xref: /openbmc/linux/drivers/md/md.c (revision d0b73b48)
1 /*
2    md.c : Multiple Devices driver for Linux
3 	  Copyright (C) 1998, 1999, 2000 Ingo Molnar
4 
5      completely rewritten, based on the MD driver code from Marc Zyngier
6 
7    Changes:
8 
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16 
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19 
20      Neil Brown <neilb@cse.unsw.edu.au>.
21 
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24 
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29 
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34 
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56 
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
60 
61 /* pers_list is a list of registered personalities protected
62  * by pers_lock.
63  * pers_lock does extra service to protect accesses to
64  * mddev->thread when the mutex cannot be held.
65  */
66 static LIST_HEAD(pers_list);
67 static DEFINE_SPINLOCK(pers_lock);
68 
69 static void md_print_devices(void);
70 
71 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
72 static struct workqueue_struct *md_wq;
73 static struct workqueue_struct *md_misc_wq;
74 
75 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
76 
77 /*
78  * Default number of read corrections we'll attempt on an rdev
79  * before ejecting it from the array. We divide the read error
80  * count by 2 for every hour elapsed between read errors.
81  */
82 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
83 /*
84  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
85  * is 1000 KB/sec, so the extra system load does not show up that much.
86  * Increase it if you want to have more _guaranteed_ speed. Note that
87  * the RAID driver will use the maximum available bandwidth if the IO
88  * subsystem is idle. There is also an 'absolute maximum' reconstruction
89  * speed limit - in case reconstruction slows down your system despite
90  * idle IO detection.
91  *
92  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
93  * or /sys/block/mdX/md/sync_speed_{min,max}
94  */
95 
96 static int sysctl_speed_limit_min = 1000;
97 static int sysctl_speed_limit_max = 200000;
98 static inline int speed_min(struct mddev *mddev)
99 {
100 	return mddev->sync_speed_min ?
101 		mddev->sync_speed_min : sysctl_speed_limit_min;
102 }
103 
104 static inline int speed_max(struct mddev *mddev)
105 {
106 	return mddev->sync_speed_max ?
107 		mddev->sync_speed_max : sysctl_speed_limit_max;
108 }
109 
110 static struct ctl_table_header *raid_table_header;
111 
112 static ctl_table raid_table[] = {
113 	{
114 		.procname	= "speed_limit_min",
115 		.data		= &sysctl_speed_limit_min,
116 		.maxlen		= sizeof(int),
117 		.mode		= S_IRUGO|S_IWUSR,
118 		.proc_handler	= proc_dointvec,
119 	},
120 	{
121 		.procname	= "speed_limit_max",
122 		.data		= &sysctl_speed_limit_max,
123 		.maxlen		= sizeof(int),
124 		.mode		= S_IRUGO|S_IWUSR,
125 		.proc_handler	= proc_dointvec,
126 	},
127 	{ }
128 };
129 
130 static ctl_table raid_dir_table[] = {
131 	{
132 		.procname	= "raid",
133 		.maxlen		= 0,
134 		.mode		= S_IRUGO|S_IXUGO,
135 		.child		= raid_table,
136 	},
137 	{ }
138 };
139 
140 static ctl_table raid_root_table[] = {
141 	{
142 		.procname	= "dev",
143 		.maxlen		= 0,
144 		.mode		= 0555,
145 		.child		= raid_dir_table,
146 	},
147 	{  }
148 };
149 
150 static const struct block_device_operations md_fops;
151 
152 static int start_readonly;
153 
154 /* bio_clone_mddev
155  * like bio_clone, but with a local bio set
156  */
157 
158 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
159 			    struct mddev *mddev)
160 {
161 	struct bio *b;
162 
163 	if (!mddev || !mddev->bio_set)
164 		return bio_alloc(gfp_mask, nr_iovecs);
165 
166 	b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
167 	if (!b)
168 		return NULL;
169 	return b;
170 }
171 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
172 
173 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
174 			    struct mddev *mddev)
175 {
176 	if (!mddev || !mddev->bio_set)
177 		return bio_clone(bio, gfp_mask);
178 
179 	return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
180 }
181 EXPORT_SYMBOL_GPL(bio_clone_mddev);
182 
183 void md_trim_bio(struct bio *bio, int offset, int size)
184 {
185 	/* 'bio' is a cloned bio which we need to trim to match
186 	 * the given offset and size.
187 	 * This requires adjusting bi_sector, bi_size, and bi_io_vec
188 	 */
189 	int i;
190 	struct bio_vec *bvec;
191 	int sofar = 0;
192 
193 	size <<= 9;
194 	if (offset == 0 && size == bio->bi_size)
195 		return;
196 
197 	bio->bi_sector += offset;
198 	bio->bi_size = size;
199 	offset <<= 9;
200 	clear_bit(BIO_SEG_VALID, &bio->bi_flags);
201 
202 	while (bio->bi_idx < bio->bi_vcnt &&
203 	       bio->bi_io_vec[bio->bi_idx].bv_len <= offset) {
204 		/* remove this whole bio_vec */
205 		offset -= bio->bi_io_vec[bio->bi_idx].bv_len;
206 		bio->bi_idx++;
207 	}
208 	if (bio->bi_idx < bio->bi_vcnt) {
209 		bio->bi_io_vec[bio->bi_idx].bv_offset += offset;
210 		bio->bi_io_vec[bio->bi_idx].bv_len -= offset;
211 	}
212 	/* avoid any complications with bi_idx being non-zero*/
213 	if (bio->bi_idx) {
214 		memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
215 			(bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
216 		bio->bi_vcnt -= bio->bi_idx;
217 		bio->bi_idx = 0;
218 	}
219 	/* Make sure vcnt and last bv are not too big */
220 	bio_for_each_segment(bvec, bio, i) {
221 		if (sofar + bvec->bv_len > size)
222 			bvec->bv_len = size - sofar;
223 		if (bvec->bv_len == 0) {
224 			bio->bi_vcnt = i;
225 			break;
226 		}
227 		sofar += bvec->bv_len;
228 	}
229 }
230 EXPORT_SYMBOL_GPL(md_trim_bio);
231 
232 /*
233  * We have a system wide 'event count' that is incremented
234  * on any 'interesting' event, and readers of /proc/mdstat
235  * can use 'poll' or 'select' to find out when the event
236  * count increases.
237  *
238  * Events are:
239  *  start array, stop array, error, add device, remove device,
240  *  start build, activate spare
241  */
242 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
243 static atomic_t md_event_count;
244 void md_new_event(struct mddev *mddev)
245 {
246 	atomic_inc(&md_event_count);
247 	wake_up(&md_event_waiters);
248 }
249 EXPORT_SYMBOL_GPL(md_new_event);
250 
251 /* Alternate version that can be called from interrupts
252  * when calling sysfs_notify isn't needed.
253  */
254 static void md_new_event_inintr(struct mddev *mddev)
255 {
256 	atomic_inc(&md_event_count);
257 	wake_up(&md_event_waiters);
258 }
259 
260 /*
261  * Enables to iterate over all existing md arrays
262  * all_mddevs_lock protects this list.
263  */
264 static LIST_HEAD(all_mddevs);
265 static DEFINE_SPINLOCK(all_mddevs_lock);
266 
267 
268 /*
269  * iterates through all used mddevs in the system.
270  * We take care to grab the all_mddevs_lock whenever navigating
271  * the list, and to always hold a refcount when unlocked.
272  * Any code which breaks out of this loop while own
273  * a reference to the current mddev and must mddev_put it.
274  */
275 #define for_each_mddev(_mddev,_tmp)					\
276 									\
277 	for (({ spin_lock(&all_mddevs_lock); 				\
278 		_tmp = all_mddevs.next;					\
279 		_mddev = NULL;});					\
280 	     ({ if (_tmp != &all_mddevs)				\
281 			mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
282 		spin_unlock(&all_mddevs_lock);				\
283 		if (_mddev) mddev_put(_mddev);				\
284 		_mddev = list_entry(_tmp, struct mddev, all_mddevs);	\
285 		_tmp != &all_mddevs;});					\
286 	     ({ spin_lock(&all_mddevs_lock);				\
287 		_tmp = _tmp->next;})					\
288 		)
289 
290 
291 /* Rather than calling directly into the personality make_request function,
292  * IO requests come here first so that we can check if the device is
293  * being suspended pending a reconfiguration.
294  * We hold a refcount over the call to ->make_request.  By the time that
295  * call has finished, the bio has been linked into some internal structure
296  * and so is visible to ->quiesce(), so we don't need the refcount any more.
297  */
298 static void md_make_request(struct request_queue *q, struct bio *bio)
299 {
300 	const int rw = bio_data_dir(bio);
301 	struct mddev *mddev = q->queuedata;
302 	int cpu;
303 	unsigned int sectors;
304 
305 	if (mddev == NULL || mddev->pers == NULL
306 	    || !mddev->ready) {
307 		bio_io_error(bio);
308 		return;
309 	}
310 	smp_rmb(); /* Ensure implications of  'active' are visible */
311 	rcu_read_lock();
312 	if (mddev->suspended) {
313 		DEFINE_WAIT(__wait);
314 		for (;;) {
315 			prepare_to_wait(&mddev->sb_wait, &__wait,
316 					TASK_UNINTERRUPTIBLE);
317 			if (!mddev->suspended)
318 				break;
319 			rcu_read_unlock();
320 			schedule();
321 			rcu_read_lock();
322 		}
323 		finish_wait(&mddev->sb_wait, &__wait);
324 	}
325 	atomic_inc(&mddev->active_io);
326 	rcu_read_unlock();
327 
328 	/*
329 	 * save the sectors now since our bio can
330 	 * go away inside make_request
331 	 */
332 	sectors = bio_sectors(bio);
333 	mddev->pers->make_request(mddev, bio);
334 
335 	cpu = part_stat_lock();
336 	part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
337 	part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
338 	part_stat_unlock();
339 
340 	if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
341 		wake_up(&mddev->sb_wait);
342 }
343 
344 /* mddev_suspend makes sure no new requests are submitted
345  * to the device, and that any requests that have been submitted
346  * are completely handled.
347  * Once ->stop is called and completes, the module will be completely
348  * unused.
349  */
350 void mddev_suspend(struct mddev *mddev)
351 {
352 	BUG_ON(mddev->suspended);
353 	mddev->suspended = 1;
354 	synchronize_rcu();
355 	wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
356 	mddev->pers->quiesce(mddev, 1);
357 
358 	del_timer_sync(&mddev->safemode_timer);
359 }
360 EXPORT_SYMBOL_GPL(mddev_suspend);
361 
362 void mddev_resume(struct mddev *mddev)
363 {
364 	mddev->suspended = 0;
365 	wake_up(&mddev->sb_wait);
366 	mddev->pers->quiesce(mddev, 0);
367 
368 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
369 	md_wakeup_thread(mddev->thread);
370 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
371 }
372 EXPORT_SYMBOL_GPL(mddev_resume);
373 
374 int mddev_congested(struct mddev *mddev, int bits)
375 {
376 	return mddev->suspended;
377 }
378 EXPORT_SYMBOL(mddev_congested);
379 
380 /*
381  * Generic flush handling for md
382  */
383 
384 static void md_end_flush(struct bio *bio, int err)
385 {
386 	struct md_rdev *rdev = bio->bi_private;
387 	struct mddev *mddev = rdev->mddev;
388 
389 	rdev_dec_pending(rdev, mddev);
390 
391 	if (atomic_dec_and_test(&mddev->flush_pending)) {
392 		/* The pre-request flush has finished */
393 		queue_work(md_wq, &mddev->flush_work);
394 	}
395 	bio_put(bio);
396 }
397 
398 static void md_submit_flush_data(struct work_struct *ws);
399 
400 static void submit_flushes(struct work_struct *ws)
401 {
402 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
403 	struct md_rdev *rdev;
404 
405 	INIT_WORK(&mddev->flush_work, md_submit_flush_data);
406 	atomic_set(&mddev->flush_pending, 1);
407 	rcu_read_lock();
408 	rdev_for_each_rcu(rdev, mddev)
409 		if (rdev->raid_disk >= 0 &&
410 		    !test_bit(Faulty, &rdev->flags)) {
411 			/* Take two references, one is dropped
412 			 * when request finishes, one after
413 			 * we reclaim rcu_read_lock
414 			 */
415 			struct bio *bi;
416 			atomic_inc(&rdev->nr_pending);
417 			atomic_inc(&rdev->nr_pending);
418 			rcu_read_unlock();
419 			bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
420 			bi->bi_end_io = md_end_flush;
421 			bi->bi_private = rdev;
422 			bi->bi_bdev = rdev->bdev;
423 			atomic_inc(&mddev->flush_pending);
424 			submit_bio(WRITE_FLUSH, bi);
425 			rcu_read_lock();
426 			rdev_dec_pending(rdev, mddev);
427 		}
428 	rcu_read_unlock();
429 	if (atomic_dec_and_test(&mddev->flush_pending))
430 		queue_work(md_wq, &mddev->flush_work);
431 }
432 
433 static void md_submit_flush_data(struct work_struct *ws)
434 {
435 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
436 	struct bio *bio = mddev->flush_bio;
437 
438 	if (bio->bi_size == 0)
439 		/* an empty barrier - all done */
440 		bio_endio(bio, 0);
441 	else {
442 		bio->bi_rw &= ~REQ_FLUSH;
443 		mddev->pers->make_request(mddev, bio);
444 	}
445 
446 	mddev->flush_bio = NULL;
447 	wake_up(&mddev->sb_wait);
448 }
449 
450 void md_flush_request(struct mddev *mddev, struct bio *bio)
451 {
452 	spin_lock_irq(&mddev->write_lock);
453 	wait_event_lock_irq(mddev->sb_wait,
454 			    !mddev->flush_bio,
455 			    mddev->write_lock);
456 	mddev->flush_bio = bio;
457 	spin_unlock_irq(&mddev->write_lock);
458 
459 	INIT_WORK(&mddev->flush_work, submit_flushes);
460 	queue_work(md_wq, &mddev->flush_work);
461 }
462 EXPORT_SYMBOL(md_flush_request);
463 
464 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
465 {
466 	struct mddev *mddev = cb->data;
467 	md_wakeup_thread(mddev->thread);
468 	kfree(cb);
469 }
470 EXPORT_SYMBOL(md_unplug);
471 
472 static inline struct mddev *mddev_get(struct mddev *mddev)
473 {
474 	atomic_inc(&mddev->active);
475 	return mddev;
476 }
477 
478 static void mddev_delayed_delete(struct work_struct *ws);
479 
480 static void mddev_put(struct mddev *mddev)
481 {
482 	struct bio_set *bs = NULL;
483 
484 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
485 		return;
486 	if (!mddev->raid_disks && list_empty(&mddev->disks) &&
487 	    mddev->ctime == 0 && !mddev->hold_active) {
488 		/* Array is not configured at all, and not held active,
489 		 * so destroy it */
490 		list_del_init(&mddev->all_mddevs);
491 		bs = mddev->bio_set;
492 		mddev->bio_set = NULL;
493 		if (mddev->gendisk) {
494 			/* We did a probe so need to clean up.  Call
495 			 * queue_work inside the spinlock so that
496 			 * flush_workqueue() after mddev_find will
497 			 * succeed in waiting for the work to be done.
498 			 */
499 			INIT_WORK(&mddev->del_work, mddev_delayed_delete);
500 			queue_work(md_misc_wq, &mddev->del_work);
501 		} else
502 			kfree(mddev);
503 	}
504 	spin_unlock(&all_mddevs_lock);
505 	if (bs)
506 		bioset_free(bs);
507 }
508 
509 void mddev_init(struct mddev *mddev)
510 {
511 	mutex_init(&mddev->open_mutex);
512 	mutex_init(&mddev->reconfig_mutex);
513 	mutex_init(&mddev->bitmap_info.mutex);
514 	INIT_LIST_HEAD(&mddev->disks);
515 	INIT_LIST_HEAD(&mddev->all_mddevs);
516 	init_timer(&mddev->safemode_timer);
517 	atomic_set(&mddev->active, 1);
518 	atomic_set(&mddev->openers, 0);
519 	atomic_set(&mddev->active_io, 0);
520 	spin_lock_init(&mddev->write_lock);
521 	atomic_set(&mddev->flush_pending, 0);
522 	init_waitqueue_head(&mddev->sb_wait);
523 	init_waitqueue_head(&mddev->recovery_wait);
524 	mddev->reshape_position = MaxSector;
525 	mddev->reshape_backwards = 0;
526 	mddev->resync_min = 0;
527 	mddev->resync_max = MaxSector;
528 	mddev->level = LEVEL_NONE;
529 }
530 EXPORT_SYMBOL_GPL(mddev_init);
531 
532 static struct mddev * mddev_find(dev_t unit)
533 {
534 	struct mddev *mddev, *new = NULL;
535 
536 	if (unit && MAJOR(unit) != MD_MAJOR)
537 		unit &= ~((1<<MdpMinorShift)-1);
538 
539  retry:
540 	spin_lock(&all_mddevs_lock);
541 
542 	if (unit) {
543 		list_for_each_entry(mddev, &all_mddevs, all_mddevs)
544 			if (mddev->unit == unit) {
545 				mddev_get(mddev);
546 				spin_unlock(&all_mddevs_lock);
547 				kfree(new);
548 				return mddev;
549 			}
550 
551 		if (new) {
552 			list_add(&new->all_mddevs, &all_mddevs);
553 			spin_unlock(&all_mddevs_lock);
554 			new->hold_active = UNTIL_IOCTL;
555 			return new;
556 		}
557 	} else if (new) {
558 		/* find an unused unit number */
559 		static int next_minor = 512;
560 		int start = next_minor;
561 		int is_free = 0;
562 		int dev = 0;
563 		while (!is_free) {
564 			dev = MKDEV(MD_MAJOR, next_minor);
565 			next_minor++;
566 			if (next_minor > MINORMASK)
567 				next_minor = 0;
568 			if (next_minor == start) {
569 				/* Oh dear, all in use. */
570 				spin_unlock(&all_mddevs_lock);
571 				kfree(new);
572 				return NULL;
573 			}
574 
575 			is_free = 1;
576 			list_for_each_entry(mddev, &all_mddevs, all_mddevs)
577 				if (mddev->unit == dev) {
578 					is_free = 0;
579 					break;
580 				}
581 		}
582 		new->unit = dev;
583 		new->md_minor = MINOR(dev);
584 		new->hold_active = UNTIL_STOP;
585 		list_add(&new->all_mddevs, &all_mddevs);
586 		spin_unlock(&all_mddevs_lock);
587 		return new;
588 	}
589 	spin_unlock(&all_mddevs_lock);
590 
591 	new = kzalloc(sizeof(*new), GFP_KERNEL);
592 	if (!new)
593 		return NULL;
594 
595 	new->unit = unit;
596 	if (MAJOR(unit) == MD_MAJOR)
597 		new->md_minor = MINOR(unit);
598 	else
599 		new->md_minor = MINOR(unit) >> MdpMinorShift;
600 
601 	mddev_init(new);
602 
603 	goto retry;
604 }
605 
606 static inline int mddev_lock(struct mddev * mddev)
607 {
608 	return mutex_lock_interruptible(&mddev->reconfig_mutex);
609 }
610 
611 static inline int mddev_is_locked(struct mddev *mddev)
612 {
613 	return mutex_is_locked(&mddev->reconfig_mutex);
614 }
615 
616 static inline int mddev_trylock(struct mddev * mddev)
617 {
618 	return mutex_trylock(&mddev->reconfig_mutex);
619 }
620 
621 static struct attribute_group md_redundancy_group;
622 
623 static void mddev_unlock(struct mddev * mddev)
624 {
625 	if (mddev->to_remove) {
626 		/* These cannot be removed under reconfig_mutex as
627 		 * an access to the files will try to take reconfig_mutex
628 		 * while holding the file unremovable, which leads to
629 		 * a deadlock.
630 		 * So hold set sysfs_active while the remove in happeing,
631 		 * and anything else which might set ->to_remove or my
632 		 * otherwise change the sysfs namespace will fail with
633 		 * -EBUSY if sysfs_active is still set.
634 		 * We set sysfs_active under reconfig_mutex and elsewhere
635 		 * test it under the same mutex to ensure its correct value
636 		 * is seen.
637 		 */
638 		struct attribute_group *to_remove = mddev->to_remove;
639 		mddev->to_remove = NULL;
640 		mddev->sysfs_active = 1;
641 		mutex_unlock(&mddev->reconfig_mutex);
642 
643 		if (mddev->kobj.sd) {
644 			if (to_remove != &md_redundancy_group)
645 				sysfs_remove_group(&mddev->kobj, to_remove);
646 			if (mddev->pers == NULL ||
647 			    mddev->pers->sync_request == NULL) {
648 				sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
649 				if (mddev->sysfs_action)
650 					sysfs_put(mddev->sysfs_action);
651 				mddev->sysfs_action = NULL;
652 			}
653 		}
654 		mddev->sysfs_active = 0;
655 	} else
656 		mutex_unlock(&mddev->reconfig_mutex);
657 
658 	/* As we've dropped the mutex we need a spinlock to
659 	 * make sure the thread doesn't disappear
660 	 */
661 	spin_lock(&pers_lock);
662 	md_wakeup_thread(mddev->thread);
663 	spin_unlock(&pers_lock);
664 }
665 
666 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
667 {
668 	struct md_rdev *rdev;
669 
670 	rdev_for_each(rdev, mddev)
671 		if (rdev->desc_nr == nr)
672 			return rdev;
673 
674 	return NULL;
675 }
676 
677 static struct md_rdev *find_rdev_nr_rcu(struct mddev *mddev, int nr)
678 {
679 	struct md_rdev *rdev;
680 
681 	rdev_for_each_rcu(rdev, mddev)
682 		if (rdev->desc_nr == nr)
683 			return rdev;
684 
685 	return NULL;
686 }
687 
688 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
689 {
690 	struct md_rdev *rdev;
691 
692 	rdev_for_each(rdev, mddev)
693 		if (rdev->bdev->bd_dev == dev)
694 			return rdev;
695 
696 	return NULL;
697 }
698 
699 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
700 {
701 	struct md_rdev *rdev;
702 
703 	rdev_for_each_rcu(rdev, mddev)
704 		if (rdev->bdev->bd_dev == dev)
705 			return rdev;
706 
707 	return NULL;
708 }
709 
710 static struct md_personality *find_pers(int level, char *clevel)
711 {
712 	struct md_personality *pers;
713 	list_for_each_entry(pers, &pers_list, list) {
714 		if (level != LEVEL_NONE && pers->level == level)
715 			return pers;
716 		if (strcmp(pers->name, clevel)==0)
717 			return pers;
718 	}
719 	return NULL;
720 }
721 
722 /* return the offset of the super block in 512byte sectors */
723 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
724 {
725 	sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
726 	return MD_NEW_SIZE_SECTORS(num_sectors);
727 }
728 
729 static int alloc_disk_sb(struct md_rdev * rdev)
730 {
731 	if (rdev->sb_page)
732 		MD_BUG();
733 
734 	rdev->sb_page = alloc_page(GFP_KERNEL);
735 	if (!rdev->sb_page) {
736 		printk(KERN_ALERT "md: out of memory.\n");
737 		return -ENOMEM;
738 	}
739 
740 	return 0;
741 }
742 
743 void md_rdev_clear(struct md_rdev *rdev)
744 {
745 	if (rdev->sb_page) {
746 		put_page(rdev->sb_page);
747 		rdev->sb_loaded = 0;
748 		rdev->sb_page = NULL;
749 		rdev->sb_start = 0;
750 		rdev->sectors = 0;
751 	}
752 	if (rdev->bb_page) {
753 		put_page(rdev->bb_page);
754 		rdev->bb_page = NULL;
755 	}
756 	kfree(rdev->badblocks.page);
757 	rdev->badblocks.page = NULL;
758 }
759 EXPORT_SYMBOL_GPL(md_rdev_clear);
760 
761 static void super_written(struct bio *bio, int error)
762 {
763 	struct md_rdev *rdev = bio->bi_private;
764 	struct mddev *mddev = rdev->mddev;
765 
766 	if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
767 		printk("md: super_written gets error=%d, uptodate=%d\n",
768 		       error, test_bit(BIO_UPTODATE, &bio->bi_flags));
769 		WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
770 		md_error(mddev, rdev);
771 	}
772 
773 	if (atomic_dec_and_test(&mddev->pending_writes))
774 		wake_up(&mddev->sb_wait);
775 	bio_put(bio);
776 }
777 
778 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
779 		   sector_t sector, int size, struct page *page)
780 {
781 	/* write first size bytes of page to sector of rdev
782 	 * Increment mddev->pending_writes before returning
783 	 * and decrement it on completion, waking up sb_wait
784 	 * if zero is reached.
785 	 * If an error occurred, call md_error
786 	 */
787 	struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
788 
789 	bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
790 	bio->bi_sector = sector;
791 	bio_add_page(bio, page, size, 0);
792 	bio->bi_private = rdev;
793 	bio->bi_end_io = super_written;
794 
795 	atomic_inc(&mddev->pending_writes);
796 	submit_bio(WRITE_FLUSH_FUA, bio);
797 }
798 
799 void md_super_wait(struct mddev *mddev)
800 {
801 	/* wait for all superblock writes that were scheduled to complete */
802 	DEFINE_WAIT(wq);
803 	for(;;) {
804 		prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
805 		if (atomic_read(&mddev->pending_writes)==0)
806 			break;
807 		schedule();
808 	}
809 	finish_wait(&mddev->sb_wait, &wq);
810 }
811 
812 static void bi_complete(struct bio *bio, int error)
813 {
814 	complete((struct completion*)bio->bi_private);
815 }
816 
817 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
818 		 struct page *page, int rw, bool metadata_op)
819 {
820 	struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
821 	struct completion event;
822 	int ret;
823 
824 	rw |= REQ_SYNC;
825 
826 	bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
827 		rdev->meta_bdev : rdev->bdev;
828 	if (metadata_op)
829 		bio->bi_sector = sector + rdev->sb_start;
830 	else if (rdev->mddev->reshape_position != MaxSector &&
831 		 (rdev->mddev->reshape_backwards ==
832 		  (sector >= rdev->mddev->reshape_position)))
833 		bio->bi_sector = sector + rdev->new_data_offset;
834 	else
835 		bio->bi_sector = sector + rdev->data_offset;
836 	bio_add_page(bio, page, size, 0);
837 	init_completion(&event);
838 	bio->bi_private = &event;
839 	bio->bi_end_io = bi_complete;
840 	submit_bio(rw, bio);
841 	wait_for_completion(&event);
842 
843 	ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
844 	bio_put(bio);
845 	return ret;
846 }
847 EXPORT_SYMBOL_GPL(sync_page_io);
848 
849 static int read_disk_sb(struct md_rdev * rdev, int size)
850 {
851 	char b[BDEVNAME_SIZE];
852 	if (!rdev->sb_page) {
853 		MD_BUG();
854 		return -EINVAL;
855 	}
856 	if (rdev->sb_loaded)
857 		return 0;
858 
859 
860 	if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
861 		goto fail;
862 	rdev->sb_loaded = 1;
863 	return 0;
864 
865 fail:
866 	printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
867 		bdevname(rdev->bdev,b));
868 	return -EINVAL;
869 }
870 
871 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
872 {
873 	return 	sb1->set_uuid0 == sb2->set_uuid0 &&
874 		sb1->set_uuid1 == sb2->set_uuid1 &&
875 		sb1->set_uuid2 == sb2->set_uuid2 &&
876 		sb1->set_uuid3 == sb2->set_uuid3;
877 }
878 
879 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
880 {
881 	int ret;
882 	mdp_super_t *tmp1, *tmp2;
883 
884 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
885 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
886 
887 	if (!tmp1 || !tmp2) {
888 		ret = 0;
889 		printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
890 		goto abort;
891 	}
892 
893 	*tmp1 = *sb1;
894 	*tmp2 = *sb2;
895 
896 	/*
897 	 * nr_disks is not constant
898 	 */
899 	tmp1->nr_disks = 0;
900 	tmp2->nr_disks = 0;
901 
902 	ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
903 abort:
904 	kfree(tmp1);
905 	kfree(tmp2);
906 	return ret;
907 }
908 
909 
910 static u32 md_csum_fold(u32 csum)
911 {
912 	csum = (csum & 0xffff) + (csum >> 16);
913 	return (csum & 0xffff) + (csum >> 16);
914 }
915 
916 static unsigned int calc_sb_csum(mdp_super_t * sb)
917 {
918 	u64 newcsum = 0;
919 	u32 *sb32 = (u32*)sb;
920 	int i;
921 	unsigned int disk_csum, csum;
922 
923 	disk_csum = sb->sb_csum;
924 	sb->sb_csum = 0;
925 
926 	for (i = 0; i < MD_SB_BYTES/4 ; i++)
927 		newcsum += sb32[i];
928 	csum = (newcsum & 0xffffffff) + (newcsum>>32);
929 
930 
931 #ifdef CONFIG_ALPHA
932 	/* This used to use csum_partial, which was wrong for several
933 	 * reasons including that different results are returned on
934 	 * different architectures.  It isn't critical that we get exactly
935 	 * the same return value as before (we always csum_fold before
936 	 * testing, and that removes any differences).  However as we
937 	 * know that csum_partial always returned a 16bit value on
938 	 * alphas, do a fold to maximise conformity to previous behaviour.
939 	 */
940 	sb->sb_csum = md_csum_fold(disk_csum);
941 #else
942 	sb->sb_csum = disk_csum;
943 #endif
944 	return csum;
945 }
946 
947 
948 /*
949  * Handle superblock details.
950  * We want to be able to handle multiple superblock formats
951  * so we have a common interface to them all, and an array of
952  * different handlers.
953  * We rely on user-space to write the initial superblock, and support
954  * reading and updating of superblocks.
955  * Interface methods are:
956  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
957  *      loads and validates a superblock on dev.
958  *      if refdev != NULL, compare superblocks on both devices
959  *    Return:
960  *      0 - dev has a superblock that is compatible with refdev
961  *      1 - dev has a superblock that is compatible and newer than refdev
962  *          so dev should be used as the refdev in future
963  *     -EINVAL superblock incompatible or invalid
964  *     -othererror e.g. -EIO
965  *
966  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
967  *      Verify that dev is acceptable into mddev.
968  *       The first time, mddev->raid_disks will be 0, and data from
969  *       dev should be merged in.  Subsequent calls check that dev
970  *       is new enough.  Return 0 or -EINVAL
971  *
972  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
973  *     Update the superblock for rdev with data in mddev
974  *     This does not write to disc.
975  *
976  */
977 
978 struct super_type  {
979 	char		    *name;
980 	struct module	    *owner;
981 	int		    (*load_super)(struct md_rdev *rdev,
982 					  struct md_rdev *refdev,
983 					  int minor_version);
984 	int		    (*validate_super)(struct mddev *mddev,
985 					      struct md_rdev *rdev);
986 	void		    (*sync_super)(struct mddev *mddev,
987 					  struct md_rdev *rdev);
988 	unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
989 						sector_t num_sectors);
990 	int		    (*allow_new_offset)(struct md_rdev *rdev,
991 						unsigned long long new_offset);
992 };
993 
994 /*
995  * Check that the given mddev has no bitmap.
996  *
997  * This function is called from the run method of all personalities that do not
998  * support bitmaps. It prints an error message and returns non-zero if mddev
999  * has a bitmap. Otherwise, it returns 0.
1000  *
1001  */
1002 int md_check_no_bitmap(struct mddev *mddev)
1003 {
1004 	if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1005 		return 0;
1006 	printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
1007 		mdname(mddev), mddev->pers->name);
1008 	return 1;
1009 }
1010 EXPORT_SYMBOL(md_check_no_bitmap);
1011 
1012 /*
1013  * load_super for 0.90.0
1014  */
1015 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1016 {
1017 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1018 	mdp_super_t *sb;
1019 	int ret;
1020 
1021 	/*
1022 	 * Calculate the position of the superblock (512byte sectors),
1023 	 * it's at the end of the disk.
1024 	 *
1025 	 * It also happens to be a multiple of 4Kb.
1026 	 */
1027 	rdev->sb_start = calc_dev_sboffset(rdev);
1028 
1029 	ret = read_disk_sb(rdev, MD_SB_BYTES);
1030 	if (ret) return ret;
1031 
1032 	ret = -EINVAL;
1033 
1034 	bdevname(rdev->bdev, b);
1035 	sb = page_address(rdev->sb_page);
1036 
1037 	if (sb->md_magic != MD_SB_MAGIC) {
1038 		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1039 		       b);
1040 		goto abort;
1041 	}
1042 
1043 	if (sb->major_version != 0 ||
1044 	    sb->minor_version < 90 ||
1045 	    sb->minor_version > 91) {
1046 		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1047 			sb->major_version, sb->minor_version,
1048 			b);
1049 		goto abort;
1050 	}
1051 
1052 	if (sb->raid_disks <= 0)
1053 		goto abort;
1054 
1055 	if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1056 		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1057 			b);
1058 		goto abort;
1059 	}
1060 
1061 	rdev->preferred_minor = sb->md_minor;
1062 	rdev->data_offset = 0;
1063 	rdev->new_data_offset = 0;
1064 	rdev->sb_size = MD_SB_BYTES;
1065 	rdev->badblocks.shift = -1;
1066 
1067 	if (sb->level == LEVEL_MULTIPATH)
1068 		rdev->desc_nr = -1;
1069 	else
1070 		rdev->desc_nr = sb->this_disk.number;
1071 
1072 	if (!refdev) {
1073 		ret = 1;
1074 	} else {
1075 		__u64 ev1, ev2;
1076 		mdp_super_t *refsb = page_address(refdev->sb_page);
1077 		if (!uuid_equal(refsb, sb)) {
1078 			printk(KERN_WARNING "md: %s has different UUID to %s\n",
1079 				b, bdevname(refdev->bdev,b2));
1080 			goto abort;
1081 		}
1082 		if (!sb_equal(refsb, sb)) {
1083 			printk(KERN_WARNING "md: %s has same UUID"
1084 			       " but different superblock to %s\n",
1085 			       b, bdevname(refdev->bdev, b2));
1086 			goto abort;
1087 		}
1088 		ev1 = md_event(sb);
1089 		ev2 = md_event(refsb);
1090 		if (ev1 > ev2)
1091 			ret = 1;
1092 		else
1093 			ret = 0;
1094 	}
1095 	rdev->sectors = rdev->sb_start;
1096 	/* Limit to 4TB as metadata cannot record more than that.
1097 	 * (not needed for Linear and RAID0 as metadata doesn't
1098 	 * record this size)
1099 	 */
1100 	if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1101 		rdev->sectors = (2ULL << 32) - 2;
1102 
1103 	if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1104 		/* "this cannot possibly happen" ... */
1105 		ret = -EINVAL;
1106 
1107  abort:
1108 	return ret;
1109 }
1110 
1111 /*
1112  * validate_super for 0.90.0
1113  */
1114 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1115 {
1116 	mdp_disk_t *desc;
1117 	mdp_super_t *sb = page_address(rdev->sb_page);
1118 	__u64 ev1 = md_event(sb);
1119 
1120 	rdev->raid_disk = -1;
1121 	clear_bit(Faulty, &rdev->flags);
1122 	clear_bit(In_sync, &rdev->flags);
1123 	clear_bit(WriteMostly, &rdev->flags);
1124 
1125 	if (mddev->raid_disks == 0) {
1126 		mddev->major_version = 0;
1127 		mddev->minor_version = sb->minor_version;
1128 		mddev->patch_version = sb->patch_version;
1129 		mddev->external = 0;
1130 		mddev->chunk_sectors = sb->chunk_size >> 9;
1131 		mddev->ctime = sb->ctime;
1132 		mddev->utime = sb->utime;
1133 		mddev->level = sb->level;
1134 		mddev->clevel[0] = 0;
1135 		mddev->layout = sb->layout;
1136 		mddev->raid_disks = sb->raid_disks;
1137 		mddev->dev_sectors = ((sector_t)sb->size) * 2;
1138 		mddev->events = ev1;
1139 		mddev->bitmap_info.offset = 0;
1140 		mddev->bitmap_info.space = 0;
1141 		/* bitmap can use 60 K after the 4K superblocks */
1142 		mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1143 		mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1144 		mddev->reshape_backwards = 0;
1145 
1146 		if (mddev->minor_version >= 91) {
1147 			mddev->reshape_position = sb->reshape_position;
1148 			mddev->delta_disks = sb->delta_disks;
1149 			mddev->new_level = sb->new_level;
1150 			mddev->new_layout = sb->new_layout;
1151 			mddev->new_chunk_sectors = sb->new_chunk >> 9;
1152 			if (mddev->delta_disks < 0)
1153 				mddev->reshape_backwards = 1;
1154 		} else {
1155 			mddev->reshape_position = MaxSector;
1156 			mddev->delta_disks = 0;
1157 			mddev->new_level = mddev->level;
1158 			mddev->new_layout = mddev->layout;
1159 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1160 		}
1161 
1162 		if (sb->state & (1<<MD_SB_CLEAN))
1163 			mddev->recovery_cp = MaxSector;
1164 		else {
1165 			if (sb->events_hi == sb->cp_events_hi &&
1166 				sb->events_lo == sb->cp_events_lo) {
1167 				mddev->recovery_cp = sb->recovery_cp;
1168 			} else
1169 				mddev->recovery_cp = 0;
1170 		}
1171 
1172 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1173 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1174 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1175 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1176 
1177 		mddev->max_disks = MD_SB_DISKS;
1178 
1179 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1180 		    mddev->bitmap_info.file == NULL) {
1181 			mddev->bitmap_info.offset =
1182 				mddev->bitmap_info.default_offset;
1183 			mddev->bitmap_info.space =
1184 				mddev->bitmap_info.space;
1185 		}
1186 
1187 	} else if (mddev->pers == NULL) {
1188 		/* Insist on good event counter while assembling, except
1189 		 * for spares (which don't need an event count) */
1190 		++ev1;
1191 		if (sb->disks[rdev->desc_nr].state & (
1192 			    (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1193 			if (ev1 < mddev->events)
1194 				return -EINVAL;
1195 	} else if (mddev->bitmap) {
1196 		/* if adding to array with a bitmap, then we can accept an
1197 		 * older device ... but not too old.
