1 /* 2 md.c : Multiple Devices driver for Linux 3 Copyright (C) 1998, 1999, 2000 Ingo Molnar 4 5 completely rewritten, based on the MD driver code from Marc Zyngier 6 7 Changes: 8 9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar 10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> 11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> 12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su> 13 - kmod support by: Cyrus Durgin 14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> 15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> 16 17 - lots of fixes and improvements to the RAID1/RAID5 and generic 18 RAID code (such as request based resynchronization): 19 20 Neil Brown <neilb@cse.unsw.edu.au>. 21 22 - persistent bitmap code 23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. 24 25 This program is free software; you can redistribute it and/or modify 26 it under the terms of the GNU General Public License as published by 27 the Free Software Foundation; either version 2, or (at your option) 28 any later version. 29 30 You should have received a copy of the GNU General Public License 31 (for example /usr/src/linux/COPYING); if not, write to the Free 32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 33 */ 34 35 #include <linux/kthread.h> 36 #include <linux/blkdev.h> 37 #include <linux/sysctl.h> 38 #include <linux/seq_file.h> 39 #include <linux/fs.h> 40 #include <linux/poll.h> 41 #include <linux/ctype.h> 42 #include <linux/string.h> 43 #include <linux/hdreg.h> 44 #include <linux/proc_fs.h> 45 #include <linux/random.h> 46 #include <linux/module.h> 47 #include <linux/reboot.h> 48 #include <linux/file.h> 49 #include <linux/compat.h> 50 #include <linux/delay.h> 51 #include <linux/raid/md_p.h> 52 #include <linux/raid/md_u.h> 53 #include <linux/slab.h> 54 #include "md.h" 55 #include "bitmap.h" 56 57 #ifndef MODULE 58 static void autostart_arrays(int part); 59 #endif 60 61 /* pers_list is a list of registered personalities protected 62 * by pers_lock. 63 * pers_lock does extra service to protect accesses to 64 * mddev->thread when the mutex cannot be held. 65 */ 66 static LIST_HEAD(pers_list); 67 static DEFINE_SPINLOCK(pers_lock); 68 69 static void md_print_devices(void); 70 71 static DECLARE_WAIT_QUEUE_HEAD(resync_wait); 72 static struct workqueue_struct *md_wq; 73 static struct workqueue_struct *md_misc_wq; 74 75 static int remove_and_add_spares(struct mddev *mddev, 76 struct md_rdev *this); 77 78 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); } 79 80 /* 81 * Default number of read corrections we'll attempt on an rdev 82 * before ejecting it from the array. We divide the read error 83 * count by 2 for every hour elapsed between read errors. 84 */ 85 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20 86 /* 87 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' 88 * is 1000 KB/sec, so the extra system load does not show up that much. 89 * Increase it if you want to have more _guaranteed_ speed. Note that 90 * the RAID driver will use the maximum available bandwidth if the IO 91 * subsystem is idle. There is also an 'absolute maximum' reconstruction 92 * speed limit - in case reconstruction slows down your system despite 93 * idle IO detection. 94 * 95 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. 96 * or /sys/block/mdX/md/sync_speed_{min,max} 97 */ 98 99 static int sysctl_speed_limit_min = 1000; 100 static int sysctl_speed_limit_max = 200000; 101 static inline int speed_min(struct mddev *mddev) 102 { 103 return mddev->sync_speed_min ? 104 mddev->sync_speed_min : sysctl_speed_limit_min; 105 } 106 107 static inline int speed_max(struct mddev *mddev) 108 { 109 return mddev->sync_speed_max ? 110 mddev->sync_speed_max : sysctl_speed_limit_max; 111 } 112 113 static struct ctl_table_header *raid_table_header; 114 115 static struct ctl_table raid_table[] = { 116 { 117 .procname = "speed_limit_min", 118 .data = &sysctl_speed_limit_min, 119 .maxlen = sizeof(int), 120 .mode = S_IRUGO|S_IWUSR, 121 .proc_handler = proc_dointvec, 122 }, 123 { 124 .procname = "speed_limit_max", 125 .data = &sysctl_speed_limit_max, 126 .maxlen = sizeof(int), 127 .mode = S_IRUGO|S_IWUSR, 128 .proc_handler = proc_dointvec, 129 }, 130 { } 131 }; 132 133 static struct ctl_table raid_dir_table[] = { 134 { 135 .procname = "raid", 136 .maxlen = 0, 137 .mode = S_IRUGO|S_IXUGO, 138 .child = raid_table, 139 }, 140 { } 141 }; 142 143 static struct ctl_table raid_root_table[] = { 144 { 145 .procname = "dev", 146 .maxlen = 0, 147 .mode = 0555, 148 .child = raid_dir_table, 149 }, 150 { } 151 }; 152 153 static const struct block_device_operations md_fops; 154 155 static int start_readonly; 156 157 /* bio_clone_mddev 158 * like bio_clone, but with a local bio set 159 */ 160 161 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs, 162 struct mddev *mddev) 163 { 164 struct bio *b; 165 166 if (!mddev || !mddev->bio_set) 167 return bio_alloc(gfp_mask, nr_iovecs); 168 169 b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set); 170 if (!b) 171 return NULL; 172 return b; 173 } 174 EXPORT_SYMBOL_GPL(bio_alloc_mddev); 175 176 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask, 177 struct mddev *mddev) 178 { 179 if (!mddev || !mddev->bio_set) 180 return bio_clone(bio, gfp_mask); 181 182 return bio_clone_bioset(bio, gfp_mask, mddev->bio_set); 183 } 184 EXPORT_SYMBOL_GPL(bio_clone_mddev); 185 186 /* 187 * We have a system wide 'event count' that is incremented 188 * on any 'interesting' event, and readers of /proc/mdstat 189 * can use 'poll' or 'select' to find out when the event 190 * count increases. 191 * 192 * Events are: 193 * start array, stop array, error, add device, remove device, 194 * start build, activate spare 195 */ 196 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); 197 static atomic_t md_event_count; 198 void md_new_event(struct mddev *mddev) 199 { 200 atomic_inc(&md_event_count); 201 wake_up(&md_event_waiters); 202 } 203 EXPORT_SYMBOL_GPL(md_new_event); 204 205 /* Alternate version that can be called from interrupts 206 * when calling sysfs_notify isn't needed. 207 */ 208 static void md_new_event_inintr(struct mddev *mddev) 209 { 210 atomic_inc(&md_event_count); 211 wake_up(&md_event_waiters); 212 } 213 214 /* 215 * Enables to iterate over all existing md arrays 216 * all_mddevs_lock protects this list. 217 */ 218 static LIST_HEAD(all_mddevs); 219 static DEFINE_SPINLOCK(all_mddevs_lock); 220 221 222 /* 223 * iterates through all used mddevs in the system. 224 * We take care to grab the all_mddevs_lock whenever navigating 225 * the list, and to always hold a refcount when unlocked. 226 * Any code which breaks out of this loop while own 227 * a reference to the current mddev and must mddev_put it. 228 */ 229 #define for_each_mddev(_mddev,_tmp) \ 230 \ 231 for (({ spin_lock(&all_mddevs_lock); \ 232 _tmp = all_mddevs.next; \ 233 _mddev = NULL;}); \ 234 ({ if (_tmp != &all_mddevs) \ 235 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\ 236 spin_unlock(&all_mddevs_lock); \ 237 if (_mddev) mddev_put(_mddev); \ 238 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \ 239 _tmp != &all_mddevs;}); \ 240 ({ spin_lock(&all_mddevs_lock); \ 241 _tmp = _tmp->next;}) \ 242 ) 243 244 245 /* Rather than calling directly into the personality make_request function, 246 * IO requests come here first so that we can check if the device is 247 * being suspended pending a reconfiguration. 248 * We hold a refcount over the call to ->make_request. By the time that 249 * call has finished, the bio has been linked into some internal structure 250 * and so is visible to ->quiesce(), so we don't need the refcount any more. 251 */ 252 static void md_make_request(struct request_queue *q, struct bio *bio) 253 { 254 const int rw = bio_data_dir(bio); 255 struct mddev *mddev = q->queuedata; 256 int cpu; 257 unsigned int sectors; 258 259 if (mddev == NULL || mddev->pers == NULL 260 || !mddev->ready) { 261 bio_io_error(bio); 262 return; 263 } 264 if (mddev->ro == 1 && unlikely(rw == WRITE)) { 265 bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS); 266 return; 267 } 268 smp_rmb(); /* Ensure implications of 'active' are visible */ 269 rcu_read_lock(); 270 if (mddev->suspended) { 271 DEFINE_WAIT(__wait); 272 for (;;) { 273 prepare_to_wait(&mddev->sb_wait, &__wait, 274 TASK_UNINTERRUPTIBLE); 275 if (!mddev->suspended) 276 break; 277 rcu_read_unlock(); 278 schedule(); 279 rcu_read_lock(); 280 } 281 finish_wait(&mddev->sb_wait, &__wait); 282 } 283 atomic_inc(&mddev->active_io); 284 rcu_read_unlock(); 285 286 /* 287 * save the sectors now since our bio can 288 * go away inside make_request 289 */ 290 sectors = bio_sectors(bio); 291 mddev->pers->make_request(mddev, bio); 292 293 cpu = part_stat_lock(); 294 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]); 295 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors); 296 part_stat_unlock(); 297 298 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended) 299 wake_up(&mddev->sb_wait); 300 } 301 302 /* mddev_suspend makes sure no new requests are submitted 303 * to the device, and that any requests that have been submitted 304 * are completely handled. 305 * Once ->stop is called and completes, the module will be completely 306 * unused. 307 */ 308 void mddev_suspend(struct mddev *mddev) 309 { 310 BUG_ON(mddev->suspended); 311 mddev->suspended = 1; 312 synchronize_rcu(); 313 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0); 314 mddev->pers->quiesce(mddev, 1); 315 316 del_timer_sync(&mddev->safemode_timer); 317 } 318 EXPORT_SYMBOL_GPL(mddev_suspend); 319 320 void mddev_resume(struct mddev *mddev) 321 { 322 mddev->suspended = 0; 323 wake_up(&mddev->sb_wait); 324 mddev->pers->quiesce(mddev, 0); 325 326 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 327 md_wakeup_thread(mddev->thread); 328 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 329 } 330 EXPORT_SYMBOL_GPL(mddev_resume); 331 332 int mddev_congested(struct mddev *mddev, int bits) 333 { 334 return mddev->suspended; 335 } 336 EXPORT_SYMBOL(mddev_congested); 337 338 /* 339 * Generic flush handling for md 340 */ 341 342 static void md_end_flush(struct bio *bio, int err) 343 { 344 struct md_rdev *rdev = bio->bi_private; 345 struct mddev *mddev = rdev->mddev; 346 347 rdev_dec_pending(rdev, mddev); 348 349 if (atomic_dec_and_test(&mddev->flush_pending)) { 350 /* The pre-request flush has finished */ 351 queue_work(md_wq, &mddev->flush_work); 352 } 353 bio_put(bio); 354 } 355 356 static void md_submit_flush_data(struct work_struct *ws); 357 358 static void submit_flushes(struct work_struct *ws) 359 { 360 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 361 struct md_rdev *rdev; 362 363 INIT_WORK(&mddev->flush_work, md_submit_flush_data); 364 atomic_set(&mddev->flush_pending, 1); 365 rcu_read_lock(); 366 rdev_for_each_rcu(rdev, mddev) 367 if (rdev->raid_disk >= 0 && 368 !test_bit(Faulty, &rdev->flags)) { 369 /* Take two references, one is dropped 370 * when request finishes, one after 371 * we reclaim rcu_read_lock 372 */ 373 struct bio *bi; 374 atomic_inc(&rdev->nr_pending); 375 atomic_inc(&rdev->nr_pending); 376 rcu_read_unlock(); 377 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev); 378 bi->bi_end_io = md_end_flush; 379 bi->bi_private = rdev; 380 bi->bi_bdev = rdev->bdev; 381 atomic_inc(&mddev->flush_pending); 382 submit_bio(WRITE_FLUSH, bi); 383 rcu_read_lock(); 384 rdev_dec_pending(rdev, mddev); 385 } 386 rcu_read_unlock(); 387 if (atomic_dec_and_test(&mddev->flush_pending)) 388 queue_work(md_wq, &mddev->flush_work); 389 } 390 391 static void md_submit_flush_data(struct work_struct *ws) 392 { 393 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 394 struct bio *bio = mddev->flush_bio; 395 396 if (bio->bi_iter.bi_size == 0) 397 /* an empty barrier - all done */ 398 bio_endio(bio, 0); 399 else { 400 bio->bi_rw &= ~REQ_FLUSH; 401 mddev->pers->make_request(mddev, bio); 402 } 403 404 mddev->flush_bio = NULL; 405 wake_up(&mddev->sb_wait); 406 } 407 408 void md_flush_request(struct mddev *mddev, struct bio *bio) 409 { 410 spin_lock_irq(&mddev->write_lock); 411 wait_event_lock_irq(mddev->sb_wait, 412 !mddev->flush_bio, 413 mddev->write_lock); 414 mddev->flush_bio = bio; 415 spin_unlock_irq(&mddev->write_lock); 416 417 INIT_WORK(&mddev->flush_work, submit_flushes); 418 queue_work(md_wq, &mddev->flush_work); 419 } 420 EXPORT_SYMBOL(md_flush_request); 421 422 void md_unplug(struct blk_plug_cb *cb, bool from_schedule) 423 { 424 struct mddev *mddev = cb->data; 425 md_wakeup_thread(mddev->thread); 426 kfree(cb); 427 } 428 EXPORT_SYMBOL(md_unplug); 429 430 static inline struct mddev *mddev_get(struct mddev *mddev) 431 { 432 atomic_inc(&mddev->active); 433 return mddev; 434 } 435 436 static void mddev_delayed_delete(struct work_struct *ws); 437 438 static void mddev_put(struct mddev *mddev) 439 { 440 struct bio_set *bs = NULL; 441 442 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) 443 return; 444 if (!mddev->raid_disks && list_empty(&mddev->disks) && 445 mddev->ctime == 0 && !mddev->hold_active) { 446 /* Array is not configured at all, and not held active, 447 * so destroy it */ 448 list_del_init(&mddev->all_mddevs); 449 bs = mddev->bio_set; 450 mddev->bio_set = NULL; 451 if (mddev->gendisk) { 452 /* We did a probe so need to clean up. Call 453 * queue_work inside the spinlock so that 454 * flush_workqueue() after mddev_find will 455 * succeed in waiting for the work to be done. 456 */ 457 INIT_WORK(&mddev->del_work, mddev_delayed_delete); 458 queue_work(md_misc_wq, &mddev->del_work); 459 } else 460 kfree(mddev); 461 } 462 spin_unlock(&all_mddevs_lock); 463 if (bs) 464 bioset_free(bs); 465 } 466 467 void mddev_init(struct mddev *mddev) 468 { 469 mutex_init(&mddev->open_mutex); 470 mutex_init(&mddev->reconfig_mutex); 471 mutex_init(&mddev->bitmap_info.mutex); 472 INIT_LIST_HEAD(&mddev->disks); 473 INIT_LIST_HEAD(&mddev->all_mddevs); 474 init_timer(&mddev->safemode_timer); 475 atomic_set(&mddev->active, 1); 476 atomic_set(&mddev->openers, 0); 477 atomic_set(&mddev->active_io, 0); 478 spin_lock_init(&mddev->write_lock); 479 atomic_set(&mddev->flush_pending, 0); 480 init_waitqueue_head(&mddev->sb_wait); 481 init_waitqueue_head(&mddev->recovery_wait); 482 mddev->reshape_position = MaxSector; 483 mddev->reshape_backwards = 0; 484 mddev->last_sync_action = "none"; 485 mddev->resync_min = 0; 486 mddev->resync_max = MaxSector; 487 mddev->level = LEVEL_NONE; 488 } 489 EXPORT_SYMBOL_GPL(mddev_init); 490 491 static struct mddev * mddev_find(dev_t unit) 492 { 493 struct mddev *mddev, *new = NULL; 494 495 if (unit && MAJOR(unit) != MD_MAJOR) 496 unit &= ~((1<<MdpMinorShift)-1); 497 498 retry: 499 spin_lock(&all_mddevs_lock); 500 501 if (unit) { 502 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 503 if (mddev->unit == unit) { 504 mddev_get(mddev); 505 spin_unlock(&all_mddevs_lock); 506 kfree(new); 507 return mddev; 508 } 509 510 if (new) { 511 list_add(&new->all_mddevs, &all_mddevs); 512 spin_unlock(&all_mddevs_lock); 513 new->hold_active = UNTIL_IOCTL; 514 return new; 515 } 516 } else if (new) { 517 /* find an unused unit number */ 518 static int next_minor = 512; 519 int start = next_minor; 520 int is_free = 0; 521 int dev = 0; 522 while (!is_free) { 523 dev = MKDEV(MD_MAJOR, next_minor); 524 next_minor++; 525 if (next_minor > MINORMASK) 526 next_minor = 0; 527 if (next_minor == start) { 528 /* Oh dear, all in use. */ 529 spin_unlock(&all_mddevs_lock); 530 kfree(new); 531 return NULL; 532 } 533 534 is_free = 1; 535 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 536 if (mddev->unit == dev) { 537 is_free = 0; 538 break; 539 } 540 } 541 new->unit = dev; 542 new->md_minor = MINOR(dev); 543 new->hold_active = UNTIL_STOP; 544 list_add(&new->all_mddevs, &all_mddevs); 545 spin_unlock(&all_mddevs_lock); 546 return new; 547 } 548 spin_unlock(&all_mddevs_lock); 549 550 new = kzalloc(sizeof(*new), GFP_KERNEL); 551 if (!new) 552 return NULL; 553 554 new->unit = unit; 555 if (MAJOR(unit) == MD_MAJOR) 556 new->md_minor = MINOR(unit); 557 else 558 new->md_minor = MINOR(unit) >> MdpMinorShift; 559 560 mddev_init(new); 561 562 goto retry; 563 } 564 565 static inline int __must_check mddev_lock(struct mddev * mddev) 566 { 567 return mutex_lock_interruptible(&mddev->reconfig_mutex); 568 } 569 570 /* Sometimes we need to take the lock in a situation where 571 * failure due to interrupts is not acceptable. 572 */ 573 static inline void mddev_lock_nointr(struct mddev * mddev) 574 { 575 mutex_lock(&mddev->reconfig_mutex); 576 } 577 578 static inline int mddev_is_locked(struct mddev *mddev) 579 { 580 return mutex_is_locked(&mddev->reconfig_mutex); 581 } 582 583 static inline int mddev_trylock(struct mddev * mddev) 584 { 585 return mutex_trylock(&mddev->reconfig_mutex); 586 } 587 588 static struct attribute_group md_redundancy_group; 589 590 static void mddev_unlock(struct mddev * mddev) 591 { 592 if (mddev->to_remove) { 593 /* These cannot be removed under reconfig_mutex as 594 * an access to the files will try to take reconfig_mutex 595 * while holding the file unremovable, which leads to 596 * a deadlock. 597 * So hold set sysfs_active while the remove in happeing, 598 * and anything else which might set ->to_remove or my 599 * otherwise change the sysfs namespace will fail with 600 * -EBUSY if sysfs_active is still set. 601 * We set sysfs_active under reconfig_mutex and elsewhere 602 * test it under the same mutex to ensure its correct value 603 * is seen. 604 */ 605 struct attribute_group *to_remove = mddev->to_remove; 606 mddev->to_remove = NULL; 607 mddev->sysfs_active = 1; 608 mutex_unlock(&mddev->reconfig_mutex); 609 610 if (mddev->kobj.sd) { 611 if (to_remove != &md_redundancy_group) 612 sysfs_remove_group(&mddev->kobj, to_remove); 613 if (mddev->pers == NULL || 614 mddev->pers->sync_request == NULL) { 615 sysfs_remove_group(&mddev->kobj, &md_redundancy_group); 616 if (mddev->sysfs_action) 617 sysfs_put(mddev->sysfs_action); 618 mddev->sysfs_action = NULL; 619 } 620 } 621 mddev->sysfs_active = 0; 622 } else 623 mutex_unlock(&mddev->reconfig_mutex); 624 625 /* As we've dropped the mutex we need a spinlock to 626 * make sure the thread doesn't disappear 627 */ 628 spin_lock(&pers_lock); 629 md_wakeup_thread(mddev->thread); 630 spin_unlock(&pers_lock); 631 } 632 633 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr) 634 { 635 struct md_rdev *rdev; 636 637 rdev_for_each(rdev, mddev) 638 if (rdev->desc_nr == nr) 639 return rdev; 640 641 return NULL; 642 } 643 644 static struct md_rdev *find_rdev_nr_rcu(struct mddev *mddev, int nr) 645 { 646 struct md_rdev *rdev; 647 648 rdev_for_each_rcu(rdev, mddev) 649 if (rdev->desc_nr == nr) 650 return rdev; 651 652 return NULL; 653 } 654 655 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev) 656 { 657 struct md_rdev *rdev; 658 659 rdev_for_each(rdev, mddev) 660 if (rdev->bdev->bd_dev == dev) 661 return rdev; 662 663 return NULL; 664 } 665 666 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev) 667 { 668 struct md_rdev *rdev; 669 670 rdev_for_each_rcu(rdev, mddev) 671 if (rdev->bdev->bd_dev == dev) 672 return rdev; 673 674 return NULL; 675 } 676 677 static struct md_personality *find_pers(int level, char *clevel) 678 { 679 struct md_personality *pers; 680 list_for_each_entry(pers, &pers_list, list) { 681 if (level != LEVEL_NONE && pers->level == level) 682 return pers; 683 if (strcmp(pers->name, clevel)==0) 684 return pers; 685 } 686 return NULL; 687 } 688 689 /* return the offset of the super block in 512byte sectors */ 690 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev) 691 { 692 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512; 693 return MD_NEW_SIZE_SECTORS(num_sectors); 694 } 695 696 static int alloc_disk_sb(struct md_rdev * rdev) 697 { 698 if (rdev->sb_page) 699 MD_BUG(); 700 701 rdev->sb_page = alloc_page(GFP_KERNEL); 702 if (!rdev->sb_page) { 703 printk(KERN_ALERT "md: out of memory.\n"); 704 return -ENOMEM; 705 } 706 707 return 0; 708 } 709 710 void md_rdev_clear(struct md_rdev *rdev) 711 { 712 if (rdev->sb_page) { 713 put_page(rdev->sb_page); 714 rdev->sb_loaded = 0; 715 rdev->sb_page = NULL; 716 rdev->sb_start = 0; 717 rdev->sectors = 0; 718 } 719 if (rdev->bb_page) { 720 put_page(rdev->bb_page); 721 rdev->bb_page = NULL; 722 } 723 kfree(rdev->badblocks.page); 724 rdev->badblocks.page = NULL; 725 } 726 EXPORT_SYMBOL_GPL(md_rdev_clear); 727 728 static void super_written(struct bio *bio, int error) 729 { 730 struct md_rdev *rdev = bio->bi_private; 731 struct mddev *mddev = rdev->mddev; 732 733 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) { 734 printk("md: super_written gets error=%d, uptodate=%d\n", 735 error, test_bit(BIO_UPTODATE, &bio->bi_flags)); 736 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags)); 737 md_error(mddev, rdev); 738 } 739 740 if (atomic_dec_and_test(&mddev->pending_writes)) 741 wake_up(&mddev->sb_wait); 742 bio_put(bio); 743 } 744 745 void md_super_write(struct mddev *mddev, struct md_rdev *rdev, 746 sector_t sector, int size, struct page *page) 747 { 748 /* write first size bytes of page to sector of rdev 749 * Increment mddev->pending_writes before returning 750 * and decrement it on completion, waking up sb_wait 751 * if zero is reached. 752 * If an error occurred, call md_error 753 */ 754 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev); 755 756 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev; 757 bio->bi_iter.bi_sector = sector; 758 bio_add_page(bio, page, size, 0); 759 bio->bi_private = rdev; 760 bio->bi_end_io = super_written; 761 762 atomic_inc(&mddev->pending_writes); 763 submit_bio(WRITE_FLUSH_FUA, bio); 764 } 765 766 void md_super_wait(struct mddev *mddev) 767 { 768 /* wait for all superblock writes that were scheduled to complete */ 769 DEFINE_WAIT(wq); 770 for(;;) { 771 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE); 772 if (atomic_read(&mddev->pending_writes)==0) 773 break; 774 schedule(); 775 } 776 finish_wait(&mddev->sb_wait, &wq); 777 } 778 779 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size, 780 struct page *page, int rw, bool metadata_op) 781 { 782 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev); 783 int ret; 784 785 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ? 786 rdev->meta_bdev : rdev->bdev; 787 if (metadata_op) 788 bio->bi_iter.bi_sector = sector + rdev->sb_start; 789 else if (rdev->mddev->reshape_position != MaxSector && 790 (rdev->mddev->reshape_backwards == 791 (sector >= rdev->mddev->reshape_position))) 792 bio->bi_iter.bi_sector = sector + rdev->new_data_offset; 793 else 794 bio->bi_iter.bi_sector = sector + rdev->data_offset; 795 bio_add_page(bio, page, size, 0); 796 submit_bio_wait(rw, bio); 797 798 ret = test_bit(BIO_UPTODATE, &bio->bi_flags); 799 bio_put(bio); 800 return ret; 801 } 802 EXPORT_SYMBOL_GPL(sync_page_io); 803 804 static int read_disk_sb(struct md_rdev * rdev, int size) 805 { 806 char b[BDEVNAME_SIZE]; 807 if (!rdev->sb_page) { 808 MD_BUG(); 809 return -EINVAL; 810 } 811 if (rdev->sb_loaded) 812 return 0; 813 814 815 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true)) 816 goto fail; 817 rdev->sb_loaded = 1; 818 return 0; 819 820 fail: 821 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n", 822 bdevname(rdev->bdev,b)); 823 return -EINVAL; 824 } 825 826 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) 827 { 828 return sb1->set_uuid0 == sb2->set_uuid0 && 829 sb1->set_uuid1 == sb2->set_uuid1 && 830 sb1->set_uuid2 == sb2->set_uuid2 && 831 sb1->set_uuid3 == sb2->set_uuid3; 832 } 833 834 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) 835 { 836 int ret; 837 mdp_super_t *tmp1, *tmp2; 838 839 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); 840 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); 841 842 if (!tmp1 || !tmp2) { 843 ret = 0; 844 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n"); 845 goto abort; 846 } 847 848 *tmp1 = *sb1; 849 *tmp2 = *sb2; 850 851 /* 852 * nr_disks is not constant 853 */ 854 tmp1->nr_disks = 0; 855 tmp2->nr_disks = 0; 856 857 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0); 858 abort: 859 kfree(tmp1); 860 kfree(tmp2); 861 return ret; 862 } 863 864 865 static u32 md_csum_fold(u32 csum) 866 { 867 csum = (csum & 0xffff) + (csum >> 16); 868 return (csum & 0xffff) + (csum >> 16); 869 } 870 871 static unsigned int calc_sb_csum(mdp_super_t * sb) 872 { 873 u64 newcsum = 0; 874 u32 *sb32 = (u32*)sb; 875 int i; 876 unsigned int disk_csum, csum; 877 878 disk_csum = sb->sb_csum; 879 sb->sb_csum = 0; 880 881 for (i = 0; i < MD_SB_BYTES/4 ; i++) 882 newcsum += sb32[i]; 883 csum = (newcsum & 0xffffffff) + (newcsum>>32); 884 885 886 #ifdef CONFIG_ALPHA 887 /* This used to use csum_partial, which was wrong for several 888 * reasons including that different results are returned on 889 * different architectures. It isn't critical that we get exactly 890 * the same return value as before (we always csum_fold before 891 * testing, and that removes any differences). However as we 892 * know that csum_partial always returned a 16bit value on 893 * alphas, do a fold to maximise conformity to previous behaviour. 894 */ 895 sb->sb_csum = md_csum_fold(disk_csum); 896 #else 897 sb->sb_csum = disk_csum; 898 #endif 899 return csum; 900 } 901 902 903 /* 904 * Handle superblock details. 905 * We want to be able to handle multiple superblock formats 906 * so we have a common interface to them all, and an array of 907 * different handlers. 908 * We rely on user-space to write the initial superblock, and support 909 * reading and updating of superblocks. 910 * Interface methods are: 911 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version) 912 * loads and validates a superblock on dev. 913 * if refdev != NULL, compare superblocks on both devices 914 * Return: 915 * 0 - dev has a superblock that is compatible with refdev 916 * 1 - dev has a superblock that is compatible and newer than refdev 917 * so dev should be used as the refdev in future 918 * -EINVAL superblock incompatible or invalid 919 * -othererror e.g. -EIO 920 * 921 * int validate_super(struct mddev *mddev, struct md_rdev *dev) 922 * Verify that dev is acceptable into mddev. 923 * The first time, mddev->raid_disks will be 0, and data from 924 * dev should be merged in. Subsequent calls check that dev 925 * is new enough. Return 0 or -EINVAL 926 * 927 * void sync_super(struct mddev *mddev, struct md_rdev *dev) 928 * Update the superblock for rdev with data in mddev 929 * This does not write to disc. 930 * 931 */ 932 933 struct super_type { 934 char *name; 935 struct module *owner; 936 int (*load_super)(struct md_rdev *rdev, 937 struct md_rdev *refdev, 938 int minor_version); 939 int (*validate_super)(struct mddev *mddev, 940 struct md_rdev *rdev); 941 void (*sync_super)(struct mddev *mddev, 942 struct md_rdev *rdev); 943 unsigned long long (*rdev_size_change)(struct md_rdev *rdev, 944 sector_t num_sectors); 945 int (*allow_new_offset)(struct md_rdev *rdev, 946 unsigned long long new_offset); 947 }; 948 949 /* 950 * Check that the given mddev has no bitmap. 951 * 952 * This function is called from the run method of all personalities that do not 953 * support bitmaps. It prints an error message and returns non-zero if mddev 954 * has a bitmap. Otherwise, it returns 0. 955 * 956 */ 957 int md_check_no_bitmap(struct mddev *mddev) 958 { 959 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset) 960 return 0; 961 printk(KERN_ERR "%s: bitmaps are not supported for %s\n", 962 mdname(mddev), mddev->pers->name); 963 return 1; 964 } 965 EXPORT_SYMBOL(md_check_no_bitmap); 966 967 /* 968 * load_super for 0.90.0 969 */ 970 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 971 { 972 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 973 mdp_super_t *sb; 974 int ret; 975 976 /* 977 * Calculate the position of the superblock (512byte sectors), 978 * it's at the end of the disk. 979 * 980 * It also happens to be a multiple of 4Kb. 981 */ 982 rdev->sb_start = calc_dev_sboffset(rdev); 983 984 ret = read_disk_sb(rdev, MD_SB_BYTES); 985 if (ret) return ret; 986 987 ret = -EINVAL; 988 989 bdevname(rdev->bdev, b); 990 sb = page_address(rdev->sb_page); 991 992 if (sb->md_magic != MD_SB_MAGIC) { 993 printk(KERN_ERR "md: invalid raid superblock magic on %s\n", 994 b); 995 goto abort; 996 } 997 998 if (sb->major_version != 0 || 999 sb->minor_version < 90 || 1000 sb->minor_version > 91) { 1001 printk(KERN_WARNING "Bad version number %d.