next, 4600 struct md_rdev, same_set); 4601 err = super_types[mddev->major_version] 4602 .load_super(rdev, rdev0, mddev->minor_version); 4603 if (err < 0) 4604 goto out; 4605 } 4606 } else if (mddev->external) 4607 rdev = md_import_device(dev, -2, -1); 4608 else 4609 rdev = md_import_device(dev, -1, -1); 4610 4611 if (IS_ERR(rdev)) { 4612 mddev_unlock(mddev); 4613 return PTR_ERR(rdev); 4614 } 4615 err = bind_rdev_to_array(rdev, mddev); 4616 out: 4617 if (err) 4618 export_rdev(rdev, mddev); 4619 mddev_unlock(mddev); 4620 if (!err) 4621 md_new_event(); 4622 return err ? err : len; 4623 } 4624 4625 static struct md_sysfs_entry md_new_device = 4626 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store); 4627 4628 static ssize_t 4629 bitmap_store(struct mddev *mddev, const char *buf, size_t len) 4630 { 4631 char *end; 4632 unsigned long chunk, end_chunk; 4633 int err; 4634 4635 err = mddev_lock(mddev); 4636 if (err) 4637 return err; 4638 if (!mddev->bitmap) 4639 goto out; 4640 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */ 4641 while (*buf) { 4642 chunk = end_chunk = simple_strtoul(buf, &end, 0); 4643 if (buf == end) break; 4644 if (*end == '-') { /* range */ 4645 buf = end + 1; 4646 end_chunk = simple_strtoul(buf, &end, 0); 4647 if (buf == end) break; 4648 } 4649 if (*end && !isspace(*end)) break; 4650 md_bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk); 4651 buf = skip_spaces(end); 4652 } 4653 md_bitmap_unplug(mddev->bitmap); /* flush the bits to disk */ 4654 out: 4655 mddev_unlock(mddev); 4656 return len; 4657 } 4658 4659 static struct md_sysfs_entry md_bitmap = 4660 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); 4661 4662 static ssize_t 4663 size_show(struct mddev *mddev, char *page) 4664 { 4665 return sprintf(page, "%llu\n", 4666 (unsigned long long)mddev->dev_sectors / 2); 4667 } 4668 4669 static int update_size(struct mddev *mddev, sector_t num_sectors); 4670 4671 static ssize_t 4672 size_store(struct mddev *mddev, const char *buf, size_t len) 4673 { 4674 /* If array is inactive, we can reduce the component size, but 4675 * not increase it (except from 0). 4676 * If array is active, we can try an on-line resize 4677 */ 4678 sector_t sectors; 4679 int err = strict_blocks_to_sectors(buf, §ors); 4680 4681 if (err < 0) 4682 return err; 4683 err = mddev_lock(mddev); 4684 if (err) 4685 return err; 4686 if (mddev->pers) { 4687 err = update_size(mddev, sectors); 4688 if (err == 0) 4689 md_update_sb(mddev, 1); 4690 } else { 4691 if (mddev->dev_sectors == 0 || 4692 mddev->dev_sectors > sectors) 4693 mddev->dev_sectors = sectors; 4694 else 4695 err = -ENOSPC; 4696 } 4697 mddev_unlock(mddev); 4698 return err ? err : len; 4699 } 4700 4701 static struct md_sysfs_entry md_size = 4702 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); 4703 4704 /* Metadata version. 4705 * This is one of 4706 * 'none' for arrays with no metadata (good luck...) 4707 * 'external' for arrays with externally managed metadata, 4708 * or N.M for internally known formats 4709 */ 4710 static ssize_t 4711 metadata_show(struct mddev *mddev, char *page) 4712 { 4713 if (mddev->persistent) 4714 return sprintf(page, "%d.%d\n", 4715 mddev->major_version, mddev->minor_version); 4716 else if (mddev->external) 4717 return sprintf(page, "external:%s\n", mddev->metadata_type); 4718 else 4719 return sprintf(page, "none\n"); 4720 } 4721 4722 static ssize_t 4723 metadata_store(struct mddev *mddev, const char *buf, size_t len) 4724 { 4725 int major, minor; 4726 char *e; 4727 int err; 4728 /* Changing the details of 'external' metadata is 4729 * always permitted. Otherwise there must be 4730 * no devices attached to the array. 4731 */ 4732 4733 err = mddev_lock(mddev); 4734 if (err) 4735 return err; 4736 err = -EBUSY; 4737 if (mddev->external && strncmp(buf, "external:", 9) == 0) 4738 ; 4739 else if (!list_empty(&mddev->disks)) 4740 goto out_unlock; 4741 4742 err = 0; 4743 if (cmd_match(buf, "none")) { 4744 mddev->persistent = 0; 4745 mddev->external = 0; 4746 mddev->major_version = 0; 4747 mddev->minor_version = 90; 4748 goto out_unlock; 4749 } 4750 if (strncmp(buf, "external:", 9) == 0) { 4751 size_t namelen = len-9; 4752 if (namelen >= sizeof(mddev->metadata_type)) 4753 namelen = sizeof(mddev->metadata_type)-1; 4754 strncpy(mddev->metadata_type, buf+9, namelen); 4755 mddev->metadata_type[namelen] = 0; 4756 if (namelen && mddev->metadata_type[namelen-1] == '\n') 4757 mddev->metadata_type[--namelen] = 0; 4758 mddev->persistent = 0; 4759 mddev->external = 1; 4760 mddev->major_version = 0; 4761 mddev->minor_version = 90; 4762 goto out_unlock; 4763 } 4764 major = simple_strtoul(buf, &e, 10); 4765 err = -EINVAL; 4766 if (e==buf || *e != '.') 4767 goto out_unlock; 4768 buf = e+1; 4769 minor = simple_strtoul(buf, &e, 10); 4770 if (e==buf || (*e && *e != '\n') ) 4771 goto out_unlock; 4772 err = -ENOENT; 4773 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL) 4774 goto out_unlock; 4775 mddev->major_version = major; 4776 mddev->minor_version = minor; 4777 mddev->persistent = 1; 4778 mddev->external = 0; 4779 err = 0; 4780 out_unlock: 4781 mddev_unlock(mddev); 4782 return err ?: len; 4783 } 4784 4785 static struct md_sysfs_entry md_metadata = 4786 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 4787 4788 static ssize_t 4789 action_show(struct mddev *mddev, char *page) 4790 { 4791 char *type = "idle"; 4792 unsigned long recovery = mddev->recovery; 4793 if (test_bit(MD_RECOVERY_FROZEN, &recovery)) 4794 type = "frozen"; 4795 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) || 4796 (md_is_rdwr(mddev) && test_bit(MD_RECOVERY_NEEDED, &recovery))) { 4797 if (test_bit(MD_RECOVERY_RESHAPE, &recovery)) 4798 type = "reshape"; 4799 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) { 4800 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery)) 4801 type = "resync"; 4802 else if (test_bit(MD_RECOVERY_CHECK, &recovery)) 4803 type = "check"; 4804 else 4805 type = "repair"; 4806 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery)) 4807 type = "recover"; 4808 else if (mddev->reshape_position != MaxSector) 4809 type = "reshape"; 4810 } 4811 return sprintf(page, "%s\n", type); 4812 } 4813 4814 static void stop_sync_thread(struct mddev *mddev) 4815 { 4816 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4817 return; 4818 4819 if (mddev_lock(mddev)) 4820 return; 4821 4822 /* 4823 * Check again in case MD_RECOVERY_RUNNING is cleared before lock is 4824 * held. 4825 */ 4826 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 4827 mddev_unlock(mddev); 4828 return; 4829 } 4830 4831 if (work_pending(&mddev->del_work)) 4832 flush_workqueue(md_misc_wq); 4833 4834 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4835 /* 4836 * Thread might be blocked waiting for metadata update which will now 4837 * never happen 4838 */ 4839 md_wakeup_thread_directly(mddev->sync_thread); 4840 4841 mddev_unlock(mddev); 4842 } 4843 4844 static void idle_sync_thread(struct mddev *mddev) 4845 { 4846 int sync_seq = atomic_read(&mddev->sync_seq); 4847 4848 mutex_lock(&mddev->sync_mutex); 4849 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4850 stop_sync_thread(mddev); 4851 4852 wait_event(resync_wait, sync_seq != atomic_read(&mddev->sync_seq) || 4853 !test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)); 4854 4855 mutex_unlock(&mddev->sync_mutex); 4856 } 4857 4858 static void frozen_sync_thread(struct mddev *mddev) 4859 { 4860 mutex_lock(&mddev->sync_mutex); 4861 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4862 stop_sync_thread(mddev); 4863 4864 wait_event(resync_wait, mddev->sync_thread == NULL && 4865 !test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)); 4866 4867 mutex_unlock(&mddev->sync_mutex); 4868 } 4869 4870 static ssize_t 4871 action_store(struct mddev *mddev, const char *page, size_t len) 4872 { 4873 if (!mddev->pers || !mddev->pers->sync_request) 4874 return -EINVAL; 4875 4876 4877 if (cmd_match(page, "idle")) 4878 idle_sync_thread(mddev); 4879 else if (cmd_match(page, "frozen")) 4880 frozen_sync_thread(mddev); 4881 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4882 return -EBUSY; 4883 else if (cmd_match(page, "resync")) 4884 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4885 else if (cmd_match(page, "recover")) { 4886 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4887 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 4888 } else if (cmd_match(page, "reshape")) { 4889 int err; 4890 if (mddev->pers->start_reshape == NULL) 4891 return -EINVAL; 4892 err = mddev_lock(mddev); 4893 if (!err) { 4894 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 4895 err = -EBUSY; 4896 } else if (mddev->reshape_position == MaxSector || 4897 mddev->pers->check_reshape == NULL || 4898 mddev->pers->check_reshape(mddev)) { 4899 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4900 err = mddev->pers->start_reshape(mddev); 4901 } else { 4902 /* 4903 * If reshape is still in progress, and 4904 * md_check_recovery() can continue to reshape, 4905 * don't restart reshape because data can be 4906 * corrupted for raid456. 4907 */ 4908 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4909 } 4910 mddev_unlock(mddev); 4911 } 4912 if (err) 4913 return err; 4914 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 4915 } else { 4916 if (cmd_match(page, "check")) 4917 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4918 else if (!cmd_match(page, "repair")) 4919 return -EINVAL; 4920 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4921 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 4922 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4923 } 4924 if (mddev->ro == MD_AUTO_READ) { 4925 /* A write to sync_action is enough to justify 4926 * canceling read-auto mode 4927 */ 4928 mddev->ro = MD_RDWR; 4929 md_wakeup_thread(mddev->sync_thread); 4930 } 4931 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4932 md_wakeup_thread(mddev->thread); 4933 sysfs_notify_dirent_safe(mddev->sysfs_action); 4934 return len; 4935 } 4936 4937 static struct md_sysfs_entry md_scan_mode = 4938 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); 4939 4940 static ssize_t 4941 last_sync_action_show(struct mddev *mddev, char *page) 4942 { 4943 return sprintf(page, "%s\n", mddev->last_sync_action); 4944 } 4945 4946 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action); 4947 4948 static ssize_t 4949 mismatch_cnt_show(struct mddev *mddev, char *page) 4950 { 4951 return sprintf(page, "%llu\n", 4952 (unsigned long long) 4953 atomic64_read(&mddev->resync_mismatches)); 4954 } 4955 4956 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); 4957 4958 static ssize_t 4959 sync_min_show(struct mddev *mddev, char *page) 4960 { 4961 return sprintf(page, "%d (%s)\n", speed_min(mddev), 4962 mddev->sync_speed_min ? "local": "system"); 4963 } 4964 4965 static ssize_t 4966 sync_min_store(struct mddev *mddev, const char *buf, size_t len) 4967 { 4968 unsigned int min; 4969 int rv; 4970 4971 if (strncmp(buf, "system", 6)==0) { 4972 min = 0; 4973 } else { 4974 rv = kstrtouint(buf, 10, &min); 4975 if (rv < 0) 4976 return rv; 4977 if (min == 0) 4978 return -EINVAL; 4979 } 4980 mddev->sync_speed_min = min; 4981 return len; 4982 } 4983 4984 static struct md_sysfs_entry md_sync_min = 4985 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); 4986 4987 static ssize_t 4988 sync_max_show(struct mddev *mddev, char *page) 4989 { 4990 return sprintf(page, "%d (%s)\n", speed_max(mddev), 4991 mddev->sync_speed_max ? "local": "system"); 4992 } 4993 4994 static ssize_t 4995 sync_max_store(struct mddev *mddev, const char *buf, size_t len) 4996 { 4997 unsigned int max; 4998 int rv; 4999 5000 if (strncmp(buf, "system", 6)==0) { 5001 max = 0; 5002 } else { 5003 rv = kstrtouint(buf, 10, &max); 5004 if (rv < 0) 5005 return rv; 5006 if (max == 0) 5007 return -EINVAL; 5008 } 5009 mddev->sync_speed_max = max; 5010 return len; 5011 } 5012 5013 static struct md_sysfs_entry md_sync_max = 5014 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); 5015 5016 static ssize_t 5017 degraded_show(struct mddev *mddev, char *page) 5018 { 5019 return sprintf(page, "%d\n", mddev->degraded); 5020 } 5021 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded); 5022 5023 static ssize_t 5024 sync_force_parallel_show(struct mddev *mddev, char *page) 5025 { 5026 return sprintf(page, "%d\n", mddev->parallel_resync); 5027 } 5028 5029 static ssize_t 5030 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len) 5031 { 5032 long n; 5033 5034 if (kstrtol(buf, 10, &n)) 5035 return -EINVAL; 5036 5037 if (n != 0 && n != 1) 5038 return -EINVAL; 5039 5040 mddev->parallel_resync = n; 5041 5042 if (mddev->sync_thread) 5043 wake_up(&resync_wait); 5044 5045 return len; 5046 } 5047 5048 /* force parallel resync, even with shared block devices */ 5049 static struct md_sysfs_entry md_sync_force_parallel = 5050 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR, 5051 sync_force_parallel_show, sync_force_parallel_store); 5052 5053 static ssize_t 5054 sync_speed_show(struct mddev *mddev, char *page) 5055 { 5056 unsigned long resync, dt, db; 5057 if (mddev->curr_resync == MD_RESYNC_NONE) 5058 return sprintf(page, "none\n"); 5059 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active); 5060 dt = (jiffies - mddev->resync_mark) / HZ; 5061 if (!dt) dt++; 5062 db = resync - mddev->resync_mark_cnt; 5063 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */ 5064 } 5065 5066 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); 5067 5068 static ssize_t 5069 sync_completed_show(struct mddev *mddev, char *page) 5070 { 5071 unsigned long long max_sectors, resync; 5072 5073 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5074 return sprintf(page, "none\n"); 5075 5076 if (mddev->curr_resync == MD_RESYNC_YIELDED || 5077 mddev->curr_resync == MD_RESYNC_DELAYED) 5078 return sprintf(page, "delayed\n"); 5079 5080 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 5081 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 5082 max_sectors = mddev->resync_max_sectors; 5083 else 5084 max_sectors = mddev->dev_sectors; 5085 5086 resync = mddev->curr_resync_completed; 5087 return sprintf(page, "%llu / %llu\n", resync, max_sectors); 5088 } 5089 5090 static struct md_sysfs_entry md_sync_completed = 5091 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL); 5092 5093 static ssize_t 5094 min_sync_show(struct mddev *mddev, char *page) 5095 { 5096 return sprintf(page, "%llu\n", 5097 (unsigned long long)mddev->resync_min); 5098 } 5099 static ssize_t 5100 min_sync_store(struct mddev *mddev, const char *buf, size_t len) 5101 { 5102 unsigned long long min; 5103 int err; 5104 5105 if (kstrtoull(buf, 10, &min)) 5106 return -EINVAL; 5107 5108 spin_lock(&mddev->lock); 5109 err = -EINVAL; 5110 if (min > mddev->resync_max) 5111 goto out_unlock; 5112 5113 err = -EBUSY; 5114 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5115 goto out_unlock; 5116 5117 /* Round down to multiple of 4K for safety */ 5118 mddev->resync_min = round_down(min, 8); 5119 err = 0; 5120 5121 out_unlock: 5122 spin_unlock(&mddev->lock); 5123 return err ?: len; 5124 } 5125 5126 static struct md_sysfs_entry md_min_sync = 5127 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store); 5128 5129 static ssize_t 5130 max_sync_show(struct mddev *mddev, char *page) 5131 { 5132 if (mddev->resync_max == MaxSector) 5133 return sprintf(page, "max\n"); 5134 else 5135 return sprintf(page, "%llu\n", 5136 (unsigned long long)mddev->resync_max); 5137 } 5138 static ssize_t 5139 max_sync_store(struct mddev *mddev, const char *buf, size_t len) 5140 { 5141 int err; 5142 spin_lock(&mddev->lock); 5143 if (strncmp(buf, "max", 3) == 0) 5144 mddev->resync_max = MaxSector; 5145 else { 5146 unsigned long long max; 5147 int chunk; 5148 5149 err = -EINVAL; 5150 if (kstrtoull(buf, 10, &max)) 5151 goto out_unlock; 5152 if (max < mddev->resync_min) 5153 goto out_unlock; 5154 5155 err = -EBUSY; 5156 if (max < mddev->resync_max && md_is_rdwr(mddev) && 5157 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5158 goto out_unlock; 5159 5160 /* Must be a multiple of chunk_size */ 5161 chunk = mddev->chunk_sectors; 5162 if (chunk) { 5163 sector_t temp = max; 5164 5165 err = -EINVAL; 5166 if (sector_div(temp, chunk)) 5167 goto out_unlock; 5168 } 5169 mddev->resync_max = max; 5170 } 5171 wake_up(&mddev->recovery_wait); 5172 err = 0; 5173 out_unlock: 5174 spin_unlock(&mddev->lock); 5175 return err ?: len; 5176 } 5177 5178 static struct md_sysfs_entry md_max_sync = 5179 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store); 5180 5181 static ssize_t 5182 suspend_lo_show(struct mddev *mddev, char *page) 5183 { 5184 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo); 5185 } 5186 5187 static ssize_t 5188 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len) 5189 { 5190 unsigned long long new; 5191 int err; 5192 5193 err = kstrtoull(buf, 10, &new); 5194 if (err < 0) 5195 return err; 5196 if (new != (sector_t)new) 5197 return -EINVAL; 5198 5199 err = mddev_lock(mddev); 5200 if (err) 5201 return err; 5202 err = -EINVAL; 5203 if (mddev->pers == NULL || 5204 mddev->pers->quiesce == NULL) 5205 goto unlock; 5206 mddev_suspend(mddev); 5207 mddev->suspend_lo = new; 5208 mddev_resume(mddev); 5209 5210 err = 0; 5211 unlock: 5212 mddev_unlock(mddev); 5213 return err ?: len; 5214 } 5215 static struct md_sysfs_entry md_suspend_lo = 5216 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); 5217 5218 static ssize_t 5219 suspend_hi_show(struct mddev *mddev, char *page) 5220 { 5221 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi); 5222 } 5223 5224 static ssize_t 5225 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len) 5226 { 5227 unsigned long long new; 5228 int err; 5229 5230 err = kstrtoull(buf, 10, &new); 5231 if (err < 0) 5232 return err; 5233 if (new != (sector_t)new) 5234 return -EINVAL; 5235 5236 err = mddev_lock(mddev); 5237 if (err) 5238 return err; 5239 err = -EINVAL; 5240 if (mddev->pers == NULL) 5241 goto unlock; 5242 5243 mddev_suspend(mddev); 5244 mddev->suspend_hi = new; 5245 mddev_resume(mddev); 5246 5247 err = 0; 5248 unlock: 5249 mddev_unlock(mddev); 5250 return err ?: len; 5251 } 5252 static struct md_sysfs_entry md_suspend_hi = 5253 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); 5254 5255 static ssize_t 5256 reshape_position_show(struct mddev *mddev, char *page) 5257 { 5258 if (mddev->reshape_position != MaxSector) 5259 return sprintf(page, "%llu\n", 5260 (unsigned long long)mddev->reshape_position); 5261 strcpy(page, "none\n"); 5262 return 5; 5263 } 5264 5265 static ssize_t 5266 reshape_position_store(struct mddev *mddev, const char *buf, size_t len) 5267 { 5268 struct md_rdev *rdev; 5269 unsigned long long new; 5270 int err; 5271 5272 err = kstrtoull(buf, 10, &new); 5273 if (err < 0) 5274 return err; 5275 if (new != (sector_t)new) 5276 return -EINVAL; 5277 err = mddev_lock(mddev); 5278 if (err) 5279 return err; 5280 err = -EBUSY; 5281 if (mddev->pers) 5282 goto unlock; 5283 mddev->reshape_position = new; 5284 mddev->delta_disks = 0; 5285 mddev->reshape_backwards = 0; 5286 mddev->new_level = mddev->level; 5287 mddev->new_layout = mddev->layout; 5288 mddev->new_chunk_sectors = mddev->chunk_sectors; 5289 rdev_for_each(rdev, mddev) 5290 rdev->new_data_offset = rdev->data_offset; 5291 err = 0; 5292 unlock: 5293 mddev_unlock(mddev); 5294 return err ?: len; 5295 } 5296 5297 static struct md_sysfs_entry md_reshape_position = 5298 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show, 5299 reshape_position_store); 5300 5301 static ssize_t 5302 reshape_direction_show(struct mddev *mddev, char *page) 5303 { 5304 return sprintf(page, "%s\n", 5305 mddev->reshape_backwards ? "backwards" : "forwards"); 5306 } 5307 5308 static ssize_t 5309 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len) 5310 { 5311 int backwards = 0; 5312 int err; 5313 5314 if (cmd_match(buf, "forwards")) 5315 backwards = 0; 5316 else if (cmd_match(buf, "backwards")) 5317 backwards = 1; 5318 else 5319 return -EINVAL; 5320 if (mddev->reshape_backwards == backwards) 5321 return len; 5322 5323 err = mddev_lock(mddev); 5324 if (err) 5325 return err; 5326 /* check if we are allowed to change */ 5327 if (mddev->delta_disks) 5328 err = -EBUSY; 5329 else if (mddev->persistent && 5330 mddev->major_version == 0) 5331 err = -EINVAL; 5332 else 5333 mddev->reshape_backwards = backwards; 5334 mddev_unlock(mddev); 5335 return err ?: len; 5336 } 5337 5338 static struct md_sysfs_entry md_reshape_direction = 5339 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show, 5340 reshape_direction_store); 5341 5342 static ssize_t 5343 array_size_show(struct mddev *mddev, char *page) 5344 { 5345 if (mddev->external_size) 5346 return sprintf(page, "%llu\n", 5347 (unsigned long long)mddev->array_sectors/2); 5348 else 5349 return sprintf(page, "default\n"); 5350 } 5351 5352 static ssize_t 5353 array_size_store(struct mddev *mddev, const char *buf, size_t len) 5354 { 5355 sector_t sectors; 5356 int err; 5357 5358 err = mddev_lock(mddev); 5359 if (err) 5360 return err; 5361 5362 /* cluster raid doesn't support change array_sectors */ 5363 if (mddev_is_clustered(mddev)) { 5364 mddev_unlock(mddev); 5365 return -EINVAL; 5366 } 5367 5368 if (strncmp(buf, "default", 7) == 0) { 5369 if (mddev->pers) 5370 sectors = mddev->pers->size(mddev, 0, 0); 5371 else 5372 sectors = mddev->array_sectors; 5373 5374 mddev->external_size = 0; 5375 } else { 5376 if (strict_blocks_to_sectors(buf, §ors) < 0) 5377 err = -EINVAL; 5378 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors) 5379 err = -E2BIG; 5380 else 5381 mddev->external_size = 1; 5382 } 5383 5384 if (!err) { 5385 mddev->array_sectors = sectors; 5386 if (mddev->pers) 5387 set_capacity_and_notify(mddev->gendisk, 5388 mddev->array_sectors); 5389 } 5390 mddev_unlock(mddev); 5391 return err ?: len; 5392 } 5393 5394 static struct md_sysfs_entry md_array_size = 5395 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show, 5396 array_size_store); 5397 5398 static ssize_t 5399 consistency_policy_show(struct mddev *mddev, char *page) 5400 { 5401 int ret; 5402 5403 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { 5404 ret = sprintf(page, "journal\n"); 5405 } else if (test_bit(MD_HAS_PPL, &mddev->flags)) { 5406 ret = sprintf(page, "ppl\n"); 5407 } else if (mddev->bitmap) { 5408 ret = sprintf(page, "bitmap\n"); 5409 } else if (mddev->pers) { 5410 if (mddev->pers->sync_request) 5411 ret = sprintf(page, "resync\n"); 5412 else 5413 ret = sprintf(page, "none\n"); 5414 } else { 5415 ret = sprintf(page, "unknown\n"); 5416 } 5417 5418 return ret; 5419 } 5420 5421 static ssize_t 5422 consistency_policy_store(struct mddev *mddev, const char *buf, size_t len) 5423 { 5424 int err = 0; 5425 5426 if (mddev->pers) { 5427 if (mddev->pers->change_consistency_policy) 5428 err = mddev->pers->change_consistency_policy(mddev, buf); 5429 else 5430 err = -EBUSY; 5431 } else if (mddev->external && strncmp(buf, "ppl", 3) == 0) { 5432 set_bit(MD_HAS_PPL, &mddev->flags); 5433 } else { 5434 err = -EINVAL; 5435 } 5436 5437 return err ? err : len; 5438 } 5439 5440 static struct md_sysfs_entry md_consistency_policy = 5441 __ATTR(consistency_policy, S_IRUGO | S_IWUSR, consistency_policy_show, 5442 consistency_policy_store); 5443 5444 static ssize_t fail_last_dev_show(struct mddev *mddev, char *page) 5445 { 5446 return sprintf(page, "%d\n", mddev->fail_last_dev); 5447 } 5448 5449 /* 5450 * Setting fail_last_dev to true to allow last device to be forcibly removed 5451 * from RAID1/RAID10. 5452 */ 5453 static ssize_t 5454 fail_last_dev_store(struct mddev *mddev, const char *buf, size_t len) 5455 { 5456 int ret; 5457 bool value; 5458 5459 ret = kstrtobool(buf, &value); 5460 if (ret) 5461 return ret; 5462 5463 if (value != mddev->fail_last_dev) 5464 mddev->fail_last_dev = value; 5465 5466 return len; 5467 } 5468 static struct md_sysfs_entry md_fail_last_dev = 5469 __ATTR(fail_last_dev, S_IRUGO | S_IWUSR, fail_last_dev_show, 5470 fail_last_dev_store); 5471 5472 static ssize_t serialize_policy_show(struct mddev *mddev, char *page) 5473 { 5474 if (mddev->pers == NULL || (mddev->pers->level != 1)) 5475 return sprintf(page, "n/a\n"); 5476 else 5477 return sprintf(page, "%d\n", mddev->serialize_policy); 5478 } 5479 5480 /* 5481 * Setting serialize_policy to true to enforce write IO is not reordered 5482 * for raid1. 5483 */ 5484 static ssize_t 5485 serialize_policy_store(struct mddev *mddev, const char *buf, size_t len) 5486 { 5487 int err; 5488 bool value; 5489 5490 err = kstrtobool(buf, &value); 5491 if (err) 5492 return err; 5493 5494 if (value == mddev->serialize_policy) 5495 return len; 5496 5497 err = mddev_lock(mddev); 5498 if (err) 5499 return err; 5500 if (mddev->pers == NULL || (mddev->pers->level != 1)) { 5501 pr_err("md: serialize_policy is only effective for raid1\n"); 5502 err = -EINVAL; 5503 goto unlock; 5504 } 5505 5506 mddev_suspend(mddev); 5507 if (value) 5508 mddev_create_serial_pool(mddev, NULL, true); 5509 else 5510 mddev_destroy_serial_pool(mddev, NULL, true); 5511 mddev->serialize_policy = value; 5512 mddev_resume(mddev); 5513 unlock: 5514 mddev_unlock(mddev); 5515 return err ?: len; 5516 } 5517 5518 static struct md_sysfs_entry md_serialize_policy = 5519 __ATTR(serialize_policy, S_IRUGO | S_IWUSR, serialize_policy_show, 5520 serialize_policy_store); 5521 5522 5523 static struct attribute *md_default_attrs[] = { 5524 &md_level.attr, 5525 &md_layout.attr, 5526 &md_raid_disks.attr, 5527 &md_uuid.attr, 5528 &md_chunk_size.attr, 5529 &md_size.attr, 5530 &md_resync_start.attr, 5531 &md_metadata.attr, 5532 &md_new_device.attr, 5533 &md_safe_delay.attr, 5534 &md_array_state.attr, 5535 &md_reshape_position.attr, 5536 &md_reshape_direction.attr, 5537 &md_array_size.attr, 5538 &max_corr_read_errors.attr, 5539 &md_consistency_policy.attr, 5540 &md_fail_last_dev.attr, 5541 &md_serialize_policy.attr, 5542 NULL, 5543 }; 5544 5545 static const struct attribute_group md_default_group = { 5546 .attrs = md_default_attrs, 5547 }; 5548 5549 static struct attribute *md_redundancy_attrs[] = { 5550 &md_scan_mode.attr, 5551 &md_last_scan_mode.attr, 5552 &md_mismatches.attr, 5553 &md_sync_min.attr, 5554 &md_sync_max.attr, 5555 &md_sync_speed.attr, 5556 &md_sync_force_parallel.attr, 5557 &md_sync_completed.attr, 5558 &md_min_sync.attr, 5559 &md_max_sync.attr, 5560 &md_suspend_lo.attr, 5561 &md_suspend_hi.attr, 5562 &md_bitmap.attr, 5563 &md_degraded.attr, 5564 NULL, 5565 }; 5566 static const struct attribute_group md_redundancy_group = { 5567 .name = NULL, 5568 .attrs = md_redundancy_attrs, 5569 }; 5570 5571 static const struct attribute_group *md_attr_groups[] = { 5572 &md_default_group, 5573 &md_bitmap_group, 5574 NULL, 5575 }; 5576 5577 static ssize_t 5578 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 5579 { 5580 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5581 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5582 ssize_t rv; 5583 5584 if (!entry->show) 5585 return -EIO; 5586 spin_lock(&all_mddevs_lock); 5587 if (!mddev_get(mddev)) { 5588 spin_unlock(&all_mddevs_lock); 5589 return -EBUSY; 5590 } 5591 spin_unlock(&all_mddevs_lock); 5592 5593 rv = entry->show(mddev, page); 5594 mddev_put(mddev); 5595 return rv; 5596 } 5597 5598 static ssize_t 5599 md_attr_store(struct kobject *kobj, struct attribute *attr, 5600 const char *page, size_t length) 5601 { 5602 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5603 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5604 ssize_t rv; 5605 5606 if (!entry->store) 5607 return -EIO; 5608 if (!capable(CAP_SYS_ADMIN)) 5609 return -EACCES; 5610 spin_lock(&all_mddevs_lock); 5611 if (!mddev_get(mddev)) { 5612 spin_unlock(&all_mddevs_lock); 5613 return -EBUSY; 5614 } 5615 spin_unlock(&all_mddevs_lock); 5616 rv = entry->store(mddev, page, length); 5617 mddev_put(mddev); 5618 return rv; 5619 } 5620 5621 static void md_kobj_release(struct kobject *ko) 5622 { 5623 struct mddev *mddev = container_of(ko, struct mddev, kobj); 5624 5625 if (mddev->sysfs_state) 5626 sysfs_put(mddev->sysfs_state); 5627 if (mddev->sysfs_level) 5628 sysfs_put(mddev->sysfs_level); 5629 5630 del_gendisk(mddev->gendisk); 5631 put_disk(mddev->gendisk); 5632 } 5633 5634 static const struct sysfs_ops md_sysfs_ops = { 5635 .show = md_attr_show, 5636 .store = md_attr_store, 5637 }; 5638 static const struct kobj_type md_ktype = { 5639 .release = md_kobj_release, 5640 .sysfs_ops = &md_sysfs_ops, 5641 .default_groups = md_attr_groups, 5642 }; 5643 5644 int mdp_major = 0; 5645 5646 static void mddev_delayed_delete(struct work_struct *ws) 5647 { 5648 struct mddev *mddev = container_of(ws, struct mddev, del_work); 5649 5650 kobject_put(&mddev->kobj); 5651 } 5652 5653 static void no_op(struct percpu_ref *r) {} 5654 5655 int mddev_init_writes_pending(struct mddev *mddev) 5656 { 5657 if (mddev->writes_pending.percpu_count_ptr) 5658 return 0; 5659 if (percpu_ref_init(&mddev->writes_pending, no_op, 5660 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL) < 0) 5661 return -ENOMEM; 5662 /* We want to start with the refcount at zero */ 5663 percpu_ref_put(&mddev->writes_pending); 5664 return 0; 5665 } 5666 EXPORT_SYMBOL_GPL(mddev_init_writes_pending); 5667 5668 struct mddev *md_alloc(dev_t dev, char *name) 5669 { 5670 /* 5671 * If dev is zero, name is the name of a device to allocate with 5672 * an arbitrary minor number. It will be "md_???" 5673 * If dev is non-zero it must be a device number with a MAJOR of 5674 * MD_MAJOR or mdp_major. In this case, if "name" is NULL, then 5675 * the device is being created by opening a node in /dev. 5676 * If "name" is not NULL, the device is being created by 5677 * writing to /sys/module/md_mod/parameters/new_array. 5678 */ 5679 static DEFINE_MUTEX(disks_mutex); 5680 struct mddev *mddev; 5681 struct gendisk *disk; 5682 int partitioned; 5683 int shift; 5684 int unit; 5685 int error ; 5686 5687 /* 5688 * Wait for any previous instance of this device to be completely 5689 * removed (mddev_delayed_delete). 5690 */ 5691 flush_workqueue(md_misc_wq); 5692 5693 mutex_lock(&disks_mutex); 5694 mddev = mddev_alloc(dev); 5695 if (IS_ERR(mddev)) { 5696 error = PTR_ERR(mddev); 5697 goto out_unlock; 5698 } 5699 5700 partitioned = (MAJOR(mddev->unit) != MD_MAJOR); 5701 shift = partitioned ? MdpMinorShift : 0; 5702 unit = MINOR(mddev->unit) >> shift; 5703 5704 if (name && !dev) { 5705 /* Need to ensure that 'name' is not a duplicate. 5706 */ 5707 struct mddev *mddev2; 5708 spin_lock(&all_mddevs_lock); 5709 5710 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) 5711 if (mddev2->gendisk && 5712 strcmp(mddev2->gendisk->disk_name, name) == 0) { 5713 spin_unlock(&all_mddevs_lock); 5714 error = -EEXIST; 5715 goto out_free_mddev; 5716 } 5717 spin_unlock(&all_mddevs_lock); 5718 } 5719 if (name && dev) 5720 /* 5721 * Creating /dev/mdNNN via "newarray", so adjust hold_active. 5722 */ 5723 mddev->hold_active = UNTIL_STOP; 5724 5725 error = -ENOMEM; 5726 disk = blk_alloc_disk(NUMA_NO_NODE); 5727 if (!disk) 5728 goto out_free_mddev; 5729 5730 disk->major = MAJOR(mddev->unit); 5731 disk->first_minor = unit << shift; 5732 disk->minors = 1 << shift; 5733 if (name) 5734 strcpy(disk->disk_name, name); 5735 else if (partitioned) 5736 sprintf(disk->disk_name, "md_d%d", unit); 5737 else 5738 sprintf(disk->disk_name, "md%d", unit); 5739 disk->fops = &md_fops; 5740 disk->private_data = mddev; 5741 5742 mddev->queue = disk->queue; 5743 blk_set_stacking_limits(&mddev->queue->limits); 5744 blk_queue_write_cache(mddev->queue, true, true); 5745 disk->events |= DISK_EVENT_MEDIA_CHANGE; 5746 mddev->gendisk = disk; 5747 error = add_disk(disk); 5748 if (error) 5749 goto out_put_disk; 5750 5751 kobject_init(&mddev->kobj, &md_ktype); 5752 error = kobject_add(&mddev->kobj, &disk_to_dev(disk)->kobj, "%s", "md"); 5753 if (error) { 5754 /* 5755 * The disk is already live at this point. Clear the hold flag 5756 * and let mddev_put take care of the deletion, as it isn't any 5757 * different from a normal close on last release now. 5758 */ 5759 mddev->hold_active = 0; 5760 mutex_unlock(&disks_mutex); 5761 mddev_put(mddev); 5762 return ERR_PTR(error); 5763 } 5764 5765 kobject_uevent(&mddev->kobj, KOBJ_ADD); 5766 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state"); 5767 mddev->sysfs_level = sysfs_get_dirent_safe(mddev->kobj.sd, "level"); 5768 mutex_unlock(&disks_mutex); 5769 return mddev; 5770 5771 out_put_disk: 5772 put_disk(disk); 5773 out_free_mddev: 5774 mddev_free(mddev); 5775 out_unlock: 5776 mutex_unlock(&disks_mutex); 5777 return ERR_PTR(error); 5778 } 5779 5780 static int md_alloc_and_put(dev_t dev, char *name) 5781 { 5782 struct mddev *mddev = md_alloc(dev, name); 5783 5784 if (IS_ERR(mddev)) 5785 return PTR_ERR(mddev); 5786 mddev_put(mddev); 5787 return 0; 5788 } 5789 5790 static void md_probe(dev_t dev) 5791 { 5792 if (MAJOR(dev) == MD_MAJOR && MINOR(dev) >= 512) 5793 return; 5794 if (create_on_open) 5795 md_alloc_and_put(dev, NULL); 5796 } 5797 5798 static int add_named_array(const char *val, const struct kernel_param *kp) 5799 { 5800 /* 5801 * val must be "md_*" or "mdNNN". 5802 * For "md_*" we allocate an array with a large free minor number, and 5803 * set the name to val. val must not already be an active name. 5804 * For "mdNNN" we allocate an array with the minor number NNN 5805 * which must not already be in use. 5806 */ 5807 int len = strlen(val); 5808 char buf[DISK_NAME_LEN]; 5809 unsigned long devnum; 5810 5811 while (len && val[len-1] == '\n') 5812 len--; 5813 if (len >= DISK_NAME_LEN) 5814 return -E2BIG; 5815 strscpy(buf, val, len+1); 5816 if (strncmp(buf, "md_", 3) == 0) 5817 return md_alloc_and_put(0, buf); 5818 if (strncmp(buf, "md", 2) == 0 && 5819 isdigit(buf[2]) && 5820 kstrtoul(buf+2, 10, &devnum) == 0 && 5821 devnum <= MINORMASK) 5822 return md_alloc_and_put(MKDEV(MD_MAJOR, devnum), NULL); 5823 5824 return -EINVAL; 5825 } 5826 5827 static void md_safemode_timeout(struct timer_list *t) 5828 { 5829 struct mddev *mddev = from_timer(mddev, t, safemode_timer); 5830 5831 mddev->safemode = 1; 5832 if (mddev->external) 5833 sysfs_notify_dirent_safe(mddev->sysfs_state); 5834 5835 md_wakeup_thread(mddev->thread); 5836 } 5837 5838 static int start_dirty_degraded; 5839 static void active_io_release(struct percpu_ref *ref) 5840 { 5841 struct mddev *mddev = container_of(ref, struct mddev, active_io); 5842 5843 wake_up(&mddev->sb_wait); 5844 } 5845 5846 int md_run(struct mddev *mddev) 5847 { 5848 int err; 5849 struct md_rdev *rdev; 5850 struct md_personality *pers; 5851 bool nowait = true; 5852 5853 if (list_empty(&mddev->disks)) 5854 /* cannot run an array with no devices.. */ 5855 return -EINVAL; 5856 5857 if (mddev->pers) 5858 return -EBUSY; 5859 /* Cannot run until previous stop completes properly */ 5860 if (mddev->sysfs_active) 5861 return -EBUSY; 5862 5863 /* 5864 * Analyze all RAID superblock(s) 5865 */ 5866 if (!mddev->raid_disks) { 5867 if (!mddev->persistent) 5868 return -EINVAL; 5869 err = analyze_sbs(mddev); 5870 if (err) 5871 return -EINVAL; 5872 } 5873 5874 if (mddev->level != LEVEL_NONE) 5875 request_module("md-level-%d", mddev->level); 5876 else if (mddev->clevel[0]) 5877 request_module("md-%s", mddev->clevel); 5878 5879 /* 5880 * Drop all container device buffers, from now on 5881 * the only valid external interface is through the md 5882 * device. 5883 */ 5884 mddev->has_superblocks = false; 5885 rdev_for_each(rdev, mddev) { 5886 if (test_bit(Faulty, &rdev->flags)) 5887 continue; 5888 sync_blockdev(rdev->bdev); 5889 invalidate_bdev(rdev->bdev); 5890 if (mddev->ro != MD_RDONLY && rdev_read_only(rdev)) { 5891 mddev->ro = MD_RDONLY; 5892 if (mddev->gendisk) 5893 set_disk_ro(mddev->gendisk, 1); 5894 } 5895 5896 if (rdev->sb_page) 5897 mddev->has_superblocks = true; 5898 5899 /* perform some consistency tests on the device. 5900 * We don't want the data to overlap the metadata, 5901 * Internal Bitmap issues have been handled elsewhere. 5902 */ 5903 if (rdev->meta_bdev) { 5904 /* Nothing to check */; 5905 } else if (rdev->data_offset < rdev->sb_start) { 5906 if (mddev->dev_sectors && 5907 rdev->data_offset + mddev->dev_sectors 5908 > rdev->sb_start) { 5909 pr_warn("md: %s: data overlaps metadata\n", 5910 mdname(mddev)); 5911 return -EINVAL; 5912 } 5913 } else { 5914 if (rdev->sb_start + rdev->sb_size/512 5915 > rdev->data_offset) { 5916 pr_warn("md: %s: metadata overlaps data\n", 5917 mdname(mddev)); 5918 return -EINVAL; 5919 } 5920 } 5921 sysfs_notify_dirent_safe(rdev->sysfs_state); 5922 nowait = nowait && bdev_nowait(rdev->bdev); 5923 } 5924 5925 err = percpu_ref_init(&mddev->active_io, active_io_release, 5926 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL); 5927 if (err) 5928 return err; 5929 5930 if (!bioset_initialized(&mddev->bio_set)) { 5931 err = bioset_init(&mddev->bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5932 if (err) 5933 goto exit_active_io; 5934 } 5935 if (!bioset_initialized(&mddev->sync_set)) { 5936 err = bioset_init(&mddev->sync_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5937 if (err) 5938 goto exit_bio_set; 5939 } 5940 5941 if (!bioset_initialized(&mddev->io_clone_set)) { 5942 err = bioset_init(&mddev->io_clone_set, BIO_POOL_SIZE, 5943 offsetof(struct md_io_clone, bio_clone), 0); 5944 if (err) 5945 goto exit_sync_set; 5946 } 5947 5948 spin_lock(&pers_lock); 5949 pers = find_pers(mddev->level, mddev->clevel); 5950 if (!pers || !try_module_get(pers->owner)) { 5951 spin_unlock(&pers_lock); 5952 if (mddev->level != LEVEL_NONE) 5953 pr_warn("md: personality for level %d is not loaded!\n", 5954 mddev->level); 5955 else 5956 pr_warn("md: personality for level %s is not loaded!\n", 5957 mddev->clevel); 5958 err = -EINVAL; 5959 goto abort; 5960 } 5961 spin_unlock(&pers_lock); 5962 if (mddev->level != pers->level) { 5963 mddev->level = pers->level; 5964 mddev->new_level = pers->level; 5965 } 5966 strscpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 5967 5968 if (mddev->reshape_position != MaxSector && 5969 pers->start_reshape == NULL) { 5970 /* This personality cannot handle reshaping... */ 5971 module_put(pers->owner); 5972 err = -EINVAL; 5973 goto abort; 5974 } 5975 5976 if (pers->sync_request) { 5977 /* Warn if this is a potentially silly 5978 * configuration. 5979 */ 5980 struct md_rdev *rdev2; 5981 int warned = 0; 5982 5983 rdev_for_each(rdev, mddev) 5984 rdev_for_each(rdev2, mddev) { 5985 if (rdev < rdev2 && 5986 rdev->bdev->bd_disk == 5987 rdev2->bdev->bd_disk) { 5988 pr_warn("%s: WARNING: %pg appears to be on the same physical disk as %pg.\n", 5989 mdname(mddev), 5990 rdev->bdev, 5991 rdev2->bdev); 5992 warned = 1; 5993 } 5994 } 5995 5996 if (warned) 5997 pr_warn("True protection against single-disk failure might be compromised.\n"); 5998 } 5999 6000 mddev->recovery = 0; 6001 /* may be over-ridden by personality */ 6002 mddev->resync_max_sectors = mddev->dev_sectors; 6003 6004 mddev->ok_start_degraded = start_dirty_degraded; 6005 6006 if (start_readonly && md_is_rdwr(mddev)) 6007 mddev->ro = MD_AUTO_READ; /* read-only, but switch on first write */ 6008 6009 err = pers->run(mddev); 6010 if (err) 6011 pr_warn("md: pers->run() failed ...\n"); 6012 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) { 6013 WARN_ONCE(!mddev->external_size, 6014 "%s: default size too small, but 'external_size' not in effect?