1198 		 */
1199 		if (ev1 < mddev->bitmap->events_cleared)
1200 			return 0;
1201 	} else {
1202 		if (ev1 < mddev->events)
1203 			/* just a hot-add of a new device, leave raid_disk at -1 */
1204 			return 0;
1205 	}
1206 
1207 	if (mddev->level != LEVEL_MULTIPATH) {
1208 		desc = sb->disks + rdev->desc_nr;
1209 
1210 		if (desc->state & (1<<MD_DISK_FAULTY))
1211 			set_bit(Faulty, &rdev->flags);
1212 		else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1213 			    desc->raid_disk < mddev->raid_disks */) {
1214 			set_bit(In_sync, &rdev->flags);
1215 			rdev->raid_disk = desc->raid_disk;
1216 		} else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1217 			/* active but not in sync implies recovery up to
1218 			 * reshape position.  We don't know exactly where
1219 			 * that is, so set to zero for now */
1220 			if (mddev->minor_version >= 91) {
1221 				rdev->recovery_offset = 0;
1222 				rdev->raid_disk = desc->raid_disk;
1223 			}
1224 		}
1225 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1226 			set_bit(WriteMostly, &rdev->flags);
1227 	} else /* MULTIPATH are always insync */
1228 		set_bit(In_sync, &rdev->flags);
1229 	return 0;
1230 }
1231 
1232 /*
1233  * sync_super for 0.90.0
1234  */
1235 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1236 {
1237 	mdp_super_t *sb;
1238 	struct md_rdev *rdev2;
1239 	int next_spare = mddev->raid_disks;
1240 
1241 
1242 	/* make rdev->sb match mddev data..
1243 	 *
1244 	 * 1/ zero out disks
1245 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1246 	 * 3/ any empty disks < next_spare become removed
1247 	 *
1248 	 * disks[0] gets initialised to REMOVED because
1249 	 * we cannot be sure from other fields if it has
1250 	 * been initialised or not.
1251 	 */
1252 	int i;
1253 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
1254 
1255 	rdev->sb_size = MD_SB_BYTES;
1256 
1257 	sb = page_address(rdev->sb_page);
1258 
1259 	memset(sb, 0, sizeof(*sb));
1260 
1261 	sb->md_magic = MD_SB_MAGIC;
1262 	sb->major_version = mddev->major_version;
1263 	sb->patch_version = mddev->patch_version;
1264 	sb->gvalid_words  = 0; /* ignored */
1265 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1266 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1267 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1268 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1269 
1270 	sb->ctime = mddev->ctime;
1271 	sb->level = mddev->level;
1272 	sb->size = mddev->dev_sectors / 2;
1273 	sb->raid_disks = mddev->raid_disks;
1274 	sb->md_minor = mddev->md_minor;
1275 	sb->not_persistent = 0;
1276 	sb->utime = mddev->utime;
1277 	sb->state = 0;
1278 	sb->events_hi = (mddev->events>>32);
1279 	sb->events_lo = (u32)mddev->events;
1280 
1281 	if (mddev->reshape_position == MaxSector)
1282 		sb->minor_version = 90;
1283 	else {
1284 		sb->minor_version = 91;
1285 		sb->reshape_position = mddev->reshape_position;
1286 		sb->new_level = mddev->new_level;
1287 		sb->delta_disks = mddev->delta_disks;
1288 		sb->new_layout = mddev->new_layout;
1289 		sb->new_chunk = mddev->new_chunk_sectors << 9;
1290 	}
1291 	mddev->minor_version = sb->minor_version;
1292 	if (mddev->in_sync)
1293 	{
1294 		sb->recovery_cp = mddev->recovery_cp;
1295 		sb->cp_events_hi = (mddev->events>>32);
1296 		sb->cp_events_lo = (u32)mddev->events;
1297 		if (mddev->recovery_cp == MaxSector)
1298 			sb->state = (1<< MD_SB_CLEAN);
1299 	} else
1300 		sb->recovery_cp = 0;
1301 
1302 	sb->layout = mddev->layout;
1303 	sb->chunk_size = mddev->chunk_sectors << 9;
1304 
1305 	if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1306 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1307 
1308 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
1309 	rdev_for_each(rdev2, mddev) {
1310 		mdp_disk_t *d;
1311 		int desc_nr;
1312 		int is_active = test_bit(In_sync, &rdev2->flags);
1313 
1314 		if (rdev2->raid_disk >= 0 &&
1315 		    sb->minor_version >= 91)
1316 			/* we have nowhere to store the recovery_offset,
1317 			 * but if it is not below the reshape_position,
1318 			 * we can piggy-back on that.
1319 			 */
1320 			is_active = 1;
1321 		if (rdev2->raid_disk < 0 ||
1322 		    test_bit(Faulty, &rdev2->flags))
1323 			is_active = 0;
1324 		if (is_active)
1325 			desc_nr = rdev2->raid_disk;
1326 		else
1327 			desc_nr = next_spare++;
1328 		rdev2->desc_nr = desc_nr;
1329 		d = &sb->disks[rdev2->desc_nr];
1330 		nr_disks++;
1331 		d->number = rdev2->desc_nr;
1332 		d->major = MAJOR(rdev2->bdev->bd_dev);
1333 		d->minor = MINOR(rdev2->bdev->bd_dev);
1334 		if (is_active)
1335 			d->raid_disk = rdev2->raid_disk;
1336 		else
1337 			d->raid_disk = rdev2->desc_nr; /* compatibility */
1338 		if (test_bit(Faulty, &rdev2->flags))
1339 			d->state = (1<<MD_DISK_FAULTY);
1340 		else if (is_active) {
1341 			d->state = (1<<MD_DISK_ACTIVE);
1342 			if (test_bit(In_sync, &rdev2->flags))
1343 				d->state |= (1<<MD_DISK_SYNC);
1344 			active++;
1345 			working++;
1346 		} else {
1347 			d->state = 0;
1348 			spare++;
1349 			working++;
1350 		}
1351 		if (test_bit(WriteMostly, &rdev2->flags))
1352 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
1353 	}
1354 	/* now set the "removed" and "faulty" bits on any missing devices */
1355 	for (i=0 ; i < mddev->raid_disks ; i++) {
1356 		mdp_disk_t *d = &sb->disks[i];
1357 		if (d->state == 0 && d->number == 0) {
1358 			d->number = i;
1359 			d->raid_disk = i;
1360 			d->state = (1<<MD_DISK_REMOVED);
1361 			d->state |= (1<<MD_DISK_FAULTY);
1362 			failed++;
1363 		}
1364 	}
1365 	sb->nr_disks = nr_disks;
1366 	sb->active_disks = active;
1367 	sb->working_disks = working;
1368 	sb->failed_disks = failed;
1369 	sb->spare_disks = spare;
1370 
1371 	sb->this_disk = sb->disks[rdev->desc_nr];
1372 	sb->sb_csum = calc_sb_csum(sb);
1373 }
1374 
1375 /*
1376  * rdev_size_change for 0.90.0
1377  */
1378 static unsigned long long
1379 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1380 {
1381 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1382 		return 0; /* component must fit device */
1383 	if (rdev->mddev->bitmap_info.offset)
1384 		return 0; /* can't move bitmap */
1385 	rdev->sb_start = calc_dev_sboffset(rdev);
1386 	if (!num_sectors || num_sectors > rdev->sb_start)
1387 		num_sectors = rdev->sb_start;
1388 	/* Limit to 4TB as metadata cannot record more than that.
1389 	 * 4TB == 2^32 KB, or 2*2^32 sectors.
1390 	 */
1391 	if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1392 		num_sectors = (2ULL << 32) - 2;
1393 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1394 		       rdev->sb_page);
1395 	md_super_wait(rdev->mddev);
1396 	return num_sectors;
1397 }
1398 
1399 static int
1400 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1401 {
1402 	/* non-zero offset changes not possible with v0.90 */
1403 	return new_offset == 0;
1404 }
1405 
1406 /*
1407  * version 1 superblock
1408  */
1409 
1410 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1411 {
1412 	__le32 disk_csum;
1413 	u32 csum;
1414 	unsigned long long newcsum;
1415 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
1416 	__le32 *isuper = (__le32*)sb;
1417 
1418 	disk_csum = sb->sb_csum;
1419 	sb->sb_csum = 0;
1420 	newcsum = 0;
1421 	for (; size >= 4; size -= 4)
1422 		newcsum += le32_to_cpu(*isuper++);
1423 
1424 	if (size == 2)
1425 		newcsum += le16_to_cpu(*(__le16*) isuper);
1426 
1427 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1428 	sb->sb_csum = disk_csum;
1429 	return cpu_to_le32(csum);
1430 }
1431 
1432 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1433 			    int acknowledged);
1434 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1435 {
1436 	struct mdp_superblock_1 *sb;
1437 	int ret;
1438 	sector_t sb_start;
1439 	sector_t sectors;
1440 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1441 	int bmask;
1442 
1443 	/*
1444 	 * Calculate the position of the superblock in 512byte sectors.
1445 	 * It is always aligned to a 4K boundary and
1446 	 * depeding on minor_version, it can be:
1447 	 * 0: At least 8K, but less than 12K, from end of device
1448 	 * 1: At start of device
1449 	 * 2: 4K from start of device.
1450 	 */
1451 	switch(minor_version) {
1452 	case 0:
1453 		sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1454 		sb_start -= 8*2;
1455 		sb_start &= ~(sector_t)(4*2-1);
1456 		break;
1457 	case 1:
1458 		sb_start = 0;
1459 		break;
1460 	case 2:
1461 		sb_start = 8;
1462 		break;
1463 	default:
1464 		return -EINVAL;
1465 	}
1466 	rdev->sb_start = sb_start;
1467 
1468 	/* superblock is rarely larger than 1K, but it can be larger,
1469 	 * and it is safe to read 4k, so we do that
1470 	 */
1471 	ret = read_disk_sb(rdev, 4096);
1472 	if (ret) return ret;
1473 
1474 
1475 	sb = page_address(rdev->sb_page);
1476 
1477 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1478 	    sb->major_version != cpu_to_le32(1) ||
1479 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1480 	    le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1481 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1482 		return -EINVAL;
1483 
1484 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
1485 		printk("md: invalid superblock checksum on %s\n",
1486 			bdevname(rdev->bdev,b));
1487 		return -EINVAL;
1488 	}
1489 	if (le64_to_cpu(sb->data_size) < 10) {
1490 		printk("md: data_size too small on %s\n",
1491 		       bdevname(rdev->bdev,b));
1492 		return -EINVAL;
1493 	}
1494 	if (sb->pad0 ||
1495 	    sb->pad3[0] ||
1496 	    memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1497 		/* Some padding is non-zero, might be a new feature */
1498 		return -EINVAL;
1499 
1500 	rdev->preferred_minor = 0xffff;
1501 	rdev->data_offset = le64_to_cpu(sb->data_offset);
1502 	rdev->new_data_offset = rdev->data_offset;
1503 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1504 	    (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1505 		rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1506 	atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1507 
1508 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1509 	bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1510 	if (rdev->sb_size & bmask)
1511 		rdev->sb_size = (rdev->sb_size | bmask) + 1;
1512 
1513 	if (minor_version
1514 	    && rdev->data_offset < sb_start + (rdev->sb_size/512))
1515 		return -EINVAL;
1516 	if (minor_version
1517 	    && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1518 		return -EINVAL;
1519 
1520 	if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1521 		rdev->desc_nr = -1;
1522 	else
1523 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1524 
1525 	if (!rdev->bb_page) {
1526 		rdev->bb_page = alloc_page(GFP_KERNEL);
1527 		if (!rdev->bb_page)
1528 			return -ENOMEM;
1529 	}
1530 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1531 	    rdev->badblocks.count == 0) {
1532 		/* need to load the bad block list.
1533 		 * Currently we limit it to one page.
1534 		 */
1535 		s32 offset;
1536 		sector_t bb_sector;
1537 		u64 *bbp;
1538 		int i;
1539 		int sectors = le16_to_cpu(sb->bblog_size);
1540 		if (sectors > (PAGE_SIZE / 512))
1541 			return -EINVAL;
1542 		offset = le32_to_cpu(sb->bblog_offset);
1543 		if (offset == 0)
1544 			return -EINVAL;
1545 		bb_sector = (long long)offset;
1546 		if (!sync_page_io(rdev, bb_sector, sectors << 9,
1547 				  rdev->bb_page, READ, true))
1548 			return -EIO;
1549 		bbp = (u64 *)page_address(rdev->bb_page);
1550 		rdev->badblocks.shift = sb->bblog_shift;
1551 		for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1552 			u64 bb = le64_to_cpu(*bbp);
1553 			int count = bb & (0x3ff);
1554 			u64 sector = bb >> 10;
1555 			sector <<= sb->bblog_shift;
1556 			count <<= sb->bblog_shift;
1557 			if (bb + 1 == 0)
1558 				break;
1559 			if (md_set_badblocks(&rdev->badblocks,
1560 					     sector, count, 1) == 0)
1561 				return -EINVAL;
1562 		}
1563 	} else if (sb->bblog_offset == 0)
1564 		rdev->badblocks.shift = -1;
1565 
1566 	if (!refdev) {
1567 		ret = 1;
1568 	} else {
1569 		__u64 ev1, ev2;
1570 		struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1571 
1572 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1573 		    sb->level != refsb->level ||
1574 		    sb->layout != refsb->layout ||
1575 		    sb->chunksize != refsb->chunksize) {
1576 			printk(KERN_WARNING "md: %s has strangely different"
1577 				" superblock to %s\n",
1578 				bdevname(rdev->bdev,b),
1579 				bdevname(refdev->bdev,b2));
1580 			return -EINVAL;
1581 		}
1582 		ev1 = le64_to_cpu(sb->events);
1583 		ev2 = le64_to_cpu(refsb->events);
1584 
1585 		if (ev1 > ev2)
1586 			ret = 1;
1587 		else
1588 			ret = 0;
1589 	}
1590 	if (minor_version) {
1591 		sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1592 		sectors -= rdev->data_offset;
1593 	} else
1594 		sectors = rdev->sb_start;
1595 	if (sectors < le64_to_cpu(sb->data_size))
1596 		return -EINVAL;
1597 	rdev->sectors = le64_to_cpu(sb->data_size);
1598 	return ret;
1599 }
1600 
1601 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1602 {
1603 	struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1604 	__u64 ev1 = le64_to_cpu(sb->events);
1605 
1606 	rdev->raid_disk = -1;
1607 	clear_bit(Faulty, &rdev->flags);
1608 	clear_bit(In_sync, &rdev->flags);
1609 	clear_bit(WriteMostly, &rdev->flags);
1610 
1611 	if (mddev->raid_disks == 0) {
1612 		mddev->major_version = 1;
1613 		mddev->patch_version = 0;
1614 		mddev->external = 0;
1615 		mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1616 		mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1617 		mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1618 		mddev->level = le32_to_cpu(sb->level);
1619 		mddev->clevel[0] = 0;
1620 		mddev->layout = le32_to_cpu(sb->layout);
1621 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1622 		mddev->dev_sectors = le64_to_cpu(sb->size);
1623 		mddev->events = ev1;
1624 		mddev->bitmap_info.offset = 0;
1625 		mddev->bitmap_info.space = 0;
1626 		/* Default location for bitmap is 1K after superblock
1627 		 * using 3K - total of 4K
1628 		 */
1629 		mddev->bitmap_info.default_offset = 1024 >> 9;
1630 		mddev->bitmap_info.default_space = (4096-1024) >> 9;
1631 		mddev->reshape_backwards = 0;
1632 
1633 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1634 		memcpy(mddev->uuid, sb->set_uuid, 16);
1635 
1636 		mddev->max_disks =  (4096-256)/2;
1637 
1638 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1639 		    mddev->bitmap_info.file == NULL) {
1640 			mddev->bitmap_info.offset =
1641 				(__s32)le32_to_cpu(sb->bitmap_offset);
1642 			/* Metadata doesn't record how much space is available.
1643 			 * For 1.0, we assume we can use up to the superblock
1644 			 * if before, else to 4K beyond superblock.
1645 			 * For others, assume no change is possible.
1646 			 */
1647 			if (mddev->minor_version > 0)
1648 				mddev->bitmap_info.space = 0;
1649 			else if (mddev->bitmap_info.offset > 0)
1650 				mddev->bitmap_info.space =
1651 					8 - mddev->bitmap_info.offset;
1652 			else
1653 				mddev->bitmap_info.space =
1654 					-mddev->bitmap_info.offset;
1655 		}
1656 
1657 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1658 			mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1659 			mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1660 			mddev->new_level = le32_to_cpu(sb->new_level);
1661 			mddev->new_layout = le32_to_cpu(sb->new_layout);
1662 			mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1663 			if (mddev->delta_disks < 0 ||
1664 			    (mddev->delta_disks == 0 &&
1665 			     (le32_to_cpu(sb->feature_map)
1666 			      & MD_FEATURE_RESHAPE_BACKWARDS)))
1667 				mddev->reshape_backwards = 1;
1668 		} else {
1669 			mddev->reshape_position = MaxSector;
1670 			mddev->delta_disks = 0;
1671 			mddev->new_level = mddev->level;
1672 			mddev->new_layout = mddev->layout;
1673 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1674 		}
1675 
1676 	} else if (mddev->pers == NULL) {
1677 		/* Insist of good event counter while assembling, except for
1678 		 * spares (which don't need an event count) */
1679 		++ev1;
1680 		if (rdev->desc_nr >= 0 &&
1681 		    rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1682 		    le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1683 			if (ev1 < mddev->events)
1684 				return -EINVAL;
1685 	} else if (mddev->bitmap) {
1686 		/* If adding to array with a bitmap, then we can accept an
1687 		 * older device, but not too old.
1688 		 */
1689 		if (ev1 < mddev->bitmap->events_cleared)
1690 			return 0;
1691 	} else {
1692 		if (ev1 < mddev->events)
1693 			/* just a hot-add of a new device, leave raid_disk at -1 */
1694 			return 0;
1695 	}
1696 	if (mddev->level != LEVEL_MULTIPATH) {
1697 		int role;
1698 		if (rdev->desc_nr < 0 ||
1699 		    rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1700 			role = 0xffff;
1701 			rdev->desc_nr = -1;
1702 		} else
1703 			role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1704 		switch(role) {
1705 		case 0xffff: /* spare */
1706 			break;
1707 		case 0xfffe: /* faulty */
1708 			set_bit(Faulty, &rdev->flags);
1709 			break;
1710 		default:
1711 			if ((le32_to_cpu(sb->feature_map) &
1712 			     MD_FEATURE_RECOVERY_OFFSET))
1713 				rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1714 			else
1715 				set_bit(In_sync, &rdev->flags);
1716 			rdev->raid_disk = role;
1717 			break;
1718 		}
1719 		if (sb->devflags & WriteMostly1)
1720 			set_bit(WriteMostly, &rdev->flags);
1721 		if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1722 			set_bit(Replacement, &rdev->flags);
1723 	} else /* MULTIPATH are always insync */
1724 		set_bit(In_sync, &rdev->flags);
1725 
1726 	return 0;
1727 }
1728 
1729 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1730 {
1731 	struct mdp_superblock_1 *sb;
1732 	struct md_rdev *rdev2;
1733 	int max_dev, i;
1734 	/* make rdev->sb match mddev and rdev data. */
1735 
1736 	sb = page_address(rdev->sb_page);
1737 
1738 	sb->feature_map = 0;
1739 	sb->pad0 = 0;
1740 	sb->recovery_offset = cpu_to_le64(0);
1741 	memset(sb->pad3, 0, sizeof(sb->pad3));
1742 
1743 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1744 	sb->events = cpu_to_le64(mddev->events);
1745 	if (mddev->in_sync)
1746 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1747 	else
1748 		sb->resync_offset = cpu_to_le64(0);
1749 
1750 	sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1751 
1752 	sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1753 	sb->size = cpu_to_le64(mddev->dev_sectors);
1754 	sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1755 	sb->level = cpu_to_le32(mddev->level);
1756 	sb->layout = cpu_to_le32(mddev->layout);
1757 
1758 	if (test_bit(WriteMostly, &rdev->flags))
1759 		sb->devflags |= WriteMostly1;
1760 	else
1761 		sb->devflags &= ~WriteMostly1;
1762 	sb->data_offset = cpu_to_le64(rdev->data_offset);
1763 	sb->data_size = cpu_to_le64(rdev->sectors);
1764 
1765 	if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1766 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1767 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1768 	}
1769 
1770 	if (rdev->raid_disk >= 0 &&
1771 	    !test_bit(In_sync, &rdev->flags)) {
1772 		sb->feature_map |=
1773 			cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1774 		sb->recovery_offset =
1775 			cpu_to_le64(rdev->recovery_offset);
1776 	}
1777 	if (test_bit(Replacement, &rdev->flags))
1778 		sb->feature_map |=
1779 			cpu_to_le32(MD_FEATURE_REPLACEMENT);
1780 
1781 	if (mddev->reshape_position != MaxSector) {
1782 		sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1783 		sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1784 		sb->new_layout = cpu_to_le32(mddev->new_layout);
1785 		sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1786 		sb->new_level = cpu_to_le32(mddev->new_level);
1787 		sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1788 		if (mddev->delta_disks == 0 &&
1789 		    mddev->reshape_backwards)
1790 			sb->feature_map
1791 				|= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1792 		if (rdev->new_data_offset != rdev->data_offset) {
1793 			sb->feature_map
1794 				|= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1795 			sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1796 							     - rdev->data_offset));
1797 		}
1798 	}
1799 
1800 	if (rdev->badblocks.count == 0)
1801 		/* Nothing to do for bad blocks*/ ;
1802 	else if (sb->bblog_offset == 0)
1803 		/* Cannot record bad blocks on this device */
1804 		md_error(mddev, rdev);
1805 	else {
1806 		struct badblocks *bb = &rdev->badblocks;
1807 		u64 *bbp = (u64 *)page_address(rdev->bb_page);
1808 		u64 *p = bb->page;
1809 		sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1810 		if (bb->changed) {
1811 			unsigned seq;
1812 
1813 retry:
1814 			seq = read_seqbegin(&bb->lock);
1815 
1816 			memset(bbp, 0xff, PAGE_SIZE);
1817 
1818 			for (i = 0 ; i < bb->count ; i++) {
1819 				u64 internal_bb = p[i];
1820 				u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1821 						| BB_LEN(internal_bb));
1822 				bbp[i] = cpu_to_le64(store_bb);
1823 			}
1824 			bb->changed = 0;
1825 			if (read_seqretry(&bb->lock, seq))
1826 				goto retry;
1827 
1828 			bb->sector = (rdev->sb_start +
1829 				      (int)le32_to_cpu(sb->bblog_offset));
1830 			bb->size = le16_to_cpu(sb->bblog_size);
1831 		}
1832 	}
1833 
1834 	max_dev = 0;
1835 	rdev_for_each(rdev2, mddev)
1836 		if (rdev2->desc_nr+1 > max_dev)
1837 			max_dev = rdev2->desc_nr+1;
1838 
1839 	if (max_dev > le32_to_cpu(sb->max_dev)) {
1840 		int bmask;
1841 		sb->max_dev = cpu_to_le32(max_dev);
1842 		rdev->sb_size = max_dev * 2 + 256;
1843 		bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1844 		if (rdev->sb_size & bmask)
1845 			rdev->sb_size = (rdev->sb_size | bmask) + 1;
1846 	} else
1847 		max_dev = le32_to_cpu(sb->max_dev);
1848 
1849 	for (i=0; i<max_dev;i++)
1850 		sb->dev_roles[i] = cpu_to_le16(0xfffe);
1851 
1852 	rdev_for_each(rdev2, mddev) {
1853 		i = rdev2->desc_nr;
1854 		if (test_bit(Faulty, &rdev2->flags))
1855 			sb->dev_roles[i] = cpu_to_le16(0xfffe);
1856 		else if (test_bit(In_sync, &rdev2->flags))
1857 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1858 		else if (rdev2->raid_disk >= 0)
1859 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1860 		else
1861 			sb->dev_roles[i] = cpu_to_le16(0xffff);
1862 	}
1863 
1864 	sb->sb_csum = calc_sb_1_csum(sb);
1865 }
1866 
1867 static unsigned long long
1868 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1869 {
1870 	struct mdp_superblock_1 *sb;
1871 	sector_t max_sectors;
1872 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1873 		return 0; /* component must fit device */
1874 	if (rdev->data_offset != rdev->new_data_offset)
1875 		return 0; /* too confusing */
1876 	if (rdev->sb_start < rdev->data_offset) {
1877 		/* minor versions 1 and 2; superblock before data */
1878 		max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1879 		max_sectors -= rdev->data_offset;
1880 		if (!num_sectors || num_sectors > max_sectors)
1881 			num_sectors = max_sectors;
1882 	} else if (rdev->mddev->bitmap_info.offset) {
1883 		/* minor version 0 with bitmap we can't move */
1884 		return 0;
1885 	} else {
1886 		/* minor version 0; superblock after data */
1887 		sector_t sb_start;
1888 		sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1889 		sb_start &= ~(sector_t)(4*2 - 1);
1890 		max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1891 		if (!num_sectors || num_sectors > max_sectors)
1892 			num_sectors = max_sectors;
1893 		rdev->sb_start = sb_start;
1894 	}
1895 	sb = page_address(rdev->sb_page);
1896 	sb->data_size = cpu_to_le64(num_sectors);
1897 	sb->super_offset = rdev->sb_start;
1898 	sb->sb_csum = calc_sb_1_csum(sb);
1899 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1900 		       rdev->sb_page);
1901 	md_super_wait(rdev->mddev);
1902 	return num_sectors;
1903 
1904 }
1905 
1906 static int
1907 super_1_allow_new_offset(struct md_rdev *rdev,
1908 			 unsigned long long new_offset)
1909 {
1910 	/* All necessary checks on new >= old have been done */
1911 	struct bitmap *bitmap;
1912 	if (new_offset >= rdev->data_offset)
1913 		return 1;
1914 
1915 	/* with 1.0 metadata, there is no metadata to tread on
1916 	 * so we can always move back */
1917 	if (rdev->mddev->minor_version == 0)
1918 		return 1;
1919 
1920 	/* otherwise we must be sure not to step on
1921 	 * any metadata, so stay:
1922 	 * 36K beyond start of superblock
1923 	 * beyond end of badblocks
1924 	 * beyond write-intent bitmap
1925 	 */
1926 	if (rdev->sb_start + (32+4)*2 > new_offset)
1927 		return 0;
1928 	bitmap = rdev->mddev->bitmap;
1929 	if (bitmap && !rdev->mddev->bitmap_info.file &&
1930 	    rdev->sb_start + rdev->mddev->bitmap_info.offset +
1931 	    bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1932 		return 0;
1933 	if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1934 		return 0;
1935 
1936 	return 1;
1937 }
1938 
1939 static struct super_type super_types[] = {
1940 	[0] = {
1941 		.name	= "0.90.0",
1942 		.owner	= THIS_MODULE,
1943 		.load_super	    = super_90_load,
1944 		.validate_super	    = super_90_validate,
1945 		.sync_super	    = super_90_sync,
1946 		.rdev_size_change   = super_90_rdev_size_change,
1947 		.allow_new_offset   = super_90_allow_new_offset,
1948 	},
1949 	[1] = {
1950 		.name	= "md-1",
1951 		.owner	= THIS_MODULE,
1952 		.load_super	    = super_1_load,
1953 		.validate_super	    = super_1_validate,
1954 		.sync_super	    = super_1_sync,
1955 		.rdev_size_change   = super_1_rdev_size_change,
1956 		.allow_new_offset   = super_1_allow_new_offset,
1957 	},
1958 };
1959 
1960 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1961 {
1962 	if (mddev->sync_super) {
1963 		mddev->sync_super(mddev, rdev);
1964 		return;
1965 	}
1966 
1967 	BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1968 
1969 	super_types[mddev->major_version].sync_super(mddev, rdev);
1970 }
1971 
1972 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1973 {
1974 	struct md_rdev *rdev, *rdev2;
1975 
1976 	rcu_read_lock();
1977 	rdev_for_each_rcu(rdev, mddev1)
1978 		rdev_for_each_rcu(rdev2, mddev2)
1979 			if (rdev->bdev->bd_contains ==
1980 			    rdev2->bdev->bd_contains) {
1981 				rcu_read_unlock();
1982 				return 1;
1983 			}
1984 	rcu_read_unlock();
1985 	return 0;
1986 }
1987 
1988 static LIST_HEAD(pending_raid_disks);
1989 
1990 /*
1991  * Try to register data integrity profile for an mddev
1992  *
1993  * This is called when an array is started and after a disk has been kicked
1994  * from the array. It only succeeds if all working and active component devices
1995  * are integrity capable with matching profiles.
1996  */
1997 int md_integrity_register(struct mddev *mddev)
1998 {
1999 	struct md_rdev *rdev, *reference = NULL;
2000 
2001 	if (list_empty(&mddev->disks))
2002 		return 0; /* nothing to do */
2003 	if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
2004 		return 0; /* shouldn't register, or already is */
2005 	rdev_for_each(rdev, mddev) {
2006 		/* skip spares and non-functional disks */
2007 		if (test_bit(Faulty, &rdev->flags))
2008 			continue;
2009 		if (rdev->raid_disk < 0)
2010 			continue;
2011 		if (!reference) {
2012 			/* Use the first rdev as the reference */
2013 			reference = rdev;
2014 			continue;
2015 		}
2016 		/* does this rdev's profile match the reference profile? */
2017 		if (blk_integrity_compare(reference->bdev->bd_disk,
2018 				rdev->bdev->bd_disk) < 0)
2019 			return -EINVAL;
2020 	}
2021 	if (!reference || !bdev_get_integrity(reference->bdev))
2022 		return 0;
2023 	/*
2024 	 * All component devices are integrity capable and have matching
2025 	 * profiles, register the common profile for the md device.
2026 	 */
2027 	if (blk_integrity_register(mddev->gendisk,
2028 			bdev_get_integrity(reference->bdev)) != 0) {
2029 		printk(KERN_ERR "md: failed to register integrity for %s\n",
2030 			mdname(mddev));
2031 		return -EINVAL;
2032 	}
2033 	printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
2034 	if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
2035 		printk(KERN_ERR "md: failed to create integrity pool for %s\n",
2036 		       mdname(mddev));
2037 		return -EINVAL;
2038 	}
2039 	return 0;
2040 }
2041 EXPORT_SYMBOL(md_integrity_register);
2042 
2043 /* Disable data integrity if non-capable/non-matching disk is being added */
2044 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2045 {
2046 	struct blk_integrity *bi_rdev;
2047 	struct blk_integrity *bi_mddev;
2048 
2049 	if (!mddev->gendisk)
2050 		return;
2051 
2052 	bi_rdev = bdev_get_integrity(rdev->bdev);
2053 	bi_mddev = blk_get_integrity(mddev->gendisk);
2054 
2055 	if (!bi_mddev) /* nothing to do */
2056 		return;
2057 	if (rdev->raid_disk < 0) /* skip spares */
2058 		return;
2059 	if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2060 					     rdev->bdev->bd_disk) >= 0)
2061 		return;
2062 	printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2063 	blk_integrity_unregister(mddev->gendisk);
2064 }
2065 EXPORT_SYMBOL(md_integrity_add_rdev);
2066 
2067 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
2068 {
2069 	char b[BDEVNAME_SIZE];
2070 	struct kobject *ko;
2071 	char *s;
2072 	int err;
2073 
2074 	if (rdev->mddev) {
2075 		MD_BUG();
2076 		return -EINVAL;
2077 	}
2078 
2079 	/* prevent duplicates */
2080 	if (find_rdev(mddev, rdev->bdev->bd_dev))
2081 		return -EEXIST;
2082 
2083 	/* make sure rdev->sectors exceeds mddev->dev_sectors */
2084 	if (rdev->sectors && (mddev->dev_sectors == 0 ||
2085 			rdev->sectors < mddev->dev_sectors)) {
2086 		if (mddev->pers) {
2087 			/* Cannot change size, so fail
2088 			 * If mddev->level <= 0, then we don't care
2089 			 * about aligning sizes (e.g. linear)
2090 			 */
2091 			if (mddev->level > 0)
2092 				return -ENOSPC;
2093 		} else
2094 			mddev->dev_sectors = rdev->sectors;
2095 	}
2096 
2097 	/* Verify rdev->desc_nr is unique.
2098 	 * If it is -1, assign a free number, else
2099 	 * check number is not in use
2100 	 */
2101 	if (rdev->desc_nr < 0) {
2102 		int choice = 0;
2103 		if (mddev->pers) choice = mddev->raid_disks;
2104 		while (find_rdev_nr(mddev, choice))
2105 			choice++;
2106 		rdev->desc_nr = choice;
2107 	} else {
2108 		if (find_rdev_nr(mddev, rdev->desc_nr))
2109 			return -EBUSY;
2110 	}
2111 	if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2112 		printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2113 		       mdname(mddev), mddev->max_disks);
2114 		return -EBUSY;
2115 	}
2116 	bdevname(rdev->bdev,b);
2117 	while ( (s=strchr(b, '/')) != NULL)
2118 		*s = '!';
2119 
2120 	rdev->mddev = mddev;
2121 	printk(KERN_INFO "md: bind<%s>\n", b);
2122 
2123 	if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2124 		goto fail;
2125 
2126 	ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2127 	if (sysfs_create_link(&rdev->kobj, ko, "block"))
2128 		/* failure here is OK */;
2129 	rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2130 
2131 	list_add_rcu(&rdev->same_set, &mddev->disks);
2132 	bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2133 
2134 	/* May as well allow recovery to be retried once */
2135 	mddev->recovery_disabled++;
2136 
2137 	return 0;
2138 
2139  fail:
2140 	printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2141 	       b, mdname(mddev));
2142 	return err;
2143 }
2144 
2145 static void md_delayed_delete(struct work_struct *ws)
2146 {
2147 	struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2148 	kobject_del(&rdev->kobj);
2149 	kobject_put(&rdev->kobj);
2150 }
2151 
2152 static void unbind_rdev_from_array(struct md_rdev * rdev)
2153 {
2154 	char b[BDEVNAME_SIZE];
2155 	if (!rdev->mddev) {
2156 		MD_BUG();
2157 		return;
2158 	}
2159 	bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2160 	list_del_rcu(&rdev->same_set);
2161 	printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2162 	rdev->mddev = NULL;
2163 	sysfs_remove_link(&rdev->kobj, "block");
2164 	sysfs_put(rdev->sysfs_state);
2165 	rdev->sysfs_state = NULL;
2166 	rdev->badblocks.count = 0;
2167 	/* We need to delay this, otherwise we can deadlock when
2168 	 * writing to 'remove' to "dev/state".  We also need
2169 	 * to delay it due to rcu usage.
2170 	 */
2171 	synchronize_rcu();
2172 	INIT_WORK(&rdev->del_work, md_delayed_delete);
2173 	kobject_get(&rdev->kobj);
2174 	queue_work(md_misc_wq, &rdev->del_work);
2175 }
2176 
2177 /*
2178  * prevent the device from being mounted, repartitioned or
2179  * otherwise reused by a RAID array (or any other kernel
2180  * subsystem), by bd_claiming the device.
