1 /* 2 md.c : Multiple Devices driver for Linux 3 Copyright (C) 1998, 1999, 2000 Ingo Molnar 4 5 completely rewritten, based on the MD driver code from Marc Zyngier 6 7 Changes: 8 9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar 10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> 11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> 12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su> 13 - kmod support by: Cyrus Durgin 14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> 15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> 16 17 - lots of fixes and improvements to the RAID1/RAID5 and generic 18 RAID code (such as request based resynchronization): 19 20 Neil Brown <neilb@cse.unsw.edu.au>. 21 22 - persistent bitmap code 23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. 24 25 This program is free software; you can redistribute it and/or modify 26 it under the terms of the GNU General Public License as published by 27 the Free Software Foundation; either version 2, or (at your option) 28 any later version. 29 30 You should have received a copy of the GNU General Public License 31 (for example /usr/src/linux/COPYING); if not, write to the Free 32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 33 34 Errors, Warnings, etc. 35 Please use: 36 pr_crit() for error conditions that risk data loss 37 pr_err() for error conditions that are unexpected, like an IO error 38 or internal inconsistency 39 pr_warn() for error conditions that could have been predicated, like 40 adding a device to an array when it has incompatible metadata 41 pr_info() for every interesting, very rare events, like an array starting 42 or stopping, or resync starting or stopping 43 pr_debug() for everything else. 44 45 */ 46 47 #include <linux/sched/signal.h> 48 #include <linux/kthread.h> 49 #include <linux/blkdev.h> 50 #include <linux/badblocks.h> 51 #include <linux/sysctl.h> 52 #include <linux/seq_file.h> 53 #include <linux/fs.h> 54 #include <linux/poll.h> 55 #include <linux/ctype.h> 56 #include <linux/string.h> 57 #include <linux/hdreg.h> 58 #include <linux/proc_fs.h> 59 #include <linux/random.h> 60 #include <linux/module.h> 61 #include <linux/reboot.h> 62 #include <linux/file.h> 63 #include <linux/compat.h> 64 #include <linux/delay.h> 65 #include <linux/raid/md_p.h> 66 #include <linux/raid/md_u.h> 67 #include <linux/slab.h> 68 #include <linux/percpu-refcount.h> 69 70 #include <trace/events/block.h> 71 #include "md.h" 72 #include "md-bitmap.h" 73 #include "md-cluster.h" 74 75 #ifndef MODULE 76 static void autostart_arrays(int part); 77 #endif 78 79 /* pers_list is a list of registered personalities protected 80 * by pers_lock. 81 * pers_lock does extra service to protect accesses to 82 * mddev->thread when the mutex cannot be held. 83 */ 84 static LIST_HEAD(pers_list); 85 static DEFINE_SPINLOCK(pers_lock); 86 87 static struct kobj_type md_ktype; 88 89 struct md_cluster_operations *md_cluster_ops; 90 EXPORT_SYMBOL(md_cluster_ops); 91 static struct module *md_cluster_mod; 92 93 static DECLARE_WAIT_QUEUE_HEAD(resync_wait); 94 static struct workqueue_struct *md_wq; 95 static struct workqueue_struct *md_misc_wq; 96 97 static int remove_and_add_spares(struct mddev *mddev, 98 struct md_rdev *this); 99 static void mddev_detach(struct mddev *mddev); 100 101 /* 102 * Default number of read corrections we'll attempt on an rdev 103 * before ejecting it from the array. We divide the read error 104 * count by 2 for every hour elapsed between read errors. 105 */ 106 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20 107 /* 108 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' 109 * is 1000 KB/sec, so the extra system load does not show up that much. 110 * Increase it if you want to have more _guaranteed_ speed. Note that 111 * the RAID driver will use the maximum available bandwidth if the IO 112 * subsystem is idle. There is also an 'absolute maximum' reconstruction 113 * speed limit - in case reconstruction slows down your system despite 114 * idle IO detection. 115 * 116 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. 117 * or /sys/block/mdX/md/sync_speed_{min,max} 118 */ 119 120 static int sysctl_speed_limit_min = 1000; 121 static int sysctl_speed_limit_max = 200000; 122 static inline int speed_min(struct mddev *mddev) 123 { 124 return mddev->sync_speed_min ? 125 mddev->sync_speed_min : sysctl_speed_limit_min; 126 } 127 128 static inline int speed_max(struct mddev *mddev) 129 { 130 return mddev->sync_speed_max ? 131 mddev->sync_speed_max : sysctl_speed_limit_max; 132 } 133 134 static struct ctl_table_header *raid_table_header; 135 136 static struct ctl_table raid_table[] = { 137 { 138 .procname = "speed_limit_min", 139 .data = &sysctl_speed_limit_min, 140 .maxlen = sizeof(int), 141 .mode = S_IRUGO|S_IWUSR, 142 .proc_handler = proc_dointvec, 143 }, 144 { 145 .procname = "speed_limit_max", 146 .data = &sysctl_speed_limit_max, 147 .maxlen = sizeof(int), 148 .mode = S_IRUGO|S_IWUSR, 149 .proc_handler = proc_dointvec, 150 }, 151 { } 152 }; 153 154 static struct ctl_table raid_dir_table[] = { 155 { 156 .procname = "raid", 157 .maxlen = 0, 158 .mode = S_IRUGO|S_IXUGO, 159 .child = raid_table, 160 }, 161 { } 162 }; 163 164 static struct ctl_table raid_root_table[] = { 165 { 166 .procname = "dev", 167 .maxlen = 0, 168 .mode = 0555, 169 .child = raid_dir_table, 170 }, 171 { } 172 }; 173 174 static const struct block_device_operations md_fops; 175 176 static int start_readonly; 177 178 /* 179 * The original mechanism for creating an md device is to create 180 * a device node in /dev and to open it. This causes races with device-close. 181 * The preferred method is to write to the "new_array" module parameter. 182 * This can avoid races. 183 * Setting create_on_open to false disables the original mechanism 184 * so all the races disappear. 185 */ 186 static bool create_on_open = true; 187 188 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs, 189 struct mddev *mddev) 190 { 191 if (!mddev || !bioset_initialized(&mddev->bio_set)) 192 return bio_alloc(gfp_mask, nr_iovecs); 193 194 return bio_alloc_bioset(gfp_mask, nr_iovecs, &mddev->bio_set); 195 } 196 EXPORT_SYMBOL_GPL(bio_alloc_mddev); 197 198 static struct bio *md_bio_alloc_sync(struct mddev *mddev) 199 { 200 if (!mddev || !bioset_initialized(&mddev->sync_set)) 201 return bio_alloc(GFP_NOIO, 1); 202 203 return bio_alloc_bioset(GFP_NOIO, 1, &mddev->sync_set); 204 } 205 206 /* 207 * We have a system wide 'event count' that is incremented 208 * on any 'interesting' event, and readers of /proc/mdstat 209 * can use 'poll' or 'select' to find out when the event 210 * count increases. 211 * 212 * Events are: 213 * start array, stop array, error, add device, remove device, 214 * start build, activate spare 215 */ 216 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); 217 static atomic_t md_event_count; 218 void md_new_event(struct mddev *mddev) 219 { 220 atomic_inc(&md_event_count); 221 wake_up(&md_event_waiters); 222 } 223 EXPORT_SYMBOL_GPL(md_new_event); 224 225 /* 226 * Enables to iterate over all existing md arrays 227 * all_mddevs_lock protects this list. 228 */ 229 static LIST_HEAD(all_mddevs); 230 static DEFINE_SPINLOCK(all_mddevs_lock); 231 232 /* 233 * iterates through all used mddevs in the system. 234 * We take care to grab the all_mddevs_lock whenever navigating 235 * the list, and to always hold a refcount when unlocked. 