\n", 6015 __func__); 6016 pr_warn("md: invalid array_size %llu > default size %llu\n", 6017 (unsigned long long)mddev->array_sectors / 2, 6018 (unsigned long long)pers->size(mddev, 0, 0) / 2); 6019 err = -EINVAL; 6020 } 6021 if (err == 0 && pers->sync_request && 6022 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) { 6023 struct bitmap *bitmap; 6024 6025 bitmap = md_bitmap_create(mddev, -1); 6026 if (IS_ERR(bitmap)) { 6027 err = PTR_ERR(bitmap); 6028 pr_warn("%s: failed to create bitmap (%d)\n", 6029 mdname(mddev), err); 6030 } else 6031 mddev->bitmap = bitmap; 6032 6033 } 6034 if (err) 6035 goto bitmap_abort; 6036 6037 if (mddev->bitmap_info.max_write_behind > 0) { 6038 bool create_pool = false; 6039 6040 rdev_for_each(rdev, mddev) { 6041 if (test_bit(WriteMostly, &rdev->flags) && 6042 rdev_init_serial(rdev)) 6043 create_pool = true; 6044 } 6045 if (create_pool && mddev->serial_info_pool == NULL) { 6046 mddev->serial_info_pool = 6047 mempool_create_kmalloc_pool(NR_SERIAL_INFOS, 6048 sizeof(struct serial_info)); 6049 if (!mddev->serial_info_pool) { 6050 err = -ENOMEM; 6051 goto bitmap_abort; 6052 } 6053 } 6054 } 6055 6056 if (mddev->queue) { 6057 bool nonrot = true; 6058 6059 rdev_for_each(rdev, mddev) { 6060 if (rdev->raid_disk >= 0 && !bdev_nonrot(rdev->bdev)) { 6061 nonrot = false; 6062 break; 6063 } 6064 } 6065 if (mddev->degraded) 6066 nonrot = false; 6067 if (nonrot) 6068 blk_queue_flag_set(QUEUE_FLAG_NONROT, mddev->queue); 6069 else 6070 blk_queue_flag_clear(QUEUE_FLAG_NONROT, mddev->queue); 6071 blk_queue_flag_set(QUEUE_FLAG_IO_STAT, mddev->queue); 6072 6073 /* Set the NOWAIT flags if all underlying devices support it */ 6074 if (nowait) 6075 blk_queue_flag_set(QUEUE_FLAG_NOWAIT, mddev->queue); 6076 } 6077 if (pers->sync_request) { 6078 if (mddev->kobj.sd && 6079 sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 6080 pr_warn("md: cannot register extra attributes for %s\n", 6081 mdname(mddev)); 6082 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action"); 6083 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed"); 6084 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded"); 6085 } else if (mddev->ro == MD_AUTO_READ) 6086 mddev->ro = MD_RDWR; 6087 6088 atomic_set(&mddev->max_corr_read_errors, 6089 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS); 6090 mddev->safemode = 0; 6091 if (mddev_is_clustered(mddev)) 6092 mddev->safemode_delay = 0; 6093 else 6094 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY; 6095 mddev->in_sync = 1; 6096 smp_wmb(); 6097 spin_lock(&mddev->lock); 6098 mddev->pers = pers; 6099 spin_unlock(&mddev->lock); 6100 rdev_for_each(rdev, mddev) 6101 if (rdev->raid_disk >= 0) 6102 sysfs_link_rdev(mddev, rdev); /* failure here is OK */ 6103 6104 if (mddev->degraded && md_is_rdwr(mddev)) 6105 /* This ensures that recovering status is reported immediately 6106 * via sysfs - until a lack of spares is confirmed. 6107 */ 6108 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 6109 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6110 6111 if (mddev->sb_flags) 6112 md_update_sb(mddev, 0); 6113 6114 md_new_event(); 6115 return 0; 6116 6117 bitmap_abort: 6118 mddev_detach(mddev); 6119 if (mddev->private) 6120 pers->free(mddev, mddev->private); 6121 mddev->private = NULL; 6122 module_put(pers->owner); 6123 md_bitmap_destroy(mddev); 6124 abort: 6125 bioset_exit(&mddev->io_clone_set); 6126 exit_sync_set: 6127 bioset_exit(&mddev->sync_set); 6128 exit_bio_set: 6129 bioset_exit(&mddev->bio_set); 6130 exit_active_io: 6131 percpu_ref_exit(&mddev->active_io); 6132 return err; 6133 } 6134 EXPORT_SYMBOL_GPL(md_run); 6135 6136 int do_md_run(struct mddev *mddev) 6137 { 6138 int err; 6139 6140 set_bit(MD_NOT_READY, &mddev->flags); 6141 err = md_run(mddev); 6142 if (err) 6143 goto out; 6144 err = md_bitmap_load(mddev); 6145 if (err) { 6146 md_bitmap_destroy(mddev); 6147 goto out; 6148 } 6149 6150 if (mddev_is_clustered(mddev)) 6151 md_allow_write(mddev); 6152 6153 /* run start up tasks that require md_thread */ 6154 md_start(mddev); 6155 6156 md_wakeup_thread(mddev->thread); 6157 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 6158 6159 set_capacity_and_notify(mddev->gendisk, mddev->array_sectors); 6160 clear_bit(MD_NOT_READY, &mddev->flags); 6161 mddev->changed = 1; 6162 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 6163 sysfs_notify_dirent_safe(mddev->sysfs_state); 6164 sysfs_notify_dirent_safe(mddev->sysfs_action); 6165 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 6166 out: 6167 clear_bit(MD_NOT_READY, &mddev->flags); 6168 return err; 6169 } 6170 6171 int md_start(struct mddev *mddev) 6172 { 6173 int ret = 0; 6174 6175 if (mddev->pers->start) { 6176 set_bit(MD_RECOVERY_WAIT, &mddev->recovery); 6177 md_wakeup_thread(mddev->thread); 6178 ret = mddev->pers->start(mddev); 6179 clear_bit(MD_RECOVERY_WAIT, &mddev->recovery); 6180 md_wakeup_thread(mddev->sync_thread); 6181 } 6182 return ret; 6183 } 6184 EXPORT_SYMBOL_GPL(md_start); 6185 6186 static int restart_array(struct mddev *mddev) 6187 { 6188 struct gendisk *disk = mddev->gendisk; 6189 struct md_rdev *rdev; 6190 bool has_journal = false; 6191 bool has_readonly = false; 6192 6193 /* Complain if it has no devices */ 6194 if (list_empty(&mddev->disks)) 6195 return -ENXIO; 6196 if (!mddev->pers) 6197 return -EINVAL; 6198 if (md_is_rdwr(mddev)) 6199 return -EBUSY; 6200 6201 rcu_read_lock(); 6202 rdev_for_each_rcu(rdev, mddev) { 6203 if (test_bit(Journal, &rdev->flags) && 6204 !test_bit(Faulty, &rdev->flags)) 6205 has_journal = true; 6206 if (rdev_read_only(rdev)) 6207 has_readonly = true; 6208 } 6209 rcu_read_unlock(); 6210 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !has_journal) 6211 /* Don't restart rw with journal missing/faulty */ 6212 return -EINVAL; 6213 if (has_readonly) 6214 return -EROFS; 6215 6216 mddev->safemode = 0; 6217 mddev->ro = MD_RDWR; 6218 set_disk_ro(disk, 0); 6219 pr_debug("md: %s switched to read-write mode.\n", mdname(mddev)); 6220 /* Kick recovery or resync if necessary */ 6221 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6222 md_wakeup_thread(mddev->thread); 6223 md_wakeup_thread(mddev->sync_thread); 6224 sysfs_notify_dirent_safe(mddev->sysfs_state); 6225 return 0; 6226 } 6227 6228 static void md_clean(struct mddev *mddev) 6229 { 6230 mddev->array_sectors = 0; 6231 mddev->external_size = 0; 6232 mddev->dev_sectors = 0; 6233 mddev->raid_disks = 0; 6234 mddev->recovery_cp = 0; 6235 mddev->resync_min = 0; 6236 mddev->resync_max = MaxSector; 6237 mddev->reshape_position = MaxSector; 6238 /* we still need mddev->external in export_rdev, do not clear it yet */ 6239 mddev->persistent = 0; 6240 mddev->level = LEVEL_NONE; 6241 mddev->clevel[0] = 0; 6242 /* 6243 * Don't clear MD_CLOSING, or mddev can be opened again. 6244 * 'hold_active != 0' means mddev is still in the creation 6245 * process and will be used later. 6246 */ 6247 if (mddev->hold_active) 6248 mddev->flags = 0; 6249 else 6250 mddev->flags &= BIT_ULL_MASK(MD_CLOSING); 6251 mddev->sb_flags = 0; 6252 mddev->ro = MD_RDWR; 6253 mddev->metadata_type[0] = 0; 6254 mddev->chunk_sectors = 0; 6255 mddev->ctime = mddev->utime = 0; 6256 mddev->layout = 0; 6257 mddev->max_disks = 0; 6258 mddev->events = 0; 6259 mddev->can_decrease_events = 0; 6260 mddev->delta_disks = 0; 6261 mddev->reshape_backwards = 0; 6262 mddev->new_level = LEVEL_NONE; 6263 mddev->new_layout = 0; 6264 mddev->new_chunk_sectors = 0; 6265 mddev->curr_resync = MD_RESYNC_NONE; 6266 atomic64_set(&mddev->resync_mismatches, 0); 6267 mddev->suspend_lo = mddev->suspend_hi = 0; 6268 mddev->sync_speed_min = mddev->sync_speed_max = 0; 6269 mddev->recovery = 0; 6270 mddev->in_sync = 0; 6271 mddev->changed = 0; 6272 mddev->degraded = 0; 6273 mddev->safemode = 0; 6274 mddev->private = NULL; 6275 mddev->cluster_info = NULL; 6276 mddev->bitmap_info.offset = 0; 6277 mddev->bitmap_info.default_offset = 0; 6278 mddev->bitmap_info.default_space = 0; 6279 mddev->bitmap_info.chunksize = 0; 6280 mddev->bitmap_info.daemon_sleep = 0; 6281 mddev->bitmap_info.max_write_behind = 0; 6282 mddev->bitmap_info.nodes = 0; 6283 } 6284 6285 static void __md_stop_writes(struct mddev *mddev) 6286 { 6287 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6288 if (work_pending(&mddev->del_work)) 6289 flush_workqueue(md_misc_wq); 6290 if (mddev->sync_thread) { 6291 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6292 md_reap_sync_thread(mddev); 6293 } 6294 6295 del_timer_sync(&mddev->safemode_timer); 6296 6297 if (mddev->pers && mddev->pers->quiesce) { 6298 mddev->pers->quiesce(mddev, 1); 6299 mddev->pers->quiesce(mddev, 0); 6300 } 6301 md_bitmap_flush(mddev); 6302 6303 if (md_is_rdwr(mddev) && 6304 ((!mddev->in_sync && !mddev_is_clustered(mddev)) || 6305 mddev->sb_flags)) { 6306 /* mark array as shutdown cleanly */ 6307 if (!mddev_is_clustered(mddev)) 6308 mddev->in_sync = 1; 6309 md_update_sb(mddev, 1); 6310 } 6311 /* disable policy to guarantee rdevs free resources for serialization */ 6312 mddev->serialize_policy = 0; 6313 mddev_destroy_serial_pool(mddev, NULL, true); 6314 } 6315 6316 void md_stop_writes(struct mddev *mddev) 6317 { 6318 mddev_lock_nointr(mddev); 6319 __md_stop_writes(mddev); 6320 mddev_unlock(mddev); 6321 } 6322 EXPORT_SYMBOL_GPL(md_stop_writes); 6323 6324 static void mddev_detach(struct mddev *mddev) 6325 { 6326 md_bitmap_wait_behind_writes(mddev); 6327 if (mddev->pers && mddev->pers->quiesce && !is_md_suspended(mddev)) { 6328 mddev->pers->quiesce(mddev, 1); 6329 mddev->pers->quiesce(mddev, 0); 6330 } 6331 md_unregister_thread(mddev, &mddev->thread); 6332 if (mddev->queue) 6333 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 6334 } 6335 6336 static void __md_stop(struct mddev *mddev) 6337 { 6338 struct md_personality *pers = mddev->pers; 6339 md_bitmap_destroy(mddev); 6340 mddev_detach(mddev); 6341 /* Ensure ->event_work is done */ 6342 if (mddev->event_work.func) 6343 flush_workqueue(md_misc_wq); 6344 spin_lock(&mddev->lock); 6345 mddev->pers = NULL; 6346 spin_unlock(&mddev->lock); 6347 if (mddev->private) 6348 pers->free(mddev, mddev->private); 6349 mddev->private = NULL; 6350 if (pers->sync_request && mddev->to_remove == NULL) 6351 mddev->to_remove = &md_redundancy_group; 6352 module_put(pers->owner); 6353 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6354 6355 percpu_ref_exit(&mddev->active_io); 6356 bioset_exit(&mddev->bio_set); 6357 bioset_exit(&mddev->sync_set); 6358 bioset_exit(&mddev->io_clone_set); 6359 } 6360 6361 void md_stop(struct mddev *mddev) 6362 { 6363 lockdep_assert_held(&mddev->reconfig_mutex); 6364 6365 /* stop the array and free an attached data structures. 6366 * This is called from dm-raid 6367 */ 6368 __md_stop_writes(mddev); 6369 __md_stop(mddev); 6370 percpu_ref_exit(&mddev->writes_pending); 6371 } 6372 6373 EXPORT_SYMBOL_GPL(md_stop); 6374 6375 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev) 6376 { 6377 int err = 0; 6378 int did_freeze = 0; 6379 6380 if (mddev->external && test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 6381 return -EBUSY; 6382 6383 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 6384 did_freeze = 1; 6385 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6386 md_wakeup_thread(mddev->thread); 6387 } 6388 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 6389 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6390 6391 /* 6392 * Thread might be blocked waiting for metadata update which will now 6393 * never happen 6394 */ 6395 md_wakeup_thread_directly(mddev->sync_thread); 6396 6397 mddev_unlock(mddev); 6398 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING, 6399 &mddev->recovery)); 6400 wait_event(mddev->sb_wait, 6401 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 6402 mddev_lock_nointr(mddev); 6403 6404 mutex_lock(&mddev->open_mutex); 6405 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 6406 mddev->sync_thread || 6407 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 6408 pr_warn("md: %s still in use.\n",mdname(mddev)); 6409 err = -EBUSY; 6410 goto out; 6411 } 6412 6413 if (mddev->pers) { 6414 __md_stop_writes(mddev); 6415 6416 if (mddev->ro == MD_RDONLY) { 6417 err = -ENXIO; 6418 goto out; 6419 } 6420 6421 mddev->ro = MD_RDONLY; 6422 set_disk_ro(mddev->gendisk, 1); 6423 } 6424 6425 out: 6426 if ((mddev->pers && !err) || did_freeze) { 6427 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6428 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6429 md_wakeup_thread(mddev->thread); 6430 sysfs_notify_dirent_safe(mddev->sysfs_state); 6431 } 6432 6433 mutex_unlock(&mddev->open_mutex); 6434 return err; 6435 } 6436 6437 /* mode: 6438 * 0 - completely stop and dis-assemble array 6439 * 2 - stop but do not disassemble array 6440 */ 6441 static int do_md_stop(struct mddev *mddev, int mode, 6442 struct block_device *bdev) 6443 { 6444 struct gendisk *disk = mddev->gendisk; 6445 struct md_rdev *rdev; 6446 int did_freeze = 0; 6447 6448 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 6449 did_freeze = 1; 6450 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6451 md_wakeup_thread(mddev->thread); 6452 } 6453 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 6454 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6455 6456 /* 6457 * Thread might be blocked waiting for metadata update which will now 6458 * never happen 6459 */ 6460 md_wakeup_thread_directly(mddev->sync_thread); 6461 6462 mddev_unlock(mddev); 6463 wait_event(resync_wait, (mddev->sync_thread == NULL && 6464 !test_bit(MD_RECOVERY_RUNNING, 6465 &mddev->recovery))); 6466 mddev_lock_nointr(mddev); 6467 6468 mutex_lock(&mddev->open_mutex); 6469 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 6470 mddev->sysfs_active || 6471 mddev->sync_thread || 6472 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 6473 pr_warn("md: %s still in use.\n",mdname(mddev)); 6474 mutex_unlock(&mddev->open_mutex); 6475 if (did_freeze) { 6476 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6477 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6478 md_wakeup_thread(mddev->thread); 6479 } 6480 return -EBUSY; 6481 } 6482 if (mddev->pers) { 6483 if (!md_is_rdwr(mddev)) 6484 set_disk_ro(disk, 0); 6485 6486 __md_stop_writes(mddev); 6487 __md_stop(mddev); 6488 6489 /* tell userspace to handle 'inactive' */ 6490 sysfs_notify_dirent_safe(mddev->sysfs_state); 6491 6492 rdev_for_each(rdev, mddev) 6493 if (rdev->raid_disk >= 0) 6494 sysfs_unlink_rdev(mddev, rdev); 6495 6496 set_capacity_and_notify(disk, 0); 6497 mutex_unlock(&mddev->open_mutex); 6498 mddev->changed = 1; 6499 6500 if (!md_is_rdwr(mddev)) 6501 mddev->ro = MD_RDWR; 6502 } else 6503 mutex_unlock(&mddev->open_mutex); 6504 /* 6505 * Free resources if final stop 6506 */ 6507 if (mode == 0) { 6508 pr_info("md: %s stopped.\n", mdname(mddev)); 6509 6510 if (mddev->bitmap_info.file) { 6511 struct file *f = mddev->bitmap_info.file; 6512 spin_lock(&mddev->lock); 6513 mddev->bitmap_info.file = NULL; 6514 spin_unlock(&mddev->lock); 6515 fput(f); 6516 } 6517 mddev->bitmap_info.offset = 0; 6518 6519 export_array(mddev); 6520 6521 md_clean(mddev); 6522 if (mddev->hold_active == UNTIL_STOP) 6523 mddev->hold_active = 0; 6524 } 6525 md_new_event(); 6526 sysfs_notify_dirent_safe(mddev->sysfs_state); 6527 return 0; 6528 } 6529 6530 #ifndef MODULE 6531 static void autorun_array(struct mddev *mddev) 6532 { 6533 struct md_rdev *rdev; 6534 int err; 6535 6536 if (list_empty(&mddev->disks)) 6537 return; 6538 6539 pr_info("md: running: "); 6540 6541 rdev_for_each(rdev, mddev) { 6542 pr_cont("<%pg>", rdev->bdev); 6543 } 6544 pr_cont("\n"); 6545 6546 err = do_md_run(mddev); 6547 if (err) { 6548 pr_warn("md: do_md_run() returned %d\n", err); 6549 do_md_stop(mddev, 0, NULL); 6550 } 6551 } 6552 6553 /* 6554 * lets try to run arrays based on all disks that have arrived 6555 * until now. (those are in pending_raid_disks) 6556 * 6557 * the method: pick the first pending disk, collect all disks with 6558 * the same UUID, remove all from the pending list and put them into 6559 * the 'same_array' list. Then order this list based on superblock 6560 * update time (freshest comes first), kick out 'old' disks and 6561 * compare superblocks. If everything's fine then run it. 6562 * 6563 * If "unit" is allocated, then bump its reference count 6564 */ 6565 static void autorun_devices(int part) 6566 { 6567 struct md_rdev *rdev0, *rdev, *tmp; 6568 struct mddev *mddev; 6569 6570 pr_info("md: autorun ...\n"); 6571 while (!list_empty(&pending_raid_disks)) { 6572 int unit; 6573 dev_t dev; 6574 LIST_HEAD(candidates); 6575 rdev0 = list_entry(pending_raid_disks.next, 6576 struct md_rdev, same_set); 6577 6578 pr_debug("md: considering %pg ...\n", rdev0->bdev); 6579 INIT_LIST_HEAD(&candidates); 6580 rdev_for_each_list(rdev, tmp, &pending_raid_disks) 6581 if (super_90_load(rdev, rdev0, 0) >= 0) { 6582 pr_debug("md: adding %pg ...\n", 6583 rdev->bdev); 6584 list_move(&rdev->same_set, &candidates); 6585 } 6586 /* 6587 * now we have a set of devices, with all of them having 6588 * mostly sane superblocks. It's time to allocate the 6589 * mddev. 6590 */ 6591 if (part) { 6592 dev = MKDEV(mdp_major, 6593 rdev0->preferred_minor << MdpMinorShift); 6594 unit = MINOR(dev) >> MdpMinorShift; 6595 } else { 6596 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); 6597 unit = MINOR(dev); 6598 } 6599 if (rdev0->preferred_minor != unit) { 6600 pr_warn("md: unit number in %pg is bad: %d\n", 6601 rdev0->bdev, rdev0->preferred_minor); 6602 break; 6603 } 6604 6605 mddev = md_alloc(dev, NULL); 6606 if (IS_ERR(mddev)) 6607 break; 6608 6609 if (mddev_lock(mddev)) 6610 pr_warn("md: %s locked, cannot run\n", mdname(mddev)); 6611 else if (mddev->raid_disks || mddev->major_version 6612 || !list_empty(&mddev->disks)) { 6613 pr_warn("md: %s already running, cannot run %pg\n", 6614 mdname(mddev), rdev0->bdev); 6615 mddev_unlock(mddev); 6616 } else { 6617 pr_debug("md: created %s\n", mdname(mddev)); 6618 mddev->persistent = 1; 6619 rdev_for_each_list(rdev, tmp, &candidates) { 6620 list_del_init(&rdev->same_set); 6621 if (bind_rdev_to_array(rdev, mddev)) 6622 export_rdev(rdev, mddev); 6623 } 6624 autorun_array(mddev); 6625 mddev_unlock(mddev); 6626 } 6627 /* on success, candidates will be empty, on error 6628 * it won't... 6629 */ 6630 rdev_for_each_list(rdev, tmp, &candidates) { 6631 list_del_init(&rdev->same_set); 6632 export_rdev(rdev, mddev); 6633 } 6634 mddev_put(mddev); 6635 } 6636 pr_info("md: ... autorun DONE.\n"); 6637 } 6638 #endif /* !MODULE */ 6639 6640 static int get_version(void __user *arg) 6641 { 6642 mdu_version_t ver; 6643 6644 ver.major = MD_MAJOR_VERSION; 6645 ver.minor = MD_MINOR_VERSION; 6646 ver.patchlevel = MD_PATCHLEVEL_VERSION; 6647 6648 if (copy_to_user(arg, &ver, sizeof(ver))) 6649 return -EFAULT; 6650 6651 return 0; 6652 } 6653 6654 static int get_array_info(struct mddev *mddev, void __user *arg) 6655 { 6656 mdu_array_info_t info; 6657 int nr,working,insync,failed,spare; 6658 struct md_rdev *rdev; 6659 6660 nr = working = insync = failed = spare = 0; 6661 rcu_read_lock(); 6662 rdev_for_each_rcu(rdev, mddev) { 6663 nr++; 6664 if (test_bit(Faulty, &rdev->flags)) 6665 failed++; 6666 else { 6667 working++; 6668 if (test_bit(In_sync, &rdev->flags)) 6669 insync++; 6670 else if (test_bit(Journal, &rdev->flags)) 6671 /* TODO: add journal count to md_u.h */ 6672 ; 6673 else 6674 spare++; 6675 } 6676 } 6677 rcu_read_unlock(); 6678 6679 info.major_version = mddev->major_version; 6680 info.minor_version = mddev->minor_version; 6681 info.patch_version = MD_PATCHLEVEL_VERSION; 6682 info.ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 6683 info.level = mddev->level; 6684 info.size = mddev->dev_sectors / 2; 6685 if (info.size != mddev->dev_sectors / 2) /* overflow */ 6686 info.size = -1; 6687 info.nr_disks = nr; 6688 info.raid_disks = mddev->raid_disks; 6689 info.md_minor = mddev->md_minor; 6690 info.not_persistent= !mddev->persistent; 6691 6692 info.utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 6693 info.state = 0; 6694 if (mddev->in_sync) 6695 info.state = (1<<MD_SB_CLEAN); 6696 if (mddev->bitmap && mddev->bitmap_info.offset) 6697 info.state |= (1<<MD_SB_BITMAP_PRESENT); 6698 if (mddev_is_clustered(mddev)) 6699 info.state |= (1<<MD_SB_CLUSTERED); 6700 info.active_disks = insync; 6701 info.working_disks = working; 6702 info.failed_disks = failed; 6703 info.spare_disks = spare; 6704 6705 info.layout = mddev->layout; 6706 info.chunk_size = mddev->chunk_sectors << 9; 6707 6708 if (copy_to_user(arg, &info, sizeof(info))) 6709 return -EFAULT; 6710 6711 return 0; 6712 } 6713 6714 static int get_bitmap_file(struct mddev *mddev, void __user * arg) 6715 { 6716 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ 6717 char *ptr; 6718 int err; 6719 6720 file = kzalloc(sizeof(*file), GFP_NOIO); 6721 if (!file) 6722 return -ENOMEM; 6723 6724 err = 0; 6725 spin_lock(&mddev->lock); 6726 /* bitmap enabled */ 6727 if (mddev->bitmap_info.file) { 6728 ptr = file_path(mddev->bitmap_info.file, file->pathname, 6729 sizeof(file->pathname)); 6730 if (IS_ERR(ptr)) 6731 err = PTR_ERR(ptr); 6732 else 6733 memmove(file->pathname, ptr, 6734 sizeof(file->pathname)-(ptr-file->pathname)); 6735 } 6736 spin_unlock(&mddev->lock); 6737 6738 if (err == 0 && 6739 copy_to_user(arg, file, sizeof(*file))) 6740 err = -EFAULT; 6741 6742 kfree(file); 6743 return err; 6744 } 6745 6746 static int get_disk_info(struct mddev *mddev, void __user * arg) 6747 { 6748 mdu_disk_info_t info; 6749 struct md_rdev *rdev; 6750 6751 if (copy_from_user(&info, arg, sizeof(info))) 6752 return -EFAULT; 6753 6754 rcu_read_lock(); 6755 rdev = md_find_rdev_nr_rcu(mddev, info.number); 6756 if (rdev) { 6757 info.major = MAJOR(rdev->bdev->bd_dev); 6758 info.minor = MINOR(rdev->bdev->bd_dev); 6759 info.raid_disk = rdev->raid_disk; 6760 info.state = 0; 6761 if (test_bit(Faulty, &rdev->flags)) 6762 info.state |= (1<<MD_DISK_FAULTY); 6763 else if (test_bit(In_sync, &rdev->flags)) { 6764 info.state |= (1<<MD_DISK_ACTIVE); 6765 info.state |= (1<<MD_DISK_SYNC); 6766 } 6767 if (test_bit(Journal, &rdev->flags)) 6768 info.state |= (1<<MD_DISK_JOURNAL); 6769 if (test_bit(WriteMostly, &rdev->flags)) 6770 info.state |= (1<<MD_DISK_WRITEMOSTLY); 6771 if (test_bit(FailFast, &rdev->flags)) 6772 info.state |= (1<<MD_DISK_FAILFAST); 6773 } else { 6774 info.major = info.minor = 0; 6775 info.raid_disk = -1; 6776 info.state = (1<<MD_DISK_REMOVED); 6777 } 6778 rcu_read_unlock(); 6779 6780 if (copy_to_user(arg, &info, sizeof(info))) 6781 return -EFAULT; 6782 6783 return 0; 6784 } 6785 6786 int md_add_new_disk(struct mddev *mddev, struct mdu_disk_info_s *info) 6787 { 6788 struct md_rdev *rdev; 6789 dev_t dev = MKDEV(info->major,info->minor); 6790 6791 if (mddev_is_clustered(mddev) && 6792 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) { 6793 pr_warn("%s: Cannot add to clustered mddev.\n", 6794 mdname(mddev)); 6795 return -EINVAL; 6796 } 6797 6798 if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) 6799 return -EOVERFLOW; 6800 6801 if (!mddev->raid_disks) { 6802 int err; 6803 /* expecting a device which has a superblock */ 6804 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); 6805 if (IS_ERR(rdev)) { 6806 pr_warn("md: md_import_device returned %ld\n", 6807 PTR_ERR(rdev)); 6808 return PTR_ERR(rdev); 6809 } 6810 if (!list_empty(&mddev->disks)) { 6811 struct md_rdev *rdev0 6812 = list_entry(mddev->disks.next, 6813 struct md_rdev, same_set); 6814 err = super_types[mddev->major_version] 6815 .load_super(rdev, rdev0, mddev->minor_version); 6816 if (err < 0) { 6817 pr_warn("md: %pg has different UUID to %pg\n", 6818 rdev->bdev, 6819 rdev0->bdev); 6820 export_rdev(rdev, mddev); 6821 return -EINVAL; 6822 } 6823 } 6824 err = bind_rdev_to_array(rdev, mddev); 6825 if (err) 6826 export_rdev(rdev, mddev); 6827 return err; 6828 } 6829 6830 /* 6831 * md_add_new_disk can be used once the array is assembled 6832 * to add "hot spares". They must already have a superblock 6833 * written 6834 */ 6835 if (mddev->pers) { 6836 int err; 6837 if (!mddev->pers->hot_add_disk) { 6838 pr_warn("%s: personality does not support diskops!\n", 6839 mdname(mddev)); 6840 return -EINVAL; 6841 } 6842 if (mddev->persistent) 6843 rdev = md_import_device(dev, mddev->major_version, 6844 mddev->minor_version); 6845 else 6846 rdev = md_import_device(dev, -1, -1); 6847 if (IS_ERR(rdev)) { 6848 pr_warn("md: md_import_device returned %ld\n", 6849 PTR_ERR(rdev)); 6850 return PTR_ERR(rdev); 6851 } 6852 /* set saved_raid_disk if appropriate */ 6853 if (!mddev->persistent) { 6854 if (info->state & (1<<MD_DISK_SYNC) && 6855 info->raid_disk < mddev->raid_disks) { 6856 rdev->raid_disk = info->raid_disk; 6857 clear_bit(Bitmap_sync, &rdev->flags); 6858 } else 6859 rdev->raid_disk = -1; 6860 rdev->saved_raid_disk = rdev->raid_disk; 6861 } else 6862 super_types[mddev->major_version]. 6863 validate_super(mddev, NULL/*freshest*/, rdev); 6864 if ((info->state & (1<<MD_DISK_SYNC)) && 6865 rdev->raid_disk != info->raid_disk) { 6866 /* This was a hot-add request, but events doesn't 6867 * match, so reject it. 6868 */ 6869 export_rdev(rdev, mddev); 6870 return -EINVAL; 6871 } 6872 6873 clear_bit(In_sync, &rdev->flags); /* just to be sure */ 6874 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6875 set_bit(WriteMostly, &rdev->flags); 6876 else 6877 clear_bit(WriteMostly, &rdev->flags); 6878 if (info->state & (1<<MD_DISK_FAILFAST)) 6879 set_bit(FailFast, &rdev->flags); 6880 else 6881 clear_bit(FailFast, &rdev->flags); 6882 6883 if (info->state & (1<<MD_DISK_JOURNAL)) { 6884 struct md_rdev *rdev2; 6885 bool has_journal = false; 6886 6887 /* make sure no existing journal disk */ 6888 rdev_for_each(rdev2, mddev) { 6889 if (test_bit(Journal, &rdev2->flags)) { 6890 has_journal = true; 6891 break; 6892 } 6893 } 6894 if (has_journal || mddev->bitmap) { 6895 export_rdev(rdev, mddev); 6896 return -EBUSY; 6897 } 6898 set_bit(Journal, &rdev->flags); 6899 } 6900 /* 6901 * check whether the device shows up in other nodes 6902 */ 6903 if (mddev_is_clustered(mddev)) { 6904 if (info->state & (1 << MD_DISK_CANDIDATE)) 6905 set_bit(Candidate, &rdev->flags); 6906 else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) { 6907 /* --add initiated by this node */ 6908 err = md_cluster_ops->add_new_disk(mddev, rdev); 6909 if (err) { 6910 export_rdev(rdev, mddev); 6911 return err; 6912 } 6913 } 6914 } 6915 6916 rdev->raid_disk = -1; 6917 err = bind_rdev_to_array(rdev, mddev); 6918 6919 if (err) 6920 export_rdev(rdev, mddev); 6921 6922 if (mddev_is_clustered(mddev)) { 6923 if (info->state & (1 << MD_DISK_CANDIDATE)) { 6924 if (!err) { 6925 err = md_cluster_ops->new_disk_ack(mddev, 6926 err == 0); 6927 if (err) 6928 md_kick_rdev_from_array(rdev); 6929 } 6930 } else { 6931 if (err) 6932 md_cluster_ops->add_new_disk_cancel(mddev); 6933 else 6934 err = add_bound_rdev(rdev); 6935 } 6936 6937 } else if (!err) 6938 err = add_bound_rdev(rdev); 6939 6940 return err; 6941 } 6942 6943 /* otherwise, md_add_new_disk is only allowed 6944 * for major_version==0 superblocks 6945 */ 6946 if (mddev->major_version != 0) { 6947 pr_warn("%s: ADD_NEW_DISK not supported\n", mdname(mddev)); 6948 return -EINVAL; 6949 } 6950 6951 if (!(info->state & (1<<MD_DISK_FAULTY))) { 6952 int err; 6953 rdev = md_import_device(dev, -1, 0); 6954 if (IS_ERR(rdev)) { 6955 pr_warn("md: error, md_import_device() returned %ld\n", 6956 PTR_ERR(rdev)); 6957 return PTR_ERR(rdev); 6958 } 6959 rdev->desc_nr = info->number; 6960 if (info->raid_disk < mddev->raid_disks) 6961 rdev->raid_disk = info->raid_disk; 6962 else 6963 rdev->raid_disk = -1; 6964 6965 if (rdev->raid_disk < mddev->raid_disks) 6966 if (info->state & (1<<MD_DISK_SYNC)) 6967 set_bit(In_sync, &rdev->flags); 6968 6969 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6970 set_bit(WriteMostly, &rdev->flags); 6971 if (info->state & (1<<MD_DISK_FAILFAST)) 6972 set_bit(FailFast, &rdev->flags); 6973 6974 if (!mddev->persistent) { 6975 pr_debug("md: nonpersistent superblock ...\n"); 6976 rdev->sb_start = bdev_nr_sectors(rdev->bdev); 6977 } else 6978 rdev->sb_start = calc_dev_sboffset(rdev); 6979 rdev->sectors = rdev->sb_start; 6980 6981 err = bind_rdev_to_array(rdev, mddev); 6982 if (err) { 6983 export_rdev(rdev, mddev); 6984 return err; 6985 } 6986 } 6987 6988 return 0; 6989 } 6990 6991 static int hot_remove_disk(struct mddev *mddev, dev_t dev) 6992 { 6993 struct md_rdev *rdev; 6994 6995 if (!mddev->pers) 6996 return -ENODEV; 6997 6998 rdev = find_rdev(mddev, dev); 6999 if (!rdev) 7000 return -ENXIO; 7001 7002 if (rdev->raid_disk < 0) 7003 goto kick_rdev; 7004 7005 clear_bit(Blocked, &rdev->flags); 7006 remove_and_add_spares(mddev, rdev); 7007 7008 if (rdev->raid_disk >= 0) 7009 goto busy; 7010 7011 kick_rdev: 7012 if (mddev_is_clustered(mddev)) { 7013 if (md_cluster_ops->remove_disk(mddev, rdev)) 7014 goto busy; 7015 } 7016 7017 md_kick_rdev_from_array(rdev); 7018 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 7019 if (mddev->thread) 7020 md_wakeup_thread(mddev->thread); 7021 else 7022 md_update_sb(mddev, 1); 7023 md_new_event(); 7024 7025 return 0; 7026 busy: 7027 pr_debug("md: cannot remove active disk %pg from %s ...\n", 7028 rdev->bdev, mdname(mddev)); 7029 return -EBUSY; 7030 } 7031 7032 static int hot_add_disk(struct mddev *mddev, dev_t dev) 7033 { 7034 int err; 7035 struct md_rdev *rdev; 7036 7037 if (!mddev->pers) 7038 return -ENODEV; 7039 7040 if (mddev->major_version != 0) { 7041 pr_warn("%s: HOT_ADD may only be used with version-0 superblocks.\n", 7042 mdname(mddev)); 7043 return -EINVAL; 7044 } 7045 if (!mddev->pers->hot_add_disk) { 7046 pr_warn("%s: personality does not support diskops!\n", 7047 mdname(mddev)); 7048 return -EINVAL; 7049 } 7050 7051 rdev = md_import_device(dev, -1, 0); 7052 if (IS_ERR(rdev)) { 7053 pr_warn("md: error, md_import_device() returned %ld\n", 7054 PTR_ERR(rdev)); 7055 return -EINVAL; 7056 } 7057 7058 if (mddev->persistent) 7059 rdev->sb_start = calc_dev_sboffset(rdev); 7060 else 7061 rdev->sb_start = bdev_nr_sectors(rdev->bdev); 7062 7063 rdev->sectors = rdev->sb_start; 7064 7065 if (test_bit(Faulty, &rdev->flags)) { 7066 pr_warn("md: can not hot-add faulty %pg disk to %s!\n", 7067 rdev->bdev, mdname(mddev)); 7068 err = -EINVAL; 7069 goto abort_export; 7070 } 7071 7072 clear_bit(In_sync, &rdev->flags); 7073 rdev->desc_nr = -1; 7074 rdev->saved_raid_disk = -1; 7075 err = bind_rdev_to_array(rdev, mddev); 7076 if (err) 7077 goto abort_export; 7078 7079 /* 7080 * The rest should better be atomic, we can have disk failures 7081 * noticed in interrupt contexts ... 7082 */ 7083 7084 rdev->raid_disk = -1; 7085 7086 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 7087 if (!mddev->thread) 7088 md_update_sb(mddev, 1); 7089 /* 7090 * If the new disk does not support REQ_NOWAIT, 7091 * disable on the whole MD. 7092 */ 7093 if (!bdev_nowait(rdev->bdev)) { 7094 pr_info("%s: Disabling nowait because %pg does not support nowait\n", 7095 mdname(mddev), rdev->bdev); 7096 blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, mddev->queue); 7097 } 7098 /* 7099 * Kick recovery, maybe this spare has to be added to the 7100 * array immediately. 7101 */ 7102 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7103 md_wakeup_thread(mddev->thread); 7104 md_new_event(); 7105 return 0; 7106 7107 abort_export: 7108 export_rdev(rdev, mddev); 7109 return err; 7110 } 7111 7112 static int set_bitmap_file(struct mddev *mddev, int fd) 7113 { 7114 int err = 0; 7115 7116 if (mddev->pers) { 7117 if (!mddev->pers->quiesce || !mddev->thread) 7118 return -EBUSY; 7119 if (mddev->recovery || mddev->sync_thread) 7120 return -EBUSY; 7121 /* we should be able to change the bitmap.. */ 7122 } 7123 7124 if (fd >= 0) { 7125 struct inode *inode; 7126 struct file *f; 7127 7128 if (mddev->bitmap || mddev->bitmap_info.file) 7129 return -EEXIST; /* cannot add when bitmap is present */ 7130 7131 if (!IS_ENABLED(CONFIG_MD_BITMAP_FILE)) { 7132 pr_warn("%s: bitmap files not supported by this kernel\n", 7133 mdname(mddev)); 7134 return -EINVAL; 7135 } 7136 pr_warn("%s: using deprecated bitmap file support\n", 7137 mdname(mddev)); 7138 7139 f = fget(fd); 7140 7141 if (f == NULL) { 7142 pr_warn("%s: error: failed to get bitmap file\n", 7143 mdname(mddev)); 7144 return -EBADF; 7145 } 7146 7147 inode = f->f_mapping->host; 7148 if (!S_ISREG(inode->i_mode)) { 7149 pr_warn("%s: error: bitmap file must be a regular file\n", 7150 mdname(mddev)); 7151 err = -EBADF; 7152 } else if (!(f->f_mode & FMODE_WRITE)) { 7153 pr_warn("%s: error: bitmap file must open for write\n", 7154 mdname(mddev)); 7155 err = -EBADF; 7156 } else if (atomic_read(&inode->i_writecount) != 1) { 7157 pr_warn("%s: error: bitmap file is already in use\n", 7158 mdname(mddev)); 7159 err = -EBUSY; 7160 } 7161 if (err) { 7162 fput(f); 7163 return err; 7164 } 7165 mddev->bitmap_info.file = f; 7166 mddev->bitmap_info.offset = 0; /* file overrides offset */ 7167 } else if (mddev->bitmap == NULL) 7168 return -ENOENT; /* cannot remove what isn't there */ 7169 err = 0; 7170 if (mddev->pers) { 7171 if (fd >= 0) { 7172 struct bitmap *bitmap; 7173 7174 bitmap = md_bitmap_create(mddev, -1); 7175 mddev_suspend(mddev); 7176 if (!IS_ERR(bitmap)) { 7177 mddev->bitmap = bitmap; 7178 err = md_bitmap_load(mddev); 7179 } else 7180 err = PTR_ERR(bitmap); 7181 if (err) { 7182 md_bitmap_destroy(mddev); 7183 fd = -1; 7184 } 7185 mddev_resume(mddev); 7186 } else if (fd < 0) { 7187 mddev_suspend(mddev); 7188 md_bitmap_destroy(mddev); 7189 mddev_resume(mddev); 7190 } 7191 } 7192 if (fd < 0) { 7193 struct file *f = mddev->bitmap_info.file; 7194 if (f) { 7195 spin_lock(&mddev->lock); 7196 mddev->bitmap_info.file = NULL; 7197 spin_unlock(&mddev->lock); 7198 fput(f); 7199 } 7200 } 7201 7202 return err; 7203 } 7204 7205 /* 7206 * md_set_array_info is used two different ways 7207 * The original usage is when creating a new array. 7208 * In this usage, raid_disks is > 0 and it together with 7209 * level, size, not_persistent,layout,chunksize determine the 7210 * shape of the array. 7211 * This will always create an array with a type-0.90.0 superblock. 7212 * The newer usage is when assembling an array. 7213 * In this case raid_disks will be 0, and the major_version field is 7214 * use to determine which style super-blocks are to be found on the devices. 7215 * The minor and patch _version numbers are also kept incase the 7216 * super_block handler wishes to interpret them. 7217 */ 7218 int md_set_array_info(struct mddev *mddev, struct mdu_array_info_s *info) 7219 { 7220 if (info->raid_disks == 0) { 7221 /* just setting version number for superblock loading */ 7222 if (info->major_version < 0 || 7223 info->major_version >= ARRAY_SIZE(super_types) || 7224 super_types[info->major_version].name == NULL) { 7225 /* maybe try to auto-load a module? */ 7226 pr_warn("md: superblock version %d not known\n", 7227 info->major_version); 7228 return -EINVAL; 7229 } 7230 mddev->major_version = info->major_version; 7231 mddev->minor_version = info->minor_version; 7232 mddev->patch_version = info->patch_version; 7233 mddev->persistent = !info->not_persistent; 7234 /* ensure mddev_put doesn't delete this now that there 7235 * is some minimal configuration. 7236 */ 7237 mddev->ctime = ktime_get_real_seconds(); 7238 return 0; 7239 } 7240 mddev->major_version = MD_MAJOR_VERSION; 7241 mddev->minor_version = MD_MINOR_VERSION; 7242 mddev->patch_version = MD_PATCHLEVEL_VERSION; 7243 mddev->ctime = ktime_get_real_seconds(); 7244 7245 mddev->level = info->level; 7246 mddev->clevel[0] = 0; 7247 mddev->dev_sectors = 2 * (sector_t)info->size; 7248 mddev->raid_disks = info->raid_disks; 7249 /* don't set md_minor, it is determined by which /dev/md* was 7250 * openned 7251 */ 7252 if (info->state & (1<<MD_SB_CLEAN)) 7253 mddev->recovery_cp = MaxSector; 7254 else 7255 mddev->recovery_cp = 0; 7256 mddev->persistent = ! info->not_persistent; 7257 mddev->external = 0; 7258 7259 mddev->layout = info->layout; 7260 if (mddev->level == 0) 7261 /* Cannot trust RAID0 layout info here */ 7262 mddev->layout = -1; 7263 mddev->chunk_sectors = info->chunk_size >> 9; 7264 7265 if (mddev->persistent) { 7266 mddev->max_disks = MD_SB_DISKS; 7267 mddev->flags = 0; 7268 mddev->sb_flags = 0; 7269 } 7270 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 7271 7272 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 7273 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 7274 mddev->bitmap_info.offset = 0; 7275 7276 mddev->reshape_position = MaxSector; 7277 7278 /* 7279 * Generate a 128 bit UUID 7280 */ 7281 get_random_bytes(mddev->uuid, 16); 7282 7283 mddev->new_level = mddev->level; 7284 mddev->new_chunk_sectors = mddev->chunk_sectors; 7285 mddev->new_layout = mddev->layout; 7286 mddev->delta_disks = 0; 7287 mddev->reshape_backwards = 0; 7288 7289 return 0; 7290 } 7291 7292 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors) 7293 { 7294 lockdep_assert_held(&mddev->reconfig_mutex); 7295 7296 if (mddev->external_size) 7297 return; 7298 7299 mddev->array_sectors = array_sectors; 7300 } 7301 EXPORT_SYMBOL(md_set_array_sectors); 7302 7303 static int update_size(struct mddev *mddev, sector_t num_sectors) 7304 { 7305 struct md_rdev *rdev; 7306 int rv; 7307 int fit = (num_sectors == 0); 7308 sector_t old_dev_sectors = mddev->dev_sectors; 7309 7310 if (mddev->pers->resize == NULL) 7311 return -EINVAL; 7312 /* The "num_sectors" is the number of sectors of each device that 7313 * is used. This can only make sense for arrays with redundancy. 7314 * linear and raid0 always use whatever space is available. We can only 7315 * consider changing this number if no resync or reconstruction is 7316 * happening, and if the new size is acceptable. It must fit before the 7317 * sb_start or, if that is <data_offset, it must fit before the size 7318 * of each device. If num_sectors is zero, we find the largest size 7319 * that fits. 7320 */ 7321 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 7322 mddev->sync_thread) 7323 return -EBUSY; 7324 if (!md_is_rdwr(mddev)) 7325 return -EROFS; 7326 7327 rdev_for_each(rdev, mddev) { 7328 sector_t avail = rdev->sectors; 7329 7330 if (fit && (num_sectors == 0 || num_sectors > avail)) 7331 num_sectors = avail; 7332 if (avail < num_sectors) 7333 return -ENOSPC; 7334 } 7335 rv = mddev->pers->resize(mddev, num_sectors); 7336 if (!rv) { 7337 if (mddev_is_clustered(mddev)) 7338 md_cluster_ops->update_size(mddev, old_dev_sectors); 7339 else if (mddev->queue) { 7340 set_capacity_and_notify(mddev->gendisk, 7341 mddev->array_sectors); 7342 } 7343 } 7344 return rv; 7345 } 7346 7347 static int update_raid_disks(struct mddev *mddev, int raid_disks) 7348 { 7349 int rv; 7350 struct md_rdev *rdev; 7351 /* change the number of raid disks */ 7352 if (mddev->pers->check_reshape == NULL) 7353 return -EINVAL; 7354 if (!md_is_rdwr(mddev)) 7355 return -EROFS; 7356 if (raid_disks <= 0 || 7357 (mddev->max_disks && raid_disks >= mddev->max_disks)) 7358 return -EINVAL; 7359 if (mddev->sync_thread || 7360 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 7361 test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) || 7362 mddev->reshape_position != MaxSector) 7363 return -EBUSY; 7364 7365 rdev_for_each(rdev, mddev) { 7366 if (mddev->raid_disks < raid_disks && 7367 rdev->data_offset < rdev->new_data_offset) 7368 return -EINVAL; 7369 if (mddev->raid_disks > raid_disks && 7370 rdev->data_offset > rdev->new_data_offset) 7371 return -EINVAL; 7372 } 7373 7374 mddev->delta_disks = raid_disks - mddev->raid_disks; 7375 if (mddev->delta_disks < 0) 7376 mddev->reshape_backwards = 1; 7377 else if (mddev->delta_disks > 0) 7378 mddev->reshape_backwards = 0; 7379 7380 rv = mddev->pers->check_reshape(mddev); 7381 if (rv < 0) { 7382 mddev->delta_disks = 0; 7383 mddev->reshape_backwards = 0; 7384 } 7385 return rv; 7386 } 7387 7388 /* 7389 * update_array_info is used to change the configuration of an 7390 * on-line array. 7391 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size 7392 * fields in the info are checked against the array. 7393 * Any differences that cannot be handled will cause an error. 