2181  */
2182 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2183 {
2184 	int err = 0;
2185 	struct block_device *bdev;
2186 	char b[BDEVNAME_SIZE];
2187 
2188 	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2189 				 shared ? (struct md_rdev *)lock_rdev : rdev);
2190 	if (IS_ERR(bdev)) {
2191 		printk(KERN_ERR "md: could not open %s.\n",
2192 			__bdevname(dev, b));
2193 		return PTR_ERR(bdev);
2194 	}
2195 	rdev->bdev = bdev;
2196 	return err;
2197 }
2198 
2199 static void unlock_rdev(struct md_rdev *rdev)
2200 {
2201 	struct block_device *bdev = rdev->bdev;
2202 	rdev->bdev = NULL;
2203 	if (!bdev)
2204 		MD_BUG();
2205 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2206 }
2207 
2208 void md_autodetect_dev(dev_t dev);
2209 
2210 static void export_rdev(struct md_rdev * rdev)
2211 {
2212 	char b[BDEVNAME_SIZE];
2213 	printk(KERN_INFO "md: export_rdev(%s)\n",
2214 		bdevname(rdev->bdev,b));
2215 	if (rdev->mddev)
2216 		MD_BUG();
2217 	md_rdev_clear(rdev);
2218 #ifndef MODULE
2219 	if (test_bit(AutoDetected, &rdev->flags))
2220 		md_autodetect_dev(rdev->bdev->bd_dev);
2221 #endif
2222 	unlock_rdev(rdev);
2223 	kobject_put(&rdev->kobj);
2224 }
2225 
2226 static void kick_rdev_from_array(struct md_rdev * rdev)
2227 {
2228 	unbind_rdev_from_array(rdev);
2229 	export_rdev(rdev);
2230 }
2231 
2232 static void export_array(struct mddev *mddev)
2233 {
2234 	struct md_rdev *rdev, *tmp;
2235 
2236 	rdev_for_each_safe(rdev, tmp, mddev) {
2237 		if (!rdev->mddev) {
2238 			MD_BUG();
2239 			continue;
2240 		}
2241 		kick_rdev_from_array(rdev);
2242 	}
2243 	if (!list_empty(&mddev->disks))
2244 		MD_BUG();
2245 	mddev->raid_disks = 0;
2246 	mddev->major_version = 0;
2247 }
2248 
2249 static void print_desc(mdp_disk_t *desc)
2250 {
2251 	printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2252 		desc->major,desc->minor,desc->raid_disk,desc->state);
2253 }
2254 
2255 static void print_sb_90(mdp_super_t *sb)
2256 {
2257 	int i;
2258 
2259 	printk(KERN_INFO
2260 		"md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2261 		sb->major_version, sb->minor_version, sb->patch_version,
2262 		sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2263 		sb->ctime);
2264 	printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2265 		sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2266 		sb->md_minor, sb->layout, sb->chunk_size);
2267 	printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
2268 		" FD:%d SD:%d CSUM:%08x E:%08lx\n",
2269 		sb->utime, sb->state, sb->active_disks, sb->working_disks,
2270 		sb->failed_disks, sb->spare_disks,
2271 		sb->sb_csum, (unsigned long)sb->events_lo);
2272 
2273 	printk(KERN_INFO);
2274 	for (i = 0; i < MD_SB_DISKS; i++) {
2275 		mdp_disk_t *desc;
2276 
2277 		desc = sb->disks + i;
2278 		if (desc->number || desc->major || desc->minor ||
2279 		    desc->raid_disk || (desc->state && (desc->state != 4))) {
2280 			printk("     D %2d: ", i);
2281 			print_desc(desc);
2282 		}
2283 	}
2284 	printk(KERN_INFO "md:     THIS: ");
2285 	print_desc(&sb->this_disk);
2286 }
2287 
2288 static void print_sb_1(struct mdp_superblock_1 *sb)
2289 {
2290 	__u8 *uuid;
2291 
2292 	uuid = sb->set_uuid;
2293 	printk(KERN_INFO
2294 	       "md:  SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2295 	       "md:    Name: \"%s\" CT:%llu\n",
2296 		le32_to_cpu(sb->major_version),
2297 		le32_to_cpu(sb->feature_map),
2298 		uuid,
2299 		sb->set_name,
2300 		(unsigned long long)le64_to_cpu(sb->ctime)
2301 		       & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2302 
2303 	uuid = sb->device_uuid;
2304 	printk(KERN_INFO
2305 	       "md:       L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2306 			" RO:%llu\n"
2307 	       "md:     Dev:%08x UUID: %pU\n"
2308 	       "md:       (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2309 	       "md:         (MaxDev:%u) \n",
2310 		le32_to_cpu(sb->level),
2311 		(unsigned long long)le64_to_cpu(sb->size),
2312 		le32_to_cpu(sb->raid_disks),
2313 		le32_to_cpu(sb->layout),
2314 		le32_to_cpu(sb->chunksize),
2315 		(unsigned long long)le64_to_cpu(sb->data_offset),
2316 		(unsigned long long)le64_to_cpu(sb->data_size),
2317 		(unsigned long long)le64_to_cpu(sb->super_offset),
2318 		(unsigned long long)le64_to_cpu(sb->recovery_offset),
2319 		le32_to_cpu(sb->dev_number),
2320 		uuid,
2321 		sb->devflags,
2322 		(unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2323 		(unsigned long long)le64_to_cpu(sb->events),
2324 		(unsigned long long)le64_to_cpu(sb->resync_offset),
2325 		le32_to_cpu(sb->sb_csum),
2326 		le32_to_cpu(sb->max_dev)
2327 		);
2328 }
2329 
2330 static void print_rdev(struct md_rdev *rdev, int major_version)
2331 {
2332 	char b[BDEVNAME_SIZE];
2333 	printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2334 		bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2335 	        test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2336 	        rdev->desc_nr);
2337 	if (rdev->sb_loaded) {
2338 		printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2339 		switch (major_version) {
2340 		case 0:
2341 			print_sb_90(page_address(rdev->sb_page));
2342 			break;
2343 		case 1:
2344 			print_sb_1(page_address(rdev->sb_page));
2345 			break;
2346 		}
2347 	} else
2348 		printk(KERN_INFO "md: no rdev superblock!\n");
2349 }
2350 
2351 static void md_print_devices(void)
2352 {
2353 	struct list_head *tmp;
2354 	struct md_rdev *rdev;
2355 	struct mddev *mddev;
2356 	char b[BDEVNAME_SIZE];
2357 
2358 	printk("\n");
2359 	printk("md:	**********************************\n");
2360 	printk("md:	* <COMPLETE RAID STATE PRINTOUT> *\n");
2361 	printk("md:	**********************************\n");
2362 	for_each_mddev(mddev, tmp) {
2363 
2364 		if (mddev->bitmap)
2365 			bitmap_print_sb(mddev->bitmap);
2366 		else
2367 			printk("%s: ", mdname(mddev));
2368 		rdev_for_each(rdev, mddev)
2369 			printk("<%s>", bdevname(rdev->bdev,b));
2370 		printk("\n");
2371 
2372 		rdev_for_each(rdev, mddev)
2373 			print_rdev(rdev, mddev->major_version);
2374 	}
2375 	printk("md:	**********************************\n");
2376 	printk("\n");
2377 }
2378 
2379 
2380 static void sync_sbs(struct mddev * mddev, int nospares)
2381 {
2382 	/* Update each superblock (in-memory image), but
2383 	 * if we are allowed to, skip spares which already
2384 	 * have the right event counter, or have one earlier
2385 	 * (which would mean they aren't being marked as dirty
2386 	 * with the rest of the array)
2387 	 */
2388 	struct md_rdev *rdev;
2389 	rdev_for_each(rdev, mddev) {
2390 		if (rdev->sb_events == mddev->events ||
2391 		    (nospares &&
2392 		     rdev->raid_disk < 0 &&
2393 		     rdev->sb_events+1 == mddev->events)) {
2394 			/* Don't update this superblock */
2395 			rdev->sb_loaded = 2;
2396 		} else {
2397 			sync_super(mddev, rdev);
2398 			rdev->sb_loaded = 1;
2399 		}
2400 	}
2401 }
2402 
2403 static void md_update_sb(struct mddev * mddev, int force_change)
2404 {
2405 	struct md_rdev *rdev;
2406 	int sync_req;
2407 	int nospares = 0;
2408 	int any_badblocks_changed = 0;
2409 
2410 repeat:
2411 	/* First make sure individual recovery_offsets are correct */
2412 	rdev_for_each(rdev, mddev) {
2413 		if (rdev->raid_disk >= 0 &&
2414 		    mddev->delta_disks >= 0 &&
2415 		    !test_bit(In_sync, &rdev->flags) &&
2416 		    mddev->curr_resync_completed > rdev->recovery_offset)
2417 				rdev->recovery_offset = mddev->curr_resync_completed;
2418 
2419 	}
2420 	if (!mddev->persistent) {
2421 		clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2422 		clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2423 		if (!mddev->external) {
2424 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2425 			rdev_for_each(rdev, mddev) {
2426 				if (rdev->badblocks.changed) {
2427 					rdev->badblocks.changed = 0;
2428 					md_ack_all_badblocks(&rdev->badblocks);
2429 					md_error(mddev, rdev);
2430 				}
2431 				clear_bit(Blocked, &rdev->flags);
2432 				clear_bit(BlockedBadBlocks, &rdev->flags);
2433 				wake_up(&rdev->blocked_wait);
2434 			}
2435 		}
2436 		wake_up(&mddev->sb_wait);
2437 		return;
2438 	}
2439 
2440 	spin_lock_irq(&mddev->write_lock);
2441 
2442 	mddev->utime = get_seconds();
2443 
2444 	if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2445 		force_change = 1;
2446 	if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2447 		/* just a clean<-> dirty transition, possibly leave spares alone,
2448 		 * though if events isn't the right even/odd, we will have to do
2449 		 * spares after all
2450 		 */
2451 		nospares = 1;
2452 	if (force_change)
2453 		nospares = 0;
2454 	if (mddev->degraded)
2455 		/* If the array is degraded, then skipping spares is both
2456 		 * dangerous and fairly pointless.
2457 		 * Dangerous because a device that was removed from the array
2458 		 * might have a event_count that still looks up-to-date,
2459 		 * so it can be re-added without a resync.
2460 		 * Pointless because if there are any spares to skip,
2461 		 * then a recovery will happen and soon that array won't
2462 		 * be degraded any more and the spare can go back to sleep then.
2463 		 */
2464 		nospares = 0;
2465 
2466 	sync_req = mddev->in_sync;
2467 
2468 	/* If this is just a dirty<->clean transition, and the array is clean
2469 	 * and 'events' is odd, we can roll back to the previous clean state */
2470 	if (nospares
2471 	    && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2472 	    && mddev->can_decrease_events
2473 	    && mddev->events != 1) {
2474 		mddev->events--;
2475 		mddev->can_decrease_events = 0;
2476 	} else {
2477 		/* otherwise we have to go forward and ... */
2478 		mddev->events ++;
2479 		mddev->can_decrease_events = nospares;
2480 	}
2481 
2482 	if (!mddev->events) {
2483 		/*
2484 		 * oops, this 64-bit counter should never wrap.
2485 		 * Either we are in around ~1 trillion A.C., assuming
2486 		 * 1 reboot per second, or we have a bug:
2487 		 */
2488 		MD_BUG();
2489 		mddev->events --;
2490 	}
2491 
2492 	rdev_for_each(rdev, mddev) {
2493 		if (rdev->badblocks.changed)
2494 			any_badblocks_changed++;
2495 		if (test_bit(Faulty, &rdev->flags))
2496 			set_bit(FaultRecorded, &rdev->flags);
2497 	}
2498 
2499 	sync_sbs(mddev, nospares);
2500 	spin_unlock_irq(&mddev->write_lock);
2501 
2502 	pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2503 		 mdname(mddev), mddev->in_sync);
2504 
2505 	bitmap_update_sb(mddev->bitmap);
2506 	rdev_for_each(rdev, mddev) {
2507 		char b[BDEVNAME_SIZE];
2508 
2509 		if (rdev->sb_loaded != 1)
2510 			continue; /* no noise on spare devices */
2511 
2512 		if (!test_bit(Faulty, &rdev->flags) &&
2513 		    rdev->saved_raid_disk == -1) {
2514 			md_super_write(mddev,rdev,
2515 				       rdev->sb_start, rdev->sb_size,
2516 				       rdev->sb_page);
2517 			pr_debug("md: (write) %s's sb offset: %llu\n",
2518 				 bdevname(rdev->bdev, b),
2519 				 (unsigned long long)rdev->sb_start);
2520 			rdev->sb_events = mddev->events;
2521 			if (rdev->badblocks.size) {
2522 				md_super_write(mddev, rdev,
2523 					       rdev->badblocks.sector,
2524 					       rdev->badblocks.size << 9,
2525 					       rdev->bb_page);
2526 				rdev->badblocks.size = 0;
2527 			}
2528 
2529 		} else if (test_bit(Faulty, &rdev->flags))
2530 			pr_debug("md: %s (skipping faulty)\n",
2531 				 bdevname(rdev->bdev, b));
2532 		else
2533 			pr_debug("(skipping incremental s/r ");
2534 
2535 		if (mddev->level == LEVEL_MULTIPATH)
2536 			/* only need to write one superblock... */
2537 			break;
2538 	}
2539 	md_super_wait(mddev);
2540 	/* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2541 
2542 	spin_lock_irq(&mddev->write_lock);
2543 	if (mddev->in_sync != sync_req ||
2544 	    test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2545 		/* have to write it out again */
2546 		spin_unlock_irq(&mddev->write_lock);
2547 		goto repeat;
2548 	}
2549 	clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2550 	spin_unlock_irq(&mddev->write_lock);
2551 	wake_up(&mddev->sb_wait);
2552 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2553 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2554 
2555 	rdev_for_each(rdev, mddev) {
2556 		if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2557 			clear_bit(Blocked, &rdev->flags);
2558 
2559 		if (any_badblocks_changed)
2560 			md_ack_all_badblocks(&rdev->badblocks);
2561 		clear_bit(BlockedBadBlocks, &rdev->flags);
2562 		wake_up(&rdev->blocked_wait);
2563 	}
2564 }
2565 
2566 /* words written to sysfs files may, or may not, be \n terminated.
2567  * We want to accept with case. For this we use cmd_match.
2568  */
2569 static int cmd_match(const char *cmd, const char *str)
2570 {
2571 	/* See if cmd, written into a sysfs file, matches
2572 	 * str.  They must either be the same, or cmd can
2573 	 * have a trailing newline
2574 	 */
2575 	while (*cmd && *str && *cmd == *str) {
2576 		cmd++;
2577 		str++;
2578 	}
2579 	if (*cmd == '\n')
2580 		cmd++;
2581 	if (*str || *cmd)
2582 		return 0;
2583 	return 1;
2584 }
2585 
2586 struct rdev_sysfs_entry {
2587 	struct attribute attr;
2588 	ssize_t (*show)(struct md_rdev *, char *);
2589 	ssize_t (*store)(struct md_rdev *, const char *, size_t);
2590 };
2591 
2592 static ssize_t
2593 state_show(struct md_rdev *rdev, char *page)
2594 {
2595 	char *sep = "";
2596 	size_t len = 0;
2597 
2598 	if (test_bit(Faulty, &rdev->flags) ||
2599 	    rdev->badblocks.unacked_exist) {
2600 		len+= sprintf(page+len, "%sfaulty",sep);
2601 		sep = ",";
2602 	}
2603 	if (test_bit(In_sync, &rdev->flags)) {
2604 		len += sprintf(page+len, "%sin_sync",sep);
2605 		sep = ",";
2606 	}
2607 	if (test_bit(WriteMostly, &rdev->flags)) {
2608 		len += sprintf(page+len, "%swrite_mostly",sep);
2609 		sep = ",";
2610 	}
2611 	if (test_bit(Blocked, &rdev->flags) ||
2612 	    (rdev->badblocks.unacked_exist
2613 	     && !test_bit(Faulty, &rdev->flags))) {
2614 		len += sprintf(page+len, "%sblocked", sep);
2615 		sep = ",";
2616 	}
2617 	if (!test_bit(Faulty, &rdev->flags) &&
2618 	    !test_bit(In_sync, &rdev->flags)) {
2619 		len += sprintf(page+len, "%sspare", sep);
2620 		sep = ",";
2621 	}
2622 	if (test_bit(WriteErrorSeen, &rdev->flags)) {
2623 		len += sprintf(page+len, "%swrite_error", sep);
2624 		sep = ",";
2625 	}
2626 	if (test_bit(WantReplacement, &rdev->flags)) {
2627 		len += sprintf(page+len, "%swant_replacement", sep);
2628 		sep = ",";
2629 	}
2630 	if (test_bit(Replacement, &rdev->flags)) {
2631 		len += sprintf(page+len, "%sreplacement", sep);
2632 		sep = ",";
2633 	}
2634 
2635 	return len+sprintf(page+len, "\n");
2636 }
2637 
2638 static ssize_t
2639 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2640 {
2641 	/* can write
2642 	 *  faulty  - simulates an error
2643 	 *  remove  - disconnects the device
2644 	 *  writemostly - sets write_mostly
2645 	 *  -writemostly - clears write_mostly
2646 	 *  blocked - sets the Blocked flags
2647 	 *  -blocked - clears the Blocked and possibly simulates an error
2648 	 *  insync - sets Insync providing device isn't active
2649 	 *  write_error - sets WriteErrorSeen
2650 	 *  -write_error - clears WriteErrorSeen
2651 	 */
2652 	int err = -EINVAL;
2653 	if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2654 		md_error(rdev->mddev, rdev);
2655 		if (test_bit(Faulty, &rdev->flags))
2656 			err = 0;
2657 		else
2658 			err = -EBUSY;
2659 	} else if (cmd_match(buf, "remove")) {
2660 		if (rdev->raid_disk >= 0)
2661 			err = -EBUSY;
2662 		else {
2663 			struct mddev *mddev = rdev->mddev;
2664 			kick_rdev_from_array(rdev);
2665 			if (mddev->pers)
2666 				md_update_sb(mddev, 1);
2667 			md_new_event(mddev);
2668 			err = 0;
2669 		}
2670 	} else if (cmd_match(buf, "writemostly")) {
2671 		set_bit(WriteMostly, &rdev->flags);
2672 		err = 0;
2673 	} else if (cmd_match(buf, "-writemostly")) {
2674 		clear_bit(WriteMostly, &rdev->flags);
2675 		err = 0;
2676 	} else if (cmd_match(buf, "blocked")) {
2677 		set_bit(Blocked, &rdev->flags);
2678 		err = 0;
2679 	} else if (cmd_match(buf, "-blocked")) {
2680 		if (!test_bit(Faulty, &rdev->flags) &&
2681 		    rdev->badblocks.unacked_exist) {
2682 			/* metadata handler doesn't understand badblocks,
2683 			 * so we need to fail the device
2684 			 */
2685 			md_error(rdev->mddev, rdev);
2686 		}
2687 		clear_bit(Blocked, &rdev->flags);
2688 		clear_bit(BlockedBadBlocks, &rdev->flags);
2689 		wake_up(&rdev->blocked_wait);
2690 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2691 		md_wakeup_thread(rdev->mddev->thread);
2692 
2693 		err = 0;
2694 	} else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2695 		set_bit(In_sync, &rdev->flags);
2696 		err = 0;
2697 	} else if (cmd_match(buf, "write_error")) {
2698 		set_bit(WriteErrorSeen, &rdev->flags);
2699 		err = 0;
2700 	} else if (cmd_match(buf, "-write_error")) {
2701 		clear_bit(WriteErrorSeen, &rdev->flags);
2702 		err = 0;
2703 	} else if (cmd_match(buf, "want_replacement")) {
2704 		/* Any non-spare device that is not a replacement can
2705 		 * become want_replacement at any time, but we then need to
2706 		 * check if recovery is needed.
2707 		 */
2708 		if (rdev->raid_disk >= 0 &&
2709 		    !test_bit(Replacement, &rdev->flags))
2710 			set_bit(WantReplacement, &rdev->flags);
2711 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2712 		md_wakeup_thread(rdev->mddev->thread);
2713 		err = 0;
2714 	} else if (cmd_match(buf, "-want_replacement")) {
2715 		/* Clearing 'want_replacement' is always allowed.
2716 		 * Once replacements starts it is too late though.
2717 		 */
2718 		err = 0;
2719 		clear_bit(WantReplacement, &rdev->flags);
2720 	} else if (cmd_match(buf, "replacement")) {
2721 		/* Can only set a device as a replacement when array has not
2722 		 * yet been started.  Once running, replacement is automatic
2723 		 * from spares, or by assigning 'slot'.
2724 		 */
2725 		if (rdev->mddev->pers)
2726 			err = -EBUSY;
2727 		else {
2728 			set_bit(Replacement, &rdev->flags);
2729 			err = 0;
2730 		}
2731 	} else if (cmd_match(buf, "-replacement")) {
2732 		/* Similarly, can only clear Replacement before start */
2733 		if (rdev->mddev->pers)
2734 			err = -EBUSY;
2735 		else {
2736 			clear_bit(Replacement, &rdev->flags);
2737 			err = 0;
2738 		}
2739 	}
2740 	if (!err)
2741 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2742 	return err ? err : len;
2743 }
2744 static struct rdev_sysfs_entry rdev_state =
2745 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2746 
2747 static ssize_t
2748 errors_show(struct md_rdev *rdev, char *page)
2749 {
2750 	return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2751 }
2752 
2753 static ssize_t
2754 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2755 {
2756 	char *e;
2757 	unsigned long n = simple_strtoul(buf, &e, 10);
2758 	if (*buf && (*e == 0 || *e == '\n')) {
2759 		atomic_set(&rdev->corrected_errors, n);
2760 		return len;
2761 	}
2762 	return -EINVAL;
2763 }
2764 static struct rdev_sysfs_entry rdev_errors =
2765 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2766 
2767 static ssize_t
2768 slot_show(struct md_rdev *rdev, char *page)
2769 {
2770 	if (rdev->raid_disk < 0)
2771 		return sprintf(page, "none\n");
2772 	else
2773 		return sprintf(page, "%d\n", rdev->raid_disk);
2774 }
2775 
2776 static ssize_t
2777 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2778 {
2779 	char *e;
2780 	int err;
2781 	int slot = simple_strtoul(buf, &e, 10);
2782 	if (strncmp(buf, "none", 4)==0)
2783 		slot = -1;
2784 	else if (e==buf || (*e && *e!= '\n'))
2785 		return -EINVAL;
2786 	if (rdev->mddev->pers && slot == -1) {
2787 		/* Setting 'slot' on an active array requires also
2788 		 * updating the 'rd%d' link, and communicating
2789 		 * with the personality with ->hot_*_disk.
2790 		 * For now we only support removing
2791 		 * failed/spare devices.  This normally happens automatically,
2792 		 * but not when the metadata is externally managed.
2793 		 */
2794 		if (rdev->raid_disk == -1)
2795 			return -EEXIST;
2796 		/* personality does all needed checks */
2797 		if (rdev->mddev->pers->hot_remove_disk == NULL)
2798 			return -EINVAL;
2799 		err = rdev->mddev->pers->
2800 			hot_remove_disk(rdev->mddev, rdev);
2801 		if (err)
2802 			return err;
2803 		sysfs_unlink_rdev(rdev->mddev, rdev);
2804 		rdev->raid_disk = -1;
2805 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2806 		md_wakeup_thread(rdev->mddev->thread);
2807 	} else if (rdev->mddev->pers) {
2808 		/* Activating a spare .. or possibly reactivating
2809 		 * if we ever get bitmaps working here.
2810 		 */
2811 
2812 		if (rdev->raid_disk != -1)
2813 			return -EBUSY;
2814 
2815 		if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2816 			return -EBUSY;
2817 
2818 		if (rdev->mddev->pers->hot_add_disk == NULL)
2819 			return -EINVAL;
2820 
2821 		if (slot >= rdev->mddev->raid_disks &&
2822 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2823 			return -ENOSPC;
2824 
2825 		rdev->raid_disk = slot;
2826 		if (test_bit(In_sync, &rdev->flags))
2827 			rdev->saved_raid_disk = slot;
2828 		else
2829 			rdev->saved_raid_disk = -1;
2830 		clear_bit(In_sync, &rdev->flags);
2831 		err = rdev->mddev->pers->
2832 			hot_add_disk(rdev->mddev, rdev);
2833 		if (err) {
2834 			rdev->raid_disk = -1;
2835 			return err;
2836 		} else
2837 			sysfs_notify_dirent_safe(rdev->sysfs_state);
2838 		if (sysfs_link_rdev(rdev->mddev, rdev))
2839 			/* failure here is OK */;
2840 		/* don't wakeup anyone, leave that to userspace. */
2841 	} else {
2842 		if (slot >= rdev->mddev->raid_disks &&
2843 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2844 			return -ENOSPC;
2845 		rdev->raid_disk = slot;
2846 		/* assume it is working */
2847 		clear_bit(Faulty, &rdev->flags);
2848 		clear_bit(WriteMostly, &rdev->flags);
2849 		set_bit(In_sync, &rdev->flags);
2850 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2851 	}
2852 	return len;
2853 }
2854 
2855 
2856 static struct rdev_sysfs_entry rdev_slot =
2857 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2858 
2859 static ssize_t
2860 offset_show(struct md_rdev *rdev, char *page)
2861 {
2862 	return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2863 }
2864 
2865 static ssize_t
2866 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2867 {
2868 	unsigned long long offset;
2869 	if (strict_strtoull(buf, 10, &offset) < 0)
2870 		return -EINVAL;
2871 	if (rdev->mddev->pers && rdev->raid_disk >= 0)
2872 		return -EBUSY;
2873 	if (rdev->sectors && rdev->mddev->external)
2874 		/* Must set offset before size, so overlap checks
2875 		 * can be sane */
2876 		return -EBUSY;
2877 	rdev->data_offset = offset;
2878 	rdev->new_data_offset = offset;
2879 	return len;
2880 }
2881 
2882 static struct rdev_sysfs_entry rdev_offset =
2883 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2884 
2885 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2886 {
2887 	return sprintf(page, "%llu\n",
2888 		       (unsigned long long)rdev->new_data_offset);
2889 }
2890 
2891 static ssize_t new_offset_store(struct md_rdev *rdev,
2892 				const char *buf, size_t len)
2893 {
2894 	unsigned long long new_offset;
2895 	struct mddev *mddev = rdev->mddev;
2896 
2897 	if (strict_strtoull(buf, 10, &new_offset) < 0)
2898 		return -EINVAL;
2899 
2900 	if (mddev->sync_thread)
2901 		return -EBUSY;
2902 	if (new_offset == rdev->data_offset)
2903 		/* reset is always permitted */
2904 		;
2905 	else if (new_offset > rdev->data_offset) {
2906 		/* must not push array size beyond rdev_sectors */
2907 		if (new_offset - rdev->data_offset
2908 		    + mddev->dev_sectors > rdev->sectors)
2909 				return -E2BIG;
2910 	}
2911 	/* Metadata worries about other space details. */
2912 
2913 	/* decreasing the offset is inconsistent with a backwards
2914 	 * reshape.
2915 	 */
2916 	if (new_offset < rdev->data_offset &&
2917 	    mddev->reshape_backwards)
2918 		return -EINVAL;
2919 	/* Increasing offset is inconsistent with forwards
2920 	 * reshape.  reshape_direction should be set to
2921 	 * 'backwards' first.
2922 	 */
2923 	if (new_offset > rdev->data_offset &&
2924 	    !mddev->reshape_backwards)
2925 		return -EINVAL;
2926 
2927 	if (mddev->pers && mddev->persistent &&
2928 	    !super_types[mddev->major_version]
2929 	    .allow_new_offset(rdev, new_offset))
2930 		return -E2BIG;
2931 	rdev->new_data_offset = new_offset;
2932 	if (new_offset > rdev->data_offset)
2933 		mddev->reshape_backwards = 1;
2934 	else if (new_offset < rdev->data_offset)
2935 		mddev->reshape_backwards = 0;
2936 
2937 	return len;
2938 }
2939 static struct rdev_sysfs_entry rdev_new_offset =
2940 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2941 
2942 static ssize_t
2943 rdev_size_show(struct md_rdev *rdev, char *page)
2944 {
2945 	return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2946 }
2947 
2948 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2949 {
2950 	/* check if two start/length pairs overlap */
2951 	if (s1+l1 <= s2)
2952 		return 0;
2953 	if (s2+l2 <= s1)
2954 		return 0;
2955 	return 1;
2956 }
2957 
2958 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2959 {
2960 	unsigned long long blocks;
2961 	sector_t new;
2962 
2963 	if (strict_strtoull(buf, 10, &blocks) < 0)
2964 		return -EINVAL;
2965 
2966 	if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2967 		return -EINVAL; /* sector conversion overflow */
2968 
2969 	new = blocks * 2;
2970 	if (new != blocks * 2)
2971 		return -EINVAL; /* unsigned long long to sector_t overflow */
2972 
2973 	*sectors = new;
2974 	return 0;
2975 }
2976 
2977 static ssize_t
2978 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2979 {
2980 	struct mddev *my_mddev = rdev->mddev;
2981 	sector_t oldsectors = rdev->sectors;
2982 	sector_t sectors;
2983 
2984 	if (strict_blocks_to_sectors(buf, &sectors) < 0)
2985 		return -EINVAL;
2986 	if (rdev->data_offset != rdev->new_data_offset)
2987 		return -EINVAL; /* too confusing */
2988 	if (my_mddev->pers && rdev->raid_disk >= 0) {
2989 		if (my_mddev->persistent) {
2990 			sectors = super_types[my_mddev->major_version].
2991 				rdev_size_change(rdev, sectors);
2992 			if (!sectors)
2993 				return -EBUSY;
2994 		} else if (!sectors)
2995 			sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2996 				rdev->data_offset;
2997 	}
2998 	if (sectors < my_mddev->dev_sectors)
2999 		return -EINVAL; /* component must fit device */
3000 
3001 	rdev->sectors = sectors;
3002 	if (sectors > oldsectors && my_mddev->external) {
3003 		/* need to check that all other rdevs with the same ->bdev
3004 		 * do not overlap.  We need to unlock the mddev to avoid
3005 		 * a deadlock.  We have already changed rdev->sectors, and if
3006 		 * we have to change it back, we will have the lock again.
3007 		 */
3008 		struct mddev *mddev;
3009 		int overlap = 0;
3010 		struct list_head *tmp;
3011 
3012 		mddev_unlock(my_mddev);
3013 		for_each_mddev(mddev, tmp) {
3014 			struct md_rdev *rdev2;
3015 
3016 			mddev_lock(mddev);
3017 			rdev_for_each(rdev2, mddev)
3018 				if (rdev->bdev == rdev2->bdev &&
3019 				    rdev != rdev2 &&
3020 				    overlaps(rdev->data_offset, rdev->sectors,
3021 					     rdev2->data_offset,
3022 					     rdev2->sectors)) {
3023 					overlap = 1;
3024 					break;
3025 				}
3026 			mddev_unlock(mddev);
3027 			if (overlap) {
3028 				mddev_put(mddev);
3029 				break;
3030 			}
3031 		}
3032 		mddev_lock(my_mddev);
3033 		if (overlap) {
3034 			/* Someone else could have slipped in a size
3035 			 * change here, but doing so is just silly.
3036 			 * We put oldsectors back because we *know* it is
3037 			 * safe, and trust userspace not to race with
3038 			 * itself
3039 			 */
3040 			rdev->sectors = oldsectors;
3041 			return -EBUSY;
3042 		}
3043 	}
3044 	return len;
3045 }
3046 
3047 static struct rdev_sysfs_entry rdev_size =
3048 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3049 
3050 
3051 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3052 {
3053 	unsigned long long recovery_start = rdev->recovery_offset;
3054 
3055 	if (test_bit(In_sync, &rdev->flags) ||
3056 	    recovery_start == MaxSector)
3057 		return sprintf(page, "none\n");
3058 
3059 	return sprintf(page, "%llu\n", recovery_start);
3060 }
3061 
3062 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3063 {
3064 	unsigned long long recovery_start;
3065 
3066 	if (cmd_match(buf, "none"))
3067 		recovery_start = MaxSector;
3068 	else if (strict_strtoull(buf, 10, &recovery_start))
3069 		return -EINVAL;
3070 
3071 	if (rdev->mddev->pers &&
3072 	    rdev->raid_disk >= 0)
3073 		return -EBUSY;
3074 
3075 	rdev->recovery_offset = recovery_start;
3076 	if (recovery_start == MaxSector)
3077 		set_bit(In_sync, &rdev->flags);
3078 	else
3079 		clear_bit(In_sync, &rdev->flags);
3080 	return len;
3081 }
3082 
3083 static struct rdev_sysfs_entry rdev_recovery_start =
3084 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3085 
3086 
3087 static ssize_t
3088 badblocks_show(struct badblocks *bb, char *page, int unack);
3089 static ssize_t
3090 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
3091 
3092 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3093 {
3094 	return badblocks_show(&rdev->badblocks, page, 0);
3095 }
3096 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3097 {
3098 	int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3099 	/* Maybe that ack was all we needed */
3100 	if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3101 		wake_up(&rdev->blocked_wait);
3102 	return rv;
3103 }
3104 static struct rdev_sysfs_entry rdev_bad_blocks =
3105 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3106 
3107 
3108 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3109 {
3110 	return badblocks_show(&rdev->badblocks, page, 1);
3111 }
3112 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3113 {
3114 	return badblocks_store(&rdev->badblocks, page, len, 1);
3115 }
3116 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3117 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3118 
3119 static struct attribute *rdev_default_attrs[] = {
3120 	&rdev_state.attr,
3121 	&rdev_errors.attr,
3122 	&rdev_slot.attr,
3123 	&rdev_offset.attr,
3124 	&rdev_new_offset.attr,
3125 	&rdev_size.attr,
3126 	&rdev_recovery_start.attr,
3127 	&rdev_bad_blocks.attr,
3128 	&rdev_unack_bad_blocks.attr,
3129 	NULL,
3130 };
3131 static ssize_t
3132 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3133 {
3134 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3135 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3136 	struct mddev *mddev = rdev->mddev;
3137 	ssize_t rv;
3138 
3139 	if (!entry->show)
3140 		return -EIO;
3141 
3142 	rv = mddev ? mddev_lock(mddev) : -EBUSY;
3143 	if (!rv) {
3144 		if (rdev->mddev == NULL)
3145 			rv = -EBUSY;
3146 		else
3147 			rv = entry->show(rdev, page);
3148 		mddev_unlock(mddev);
3149 	}
3150 	return rv;
3151 }
3152 
3153 static ssize_t
3154 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3155 	      const char *page, size_t length)
3156 {
3157 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3158 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3159 	ssize_t rv;
3160 	struct mddev *mddev = rdev->mddev;
3161 
3162 	if (!entry->store)
3163 		return -EIO;
3164 	if (!capable(CAP_SYS_ADMIN))
3165 		return -EACCES;
3166 	rv = mddev ? mddev_lock(mddev): -EBUSY;
3167 	if (!rv) {
3168 		if (rdev->mddev == NULL)
3169 			rv = -EBUSY;
3170 		else
3171 			rv = entry->store(rdev, page, length);
3172 		mddev_unlock(mddev);
3173 	}
3174 	return rv;
3175 }
3176 
3177 static void rdev_free(struct kobject *ko)
3178 {
3179 	struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3180 	kfree(rdev);
3181 }
3182 static const struct sysfs_ops rdev_sysfs_ops = {
3183 	.show		= rdev_attr_show,
3184 	.store		= rdev_attr_store,
3185 };
3186 static struct kobj_type rdev_ktype = {
3187 	.release	= rdev_free,
3188 	.sysfs_ops	= &rdev_sysfs_ops,
3189 	.default_attrs	= rdev_default_attrs,
3190 };
3191 
3192 int md_rdev_init(struct md_rdev *rdev)
3193 {
3194 	rdev->desc_nr = -1;
3195 	rdev->saved_raid_disk = -1;
3196 	rdev->raid_disk = -1;
3197 	rdev->flags = 0;
3198 	rdev->data_offset = 0;
3199 	rdev->new_data_offset = 0;
3200 	rdev->sb_events = 0;
3201 	rdev->last_read_error.tv_sec  = 0;
3202 	rdev->last_read_error.tv_nsec = 0;
3203 	rdev->sb_loaded = 0;
3204 	rdev->bb_page = NULL;
3205 	atomic_set(&rdev->nr_pending, 0);
3206 	atomic_set(&rdev->read_errors, 0);
3207 	atomic_set(&rdev->corrected_errors, 0);
3208 
3209 	INIT_LIST_HEAD(&rdev->same_set);
3210 	init_waitqueue_head(&rdev->blocked_wait);
3211 
3212 	/* Add space to store bad block list.