236 * Any code which breaks out of this loop while own 237 * a reference to the current mddev and must mddev_put it. 238 */ 239 #define for_each_mddev(_mddev,_tmp) \ 240 \ 241 for (({ spin_lock(&all_mddevs_lock); \ 242 _tmp = all_mddevs.next; \ 243 _mddev = NULL;}); \ 244 ({ if (_tmp != &all_mddevs) \ 245 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\ 246 spin_unlock(&all_mddevs_lock); \ 247 if (_mddev) mddev_put(_mddev); \ 248 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \ 249 _tmp != &all_mddevs;}); \ 250 ({ spin_lock(&all_mddevs_lock); \ 251 _tmp = _tmp->next;}) \ 252 ) 253 254 /* Rather than calling directly into the personality make_request function, 255 * IO requests come here first so that we can check if the device is 256 * being suspended pending a reconfiguration. 257 * We hold a refcount over the call to ->make_request. By the time that 258 * call has finished, the bio has been linked into some internal structure 259 * and so is visible to ->quiesce(), so we don't need the refcount any more. 260 */ 261 static bool is_suspended(struct mddev *mddev, struct bio *bio) 262 { 263 if (mddev->suspended) 264 return true; 265 if (bio_data_dir(bio) != WRITE) 266 return false; 267 if (mddev->suspend_lo >= mddev->suspend_hi) 268 return false; 269 if (bio->bi_iter.bi_sector >= mddev->suspend_hi) 270 return false; 271 if (bio_end_sector(bio) < mddev->suspend_lo) 272 return false; 273 return true; 274 } 275 276 void md_handle_request(struct mddev *mddev, struct bio *bio) 277 { 278 check_suspended: 279 rcu_read_lock(); 280 if (is_suspended(mddev, bio)) { 281 DEFINE_WAIT(__wait); 282 for (;;) { 283 prepare_to_wait(&mddev->sb_wait, &__wait, 284 TASK_UNINTERRUPTIBLE); 285 if (!is_suspended(mddev, bio)) 286 break; 287 rcu_read_unlock(); 288 schedule(); 289 rcu_read_lock(); 290 } 291 finish_wait(&mddev->sb_wait, &__wait); 292 } 293 atomic_inc(&mddev->active_io); 294 rcu_read_unlock(); 295 296 if (!mddev->pers->make_request(mddev, bio)) { 297 atomic_dec(&mddev->active_io); 298 wake_up(&mddev->sb_wait); 299 goto check_suspended; 300 } 301 302 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended) 303 wake_up(&mddev->sb_wait); 304 } 305 EXPORT_SYMBOL(md_handle_request); 306 307 static blk_qc_t md_make_request(struct request_queue *q, struct bio *bio) 308 { 309 const int rw = bio_data_dir(bio); 310 const int sgrp = op_stat_group(bio_op(bio)); 311 struct mddev *mddev = q->queuedata; 312 unsigned int sectors; 313 314 blk_queue_split(q, &bio); 315 316 if (mddev == NULL || mddev->pers == NULL) { 317 bio_io_error(bio); 318 return BLK_QC_T_NONE; 319 } 320 if (mddev->ro == 1 && unlikely(rw == WRITE)) { 321 if (bio_sectors(bio) != 0) 322 bio->bi_status = BLK_STS_IOERR; 323 bio_endio(bio); 324 return BLK_QC_T_NONE; 325 } 326 327 /* 328 * save the sectors now since our bio can 329 * go away inside make_request 330 */ 331 sectors = bio_sectors(bio); 332 /* bio could be mergeable after passing to underlayer */ 333 bio->bi_opf &= ~REQ_NOMERGE; 334 335 md_handle_request(mddev, bio); 336 337 part_stat_lock(); 338 part_stat_inc(&mddev->gendisk->part0, ios[sgrp]); 339 part_stat_add(&mddev->gendisk->part0, sectors[sgrp], sectors); 340 part_stat_unlock(); 341 342 return BLK_QC_T_NONE; 343 } 344 345 /* mddev_suspend makes sure no new requests are submitted 346 * to the device, and that any requests that have been submitted 347 * are completely handled. 348 * Once mddev_detach() is called and completes, the module will be 349 * completely unused. 350 */ 351 void mddev_suspend(struct mddev *mddev) 352 { 353 WARN_ON_ONCE(mddev->thread && current == mddev->thread->tsk); 354 lockdep_assert_held(&mddev->reconfig_mutex); 355 if (mddev->suspended++) 356 return; 357 synchronize_rcu(); 358 wake_up(&mddev->sb_wait); 359 set_bit(MD_ALLOW_SB_UPDATE, &mddev->flags); 360 smp_mb__after_atomic(); 361 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0); 362 mddev->pers->quiesce(mddev, 1); 363 clear_bit_unlock(MD_ALLOW_SB_UPDATE, &mddev->flags); 364 wait_event(mddev->sb_wait, !test_bit(MD_UPDATING_SB, &mddev->flags)); 365 366 del_timer_sync(&mddev->safemode_timer); 367 } 368 EXPORT_SYMBOL_GPL(mddev_suspend); 369 370 void mddev_resume(struct mddev *mddev) 371 { 372 lockdep_assert_held(&mddev->reconfig_mutex); 373 if (--mddev->suspended) 374 return; 375 wake_up(&mddev->sb_wait); 376 mddev->pers->quiesce(mddev, 0); 377 378 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 379 md_wakeup_thread(mddev->thread); 380 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 381 } 382 EXPORT_SYMBOL_GPL(mddev_resume); 383 384 int mddev_congested(struct mddev *mddev, int bits) 385 { 386 struct md_personality *pers = mddev->pers; 387 int ret = 0; 388 389 rcu_read_lock(); 390 if (mddev->suspended) 391 ret = 1; 392 else if (pers && pers->congested) 393 ret = pers->congested(mddev, bits); 394 rcu_read_unlock(); 395 return ret; 396 } 397 EXPORT_SYMBOL_GPL(mddev_congested); 398 static int md_congested(void *data, int bits) 399 { 400 struct mddev *mddev = data; 401 return mddev_congested(mddev, bits); 402 } 403 404 /* 405 * Generic flush handling for md 406 */ 407 408 static void md_end_flush(struct bio *bio) 409 { 410 struct md_rdev *rdev = bio->bi_private; 411 struct mddev *mddev = rdev->mddev; 412 413 rdev_dec_pending(rdev, mddev); 414 415 if (atomic_dec_and_test(&mddev->flush_pending)) { 416 /* The pre-request flush has finished */ 417 queue_work(md_wq, &mddev->flush_work); 418 } 419 bio_put(bio); 420 } 421 422 static void md_submit_flush_data(struct work_struct *ws); 423 424 static void submit_flushes(struct work_struct *ws) 425 { 426 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 427 struct md_rdev *rdev; 428 429 mddev->start_flush = ktime_get_boottime(); 430 INIT_WORK(&mddev->flush_work, md_submit_flush_data); 431 atomic_set(&mddev->flush_pending, 1); 432 rcu_read_lock(); 433 rdev_for_each_rcu(rdev, mddev) 434 if (rdev->raid_disk >= 0 && 435 !test_bit(Faulty, &rdev->flags)) { 436 /* Take two references, one is dropped 437 * when request finishes, one after 438 * we reclaim rcu_read_lock 439 */ 440 struct bio *bi; 441 atomic_inc(&rdev->nr_pending); 442 atomic_inc(&rdev->nr_pending); 443 rcu_read_unlock(); 444 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev); 445 bi->bi_end_io = md_end_flush; 446 bi->bi_private = rdev; 447 bio_set_dev(bi, rdev->bdev); 448 bi->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH; 449 atomic_inc(&mddev->flush_pending); 450 submit_bio(bi); 451 rcu_read_lock(); 452 rdev_dec_pending(rdev, mddev); 453 } 454 rcu_read_unlock(); 455 if (atomic_dec_and_test(&mddev->flush_pending)) 456 queue_work(md_wq, &mddev->flush_work); 457 } 458 459 static void md_submit_flush_data(struct work_struct *ws) 460 { 461 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 462 struct bio *bio = mddev->flush_bio; 463 464 /* 465 * must reset flush_bio before calling into md_handle_request to avoid a 466 * deadlock, because other bios passed md_handle_request suspend check 467 * could wait for this and below md_handle_request could wait for those 468 * bios because of suspend check 469 */ 470 mddev->last_flush = mddev->start_flush; 471 mddev->flush_bio = NULL; 472 wake_up(&mddev->sb_wait); 473 474 if (bio->bi_iter.bi_size == 0) { 475 /* an empty barrier - all done */ 476 bio_endio(bio); 477 } else { 478 bio->bi_opf &= ~REQ_PREFLUSH; 479 md_handle_request(mddev, bio); 480 } 481 } 482 483 void md_flush_request(struct mddev *mddev, struct bio *bio) 484 { 485 ktime_t start = ktime_get_boottime(); 486 spin_lock_irq(&mddev->lock); 487 wait_event_lock_irq(mddev->sb_wait, 488 !mddev->flush_bio || 489 ktime_after(mddev->last_flush, start), 490 mddev->lock); 491 if (!ktime_after(mddev->last_flush, start)) { 492 WARN_ON(mddev->flush_bio); 493 mddev->flush_bio = bio; 494 bio = NULL; 495 } 496 spin_unlock_irq(&mddev->lock); 497 498 if (!bio) { 499 INIT_WORK(&mddev->flush_work, submit_flushes); 500 queue_work(md_wq, &mddev->flush_work); 501 } else { 502 /* flush was performed for some other bio while we waited. */ 503 if (bio->bi_iter.bi_size == 0) 504 /* an empty barrier - all done */ 505 bio_endio(bio); 506 