%d on %s\n", 1002 sb->major_version, sb->minor_version, 1003 b); 1004 goto abort; 1005 } 1006 1007 if (sb->raid_disks <= 0) 1008 goto abort; 1009 1010 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) { 1011 printk(KERN_WARNING "md: invalid superblock checksum on %s\n", 1012 b); 1013 goto abort; 1014 } 1015 1016 rdev->preferred_minor = sb->md_minor; 1017 rdev->data_offset = 0; 1018 rdev->new_data_offset = 0; 1019 rdev->sb_size = MD_SB_BYTES; 1020 rdev->badblocks.shift = -1; 1021 1022 if (sb->level == LEVEL_MULTIPATH) 1023 rdev->desc_nr = -1; 1024 else 1025 rdev->desc_nr = sb->this_disk.number; 1026 1027 if (!refdev) { 1028 ret = 1; 1029 } else { 1030 __u64 ev1, ev2; 1031 mdp_super_t *refsb = page_address(refdev->sb_page); 1032 if (!uuid_equal(refsb, sb)) { 1033 printk(KERN_WARNING "md: %s has different UUID to %s\n", 1034 b, bdevname(refdev->bdev,b2)); 1035 goto abort; 1036 } 1037 if (!sb_equal(refsb, sb)) { 1038 printk(KERN_WARNING "md: %s has same UUID" 1039 " but different superblock to %s\n", 1040 b, bdevname(refdev->bdev, b2)); 1041 goto abort; 1042 } 1043 ev1 = md_event(sb); 1044 ev2 = md_event(refsb); 1045 if (ev1 > ev2) 1046 ret = 1; 1047 else 1048 ret = 0; 1049 } 1050 rdev->sectors = rdev->sb_start; 1051 /* Limit to 4TB as metadata cannot record more than that. 1052 * (not needed for Linear and RAID0 as metadata doesn't 1053 * record this size) 1054 */ 1055 if (rdev->sectors >= (2ULL << 32) && sb->level >= 1) 1056 rdev->sectors = (2ULL << 32) - 2; 1057 1058 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1) 1059 /* "this cannot possibly happen" ... */ 1060 ret = -EINVAL; 1061 1062 abort: 1063 return ret; 1064 } 1065 1066 /* 1067 * validate_super for 0.90.0 1068 */ 1069 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev) 1070 { 1071 mdp_disk_t *desc; 1072 mdp_super_t *sb = page_address(rdev->sb_page); 1073 __u64 ev1 = md_event(sb); 1074 1075 rdev->raid_disk = -1; 1076 clear_bit(Faulty, &rdev->flags); 1077 clear_bit(In_sync, &rdev->flags); 1078 clear_bit(Bitmap_sync, &rdev->flags); 1079 clear_bit(WriteMostly, &rdev->flags); 1080 1081 if (mddev->raid_disks == 0) { 1082 mddev->major_version = 0; 1083 mddev->minor_version = sb->minor_version; 1084 mddev->patch_version = sb->patch_version; 1085 mddev->external = 0; 1086 mddev->chunk_sectors = sb->chunk_size >> 9; 1087 mddev->ctime = sb->ctime; 1088 mddev->utime = sb->utime; 1089 mddev->level = sb->level; 1090 mddev->clevel[0] = 0; 1091 mddev->layout = sb->layout; 1092 mddev->raid_disks = sb->raid_disks; 1093 mddev->dev_sectors = ((sector_t)sb->size) * 2; 1094 mddev->events = ev1; 1095 mddev->bitmap_info.offset = 0; 1096 mddev->bitmap_info.space = 0; 1097 /* bitmap can use 60 K after the 4K superblocks */ 1098 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 1099 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 1100 mddev->reshape_backwards = 0; 1101 1102 if (mddev->minor_version >= 91) { 1103 mddev->reshape_position = sb->reshape_position; 1104 mddev->delta_disks = sb->delta_disks; 1105 mddev->new_level = sb->new_level; 1106 mddev->new_layout = sb->new_layout; 1107 mddev->new_chunk_sectors = sb->new_chunk >> 9; 1108 if (mddev->delta_disks < 0) 1109 mddev->reshape_backwards = 1; 1110 } else { 1111 mddev->reshape_position = MaxSector; 1112 mddev->delta_disks = 0; 1113 mddev->new_level = mddev->level; 1114 mddev->new_layout = mddev->layout; 1115 mddev->new_chunk_sectors = mddev->chunk_sectors; 1116 } 1117 1118 if (sb->state & (1<<MD_SB_CLEAN)) 1119 mddev->recovery_cp = MaxSector; 1120 else { 1121 if (sb->events_hi == sb->cp_events_hi && 1122 sb->events_lo == sb->cp_events_lo) { 1123 mddev->recovery_cp = sb->recovery_cp; 1124 } else 1125 mddev->recovery_cp = 0; 1126 } 1127 1128 memcpy(mddev->uuid+0, &sb->set_uuid0, 4); 1129 memcpy(mddev->uuid+4, &sb->set_uuid1, 4); 1130 memcpy(mddev->uuid+8, &sb->set_uuid2, 4); 1131 memcpy(mddev->uuid+12,&sb->set_uuid3, 4); 1132 1133 mddev->max_disks = MD_SB_DISKS; 1134 1135 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && 1136 mddev->bitmap_info.file == NULL) { 1137 mddev->bitmap_info.offset = 1138 mddev->bitmap_info.default_offset; 1139 mddev->bitmap_info.space = 1140 mddev->bitmap_info.default_space; 1141 } 1142 1143 } else if (mddev->pers == NULL) { 1144 /* Insist on good event counter while assembling, except 1145 * for spares (which don't need an event count) */ 1146 ++ev1; 1147 if (sb->disks[rdev->desc_nr].state & ( 1148 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))) 1149 if (ev1 < mddev->events) 1150 return -EINVAL; 1151 } else if (mddev->bitmap) { 1152 /* if adding to array with a bitmap, then we can accept an 1153 * older device ... but not too old. 1154 */ 1155 if (ev1 < mddev->bitmap->events_cleared) 1156 return 0; 1157 if (ev1 < mddev->events) 1158 set_bit(Bitmap_sync, &rdev->flags); 1159 } else { 1160 if (ev1 < mddev->events) 1161 /* just a hot-add of a new device, leave raid_disk at -1 */ 1162 return 0; 1163 } 1164 1165 if (mddev->level != LEVEL_MULTIPATH) { 1166 desc = sb->disks + rdev->desc_nr; 1167 1168 if (desc->state & (1<<MD_DISK_FAULTY)) 1169 set_bit(Faulty, &rdev->flags); 1170 else if (desc->state & (1<<MD_DISK_SYNC) /* && 1171 desc->raid_disk < mddev->raid_disks */) { 1172 set_bit(In_sync, &rdev->flags); 1173 rdev->raid_disk = desc->raid_disk; 1174 rdev->saved_raid_disk = desc->raid_disk; 1175 } else if (desc->state & (1<<MD_DISK_ACTIVE)) { 1176 /* active but not in sync implies recovery up to 1177 * reshape position. We don't know exactly where 1178 * that is, so set to zero for now */ 1179 if (mddev->minor_version >= 91) { 1180 rdev->recovery_offset = 0; 1181 rdev->raid_disk = desc->raid_disk; 1182 } 1183 } 1184 if (desc->state & (1<<MD_DISK_WRITEMOSTLY)) 1185 set_bit(WriteMostly, &rdev->flags); 1186 } else /* MULTIPATH are always insync */ 1187 set_bit(In_sync, &rdev->flags); 1188 return 0; 1189 } 1190 1191 /* 1192 * sync_super for 0.90.0 1193 */ 1194 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev) 1195 { 1196 mdp_super_t *sb; 1197 struct md_rdev *rdev2; 1198 int next_spare = mddev->raid_disks; 1199 1200 1201 /* make rdev->sb match mddev data.. 1202 * 1203 * 1/ zero out disks 1204 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); 1205 * 3/ any empty disks < next_spare become removed 1206 * 1207 * disks[0] gets initialised to REMOVED because 1208 * we cannot be sure from other fields if it has 1209 * been initialised or not. 1210 */ 1211 int i; 1212 int active=0, working=0,failed=0,spare=0,nr_disks=0; 1213 1214 rdev->sb_size = MD_SB_BYTES; 1215 1216 sb = page_address(rdev->sb_page); 1217 1218 memset(sb, 0, sizeof(*sb)); 1219 1220 sb->md_magic = MD_SB_MAGIC; 1221 sb->major_version = mddev->major_version; 1222 sb->patch_version = mddev->patch_version; 1223 sb->gvalid_words = 0; /* ignored */ 1224 memcpy(&sb->set_uuid0, mddev->uuid+0, 4); 1225 memcpy(&sb->set_uuid1, mddev->uuid+4, 4); 1226 memcpy(&sb->set_uuid2, mddev->uuid+8, 4); 1227 memcpy(&sb->set_uuid3, mddev->uuid+12,4); 1228 1229 sb->ctime = mddev->ctime; 1230 sb->level = mddev->level; 1231 sb->size = mddev->dev_sectors / 2; 1232 sb->raid_disks = mddev->raid_disks; 1233 sb->md_minor = mddev->md_minor; 1234 sb->not_persistent = 0; 1235 sb->utime = mddev->utime; 1236 sb->state = 0; 1237 sb->events_hi = (mddev->events>>32); 1238 sb->events_lo = (u32)mddev->events; 1239 1240 if (mddev->reshape_position == MaxSector) 1241 sb->minor_version = 90; 1242 else { 1243 sb->minor_version = 91; 1244 sb->reshape_position = mddev->reshape_position; 1245 sb->new_level = mddev->new_level; 1246 sb->delta_disks = mddev->delta_disks; 1247 sb->new_layout = mddev->new_layout; 1248 sb->new_chunk = mddev->new_chunk_sectors << 9; 1249 } 1250 mddev->minor_version = sb->minor_version; 1251 if (mddev->in_sync) 1252 { 1253 sb->recovery_cp = mddev->recovery_cp; 1254 sb->cp_events_hi = (mddev->events>>32); 1255 sb->cp_events_lo = (u32)mddev->events; 1256 if (mddev->recovery_cp == MaxSector) 1257 sb->state = (1<< MD_SB_CLEAN); 1258 } else 1259 sb->recovery_cp = 0; 1260 1261 sb->layout = mddev->layout; 1262 sb->chunk_size = mddev->chunk_sectors << 9; 1263 1264 if (mddev->bitmap && mddev->bitmap_info.file == NULL) 1265 sb->state |= (1<<MD_SB_BITMAP_PRESENT); 1266 1267 sb->disks[0].state = (1<<MD_DISK_REMOVED); 1268 rdev_for_each(rdev2, mddev) { 1269 mdp_disk_t *d; 1270 int desc_nr; 1271 int is_active = test_bit(In_sync, &rdev2->flags); 1272 1273 if (rdev2->raid_disk >= 0 && 1274 sb->minor_version >= 91) 1275 /* we have nowhere to store the recovery_offset, 1276 * but if it is not below the reshape_position, 1277 * we can piggy-back on that. 1278 */ 1279 is_active = 1; 1280 if (rdev2->raid_disk < 0 || 1281 test_bit(Faulty, &rdev2->flags)) 1282 is_active = 0; 1283 if (is_active) 1284 desc_nr = rdev2->raid_disk; 1285 else 1286 desc_nr = next_spare++; 1287 rdev2->desc_nr = desc_nr; 1288 d = &sb->disks[rdev2->desc_nr]; 1289 nr_disks++; 1290 d->number = rdev2->desc_nr; 1291 d->major = MAJOR(rdev2->bdev->bd_dev); 1292 d->minor = MINOR(rdev2->bdev->bd_dev); 1293 if (is_active) 1294 d->raid_disk = rdev2->raid_disk; 1295 else 1296 d->raid_disk = rdev2->desc_nr; /* compatibility */ 1297 if (test_bit(Faulty, &rdev2->flags)) 1298 d->state = (1<<MD_DISK_FAULTY); 1299 else if (is_active) { 1300 d->state = (1<<MD_DISK_ACTIVE); 1301 if (test_bit(In_sync, &rdev2->flags)) 1302 d->state |= (1<<MD_DISK_SYNC); 1303 active++; 1304 working++; 1305 } else { 1306 d->state = 0; 1307 spare++; 1308 working++; 1309 } 1310 if (test_bit(WriteMostly, &rdev2->flags)) 1311 d->state |= (1<<MD_DISK_WRITEMOSTLY); 1312 } 1313 /* now set the "removed" and "faulty" bits on any missing devices */ 1314 for (i=0 ; i < mddev->raid_disks ; i++) { 1315 mdp_disk_t *d = &sb->disks[i]; 1316 if (d->state == 0 && d->number == 0) { 1317 d->number = i; 1318 d->raid_disk = i; 1319 d->state = (1<<MD_DISK_REMOVED); 1320 d->state |= (1<<MD_DISK_FAULTY); 1321 failed++; 1322 } 1323 } 1324 sb->nr_disks = nr_disks; 1325 sb->active_disks = active; 1326 sb->working_disks = working; 1327 sb->failed_disks = failed; 1328 sb->spare_disks = spare; 1329 1330 sb->this_disk = sb->disks[rdev->desc_nr]; 1331 sb->sb_csum = calc_sb_csum(sb); 1332 } 1333 1334 /* 1335 * rdev_size_change for 0.90.0 1336 */ 1337 static unsigned long long 1338 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1339 { 1340 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1341 return 0; /* component must fit device */ 1342 if (rdev->mddev->bitmap_info.offset) 1343 return 0; /* can't move bitmap */ 1344 rdev->sb_start = calc_dev_sboffset(rdev); 1345 if (!num_sectors || num_sectors > rdev->sb_start) 1346 num_sectors = rdev->sb_start; 1347 /* Limit to 4TB as metadata cannot record more than that. 1348 * 4TB == 2^32 KB, or 2*2^32 sectors. 1349 */ 1350 if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1) 1351 num_sectors = (2ULL << 32) - 2; 1352 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1353 rdev->sb_page); 1354 md_super_wait(rdev->mddev); 1355 return num_sectors; 1356 } 1357 1358 static int 1359 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset) 1360 { 1361 /* non-zero offset changes not possible with v0.90 */ 1362 return new_offset == 0; 1363 } 1364 1365 /* 1366 * version 1 superblock 1367 */ 1368 1369 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb) 1370 { 1371 __le32 disk_csum; 1372 u32 csum; 1373 unsigned long long newcsum; 1374 int size = 256 + le32_to_cpu(sb->max_dev)*2; 1375 __le32 *isuper = (__le32*)sb; 1376 1377 disk_csum = sb->sb_csum; 1378 sb->sb_csum = 0; 1379 newcsum = 0; 1380 for (; size >= 4; size -= 4) 1381 newcsum += le32_to_cpu(*isuper++); 1382 1383 if (size == 2) 1384 newcsum += le16_to_cpu(*(__le16*) isuper); 1385 1386 csum = (newcsum & 0xffffffff) + (newcsum >> 32); 1387 sb->sb_csum = disk_csum; 1388 return cpu_to_le32(csum); 1389 } 1390 1391 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors, 1392 int acknowledged); 1393 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1394 { 1395 struct mdp_superblock_1 *sb; 1396 int ret; 1397 sector_t sb_start; 1398 sector_t sectors; 1399 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1400 int bmask; 1401 1402 /* 1403 * Calculate the position of the superblock in 512byte sectors. 1404 * It is always aligned to a 4K boundary and 1405 * depeding on minor_version, it can be: 1406 * 0: At least 8K, but less than 12K, from end of device 1407 * 1: At start of device 1408 * 2: 4K from start of device. 1409 */ 1410 switch(minor_version) { 1411 case 0: 1412 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9; 1413 sb_start -= 8*2; 1414 sb_start &= ~(sector_t)(4*2-1); 1415 break; 1416 case 1: 1417 sb_start = 0; 1418 break; 1419 case 2: 1420 sb_start = 8; 1421 break; 1422 default: 1423 return -EINVAL; 1424 } 1425 rdev->sb_start = sb_start; 1426 1427 /* superblock is rarely larger than 1K, but it can be larger, 1428 * and it is safe to read 4k, so we do that 1429 */ 1430 ret = read_disk_sb(rdev, 4096); 1431 if (ret) return ret; 1432 1433 1434 sb = page_address(rdev->sb_page); 1435 1436 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || 1437 sb->major_version != cpu_to_le32(1) || 1438 le32_to_cpu(sb->max_dev) > (4096-256)/2 || 1439 le64_to_cpu(sb->super_offset) != rdev->sb_start || 1440 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) 1441 return -EINVAL; 1442 1443 if (calc_sb_1_csum(sb) != sb->sb_csum) { 1444 printk("md: invalid superblock checksum on %s\n", 1445 bdevname(rdev->bdev,b)); 1446 return -EINVAL; 1447 } 1448 if (le64_to_cpu(sb->data_size) < 10) { 1449 printk("md: data_size too small on %s\n", 1450 bdevname(rdev->bdev,b)); 1451 return -EINVAL; 1452 } 1453 if (sb->pad0 || 1454 sb->pad3[0] || 1455 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1]))) 1456 /* Some padding is non-zero, might be a new feature */ 1457 return -EINVAL; 1458 1459 rdev->preferred_minor = 0xffff; 1460 rdev->data_offset = le64_to_cpu(sb->data_offset); 1461 rdev->new_data_offset = rdev->data_offset; 1462 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) && 1463 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET)) 1464 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset); 1465 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); 1466 1467 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; 1468 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1469 if (rdev->sb_size & bmask) 1470 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1471 1472 if (minor_version 1473 && rdev->data_offset < sb_start + (rdev->sb_size/512)) 1474 return -EINVAL; 1475 if (minor_version 1476 && rdev->new_data_offset < sb_start + (rdev->sb_size/512)) 1477 return -EINVAL; 1478 1479 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH)) 1480 rdev->desc_nr = -1; 1481 else 1482 rdev->desc_nr = le32_to_cpu(sb->dev_number); 1483 1484 if (!rdev->bb_page) { 1485 rdev->bb_page = alloc_page(GFP_KERNEL); 1486 if (!rdev->bb_page) 1487 return -ENOMEM; 1488 } 1489 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) && 1490 rdev->badblocks.count == 0) { 1491 /* need to load the bad block list. 1492 * Currently we limit it to one page. 1493 */ 1494 s32 offset; 1495 sector_t bb_sector; 1496 u64 *bbp; 1497 int i; 1498 int sectors = le16_to_cpu(sb->bblog_size); 1499 if (sectors > (PAGE_SIZE / 512)) 1500 return -EINVAL; 1501 offset = le32_to_cpu(sb->bblog_offset); 1502 if (offset == 0) 1503 return -EINVAL; 1504 bb_sector = (long long)offset; 1505 if (!sync_page_io(rdev, bb_sector, sectors << 9, 1506 rdev->bb_page, READ, true)) 1507 return -EIO; 1508 bbp = (u64 *)page_address(rdev->bb_page); 1509 rdev->badblocks.shift = sb->bblog_shift; 1510 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) { 1511 u64 bb = le64_to_cpu(*bbp); 1512 int count = bb & (0x3ff); 1513 u64 sector = bb >> 10; 1514 sector <<= sb->bblog_shift; 1515 count <<= sb->bblog_shift; 1516 if (bb + 1 == 0) 1517 break; 1518 if (md_set_badblocks(&rdev->badblocks, 1519 sector, count, 1) == 0) 1520 return -EINVAL; 1521 } 1522 } else if (sb->bblog_offset != 0) 1523 rdev->badblocks.shift = 0; 1524 1525 if (!refdev) { 1526 ret = 1; 1527 } else { 1528 __u64 ev1, ev2; 1529 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page); 1530 1531 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || 1532 sb->level != refsb->level || 1533 sb->layout != refsb->layout || 1534 sb->chunksize != refsb->chunksize) { 1535 printk(KERN_WARNING "md: %s has strangely different" 1536 " superblock to %s\n", 1537 bdevname(rdev->bdev,b), 1538 bdevname(refdev->bdev,b2)); 1539 return -EINVAL; 1540 } 1541 ev1 = le64_to_cpu(sb->events); 1542 ev2 = le64_to_cpu(refsb->events); 1543 1544 if (ev1 > ev2) 1545 ret = 1; 1546 else 1547 ret = 0; 1548 } 1549 if (minor_version) { 1550 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9); 1551 sectors -= rdev->data_offset; 1552 } else 1553 sectors = rdev->sb_start; 1554 if (sectors < le64_to_cpu(sb->data_size)) 1555 return -EINVAL; 1556 rdev->sectors = le64_to_cpu(sb->data_size); 1557 return ret; 1558 } 1559 1560 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev) 1561 { 1562 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 1563 __u64 ev1 = le64_to_cpu(sb->events); 1564 1565 rdev->raid_disk = -1; 1566 clear_bit(Faulty, &rdev->flags); 1567 clear_bit(In_sync, &rdev->flags); 1568 clear_bit(Bitmap_sync, &rdev->flags); 1569 clear_bit(WriteMostly, &rdev->flags); 1570 1571 if (mddev->raid_disks == 0) { 1572 mddev->major_version = 1; 1573 mddev->patch_version = 0; 1574 mddev->external = 0; 1575 mddev->chunk_sectors = le32_to_cpu(sb->chunksize); 1576 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1); 1577 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1); 1578 mddev->level = le32_to_cpu(sb->level); 1579 mddev->clevel[0] = 0; 1580 mddev->layout = le32_to_cpu(sb->layout); 1581 mddev->raid_disks = le32_to_cpu(sb->raid_disks); 1582 mddev->dev_sectors = le64_to_cpu(sb->size); 1583 mddev->events = ev1; 1584 mddev->bitmap_info.offset = 0; 1585 mddev->bitmap_info.space = 0; 1586 /* Default location for bitmap is 1K after superblock 1587 * using 3K - total of 4K 1588 */ 1589 mddev->bitmap_info.default_offset = 1024 >> 9; 1590 mddev->bitmap_info.default_space = (4096-1024) >> 9; 1591 mddev->reshape_backwards = 0; 1592 1593 mddev->recovery_cp = le64_to_cpu(sb->resync_offset); 1594 memcpy(mddev->uuid, sb->set_uuid, 16); 1595 1596 mddev->max_disks = (4096-256)/2; 1597 1598 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && 1599 mddev->bitmap_info.file == NULL) { 1600 mddev->bitmap_info.offset = 1601 (__s32)le32_to_cpu(sb->bitmap_offset); 1602 /* Metadata doesn't record how much space is available. 1603 * For 1.0, we assume we can use up to the superblock 1604 * if before, else to 4K beyond superblock. 1605 * For others, assume no change is possible. 1606 */ 1607 if (mddev->minor_version > 0) 1608 mddev->bitmap_info.space = 0; 1609 else if (mddev->bitmap_info.offset > 0) 1610 mddev->bitmap_info.space = 1611 8 - mddev->bitmap_info.offset; 1612 else 1613 mddev->bitmap_info.space = 1614 -mddev->bitmap_info.offset; 1615 } 1616 1617 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 1618 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 1619 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 1620 mddev->new_level = le32_to_cpu(sb->new_level); 1621 mddev->new_layout = le32_to_cpu(sb->new_layout); 1622 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk); 1623 if (mddev->delta_disks < 0 || 1624 (mddev->delta_disks == 0 && 1625 (le32_to_cpu(sb->feature_map) 1626 & MD_FEATURE_RESHAPE_BACKWARDS))) 1627 mddev->reshape_backwards = 1; 1628 } else { 1629 mddev->reshape_position = MaxSector; 1630 mddev->delta_disks = 0; 1631 mddev->new_level = mddev->level; 1632 mddev->new_layout = mddev->layout; 1633 mddev->new_chunk_sectors = mddev->chunk_sectors; 1634 } 1635 1636 } else if (mddev->pers == NULL) { 1637 /* Insist of good event counter while assembling, except for 1638 * spares (which don't need an event count) */ 1639 ++ev1; 1640 if (rdev->desc_nr >= 0 && 1641 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1642 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe) 1643 if (ev1 < mddev->events) 1644 return -EINVAL; 1645 } else if (mddev->bitmap) { 1646 /* If adding to array with a bitmap, then we can accept an 1647 * older device, but not too old. 1648 */ 1649 if (ev1 < mddev->bitmap->events_cleared) 1650 return 0; 1651 if (ev1 < mddev->events) 1652 set_bit(Bitmap_sync, &rdev->flags); 1653 } else { 1654 if (ev1 < mddev->events) 1655 /* just a hot-add of a new device, leave raid_disk at -1 */ 1656 return 0; 1657 } 1658 if (mddev->level != LEVEL_MULTIPATH) { 1659 int role; 1660 if (rdev->desc_nr < 0 || 1661 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) { 1662 role = 0xffff; 1663 rdev->desc_nr = -1; 1664 } else 1665 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 1666 switch(role) { 1667 case 0xffff: /* spare */ 1668 break; 1669 case 0xfffe: /* faulty */ 1670 set_bit(Faulty, &rdev->flags); 1671 break; 1672 default: 1673 rdev->saved_raid_disk = role; 1674 if ((le32_to_cpu(sb->feature_map) & 1675 MD_FEATURE_RECOVERY_OFFSET)) { 1676 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 1677 if (!(le32_to_cpu(sb->feature_map) & 1678 MD_FEATURE_RECOVERY_BITMAP)) 1679 rdev->saved_raid_disk = -1; 1680 } else 1681 set_bit(In_sync, &rdev->flags); 1682 rdev->raid_disk = role; 1683 break; 1684 } 1685 if (sb->devflags & WriteMostly1) 1686 set_bit(WriteMostly, &rdev->flags); 1687 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT) 1688 set_bit(Replacement, &rdev->flags); 1689 } else /* MULTIPATH are always insync */ 1690 set_bit(In_sync, &rdev->flags); 1691 1692 return 0; 1693 } 1694 1695 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev) 1696 { 1697 struct mdp_superblock_1 *sb; 1698 struct md_rdev *rdev2; 1699 int max_dev, i; 1700 /* make rdev->sb match mddev and rdev data. */ 1701 1702 sb = page_address(rdev->sb_page); 1703 1704 sb->feature_map = 0; 1705 sb->pad0 = 0; 1706 sb->recovery_offset = cpu_to_le64(0); 1707 memset(sb->pad3, 0, sizeof(sb->pad3)); 1708 1709 sb->utime = cpu_to_le64((__u64)mddev->utime); 1710 sb->events = cpu_to_le64(mddev->events); 1711 if (mddev->in_sync) 1712 sb->resync_offset = cpu_to_le64(mddev->recovery_cp); 1713 else 1714 sb->resync_offset = cpu_to_le64(0); 1715 1716 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); 1717 1718 sb->raid_disks = cpu_to_le32(mddev->raid_disks); 1719 sb->size = cpu_to_le64(mddev->dev_sectors); 1720 sb->chunksize = cpu_to_le32(mddev->chunk_sectors); 1721 sb->level = cpu_to_le32(mddev->level); 1722 sb->layout = cpu_to_le32(mddev->layout); 1723 1724 if (test_bit(WriteMostly, &rdev->flags)) 1725 sb->devflags |= WriteMostly1; 1726 else 1727 sb->devflags &= ~WriteMostly1; 1728 sb->data_offset = cpu_to_le64(rdev->data_offset); 1729 sb->data_size = cpu_to_le64(rdev->sectors); 1730 1731 if (mddev->bitmap && mddev->bitmap_info.file == NULL) { 1732 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset); 1733 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); 1734 } 1735 1736 if (rdev->raid_disk >= 0 && 1737 !test_bit(In_sync, &rdev->flags)) { 1738 sb->feature_map |= 1739 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); 1740 sb->recovery_offset = 1741 cpu_to_le64(rdev->recovery_offset); 1742 if (rdev->saved_raid_disk >= 0 && mddev->bitmap) 1743 sb->feature_map |= 1744 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP); 1745 } 1746 if (test_bit(Replacement, &rdev->flags)) 1747 sb->feature_map |= 1748 cpu_to_le32(MD_FEATURE_REPLACEMENT); 1749 1750 if (mddev->reshape_position != MaxSector) { 1751 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); 1752 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 1753 sb->new_layout = cpu_to_le32(mddev->new_layout); 1754 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 1755 sb->new_level = cpu_to_le32(mddev->new_level); 1756 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors); 1757 if (mddev->delta_disks == 0 && 1758 mddev->reshape_backwards) 1759 sb->feature_map 1760 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS); 1761 if (rdev->new_data_offset != rdev->data_offset) { 1762 sb->feature_map 1763 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET); 1764 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset 1765 - rdev->data_offset)); 1766 } 1767 } 1768 1769 if (rdev->badblocks.count == 0) 1770 /* Nothing to do for bad blocks*/ ; 1771 else if (sb->bblog_offset == 0) 1772 /* Cannot record bad blocks on this device */ 1773 md_error(mddev, rdev); 1774 else { 1775 struct badblocks *bb = &rdev->badblocks; 1776 u64 *bbp = (u64 *)page_address(rdev->bb_page); 1777 u64 *p = bb->page; 1778 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS); 1779 if (bb->changed) { 1780 unsigned seq; 1781 1782 retry: 1783 seq = read_seqbegin(&bb->lock); 1784 1785 memset(bbp, 0xff, PAGE_SIZE); 1786 1787 for (i = 0 ; i < bb->count ; i++) { 1788 u64 internal_bb = p[i]; 1789 u64 store_bb = ((BB_OFFSET(internal_bb) << 10) 1790 | BB_LEN(internal_bb)); 1791 bbp[i] = cpu_to_le64(store_bb); 1792 } 1793 bb->changed = 0; 1794 if (read_seqretry(&bb->lock, seq)) 1795 goto retry; 1796 1797 bb->sector = (rdev->sb_start + 1798 (int)le32_to_cpu(sb->bblog_offset)); 1799 bb->size = le16_to_cpu(sb->bblog_size); 1800 } 1801 } 1802 1803 max_dev = 0; 1804 rdev_for_each(rdev2, mddev) 1805 if (rdev2->desc_nr+1 > max_dev) 1806 max_dev = rdev2->desc_nr+1; 1807 1808 if (max_dev > le32_to_cpu(sb->max_dev)) { 1809 int bmask; 1810 sb->max_dev = cpu_to_le32(max_dev); 1811 rdev->sb_size = max_dev * 2 + 256; 1812 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1813 if (rdev->sb_size & bmask) 1814 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1815 } else 1816 max_dev = le32_to_cpu(sb->max_dev); 1817 1818 for (i=0; i<max_dev;i++) 1819 sb->dev_roles[i] = cpu_to_le16(0xfffe); 1820 1821 rdev_for_each(rdev2, mddev) { 1822 i = rdev2->desc_nr; 1823 if (test_bit(Faulty, &rdev2->flags)) 1824 sb->dev_roles[i] = cpu_to_le16(0xfffe); 1825 else if (test_bit(In_sync, &rdev2->flags)) 1826 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1827 else if (rdev2->raid_disk >= 0) 1828 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1829 else 1830 sb->dev_roles[i] = cpu_to_le16(0xffff); 1831 } 1832 1833 sb->sb_csum = calc_sb_1_csum(sb); 1834 } 1835 1836 static unsigned long long 1837 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1838 { 1839 struct mdp_superblock_1 *sb; 1840 sector_t max_sectors; 1841 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1842 return 0; /* component must fit device */ 1843 if (rdev->data_offset != rdev->new_data_offset) 1844 return 0; /* too confusing */ 1845 if (rdev->sb_start < rdev->data_offset) { 1846 /* minor versions 1 and 2; superblock before data */ 1847 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9; 1848 max_sectors -= rdev->data_offset; 1849 if (!num_sectors || num_sectors > max_sectors) 1850 num_sectors = max_sectors; 1851 } else if (rdev->mddev->bitmap_info.offset) { 1852 /* minor version 0 with bitmap we can't move */ 1853 return 0; 1854 } else { 1855 /* minor version 0; superblock after data */ 1856 sector_t sb_start; 1857 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2; 1858 sb_start &= ~(sector_t)(4*2 - 1); 1859 max_sectors = rdev->sectors + sb_start - rdev->sb_start; 1860 if (!num_sectors || num_sectors > max_sectors) 1861 num_sectors = max_sectors; 1862 rdev->sb_start = sb_start; 1863 } 1864 sb = page_address(rdev->sb_page); 1865 sb->data_size = cpu_to_le64(num_sectors); 1866 sb->super_offset = rdev->sb_start; 1867 sb->sb_csum = calc_sb_1_csum(sb); 1868 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1869 rdev->sb_page); 1870 md_super_wait(rdev->mddev); 1871 return num_sectors; 1872 1873 } 1874 1875 static int 1876 super_1_allow_new_offset(struct md_rdev *rdev, 1877 unsigned long long new_offset) 1878 { 1879 /* All necessary checks on new >= old have been done */ 1880 struct bitmap *bitmap; 1881 if (new_offset >= rdev->data_offset) 1882 return 1; 1883 1884 /* with 1.0 metadata, there is no metadata to tread on 1885 * so we can always move back */ 1886 if (rdev->mddev->minor_version == 0) 1887 return 1; 1888 1889 /* otherwise we must be sure not to step on 1890 * any metadata, so stay: 1891 * 36K beyond start of superblock 1892 * beyond end of badblocks 1893 * beyond write-intent bitmap 1894 */ 1895 if (rdev->sb_start + (32+4)*2 > new_offset) 1896 return 0; 1897 bitmap = rdev->mddev->bitmap; 1898 if (bitmap && !rdev->mddev->bitmap_info.file && 1899 rdev->sb_start + rdev->mddev->bitmap_info.offset + 1900 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset) 1901 return 0; 1902 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset) 1903 return 0; 1904 1905 return 1; 1906 } 1907 1908 static struct super_type super_types[] = { 1909 [0] = { 1910 .name = "0.90.0", 1911 .owner = THIS_MODULE, 1912 .load_super = super_90_load, 1913 .validate_super = super_90_validate, 1914 .sync_super = super_90_sync, 1915 .rdev_size_change = super_90_rdev_size_change, 1916 .allow_new_offset = super_90_allow_new_offset, 1917 }, 1918 [1] = { 1919 .name = "md-1", 1920 .owner = THIS_MODULE, 1921 .load_super = super_1_load, 1922 .validate_super = super_1_validate, 1923 .sync_super = super_1_sync, 1924 .rdev_size_change = super_1_rdev_size_change, 1925 .allow_new_offset = super_1_allow_new_offset, 1926 }, 1927 }; 1928 1929 static void sync_super(struct mddev *mddev, struct md_rdev *rdev) 1930 { 1931 if (mddev->sync_super) { 1932 mddev->sync_super(mddev, rdev); 1933 return; 1934 } 1935 1936 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types)); 1937 1938 super_types[mddev->major_version].sync_super(mddev, rdev); 1939 } 1940 1941 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2) 1942 { 1943 struct md_rdev *rdev, *rdev2; 1944 1945 rcu_read_lock(); 1946 rdev_for_each_rcu(rdev, mddev1) 1947 rdev_for_each_rcu(rdev2, mddev2) 1948 if (rdev->bdev->bd_contains == 1949 rdev2->bdev->bd_contains) { 1950 rcu_read_unlock(); 1951 return 1; 1952 } 1953 rcu_read_unlock(); 1954 return 0; 1955 } 1956 1957 static LIST_HEAD(pending_raid_disks); 1958 1959 /* 1960 * Try to register data integrity profile for an mddev 1961 * 1962 * This is called when an array is started and after a disk has been kicked 1963 * from the array. It only succeeds if all working and active component devices 1964 * are integrity capable with matching profiles. 1965 */ 1966 int md_integrity_register(struct mddev *mddev) 1967 { 1968 struct md_rdev *rdev, *reference = NULL; 1969 1970 if (list_empty(&mddev->disks)) 1971 return 0; /* nothing to do */ 1972 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk)) 1973 return 0; /* shouldn't register, or already is */ 1974 rdev_for_each(rdev, mddev) { 1975 /* skip spares and non-functional disks */ 1976 if (test_bit(Faulty, &rdev->flags)) 1977 continue; 1978 if (rdev->raid_disk < 0) 1979 continue; 1980 if (!reference) { 1981 /* Use the first rdev as the reference */ 1982 reference = rdev; 1983 continue; 1984 } 1985 /* does this rdev's profile match the reference profile? */ 1986 if (blk_integrity_compare(reference->bdev->bd_disk, 1987 rdev->bdev->bd_disk) < 0) 1988 return -EINVAL; 1989 } 1990 if (!reference || !bdev_get_integrity(reference->bdev)) 1991 return 0; 1992 /* 1993 * All component devices are integrity capable and have matching 1994 * profiles, register the common profile for the md device. 1995 */ 1996 if (blk_integrity_register(mddev->gendisk, 1997 bdev_get_integrity(reference->bdev)) != 0) { 1998 printk(KERN_ERR "md: failed to register integrity for %s\n", 1999 mdname(mddev)); 2000 return -EINVAL; 2001 } 2002 printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev)); 2003 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) { 2004 printk(KERN_ERR "md: failed to create integrity pool for %s\n", 2005 mdname(mddev)); 2006 return -EINVAL; 2007 } 2008 return 0; 2009 } 2010 EXPORT_SYMBOL(md_integrity_register); 2011 2012 /* Disable data integrity if non-capable/non-matching disk is being added */ 2013 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev) 2014 { 2015 struct blk_integrity *bi_rdev; 2016 struct blk_integrity *bi_mddev; 2017 2018 if (!mddev->gendisk) 2019 return; 2020 2021 bi_rdev = bdev_get_integrity(rdev->bdev); 2022 bi_mddev = blk_get_integrity(mddev->gendisk); 2023 2024 if (!bi_mddev) /* nothing to do */ 2025 return; 2026 if (rdev->raid_disk < 0) /* skip spares */ 2027 return; 2028 if (bi_rdev && blk_integrity_compare(mddev->gendisk, 2029 rdev->bdev->bd_disk) >= 0) 2030 return; 2031 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev)); 2032 blk_integrity_unregister(mddev->gendisk); 2033 } 2034 EXPORT_SYMBOL(md_integrity_add_rdev); 2035 2036 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev) 2037 { 2038 char b[BDEVNAME_SIZE]; 2039 struct kobject *ko; 2040 char *s; 2041 int err; 2042 2043 if (rdev->mddev) { 2044 MD_BUG(); 2045 return -EINVAL; 2046 } 2047 2048 /* prevent duplicates */ 2049 if (find_rdev(mddev, rdev->bdev->bd_dev)) 2050 return -EEXIST; 2051 2052 /* make sure rdev->sectors exceeds mddev->dev_sectors */ 2053 if (rdev->sectors && (mddev->dev_sectors == 0 || 2054 rdev->sectors < mddev->dev_sectors)) { 2055 if (mddev->pers) { 2056 /* Cannot change size, so fail 2057 * If mddev->level <= 0, then we don't care 2058 * about aligning sizes (e.g. linear) 2059 */ 2060 if (mddev->level > 0) 2061 return -ENOSPC; 2062 } else 2063 mddev->dev_sectors = rdev->sectors; 2064 } 2065 2066 /* Verify rdev->desc_nr is unique. 2067 * If it is -1, assign a free number, else 2068 * check number is not in use 2069 */ 2070 if (rdev->desc_nr < 0) { 2071 int choice = 0; 2072 if (mddev->pers) choice = mddev->raid_disks; 2073 while (find_rdev_nr(mddev, choice)) 2074 choice++; 2075 rdev->desc_nr = choice; 2076 } else { 2077 if (find_rdev_nr(mddev, rdev->desc_nr)) 2078 return -EBUSY; 2079 } 2080 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) { 2081 printk(KERN_WARNING "md: %s: array is limited to %d devices\n", 2082 mdname(mddev), mddev->max_disks); 2083 return -EBUSY; 2084 } 2085 bdevname(rdev->bdev,b); 2086 while ( (s=strchr(b, '/')) != NULL) 2087 *s = '!'; 2088 2089 rdev->mddev = mddev; 2090 printk(KERN_INFO "md: bind<%s>\n", b); 2091 2092 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b))) 2093 goto fail; 2094 2095 ko = &part_to_dev(rdev->bdev->bd_part)->kobj; 2096 if (sysfs_create_link(&rdev->kobj, ko, "block")) 2097 /* failure here is OK */; 2098 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state"); 2099 2100 list_add_rcu(&rdev->same_set, &mddev->disks); 2101 bd_link_disk_holder(rdev->bdev, mddev->gendisk); 2102 2103 /* May as well allow recovery to be retried once */ 2104 mddev->recovery_disabled++; 2105 2106 return 0; 2107 2108 fail: 2109 printk(KERN_WARNING "md: failed to register dev-%s for %s\n", 2110 b, mdname(mddev)); 2111 return err; 2112 } 2113 2114 static void md_delayed_delete(struct work_struct *ws) 2115 { 2116 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work); 2117 kobject_del(&rdev->kobj); 2118 kobject_put(&rdev->kobj); 2119 } 2120 2121 static void unbind_rdev_from_array(struct md_rdev * rdev) 2122 { 2123 char b[BDEVNAME_SIZE]; 2124 if (!rdev->mddev) { 2125 MD_BUG(); 2126 return; 2127 } 2128 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk); 2129 list_del_rcu(&rdev->same_set); 2130 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b)); 2131 rdev->mddev = NULL; 2132 sysfs_remove_link(&rdev->kobj, "block"); 2133 sysfs_put(rdev->sysfs_state); 2134 rdev->sysfs_state = NULL; 2135 rdev->badblocks.count = 0; 2136 /* We need to delay this, otherwise we can deadlock when 2137 * writing to 'remove' to "dev/state". We also need 2138 * to delay it due to rcu usage. 