3213 	 * This reserves the space even on arrays where it cannot
3214 	 * be used - I wonder if that matters
3215 	 */
3216 	rdev->badblocks.count = 0;
3217 	rdev->badblocks.shift = 0;
3218 	rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3219 	seqlock_init(&rdev->badblocks.lock);
3220 	if (rdev->badblocks.page == NULL)
3221 		return -ENOMEM;
3222 
3223 	return 0;
3224 }
3225 EXPORT_SYMBOL_GPL(md_rdev_init);
3226 /*
3227  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3228  *
3229  * mark the device faulty if:
3230  *
3231  *   - the device is nonexistent (zero size)
3232  *   - the device has no valid superblock
3233  *
3234  * a faulty rdev _never_ has rdev->sb set.
3235  */
3236 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3237 {
3238 	char b[BDEVNAME_SIZE];
3239 	int err;
3240 	struct md_rdev *rdev;
3241 	sector_t size;
3242 
3243 	rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3244 	if (!rdev) {
3245 		printk(KERN_ERR "md: could not alloc mem for new device!\n");
3246 		return ERR_PTR(-ENOMEM);
3247 	}
3248 
3249 	err = md_rdev_init(rdev);
3250 	if (err)
3251 		goto abort_free;
3252 	err = alloc_disk_sb(rdev);
3253 	if (err)
3254 		goto abort_free;
3255 
3256 	err = lock_rdev(rdev, newdev, super_format == -2);
3257 	if (err)
3258 		goto abort_free;
3259 
3260 	kobject_init(&rdev->kobj, &rdev_ktype);
3261 
3262 	size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3263 	if (!size) {
3264 		printk(KERN_WARNING
3265 			"md: %s has zero or unknown size, marking faulty!\n",
3266 			bdevname(rdev->bdev,b));
3267 		err = -EINVAL;
3268 		goto abort_free;
3269 	}
3270 
3271 	if (super_format >= 0) {
3272 		err = super_types[super_format].
3273 			load_super(rdev, NULL, super_minor);
3274 		if (err == -EINVAL) {
3275 			printk(KERN_WARNING
3276 				"md: %s does not have a valid v%d.%d "
3277 			       "superblock, not importing!\n",
3278 				bdevname(rdev->bdev,b),
3279 			       super_format, super_minor);
3280 			goto abort_free;
3281 		}
3282 		if (err < 0) {
3283 			printk(KERN_WARNING
3284 				"md: could not read %s's sb, not importing!\n",
3285 				bdevname(rdev->bdev,b));
3286 			goto abort_free;
3287 		}
3288 	}
3289 	if (super_format == -1)
3290 		/* hot-add for 0.90, or non-persistent: so no badblocks */
3291 		rdev->badblocks.shift = -1;
3292 
3293 	return rdev;
3294 
3295 abort_free:
3296 	if (rdev->bdev)
3297 		unlock_rdev(rdev);
3298 	md_rdev_clear(rdev);
3299 	kfree(rdev);
3300 	return ERR_PTR(err);
3301 }
3302 
3303 /*
3304  * Check a full RAID array for plausibility
3305  */
3306 
3307 
3308 static void analyze_sbs(struct mddev * mddev)
3309 {
3310 	int i;
3311 	struct md_rdev *rdev, *freshest, *tmp;
3312 	char b[BDEVNAME_SIZE];
3313 
3314 	freshest = NULL;
3315 	rdev_for_each_safe(rdev, tmp, mddev)
3316 		switch (super_types[mddev->major_version].
3317 			load_super(rdev, freshest, mddev->minor_version)) {
3318 		case 1:
3319 			freshest = rdev;
3320 			break;
3321 		case 0:
3322 			break;
3323 		default:
3324 			printk( KERN_ERR \
3325 				"md: fatal superblock inconsistency in %s"
3326 				" -- removing from array\n",
3327 				bdevname(rdev->bdev,b));
3328 			kick_rdev_from_array(rdev);
3329 		}
3330 
3331 
3332 	super_types[mddev->major_version].
3333 		validate_super(mddev, freshest);
3334 
3335 	i = 0;
3336 	rdev_for_each_safe(rdev, tmp, mddev) {
3337 		if (mddev->max_disks &&
3338 		    (rdev->desc_nr >= mddev->max_disks ||
3339 		     i > mddev->max_disks)) {
3340 			printk(KERN_WARNING
3341 			       "md: %s: %s: only %d devices permitted\n",
3342 			       mdname(mddev), bdevname(rdev->bdev, b),
3343 			       mddev->max_disks);
3344 			kick_rdev_from_array(rdev);
3345 			continue;
3346 		}
3347 		if (rdev != freshest)
3348 			if (super_types[mddev->major_version].
3349 			    validate_super(mddev, rdev)) {
3350 				printk(KERN_WARNING "md: kicking non-fresh %s"
3351 					" from array!\n",
3352 					bdevname(rdev->bdev,b));
3353 				kick_rdev_from_array(rdev);
3354 				continue;
3355 			}
3356 		if (mddev->level == LEVEL_MULTIPATH) {
3357 			rdev->desc_nr = i++;
3358 			rdev->raid_disk = rdev->desc_nr;
3359 			set_bit(In_sync, &rdev->flags);
3360 		} else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3361 			rdev->raid_disk = -1;
3362 			clear_bit(In_sync, &rdev->flags);
3363 		}
3364 	}
3365 }
3366 
3367 /* Read a fixed-point number.
3368  * Numbers in sysfs attributes should be in "standard" units where
3369  * possible, so time should be in seconds.
3370  * However we internally use a a much smaller unit such as
3371  * milliseconds or jiffies.
3372  * This function takes a decimal number with a possible fractional
3373  * component, and produces an integer which is the result of
3374  * multiplying that number by 10^'scale'.
3375  * all without any floating-point arithmetic.
3376  */
3377 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3378 {
3379 	unsigned long result = 0;
3380 	long decimals = -1;
3381 	while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3382 		if (*cp == '.')
3383 			decimals = 0;
3384 		else if (decimals < scale) {
3385 			unsigned int value;
3386 			value = *cp - '0';
3387 			result = result * 10 + value;
3388 			if (decimals >= 0)
3389 				decimals++;
3390 		}
3391 		cp++;
3392 	}
3393 	if (*cp == '\n')
3394 		cp++;
3395 	if (*cp)
3396 		return -EINVAL;
3397 	if (decimals < 0)
3398 		decimals = 0;
3399 	while (decimals < scale) {
3400 		result *= 10;
3401 		decimals ++;
3402 	}
3403 	*res = result;
3404 	return 0;
3405 }
3406 
3407 
3408 static void md_safemode_timeout(unsigned long data);
3409 
3410 static ssize_t
3411 safe_delay_show(struct mddev *mddev, char *page)
3412 {
3413 	int msec = (mddev->safemode_delay*1000)/HZ;
3414 	return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3415 }
3416 static ssize_t
3417 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3418 {
3419 	unsigned long msec;
3420 
3421 	if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3422 		return -EINVAL;
3423 	if (msec == 0)
3424 		mddev->safemode_delay = 0;
3425 	else {
3426 		unsigned long old_delay = mddev->safemode_delay;
3427 		mddev->safemode_delay = (msec*HZ)/1000;
3428 		if (mddev->safemode_delay == 0)
3429 			mddev->safemode_delay = 1;
3430 		if (mddev->safemode_delay < old_delay)
3431 			md_safemode_timeout((unsigned long)mddev);
3432 	}
3433 	return len;
3434 }
3435 static struct md_sysfs_entry md_safe_delay =
3436 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3437 
3438 static ssize_t
3439 level_show(struct mddev *mddev, char *page)
3440 {
3441 	struct md_personality *p = mddev->pers;
3442 	if (p)
3443 		return sprintf(page, "%s\n", p->name);
3444 	else if (mddev->clevel[0])
3445 		return sprintf(page, "%s\n", mddev->clevel);
3446 	else if (mddev->level != LEVEL_NONE)
3447 		return sprintf(page, "%d\n", mddev->level);
3448 	else
3449 		return 0;
3450 }
3451 
3452 static ssize_t
3453 level_store(struct mddev *mddev, const char *buf, size_t len)
3454 {
3455 	char clevel[16];
3456 	ssize_t rv = len;
3457 	struct md_personality *pers;
3458 	long level;
3459 	void *priv;
3460 	struct md_rdev *rdev;
3461 
3462 	if (mddev->pers == NULL) {
3463 		if (len == 0)
3464 			return 0;
3465 		if (len >= sizeof(mddev->clevel))
3466 			return -ENOSPC;
3467 		strncpy(mddev->clevel, buf, len);
3468 		if (mddev->clevel[len-1] == '\n')
3469 			len--;
3470 		mddev->clevel[len] = 0;
3471 		mddev->level = LEVEL_NONE;
3472 		return rv;
3473 	}
3474 
3475 	/* request to change the personality.  Need to ensure:
3476 	 *  - array is not engaged in resync/recovery/reshape
3477 	 *  - old personality can be suspended
3478 	 *  - new personality will access other array.
3479 	 */
3480 
3481 	if (mddev->sync_thread ||
3482 	    mddev->reshape_position != MaxSector ||
3483 	    mddev->sysfs_active)
3484 		return -EBUSY;
3485 
3486 	if (!mddev->pers->quiesce) {
3487 		printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3488 		       mdname(mddev), mddev->pers->name);
3489 		return -EINVAL;
3490 	}
3491 
3492 	/* Now find the new personality */
3493 	if (len == 0 || len >= sizeof(clevel))
3494 		return -EINVAL;
3495 	strncpy(clevel, buf, len);
3496 	if (clevel[len-1] == '\n')
3497 		len--;
3498 	clevel[len] = 0;
3499 	if (strict_strtol(clevel, 10, &level))
3500 		level = LEVEL_NONE;
3501 
3502 	if (request_module("md-%s", clevel) != 0)
3503 		request_module("md-level-%s", clevel);
3504 	spin_lock(&pers_lock);
3505 	pers = find_pers(level, clevel);
3506 	if (!pers || !try_module_get(pers->owner)) {
3507 		spin_unlock(&pers_lock);
3508 		printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3509 		return -EINVAL;
3510 	}
3511 	spin_unlock(&pers_lock);
3512 
3513 	if (pers == mddev->pers) {
3514 		/* Nothing to do! */
3515 		module_put(pers->owner);
3516 		return rv;
3517 	}
3518 	if (!pers->takeover) {
3519 		module_put(pers->owner);
3520 		printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3521 		       mdname(mddev), clevel);
3522 		return -EINVAL;
3523 	}
3524 
3525 	rdev_for_each(rdev, mddev)
3526 		rdev->new_raid_disk = rdev->raid_disk;
3527 
3528 	/* ->takeover must set new_* and/or delta_disks
3529 	 * if it succeeds, and may set them when it fails.
3530 	 */
3531 	priv = pers->takeover(mddev);
3532 	if (IS_ERR(priv)) {
3533 		mddev->new_level = mddev->level;
3534 		mddev->new_layout = mddev->layout;
3535 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3536 		mddev->raid_disks -= mddev->delta_disks;
3537 		mddev->delta_disks = 0;
3538 		mddev->reshape_backwards = 0;
3539 		module_put(pers->owner);
3540 		printk(KERN_WARNING "md: %s: %s would not accept array\n",
3541 		       mdname(mddev), clevel);
3542 		return PTR_ERR(priv);
3543 	}
3544 
3545 	/* Looks like we have a winner */
3546 	mddev_suspend(mddev);
3547 	mddev->pers->stop(mddev);
3548 
3549 	if (mddev->pers->sync_request == NULL &&
3550 	    pers->sync_request != NULL) {
3551 		/* need to add the md_redundancy_group */
3552 		if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3553 			printk(KERN_WARNING
3554 			       "md: cannot register extra attributes for %s\n",
3555 			       mdname(mddev));
3556 		mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3557 	}
3558 	if (mddev->pers->sync_request != NULL &&
3559 	    pers->sync_request == NULL) {
3560 		/* need to remove the md_redundancy_group */
3561 		if (mddev->to_remove == NULL)
3562 			mddev->to_remove = &md_redundancy_group;
3563 	}
3564 
3565 	if (mddev->pers->sync_request == NULL &&
3566 	    mddev->external) {
3567 		/* We are converting from a no-redundancy array
3568 		 * to a redundancy array and metadata is managed
3569 		 * externally so we need to be sure that writes
3570 		 * won't block due to a need to transition
3571 		 *      clean->dirty
3572 		 * until external management is started.
3573 		 */
3574 		mddev->in_sync = 0;
3575 		mddev->safemode_delay = 0;
3576 		mddev->safemode = 0;
3577 	}
3578 
3579 	rdev_for_each(rdev, mddev) {
3580 		if (rdev->raid_disk < 0)
3581 			continue;
3582 		if (rdev->new_raid_disk >= mddev->raid_disks)
3583 			rdev->new_raid_disk = -1;
3584 		if (rdev->new_raid_disk == rdev->raid_disk)
3585 			continue;
3586 		sysfs_unlink_rdev(mddev, rdev);
3587 	}
3588 	rdev_for_each(rdev, mddev) {
3589 		if (rdev->raid_disk < 0)
3590 			continue;
3591 		if (rdev->new_raid_disk == rdev->raid_disk)
3592 			continue;
3593 		rdev->raid_disk = rdev->new_raid_disk;
3594 		if (rdev->raid_disk < 0)
3595 			clear_bit(In_sync, &rdev->flags);
3596 		else {
3597 			if (sysfs_link_rdev(mddev, rdev))
3598 				printk(KERN_WARNING "md: cannot register rd%d"
3599 				       " for %s after level change\n",
3600 				       rdev->raid_disk, mdname(mddev));
3601 		}
3602 	}
3603 
3604 	module_put(mddev->pers->owner);
3605 	mddev->pers = pers;
3606 	mddev->private = priv;
3607 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3608 	mddev->level = mddev->new_level;
3609 	mddev->layout = mddev->new_layout;
3610 	mddev->chunk_sectors = mddev->new_chunk_sectors;
3611 	mddev->delta_disks = 0;
3612 	mddev->reshape_backwards = 0;
3613 	mddev->degraded = 0;
3614 	if (mddev->pers->sync_request == NULL) {
3615 		/* this is now an array without redundancy, so
3616 		 * it must always be in_sync
3617 		 */
3618 		mddev->in_sync = 1;
3619 		del_timer_sync(&mddev->safemode_timer);
3620 	}
3621 	pers->run(mddev);
3622 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
3623 	mddev_resume(mddev);
3624 	sysfs_notify(&mddev->kobj, NULL, "level");
3625 	md_new_event(mddev);
3626 	return rv;
3627 }
3628 
3629 static struct md_sysfs_entry md_level =
3630 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3631 
3632 
3633 static ssize_t
3634 layout_show(struct mddev *mddev, char *page)
3635 {
3636 	/* just a number, not meaningful for all levels */
3637 	if (mddev->reshape_position != MaxSector &&
3638 	    mddev->layout != mddev->new_layout)
3639 		return sprintf(page, "%d (%d)\n",
3640 			       mddev->new_layout, mddev->layout);
3641 	return sprintf(page, "%d\n", mddev->layout);
3642 }
3643 
3644 static ssize_t
3645 layout_store(struct mddev *mddev, const char *buf, size_t len)
3646 {
3647 	char *e;
3648 	unsigned long n = simple_strtoul(buf, &e, 10);
3649 
3650 	if (!*buf || (*e && *e != '\n'))
3651 		return -EINVAL;
3652 
3653 	if (mddev->pers) {
3654 		int err;
3655 		if (mddev->pers->check_reshape == NULL)
3656 			return -EBUSY;
3657 		mddev->new_layout = n;
3658 		err = mddev->pers->check_reshape(mddev);
3659 		if (err) {
3660 			mddev->new_layout = mddev->layout;
3661 			return err;
3662 		}
3663 	} else {
3664 		mddev->new_layout = n;
3665 		if (mddev->reshape_position == MaxSector)
3666 			mddev->layout = n;
3667 	}
3668 	return len;
3669 }
3670 static struct md_sysfs_entry md_layout =
3671 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3672 
3673 
3674 static ssize_t
3675 raid_disks_show(struct mddev *mddev, char *page)
3676 {
3677 	if (mddev->raid_disks == 0)
3678 		return 0;
3679 	if (mddev->reshape_position != MaxSector &&
3680 	    mddev->delta_disks != 0)
3681 		return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3682 			       mddev->raid_disks - mddev->delta_disks);
3683 	return sprintf(page, "%d\n", mddev->raid_disks);
3684 }
3685 
3686 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3687 
3688 static ssize_t
3689 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3690 {
3691 	char *e;
3692 	int rv = 0;
3693 	unsigned long n = simple_strtoul(buf, &e, 10);
3694 
3695 	if (!*buf || (*e && *e != '\n'))
3696 		return -EINVAL;
3697 
3698 	if (mddev->pers)
3699 		rv = update_raid_disks(mddev, n);
3700 	else if (mddev->reshape_position != MaxSector) {
3701 		struct md_rdev *rdev;
3702 		int olddisks = mddev->raid_disks - mddev->delta_disks;
3703 
3704 		rdev_for_each(rdev, mddev) {
3705 			if (olddisks < n &&
3706 			    rdev->data_offset < rdev->new_data_offset)
3707 				return -EINVAL;
3708 			if (olddisks > n &&
3709 			    rdev->data_offset > rdev->new_data_offset)
3710 				return -EINVAL;
3711 		}
3712 		mddev->delta_disks = n - olddisks;
3713 		mddev->raid_disks = n;
3714 		mddev->reshape_backwards = (mddev->delta_disks < 0);
3715 	} else
3716 		mddev->raid_disks = n;
3717 	return rv ? rv : len;
3718 }
3719 static struct md_sysfs_entry md_raid_disks =
3720 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3721 
3722 static ssize_t
3723 chunk_size_show(struct mddev *mddev, char *page)
3724 {
3725 	if (mddev->reshape_position != MaxSector &&
3726 	    mddev->chunk_sectors != mddev->new_chunk_sectors)
3727 		return sprintf(page, "%d (%d)\n",
3728 			       mddev->new_chunk_sectors << 9,
3729 			       mddev->chunk_sectors << 9);
3730 	return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3731 }
3732 
3733 static ssize_t
3734 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3735 {
3736 	char *e;
3737 	unsigned long n = simple_strtoul(buf, &e, 10);
3738 
3739 	if (!*buf || (*e && *e != '\n'))
3740 		return -EINVAL;
3741 
3742 	if (mddev->pers) {
3743 		int err;
3744 		if (mddev->pers->check_reshape == NULL)
3745 			return -EBUSY;
3746 		mddev->new_chunk_sectors = n >> 9;
3747 		err = mddev->pers->check_reshape(mddev);
3748 		if (err) {
3749 			mddev->new_chunk_sectors = mddev->chunk_sectors;
3750 			return err;
3751 		}
3752 	} else {
3753 		mddev->new_chunk_sectors = n >> 9;
3754 		if (mddev->reshape_position == MaxSector)
3755 			mddev->chunk_sectors = n >> 9;
3756 	}
3757 	return len;
3758 }
3759 static struct md_sysfs_entry md_chunk_size =
3760 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3761 
3762 static ssize_t
3763 resync_start_show(struct mddev *mddev, char *page)
3764 {
3765 	if (mddev->recovery_cp == MaxSector)
3766 		return sprintf(page, "none\n");
3767 	return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3768 }
3769 
3770 static ssize_t
3771 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3772 {
3773 	char *e;
3774 	unsigned long long n = simple_strtoull(buf, &e, 10);
3775 
3776 	if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3777 		return -EBUSY;
3778 	if (cmd_match(buf, "none"))
3779 		n = MaxSector;
3780 	else if (!*buf || (*e && *e != '\n'))
3781 		return -EINVAL;
3782 
3783 	mddev->recovery_cp = n;
3784 	if (mddev->pers)
3785 		set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3786 	return len;
3787 }
3788 static struct md_sysfs_entry md_resync_start =
3789 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3790 
3791 /*
3792  * The array state can be:
3793  *
3794  * clear
3795  *     No devices, no size, no level
3796  *     Equivalent to STOP_ARRAY ioctl
3797  * inactive
3798  *     May have some settings, but array is not active
3799  *        all IO results in error
3800  *     When written, doesn't tear down array, but just stops it
3801  * suspended (not supported yet)
3802  *     All IO requests will block. The array can be reconfigured.
3803  *     Writing this, if accepted, will block until array is quiescent
3804  * readonly
3805  *     no resync can happen.  no superblocks get written.
3806  *     write requests fail
3807  * read-auto
3808  *     like readonly, but behaves like 'clean' on a write request.
3809  *
3810  * clean - no pending writes, but otherwise active.
3811  *     When written to inactive array, starts without resync
3812  *     If a write request arrives then
3813  *       if metadata is known, mark 'dirty' and switch to 'active'.
3814  *       if not known, block and switch to write-pending
3815  *     If written to an active array that has pending writes, then fails.
3816  * active
3817  *     fully active: IO and resync can be happening.
3818  *     When written to inactive array, starts with resync
3819  *
3820  * write-pending
3821  *     clean, but writes are blocked waiting for 'active' to be written.
3822  *
3823  * active-idle
3824  *     like active, but no writes have been seen for a while (100msec).
3825  *
3826  */
3827 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3828 		   write_pending, active_idle, bad_word};
3829 static char *array_states[] = {
3830 	"clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3831 	"write-pending", "active-idle", NULL };
3832 
3833 static int match_word(const char *word, char **list)
3834 {
3835 	int n;
3836 	for (n=0; list[n]; n++)
3837 		if (cmd_match(word, list[n]))
3838 			break;
3839 	return n;
3840 }
3841 
3842 static ssize_t
3843 array_state_show(struct mddev *mddev, char *page)
3844 {
3845 	enum array_state st = inactive;
3846 
3847 	if (mddev->pers)
3848 		switch(mddev->ro) {
3849 		case 1:
3850 			st = readonly;
3851 			break;
3852 		case 2:
3853 			st = read_auto;
3854 			break;
3855 		case 0:
3856 			if (mddev->in_sync)
3857 				st = clean;
3858 			else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3859 				st = write_pending;
3860 			else if (mddev->safemode)
3861 				st = active_idle;
3862 			else
3863 				st = active;
3864 		}
3865 	else {
3866 		if (list_empty(&mddev->disks) &&
3867 		    mddev->raid_disks == 0 &&
3868 		    mddev->dev_sectors == 0)
3869 			st = clear;
3870 		else
3871 			st = inactive;
3872 	}
3873 	return sprintf(page, "%s\n", array_states[st]);
3874 }
3875 
3876 static int do_md_stop(struct mddev * mddev, int ro, struct block_device *bdev);
3877 static int md_set_readonly(struct mddev * mddev, struct block_device *bdev);
3878 static int do_md_run(struct mddev * mddev);
3879 static int restart_array(struct mddev *mddev);
3880 
3881 static ssize_t
3882 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3883 {
3884 	int err = -EINVAL;
3885 	enum array_state st = match_word(buf, array_states);
3886 	switch(st) {
3887 	case bad_word:
3888 		break;
3889 	case clear:
3890 		/* stopping an active array */
3891 		err = do_md_stop(mddev, 0, NULL);
3892 		break;
3893 	case inactive:
3894 		/* stopping an active array */
3895 		if (mddev->pers)
3896 			err = do_md_stop(mddev, 2, NULL);
3897 		else
3898 			err = 0; /* already inactive */
3899 		break;
3900 	case suspended:
3901 		break; /* not supported yet */
3902 	case readonly:
3903 		if (mddev->pers)
3904 			err = md_set_readonly(mddev, NULL);
3905 		else {
3906 			mddev->ro = 1;
3907 			set_disk_ro(mddev->gendisk, 1);
3908 			err = do_md_run(mddev);
3909 		}
3910 		break;
3911 	case read_auto:
3912 		if (mddev->pers) {
3913 			if (mddev->ro == 0)
3914 				err = md_set_readonly(mddev, NULL);
3915 			else if (mddev->ro == 1)
3916 				err = restart_array(mddev);
3917 			if (err == 0) {
3918 				mddev->ro = 2;
3919 				set_disk_ro(mddev->gendisk, 0);
3920 			}
3921 		} else {
3922 			mddev->ro = 2;
3923 			err = do_md_run(mddev);
3924 		}
3925 		break;
3926 	case clean:
3927 		if (mddev->pers) {
3928 			restart_array(mddev);
3929 			spin_lock_irq(&mddev->write_lock);
3930 			if (atomic_read(&mddev->writes_pending) == 0) {
3931 				if (mddev->in_sync == 0) {
3932 					mddev->in_sync = 1;
3933 					if (mddev->safemode == 1)
3934 						mddev->safemode = 0;
3935 					set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3936 				}
3937 				err = 0;
3938 			} else
3939 				err = -EBUSY;
3940 			spin_unlock_irq(&mddev->write_lock);
3941 		} else
3942 			err = -EINVAL;
3943 		break;
3944 	case active:
3945 		if (mddev->pers) {
3946 			restart_array(mddev);
3947 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3948 			wake_up(&mddev->sb_wait);
3949 			err = 0;
3950 		} else {
3951 			mddev->ro = 0;
3952 			set_disk_ro(mddev->gendisk, 0);
3953 			err = do_md_run(mddev);
3954 		}
3955 		break;
3956 	case write_pending:
3957 	case active_idle:
3958 		/* these cannot be set */
3959 		break;
3960 	}
3961 	if (err)
3962 		return err;
3963 	else {
3964 		if (mddev->hold_active == UNTIL_IOCTL)
3965 			mddev->hold_active = 0;
3966 		sysfs_notify_dirent_safe(mddev->sysfs_state);
3967 		return len;
3968 	}
3969 }
3970 static struct md_sysfs_entry md_array_state =
3971 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3972 
3973 static ssize_t
3974 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3975 	return sprintf(page, "%d\n",
3976 		       atomic_read(&mddev->max_corr_read_errors));
3977 }
3978 
3979 static ssize_t
3980 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3981 {
3982 	char *e;
3983 	unsigned long n = simple_strtoul(buf, &e, 10);
3984 
3985 	if (*buf && (*e == 0 || *e == '\n')) {
3986 		atomic_set(&mddev->max_corr_read_errors, n);
3987 		return len;
3988 	}
3989 	return -EINVAL;
3990 }
3991 
3992 static struct md_sysfs_entry max_corr_read_errors =
3993 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3994 	max_corrected_read_errors_store);
3995 
3996 static ssize_t
3997 null_show(struct mddev *mddev, char *page)
3998 {
3999 	return -EINVAL;
4000 }
4001 
4002 static ssize_t
4003 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4004 {
4005 	/* buf must be %d:%d\n? giving major and minor numbers */
4006 	/* The new device is added to the array.
4007 	 * If the array has a persistent superblock, we read the
4008 	 * superblock to initialise info and check validity.
4009 	 * Otherwise, only checking done is that in bind_rdev_to_array,
4010 	 * which mainly checks size.
4011 	 */
4012 	char *e;
4013 	int major = simple_strtoul(buf, &e, 10);
4014 	int minor;
4015 	dev_t dev;
4016 	struct md_rdev *rdev;
4017 	int err;
4018 
4019 	if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4020 		return -EINVAL;
4021 	minor = simple_strtoul(e+1, &e, 10);
4022 	if (*e && *e != '\n')
4023 		return -EINVAL;
4024 	dev = MKDEV(major, minor);
4025 	if (major != MAJOR(dev) ||
4026 	    minor != MINOR(dev))
4027 		return -EOVERFLOW;
4028 
4029 
4030 	if (mddev->persistent) {
4031 		rdev = md_import_device(dev, mddev->major_version,
4032 					mddev->minor_version);
4033 		if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4034 			struct md_rdev *rdev0
4035 				= list_entry(mddev->disks.next,
4036 					     struct md_rdev, same_set);
4037 			err = super_types[mddev->major_version]
4038 				.load_super(rdev, rdev0, mddev->minor_version);
4039 			if (err < 0)
4040 				goto out;
4041 		}
4042 	} else if (mddev->external)
4043 		rdev = md_import_device(dev, -2, -1);
4044 	else
4045 		rdev = md_import_device(dev, -1, -1);
4046 
4047 	if (IS_ERR(rdev))
4048 		return PTR_ERR(rdev);
4049 	err = bind_rdev_to_array(rdev, mddev);
4050  out:
4051 	if (err)
4052 		export_rdev(rdev);
4053 	return err ? err : len;
4054 }
4055 
4056 static struct md_sysfs_entry md_new_device =
4057 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4058 
4059 static ssize_t
4060 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4061 {
4062 	char *end;
4063 	unsigned long chunk, end_chunk;
4064 
4065 	if (!mddev->bitmap)
4066 		goto out;
4067 	/* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4068 	while (*buf) {
4069 		chunk = end_chunk = simple_strtoul(buf, &end, 0);
4070 		if (buf == end) break;
4071 		if (*end == '-') { /* range */
4072 			buf = end + 1;
4073 			end_chunk = simple_strtoul(buf, &end, 0);
4074 			if (buf == end) break;
4075 		}
4076 		if (*end && !isspace(*end)) break;
4077 		bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4078 		buf = skip_spaces(end);
4079 	}
4080 	bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4081 out:
4082 	return len;
4083 }
4084 
4085 static struct md_sysfs_entry md_bitmap =
4086 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4087 
4088 static ssize_t
4089 size_show(struct mddev *mddev, char *page)
4090 {
4091 	return sprintf(page, "%llu\n",
4092 		(unsigned long long)mddev->dev_sectors / 2);
4093 }
4094 
4095 static int update_size(struct mddev *mddev, sector_t num_sectors);
4096 
4097 static ssize_t
4098 size_store(struct mddev *mddev, const char *buf, size_t len)
4099 {
4100 	/* If array is inactive, we can reduce the component size, but
4101 	 * not increase it (except from 0).
4102 	 * If array is active, we can try an on-line resize
4103 	 */
4104 	sector_t sectors;
4105 	int err = strict_blocks_to_sectors(buf, &sectors);
4106 
4107 	if (err < 0)
4108 		return err;
4109 	if (mddev->pers) {
4110 		err = update_size(mddev, sectors);
4111 		md_update_sb(mddev, 1);
4112 	} else {
4113 		if (mddev->dev_sectors == 0 ||
4114 		    mddev->dev_sectors > sectors)
4115 			mddev->dev_sectors = sectors;
4116 		else
4117 			err = -ENOSPC;
4118 	}
4119 	return err ? err : len;
4120 }
4121 
4122 static struct md_sysfs_entry md_size =
4123 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4124 
4125 
4126 /* Metadata version.
4127  * This is one of
4128  *   'none' for arrays with no metadata (good luck...)
4129  *   'external' for arrays with externally managed metadata,
4130  * or N.M for internally known formats
4131  */
4132 static ssize_t
4133 metadata_show(struct mddev *mddev, char *page)
4134 {
4135 	if (mddev->persistent)
4136 		return sprintf(page, "%d.%d\n",
4137 			       mddev->major_version, mddev->minor_version);
4138 	else if (mddev->external)
4139 		return sprintf(page, "external:%s\n", mddev->metadata_type);
4140 	else
4141 		return sprintf(page, "none\n");
4142 }
4143 
4144 static ssize_t
4145 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4146 {
4147 	int major, minor;
4148 	char *e;
4149 	/* Changing the details of 'external' metadata is
4150 	 * always permitted.  Otherwise there must be
4151 	 * no devices attached to the array.
4152 	 */
4153 	if (mddev->external && strncmp(buf, "external:", 9) == 0)
4154 		;
4155 	else if (!list_empty(&mddev->disks))
4156 		return -EBUSY;
4157 
4158 	if (cmd_match(buf, "none")) {
4159 		mddev->persistent = 0;
4160 		mddev->external = 0;
4161 		mddev->major_version = 0;
4162 		mddev->minor_version = 90;
4163 		return len;
4164 	}
4165 	if (strncmp(buf, "external:", 9) == 0) {
4166 		size_t namelen = len-9;
4167 		if (namelen >= sizeof(mddev->metadata_type))
4168 			namelen = sizeof(mddev->metadata_type)-1;
4169 		strncpy(mddev->metadata_type, buf+9, namelen);
4170 		mddev->metadata_type[namelen] = 0;
4171 		if (namelen && mddev->metadata_type[namelen-1] == '\n')
4172 			mddev->metadata_type[--namelen] = 0;
4173 		mddev->persistent = 0;
4174 		mddev->external = 1;
4175 		mddev->major_version = 0;
4176 		mddev->minor_version = 90;
4177 		return len;
4178 	}
4179 	major = simple_strtoul(buf, &e, 10);
4180 	if (e==buf || *e != '.')