else { 507 bio->bi_opf &= ~REQ_PREFLUSH; 508 mddev->pers->make_request(mddev, bio); 509 } 510 } 511 } 512 EXPORT_SYMBOL(md_flush_request); 513 514 static inline struct mddev *mddev_get(struct mddev *mddev) 515 { 516 atomic_inc(&mddev->active); 517 return mddev; 518 } 519 520 static void mddev_delayed_delete(struct work_struct *ws); 521 522 static void mddev_put(struct mddev *mddev) 523 { 524 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) 525 return; 526 if (!mddev->raid_disks && list_empty(&mddev->disks) && 527 mddev->ctime == 0 && !mddev->hold_active) { 528 /* Array is not configured at all, and not held active, 529 * so destroy it */ 530 list_del_init(&mddev->all_mddevs); 531 532 /* 533 * Call queue_work inside the spinlock so that 534 * flush_workqueue() after mddev_find will succeed in waiting 535 * for the work to be done. 536 */ 537 INIT_WORK(&mddev->del_work, mddev_delayed_delete); 538 queue_work(md_misc_wq, &mddev->del_work); 539 } 540 spin_unlock(&all_mddevs_lock); 541 } 542 543 static void md_safemode_timeout(struct timer_list *t); 544 545 void mddev_init(struct mddev *mddev) 546 { 547 kobject_init(&mddev->kobj, &md_ktype); 548 mutex_init(&mddev->open_mutex); 549 mutex_init(&mddev->reconfig_mutex); 550 mutex_init(&mddev->bitmap_info.mutex); 551 INIT_LIST_HEAD(&mddev->disks); 552 INIT_LIST_HEAD(&mddev->all_mddevs); 553 timer_setup(&mddev->safemode_timer, md_safemode_timeout, 0); 554 atomic_set(&mddev->active, 1); 555 atomic_set(&mddev->openers, 0); 556 atomic_set(&mddev->active_io, 0); 557 spin_lock_init(&mddev->lock); 558 atomic_set(&mddev->flush_pending, 0); 559 init_waitqueue_head(&mddev->sb_wait); 560 init_waitqueue_head(&mddev->recovery_wait); 561 mddev->reshape_position = MaxSector; 562 mddev->reshape_backwards = 0; 563 mddev->last_sync_action = "none"; 564 mddev->resync_min = 0; 565 mddev->resync_max = MaxSector; 566 mddev->level = LEVEL_NONE; 567 } 568 EXPORT_SYMBOL_GPL(mddev_init); 569 570 static struct mddev *mddev_find(dev_t unit) 571 { 572 struct mddev *mddev, *new = NULL; 573 574 if (unit && MAJOR(unit) != MD_MAJOR) 575 unit &= ~((1<<MdpMinorShift)-1); 576 577 retry: 578 spin_lock(&all_mddevs_lock); 579 580 if (unit) { 581 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 582 if (mddev->unit == unit) { 583 mddev_get(mddev); 584 spin_unlock(&all_mddevs_lock); 585 kfree(new); 586 return mddev; 587 } 588 589 if (new) { 590 list_add(&new->all_mddevs, &all_mddevs); 591 spin_unlock(&all_mddevs_lock); 592 new->hold_active = UNTIL_IOCTL; 593 return new; 594 } 595 } else if (new) { 596 /* find an unused unit number */ 597 static int next_minor = 512; 598 int start = next_minor; 599 int is_free = 0; 600 int dev = 0; 601 while (!is_free) { 602 dev = MKDEV(MD_MAJOR, next_minor); 603 next_minor++; 604 if (next_minor > MINORMASK) 605 next_minor = 0; 606 if (next_minor == start) { 607 /* Oh dear, all in use. */ 608 spin_unlock(&all_mddevs_lock); 609 kfree(new); 610 return NULL; 611 } 612 613 is_free = 1; 614 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 615 if (mddev->unit == dev) { 616 is_free = 0; 617 break; 618 } 619 } 620 new->unit = dev; 621 new->md_minor = MINOR(dev); 622 new->hold_active = UNTIL_STOP; 623 list_add(&new->all_mddevs, &all_mddevs); 624 spin_unlock(&all_mddevs_lock); 625 return new; 626 } 627 spin_unlock(&all_mddevs_lock); 628 629 new = kzalloc(sizeof(*new), GFP_KERNEL); 630 if (!new) 631 return NULL; 632 633 new->unit = unit; 634 if (MAJOR(unit) == MD_MAJOR) 635 new->md_minor = MINOR(unit); 636 else 637 new->md_minor = MINOR(unit) >> MdpMinorShift; 638 639 mddev_init(new); 640 641 goto retry; 642 } 643 644 static struct attribute_group md_redundancy_group; 645 646 void mddev_unlock(struct mddev *mddev) 647 { 648 if (mddev->to_remove) { 649 /* These cannot be removed under reconfig_mutex as 650 * an access to the files will try to take reconfig_mutex 651 * while holding the file unremovable, which leads to 652 * a deadlock. 653 * So hold set sysfs_active while the remove in happeing, 654 * and anything else which might set ->to_remove or my 655 * otherwise change the sysfs namespace will fail with 656 * -EBUSY if sysfs_active is still set. 657 * We set sysfs_active under reconfig_mutex and elsewhere 658 * test it under the same mutex to ensure its correct value 659 * is seen. 660 */ 661 struct attribute_group *to_remove = mddev->to_remove; 662 mddev->to_remove = NULL; 663 mddev->sysfs_active = 1; 664 mutex_unlock(&mddev->reconfig_mutex); 665 666 if (mddev->kobj.sd) { 667 if (to_remove != &md_redundancy_group) 668 sysfs_remove_group(&mddev->kobj, to_remove); 669 if (mddev->pers == NULL || 670 mddev->pers->sync_request == NULL) { 671 sysfs_remove_group(&mddev->kobj, &md_redundancy_group); 672 if (mddev->sysfs_action) 673 sysfs_put(mddev->sysfs_action); 674 mddev->sysfs_action = NULL; 675 } 676 } 677 mddev->sysfs_active = 0; 678 } else 679 mutex_unlock(&mddev->reconfig_mutex); 680 681 /* As we've dropped the mutex we need a spinlock to 682 * make sure the thread doesn't disappear 683 */ 684 spin_lock(&pers_lock); 685 md_wakeup_thread(mddev->thread); 686 wake_up(&mddev->sb_wait); 687 spin_unlock(&pers_lock); 688 } 689 EXPORT_SYMBOL_GPL(mddev_unlock); 690 691 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr) 692 { 693 struct md_rdev *rdev; 694 695 rdev_for_each_rcu(rdev, mddev) 696 if (rdev->desc_nr == nr) 697 return rdev; 698 699 return NULL; 700 } 701 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu); 702 703 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev) 704 { 705 struct md_rdev *rdev; 706 707 rdev_for_each(rdev, mddev) 708 if (rdev->bdev->bd_dev == dev) 709 return rdev; 710 711 return NULL; 712 } 713 714 struct md_rdev *md_find_rdev_rcu(struct mddev *mddev, dev_t dev) 715 { 716 struct md_rdev *rdev; 717 718 rdev_for_each_rcu(rdev, mddev) 719 if (rdev->bdev->bd_dev == dev) 720 return rdev; 721 722 return NULL; 723 } 724 EXPORT_SYMBOL_GPL(md_find_rdev_rcu); 725 726 static struct md_personality *find_pers(int level, char *clevel) 727 { 728 struct md_personality *pers; 729 list_for_each_entry(pers, &pers_list, list) { 730 if (level != LEVEL_NONE && pers->level == level) 731 return pers; 732 if (strcmp(pers->name, clevel)==0) 733 return pers; 734 } 735 return NULL; 736 } 737 738 /* return the offset of the super block in 512byte sectors */ 739 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev) 740 { 741 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512; 742 return MD_NEW_SIZE_SECTORS(num_sectors); 743 } 744 745 static int alloc_disk_sb(struct md_rdev *rdev) 746 { 747 rdev->sb_page = alloc_page(GFP_KERNEL); 748 if (!rdev->sb_page) 749 return -ENOMEM; 750 return 0; 751 } 752 753 void md_rdev_clear(struct md_rdev *rdev) 754 { 755 if (rdev->sb_page) { 756 put_page(rdev->sb_page); 757 rdev->sb_loaded = 0; 758 rdev->sb_page = NULL; 759 rdev->sb_start = 0; 760 rdev->sectors = 0; 761 } 762 if (rdev->bb_page) { 763 put_page(rdev->bb_page); 764 rdev->bb_page = NULL; 765 } 766 badblocks_exit(&rdev->badblocks); 767 } 768 EXPORT_SYMBOL_GPL(md_rdev_clear); 769 770 static void super_written(struct bio *bio) 771 { 772 struct md_rdev *rdev = bio->bi_private; 773 struct mddev *mddev = rdev->mddev; 774 775 if (bio->bi_status) { 776 pr_err("md: super_written gets error=%d\n", bio->bi_status); 777 md_error(mddev, rdev); 778 if (!test_bit(Faulty, &rdev->flags) 779 && (bio->bi_opf & MD_FAILFAST)) { 780 set_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags); 781 set_bit(LastDev, &rdev->flags); 782 } 783 } else 784 clear_bit(LastDev, &rdev->flags); 785 786 if (atomic_dec_and_test(&mddev->pending_writes)) 787 wake_up(&mddev->sb_wait); 788 rdev_dec_pending(rdev, mddev); 789 bio_put(bio); 790 } 791 792 void md_super_write(struct mddev *mddev, struct md_rdev *rdev, 793 sector_t sector, int size, struct page *page) 794 { 795 /* write first size bytes of page to sector of rdev 796 * Increment mddev->pending_writes before returning 797 * and decrement it on completion, waking up sb_wait 798 * if zero is reached. 