2139 */ 2140 synchronize_rcu(); 2141 INIT_WORK(&rdev->del_work, md_delayed_delete); 2142 kobject_get(&rdev->kobj); 2143 queue_work(md_misc_wq, &rdev->del_work); 2144 } 2145 2146 /* 2147 * prevent the device from being mounted, repartitioned or 2148 * otherwise reused by a RAID array (or any other kernel 2149 * subsystem), by bd_claiming the device. 2150 */ 2151 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared) 2152 { 2153 int err = 0; 2154 struct block_device *bdev; 2155 char b[BDEVNAME_SIZE]; 2156 2157 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, 2158 shared ? (struct md_rdev *)lock_rdev : rdev); 2159 if (IS_ERR(bdev)) { 2160 printk(KERN_ERR "md: could not open %s.\n", 2161 __bdevname(dev, b)); 2162 return PTR_ERR(bdev); 2163 } 2164 rdev->bdev = bdev; 2165 return err; 2166 } 2167 2168 static void unlock_rdev(struct md_rdev *rdev) 2169 { 2170 struct block_device *bdev = rdev->bdev; 2171 rdev->bdev = NULL; 2172 if (!bdev) 2173 MD_BUG(); 2174 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 2175 } 2176 2177 void md_autodetect_dev(dev_t dev); 2178 2179 static void export_rdev(struct md_rdev * rdev) 2180 { 2181 char b[BDEVNAME_SIZE]; 2182 printk(KERN_INFO "md: export_rdev(%s)\n", 2183 bdevname(rdev->bdev,b)); 2184 if (rdev->mddev) 2185 MD_BUG(); 2186 md_rdev_clear(rdev); 2187 #ifndef MODULE 2188 if (test_bit(AutoDetected, &rdev->flags)) 2189 md_autodetect_dev(rdev->bdev->bd_dev); 2190 #endif 2191 unlock_rdev(rdev); 2192 kobject_put(&rdev->kobj); 2193 } 2194 2195 static void kick_rdev_from_array(struct md_rdev * rdev) 2196 { 2197 unbind_rdev_from_array(rdev); 2198 export_rdev(rdev); 2199 } 2200 2201 static void export_array(struct mddev *mddev) 2202 { 2203 struct md_rdev *rdev, *tmp; 2204 2205 rdev_for_each_safe(rdev, tmp, mddev) { 2206 if (!rdev->mddev) { 2207 MD_BUG(); 2208 continue; 2209 } 2210 kick_rdev_from_array(rdev); 2211 } 2212 if (!list_empty(&mddev->disks)) 2213 MD_BUG(); 2214 mddev->raid_disks = 0; 2215 mddev->major_version = 0; 2216 } 2217 2218 static void print_desc(mdp_disk_t *desc) 2219 { 2220 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number, 2221 desc->major,desc->minor,desc->raid_disk,desc->state); 2222 } 2223 2224 static void print_sb_90(mdp_super_t *sb) 2225 { 2226 int i; 2227 2228 printk(KERN_INFO 2229 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n", 2230 sb->major_version, sb->minor_version, sb->patch_version, 2231 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3, 2232 sb->ctime); 2233 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n", 2234 sb->level, sb->size, sb->nr_disks, sb->raid_disks, 2235 sb->md_minor, sb->layout, sb->chunk_size); 2236 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d" 2237 " FD:%d SD:%d CSUM:%08x E:%08lx\n", 2238 sb->utime, sb->state, sb->active_disks, sb->working_disks, 2239 sb->failed_disks, sb->spare_disks, 2240 sb->sb_csum, (unsigned long)sb->events_lo); 2241 2242 printk(KERN_INFO); 2243 for (i = 0; i < MD_SB_DISKS; i++) { 2244 mdp_disk_t *desc; 2245 2246 desc = sb->disks + i; 2247 if (desc->number || desc->major || desc->minor || 2248 desc->raid_disk || (desc->state && (desc->state != 4))) { 2249 printk(" D %2d: ", i); 2250 print_desc(desc); 2251 } 2252 } 2253 printk(KERN_INFO "md: THIS: "); 2254 print_desc(&sb->this_disk); 2255 } 2256 2257 static void print_sb_1(struct mdp_superblock_1 *sb) 2258 { 2259 __u8 *uuid; 2260 2261 uuid = sb->set_uuid; 2262 printk(KERN_INFO 2263 "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n" 2264 "md: Name: \"%s\" CT:%llu\n", 2265 le32_to_cpu(sb->major_version), 2266 le32_to_cpu(sb->feature_map), 2267 uuid, 2268 sb->set_name, 2269 (unsigned long long)le64_to_cpu(sb->ctime) 2270 & MD_SUPERBLOCK_1_TIME_SEC_MASK); 2271 2272 uuid = sb->device_uuid; 2273 printk(KERN_INFO 2274 "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu" 2275 " RO:%llu\n" 2276 "md: Dev:%08x UUID: %pU\n" 2277 "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n" 2278 "md: (MaxDev:%u) \n", 2279 le32_to_cpu(sb->level), 2280 (unsigned long long)le64_to_cpu(sb->size), 2281 le32_to_cpu(sb->raid_disks), 2282 le32_to_cpu(sb->layout), 2283 le32_to_cpu(sb->chunksize), 2284 (unsigned long long)le64_to_cpu(sb->data_offset), 2285 (unsigned long long)le64_to_cpu(sb->data_size), 2286 (unsigned long long)le64_to_cpu(sb->super_offset), 2287 (unsigned long long)le64_to_cpu(sb->recovery_offset), 2288 le32_to_cpu(sb->dev_number), 2289 uuid, 2290 sb->devflags, 2291 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK, 2292 (unsigned long long)le64_to_cpu(sb->events), 2293 (unsigned long long)le64_to_cpu(sb->resync_offset), 2294 le32_to_cpu(sb->sb_csum), 2295 le32_to_cpu(sb->max_dev) 2296 ); 2297 } 2298 2299 static void print_rdev(struct md_rdev *rdev, int major_version) 2300 { 2301 char b[BDEVNAME_SIZE]; 2302 printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n", 2303 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors, 2304 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags), 2305 rdev->desc_nr); 2306 if (rdev->sb_loaded) { 2307 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version); 2308 switch (major_version) { 2309 case 0: 2310 print_sb_90(page_address(rdev->sb_page)); 2311 break; 2312 case 1: 2313 print_sb_1(page_address(rdev->sb_page)); 2314 break; 2315 } 2316 } else 2317 printk(KERN_INFO "md: no rdev superblock!\n"); 2318 } 2319 2320 static void md_print_devices(void) 2321 { 2322 struct list_head *tmp; 2323 struct md_rdev *rdev; 2324 struct mddev *mddev; 2325 char b[BDEVNAME_SIZE]; 2326 2327 printk("\n"); 2328 printk("md: **********************************\n"); 2329 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n"); 2330 printk("md: **********************************\n"); 2331 for_each_mddev(mddev, tmp) { 2332 2333 if (mddev->bitmap) 2334 bitmap_print_sb(mddev->bitmap); 2335 else 2336 printk("%s: ", mdname(mddev)); 2337 rdev_for_each(rdev, mddev) 2338 printk("<%s>", bdevname(rdev->bdev,b)); 2339 printk("\n"); 2340 2341 rdev_for_each(rdev, mddev) 2342 print_rdev(rdev, mddev->major_version); 2343 } 2344 printk("md: **********************************\n"); 2345 printk("\n"); 2346 } 2347 2348 2349 static void sync_sbs(struct mddev * mddev, int nospares) 2350 { 2351 /* Update each superblock (in-memory image), but 2352 * if we are allowed to, skip spares which already 2353 * have the right event counter, or have one earlier 2354 * (which would mean they aren't being marked as dirty 2355 * with the rest of the array) 2356 */ 2357 struct md_rdev *rdev; 2358 rdev_for_each(rdev, mddev) { 2359 if (rdev->sb_events == mddev->events || 2360 (nospares && 2361 rdev->raid_disk < 0 && 2362 rdev->sb_events+1 == mddev->events)) { 2363 /* Don't update this superblock */ 2364 rdev->sb_loaded = 2; 2365 } else { 2366 sync_super(mddev, rdev); 2367 rdev->sb_loaded = 1; 2368 } 2369 } 2370 } 2371 2372 static void md_update_sb(struct mddev * mddev, int force_change) 2373 { 2374 struct md_rdev *rdev; 2375 int sync_req; 2376 int nospares = 0; 2377 int any_badblocks_changed = 0; 2378 2379 if (mddev->ro) { 2380 if (force_change) 2381 set_bit(MD_CHANGE_DEVS, &mddev->flags); 2382 return; 2383 } 2384 repeat: 2385 /* First make sure individual recovery_offsets are correct */ 2386 rdev_for_each(rdev, mddev) { 2387 if (rdev->raid_disk >= 0 && 2388 mddev->delta_disks >= 0 && 2389 !test_bit(In_sync, &rdev->flags) && 2390 mddev->curr_resync_completed > rdev->recovery_offset) 2391 rdev->recovery_offset = mddev->curr_resync_completed; 2392 2393 } 2394 if (!mddev->persistent) { 2395 clear_bit(MD_CHANGE_CLEAN, &mddev->flags); 2396 clear_bit(MD_CHANGE_DEVS, &mddev->flags); 2397 if (!mddev->external) { 2398 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 2399 rdev_for_each(rdev, mddev) { 2400 if (rdev->badblocks.changed) { 2401 rdev->badblocks.changed = 0; 2402 md_ack_all_badblocks(&rdev->badblocks); 2403 md_error(mddev, rdev); 2404 } 2405 clear_bit(Blocked, &rdev->flags); 2406 clear_bit(BlockedBadBlocks, &rdev->flags); 2407 wake_up(&rdev->blocked_wait); 2408 } 2409 } 2410 wake_up(&mddev->sb_wait); 2411 return; 2412 } 2413 2414 spin_lock_irq(&mddev->write_lock); 2415 2416 mddev->utime = get_seconds(); 2417 2418 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags)) 2419 force_change = 1; 2420 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags)) 2421 /* just a clean<-> dirty transition, possibly leave spares alone, 2422 * though if events isn't the right even/odd, we will have to do 2423 * spares after all 2424 */ 2425 nospares = 1; 2426 if (force_change) 2427 nospares = 0; 2428 if (mddev->degraded) 2429 /* If the array is degraded, then skipping spares is both 2430 * dangerous and fairly pointless. 2431 * Dangerous because a device that was removed from the array 2432 * might have a event_count that still looks up-to-date, 2433 * so it can be re-added without a resync. 2434 * Pointless because if there are any spares to skip, 2435 * then a recovery will happen and soon that array won't 2436 * be degraded any more and the spare can go back to sleep then. 2437 */ 2438 nospares = 0; 2439 2440 sync_req = mddev->in_sync; 2441 2442 /* If this is just a dirty<->clean transition, and the array is clean 2443 * and 'events' is odd, we can roll back to the previous clean state */ 2444 if (nospares 2445 && (mddev->in_sync && mddev->recovery_cp == MaxSector) 2446 && mddev->can_decrease_events 2447 && mddev->events != 1) { 2448 mddev->events--; 2449 mddev->can_decrease_events = 0; 2450 } else { 2451 /* otherwise we have to go forward and ... */ 2452 mddev->events ++; 2453 mddev->can_decrease_events = nospares; 2454 } 2455 2456 if (!mddev->events) { 2457 /* 2458 * oops, this 64-bit counter should never wrap. 2459 * Either we are in around ~1 trillion A.C., assuming 2460 * 1 reboot per second, or we have a bug: 2461 */ 2462 MD_BUG(); 2463 mddev->events --; 2464 } 2465 2466 rdev_for_each(rdev, mddev) { 2467 if (rdev->badblocks.changed) 2468 any_badblocks_changed++; 2469 if (test_bit(Faulty, &rdev->flags)) 2470 set_bit(FaultRecorded, &rdev->flags); 2471 } 2472 2473 sync_sbs(mddev, nospares); 2474 spin_unlock_irq(&mddev->write_lock); 2475 2476 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n", 2477 mdname(mddev), mddev->in_sync); 2478 2479 bitmap_update_sb(mddev->bitmap); 2480 rdev_for_each(rdev, mddev) { 2481 char b[BDEVNAME_SIZE]; 2482 2483 if (rdev->sb_loaded != 1) 2484 continue; /* no noise on spare devices */ 2485 2486 if (!test_bit(Faulty, &rdev->flags)) { 2487 md_super_write(mddev,rdev, 2488 rdev->sb_start, rdev->sb_size, 2489 rdev->sb_page); 2490 pr_debug("md: (write) %s's sb offset: %llu\n", 2491 bdevname(rdev->bdev, b), 2492 (unsigned long long)rdev->sb_start); 2493 rdev->sb_events = mddev->events; 2494 if (rdev->badblocks.size) { 2495 md_super_write(mddev, rdev, 2496 rdev->badblocks.sector, 2497 rdev->badblocks.size << 9, 2498 rdev->bb_page); 2499 rdev->badblocks.size = 0; 2500 } 2501 2502 } else 2503 pr_debug("md: %s (skipping faulty)\n", 2504 bdevname(rdev->bdev, b)); 2505 2506 if (mddev->level == LEVEL_MULTIPATH) 2507 /* only need to write one superblock... */ 2508 break; 2509 } 2510 md_super_wait(mddev); 2511 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */ 2512 2513 spin_lock_irq(&mddev->write_lock); 2514 if (mddev->in_sync != sync_req || 2515 test_bit(MD_CHANGE_DEVS, &mddev->flags)) { 2516 /* have to write it out again */ 2517 spin_unlock_irq(&mddev->write_lock); 2518 goto repeat; 2519 } 2520 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 2521 spin_unlock_irq(&mddev->write_lock); 2522 wake_up(&mddev->sb_wait); 2523 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 2524 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 2525 2526 rdev_for_each(rdev, mddev) { 2527 if (test_and_clear_bit(FaultRecorded, &rdev->flags)) 2528 clear_bit(Blocked, &rdev->flags); 2529 2530 if (any_badblocks_changed) 2531 md_ack_all_badblocks(&rdev->badblocks); 2532 clear_bit(BlockedBadBlocks, &rdev->flags); 2533 wake_up(&rdev->blocked_wait); 2534 } 2535 } 2536 2537 /* words written to sysfs files may, or may not, be \n terminated. 2538 * We want to accept with case. For this we use cmd_match. 2539 */ 2540 static int cmd_match(const char *cmd, const char *str) 2541 { 2542 /* See if cmd, written into a sysfs file, matches 2543 * str. They must either be the same, or cmd can 2544 * have a trailing newline 2545 */ 2546 while (*cmd && *str && *cmd == *str) { 2547 cmd++; 2548 str++; 2549 } 2550 if (*cmd == '\n') 2551 cmd++; 2552 if (*str || *cmd) 2553 return 0; 2554 return 1; 2555 } 2556 2557 struct rdev_sysfs_entry { 2558 struct attribute attr; 2559 ssize_t (*show)(struct md_rdev *, char *); 2560 ssize_t (*store)(struct md_rdev *, const char *, size_t); 2561 }; 2562 2563 static ssize_t 2564 state_show(struct md_rdev *rdev, char *page) 2565 { 2566 char *sep = ""; 2567 size_t len = 0; 2568 2569 if (test_bit(Faulty, &rdev->flags) || 2570 rdev->badblocks.unacked_exist) { 2571 len+= sprintf(page+len, "%sfaulty",sep); 2572 sep = ","; 2573 } 2574 if (test_bit(In_sync, &rdev->flags)) { 2575 len += sprintf(page+len, "%sin_sync",sep); 2576 sep = ","; 2577 } 2578 if (test_bit(WriteMostly, &rdev->flags)) { 2579 len += sprintf(page+len, "%swrite_mostly",sep); 2580 sep = ","; 2581 } 2582 if (test_bit(Blocked, &rdev->flags) || 2583 (rdev->badblocks.unacked_exist 2584 && !test_bit(Faulty, &rdev->flags))) { 2585 len += sprintf(page+len, "%sblocked", sep); 2586 sep = ","; 2587 } 2588 if (!test_bit(Faulty, &rdev->flags) && 2589 !test_bit(In_sync, &rdev->flags)) { 2590 len += sprintf(page+len, "%sspare", sep); 2591 sep = ","; 2592 } 2593 if (test_bit(WriteErrorSeen, &rdev->flags)) { 2594 len += sprintf(page+len, "%swrite_error", sep); 2595 sep = ","; 2596 } 2597 if (test_bit(WantReplacement, &rdev->flags)) { 2598 len += sprintf(page+len, "%swant_replacement", sep); 2599 sep = ","; 2600 } 2601 if (test_bit(Replacement, &rdev->flags)) { 2602 len += sprintf(page+len, "%sreplacement", sep); 2603 sep = ","; 2604 } 2605 2606 return len+sprintf(page+len, "\n"); 2607 } 2608 2609 static ssize_t 2610 state_store(struct md_rdev *rdev, const char *buf, size_t len) 2611 { 2612 /* can write 2613 * faulty - simulates an error 2614 * remove - disconnects the device 2615 * writemostly - sets write_mostly 2616 * -writemostly - clears write_mostly 2617 * blocked - sets the Blocked flags 2618 * -blocked - clears the Blocked and possibly simulates an error 2619 * insync - sets Insync providing device isn't active 2620 * -insync - clear Insync for a device with a slot assigned, 2621 * so that it gets rebuilt based on bitmap 2622 * write_error - sets WriteErrorSeen 2623 * -write_error - clears WriteErrorSeen 2624 */ 2625 int err = -EINVAL; 2626 if (cmd_match(buf, "faulty") && rdev->mddev->pers) { 2627 md_error(rdev->mddev, rdev); 2628 if (test_bit(Faulty, &rdev->flags)) 2629 err = 0; 2630 else 2631 err = -EBUSY; 2632 } else if (cmd_match(buf, "remove")) { 2633 if (rdev->raid_disk >= 0) 2634 err = -EBUSY; 2635 else { 2636 struct mddev *mddev = rdev->mddev; 2637 kick_rdev_from_array(rdev); 2638 if (mddev->pers) 2639 md_update_sb(mddev, 1); 2640 md_new_event(mddev); 2641 err = 0; 2642 } 2643 } else if (cmd_match(buf, "writemostly")) { 2644 set_bit(WriteMostly, &rdev->flags); 2645 err = 0; 2646 } else if (cmd_match(buf, "-writemostly")) { 2647 clear_bit(WriteMostly, &rdev->flags); 2648 err = 0; 2649 } else if (cmd_match(buf, "blocked")) { 2650 set_bit(Blocked, &rdev->flags); 2651 err = 0; 2652 } else if (cmd_match(buf, "-blocked")) { 2653 if (!test_bit(Faulty, &rdev->flags) && 2654 rdev->badblocks.unacked_exist) { 2655 /* metadata handler doesn't understand badblocks, 2656 * so we need to fail the device 2657 */ 2658 md_error(rdev->mddev, rdev); 2659 } 2660 clear_bit(Blocked, &rdev->flags); 2661 clear_bit(BlockedBadBlocks, &rdev->flags); 2662 wake_up(&rdev->blocked_wait); 2663 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2664 md_wakeup_thread(rdev->mddev->thread); 2665 2666 err = 0; 2667 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) { 2668 set_bit(In_sync, &rdev->flags); 2669 err = 0; 2670 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0) { 2671 clear_bit(In_sync, &rdev->flags); 2672 rdev->saved_raid_disk = rdev->raid_disk; 2673 rdev->raid_disk = -1; 2674 err = 0; 2675 } else if (cmd_match(buf, "write_error")) { 2676 set_bit(WriteErrorSeen, &rdev->flags); 2677 err = 0; 2678 } else if (cmd_match(buf, "-write_error")) { 2679 clear_bit(WriteErrorSeen, &rdev->flags); 2680 err = 0; 2681 } else if (cmd_match(buf, "want_replacement")) { 2682 /* Any non-spare device that is not a replacement can 2683 * become want_replacement at any time, but we then need to 2684 * check if recovery is needed. 2685 */ 2686 if (rdev->raid_disk >= 0 && 2687 !test_bit(Replacement, &rdev->flags)) 2688 set_bit(WantReplacement, &rdev->flags); 2689 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2690 md_wakeup_thread(rdev->mddev->thread); 2691 err = 0; 2692 } else if (cmd_match(buf, "-want_replacement")) { 2693 /* Clearing 'want_replacement' is always allowed. 2694 * Once replacements starts it is too late though. 2695 */ 2696 err = 0; 2697 clear_bit(WantReplacement, &rdev->flags); 2698 } else if (cmd_match(buf, "replacement")) { 2699 /* Can only set a device as a replacement when array has not 2700 * yet been started. Once running, replacement is automatic 2701 * from spares, or by assigning 'slot'. 2702 */ 2703 if (rdev->mddev->pers) 2704 err = -EBUSY; 2705 else { 2706 set_bit(Replacement, &rdev->flags); 2707 err = 0; 2708 } 2709 } else if (cmd_match(buf, "-replacement")) { 2710 /* Similarly, can only clear Replacement before start */ 2711 if (rdev->mddev->pers) 2712 err = -EBUSY; 2713 else { 2714 clear_bit(Replacement, &rdev->flags); 2715 err = 0; 2716 } 2717 } 2718 if (!err) 2719 sysfs_notify_dirent_safe(rdev->sysfs_state); 2720 return err ? err : len; 2721 } 2722 static struct rdev_sysfs_entry rdev_state = 2723 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store); 2724 2725 static ssize_t 2726 errors_show(struct md_rdev *rdev, char *page) 2727 { 2728 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); 2729 } 2730 2731 static ssize_t 2732 errors_store(struct md_rdev *rdev, const char *buf, size_t len) 2733 { 2734 char *e; 2735 unsigned long n = simple_strtoul(buf, &e, 10); 2736 if (*buf && (*e == 0 || *e == '\n')) { 2737 atomic_set(&rdev->corrected_errors, n); 2738 return len; 2739 } 2740 return -EINVAL; 2741 } 2742 static struct rdev_sysfs_entry rdev_errors = 2743 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); 2744 2745 static ssize_t 2746 slot_show(struct md_rdev *rdev, char *page) 2747 { 2748 if (rdev->raid_disk < 0) 2749 return sprintf(page, "none\n"); 2750 else 2751 return sprintf(page, "%d\n", rdev->raid_disk); 2752 } 2753 2754 static ssize_t 2755 slot_store(struct md_rdev *rdev, const char *buf, size_t len) 2756 { 2757 char *e; 2758 int err; 2759 int slot = simple_strtoul(buf, &e, 10); 2760 if (strncmp(buf, "none", 4)==0) 2761 slot = -1; 2762 else if (e==buf || (*e && *e!= '\n')) 2763 return -EINVAL; 2764 if (rdev->mddev->pers && slot == -1) { 2765 /* Setting 'slot' on an active array requires also 2766 * updating the 'rd%d' link, and communicating 2767 * with the personality with ->hot_*_disk. 2768 * For now we only support removing 2769 * failed/spare devices. This normally happens automatically, 2770 * but not when the metadata is externally managed. 2771 */ 2772 if (rdev->raid_disk == -1) 2773 return -EEXIST; 2774 /* personality does all needed checks */ 2775 if (rdev->mddev->pers->hot_remove_disk == NULL) 2776 return -EINVAL; 2777 clear_bit(Blocked, &rdev->flags); 2778 remove_and_add_spares(rdev->mddev, rdev); 2779 if (rdev->raid_disk >= 0) 2780 return -EBUSY; 2781 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2782 md_wakeup_thread(rdev->mddev->thread); 2783 } else if (rdev->mddev->pers) { 2784 /* Activating a spare .. or possibly reactivating 2785 * if we ever get bitmaps working here. 2786 */ 2787 2788 if (rdev->raid_disk != -1) 2789 return -EBUSY; 2790 2791 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery)) 2792 return -EBUSY; 2793 2794 if (rdev->mddev->pers->hot_add_disk == NULL) 2795 return -EINVAL; 2796 2797 if (slot >= rdev->mddev->raid_disks && 2798 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 2799 return -ENOSPC; 2800 2801 rdev->raid_disk = slot; 2802 if (test_bit(In_sync, &rdev->flags)) 2803 rdev->saved_raid_disk = slot; 2804 else 2805 rdev->saved_raid_disk = -1; 2806 clear_bit(In_sync, &rdev->flags); 2807 clear_bit(Bitmap_sync, &rdev->flags); 2808 err = rdev->mddev->pers-> 2809 hot_add_disk(rdev->mddev, rdev); 2810 if (err) { 2811 rdev->raid_disk = -1; 2812 return err; 2813 } else 2814 sysfs_notify_dirent_safe(rdev->sysfs_state); 2815 if (sysfs_link_rdev(rdev->mddev, rdev)) 2816 /* failure here is OK */; 2817 /* don't wakeup anyone, leave that to userspace. */ 2818 } else { 2819 if (slot >= rdev->mddev->raid_disks && 2820 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 2821 return -ENOSPC; 2822 rdev->raid_disk = slot; 2823 /* assume it is working */ 2824 clear_bit(Faulty, &rdev->flags); 2825 clear_bit(WriteMostly, &rdev->flags); 2826 set_bit(In_sync, &rdev->flags); 2827 sysfs_notify_dirent_safe(rdev->sysfs_state); 2828 } 2829 return len; 2830 } 2831 2832 2833 static struct rdev_sysfs_entry rdev_slot = 2834 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); 2835 2836 static ssize_t 2837 offset_show(struct md_rdev *rdev, char *page) 2838 { 2839 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); 2840 } 2841 2842 static ssize_t 2843 offset_store(struct md_rdev *rdev, const char *buf, size_t len) 2844 { 2845 unsigned long long offset; 2846 if (kstrtoull(buf, 10, &offset) < 0) 2847 return -EINVAL; 2848 if (rdev->mddev->pers && rdev->raid_disk >= 0) 2849 return -EBUSY; 2850 if (rdev->sectors && rdev->mddev->external) 2851 /* Must set offset before size, so overlap checks 2852 * can be sane */ 2853 return -EBUSY; 2854 rdev->data_offset = offset; 2855 rdev->new_data_offset = offset; 2856 return len; 2857 } 2858 2859 static struct rdev_sysfs_entry rdev_offset = 2860 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); 2861 2862 static ssize_t new_offset_show(struct md_rdev *rdev, char *page) 2863 { 2864 return sprintf(page, "%llu\n", 2865 (unsigned long long)rdev->new_data_offset); 2866 } 2867 2868 static ssize_t new_offset_store(struct md_rdev *rdev, 2869 const char *buf, size_t len) 2870 { 2871 unsigned long long new_offset; 2872 struct mddev *mddev = rdev->mddev; 2873 2874 if (kstrtoull(buf, 10, &new_offset) < 0) 2875 return -EINVAL; 2876 2877 if (mddev->sync_thread) 2878 return -EBUSY; 2879 if (new_offset == rdev->data_offset) 2880 /* reset is always permitted */ 2881 ; 2882 else if (new_offset > rdev->data_offset) { 2883 /* must not push array size beyond rdev_sectors */ 2884 if (new_offset - rdev->data_offset 2885 + mddev->dev_sectors > rdev->sectors) 2886 return -E2BIG; 2887 } 2888 /* Metadata worries about other space details. */ 2889 2890 /* decreasing the offset is inconsistent with a backwards 2891 * reshape. 2892 */ 2893 if (new_offset < rdev->data_offset && 2894 mddev->reshape_backwards) 2895 return -EINVAL; 2896 /* Increasing offset is inconsistent with forwards 2897 * reshape. reshape_direction should be set to 2898 * 'backwards' first. 2899 */ 2900 if (new_offset > rdev->data_offset && 2901 !mddev->reshape_backwards) 2902 return -EINVAL; 2903 2904 if (mddev->pers && mddev->persistent && 2905 !super_types[mddev->major_version] 2906 .allow_new_offset(rdev, new_offset)) 2907 return -E2BIG; 2908 rdev->new_data_offset = new_offset; 2909 if (new_offset > rdev->data_offset) 2910 mddev->reshape_backwards = 1; 2911 else if (new_offset < rdev->data_offset) 2912 mddev->reshape_backwards = 0; 2913 2914 return len; 2915 } 2916 static struct rdev_sysfs_entry rdev_new_offset = 2917 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store); 2918 2919 static ssize_t 2920 rdev_size_show(struct md_rdev *rdev, char *page) 2921 { 2922 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2); 2923 } 2924 2925 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2) 2926 { 2927 /* check if two start/length pairs overlap */ 2928 if (s1+l1 <= s2) 2929 return 0; 2930 if (s2+l2 <= s1) 2931 return 0; 2932 return 1; 2933 } 2934 2935 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors) 2936 { 2937 unsigned long long blocks; 2938 sector_t new; 2939 2940 if (kstrtoull(buf, 10, &blocks) < 0) 2941 return -EINVAL; 2942 2943 if (blocks & 1ULL << (8 * sizeof(blocks) - 1)) 2944 return -EINVAL; /* sector conversion overflow */ 2945 2946 new = blocks * 2; 2947 if (new != blocks * 2) 2948 return -EINVAL; /* unsigned long long to sector_t overflow */ 2949 2950 *sectors = new; 2951 return 0; 2952 } 2953 2954 static ssize_t 2955 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len) 2956 { 2957 struct mddev *my_mddev = rdev->mddev; 2958 sector_t oldsectors = rdev->sectors; 2959 sector_t sectors; 2960 2961 if (strict_blocks_to_sectors(buf, §ors) < 0) 2962 return -EINVAL; 2963 if (rdev->data_offset != rdev->new_data_offset) 2964 return -EINVAL; /* too confusing */ 2965 if (my_mddev->pers && rdev->raid_disk >= 0) { 2966 if (my_mddev->persistent) { 2967 sectors = super_types[my_mddev->major_version]. 2968 rdev_size_change(rdev, sectors); 2969 if (!sectors) 2970 return -EBUSY; 2971 } else if (!sectors) 2972 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) - 2973 rdev->data_offset; 2974 if (!my_mddev->pers->resize) 2975 /* Cannot change size for RAID0 or Linear etc */ 2976 return -EINVAL; 2977 } 2978 if (sectors < my_mddev->dev_sectors) 2979 return -EINVAL; /* component must fit device */ 2980 2981 rdev->sectors = sectors; 2982 if (sectors > oldsectors && my_mddev->external) { 2983 /* need to check that all other rdevs with the same ->bdev 2984 * do not overlap. We need to unlock the mddev to avoid 2985 * a deadlock. We have already changed rdev->sectors, and if 2986 * we have to change it back, we will have the lock again. 2987 */ 2988 struct mddev *mddev; 2989 int overlap = 0; 2990 struct list_head *tmp; 2991 2992 mddev_unlock(my_mddev); 2993 for_each_mddev(mddev, tmp) { 2994 struct md_rdev *rdev2; 2995 2996 mddev_lock_nointr(mddev); 2997 rdev_for_each(rdev2, mddev) 2998 if (rdev->bdev == rdev2->bdev && 2999 rdev != rdev2 && 3000 overlaps(rdev->data_offset, rdev->sectors, 3001 rdev2->data_offset, 3002 rdev2->sectors)) { 3003 overlap = 1; 3004 break; 3005 } 3006 mddev_unlock(mddev); 3007 if (overlap) { 3008 mddev_put(mddev); 3009 break; 3010 } 3011 } 3012 mddev_lock_nointr(my_mddev); 3013 if (overlap) { 3014 /* Someone else could have slipped in a size 3015 * change here, but doing so is just silly. 3016 * We put oldsectors back because we *know* it is 3017 * safe, and trust userspace not to race with 3018 * itself 3019 */ 3020 rdev->sectors = oldsectors; 3021 return -EBUSY; 3022 } 3023 } 3024 return len; 3025 } 3026 3027 static struct rdev_sysfs_entry rdev_size = 3028 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); 3029 3030 3031 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page) 3032 { 3033 unsigned long long recovery_start = rdev->recovery_offset; 3034 3035 if (test_bit(In_sync, &rdev->flags) || 3036 recovery_start == MaxSector) 3037 return sprintf(page, "none\n"); 3038 3039 return sprintf(page, "%llu\n", recovery_start); 3040 } 3041 3042 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len) 3043 { 3044 unsigned long long recovery_start; 3045 3046 if (cmd_match(buf, "none")) 3047 recovery_start = MaxSector; 3048 else if (kstrtoull(buf, 10, &recovery_start)) 3049 return -EINVAL; 3050 3051 if (rdev->mddev->pers && 3052 rdev->raid_disk >= 0) 3053 return -EBUSY; 3054 3055 rdev->recovery_offset = recovery_start; 3056 if (recovery_start == MaxSector) 3057 set_bit(In_sync, &rdev->flags); 3058 else 3059 clear_bit(In_sync, &rdev->flags); 3060 return len; 3061 } 3062 3063 static struct rdev_sysfs_entry rdev_recovery_start = 3064 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store); 3065 3066 3067 static ssize_t 3068 badblocks_show(struct badblocks *bb, char *page, int unack); 3069 static ssize_t 3070 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack); 3071 3072 static ssize_t bb_show(struct md_rdev *rdev, char *page) 3073 { 3074 return badblocks_show(&rdev->badblocks, page, 0); 3075 } 3076 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len) 3077 { 3078 int rv = badblocks_store(&rdev->badblocks, page, len, 0); 3079 /* Maybe that ack was all we needed */ 3080 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags)) 3081 wake_up(&rdev->blocked_wait); 3082 return rv; 3083 } 3084 static struct rdev_sysfs_entry rdev_bad_blocks = 3085 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store); 3086 3087 3088 static ssize_t ubb_show(struct md_rdev *rdev, char *page) 3089 { 3090 return badblocks_show(&rdev->badblocks, page, 1); 3091 } 3092 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len) 3093 { 3094 return badblocks_store(&rdev->badblocks, page, len, 1); 3095 } 3096 static struct rdev_sysfs_entry rdev_unack_bad_blocks = 3097 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store); 3098 3099 static struct attribute *rdev_default_attrs[] = { 3100 &rdev_state.attr, 3101 &rdev_errors.attr, 3102 &rdev_slot.attr, 3103 &rdev_offset.attr, 3104 &rdev_new_offset.attr, 3105 &rdev_size.attr, 3106 &rdev_recovery_start.attr, 3107 &rdev_bad_blocks.attr, 3108 &rdev_unack_bad_blocks.attr, 3109 NULL, 3110 }; 3111 static ssize_t 3112 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 3113 { 3114 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3115 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3116 struct mddev *mddev = rdev->mddev; 3117 ssize_t rv; 3118 3119 if (!entry->show) 3120 return -EIO; 3121 3122 rv = mddev ? mddev_lock(mddev) : -EBUSY; 3123 if (!rv) { 3124 if (rdev->mddev == NULL) 3125 rv = -EBUSY; 3126 else 3127 rv = entry->show(rdev, page); 3128 mddev_unlock(mddev); 3129 } 3130 return rv; 3131 } 3132 3133 static ssize_t 3134 rdev_attr_store(struct kobject *kobj, struct attribute *attr, 3135 const char *page, size_t length) 3136 { 3137 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3138 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3139 ssize_t rv; 3140 struct mddev *mddev = rdev->mddev; 3141 3142 if (!entry->store) 3143 return -EIO; 3144 if (!capable(CAP_SYS_ADMIN)) 3145 return -EACCES; 3146 rv = mddev ? mddev_lock(mddev): -EBUSY; 3147 if (!rv) { 3148 if (rdev->mddev == NULL) 3149 rv = -EBUSY; 3150 else 3151 rv = entry->store(rdev, page, length); 3152 mddev_unlock(mddev); 3153 } 3154 return rv; 3155 } 3156 3157 static void rdev_free(struct kobject *ko) 3158 { 3159 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj); 3160 kfree(rdev); 3161 } 3162 static const struct sysfs_ops rdev_sysfs_ops = { 3163 .show = rdev_attr_show, 3164 .store = rdev_attr_store, 3165 }; 3166 static struct kobj_type rdev_ktype = { 3167 .release = rdev_free, 3168 .sysfs_ops = &rdev_sysfs_ops, 3169 .default_attrs = rdev_default_attrs, 3170 }; 3171 3172 int md_rdev_init(struct md_rdev *rdev) 3173 { 3174 rdev->desc_nr = -1; 3175 rdev->saved_raid_disk = -1; 3176 rdev->raid_disk = -1; 3177 rdev->flags = 0; 3178 rdev->data_offset = 0; 3179 rdev->new_data_offset = 0; 3180 rdev->sb_events = 0; 3181 rdev->last_read_error.tv_sec = 0; 3182 rdev->last_read_error.tv_nsec = 0; 3183 rdev->sb_loaded = 0; 3184 rdev->bb_page = NULL; 3185 atomic_set(&rdev->nr_pending, 0); 3186 atomic_set(&rdev->read_errors, 0); 3187 atomic_set(&rdev->corrected_errors, 0); 3188 3189 INIT_LIST_HEAD(&rdev->same_set); 3190 init_waitqueue_head(&rdev->blocked_wait); 3191 3192 /* Add space to store bad block list. 3193 * This reserves the space even on arrays where it cannot 3194 * be used - I wonder if that matters 3195 */ 3196 rdev->badblocks.count = 0; 3197 rdev->badblocks.shift = -1; /* disabled until explicitly enabled */ 3198 rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL); 3199 seqlock_init(&rdev->badblocks.lock); 3200 if (rdev->badblocks.page == NULL) 3201 return -ENOMEM; 3202 3203 return 0; 3204 } 3205 EXPORT_SYMBOL_GPL(md_rdev_init); 3206 /* 3207 * Import a device. If 'super_format' >= 0, then sanity check the superblock 3208 * 3209 * mark the device faulty if: 3210 * 3211 * - the device is nonexistent (zero size) 3212 * - the device has no valid superblock 3213 * 3214 * a faulty rdev _never_ has rdev->sb set. 3215 */ 3216 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor) 3217 { 3218 char b[BDEVNAME_SIZE]; 3219 int err; 3220 struct md_rdev *rdev; 3221 sector_t size; 3222 3223 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 3224 if (!rdev) { 3225 printk(KERN_ERR "md: could not alloc mem for new device!