4181 		return -EINVAL;
4182 	buf = e+1;
4183 	minor = simple_strtoul(buf, &e, 10);
4184 	if (e==buf || (*e && *e != '\n') )
4185 		return -EINVAL;
4186 	if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4187 		return -ENOENT;
4188 	mddev->major_version = major;
4189 	mddev->minor_version = minor;
4190 	mddev->persistent = 1;
4191 	mddev->external = 0;
4192 	return len;
4193 }
4194 
4195 static struct md_sysfs_entry md_metadata =
4196 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4197 
4198 static ssize_t
4199 action_show(struct mddev *mddev, char *page)
4200 {
4201 	char *type = "idle";
4202 	if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4203 		type = "frozen";
4204 	else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4205 	    (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4206 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4207 			type = "reshape";
4208 		else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4209 			if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4210 				type = "resync";
4211 			else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4212 				type = "check";
4213 			else
4214 				type = "repair";
4215 		} else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4216 			type = "recover";
4217 	}
4218 	return sprintf(page, "%s\n", type);
4219 }
4220 
4221 static void reap_sync_thread(struct mddev *mddev);
4222 
4223 static ssize_t
4224 action_store(struct mddev *mddev, const char *page, size_t len)
4225 {
4226 	if (!mddev->pers || !mddev->pers->sync_request)
4227 		return -EINVAL;
4228 
4229 	if (cmd_match(page, "frozen"))
4230 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4231 	else
4232 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4233 
4234 	if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4235 		if (mddev->sync_thread) {
4236 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4237 			reap_sync_thread(mddev);
4238 		}
4239 	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4240 		   test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4241 		return -EBUSY;
4242 	else if (cmd_match(page, "resync"))
4243 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4244 	else if (cmd_match(page, "recover")) {
4245 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4246 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4247 	} else if (cmd_match(page, "reshape")) {
4248 		int err;
4249 		if (mddev->pers->start_reshape == NULL)
4250 			return -EINVAL;
4251 		err = mddev->pers->start_reshape(mddev);
4252 		if (err)
4253 			return err;
4254 		sysfs_notify(&mddev->kobj, NULL, "degraded");
4255 	} else {
4256 		if (cmd_match(page, "check"))
4257 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4258 		else if (!cmd_match(page, "repair"))
4259 			return -EINVAL;
4260 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4261 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4262 	}
4263 	if (mddev->ro == 2) {
4264 		/* A write to sync_action is enough to justify
4265 		 * canceling read-auto mode
4266 		 */
4267 		mddev->ro = 0;
4268 		md_wakeup_thread(mddev->sync_thread);
4269 	}
4270 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4271 	md_wakeup_thread(mddev->thread);
4272 	sysfs_notify_dirent_safe(mddev->sysfs_action);
4273 	return len;
4274 }
4275 
4276 static ssize_t
4277 mismatch_cnt_show(struct mddev *mddev, char *page)
4278 {
4279 	return sprintf(page, "%llu\n",
4280 		       (unsigned long long)
4281 		       atomic64_read(&mddev->resync_mismatches));
4282 }
4283 
4284 static struct md_sysfs_entry md_scan_mode =
4285 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4286 
4287 
4288 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4289 
4290 static ssize_t
4291 sync_min_show(struct mddev *mddev, char *page)
4292 {
4293 	return sprintf(page, "%d (%s)\n", speed_min(mddev),
4294 		       mddev->sync_speed_min ? "local": "system");
4295 }
4296 
4297 static ssize_t
4298 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4299 {
4300 	int min;
4301 	char *e;
4302 	if (strncmp(buf, "system", 6)==0) {
4303 		mddev->sync_speed_min = 0;
4304 		return len;
4305 	}
4306 	min = simple_strtoul(buf, &e, 10);
4307 	if (buf == e || (*e && *e != '\n') || min <= 0)
4308 		return -EINVAL;
4309 	mddev->sync_speed_min = min;
4310 	return len;
4311 }
4312 
4313 static struct md_sysfs_entry md_sync_min =
4314 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4315 
4316 static ssize_t
4317 sync_max_show(struct mddev *mddev, char *page)
4318 {
4319 	return sprintf(page, "%d (%s)\n", speed_max(mddev),
4320 		       mddev->sync_speed_max ? "local": "system");
4321 }
4322 
4323 static ssize_t
4324 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4325 {
4326 	int max;
4327 	char *e;
4328 	if (strncmp(buf, "system", 6)==0) {
4329 		mddev->sync_speed_max = 0;
4330 		return len;
4331 	}
4332 	max = simple_strtoul(buf, &e, 10);
4333 	if (buf == e || (*e && *e != '\n') || max <= 0)
4334 		return -EINVAL;
4335 	mddev->sync_speed_max = max;
4336 	return len;
4337 }
4338 
4339 static struct md_sysfs_entry md_sync_max =
4340 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4341 
4342 static ssize_t
4343 degraded_show(struct mddev *mddev, char *page)
4344 {
4345 	return sprintf(page, "%d\n", mddev->degraded);
4346 }
4347 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4348 
4349 static ssize_t
4350 sync_force_parallel_show(struct mddev *mddev, char *page)
4351 {
4352 	return sprintf(page, "%d\n", mddev->parallel_resync);
4353 }
4354 
4355 static ssize_t
4356 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4357 {
4358 	long n;
4359 
4360 	if (strict_strtol(buf, 10, &n))
4361 		return -EINVAL;
4362 
4363 	if (n != 0 && n != 1)
4364 		return -EINVAL;
4365 
4366 	mddev->parallel_resync = n;
4367 
4368 	if (mddev->sync_thread)
4369 		wake_up(&resync_wait);
4370 
4371 	return len;
4372 }
4373 
4374 /* force parallel resync, even with shared block devices */
4375 static struct md_sysfs_entry md_sync_force_parallel =
4376 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4377        sync_force_parallel_show, sync_force_parallel_store);
4378 
4379 static ssize_t
4380 sync_speed_show(struct mddev *mddev, char *page)
4381 {
4382 	unsigned long resync, dt, db;
4383 	if (mddev->curr_resync == 0)
4384 		return sprintf(page, "none\n");
4385 	resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4386 	dt = (jiffies - mddev->resync_mark) / HZ;
4387 	if (!dt) dt++;
4388 	db = resync - mddev->resync_mark_cnt;
4389 	return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4390 }
4391 
4392 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4393 
4394 static ssize_t
4395 sync_completed_show(struct mddev *mddev, char *page)
4396 {
4397 	unsigned long long max_sectors, resync;
4398 
4399 	if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4400 		return sprintf(page, "none\n");
4401 
4402 	if (mddev->curr_resync == 1 ||
4403 	    mddev->curr_resync == 2)
4404 		return sprintf(page, "delayed\n");
4405 
4406 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4407 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4408 		max_sectors = mddev->resync_max_sectors;
4409 	else
4410 		max_sectors = mddev->dev_sectors;
4411 
4412 	resync = mddev->curr_resync_completed;
4413 	return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4414 }
4415 
4416 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4417 
4418 static ssize_t
4419 min_sync_show(struct mddev *mddev, char *page)
4420 {
4421 	return sprintf(page, "%llu\n",
4422 		       (unsigned long long)mddev->resync_min);
4423 }
4424 static ssize_t
4425 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4426 {
4427 	unsigned long long min;
4428 	if (strict_strtoull(buf, 10, &min))
4429 		return -EINVAL;
4430 	if (min > mddev->resync_max)
4431 		return -EINVAL;
4432 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4433 		return -EBUSY;
4434 
4435 	/* Must be a multiple of chunk_size */
4436 	if (mddev->chunk_sectors) {
4437 		sector_t temp = min;
4438 		if (sector_div(temp, mddev->chunk_sectors))
4439 			return -EINVAL;
4440 	}
4441 	mddev->resync_min = min;
4442 
4443 	return len;
4444 }
4445 
4446 static struct md_sysfs_entry md_min_sync =
4447 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4448 
4449 static ssize_t
4450 max_sync_show(struct mddev *mddev, char *page)
4451 {
4452 	if (mddev->resync_max == MaxSector)
4453 		return sprintf(page, "max\n");
4454 	else
4455 		return sprintf(page, "%llu\n",
4456 			       (unsigned long long)mddev->resync_max);
4457 }
4458 static ssize_t
4459 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4460 {
4461 	if (strncmp(buf, "max", 3) == 0)
4462 		mddev->resync_max = MaxSector;
4463 	else {
4464 		unsigned long long max;
4465 		if (strict_strtoull(buf, 10, &max))
4466 			return -EINVAL;
4467 		if (max < mddev->resync_min)
4468 			return -EINVAL;
4469 		if (max < mddev->resync_max &&
4470 		    mddev->ro == 0 &&
4471 		    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4472 			return -EBUSY;
4473 
4474 		/* Must be a multiple of chunk_size */
4475 		if (mddev->chunk_sectors) {
4476 			sector_t temp = max;
4477 			if (sector_div(temp, mddev->chunk_sectors))
4478 				return -EINVAL;
4479 		}
4480 		mddev->resync_max = max;
4481 	}
4482 	wake_up(&mddev->recovery_wait);
4483 	return len;
4484 }
4485 
4486 static struct md_sysfs_entry md_max_sync =
4487 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4488 
4489 static ssize_t
4490 suspend_lo_show(struct mddev *mddev, char *page)
4491 {
4492 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4493 }
4494 
4495 static ssize_t
4496 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4497 {
4498 	char *e;
4499 	unsigned long long new = simple_strtoull(buf, &e, 10);
4500 	unsigned long long old = mddev->suspend_lo;
4501 
4502 	if (mddev->pers == NULL ||
4503 	    mddev->pers->quiesce == NULL)
4504 		return -EINVAL;
4505 	if (buf == e || (*e && *e != '\n'))
4506 		return -EINVAL;
4507 
4508 	mddev->suspend_lo = new;
4509 	if (new >= old)
4510 		/* Shrinking suspended region */
4511 		mddev->pers->quiesce(mddev, 2);
4512 	else {
4513 		/* Expanding suspended region - need to wait */
4514 		mddev->pers->quiesce(mddev, 1);
4515 		mddev->pers->quiesce(mddev, 0);
4516 	}
4517 	return len;
4518 }
4519 static struct md_sysfs_entry md_suspend_lo =
4520 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4521 
4522 
4523 static ssize_t
4524 suspend_hi_show(struct mddev *mddev, char *page)
4525 {
4526 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4527 }
4528 
4529 static ssize_t
4530 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4531 {
4532 	char *e;
4533 	unsigned long long new = simple_strtoull(buf, &e, 10);
4534 	unsigned long long old = mddev->suspend_hi;
4535 
4536 	if (mddev->pers == NULL ||
4537 	    mddev->pers->quiesce == NULL)
4538 		return -EINVAL;
4539 	if (buf == e || (*e && *e != '\n'))
4540 		return -EINVAL;
4541 
4542 	mddev->suspend_hi = new;
4543 	if (new <= old)
4544 		/* Shrinking suspended region */
4545 		mddev->pers->quiesce(mddev, 2);
4546 	else {
4547 		/* Expanding suspended region - need to wait */
4548 		mddev->pers->quiesce(mddev, 1);
4549 		mddev->pers->quiesce(mddev, 0);
4550 	}
4551 	return len;
4552 }
4553 static struct md_sysfs_entry md_suspend_hi =
4554 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4555 
4556 static ssize_t
4557 reshape_position_show(struct mddev *mddev, char *page)
4558 {
4559 	if (mddev->reshape_position != MaxSector)
4560 		return sprintf(page, "%llu\n",
4561 			       (unsigned long long)mddev->reshape_position);
4562 	strcpy(page, "none\n");
4563 	return 5;
4564 }
4565 
4566 static ssize_t
4567 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4568 {
4569 	struct md_rdev *rdev;
4570 	char *e;
4571 	unsigned long long new = simple_strtoull(buf, &e, 10);
4572 	if (mddev->pers)
4573 		return -EBUSY;
4574 	if (buf == e || (*e && *e != '\n'))
4575 		return -EINVAL;
4576 	mddev->reshape_position = new;
4577 	mddev->delta_disks = 0;
4578 	mddev->reshape_backwards = 0;
4579 	mddev->new_level = mddev->level;
4580 	mddev->new_layout = mddev->layout;
4581 	mddev->new_chunk_sectors = mddev->chunk_sectors;
4582 	rdev_for_each(rdev, mddev)
4583 		rdev->new_data_offset = rdev->data_offset;
4584 	return len;
4585 }
4586 
4587 static struct md_sysfs_entry md_reshape_position =
4588 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4589        reshape_position_store);
4590 
4591 static ssize_t
4592 reshape_direction_show(struct mddev *mddev, char *page)
4593 {
4594 	return sprintf(page, "%s\n",
4595 		       mddev->reshape_backwards ? "backwards" : "forwards");
4596 }
4597 
4598 static ssize_t
4599 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4600 {
4601 	int backwards = 0;
4602 	if (cmd_match(buf, "forwards"))
4603 		backwards = 0;
4604 	else if (cmd_match(buf, "backwards"))
4605 		backwards = 1;
4606 	else
4607 		return -EINVAL;
4608 	if (mddev->reshape_backwards == backwards)
4609 		return len;
4610 
4611 	/* check if we are allowed to change */
4612 	if (mddev->delta_disks)
4613 		return -EBUSY;
4614 
4615 	if (mddev->persistent &&
4616 	    mddev->major_version == 0)
4617 		return -EINVAL;
4618 
4619 	mddev->reshape_backwards = backwards;
4620 	return len;
4621 }
4622 
4623 static struct md_sysfs_entry md_reshape_direction =
4624 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4625        reshape_direction_store);
4626 
4627 static ssize_t
4628 array_size_show(struct mddev *mddev, char *page)
4629 {
4630 	if (mddev->external_size)
4631 		return sprintf(page, "%llu\n",
4632 			       (unsigned long long)mddev->array_sectors/2);
4633 	else
4634 		return sprintf(page, "default\n");
4635 }
4636 
4637 static ssize_t
4638 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4639 {
4640 	sector_t sectors;
4641 
4642 	if (strncmp(buf, "default", 7) == 0) {
4643 		if (mddev->pers)
4644 			sectors = mddev->pers->size(mddev, 0, 0);
4645 		else
4646 			sectors = mddev->array_sectors;
4647 
4648 		mddev->external_size = 0;
4649 	} else {
4650 		if (strict_blocks_to_sectors(buf, &sectors) < 0)
4651 			return -EINVAL;
4652 		if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4653 			return -E2BIG;
4654 
4655 		mddev->external_size = 1;
4656 	}
4657 
4658 	mddev->array_sectors = sectors;
4659 	if (mddev->pers) {
4660 		set_capacity(mddev->gendisk, mddev->array_sectors);
4661 		revalidate_disk(mddev->gendisk);
4662 	}
4663 	return len;
4664 }
4665 
4666 static struct md_sysfs_entry md_array_size =
4667 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4668        array_size_store);
4669 
4670 static struct attribute *md_default_attrs[] = {
4671 	&md_level.attr,
4672 	&md_layout.attr,
4673 	&md_raid_disks.attr,
4674 	&md_chunk_size.attr,
4675 	&md_size.attr,
4676 	&md_resync_start.attr,
4677 	&md_metadata.attr,
4678 	&md_new_device.attr,
4679 	&md_safe_delay.attr,
4680 	&md_array_state.attr,
4681 	&md_reshape_position.attr,
4682 	&md_reshape_direction.attr,
4683 	&md_array_size.attr,
4684 	&max_corr_read_errors.attr,
4685 	NULL,
4686 };
4687 
4688 static struct attribute *md_redundancy_attrs[] = {
4689 	&md_scan_mode.attr,
4690 	&md_mismatches.attr,
4691 	&md_sync_min.attr,
4692 	&md_sync_max.attr,
4693 	&md_sync_speed.attr,
4694 	&md_sync_force_parallel.attr,
4695 	&md_sync_completed.attr,
4696 	&md_min_sync.attr,
4697 	&md_max_sync.attr,
4698 	&md_suspend_lo.attr,
4699 	&md_suspend_hi.attr,
4700 	&md_bitmap.attr,
4701 	&md_degraded.attr,
4702 	NULL,
4703 };
4704 static struct attribute_group md_redundancy_group = {
4705 	.name = NULL,
4706 	.attrs = md_redundancy_attrs,
4707 };
4708 
4709 
4710 static ssize_t
4711 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4712 {
4713 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4714 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4715 	ssize_t rv;
4716 
4717 	if (!entry->show)
4718 		return -EIO;
4719 	spin_lock(&all_mddevs_lock);
4720 	if (list_empty(&mddev->all_mddevs)) {
4721 		spin_unlock(&all_mddevs_lock);
4722 		return -EBUSY;
4723 	}
4724 	mddev_get(mddev);
4725 	spin_unlock(&all_mddevs_lock);
4726 
4727 	rv = mddev_lock(mddev);
4728 	if (!rv) {
4729 		rv = entry->show(mddev, page);
4730 		mddev_unlock(mddev);
4731 	}
4732 	mddev_put(mddev);
4733 	return rv;
4734 }
4735 
4736 static ssize_t
4737 md_attr_store(struct kobject *kobj, struct attribute *attr,
4738 	      const char *page, size_t length)
4739 {
4740 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4741 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4742 	ssize_t rv;
4743 
4744 	if (!entry->store)
4745 		return -EIO;
4746 	if (!capable(CAP_SYS_ADMIN))
4747 		return -EACCES;
4748 	spin_lock(&all_mddevs_lock);
4749 	if (list_empty(&mddev->all_mddevs)) {
4750 		spin_unlock(&all_mddevs_lock);
4751 		return -EBUSY;
4752 	}
4753 	mddev_get(mddev);
4754 	spin_unlock(&all_mddevs_lock);
4755 	if (entry->store == new_dev_store)
4756 		flush_workqueue(md_misc_wq);
4757 	rv = mddev_lock(mddev);
4758 	if (!rv) {
4759 		rv = entry->store(mddev, page, length);
4760 		mddev_unlock(mddev);
4761 	}
4762 	mddev_put(mddev);
4763 	return rv;
4764 }
4765 
4766 static void md_free(struct kobject *ko)
4767 {
4768 	struct mddev *mddev = container_of(ko, struct mddev, kobj);
4769 
4770 	if (mddev->sysfs_state)
4771 		sysfs_put(mddev->sysfs_state);
4772 
4773 	if (mddev->gendisk) {
4774 		del_gendisk(mddev->gendisk);
4775 		put_disk(mddev->gendisk);
4776 	}
4777 	if (mddev->queue)
4778 		blk_cleanup_queue(mddev->queue);
4779 
4780 	kfree(mddev);
4781 }
4782 
4783 static const struct sysfs_ops md_sysfs_ops = {
4784 	.show	= md_attr_show,
4785 	.store	= md_attr_store,
4786 };
4787 static struct kobj_type md_ktype = {
4788 	.release	= md_free,
4789 	.sysfs_ops	= &md_sysfs_ops,
4790 	.default_attrs	= md_default_attrs,
4791 };
4792 
4793 int mdp_major = 0;
4794 
4795 static void mddev_delayed_delete(struct work_struct *ws)
4796 {
4797 	struct mddev *mddev = container_of(ws, struct mddev, del_work);
4798 
4799 	sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4800 	kobject_del(&mddev->kobj);
4801 	kobject_put(&mddev->kobj);
4802 }
4803 
4804 static int md_alloc(dev_t dev, char *name)
4805 {
4806 	static DEFINE_MUTEX(disks_mutex);
4807 	struct mddev *mddev = mddev_find(dev);
4808 	struct gendisk *disk;
4809 	int partitioned;
4810 	int shift;
4811 	int unit;
4812 	int error;
4813 
4814 	if (!mddev)
4815 		return -ENODEV;
4816 
4817 	partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4818 	shift = partitioned ? MdpMinorShift : 0;
4819 	unit = MINOR(mddev->unit) >> shift;
4820 
4821 	/* wait for any previous instance of this device to be
4822 	 * completely removed (mddev_delayed_delete).
4823 	 */
4824 	flush_workqueue(md_misc_wq);
4825 
4826 	mutex_lock(&disks_mutex);
4827 	error = -EEXIST;
4828 	if (mddev->gendisk)
4829 		goto abort;
4830 
4831 	if (name) {
4832 		/* Need to ensure that 'name' is not a duplicate.
4833 		 */
4834 		struct mddev *mddev2;
4835 		spin_lock(&all_mddevs_lock);
4836 
4837 		list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4838 			if (mddev2->gendisk &&
4839 			    strcmp(mddev2->gendisk->disk_name, name) == 0) {
4840 				spin_unlock(&all_mddevs_lock);
4841 				goto abort;
4842 			}
4843 		spin_unlock(&all_mddevs_lock);
4844 	}
4845 
4846 	error = -ENOMEM;
4847 	mddev->queue = blk_alloc_queue(GFP_KERNEL);
4848 	if (!mddev->queue)
4849 		goto abort;
4850 	mddev->queue->queuedata = mddev;
4851 
4852 	blk_queue_make_request(mddev->queue, md_make_request);
4853 	blk_set_stacking_limits(&mddev->queue->limits);
4854 
4855 	disk = alloc_disk(1 << shift);
4856 	if (!disk) {
4857 		blk_cleanup_queue(mddev->queue);
4858 		mddev->queue = NULL;
4859 		goto abort;
4860 	}
4861 	disk->major = MAJOR(mddev->unit);
4862 	disk->first_minor = unit << shift;
4863 	if (name)
4864 		strcpy(disk->disk_name, name);
4865 	else if (partitioned)
4866 		sprintf(disk->disk_name, "md_d%d", unit);
4867 	else
4868 		sprintf(disk->disk_name, "md%d", unit);
4869 	disk->fops = &md_fops;
4870 	disk->private_data = mddev;
4871 	disk->queue = mddev->queue;
4872 	blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4873 	/* Allow extended partitions.  This makes the
4874 	 * 'mdp' device redundant, but we can't really
4875 	 * remove it now.
4876 	 */
4877 	disk->flags |= GENHD_FL_EXT_DEVT;
4878 	mddev->gendisk = disk;
4879 	/* As soon as we call add_disk(), another thread could get
4880 	 * through to md_open, so make sure it doesn't get too far
4881 	 */
4882 	mutex_lock(&mddev->open_mutex);
4883 	add_disk(disk);
4884 
4885 	error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4886 				     &disk_to_dev(disk)->kobj, "%s", "md");
4887 	if (error) {
4888 		/* This isn't possible, but as kobject_init_and_add is marked
4889 		 * __must_check, we must do something with the result
4890 		 */
4891 		printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4892 		       disk->disk_name);
4893 		error = 0;
4894 	}
4895 	if (mddev->kobj.sd &&
4896 	    sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4897 		printk(KERN_DEBUG "pointless warning\n");
4898 	mutex_unlock(&mddev->open_mutex);
4899  abort:
4900 	mutex_unlock(&disks_mutex);
4901 	if (!error && mddev->kobj.sd) {
4902 		kobject_uevent(&mddev->kobj, KOBJ_ADD);
4903 		mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4904 	}
4905 	mddev_put(mddev);
4906 	return error;
4907 }
4908 
4909 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4910 {
4911 	md_alloc(dev, NULL);
4912 	return NULL;
4913 }
4914 
4915 static int add_named_array(const char *val, struct kernel_param *kp)
4916 {
4917 	/* val must be "md_*" where * is not all digits.
4918 	 * We allocate an array with a large free minor number, and
4919 	 * set the name to val.  val must not already be an active name.
4920 	 */
4921 	int len = strlen(val);
4922 	char buf[DISK_NAME_LEN];
4923 
4924 	while (len && val[len-1] == '\n')
4925 		len--;
4926 	if (len >= DISK_NAME_LEN)
4927 		return -E2BIG;
4928 	strlcpy(buf, val, len+1);
4929 	if (strncmp(buf, "md_", 3) != 0)
4930 		return -EINVAL;
4931 	return md_alloc(0, buf);
4932 }
4933 
4934 static void md_safemode_timeout(unsigned long data)
4935 {
4936 	struct mddev *mddev = (struct mddev *) data;
4937 
4938 	if (!atomic_read(&mddev->writes_pending)) {
4939 		mddev->safemode = 1;
4940 		if (mddev->external)
4941 			sysfs_notify_dirent_safe(mddev->sysfs_state);
4942 	}
4943 	md_wakeup_thread(mddev->thread);
4944 }
4945 
4946 static int start_dirty_degraded;
4947 
4948 int md_run(struct mddev *mddev)
4949 {
4950 	int err;
4951 	struct md_rdev *rdev;
4952 	struct md_personality *pers;
4953 
4954 	if (list_empty(&mddev->disks))
4955 		/* cannot run an array with no devices.. */
4956 		return -EINVAL;
4957 
4958 	if (mddev->pers)
4959 		return -EBUSY;
4960 	/* Cannot run until previous stop completes properly */
4961 	if (mddev->sysfs_active)
4962 		return -EBUSY;
4963 
4964 	/*
4965 	 * Analyze all RAID superblock(s)
4966 	 */
4967 	if (!mddev->raid_disks) {
4968 		if (!mddev->persistent)
4969 			return -EINVAL;
4970 		analyze_sbs(mddev);
4971 	}
4972 
4973 	if (mddev->level != LEVEL_NONE)
4974 		request_module("md-level-%d", mddev->level);
4975 	else if (mddev->clevel[0])
4976 		request_module("md-%s", mddev->clevel);
4977 
4978 	/*
4979 	 * Drop all container device buffers, from now on
4980 	 * the only valid external interface is through the md
4981 	 * device.
4982 	 */
4983 	rdev_for_each(rdev, mddev) {
4984 		if (test_bit(Faulty, &rdev->flags))
4985 			continue;
4986 		sync_blockdev(rdev->bdev);
4987 		invalidate_bdev(rdev->bdev);
4988 
4989 		/* perform some consistency tests on the device.
4990 		 * We don't want the data to overlap the metadata,
4991 		 * Internal Bitmap issues have been handled elsewhere.
4992 		 */
4993 		if (rdev->meta_bdev) {
4994 			/* Nothing to check */;
4995 		} else if (rdev->data_offset < rdev->sb_start) {
4996 			if (mddev->dev_sectors &&
4997 			    rdev->data_offset + mddev->dev_sectors
4998 			    > rdev->sb_start) {
4999 				printk("md: %s: data overlaps metadata\n",
5000 				       mdname(mddev));
5001 				return -EINVAL;
5002 			}
5003 		} else {
5004 			if (rdev->sb_start + rdev->sb_size/512
5005 			    > rdev->data_offset) {
5006 				printk("md: %s: metadata overlaps data\n",
5007 				       mdname(mddev));
5008 				return -EINVAL;
5009 			}
5010 		}
5011 		sysfs_notify_dirent_safe(rdev->sysfs_state);
5012 	}
5013 
5014 	if (mddev->bio_set == NULL)
5015 		mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
5016 
5017 	spin_lock(&pers_lock);
5018 	pers = find_pers(mddev->level, mddev->clevel);
5019 	if (!pers || !try_module_get(pers->owner)) {
5020 		spin_unlock(&pers_lock);
5021 		if (mddev->level != LEVEL_NONE)
5022 			printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5023 			       mddev->level);
5024 		else
5025 			printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5026 			       mddev->clevel);
5027 		return -EINVAL;
5028 	}
5029 	mddev->pers = pers;
5030 	spin_unlock(&pers_lock);
5031 	if (mddev->level != pers->level) {
5032 		mddev->level = pers->level;
5033 		mddev->new_level = pers->level;
5034 	}
5035 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5036 
5037 	if (mddev->reshape_position != MaxSector &&
5038 	    pers->start_reshape == NULL) {
5039 		/* This personality cannot handle reshaping... */
5040 		mddev->pers = NULL;
5041 		module_put(pers->owner);
5042 		return -EINVAL;
5043 	}
5044 
5045 	if (pers->sync_request) {
5046 		/* Warn if this is a potentially silly
5047 		 * configuration.
5048 		 */
5049 		char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5050 		struct md_rdev *rdev2;
5051 		int warned = 0;
5052 
5053 		rdev_for_each(rdev, mddev)
5054 			rdev_for_each(rdev2, mddev) {
5055 				if (rdev < rdev2 &&
5056 				    rdev->bdev->bd_contains ==
5057 				    rdev2->bdev->bd_contains) {
5058 					printk(KERN_WARNING
5059 					       "%s: WARNING: %s appears to be"
5060 					       " on the same physical disk as"
5061 					       " %s.\n",
5062 					       mdname(mddev),
5063 					       bdevname(rdev->bdev,b),
5064 					       bdevname(rdev2->bdev,b2));
5065 					warned = 1;
5066 				}
5067 			}
5068 
5069 		if (warned)
5070 			printk(KERN_WARNING
5071 			       "True protection against single-disk"
5072 			       " failure might be compromised.\n");
5073 	}
5074 
5075 	mddev->recovery = 0;
5076 	/* may be over-ridden by personality */
5077 	mddev->resync_max_sectors = mddev->dev_sectors;
5078 
5079 	mddev->ok_start_degraded = start_dirty_degraded;
5080 
5081 	if (start_readonly && mddev->ro == 0)
5082 		mddev->ro = 2; /* read-only, but switch on first write */
5083 
5084 	err = mddev->pers->run(mddev);
5085 	if (err)
5086 		printk(KERN_ERR "md: pers->run() failed ...\n");
5087 	else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
5088 		WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5089 			  " but 'external_size' not in effect?\n", __func__);
5090 		printk(KERN_ERR
5091 		       "md: invalid array_size %llu > default size %llu\n",
5092 		       (unsigned long long)mddev->array_sectors / 2,
5093 		       (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
5094 		err = -EINVAL;
5095 		mddev->pers->stop(mddev);
5096 	}
5097 	if (err == 0 && mddev->pers->sync_request &&
5098 	    (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5099 		err = bitmap_create(mddev);
5100 		if (err) {
5101 			printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5102 			       mdname(mddev), err);
5103 			mddev->pers->stop(mddev);
5104 		}
5105 	}
5106 	if (err) {
5107 		module_put(mddev->pers->owner);
5108 		mddev->pers = NULL;
5109 		bitmap_destroy(mddev);
5110 		return err;
5111 	}
5112 	if (mddev->pers->sync_request) {
5113 		if (mddev->kobj.sd &&
5114 		    sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5115 			printk(KERN_WARNING
5116 			       "md: cannot register extra attributes for %s\n",
5117 			       mdname(mddev));
5118 		mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5119 	} else if (mddev->ro == 2) /* auto-readonly not meaningful */
5120 		mddev->ro = 0;
5121 
5122  	atomic_set(&mddev->writes_pending,0);
5123 	atomic_set(&mddev->max_corr_read_errors,
5124 		   MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5125 	mddev->safemode = 0;
5126 	mddev->safemode_timer.function = md_safemode_timeout;
5127 	mddev->safemode_timer.data = (unsigned long) mddev;
5128 	mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5129 	mddev->in_sync = 1;
5130 	smp_wmb();
5131 	mddev->ready = 1;
5132 	rdev_for_each(rdev, mddev)
5133 		if (rdev->raid_disk >= 0)
5134 			if (sysfs_link_rdev(mddev, rdev))
5135 				/* failure here is OK */;
5136 
5137 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5138 
5139 	if (mddev->flags)
5140 		md_update_sb(mddev, 0);
5141 
5142 	md_new_event(mddev);
5143 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5144 	sysfs_notify_dirent_safe(mddev->sysfs_action);
5145 	sysfs_notify(&mddev->kobj, NULL, "degraded");
5146 	return 0;
5147 }
5148 EXPORT_SYMBOL_GPL(md_run);
5149 
5150 static int do_md_run(struct mddev *mddev)
5151 {
5152 	int err;
5153 
5154 	err = md_run(mddev);
5155 	if (err)
5156 		goto out;
5157 	err = bitmap_load(mddev);
5158 	if (err) {
5159 		bitmap_destroy(mddev);
5160 		goto out;
5161 	}
5162 
5163 	md_wakeup_thread(mddev->thread);
5164 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5165 
5166 	set_capacity(mddev->gendisk, mddev->array_sectors);
5167 	revalidate_disk(mddev->gendisk);
5168 	mddev->changed = 1;
5169 	kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5170 out:
5171 	return err;
5172 }
5173 
5174 static int restart_array(struct mddev *mddev)
5175 {
5176 	struct gendisk *disk = mddev->gendisk;
5177 
5178 	/* Complain if it has no devices */
5179 	if (list_empty(&mddev->disks))
5180 		return -ENXIO;
5181 	if (!mddev->pers)
5182 		return -EINVAL;
5183 	if (!mddev->ro)
5184 		return -EBUSY;
5185 	mddev->safemode = 0;
5186 	mddev->ro = 0;
5187 	set_disk_ro(disk, 0);
5188 	printk(KERN_INFO "md: %s switched to read-write mode.\n",
5189 		mdname(mddev));
5190 	/* Kick recovery or resync if necessary */
5191 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5192 	md_wakeup_thread(mddev->thread);
5193 	md_wakeup_thread(mddev->sync_thread);
5194 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5195 	return 0;
5196 }
5197 
5198 /* similar to deny_write_access, but accounts for our holding a reference
5199  * to the file ourselves */
5200 static int deny_bitmap_write_access(struct file * file)
5201 {
5202 	struct inode *inode = file->f_mapping->host;
5203 
5204 	spin_lock(&inode->i_lock);
5205 	if (atomic_read(&inode->i_writecount) > 1) {
5206 		spin_unlock(&inode->i_lock);
5207 		return -ETXTBSY;
5208 	}
5209 	atomic_set(&inode->i_writecount, -1);
5210 	spin_unlock(&inode->i_lock);
5211 
5212 	return 0;
5213 }
5214 
5215 void restore_bitmap_write_access(struct file *file)
5216 {
5217 	struct inode *inode = file->f_mapping->host;
5218 
5219 	spin_lock(&inode->i_lock);
5220 	atomic_set(&inode->i_writecount, 1);
5221 	spin_unlock(&inode->i_lock);
5222 }
5223 
5224 static void md_clean(struct mddev *mddev)
5225 {
5226 	mddev->array_sectors = 0;
5227 	mddev->external_size = 0;
5228 	mddev->dev_sectors = 0;
5229 	mddev->raid_disks = 0;
5230 	mddev->recovery_cp = 0;
5231 	mddev->resync_min = 0;
5232 	mddev->resync_max = MaxSector;
5233 	mddev->reshape_position = MaxSector;
5234 	mddev->external = 0;
5235 	mddev->persistent = 0;
5236 	mddev->level = LEVEL_NONE;
5237 	mddev->clevel[0] = 0;
5238 	mddev->flags = 0;
5239 	mddev->ro = 0;
5240 	mddev->metadata_type[0] = 0;
5241 	mddev->chunk_sectors = 0;
5242 	mddev->ctime = mddev->utime = 0;
5243 	mddev->layout = 0;
5244 	mddev->max_disks = 0;
5245 	mddev->events = 0;
5246 	mddev->can_decrease_events = 0;
5247 	mddev->delta_disks = 0;
5248 	mddev->reshape_backwards = 0;
5249 	mddev->new_level = LEVEL_NONE;
5250 	mddev->new_layout = 0;
5251 	mddev->new_chunk_sectors = 0;
5252 	mddev->curr_resync = 0;
5253 	atomic64_set(&mddev->resync_mismatches, 0);
5254 	mddev->suspend_lo = mddev->suspend_hi = 0;
5255 	mddev->sync_speed_min = mddev->sync_speed_max = 0;
5256 	mddev->recovery = 0;
5257 	mddev->in_sync = 0;
5258 	mddev->changed = 0;
5259 	mddev->degraded = 0;
5260 	mddev->safemode = 0;
5261 	mddev->merge_check_needed = 0;
5262 	mddev->bitmap_info.offset = 0;
5263 	mddev->bitmap_info.default_offset = 0;
5264 	mddev->bitmap_info.default_space = 0;
5265 	mddev->bitmap_info.chunksize = 0;
5266 	mddev->bitmap_info.daemon_sleep = 0;
5267 	mddev->bitmap_info.max_write_behind = 0;
5268 }
5269 
5270 static void __md_stop_writes(struct mddev *mddev)
5271 {
5272 	if (mddev->sync_thread) {
5273 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5274 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5275 		reap_sync_thread(mddev);
5276 	}
5277 
5278 	del_timer_sync(&mddev->safemode_timer);
5279 
5280 	bitmap_flush(mddev);
5281 	md_super_wait(mddev);
5282 
5283 	if (!mddev->in_sync || mddev->flags) {
5284 		/* mark array as shutdown cleanly */
5285 		mddev->in_sync = 1;
5286 		md_update_sb(mddev, 1);
5287 	}
5288 }
5289 
5290 void md_stop_writes(struct mddev *mddev)
5291 {
5292 	mddev_lock(mddev);
5293 	__md_stop_writes(mddev);
5294 	mddev_unlock(mddev);
5295 }
5296 EXPORT_SYMBOL_GPL(md_stop_writes);
5297 
5298 static void __md_stop(struct mddev *mddev)
5299 {
5300 	mddev->ready = 0;
5301 	mddev->pers->stop(mddev);
5302 	if (mddev->pers->sync_request && mddev->to_remove == NULL)
5303 		mddev->to_remove = &md_redundancy_group;
5304 	module_put(mddev->pers->owner);
5305 	mddev->pers = NULL;
5306 	clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5307 }
5308 
5309 void md_stop(struct mddev *mddev)
5310 {
5311 	/* stop the array and free an attached data structures.
5312 	 * This is called from dm-raid
5313 	 */
5314 	__md_stop(mddev);
5315 	bitmap_destroy(mddev);
5316 	if (mddev->bio_set)
5317 		bioset_free(mddev->bio_set);
5318 }
5319 
5320 EXPORT_SYMBOL_GPL(md_stop);
5321 
5322 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5323 {
5324 	int err = 0;
5325 	mutex_lock(&mddev->open_mutex);
5326 	if (atomic_read(&mddev->openers) > !!bdev) {
5327 		printk("md: %s still in use.\n",mdname(mddev));
5328 		err = -EBUSY;
5329 		goto out;
5330 	}
5331 	if (bdev)
5332 		sync_blockdev(bdev);
5333 	if (mddev->pers) {
5334 		__md_stop_writes(mddev);
5335 
5336 		err  = -ENXIO;
5337 		if (mddev->ro==1)
5338 			goto out;
5339 		mddev->ro = 1;
5340 		set_disk_ro(mddev->gendisk, 1);
5341 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5342 		sysfs_notify_dirent_safe(mddev->sysfs_state);
5343 		err = 0;
5344 	}
5345 out:
5346 	mutex_unlock(&mddev->open_mutex);
5347 	return err;
5348 }
5349 
5350 /* mode:
5351  *   0 - completely stop and dis-assemble array
5352  *   2 - stop but do not disassemble array
5353  */
5354 static int do_md_stop(struct mddev * mddev, int mode,
5355 		      struct block_device *bdev)
5356 {
5357 	struct gendisk *disk = mddev->gendisk;
5358 	struct md_rdev *rdev;
5359 
5360 	mutex_lock(&mddev->open_mutex);
5361 	if (atomic_read(&mddev->openers) > !!bdev ||
5362 	    mddev->sysfs_active) {
5363 		printk("md: %s still in use.\n",mdname(mddev));
5364 		mutex_unlock(&mddev->open_mutex);
5365 		return -EBUSY;
5366 	}
5367 	if (bdev)
5368 		/* It is possible IO was issued on some other
5369 		 * open file which was closed before we took ->open_mutex.
5370 		 * As that was not the last close __blkdev_put will not
5371 		 * have called sync_blockdev, so we must.