799 * If an error occurred, call md_error 800 */ 801 struct bio *bio; 802 int ff = 0; 803 804 if (!page) 805 return; 806 807 if (test_bit(Faulty, &rdev->flags)) 808 return; 809 810 bio = md_bio_alloc_sync(mddev); 811 812 atomic_inc(&rdev->nr_pending); 813 814 bio_set_dev(bio, rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev); 815 bio->bi_iter.bi_sector = sector; 816 bio_add_page(bio, page, size, 0); 817 bio->bi_private = rdev; 818 bio->bi_end_io = super_written; 819 820 if (test_bit(MD_FAILFAST_SUPPORTED, &mddev->flags) && 821 test_bit(FailFast, &rdev->flags) && 822 !test_bit(LastDev, &rdev->flags)) 823 ff = MD_FAILFAST; 824 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH | REQ_FUA | ff; 825 826 atomic_inc(&mddev->pending_writes); 827 submit_bio(bio); 828 } 829 830 int md_super_wait(struct mddev *mddev) 831 { 832 /* wait for all superblock writes that were scheduled to complete */ 833 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0); 834 if (test_and_clear_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags)) 835 return -EAGAIN; 836 return 0; 837 } 838 839 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size, 840 struct page *page, int op, int op_flags, bool metadata_op) 841 { 842 struct bio *bio = md_bio_alloc_sync(rdev->mddev); 843 int ret; 844 845 if (metadata_op && rdev->meta_bdev) 846 bio_set_dev(bio, rdev->meta_bdev); 847 else 848 bio_set_dev(bio, rdev->bdev); 849 bio_set_op_attrs(bio, op, op_flags); 850 if (metadata_op) 851 bio->bi_iter.bi_sector = sector + rdev->sb_start; 852 else if (rdev->mddev->reshape_position != MaxSector && 853 (rdev->mddev->reshape_backwards == 854 (sector >= rdev->mddev->reshape_position))) 855 bio->bi_iter.bi_sector = sector + rdev->new_data_offset; 856 else 857 bio->bi_iter.bi_sector = sector + rdev->data_offset; 858 bio_add_page(bio, page, size, 0); 859 860 submit_bio_wait(bio); 861 862 ret = !bio->bi_status; 863 bio_put(bio); 864 return ret; 865 } 866 EXPORT_SYMBOL_GPL(sync_page_io); 867 868 static int read_disk_sb(struct md_rdev *rdev, int size) 869 { 870 char b[BDEVNAME_SIZE]; 871 872 if (rdev->sb_loaded) 873 return 0; 874 875 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true)) 876 goto fail; 877 rdev->sb_loaded = 1; 878 return 0; 879 880 fail: 881 pr_err("md: disabled device %s, could not read superblock.\n", 882 bdevname(rdev->bdev,b)); 883 return -EINVAL; 884 } 885 886 static int md_uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) 887 { 888 return sb1->set_uuid0 == sb2->set_uuid0 && 889 sb1->set_uuid1 == sb2->set_uuid1 && 890 sb1->set_uuid2 == sb2->set_uuid2 && 891 sb1->set_uuid3 == sb2->set_uuid3; 892 } 893 894 static int md_sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) 895 { 896 int ret; 897 mdp_super_t *tmp1, *tmp2; 898 899 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); 900 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); 901 902 if (!tmp1 || !tmp2) { 903 ret = 0; 904 goto abort; 905 } 906 907 *tmp1 = *sb1; 908 *tmp2 = *sb2; 909 910 /* 911 * nr_disks is not constant 912 */ 913 tmp1->nr_disks = 0; 914 tmp2->nr_disks = 0; 915 916 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0); 917 abort: 918 kfree(tmp1); 919 kfree(tmp2); 920 return ret; 921 } 922 923 static u32 md_csum_fold(u32 csum) 924 { 925 csum = (csum & 0xffff) + (csum >> 16); 926 return (csum & 0xffff) + (csum >> 16); 927 } 928 929 static unsigned int calc_sb_csum(mdp_super_t *sb) 930 { 931 u64 newcsum = 0; 932 u32 *sb32 = (u32*)sb; 933 int i; 934 unsigned int disk_csum, csum; 935 936 disk_csum = sb->sb_csum; 937 sb->sb_csum = 0; 938 939 for (i = 0; i < MD_SB_BYTES/4 ; i++) 940 newcsum += sb32[i]; 941 csum = (newcsum & 0xffffffff) + (newcsum>>32); 942 943 #ifdef CONFIG_ALPHA 944 /* This used to use csum_partial, which was wrong for several 945 * reasons including that different results are returned on 946 * different architectures. It isn't critical that we get exactly 947 * the same return value as before (we always csum_fold before 948 * testing, and that removes any differences). However as we 949 * know that csum_partial always returned a 16bit value on 950 * alphas, do a fold to maximise conformity to previous behaviour. 951 */ 952 sb->sb_csum = md_csum_fold(disk_csum); 953 #else 954 sb->sb_csum = disk_csum; 955 #endif 956 return csum; 957 } 958 959 /* 960 * Handle superblock details. 961 * We want to be able to handle multiple superblock formats 962 * so we have a common interface to them all, and an array of 963 * different handlers. 964 * We rely on user-space to write the initial superblock, and support 965 * reading and updating of superblocks. 966 * Interface methods are: 967 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version) 968 * loads and validates a superblock on dev. 969 * if refdev != NULL, compare superblocks on both devices 970 * Return: 971 * 0 - dev has a superblock that is compatible with refdev 972 * 1 - dev has a superblock that is compatible and newer than refdev 973 * so dev should be used as the refdev in future 974 * -EINVAL superblock incompatible or invalid 975 * -othererror e.g. -EIO 976 * 977 * int validate_super(struct mddev *mddev, struct md_rdev *dev) 978 * Verify that dev is acceptable into mddev. 979 * The first time, mddev->raid_disks will be 0, and data from 980 * dev should be merged in. Subsequent calls check that dev 981 * is new enough. Return 0 or -EINVAL 982 * 983 * void sync_super(struct mddev *mddev, struct md_rdev *dev) 984 * Update the superblock for rdev with data in mddev 985 * This does not write to disc. 986 * 987 */ 988 989 struct super_type { 990 char *name; 991 struct module *owner; 992 int (*load_super)(struct md_rdev *rdev, 993 struct md_rdev *refdev, 994 int minor_version); 995 int (*validate_super)(struct mddev *mddev, 996 struct md_rdev *rdev); 997 void (*sync_super)(struct mddev *mddev, 998 struct md_rdev *rdev); 999 unsigned long long (*rdev_size_change)(struct md_rdev *rdev, 1000 sector_t num_sectors); 1001 int (*allow_new_offset)(struct md_rdev *rdev, 1002 unsigned long long new_offset); 1003 }; 1004 1005 /* 1006 * Check that the given mddev has no bitmap. 1007 * 1008 * This function is called from the run method of all personalities that do not 1009 * support bitmaps. It prints an error message and returns non-zero if mddev 1010 * has a bitmap. Otherwise, it returns 0. 1011 * 1012 */ 1013 int md_check_no_bitmap(struct mddev *mddev) 1014 { 1015 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset) 1016 return 0; 1017 pr_warn("%s: bitmaps are not supported for %s\n", 1018 mdname(mddev), mddev->pers->name); 1019 return 1; 1020 } 1021 EXPORT_SYMBOL(md_check_no_bitmap); 1022 1023 /* 1024 * load_super for 0.90.0 1025 */ 1026 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1027 { 1028 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1029 mdp_super_t *sb; 1030 int ret; 1031 1032 /* 1033 * Calculate the position of the superblock (512byte sectors), 1034 * it's at the end of the disk. 1035 * 1036 * It also happens to be a multiple of 4Kb. 1037 */ 1038 rdev->sb_start = calc_dev_sboffset(rdev); 1039 1040 ret = read_disk_sb(rdev, MD_SB_BYTES); 1041 if (ret) 1042 return ret; 1043 1044 ret = -EINVAL; 1045 1046 bdevname(rdev->bdev, b); 1047 sb = page_address(rdev->sb_page); 1048 1049 if (sb->md_magic != MD_SB_MAGIC) { 1050 pr_warn("md: invalid raid superblock magic on %s\n", b); 1051 goto abort; 1052 } 1053 1054 if (sb->major_version != 0 || 1055 sb->minor_version < 90 || 1056 sb->minor_version > 91) { 1057 pr_warn("Bad version number %d.