\n"); 3226 return ERR_PTR(-ENOMEM); 3227 } 3228 3229 err = md_rdev_init(rdev); 3230 if (err) 3231 goto abort_free; 3232 err = alloc_disk_sb(rdev); 3233 if (err) 3234 goto abort_free; 3235 3236 err = lock_rdev(rdev, newdev, super_format == -2); 3237 if (err) 3238 goto abort_free; 3239 3240 kobject_init(&rdev->kobj, &rdev_ktype); 3241 3242 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS; 3243 if (!size) { 3244 printk(KERN_WARNING 3245 "md: %s has zero or unknown size, marking faulty!\n", 3246 bdevname(rdev->bdev,b)); 3247 err = -EINVAL; 3248 goto abort_free; 3249 } 3250 3251 if (super_format >= 0) { 3252 err = super_types[super_format]. 3253 load_super(rdev, NULL, super_minor); 3254 if (err == -EINVAL) { 3255 printk(KERN_WARNING 3256 "md: %s does not have a valid v%d.%d " 3257 "superblock, not importing!\n", 3258 bdevname(rdev->bdev,b), 3259 super_format, super_minor); 3260 goto abort_free; 3261 } 3262 if (err < 0) { 3263 printk(KERN_WARNING 3264 "md: could not read %s's sb, not importing!\n", 3265 bdevname(rdev->bdev,b)); 3266 goto abort_free; 3267 } 3268 } 3269 3270 return rdev; 3271 3272 abort_free: 3273 if (rdev->bdev) 3274 unlock_rdev(rdev); 3275 md_rdev_clear(rdev); 3276 kfree(rdev); 3277 return ERR_PTR(err); 3278 } 3279 3280 /* 3281 * Check a full RAID array for plausibility 3282 */ 3283 3284 3285 static void analyze_sbs(struct mddev * mddev) 3286 { 3287 int i; 3288 struct md_rdev *rdev, *freshest, *tmp; 3289 char b[BDEVNAME_SIZE]; 3290 3291 freshest = NULL; 3292 rdev_for_each_safe(rdev, tmp, mddev) 3293 switch (super_types[mddev->major_version]. 3294 load_super(rdev, freshest, mddev->minor_version)) { 3295 case 1: 3296 freshest = rdev; 3297 break; 3298 case 0: 3299 break; 3300 default: 3301 printk( KERN_ERR \ 3302 "md: fatal superblock inconsistency in %s" 3303 " -- removing from array\n", 3304 bdevname(rdev->bdev,b)); 3305 kick_rdev_from_array(rdev); 3306 } 3307 3308 3309 super_types[mddev->major_version]. 3310 validate_super(mddev, freshest); 3311 3312 i = 0; 3313 rdev_for_each_safe(rdev, tmp, mddev) { 3314 if (mddev->max_disks && 3315 (rdev->desc_nr >= mddev->max_disks || 3316 i > mddev->max_disks)) { 3317 printk(KERN_WARNING 3318 "md: %s: %s: only %d devices permitted\n", 3319 mdname(mddev), bdevname(rdev->bdev, b), 3320 mddev->max_disks); 3321 kick_rdev_from_array(rdev); 3322 continue; 3323 } 3324 if (rdev != freshest) 3325 if (super_types[mddev->major_version]. 3326 validate_super(mddev, rdev)) { 3327 printk(KERN_WARNING "md: kicking non-fresh %s" 3328 " from array!\n", 3329 bdevname(rdev->bdev,b)); 3330 kick_rdev_from_array(rdev); 3331 continue; 3332 } 3333 if (mddev->level == LEVEL_MULTIPATH) { 3334 rdev->desc_nr = i++; 3335 rdev->raid_disk = rdev->desc_nr; 3336 set_bit(In_sync, &rdev->flags); 3337 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) { 3338 rdev->raid_disk = -1; 3339 clear_bit(In_sync, &rdev->flags); 3340 } 3341 } 3342 } 3343 3344 /* Read a fixed-point number. 3345 * Numbers in sysfs attributes should be in "standard" units where 3346 * possible, so time should be in seconds. 3347 * However we internally use a a much smaller unit such as 3348 * milliseconds or jiffies. 3349 * This function takes a decimal number with a possible fractional 3350 * component, and produces an integer which is the result of 3351 * multiplying that number by 10^'scale'. 3352 * all without any floating-point arithmetic. 3353 */ 3354 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale) 3355 { 3356 unsigned long result = 0; 3357 long decimals = -1; 3358 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) { 3359 if (*cp == '.') 3360 decimals = 0; 3361 else if (decimals < scale) { 3362 unsigned int value; 3363 value = *cp - '0'; 3364 result = result * 10 + value; 3365 if (decimals >= 0) 3366 decimals++; 3367 } 3368 cp++; 3369 } 3370 if (*cp == '\n') 3371 cp++; 3372 if (*cp) 3373 return -EINVAL; 3374 if (decimals < 0) 3375 decimals = 0; 3376 while (decimals < scale) { 3377 result *= 10; 3378 decimals ++; 3379 } 3380 *res = result; 3381 return 0; 3382 } 3383 3384 3385 static void md_safemode_timeout(unsigned long data); 3386 3387 static ssize_t 3388 safe_delay_show(struct mddev *mddev, char *page) 3389 { 3390 int msec = (mddev->safemode_delay*1000)/HZ; 3391 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000); 3392 } 3393 static ssize_t 3394 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len) 3395 { 3396 unsigned long msec; 3397 3398 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0) 3399 return -EINVAL; 3400 if (msec == 0) 3401 mddev->safemode_delay = 0; 3402 else { 3403 unsigned long old_delay = mddev->safemode_delay; 3404 mddev->safemode_delay = (msec*HZ)/1000; 3405 if (mddev->safemode_delay == 0) 3406 mddev->safemode_delay = 1; 3407 if (mddev->safemode_delay < old_delay || old_delay == 0) 3408 md_safemode_timeout((unsigned long)mddev); 3409 } 3410 return len; 3411 } 3412 static struct md_sysfs_entry md_safe_delay = 3413 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); 3414 3415 static ssize_t 3416 level_show(struct mddev *mddev, char *page) 3417 { 3418 struct md_personality *p = mddev->pers; 3419 if (p) 3420 return sprintf(page, "%s\n", p->name); 3421 else if (mddev->clevel[0]) 3422 return sprintf(page, "%s\n", mddev->clevel); 3423 else if (mddev->level != LEVEL_NONE) 3424 return sprintf(page, "%d\n", mddev->level); 3425 else 3426 return 0; 3427 } 3428 3429 static ssize_t 3430 level_store(struct mddev *mddev, const char *buf, size_t len) 3431 { 3432 char clevel[16]; 3433 ssize_t rv = len; 3434 struct md_personality *pers; 3435 long level; 3436 void *priv; 3437 struct md_rdev *rdev; 3438 3439 if (mddev->pers == NULL) { 3440 if (len == 0) 3441 return 0; 3442 if (len >= sizeof(mddev->clevel)) 3443 return -ENOSPC; 3444 strncpy(mddev->clevel, buf, len); 3445 if (mddev->clevel[len-1] == '\n') 3446 len--; 3447 mddev->clevel[len] = 0; 3448 mddev->level = LEVEL_NONE; 3449 return rv; 3450 } 3451 if (mddev->ro) 3452 return -EROFS; 3453 3454 /* request to change the personality. Need to ensure: 3455 * - array is not engaged in resync/recovery/reshape 3456 * - old personality can be suspended 3457 * - new personality will access other array. 3458 */ 3459 3460 if (mddev->sync_thread || 3461 mddev->reshape_position != MaxSector || 3462 mddev->sysfs_active) 3463 return -EBUSY; 3464 3465 if (!mddev->pers->quiesce) { 3466 printk(KERN_WARNING "md: %s: %s does not support online personality change\n", 3467 mdname(mddev), mddev->pers->name); 3468 return -EINVAL; 3469 } 3470 3471 /* Now find the new personality */ 3472 if (len == 0 || len >= sizeof(clevel)) 3473 return -EINVAL; 3474 strncpy(clevel, buf, len); 3475 if (clevel[len-1] == '\n') 3476 len--; 3477 clevel[len] = 0; 3478 if (kstrtol(clevel, 10, &level)) 3479 level = LEVEL_NONE; 3480 3481 if (request_module("md-%s", clevel) != 0) 3482 request_module("md-level-%s", clevel); 3483 spin_lock(&pers_lock); 3484 pers = find_pers(level, clevel); 3485 if (!pers || !try_module_get(pers->owner)) { 3486 spin_unlock(&pers_lock); 3487 printk(KERN_WARNING "md: personality %s not loaded\n", clevel); 3488 return -EINVAL; 3489 } 3490 spin_unlock(&pers_lock); 3491 3492 if (pers == mddev->pers) { 3493 /* Nothing to do! */ 3494 module_put(pers->owner); 3495 return rv; 3496 } 3497 if (!pers->takeover) { 3498 module_put(pers->owner); 3499 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n", 3500 mdname(mddev), clevel); 3501 return -EINVAL; 3502 } 3503 3504 rdev_for_each(rdev, mddev) 3505 rdev->new_raid_disk = rdev->raid_disk; 3506 3507 /* ->takeover must set new_* and/or delta_disks 3508 * if it succeeds, and may set them when it fails. 3509 */ 3510 priv = pers->takeover(mddev); 3511 if (IS_ERR(priv)) { 3512 mddev->new_level = mddev->level; 3513 mddev->new_layout = mddev->layout; 3514 mddev->new_chunk_sectors = mddev->chunk_sectors; 3515 mddev->raid_disks -= mddev->delta_disks; 3516 mddev->delta_disks = 0; 3517 mddev->reshape_backwards = 0; 3518 module_put(pers->owner); 3519 printk(KERN_WARNING "md: %s: %s would not accept array\n", 3520 mdname(mddev), clevel); 3521 return PTR_ERR(priv); 3522 } 3523 3524 /* Looks like we have a winner */ 3525 mddev_suspend(mddev); 3526 mddev->pers->stop(mddev); 3527 3528 if (mddev->pers->sync_request == NULL && 3529 pers->sync_request != NULL) { 3530 /* need to add the md_redundancy_group */ 3531 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 3532 printk(KERN_WARNING 3533 "md: cannot register extra attributes for %s\n", 3534 mdname(mddev)); 3535 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action"); 3536 } 3537 if (mddev->pers->sync_request != NULL && 3538 pers->sync_request == NULL) { 3539 /* need to remove the md_redundancy_group */ 3540 if (mddev->to_remove == NULL) 3541 mddev->to_remove = &md_redundancy_group; 3542 } 3543 3544 if (mddev->pers->sync_request == NULL && 3545 mddev->external) { 3546 /* We are converting from a no-redundancy array 3547 * to a redundancy array and metadata is managed 3548 * externally so we need to be sure that writes 3549 * won't block due to a need to transition 3550 * clean->dirty 3551 * until external management is started. 3552 */ 3553 mddev->in_sync = 0; 3554 mddev->safemode_delay = 0; 3555 mddev->safemode = 0; 3556 } 3557 3558 rdev_for_each(rdev, mddev) { 3559 if (rdev->raid_disk < 0) 3560 continue; 3561 if (rdev->new_raid_disk >= mddev->raid_disks) 3562 rdev->new_raid_disk = -1; 3563 if (rdev->new_raid_disk == rdev->raid_disk) 3564 continue; 3565 sysfs_unlink_rdev(mddev, rdev); 3566 } 3567 rdev_for_each(rdev, mddev) { 3568 if (rdev->raid_disk < 0) 3569 continue; 3570 if (rdev->new_raid_disk == rdev->raid_disk) 3571 continue; 3572 rdev->raid_disk = rdev->new_raid_disk; 3573 if (rdev->raid_disk < 0) 3574 clear_bit(In_sync, &rdev->flags); 3575 else { 3576 if (sysfs_link_rdev(mddev, rdev)) 3577 printk(KERN_WARNING "md: cannot register rd%d" 3578 " for %s after level change\n", 3579 rdev->raid_disk, mdname(mddev)); 3580 } 3581 } 3582 3583 module_put(mddev->pers->owner); 3584 mddev->pers = pers; 3585 mddev->private = priv; 3586 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 3587 mddev->level = mddev->new_level; 3588 mddev->layout = mddev->new_layout; 3589 mddev->chunk_sectors = mddev->new_chunk_sectors; 3590 mddev->delta_disks = 0; 3591 mddev->reshape_backwards = 0; 3592 mddev->degraded = 0; 3593 if (mddev->pers->sync_request == NULL) { 3594 /* this is now an array without redundancy, so 3595 * it must always be in_sync 3596 */ 3597 mddev->in_sync = 1; 3598 del_timer_sync(&mddev->safemode_timer); 3599 } 3600 blk_set_stacking_limits(&mddev->queue->limits); 3601 pers->run(mddev); 3602 set_bit(MD_CHANGE_DEVS, &mddev->flags); 3603 mddev_resume(mddev); 3604 if (!mddev->thread) 3605 md_update_sb(mddev, 1); 3606 sysfs_notify(&mddev->kobj, NULL, "level"); 3607 md_new_event(mddev); 3608 return rv; 3609 } 3610 3611 static struct md_sysfs_entry md_level = 3612 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); 3613 3614 3615 static ssize_t 3616 layout_show(struct mddev *mddev, char *page) 3617 { 3618 /* just a number, not meaningful for all levels */ 3619 if (mddev->reshape_position != MaxSector && 3620 mddev->layout != mddev->new_layout) 3621 return sprintf(page, "%d (%d)\n", 3622 mddev->new_layout, mddev->layout); 3623 return sprintf(page, "%d\n", mddev->layout); 3624 } 3625 3626 static ssize_t 3627 layout_store(struct mddev *mddev, const char *buf, size_t len) 3628 { 3629 char *e; 3630 unsigned long n = simple_strtoul(buf, &e, 10); 3631 3632 if (!*buf || (*e && *e != '\n')) 3633 return -EINVAL; 3634 3635 if (mddev->pers) { 3636 int err; 3637 if (mddev->pers->check_reshape == NULL) 3638 return -EBUSY; 3639 if (mddev->ro) 3640 return -EROFS; 3641 mddev->new_layout = n; 3642 err = mddev->pers->check_reshape(mddev); 3643 if (err) { 3644 mddev->new_layout = mddev->layout; 3645 return err; 3646 } 3647 } else { 3648 mddev->new_layout = n; 3649 if (mddev->reshape_position == MaxSector) 3650 mddev->layout = n; 3651 } 3652 return len; 3653 } 3654 static struct md_sysfs_entry md_layout = 3655 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); 3656 3657 3658 static ssize_t 3659 raid_disks_show(struct mddev *mddev, char *page) 3660 { 3661 if (mddev->raid_disks == 0) 3662 return 0; 3663 if (mddev->reshape_position != MaxSector && 3664 mddev->delta_disks != 0) 3665 return sprintf(page, "%d (%d)\n", mddev->raid_disks, 3666 mddev->raid_disks - mddev->delta_disks); 3667 return sprintf(page, "%d\n", mddev->raid_disks); 3668 } 3669 3670 static int update_raid_disks(struct mddev *mddev, int raid_disks); 3671 3672 static ssize_t 3673 raid_disks_store(struct mddev *mddev, const char *buf, size_t len) 3674 { 3675 char *e; 3676 int rv = 0; 3677 unsigned long n = simple_strtoul(buf, &e, 10); 3678 3679 if (!*buf || (*e && *e != '\n')) 3680 return -EINVAL; 3681 3682 if (mddev->pers) 3683 rv = update_raid_disks(mddev, n); 3684 else if (mddev->reshape_position != MaxSector) { 3685 struct md_rdev *rdev; 3686 int olddisks = mddev->raid_disks - mddev->delta_disks; 3687 3688 rdev_for_each(rdev, mddev) { 3689 if (olddisks < n && 3690 rdev->data_offset < rdev->new_data_offset) 3691 return -EINVAL; 3692 if (olddisks > n && 3693 rdev->data_offset > rdev->new_data_offset) 3694 return -EINVAL; 3695 } 3696 mddev->delta_disks = n - olddisks; 3697 mddev->raid_disks = n; 3698 mddev->reshape_backwards = (mddev->delta_disks < 0); 3699 } else 3700 mddev->raid_disks = n; 3701 return rv ? rv : len; 3702 } 3703 static struct md_sysfs_entry md_raid_disks = 3704 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); 3705 3706 static ssize_t 3707 chunk_size_show(struct mddev *mddev, char *page) 3708 { 3709 if (mddev->reshape_position != MaxSector && 3710 mddev->chunk_sectors != mddev->new_chunk_sectors) 3711 return sprintf(page, "%d (%d)\n", 3712 mddev->new_chunk_sectors << 9, 3713 mddev->chunk_sectors << 9); 3714 return sprintf(page, "%d\n", mddev->chunk_sectors << 9); 3715 } 3716 3717 static ssize_t 3718 chunk_size_store(struct mddev *mddev, const char *buf, size_t len) 3719 { 3720 char *e; 3721 unsigned long n = simple_strtoul(buf, &e, 10); 3722 3723 if (!*buf || (*e && *e != '\n')) 3724 return -EINVAL; 3725 3726 if (mddev->pers) { 3727 int err; 3728 if (mddev->pers->check_reshape == NULL) 3729 return -EBUSY; 3730 if (mddev->ro) 3731 return -EROFS; 3732 mddev->new_chunk_sectors = n >> 9; 3733 err = mddev->pers->check_reshape(mddev); 3734 if (err) { 3735 mddev->new_chunk_sectors = mddev->chunk_sectors; 3736 return err; 3737 } 3738 } else { 3739 mddev->new_chunk_sectors = n >> 9; 3740 if (mddev->reshape_position == MaxSector) 3741 mddev->chunk_sectors = n >> 9; 3742 } 3743 return len; 3744 } 3745 static struct md_sysfs_entry md_chunk_size = 3746 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); 3747 3748 static ssize_t 3749 resync_start_show(struct mddev *mddev, char *page) 3750 { 3751 if (mddev->recovery_cp == MaxSector) 3752 return sprintf(page, "none\n"); 3753 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); 3754 } 3755 3756 static ssize_t 3757 resync_start_store(struct mddev *mddev, const char *buf, size_t len) 3758 { 3759 char *e; 3760 unsigned long long n = simple_strtoull(buf, &e, 10); 3761 3762 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 3763 return -EBUSY; 3764 if (cmd_match(buf, "none")) 3765 n = MaxSector; 3766 else if (!*buf || (*e && *e != '\n')) 3767 return -EINVAL; 3768 3769 mddev->recovery_cp = n; 3770 if (mddev->pers) 3771 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 3772 return len; 3773 } 3774 static struct md_sysfs_entry md_resync_start = 3775 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store); 3776 3777 /* 3778 * The array state can be: 3779 * 3780 * clear 3781 * No devices, no size, no level 3782 * Equivalent to STOP_ARRAY ioctl 3783 * inactive 3784 * May have some settings, but array is not active 3785 * all IO results in error 3786 * When written, doesn't tear down array, but just stops it 3787 * suspended (not supported yet) 3788 * All IO requests will block. The array can be reconfigured. 3789 * Writing this, if accepted, will block until array is quiescent 3790 * readonly 3791 * no resync can happen. no superblocks get written. 3792 * write requests fail 3793 * read-auto 3794 * like readonly, but behaves like 'clean' on a write request. 3795 * 3796 * clean - no pending writes, but otherwise active. 3797 * When written to inactive array, starts without resync 3798 * If a write request arrives then 3799 * if metadata is known, mark 'dirty' and switch to 'active'. 3800 * if not known, block and switch to write-pending 3801 * If written to an active array that has pending writes, then fails. 3802 * active 3803 * fully active: IO and resync can be happening. 3804 * When written to inactive array, starts with resync 3805 * 3806 * write-pending 3807 * clean, but writes are blocked waiting for 'active' to be written. 3808 * 3809 * active-idle 3810 * like active, but no writes have been seen for a while (100msec). 3811 * 3812 */ 3813 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, 3814 write_pending, active_idle, bad_word}; 3815 static char *array_states[] = { 3816 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", 3817 "write-pending", "active-idle", NULL }; 3818 3819 static int match_word(const char *word, char **list) 3820 { 3821 int n; 3822 for (n=0; list[n]; n++) 3823 if (cmd_match(word, list[n])) 3824 break; 3825 return n; 3826 } 3827 3828 static ssize_t 3829 array_state_show(struct mddev *mddev, char *page) 3830 { 3831 enum array_state st = inactive; 3832 3833 if (mddev->pers) 3834 switch(mddev->ro) { 3835 case 1: 3836 st = readonly; 3837 break; 3838 case 2: 3839 st = read_auto; 3840 break; 3841 case 0: 3842 if (mddev->in_sync) 3843 st = clean; 3844 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags)) 3845 st = write_pending; 3846 else if (mddev->safemode) 3847 st = active_idle; 3848 else 3849 st = active; 3850 } 3851 else { 3852 if (list_empty(&mddev->disks) && 3853 mddev->raid_disks == 0 && 3854 mddev->dev_sectors == 0) 3855 st = clear; 3856 else 3857 st = inactive; 3858 } 3859 return sprintf(page, "%s\n", array_states[st]); 3860 } 3861 3862 static int do_md_stop(struct mddev * mddev, int ro, struct block_device *bdev); 3863 static int md_set_readonly(struct mddev * mddev, struct block_device *bdev); 3864 static int do_md_run(struct mddev * mddev); 3865 static int restart_array(struct mddev *mddev); 3866 3867 static ssize_t 3868 array_state_store(struct mddev *mddev, const char *buf, size_t len) 3869 { 3870 int err = -EINVAL; 3871 enum array_state st = match_word(buf, array_states); 3872 switch(st) { 3873 case bad_word: 3874 break; 3875 case clear: 3876 /* stopping an active array */ 3877 err = do_md_stop(mddev, 0, NULL); 3878 break; 3879 case inactive: 3880 /* stopping an active array */ 3881 if (mddev->pers) 3882 err = do_md_stop(mddev, 2, NULL); 3883 else 3884 err = 0; /* already inactive */ 3885 break; 3886 case suspended: 3887 break; /* not supported yet */ 3888 case readonly: 3889 if (mddev->pers) 3890 err = md_set_readonly(mddev, NULL); 3891 else { 3892 mddev->ro = 1; 3893 set_disk_ro(mddev->gendisk, 1); 3894 err = do_md_run(mddev); 3895 } 3896 break; 3897 case read_auto: 3898 if (mddev->pers) { 3899 if (mddev->ro == 0) 3900 err = md_set_readonly(mddev, NULL); 3901 else if (mddev->ro == 1) 3902 err = restart_array(mddev); 3903 if (err == 0) { 3904 mddev->ro = 2; 3905 set_disk_ro(mddev->gendisk, 0); 3906 } 3907 } else { 3908 mddev->ro = 2; 3909 err = do_md_run(mddev); 3910 } 3911 break; 3912 case clean: 3913 if (mddev->pers) { 3914 restart_array(mddev); 3915 spin_lock_irq(&mddev->write_lock); 3916 if (atomic_read(&mddev->writes_pending) == 0) { 3917 if (mddev->in_sync == 0) { 3918 mddev->in_sync = 1; 3919 if (mddev->safemode == 1) 3920 mddev->safemode = 0; 3921 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 3922 } 3923 err = 0; 3924 } else 3925 err = -EBUSY; 3926 spin_unlock_irq(&mddev->write_lock); 3927 } else 3928 err = -EINVAL; 3929 break; 3930 case active: 3931 if (mddev->pers) { 3932 restart_array(mddev); 3933 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 3934 wake_up(&mddev->sb_wait); 3935 err = 0; 3936 } else { 3937 mddev->ro = 0; 3938 set_disk_ro(mddev->gendisk, 0); 3939 err = do_md_run(mddev); 3940 } 3941 break; 3942 case write_pending: 3943 case active_idle: 3944 /* these cannot be set */ 3945 break; 3946 } 3947 if (err) 3948 return err; 3949 else { 3950 if (mddev->hold_active == UNTIL_IOCTL) 3951 mddev->hold_active = 0; 3952 sysfs_notify_dirent_safe(mddev->sysfs_state); 3953 return len; 3954 } 3955 } 3956 static struct md_sysfs_entry md_array_state = 3957 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); 3958 3959 static ssize_t 3960 max_corrected_read_errors_show(struct mddev *mddev, char *page) { 3961 return sprintf(page, "%d\n", 3962 atomic_read(&mddev->max_corr_read_errors)); 3963 } 3964 3965 static ssize_t 3966 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len) 3967 { 3968 char *e; 3969 unsigned long n = simple_strtoul(buf, &e, 10); 3970 3971 if (*buf && (*e == 0 || *e == '\n')) { 3972 atomic_set(&mddev->max_corr_read_errors, n); 3973 return len; 3974 } 3975 return -EINVAL; 3976 } 3977 3978 static struct md_sysfs_entry max_corr_read_errors = 3979 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show, 3980 max_corrected_read_errors_store); 3981 3982 static ssize_t 3983 null_show(struct mddev *mddev, char *page) 3984 { 3985 return -EINVAL; 3986 } 3987 3988 static ssize_t 3989 new_dev_store(struct mddev *mddev, const char *buf, size_t len) 3990 { 3991 /* buf must be %d:%d\n? giving major and minor numbers */ 3992 /* The new device is added to the array. 3993 * If the array has a persistent superblock, we read the 3994 * superblock to initialise info and check validity. 3995 * Otherwise, only checking done is that in bind_rdev_to_array, 3996 * which mainly checks size. 3997 */ 3998 char *e; 3999 int major = simple_strtoul(buf, &e, 10); 4000 int minor; 4001 dev_t dev; 4002 struct md_rdev *rdev; 4003 int err; 4004 4005 if (!*buf || *e != ':' || !e[1] || e[1] == '\n') 4006 return -EINVAL; 4007 minor = simple_strtoul(e+1, &e, 10); 4008 if (*e && *e != '\n') 4009 return -EINVAL; 4010 dev = MKDEV(major, minor); 4011 if (major != MAJOR(dev) || 4012 minor != MINOR(dev)) 4013 return -EOVERFLOW; 4014 4015 4016 if (mddev->persistent) { 4017 rdev = md_import_device(dev, mddev->major_version, 4018 mddev->minor_version); 4019 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { 4020 struct md_rdev *rdev0 4021 = list_entry(mddev->disks.next, 4022 struct md_rdev, same_set); 4023 err = super_types[mddev->major_version] 4024 .load_super(rdev, rdev0, mddev->minor_version); 4025 if (err < 0) 4026 goto out; 4027 } 4028 } else if (mddev->external) 4029 rdev = md_import_device(dev, -2, -1); 4030 else 4031 rdev = md_import_device(dev, -1, -1); 4032 4033 if (IS_ERR(rdev)) 4034 return PTR_ERR(rdev); 4035 err = bind_rdev_to_array(rdev, mddev); 4036 out: 4037 if (err) 4038 export_rdev(rdev); 4039 return err ? err : len; 4040 } 4041 4042 static struct md_sysfs_entry md_new_device = 4043 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store); 4044 4045 static ssize_t 4046 bitmap_store(struct mddev *mddev, const char *buf, size_t len) 4047 { 4048 char *end; 4049 unsigned long chunk, end_chunk; 4050 4051 if (!mddev->bitmap) 4052 goto out; 4053 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */ 4054 while (*buf) { 4055 chunk = end_chunk = simple_strtoul(buf, &end, 0); 4056 if (buf == end) break; 4057 if (*end == '-') { /* range */ 4058 buf = end + 1; 4059 end_chunk = simple_strtoul(buf, &end, 0); 4060 if (buf == end) break; 4061 } 4062 if (*end && !isspace(*end)) break; 4063 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk); 4064 buf = skip_spaces(end); 4065 } 4066 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */ 4067 out: 4068 return len; 4069 } 4070 4071 static struct md_sysfs_entry md_bitmap = 4072 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); 4073 4074 static ssize_t 4075 size_show(struct mddev *mddev, char *page) 4076 { 4077 return sprintf(page, "%llu\n", 4078 (unsigned long long)mddev->dev_sectors / 2); 4079 } 4080 4081 static int update_size(struct mddev *mddev, sector_t num_sectors); 4082 4083 static ssize_t 4084 size_store(struct mddev *mddev, const char *buf, size_t len) 4085 { 4086 /* If array is inactive, we can reduce the component size, but 4087 * not increase it (except from 0). 4088 * If array is active, we can try an on-line resize 4089 */ 4090 sector_t sectors; 4091 int err = strict_blocks_to_sectors(buf, §ors); 4092 4093 if (err < 0) 4094 return err; 4095 if (mddev->pers) { 4096 err = update_size(mddev, sectors); 4097 md_update_sb(mddev, 1); 4098 } else { 4099 if (mddev->dev_sectors == 0 || 4100 mddev->dev_sectors > sectors) 4101 mddev->dev_sectors = sectors; 4102 else 4103 err = -ENOSPC; 4104 } 4105 return err ? err : len; 4106 } 4107 4108 static struct md_sysfs_entry md_size = 4109 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); 4110 4111 4112 /* Metadata version. 4113 * This is one of 4114 * 'none' for arrays with no metadata (good luck...) 4115 * 'external' for arrays with externally managed metadata, 4116 * or N.M for internally known formats 4117 */ 4118 static ssize_t 4119 metadata_show(struct mddev *mddev, char *page) 4120 { 4121 if (mddev->persistent) 4122 return sprintf(page, "%d.%d\n", 4123 mddev->major_version, mddev->minor_version); 4124 else if (mddev->external) 4125 return sprintf(page, "external:%s\n", mddev->metadata_type); 4126 else 4127 return sprintf(page, "none\n"); 4128 } 4129 4130 static ssize_t 4131 metadata_store(struct mddev *mddev, const char *buf, size_t len) 4132 { 4133 int major, minor; 4134 char *e; 4135 /* Changing the details of 'external' metadata is 4136 * always permitted. Otherwise there must be 4137 * no devices attached to the array. 4138 */ 4139 if (mddev->external && strncmp(buf, "external:", 9) == 0) 4140 ; 4141 else if (!list_empty(&mddev->disks)) 4142 return -EBUSY; 4143 4144 if (cmd_match(buf, "none")) { 4145 mddev->persistent = 0; 4146 mddev->external = 0; 4147 mddev->major_version = 0; 4148 mddev->minor_version = 90; 4149 return len; 4150 } 4151 if (strncmp(buf, "external:", 9) == 0) { 4152 size_t namelen = len-9; 4153 if (namelen >= sizeof(mddev->metadata_type)) 4154 namelen = sizeof(mddev->metadata_type)-1; 4155 strncpy(mddev->metadata_type, buf+9, namelen); 4156 mddev->metadata_type[namelen] = 0; 4157 if (namelen && mddev->metadata_type[namelen-1] == '\n') 4158 mddev->metadata_type[--namelen] = 0; 4159 mddev->persistent = 0; 4160 mddev->external = 1; 4161 mddev->major_version = 0; 4162 mddev->minor_version = 90; 4163 return len; 4164 } 4165 major = simple_strtoul(buf, &e, 10); 4166 if (e==buf || *e != '.') 