7394 * Normally, only one change can be managed at a time. 7395 */ 7396 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info) 7397 { 7398 int rv = 0; 7399 int cnt = 0; 7400 int state = 0; 7401 7402 /* calculate expected state,ignoring low bits */ 7403 if (mddev->bitmap && mddev->bitmap_info.offset) 7404 state |= (1 << MD_SB_BITMAP_PRESENT); 7405 7406 if (mddev->major_version != info->major_version || 7407 mddev->minor_version != info->minor_version || 7408 /* mddev->patch_version != info->patch_version || */ 7409 mddev->ctime != info->ctime || 7410 mddev->level != info->level || 7411 /* mddev->layout != info->layout || */ 7412 mddev->persistent != !info->not_persistent || 7413 mddev->chunk_sectors != info->chunk_size >> 9 || 7414 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ 7415 ((state^info->state) & 0xfffffe00) 7416 ) 7417 return -EINVAL; 7418 /* Check there is only one change */ 7419 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 7420 cnt++; 7421 if (mddev->raid_disks != info->raid_disks) 7422 cnt++; 7423 if (mddev->layout != info->layout) 7424 cnt++; 7425 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) 7426 cnt++; 7427 if (cnt == 0) 7428 return 0; 7429 if (cnt > 1) 7430 return -EINVAL; 7431 7432 if (mddev->layout != info->layout) { 7433 /* Change layout 7434 * we don't need to do anything at the md level, the 7435 * personality will take care of it all. 7436 */ 7437 if (mddev->pers->check_reshape == NULL) 7438 return -EINVAL; 7439 else { 7440 mddev->new_layout = info->layout; 7441 rv = mddev->pers->check_reshape(mddev); 7442 if (rv) 7443 mddev->new_layout = mddev->layout; 7444 return rv; 7445 } 7446 } 7447 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 7448 rv = update_size(mddev, (sector_t)info->size * 2); 7449 7450 if (mddev->raid_disks != info->raid_disks) 7451 rv = update_raid_disks(mddev, info->raid_disks); 7452 7453 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { 7454 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) { 7455 rv = -EINVAL; 7456 goto err; 7457 } 7458 if (mddev->recovery || mddev->sync_thread) { 7459 rv = -EBUSY; 7460 goto err; 7461 } 7462 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { 7463 struct bitmap *bitmap; 7464 /* add the bitmap */ 7465 if (mddev->bitmap) { 7466 rv = -EEXIST; 7467 goto err; 7468 } 7469 if (mddev->bitmap_info.default_offset == 0) { 7470 rv = -EINVAL; 7471 goto err; 7472 } 7473 mddev->bitmap_info.offset = 7474 mddev->bitmap_info.default_offset; 7475 mddev->bitmap_info.space = 7476 mddev->bitmap_info.default_space; 7477 bitmap = md_bitmap_create(mddev, -1); 7478 mddev_suspend(mddev); 7479 if (!IS_ERR(bitmap)) { 7480 mddev->bitmap = bitmap; 7481 rv = md_bitmap_load(mddev); 7482 } else 7483 rv = PTR_ERR(bitmap); 7484 if (rv) 7485 md_bitmap_destroy(mddev); 7486 mddev_resume(mddev); 7487 } else { 7488 /* remove the bitmap */ 7489 if (!mddev->bitmap) { 7490 rv = -ENOENT; 7491 goto err; 7492 } 7493 if (mddev->bitmap->storage.file) { 7494 rv = -EINVAL; 7495 goto err; 7496 } 7497 if (mddev->bitmap_info.nodes) { 7498 /* hold PW on all the bitmap lock */ 7499 if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) { 7500 pr_warn("md: can't change bitmap to none since the array is in use by more than one node\n"); 7501 rv = -EPERM; 7502 md_cluster_ops->unlock_all_bitmaps(mddev); 7503 goto err; 7504 } 7505 7506 mddev->bitmap_info.nodes = 0; 7507 md_cluster_ops->leave(mddev); 7508 module_put(md_cluster_mod); 7509 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY; 7510 } 7511 mddev_suspend(mddev); 7512 md_bitmap_destroy(mddev); 7513 mddev_resume(mddev); 7514 mddev->bitmap_info.offset = 0; 7515 } 7516 } 7517 md_update_sb(mddev, 1); 7518 return rv; 7519 err: 7520 return rv; 7521 } 7522 7523 static int set_disk_faulty(struct mddev *mddev, dev_t dev) 7524 { 7525 struct md_rdev *rdev; 7526 int err = 0; 7527 7528 if (mddev->pers == NULL) 7529 return -ENODEV; 7530 7531 rcu_read_lock(); 7532 rdev = md_find_rdev_rcu(mddev, dev); 7533 if (!rdev) 7534 err = -ENODEV; 7535 else { 7536 md_error(mddev, rdev); 7537 if (test_bit(MD_BROKEN, &mddev->flags)) 7538 err = -EBUSY; 7539 } 7540 rcu_read_unlock(); 7541 return err; 7542 } 7543 7544 /* 7545 * We have a problem here : there is no easy way to give a CHS 7546 * virtual geometry. We currently pretend that we have a 2 heads 7547 * 4 sectors (with a BIG number of cylinders...). This drives 7548 * dosfs just mad... ;-) 7549 */ 7550 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) 7551 { 7552 struct mddev *mddev = bdev->bd_disk->private_data; 7553 7554 geo->heads = 2; 7555 geo->sectors = 4; 7556 geo->cylinders = mddev->array_sectors / 8; 7557 return 0; 7558 } 7559 7560 static inline bool md_ioctl_valid(unsigned int cmd) 7561 { 7562 switch (cmd) { 7563 case ADD_NEW_DISK: 7564 case GET_ARRAY_INFO: 7565 case GET_BITMAP_FILE: 7566 case GET_DISK_INFO: 7567 case HOT_ADD_DISK: 7568 case HOT_REMOVE_DISK: 7569 case RAID_VERSION: 7570 case RESTART_ARRAY_RW: 7571 case RUN_ARRAY: 7572 case SET_ARRAY_INFO: 7573 case SET_BITMAP_FILE: 7574 case SET_DISK_FAULTY: 7575 case STOP_ARRAY: 7576 case STOP_ARRAY_RO: 7577 case CLUSTERED_DISK_NACK: 7578 return true; 7579 default: 7580 return false; 7581 } 7582 } 7583 7584 static int __md_set_array_info(struct mddev *mddev, void __user *argp) 7585 { 7586 mdu_array_info_t info; 7587 int err; 7588 7589 if (!argp) 7590 memset(&info, 0, sizeof(info)); 7591 else if (copy_from_user(&info, argp, sizeof(info))) 7592 return -EFAULT; 7593 7594 if (mddev->pers) { 7595 err = update_array_info(mddev, &info); 7596 if (err) 7597 pr_warn("md: couldn't update array info. %d\n", err); 7598 return err; 7599 } 7600 7601 if (!list_empty(&mddev->disks)) { 7602 pr_warn("md: array %s already has disks!\n", mdname(mddev)); 7603 return -EBUSY; 7604 } 7605 7606 if (mddev->raid_disks) { 7607 pr_warn("md: array %s already initialised!\n", mdname(mddev)); 7608 return -EBUSY; 7609 } 7610 7611 err = md_set_array_info(mddev, &info); 7612 if (err) 7613 pr_warn("md: couldn't set array info. %d\n", err); 7614 7615 return err; 7616 } 7617 7618 static int md_ioctl(struct block_device *bdev, blk_mode_t mode, 7619 unsigned int cmd, unsigned long arg) 7620 { 7621 int err = 0; 7622 void __user *argp = (void __user *)arg; 7623 struct mddev *mddev = NULL; 7624 7625 if (!md_ioctl_valid(cmd)) 7626 return -ENOTTY; 7627 7628 switch (cmd) { 7629 case RAID_VERSION: 7630 case GET_ARRAY_INFO: 7631 case GET_DISK_INFO: 7632 break; 7633 default: 7634 if (!capable(CAP_SYS_ADMIN)) 7635 return -EACCES; 7636 } 7637 7638 /* 7639 * Commands dealing with the RAID driver but not any 7640 * particular array: 7641 */ 7642 switch (cmd) { 7643 case RAID_VERSION: 7644 err = get_version(argp); 7645 goto out; 7646 default:; 7647 } 7648 7649 /* 7650 * Commands creating/starting a new array: 7651 */ 7652 7653 mddev = bdev->bd_disk->private_data; 7654 7655 if (!mddev) { 7656 BUG(); 7657 goto out; 7658 } 7659 7660 /* Some actions do not requires the mutex */ 7661 switch (cmd) { 7662 case GET_ARRAY_INFO: 7663 if (!mddev->raid_disks && !mddev->external) 7664 err = -ENODEV; 7665 else 7666 err = get_array_info(mddev, argp); 7667 goto out; 7668 7669 case GET_DISK_INFO: 7670 if (!mddev->raid_disks && !mddev->external) 7671 err = -ENODEV; 7672 else 7673 err = get_disk_info(mddev, argp); 7674 goto out; 7675 7676 case SET_DISK_FAULTY: 7677 err = set_disk_faulty(mddev, new_decode_dev(arg)); 7678 goto out; 7679 7680 case GET_BITMAP_FILE: 7681 err = get_bitmap_file(mddev, argp); 7682 goto out; 7683 7684 } 7685 7686 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) { 7687 /* Need to flush page cache, and ensure no-one else opens 7688 * and writes 7689 */ 7690 mutex_lock(&mddev->open_mutex); 7691 if (mddev->pers && atomic_read(&mddev->openers) > 1) { 7692 mutex_unlock(&mddev->open_mutex); 7693 err = -EBUSY; 7694 goto out; 7695 } 7696 if (test_and_set_bit(MD_CLOSING, &mddev->flags)) { 7697 mutex_unlock(&mddev->open_mutex); 7698 err = -EBUSY; 7699 goto out; 7700 } 7701 mutex_unlock(&mddev->open_mutex); 7702 sync_blockdev(bdev); 7703 } 7704 err = mddev_lock(mddev); 7705 if (err) { 7706 pr_debug("md: ioctl lock interrupted, reason %d, cmd %d\n", 7707 err, cmd); 7708 goto out; 7709 } 7710 7711 if (cmd == SET_ARRAY_INFO) { 7712 err = __md_set_array_info(mddev, argp); 7713 goto unlock; 7714 } 7715 7716 /* 7717 * Commands querying/configuring an existing array: 7718 */ 7719 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, 7720 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ 7721 if ((!mddev->raid_disks && !mddev->external) 7722 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY 7723 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE 7724 && cmd != GET_BITMAP_FILE) { 7725 err = -ENODEV; 7726 goto unlock; 7727 } 7728 7729 /* 7730 * Commands even a read-only array can execute: 7731 */ 7732 switch (cmd) { 7733 case RESTART_ARRAY_RW: 7734 err = restart_array(mddev); 7735 goto unlock; 7736 7737 case STOP_ARRAY: 7738 err = do_md_stop(mddev, 0, bdev); 7739 goto unlock; 7740 7741 case STOP_ARRAY_RO: 7742 err = md_set_readonly(mddev, bdev); 7743 goto unlock; 7744 7745 case HOT_REMOVE_DISK: 7746 err = hot_remove_disk(mddev, new_decode_dev(arg)); 7747 goto unlock; 7748 7749 case ADD_NEW_DISK: 7750 /* We can support ADD_NEW_DISK on read-only arrays 7751 * only if we are re-adding a preexisting device. 7752 * So require mddev->pers and MD_DISK_SYNC. 7753 */ 7754 if (mddev->pers) { 7755 mdu_disk_info_t info; 7756 if (copy_from_user(&info, argp, sizeof(info))) 7757 err = -EFAULT; 7758 else if (!(info.state & (1<<MD_DISK_SYNC))) 7759 /* Need to clear read-only for this */ 7760 break; 7761 else 7762 err = md_add_new_disk(mddev, &info); 7763 goto unlock; 7764 } 7765 break; 7766 } 7767 7768 /* 7769 * The remaining ioctls are changing the state of the 7770 * superblock, so we do not allow them on read-only arrays. 7771 */ 7772 if (!md_is_rdwr(mddev) && mddev->pers) { 7773 if (mddev->ro != MD_AUTO_READ) { 7774 err = -EROFS; 7775 goto unlock; 7776 } 7777 mddev->ro = MD_RDWR; 7778 sysfs_notify_dirent_safe(mddev->sysfs_state); 7779 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7780 /* mddev_unlock will wake thread */ 7781 /* If a device failed while we were read-only, we 7782 * need to make sure the metadata is updated now. 7783 */ 7784 if (test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) { 7785 mddev_unlock(mddev); 7786 wait_event(mddev->sb_wait, 7787 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) && 7788 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 7789 mddev_lock_nointr(mddev); 7790 } 7791 } 7792 7793 switch (cmd) { 7794 case ADD_NEW_DISK: 7795 { 7796 mdu_disk_info_t info; 7797 if (copy_from_user(&info, argp, sizeof(info))) 7798 err = -EFAULT; 7799 else 7800 err = md_add_new_disk(mddev, &info); 7801 goto unlock; 7802 } 7803 7804 case CLUSTERED_DISK_NACK: 7805 if (mddev_is_clustered(mddev)) 7806 md_cluster_ops->new_disk_ack(mddev, false); 7807 else 7808 err = -EINVAL; 7809 goto unlock; 7810 7811 case HOT_ADD_DISK: 7812 err = hot_add_disk(mddev, new_decode_dev(arg)); 7813 goto unlock; 7814 7815 case RUN_ARRAY: 7816 err = do_md_run(mddev); 7817 goto unlock; 7818 7819 case SET_BITMAP_FILE: 7820 err = set_bitmap_file(mddev, (int)arg); 7821 goto unlock; 7822 7823 default: 7824 err = -EINVAL; 7825 goto unlock; 7826 } 7827 7828 unlock: 7829 if (mddev->hold_active == UNTIL_IOCTL && 7830 err != -EINVAL) 7831 mddev->hold_active = 0; 7832 mddev_unlock(mddev); 7833 out: 7834 if (cmd == STOP_ARRAY_RO || (err && cmd == STOP_ARRAY)) 7835 clear_bit(MD_CLOSING, &mddev->flags); 7836 return err; 7837 } 7838 #ifdef CONFIG_COMPAT 7839 static int md_compat_ioctl(struct block_device *bdev, blk_mode_t mode, 7840 unsigned int cmd, unsigned long arg) 7841 { 7842 switch (cmd) { 7843 case HOT_REMOVE_DISK: 7844 case HOT_ADD_DISK: 7845 case SET_DISK_FAULTY: 7846 case SET_BITMAP_FILE: 7847 /* These take in integer arg, do not convert */ 7848 break; 7849 default: 7850 arg = (unsigned long)compat_ptr(arg); 7851 break; 7852 } 7853 7854 return md_ioctl(bdev, mode, cmd, arg); 7855 } 7856 #endif /* CONFIG_COMPAT */ 7857 7858 static int md_set_read_only(struct block_device *bdev, bool ro) 7859 { 7860 struct mddev *mddev = bdev->bd_disk->private_data; 7861 int err; 7862 7863 err = mddev_lock(mddev); 7864 if (err) 7865 return err; 7866 7867 if (!mddev->raid_disks && !mddev->external) { 7868 err = -ENODEV; 7869 goto out_unlock; 7870 } 7871 7872 /* 7873 * Transitioning to read-auto need only happen for arrays that call 7874 * md_write_start and which are not ready for writes yet. 7875 */ 7876 if (!ro && mddev->ro == MD_RDONLY && mddev->pers) { 7877 err = restart_array(mddev); 7878 if (err) 7879 goto out_unlock; 7880 mddev->ro = MD_AUTO_READ; 7881 } 7882 7883 out_unlock: 7884 mddev_unlock(mddev); 7885 return err; 7886 } 7887 7888 static int md_open(struct gendisk *disk, blk_mode_t mode) 7889 { 7890 struct mddev *mddev; 7891 int err; 7892 7893 spin_lock(&all_mddevs_lock); 7894 mddev = mddev_get(disk->private_data); 7895 spin_unlock(&all_mddevs_lock); 7896 if (!mddev) 7897 return -ENODEV; 7898 7899 err = mutex_lock_interruptible(&mddev->open_mutex); 7900 if (err) 7901 goto out; 7902 7903 err = -ENODEV; 7904 if (test_bit(MD_CLOSING, &mddev->flags)) 7905 goto out_unlock; 7906 7907 atomic_inc(&mddev->openers); 7908 mutex_unlock(&mddev->open_mutex); 7909 7910 disk_check_media_change(disk); 7911 return 0; 7912 7913 out_unlock: 7914 mutex_unlock(&mddev->open_mutex); 7915 out: 7916 mddev_put(mddev); 7917 return err; 7918 } 7919 7920 static void md_release(struct gendisk *disk) 7921 { 7922 struct mddev *mddev = disk->private_data; 7923 7924 BUG_ON(!mddev); 7925 atomic_dec(&mddev->openers); 7926 mddev_put(mddev); 7927 } 7928 7929 static unsigned int md_check_events(struct gendisk *disk, unsigned int clearing) 7930 { 7931 struct mddev *mddev = disk->private_data; 7932 unsigned int ret = 0; 7933 7934 if (mddev->changed) 7935 ret = DISK_EVENT_MEDIA_CHANGE; 7936 mddev->changed = 0; 7937 return ret; 7938 } 7939 7940 static void md_free_disk(struct gendisk *disk) 7941 { 7942 struct mddev *mddev = disk->private_data; 7943 7944 percpu_ref_exit(&mddev->writes_pending); 7945 mddev_free(mddev); 7946 } 7947 7948 const struct block_device_operations md_fops = 7949 { 7950 .owner = THIS_MODULE, 7951 .submit_bio = md_submit_bio, 7952 .open = md_open, 7953 .release = md_release, 7954 .ioctl = md_ioctl, 7955 #ifdef CONFIG_COMPAT 7956 .compat_ioctl = md_compat_ioctl, 7957 #endif 7958 .getgeo = md_getgeo, 7959 .check_events = md_check_events, 7960 .set_read_only = md_set_read_only, 7961 .free_disk = md_free_disk, 7962 }; 7963 7964 static int md_thread(void *arg) 7965 { 7966 struct md_thread *thread = arg; 7967 7968 /* 7969 * md_thread is a 'system-thread', it's priority should be very 7970 * high. We avoid resource deadlocks individually in each 7971 * raid personality. (RAID5 does preallocation) We also use RR and 7972 * the very same RT priority as kswapd, thus we will never get 7973 * into a priority inversion deadlock. 7974 * 7975 * we definitely have to have equal or higher priority than 7976 * bdflush, otherwise bdflush will deadlock if there are too 7977 * many dirty RAID5 blocks. 7978 */ 7979 7980 allow_signal(SIGKILL); 7981 while (!kthread_should_stop()) { 7982 7983 /* We need to wait INTERRUPTIBLE so that 7984 * we don't add to the load-average. 7985 * That means we need to be sure no signals are 7986 * pending 7987 */ 7988 if (signal_pending(current)) 7989 flush_signals(current); 7990 7991 wait_event_interruptible_timeout 7992 (thread->wqueue, 7993 test_bit(THREAD_WAKEUP, &thread->flags) 7994 || kthread_should_stop() || kthread_should_park(), 7995 thread->timeout); 7996 7997 clear_bit(THREAD_WAKEUP, &thread->flags); 7998 if (kthread_should_park()) 7999 kthread_parkme(); 8000 if (!kthread_should_stop()) 8001 thread->run(thread); 8002 } 8003 8004 return 0; 8005 } 8006 8007 static void md_wakeup_thread_directly(struct md_thread __rcu *thread) 8008 { 8009 struct md_thread *t; 8010 8011 rcu_read_lock(); 8012 t = rcu_dereference(thread); 8013 if (t) 8014 wake_up_process(t->tsk); 8015 rcu_read_unlock(); 8016 } 8017 8018 void md_wakeup_thread(struct md_thread __rcu *thread) 8019 { 8020 struct md_thread *t; 8021 8022 rcu_read_lock(); 8023 t = rcu_dereference(thread); 8024 if (t) { 8025 pr_debug("md: waking up MD thread %s.\n", t->tsk->comm); 8026 set_bit(THREAD_WAKEUP, &t->flags); 8027 wake_up(&t->wqueue); 8028 } 8029 rcu_read_unlock(); 8030 } 8031 EXPORT_SYMBOL(md_wakeup_thread); 8032 8033 struct md_thread *md_register_thread(void (*run) (struct md_thread *), 8034 struct mddev *mddev, const char *name) 8035 { 8036 struct md_thread *thread; 8037 8038 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL); 8039 if (!thread) 8040 return NULL; 8041 8042 init_waitqueue_head(&thread->wqueue); 8043 8044 thread->run = run; 8045 thread->mddev = mddev; 8046 thread->timeout = MAX_SCHEDULE_TIMEOUT; 8047 thread->tsk = kthread_run(md_thread, thread, 8048 "%s_%s", 8049 mdname(thread->mddev), 8050 name); 8051 if (IS_ERR(thread->tsk)) { 8052 kfree(thread); 8053 return NULL; 8054 } 8055 return thread; 8056 } 8057 EXPORT_SYMBOL(md_register_thread); 8058 8059 void md_unregister_thread(struct mddev *mddev, struct md_thread __rcu **threadp) 8060 { 8061 struct md_thread *thread = rcu_dereference_protected(*threadp, 8062 lockdep_is_held(&mddev->reconfig_mutex)); 8063 8064 if (!thread) 8065 return; 8066 8067 rcu_assign_pointer(*threadp, NULL); 8068 synchronize_rcu(); 8069 8070 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk)); 8071 kthread_stop(thread->tsk); 8072 kfree(thread); 8073 } 8074 EXPORT_SYMBOL(md_unregister_thread); 8075 8076 void md_error(struct mddev *mddev, struct md_rdev *rdev) 8077 { 8078 if (!rdev || test_bit(Faulty, &rdev->flags)) 8079 return; 8080 8081 if (!mddev->pers || !mddev->pers->error_handler) 8082 return; 8083 mddev->pers->error_handler(mddev, rdev); 8084 8085 if (mddev->pers->level == 0 || mddev->pers->level == LEVEL_LINEAR) 8086 return; 8087 8088 if (mddev->degraded && !test_bit(MD_BROKEN, &mddev->flags)) 8089 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 8090 sysfs_notify_dirent_safe(rdev->sysfs_state); 8091 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8092 if (!test_bit(MD_BROKEN, &mddev->flags)) { 8093 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8094 md_wakeup_thread(mddev->thread); 8095 } 8096 if (mddev->event_work.func) 8097 queue_work(md_misc_wq, &mddev->event_work); 8098 md_new_event(); 8099 } 8100 EXPORT_SYMBOL(md_error); 8101 8102 /* seq_file implementation /proc/mdstat */ 8103 8104 static void status_unused(struct seq_file *seq) 8105 { 8106 int i = 0; 8107 struct md_rdev *rdev; 8108 8109 seq_printf(seq, "unused devices: "); 8110 8111 list_for_each_entry(rdev, &pending_raid_disks, same_set) { 8112 i++; 8113 seq_printf(seq, "%pg ", rdev->bdev); 8114 } 8115 if (!i) 8116 seq_printf(seq, "<none>"); 8117 8118 seq_printf(seq, "\n"); 8119 } 8120 8121 static int status_resync(struct seq_file *seq, struct mddev *mddev) 8122 { 8123 sector_t max_sectors, resync, res; 8124 unsigned long dt, db = 0; 8125 sector_t rt, curr_mark_cnt, resync_mark_cnt; 8126 int scale, recovery_active; 8127 unsigned int per_milli; 8128 8129 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 8130 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 8131 max_sectors = mddev->resync_max_sectors; 8132 else 8133 max_sectors = mddev->dev_sectors; 8134 8135 resync = mddev->curr_resync; 8136 if (resync < MD_RESYNC_ACTIVE) { 8137 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 8138 /* Still cleaning up */ 8139 resync = max_sectors; 8140 } else if (resync > max_sectors) { 8141 resync = max_sectors; 8142 } else { 8143 res = atomic_read(&mddev->recovery_active); 8144 /* 8145 * Resync has started, but the subtraction has overflowed or 8146 * yielded one of the special values. Force it to active to 8147 * ensure the status reports an active resync. 8148 */ 8149 if (resync < res || resync - res < MD_RESYNC_ACTIVE) 8150 resync = MD_RESYNC_ACTIVE; 8151 else 8152 resync -= res; 8153 } 8154 8155 if (resync == MD_RESYNC_NONE) { 8156 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery)) { 8157 struct md_rdev *rdev; 8158 8159 rdev_for_each(rdev, mddev) 8160 if (rdev->raid_disk >= 0 && 8161 !test_bit(Faulty, &rdev->flags) && 8162 rdev->recovery_offset != MaxSector && 8163 rdev->recovery_offset) { 8164 seq_printf(seq, "\trecover=REMOTE"); 8165 return 1; 8166 } 8167 if (mddev->reshape_position != MaxSector) 8168 seq_printf(seq, "\treshape=REMOTE"); 8169 else 8170 seq_printf(seq, "\tresync=REMOTE"); 8171 return 1; 8172 } 8173 if (mddev->recovery_cp < MaxSector) { 8174 seq_printf(seq, "\tresync=PENDING"); 8175 return 1; 8176 } 8177 return 0; 8178 } 8179 if (resync < MD_RESYNC_ACTIVE) { 8180 seq_printf(seq, "\tresync=DELAYED"); 8181 return 1; 8182 } 8183 8184 WARN_ON(max_sectors == 0); 8185 /* Pick 'scale' such that (resync>>scale)*1000 will fit 8186 * in a sector_t, and (max_sectors>>scale) will fit in a 8187 * u32, as those are the requirements for sector_div. 8188 * Thus 'scale' must be at least 10 8189 */ 8190 scale = 10; 8191 if (sizeof(sector_t) > sizeof(unsigned long)) { 8192 while ( max_sectors/2 > (1ULL<<(scale+32))) 8193 scale++; 8194 } 8195 res = (resync>>scale)*1000; 8196 sector_div(res, (u32)((max_sectors>>scale)+1)); 8197 8198 per_milli = res; 8199 { 8200 int i, x = per_milli/50, y = 20-x; 8201 seq_printf(seq, "["); 8202 for (i = 0; i < x; i++) 8203 seq_printf(seq, "="); 8204 seq_printf(seq, ">"); 8205 for (i = 0; i < y; i++) 8206 seq_printf(seq, "."); 8207 seq_printf(seq, "] "); 8208 } 8209 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", 8210 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? 