5372 		 */
5373 		sync_blockdev(bdev);
5374 
5375 	if (mddev->pers) {
5376 		if (mddev->ro)
5377 			set_disk_ro(disk, 0);
5378 
5379 		__md_stop_writes(mddev);
5380 		__md_stop(mddev);
5381 		mddev->queue->merge_bvec_fn = NULL;
5382 		mddev->queue->backing_dev_info.congested_fn = NULL;
5383 
5384 		/* tell userspace to handle 'inactive' */
5385 		sysfs_notify_dirent_safe(mddev->sysfs_state);
5386 
5387 		rdev_for_each(rdev, mddev)
5388 			if (rdev->raid_disk >= 0)
5389 				sysfs_unlink_rdev(mddev, rdev);
5390 
5391 		set_capacity(disk, 0);
5392 		mutex_unlock(&mddev->open_mutex);
5393 		mddev->changed = 1;
5394 		revalidate_disk(disk);
5395 
5396 		if (mddev->ro)
5397 			mddev->ro = 0;
5398 	} else
5399 		mutex_unlock(&mddev->open_mutex);
5400 	/*
5401 	 * Free resources if final stop
5402 	 */
5403 	if (mode == 0) {
5404 		printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5405 
5406 		bitmap_destroy(mddev);
5407 		if (mddev->bitmap_info.file) {
5408 			restore_bitmap_write_access(mddev->bitmap_info.file);
5409 			fput(mddev->bitmap_info.file);
5410 			mddev->bitmap_info.file = NULL;
5411 		}
5412 		mddev->bitmap_info.offset = 0;
5413 
5414 		export_array(mddev);
5415 
5416 		md_clean(mddev);
5417 		kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5418 		if (mddev->hold_active == UNTIL_STOP)
5419 			mddev->hold_active = 0;
5420 	}
5421 	blk_integrity_unregister(disk);
5422 	md_new_event(mddev);
5423 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5424 	return 0;
5425 }
5426 
5427 #ifndef MODULE
5428 static void autorun_array(struct mddev *mddev)
5429 {
5430 	struct md_rdev *rdev;
5431 	int err;
5432 
5433 	if (list_empty(&mddev->disks))
5434 		return;
5435 
5436 	printk(KERN_INFO "md: running: ");
5437 
5438 	rdev_for_each(rdev, mddev) {
5439 		char b[BDEVNAME_SIZE];
5440 		printk("<%s>", bdevname(rdev->bdev,b));
5441 	}
5442 	printk("\n");
5443 
5444 	err = do_md_run(mddev);
5445 	if (err) {
5446 		printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5447 		do_md_stop(mddev, 0, NULL);
5448 	}
5449 }
5450 
5451 /*
5452  * lets try to run arrays based on all disks that have arrived
5453  * until now. (those are in pending_raid_disks)
5454  *
5455  * the method: pick the first pending disk, collect all disks with
5456  * the same UUID, remove all from the pending list and put them into
5457  * the 'same_array' list. Then order this list based on superblock
5458  * update time (freshest comes first), kick out 'old' disks and
5459  * compare superblocks. If everything's fine then run it.
5460  *
5461  * If "unit" is allocated, then bump its reference count
5462  */
5463 static void autorun_devices(int part)
5464 {
5465 	struct md_rdev *rdev0, *rdev, *tmp;
5466 	struct mddev *mddev;
5467 	char b[BDEVNAME_SIZE];
5468 
5469 	printk(KERN_INFO "md: autorun ...\n");
5470 	while (!list_empty(&pending_raid_disks)) {
5471 		int unit;
5472 		dev_t dev;
5473 		LIST_HEAD(candidates);
5474 		rdev0 = list_entry(pending_raid_disks.next,
5475 					 struct md_rdev, same_set);
5476 
5477 		printk(KERN_INFO "md: considering %s ...\n",
5478 			bdevname(rdev0->bdev,b));
5479 		INIT_LIST_HEAD(&candidates);
5480 		rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5481 			if (super_90_load(rdev, rdev0, 0) >= 0) {
5482 				printk(KERN_INFO "md:  adding %s ...\n",
5483 					bdevname(rdev->bdev,b));
5484 				list_move(&rdev->same_set, &candidates);
5485 			}
5486 		/*
5487 		 * now we have a set of devices, with all of them having
5488 		 * mostly sane superblocks. It's time to allocate the
5489 		 * mddev.
5490 		 */
5491 		if (part) {
5492 			dev = MKDEV(mdp_major,
5493 				    rdev0->preferred_minor << MdpMinorShift);
5494 			unit = MINOR(dev) >> MdpMinorShift;
5495 		} else {
5496 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5497 			unit = MINOR(dev);
5498 		}
5499 		if (rdev0->preferred_minor != unit) {
5500 			printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5501 			       bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5502 			break;
5503 		}
5504 
5505 		md_probe(dev, NULL, NULL);
5506 		mddev = mddev_find(dev);
5507 		if (!mddev || !mddev->gendisk) {
5508 			if (mddev)
5509 				mddev_put(mddev);
5510 			printk(KERN_ERR
5511 				"md: cannot allocate memory for md drive.\n");
5512 			break;
5513 		}
5514 		if (mddev_lock(mddev))
5515 			printk(KERN_WARNING "md: %s locked, cannot run\n",
5516 			       mdname(mddev));
5517 		else if (mddev->raid_disks || mddev->major_version
5518 			 || !list_empty(&mddev->disks)) {
5519 			printk(KERN_WARNING
5520 				"md: %s already running, cannot run %s\n",
5521 				mdname(mddev), bdevname(rdev0->bdev,b));
5522 			mddev_unlock(mddev);
5523 		} else {
5524 			printk(KERN_INFO "md: created %s\n", mdname(mddev));
5525 			mddev->persistent = 1;
5526 			rdev_for_each_list(rdev, tmp, &candidates) {
5527 				list_del_init(&rdev->same_set);
5528 				if (bind_rdev_to_array(rdev, mddev))
5529 					export_rdev(rdev);
5530 			}
5531 			autorun_array(mddev);
5532 			mddev_unlock(mddev);
5533 		}
5534 		/* on success, candidates will be empty, on error
5535 		 * it won't...
5536 		 */
5537 		rdev_for_each_list(rdev, tmp, &candidates) {
5538 			list_del_init(&rdev->same_set);
5539 			export_rdev(rdev);
5540 		}
5541 		mddev_put(mddev);
5542 	}
5543 	printk(KERN_INFO "md: ... autorun DONE.\n");
5544 }
5545 #endif /* !MODULE */
5546 
5547 static int get_version(void __user * arg)
5548 {
5549 	mdu_version_t ver;
5550 
5551 	ver.major = MD_MAJOR_VERSION;
5552 	ver.minor = MD_MINOR_VERSION;
5553 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
5554 
5555 	if (copy_to_user(arg, &ver, sizeof(ver)))
5556 		return -EFAULT;
5557 
5558 	return 0;
5559 }
5560 
5561 static int get_array_info(struct mddev * mddev, void __user * arg)
5562 {
5563 	mdu_array_info_t info;
5564 	int nr,working,insync,failed,spare;
5565 	struct md_rdev *rdev;
5566 
5567 	nr = working = insync = failed = spare = 0;
5568 	rcu_read_lock();
5569 	rdev_for_each_rcu(rdev, mddev) {
5570 		nr++;
5571 		if (test_bit(Faulty, &rdev->flags))
5572 			failed++;
5573 		else {
5574 			working++;
5575 			if (test_bit(In_sync, &rdev->flags))
5576 				insync++;
5577 			else
5578 				spare++;
5579 		}
5580 	}
5581 	rcu_read_unlock();
5582 
5583 	info.major_version = mddev->major_version;
5584 	info.minor_version = mddev->minor_version;
5585 	info.patch_version = MD_PATCHLEVEL_VERSION;
5586 	info.ctime         = mddev->ctime;
5587 	info.level         = mddev->level;
5588 	info.size          = mddev->dev_sectors / 2;
5589 	if (info.size != mddev->dev_sectors / 2) /* overflow */
5590 		info.size = -1;
5591 	info.nr_disks      = nr;
5592 	info.raid_disks    = mddev->raid_disks;
5593 	info.md_minor      = mddev->md_minor;
5594 	info.not_persistent= !mddev->persistent;
5595 
5596 	info.utime         = mddev->utime;
5597 	info.state         = 0;
5598 	if (mddev->in_sync)
5599 		info.state = (1<<MD_SB_CLEAN);
5600 	if (mddev->bitmap && mddev->bitmap_info.offset)
5601 		info.state = (1<<MD_SB_BITMAP_PRESENT);
5602 	info.active_disks  = insync;
5603 	info.working_disks = working;
5604 	info.failed_disks  = failed;
5605 	info.spare_disks   = spare;
5606 
5607 	info.layout        = mddev->layout;
5608 	info.chunk_size    = mddev->chunk_sectors << 9;
5609 
5610 	if (copy_to_user(arg, &info, sizeof(info)))
5611 		return -EFAULT;
5612 
5613 	return 0;
5614 }
5615 
5616 static int get_bitmap_file(struct mddev * mddev, void __user * arg)
5617 {
5618 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5619 	char *ptr, *buf = NULL;
5620 	int err = -ENOMEM;
5621 
5622 	if (md_allow_write(mddev))
5623 		file = kmalloc(sizeof(*file), GFP_NOIO);
5624 	else
5625 		file = kmalloc(sizeof(*file), GFP_KERNEL);
5626 
5627 	if (!file)
5628 		goto out;
5629 
5630 	/* bitmap disabled, zero the first byte and copy out */
5631 	if (!mddev->bitmap || !mddev->bitmap->storage.file) {
5632 		file->pathname[0] = '\0';
5633 		goto copy_out;
5634 	}
5635 
5636 	buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5637 	if (!buf)
5638 		goto out;
5639 
5640 	ptr = d_path(&mddev->bitmap->storage.file->f_path,
5641 		     buf, sizeof(file->pathname));
5642 	if (IS_ERR(ptr))
5643 		goto out;
5644 
5645 	strcpy(file->pathname, ptr);
5646 
5647 copy_out:
5648 	err = 0;
5649 	if (copy_to_user(arg, file, sizeof(*file)))
5650 		err = -EFAULT;
5651 out:
5652 	kfree(buf);
5653 	kfree(file);
5654 	return err;
5655 }
5656 
5657 static int get_disk_info(struct mddev * mddev, void __user * arg)
5658 {
5659 	mdu_disk_info_t info;
5660 	struct md_rdev *rdev;
5661 
5662 	if (copy_from_user(&info, arg, sizeof(info)))
5663 		return -EFAULT;
5664 
5665 	rcu_read_lock();
5666 	rdev = find_rdev_nr_rcu(mddev, info.number);
5667 	if (rdev) {
5668 		info.major = MAJOR(rdev->bdev->bd_dev);
5669 		info.minor = MINOR(rdev->bdev->bd_dev);
5670 		info.raid_disk = rdev->raid_disk;
5671 		info.state = 0;
5672 		if (test_bit(Faulty, &rdev->flags))
5673 			info.state |= (1<<MD_DISK_FAULTY);
5674 		else if (test_bit(In_sync, &rdev->flags)) {
5675 			info.state |= (1<<MD_DISK_ACTIVE);
5676 			info.state |= (1<<MD_DISK_SYNC);
5677 		}
5678 		if (test_bit(WriteMostly, &rdev->flags))
5679 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
5680 	} else {
5681 		info.major = info.minor = 0;
5682 		info.raid_disk = -1;
5683 		info.state = (1<<MD_DISK_REMOVED);
5684 	}
5685 	rcu_read_unlock();
5686 
5687 	if (copy_to_user(arg, &info, sizeof(info)))
5688 		return -EFAULT;
5689 
5690 	return 0;
5691 }
5692 
5693 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
5694 {
5695 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5696 	struct md_rdev *rdev;
5697 	dev_t dev = MKDEV(info->major,info->minor);
5698 
5699 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5700 		return -EOVERFLOW;
5701 
5702 	if (!mddev->raid_disks) {
5703 		int err;
5704 		/* expecting a device which has a superblock */
5705 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5706 		if (IS_ERR(rdev)) {
5707 			printk(KERN_WARNING
5708 				"md: md_import_device returned %ld\n",
5709 				PTR_ERR(rdev));
5710 			return PTR_ERR(rdev);
5711 		}
5712 		if (!list_empty(&mddev->disks)) {
5713 			struct md_rdev *rdev0
5714 				= list_entry(mddev->disks.next,
5715 					     struct md_rdev, same_set);
5716 			err = super_types[mddev->major_version]
5717 				.load_super(rdev, rdev0, mddev->minor_version);
5718 			if (err < 0) {
5719 				printk(KERN_WARNING
5720 					"md: %s has different UUID to %s\n",
5721 					bdevname(rdev->bdev,b),
5722 					bdevname(rdev0->bdev,b2));
5723 				export_rdev(rdev);
5724 				return -EINVAL;
5725 			}
5726 		}
5727 		err = bind_rdev_to_array(rdev, mddev);
5728 		if (err)
5729 			export_rdev(rdev);
5730 		return err;
5731 	}
5732 
5733 	/*
5734 	 * add_new_disk can be used once the array is assembled
5735 	 * to add "hot spares".  They must already have a superblock
5736 	 * written
5737 	 */
5738 	if (mddev->pers) {
5739 		int err;
5740 		if (!mddev->pers->hot_add_disk) {
5741 			printk(KERN_WARNING
5742 				"%s: personality does not support diskops!\n",
5743 			       mdname(mddev));
5744 			return -EINVAL;
5745 		}
5746 		if (mddev->persistent)
5747 			rdev = md_import_device(dev, mddev->major_version,
5748 						mddev->minor_version);
5749 		else
5750 			rdev = md_import_device(dev, -1, -1);
5751 		if (IS_ERR(rdev)) {
5752 			printk(KERN_WARNING
5753 				"md: md_import_device returned %ld\n",
5754 				PTR_ERR(rdev));
5755 			return PTR_ERR(rdev);
5756 		}
5757 		/* set saved_raid_disk if appropriate */
5758 		if (!mddev->persistent) {
5759 			if (info->state & (1<<MD_DISK_SYNC)  &&
5760 			    info->raid_disk < mddev->raid_disks) {
5761 				rdev->raid_disk = info->raid_disk;
5762 				set_bit(In_sync, &rdev->flags);
5763 			} else
5764 				rdev->raid_disk = -1;
5765 		} else
5766 			super_types[mddev->major_version].
5767 				validate_super(mddev, rdev);
5768 		if ((info->state & (1<<MD_DISK_SYNC)) &&
5769 		     rdev->raid_disk != info->raid_disk) {
5770 			/* This was a hot-add request, but events doesn't
5771 			 * match, so reject it.
5772 			 */
5773 			export_rdev(rdev);
5774 			return -EINVAL;
5775 		}
5776 
5777 		if (test_bit(In_sync, &rdev->flags))
5778 			rdev->saved_raid_disk = rdev->raid_disk;
5779 		else
5780 			rdev->saved_raid_disk = -1;
5781 
5782 		clear_bit(In_sync, &rdev->flags); /* just to be sure */
5783 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5784 			set_bit(WriteMostly, &rdev->flags);
5785 		else
5786 			clear_bit(WriteMostly, &rdev->flags);
5787 
5788 		rdev->raid_disk = -1;
5789 		err = bind_rdev_to_array(rdev, mddev);
5790 		if (!err && !mddev->pers->hot_remove_disk) {
5791 			/* If there is hot_add_disk but no hot_remove_disk
5792 			 * then added disks for geometry changes,
5793 			 * and should be added immediately.
5794 			 */
5795 			super_types[mddev->major_version].
5796 				validate_super(mddev, rdev);
5797 			err = mddev->pers->hot_add_disk(mddev, rdev);
5798 			if (err)
5799 				unbind_rdev_from_array(rdev);
5800 		}
5801 		if (err)
5802 			export_rdev(rdev);
5803 		else
5804 			sysfs_notify_dirent_safe(rdev->sysfs_state);
5805 
5806 		md_update_sb(mddev, 1);
5807 		if (mddev->degraded)
5808 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5809 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5810 		if (!err)
5811 			md_new_event(mddev);
5812 		md_wakeup_thread(mddev->thread);
5813 		return err;
5814 	}
5815 
5816 	/* otherwise, add_new_disk is only allowed
5817 	 * for major_version==0 superblocks
5818 	 */
5819 	if (mddev->major_version != 0) {
5820 		printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5821 		       mdname(mddev));
5822 		return -EINVAL;
5823 	}
5824 
5825 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
5826 		int err;
5827 		rdev = md_import_device(dev, -1, 0);
5828 		if (IS_ERR(rdev)) {
5829 			printk(KERN_WARNING
5830 				"md: error, md_import_device() returned %ld\n",
5831 				PTR_ERR(rdev));
5832 			return PTR_ERR(rdev);
5833 		}
5834 		rdev->desc_nr = info->number;
5835 		if (info->raid_disk < mddev->raid_disks)
5836 			rdev->raid_disk = info->raid_disk;
5837 		else
5838 			rdev->raid_disk = -1;
5839 
5840 		if (rdev->raid_disk < mddev->raid_disks)
5841 			if (info->state & (1<<MD_DISK_SYNC))
5842 				set_bit(In_sync, &rdev->flags);
5843 
5844 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5845 			set_bit(WriteMostly, &rdev->flags);
5846 
5847 		if (!mddev->persistent) {
5848 			printk(KERN_INFO "md: nonpersistent superblock ...\n");
5849 			rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5850 		} else
5851 			rdev->sb_start = calc_dev_sboffset(rdev);
5852 		rdev->sectors = rdev->sb_start;
5853 
5854 		err = bind_rdev_to_array(rdev, mddev);
5855 		if (err) {
5856 			export_rdev(rdev);
5857 			return err;
5858 		}
5859 	}
5860 
5861 	return 0;
5862 }
5863 
5864 static int hot_remove_disk(struct mddev * mddev, dev_t dev)
5865 {
5866 	char b[BDEVNAME_SIZE];
5867 	struct md_rdev *rdev;
5868 
5869 	rdev = find_rdev(mddev, dev);
5870 	if (!rdev)
5871 		return -ENXIO;
5872 
5873 	if (rdev->raid_disk >= 0)
5874 		goto busy;
5875 
5876 	kick_rdev_from_array(rdev);
5877 	md_update_sb(mddev, 1);
5878 	md_new_event(mddev);
5879 
5880 	return 0;
5881 busy:
5882 	printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5883 		bdevname(rdev->bdev,b), mdname(mddev));
5884 	return -EBUSY;
5885 }
5886 
5887 static int hot_add_disk(struct mddev * mddev, dev_t dev)
5888 {
5889 	char b[BDEVNAME_SIZE];
5890 	int err;
5891 	struct md_rdev *rdev;
5892 
5893 	if (!mddev->pers)
5894 		return -ENODEV;
5895 
5896 	if (mddev->major_version != 0) {
5897 		printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5898 			" version-0 superblocks.\n",
5899 			mdname(mddev));
5900 		return -EINVAL;
5901 	}
5902 	if (!mddev->pers->hot_add_disk) {
5903 		printk(KERN_WARNING
5904 			"%s: personality does not support diskops!\n",
5905 			mdname(mddev));
5906 		return -EINVAL;
5907 	}
5908 
5909 	rdev = md_import_device(dev, -1, 0);
5910 	if (IS_ERR(rdev)) {
5911 		printk(KERN_WARNING
5912 			"md: error, md_import_device() returned %ld\n",
5913 			PTR_ERR(rdev));
5914 		return -EINVAL;
5915 	}
5916 
5917 	if (mddev->persistent)
5918 		rdev->sb_start = calc_dev_sboffset(rdev);
5919 	else
5920 		rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5921 
5922 	rdev->sectors = rdev->sb_start;
5923 
5924 	if (test_bit(Faulty, &rdev->flags)) {
5925 		printk(KERN_WARNING
5926 			"md: can not hot-add faulty %s disk to %s!\n",
5927 			bdevname(rdev->bdev,b), mdname(mddev));
5928 		err = -EINVAL;
5929 		goto abort_export;
5930 	}
5931 	clear_bit(In_sync, &rdev->flags);
5932 	rdev->desc_nr = -1;
5933 	rdev->saved_raid_disk = -1;
5934 	err = bind_rdev_to_array(rdev, mddev);
5935 	if (err)
5936 		goto abort_export;
5937 
5938 	/*
5939 	 * The rest should better be atomic, we can have disk failures
5940 	 * noticed in interrupt contexts ...
5941 	 */
5942 
5943 	rdev->raid_disk = -1;
5944 
5945 	md_update_sb(mddev, 1);
5946 
5947 	/*
5948 	 * Kick recovery, maybe this spare has to be added to the
5949 	 * array immediately.
5950 	 */
5951 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5952 	md_wakeup_thread(mddev->thread);
5953 	md_new_event(mddev);
5954 	return 0;
5955 
5956 abort_export:
5957 	export_rdev(rdev);
5958 	return err;
5959 }
5960 
5961 static int set_bitmap_file(struct mddev *mddev, int fd)
5962 {
5963 	int err;
5964 
5965 	if (mddev->pers) {
5966 		if (!mddev->pers->quiesce)
5967 			return -EBUSY;
5968 		if (mddev->recovery || mddev->sync_thread)
5969 			return -EBUSY;
5970 		/* we should be able to change the bitmap.. */
5971 	}
5972 
5973 
5974 	if (fd >= 0) {
5975 		if (mddev->bitmap)
5976 			return -EEXIST; /* cannot add when bitmap is present */
5977 		mddev->bitmap_info.file = fget(fd);
5978 
5979 		if (mddev->bitmap_info.file == NULL) {
5980 			printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5981 			       mdname(mddev));
5982 			return -EBADF;
5983 		}
5984 
5985 		err = deny_bitmap_write_access(mddev->bitmap_info.file);
5986 		if (err) {
5987 			printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5988 			       mdname(mddev));
5989 			fput(mddev->bitmap_info.file);
5990 			mddev->bitmap_info.file = NULL;
5991 			return err;
5992 		}
5993 		mddev->bitmap_info.offset = 0; /* file overrides offset */
5994 	} else if (mddev->bitmap == NULL)
5995 		return -ENOENT; /* cannot remove what isn't there */
5996 	err = 0;
5997 	if (mddev->pers) {
5998 		mddev->pers->quiesce(mddev, 1);
5999 		if (fd >= 0) {
6000 			err = bitmap_create(mddev);
6001 			if (!err)
6002 				err = bitmap_load(mddev);
6003 		}
6004 		if (fd < 0 || err) {
6005 			bitmap_destroy(mddev);
6006 			fd = -1; /* make sure to put the file */
6007 		}
6008 		mddev->pers->quiesce(mddev, 0);
6009 	}
6010 	if (fd < 0) {
6011 		if (mddev->bitmap_info.file) {
6012 			restore_bitmap_write_access(mddev->bitmap_info.file);
6013 			fput(mddev->bitmap_info.file);
6014 		}
6015 		mddev->bitmap_info.file = NULL;
6016 	}
6017 
6018 	return err;
6019 }
6020 
6021 /*
6022  * set_array_info is used two different ways
6023  * The original usage is when creating a new array.
6024  * In this usage, raid_disks is > 0 and it together with
6025  *  level, size, not_persistent,layout,chunksize determine the
6026  *  shape of the array.
6027  *  This will always create an array with a type-0.90.0 superblock.
6028  * The newer usage is when assembling an array.
6029  *  In this case raid_disks will be 0, and the major_version field is
6030  *  use to determine which style super-blocks are to be found on the devices.
6031  *  The minor and patch _version numbers are also kept incase the
6032  *  super_block handler wishes to interpret them.
6033  */
6034 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
6035 {
6036 
6037 	if (info->raid_disks == 0) {
6038 		/* just setting version number for superblock loading */
6039 		if (info->major_version < 0 ||
6040 		    info->major_version >= ARRAY_SIZE(super_types) ||
6041 		    super_types[info->major_version].name == NULL) {
6042 			/* maybe try to auto-load a module? */
6043 			printk(KERN_INFO
6044 				"md: superblock version %d not known\n",
6045 				info->major_version);
6046 			return -EINVAL;
6047 		}
6048 		mddev->major_version = info->major_version;
6049 		mddev->minor_version = info->minor_version;
6050 		mddev->patch_version = info->patch_version;
6051 		mddev->persistent = !info->not_persistent;
6052 		/* ensure mddev_put doesn't delete this now that there
6053 		 * is some minimal configuration.
6054 		 */
6055 		mddev->ctime         = get_seconds();
6056 		return 0;
6057 	}
6058 	mddev->major_version = MD_MAJOR_VERSION;
6059 	mddev->minor_version = MD_MINOR_VERSION;
6060 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
6061 	mddev->ctime         = get_seconds();
6062 
6063 	mddev->level         = info->level;
6064 	mddev->clevel[0]     = 0;
6065 	mddev->dev_sectors   = 2 * (sector_t)info->size;
6066 	mddev->raid_disks    = info->raid_disks;
6067 	/* don't set md_minor, it is determined by which /dev/md* was
6068 	 * openned
6069 	 */
6070 	if (info->state & (1<<MD_SB_CLEAN))
6071 		mddev->recovery_cp = MaxSector;
6072 	else
6073 		mddev->recovery_cp = 0;
6074 	mddev->persistent    = ! info->not_persistent;
6075 	mddev->external	     = 0;
6076 
6077 	mddev->layout        = info->layout;
6078 	mddev->chunk_sectors = info->chunk_size >> 9;
6079 
6080 	mddev->max_disks     = MD_SB_DISKS;
6081 
6082 	if (mddev->persistent)
6083 		mddev->flags         = 0;
6084 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
6085 
6086 	mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6087 	mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6088 	mddev->bitmap_info.offset = 0;
6089 
6090 	mddev->reshape_position = MaxSector;
6091 
6092 	/*
6093 	 * Generate a 128 bit UUID
6094 	 */
6095 	get_random_bytes(mddev->uuid, 16);
6096 
6097 	mddev->new_level = mddev->level;
6098 	mddev->new_chunk_sectors = mddev->chunk_sectors;
6099 	mddev->new_layout = mddev->layout;
6100 	mddev->delta_disks = 0;
6101 	mddev->reshape_backwards = 0;
6102 
6103 	return 0;
6104 }
6105 
6106 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6107 {
6108 	WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6109 
6110 	if (mddev->external_size)
6111 		return;
6112 
6113 	mddev->array_sectors = array_sectors;
6114 }
6115 EXPORT_SYMBOL(md_set_array_sectors);
6116 
6117 static int update_size(struct mddev *mddev, sector_t num_sectors)
6118 {
6119 	struct md_rdev *rdev;
6120 	int rv;
6121 	int fit = (num_sectors == 0);
6122 
6123 	if (mddev->pers->resize == NULL)
6124 		return -EINVAL;
6125 	/* The "num_sectors" is the number of sectors of each device that
6126 	 * is used.  This can only make sense for arrays with redundancy.
6127 	 * linear and raid0 always use whatever space is available. We can only
6128 	 * consider changing this number if no resync or reconstruction is
6129 	 * happening, and if the new size is acceptable. It must fit before the
6130 	 * sb_start or, if that is <data_offset, it must fit before the size
6131 	 * of each device.  If num_sectors is zero, we find the largest size
6132 	 * that fits.
6133 	 */
6134 	if (mddev->sync_thread)
6135 		return -EBUSY;
6136 
6137 	rdev_for_each(rdev, mddev) {
6138 		sector_t avail = rdev->sectors;
6139 
6140 		if (fit && (num_sectors == 0 || num_sectors > avail))
6141 			num_sectors = avail;
6142 		if (avail < num_sectors)
6143 			return -ENOSPC;
6144 	}
6145 	rv = mddev->pers->resize(mddev, num_sectors);
6146 	if (!rv)
6147 		revalidate_disk(mddev->gendisk);
6148 	return rv;
6149 }
6150 
6151 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6152 {
6153 	int rv;
6154 	struct md_rdev *rdev;
6155 	/* change the number of raid disks */
6156 	if (mddev->pers->check_reshape == NULL)
6157 		return -EINVAL;
6158 	if (raid_disks <= 0 ||
6159 	    (mddev->max_disks && raid_disks >= mddev->max_disks))
6160 		return -EINVAL;
6161 	if (mddev->sync_thread || mddev->reshape_position != MaxSector)
6162 		return -EBUSY;
6163 
6164 	rdev_for_each(rdev, mddev) {
6165 		if (mddev->raid_disks < raid_disks &&
6166 		    rdev->data_offset < rdev->new_data_offset)
6167 			return -EINVAL;
6168 		if (mddev->raid_disks > raid_disks &&
6169 		    rdev->data_offset > rdev->new_data_offset)
6170 			return -EINVAL;
6171 	}
6172 
6173 	mddev->delta_disks = raid_disks - mddev->raid_disks;
6174 	if (mddev->delta_disks < 0)
6175 		mddev->reshape_backwards = 1;
6176 	else if (mddev->delta_disks > 0)
6177 		mddev->reshape_backwards = 0;
6178 
6179 	rv = mddev->pers->check_reshape(mddev);
6180 	if (rv < 0) {
6181 		mddev->delta_disks = 0;
6182 		mddev->reshape_backwards = 0;
6183 	}
6184 	return rv;
6185 }
6186 
6187 
6188 /*
6189  * update_array_info is used to change the configuration of an
6190  * on-line array.
6191  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6192  * fields in the info are checked against the array.
6193  * Any differences that cannot be handled will cause an error.
6194  * Normally, only one change can be managed at a time.
6195  */
6196 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6197 {
6198 	int rv = 0;
6199 	int cnt = 0;
6200 	int state = 0;
6201 
6202 	/* calculate expected state,ignoring low bits */
6203 	if (mddev->bitmap && mddev->bitmap_info.offset)
6204 		state |= (1 << MD_SB_BITMAP_PRESENT);
6205 
6206 	if (mddev->major_version != info->major_version ||
6207 	    mddev->minor_version != info->minor_version ||
6208 /*	    mddev->patch_version != info->patch_version || */
6209 	    mddev->ctime         != info->ctime         ||
6210 	    mddev->level         != info->level         ||
6211 /*	    mddev->layout        != info->layout        || */
6212 	    !mddev->persistent	 != info->not_persistent||
6213 	    mddev->chunk_sectors != info->chunk_size >> 9 ||
6214 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6215 	    ((state^info->state) & 0xfffffe00)
6216 		)
6217 		return -EINVAL;
6218 	/* Check there is only one change */
6219 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6220 		cnt++;
6221 	if (mddev->raid_disks != info->raid_disks)
6222 		cnt++;
6223 	if (mddev->layout != info->layout)
6224 		cnt++;
6225 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6226 		cnt++;
6227 	if (cnt == 0)
6228 		return 0;
6229 	if (cnt > 1)
6230 		return -EINVAL;
6231 
6232 	if (mddev->layout != info->layout) {
6233 		/* Change layout
6234 		 * we don't need to do anything at the md level, the
6235 		 * personality will take care of it all.
6236 		 */
6237 		if (mddev->pers->check_reshape == NULL)
6238 			return -EINVAL;
6239 		else {
6240 			mddev->new_layout = info->layout;
6241 			rv = mddev->pers->check_reshape(mddev);
6242 			if (rv)
6243 				mddev->new_layout = mddev->layout;
6244 			return rv;
6245 		}
6246 	}
6247 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6248 		rv = update_size(mddev, (sector_t)info->size * 2);
6249 
6250 	if (mddev->raid_disks    != info->raid_disks)
6251 		rv = update_raid_disks(mddev, info->raid_disks);
6252 
6253 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6254 		if (mddev->pers->quiesce == NULL)
6255 			return -EINVAL;
6256 		if (mddev->recovery || mddev->sync_thread)
6257 			return -EBUSY;
6258 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6259 			/* add the bitmap */
6260 			if (mddev->bitmap)
6261 				return -EEXIST;
6262 			if (mddev->bitmap_info.default_offset == 0)
6263 				return -EINVAL;
6264 			mddev->bitmap_info.offset =
6265 				mddev->bitmap_info.default_offset;
6266 			mddev->bitmap_info.space =
6267 				mddev->bitmap_info.default_space;
6268 			mddev->pers->quiesce(mddev, 1);
6269 			rv = bitmap_create(mddev);
6270 			if (!rv)
6271 				rv = bitmap_load(mddev);
6272 			if (rv)
6273 				bitmap_destroy(mddev);
6274 			mddev->pers->quiesce(mddev, 0);
6275 		} else {
6276 			/* remove the bitmap */
6277 			if (!mddev->bitmap)
6278 				return -ENOENT;
6279 			if (mddev->bitmap->storage.file)
6280 				return -EINVAL;
6281 			mddev->pers->quiesce(mddev, 1);
6282 			bitmap_destroy(mddev);
6283 			mddev->pers->quiesce(mddev, 0);
6284 			mddev->bitmap_info.offset = 0;
6285 		}
6286 	}
6287 	md_update_sb(mddev, 1);
6288 	return rv;
6289 }
6290 
6291 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6292 {
6293 	struct md_rdev *rdev;
6294 	int err = 0;
6295 
6296 	if (mddev->pers == NULL)
6297 		return -ENODEV;
6298 
6299 	rcu_read_lock();
6300 	rdev = find_rdev_rcu(mddev, dev);
6301 	if (!rdev)
6302 		err =  -ENODEV;
6303 	else {
6304 		md_error(mddev, rdev);
6305 		if (!test_bit(Faulty, &rdev->flags))
6306 			err = -EBUSY;
6307 	}
6308 	rcu_read_unlock();
6309 	return err;
6310 }
6311 
6312 /*
6313  * We have a problem here : there is no easy way to give a CHS
6314  * virtual geometry. We currently pretend that we have a 2 heads
6315  * 4 sectors (with a BIG number of cylinders...). This drives
6316  * dosfs just mad... ;-)
6317  */
6318 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6319 {
6320 	struct mddev *mddev = bdev->bd_disk->private_data;
6321 
6322 	geo->heads = 2;
6323 	geo->sectors = 4;
6324 	geo->cylinders = mddev->array_sectors / 8;
6325 	return 0;
6326 }
6327 
6328 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6329 			unsigned int cmd, unsigned long arg)
6330 {
6331 	int err = 0;
6332 	void __user *argp = (void __user *)arg;
6333 	struct mddev *mddev = NULL;
6334 	int ro;
6335 
6336 	switch (cmd) {
6337 	case RAID_VERSION:
6338 	case GET_ARRAY_INFO:
6339 	case GET_DISK_INFO:
6340 		break;
6341 	default:
6342 		if (!capable(CAP_SYS_ADMIN))
6343 			return -EACCES;
6344 	}
6345 
6346 	/*
6347 	 * Commands dealing with the RAID driver but not any
6348 	 * particular array:
6349 	 */
6350 	switch (cmd) {
6351 	case RAID_VERSION:
6352 		err = get_version(argp);
6353 		goto done;
6354 
6355 	case PRINT_RAID_DEBUG:
6356 		err = 0;
6357 		md_print_devices();
6358 		goto done;
6359 
6360 #ifndef MODULE
6361 	case RAID_AUTORUN:
6362 		err = 0;
6363 		autostart_arrays(arg);
6364 		goto done;
6365 #endif
6366 	default:;
6367 	}
6368 
6369 	/*
6370 	 * Commands creating/starting a new array:
6371 	 */
6372 
6373 	mddev = bdev->bd_disk->private_data;
6374 
6375 	if (!mddev) {
6376 		BUG();
6377 		goto abort;
6378 	}
6379 
6380 	/* Some actions do not requires the mutex */
6381 	switch (cmd) {
6382 	case GET_ARRAY_INFO:
6383 		if (!mddev->raid_disks && !mddev->external)
6384 			err = -ENODEV;
6385 		else
6386 			err = get_array_info(mddev, argp);
6387 		goto abort;
6388 
6389 	case GET_DISK_INFO:
6390 		if (!mddev->raid_disks && !mddev->external)
6391 			err = -ENODEV;
6392 		else
6393 			err = get_disk_info(mddev, argp);
6394 		goto abort;
6395 
6396 	case SET_DISK_FAULTY:
6397 		err = set_disk_faulty(mddev, new_decode_dev(arg));
6398 		goto abort;
6399 	}
6400 
6401 	if (cmd == ADD_NEW_DISK)
6402 		/* need to ensure md_delayed_delete() has completed */
6403 		flush_workqueue(md_misc_wq);
6404 
6405 	err = mddev_lock(mddev);
6406 	if (err) {
6407 		printk(KERN_INFO
6408 			"md: ioctl lock interrupted, reason %d, cmd %d\n",
6409 			err, cmd);
6410 		goto abort;
6411 	}
6412 
6413 	if (cmd == SET_ARRAY_INFO) {
6414 		mdu_array_info_t info;
6415 		if (!arg)
6416 			memset(&info, 0, sizeof(info));
6417 		else if (copy_from_user(&info, argp, sizeof(info))) {
6418 			err = -EFAULT;
6419 			goto abort_unlock;
6420 		}
6421 		if (mddev->pers) {
6422 			err = update_array_info(mddev, &info);
6423 			if (err) {
6424 				printk(KERN_WARNING "md: couldn't update"
6425 				       " array info. %d\n", err);
6426 				goto abort_unlock;
6427 			}
6428 			goto done_unlock;
6429 		}
6430 		if (!list_empty(&mddev->disks)) {
6431 			printk(KERN_WARNING
6432 			       "md: array %s already has disks!\n",
6433 			       mdname(mddev));
6434 			err = -EBUSY;
6435 			goto abort_unlock;
6436 		}
6437 		if (mddev->raid_disks) {
6438 			printk(KERN_WARNING
6439 			       "md: array %s already initialised!\n",
6440 			       mdname(mddev));
6441 			err = -EBUSY;
6442 			goto abort_unlock;
6443 		}
6444 		err = set_array_info(mddev, &info);
6445 		if (err) {
6446 			printk(KERN_WARNING "md: couldn't set"
6447 			       " array info. %d\n", err);
6448 			goto abort_unlock;
6449 		}
6450 		goto done_unlock;
6451 	}
6452 
6453 	/*
6454 	 * Commands querying/configuring an existing array:
6455 	 */
6456 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6457 	 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6458 	if ((!mddev->raid_disks && !mddev->external)
6459 	    && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6460 	    && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6461 	    && cmd != GET_BITMAP_FILE) {
6462 		err = -ENODEV;
6463 		goto abort_unlock;
6464 	}
6465 
6466 	/*
6467 	 * Commands even a read-only array can execute:
6468 	 */
6469 	switch (cmd) {
6470 	case GET_BITMAP_FILE:
6471 		err = get_bitmap_file(mddev, argp);
6472 		goto done_unlock;
6473 
6474 	case RESTART_ARRAY_RW:
6475 		err = restart_array(mddev);
6476 		goto done_unlock;
6477 
6478 	case STOP_ARRAY:
6479 		err = do_md_stop(mddev, 0, bdev);
6480 		goto done_unlock;
6481 
6482 	case STOP_ARRAY_RO:
6483 		err = md_set_readonly(mddev, bdev);
6484 		goto done_unlock;
6485 
6486 	case BLKROSET:
6487 		if (get_user(ro, (int __user *)(arg))) {
6488 			err = -EFAULT;
6489 			goto done_unlock;
6490 		}
6491 		err = -EINVAL;
6492 
6493 		/* if the bdev is going readonly the value of mddev->ro
6494 		 * does not matter, no writes are coming
6495 		 */
6496 		if (ro)
6497 			goto done_unlock;
6498 
6499 		/* are we are already prepared for writes? */
6500 		if (mddev->ro != 1)
6501 			goto done_unlock;
6502 
6503 		/* transitioning to readauto need only happen for
6504 		 * arrays that call md_write_start
6505 		 */
6506 		if (mddev->pers) {
6507 			err = restart_array(mddev);
6508 			if (err == 0) {
6509 				mddev->ro = 2;
6510 				set_disk_ro(mddev->gendisk, 0);
6511 			}
6512 		}
6513 		goto done_unlock;
6514 	}
6515 
6516 	/*
6517 	 * The remaining ioctls are changing the state of the
6518 	 * superblock, so we do not allow them on read-only arrays.