4167 return -EINVAL; 4168 buf = e+1; 4169 minor = simple_strtoul(buf, &e, 10); 4170 if (e==buf || (*e && *e != '\n') ) 4171 return -EINVAL; 4172 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL) 4173 return -ENOENT; 4174 mddev->major_version = major; 4175 mddev->minor_version = minor; 4176 mddev->persistent = 1; 4177 mddev->external = 0; 4178 return len; 4179 } 4180 4181 static struct md_sysfs_entry md_metadata = 4182 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 4183 4184 static ssize_t 4185 action_show(struct mddev *mddev, char *page) 4186 { 4187 char *type = "idle"; 4188 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 4189 type = "frozen"; 4190 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 4191 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) { 4192 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 4193 type = "reshape"; 4194 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 4195 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 4196 type = "resync"; 4197 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 4198 type = "check"; 4199 else 4200 type = "repair"; 4201 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) 4202 type = "recover"; 4203 } 4204 return sprintf(page, "%s\n", type); 4205 } 4206 4207 static ssize_t 4208 action_store(struct mddev *mddev, const char *page, size_t len) 4209 { 4210 if (!mddev->pers || !mddev->pers->sync_request) 4211 return -EINVAL; 4212 4213 if (cmd_match(page, "frozen")) 4214 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4215 else 4216 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4217 4218 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) { 4219 if (mddev->sync_thread) { 4220 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4221 md_reap_sync_thread(mddev); 4222 } 4223 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 4224 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 4225 return -EBUSY; 4226 else if (cmd_match(page, "resync")) 4227 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4228 else if (cmd_match(page, "recover")) { 4229 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 4230 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4231 } else if (cmd_match(page, "reshape")) { 4232 int err; 4233 if (mddev->pers->start_reshape == NULL) 4234 return -EINVAL; 4235 err = mddev->pers->start_reshape(mddev); 4236 if (err) 4237 return err; 4238 sysfs_notify(&mddev->kobj, NULL, "degraded"); 4239 } else { 4240 if (cmd_match(page, "check")) 4241 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4242 else if (!cmd_match(page, "repair")) 4243 return -EINVAL; 4244 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 4245 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4246 } 4247 if (mddev->ro == 2) { 4248 /* A write to sync_action is enough to justify 4249 * canceling read-auto mode 4250 */ 4251 mddev->ro = 0; 4252 md_wakeup_thread(mddev->sync_thread); 4253 } 4254 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4255 md_wakeup_thread(mddev->thread); 4256 sysfs_notify_dirent_safe(mddev->sysfs_action); 4257 return len; 4258 } 4259 4260 static struct md_sysfs_entry md_scan_mode = 4261 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); 4262 4263 static ssize_t 4264 last_sync_action_show(struct mddev *mddev, char *page) 4265 { 4266 return sprintf(page, "%s\n", mddev->last_sync_action); 4267 } 4268 4269 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action); 4270 4271 static ssize_t 4272 mismatch_cnt_show(struct mddev *mddev, char *page) 4273 { 4274 return sprintf(page, "%llu\n", 4275 (unsigned long long) 4276 atomic64_read(&mddev->resync_mismatches)); 4277 } 4278 4279 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); 4280 4281 static ssize_t 4282 sync_min_show(struct mddev *mddev, char *page) 4283 { 4284 return sprintf(page, "%d (%s)\n", speed_min(mddev), 4285 mddev->sync_speed_min ? "local": "system"); 4286 } 4287 4288 static ssize_t 4289 sync_min_store(struct mddev *mddev, const char *buf, size_t len) 4290 { 4291 int min; 4292 char *e; 4293 if (strncmp(buf, "system", 6)==0) { 4294 mddev->sync_speed_min = 0; 4295 return len; 4296 } 4297 min = simple_strtoul(buf, &e, 10); 4298 if (buf == e || (*e && *e != '\n') || min <= 0) 4299 return -EINVAL; 4300 mddev->sync_speed_min = min; 4301 return len; 4302 } 4303 4304 static struct md_sysfs_entry md_sync_min = 4305 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); 4306 4307 static ssize_t 4308 sync_max_show(struct mddev *mddev, char *page) 4309 { 4310 return sprintf(page, "%d (%s)\n", speed_max(mddev), 4311 mddev->sync_speed_max ? "local": "system"); 4312 } 4313 4314 static ssize_t 4315 sync_max_store(struct mddev *mddev, const char *buf, size_t len) 4316 { 4317 int max; 4318 char *e; 4319 if (strncmp(buf, "system", 6)==0) { 4320 mddev->sync_speed_max = 0; 4321 return len; 4322 } 4323 max = simple_strtoul(buf, &e, 10); 4324 if (buf == e || (*e && *e != '\n') || max <= 0) 4325 return -EINVAL; 4326 mddev->sync_speed_max = max; 4327 return len; 4328 } 4329 4330 static struct md_sysfs_entry md_sync_max = 4331 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); 4332 4333 static ssize_t 4334 degraded_show(struct mddev *mddev, char *page) 4335 { 4336 return sprintf(page, "%d\n", mddev->degraded); 4337 } 4338 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded); 4339 4340 static ssize_t 4341 sync_force_parallel_show(struct mddev *mddev, char *page) 4342 { 4343 return sprintf(page, "%d\n", mddev->parallel_resync); 4344 } 4345 4346 static ssize_t 4347 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len) 4348 { 4349 long n; 4350 4351 if (kstrtol(buf, 10, &n)) 4352 return -EINVAL; 4353 4354 if (n != 0 && n != 1) 4355 return -EINVAL; 4356 4357 mddev->parallel_resync = n; 4358 4359 if (mddev->sync_thread) 4360 wake_up(&resync_wait); 4361 4362 return len; 4363 } 4364 4365 /* force parallel resync, even with shared block devices */ 4366 static struct md_sysfs_entry md_sync_force_parallel = 4367 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR, 4368 sync_force_parallel_show, sync_force_parallel_store); 4369 4370 static ssize_t 4371 sync_speed_show(struct mddev *mddev, char *page) 4372 { 4373 unsigned long resync, dt, db; 4374 if (mddev->curr_resync == 0) 4375 return sprintf(page, "none\n"); 4376 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active); 4377 dt = (jiffies - mddev->resync_mark) / HZ; 4378 if (!dt) dt++; 4379 db = resync - mddev->resync_mark_cnt; 4380 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */ 4381 } 4382 4383 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); 4384 4385 static ssize_t 4386 sync_completed_show(struct mddev *mddev, char *page) 4387 { 4388 unsigned long long max_sectors, resync; 4389 4390 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4391 return sprintf(page, "none\n"); 4392 4393 if (mddev->curr_resync == 1 || 4394 mddev->curr_resync == 2) 4395 return sprintf(page, "delayed\n"); 4396 4397 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 4398 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 4399 max_sectors = mddev->resync_max_sectors; 4400 else 4401 max_sectors = mddev->dev_sectors; 4402 4403 resync = mddev->curr_resync_completed; 4404 return sprintf(page, "%llu / %llu\n", resync, max_sectors); 4405 } 4406 4407 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed); 4408 4409 static ssize_t 4410 min_sync_show(struct mddev *mddev, char *page) 4411 { 4412 return sprintf(page, "%llu\n", 4413 (unsigned long long)mddev->resync_min); 4414 } 4415 static ssize_t 4416 min_sync_store(struct mddev *mddev, const char *buf, size_t len) 4417 { 4418 unsigned long long min; 4419 if (kstrtoull(buf, 10, &min)) 4420 return -EINVAL; 4421 if (min > mddev->resync_max) 4422 return -EINVAL; 4423 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4424 return -EBUSY; 4425 4426 /* Must be a multiple of chunk_size */ 4427 if (mddev->chunk_sectors) { 4428 sector_t temp = min; 4429 if (sector_div(temp, mddev->chunk_sectors)) 4430 return -EINVAL; 4431 } 4432 mddev->resync_min = min; 4433 4434 return len; 4435 } 4436 4437 static struct md_sysfs_entry md_min_sync = 4438 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store); 4439 4440 static ssize_t 4441 max_sync_show(struct mddev *mddev, char *page) 4442 { 4443 if (mddev->resync_max == MaxSector) 4444 return sprintf(page, "max\n"); 4445 else 4446 return sprintf(page, "%llu\n", 4447 (unsigned long long)mddev->resync_max); 4448 } 4449 static ssize_t 4450 max_sync_store(struct mddev *mddev, const char *buf, size_t len) 4451 { 4452 if (strncmp(buf, "max", 3) == 0) 4453 mddev->resync_max = MaxSector; 4454 else { 4455 unsigned long long max; 4456 if (kstrtoull(buf, 10, &max)) 4457 return -EINVAL; 4458 if (max < mddev->resync_min) 4459 return -EINVAL; 4460 if (max < mddev->resync_max && 4461 mddev->ro == 0 && 4462 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4463 return -EBUSY; 4464 4465 /* Must be a multiple of chunk_size */ 4466 if (mddev->chunk_sectors) { 4467 sector_t temp = max; 4468 if (sector_div(temp, mddev->chunk_sectors)) 4469 return -EINVAL; 4470 } 4471 mddev->resync_max = max; 4472 } 4473 wake_up(&mddev->recovery_wait); 4474 return len; 4475 } 4476 4477 static struct md_sysfs_entry md_max_sync = 4478 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store); 4479 4480 static ssize_t 4481 suspend_lo_show(struct mddev *mddev, char *page) 4482 { 4483 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo); 4484 } 4485 4486 static ssize_t 4487 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len) 4488 { 4489 char *e; 4490 unsigned long long new = simple_strtoull(buf, &e, 10); 4491 unsigned long long old = mddev->suspend_lo; 4492 4493 if (mddev->pers == NULL || 4494 mddev->pers->quiesce == NULL) 4495 return -EINVAL; 4496 if (buf == e || (*e && *e != '\n')) 4497 return -EINVAL; 4498 4499 mddev->suspend_lo = new; 4500 if (new >= old) 4501 /* Shrinking suspended region */ 4502 mddev->pers->quiesce(mddev, 2); 4503 else { 4504 /* Expanding suspended region - need to wait */ 4505 mddev->pers->quiesce(mddev, 1); 4506 mddev->pers->quiesce(mddev, 0); 4507 } 4508 return len; 4509 } 4510 static struct md_sysfs_entry md_suspend_lo = 4511 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); 4512 4513 4514 static ssize_t 4515 suspend_hi_show(struct mddev *mddev, char *page) 4516 { 4517 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi); 4518 } 4519 4520 static ssize_t 4521 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len) 4522 { 4523 char *e; 4524 unsigned long long new = simple_strtoull(buf, &e, 10); 4525 unsigned long long old = mddev->suspend_hi; 4526 4527 if (mddev->pers == NULL || 4528 mddev->pers->quiesce == NULL) 4529 return -EINVAL; 4530 if (buf == e || (*e && *e != '\n')) 4531 return -EINVAL; 4532 4533 mddev->suspend_hi = new; 4534 if (new <= old) 4535 /* Shrinking suspended region */ 4536 mddev->pers->quiesce(mddev, 2); 4537 else { 4538 /* Expanding suspended region - need to wait */ 4539 mddev->pers->quiesce(mddev, 1); 4540 mddev->pers->quiesce(mddev, 0); 4541 } 4542 return len; 4543 } 4544 static struct md_sysfs_entry md_suspend_hi = 4545 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); 4546 4547 static ssize_t 4548 reshape_position_show(struct mddev *mddev, char *page) 4549 { 4550 if (mddev->reshape_position != MaxSector) 4551 return sprintf(page, "%llu\n", 4552 (unsigned long long)mddev->reshape_position); 4553 strcpy(page, "none\n"); 4554 return 5; 4555 } 4556 4557 static ssize_t 4558 reshape_position_store(struct mddev *mddev, const char *buf, size_t len) 4559 { 4560 struct md_rdev *rdev; 4561 char *e; 4562 unsigned long long new = simple_strtoull(buf, &e, 10); 4563 if (mddev->pers) 4564 return -EBUSY; 4565 if (buf == e || (*e && *e != '\n')) 4566 return -EINVAL; 4567 mddev->reshape_position = new; 4568 mddev->delta_disks = 0; 4569 mddev->reshape_backwards = 0; 4570 mddev->new_level = mddev->level; 4571 mddev->new_layout = mddev->layout; 4572 mddev->new_chunk_sectors = mddev->chunk_sectors; 4573 rdev_for_each(rdev, mddev) 4574 rdev->new_data_offset = rdev->data_offset; 4575 return len; 4576 } 4577 4578 static struct md_sysfs_entry md_reshape_position = 4579 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show, 4580 reshape_position_store); 4581 4582 static ssize_t 4583 reshape_direction_show(struct mddev *mddev, char *page) 4584 { 4585 return sprintf(page, "%s\n", 4586 mddev->reshape_backwards ? "backwards" : "forwards"); 4587 } 4588 4589 static ssize_t 4590 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len) 4591 { 4592 int backwards = 0; 4593 if (cmd_match(buf, "forwards")) 4594 backwards = 0; 4595 else if (cmd_match(buf, "backwards")) 4596 backwards = 1; 4597 else 4598 return -EINVAL; 4599 if (mddev->reshape_backwards == backwards) 4600 return len; 4601 4602 /* check if we are allowed to change */ 4603 if (mddev->delta_disks) 4604 return -EBUSY; 4605 4606 if (mddev->persistent && 4607 mddev->major_version == 0) 4608 return -EINVAL; 4609 4610 mddev->reshape_backwards = backwards; 4611 return len; 4612 } 4613 4614 static struct md_sysfs_entry md_reshape_direction = 4615 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show, 4616 reshape_direction_store); 4617 4618 static ssize_t 4619 array_size_show(struct mddev *mddev, char *page) 4620 { 4621 if (mddev->external_size) 4622 return sprintf(page, "%llu\n", 4623 (unsigned long long)mddev->array_sectors/2); 4624 else 4625 return sprintf(page, "default\n"); 4626 } 4627 4628 static ssize_t 4629 array_size_store(struct mddev *mddev, const char *buf, size_t len) 4630 { 4631 sector_t sectors; 4632 4633 if (strncmp(buf, "default", 7) == 0) { 4634 if (mddev->pers) 4635 sectors = mddev->pers->size(mddev, 0, 0); 4636 else 4637 sectors = mddev->array_sectors; 4638 4639 mddev->external_size = 0; 4640 } else { 4641 if (strict_blocks_to_sectors(buf, §ors) < 0) 4642 return -EINVAL; 4643 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors) 4644 return -E2BIG; 4645 4646 mddev->external_size = 1; 4647 } 4648 4649 mddev->array_sectors = sectors; 4650 if (mddev->pers) { 4651 set_capacity(mddev->gendisk, mddev->array_sectors); 4652 revalidate_disk(mddev->gendisk); 4653 } 4654 return len; 4655 } 4656 4657 static struct md_sysfs_entry md_array_size = 4658 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show, 4659 array_size_store); 4660 4661 static struct attribute *md_default_attrs[] = { 4662 &md_level.attr, 4663 &md_layout.attr, 4664 &md_raid_disks.attr, 4665 &md_chunk_size.attr, 4666 &md_size.attr, 4667 &md_resync_start.attr, 4668 &md_metadata.attr, 4669 &md_new_device.attr, 4670 &md_safe_delay.attr, 4671 &md_array_state.attr, 4672 &md_reshape_position.attr, 4673 &md_reshape_direction.attr, 4674 &md_array_size.attr, 4675 &max_corr_read_errors.attr, 4676 NULL, 4677 }; 4678 4679 static struct attribute *md_redundancy_attrs[] = { 4680 &md_scan_mode.attr, 4681 &md_last_scan_mode.attr, 4682 &md_mismatches.attr, 4683 &md_sync_min.attr, 4684 &md_sync_max.attr, 4685 &md_sync_speed.attr, 4686 &md_sync_force_parallel.attr, 4687 &md_sync_completed.attr, 4688 &md_min_sync.attr, 4689 &md_max_sync.attr, 4690 &md_suspend_lo.attr, 4691 &md_suspend_hi.attr, 4692 &md_bitmap.attr, 4693 &md_degraded.attr, 4694 NULL, 4695 }; 4696 static struct attribute_group md_redundancy_group = { 4697 .name = NULL, 4698 .attrs = md_redundancy_attrs, 4699 }; 4700 4701 4702 static ssize_t 4703 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 4704 { 4705 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 4706 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 4707 ssize_t rv; 4708 4709 if (!entry->show) 4710 return -EIO; 4711 spin_lock(&all_mddevs_lock); 4712 if (list_empty(&mddev->all_mddevs)) { 4713 spin_unlock(&all_mddevs_lock); 4714 return -EBUSY; 4715 } 4716 mddev_get(mddev); 4717 spin_unlock(&all_mddevs_lock); 4718 4719 rv = mddev_lock(mddev); 4720 if (!rv) { 4721 rv = entry->show(mddev, page); 4722 mddev_unlock(mddev); 4723 } 4724 mddev_put(mddev); 4725 return rv; 4726 } 4727 4728 static ssize_t 4729 md_attr_store(struct kobject *kobj, struct attribute *attr, 4730 const char *page, size_t length) 4731 { 4732 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 4733 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 4734 ssize_t rv; 4735 4736 if (!entry->store) 4737 return -EIO; 4738 if (!capable(CAP_SYS_ADMIN)) 4739 return -EACCES; 4740 spin_lock(&all_mddevs_lock); 4741 if (list_empty(&mddev->all_mddevs)) { 4742 spin_unlock(&all_mddevs_lock); 4743 return -EBUSY; 4744 } 4745 mddev_get(mddev); 4746 spin_unlock(&all_mddevs_lock); 4747 if (entry->store == new_dev_store) 4748 flush_workqueue(md_misc_wq); 4749 rv = mddev_lock(mddev); 4750 if (!rv) { 4751 rv = entry->store(mddev, page, length); 4752 mddev_unlock(mddev); 4753 } 4754 mddev_put(mddev); 4755 return rv; 4756 } 4757 4758 static void md_free(struct kobject *ko) 4759 { 4760 struct mddev *mddev = container_of(ko, struct mddev, kobj); 4761 4762 if (mddev->sysfs_state) 4763 sysfs_put(mddev->sysfs_state); 4764 4765 if (mddev->gendisk) { 4766 del_gendisk(mddev->gendisk); 4767 put_disk(mddev->gendisk); 4768 } 4769 if (mddev->queue) 4770 blk_cleanup_queue(mddev->queue); 4771 4772 kfree(mddev); 4773 } 4774 4775 static const struct sysfs_ops md_sysfs_ops = { 4776 .show = md_attr_show, 4777 .store = md_attr_store, 4778 }; 4779 static struct kobj_type md_ktype = { 4780 .release = md_free, 4781 .sysfs_ops = &md_sysfs_ops, 4782 .default_attrs = md_default_attrs, 4783 }; 4784 4785 int mdp_major = 0; 4786 4787 static void mddev_delayed_delete(struct work_struct *ws) 4788 { 4789 struct mddev *mddev = container_of(ws, struct mddev, del_work); 4790 4791 sysfs_remove_group(&mddev->kobj, &md_bitmap_group); 4792 kobject_del(&mddev->kobj); 4793 kobject_put(&mddev->kobj); 4794 } 4795 4796 static int md_alloc(dev_t dev, char *name) 4797 { 4798 static DEFINE_MUTEX(disks_mutex); 4799 struct mddev *mddev = mddev_find(dev); 4800 struct gendisk *disk; 4801 int partitioned; 4802 int shift; 4803 int unit; 4804 int error; 4805 4806 if (!mddev) 4807 return -ENODEV; 4808 4809 partitioned = (MAJOR(mddev->unit) != MD_MAJOR); 4810 shift = partitioned ? MdpMinorShift : 0; 4811 unit = MINOR(mddev->unit) >> shift; 4812 4813 /* wait for any previous instance of this device to be 4814 * completely removed (mddev_delayed_delete). 4815 */ 4816 flush_workqueue(md_misc_wq); 4817 4818 mutex_lock(&disks_mutex); 4819 error = -EEXIST; 4820 if (mddev->gendisk) 4821 goto abort; 4822 4823 if (name) { 4824 /* Need to ensure that 'name' is not a duplicate. 4825 */ 4826 struct mddev *mddev2; 4827 spin_lock(&all_mddevs_lock); 4828 4829 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) 4830 if (mddev2->gendisk && 4831 strcmp(mddev2->gendisk->disk_name, name) == 0) { 4832 spin_unlock(&all_mddevs_lock); 4833 goto abort; 4834 } 4835 spin_unlock(&all_mddevs_lock); 4836 } 4837 4838 error = -ENOMEM; 4839 mddev->queue = blk_alloc_queue(GFP_KERNEL); 4840 if (!mddev->queue) 4841 goto abort; 4842 mddev->queue->queuedata = mddev; 4843 4844 blk_queue_make_request(mddev->queue, md_make_request); 4845 blk_set_stacking_limits(&mddev->queue->limits); 4846 4847 disk = alloc_disk(1 << shift); 4848 if (!disk) { 4849 blk_cleanup_queue(mddev->queue); 4850 mddev->queue = NULL; 4851 goto abort; 4852 } 4853 disk->major = MAJOR(mddev->unit); 4854 disk->first_minor = unit << shift; 4855 if (name) 4856 strcpy(disk->disk_name, name); 4857 else if (partitioned) 4858 sprintf(disk->disk_name, "md_d%d", unit); 4859 else 4860 sprintf(disk->disk_name, "md%d", unit); 4861 disk->fops = &md_fops; 4862 disk->private_data = mddev; 4863 disk->queue = mddev->queue; 4864 blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA); 4865 /* Allow extended partitions. This makes the 4866 * 'mdp' device redundant, but we can't really 4867 * remove it now. 4868 */ 4869 disk->flags |= GENHD_FL_EXT_DEVT; 4870 mddev->gendisk = disk; 4871 /* As soon as we call add_disk(), another thread could get 4872 * through to md_open, so make sure it doesn't get too far 4873 */ 4874 mutex_lock(&mddev->open_mutex); 4875 add_disk(disk); 4876 4877 error = kobject_init_and_add(&mddev->kobj, &md_ktype, 4878 &disk_to_dev(disk)->kobj, "%s", "md"); 4879 if (error) { 4880 /* This isn't possible, but as kobject_init_and_add is marked 4881 * __must_check, we must do something with the result 4882 */ 4883 printk(KERN_WARNING "md: cannot register %s/md - name in use\n", 4884 disk->disk_name); 4885 error = 0; 4886 } 4887 if (mddev->kobj.sd && 4888 sysfs_create_group(&mddev->kobj, &md_bitmap_group)) 4889 printk(KERN_DEBUG "pointless warning\n"); 4890 mutex_unlock(&mddev->open_mutex); 4891 abort: 4892 mutex_unlock(&disks_mutex); 4893 if (!error && mddev->kobj.sd) { 4894 kobject_uevent(&mddev->kobj, KOBJ_ADD); 4895 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state"); 4896 } 4897 mddev_put(mddev); 4898 return error; 4899 } 4900 4901 static struct kobject *md_probe(dev_t dev, int *part, void *data) 4902 { 4903 md_alloc(dev, NULL); 4904 return NULL; 4905 } 4906 4907 static int add_named_array(const char *val, struct kernel_param *kp) 4908 { 4909 /* val must be "md_*" where * is not all digits. 4910 * We allocate an array with a large free minor number, and 4911 * set the name to val. val must not already be an active name. 4912 */ 4913 int len = strlen(val); 4914 char buf[DISK_NAME_LEN]; 4915 4916 while (len && val[len-1] == '\n') 4917 len--; 4918 if (len >= DISK_NAME_LEN) 4919 return -E2BIG; 4920 strlcpy(buf, val, len+1); 4921 if (strncmp(buf, "md_", 3) != 0) 4922 return -EINVAL; 4923 return md_alloc(0, buf); 4924 } 4925 4926 static void md_safemode_timeout(unsigned long data) 4927 { 4928 struct mddev *mddev = (struct mddev *) data; 4929 4930 if (!atomic_read(&mddev->writes_pending)) { 4931 mddev->safemode = 1; 4932 if (mddev->external) 4933 sysfs_notify_dirent_safe(mddev->sysfs_state); 4934 } 4935 md_wakeup_thread(mddev->thread); 4936 } 4937 4938 static int start_dirty_degraded; 4939 4940 int md_run(struct mddev *mddev) 4941 { 4942 int err; 4943 struct md_rdev *rdev; 4944 struct md_personality *pers; 4945 4946 if (list_empty(&mddev->disks)) 4947 /* cannot run an array with no devices.. */ 4948 return -EINVAL; 4949 4950 if (mddev->pers) 4951 return -EBUSY; 4952 /* Cannot run until previous stop completes properly */ 4953 if (mddev->sysfs_active) 4954 return -EBUSY; 4955 4956 /* 4957 * Analyze all RAID superblock(s) 4958 */ 4959 if (!mddev->raid_disks) { 4960 if (!mddev->persistent) 4961 return -EINVAL; 4962 analyze_sbs(mddev); 4963 } 4964 4965 if (mddev->level != LEVEL_NONE) 4966 request_module("md-level-%d", mddev->level); 4967 else if (mddev->clevel[0]) 4968 request_module("md-%s", mddev->clevel); 4969 4970 /* 4971 * Drop all container device buffers, from now on 4972 * the only valid external interface is through the md 4973 * device. 4974 */ 4975 rdev_for_each(rdev, mddev) { 4976 if (test_bit(Faulty, &rdev->flags)) 4977 continue; 4978 sync_blockdev(rdev->bdev); 4979 invalidate_bdev(rdev->bdev); 4980 4981 /* perform some consistency tests on the device. 4982 * We don't want the data to overlap the metadata, 4983 * Internal Bitmap issues have been handled elsewhere. 4984 */ 4985 if (rdev->meta_bdev) { 4986 /* Nothing to check */; 4987 } else if (rdev->data_offset < rdev->sb_start) { 4988 if (mddev->dev_sectors && 4989 rdev->data_offset + mddev->dev_sectors 4990 > rdev->sb_start) { 4991 printk("md: %s: data overlaps metadata\n", 4992 mdname(mddev)); 4993 return -EINVAL; 4994 } 4995 } else { 4996 if (rdev->sb_start + rdev->sb_size/512 4997 > rdev->data_offset) { 4998 printk("md: %s: metadata overlaps data\n", 4999 mdname(mddev)); 5000 return -EINVAL; 5001 } 5002 } 5003 sysfs_notify_dirent_safe(rdev->sysfs_state); 5004 } 5005 5006 if (mddev->bio_set == NULL) 5007 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0); 5008 5009 spin_lock(&pers_lock); 5010 pers = find_pers(mddev->level, mddev->clevel); 5011 if (!pers || !try_module_get(pers->owner)) { 5012 spin_unlock(&pers_lock); 5013 if (mddev->level != LEVEL_NONE) 5014 printk(KERN_WARNING "md: personality for level %d is not loaded!\n", 5015 mddev->level); 5016 else 5017 printk(KERN_WARNING "md: personality for level %s is not loaded!\n", 5018 mddev->clevel); 5019 return -EINVAL; 5020 } 5021 mddev->pers = pers; 5022 spin_unlock(&pers_lock); 5023 if (mddev->level != pers->level) { 5024 mddev->level = pers->level; 5025 mddev->new_level = pers->level; 5026 } 5027 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 5028 5029 if (mddev->reshape_position != MaxSector && 5030 pers->start_reshape == NULL) { 5031 /* This personality cannot handle reshaping... */ 5032 mddev->pers = NULL; 5033 module_put(pers->owner); 5034 return -EINVAL; 5035 } 5036 5037 if (pers->sync_request) { 5038 /* Warn if this is a potentially silly 5039 * configuration. 5040 */ 5041 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 5042 struct md_rdev *rdev2; 5043 int warned = 0; 5044 5045 rdev_for_each(rdev, mddev) 5046 rdev_for_each(rdev2, mddev) { 5047 if (rdev < rdev2 && 5048 rdev->bdev->bd_contains == 5049 rdev2->bdev->bd_contains) { 5050 printk(KERN_WARNING 5051 "%s: WARNING: %s appears to be" 5052 " on the same physical disk as" 5053 " %s.\n", 5054 mdname(mddev), 5055 bdevname(rdev->bdev,b), 5056 bdevname(rdev2->bdev,b2)); 5057 warned = 1; 5058 } 5059 } 5060 5061 if (warned) 5062 printk(KERN_WARNING 5063 "True protection against single-disk" 5064 " failure might be compromised.\n"); 5065 } 5066 5067 mddev->recovery = 0; 5068 /* may be over-ridden by personality */ 5069 mddev->resync_max_sectors = mddev->dev_sectors; 5070 5071 mddev->ok_start_degraded = start_dirty_degraded; 5072 5073 if (start_readonly && mddev->ro == 0) 5074 mddev->ro = 2; /* read-only, but switch on first write */ 5075 5076 err = mddev->pers->run(mddev); 5077 if (err) 5078 printk(KERN_ERR "md: pers->run() failed ...\n"); 5079 else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) { 5080 WARN_ONCE(!mddev->external_size, "%s: default size too small," 5081 " but 'external_size' not in effect?\n", __func__); 5082 printk(KERN_ERR 5083 "md: invalid array_size %llu > default size %llu\n", 5084 (unsigned long long)mddev->array_sectors / 2, 5085 (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2); 5086 err = -EINVAL; 5087 mddev->pers->stop(mddev); 5088 } 5089 if (err == 0 && mddev->pers->sync_request && 5090 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) { 5091 err = bitmap_create(mddev); 5092 if (err) { 5093 printk(KERN_ERR "%s: failed to create bitmap (%d)\n", 5094 mdname(mddev), err); 5095 mddev->pers->stop(mddev); 5096 } 5097 } 5098 if (err) { 5099 module_put(mddev->pers->owner); 5100 mddev->pers = NULL; 5101 bitmap_destroy(mddev); 5102 return err; 5103 } 5104 if (mddev->pers->sync_request) { 5105 if (mddev->kobj.sd && 5106 sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 5107 printk(KERN_WARNING 5108 "md: cannot register extra attributes for %s\n", 5109 mdname(mddev)); 5110 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action"); 5111 } else if (mddev->ro == 2) /* auto-readonly not meaningful */ 5112 mddev->ro = 0; 5113 5114 atomic_set(&mddev->writes_pending,0); 5115 atomic_set(&mddev->max_corr_read_errors, 5116 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS); 5117 mddev->safemode = 0; 5118 mddev->safemode_timer.function = md_safemode_timeout; 5119 mddev->safemode_timer.data = (unsigned long) mddev; 5120 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */ 5121 mddev->in_sync = 1; 5122 smp_wmb(); 5123 mddev->ready = 1; 5124 rdev_for_each(rdev, mddev) 5125 if (rdev->raid_disk >= 0) 5126 if (sysfs_link_rdev(mddev, rdev)) 5127 /* failure here is OK */; 5128 5129 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5130 5131 if (mddev->flags & MD_UPDATE_SB_FLAGS) 5132 md_update_sb(mddev, 0); 5133 5134 md_new_event(mddev); 5135 sysfs_notify_dirent_safe(mddev->sysfs_state); 5136 sysfs_notify_dirent_safe(mddev->sysfs_action); 5137 sysfs_notify(&mddev->kobj, NULL, "degraded"); 5138 return 0; 5139 } 5140 EXPORT_SYMBOL_GPL(md_run); 5141 5142 static int do_md_run(struct mddev *mddev) 5143 { 5144 int err; 5145 5146 err = md_run(mddev); 5147 if (err) 5148 goto out; 5149 err = bitmap_load(mddev); 5150 if (err) { 5151 bitmap_destroy(mddev); 5152 goto out; 5153 } 5154 5155 md_wakeup_thread(mddev->thread); 5156 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 5157 5158 set_capacity(mddev->gendisk, mddev->array_sectors); 5159 revalidate_disk(mddev->gendisk); 5160 mddev->changed = 1; 5161 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 5162 out: 5163 return err; 5164 } 5165 5166 static int restart_array(struct mddev *mddev) 5167 { 5168 struct gendisk *disk = mddev->gendisk; 5169 5170 /* Complain if it has no devices */ 5171 if (list_empty(&mddev->disks)) 5172 return -ENXIO; 5173 if (!mddev->pers) 5174 return -EINVAL; 5175 if (!mddev->ro) 5176 return -EBUSY; 5177 mddev->safemode = 0; 5178 mddev->ro = 0; 5179 set_disk_ro(disk, 0); 5180 printk(KERN_INFO "md: %s switched to read-write mode.\n", 5181 mdname(mddev)); 5182 /* Kick recovery or resync if necessary */ 5183 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5184 md_wakeup_thread(mddev->thread); 5185 md_wakeup_thread(mddev->sync_thread); 5186 sysfs_notify_dirent_safe(mddev->sysfs_state); 5187 return 0; 5188 } 5189 5190 static void md_clean(struct mddev *mddev) 5191 { 5192 mddev->array_sectors = 0; 5193 mddev->external_size = 0; 5194 mddev->dev_sectors = 0; 5195 mddev->raid_disks = 0; 5196 mddev->recovery_cp = 0; 5197 mddev->resync_min = 0; 5198 mddev->resync_max = MaxSector; 5199 mddev->reshape_position = MaxSector; 5200 mddev->external = 0; 5201 mddev->persistent = 0; 5202 mddev->level = LEVEL_NONE; 5203 mddev->clevel[0] = 0; 5204 mddev->flags = 0; 5205 mddev->ro = 0; 5206 mddev->metadata_type[0] = 0; 5207 mddev->chunk_sectors = 0; 5208 mddev->ctime = mddev->utime = 0; 5209 mddev->layout = 0; 5210 mddev->max_disks = 0; 5211 mddev->events = 0; 5212 mddev->can_decrease_events = 0; 5213 mddev->delta_disks = 0; 5214 mddev->reshape_backwards = 0; 5215 mddev->new_level = LEVEL_NONE; 5216 mddev->new_layout = 0; 5217 mddev->new_chunk_sectors = 0; 5218 mddev->curr_resync = 0; 5219 atomic64_set(&mddev->resync_mismatches, 0); 5220 mddev->suspend_lo = mddev->suspend_hi = 0; 5221 mddev->sync_speed_min = mddev->sync_speed_max = 0; 5222 mddev->recovery = 0; 5223 mddev->in_sync = 0; 5224 mddev->changed = 0; 5225 mddev->degraded = 0; 5226 mddev->safemode = 0; 5227 mddev->merge_check_needed = 0; 5228 mddev->bitmap_info.offset = 0; 5229 mddev->bitmap_info.default_offset = 0; 5230 mddev->bitmap_info.default_space = 0; 5231 mddev->bitmap_info.chunksize = 0; 5232 mddev->bitmap_info.daemon_sleep = 0; 5233 mddev->bitmap_info.max_write_behind = 0; 5234 } 5235 5236 static void __md_stop_writes(struct mddev *mddev) 5237 { 5238 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5239 if (mddev->sync_thread) { 5240 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5241 md_reap_sync_thread(mddev); 5242 } 5243 5244 del_timer_sync(&mddev->safemode_timer); 5245 5246 bitmap_flush(mddev); 5247 md_super_wait(mddev); 5248 5249 if (mddev->ro == 0 && 5250 (!mddev->in_sync || (mddev->flags & MD_UPDATE_SB_FLAGS))) { 5251 /* mark array as shutdown cleanly */ 5252 mddev->in_sync = 1; 5253 md_update_sb(mddev, 1); 5254 } 5255 } 5256 5257 void md_stop_writes(struct mddev *mddev) 5258 { 5259 mddev_lock_nointr(mddev); 5260 __md_stop_writes(mddev); 5261 mddev_unlock(mddev); 5262 } 5263 EXPORT_SYMBOL_GPL(md_stop_writes); 5264 5265 static void __md_stop(struct mddev *mddev) 5266 { 5267 mddev->ready = 0; 5268 mddev->pers->stop(mddev); 5269 if (mddev->pers->sync_request && mddev->to_remove == NULL) 5270 mddev->to_remove = &md_redundancy_group; 5271 module_put(mddev->pers->owner); 5272 mddev->pers = NULL; 5273 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5274 } 5275 5276 void md_stop(struct mddev *mddev) 5277 { 5278 /* stop the array and free an attached data structures. 5279 * This is called from dm-raid 5280 */ 5281 __md_stop(mddev); 5282 bitmap_destroy(mddev); 5283 if (mddev->bio_set) 5284 bioset_free(mddev->bio_set); 5285 } 5286 5287 EXPORT_SYMBOL_GPL(md_stop); 5288 5289 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev) 5290 { 5291 int err = 0; 5292 int did_freeze = 0; 5293 5294 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 5295 did_freeze = 1; 5296 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5297 md_wakeup_thread(mddev->thread); 5298 } 5299 if (mddev->sync_thread) { 5300 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5301 /* Thread might be blocked waiting for metadata update 5302 * which will now never happen */ 5303 wake_up_process(mddev->sync_thread->tsk); 5304 } 5305 mddev_unlock(mddev); 5306 wait_event(resync_wait, mddev->sync_thread == NULL); 5307 mddev_lock_nointr(mddev); 5308 5309 mutex_lock(&mddev->open_mutex); 5310 if (atomic_read(&mddev->openers) > !!bdev || 5311 mddev->sync_thread || 5312 (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) { 5313 printk("md: %s still in use.\n",mdname(mddev)); 5314 if (did_freeze) { 5315 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5316 md_wakeup_thread(mddev->thread); 5317 } 5318 err = -EBUSY; 5319 goto out; 5320 } 5321 if (mddev->pers) { 5322 __md_stop_writes(mddev); 5323 5324 err = -ENXIO; 5325 if (mddev->ro==1) 5326 goto out; 5327 mddev->ro = 1; 5328 set_disk_ro(mddev->gendisk, 1); 5329 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5330 sysfs_notify_dirent_safe(mddev->sysfs_state); 5331 err = 0; 5332 } 5333 out: 5334 mutex_unlock(&mddev->open_mutex); 5335 return err; 5336 } 5337 5338 /* mode: 5339 * 0 - completely stop and dis-assemble array 5340 * 2 - stop but do not disassemble array 5341 */ 5342 static int do_md_stop(struct mddev * mddev, int mode, 5343 struct block_device *bdev) 5344 { 5345 struct gendisk *disk = mddev->gendisk; 5346 struct md_rdev *rdev; 5347 int did_freeze = 0; 5348 5349 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 5350 did_freeze = 1; 5351 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5352 md_wakeup_thread(mddev->thread); 5353 } 5354 if (mddev->sync_thread) { 5355 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5356 /* Thread might be blocked waiting for metadata update 5357 * which will now never happen */ 5358 wake_up_process(mddev->sync_thread->tsk); 5359 } 5360 mddev_unlock(mddev); 5361 wait_event(resync_wait, mddev->sync_thread == NULL); 5362 mddev_lock_nointr(mddev); 5363 5364 mutex_lock(&mddev->open_mutex); 5365 if (atomic_read(&mddev->openers) > !!bdev || 5366 mddev->sysfs_active || 5367 mddev->sync_thread || 5368 (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) { 5369 printk("md: %s still in use.\n",mdname(mddev)); 5370 mutex_unlock(&mddev->open_mutex); 5371 if (did_freeze) { 5372 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5373 md_wakeup_thread(mddev->thread); 5374 } 5375 return -EBUSY; 5376 } 5377 if (mddev->pers) { 5378 if (mddev->ro) 5379 set_disk_ro(disk, 0); 5380 5381 __md_stop_writes(mddev); 5382 __md_stop(mddev); 5383 mddev->queue->merge_bvec_fn = NULL; 5384 mddev->queue->backing_dev_info.congested_fn = NULL; 5385 5386 /* tell userspace to handle 'inactive' */ 5387 sysfs_notify_dirent_safe(mddev->sysfs_state); 5388 5389 rdev_for_each(rdev, mddev) 5390 if (rdev->raid_disk >= 0) 5391 sysfs_unlink_rdev(mddev, rdev); 5392 5393 set_capacity(disk, 0); 5394 mutex_unlock(&mddev->open_mutex); 5395 mddev->changed = 1; 5396 revalidate_disk(disk); 5397 5398 if (mddev->ro) 5399 mddev->ro = 0; 5400 } else 5401 mutex_unlock(&mddev->open_mutex); 5402 /* 5403 * Free resources if final stop 5404 */ 5405 if (mode == 0) { 5406 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev)); 5407 5408 bitmap_destroy(mddev); 5409 if (mddev->bitmap_info.file) { 5410 fput(mddev->bitmap_info.file); 5411 mddev->bitmap_info.file = NULL; 5412 } 5413 mddev->bitmap_info.offset = 0; 5414 5415 export_array(mddev); 5416 5417 md_clean(mddev); 5418 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 5419 if (mddev->hold_active == UNTIL_STOP) 5420 mddev->hold_active = 0; 5421 } 5422 blk_integrity_unregister(disk); 5423 md_new_event(mddev); 5424 sysfs_notify_dirent_safe(mddev->sysfs_state); 5425 return 0; 5426 } 5427 5428 #ifndef MODULE 5429 static void autorun_array(struct mddev *mddev) 5430 { 5431 struct md_rdev *rdev; 5432 int err; 5433 5434 if (list_empty(&mddev->disks)) 5435 return; 5436 5437 printk(KERN_INFO "md: running: "); 5438 5439 rdev_for_each(rdev, mddev) { 5440 char b[BDEVNAME_SIZE]; 5441 printk("<%s>", bdevname(rdev->bdev,b)); 5442 } 5443 printk("\n"); 5444 5445 err = do_md_run(mddev); 5446 if (err) { 5447 printk(KERN_WARNING "md: do_md_run() returned %d\n", err); 5448 do_md_stop(mddev, 0, NULL); 5449 } 5450 } 5451 5452 /* 5453 * lets try to run arrays based on all disks that have arrived 5454 * until now. (those are in pending_raid_disks) 5455 * 5456 * the method: pick the first pending disk, collect all disks with 5457 * the same UUID, remove all from the pending list and put them into 5458 * the 'same_array' list. Then order this list based on superblock 5459 * update time (freshest comes first), kick out 'old' disks and 5460 * compare superblocks. If everything's fine then run it. 5461 * 5462 * If "unit" is allocated, then bump its reference count 5463 */ 5464 static void autorun_devices(int part) 5465 { 5466 struct md_rdev *rdev0, *rdev, *tmp; 5467 struct mddev *mddev; 5468 char b[BDEVNAME_SIZE]; 5469 5470 printk(KERN_INFO "md: autorun ...