8211 "reshape" : 8212 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? 8213 "check" : 8214 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? 8215 "resync" : "recovery"))), 8216 per_milli/10, per_milli % 10, 8217 (unsigned long long) resync/2, 8218 (unsigned long long) max_sectors/2); 8219 8220 /* 8221 * dt: time from mark until now 8222 * db: blocks written from mark until now 8223 * rt: remaining time 8224 * 8225 * rt is a sector_t, which is always 64bit now. We are keeping 8226 * the original algorithm, but it is not really necessary. 8227 * 8228 * Original algorithm: 8229 * So we divide before multiply in case it is 32bit and close 8230 * to the limit. 8231 * We scale the divisor (db) by 32 to avoid losing precision 8232 * near the end of resync when the number of remaining sectors 8233 * is close to 'db'. 8234 * We then divide rt by 32 after multiplying by db to compensate. 8235 * The '+1' avoids division by zero if db is very small. 8236 */ 8237 dt = ((jiffies - mddev->resync_mark) / HZ); 8238 if (!dt) dt++; 8239 8240 curr_mark_cnt = mddev->curr_mark_cnt; 8241 recovery_active = atomic_read(&mddev->recovery_active); 8242 resync_mark_cnt = mddev->resync_mark_cnt; 8243 8244 if (curr_mark_cnt >= (recovery_active + resync_mark_cnt)) 8245 db = curr_mark_cnt - (recovery_active + resync_mark_cnt); 8246 8247 rt = max_sectors - resync; /* number of remaining sectors */ 8248 rt = div64_u64(rt, db/32+1); 8249 rt *= dt; 8250 rt >>= 5; 8251 8252 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60, 8253 ((unsigned long)rt % 60)/6); 8254 8255 seq_printf(seq, " speed=%ldK/sec", db/2/dt); 8256 return 1; 8257 } 8258 8259 static void *md_seq_start(struct seq_file *seq, loff_t *pos) 8260 { 8261 struct list_head *tmp; 8262 loff_t l = *pos; 8263 struct mddev *mddev; 8264 8265 if (l == 0x10000) { 8266 ++*pos; 8267 return (void *)2; 8268 } 8269 if (l > 0x10000) 8270 return NULL; 8271 if (!l--) 8272 /* header */ 8273 return (void*)1; 8274 8275 spin_lock(&all_mddevs_lock); 8276 list_for_each(tmp,&all_mddevs) 8277 if (!l--) { 8278 mddev = list_entry(tmp, struct mddev, all_mddevs); 8279 if (!mddev_get(mddev)) 8280 continue; 8281 spin_unlock(&all_mddevs_lock); 8282 return mddev; 8283 } 8284 spin_unlock(&all_mddevs_lock); 8285 if (!l--) 8286 return (void*)2;/* tail */ 8287 return NULL; 8288 } 8289 8290 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) 8291 { 8292 struct list_head *tmp; 8293 struct mddev *next_mddev, *mddev = v; 8294 struct mddev *to_put = NULL; 8295 8296 ++*pos; 8297 if (v == (void*)2) 8298 return NULL; 8299 8300 spin_lock(&all_mddevs_lock); 8301 if (v == (void*)1) { 8302 tmp = all_mddevs.next; 8303 } else { 8304 to_put = mddev; 8305 tmp = mddev->all_mddevs.next; 8306 } 8307 8308 for (;;) { 8309 if (tmp == &all_mddevs) { 8310 next_mddev = (void*)2; 8311 *pos = 0x10000; 8312 break; 8313 } 8314 next_mddev = list_entry(tmp, struct mddev, all_mddevs); 8315 if (mddev_get(next_mddev)) 8316 break; 8317 mddev = next_mddev; 8318 tmp = mddev->all_mddevs.next; 8319 } 8320 spin_unlock(&all_mddevs_lock); 8321 8322 if (to_put) 8323 mddev_put(to_put); 8324 return next_mddev; 8325 8326 } 8327 8328 static void md_seq_stop(struct seq_file *seq, void *v) 8329 { 8330 struct mddev *mddev = v; 8331 8332 if (mddev && v != (void*)1 && v != (void*)2) 8333 mddev_put(mddev); 8334 } 8335 8336 static int md_seq_show(struct seq_file *seq, void *v) 8337 { 8338 struct mddev *mddev = v; 8339 sector_t sectors; 8340 struct md_rdev *rdev; 8341 8342 if (v == (void*)1) { 8343 struct md_personality *pers; 8344 seq_printf(seq, "Personalities : "); 8345 spin_lock(&pers_lock); 8346 list_for_each_entry(pers, &pers_list, list) 8347 seq_printf(seq, "[%s] ", pers->name); 8348 8349 spin_unlock(&pers_lock); 8350 seq_printf(seq, "\n"); 8351 seq->poll_event = atomic_read(&md_event_count); 8352 return 0; 8353 } 8354 if (v == (void*)2) { 8355 status_unused(seq); 8356 return 0; 8357 } 8358 8359 spin_lock(&mddev->lock); 8360 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { 8361 seq_printf(seq, "%s : %sactive", mdname(mddev), 8362 mddev->pers ? "" : "in"); 8363 if (mddev->pers) { 8364 if (mddev->ro == MD_RDONLY) 8365 seq_printf(seq, " (read-only)"); 8366 if (mddev->ro == MD_AUTO_READ) 8367 seq_printf(seq, " (auto-read-only)"); 8368 seq_printf(seq, " %s", mddev->pers->name); 8369 } 8370 8371 sectors = 0; 8372 rcu_read_lock(); 8373 rdev_for_each_rcu(rdev, mddev) { 8374 seq_printf(seq, " %pg[%d]", rdev->bdev, rdev->desc_nr); 8375 8376 if (test_bit(WriteMostly, &rdev->flags)) 8377 seq_printf(seq, "(W)"); 8378 if (test_bit(Journal, &rdev->flags)) 8379 seq_printf(seq, "(J)"); 8380 if (test_bit(Faulty, &rdev->flags)) { 8381 seq_printf(seq, "(F)"); 8382 continue; 8383 } 8384 if (rdev->raid_disk < 0) 8385 seq_printf(seq, "(S)"); /* spare */ 8386 if (test_bit(Replacement, &rdev->flags)) 8387 seq_printf(seq, "(R)"); 8388 sectors += rdev->sectors; 8389 } 8390 rcu_read_unlock(); 8391 8392 if (!list_empty(&mddev->disks)) { 8393 if (mddev->pers) 8394 seq_printf(seq, "\n %llu blocks", 8395 (unsigned long long) 8396 mddev->array_sectors / 2); 8397 else 8398 seq_printf(seq, "\n %llu blocks", 8399 (unsigned long long)sectors / 2); 8400 } 8401 if (mddev->persistent) { 8402 if (mddev->major_version != 0 || 8403 mddev->minor_version != 90) { 8404 seq_printf(seq," super %d.%d", 8405 mddev->major_version, 8406 mddev->minor_version); 8407 } 8408 } else if (mddev->external) 8409 seq_printf(seq, " super external:%s", 8410 mddev->metadata_type); 8411 else 8412 seq_printf(seq, " super non-persistent"); 8413 8414 if (mddev->pers) { 8415 mddev->pers->status(seq, mddev); 8416 seq_printf(seq, "\n "); 8417 if (mddev->pers->sync_request) { 8418 if (status_resync(seq, mddev)) 8419 seq_printf(seq, "\n "); 8420 } 8421 } else 8422 seq_printf(seq, "\n "); 8423 8424 md_bitmap_status(seq, mddev->bitmap); 8425 8426 seq_printf(seq, "\n"); 8427 } 8428 spin_unlock(&mddev->lock); 8429 8430 return 0; 8431 } 8432 8433 static const struct seq_operations md_seq_ops = { 8434 .start = md_seq_start, 8435 .next = md_seq_next, 8436 .stop = md_seq_stop, 8437 .show = md_seq_show, 8438 }; 8439 8440 static int md_seq_open(struct inode *inode, struct file *file) 8441 { 8442 struct seq_file *seq; 8443 int error; 8444 8445 error = seq_open(file, &md_seq_ops); 8446 if (error) 8447 return error; 8448 8449 seq = file->private_data; 8450 seq->poll_event = atomic_read(&md_event_count); 8451 return error; 8452 } 8453 8454 static int md_unloading; 8455 static __poll_t mdstat_poll(struct file *filp, poll_table *wait) 8456 { 8457 struct seq_file *seq = filp->private_data; 8458 __poll_t mask; 8459 8460 if (md_unloading) 8461 return EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI; 8462 poll_wait(filp, &md_event_waiters, wait); 8463 8464 /* always allow read */ 8465 mask = EPOLLIN | EPOLLRDNORM; 8466 8467 if (seq->poll_event != atomic_read(&md_event_count)) 8468 mask |= EPOLLERR | EPOLLPRI; 8469 return mask; 8470 } 8471 8472 static const struct proc_ops mdstat_proc_ops = { 8473 .proc_open = md_seq_open, 8474 .proc_read = seq_read, 8475 .proc_lseek = seq_lseek, 8476 .proc_release = seq_release, 8477 .proc_poll = mdstat_poll, 8478 }; 8479 8480 int register_md_personality(struct md_personality *p) 8481 { 8482 pr_debug("md: %s personality registered for level %d\n", 8483 p->name, p->level); 8484 spin_lock(&pers_lock); 8485 list_add_tail(&p->list, &pers_list); 8486 spin_unlock(&pers_lock); 8487 return 0; 8488 } 8489 EXPORT_SYMBOL(register_md_personality); 8490 8491 int unregister_md_personality(struct md_personality *p) 8492 { 8493 pr_debug("md: %s personality unregistered\n", p->name); 8494 spin_lock(&pers_lock); 8495 list_del_init(&p->list); 8496 spin_unlock(&pers_lock); 8497 return 0; 8498 } 8499 EXPORT_SYMBOL(unregister_md_personality); 8500 8501 int register_md_cluster_operations(struct md_cluster_operations *ops, 8502 struct module *module) 8503 { 8504 int ret = 0; 8505 spin_lock(&pers_lock); 8506 if (md_cluster_ops != NULL) 8507 ret = -EALREADY; 8508 else { 8509 md_cluster_ops = ops; 8510 md_cluster_mod = module; 8511 } 8512 spin_unlock(&pers_lock); 8513 return ret; 8514 } 8515 EXPORT_SYMBOL(register_md_cluster_operations); 8516 8517 int unregister_md_cluster_operations(void) 8518 { 8519 spin_lock(&pers_lock); 8520 md_cluster_ops = NULL; 8521 spin_unlock(&pers_lock); 8522 return 0; 8523 } 8524 EXPORT_SYMBOL(unregister_md_cluster_operations); 8525 8526 int md_setup_cluster(struct mddev *mddev, int nodes) 8527 { 8528 int ret; 8529 if (!md_cluster_ops) 8530 request_module("md-cluster"); 8531 spin_lock(&pers_lock); 8532 /* ensure module won't be unloaded */ 8533 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) { 8534 pr_warn("can't find md-cluster module or get its reference.\n"); 8535 spin_unlock(&pers_lock); 8536 return -ENOENT; 8537 } 8538 spin_unlock(&pers_lock); 8539 8540 ret = md_cluster_ops->join(mddev, nodes); 8541 if (!ret) 8542 mddev->safemode_delay = 0; 8543 return ret; 8544 } 8545 8546 void md_cluster_stop(struct mddev *mddev) 8547 { 8548 if (!md_cluster_ops) 8549 return; 8550 md_cluster_ops->leave(mddev); 8551 module_put(md_cluster_mod); 8552 } 8553 8554 static int is_mddev_idle(struct mddev *mddev, int init) 8555 { 8556 struct md_rdev *rdev; 8557 int idle; 8558 int curr_events; 8559 8560 idle = 1; 8561 rcu_read_lock(); 8562 rdev_for_each_rcu(rdev, mddev) { 8563 struct gendisk *disk = rdev->bdev->bd_disk; 8564 curr_events = (int)part_stat_read_accum(disk->part0, sectors) - 8565 atomic_read(&disk->sync_io); 8566 /* sync IO will cause sync_io to increase before the disk_stats 8567 * as sync_io is counted when a request starts, and 8568 * disk_stats is counted when it completes. 8569 * So resync activity will cause curr_events to be smaller than 8570 * when there was no such activity. 8571 * non-sync IO will cause disk_stat to increase without 8572 * increasing sync_io so curr_events will (eventually) 8573 * be larger than it was before. Once it becomes 8574 * substantially larger, the test below will cause 8575 * the array to appear non-idle, and resync will slow 8576 * down. 8577 * If there is a lot of outstanding resync activity when 8578 * we set last_event to curr_events, then all that activity 8579 * completing might cause the array to appear non-idle 8580 * and resync will be slowed down even though there might 8581 * not have been non-resync activity. This will only 8582 * happen once though. 'last_events' will soon reflect 8583 * the state where there is little or no outstanding 8584 * resync requests, and further resync activity will 8585 * always make curr_events less than last_events. 8586 * 8587 */ 8588 if (init || curr_events - rdev->last_events > 64) { 8589 rdev->last_events = curr_events; 8590 idle = 0; 8591 } 8592 } 8593 rcu_read_unlock(); 8594 return idle; 8595 } 8596 8597 void md_done_sync(struct mddev *mddev, int blocks, int ok) 8598 { 8599 /* another "blocks" (512byte) blocks have been synced */ 8600 atomic_sub(blocks, &mddev->recovery_active); 8601 wake_up(&mddev->recovery_wait); 8602 if (!ok) { 8603 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8604 set_bit(MD_RECOVERY_ERROR, &mddev->recovery); 8605 md_wakeup_thread(mddev->thread); 8606 // stop recovery, signal do_sync .... 8607 } 8608 } 8609 EXPORT_SYMBOL(md_done_sync); 8610 8611 /* md_write_start(mddev, bi) 8612 * If we need to update some array metadata (e.g. 'active' flag 8613 * in superblock) before writing, schedule a superblock update 8614 * and wait for it to complete. 8615 * A return value of 'false' means that the write wasn't recorded 8616 * and cannot proceed as the array is being suspend. 8617 */ 8618 bool md_write_start(struct mddev *mddev, struct bio *bi) 8619 { 8620 int did_change = 0; 8621 8622 if (bio_data_dir(bi) != WRITE) 8623 return true; 8624 8625 BUG_ON(mddev->ro == MD_RDONLY); 8626 if (mddev->ro == MD_AUTO_READ) { 8627 /* need to switch to read/write */ 8628 mddev->ro = MD_RDWR; 8629 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8630 md_wakeup_thread(mddev->thread); 8631 md_wakeup_thread(mddev->sync_thread); 8632 did_change = 1; 8633 } 8634 rcu_read_lock(); 8635 percpu_ref_get(&mddev->writes_pending); 8636 smp_mb(); /* Match smp_mb in set_in_sync() */ 8637 if (mddev->safemode == 1) 8638 mddev->safemode = 0; 8639 /* sync_checkers is always 0 when writes_pending is in per-cpu mode */ 8640 if (mddev->in_sync || mddev->sync_checkers) { 8641 spin_lock(&mddev->lock); 8642 if (mddev->in_sync) { 8643 mddev->in_sync = 0; 8644 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8645 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8646 md_wakeup_thread(mddev->thread); 8647 did_change = 1; 8648 } 8649 spin_unlock(&mddev->lock); 8650 } 8651 rcu_read_unlock(); 8652 if (did_change) 8653 sysfs_notify_dirent_safe(mddev->sysfs_state); 8654 if (!mddev->has_superblocks) 8655 return true; 8656 wait_event(mddev->sb_wait, 8657 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) || 8658 is_md_suspended(mddev)); 8659 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 8660 percpu_ref_put(&mddev->writes_pending); 8661 return false; 8662 } 8663 return true; 8664 } 8665 EXPORT_SYMBOL(md_write_start); 8666 8667 /* md_write_inc can only be called when md_write_start() has 8668 * already been called at least once of the current request. 8669 * It increments the counter and is useful when a single request 8670 * is split into several parts. Each part causes an increment and 8671 * so needs a matching md_write_end(). 8672 * Unlike md_write_start(), it is safe to call md_write_inc() inside 8673 * a spinlocked region. 8674 */ 8675 void md_write_inc(struct mddev *mddev, struct bio *bi) 8676 { 8677 if (bio_data_dir(bi) != WRITE) 8678 return; 8679 WARN_ON_ONCE(mddev->in_sync || !md_is_rdwr(mddev)); 8680 percpu_ref_get(&mddev->writes_pending); 8681 } 8682 EXPORT_SYMBOL(md_write_inc); 8683 8684 void md_write_end(struct mddev *mddev) 8685 { 8686 percpu_ref_put(&mddev->writes_pending); 8687 8688 if (mddev->safemode == 2) 8689 md_wakeup_thread(mddev->thread); 8690 else if (mddev->safemode_delay) 8691 /* The roundup() ensures this only performs locking once 8692 * every ->safemode_delay jiffies 8693 */ 8694 mod_timer(&mddev->safemode_timer, 8695 roundup(jiffies, mddev->safemode_delay) + 8696 mddev->safemode_delay); 8697 } 8698 8699 EXPORT_SYMBOL(md_write_end); 8700 8701 /* This is used by raid0 and raid10 */ 8702 void md_submit_discard_bio(struct mddev *mddev, struct md_rdev *rdev, 8703 struct bio *bio, sector_t start, sector_t size) 8704 { 8705 struct bio *discard_bio = NULL; 8706 8707 if (__blkdev_issue_discard(rdev->bdev, start, size, GFP_NOIO, 8708 &discard_bio) || !discard_bio) 8709 return; 8710 8711 bio_chain(discard_bio, bio); 8712 bio_clone_blkg_association(discard_bio, bio); 8713 if (mddev->gendisk) 8714 trace_block_bio_remap(discard_bio, 8715 disk_devt(mddev->gendisk), 8716 bio->bi_iter.bi_sector); 8717 submit_bio_noacct(discard_bio); 8718 } 8719 EXPORT_SYMBOL_GPL(md_submit_discard_bio); 8720 8721 static void md_end_clone_io(struct bio *bio) 8722 { 8723 struct md_io_clone *md_io_clone = bio->bi_private; 8724 struct bio *orig_bio = md_io_clone->orig_bio; 8725 struct mddev *mddev = md_io_clone->mddev; 8726 8727 if (bio->bi_status && !orig_bio->bi_status) 8728 orig_bio->bi_status = bio->bi_status; 8729 8730 if (md_io_clone->start_time) 8731 bio_end_io_acct(orig_bio, md_io_clone->start_time); 8732 8733 bio_put(bio); 8734 bio_endio(orig_bio); 8735 percpu_ref_put(&mddev->active_io); 8736 } 8737 8738 static void md_clone_bio(struct mddev *mddev, struct bio **bio) 8739 { 8740 struct block_device *bdev = (*bio)->bi_bdev; 8741 struct md_io_clone *md_io_clone; 8742 struct bio *clone = 8743 bio_alloc_clone(bdev, *bio, GFP_NOIO, &mddev->io_clone_set); 8744 8745 md_io_clone = container_of(clone, struct md_io_clone, bio_clone); 8746 md_io_clone->orig_bio = *bio; 8747 md_io_clone->mddev = mddev; 8748 if (blk_queue_io_stat(bdev->bd_disk->queue)) 8749 md_io_clone->start_time = bio_start_io_acct(*bio); 8750 8751 clone->bi_end_io = md_end_clone_io; 8752 clone->bi_private = md_io_clone; 8753 *bio = clone; 8754 } 8755 8756 void md_account_bio(struct mddev *mddev, struct bio **bio) 8757 { 8758 percpu_ref_get(&mddev->active_io); 8759 md_clone_bio(mddev, bio); 8760 } 8761 EXPORT_SYMBOL_GPL(md_account_bio); 8762 8763 /* md_allow_write(mddev) 8764 * Calling this ensures that the array is marked 'active' so that writes 8765 * may proceed without blocking. It is important to call this before 8766 * attempting a GFP_KERNEL allocation while holding the mddev lock. 8767 * Must be called with mddev_lock held. 8768 */ 8769 void md_allow_write(struct mddev *mddev) 8770 { 8771 if (!mddev->pers) 8772 return; 8773 if (!md_is_rdwr(mddev)) 8774 return; 8775 if (!mddev->pers->sync_request) 8776 return; 8777 8778 spin_lock(&mddev->lock); 8779 if (mddev->in_sync) { 8780 mddev->in_sync = 0; 8781 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8782 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8783 if (mddev->safemode_delay && 8784 mddev->safemode == 0) 8785 mddev->safemode = 1; 8786 spin_unlock(&mddev->lock); 8787 md_update_sb(mddev, 0); 8788 sysfs_notify_dirent_safe(mddev->sysfs_state); 8789 /* wait for the dirty state to be recorded in the metadata */ 8790 wait_event(mddev->sb_wait, 8791 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 8792 } else 8793 spin_unlock(&mddev->lock); 8794 } 8795 EXPORT_SYMBOL_GPL(md_allow_write); 8796 8797 #define SYNC_MARKS 10 8798 #define SYNC_MARK_STEP (3*HZ) 8799 #define UPDATE_FREQUENCY (5*60*HZ) 8800 void md_do_sync(struct md_thread *thread) 8801 { 8802 struct mddev *mddev = thread->mddev; 8803 struct mddev *mddev2; 8804 unsigned int currspeed = 0, window; 8805 sector_t max_sectors,j, io_sectors, recovery_done; 8806 unsigned long mark[SYNC_MARKS]; 8807 unsigned long update_time; 8808 sector_t mark_cnt[SYNC_MARKS]; 8809 int last_mark,m; 8810 sector_t last_check; 8811 int skipped = 0; 8812 struct md_rdev *rdev; 8813 char *desc, *action = NULL; 8814 struct blk_plug plug; 8815 int ret; 8816 8817 /* just incase thread restarts... */ 8818 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 8819 test_bit(MD_RECOVERY_WAIT, &mddev->recovery)) 8820 return; 8821 if (!md_is_rdwr(mddev)) {/* never try to sync a read-only array */ 8822 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8823 return; 8824 } 8825 8826 if (mddev_is_clustered(mddev)) { 8827 ret = md_cluster_ops->resync_start(mddev); 8828 if (ret) 8829 goto skip; 8830 8831 set_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags); 8832 if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 8833 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) || 8834 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) 8835 && ((unsigned long long)mddev->curr_resync_completed 8836 < (unsigned long long)mddev->resync_max_sectors)) 8837 goto skip; 8838 } 8839 8840 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8841 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 8842 desc = "data-check"; 8843 action = "check"; 8844 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 8845 desc = "requested-resync"; 8846 action = "repair"; 8847 } else 8848 desc = "resync"; 8849 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 8850 desc = "reshape"; 8851 else 8852 desc = "recovery"; 8853 8854 mddev->last_sync_action = action ?: desc; 8855 8856 /* 8857 * Before starting a resync we must have set curr_resync to 8858 * 2, and then checked that every "conflicting" array has curr_resync 8859 * less than ours. When we find one that is the same or higher 8860 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync 8861 * to 1 if we choose to yield (based arbitrarily on address of mddev structure). 