%d on %s\n", 1058 sb->major_version, sb->minor_version, b); 1059 goto abort; 1060 } 1061 1062 if (sb->raid_disks <= 0) 1063 goto abort; 1064 1065 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) { 1066 pr_warn("md: invalid superblock checksum on %s\n", b); 1067 goto abort; 1068 } 1069 1070 rdev->preferred_minor = sb->md_minor; 1071 rdev->data_offset = 0; 1072 rdev->new_data_offset = 0; 1073 rdev->sb_size = MD_SB_BYTES; 1074 rdev->badblocks.shift = -1; 1075 1076 if (sb->level == LEVEL_MULTIPATH) 1077 rdev->desc_nr = -1; 1078 else 1079 rdev->desc_nr = sb->this_disk.number; 1080 1081 if (!refdev) { 1082 ret = 1; 1083 } else { 1084 __u64 ev1, ev2; 1085 mdp_super_t *refsb = page_address(refdev->sb_page); 1086 if (!md_uuid_equal(refsb, sb)) { 1087 pr_warn("md: %s has different UUID to %s\n", 1088 b, bdevname(refdev->bdev,b2)); 1089 goto abort; 1090 } 1091 if (!md_sb_equal(refsb, sb)) { 1092 pr_warn("md: %s has same UUID but different superblock to %s\n", 1093 b, bdevname(refdev->bdev, b2)); 1094 goto abort; 1095 } 1096 ev1 = md_event(sb); 1097 ev2 = md_event(refsb); 1098 if (ev1 > ev2) 1099 ret = 1; 1100 else 1101 ret = 0; 1102 } 1103 rdev->sectors = rdev->sb_start; 1104 /* Limit to 4TB as metadata cannot record more than that. 1105 * (not needed for Linear and RAID0 as metadata doesn't 1106 * record this size) 1107 */ 1108 if ((u64)rdev->sectors >= (2ULL << 32) && sb->level >= 1) 1109 rdev->sectors = (sector_t)(2ULL << 32) - 2; 1110 1111 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1) 1112 /* "this cannot possibly happen" ... */ 1113 ret = -EINVAL; 1114 1115 abort: 1116 return ret; 1117 } 1118 1119 /* 1120 * validate_super for 0.90.0 1121 */ 1122 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev) 1123 { 1124 mdp_disk_t *desc; 1125 mdp_super_t *sb = page_address(rdev->sb_page); 1126 __u64 ev1 = md_event(sb); 1127 1128 rdev->raid_disk = -1; 1129 clear_bit(Faulty, &rdev->flags); 1130 clear_bit(In_sync, &rdev->flags); 1131 clear_bit(Bitmap_sync, &rdev->flags); 1132 clear_bit(WriteMostly, &rdev->flags); 1133 1134 if (mddev->raid_disks == 0) { 1135 mddev->major_version = 0; 1136 mddev->minor_version = sb->minor_version; 1137 mddev->patch_version = sb->patch_version; 1138 mddev->external = 0; 1139 mddev->chunk_sectors = sb->chunk_size >> 9; 1140 mddev->ctime = sb->ctime; 1141 mddev->utime = sb->utime; 1142 mddev->level = sb->level; 1143 mddev->clevel[0] = 0; 1144 mddev->layout = sb->layout; 1145 mddev->raid_disks = sb->raid_disks; 1146 mddev->dev_sectors = ((sector_t)sb->size) * 2; 1147 mddev->events = ev1; 1148 mddev->bitmap_info.offset = 0; 1149 mddev->bitmap_info.space = 0; 1150 /* bitmap can use 60 K after the 4K superblocks */ 1151 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 1152 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 1153 mddev->reshape_backwards = 0; 1154 1155 if (mddev->minor_version >= 91) { 1156 mddev->reshape_position = sb->reshape_position; 1157 mddev->delta_disks = sb->delta_disks; 1158 mddev->new_level = sb->new_level; 1159 mddev->new_layout = sb->new_layout; 1160 mddev->new_chunk_sectors = sb->new_chunk >> 9; 1161 if (mddev->delta_disks < 0) 1162 mddev->reshape_backwards = 1; 1163 } else { 1164 mddev->reshape_position = MaxSector; 1165 mddev->delta_disks = 0; 1166 mddev->new_level = mddev->level; 1167 mddev->new_layout = mddev->layout; 1168 mddev->new_chunk_sectors = mddev->chunk_sectors; 1169 } 1170 1171 if (sb->state & (1<<MD_SB_CLEAN)) 1172 mddev->recovery_cp = MaxSector; 1173 else { 1174 if (sb->events_hi == sb->cp_events_hi && 1175 sb->events_lo == sb->cp_events_lo) { 1176 mddev->recovery_cp = sb->recovery_cp; 1177 } else 1178 mddev->recovery_cp = 0; 1179 } 1180 1181 memcpy(mddev->uuid+0, &sb->set_uuid0, 4); 1182 memcpy(mddev->uuid+4, &sb->set_uuid1, 4); 1183 memcpy(mddev->uuid+8, &sb->set_uuid2, 4); 1184 memcpy(mddev->uuid+12,&sb->set_uuid3, 4); 1185 1186 mddev->max_disks = MD_SB_DISKS; 1187 1188 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && 1189 mddev->bitmap_info.file == NULL) { 1190 mddev->bitmap_info.offset = 1191 mddev->bitmap_info.default_offset; 1192 mddev->bitmap_info.space = 1193 mddev->bitmap_info.default_space; 1194 } 1195 1196 } else if (mddev->pers == NULL) { 1197 /* Insist on good event counter while assembling, except 1198 * for spares (which don't need an event count) */ 1199 ++ev1; 1200 if (sb->disks[rdev->desc_nr].state & ( 1201 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))) 1202 if (ev1 < mddev->events) 1203 return -EINVAL; 1204 } else if (mddev->bitmap) { 1205 /* if adding to array with a bitmap, then we can accept an 1206 * older device ... but not too old. 1207 */ 1208 if (ev1 < mddev->bitmap->events_cleared) 1209 return 0; 1210 if (ev1 < mddev->events) 1211 set_bit(Bitmap_sync, &rdev->flags); 1212 } else { 1213 if (ev1 < mddev->events) 1214 /* just a hot-add of a new device, leave raid_disk at -1 */ 1215 return 0; 1216 } 1217 1218 if (mddev->level != LEVEL_MULTIPATH) { 1219 desc = sb->disks + rdev->desc_nr; 1220 1221 if (desc->state & (1<<MD_DISK_FAULTY)) 1222 set_bit(Faulty, &rdev->flags); 1223 else if (desc->state & (1<<MD_DISK_SYNC) /* && 1224 desc->raid_disk < mddev->raid_disks */) { 1225 set_bit(In_sync, &rdev->flags); 1226 rdev->raid_disk = desc->raid_disk; 1227 rdev->saved_raid_disk = desc->raid_disk; 1228 } else if (desc->state & (1<<MD_DISK_ACTIVE)) { 1229 /* active but not in sync implies recovery up to 1230 * reshape position. We don't know exactly where 1231 * that is, so set to zero for now */ 1232 if (mddev->minor_version >= 91) { 1233 rdev->recovery_offset = 0; 1234 rdev->raid_disk = desc->raid_disk; 1235 } 1236 } 1237 if (desc->state & (1<<MD_DISK_WRITEMOSTLY)) 1238 set_bit(WriteMostly, &rdev->flags); 1239 if (desc->state & (1<<MD_DISK_FAILFAST)) 1240 set_bit(FailFast, &rdev->flags); 1241 } else /* MULTIPATH are always insync */ 1242 set_bit(In_sync, &rdev->flags); 1243 return 0; 1244 } 1245 1246 /* 1247 * sync_super for 0.90.0 1248 */ 1249 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev) 1250 { 1251 mdp_super_t *sb; 1252 struct md_rdev *rdev2; 1253 int next_spare = mddev->raid_disks; 1254 1255 /* make rdev->sb match mddev data.. 1256 * 1257 * 1/ zero out disks 1258 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); 1259 * 3/ any empty disks < next_spare become removed 1260 * 1261 * disks[0] gets initialised to REMOVED because 1262 * we cannot be sure from other fields if it has 1263 * been initialised or not. 1264 */ 1265 int i; 1266 int active=0, working=0,failed=0,spare=0,nr_disks=0; 1267 1268 rdev->sb_size = MD_SB_BYTES; 1269 1270 sb = page_address(rdev->sb_page); 1271 1272 memset(sb, 0, sizeof(*sb)); 1273 1274 sb->md_magic = MD_SB_MAGIC; 1275 sb->major_version = mddev->major_version; 1276 sb->patch_version = mddev->patch_version; 1277 sb->gvalid_words = 0; /* ignored */ 1278 memcpy(&sb->set_uuid0, mddev->uuid+0, 4); 1279 memcpy(&sb->set_uuid1, mddev->uuid+4, 4); 1280 memcpy(&sb->set_uuid2, mddev->uuid+8, 4); 1281 memcpy(&sb->set_uuid3, mddev->uuid+12,4); 1282 1283 sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 1284 sb->level = mddev->level; 1285 sb->size = mddev->dev_sectors / 2; 1286 sb->raid_disks = mddev->raid_disks; 1287 sb->md_minor = mddev->md_minor; 1288 sb->not_persistent = 0; 1289 sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 1290 sb->state = 0; 1291 sb->events_hi = (mddev->events>>32); 1292 sb->events_lo = (u32)mddev->events; 1293 1294 if (mddev->reshape_position == MaxSector) 1295 sb->minor_version = 90; 1296 else { 1297 sb->minor_version = 91; 1298 sb->reshape_position = mddev->reshape_position; 1299 sb->new_level = mddev->new_level; 1300 sb->delta_disks = mddev->delta_disks; 1301 sb->new_layout = mddev->new_layout; 1302 sb->new_chunk = mddev->new_chunk_sectors << 9; 1303 } 1304 