\n"); 5471 while (!list_empty(&pending_raid_disks)) { 5472 int unit; 5473 dev_t dev; 5474 LIST_HEAD(candidates); 5475 rdev0 = list_entry(pending_raid_disks.next, 5476 struct md_rdev, same_set); 5477 5478 printk(KERN_INFO "md: considering %s ...\n", 5479 bdevname(rdev0->bdev,b)); 5480 INIT_LIST_HEAD(&candidates); 5481 rdev_for_each_list(rdev, tmp, &pending_raid_disks) 5482 if (super_90_load(rdev, rdev0, 0) >= 0) { 5483 printk(KERN_INFO "md: adding %s ...\n", 5484 bdevname(rdev->bdev,b)); 5485 list_move(&rdev->same_set, &candidates); 5486 } 5487 /* 5488 * now we have a set of devices, with all of them having 5489 * mostly sane superblocks. It's time to allocate the 5490 * mddev. 5491 */ 5492 if (part) { 5493 dev = MKDEV(mdp_major, 5494 rdev0->preferred_minor << MdpMinorShift); 5495 unit = MINOR(dev) >> MdpMinorShift; 5496 } else { 5497 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); 5498 unit = MINOR(dev); 5499 } 5500 if (rdev0->preferred_minor != unit) { 5501 printk(KERN_INFO "md: unit number in %s is bad: %d\n", 5502 bdevname(rdev0->bdev, b), rdev0->preferred_minor); 5503 break; 5504 } 5505 5506 md_probe(dev, NULL, NULL); 5507 mddev = mddev_find(dev); 5508 if (!mddev || !mddev->gendisk) { 5509 if (mddev) 5510 mddev_put(mddev); 5511 printk(KERN_ERR 5512 "md: cannot allocate memory for md drive.\n"); 5513 break; 5514 } 5515 if (mddev_lock(mddev)) 5516 printk(KERN_WARNING "md: %s locked, cannot run\n", 5517 mdname(mddev)); 5518 else if (mddev->raid_disks || mddev->major_version 5519 || !list_empty(&mddev->disks)) { 5520 printk(KERN_WARNING 5521 "md: %s already running, cannot run %s\n", 5522 mdname(mddev), bdevname(rdev0->bdev,b)); 5523 mddev_unlock(mddev); 5524 } else { 5525 printk(KERN_INFO "md: created %s\n", mdname(mddev)); 5526 mddev->persistent = 1; 5527 rdev_for_each_list(rdev, tmp, &candidates) { 5528 list_del_init(&rdev->same_set); 5529 if (bind_rdev_to_array(rdev, mddev)) 5530 export_rdev(rdev); 5531 } 5532 autorun_array(mddev); 5533 mddev_unlock(mddev); 5534 } 5535 /* on success, candidates will be empty, on error 5536 * it won't... 5537 */ 5538 rdev_for_each_list(rdev, tmp, &candidates) { 5539 list_del_init(&rdev->same_set); 5540 export_rdev(rdev); 5541 } 5542 mddev_put(mddev); 5543 } 5544 printk(KERN_INFO "md: ... autorun DONE.\n"); 5545 } 5546 #endif /* !MODULE */ 5547 5548 static int get_version(void __user * arg) 5549 { 5550 mdu_version_t ver; 5551 5552 ver.major = MD_MAJOR_VERSION; 5553 ver.minor = MD_MINOR_VERSION; 5554 ver.patchlevel = MD_PATCHLEVEL_VERSION; 5555 5556 if (copy_to_user(arg, &ver, sizeof(ver))) 5557 return -EFAULT; 5558 5559 return 0; 5560 } 5561 5562 static int get_array_info(struct mddev * mddev, void __user * arg) 5563 { 5564 mdu_array_info_t info; 5565 int nr,working,insync,failed,spare; 5566 struct md_rdev *rdev; 5567 5568 nr = working = insync = failed = spare = 0; 5569 rcu_read_lock(); 5570 rdev_for_each_rcu(rdev, mddev) { 5571 nr++; 5572 if (test_bit(Faulty, &rdev->flags)) 5573 failed++; 5574 else { 5575 working++; 5576 if (test_bit(In_sync, &rdev->flags)) 5577 insync++; 5578 else 5579 spare++; 5580 } 5581 } 5582 rcu_read_unlock(); 5583 5584 info.major_version = mddev->major_version; 5585 info.minor_version = mddev->minor_version; 5586 info.patch_version = MD_PATCHLEVEL_VERSION; 5587 info.ctime = mddev->ctime; 5588 info.level = mddev->level; 5589 info.size = mddev->dev_sectors / 2; 5590 if (info.size != mddev->dev_sectors / 2) /* overflow */ 5591 info.size = -1; 5592 info.nr_disks = nr; 5593 info.raid_disks = mddev->raid_disks; 5594 info.md_minor = mddev->md_minor; 5595 info.not_persistent= !mddev->persistent; 5596 5597 info.utime = mddev->utime; 5598 info.state = 0; 5599 if (mddev->in_sync) 5600 info.state = (1<<MD_SB_CLEAN); 5601 if (mddev->bitmap && mddev->bitmap_info.offset) 5602 info.state = (1<<MD_SB_BITMAP_PRESENT); 5603 info.active_disks = insync; 5604 info.working_disks = working; 5605 info.failed_disks = failed; 5606 info.spare_disks = spare; 5607 5608 info.layout = mddev->layout; 5609 info.chunk_size = mddev->chunk_sectors << 9; 5610 5611 if (copy_to_user(arg, &info, sizeof(info))) 5612 return -EFAULT; 5613 5614 return 0; 5615 } 5616 5617 static int get_bitmap_file(struct mddev * mddev, void __user * arg) 5618 { 5619 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ 5620 char *ptr, *buf = NULL; 5621 int err = -ENOMEM; 5622 5623 file = kmalloc(sizeof(*file), GFP_NOIO); 5624 5625 if (!file) 5626 goto out; 5627 5628 /* bitmap disabled, zero the first byte and copy out */ 5629 if (!mddev->bitmap || !mddev->bitmap->storage.file) { 5630 file->pathname[0] = '\0'; 5631 goto copy_out; 5632 } 5633 5634 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL); 5635 if (!buf) 5636 goto out; 5637 5638 ptr = d_path(&mddev->bitmap->storage.file->f_path, 5639 buf, sizeof(file->pathname)); 5640 if (IS_ERR(ptr)) 5641 goto out; 5642 5643 strcpy(file->pathname, ptr); 5644 5645 copy_out: 5646 err = 0; 5647 if (copy_to_user(arg, file, sizeof(*file))) 5648 err = -EFAULT; 5649 out: 5650 kfree(buf); 5651 kfree(file); 5652 return err; 5653 } 5654 5655 static int get_disk_info(struct mddev * mddev, void __user * arg) 5656 { 5657 mdu_disk_info_t info; 5658 struct md_rdev *rdev; 5659 5660 if (copy_from_user(&info, arg, sizeof(info))) 5661 return -EFAULT; 5662 5663 rcu_read_lock(); 5664 rdev = find_rdev_nr_rcu(mddev, info.number); 5665 if (rdev) { 5666 info.major = MAJOR(rdev->bdev->bd_dev); 5667 info.minor = MINOR(rdev->bdev->bd_dev); 5668 info.raid_disk = rdev->raid_disk; 5669 info.state = 0; 5670 if (test_bit(Faulty, &rdev->flags)) 5671 info.state |= (1<<MD_DISK_FAULTY); 5672 else if (test_bit(In_sync, &rdev->flags)) { 5673 info.state |= (1<<MD_DISK_ACTIVE); 5674 info.state |= (1<<MD_DISK_SYNC); 5675 } 5676 if (test_bit(WriteMostly, &rdev->flags)) 5677 info.state |= (1<<MD_DISK_WRITEMOSTLY); 5678 } else { 5679 info.major = info.minor = 0; 5680 info.raid_disk = -1; 5681 info.state = (1<<MD_DISK_REMOVED); 5682 } 5683 rcu_read_unlock(); 5684 5685 if (copy_to_user(arg, &info, sizeof(info))) 5686 return -EFAULT; 5687 5688 return 0; 5689 } 5690 5691 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info) 5692 { 5693 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 5694 struct md_rdev *rdev; 5695 dev_t dev = MKDEV(info->major,info->minor); 5696 5697 if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) 5698 return -EOVERFLOW; 5699 5700 if (!mddev->raid_disks) { 5701 int err; 5702 /* expecting a device which has a superblock */ 5703 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); 5704 if (IS_ERR(rdev)) { 5705 printk(KERN_WARNING 5706 "md: md_import_device returned %ld\n", 5707 PTR_ERR(rdev)); 5708 return PTR_ERR(rdev); 5709 } 5710 if (!list_empty(&mddev->disks)) { 5711 struct md_rdev *rdev0 5712 = list_entry(mddev->disks.next, 5713 struct md_rdev, same_set); 5714 err = super_types[mddev->major_version] 5715 .load_super(rdev, rdev0, mddev->minor_version); 5716 if (err < 0) { 5717 printk(KERN_WARNING 5718 "md: %s has different UUID to %s\n", 5719 bdevname(rdev->bdev,b), 5720 bdevname(rdev0->bdev,b2)); 5721 export_rdev(rdev); 5722 return -EINVAL; 5723 } 5724 } 5725 err = bind_rdev_to_array(rdev, mddev); 5726 if (err) 5727 export_rdev(rdev); 5728 return err; 5729 } 5730 5731 /* 5732 * add_new_disk can be used once the array is assembled 5733 * to add "hot spares". They must already have a superblock 5734 * written 5735 */ 5736 if (mddev->pers) { 5737 int err; 5738 if (!mddev->pers->hot_add_disk) { 5739 printk(KERN_WARNING 5740 "%s: personality does not support diskops!\n", 5741 mdname(mddev)); 5742 return -EINVAL; 5743 } 5744 if (mddev->persistent) 5745 rdev = md_import_device(dev, mddev->major_version, 5746 mddev->minor_version); 5747 else 5748 rdev = md_import_device(dev, -1, -1); 5749 if (IS_ERR(rdev)) { 5750 printk(KERN_WARNING 5751 "md: md_import_device returned %ld\n", 5752 PTR_ERR(rdev)); 5753 return PTR_ERR(rdev); 5754 } 5755 /* set saved_raid_disk if appropriate */ 5756 if (!mddev->persistent) { 5757 if (info->state & (1<<MD_DISK_SYNC) && 5758 info->raid_disk < mddev->raid_disks) { 5759 rdev->raid_disk = info->raid_disk; 5760 set_bit(In_sync, &rdev->flags); 5761 clear_bit(Bitmap_sync, &rdev->flags); 5762 } else 5763 rdev->raid_disk = -1; 5764 rdev->saved_raid_disk = rdev->raid_disk; 5765 } else 5766 super_types[mddev->major_version]. 5767 validate_super(mddev, rdev); 5768 if ((info->state & (1<<MD_DISK_SYNC)) && 5769 rdev->raid_disk != info->raid_disk) { 5770 /* This was a hot-add request, but events doesn't 5771 * match, so reject it. 5772 */ 5773 export_rdev(rdev); 5774 return -EINVAL; 5775 } 5776 5777 clear_bit(In_sync, &rdev->flags); /* just to be sure */ 5778 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 5779 set_bit(WriteMostly, &rdev->flags); 5780 else 5781 clear_bit(WriteMostly, &rdev->flags); 5782 5783 rdev->raid_disk = -1; 5784 err = bind_rdev_to_array(rdev, mddev); 5785 if (!err && !mddev->pers->hot_remove_disk) { 5786 /* If there is hot_add_disk but no hot_remove_disk 5787 * then added disks for geometry changes, 5788 * and should be added immediately. 5789 */ 5790 super_types[mddev->major_version]. 5791 validate_super(mddev, rdev); 5792 err = mddev->pers->hot_add_disk(mddev, rdev); 5793 if (err) 5794 unbind_rdev_from_array(rdev); 5795 } 5796 if (err) 5797 export_rdev(rdev); 5798 else 5799 sysfs_notify_dirent_safe(rdev->sysfs_state); 5800 5801 set_bit(MD_CHANGE_DEVS, &mddev->flags); 5802 if (mddev->degraded) 5803 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 5804 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5805 if (!err) 5806 md_new_event(mddev); 5807 md_wakeup_thread(mddev->thread); 5808 return err; 5809 } 5810 5811 /* otherwise, add_new_disk is only allowed 5812 * for major_version==0 superblocks 5813 */ 5814 if (mddev->major_version != 0) { 5815 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n", 5816 mdname(mddev)); 5817 return -EINVAL; 5818 } 5819 5820 if (!(info->state & (1<<MD_DISK_FAULTY))) { 5821 int err; 5822 rdev = md_import_device(dev, -1, 0); 5823 if (IS_ERR(rdev)) { 5824 printk(KERN_WARNING 5825 "md: error, md_import_device() returned %ld\n", 5826 PTR_ERR(rdev)); 5827 return PTR_ERR(rdev); 5828 } 5829 rdev->desc_nr = info->number; 5830 if (info->raid_disk < mddev->raid_disks) 5831 rdev->raid_disk = info->raid_disk; 5832 else 5833 rdev->raid_disk = -1; 5834 5835 if (rdev->raid_disk < mddev->raid_disks) 5836 if (info->state & (1<<MD_DISK_SYNC)) 5837 set_bit(In_sync, &rdev->flags); 5838 5839 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 5840 set_bit(WriteMostly, &rdev->flags); 5841 5842 if (!mddev->persistent) { 5843 printk(KERN_INFO "md: nonpersistent superblock ...\n"); 5844 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 5845 } else 5846 rdev->sb_start = calc_dev_sboffset(rdev); 5847 rdev->sectors = rdev->sb_start; 5848 5849 err = bind_rdev_to_array(rdev, mddev); 5850 if (err) { 5851 export_rdev(rdev); 5852 return err; 5853 } 5854 } 5855 5856 return 0; 5857 } 5858 5859 static int hot_remove_disk(struct mddev * mddev, dev_t dev) 5860 { 5861 char b[BDEVNAME_SIZE]; 5862 struct md_rdev *rdev; 5863 5864 rdev = find_rdev(mddev, dev); 5865 if (!rdev) 5866 return -ENXIO; 5867 5868 clear_bit(Blocked, &rdev->flags); 5869 remove_and_add_spares(mddev, rdev); 5870 5871 if (rdev->raid_disk >= 0) 5872 goto busy; 5873 5874 kick_rdev_from_array(rdev); 5875 md_update_sb(mddev, 1); 5876 md_new_event(mddev); 5877 5878 return 0; 5879 busy: 5880 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n", 5881 bdevname(rdev->bdev,b), mdname(mddev)); 5882 return -EBUSY; 5883 } 5884 5885 static int hot_add_disk(struct mddev * mddev, dev_t dev) 5886 { 5887 char b[BDEVNAME_SIZE]; 5888 int err; 5889 struct md_rdev *rdev; 5890 5891 if (!mddev->pers) 5892 return -ENODEV; 5893 5894 if (mddev->major_version != 0) { 5895 printk(KERN_WARNING "%s: HOT_ADD may only be used with" 5896 " version-0 superblocks.\n", 5897 mdname(mddev)); 5898 return -EINVAL; 5899 } 5900 if (!mddev->pers->hot_add_disk) { 5901 printk(KERN_WARNING 5902 "%s: personality does not support diskops!\n", 5903 mdname(mddev)); 5904 return -EINVAL; 5905 } 5906 5907 rdev = md_import_device(dev, -1, 0); 5908 if (IS_ERR(rdev)) { 5909 printk(KERN_WARNING 5910 "md: error, md_import_device() returned %ld\n", 5911 PTR_ERR(rdev)); 5912 return -EINVAL; 5913 } 5914 5915 if (mddev->persistent) 5916 rdev->sb_start = calc_dev_sboffset(rdev); 5917 else 5918 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 5919 5920 rdev->sectors = rdev->sb_start; 5921 5922 if (test_bit(Faulty, &rdev->flags)) { 5923 printk(KERN_WARNING 5924 "md: can not hot-add faulty %s disk to %s!\n", 5925 bdevname(rdev->bdev,b), mdname(mddev)); 5926 err = -EINVAL; 5927 goto abort_export; 5928 } 5929 clear_bit(In_sync, &rdev->flags); 5930 rdev->desc_nr = -1; 5931 rdev->saved_raid_disk = -1; 5932 err = bind_rdev_to_array(rdev, mddev); 5933 if (err) 5934 goto abort_export; 5935 5936 /* 5937 * The rest should better be atomic, we can have disk failures 5938 * noticed in interrupt contexts ... 5939 */ 5940 5941 rdev->raid_disk = -1; 5942 5943 md_update_sb(mddev, 1); 5944 5945 /* 5946 * Kick recovery, maybe this spare has to be added to the 5947 * array immediately. 5948 */ 5949 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5950 md_wakeup_thread(mddev->thread); 5951 md_new_event(mddev); 5952 return 0; 5953 5954 abort_export: 5955 export_rdev(rdev); 5956 return err; 5957 } 5958 5959 static int set_bitmap_file(struct mddev *mddev, int fd) 5960 { 5961 int err = 0; 5962 5963 if (mddev->pers) { 5964 if (!mddev->pers->quiesce) 5965 return -EBUSY; 5966 if (mddev->recovery || mddev->sync_thread) 5967 return -EBUSY; 5968 /* we should be able to change the bitmap.. */ 5969 } 5970 5971 5972 if (fd >= 0) { 5973 struct inode *inode; 5974 if (mddev->bitmap) 5975 return -EEXIST; /* cannot add when bitmap is present */ 5976 mddev->bitmap_info.file = fget(fd); 5977 5978 if (mddev->bitmap_info.file == NULL) { 5979 printk(KERN_ERR "%s: error: failed to get bitmap file\n", 5980 mdname(mddev)); 5981 return -EBADF; 5982 } 5983 5984 inode = mddev->bitmap_info.file->f_mapping->host; 5985 if (!S_ISREG(inode->i_mode)) { 5986 printk(KERN_ERR "%s: error: bitmap file must be a regular file\n", 5987 mdname(mddev)); 5988 err = -EBADF; 5989 } else if (!(mddev->bitmap_info.file->f_mode & FMODE_WRITE)) { 5990 printk(KERN_ERR "%s: error: bitmap file must open for write\n", 5991 mdname(mddev)); 5992 err = -EBADF; 5993 } else if (atomic_read(&inode->i_writecount) != 1) { 5994 printk(KERN_ERR "%s: error: bitmap file is already in use\n", 5995 mdname(mddev)); 5996 err = -EBUSY; 5997 } 5998 if (err) { 5999 fput(mddev->bitmap_info.file); 6000 mddev->bitmap_info.file = NULL; 6001 return err; 6002 } 6003 mddev->bitmap_info.offset = 0; /* file overrides offset */ 6004 } else if (mddev->bitmap == NULL) 6005 return -ENOENT; /* cannot remove what isn't there */ 6006 err = 0; 6007 if (mddev->pers) { 6008 mddev->pers->quiesce(mddev, 1); 6009 if (fd >= 0) { 6010 err = bitmap_create(mddev); 6011 if (!err) 6012 err = bitmap_load(mddev); 6013 } 6014 if (fd < 0 || err) { 6015 bitmap_destroy(mddev); 6016 fd = -1; /* make sure to put the file */ 6017 } 6018 mddev->pers->quiesce(mddev, 0); 6019 } 6020 if (fd < 0) { 6021 if (mddev->bitmap_info.file) 6022 fput(mddev->bitmap_info.file); 6023 mddev->bitmap_info.file = NULL; 6024 } 6025 6026 return err; 6027 } 6028 6029 /* 6030 * set_array_info is used two different ways 6031 * The original usage is when creating a new array. 6032 * In this usage, raid_disks is > 0 and it together with 6033 * level, size, not_persistent,layout,chunksize determine the 6034 * shape of the array. 6035 * This will always create an array with a type-0.90.0 superblock. 6036 * The newer usage is when assembling an array. 6037 * In this case raid_disks will be 0, and the major_version field is 6038 * use to determine which style super-blocks are to be found on the devices. 6039 * The minor and patch _version numbers are also kept incase the 6040 * super_block handler wishes to interpret them. 6041 */ 6042 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info) 6043 { 6044 6045 if (info->raid_disks == 0) { 6046 /* just setting version number for superblock loading */ 6047 if (info->major_version < 0 || 6048 info->major_version >= ARRAY_SIZE(super_types) || 6049 super_types[info->major_version].name == NULL) { 6050 /* maybe try to auto-load a module? */ 6051 printk(KERN_INFO 6052 "md: superblock version %d not known\n", 6053 info->major_version); 6054 return -EINVAL; 6055 } 6056 mddev->major_version = info->major_version; 6057 mddev->minor_version = info->minor_version; 6058 mddev->patch_version = info->patch_version; 6059 mddev->persistent = !info->not_persistent; 6060 /* ensure mddev_put doesn't delete this now that there 6061 * is some minimal configuration. 6062 */ 6063 mddev->ctime = get_seconds(); 6064 return 0; 6065 } 6066 mddev->major_version = MD_MAJOR_VERSION; 6067 mddev->minor_version = MD_MINOR_VERSION; 6068 mddev->patch_version = MD_PATCHLEVEL_VERSION; 6069 mddev->ctime = get_seconds(); 6070 6071 mddev->level = info->level; 6072 mddev->clevel[0] = 0; 6073 mddev->dev_sectors = 2 * (sector_t)info->size; 6074 mddev->raid_disks = info->raid_disks; 6075 /* don't set md_minor, it is determined by which /dev/md* was 6076 * openned 6077 */ 6078 if (info->state & (1<<MD_SB_CLEAN)) 6079 mddev->recovery_cp = MaxSector; 6080 else 6081 mddev->recovery_cp = 0; 6082 mddev->persistent = ! info->not_persistent; 6083 mddev->external = 0; 6084 6085 mddev->layout = info->layout; 6086 mddev->chunk_sectors = info->chunk_size >> 9; 6087 6088 mddev->max_disks = MD_SB_DISKS; 6089 6090 if (mddev->persistent) 6091 mddev->flags = 0; 6092 set_bit(MD_CHANGE_DEVS, &mddev->flags); 6093 6094 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 6095 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 6096 mddev->bitmap_info.offset = 0; 6097 6098 mddev->reshape_position = MaxSector; 6099 6100 /* 6101 * Generate a 128 bit UUID 6102 */ 6103 get_random_bytes(mddev->uuid, 16); 6104 6105 mddev->new_level = mddev->level; 6106 mddev->new_chunk_sectors = mddev->chunk_sectors; 6107 mddev->new_layout = mddev->layout; 6108 mddev->delta_disks = 0; 6109 mddev->reshape_backwards = 0; 6110 6111 return 0; 6112 } 6113 6114 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors) 6115 { 6116 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__); 6117 6118 if (mddev->external_size) 6119 return; 6120 6121 mddev->array_sectors = array_sectors; 6122 } 6123 EXPORT_SYMBOL(md_set_array_sectors); 6124 6125 static int update_size(struct mddev *mddev, sector_t num_sectors) 6126 { 6127 struct md_rdev *rdev; 6128 int rv; 6129 int fit = (num_sectors == 0); 6130 6131 if (mddev->pers->resize == NULL) 6132 return -EINVAL; 6133 /* The "num_sectors" is the number of sectors of each device that 6134 * is used. This can only make sense for arrays with redundancy. 6135 * linear and raid0 always use whatever space is available. We can only 6136 * consider changing this number if no resync or reconstruction is 6137 * happening, and if the new size is acceptable. It must fit before the 6138 * sb_start or, if that is <data_offset, it must fit before the size 6139 * of each device. If num_sectors is zero, we find the largest size 6140 * that fits. 6141 */ 6142 if (mddev->sync_thread) 6143 return -EBUSY; 6144 if (mddev->ro) 6145 return -EROFS; 6146 6147 rdev_for_each(rdev, mddev) { 6148 sector_t avail = rdev->sectors; 6149 6150 if (fit && (num_sectors == 0 || num_sectors > avail)) 6151 num_sectors = avail; 6152 if (avail < num_sectors) 6153 return -ENOSPC; 6154 } 6155 rv = mddev->pers->resize(mddev, num_sectors); 6156 if (!rv) 6157 revalidate_disk(mddev->gendisk); 6158 return rv; 6159 } 6160 6161 static int update_raid_disks(struct mddev *mddev, int raid_disks) 6162 { 6163 int rv; 6164 struct md_rdev *rdev; 6165 /* change the number of raid disks */ 6166 if (mddev->pers->check_reshape == NULL) 6167 return -EINVAL; 6168 if (mddev->ro) 6169 return -EROFS; 6170 if (raid_disks <= 0 || 6171 (mddev->max_disks && raid_disks >= mddev->max_disks)) 6172 return -EINVAL; 6173 if (mddev->sync_thread || mddev->reshape_position != MaxSector) 6174 return -EBUSY; 6175 6176 rdev_for_each(rdev, mddev) { 6177 if (mddev->raid_disks < raid_disks && 6178 rdev->data_offset < rdev->new_data_offset) 6179 return -EINVAL; 6180 if (mddev->raid_disks > raid_disks && 6181 rdev->data_offset > rdev->new_data_offset) 6182 return -EINVAL; 6183 } 6184 6185 mddev->delta_disks = raid_disks - mddev->raid_disks; 6186 if (mddev->delta_disks < 0) 6187 mddev->reshape_backwards = 1; 6188 else if (mddev->delta_disks > 0) 6189 mddev->reshape_backwards = 0; 6190 6191 rv = mddev->pers->check_reshape(mddev); 6192 if (rv < 0) { 6193 mddev->delta_disks = 0; 6194 mddev->reshape_backwards = 0; 6195 } 6196 return rv; 6197 } 6198 6199 6200 /* 6201 * update_array_info is used to change the configuration of an 6202 * on-line array. 6203 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size 6204 * fields in the info are checked against the array. 6205 * Any differences that cannot be handled will cause an error. 6206 * Normally, only one change can be managed at a time. 6207 */ 6208 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info) 6209 { 6210 int rv = 0; 6211 int cnt = 0; 6212 int state = 0; 6213 6214 /* calculate expected state,ignoring low bits */ 6215 if (mddev->bitmap && mddev->bitmap_info.offset) 6216 state |= (1 << MD_SB_BITMAP_PRESENT); 6217 6218 if (mddev->major_version != info->major_version || 6219 mddev->minor_version != info->minor_version || 6220 /* mddev->patch_version != info->patch_version || */ 6221 mddev->ctime != info->ctime || 6222 mddev->level != info->level || 6223 /* mddev->layout != info->layout || */ 6224 !mddev->persistent != info->not_persistent|| 6225 mddev->chunk_sectors != info->chunk_size >> 9 || 6226 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ 6227 ((state^info->state) & 0xfffffe00) 6228 ) 6229 return -EINVAL; 6230 /* Check there is only one change */ 6231 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 6232 cnt++; 6233 if (mddev->raid_disks != info->raid_disks) 6234 cnt++; 6235 if (mddev->layout != info->layout) 6236 cnt++; 6237 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) 6238 cnt++; 6239 if (cnt == 0) 6240 return 0; 6241 if (cnt > 1) 6242 return -EINVAL; 6243 6244 if (mddev->layout != info->layout) { 6245 /* Change layout 6246 * we don't need to do anything at the md level, the 6247 * personality will take care of it all. 6248 */ 6249 if (mddev->pers->check_reshape == NULL) 6250 return -EINVAL; 6251 else { 6252 mddev->new_layout = info->layout; 6253 rv = mddev->pers->check_reshape(mddev); 6254 if (rv) 6255 mddev->new_layout = mddev->layout; 6256 return rv; 6257 } 6258 } 6259 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 6260 rv = update_size(mddev, (sector_t)info->size * 2); 6261 6262 if (mddev->raid_disks != info->raid_disks) 6263 rv = update_raid_disks(mddev, info->raid_disks); 6264 6265 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { 6266 if (mddev->pers->quiesce == NULL) 6267 return -EINVAL; 6268 if (mddev->recovery || mddev->sync_thread) 6269 return -EBUSY; 6270 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { 6271 /* add the bitmap */ 6272 if (mddev->bitmap) 6273 return -EEXIST; 6274 if (mddev->bitmap_info.default_offset == 0) 6275 return -EINVAL; 6276 mddev->bitmap_info.offset = 6277 mddev->bitmap_info.default_offset; 6278 mddev->bitmap_info.space = 6279 mddev->bitmap_info.default_space; 6280 mddev->pers->quiesce(mddev, 1); 6281 rv = bitmap_create(mddev); 6282 if (!rv) 6283 rv = bitmap_load(mddev); 6284 if (rv) 6285 bitmap_destroy(mddev); 6286 mddev->pers->quiesce(mddev, 0); 6287 } else { 6288 /* remove the bitmap */ 6289 if (!mddev->bitmap) 6290 return -ENOENT; 6291 if (mddev->bitmap->storage.file) 6292 return -EINVAL; 6293 mddev->pers->quiesce(mddev, 1); 6294 bitmap_destroy(mddev); 6295 mddev->pers->quiesce(mddev, 0); 6296 mddev->bitmap_info.offset = 0; 6297 } 6298 } 6299 md_update_sb(mddev, 1); 6300 return rv; 6301 } 6302 6303 static int set_disk_faulty(struct mddev *mddev, dev_t dev) 6304 { 6305 struct md_rdev *rdev; 6306 int err = 0; 6307 6308 if (mddev->pers == NULL) 6309 return -ENODEV; 6310 6311 rcu_read_lock(); 6312 rdev = find_rdev_rcu(mddev, dev); 6313 if (!rdev) 6314 err = -ENODEV; 6315 else { 6316 md_error(mddev, rdev); 6317 if (!test_bit(Faulty, &rdev->flags)) 6318 err = -EBUSY; 6319 } 6320 rcu_read_unlock(); 6321 return err; 6322 } 6323 6324 /* 6325 * We have a problem here : there is no easy way to give a CHS 6326 * virtual geometry. We currently pretend that we have a 2 heads 6327 * 4 sectors (with a BIG number of cylinders...). This drives 6328 * dosfs just mad... ;-) 6329 */ 6330 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) 6331 { 6332 struct mddev *mddev = bdev->bd_disk->private_data; 6333 6334 geo->heads = 2; 6335 geo->sectors = 4; 6336 geo->cylinders = mddev->array_sectors / 8; 6337 return 0; 6338 } 6339 6340 static inline bool md_ioctl_valid(unsigned int cmd) 6341 { 6342 switch (cmd) { 6343 case ADD_NEW_DISK: 6344 case BLKROSET: 6345 case GET_ARRAY_INFO: 6346 case GET_BITMAP_FILE: 6347 case GET_DISK_INFO: 6348 case HOT_ADD_DISK: 6349 case HOT_REMOVE_DISK: 6350 case PRINT_RAID_DEBUG: 6351 case RAID_AUTORUN: 6352 case RAID_VERSION: 6353 case RESTART_ARRAY_RW: 6354 case RUN_ARRAY: 6355 case SET_ARRAY_INFO: 6356 case SET_BITMAP_FILE: 6357 case SET_DISK_FAULTY: 6358 case STOP_ARRAY: 6359 case STOP_ARRAY_RO: 6360 return true; 6361 default: 6362 return false; 6363 } 6364 } 6365 6366 static int md_ioctl(struct block_device *bdev, fmode_t mode, 6367 unsigned int cmd, unsigned long arg) 6368 { 6369 int err = 0; 6370 void __user *argp = (void __user *)arg; 6371 struct mddev *mddev = NULL; 6372 int ro; 6373 6374 if (!md_ioctl_valid(cmd)) 6375 return -ENOTTY; 6376 6377 switch (cmd) { 6378 case RAID_VERSION: 6379 case GET_ARRAY_INFO: 6380 case GET_DISK_INFO: 6381 break; 6382 default: 6383 if (!capable(CAP_SYS_ADMIN)) 6384 return -EACCES; 6385 } 6386 6387 /* 6388 * Commands dealing with the RAID driver but not any 6389 * particular array: 6390 */ 6391 switch (cmd) { 6392 case RAID_VERSION: 6393 err = get_version(argp); 6394 goto done; 6395 6396 case PRINT_RAID_DEBUG: 6397 err = 0; 6398 md_print_devices(); 6399 goto done; 6400 6401 #ifndef MODULE 6402 case RAID_AUTORUN: 6403 err = 0; 6404 autostart_arrays(arg); 6405 goto done; 6406 #endif 6407 default:; 6408 } 6409 6410 /* 6411 * Commands creating/starting a new array: 6412 */ 6413 6414 mddev = bdev->bd_disk->private_data; 6415 6416 if (!mddev) { 6417 BUG(); 6418 goto abort; 6419 } 6420 6421 /* Some actions do not requires the mutex */ 6422 switch (cmd) { 6423 case GET_ARRAY_INFO: 6424 if (!mddev->raid_disks && !mddev->external) 6425 err = -ENODEV; 6426 else 6427 err = get_array_info(mddev, argp); 6428 goto abort; 6429 6430 case GET_DISK_INFO: 6431 if (!mddev->raid_disks && !mddev->external) 6432 err = -ENODEV; 6433 else 6434 err = get_disk_info(mddev, argp); 6435 goto abort; 6436 6437 case SET_DISK_FAULTY: 6438 err = set_disk_faulty(mddev, new_decode_dev(arg)); 6439 goto abort; 6440 } 6441 6442 if (cmd == ADD_NEW_DISK) 6443 /* need to ensure md_delayed_delete() has completed */ 6444 flush_workqueue(md_misc_wq); 6445 6446 if (cmd == HOT_REMOVE_DISK) 6447 /* need to ensure recovery thread has run */ 6448 wait_event_interruptible_timeout(mddev->sb_wait, 6449 !test_bit(MD_RECOVERY_NEEDED, 6450 &mddev->flags), 6451 msecs_to_jiffies(5000)); 6452 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) { 6453 /* Need to flush page cache, and ensure no-one else opens 6454 * and writes 6455 */ 6456 mutex_lock(&mddev->open_mutex); 6457 if (atomic_read(&mddev->openers) > 1) { 6458 mutex_unlock(&mddev->open_mutex); 6459 err = -EBUSY; 6460 goto abort; 6461 } 6462 set_bit(MD_STILL_CLOSED, &mddev->flags); 6463 mutex_unlock(&mddev->open_mutex); 6464 sync_blockdev(bdev); 6465 } 6466 err = mddev_lock(mddev); 6467 if (err) { 6468 printk(KERN_INFO 6469 "md: ioctl lock interrupted, reason %d, cmd %d\n", 6470 err, cmd); 6471 goto abort; 6472 } 6473 6474 if (cmd == SET_ARRAY_INFO) { 6475 mdu_array_info_t info; 6476 if (!arg) 6477 memset(&info, 0, sizeof(info)); 6478 else if (copy_from_user(&info, argp, sizeof(info))) { 6479 err = -EFAULT; 6480 goto abort_unlock; 6481 } 6482 if (mddev->pers) { 6483 err = update_array_info(mddev, &info); 6484 if (err) { 6485 printk(KERN_WARNING "md: couldn't update" 6486 " array info. %d\n", err); 6487 goto abort_unlock; 6488 } 6489 goto done_unlock; 6490 } 6491 if (!list_empty(&mddev->disks)) { 6492 printk(KERN_WARNING 6493 "md: array %s already has disks!\n", 6494 mdname(mddev)); 6495 err = -EBUSY; 6496 goto abort_unlock; 6497 } 6498 if (mddev->raid_disks) { 6499 printk(KERN_WARNING 6500 "md: array %s already initialised!\n", 6501 mdname(mddev)); 6502 err = -EBUSY; 6503 goto abort_unlock; 6504 } 6505 err = set_array_info(mddev, &info); 6506 if (err) { 6507 printk(KERN_WARNING "md: couldn't set" 6508 " array info. %d\n", err); 6509 goto abort_unlock; 6510 } 6511 goto done_unlock; 6512 } 6513 6514 /* 6515 * Commands querying/configuring an existing array: 6516 */ 6517 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, 6518 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ 6519 if ((!mddev->raid_disks && !mddev->external) 6520 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY 6521 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE 6522 && cmd != GET_BITMAP_FILE) { 6523 err = -ENODEV; 6524 goto abort_unlock; 6525 } 6526 6527 /* 6528 * Commands even a read-only array can execute: 6529 */ 6530 switch (cmd) { 6531 case GET_BITMAP_FILE: 6532 err = get_bitmap_file(mddev, argp); 6533 goto done_unlock; 6534 6535 case RESTART_ARRAY_RW: 6536 err = restart_array(mddev); 6537 goto done_unlock; 6538 6539 case STOP_ARRAY: 6540 err = do_md_stop(mddev, 0, bdev); 6541 goto done_unlock; 6542 6543 case STOP_ARRAY_RO: 6544 err = md_set_readonly(mddev, bdev); 6545 goto done_unlock; 6546 6547 case HOT_REMOVE_DISK: 6548 err = hot_remove_disk(mddev, new_decode_dev(arg)); 6549 goto done_unlock; 6550 6551 case ADD_NEW_DISK: 6552 /* We can support ADD_NEW_DISK on read-only arrays 6553 * on if we are re-adding a preexisting device. 6554 * So require mddev->pers and MD_DISK_SYNC. 6555 */ 6556 if (mddev->pers) { 6557 mdu_disk_info_t info; 6558 if (copy_from_user(&info, argp, sizeof(info))) 6559 err = -EFAULT; 6560 else if (!