8862 * This will mean we have to start checking from the beginning again. 8863 * 8864 */ 8865 8866 do { 8867 int mddev2_minor = -1; 8868 mddev->curr_resync = MD_RESYNC_DELAYED; 8869 8870 try_again: 8871 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8872 goto skip; 8873 spin_lock(&all_mddevs_lock); 8874 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) { 8875 if (test_bit(MD_DELETED, &mddev2->flags)) 8876 continue; 8877 if (mddev2 == mddev) 8878 continue; 8879 if (!mddev->parallel_resync 8880 && mddev2->curr_resync 8881 && match_mddev_units(mddev, mddev2)) { 8882 DEFINE_WAIT(wq); 8883 if (mddev < mddev2 && 8884 mddev->curr_resync == MD_RESYNC_DELAYED) { 8885 /* arbitrarily yield */ 8886 mddev->curr_resync = MD_RESYNC_YIELDED; 8887 wake_up(&resync_wait); 8888 } 8889 if (mddev > mddev2 && 8890 mddev->curr_resync == MD_RESYNC_YIELDED) 8891 /* no need to wait here, we can wait the next 8892 * time 'round when curr_resync == 2 8893 */ 8894 continue; 8895 /* We need to wait 'interruptible' so as not to 8896 * contribute to the load average, and not to 8897 * be caught by 'softlockup' 8898 */ 8899 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE); 8900 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8901 mddev2->curr_resync >= mddev->curr_resync) { 8902 if (mddev2_minor != mddev2->md_minor) { 8903 mddev2_minor = mddev2->md_minor; 8904 pr_info("md: delaying %s of %s until %s has finished (they share one or more physical units)\n", 8905 desc, mdname(mddev), 8906 mdname(mddev2)); 8907 } 8908 spin_unlock(&all_mddevs_lock); 8909 8910 if (signal_pending(current)) 8911 flush_signals(current); 8912 schedule(); 8913 finish_wait(&resync_wait, &wq); 8914 goto try_again; 8915 } 8916 finish_wait(&resync_wait, &wq); 8917 } 8918 } 8919 spin_unlock(&all_mddevs_lock); 8920 } while (mddev->curr_resync < MD_RESYNC_DELAYED); 8921 8922 j = 0; 8923 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8924 /* resync follows the size requested by the personality, 8925 * which defaults to physical size, but can be virtual size 8926 */ 8927 max_sectors = mddev->resync_max_sectors; 8928 atomic64_set(&mddev->resync_mismatches, 0); 8929 /* we don't use the checkpoint if there's a bitmap */ 8930 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 8931 j = mddev->resync_min; 8932 else if (!mddev->bitmap) 8933 j = mddev->recovery_cp; 8934 8935 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 8936 max_sectors = mddev->resync_max_sectors; 8937 /* 8938 * If the original node aborts reshaping then we continue the 8939 * reshaping, so set j again to avoid restart reshape from the 8940 * first beginning 8941 */ 8942 if (mddev_is_clustered(mddev) && 8943 mddev->reshape_position != MaxSector) 8944 j = mddev->reshape_position; 8945 } else { 8946 /* recovery follows the physical size of devices */ 8947 max_sectors = mddev->dev_sectors; 8948 j = MaxSector; 8949 rcu_read_lock(); 8950 rdev_for_each_rcu(rdev, mddev) 8951 if (rdev->raid_disk >= 0 && 8952 !test_bit(Journal, &rdev->flags) && 8953 !test_bit(Faulty, &rdev->flags) && 8954 !test_bit(In_sync, &rdev->flags) && 8955 rdev->recovery_offset < j) 8956 j = rdev->recovery_offset; 8957 rcu_read_unlock(); 8958 8959 /* If there is a bitmap, we need to make sure all 8960 * writes that started before we added a spare 8961 * complete before we start doing a recovery. 8962 * Otherwise the write might complete and (via 8963 * bitmap_endwrite) set a bit in the bitmap after the 8964 * recovery has checked that bit and skipped that 8965 * region. 8966 */ 8967 if (mddev->bitmap) { 8968 mddev->pers->quiesce(mddev, 1); 8969 mddev->pers->quiesce(mddev, 0); 8970 } 8971 } 8972 8973 pr_info("md: %s of RAID array %s\n", desc, mdname(mddev)); 8974 pr_debug("md: minimum _guaranteed_ speed: %d KB/sec/disk.\n", speed_min(mddev)); 8975 pr_debug("md: using maximum available idle IO bandwidth (but not more than %d KB/sec) for %s.\n", 8976 speed_max(mddev), desc); 8977 8978 is_mddev_idle(mddev, 1); /* this initializes IO event counters */ 8979 8980 io_sectors = 0; 8981 for (m = 0; m < SYNC_MARKS; m++) { 8982 mark[m] = jiffies; 8983 mark_cnt[m] = io_sectors; 8984 } 8985 last_mark = 0; 8986 mddev->resync_mark = mark[last_mark]; 8987 mddev->resync_mark_cnt = mark_cnt[last_mark]; 8988 8989 /* 8990 * Tune reconstruction: 8991 */ 8992 window = 32 * (PAGE_SIZE / 512); 8993 pr_debug("md: using %dk window, over a total of %lluk.\n", 8994 window/2, (unsigned long long)max_sectors/2); 8995 8996 atomic_set(&mddev->recovery_active, 0); 8997 last_check = 0; 8998 8999 if (j >= MD_RESYNC_ACTIVE) { 9000 pr_debug("md: resuming %s of %s from checkpoint.\n", 9001 desc, mdname(mddev)); 9002 mddev->curr_resync = j; 9003 } else 9004 mddev->curr_resync = MD_RESYNC_ACTIVE; /* no longer delayed */ 9005 mddev->curr_resync_completed = j; 9006 sysfs_notify_dirent_safe(mddev->sysfs_completed); 9007 md_new_event(); 9008 update_time = jiffies; 9009 9010 blk_start_plug(&plug); 9011 while (j < max_sectors) { 9012 sector_t sectors; 9013 9014 skipped = 0; 9015 9016 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9017 ((mddev->curr_resync > mddev->curr_resync_completed && 9018 (mddev->curr_resync - mddev->curr_resync_completed) 9019 > (max_sectors >> 4)) || 9020 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) || 9021 (j - mddev->curr_resync_completed)*2 9022 >= mddev->resync_max - mddev->curr_resync_completed || 9023 mddev->curr_resync_completed > mddev->resync_max 9024 )) { 9025 /* time to update curr_resync_completed */ 9026 wait_event(mddev->recovery_wait, 9027 atomic_read(&mddev->recovery_active) == 0); 9028 mddev->curr_resync_completed = j; 9029 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 9030 j > mddev->recovery_cp) 9031 mddev->recovery_cp = j; 9032 update_time = jiffies; 9033 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 9034 sysfs_notify_dirent_safe(mddev->sysfs_completed); 9035 } 9036 9037 while (j >= mddev->resync_max && 9038 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 9039 /* As this condition is controlled by user-space, 9040 * we can block indefinitely, so use '_interruptible' 9041 * to avoid triggering warnings. 9042 */ 9043 flush_signals(current); /* just in case */ 9044 wait_event_interruptible(mddev->recovery_wait, 9045 mddev->resync_max > j 9046 || test_bit(MD_RECOVERY_INTR, 9047 &mddev->recovery)); 9048 } 9049 9050 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 9051 break; 9052 9053 sectors = mddev->pers->sync_request(mddev, j, &skipped); 9054 if (sectors == 0) { 9055 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 9056 break; 9057 } 9058 9059 if (!skipped) { /* actual IO requested */ 9060 io_sectors += sectors; 9061 atomic_add(sectors, &mddev->recovery_active); 9062 } 9063 9064 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 9065 break; 9066 9067 j += sectors; 9068 if (j > max_sectors) 9069 /* when skipping, extra large numbers can be returned. */ 9070 j = max_sectors; 9071 if (j >= MD_RESYNC_ACTIVE) 9072 mddev->curr_resync = j; 9073 mddev->curr_mark_cnt = io_sectors; 9074 if (last_check == 0) 9075 /* this is the earliest that rebuild will be 9076 * visible in /proc/mdstat 9077 */ 9078 md_new_event(); 9079 9080 if (last_check + window > io_sectors || j == max_sectors) 9081 continue; 9082 9083 last_check = io_sectors; 9084 repeat: 9085 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { 9086 /* step marks */ 9087 int next = (last_mark+1) % SYNC_MARKS; 9088 9089 mddev->resync_mark = mark[next]; 9090 mddev->resync_mark_cnt = mark_cnt[next]; 9091 mark[next] = jiffies; 9092 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); 9093 last_mark = next; 9094 } 9095 9096 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 9097 break; 9098 9099 /* 9100 * this loop exits only if either when we are slower than 9101 * the 'hard' speed limit, or the system was IO-idle for 9102 * a jiffy. 9103 * the system might be non-idle CPU-wise, but we only care 9104 * about not overloading the IO subsystem. (things like an 9105 * e2fsck being done on the RAID array should execute fast) 9106 */ 9107 cond_resched(); 9108 9109 recovery_done = io_sectors - atomic_read(&mddev->recovery_active); 9110 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2 9111 /((jiffies-mddev->resync_mark)/HZ +1) +1; 9112 9113 if (currspeed > speed_min(mddev)) { 9114 if (currspeed > speed_max(mddev)) { 9115 msleep(500); 9116 goto repeat; 9117 } 9118 if (!is_mddev_idle(mddev, 0)) { 9119 /* 9120 * Give other IO more of a chance. 9121 * The faster the devices, the less we wait. 9122 */ 9123 wait_event(mddev->recovery_wait, 9124 !atomic_read(&mddev->recovery_active)); 9125 } 9126 } 9127 } 9128 pr_info("md: %s: %s %s.\n",mdname(mddev), desc, 9129 test_bit(MD_RECOVERY_INTR, &mddev->recovery) 9130 ? "interrupted" : "done"); 9131 /* 9132 * this also signals 'finished resyncing' to md_stop 9133 */ 9134 blk_finish_plug(&plug); 9135 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); 9136 9137 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9138 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 9139 mddev->curr_resync >= MD_RESYNC_ACTIVE) { 9140 mddev->curr_resync_completed = mddev->curr_resync; 9141 sysfs_notify_dirent_safe(mddev->sysfs_completed); 9142 } 9143 mddev->pers->sync_request(mddev, max_sectors, &skipped); 9144 9145 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && 9146 mddev->curr_resync > MD_RESYNC_ACTIVE) { 9147 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 9148 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 9149 if (mddev->curr_resync >= mddev->recovery_cp) { 9150 pr_debug("md: checkpointing %s of %s.\n", 9151 desc, mdname(mddev)); 9152 if (test_bit(MD_RECOVERY_ERROR, 9153 &mddev->recovery)) 9154 mddev->recovery_cp = 9155 mddev->curr_resync_completed; 9156 else 9157 mddev->recovery_cp = 9158 mddev->curr_resync; 9159 } 9160 } else 9161 mddev->recovery_cp = MaxSector; 9162 } else { 9163 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 9164 mddev->curr_resync = MaxSector; 9165 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9166 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) { 9167 rcu_read_lock(); 9168 rdev_for_each_rcu(rdev, mddev) 9169 if (rdev->raid_disk >= 0 && 9170 mddev->delta_disks >= 0 && 9171 !test_bit(Journal, &rdev->flags) && 9172 !test_bit(Faulty, &rdev->flags) && 9173 !test_bit(In_sync, &rdev->flags) && 9174 rdev->recovery_offset < mddev->curr_resync) 9175 rdev->recovery_offset = mddev->curr_resync; 9176 rcu_read_unlock(); 9177 } 9178 } 9179 } 9180 skip: 9181 /* set CHANGE_PENDING here since maybe another update is needed, 9182 * so other nodes are informed. It should be harmless for normal 9183 * raid */ 9184 set_mask_bits(&mddev->sb_flags, 0, 9185 BIT(MD_SB_CHANGE_PENDING) | BIT(MD_SB_CHANGE_DEVS)); 9186 9187 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9188 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 9189 mddev->delta_disks > 0 && 9190 mddev->pers->finish_reshape && 9191 mddev->pers->size && 9192 mddev->queue) { 9193 mddev_lock_nointr(mddev); 9194 md_set_array_sectors(mddev, mddev->pers->size(mddev, 0, 0)); 9195 mddev_unlock(mddev); 9196 if (!mddev_is_clustered(mddev)) 9197 set_capacity_and_notify(mddev->gendisk, 9198 mddev->array_sectors); 9199 } 9200 9201 spin_lock(&mddev->lock); 9202 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 9203 /* We completed so min/max setting can be forgotten if used. */ 9204 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 9205 mddev->resync_min = 0; 9206 mddev->resync_max = MaxSector; 9207 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 9208 mddev->resync_min = mddev->curr_resync_completed; 9209 set_bit(MD_RECOVERY_DONE, &mddev->recovery); 9210 mddev->curr_resync = MD_RESYNC_NONE; 9211 spin_unlock(&mddev->lock); 9212 9213 wake_up(&resync_wait); 9214 wake_up(&mddev->sb_wait); 9215 md_wakeup_thread(mddev->thread); 9216 return; 9217 } 9218 EXPORT_SYMBOL_GPL(md_do_sync); 9219 9220 static int remove_and_add_spares(struct mddev *mddev, 9221 struct md_rdev *this) 9222 { 9223 struct md_rdev *rdev; 9224 int spares = 0; 9225 int removed = 0; 9226 bool remove_some = false; 9227 9228 if (this && test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 9229 /* Mustn't remove devices when resync thread is running */ 9230 return 0; 9231 9232 rdev_for_each(rdev, mddev) { 9233 if ((this == NULL || rdev == this) && 9234 rdev->raid_disk >= 0 && 9235 !test_bit(Blocked, &rdev->flags) && 9236 test_bit(Faulty, &rdev->flags) && 9237 atomic_read(&rdev->nr_pending)==0) { 9238 /* Faulty non-Blocked devices with nr_pending == 0 9239 * never get nr_pending incremented, 9240 * never get Faulty cleared, and never get Blocked set. 9241 * So we can synchronize_rcu now rather than once per device 9242 */ 9243 remove_some = true; 9244 set_bit(RemoveSynchronized, &rdev->flags); 9245 } 9246 } 9247 9248 if (remove_some) 9249 synchronize_rcu(); 9250 rdev_for_each(rdev, mddev) { 9251 if ((this == NULL || rdev == this) && 9252 rdev->raid_disk >= 0 && 9253 !test_bit(Blocked, &rdev->flags) && 9254 ((test_bit(RemoveSynchronized, &rdev->flags) || 9255 (!test_bit(In_sync, &rdev->flags) && 9256 !test_bit(Journal, &rdev->flags))) && 9257 atomic_read(&rdev->nr_pending)==0)) { 9258 if (mddev->pers->hot_remove_disk( 9259 mddev, rdev) == 0) { 9260 sysfs_unlink_rdev(mddev, rdev); 9261 rdev->saved_raid_disk = rdev->raid_disk; 9262 rdev->raid_disk = -1; 9263 removed++; 9264 } 9265 } 9266 if (remove_some && test_bit(RemoveSynchronized, &rdev->flags)) 9267 clear_bit(RemoveSynchronized, &rdev->flags); 9268 } 9269 9270 if (removed && mddev->kobj.sd) 9271 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9272 9273 if (this && removed) 9274 goto no_add; 9275 9276 rdev_for_each(rdev, mddev) { 9277 if (this && this != rdev) 9278 continue; 9279 if (test_bit(Candidate, &rdev->flags)) 9280 continue; 9281 if (rdev->raid_disk >= 0 && 9282 !test_bit(In_sync, &rdev->flags) && 9283 !test_bit(Journal, &rdev->flags) && 9284 !test_bit(Faulty, &rdev->flags)) 9285 spares++; 9286 if (rdev->raid_disk >= 0) 9287 continue; 9288 if (test_bit(Faulty, &rdev->flags)) 9289 continue; 9290 if (!test_bit(Journal, &rdev->flags)) { 9291 if (!md_is_rdwr(mddev) && 9292 !(rdev->saved_raid_disk >= 0 && 9293 !test_bit(Bitmap_sync, &rdev->flags))) 9294 continue; 9295 9296 rdev->recovery_offset = 0; 9297 } 9298 if (mddev->pers->hot_add_disk(mddev, rdev) == 0) { 9299 /* failure here is OK */ 9300 sysfs_link_rdev(mddev, rdev); 9301 if (!test_bit(Journal, &rdev->flags)) 9302 spares++; 9303 md_new_event(); 9304 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9305 } 9306 } 9307 no_add: 9308 if (removed) 9309 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9310 return spares; 9311 } 9312 9313 static void md_start_sync(struct work_struct *ws) 9314 { 9315 struct mddev *mddev = container_of(ws, struct mddev, del_work); 9316 9317 rcu_assign_pointer(mddev->sync_thread, 9318 md_register_thread(md_do_sync, mddev, "resync")); 9319 if (!mddev->sync_thread) { 9320 pr_warn("%s: could not start resync thread...\n", 9321 mdname(mddev)); 9322 /* leave the spares where they are, it shouldn't hurt */ 9323 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9324 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9325 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9326 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9327 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9328 wake_up(&resync_wait); 9329 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 9330 &mddev->recovery)) 9331 if (mddev->sysfs_action) 9332 sysfs_notify_dirent_safe(mddev->sysfs_action); 9333 } else 9334 md_wakeup_thread(mddev->sync_thread); 9335 sysfs_notify_dirent_safe(mddev->sysfs_action); 9336 md_new_event(); 9337 } 9338 9339 /* 9340 * This routine is regularly called by all per-raid-array threads to 9341 * deal with generic issues like resync and super-block update. 9342 * Raid personalities that don't have a thread (linear/raid0) do not 9343 * need this as they never do any recovery or update the superblock. 9344 * 9345 * It does not do any resync itself, but rather "forks" off other threads 9346 * to do that as needed. 9347 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in 9348 * "->recovery" and create a thread at ->sync_thread. 9349 * When the thread finishes it sets MD_RECOVERY_DONE 9350 * and wakeups up this thread which will reap the thread and finish up. 9351 * This thread also removes any faulty devices (with nr_pending == 0). 9352 * 9353 * The overall approach is: 9354 * 1/ if the superblock needs updating, update it. 9355 * 2/ If a recovery thread is running, don't do anything else. 9356 * 3/ If recovery has finished, clean up, possibly marking spares active. 9357 * 4/ If there are any faulty devices, remove them. 9358 * 5/ If array is degraded, try to add spares devices 9359 * 6/ If array has spares or is not in-sync, start a resync thread. 9360 */ 9361 void md_check_recovery(struct mddev *mddev) 9362 { 9363 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags) && mddev->sb_flags) { 9364 /* Write superblock - thread that called mddev_suspend() 9365 * holds reconfig_mutex for us. 9366 */ 9367 set_bit(MD_UPDATING_SB, &mddev->flags); 9368 smp_mb__after_atomic(); 9369 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags)) 9370 md_update_sb(mddev, 0); 9371 clear_bit_unlock(MD_UPDATING_SB, &mddev->flags); 9372 wake_up(&mddev->sb_wait); 9373 } 9374 9375 if (is_md_suspended(mddev)) 9376 return; 9377 9378 if (mddev->bitmap) 9379 md_bitmap_daemon_work(mddev); 9380 9381 if (signal_pending(current)) { 9382 if (mddev->pers->sync_request && !mddev->external) { 9383 pr_debug("md: %s in immediate safe mode\n", 9384 mdname(mddev)); 9385 mddev->safemode = 2; 9386 } 9387 flush_signals(current); 9388 } 9389 9390 if (!md_is_rdwr(mddev) && 9391 !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 9392 return; 9393 if ( ! ( 9394 (mddev->sb_flags & ~ (1<<MD_SB_CHANGE_PENDING)) || 9395 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 9396 test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 9397 (mddev->external == 0 && mddev->safemode == 1) || 9398 (mddev->safemode == 2 9399 && !mddev->in_sync && mddev->recovery_cp == MaxSector) 9400 )) 9401 return; 9402 9403 if (mddev_trylock(mddev)) { 9404 int spares = 0; 9405 bool try_set_sync = mddev->safemode != 0; 9406 9407 if (!mddev->external && mddev->safemode == 1) 9408 mddev->safemode = 0; 9409 9410 if (!md_is_rdwr(mddev)) { 9411 struct md_rdev *rdev; 9412 if (!mddev->external && mddev->in_sync) 9413 /* 'Blocked' flag not needed as failed devices 9414 * will be recorded if array switched to read/write. 9415 * Leaving it set will prevent the device 9416 * from being removed. 9417 */ 9418 rdev_for_each(rdev, mddev) 9419 clear_bit(Blocked, &rdev->flags); 9420 /* On a read-only array we can: 9421 * - remove failed devices 9422 * - add already-in_sync devices if the array itself 9423 * is in-sync. 9424 * As we only add devices that are already in-sync, 9425 * we can activate the spares immediately. 