mddev->minor_version = sb->minor_version; 1305 if (mddev->in_sync) 1306 { 1307 sb->recovery_cp = mddev->recovery_cp; 1308 sb->cp_events_hi = (mddev->events>>32); 1309 sb->cp_events_lo = (u32)mddev->events; 1310 if (mddev->recovery_cp == MaxSector) 1311 sb->state = (1<< MD_SB_CLEAN); 1312 } else 1313 sb->recovery_cp = 0; 1314 1315 sb->layout = mddev->layout; 1316 sb->chunk_size = mddev->chunk_sectors << 9; 1317 1318 if (mddev->bitmap && mddev->bitmap_info.file == NULL) 1319 sb->state |= (1<<MD_SB_BITMAP_PRESENT); 1320 1321 sb->disks[0].state = (1<<MD_DISK_REMOVED); 1322 rdev_for_each(rdev2, mddev) { 1323 mdp_disk_t *d; 1324 int desc_nr; 1325 int is_active = test_bit(In_sync, &rdev2->flags); 1326 1327 if (rdev2->raid_disk >= 0 && 1328 sb->minor_version >= 91) 1329 /* we have nowhere to store the recovery_offset, 1330 * but if it is not below the reshape_position, 1331 * we can piggy-back on that. 1332 */ 1333 is_active = 1; 1334 if (rdev2->raid_disk < 0 || 1335 test_bit(Faulty, &rdev2->flags)) 1336 is_active = 0; 1337 if (is_active) 1338 desc_nr = rdev2->raid_disk; 1339 else 1340 desc_nr = next_spare++; 1341 rdev2->desc_nr = desc_nr; 1342 d = &sb->disks[rdev2->desc_nr]; 1343 nr_disks++; 1344 d->number = rdev2->desc_nr; 1345 d->major = MAJOR(rdev2->bdev->bd_dev); 1346 d->minor = MINOR(rdev2->bdev->bd_dev); 1347 if (is_active) 1348 d->raid_disk = rdev2->raid_disk; 1349 else 1350 d->raid_disk = rdev2->desc_nr; /* compatibility */ 1351 if (test_bit(Faulty, &rdev2->flags)) 1352 d->state = (1<<MD_DISK_FAULTY); 1353 else if (is_active) { 1354 d->state = (1<<MD_DISK_ACTIVE); 1355 if (test_bit(In_sync, &rdev2->flags)) 1356 d->state |= (1<<MD_DISK_SYNC); 1357 active++; 1358 working++; 1359 } else { 1360 d->state = 0; 1361 spare++; 1362 working++; 1363 } 1364 if (test_bit(WriteMostly, &rdev2->flags)) 1365 d->state |= (1<<MD_DISK_WRITEMOSTLY); 1366 if (test_bit(FailFast, &rdev2->flags)) 1367 d->state |= (1<<MD_DISK_FAILFAST); 1368 } 1369 /* now set the "removed" and "faulty" bits on any missing devices */ 1370 for (i=0 ; i < mddev->raid_disks ; i++) { 1371 mdp_disk_t *d = &sb->disks[i]; 1372 if (d->state == 0 && d->number == 0) { 1373 d->number = i; 1374 d->raid_disk = i; 1375 d->state = (1<<MD_DISK_REMOVED); 1376 d->state |= (1<<MD_DISK_FAULTY); 1377 failed++; 1378 } 1379 } 1380 sb->nr_disks = nr_disks; 1381 sb->active_disks = active; 1382 sb->working_disks = working; 1383 sb->failed_disks = failed; 1384 sb->spare_disks = spare; 1385 1386 sb->this_disk = sb->disks[rdev->desc_nr]; 1387 sb->sb_csum = calc_sb_csum(sb); 1388 } 1389 1390 /* 1391 * rdev_size_change for 0.90.0 1392 */ 1393 static unsigned long long 1394 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1395 { 1396 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1397 return 0; /* component must fit device */ 1398 if (rdev->mddev->bitmap_info.offset) 1399 return 0; /* can't move bitmap */ 1400 rdev->sb_start = calc_dev_sboffset(rdev); 1401 if (!num_sectors || num_sectors > rdev->sb_start) 1402 num_sectors = rdev->sb_start; 1403 /* Limit to 4TB as metadata cannot record more than that. 1404 * 4TB == 2^32 KB, or 2*2^32 sectors. 1405 */ 1406 if ((u64)num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1) 1407 num_sectors = (sector_t)(2ULL << 32) - 2; 1408 do { 1409 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1410 rdev->sb_page); 1411 } while (md_super_wait(rdev->mddev) < 0); 1412 return num_sectors; 1413 } 1414 1415 static int 1416 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset) 1417 { 1418 /* non-zero offset changes not possible with v0.90 */ 1419 return new_offset == 0; 1420 } 1421 1422 /* 1423 * version 1 superblock 1424 */ 1425 1426 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb) 1427 { 1428 __le32 disk_csum; 1429 u32 csum; 1430 unsigned long long newcsum; 1431 int size = 256 + le32_to_cpu(sb->max_dev)*2; 1432 __le32 *isuper = (__le32*)sb; 1433 1434 disk_csum = sb->sb_csum; 1435 sb->sb_csum = 0; 1436 newcsum = 0; 1437 for (; size >= 4; size -= 4) 1438 newcsum += le32_to_cpu(*isuper++); 1439 1440 if (size == 2) 1441 newcsum += le16_to_cpu(*(__le16*) isuper); 1442 1443 csum = (newcsum & 0xffffffff) + (newcsum >> 32); 1444 sb->sb_csum = disk_csum; 1445 return cpu_to_le32(csum); 1446 } 1447 1448 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1449 { 1450 struct mdp_superblock_1 *sb; 1451 int ret; 1452 sector_t sb_start; 1453 sector_t sectors; 1454 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1455 int bmask; 1456 1457 /* 1458 * Calculate the position of the superblock in 512byte sectors. 1459 * It is always aligned to a 4K boundary and 1460 * depeding on minor_version, it can be: 1461 * 0: At least 8K, but less than 12K, from end of device 1462 * 1: At start of device 1463 * 2: 4K from start of device. 1464 */ 1465 switch(minor_version) { 1466 case 0: 1467 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9; 1468 sb_start -= 8*2; 1469 sb_start &= ~(sector_t)(4*2-1); 1470 break; 1471 case 1: 1472 sb_start = 0; 1473 break; 1474 case 2: 1475 sb_start = 8; 1476 break; 1477 default: 1478 return -EINVAL; 1479 } 1480 rdev->sb_start = sb_start; 1481 1482 /* superblock is rarely larger than 1K, but it can be larger, 1483 * and it is safe to read 4k, so we do that 1484 */ 1485 ret = read_disk_sb(rdev, 4096); 1486 if (ret) return ret; 1487 1488 sb = page_address(rdev->sb_page); 1489 1490 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || 1491 sb->major_version != cpu_to_le32(1) || 1492 le32_to_cpu(sb->max_dev) > (4096-256)/2 || 1493 le64_to_cpu(sb->super_offset) != rdev->sb_start || 1494 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) 1495 return -EINVAL; 1496 1497 if (calc_sb_1_csum(sb) != sb->sb_csum) { 1498 pr_warn("md: invalid superblock checksum on %s\n", 1499 bdevname(rdev->bdev,b)); 1500 return -EINVAL; 1501 } 1502 if (le64_to_cpu(sb->data_size) < 10) { 1503 pr_warn("md: data_size too small on %s\n", 1504 bdevname(rdev->bdev,b)); 1505 return -EINVAL; 1506 } 1507 if (sb->pad0 || 1508 sb->pad3[0] || 1509 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1]))) 1510 /* Some padding is non-zero, might be a new feature */ 1511 return -EINVAL; 1512 1513 rdev->preferred_minor = 0xffff; 1514 rdev->data_offset = le64_to_cpu(sb->data_offset); 1515 rdev->new_data_offset = rdev->data_offset; 1516 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) && 1517 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET)) 1518 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset); 1519 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); 1520 1521 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; 1522 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1523 if (rdev->sb_size & bmask) 1524 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1525 1526 if (minor_version 1527 && rdev->data_offset < sb_start + (rdev->sb_size/512)) 1528 return -EINVAL; 1529 if (minor_version 1530 && rdev->new_data_offset < sb_start + (rdev->sb_size/512)) 1531 return -EINVAL; 1532 1533 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH)) 1534 rdev->desc_nr = -1; 1535 else 1536 rdev->desc_nr = le32_to_cpu(sb->dev_number); 1537 1538 if (!rdev->bb_page) { 1539 rdev->bb_page = alloc_page(GFP_KERNEL); 1540 if (!rdev->bb_page) 1541 return -ENOMEM; 1542 } 1543 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) && 1544 rdev->badblocks.count == 0) { 1545 /* need to load the bad block list. 1546 * Currently we limit it to one page. 1547 */ 1548 s32 offset; 1549 sector_t bb_sector; 1550 __le64 *bbp; 1551 int i; 1552 int sectors = le16_to_cpu(sb->bblog_size); 1553 if (sectors > (PAGE_SIZE / 512)) 1554 return -EINVAL; 1555 offset = le32_to_cpu(sb->bblog_offset); 1556 if (offset == 0) 1557 return -EINVAL; 1558 bb_sector = (long long)offset; 1559 if (!sync_page_io(rdev, bb_sector, sectors << 9, 1560 rdev->bb_page, REQ_OP_READ, 0, true)) 1561 return -EIO; 1562 bbp = (__le64 *)page_address(rdev->bb_page); 1563 rdev->badblocks.shift = sb->bblog_shift; 1564 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) { 1565 u64 bb = le64_to_cpu(*bbp); 1566 int count = bb & (0x3ff); 1567 u64 sector = bb >> 10; 1568 sector <<= sb->bblog_shift; 1569 count <<= sb->bblog_shift; 1570 if (bb + 1 == 0) 1571 break; 1572 if (badblocks_set(&rdev->badblocks, sector, count, 1)) 1573 return -EINVAL; 1574 } 1575 } else if (sb->bblog_offset != 0) 1576 rdev->badblocks.shift = 0; 1577 1578 if ((le32_to_cpu(sb->feature_map) & 1579 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS))) { 1580 rdev->ppl.offset = (__s16)le16_to_cpu(sb->ppl.offset); 1581 rdev->ppl.size = le16_to_cpu(sb->ppl.size); 1582 rdev->ppl.sector = rdev->sb_start + rdev->ppl.offset; 1583 } 1584 1585 if (!refdev) { 1586 ret = 1; 1587 } else { 1588 __u64 ev1, ev2; 1589 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page); 1590 1591 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || 1592 sb->level != refsb->level || 1593 sb->layout != refsb->layout || 1594 sb->chunksize != refsb->chunksize) { 1595 pr_warn("md: %s has strangely different superblock to %s\n", 1596 bdevname(rdev->bdev,b), 1597 bdevname(refdev->bdev,b2)); 1598 return -EINVAL; 1599 } 1600 ev1 = le64_to_cpu(sb->events); 1601 ev2 = le64_to_cpu(refsb->events); 1602 1603 if (ev1 > ev2) 1604 ret = 1; 1605 else 1606 ret = 0; 1607 } 1608 if (minor_version) { 1609 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9); 1610 sectors -= rdev->data_offset; 1611 } else 1612 sectors = rdev->sb_start; 1613 if (sectors < le64_to_cpu(sb->data_size)) 1614 return -EINVAL; 1615 rdev->sectors = le64_to_cpu(sb->data_size); 1616 return ret; 1617 } 1618 1619 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev) 1620 { 1621 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 1622 __u64 ev1 = le64_to_cpu(sb->events); 1623 1624 rdev->raid_disk = -1; 1625 clear_bit(Faulty, &rdev->flags); 1626 clear_bit(In_sync, &rdev->flags); 1627 clear_bit(Bitmap_sync, &rdev->flags); 1628 clear_bit(WriteMostly, &rdev->flags); 1629 1630 if (mddev->raid_disks == 0) { 1631 mddev->major_version = 1; 1632 mddev->patch_version = 0; 1633 mddev->external = 0; 1634 mddev->chunk_sectors = le32_to_cpu(sb->chunksize); 1635 mddev->ctime = le64_to_cpu(sb->ctime); 1636 mddev->utime = le64_to_cpu(sb->utime); 1637 mddev->level = le32_to_cpu(sb->level); 1638 mddev->clevel[0] = 0; 1639 mddev->layout = le32_to_cpu(sb->layout); 1640 mddev->raid_disks = le32_to_cpu(sb->raid_disks); 1641 mddev->dev_sectors = le64_to_cpu(sb->size); 1642 mddev->events = ev1; 1643 mddev->bitmap_info.offset = 0; 1644 mddev->bitmap_info.space = 0; 1645 /* Default location for bitmap is 1K after superblock 1646 * using 3K - total of 4K 1647 */ 1648 mddev->bitmap_info.default_offset = 1024 >> 9; 1649 mddev->bitmap_info.default_space = (4096-1024) >> 9; 1650 mddev->reshape_backwards = 0; 1651 1652 mddev->recovery_cp = le64_to_cpu(sb->resync_offset); 1653 memcpy(mddev->uuid, sb->set_uuid, 16); 1654 1655 mddev->max_disks = (4096-256)/2; 1656 1657 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && 1658 mddev->bitmap_info.file == NULL) { 1659 mddev->bitmap_info.offset = 1660 (__s32)le32_to_cpu(sb->bitmap_offset); 1661 /* Metadata doesn't record how much space is available. 1662 * For 1.0, we assume we can use up to the superblock 1663 * if before, else to 4K beyond superblock. 1664 * For others, assume no change is possible. 1665 */ 1666 if (mddev->minor_version > 0) 1667 mddev->bitmap_info.space = 0; 1668 else if (mddev->bitmap_info.offset > 0) 1669 mddev->bitmap_info.space = 1670 8 - mddev->bitmap_info.offset; 1671 else 1672 mddev->bitmap_info.space = 1673 -mddev->bitmap_info.offset; 1674 } 1675 1676 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 1677 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 1678 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 1679 mddev->new_level = le32_to_cpu(sb->new_level); 1680 mddev->new_layout = le32_to_cpu(sb->new_layout); 1681 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk); 1682 if (mddev->delta_disks < 0 || 1683 (mddev->delta_disks == 0 && 1684 (le32_to_cpu(sb->feature_map) 1685 & MD_FEATURE_RESHAPE_BACKWARDS))) 1686 mddev->reshape_backwards = 1; 1687 } else { 1688 mddev->reshape_position = MaxSector; 1689 mddev->delta_disks = 0; 1690 mddev->new_level = mddev->level; 1691 mddev->new_layout = mddev->layout; 1692 mddev->new_chunk_sectors = mddev->chunk_sectors; 1693 } 1694 1695 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL) 1696 set_bit(MD_HAS_JOURNAL, &mddev->flags); 1697 1698 if (le32_to_cpu(sb->feature_map) & 1699 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS)) { 1700 if (le32_to_cpu(sb->feature_map) & 1701 (MD_FEATURE_BITMAP_OFFSET | MD_FEATURE_JOURNAL)) 1702 return -EINVAL; 1703 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_PPL) && 1704 (le32_to_cpu(sb->feature_map) & 1705 MD_FEATURE_MULTIPLE_PPLS)) 1706 return -EINVAL; 1707 set_bit(MD_HAS_PPL, &mddev->flags); 1708 } 1709 } else if (mddev->pers == NULL) { 1710 /* Insist of good event counter while assembling, except for 1711 * spares (which don't need an event count) */ 1712 ++ev1; 1713 if (rdev->desc_nr >= 0 && 1714 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1715 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX || 1716 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL)) 1717 if (ev1 < mddev->events) 1718 return -EINVAL; 1719 } else if (mddev->bitmap) { 1720 /* If adding to array with a bitmap, then we can accept an 1721 * older device, but not too old. 1722 */ 1723 if (ev1 < mddev->bitmap->events_cleared) 1724 return 0; 1725 if (ev1 < mddev->events) 1726 set_bit(Bitmap_sync, &rdev->flags); 1727 } else { 1728 if (ev1 < mddev->events) 1729 /* just a hot-add of a new device, leave raid_disk at -1 */ 1730 return 0; 1731 } 1732 if (mddev->level != LEVEL_MULTIPATH) { 1733 int role; 1734 if (rdev->desc_nr < 0 || 1735 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) { 1736 role = MD_DISK_ROLE_SPARE; 1737 rdev->desc_nr = -1; 1738 } else 1739 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 1740 switch(role) { 1741 case MD_DISK_ROLE_SPARE: /* spare */ 1742 break; 1743 case MD_DISK_ROLE_FAULTY: /* faulty */ 1744 set_bit(Faulty, &rdev->flags); 1745 break; 1746 case MD_DISK_ROLE_JOURNAL: /* journal device */ 1747 if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) { 1748 /* journal device without journal feature */ 1749 pr_warn("md: journal device provided without journal feature, ignoring the device\n"); 1750 return -EINVAL; 1751 } 1752 set_bit(Journal, &rdev->flags); 1753 rdev->journal_tail = le64_to_cpu(sb->journal_tail); 1754 rdev->raid_disk = 0; 1755 break; 1756 default: 1757 rdev->saved_raid_disk = role; 1758 if ((le32_to_cpu(sb->feature_map) & 1759 MD_FEATURE_RECOVERY_OFFSET)) { 1760 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 1761 if (!