6519 	 * However non-MD ioctls (e.g. get-size) will still come through
6520 	 * here and hit the 'default' below, so only disallow
6521 	 * 'md' ioctls, and switch to rw mode if started auto-readonly.
6522 	 */
6523 	if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
6524 		if (mddev->ro == 2) {
6525 			mddev->ro = 0;
6526 			sysfs_notify_dirent_safe(mddev->sysfs_state);
6527 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6528 			md_wakeup_thread(mddev->thread);
6529 		} else {
6530 			err = -EROFS;
6531 			goto abort_unlock;
6532 		}
6533 	}
6534 
6535 	switch (cmd) {
6536 	case ADD_NEW_DISK:
6537 	{
6538 		mdu_disk_info_t info;
6539 		if (copy_from_user(&info, argp, sizeof(info)))
6540 			err = -EFAULT;
6541 		else
6542 			err = add_new_disk(mddev, &info);
6543 		goto done_unlock;
6544 	}
6545 
6546 	case HOT_REMOVE_DISK:
6547 		err = hot_remove_disk(mddev, new_decode_dev(arg));
6548 		goto done_unlock;
6549 
6550 	case HOT_ADD_DISK:
6551 		err = hot_add_disk(mddev, new_decode_dev(arg));
6552 		goto done_unlock;
6553 
6554 	case RUN_ARRAY:
6555 		err = do_md_run(mddev);
6556 		goto done_unlock;
6557 
6558 	case SET_BITMAP_FILE:
6559 		err = set_bitmap_file(mddev, (int)arg);
6560 		goto done_unlock;
6561 
6562 	default:
6563 		err = -EINVAL;
6564 		goto abort_unlock;
6565 	}
6566 
6567 done_unlock:
6568 abort_unlock:
6569 	if (mddev->hold_active == UNTIL_IOCTL &&
6570 	    err != -EINVAL)
6571 		mddev->hold_active = 0;
6572 	mddev_unlock(mddev);
6573 
6574 	return err;
6575 done:
6576 	if (err)
6577 		MD_BUG();
6578 abort:
6579 	return err;
6580 }
6581 #ifdef CONFIG_COMPAT
6582 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6583 		    unsigned int cmd, unsigned long arg)
6584 {
6585 	switch (cmd) {
6586 	case HOT_REMOVE_DISK:
6587 	case HOT_ADD_DISK:
6588 	case SET_DISK_FAULTY:
6589 	case SET_BITMAP_FILE:
6590 		/* These take in integer arg, do not convert */
6591 		break;
6592 	default:
6593 		arg = (unsigned long)compat_ptr(arg);
6594 		break;
6595 	}
6596 
6597 	return md_ioctl(bdev, mode, cmd, arg);
6598 }
6599 #endif /* CONFIG_COMPAT */
6600 
6601 static int md_open(struct block_device *bdev, fmode_t mode)
6602 {
6603 	/*
6604 	 * Succeed if we can lock the mddev, which confirms that
6605 	 * it isn't being stopped right now.
6606 	 */
6607 	struct mddev *mddev = mddev_find(bdev->bd_dev);
6608 	int err;
6609 
6610 	if (!mddev)
6611 		return -ENODEV;
6612 
6613 	if (mddev->gendisk != bdev->bd_disk) {
6614 		/* we are racing with mddev_put which is discarding this
6615 		 * bd_disk.
6616 		 */
6617 		mddev_put(mddev);
6618 		/* Wait until bdev->bd_disk is definitely gone */
6619 		flush_workqueue(md_misc_wq);
6620 		/* Then retry the open from the top */
6621 		return -ERESTARTSYS;
6622 	}
6623 	BUG_ON(mddev != bdev->bd_disk->private_data);
6624 
6625 	if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6626 		goto out;
6627 
6628 	err = 0;
6629 	atomic_inc(&mddev->openers);
6630 	mutex_unlock(&mddev->open_mutex);
6631 
6632 	check_disk_change(bdev);
6633  out:
6634 	return err;
6635 }
6636 
6637 static int md_release(struct gendisk *disk, fmode_t mode)
6638 {
6639  	struct mddev *mddev = disk->private_data;
6640 
6641 	BUG_ON(!mddev);
6642 	atomic_dec(&mddev->openers);
6643 	mddev_put(mddev);
6644 
6645 	return 0;
6646 }
6647 
6648 static int md_media_changed(struct gendisk *disk)
6649 {
6650 	struct mddev *mddev = disk->private_data;
6651 
6652 	return mddev->changed;
6653 }
6654 
6655 static int md_revalidate(struct gendisk *disk)
6656 {
6657 	struct mddev *mddev = disk->private_data;
6658 
6659 	mddev->changed = 0;
6660 	return 0;
6661 }
6662 static const struct block_device_operations md_fops =
6663 {
6664 	.owner		= THIS_MODULE,
6665 	.open		= md_open,
6666 	.release	= md_release,
6667 	.ioctl		= md_ioctl,
6668 #ifdef CONFIG_COMPAT
6669 	.compat_ioctl	= md_compat_ioctl,
6670 #endif
6671 	.getgeo		= md_getgeo,
6672 	.media_changed  = md_media_changed,
6673 	.revalidate_disk= md_revalidate,
6674 };
6675 
6676 static int md_thread(void * arg)
6677 {
6678 	struct md_thread *thread = arg;
6679 
6680 	/*
6681 	 * md_thread is a 'system-thread', it's priority should be very
6682 	 * high. We avoid resource deadlocks individually in each
6683 	 * raid personality. (RAID5 does preallocation) We also use RR and
6684 	 * the very same RT priority as kswapd, thus we will never get
6685 	 * into a priority inversion deadlock.
6686 	 *
6687 	 * we definitely have to have equal or higher priority than
6688 	 * bdflush, otherwise bdflush will deadlock if there are too
6689 	 * many dirty RAID5 blocks.
6690 	 */
6691 
6692 	allow_signal(SIGKILL);
6693 	while (!kthread_should_stop()) {
6694 
6695 		/* We need to wait INTERRUPTIBLE so that
6696 		 * we don't add to the load-average.
6697 		 * That means we need to be sure no signals are
6698 		 * pending
6699 		 */
6700 		if (signal_pending(current))
6701 			flush_signals(current);
6702 
6703 		wait_event_interruptible_timeout
6704 			(thread->wqueue,
6705 			 test_bit(THREAD_WAKEUP, &thread->flags)
6706 			 || kthread_should_stop(),
6707 			 thread->timeout);
6708 
6709 		clear_bit(THREAD_WAKEUP, &thread->flags);
6710 		if (!kthread_should_stop())
6711 			thread->run(thread);
6712 	}
6713 
6714 	return 0;
6715 }
6716 
6717 void md_wakeup_thread(struct md_thread *thread)
6718 {
6719 	if (thread) {
6720 		pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6721 		set_bit(THREAD_WAKEUP, &thread->flags);
6722 		wake_up(&thread->wqueue);
6723 	}
6724 }
6725 
6726 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
6727 		struct mddev *mddev, const char *name)
6728 {
6729 	struct md_thread *thread;
6730 
6731 	thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6732 	if (!thread)
6733 		return NULL;
6734 
6735 	init_waitqueue_head(&thread->wqueue);
6736 
6737 	thread->run = run;
6738 	thread->mddev = mddev;
6739 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
6740 	thread->tsk = kthread_run(md_thread, thread,
6741 				  "%s_%s",
6742 				  mdname(thread->mddev),
6743 				  name);
6744 	if (IS_ERR(thread->tsk)) {
6745 		kfree(thread);
6746 		return NULL;
6747 	}
6748 	return thread;
6749 }
6750 
6751 void md_unregister_thread(struct md_thread **threadp)
6752 {
6753 	struct md_thread *thread = *threadp;
6754 	if (!thread)
6755 		return;
6756 	pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6757 	/* Locking ensures that mddev_unlock does not wake_up a
6758 	 * non-existent thread
6759 	 */
6760 	spin_lock(&pers_lock);
6761 	*threadp = NULL;
6762 	spin_unlock(&pers_lock);
6763 
6764 	kthread_stop(thread->tsk);
6765 	kfree(thread);
6766 }
6767 
6768 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6769 {
6770 	if (!mddev) {
6771 		MD_BUG();
6772 		return;
6773 	}
6774 
6775 	if (!rdev || test_bit(Faulty, &rdev->flags))
6776 		return;
6777 
6778 	if (!mddev->pers || !mddev->pers->error_handler)
6779 		return;
6780 	mddev->pers->error_handler(mddev,rdev);
6781 	if (mddev->degraded)
6782 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6783 	sysfs_notify_dirent_safe(rdev->sysfs_state);
6784 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6785 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6786 	md_wakeup_thread(mddev->thread);
6787 	if (mddev->event_work.func)
6788 		queue_work(md_misc_wq, &mddev->event_work);
6789 	md_new_event_inintr(mddev);
6790 }
6791 
6792 /* seq_file implementation /proc/mdstat */
6793 
6794 static void status_unused(struct seq_file *seq)
6795 {
6796 	int i = 0;
6797 	struct md_rdev *rdev;
6798 
6799 	seq_printf(seq, "unused devices: ");
6800 
6801 	list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6802 		char b[BDEVNAME_SIZE];
6803 		i++;
6804 		seq_printf(seq, "%s ",
6805 			      bdevname(rdev->bdev,b));
6806 	}
6807 	if (!i)
6808 		seq_printf(seq, "<none>");
6809 
6810 	seq_printf(seq, "\n");
6811 }
6812 
6813 
6814 static void status_resync(struct seq_file *seq, struct mddev * mddev)
6815 {
6816 	sector_t max_sectors, resync, res;
6817 	unsigned long dt, db;
6818 	sector_t rt;
6819 	int scale;
6820 	unsigned int per_milli;
6821 
6822 	if (mddev->curr_resync <= 3)
6823 		resync = 0;
6824 	else
6825 		resync = mddev->curr_resync
6826 			- atomic_read(&mddev->recovery_active);
6827 
6828 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
6829 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6830 		max_sectors = mddev->resync_max_sectors;
6831 	else
6832 		max_sectors = mddev->dev_sectors;
6833 
6834 	/*
6835 	 * Should not happen.
6836 	 */
6837 	if (!max_sectors) {
6838 		MD_BUG();
6839 		return;
6840 	}
6841 	/* Pick 'scale' such that (resync>>scale)*1000 will fit
6842 	 * in a sector_t, and (max_sectors>>scale) will fit in a
6843 	 * u32, as those are the requirements for sector_div.
6844 	 * Thus 'scale' must be at least 10
6845 	 */
6846 	scale = 10;
6847 	if (sizeof(sector_t) > sizeof(unsigned long)) {
6848 		while ( max_sectors/2 > (1ULL<<(scale+32)))
6849 			scale++;
6850 	}
6851 	res = (resync>>scale)*1000;
6852 	sector_div(res, (u32)((max_sectors>>scale)+1));
6853 
6854 	per_milli = res;
6855 	{
6856 		int i, x = per_milli/50, y = 20-x;
6857 		seq_printf(seq, "[");
6858 		for (i = 0; i < x; i++)
6859 			seq_printf(seq, "=");
6860 		seq_printf(seq, ">");
6861 		for (i = 0; i < y; i++)
6862 			seq_printf(seq, ".");
6863 		seq_printf(seq, "] ");
6864 	}
6865 	seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6866 		   (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6867 		    "reshape" :
6868 		    (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6869 		     "check" :
6870 		     (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6871 		      "resync" : "recovery"))),
6872 		   per_milli/10, per_milli % 10,
6873 		   (unsigned long long) resync/2,
6874 		   (unsigned long long) max_sectors/2);
6875 
6876 	/*
6877 	 * dt: time from mark until now
6878 	 * db: blocks written from mark until now
6879 	 * rt: remaining time
6880 	 *
6881 	 * rt is a sector_t, so could be 32bit or 64bit.
6882 	 * So we divide before multiply in case it is 32bit and close
6883 	 * to the limit.
6884 	 * We scale the divisor (db) by 32 to avoid losing precision
6885 	 * near the end of resync when the number of remaining sectors
6886 	 * is close to 'db'.
6887 	 * We then divide rt by 32 after multiplying by db to compensate.
6888 	 * The '+1' avoids division by zero if db is very small.
6889 	 */
6890 	dt = ((jiffies - mddev->resync_mark) / HZ);
6891 	if (!dt) dt++;
6892 	db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6893 		- mddev->resync_mark_cnt;
6894 
6895 	rt = max_sectors - resync;    /* number of remaining sectors */
6896 	sector_div(rt, db/32+1);
6897 	rt *= dt;
6898 	rt >>= 5;
6899 
6900 	seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6901 		   ((unsigned long)rt % 60)/6);
6902 
6903 	seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6904 }
6905 
6906 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6907 {
6908 	struct list_head *tmp;
6909 	loff_t l = *pos;
6910 	struct mddev *mddev;
6911 
6912 	if (l >= 0x10000)
6913 		return NULL;
6914 	if (!l--)
6915 		/* header */
6916 		return (void*)1;
6917 
6918 	spin_lock(&all_mddevs_lock);
6919 	list_for_each(tmp,&all_mddevs)
6920 		if (!l--) {
6921 			mddev = list_entry(tmp, struct mddev, all_mddevs);
6922 			mddev_get(mddev);
6923 			spin_unlock(&all_mddevs_lock);
6924 			return mddev;
6925 		}
6926 	spin_unlock(&all_mddevs_lock);
6927 	if (!l--)
6928 		return (void*)2;/* tail */
6929 	return NULL;
6930 }
6931 
6932 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6933 {
6934 	struct list_head *tmp;
6935 	struct mddev *next_mddev, *mddev = v;
6936 
6937 	++*pos;
6938 	if (v == (void*)2)
6939 		return NULL;
6940 
6941 	spin_lock(&all_mddevs_lock);
6942 	if (v == (void*)1)
6943 		tmp = all_mddevs.next;
6944 	else
6945 		tmp = mddev->all_mddevs.next;
6946 	if (tmp != &all_mddevs)
6947 		next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
6948 	else {
6949 		next_mddev = (void*)2;
6950 		*pos = 0x10000;
6951 	}
6952 	spin_unlock(&all_mddevs_lock);
6953 
6954 	if (v != (void*)1)
6955 		mddev_put(mddev);
6956 	return next_mddev;
6957 
6958 }
6959 
6960 static void md_seq_stop(struct seq_file *seq, void *v)
6961 {
6962 	struct mddev *mddev = v;
6963 
6964 	if (mddev && v != (void*)1 && v != (void*)2)
6965 		mddev_put(mddev);
6966 }
6967 
6968 static int md_seq_show(struct seq_file *seq, void *v)
6969 {
6970 	struct mddev *mddev = v;
6971 	sector_t sectors;
6972 	struct md_rdev *rdev;
6973 
6974 	if (v == (void*)1) {
6975 		struct md_personality *pers;
6976 		seq_printf(seq, "Personalities : ");
6977 		spin_lock(&pers_lock);
6978 		list_for_each_entry(pers, &pers_list, list)
6979 			seq_printf(seq, "[%s] ", pers->name);
6980 
6981 		spin_unlock(&pers_lock);
6982 		seq_printf(seq, "\n");
6983 		seq->poll_event = atomic_read(&md_event_count);
6984 		return 0;
6985 	}
6986 	if (v == (void*)2) {
6987 		status_unused(seq);
6988 		return 0;
6989 	}
6990 
6991 	if (mddev_lock(mddev) < 0)
6992 		return -EINTR;
6993 
6994 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
6995 		seq_printf(seq, "%s : %sactive", mdname(mddev),
6996 						mddev->pers ? "" : "in");
6997 		if (mddev->pers) {
6998 			if (mddev->ro==1)
6999 				seq_printf(seq, " (read-only)");
7000 			if (mddev->ro==2)
7001 				seq_printf(seq, " (auto-read-only)");
7002 			seq_printf(seq, " %s", mddev->pers->name);
7003 		}
7004 
7005 		sectors = 0;
7006 		rdev_for_each(rdev, mddev) {
7007 			char b[BDEVNAME_SIZE];
7008 			seq_printf(seq, " %s[%d]",
7009 				bdevname(rdev->bdev,b), rdev->desc_nr);
7010 			if (test_bit(WriteMostly, &rdev->flags))
7011 				seq_printf(seq, "(W)");
7012 			if (test_bit(Faulty, &rdev->flags)) {
7013 				seq_printf(seq, "(F)");
7014 				continue;
7015 			}
7016 			if (rdev->raid_disk < 0)
7017 				seq_printf(seq, "(S)"); /* spare */
7018 			if (test_bit(Replacement, &rdev->flags))
7019 				seq_printf(seq, "(R)");
7020 			sectors += rdev->sectors;
7021 		}
7022 
7023 		if (!list_empty(&mddev->disks)) {
7024 			if (mddev->pers)
7025 				seq_printf(seq, "\n      %llu blocks",
7026 					   (unsigned long long)
7027 					   mddev->array_sectors / 2);
7028 			else
7029 				seq_printf(seq, "\n      %llu blocks",
7030 					   (unsigned long long)sectors / 2);
7031 		}
7032 		if (mddev->persistent) {
7033 			if (mddev->major_version != 0 ||
7034 			    mddev->minor_version != 90) {
7035 				seq_printf(seq," super %d.%d",
7036 					   mddev->major_version,
7037 					   mddev->minor_version);
7038 			}
7039 		} else if (mddev->external)
7040 			seq_printf(seq, " super external:%s",
7041 				   mddev->metadata_type);
7042 		else
7043 			seq_printf(seq, " super non-persistent");
7044 
7045 		if (mddev->pers) {
7046 			mddev->pers->status(seq, mddev);
7047 	 		seq_printf(seq, "\n      ");
7048 			if (mddev->pers->sync_request) {
7049 				if (mddev->curr_resync > 2) {
7050 					status_resync(seq, mddev);
7051 					seq_printf(seq, "\n      ");
7052 				} else if (mddev->curr_resync >= 1)
7053 					seq_printf(seq, "\tresync=DELAYED\n      ");
7054 				else if (mddev->recovery_cp < MaxSector)
7055 					seq_printf(seq, "\tresync=PENDING\n      ");
7056 			}
7057 		} else
7058 			seq_printf(seq, "\n       ");
7059 
7060 		bitmap_status(seq, mddev->bitmap);
7061 
7062 		seq_printf(seq, "\n");
7063 	}
7064 	mddev_unlock(mddev);
7065 
7066 	return 0;
7067 }
7068 
7069 static const struct seq_operations md_seq_ops = {
7070 	.start  = md_seq_start,
7071 	.next   = md_seq_next,
7072 	.stop   = md_seq_stop,
7073 	.show   = md_seq_show,
7074 };
7075 
7076 static int md_seq_open(struct inode *inode, struct file *file)
7077 {
7078 	struct seq_file *seq;
7079 	int error;
7080 
7081 	error = seq_open(file, &md_seq_ops);
7082 	if (error)
7083 		return error;
7084 
7085 	seq = file->private_data;
7086 	seq->poll_event = atomic_read(&md_event_count);
7087 	return error;
7088 }
7089 
7090 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7091 {
7092 	struct seq_file *seq = filp->private_data;
7093 	int mask;
7094 
7095 	poll_wait(filp, &md_event_waiters, wait);
7096 
7097 	/* always allow read */
7098 	mask = POLLIN | POLLRDNORM;
7099 
7100 	if (seq->poll_event != atomic_read(&md_event_count))
7101 		mask |= POLLERR | POLLPRI;
7102 	return mask;
7103 }
7104 
7105 static const struct file_operations md_seq_fops = {
7106 	.owner		= THIS_MODULE,
7107 	.open           = md_seq_open,
7108 	.read           = seq_read,
7109 	.llseek         = seq_lseek,
7110 	.release	= seq_release_private,
7111 	.poll		= mdstat_poll,
7112 };
7113 
7114 int register_md_personality(struct md_personality *p)
7115 {
7116 	spin_lock(&pers_lock);
7117 	list_add_tail(&p->list, &pers_list);
7118 	printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
7119 	spin_unlock(&pers_lock);
7120 	return 0;
7121 }
7122 
7123 int unregister_md_personality(struct md_personality *p)
7124 {
7125 	printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7126 	spin_lock(&pers_lock);
7127 	list_del_init(&p->list);
7128 	spin_unlock(&pers_lock);
7129 	return 0;
7130 }
7131 
7132 static int is_mddev_idle(struct mddev *mddev, int init)
7133 {
7134 	struct md_rdev * rdev;
7135 	int idle;
7136 	int curr_events;
7137 
7138 	idle = 1;
7139 	rcu_read_lock();
7140 	rdev_for_each_rcu(rdev, mddev) {
7141 		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7142 		curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7143 			      (int)part_stat_read(&disk->part0, sectors[1]) -
7144 			      atomic_read(&disk->sync_io);
7145 		/* sync IO will cause sync_io to increase before the disk_stats
7146 		 * as sync_io is counted when a request starts, and
7147 		 * disk_stats is counted when it completes.
7148 		 * So resync activity will cause curr_events to be smaller than
7149 		 * when there was no such activity.
7150 		 * non-sync IO will cause disk_stat to increase without
7151 		 * increasing sync_io so curr_events will (eventually)
7152 		 * be larger than it was before.  Once it becomes
7153 		 * substantially larger, the test below will cause
7154 		 * the array to appear non-idle, and resync will slow
7155 		 * down.
7156 		 * If there is a lot of outstanding resync activity when
7157 		 * we set last_event to curr_events, then all that activity
7158 		 * completing might cause the array to appear non-idle
7159 		 * and resync will be slowed down even though there might
7160 		 * not have been non-resync activity.  This will only
7161 		 * happen once though.  'last_events' will soon reflect
7162 		 * the state where there is little or no outstanding
7163 		 * resync requests, and further resync activity will
7164 		 * always make curr_events less than last_events.
7165 		 *
7166 		 */
7167 		if (init || curr_events - rdev->last_events > 64) {
7168 			rdev->last_events = curr_events;
7169 			idle = 0;
7170 		}
7171 	}
7172 	rcu_read_unlock();
7173 	return idle;
7174 }
7175 
7176 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7177 {
7178 	/* another "blocks" (512byte) blocks have been synced */
7179 	atomic_sub(blocks, &mddev->recovery_active);
7180 	wake_up(&mddev->recovery_wait);
7181 	if (!ok) {
7182 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7183 		set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7184 		md_wakeup_thread(mddev->thread);
7185 		// stop recovery, signal do_sync ....
7186 	}
7187 }
7188 
7189 
7190 /* md_write_start(mddev, bi)
7191  * If we need to update some array metadata (e.g. 'active' flag
7192  * in superblock) before writing, schedule a superblock update
7193  * and wait for it to complete.
7194  */
7195 void md_write_start(struct mddev *mddev, struct bio *bi)
7196 {
7197 	int did_change = 0;
7198 	if (bio_data_dir(bi) != WRITE)
7199 		return;
7200 
7201 	BUG_ON(mddev->ro == 1);
7202 	if (mddev->ro == 2) {
7203 		/* need to switch to read/write */
7204 		mddev->ro = 0;
7205 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7206 		md_wakeup_thread(mddev->thread);
7207 		md_wakeup_thread(mddev->sync_thread);
7208 		did_change = 1;
7209 	}
7210 	atomic_inc(&mddev->writes_pending);
7211 	if (mddev->safemode == 1)
7212 		mddev->safemode = 0;
7213 	if (mddev->in_sync) {
7214 		spin_lock_irq(&mddev->write_lock);
7215 		if (mddev->in_sync) {
7216 			mddev->in_sync = 0;
7217 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7218 			set_bit(MD_CHANGE_PENDING, &mddev->flags);
7219 			md_wakeup_thread(mddev->thread);
7220 			did_change = 1;
7221 		}
7222 		spin_unlock_irq(&mddev->write_lock);
7223 	}
7224 	if (did_change)
7225 		sysfs_notify_dirent_safe(mddev->sysfs_state);
7226 	wait_event(mddev->sb_wait,
7227 		   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7228 }
7229 
7230 void md_write_end(struct mddev *mddev)
7231 {
7232 	if (atomic_dec_and_test(&mddev->writes_pending)) {
7233 		if (mddev->safemode == 2)
7234 			md_wakeup_thread(mddev->thread);
7235 		else if (mddev->safemode_delay)
7236 			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7237 	}
7238 }
7239 
7240 /* md_allow_write(mddev)
7241  * Calling this ensures that the array is marked 'active' so that writes
7242  * may proceed without blocking.  It is important to call this before
7243  * attempting a GFP_KERNEL allocation while holding the mddev lock.
7244  * Must be called with mddev_lock held.
7245  *
7246  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7247  * is dropped, so return -EAGAIN after notifying userspace.
7248  */
7249 int md_allow_write(struct mddev *mddev)
7250 {
7251 	if (!mddev->pers)
7252 		return 0;
7253 	if (mddev->ro)
7254 		return 0;
7255 	if (!mddev->pers->sync_request)
7256 		return 0;
7257 
7258 	spin_lock_irq(&mddev->write_lock);
7259 	if (mddev->in_sync) {
7260 		mddev->in_sync = 0;
7261 		set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7262 		set_bit(MD_CHANGE_PENDING, &mddev->flags);
7263 		if (mddev->safemode_delay &&
7264 		    mddev->safemode == 0)
7265 			mddev->safemode = 1;
7266 		spin_unlock_irq(&mddev->write_lock);
7267 		md_update_sb(mddev, 0);
7268 		sysfs_notify_dirent_safe(mddev->sysfs_state);
7269 	} else
7270 		spin_unlock_irq(&mddev->write_lock);
7271 
7272 	if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7273 		return -EAGAIN;
7274 	else
7275 		return 0;
7276 }
7277 EXPORT_SYMBOL_GPL(md_allow_write);
7278 
7279 #define SYNC_MARKS	10
7280 #define	SYNC_MARK_STEP	(3*HZ)
7281 #define UPDATE_FREQUENCY (5*60*HZ)
7282 void md_do_sync(struct md_thread *thread)
7283 {
7284 	struct mddev *mddev = thread->mddev;
7285 	struct mddev *mddev2;
7286 	unsigned int currspeed = 0,
7287 		 window;
7288 	sector_t max_sectors,j, io_sectors;
7289 	unsigned long mark[SYNC_MARKS];
7290 	unsigned long update_time;
7291 	sector_t mark_cnt[SYNC_MARKS];
7292 	int last_mark,m;
7293 	struct list_head *tmp;
7294 	sector_t last_check;
7295 	int skipped = 0;
7296 	struct md_rdev *rdev;
7297 	char *desc;
7298 	struct blk_plug plug;
7299 
7300 	/* just incase thread restarts... */
7301 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7302 		return;
7303 	if (mddev->ro) /* never try to sync a read-only array */
7304 		return;
7305 
7306 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7307 		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
7308 			desc = "data-check";
7309 		else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7310 			desc = "requested-resync";
7311 		else
7312 			desc = "resync";
7313 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7314 		desc = "reshape";
7315 	else
7316 		desc = "recovery";
7317 
7318 	/* we overload curr_resync somewhat here.
7319 	 * 0 == not engaged in resync at all
7320 	 * 2 == checking that there is no conflict with another sync
7321 	 * 1 == like 2, but have yielded to allow conflicting resync to
7322 	 *		commense
7323 	 * other == active in resync - this many blocks
7324 	 *
7325 	 * Before starting a resync we must have set curr_resync to
7326 	 * 2, and then checked that every "conflicting" array has curr_resync
7327 	 * less than ours.  When we find one that is the same or higher
7328 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
7329 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7330 	 * This will mean we have to start checking from the beginning again.
7331 	 *
7332 	 */
7333 
7334 	do {
7335 		mddev->curr_resync = 2;
7336 
7337 	try_again:
7338 		if (kthread_should_stop())
7339 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7340 
7341 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7342 			goto skip;
7343 		for_each_mddev(mddev2, tmp) {
7344 			if (mddev2 == mddev)
7345 				continue;
7346 			if (!mddev->parallel_resync
7347 			&&  mddev2->curr_resync
7348 			&&  match_mddev_units(mddev, mddev2)) {
7349 				DEFINE_WAIT(wq);
7350 				if (mddev < mddev2 && mddev->curr_resync == 2) {
7351 					/* arbitrarily yield */
7352 					mddev->curr_resync = 1;
7353 					wake_up(&resync_wait);
7354 				}
7355 				if (mddev > mddev2 && mddev->curr_resync == 1)
7356 					/* no need to wait here, we can wait the next
7357 					 * time 'round when curr_resync == 2
7358 					 */
7359 					continue;
7360 				/* We need to wait 'interruptible' so as not to
7361 				 * contribute to the load average, and not to
7362 				 * be caught by 'softlockup'
7363 				 */
7364 				prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7365 				if (!kthread_should_stop() &&
7366 				    mddev2->curr_resync >= mddev->curr_resync) {
7367 					printk(KERN_INFO "md: delaying %s of %s"
7368 					       " until %s has finished (they"
7369 					       " share one or more physical units)\n",
7370 					       desc, mdname(mddev), mdname(mddev2));
7371 					mddev_put(mddev2);
7372 					if (signal_pending(current))
7373 						flush_signals(current);
7374 					schedule();
7375 					finish_wait(&resync_wait, &wq);
7376 					goto try_again;
7377 				}
7378 				finish_wait(&resync_wait, &wq);
7379 			}
7380 		}
7381 	} while (mddev->curr_resync < 2);
7382 
7383 	j = 0;
7384 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7385 		/* resync follows the size requested by the personality,
7386 		 * which defaults to physical size, but can be virtual size
7387 		 */
7388 		max_sectors = mddev->resync_max_sectors;
7389 		atomic64_set(&mddev->resync_mismatches, 0);
7390 		/* we don't use the checkpoint if there's a bitmap */
7391 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7392 			j = mddev->resync_min;
7393 		else if (!mddev->bitmap)
7394 			j = mddev->recovery_cp;
7395 
7396 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7397 		max_sectors = mddev->resync_max_sectors;
7398 	else {
7399 		/* recovery follows the physical size of devices */
7400 		max_sectors = mddev->dev_sectors;
7401 		j = MaxSector;
7402 		rcu_read_lock();
7403 		rdev_for_each_rcu(rdev, mddev)
7404 			if (rdev->raid_disk >= 0 &&
7405 			    !test_bit(Faulty, &rdev->flags) &&
7406 			    !test_bit(In_sync, &rdev->flags) &&
7407 			    rdev->recovery_offset < j)
7408 				j = rdev->recovery_offset;
7409 		rcu_read_unlock();
7410 	}
7411 
7412 	printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7413 	printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7414 		" %d KB/sec/disk.\n", speed_min(mddev));
7415 	printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7416 	       "(but not more than %d KB/sec) for %s.\n",
7417 	       speed_max(mddev), desc);
7418 
7419 	is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7420 
7421 	io_sectors = 0;
7422 	for (m = 0; m < SYNC_MARKS; m++) {
7423 		mark[m] = jiffies;
7424 		mark_cnt[m] = io_sectors;
7425 	}
7426 	last_mark = 0;
7427 	mddev->resync_mark = mark[last_mark];
7428 	mddev->resync_mark_cnt = mark_cnt[last_mark];
7429 
7430 	/*
7431 	 * Tune reconstruction:
7432 	 */
7433 	window = 32*(PAGE_SIZE/512);
7434 	printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7435 		window/2, (unsigned long long)max_sectors/2);
7436 
7437 	atomic_set(&mddev->recovery_active, 0);
7438 	last_check = 0;
7439 
7440 	if (j>2) {
7441 		printk(KERN_INFO
7442 		       "md: resuming %s of %s from checkpoint.\n",
7443 		       desc, mdname(mddev));
7444 		mddev->curr_resync = j;
7445 	} else
7446 		mddev->curr_resync = 3; /* no longer delayed */
7447 	mddev->curr_resync_completed = j;
7448 	sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7449 	md_new_event(mddev);
7450 	update_time = jiffies;
7451 
7452 	blk_start_plug(&plug);
7453 	while (j < max_sectors) {
7454 		sector_t sectors;
7455 
7456 		skipped = 0;
7457 
7458 		if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7459 		    ((mddev->curr_resync > mddev->curr_resync_completed &&
7460 		      (mddev->curr_resync - mddev->curr_resync_completed)
7461 		      > (max_sectors >> 4)) ||
7462 		     time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7463 		     (j - mddev->curr_resync_completed)*2
7464 		     >= mddev->resync_max - mddev->curr_resync_completed
7465 			    )) {
7466 			/* time to update curr_resync_completed */
7467 			wait_event(mddev->recovery_wait,
7468 				   atomic_read(&mddev->recovery_active) == 0);
7469 			mddev->curr_resync_completed = j;
7470 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7471 			    j > mddev->recovery_cp)
7472 				mddev->recovery_cp = j;
7473 			update_time = jiffies;
7474 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7475 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7476 		}
7477 
7478 		while (j >= mddev->resync_max && !kthread_should_stop()) {
7479 			/* As this condition is controlled by user-space,
7480 			 * we can block indefinitely, so use '_interruptible'
7481 			 * to avoid triggering warnings.
7482 			 */
7483 			flush_signals(current); /* just in case */
7484 			wait_event_interruptible(mddev->recovery_wait,
7485 						 mddev->resync_max > j
7486 						 || kthread_should_stop());
7487 		}
7488 
7489 		if (kthread_should_stop())
7490 			goto interrupted;
7491 
7492 		sectors = mddev->pers->sync_request(mddev, j, &skipped,
7493 						  currspeed < speed_min(mddev));
7494 		if (sectors == 0) {
7495 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7496 			goto out;
7497 		}
7498 
7499 		if (!skipped) { /* actual IO requested */
7500 			io_sectors += sectors;
7501 			atomic_add(sectors, &mddev->recovery_active);
7502 		}
7503 
7504 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7505 			break;
7506 
7507 		j += sectors;
7508 		if (j > 2)
7509 			mddev->curr_resync = j;
7510 		mddev->curr_mark_cnt = io_sectors;
7511 		if (last_check == 0)
7512 			/* this is the earliest that rebuild will be
7513 			 * visible in /proc/mdstat
7514 			 */
7515 			md_new_event(mddev);
7516 
7517 		if (last_check + window > io_sectors || j == max_sectors)
7518 			continue;
7519 
7520 		last_check = io_sectors;
7521 	repeat:
7522 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7523 			/* step marks */
7524 			int next = (last_mark+1) % SYNC_MARKS;
7525 
7526 			mddev->resync_mark = mark[next];
7527 			mddev->resync_mark_cnt = mark_cnt[next];
7528 			mark[next] = jiffies;
7529 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7530 			last_mark = next;
7531 		}
7532 
7533 
7534 		if (kthread_should_stop())
7535 			goto interrupted;
7536 
7537 
7538 		/*
7539 		 * this loop exits only if either when we are slower than
7540 		 * the 'hard' speed limit, or the system was IO-idle for
7541 		 * a jiffy.