9426 */ 9427 remove_and_add_spares(mddev, NULL); 9428 /* There is no thread, but we need to call 9429 * ->spare_active and clear saved_raid_disk 9430 */ 9431 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 9432 md_reap_sync_thread(mddev); 9433 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9434 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9435 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 9436 goto unlock; 9437 } 9438 9439 if (mddev_is_clustered(mddev)) { 9440 struct md_rdev *rdev, *tmp; 9441 /* kick the device if another node issued a 9442 * remove disk. 9443 */ 9444 rdev_for_each_safe(rdev, tmp, mddev) { 9445 if (test_and_clear_bit(ClusterRemove, &rdev->flags) && 9446 rdev->raid_disk < 0) 9447 md_kick_rdev_from_array(rdev); 9448 } 9449 } 9450 9451 if (try_set_sync && !mddev->external && !mddev->in_sync) { 9452 spin_lock(&mddev->lock); 9453 set_in_sync(mddev); 9454 spin_unlock(&mddev->lock); 9455 } 9456 9457 if (mddev->sb_flags) 9458 md_update_sb(mddev, 0); 9459 9460 /* 9461 * Never start a new sync thread if MD_RECOVERY_RUNNING is 9462 * still set. 9463 */ 9464 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 9465 if (!test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { 9466 /* resync/recovery still happening */ 9467 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9468 goto unlock; 9469 } 9470 9471 if (WARN_ON_ONCE(!mddev->sync_thread)) 9472 goto unlock; 9473 9474 md_reap_sync_thread(mddev); 9475 goto unlock; 9476 } 9477 9478 /* Set RUNNING before clearing NEEDED to avoid 9479 * any transients in the value of "sync_action". 9480 */ 9481 mddev->curr_resync_completed = 0; 9482 spin_lock(&mddev->lock); 9483 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9484 spin_unlock(&mddev->lock); 9485 /* Clear some bits that don't mean anything, but 9486 * might be left set 9487 */ 9488 clear_bit(MD_RECOVERY_INTR, &mddev->recovery); 9489 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 9490 9491 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 9492 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 9493 goto not_running; 9494 /* no recovery is running. 9495 * remove any failed drives, then 9496 * add spares if possible. 9497 * Spares are also removed and re-added, to allow 9498 * the personality to fail the re-add. 9499 */ 9500 9501 if (mddev->reshape_position != MaxSector) { 9502 if (mddev->pers->check_reshape == NULL || 9503 mddev->pers->check_reshape(mddev) != 0) 9504 /* Cannot proceed */ 9505 goto not_running; 9506 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9507 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9508 } else if ((spares = remove_and_add_spares(mddev, NULL))) { 9509 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9510 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9511 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9512 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9513 } else if (mddev->recovery_cp < MaxSector) { 9514 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9515 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9516 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 9517 /* nothing to be done ... */ 9518 goto not_running; 9519 9520 if (mddev->pers->sync_request) { 9521 if (spares) { 9522 /* We are adding a device or devices to an array 9523 * which has the bitmap stored on all devices. 9524 * So make sure all bitmap pages get written 9525 */ 9526 md_bitmap_write_all(mddev->bitmap); 9527 } 9528 INIT_WORK(&mddev->del_work, md_start_sync); 9529 queue_work(md_misc_wq, &mddev->del_work); 9530 goto unlock; 9531 } 9532 not_running: 9533 if (!mddev->sync_thread) { 9534 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9535 wake_up(&resync_wait); 9536 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 9537 &mddev->recovery)) 9538 if (mddev->sysfs_action) 9539 sysfs_notify_dirent_safe(mddev->sysfs_action); 9540 } 9541 unlock: 9542 wake_up(&mddev->sb_wait); 9543 mddev_unlock(mddev); 9544 } 9545 } 9546 EXPORT_SYMBOL(md_check_recovery); 9547 9548 void md_reap_sync_thread(struct mddev *mddev) 9549 { 9550 struct md_rdev *rdev; 9551 sector_t old_dev_sectors = mddev->dev_sectors; 9552 bool is_reshaped = false; 9553 9554 /* resync has finished, collect result */ 9555 md_unregister_thread(mddev, &mddev->sync_thread); 9556 atomic_inc(&mddev->sync_seq); 9557 9558 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 9559 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 9560 mddev->degraded != mddev->raid_disks) { 9561 /* success...*/ 9562 /* activate any spares */ 9563 if (mddev->pers->spare_active(mddev)) { 9564 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9565 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9566 } 9567 } 9568 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9569 mddev->pers->finish_reshape) { 9570 mddev->pers->finish_reshape(mddev); 9571 if (mddev_is_clustered(mddev)) 9572 is_reshaped = true; 9573 } 9574 9575 /* If array is no-longer degraded, then any saved_raid_disk 9576 * information must be scrapped. 9577 */ 9578 if (!mddev->degraded) 9579 rdev_for_each(rdev, mddev) 9580 rdev->saved_raid_disk = -1; 9581 9582 md_update_sb(mddev, 1); 9583 /* MD_SB_CHANGE_PENDING should be cleared by md_update_sb, so we can 9584 * call resync_finish here if MD_CLUSTER_RESYNC_LOCKED is set by 9585 * clustered raid */ 9586 if (test_and_clear_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags)) 9587 md_cluster_ops->resync_finish(mddev); 9588 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9589 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 9590 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9591 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9592 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9593 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9594 /* 9595 * We call md_cluster_ops->update_size here because sync_size could 9596 * be changed by md_update_sb, and MD_RECOVERY_RESHAPE is cleared, 9597 * so it is time to update size across cluster. 9598 */ 9599 if (mddev_is_clustered(mddev) && is_reshaped 9600 && !test_bit(MD_CLOSING, &mddev->flags)) 9601 md_cluster_ops->update_size(mddev, old_dev_sectors); 9602 /* flag recovery needed just to double check */ 9603 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9604 sysfs_notify_dirent_safe(mddev->sysfs_completed); 9605 sysfs_notify_dirent_safe(mddev->sysfs_action); 9606 md_new_event(); 9607 if (mddev->event_work.func) 9608 queue_work(md_misc_wq, &mddev->event_work); 9609 wake_up(&resync_wait); 9610 } 9611 EXPORT_SYMBOL(md_reap_sync_thread); 9612 9613 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev) 9614 { 9615 sysfs_notify_dirent_safe(rdev->sysfs_state); 9616 wait_event_timeout(rdev->blocked_wait, 9617 !test_bit(Blocked, &rdev->flags) && 9618 !test_bit(BlockedBadBlocks, &rdev->flags), 9619 msecs_to_jiffies(5000)); 9620 rdev_dec_pending(rdev, mddev); 9621 } 9622 EXPORT_SYMBOL(md_wait_for_blocked_rdev); 9623 9624 void md_finish_reshape(struct mddev *mddev) 9625 { 9626 /* called be personality module when reshape completes. */ 9627 struct md_rdev *rdev; 9628 9629 rdev_for_each(rdev, mddev) { 9630 if (rdev->data_offset > rdev->new_data_offset) 9631 rdev->sectors += rdev->data_offset - rdev->new_data_offset; 9632 else 9633 rdev->sectors -= rdev->new_data_offset - rdev->data_offset; 9634 rdev->data_offset = rdev->new_data_offset; 9635 } 9636 } 9637 EXPORT_SYMBOL(md_finish_reshape); 9638 9639 /* Bad block management */ 9640 9641 /* Returns 1 on success, 0 on failure */ 9642 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 9643 int is_new) 9644 { 9645 struct mddev *mddev = rdev->mddev; 9646 int rv; 9647 if (is_new) 9648 s += rdev->new_data_offset; 9649 else 9650 s += rdev->data_offset; 9651 rv = badblocks_set(&rdev->badblocks, s, sectors, 0); 9652 if (rv == 0) { 9653 /* Make sure they get written out promptly */ 9654 if (test_bit(ExternalBbl, &rdev->flags)) 9655 sysfs_notify_dirent_safe(rdev->sysfs_unack_badblocks); 9656 sysfs_notify_dirent_safe(rdev->sysfs_state); 9657 set_mask_bits(&mddev->sb_flags, 0, 9658 BIT(MD_SB_CHANGE_CLEAN) | BIT(MD_SB_CHANGE_PENDING)); 9659 md_wakeup_thread(rdev->mddev->thread); 9660 return 1; 9661 } else 9662 return 0; 9663 } 9664 EXPORT_SYMBOL_GPL(rdev_set_badblocks); 9665 9666 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 9667 int is_new) 9668 { 9669 int rv; 9670 if (is_new) 9671 s += rdev->new_data_offset; 9672 else 9673 s += rdev->data_offset; 9674 rv = badblocks_clear(&rdev->badblocks, s, sectors); 9675 if ((rv == 0) && test_bit(ExternalBbl, &rdev->flags)) 9676 sysfs_notify_dirent_safe(rdev->sysfs_badblocks); 9677 return rv; 9678 } 9679 EXPORT_SYMBOL_GPL(rdev_clear_badblocks); 9680 9681 static int md_notify_reboot(struct notifier_block *this, 9682 unsigned long code, void *x) 9683 { 9684 struct mddev *mddev, *n; 9685 int need_delay = 0; 9686 9687 spin_lock(&all_mddevs_lock); 9688 list_for_each_entry_safe(mddev, n, &all_mddevs, all_mddevs) { 9689 if (!mddev_get(mddev)) 9690 continue; 9691 spin_unlock(&all_mddevs_lock); 9692 if (mddev_trylock(mddev)) { 9693 if (mddev->pers) 9694 __md_stop_writes(mddev); 9695 if (mddev->persistent) 9696 mddev->safemode = 2; 9697 mddev_unlock(mddev); 9698 } 9699 need_delay = 1; 9700 mddev_put(mddev); 9701 spin_lock(&all_mddevs_lock); 9702 } 9703 spin_unlock(&all_mddevs_lock); 9704 9705 /* 9706 * certain more exotic SCSI devices are known to be 9707 * volatile wrt too early system reboots. While the 9708 * right place to handle this issue is the given 9709 * driver, we do want to have a safe RAID driver ... 9710 */ 9711 if (need_delay) 9712 msleep(1000); 9713 9714 return NOTIFY_DONE; 9715 } 9716 9717 static struct notifier_block md_notifier = { 9718 .notifier_call = md_notify_reboot, 9719 .next = NULL, 9720 .priority = INT_MAX, /* before any real devices */ 9721 }; 9722 9723 static void md_geninit(void) 9724 { 9725 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); 9726 9727 proc_create("mdstat", S_IRUGO, NULL, &mdstat_proc_ops); 9728 } 9729 9730 static int __init md_init(void) 9731 { 9732 int ret = -ENOMEM; 9733 9734 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0); 9735 if (!md_wq) 9736 goto err_wq; 9737 9738 md_misc_wq = alloc_workqueue("md_misc", 0, 0); 9739 if (!md_misc_wq) 9740 goto err_misc_wq; 9741 9742 md_bitmap_wq = alloc_workqueue("md_bitmap", WQ_MEM_RECLAIM | WQ_UNBOUND, 9743 0); 9744 if (!md_bitmap_wq) 9745 goto err_bitmap_wq; 9746 9747 ret = __register_blkdev(MD_MAJOR, "md", md_probe); 9748 if (ret < 0) 9749 goto err_md; 9750 9751 ret = __register_blkdev(0, "mdp", md_probe); 9752 if (ret < 0) 9753 goto err_mdp; 9754 mdp_major = ret; 9755 9756 register_reboot_notifier(&md_notifier); 9757 raid_table_header = register_sysctl("dev/raid", raid_table); 9758 9759 md_geninit(); 9760 return 0; 9761 9762 err_mdp: 9763 unregister_blkdev(MD_MAJOR, "md"); 9764 err_md: 9765 destroy_workqueue(md_bitmap_wq); 9766 err_bitmap_wq: 9767 destroy_workqueue(md_misc_wq); 9768 err_misc_wq: 9769 destroy_workqueue(md_wq); 9770 err_wq: 9771 return ret; 9772 } 9773 9774 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev) 9775 { 9776 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 9777 struct md_rdev *rdev2, *tmp; 9778 int role, ret; 9779 9780 /* 9781 * If size is changed in another node then we need to 9782 * do resize as well. 9783 */ 9784 if (mddev->dev_sectors != le64_to_cpu(sb->size)) { 9785 ret = mddev->pers->resize(mddev, le64_to_cpu(sb->size)); 9786 if (ret) 9787 pr_info("md-cluster: resize failed\n"); 9788 else 9789 md_bitmap_update_sb(mddev->bitmap); 9790 } 9791 9792 /* Check for change of roles in the active devices */ 9793 rdev_for_each_safe(rdev2, tmp, mddev) { 9794 if (test_bit(Faulty, &rdev2->flags)) 9795 continue; 9796 9797 /* Check if the roles changed */ 9798 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]); 9799 9800 if (test_bit(Candidate, &rdev2->flags)) { 9801 if (role == MD_DISK_ROLE_FAULTY) { 9802 pr_info("md: Removing Candidate device %pg because add failed\n", 9803 rdev2->bdev); 9804 md_kick_rdev_from_array(rdev2); 9805 continue; 9806 } 9807 else 9808 clear_bit(Candidate, &rdev2->flags); 9809 } 9810 9811 if (role != rdev2->raid_disk) { 9812 /* 9813 * got activated except reshape is happening. 9814 */ 9815 if (rdev2->raid_disk == -1 && role != MD_DISK_ROLE_SPARE && 9816 !(le32_to_cpu(sb->feature_map) & 9817 MD_FEATURE_RESHAPE_ACTIVE)) { 9818 rdev2->saved_raid_disk = role; 9819 ret = remove_and_add_spares(mddev, rdev2); 9820 pr_info("Activated spare: %pg\n", 9821 rdev2->bdev); 9822 /* wakeup mddev->thread here, so array could 9823 * perform resync with the new activated disk */ 9824 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9825 md_wakeup_thread(mddev->thread); 9826 } 9827 /* device faulty 9828 * We just want to do the minimum to mark the disk 9829 * as faulty. The recovery is performed by the 9830 * one who initiated the error. 9831 */ 9832 if (role == MD_DISK_ROLE_FAULTY || 9833 role == MD_DISK_ROLE_JOURNAL) { 9834 md_error(mddev, rdev2); 9835 clear_bit(Blocked, &rdev2->flags); 9836 } 9837 } 9838 } 9839 9840 if (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) { 9841 ret = update_raid_disks(mddev, le32_to_cpu(sb->raid_disks)); 9842 if (ret) 9843 pr_warn("md: updating array disks failed. %d\n", ret); 9844 } 9845 9846 /* 9847 * Since mddev->delta_disks has already updated in update_raid_disks, 9848 * so it is time to check reshape. 9849 */ 9850 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) && 9851 (le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 9852 /* 9853 * reshape is happening in the remote node, we need to 9854 * update reshape_position and call start_reshape. 9855 */ 9856 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 9857 if (mddev->pers->update_reshape_pos) 9858 mddev->pers->update_reshape_pos(mddev); 9859 if (mddev->pers->start_reshape) 9860 mddev->pers->start_reshape(mddev); 9861 } else if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) && 9862 mddev->reshape_position != MaxSector && 9863 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 9864 /* reshape is just done in another node. */ 9865 mddev->reshape_position = MaxSector; 9866 if (mddev->pers->update_reshape_pos) 9867 mddev->pers->update_reshape_pos(mddev); 9868 } 9869 9870 /* Finally set the event to be up to date */ 9871 mddev->events = le64_to_cpu(sb->events); 9872 } 9873 9874 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev) 9875 { 9876 int err; 9877 struct page *swapout = rdev->sb_page; 9878 struct mdp_superblock_1 *sb; 9879 9880 /* Store the sb page of the rdev in the swapout temporary 9881 * variable in case we err in the future 9882 */ 9883 rdev->sb_page = NULL; 9884 err = alloc_disk_sb(rdev); 9885 if (err == 0) { 9886 ClearPageUptodate(rdev->sb_page); 9887 rdev->sb_loaded = 0; 9888 err = super_types[mddev->major_version]. 9889 load_super(rdev, NULL, mddev->minor_version); 9890 } 9891 if (err < 0) { 9892 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n", 9893 __func__, __LINE__, rdev->desc_nr, err); 9894 if (rdev->sb_page) 9895 put_page(rdev->sb_page); 9896 rdev->sb_page = swapout; 9897 rdev->sb_loaded = 1; 9898 return err; 9899 } 9900 9901 sb = page_address(rdev->sb_page); 9902 /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET 9903 * is not set 9904 */ 9905 9906 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET)) 9907 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 9908 9909 /* The other node finished recovery, call spare_active to set 9910 * device In_sync and mddev->degraded 9911 */ 9912 if (rdev->recovery_offset == MaxSector && 9913 !test_bit(In_sync, &rdev->flags) && 9914 mddev->pers->spare_active(mddev)) 9915 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9916 9917 put_page(swapout); 9918 return 0; 9919 } 9920 9921 void md_reload_sb(struct mddev *mddev, int nr) 9922 { 9923 struct md_rdev *rdev = NULL, *iter; 9924 int err; 9925 9926 /* Find the rdev */ 9927 rdev_for_each_rcu(iter, mddev) { 9928 if (iter->desc_nr == nr) { 9929 rdev = iter; 9930 break; 9931 } 9932 } 9933 9934 if (!rdev) { 9935 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr); 9936 return; 9937 } 9938 9939 err = read_rdev(mddev, rdev); 9940 if (err < 0) 9941 return; 9942 9943 check_sb_changes(mddev, rdev); 9944 9945 /* Read all rdev's to update recovery_offset */ 9946 rdev_for_each_rcu(rdev, mddev) { 9947 if (!test_bit(Faulty, &rdev->flags)) 9948 read_rdev(mddev, rdev); 9949 } 9950 } 9951 EXPORT_SYMBOL(md_reload_sb); 9952 9953 #ifndef MODULE 9954 9955 /* 9956 * Searches all registered partitions for autorun RAID arrays 9957 * at boot time. 9958 */ 9959 9960 static DEFINE_MUTEX(detected_devices_mutex); 9961 static LIST_HEAD(all_detected_devices); 9962 struct detected_devices_node { 9963 struct list_head list; 9964 dev_t dev; 9965 }; 9966 9967 void md_autodetect_dev(dev_t dev) 9968 { 9969 struct detected_devices_node *node_detected_dev; 9970 9971 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL); 9972 if (node_detected_dev) { 9973 node_detected_dev->dev = dev; 9974 mutex_lock(&detected_devices_mutex); 9975 list_add_tail(&node_detected_dev->list, &all_detected_devices); 9976 mutex_unlock(&detected_devices_mutex); 9977 } 9978 } 9979 9980 void md_autostart_arrays(int part) 9981 { 9982 struct md_rdev *rdev; 9983 struct detected_devices_node *node_detected_dev; 9984 dev_t dev; 9985 int i_scanned, i_passed; 9986 9987 i_scanned = 0; 9988 i_passed = 0; 9989 9990 pr_info("md: Autodetecting RAID arrays.\n"); 9991 9992 mutex_lock(&detected_devices_mutex); 9993 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) { 9994 i_scanned++; 9995 node_detected_dev = list_entry(all_detected_devices.next, 9996 struct detected_devices_node, list); 9997 list_del(&node_detected_dev->list); 9998 dev = node_detected_dev->dev; 9999 kfree(node_detected_dev); 10000 mutex_unlock(&detected_devices_mutex); 10001 rdev = md_import_device(dev,0, 90); 10002 mutex_lock(&detected_devices_mutex); 10003 if (IS_ERR(rdev)) 10004 continue; 10005 10006 if (test_bit(Faulty, &rdev->flags)) 10007 continue; 10008 10009 set_bit(AutoDetected, &rdev->flags); 10010 list_add(&rdev->same_set, &pending_raid_disks); 10011 i_passed++; 10012 } 10013 mutex_unlock(&detected_devices_mutex); 10014 10015 pr_debug("md: Scanned %d and added %d devices.\n", i_scanned, i_passed); 10016 10017 autorun_devices(part); 10018 } 10019 10020 #endif /* !MODULE */ 10021 10022 static __exit void md_exit(void) 10023 { 10024 struct mddev *mddev, *n; 10025 int delay = 1; 10026 10027 unregister_blkdev(MD_MAJOR,"md"); 10028 unregister_blkdev(mdp_major, "mdp"); 10029 unregister_reboot_notifier(&md_notifier); 10030 unregister_sysctl_table(raid_table_header); 10031 10032 /* We cannot unload the modules while some process is 10033 * waiting for us in select() or poll() - wake them up 10034 */ 10035 md_unloading = 1; 10036 while (waitqueue_active(&md_event_waiters)) { 10037 /* not safe to leave yet */ 10038 wake_up(&md_event_waiters); 10039 msleep(delay); 10040 delay += delay; 10041 } 10042 remove_proc_entry("mdstat", NULL); 10043 10044 spin_lock(&all_mddevs_lock); 10045 list_for_each_entry_safe(mddev, n, &all_mddevs, all_mddevs) { 10046 if (!mddev_get(mddev)) 10047 continue; 10048 spin_unlock(&all_mddevs_lock); 10049 export_array(mddev); 10050 mddev->ctime = 0; 10051 mddev->hold_active = 0; 10052 /* 10053 * As the mddev is now fully clear, mddev_put will schedule 10054 * the mddev for destruction by a workqueue, and the 10055 * destroy_workqueue() below will wait for that to complete. 10056 */ 10057 mddev_put(mddev); 10058 spin_lock(&all_mddevs_lock); 10059 } 10060 spin_unlock(&all_mddevs_lock); 10061 10062 destroy_workqueue(md_misc_wq); 10063 destroy_workqueue(md_bitmap_wq); 10064 destroy_workqueue(md_wq); 10065 } 10066 10067 subsys_initcall(md_init); 10068 module_exit(md_exit) 10069 10070 static int get_ro(char *buffer, const struct kernel_param *kp) 10071 { 10072 return sprintf(buffer, "%d\n", start_readonly); 10073 } 10074 static int set_ro(const char *val, const struct kernel_param *kp) 10075 { 10076 return kstrtouint(val, 10, (unsigned int *)&start_readonly); 10077 } 10078 10079 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); 10080 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); 10081 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR); 10082 module_param(create_on_open, bool, S_IRUSR|S_IWUSR); 10083 10084 MODULE_LICENSE("GPL"); 10085 MODULE_DESCRIPTION("MD RAID framework"); 10086 MODULE_ALIAS("md"); 10087 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR); 10088