(info.state & (1<<MD_DISK_SYNC))) 6561 /* Need to clear read-only for this */ 6562 break; 6563 else 6564 err = add_new_disk(mddev, &info); 6565 goto done_unlock; 6566 } 6567 break; 6568 6569 case BLKROSET: 6570 if (get_user(ro, (int __user *)(arg))) { 6571 err = -EFAULT; 6572 goto done_unlock; 6573 } 6574 err = -EINVAL; 6575 6576 /* if the bdev is going readonly the value of mddev->ro 6577 * does not matter, no writes are coming 6578 */ 6579 if (ro) 6580 goto done_unlock; 6581 6582 /* are we are already prepared for writes? */ 6583 if (mddev->ro != 1) 6584 goto done_unlock; 6585 6586 /* transitioning to readauto need only happen for 6587 * arrays that call md_write_start 6588 */ 6589 if (mddev->pers) { 6590 err = restart_array(mddev); 6591 if (err == 0) { 6592 mddev->ro = 2; 6593 set_disk_ro(mddev->gendisk, 0); 6594 } 6595 } 6596 goto done_unlock; 6597 } 6598 6599 /* 6600 * The remaining ioctls are changing the state of the 6601 * superblock, so we do not allow them on read-only arrays. 6602 * However non-MD ioctls (e.g. get-size) will still come through 6603 * here and hit the 'default' below, so only disallow 6604 * 'md' ioctls, and switch to rw mode if started auto-readonly. 6605 */ 6606 if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) { 6607 if (mddev->ro == 2) { 6608 mddev->ro = 0; 6609 sysfs_notify_dirent_safe(mddev->sysfs_state); 6610 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6611 /* mddev_unlock will wake thread */ 6612 /* If a device failed while we were read-only, we 6613 * need to make sure the metadata is updated now. 6614 */ 6615 if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) { 6616 mddev_unlock(mddev); 6617 wait_event(mddev->sb_wait, 6618 !test_bit(MD_CHANGE_DEVS, &mddev->flags) && 6619 !test_bit(MD_CHANGE_PENDING, &mddev->flags)); 6620 mddev_lock_nointr(mddev); 6621 } 6622 } else { 6623 err = -EROFS; 6624 goto abort_unlock; 6625 } 6626 } 6627 6628 switch (cmd) { 6629 case ADD_NEW_DISK: 6630 { 6631 mdu_disk_info_t info; 6632 if (copy_from_user(&info, argp, sizeof(info))) 6633 err = -EFAULT; 6634 else 6635 err = add_new_disk(mddev, &info); 6636 goto done_unlock; 6637 } 6638 6639 case HOT_ADD_DISK: 6640 err = hot_add_disk(mddev, new_decode_dev(arg)); 6641 goto done_unlock; 6642 6643 case RUN_ARRAY: 6644 err = do_md_run(mddev); 6645 goto done_unlock; 6646 6647 case SET_BITMAP_FILE: 6648 err = set_bitmap_file(mddev, (int)arg); 6649 goto done_unlock; 6650 6651 default: 6652 err = -EINVAL; 6653 goto abort_unlock; 6654 } 6655 6656 done_unlock: 6657 abort_unlock: 6658 if (mddev->hold_active == UNTIL_IOCTL && 6659 err != -EINVAL) 6660 mddev->hold_active = 0; 6661 mddev_unlock(mddev); 6662 6663 return err; 6664 done: 6665 if (err) 6666 MD_BUG(); 6667 abort: 6668 return err; 6669 } 6670 #ifdef CONFIG_COMPAT 6671 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode, 6672 unsigned int cmd, unsigned long arg) 6673 { 6674 switch (cmd) { 6675 case HOT_REMOVE_DISK: 6676 case HOT_ADD_DISK: 6677 case SET_DISK_FAULTY: 6678 case SET_BITMAP_FILE: 6679 /* These take in integer arg, do not convert */ 6680 break; 6681 default: 6682 arg = (unsigned long)compat_ptr(arg); 6683 break; 6684 } 6685 6686 return md_ioctl(bdev, mode, cmd, arg); 6687 } 6688 #endif /* CONFIG_COMPAT */ 6689 6690 static int md_open(struct block_device *bdev, fmode_t mode) 6691 { 6692 /* 6693 * Succeed if we can lock the mddev, which confirms that 6694 * it isn't being stopped right now. 6695 */ 6696 struct mddev *mddev = mddev_find(bdev->bd_dev); 6697 int err; 6698 6699 if (!mddev) 6700 return -ENODEV; 6701 6702 if (mddev->gendisk != bdev->bd_disk) { 6703 /* we are racing with mddev_put which is discarding this 6704 * bd_disk. 6705 */ 6706 mddev_put(mddev); 6707 /* Wait until bdev->bd_disk is definitely gone */ 6708 flush_workqueue(md_misc_wq); 6709 /* Then retry the open from the top */ 6710 return -ERESTARTSYS; 6711 } 6712 BUG_ON(mddev != bdev->bd_disk->private_data); 6713 6714 if ((err = mutex_lock_interruptible(&mddev->open_mutex))) 6715 goto out; 6716 6717 err = 0; 6718 atomic_inc(&mddev->openers); 6719 clear_bit(MD_STILL_CLOSED, &mddev->flags); 6720 mutex_unlock(&mddev->open_mutex); 6721 6722 check_disk_change(bdev); 6723 out: 6724 return err; 6725 } 6726 6727 static void md_release(struct gendisk *disk, fmode_t mode) 6728 { 6729 struct mddev *mddev = disk->private_data; 6730 6731 BUG_ON(!mddev); 6732 atomic_dec(&mddev->openers); 6733 mddev_put(mddev); 6734 } 6735 6736 static int md_media_changed(struct gendisk *disk) 6737 { 6738 struct mddev *mddev = disk->private_data; 6739 6740 return mddev->changed; 6741 } 6742 6743 static int md_revalidate(struct gendisk *disk) 6744 { 6745 struct mddev *mddev = disk->private_data; 6746 6747 mddev->changed = 0; 6748 return 0; 6749 } 6750 static const struct block_device_operations md_fops = 6751 { 6752 .owner = THIS_MODULE, 6753 .open = md_open, 6754 .release = md_release, 6755 .ioctl = md_ioctl, 6756 #ifdef CONFIG_COMPAT 6757 .compat_ioctl = md_compat_ioctl, 6758 #endif 6759 .getgeo = md_getgeo, 6760 .media_changed = md_media_changed, 6761 .revalidate_disk= md_revalidate, 6762 }; 6763 6764 static int md_thread(void * arg) 6765 { 6766 struct md_thread *thread = arg; 6767 6768 /* 6769 * md_thread is a 'system-thread', it's priority should be very 6770 * high. We avoid resource deadlocks individually in each 6771 * raid personality. (RAID5 does preallocation) We also use RR and 6772 * the very same RT priority as kswapd, thus we will never get 6773 * into a priority inversion deadlock. 6774 * 6775 * we definitely have to have equal or higher priority than 6776 * bdflush, otherwise bdflush will deadlock if there are too 6777 * many dirty RAID5 blocks. 6778 */ 6779 6780 allow_signal(SIGKILL); 6781 while (!kthread_should_stop()) { 6782 6783 /* We need to wait INTERRUPTIBLE so that 6784 * we don't add to the load-average. 6785 * That means we need to be sure no signals are 6786 * pending 6787 */ 6788 if (signal_pending(current)) 6789 flush_signals(current); 6790 6791 wait_event_interruptible_timeout 6792 (thread->wqueue, 6793 test_bit(THREAD_WAKEUP, &thread->flags) 6794 || kthread_should_stop(), 6795 thread->timeout); 6796 6797 clear_bit(THREAD_WAKEUP, &thread->flags); 6798 if (!kthread_should_stop()) 6799 thread->run(thread); 6800 } 6801 6802 return 0; 6803 } 6804 6805 void md_wakeup_thread(struct md_thread *thread) 6806 { 6807 if (thread) { 6808 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm); 6809 set_bit(THREAD_WAKEUP, &thread->flags); 6810 wake_up(&thread->wqueue); 6811 } 6812 } 6813 6814 struct md_thread *md_register_thread(void (*run) (struct md_thread *), 6815 struct mddev *mddev, const char *name) 6816 { 6817 struct md_thread *thread; 6818 6819 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL); 6820 if (!thread) 6821 return NULL; 6822 6823 init_waitqueue_head(&thread->wqueue); 6824 6825 thread->run = run; 6826 thread->mddev = mddev; 6827 thread->timeout = MAX_SCHEDULE_TIMEOUT; 6828 thread->tsk = kthread_run(md_thread, thread, 6829 "%s_%s", 6830 mdname(thread->mddev), 6831 name); 6832 if (IS_ERR(thread->tsk)) { 6833 kfree(thread); 6834 return NULL; 6835 } 6836 return thread; 6837 } 6838 6839 void md_unregister_thread(struct md_thread **threadp) 6840 { 6841 struct md_thread *thread = *threadp; 6842 if (!thread) 6843 return; 6844 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk)); 6845 /* Locking ensures that mddev_unlock does not wake_up a 6846 * non-existent thread 6847 */ 6848 spin_lock(&pers_lock); 6849 *threadp = NULL; 6850 spin_unlock(&pers_lock); 6851 6852 kthread_stop(thread->tsk); 6853 kfree(thread); 6854 } 6855 6856 void md_error(struct mddev *mddev, struct md_rdev *rdev) 6857 { 6858 if (!mddev) { 6859 MD_BUG(); 6860 return; 6861 } 6862 6863 if (!rdev || test_bit(Faulty, &rdev->flags)) 6864 return; 6865 6866 if (!mddev->pers || !mddev->pers->error_handler) 6867 return; 6868 mddev->pers->error_handler(mddev,rdev); 6869 if (mddev->degraded) 6870 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 6871 sysfs_notify_dirent_safe(rdev->sysfs_state); 6872 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6873 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6874 md_wakeup_thread(mddev->thread); 6875 if (mddev->event_work.func) 6876 queue_work(md_misc_wq, &mddev->event_work); 6877 md_new_event_inintr(mddev); 6878 } 6879 6880 /* seq_file implementation /proc/mdstat */ 6881 6882 static void status_unused(struct seq_file *seq) 6883 { 6884 int i = 0; 6885 struct md_rdev *rdev; 6886 6887 seq_printf(seq, "unused devices: "); 6888 6889 list_for_each_entry(rdev, &pending_raid_disks, same_set) { 6890 char b[BDEVNAME_SIZE]; 6891 i++; 6892 seq_printf(seq, "%s ", 6893 bdevname(rdev->bdev,b)); 6894 } 6895 if (!i) 6896 seq_printf(seq, "<none>"); 6897 6898 seq_printf(seq, "\n"); 6899 } 6900 6901 6902 static void status_resync(struct seq_file *seq, struct mddev * mddev) 6903 { 6904 sector_t max_sectors, resync, res; 6905 unsigned long dt, db; 6906 sector_t rt; 6907 int scale; 6908 unsigned int per_milli; 6909 6910 if (mddev->curr_resync <= 3) 6911 resync = 0; 6912 else 6913 resync = mddev->curr_resync 6914 - atomic_read(&mddev->recovery_active); 6915 6916 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 6917 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 6918 max_sectors = mddev->resync_max_sectors; 6919 else 6920 max_sectors = mddev->dev_sectors; 6921 6922 /* 6923 * Should not happen. 6924 */ 6925 if (!max_sectors) { 6926 MD_BUG(); 6927 return; 6928 } 6929 /* Pick 'scale' such that (resync>>scale)*1000 will fit 6930 * in a sector_t, and (max_sectors>>scale) will fit in a 6931 * u32, as those are the requirements for sector_div. 6932 * Thus 'scale' must be at least 10 6933 */ 6934 scale = 10; 6935 if (sizeof(sector_t) > sizeof(unsigned long)) { 6936 while ( max_sectors/2 > (1ULL<<(scale+32))) 6937 scale++; 6938 } 6939 res = (resync>>scale)*1000; 6940 sector_div(res, (u32)((max_sectors>>scale)+1)); 6941 6942 per_milli = res; 6943 { 6944 int i, x = per_milli/50, y = 20-x; 6945 seq_printf(seq, "["); 6946 for (i = 0; i < x; i++) 6947 seq_printf(seq, "="); 6948 seq_printf(seq, ">"); 6949 for (i = 0; i < y; i++) 6950 seq_printf(seq, "."); 6951 seq_printf(seq, "] "); 6952 } 6953 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", 6954 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? 6955 "reshape" : 6956 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? 6957 "check" : 6958 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? 6959 "resync" : "recovery"))), 6960 per_milli/10, per_milli % 10, 6961 (unsigned long long) resync/2, 6962 (unsigned long long) max_sectors/2); 6963 6964 /* 6965 * dt: time from mark until now 6966 * db: blocks written from mark until now 6967 * rt: remaining time 6968 * 6969 * rt is a sector_t, so could be 32bit or 64bit. 6970 * So we divide before multiply in case it is 32bit and close 6971 * to the limit. 6972 * We scale the divisor (db) by 32 to avoid losing precision 6973 * near the end of resync when the number of remaining sectors 6974 * is close to 'db'. 6975 * We then divide rt by 32 after multiplying by db to compensate. 6976 * The '+1' avoids division by zero if db is very small. 6977 */ 6978 dt = ((jiffies - mddev->resync_mark) / HZ); 6979 if (!dt) dt++; 6980 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active)) 6981 - mddev->resync_mark_cnt; 6982 6983 rt = max_sectors - resync; /* number of remaining sectors */ 6984 sector_div(rt, db/32+1); 6985 rt *= dt; 6986 rt >>= 5; 6987 6988 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60, 6989 ((unsigned long)rt % 60)/6); 6990 6991 seq_printf(seq, " speed=%ldK/sec", db/2/dt); 6992 } 6993 6994 static void *md_seq_start(struct seq_file *seq, loff_t *pos) 6995 { 6996 struct list_head *tmp; 6997 loff_t l = *pos; 6998 struct mddev *mddev; 6999 7000 if (l >= 0x10000) 7001 return NULL; 7002 if (!l--) 7003 /* header */ 7004 return (void*)1; 7005 7006 spin_lock(&all_mddevs_lock); 7007 list_for_each(tmp,&all_mddevs) 7008 if (!l--) { 7009 mddev = list_entry(tmp, struct mddev, all_mddevs); 7010 mddev_get(mddev); 7011 spin_unlock(&all_mddevs_lock); 7012 return mddev; 7013 } 7014 spin_unlock(&all_mddevs_lock); 7015 if (!l--) 7016 return (void*)2;/* tail */ 7017 return NULL; 7018 } 7019 7020 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) 7021 { 7022 struct list_head *tmp; 7023 struct mddev *next_mddev, *mddev = v; 7024 7025 ++*pos; 7026 if (v == (void*)2) 7027 return NULL; 7028 7029 spin_lock(&all_mddevs_lock); 7030 if (v == (void*)1) 7031 tmp = all_mddevs.next; 7032 else 7033 tmp = mddev->all_mddevs.next; 7034 if (tmp != &all_mddevs) 7035 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs)); 7036 else { 7037 next_mddev = (void*)2; 7038 *pos = 0x10000; 7039 } 7040 spin_unlock(&all_mddevs_lock); 7041 7042 if (v != (void*)1) 7043 mddev_put(mddev); 7044 return next_mddev; 7045 7046 } 7047 7048 static void md_seq_stop(struct seq_file *seq, void *v) 7049 { 7050 struct mddev *mddev = v; 7051 7052 if (mddev && v != (void*)1 && v != (void*)2) 7053 mddev_put(mddev); 7054 } 7055 7056 static int md_seq_show(struct seq_file *seq, void *v) 7057 { 7058 struct mddev *mddev = v; 7059 sector_t sectors; 7060 struct md_rdev *rdev; 7061 7062 if (v == (void*)1) { 7063 struct md_personality *pers; 7064 seq_printf(seq, "Personalities : "); 7065 spin_lock(&pers_lock); 7066 list_for_each_entry(pers, &pers_list, list) 7067 seq_printf(seq, "[%s] ", pers->name); 7068 7069 spin_unlock(&pers_lock); 7070 seq_printf(seq, "\n"); 7071 seq->poll_event = atomic_read(&md_event_count); 7072 return 0; 7073 } 7074 if (v == (void*)2) { 7075 status_unused(seq); 7076 return 0; 7077 } 7078 7079 if (mddev_lock(mddev) < 0) 7080 return -EINTR; 7081 7082 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { 7083 seq_printf(seq, "%s : %sactive", mdname(mddev), 7084 mddev->pers ? "" : "in"); 7085 if (mddev->pers) { 7086 if (mddev->ro==1) 7087 seq_printf(seq, " (read-only)"); 7088 if (mddev->ro==2) 7089 seq_printf(seq, " (auto-read-only)"); 7090 seq_printf(seq, " %s", mddev->pers->name); 7091 } 7092 7093 sectors = 0; 7094 rdev_for_each(rdev, mddev) { 7095 char b[BDEVNAME_SIZE]; 7096 seq_printf(seq, " %s[%d]", 7097 bdevname(rdev->bdev,b), rdev->desc_nr); 7098 if (test_bit(WriteMostly, &rdev->flags)) 7099 seq_printf(seq, "(W)"); 7100 if (test_bit(Faulty, &rdev->flags)) { 7101 seq_printf(seq, "(F)"); 7102 continue; 7103 } 7104 if (rdev->raid_disk < 0) 7105 seq_printf(seq, "(S)"); /* spare */ 7106 if (test_bit(Replacement, &rdev->flags)) 7107 seq_printf(seq, "(R)"); 7108 sectors += rdev->sectors; 7109 } 7110 7111 if (!list_empty(&mddev->disks)) { 7112 if (mddev->pers) 7113 seq_printf(seq, "\n %llu blocks", 7114 (unsigned long long) 7115 mddev->array_sectors / 2); 7116 else 7117 seq_printf(seq, "\n %llu blocks", 7118 (unsigned long long)sectors / 2); 7119 } 7120 if (mddev->persistent) { 7121 if (mddev->major_version != 0 || 7122 mddev->minor_version != 90) { 7123 seq_printf(seq," super %d.%d", 7124 mddev->major_version, 7125 mddev->minor_version); 7126 } 7127 } else if (mddev->external) 7128 seq_printf(seq, " super external:%s", 7129 mddev->metadata_type); 7130 else 7131 seq_printf(seq, " super non-persistent"); 7132 7133 if (mddev->pers) { 7134 mddev->pers->status(seq, mddev); 7135 seq_printf(seq, "\n "); 7136 if (mddev->pers->sync_request) { 7137 if (mddev->curr_resync > 2) { 7138 status_resync(seq, mddev); 7139 seq_printf(seq, "\n "); 7140 } else if (mddev->curr_resync >= 1) 7141 seq_printf(seq, "\tresync=DELAYED\n "); 7142 else if (mddev->recovery_cp < MaxSector) 7143 seq_printf(seq, "\tresync=PENDING\n "); 7144 } 7145 } else 7146 seq_printf(seq, "\n "); 7147 7148 bitmap_status(seq, mddev->bitmap); 7149 7150 seq_printf(seq, "\n"); 7151 } 7152 mddev_unlock(mddev); 7153 7154 return 0; 7155 } 7156 7157 static const struct seq_operations md_seq_ops = { 7158 .start = md_seq_start, 7159 .next = md_seq_next, 7160 .stop = md_seq_stop, 7161 .show = md_seq_show, 7162 }; 7163 7164 static int md_seq_open(struct inode *inode, struct file *file) 7165 { 7166 struct seq_file *seq; 7167 int error; 7168 7169 error = seq_open(file, &md_seq_ops); 7170 if (error) 7171 return error; 7172 7173 seq = file->private_data; 7174 seq->poll_event = atomic_read(&md_event_count); 7175 return error; 7176 } 7177 7178 static int md_unloading; 7179 static unsigned int mdstat_poll(struct file *filp, poll_table *wait) 7180 { 7181 struct seq_file *seq = filp->private_data; 7182 int mask; 7183 7184 if (md_unloading) 7185 return POLLIN|POLLRDNORM|POLLERR|POLLPRI;; 7186 poll_wait(filp, &md_event_waiters, wait); 7187 7188 /* always allow read */ 7189 mask = POLLIN | POLLRDNORM; 7190 7191 if (seq->poll_event != atomic_read(&md_event_count)) 7192 mask |= POLLERR | POLLPRI; 7193 return mask; 7194 } 7195 7196 static const struct file_operations md_seq_fops = { 7197 .owner = THIS_MODULE, 7198 .open = md_seq_open, 7199 .read = seq_read, 7200 .llseek = seq_lseek, 7201 .release = seq_release_private, 7202 .poll = mdstat_poll, 7203 }; 7204 7205 int register_md_personality(struct md_personality *p) 7206 { 7207 spin_lock(&pers_lock); 7208 list_add_tail(&p->list, &pers_list); 7209 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level); 7210 spin_unlock(&pers_lock); 7211 return 0; 7212 } 7213 7214 int unregister_md_personality(struct md_personality *p) 7215 { 7216 printk(KERN_INFO "md: %s personality unregistered\n", p->name); 7217 spin_lock(&pers_lock); 7218 list_del_init(&p->list); 7219 spin_unlock(&pers_lock); 7220 return 0; 7221 } 7222 7223 static int is_mddev_idle(struct mddev *mddev, int init) 7224 { 7225 struct md_rdev * rdev; 7226 int idle; 7227 int curr_events; 7228 7229 idle = 1; 7230 rcu_read_lock(); 7231 rdev_for_each_rcu(rdev, mddev) { 7232 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk; 7233 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) + 7234 (int)part_stat_read(&disk->part0, sectors[1]) - 7235 atomic_read(&disk->sync_io); 7236 /* sync IO will cause sync_io to increase before the disk_stats 7237 * as sync_io is counted when a request starts, and 7238 * disk_stats is counted when it completes. 7239 * So resync activity will cause curr_events to be smaller than 7240 * when there was no such activity. 7241 * non-sync IO will cause disk_stat to increase without 7242 * increasing sync_io so curr_events will (eventually) 7243 * be larger than it was before. Once it becomes 7244 * substantially larger, the test below will cause 7245 * the array to appear non-idle, and resync will slow 7246 * down. 7247 * If there is a lot of outstanding resync activity when 7248 * we set last_event to curr_events, then all that activity 7249 * completing might cause the array to appear non-idle 7250 * and resync will be slowed down even though there might 7251 * not have been non-resync activity. This will only 7252 * happen once though. 'last_events' will soon reflect 7253 * the state where there is little or no outstanding 7254 * resync requests, and further resync activity will 7255 * always make curr_events less than last_events. 7256 * 7257 */ 7258 if (init || curr_events - rdev->last_events > 64) { 7259 rdev->last_events = curr_events; 7260 idle = 0; 7261 } 7262 } 7263 rcu_read_unlock(); 7264 return idle; 7265 } 7266 7267 void md_done_sync(struct mddev *mddev, int blocks, int ok) 7268 { 7269 /* another "blocks" (512byte) blocks have been synced */ 7270 atomic_sub(blocks, &mddev->recovery_active); 7271 wake_up(&mddev->recovery_wait); 7272 if (!ok) { 7273 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7274 set_bit(MD_RECOVERY_ERROR, &mddev->recovery); 7275 md_wakeup_thread(mddev->thread); 7276 // stop recovery, signal do_sync .... 7277 } 7278 } 7279 7280 7281 /* md_write_start(mddev, bi) 7282 * If we need to update some array metadata (e.g. 'active' flag 7283 * in superblock) before writing, schedule a superblock update 7284 * and wait for it to complete. 7285 */ 7286 void md_write_start(struct mddev *mddev, struct bio *bi) 7287 { 7288 int did_change = 0; 7289 if (bio_data_dir(bi) != WRITE) 7290 return; 7291 7292 BUG_ON(mddev->ro == 1); 7293 if (mddev->ro == 2) { 7294 /* need to switch to read/write */ 7295 mddev->ro = 0; 7296 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7297 md_wakeup_thread(mddev->thread); 7298 md_wakeup_thread(mddev->sync_thread); 7299 did_change = 1; 7300 } 7301 atomic_inc(&mddev->writes_pending); 7302 if (mddev->safemode == 1) 7303 mddev->safemode = 0; 7304 if (mddev->in_sync) { 7305 spin_lock_irq(&mddev->write_lock); 7306 if (mddev->in_sync) { 7307 mddev->in_sync = 0; 7308 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 7309 set_bit(MD_CHANGE_PENDING, &mddev->flags); 7310 md_wakeup_thread(mddev->thread); 7311 did_change = 1; 7312 } 7313 spin_unlock_irq(&mddev->write_lock); 7314 } 7315 if (did_change) 7316 sysfs_notify_dirent_safe(mddev->sysfs_state); 7317 wait_event(mddev->sb_wait, 7318 !test_bit(MD_CHANGE_PENDING, &mddev->flags)); 7319 } 7320 7321 void md_write_end(struct mddev *mddev) 7322 { 7323 if (atomic_dec_and_test(&mddev->writes_pending)) { 7324 if (mddev->safemode == 2) 7325 md_wakeup_thread(mddev->thread); 7326 else if (mddev->safemode_delay) 7327 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay); 7328 } 7329 } 7330 7331 /* md_allow_write(mddev) 7332 * Calling this ensures that the array is marked 'active' so that writes 7333 * may proceed without blocking. It is important to call this before 7334 * attempting a GFP_KERNEL allocation while holding the mddev lock. 7335 * Must be called with mddev_lock held. 7336 * 7337 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock 7338 * is dropped, so return -EAGAIN after notifying userspace. 7339 */ 7340 int md_allow_write(struct mddev *mddev) 7341 { 7342 if (!mddev->pers) 7343 return 0; 7344 if (mddev->ro) 7345 return 0; 7346 if (!mddev->pers->sync_request) 7347 return 0; 7348 7349 spin_lock_irq(&mddev->write_lock); 7350 if (mddev->in_sync) { 7351 mddev->in_sync = 0; 7352 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 7353 set_bit(MD_CHANGE_PENDING, &mddev->flags); 7354 if (mddev->safemode_delay && 7355 mddev->safemode == 0) 7356 mddev->safemode = 1; 7357 spin_unlock_irq(&mddev->write_lock); 7358 md_update_sb(mddev, 0); 7359 sysfs_notify_dirent_safe(mddev->sysfs_state); 7360 } else 7361 spin_unlock_irq(&mddev->write_lock); 7362 7363 if (test_bit(MD_CHANGE_PENDING, &mddev->flags)) 7364 return -EAGAIN; 7365 else 7366 return 0; 7367 } 7368 EXPORT_SYMBOL_GPL(md_allow_write); 7369 7370 #define SYNC_MARKS 10 7371 #define SYNC_MARK_STEP (3*HZ) 7372 #define UPDATE_FREQUENCY (5*60*HZ) 7373 void md_do_sync(struct md_thread *thread) 7374 { 7375 struct mddev *mddev = thread->mddev; 7376 struct mddev *mddev2; 7377 unsigned int currspeed = 0, 7378 window; 7379 sector_t max_sectors,j, io_sectors; 7380 unsigned long mark[SYNC_MARKS]; 7381 unsigned long update_time; 7382 sector_t mark_cnt[SYNC_MARKS]; 7383 int last_mark,m; 7384 struct list_head *tmp; 7385 sector_t last_check; 7386 int skipped = 0; 7387 struct md_rdev *rdev; 7388 char *desc, *action = NULL; 7389 struct blk_plug plug; 7390 7391 /* just incase thread restarts... */ 7392 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 7393 return; 7394 if (mddev->ro) {/* never try to sync a read-only array */ 7395 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7396 return; 7397 } 7398 7399 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 7400 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 7401 desc = "data-check"; 7402 action = "check"; 7403 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 7404 desc = "requested-resync"; 7405 action = "repair"; 7406 } else 7407 desc = "resync"; 7408 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 7409 desc = "reshape"; 7410 else 7411 desc = "recovery"; 7412 7413 mddev->last_sync_action = action ?: desc; 7414 7415 /* we overload curr_resync somewhat here. 7416 * 0 == not engaged in resync at all 7417 * 2 == checking that there is no conflict with another sync 7418 * 1 == like 2, but have yielded to allow conflicting resync to 7419 * commense 7420 * other == active in resync - this many blocks 7421 * 7422 * Before starting a resync we must have set curr_resync to 7423 * 2, and then checked that every "conflicting" array has curr_resync 7424 * less than ours. When we find one that is the same or higher 7425 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync 7426 * to 1 if we choose to yield (based arbitrarily on address of mddev structure). 7427 * This will mean we have to start checking from the beginning again. 7428 * 7429 */ 7430 7431 do { 7432 mddev->curr_resync = 2; 7433 7434 try_again: 7435 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 7436 goto skip; 7437 for_each_mddev(mddev2, tmp) { 7438 if (mddev2 == mddev) 7439 continue; 7440 if (!mddev->parallel_resync 7441 && mddev2->curr_resync 7442 && match_mddev_units(mddev, mddev2)) { 7443 DEFINE_WAIT(wq); 7444 if (mddev < mddev2 && mddev->curr_resync == 2) { 7445 /* arbitrarily yield */ 7446 mddev->curr_resync = 1; 7447 wake_up(&resync_wait); 7448 } 7449 if (mddev > mddev2 && mddev->curr_resync == 1) 7450 /* no need to wait here, we can wait the next 7451 * time 'round when curr_resync == 2 7452 */ 7453 continue; 7454 /* We need to wait 'interruptible' so as not to 7455 * contribute to the load average, and not to 7456 * be caught by 'softlockup' 7457 */ 7458 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE); 7459 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 7460 mddev2->curr_resync >= mddev->curr_resync) { 7461 printk(KERN_INFO "md: delaying %s of %s" 7462 " until %s has finished (they" 7463 " share one or more physical units)\n", 7464 desc, mdname(mddev), mdname(mddev2)); 7465 mddev_put(mddev2); 7466 if (signal_pending(current)) 7467 flush_signals(current); 7468 schedule(); 7469 finish_wait(&resync_wait, &wq); 7470 goto try_again; 7471 } 7472 finish_wait(&resync_wait, &wq); 7473 } 7474 } 7475 } while (mddev->curr_resync < 2); 7476 7477 j = 0; 7478 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 7479 /* resync follows the size requested by the personality, 7480 * which defaults to physical size, but can be virtual size 7481 */ 7482 max_sectors = mddev->resync_max_sectors; 7483 atomic64_set(&mddev->resync_mismatches, 0); 7484 /* we don't use the checkpoint if there's a bitmap */ 7485 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 7486 j = mddev->resync_min; 7487 else if (!mddev->bitmap) 7488 j = mddev->recovery_cp; 7489 7490 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 7491 max_sectors = mddev->resync_max_sectors; 7492 else { 7493 /* recovery follows the physical size of devices */ 7494 max_sectors = mddev->dev_sectors; 7495 j = MaxSector; 7496 rcu_read_lock(); 7497 rdev_for_each_rcu(rdev, mddev) 7498 if (rdev->raid_disk >= 0 && 7499 !test_bit(Faulty, &rdev->flags) && 7500 !test_bit(In_sync, &rdev->flags) && 7501 rdev->recovery_offset < j) 7502 j = rdev->recovery_offset; 7503 rcu_read_unlock(); 7504 } 7505 7506 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev)); 7507 printk(KERN_INFO "md: minimum _guaranteed_ speed:" 7508 " %d KB/sec/disk.\n", speed_min(mddev)); 7509 printk(KERN_INFO "md: using maximum available idle IO bandwidth " 7510 "(but not more than %d KB/sec) for %s.\n", 7511 speed_max(mddev), desc); 7512 7513 is_mddev_idle(mddev, 1); /* this initializes IO event counters */ 7514 7515 io_sectors = 0; 7516 for (m = 0; m < SYNC_MARKS; m++) { 7517 mark[m] = jiffies; 7518 mark_cnt[m] = io_sectors; 7519 } 7520 last_mark = 0; 7521 mddev->resync_mark = mark[last_mark]; 7522 mddev->resync_mark_cnt = mark_cnt[last_mark]; 7523 7524 /* 7525 * Tune reconstruction: 7526 */ 7527 window = 32*(PAGE_SIZE/512); 7528 printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n", 7529 window/2, (unsigned long long)max_sectors/2); 7530 7531 atomic_set(&mddev->recovery_active, 0); 7532 last_check = 0; 7533 7534 if (j>2) { 7535 printk(KERN_INFO 7536 "md: resuming %s of %s from checkpoint.\n", 7537 desc, mdname(mddev)); 7538 mddev->curr_resync = j; 7539 } else 7540 mddev->curr_resync = 3; /* no longer delayed */ 7541 mddev->curr_resync_completed = j; 7542 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 7543 md_new_event(mddev); 7544 update_time = jiffies; 7545 7546 blk_start_plug(&plug); 7547 while (j < max_sectors) { 7548 sector_t sectors; 7549 7550 skipped = 0; 7551 7552 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 7553 ((mddev->curr_resync > mddev->curr_resync_completed && 7554 (mddev->curr_resync - mddev->curr_resync_completed) 7555 > (max_sectors >> 4)) || 7556 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) || 7557 (j - mddev->curr_resync_completed)*2 7558 >= mddev->resync_max - mddev->curr_resync_completed 7559 )) { 7560 /* time to update curr_resync_completed */ 7561 wait_event(mddev->recovery_wait, 7562 atomic_read(&mddev->recovery_active) == 0); 7563 mddev->curr_resync_completed = j; 7564 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 7565 j > mddev->recovery_cp) 7566 mddev->recovery_cp = j; 7567 update_time = jiffies; 7568 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 7569 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 7570 } 7571 7572 while (j >= mddev->resync_max && 7573 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 7574 /* As this condition is controlled by user-space, 7575 * we can block indefinitely, so use '_interruptible' 7576 * to avoid triggering warnings. 7577 */ 7578 flush_signals(current); /* just in case */ 7579 wait_event_interruptible(mddev->recovery_wait, 7580 mddev->resync_max > j 7581 || test_bit(MD_RECOVERY_INTR, 7582 &mddev->recovery)); 7583 } 7584 7585 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 7586 break; 7587 7588 sectors = mddev->pers->sync_request(mddev, j, &skipped, 7589 currspeed < speed_min(mddev)); 7590 if (sectors == 0) { 7591 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7592 break; 7593 } 7594 7595 if (!skipped) { /* actual IO requested */ 7596 io_sectors += sectors; 7597 atomic_add(sectors, &mddev->recovery_active); 7598 } 7599 7600 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 7601 break; 7602 7603 j += sectors; 7604 if (j > 2) 7605 mddev->curr_resync = j; 7606 mddev->curr_mark_cnt = io_sectors; 7607 if (last_check == 0) 7608 /* this is the earliest that rebuild will be 7609 * visible in /proc/mdstat 7610 */ 7611 md_new_event(mddev); 7612 7613 if (last_check + window > io_sectors || j == max_sectors) 7614 continue; 7615 7616 last_check = io_sectors; 7617 repeat: 7618 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { 7619 /* step marks */ 7620 int next = (last_mark+1) % SYNC_MARKS; 7621 7622 mddev->resync_mark = mark[next]; 7623 mddev->resync_mark_cnt = mark_cnt[next]; 7624 mark[next] = jiffies; 7625 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); 7626 last_mark = next; 7627 } 7628 7629 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 7630 break; 7631 7632 /* 7633 * this loop exits only if either when we are slower than 7634 * the 'hard' speed limit, or the system was IO-idle for 7635 * a jiffy. 7636 * the system might be non-idle CPU-wise, but we only care 7637 * about not overloading the IO subsystem. (things like an 7638 * e2fsck being done on the RAID array should execute fast) 7639 */ 7640 cond_resched(); 7641 7642 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2 7643 /((jiffies-mddev->resync_mark)/HZ +1) +1; 7644 7645 if (currspeed > speed_min(mddev)) { 7646 if ((currspeed > speed_max(mddev)) || 7647 !is_mddev_idle(mddev, 0)) { 7648 msleep(500); 7649 goto repeat; 7650 } 7651 } 7652 } 7653 printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc, 7654 test_bit(MD_RECOVERY_INTR, &mddev->recovery) 7655 ? "interrupted" : "done"); 7656 /* 7657 * this also signals 'finished resyncing' to md_stop 7658 */ 7659 blk_finish_plug(&plug); 7660 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); 7661 7662 /* tell personality that we are finished */ 7663 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1); 7664 7665 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && 7666 mddev->curr_resync > 2) { 7667 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 7668 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 7669 if (mddev->curr_resync >= mddev->recovery_cp) { 7670 printk(KERN_INFO 7671 "md: checkpointing %s of %s.