7542 		 * the system might be non-idle CPU-wise, but we only care
7543 		 * about not overloading the IO subsystem. (things like an
7544 		 * e2fsck being done on the RAID array should execute fast)
7545 		 */
7546 		cond_resched();
7547 
7548 		currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
7549 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
7550 
7551 		if (currspeed > speed_min(mddev)) {
7552 			if ((currspeed > speed_max(mddev)) ||
7553 					!is_mddev_idle(mddev, 0)) {
7554 				msleep(500);
7555 				goto repeat;
7556 			}
7557 		}
7558 	}
7559 	printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
7560 	/*
7561 	 * this also signals 'finished resyncing' to md_stop
7562 	 */
7563  out:
7564 	blk_finish_plug(&plug);
7565 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7566 
7567 	/* tell personality that we are finished */
7568 	mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7569 
7570 	if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7571 	    mddev->curr_resync > 2) {
7572 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7573 			if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7574 				if (mddev->curr_resync >= mddev->recovery_cp) {
7575 					printk(KERN_INFO
7576 					       "md: checkpointing %s of %s.\n",
7577 					       desc, mdname(mddev));
7578 					if (test_bit(MD_RECOVERY_ERROR,
7579 						&mddev->recovery))
7580 						mddev->recovery_cp =
7581 							mddev->curr_resync_completed;
7582 					else
7583 						mddev->recovery_cp =
7584 							mddev->curr_resync;
7585 				}
7586 			} else
7587 				mddev->recovery_cp = MaxSector;
7588 		} else {
7589 			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7590 				mddev->curr_resync = MaxSector;
7591 			rcu_read_lock();
7592 			rdev_for_each_rcu(rdev, mddev)
7593 				if (rdev->raid_disk >= 0 &&
7594 				    mddev->delta_disks >= 0 &&
7595 				    !test_bit(Faulty, &rdev->flags) &&
7596 				    !test_bit(In_sync, &rdev->flags) &&
7597 				    rdev->recovery_offset < mddev->curr_resync)
7598 					rdev->recovery_offset = mddev->curr_resync;
7599 			rcu_read_unlock();
7600 		}
7601 	}
7602  skip:
7603 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
7604 
7605 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7606 		/* We completed so min/max setting can be forgotten if used. */
7607 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7608 			mddev->resync_min = 0;
7609 		mddev->resync_max = MaxSector;
7610 	} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7611 		mddev->resync_min = mddev->curr_resync_completed;
7612 	mddev->curr_resync = 0;
7613 	wake_up(&resync_wait);
7614 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7615 	md_wakeup_thread(mddev->thread);
7616 	return;
7617 
7618  interrupted:
7619 	/*
7620 	 * got a signal, exit.
7621 	 */
7622 	printk(KERN_INFO
7623 	       "md: md_do_sync() got signal ... exiting\n");
7624 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7625 	goto out;
7626 
7627 }
7628 EXPORT_SYMBOL_GPL(md_do_sync);
7629 
7630 static int remove_and_add_spares(struct mddev *mddev)
7631 {
7632 	struct md_rdev *rdev;
7633 	int spares = 0;
7634 	int removed = 0;
7635 
7636 	rdev_for_each(rdev, mddev)
7637 		if (rdev->raid_disk >= 0 &&
7638 		    !test_bit(Blocked, &rdev->flags) &&
7639 		    (test_bit(Faulty, &rdev->flags) ||
7640 		     ! test_bit(In_sync, &rdev->flags)) &&
7641 		    atomic_read(&rdev->nr_pending)==0) {
7642 			if (mddev->pers->hot_remove_disk(
7643 				    mddev, rdev) == 0) {
7644 				sysfs_unlink_rdev(mddev, rdev);
7645 				rdev->raid_disk = -1;
7646 				removed++;
7647 			}
7648 		}
7649 	if (removed)
7650 		sysfs_notify(&mddev->kobj, NULL,
7651 			     "degraded");
7652 
7653 
7654 	rdev_for_each(rdev, mddev) {
7655 		if (rdev->raid_disk >= 0 &&
7656 		    !test_bit(In_sync, &rdev->flags) &&
7657 		    !test_bit(Faulty, &rdev->flags))
7658 			spares++;
7659 		if (rdev->raid_disk < 0
7660 		    && !test_bit(Faulty, &rdev->flags)) {
7661 			rdev->recovery_offset = 0;
7662 			if (mddev->pers->
7663 			    hot_add_disk(mddev, rdev) == 0) {
7664 				if (sysfs_link_rdev(mddev, rdev))
7665 					/* failure here is OK */;
7666 				spares++;
7667 				md_new_event(mddev);
7668 				set_bit(MD_CHANGE_DEVS, &mddev->flags);
7669 			}
7670 		}
7671 	}
7672 	if (removed)
7673 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
7674 	return spares;
7675 }
7676 
7677 static void reap_sync_thread(struct mddev *mddev)
7678 {
7679 	struct md_rdev *rdev;
7680 
7681 	/* resync has finished, collect result */
7682 	md_unregister_thread(&mddev->sync_thread);
7683 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7684 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7685 		/* success...*/
7686 		/* activate any spares */
7687 		if (mddev->pers->spare_active(mddev)) {
7688 			sysfs_notify(&mddev->kobj, NULL,
7689 				     "degraded");
7690 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
7691 		}
7692 	}
7693 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7694 	    mddev->pers->finish_reshape)
7695 		mddev->pers->finish_reshape(mddev);
7696 
7697 	/* If array is no-longer degraded, then any saved_raid_disk
7698 	 * information must be scrapped.  Also if any device is now
7699 	 * In_sync we must scrape the saved_raid_disk for that device
7700 	 * do the superblock for an incrementally recovered device
7701 	 * written out.
7702 	 */
7703 	rdev_for_each(rdev, mddev)
7704 		if (!mddev->degraded ||
7705 		    test_bit(In_sync, &rdev->flags))
7706 			rdev->saved_raid_disk = -1;
7707 
7708 	md_update_sb(mddev, 1);
7709 	clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7710 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7711 	clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7712 	clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7713 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7714 	/* flag recovery needed just to double check */
7715 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7716 	sysfs_notify_dirent_safe(mddev->sysfs_action);
7717 	md_new_event(mddev);
7718 	if (mddev->event_work.func)
7719 		queue_work(md_misc_wq, &mddev->event_work);
7720 }
7721 
7722 /*
7723  * This routine is regularly called by all per-raid-array threads to
7724  * deal with generic issues like resync and super-block update.
7725  * Raid personalities that don't have a thread (linear/raid0) do not
7726  * need this as they never do any recovery or update the superblock.
7727  *
7728  * It does not do any resync itself, but rather "forks" off other threads
7729  * to do that as needed.
7730  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7731  * "->recovery" and create a thread at ->sync_thread.
7732  * When the thread finishes it sets MD_RECOVERY_DONE
7733  * and wakeups up this thread which will reap the thread and finish up.
7734  * This thread also removes any faulty devices (with nr_pending == 0).
7735  *
7736  * The overall approach is:
7737  *  1/ if the superblock needs updating, update it.
7738  *  2/ If a recovery thread is running, don't do anything else.
7739  *  3/ If recovery has finished, clean up, possibly marking spares active.
7740  *  4/ If there are any faulty devices, remove them.
7741  *  5/ If array is degraded, try to add spares devices
7742  *  6/ If array has spares or is not in-sync, start a resync thread.
7743  */
7744 void md_check_recovery(struct mddev *mddev)
7745 {
7746 	if (mddev->suspended)
7747 		return;
7748 
7749 	if (mddev->bitmap)
7750 		bitmap_daemon_work(mddev);
7751 
7752 	if (signal_pending(current)) {
7753 		if (mddev->pers->sync_request && !mddev->external) {
7754 			printk(KERN_INFO "md: %s in immediate safe mode\n",
7755 			       mdname(mddev));
7756 			mddev->safemode = 2;
7757 		}
7758 		flush_signals(current);
7759 	}
7760 
7761 	if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7762 		return;
7763 	if ( ! (
7764 		(mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7765 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7766 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7767 		(mddev->external == 0 && mddev->safemode == 1) ||
7768 		(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7769 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7770 		))
7771 		return;
7772 
7773 	if (mddev_trylock(mddev)) {
7774 		int spares = 0;
7775 
7776 		if (mddev->ro) {
7777 			/* Only thing we do on a ro array is remove
7778 			 * failed devices.
7779 			 */
7780 			struct md_rdev *rdev;
7781 			rdev_for_each(rdev, mddev)
7782 				if (rdev->raid_disk >= 0 &&
7783 				    !test_bit(Blocked, &rdev->flags) &&
7784 				    test_bit(Faulty, &rdev->flags) &&
7785 				    atomic_read(&rdev->nr_pending)==0) {
7786 					if (mddev->pers->hot_remove_disk(
7787 						    mddev, rdev) == 0) {
7788 						sysfs_unlink_rdev(mddev, rdev);
7789 						rdev->raid_disk = -1;
7790 					}
7791 				}
7792 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7793 			goto unlock;
7794 		}
7795 
7796 		if (!mddev->external) {
7797 			int did_change = 0;
7798 			spin_lock_irq(&mddev->write_lock);
7799 			if (mddev->safemode &&
7800 			    !atomic_read(&mddev->writes_pending) &&
7801 			    !mddev->in_sync &&
7802 			    mddev->recovery_cp == MaxSector) {
7803 				mddev->in_sync = 1;
7804 				did_change = 1;
7805 				set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7806 			}
7807 			if (mddev->safemode == 1)
7808 				mddev->safemode = 0;
7809 			spin_unlock_irq(&mddev->write_lock);
7810 			if (did_change)
7811 				sysfs_notify_dirent_safe(mddev->sysfs_state);
7812 		}
7813 
7814 		if (mddev->flags)
7815 			md_update_sb(mddev, 0);
7816 
7817 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7818 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7819 			/* resync/recovery still happening */
7820 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7821 			goto unlock;
7822 		}
7823 		if (mddev->sync_thread) {
7824 			reap_sync_thread(mddev);
7825 			goto unlock;
7826 		}
7827 		/* Set RUNNING before clearing NEEDED to avoid
7828 		 * any transients in the value of "sync_action".
7829 		 */
7830 		mddev->curr_resync_completed = 0;
7831 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7832 		/* Clear some bits that don't mean anything, but
7833 		 * might be left set
7834 		 */
7835 		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7836 		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7837 
7838 		if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7839 		    test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7840 			goto unlock;
7841 		/* no recovery is running.
7842 		 * remove any failed drives, then
7843 		 * add spares if possible.
7844 		 * Spares are also removed and re-added, to allow
7845 		 * the personality to fail the re-add.
7846 		 */
7847 
7848 		if (mddev->reshape_position != MaxSector) {
7849 			if (mddev->pers->check_reshape == NULL ||
7850 			    mddev->pers->check_reshape(mddev) != 0)
7851 				/* Cannot proceed */
7852 				goto unlock;
7853 			set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7854 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7855 		} else if ((spares = remove_and_add_spares(mddev))) {
7856 			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7857 			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7858 			clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7859 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7860 		} else if (mddev->recovery_cp < MaxSector) {
7861 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7862 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7863 		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7864 			/* nothing to be done ... */
7865 			goto unlock;
7866 
7867 		if (mddev->pers->sync_request) {
7868 			if (spares) {
7869 				/* We are adding a device or devices to an array
7870 				 * which has the bitmap stored on all devices.
7871 				 * So make sure all bitmap pages get written
7872 				 */
7873 				bitmap_write_all(mddev->bitmap);
7874 			}
7875 			mddev->sync_thread = md_register_thread(md_do_sync,
7876 								mddev,
7877 								"resync");
7878 			if (!mddev->sync_thread) {
7879 				printk(KERN_ERR "%s: could not start resync"
7880 					" thread...\n",
7881 					mdname(mddev));
7882 				/* leave the spares where they are, it shouldn't hurt */
7883 				clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7884 				clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7885 				clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7886 				clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7887 				clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7888 			} else
7889 				md_wakeup_thread(mddev->sync_thread);
7890 			sysfs_notify_dirent_safe(mddev->sysfs_action);
7891 			md_new_event(mddev);
7892 		}
7893 	unlock:
7894 		if (!mddev->sync_thread) {
7895 			clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7896 			if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7897 					       &mddev->recovery))
7898 				if (mddev->sysfs_action)
7899 					sysfs_notify_dirent_safe(mddev->sysfs_action);
7900 		}
7901 		mddev_unlock(mddev);
7902 	}
7903 }
7904 
7905 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
7906 {
7907 	sysfs_notify_dirent_safe(rdev->sysfs_state);
7908 	wait_event_timeout(rdev->blocked_wait,
7909 			   !test_bit(Blocked, &rdev->flags) &&
7910 			   !test_bit(BlockedBadBlocks, &rdev->flags),
7911 			   msecs_to_jiffies(5000));
7912 	rdev_dec_pending(rdev, mddev);
7913 }
7914 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7915 
7916 void md_finish_reshape(struct mddev *mddev)
7917 {
7918 	/* called be personality module when reshape completes. */
7919 	struct md_rdev *rdev;
7920 
7921 	rdev_for_each(rdev, mddev) {
7922 		if (rdev->data_offset > rdev->new_data_offset)
7923 			rdev->sectors += rdev->data_offset - rdev->new_data_offset;
7924 		else
7925 			rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
7926 		rdev->data_offset = rdev->new_data_offset;
7927 	}
7928 }
7929 EXPORT_SYMBOL(md_finish_reshape);
7930 
7931 /* Bad block management.
7932  * We can record which blocks on each device are 'bad' and so just
7933  * fail those blocks, or that stripe, rather than the whole device.
7934  * Entries in the bad-block table are 64bits wide.  This comprises:
7935  * Length of bad-range, in sectors: 0-511 for lengths 1-512
7936  * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
7937  *  A 'shift' can be set so that larger blocks are tracked and
7938  *  consequently larger devices can be covered.
7939  * 'Acknowledged' flag - 1 bit. - the most significant bit.
7940  *
7941  * Locking of the bad-block table uses a seqlock so md_is_badblock
7942  * might need to retry if it is very unlucky.
7943  * We will sometimes want to check for bad blocks in a bi_end_io function,
7944  * so we use the write_seqlock_irq variant.
7945  *
7946  * When looking for a bad block we specify a range and want to
7947  * know if any block in the range is bad.  So we binary-search
7948  * to the last range that starts at-or-before the given endpoint,
7949  * (or "before the sector after the target range")
7950  * then see if it ends after the given start.
7951  * We return
7952  *  0 if there are no known bad blocks in the range
7953  *  1 if there are known bad block which are all acknowledged
7954  * -1 if there are bad blocks which have not yet been acknowledged in metadata.
7955  * plus the start/length of the first bad section we overlap.
7956  */
7957 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
7958 		   sector_t *first_bad, int *bad_sectors)
7959 {
7960 	int hi;
7961 	int lo;
7962 	u64 *p = bb->page;
7963 	int rv;
7964 	sector_t target = s + sectors;
7965 	unsigned seq;
7966 
7967 	if (bb->shift > 0) {
7968 		/* round the start down, and the end up */
7969 		s >>= bb->shift;
7970 		target += (1<<bb->shift) - 1;
7971 		target >>= bb->shift;
7972 		sectors = target - s;
7973 	}
7974 	/* 'target' is now the first block after the bad range */
7975 
7976 retry:
7977 	seq = read_seqbegin(&bb->lock);
7978 	lo = 0;
7979 	rv = 0;
7980 	hi = bb->count;
7981 
7982 	/* Binary search between lo and hi for 'target'
7983 	 * i.e. for the last range that starts before 'target'
7984 	 */
7985 	/* INVARIANT: ranges before 'lo' and at-or-after 'hi'
7986 	 * are known not to be the last range before target.
7987 	 * VARIANT: hi-lo is the number of possible
7988 	 * ranges, and decreases until it reaches 1
7989 	 */
7990 	while (hi - lo > 1) {
7991 		int mid = (lo + hi) / 2;
7992 		sector_t a = BB_OFFSET(p[mid]);
7993 		if (a < target)
7994 			/* This could still be the one, earlier ranges
7995 			 * could not. */
7996 			lo = mid;
7997 		else
7998 			/* This and later ranges are definitely out. */
7999 			hi = mid;
8000 	}
8001 	/* 'lo' might be the last that started before target, but 'hi' isn't */
8002 	if (hi > lo) {
8003 		/* need to check all range that end after 's' to see if
8004 		 * any are unacknowledged.
8005 		 */
8006 		while (lo >= 0 &&
8007 		       BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8008 			if (BB_OFFSET(p[lo]) < target) {
8009 				/* starts before the end, and finishes after
8010 				 * the start, so they must overlap
8011 				 */
8012 				if (rv != -1 && BB_ACK(p[lo]))
8013 					rv = 1;
8014 				else
8015 					rv = -1;
8016 				*first_bad = BB_OFFSET(p[lo]);
8017 				*bad_sectors = BB_LEN(p[lo]);
8018 			}
8019 			lo--;
8020 		}
8021 	}
8022 
8023 	if (read_seqretry(&bb->lock, seq))
8024 		goto retry;
8025 
8026 	return rv;
8027 }
8028 EXPORT_SYMBOL_GPL(md_is_badblock);
8029 
8030 /*
8031  * Add a range of bad blocks to the table.
8032  * This might extend the table, or might contract it
8033  * if two adjacent ranges can be merged.
8034  * We binary-search to find the 'insertion' point, then
8035  * decide how best to handle it.
8036  */
8037 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
8038 			    int acknowledged)
8039 {
8040 	u64 *p;
8041 	int lo, hi;
8042 	int rv = 1;
8043 
8044 	if (bb->shift < 0)
8045 		/* badblocks are disabled */
8046 		return 0;
8047 
8048 	if (bb->shift) {
8049 		/* round the start down, and the end up */
8050 		sector_t next = s + sectors;
8051 		s >>= bb->shift;
8052 		next += (1<<bb->shift) - 1;
8053 		next >>= bb->shift;
8054 		sectors = next - s;
8055 	}
8056 
8057 	write_seqlock_irq(&bb->lock);
8058 
8059 	p = bb->page;
8060 	lo = 0;
8061 	hi = bb->count;
8062 	/* Find the last range that starts at-or-before 's' */
8063 	while (hi - lo > 1) {
8064 		int mid = (lo + hi) / 2;
8065 		sector_t a = BB_OFFSET(p[mid]);
8066 		if (a <= s)
8067 			lo = mid;
8068 		else
8069 			hi = mid;
8070 	}
8071 	if (hi > lo && BB_OFFSET(p[lo]) > s)
8072 		hi = lo;
8073 
8074 	if (hi > lo) {
8075 		/* we found a range that might merge with the start
8076 		 * of our new range
8077 		 */
8078 		sector_t a = BB_OFFSET(p[lo]);
8079 		sector_t e = a + BB_LEN(p[lo]);
8080 		int ack = BB_ACK(p[lo]);
8081 		if (e >= s) {
8082 			/* Yes, we can merge with a previous range */
8083 			if (s == a && s + sectors >= e)
8084 				/* new range covers old */
8085 				ack = acknowledged;
8086 			else
8087 				ack = ack && acknowledged;
8088 
8089 			if (e < s + sectors)
8090 				e = s + sectors;
8091 			if (e - a <= BB_MAX_LEN) {
8092 				p[lo] = BB_MAKE(a, e-a, ack);
8093 				s = e;
8094 			} else {
8095 				/* does not all fit in one range,
8096 				 * make p[lo] maximal
8097 				 */
8098 				if (BB_LEN(p[lo]) != BB_MAX_LEN)
8099 					p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8100 				s = a + BB_MAX_LEN;
8101 			}
8102 			sectors = e - s;
8103 		}
8104 	}
8105 	if (sectors && hi < bb->count) {
8106 		/* 'hi' points to the first range that starts after 's'.
8107 		 * Maybe we can merge with the start of that range */
8108 		sector_t a = BB_OFFSET(p[hi]);
8109 		sector_t e = a + BB_LEN(p[hi]);
8110 		int ack = BB_ACK(p[hi]);
8111 		if (a <= s + sectors) {
8112 			/* merging is possible */
8113 			if (e <= s + sectors) {
8114 				/* full overlap */
8115 				e = s + sectors;
8116 				ack = acknowledged;
8117 			} else
8118 				ack = ack && acknowledged;
8119 
8120 			a = s;
8121 			if (e - a <= BB_MAX_LEN) {
8122 				p[hi] = BB_MAKE(a, e-a, ack);
8123 				s = e;
8124 			} else {
8125 				p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8126 				s = a + BB_MAX_LEN;
8127 			}
8128 			sectors = e - s;
8129 			lo = hi;
8130 			hi++;
8131 		}
8132 	}
8133 	if (sectors == 0 && hi < bb->count) {
8134 		/* we might be able to combine lo and hi */
8135 		/* Note: 's' is at the end of 'lo' */
8136 		sector_t a = BB_OFFSET(p[hi]);
8137 		int lolen = BB_LEN(p[lo]);
8138 		int hilen = BB_LEN(p[hi]);
8139 		int newlen = lolen + hilen - (s - a);
8140 		if (s >= a && newlen < BB_MAX_LEN) {
8141 			/* yes, we can combine them */
8142 			int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8143 			p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8144 			memmove(p + hi, p + hi + 1,
8145 				(bb->count - hi - 1) * 8);
8146 			bb->count--;
8147 		}
8148 	}
8149 	while (sectors) {
8150 		/* didn't merge (it all).
8151 		 * Need to add a range just before 'hi' */
8152 		if (bb->count >= MD_MAX_BADBLOCKS) {
8153 			/* No room for more */
8154 			rv = 0;
8155 			break;
8156 		} else {
8157 			int this_sectors = sectors;
8158 			memmove(p + hi + 1, p + hi,
8159 				(bb->count - hi) * 8);
8160 			bb->count++;
8161 
8162 			if (this_sectors > BB_MAX_LEN)
8163 				this_sectors = BB_MAX_LEN;
8164 			p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8165 			sectors -= this_sectors;
8166 			s += this_sectors;
8167 		}
8168 	}
8169 
8170 	bb->changed = 1;
8171 	if (!acknowledged)
8172 		bb->unacked_exist = 1;
8173 	write_sequnlock_irq(&bb->lock);
8174 
8175 	return rv;
8176 }
8177 
8178 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8179 		       int is_new)
8180 {
8181 	int rv;
8182 	if (is_new)
8183 		s += rdev->new_data_offset;
8184 	else
8185 		s += rdev->data_offset;
8186 	rv = md_set_badblocks(&rdev->badblocks,
8187 			      s, sectors, 0);
8188 	if (rv) {
8189 		/* Make sure they get written out promptly */
8190 		sysfs_notify_dirent_safe(rdev->sysfs_state);
8191 		set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8192 		md_wakeup_thread(rdev->mddev->thread);
8193 	}
8194 	return rv;
8195 }
8196 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8197 
8198 /*
8199  * Remove a range of bad blocks from the table.
8200  * This may involve extending the table if we spilt a region,
8201  * but it must not fail.  So if the table becomes full, we just
8202  * drop the remove request.
8203  */
8204 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8205 {
8206 	u64 *p;
8207 	int lo, hi;
8208 	sector_t target = s + sectors;
8209 	int rv = 0;
8210 
8211 	if (bb->shift > 0) {
8212 		/* When clearing we round the start up and the end down.
8213 		 * This should not matter as the shift should align with
8214 		 * the block size and no rounding should ever be needed.
8215 		 * However it is better the think a block is bad when it
8216 		 * isn't than to think a block is not bad when it is.
8217 		 */
8218 		s += (1<<bb->shift) - 1;
8219 		s >>= bb->shift;
8220 		target >>= bb->shift;
8221 		sectors = target - s;
8222 	}
8223 
8224 	write_seqlock_irq(&bb->lock);
8225 
8226 	p = bb->page;
8227 	lo = 0;
8228 	hi = bb->count;
8229 	/* Find the last range that starts before 'target' */
8230 	while (hi - lo > 1) {
8231 		int mid = (lo + hi) / 2;
8232 		sector_t a = BB_OFFSET(p[mid]);
8233 		if (a < target)
8234 			lo = mid;
8235 		else
8236 			hi = mid;
8237 	}
8238 	if (hi > lo) {
8239 		/* p[lo] is the last range that could overlap the
8240 		 * current range.  Earlier ranges could also overlap,
8241 		 * but only this one can overlap the end of the range.
8242 		 */
8243 		if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8244 			/* Partial overlap, leave the tail of this range */
8245 			int ack = BB_ACK(p[lo]);
8246 			sector_t a = BB_OFFSET(p[lo]);
8247 			sector_t end = a + BB_LEN(p[lo]);
8248 
8249 			if (a < s) {
8250 				/* we need to split this range */
8251 				if (bb->count >= MD_MAX_BADBLOCKS) {
8252 					rv = 0;
8253 					goto out;
8254 				}
8255 				memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8256 				bb->count++;
8257 				p[lo] = BB_MAKE(a, s-a, ack);
8258 				lo++;
8259 			}
8260 			p[lo] = BB_MAKE(target, end - target, ack);
8261 			/* there is no longer an overlap */
8262 			hi = lo;
8263 			lo--;
8264 		}
8265 		while (lo >= 0 &&
8266 		       BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8267 			/* This range does overlap */
8268 			if (BB_OFFSET(p[lo]) < s) {
8269 				/* Keep the early parts of this range. */
8270 				int ack = BB_ACK(p[lo]);
8271 				sector_t start = BB_OFFSET(p[lo]);
8272 				p[lo] = BB_MAKE(start, s - start, ack);
8273 				/* now low doesn't overlap, so.. */
8274 				break;
8275 			}
8276 			lo--;
8277 		}
8278 		/* 'lo' is strictly before, 'hi' is strictly after,
8279 		 * anything between needs to be discarded
8280 		 */
8281 		if (hi - lo > 1) {
8282 			memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8283 			bb->count -= (hi - lo - 1);
8284 		}
8285 	}
8286 
8287 	bb->changed = 1;
8288 out:
8289 	write_sequnlock_irq(&bb->lock);
8290 	return rv;
8291 }
8292 
8293 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8294 			 int is_new)
8295 {
8296 	if (is_new)
8297 		s += rdev->new_data_offset;
8298 	else
8299 		s += rdev->data_offset;
8300 	return md_clear_badblocks(&rdev->badblocks,
8301 				  s, sectors);
8302 }
8303 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8304 
8305 /*
8306  * Acknowledge all bad blocks in a list.
8307  * This only succeeds if ->changed is clear.  It is used by
8308  * in-kernel metadata updates
8309  */
8310 void md_ack_all_badblocks(struct badblocks *bb)
8311 {
8312 	if (bb->page == NULL || bb->changed)
8313 		/* no point even trying */
8314 		return;
8315 	write_seqlock_irq(&bb->lock);
8316 
8317 	if (bb->changed == 0 && bb->unacked_exist) {
8318 		u64 *p = bb->page;
8319 		int i;
8320 		for (i = 0; i < bb->count ; i++) {
8321 			if (!BB_ACK(p[i])) {
8322 				sector_t start = BB_OFFSET(p[i]);
8323 				int len = BB_LEN(p[i]);
8324 				p[i] = BB_MAKE(start, len, 1);
8325 			}
8326 		}
8327 		bb->unacked_exist = 0;
8328 	}
8329 	write_sequnlock_irq(&bb->lock);
8330 }
8331 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8332 
8333 /* sysfs access to bad-blocks list.
8334  * We present two files.
8335  * 'bad-blocks' lists sector numbers and lengths of ranges that
8336  *    are recorded as bad.  The list is truncated to fit within
8337  *    the one-page limit of sysfs.
8338  *    Writing "sector length" to this file adds an acknowledged
8339  *    bad block list.
8340  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8341  *    been acknowledged.  Writing to this file adds bad blocks
8342  *    without acknowledging them.  This is largely for testing.
8343  */
8344 
8345 static ssize_t
8346 badblocks_show(struct badblocks *bb, char *page, int unack)
8347 {
8348 	size_t len;
8349 	int i;
8350 	u64 *p = bb->page;
8351 	unsigned seq;
8352 
8353 	if (bb->shift < 0)
8354 		return 0;
8355 
8356 retry:
8357 	seq = read_seqbegin(&bb->lock);
8358 
8359 	len = 0;
8360 	i = 0;
8361 
8362 	while (len < PAGE_SIZE && i < bb->count) {
8363 		sector_t s = BB_OFFSET(p[i]);
8364 		unsigned int length = BB_LEN(p[i]);
8365 		int ack = BB_ACK(p[i]);
8366 		i++;
8367 
8368 		if (unack && ack)
8369 			continue;
8370 
8371 		len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8372 				(unsigned long long)s << bb->shift,
8373 				length << bb->shift);
8374 	}
8375 	if (unack && len == 0)
8376 		bb->unacked_exist = 0;
8377 
8378 	if (read_seqretry(&bb->lock, seq))
8379 		goto retry;
8380 
8381 	return len;
8382 }
8383 
8384 #define DO_DEBUG 1
8385 
8386 static ssize_t
8387 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8388 {
8389 	unsigned long long sector;
8390 	int length;
8391 	char newline;
8392 #ifdef DO_DEBUG
8393 	/* Allow clearing via sysfs *only* for testing/debugging.
8394 	 * Normally only a successful write may clear a badblock
8395 	 */
8396 	int clear = 0;
8397 	if (page[0] == '-') {
8398 		clear = 1;
8399 		page++;
8400 	}
8401 #endif /* DO_DEBUG */
8402 
8403 	switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8404 	case 3:
8405 		if (newline != '\n')
8406 			return -EINVAL;
8407 	case 2:
8408 		if (length <= 0)
8409 			return -EINVAL;
8410 		break;
8411 	default:
8412 		return -EINVAL;
8413 	}
8414 
8415 #ifdef DO_DEBUG
8416 	if (clear) {
8417 		md_clear_badblocks(bb, sector, length);
8418 		return len;
8419 	}
8420 #endif /* DO_DEBUG */
8421 	if (md_set_badblocks(bb, sector, length, !unack))
8422 		return len;
8423 	else
8424 		return -ENOSPC;
8425 }
8426 
8427 static int md_notify_reboot(struct notifier_block *this,
8428 			    unsigned long code, void *x)
8429 {
8430 	struct list_head *tmp;
8431 	struct mddev *mddev;
8432 	int need_delay = 0;
8433 
8434 	for_each_mddev(mddev, tmp) {
8435 		if (mddev_trylock(mddev)) {
8436 			if (mddev->pers)
8437 				__md_stop_writes(mddev);
8438 			mddev->safemode = 2;
8439 			mddev_unlock(mddev);
8440 		}
8441 		need_delay = 1;
8442 	}
8443 	/*
8444 	 * certain more exotic SCSI devices are known to be
8445 	 * volatile wrt too early system reboots. While the
8446 	 * right place to handle this issue is the given
8447 	 * driver, we do want to have a safe RAID driver ...
8448 	 */
8449 	if (need_delay)
8450 		mdelay(1000*1);
8451 
8452 	return NOTIFY_DONE;
8453 }
8454 
8455 static struct notifier_block md_notifier = {
8456 	.notifier_call	= md_notify_reboot,
8457 	.next		= NULL,
8458 	.priority	= INT_MAX, /* before any real devices */
8459 };
8460 
8461 static void md_geninit(void)
8462 {
8463 	pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8464 
8465 	proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8466 }
8467 
8468 static int __init md_init(void)
8469 {
8470 	int ret = -ENOMEM;
8471 
8472 	md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8473 	if (!md_wq)
8474 		goto err_wq;
8475 
8476 	md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8477 	if (!md_misc_wq)
8478 		goto err_misc_wq;
8479 
8480 	if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8481 		goto err_md;
8482 
8483 	if ((ret = register_blkdev(0, "mdp")) < 0)
8484 		goto err_mdp;
8485 	mdp_major = ret;
8486 
8487 	blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
8488 			    md_probe, NULL, NULL);
8489 	blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8490 			    md_probe, NULL, NULL);
8491 
8492 	register_reboot_notifier(&md_notifier);
8493 	raid_table_header = register_sysctl_table(raid_root_table);
8494 
8495 	md_geninit();
8496 	return 0;
8497 
8498 err_mdp:
8499 	unregister_blkdev(MD_MAJOR, "md");
8500 err_md:
8501 	destroy_workqueue(md_misc_wq);
8502 err_misc_wq:
8503 	destroy_workqueue(md_wq);
8504 err_wq:
8505 	return ret;
8506 }
8507 
8508 #ifndef MODULE
8509 
8510 /*
8511  * Searches all registered partitions for autorun RAID arrays
8512  * at boot time.
8513  */
8514 
8515 static LIST_HEAD(all_detected_devices);
8516 struct detected_devices_node {
8517 	struct list_head list;
8518 	dev_t dev;
8519 };
8520 
8521 void md_autodetect_dev(dev_t dev)
8522 {
8523 	struct detected_devices_node *node_detected_dev;
8524 
8525 	node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8526 	if (node_detected_dev) {
8527 		node_detected_dev->dev = dev;
8528 		list_add_tail(&node_detected_dev->list, &all_detected_devices);
8529 	} else {
8530 		printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8531 			", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8532 	}
8533 }
8534 
8535 
8536 static void autostart_arrays(int part)
8537 {
8538 	struct md_rdev *rdev;
8539 	struct detected_devices_node *node_detected_dev;
8540 	dev_t dev;
8541 	int i_scanned, i_passed;
8542 
8543 	i_scanned = 0;
8544 	i_passed = 0;
8545 
8546 	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8547 
8548 	while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8549 		i_scanned++;
8550 		node_detected_dev = list_entry(all_detected_devices.next,
8551 					struct detected_devices_node, list);
8552 		list_del(&node_detected_dev->list);
8553 		dev = node_detected_dev->dev;
8554 		kfree(node_detected_dev);
8555 		rdev = md_import_device(dev,0, 90);
8556 		if (IS_ERR(rdev))
8557 			continue;
8558 
8559 		if (test_bit(Faulty, &rdev->flags)) {
8560 			MD_BUG();
8561 			continue;
8562 		}
8563 		set_bit(AutoDetected, &rdev->flags);
8564 		list_add(&rdev->same_set, &pending_raid_disks);
8565 		i_passed++;
8566 	}
8567 
8568 	printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8569 						i_scanned, i_passed);
8570 
8571 	autorun_devices(part);
8572 }
8573 
8574 #endif /* !MODULE */
8575 
8576 static __exit void md_exit(void)
8577 {
8578 	struct mddev *mddev;
8579 	struct list_head *tmp;
8580 
8581 	blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
8582 	blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8583 
8584 	unregister_blkdev(MD_MAJOR,"md");
8585 	unregister_blkdev(mdp_major, "mdp");
8586 	unregister_reboot_notifier(&md_notifier);
8587 	unregister_sysctl_table(raid_table_header);
8588 	remove_proc_entry("mdstat", NULL);
8589 	for_each_mddev(mddev, tmp) {
8590 		export_array(mddev);
8591 		mddev->hold_active = 0;
8592 	}
8593 	destroy_workqueue(md_misc_wq);
8594 	destroy_workqueue(md_wq);
8595 }
8596 
8597 subsys_initcall(md_init);
8598 module_exit(md_exit)
8599 
8600 static int get_ro(char *buffer, struct kernel_param *kp)
8601 {
8602 	return sprintf(buffer, "%d", start_readonly);
8603 }
8604 static int set_ro(const char *val, struct kernel_param *kp)
8605 {
8606 	char *e;
8607 	int num = simple_strtoul(val, &e, 10);
8608 	if (*val && (*e == '\0' || *e == '\n')) {
8609 		start_readonly = num;
8610 		return 0;
8611 	}
8612 	return -EINVAL;
8613 }
8614 
8615 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8616 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8617 
8618 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8619 
8620 EXPORT_SYMBOL(register_md_personality);
8621 EXPORT_SYMBOL(unregister_md_personality);
8622 EXPORT_SYMBOL(md_error);
8623 EXPORT_SYMBOL(md_done_sync);
8624 EXPORT_SYMBOL(md_write_start);
8625 EXPORT_SYMBOL(md_write_end);
8626 EXPORT_SYMBOL(md_register_thread);
8627 EXPORT_SYMBOL(md_unregister_thread);
8628 EXPORT_SYMBOL(md_wakeup_thread);
8629 EXPORT_SYMBOL(md_check_recovery);
8630 MODULE_LICENSE("GPL");
8631 MODULE_DESCRIPTION("MD RAID framework");
8632 MODULE_ALIAS("md");
8633 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
8634