\n", 7672 desc, mdname(mddev)); 7673 if (test_bit(MD_RECOVERY_ERROR, 7674 &mddev->recovery)) 7675 mddev->recovery_cp = 7676 mddev->curr_resync_completed; 7677 else 7678 mddev->recovery_cp = 7679 mddev->curr_resync; 7680 } 7681 } else 7682 mddev->recovery_cp = MaxSector; 7683 } else { 7684 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 7685 mddev->curr_resync = MaxSector; 7686 rcu_read_lock(); 7687 rdev_for_each_rcu(rdev, mddev) 7688 if (rdev->raid_disk >= 0 && 7689 mddev->delta_disks >= 0 && 7690 !test_bit(Faulty, &rdev->flags) && 7691 !test_bit(In_sync, &rdev->flags) && 7692 rdev->recovery_offset < mddev->curr_resync) 7693 rdev->recovery_offset = mddev->curr_resync; 7694 rcu_read_unlock(); 7695 } 7696 } 7697 skip: 7698 set_bit(MD_CHANGE_DEVS, &mddev->flags); 7699 7700 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 7701 /* We completed so min/max setting can be forgotten if used. */ 7702 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 7703 mddev->resync_min = 0; 7704 mddev->resync_max = MaxSector; 7705 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 7706 mddev->resync_min = mddev->curr_resync_completed; 7707 mddev->curr_resync = 0; 7708 wake_up(&resync_wait); 7709 set_bit(MD_RECOVERY_DONE, &mddev->recovery); 7710 md_wakeup_thread(mddev->thread); 7711 return; 7712 } 7713 EXPORT_SYMBOL_GPL(md_do_sync); 7714 7715 static int remove_and_add_spares(struct mddev *mddev, 7716 struct md_rdev *this) 7717 { 7718 struct md_rdev *rdev; 7719 int spares = 0; 7720 int removed = 0; 7721 7722 rdev_for_each(rdev, mddev) 7723 if ((this == NULL || rdev == this) && 7724 rdev->raid_disk >= 0 && 7725 !test_bit(Blocked, &rdev->flags) && 7726 (test_bit(Faulty, &rdev->flags) || 7727 ! test_bit(In_sync, &rdev->flags)) && 7728 atomic_read(&rdev->nr_pending)==0) { 7729 if (mddev->pers->hot_remove_disk( 7730 mddev, rdev) == 0) { 7731 sysfs_unlink_rdev(mddev, rdev); 7732 rdev->raid_disk = -1; 7733 removed++; 7734 } 7735 } 7736 if (removed && mddev->kobj.sd) 7737 sysfs_notify(&mddev->kobj, NULL, "degraded"); 7738 7739 if (this) 7740 goto no_add; 7741 7742 rdev_for_each(rdev, mddev) { 7743 if (rdev->raid_disk >= 0 && 7744 !test_bit(In_sync, &rdev->flags) && 7745 !test_bit(Faulty, &rdev->flags)) 7746 spares++; 7747 if (rdev->raid_disk >= 0) 7748 continue; 7749 if (test_bit(Faulty, &rdev->flags)) 7750 continue; 7751 if (mddev->ro && 7752 ! (rdev->saved_raid_disk >= 0 && 7753 !test_bit(Bitmap_sync, &rdev->flags))) 7754 continue; 7755 7756 if (rdev->saved_raid_disk < 0) 7757 rdev->recovery_offset = 0; 7758 if (mddev->pers-> 7759 hot_add_disk(mddev, rdev) == 0) { 7760 if (sysfs_link_rdev(mddev, rdev)) 7761 /* failure here is OK */; 7762 spares++; 7763 md_new_event(mddev); 7764 set_bit(MD_CHANGE_DEVS, &mddev->flags); 7765 } 7766 } 7767 no_add: 7768 if (removed) 7769 set_bit(MD_CHANGE_DEVS, &mddev->flags); 7770 return spares; 7771 } 7772 7773 /* 7774 * This routine is regularly called by all per-raid-array threads to 7775 * deal with generic issues like resync and super-block update. 7776 * Raid personalities that don't have a thread (linear/raid0) do not 7777 * need this as they never do any recovery or update the superblock. 7778 * 7779 * It does not do any resync itself, but rather "forks" off other threads 7780 * to do that as needed. 7781 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in 7782 * "->recovery" and create a thread at ->sync_thread. 7783 * When the thread finishes it sets MD_RECOVERY_DONE 7784 * and wakeups up this thread which will reap the thread and finish up. 7785 * This thread also removes any faulty devices (with nr_pending == 0). 7786 * 7787 * The overall approach is: 7788 * 1/ if the superblock needs updating, update it. 7789 * 2/ If a recovery thread is running, don't do anything else. 7790 * 3/ If recovery has finished, clean up, possibly marking spares active. 7791 * 4/ If there are any faulty devices, remove them. 7792 * 5/ If array is degraded, try to add spares devices 7793 * 6/ If array has spares or is not in-sync, start a resync thread. 7794 */ 7795 void md_check_recovery(struct mddev *mddev) 7796 { 7797 if (mddev->suspended) 7798 return; 7799 7800 if (mddev->bitmap) 7801 bitmap_daemon_work(mddev); 7802 7803 if (signal_pending(current)) { 7804 if (mddev->pers->sync_request && !mddev->external) { 7805 printk(KERN_INFO "md: %s in immediate safe mode\n", 7806 mdname(mddev)); 7807 mddev->safemode = 2; 7808 } 7809 flush_signals(current); 7810 } 7811 7812 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 7813 return; 7814 if ( ! ( 7815 (mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) || 7816 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 7817 test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 7818 (mddev->external == 0 && mddev->safemode == 1) || 7819 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending) 7820 && !mddev->in_sync && mddev->recovery_cp == MaxSector) 7821 )) 7822 return; 7823 7824 if (mddev_trylock(mddev)) { 7825 int spares = 0; 7826 7827 if (mddev->ro) { 7828 /* On a read-only array we can: 7829 * - remove failed devices 7830 * - add already-in_sync devices if the array itself 7831 * is in-sync. 7832 * As we only add devices that are already in-sync, 7833 * we can activate the spares immediately. 7834 */ 7835 remove_and_add_spares(mddev, NULL); 7836 /* There is no thread, but we need to call 7837 * ->spare_active and clear saved_raid_disk 7838 */ 7839 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7840 md_reap_sync_thread(mddev); 7841 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7842 goto unlock; 7843 } 7844 7845 if (!mddev->external) { 7846 int did_change = 0; 7847 spin_lock_irq(&mddev->write_lock); 7848 if (mddev->safemode && 7849 !atomic_read(&mddev->writes_pending) && 7850 !mddev->in_sync && 7851 mddev->recovery_cp == MaxSector) { 7852 mddev->in_sync = 1; 7853 did_change = 1; 7854 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 7855 } 7856 if (mddev->safemode == 1) 7857 mddev->safemode = 0; 7858 spin_unlock_irq(&mddev->write_lock); 7859 if (did_change) 7860 sysfs_notify_dirent_safe(mddev->sysfs_state); 7861 } 7862 7863 if (mddev->flags & MD_UPDATE_SB_FLAGS) 7864 md_update_sb(mddev, 0); 7865 7866 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 7867 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { 7868 /* resync/recovery still happening */ 7869 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7870 goto unlock; 7871 } 7872 if (mddev->sync_thread) { 7873 md_reap_sync_thread(mddev); 7874 goto unlock; 7875 } 7876 /* Set RUNNING before clearing NEEDED to avoid 7877 * any transients in the value of "sync_action". 7878 */ 7879 mddev->curr_resync_completed = 0; 7880 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7881 /* Clear some bits that don't mean anything, but 7882 * might be left set 7883 */ 7884 clear_bit(MD_RECOVERY_INTR, &mddev->recovery); 7885 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 7886 7887 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 7888 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 7889 goto unlock; 7890 /* no recovery is running. 7891 * remove any failed drives, then 7892 * add spares if possible. 7893 * Spares are also removed and re-added, to allow 7894 * the personality to fail the re-add. 7895 */ 7896 7897 if (mddev->reshape_position != MaxSector) { 7898 if (mddev->pers->check_reshape == NULL || 7899 mddev->pers->check_reshape(mddev) != 0) 7900 /* Cannot proceed */ 7901 goto unlock; 7902 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7903 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7904 } else if ((spares = remove_and_add_spares(mddev, NULL))) { 7905 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7906 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7907 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 7908 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7909 } else if (mddev->recovery_cp < MaxSector) { 7910 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7911 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7912 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 7913 /* nothing to be done ... */ 7914 goto unlock; 7915 7916 if (mddev->pers->sync_request) { 7917 if (spares) { 7918 /* We are adding a device or devices to an array 7919 * which has the bitmap stored on all devices. 7920 * So make sure all bitmap pages get written 7921 */ 7922 bitmap_write_all(mddev->bitmap); 7923 } 7924 mddev->sync_thread = md_register_thread(md_do_sync, 7925 mddev, 7926 "resync"); 7927 if (!mddev->sync_thread) { 7928 printk(KERN_ERR "%s: could not start resync" 7929 " thread...\n", 7930 mdname(mddev)); 7931 /* leave the spares where they are, it shouldn't hurt */ 7932 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7933 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7934 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7935 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 7936 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7937 } else 7938 md_wakeup_thread(mddev->sync_thread); 7939 sysfs_notify_dirent_safe(mddev->sysfs_action); 7940 md_new_event(mddev); 7941 } 7942 unlock: 7943 wake_up(&mddev->sb_wait); 7944 7945 if (!mddev->sync_thread) { 7946 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7947 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 7948 &mddev->recovery)) 7949 if (mddev->sysfs_action) 7950 sysfs_notify_dirent_safe(mddev->sysfs_action); 7951 } 7952 mddev_unlock(mddev); 7953 } 7954 } 7955 7956 void md_reap_sync_thread(struct mddev *mddev) 7957 { 7958 struct md_rdev *rdev; 7959 7960 /* resync has finished, collect result */ 7961 md_unregister_thread(&mddev->sync_thread); 7962 wake_up(&resync_wait); 7963 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 7964 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 7965 /* success...*/ 7966 /* activate any spares */ 7967 if (mddev->pers->spare_active(mddev)) { 7968 sysfs_notify(&mddev->kobj, NULL, 7969 "degraded"); 7970 set_bit(MD_CHANGE_DEVS, &mddev->flags); 7971 } 7972 } 7973 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 7974 mddev->pers->finish_reshape) 7975 mddev->pers->finish_reshape(mddev); 7976 7977 /* If array is no-longer degraded, then any saved_raid_disk 7978 * information must be scrapped. 7979 */ 7980 if (!mddev->degraded) 7981 rdev_for_each(rdev, mddev) 7982 rdev->saved_raid_disk = -1; 7983 7984 md_update_sb(mddev, 1); 7985 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7986 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7987 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7988 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 7989 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7990 /* flag recovery needed just to double check */ 7991 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7992 sysfs_notify_dirent_safe(mddev->sysfs_action); 7993 md_new_event(mddev); 7994 if (mddev->event_work.func) 7995 queue_work(md_misc_wq, &mddev->event_work); 7996 } 7997 7998 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev) 7999 { 8000 sysfs_notify_dirent_safe(rdev->sysfs_state); 8001 wait_event_timeout(rdev->blocked_wait, 8002 !test_bit(Blocked, &rdev->flags) && 8003 !test_bit(BlockedBadBlocks, &rdev->flags), 8004 msecs_to_jiffies(5000)); 8005 rdev_dec_pending(rdev, mddev); 8006 } 8007 EXPORT_SYMBOL(md_wait_for_blocked_rdev); 8008 8009 void md_finish_reshape(struct mddev *mddev) 8010 { 8011 /* called be personality module when reshape completes. */ 8012 struct md_rdev *rdev; 8013 8014 rdev_for_each(rdev, mddev) { 8015 if (rdev->data_offset > rdev->new_data_offset) 8016 rdev->sectors += rdev->data_offset - rdev->new_data_offset; 8017 else 8018 rdev->sectors -= rdev->new_data_offset - rdev->data_offset; 8019 rdev->data_offset = rdev->new_data_offset; 8020 } 8021 } 8022 EXPORT_SYMBOL(md_finish_reshape); 8023 8024 /* Bad block management. 8025 * We can record which blocks on each device are 'bad' and so just 8026 * fail those blocks, or that stripe, rather than the whole device. 8027 * Entries in the bad-block table are 64bits wide. This comprises: 8028 * Length of bad-range, in sectors: 0-511 for lengths 1-512 8029 * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes) 8030 * A 'shift' can be set so that larger blocks are tracked and 8031 * consequently larger devices can be covered. 8032 * 'Acknowledged' flag - 1 bit. - the most significant bit. 8033 * 8034 * Locking of the bad-block table uses a seqlock so md_is_badblock 8035 * might need to retry if it is very unlucky. 8036 * We will sometimes want to check for bad blocks in a bi_end_io function, 8037 * so we use the write_seqlock_irq variant. 8038 * 8039 * When looking for a bad block we specify a range and want to 8040 * know if any block in the range is bad. So we binary-search 8041 * to the last range that starts at-or-before the given endpoint, 8042 * (or "before the sector after the target range") 8043 * then see if it ends after the given start. 8044 * We return 8045 * 0 if there are no known bad blocks in the range 8046 * 1 if there are known bad block which are all acknowledged 8047 * -1 if there are bad blocks which have not yet been acknowledged in metadata. 8048 * plus the start/length of the first bad section we overlap. 8049 */ 8050 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors, 8051 sector_t *first_bad, int *bad_sectors) 8052 { 8053 int hi; 8054 int lo; 8055 u64 *p = bb->page; 8056 int rv; 8057 sector_t target = s + sectors; 8058 unsigned seq; 8059 8060 if (bb->shift > 0) { 8061 /* round the start down, and the end up */ 8062 s >>= bb->shift; 8063 target += (1<<bb->shift) - 1; 8064 target >>= bb->shift; 8065 sectors = target - s; 8066 } 8067 /* 'target' is now the first block after the bad range */ 8068 8069 retry: 8070 seq = read_seqbegin(&bb->lock); 8071 lo = 0; 8072 rv = 0; 8073 hi = bb->count; 8074 8075 /* Binary search between lo and hi for 'target' 8076 * i.e. for the last range that starts before 'target' 8077 */ 8078 /* INVARIANT: ranges before 'lo' and at-or-after 'hi' 8079 * are known not to be the last range before target. 8080 * VARIANT: hi-lo is the number of possible 8081 * ranges, and decreases until it reaches 1 8082 */ 8083 while (hi - lo > 1) { 8084 int mid = (lo + hi) / 2; 8085 sector_t a = BB_OFFSET(p[mid]); 8086 if (a < target) 8087 /* This could still be the one, earlier ranges 8088 * could not. */ 8089 lo = mid; 8090 else 8091 /* This and later ranges are definitely out. */ 8092 hi = mid; 8093 } 8094 /* 'lo' might be the last that started before target, but 'hi' isn't */ 8095 if (hi > lo) { 8096 /* need to check all range that end after 's' to see if 8097 * any are unacknowledged. 8098 */ 8099 while (lo >= 0 && 8100 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) { 8101 if (BB_OFFSET(p[lo]) < target) { 8102 /* starts before the end, and finishes after 8103 * the start, so they must overlap 8104 */ 8105 if (rv != -1 && BB_ACK(p[lo])) 8106 rv = 1; 8107 else 8108 rv = -1; 8109 *first_bad = BB_OFFSET(p[lo]); 8110 *bad_sectors = BB_LEN(p[lo]); 8111 } 8112 lo--; 8113 } 8114 } 8115 8116 if (read_seqretry(&bb->lock, seq)) 8117 goto retry; 8118 8119 return rv; 8120 } 8121 EXPORT_SYMBOL_GPL(md_is_badblock); 8122 8123 /* 8124 * Add a range of bad blocks to the table. 8125 * This might extend the table, or might contract it 8126 * if two adjacent ranges can be merged. 8127 * We binary-search to find the 'insertion' point, then 8128 * decide how best to handle it. 8129 */ 8130 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors, 8131 int acknowledged) 8132 { 8133 u64 *p; 8134 int lo, hi; 8135 int rv = 1; 8136 unsigned long flags; 8137 8138 if (bb->shift < 0) 8139 /* badblocks are disabled */ 8140 return 0; 8141 8142 if (bb->shift) { 8143 /* round the start down, and the end up */ 8144 sector_t next = s + sectors; 8145 s >>= bb->shift; 8146 next += (1<<bb->shift) - 1; 8147 next >>= bb->shift; 8148 sectors = next - s; 8149 } 8150 8151 write_seqlock_irqsave(&bb->lock, flags); 8152 8153 p = bb->page; 8154 lo = 0; 8155 hi = bb->count; 8156 /* Find the last range that starts at-or-before 's' */ 8157 while (hi - lo > 1) { 8158 int mid = (lo + hi) / 2; 8159 sector_t a = BB_OFFSET(p[mid]); 8160 if (a <= s) 8161 lo = mid; 8162 else 8163 hi = mid; 8164 } 8165 if (hi > lo && BB_OFFSET(p[lo]) > s) 8166 hi = lo; 8167 8168 if (hi > lo) { 8169 /* we found a range that might merge with the start 8170 * of our new range 8171 */ 8172 sector_t a = BB_OFFSET(p[lo]); 8173 sector_t e = a + BB_LEN(p[lo]); 8174 int ack = BB_ACK(p[lo]); 8175 if (e >= s) { 8176 /* Yes, we can merge with a previous range */ 8177 if (s == a && s + sectors >= e) 8178 /* new range covers old */ 8179 ack = acknowledged; 8180 else 8181 ack = ack && acknowledged; 8182 8183 if (e < s + sectors) 8184 e = s + sectors; 8185 if (e - a <= BB_MAX_LEN) { 8186 p[lo] = BB_MAKE(a, e-a, ack); 8187 s = e; 8188 } else { 8189 /* does not all fit in one range, 8190 * make p[lo] maximal 8191 */ 8192 if (BB_LEN(p[lo]) != BB_MAX_LEN) 8193 p[lo] = BB_MAKE(a, BB_MAX_LEN, ack); 8194 s = a + BB_MAX_LEN; 8195 } 8196 sectors = e - s; 8197 } 8198 } 8199 if (sectors && hi < bb->count) { 8200 /* 'hi' points to the first range that starts after 's'. 8201 * Maybe we can merge with the start of that range */ 8202 sector_t a = BB_OFFSET(p[hi]); 8203 sector_t e = a + BB_LEN(p[hi]); 8204 int ack = BB_ACK(p[hi]); 8205 if (a <= s + sectors) { 8206 /* merging is possible */ 8207 if (e <= s + sectors) { 8208 /* full overlap */ 8209 e = s + sectors; 8210 ack = acknowledged; 8211 } else 8212 ack = ack && acknowledged; 8213 8214 a = s; 8215 if (e - a <= BB_MAX_LEN) { 8216 p[hi] = BB_MAKE(a, e-a, ack); 8217 s = e; 8218 } else { 8219 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack); 8220 s = a + BB_MAX_LEN; 8221 } 8222 sectors = e - s; 8223 lo = hi; 8224 hi++; 8225 } 8226 } 8227 if (sectors == 0 && hi < bb->count) { 8228 /* we might be able to combine lo and hi */ 8229 /* Note: 's' is at the end of 'lo' */ 8230 sector_t a = BB_OFFSET(p[hi]); 8231 int lolen = BB_LEN(p[lo]); 8232 int hilen = BB_LEN(p[hi]); 8233 int newlen = lolen + hilen - (s - a); 8234 if (s >= a && newlen < BB_MAX_LEN) { 8235 /* yes, we can combine them */ 8236 int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]); 8237 p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack); 8238 memmove(p + hi, p + hi + 1, 8239 (bb->count - hi - 1) * 8); 8240 bb->count--; 8241 } 8242 } 8243 while (sectors) { 8244 /* didn't merge (it all). 8245 * Need to add a range just before 'hi' */ 8246 if (bb->count >= MD_MAX_BADBLOCKS) { 8247 /* No room for more */ 8248 rv = 0; 8249 break; 8250 } else { 8251 int this_sectors = sectors; 8252 memmove(p + hi + 1, p + hi, 8253 (bb->count - hi) * 8); 8254 bb->count++; 8255 8256 if (this_sectors > BB_MAX_LEN) 8257 this_sectors = BB_MAX_LEN; 8258 p[hi] = BB_MAKE(s, this_sectors, acknowledged); 8259 sectors -= this_sectors; 8260 s += this_sectors; 8261 } 8262 } 8263 8264 bb->changed = 1; 8265 if (!acknowledged) 8266 bb->unacked_exist = 1; 8267 write_sequnlock_irqrestore(&bb->lock, flags); 8268 8269 return rv; 8270 } 8271 8272 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 8273 int is_new) 8274 { 8275 int rv; 8276 if (is_new) 8277 s += rdev->new_data_offset; 8278 else 8279 s += rdev->data_offset; 8280 rv = md_set_badblocks(&rdev->badblocks, 8281 s, sectors, 0); 8282 if (rv) { 8283 /* Make sure they get written out promptly */ 8284 sysfs_notify_dirent_safe(rdev->sysfs_state); 8285 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags); 8286 md_wakeup_thread(rdev->mddev->thread); 8287 } 8288 return rv; 8289 } 8290 EXPORT_SYMBOL_GPL(rdev_set_badblocks); 8291 8292 /* 8293 * Remove a range of bad blocks from the table. 8294 * This may involve extending the table if we spilt a region, 8295 * but it must not fail. So if the table becomes full, we just 8296 * drop the remove request. 8297 */ 8298 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors) 8299 { 8300 u64 *p; 8301 int lo, hi; 8302 sector_t target = s + sectors; 8303 int rv = 0; 8304 8305 if (bb->shift > 0) { 8306 /* When clearing we round the start up and the end down. 8307 * This should not matter as the shift should align with 8308 * the block size and no rounding should ever be needed. 8309 * However it is better the think a block is bad when it 8310 * isn't than to think a block is not bad when it is. 8311 */ 8312 s += (1<<bb->shift) - 1; 8313 s >>= bb->shift; 8314 target >>= bb->shift; 8315 sectors = target - s; 8316 } 8317 8318 write_seqlock_irq(&bb->lock); 8319 8320 p = bb->page; 8321 lo = 0; 8322 hi = bb->count; 8323 /* Find the last range that starts before 'target' */ 8324 while (hi - lo > 1) { 8325 int mid = (lo + hi) / 2; 8326 sector_t a = BB_OFFSET(p[mid]); 8327 if (a < target) 8328 lo = mid; 8329 else 8330 hi = mid; 8331 } 8332 if (hi > lo) { 8333 /* p[lo] is the last range that could overlap the 8334 * current range. Earlier ranges could also overlap, 8335 * but only this one can overlap the end of the range. 8336 */ 8337 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) { 8338 /* Partial overlap, leave the tail of this range */ 8339 int ack = BB_ACK(p[lo]); 8340 sector_t a = BB_OFFSET(p[lo]); 8341 sector_t end = a + BB_LEN(p[lo]); 8342 8343 if (a < s) { 8344 /* we need to split this range */ 8345 if (bb->count >= MD_MAX_BADBLOCKS) { 8346 rv = -ENOSPC; 8347 goto out; 8348 } 8349 memmove(p+lo+1, p+lo, (bb->count - lo) * 8); 8350 bb->count++; 8351 p[lo] = BB_MAKE(a, s-a, ack); 8352 lo++; 8353 } 8354 p[lo] = BB_MAKE(target, end - target, ack); 8355 /* there is no longer an overlap */ 8356 hi = lo; 8357 lo--; 8358 } 8359 while (lo >= 0 && 8360 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) { 8361 /* This range does overlap */ 8362 if (BB_OFFSET(p[lo]) < s) { 8363 /* Keep the early parts of this range. */ 8364 int ack = BB_ACK(p[lo]); 8365 sector_t start = BB_OFFSET(p[lo]); 8366 p[lo] = BB_MAKE(start, s - start, ack); 8367 /* now low doesn't overlap, so.. */ 8368 break; 8369 } 8370 lo--; 8371 } 8372 /* 'lo' is strictly before, 'hi' is strictly after, 8373 * anything between needs to be discarded 8374 */ 8375 if (hi - lo > 1) { 8376 memmove(p+lo+1, p+hi, (bb->count - hi) * 8); 8377 bb->count -= (hi - lo - 1); 8378 } 8379 } 8380 8381 bb->changed = 1; 8382 out: 8383 write_sequnlock_irq(&bb->lock); 8384 return rv; 8385 } 8386 8387 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 8388 int is_new) 8389 { 8390 if (is_new) 8391 s += rdev->new_data_offset; 8392 else 8393 s += rdev->data_offset; 8394 return md_clear_badblocks(&rdev->badblocks, 8395 s, sectors); 8396 } 8397 EXPORT_SYMBOL_GPL(rdev_clear_badblocks); 8398 8399 /* 8400 * Acknowledge all bad blocks in a list. 8401 * This only succeeds if ->changed is clear. It is used by 8402 * in-kernel metadata updates 8403 */ 8404 void md_ack_all_badblocks(struct badblocks *bb) 8405 { 8406 if (bb->page == NULL || bb->changed) 8407 /* no point even trying */ 8408 return; 8409 write_seqlock_irq(&bb->lock); 8410 8411 if (bb->changed == 0 && bb->unacked_exist) { 8412 u64 *p = bb->page; 8413 int i; 8414 for (i = 0; i < bb->count ; i++) { 8415 if (!BB_ACK(p[i])) { 8416 sector_t start = BB_OFFSET(p[i]); 8417 int len = BB_LEN(p[i]); 8418 p[i] = BB_MAKE(start, len, 1); 8419 } 8420 } 8421 bb->unacked_exist = 0; 8422 } 8423 write_sequnlock_irq(&bb->lock); 8424 } 8425 EXPORT_SYMBOL_GPL(md_ack_all_badblocks); 8426 8427 /* sysfs access to bad-blocks list. 8428 * We present two files. 8429 * 'bad-blocks' lists sector numbers and lengths of ranges that 8430 * are recorded as bad. The list is truncated to fit within 8431 * the one-page limit of sysfs. 8432 * Writing "sector length" to this file adds an acknowledged 8433 * bad block list. 8434 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet 8435 * been acknowledged. Writing to this file adds bad blocks 8436 * without acknowledging them. This is largely for testing. 8437 */ 8438 8439 static ssize_t 8440 badblocks_show(struct badblocks *bb, char *page, int unack) 8441 { 8442 size_t len; 8443 int i; 8444 u64 *p = bb->page; 8445 unsigned seq; 8446 8447 if (bb->shift < 0) 8448 return 0; 8449 8450 retry: 8451 seq = read_seqbegin(&bb->lock); 8452 8453 len = 0; 8454 i = 0; 8455 8456 while (len < PAGE_SIZE && i < bb->count) { 8457 sector_t s = BB_OFFSET(p[i]); 8458 unsigned int length = BB_LEN(p[i]); 8459 int ack = BB_ACK(p[i]); 8460 i++; 8461 8462 if (unack && ack) 8463 continue; 8464 8465 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n", 8466 (unsigned long long)s << bb->shift, 8467 length << bb->shift); 8468 } 8469 if (unack && len == 0) 8470 bb->unacked_exist = 0; 8471 8472 if (read_seqretry(&bb->lock, seq)) 8473 goto retry; 8474 8475 return len; 8476 } 8477 8478 #define DO_DEBUG 1 8479 8480 static ssize_t 8481 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack) 8482 { 8483 unsigned long long sector; 8484 int length; 8485 char newline; 8486 #ifdef DO_DEBUG 8487 /* Allow clearing via sysfs *only* for testing/debugging. 8488 * Normally only a successful write may clear a badblock 8489 */ 8490 int clear = 0; 8491 if (page[0] == '-') { 8492 clear = 1; 8493 page++; 8494 } 8495 #endif /* DO_DEBUG */ 8496 8497 switch (sscanf(page, "%llu %d%c", §or, &length, &newline)) { 8498 case 3: 8499 if (newline != '\n') 8500 return -EINVAL; 8501 case 2: 8502 if (length <= 0) 8503 return -EINVAL; 8504 break; 8505 default: 8506 return -EINVAL; 8507 } 8508 8509 #ifdef DO_DEBUG 8510 if (clear) { 8511 md_clear_badblocks(bb, sector, length); 8512 return len; 8513 } 8514 #endif /* DO_DEBUG */ 8515 if (md_set_badblocks(bb, sector, length, !unack)) 8516 return len; 8517 else 8518 return -ENOSPC; 8519 } 8520 8521 static int md_notify_reboot(struct notifier_block *this, 8522 unsigned long code, void *x) 8523 { 8524 struct list_head *tmp; 8525 struct mddev *mddev; 8526 int need_delay = 0; 8527 8528 for_each_mddev(mddev, tmp) { 8529 if (mddev_trylock(mddev)) { 8530 if (mddev->pers) 8531 __md_stop_writes(mddev); 8532 if (mddev->persistent) 8533 mddev->safemode = 2; 8534 mddev_unlock(mddev); 8535 } 8536 need_delay = 1; 8537 } 8538 /* 8539 * certain more exotic SCSI devices are known to be 8540 * volatile wrt too early system reboots. While the 8541 * right place to handle this issue is the given 8542 * driver, we do want to have a safe RAID driver ... 8543 */ 8544 if (need_delay) 8545 mdelay(1000*1); 8546 8547 return NOTIFY_DONE; 8548 } 8549 8550 static struct notifier_block md_notifier = { 8551 .notifier_call = md_notify_reboot, 8552 .next = NULL, 8553 .priority = INT_MAX, /* before any real devices */ 8554 }; 8555 8556 static void md_geninit(void) 8557 { 8558 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); 8559 8560 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops); 8561 } 8562 8563 static int __init md_init(void) 8564 { 8565 int ret = -ENOMEM; 8566 8567 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0); 8568 if (!md_wq) 8569 goto err_wq; 8570 8571 md_misc_wq = alloc_workqueue("md_misc", 0, 0); 8572 if (!md_misc_wq) 8573 goto err_misc_wq; 8574 8575 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0) 8576 goto err_md; 8577 8578 if ((ret = register_blkdev(0, "mdp")) < 0) 8579 goto err_mdp; 8580 mdp_major = ret; 8581 8582 blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE, 8583 md_probe, NULL, NULL); 8584 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE, 8585 md_probe, NULL, NULL); 8586 8587 register_reboot_notifier(&md_notifier); 8588 raid_table_header = register_sysctl_table(raid_root_table); 8589 8590 md_geninit(); 8591 return 0; 8592 8593 err_mdp: 8594 unregister_blkdev(MD_MAJOR, "md"); 8595 err_md: 8596 destroy_workqueue(md_misc_wq); 8597 err_misc_wq: 8598 destroy_workqueue(md_wq); 8599 err_wq: 8600 return ret; 8601 } 8602 8603 #ifndef MODULE 8604 8605 /* 8606 * Searches all registered partitions for autorun RAID arrays 8607 * at boot time. 8608 */ 8609 8610 static LIST_HEAD(all_detected_devices); 8611 struct detected_devices_node { 8612 struct list_head list; 8613 dev_t dev; 8614 }; 8615 8616 void md_autodetect_dev(dev_t dev) 8617 { 8618 struct detected_devices_node *node_detected_dev; 8619 8620 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL); 8621 if (node_detected_dev) { 8622 node_detected_dev->dev = dev; 8623 list_add_tail(&node_detected_dev->list, &all_detected_devices); 8624 } else { 8625 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed" 8626 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev)); 8627 } 8628 } 8629 8630 8631 static void autostart_arrays(int part) 8632 { 8633 struct md_rdev *rdev; 8634 struct detected_devices_node *node_detected_dev; 8635 dev_t dev; 8636 int i_scanned, i_passed; 8637 8638 i_scanned = 0; 8639 i_passed = 0; 8640 8641 printk(KERN_INFO "md: Autodetecting RAID arrays.\n"); 8642 8643 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) { 8644 i_scanned++; 8645 node_detected_dev = list_entry(all_detected_devices.next, 8646 struct detected_devices_node, list); 8647 list_del(&node_detected_dev->list); 8648 dev = node_detected_dev->dev; 8649 kfree(node_detected_dev); 8650 rdev = md_import_device(dev,0, 90); 8651 if (IS_ERR(rdev)) 8652 continue; 8653 8654 if (test_bit(Faulty, &rdev->flags)) { 8655 MD_BUG(); 8656 continue; 8657 } 8658 set_bit(AutoDetected, &rdev->flags); 8659 list_add(&rdev->same_set, &pending_raid_disks); 8660 i_passed++; 8661 } 8662 8663 printk(KERN_INFO "md: Scanned %d and added %d devices.\n", 8664 i_scanned, i_passed); 8665 8666 autorun_devices(part); 8667 } 8668 8669 #endif /* !MODULE */ 8670 8671 static __exit void md_exit(void) 8672 { 8673 struct mddev *mddev; 8674 struct list_head *tmp; 8675 int delay = 1; 8676 8677 blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS); 8678 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS); 8679 8680 unregister_blkdev(MD_MAJOR,"md"); 8681 unregister_blkdev(mdp_major, "mdp"); 8682 unregister_reboot_notifier(&md_notifier); 8683 unregister_sysctl_table(raid_table_header); 8684 8685 /* We cannot unload the modules while some process is 8686 * waiting for us in select() or poll() - wake them up 8687 */ 8688 md_unloading = 1; 8689 while (waitqueue_active(&md_event_waiters)) { 8690 /* not safe to leave yet */ 8691 wake_up(&md_event_waiters); 8692 msleep(delay); 8693 delay += delay; 8694 } 8695 remove_proc_entry("mdstat", NULL); 8696 8697 for_each_mddev(mddev, tmp) { 8698 export_array(mddev); 8699 mddev->hold_active = 0; 8700 } 8701 destroy_workqueue(md_misc_wq); 8702 destroy_workqueue(md_wq); 8703 } 8704 8705 subsys_initcall(md_init); 8706 module_exit(md_exit) 8707 8708 static int get_ro(char *buffer, struct kernel_param *kp) 8709 { 8710 return sprintf(buffer, "%d", start_readonly); 8711 } 8712 static int set_ro(const char *val, struct kernel_param *kp) 8713 { 8714 char *e; 8715 int num = simple_strtoul(val, &e, 10); 8716 if (*val && (*e == '\0' || *e == '\n')) { 8717 start_readonly = num; 8718 return 0; 8719 } 8720 return -EINVAL; 8721 } 8722 8723 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); 8724 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); 8725 8726 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR); 8727 8728 EXPORT_SYMBOL(register_md_personality); 8729 EXPORT_SYMBOL(unregister_md_personality); 8730 EXPORT_SYMBOL(md_error); 8731 EXPORT_SYMBOL(md_done_sync); 8732 EXPORT_SYMBOL(md_write_start); 8733 EXPORT_SYMBOL(md_write_end); 8734 EXPORT_SYMBOL(md_register_thread); 8735 EXPORT_SYMBOL(md_unregister_thread); 8736 EXPORT_SYMBOL(md_wakeup_thread); 8737 EXPORT_SYMBOL(md_check_recovery); 8738 EXPORT_SYMBOL(md_reap_sync_thread); 8739 MODULE_LICENSE("GPL"); 8740 MODULE_DESCRIPTION("MD RAID framework"); 8741 MODULE_ALIAS("md"); 8742 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR); 8743