(le32_to_cpu(sb->feature_map) & 1762 MD_FEATURE_RECOVERY_BITMAP)) 1763 rdev->saved_raid_disk = -1; 1764 } else 1765 set_bit(In_sync, &rdev->flags); 1766 rdev->raid_disk = role; 1767 break; 1768 } 1769 if (sb->devflags & WriteMostly1) 1770 set_bit(WriteMostly, &rdev->flags); 1771 if (sb->devflags & FailFast1) 1772 set_bit(FailFast, &rdev->flags); 1773 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT) 1774 set_bit(Replacement, &rdev->flags); 1775 } else /* MULTIPATH are always insync */ 1776 set_bit(In_sync, &rdev->flags); 1777 1778 return 0; 1779 } 1780 1781 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev) 1782 { 1783 struct mdp_superblock_1 *sb; 1784 struct md_rdev *rdev2; 1785 int max_dev, i; 1786 /* make rdev->sb match mddev and rdev data. */ 1787 1788 sb = page_address(rdev->sb_page); 1789 1790 sb->feature_map = 0; 1791 sb->pad0 = 0; 1792 sb->recovery_offset = cpu_to_le64(0); 1793 memset(sb->pad3, 0, sizeof(sb->pad3)); 1794 1795 sb->utime = cpu_to_le64((__u64)mddev->utime); 1796 sb->events = cpu_to_le64(mddev->events); 1797 if (mddev->in_sync) 1798 sb->resync_offset = cpu_to_le64(mddev->recovery_cp); 1799 else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags)) 1800 sb->resync_offset = cpu_to_le64(MaxSector); 1801 else 1802 sb->resync_offset = cpu_to_le64(0); 1803 1804 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); 1805 1806 sb->raid_disks = cpu_to_le32(mddev->raid_disks); 1807 sb->size = cpu_to_le64(mddev->dev_sectors); 1808 sb->chunksize = cpu_to_le32(mddev->chunk_sectors); 1809 sb->level = cpu_to_le32(mddev->level); 1810 sb->layout = cpu_to_le32(mddev->layout); 1811 if (test_bit(FailFast, &rdev->flags)) 1812 sb->devflags |= FailFast1; 1813 else 1814 sb->devflags &= ~FailFast1; 1815 1816 if (test_bit(WriteMostly, &rdev->flags)) 1817 sb->devflags |= WriteMostly1; 1818 else 1819 sb->devflags &= ~WriteMostly1; 1820 sb->data_offset = cpu_to_le64(rdev->data_offset); 1821 sb->data_size = cpu_to_le64(rdev->sectors); 1822 1823 if (mddev->bitmap && mddev->bitmap_info.file == NULL) { 1824 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset); 1825 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); 1826 } 1827 1828 if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) && 1829 !test_bit(In_sync, &rdev->flags)) { 1830 sb->feature_map |= 1831 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); 1832 sb->recovery_offset = 1833 cpu_to_le64(rdev->recovery_offset); 1834 if (rdev->saved_raid_disk >= 0 && mddev->bitmap) 1835 sb->feature_map |= 1836 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP); 1837 } 1838 /* Note: recovery_offset and journal_tail share space */ 1839 if (test_bit(Journal, &rdev->flags)) 1840 sb->journal_tail = cpu_to_le64(rdev->journal_tail); 1841 if (test_bit(Replacement, &rdev->flags)) 1842 sb->feature_map |= 1843 cpu_to_le32(MD_FEATURE_REPLACEMENT); 1844 1845 if (mddev->reshape_position != MaxSector) { 1846 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); 1847 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 1848 sb->new_layout = cpu_to_le32(mddev->new_layout); 1849 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 1850 sb->new_level = cpu_to_le32(mddev->new_level); 1851 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors); 1852 if (mddev->delta_disks == 0 && 1853 mddev->reshape_backwards) 1854 sb->feature_map 1855 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS); 1856 if (rdev->new_data_offset != rdev->data_offset) { 1857 sb->feature_map 1858 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET); 1859 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset 1860 - rdev->data_offset)); 1861 } 1862 } 1863 1864 if (mddev_is_clustered(mddev)) 1865 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED); 1866 1867 if (rdev->badblocks.count == 0) 1868 /* Nothing to do for bad blocks*/ ; 1869 else if (sb->bblog_offset == 0) 1870 /* Cannot record bad blocks on this device */ 1871 md_error(mddev, rdev); 1872 else { 1873 struct badblocks *bb = &rdev->badblocks; 1874 __le64 *bbp = (__le64 *)page_address(rdev->bb_page); 1875 u64 *p = bb->page; 1876 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS); 1877 if (bb->changed) { 1878 unsigned seq; 1879 1880 retry: 1881 seq = read_seqbegin(&bb->lock); 1882 1883 memset(bbp, 0xff, PAGE_SIZE); 1884 1885 for (i = 0 ; i < bb->count ; i++) { 1886 u64 internal_bb = p[i]; 1887 u64 store_bb = ((BB_OFFSET(internal_bb) << 10) 1888 | BB_LEN(internal_bb)); 1889 bbp[i] = cpu_to_le64(store_bb); 1890 } 1891 bb->changed = 0; 1892 if (read_seqretry(&bb->lock, seq)) 1893 goto retry; 1894 1895 bb->sector = (rdev->sb_start + 1896 (int)le32_to_cpu(sb->bblog_offset)); 1897 bb->size = le16_to_cpu(sb->bblog_size); 1898 } 1899 } 1900 1901 max_dev = 0; 1902 rdev_for_each(rdev2, mddev) 1903 if (rdev2->desc_nr+1 > max_dev) 1904 max_dev = rdev2->desc_nr+1; 1905 1906 if (max_dev > le32_to_cpu(sb->max_dev)) { 1907 int bmask; 1908 sb->max_dev = cpu_to_le32(max_dev); 1909 rdev->sb_size = max_dev * 2 + 256; 1910 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1911 if (rdev->sb_size & bmask) 1912 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1913 } else 1914 max_dev = le32_to_cpu(sb->max_dev); 1915 1916 for (i=0; i<max_dev;i++) 1917 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 1918 1919 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) 1920 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL); 1921 1922 if (test_bit(MD_HAS_PPL, &mddev->flags)) { 1923 if (test_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags)) 1924 sb->feature_map |= 1925 cpu_to_le32(MD_FEATURE_MULTIPLE_PPLS); 1926 else 1927 sb->feature_map |= cpu_to_le32(MD_FEATURE_PPL); 1928 sb->ppl.offset = cpu_to_le16(rdev->ppl.offset); 1929 sb->ppl.size = cpu_to_le16(rdev->ppl.size); 1930 } 1931 1932 rdev_for_each(rdev2, mddev) { 1933 i = rdev2->desc_nr; 1934 if (test_bit(Faulty, &rdev2->flags)) 1935 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY); 1936 else if (test_bit(In_sync, &rdev2->flags)) 1937 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1938 else if (test_bit(Journal, &rdev2->flags)) 1939 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL); 1940 else if (rdev2->raid_disk >= 0) 1941 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1942 else 1943 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 1944 } 1945 1946 sb->sb_csum = calc_sb_1_csum(sb); 1947 } 1948 1949 static unsigned long long 1950 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1951 { 1952 struct mdp_superblock_1 *sb; 1953 sector_t max_sectors; 1954 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1955 return 0; /* component must fit device */ 1956 if (rdev->data_offset != rdev->new_data_offset) 1957 return 0; /* too confusing */ 1958 if (rdev->sb_start < rdev->data_offset) { 1959 /* minor versions 1 and 2; superblock before data */ 1960 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9; 1961 max_sectors -= rdev->data_offset; 1962 if (!num_sectors || num_sectors > max_sectors) 1963 num_sectors = max_sectors; 1964 } else if (rdev->mddev->bitmap_info.offset) { 1965 /* minor version 0 with bitmap we can't move */ 1966 return 0; 1967 } else { 1968 /* minor version 0; superblock after data */ 1969 sector_t sb_start; 1970 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2; 1971 sb_start &= ~(sector_t)(4*2 - 1); 1972 max_sectors = rdev->sectors + sb_start - rdev->sb_start; 1973 if (!num_sectors || num_sectors > max_sectors) 1974 num_sectors = max_sectors; 1975 rdev->sb_start = sb_start; 1976 } 1977 sb = page_address(rdev->sb_page); 1978 sb->data_size = cpu_to_le64(num_sectors); 1979 sb->super_offset = cpu_to_le64(rdev->sb_start); 1980 sb->sb_csum = calc_sb_1_csum(sb); 1981 do { 1982 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1983 rdev->sb_page); 1984 } while (md_super_wait(rdev->mddev) < 0); 1985 return num_sectors; 1986 1987 } 1988 1989 static int 1990 super_1_allow_new_offset(struct md_rdev *rdev, 1991 unsigned long long new_offset) 1992 { 1993 /* All necessary checks on new >= old have been done */ 1994 struct bitmap *bitmap; 1995 if (new_offset >= rdev->data_offset) 1996 return 1; 1997 1998 /* with 1.0 metadata, there is no metadata to tread on 1999 * so we can always move back */ 2000 if (rdev->mddev->minor_version == 0) 2001 return 1; 2002 2003 /* otherwise we must be sure not to step on 2004 * any metadata, so stay: 2005 * 36K beyond start of superblock 2006 * beyond end of badblocks 2007 * beyond write-intent bitmap 2008 */ 2009 if (rdev->sb_start + (32+4)*2 > new_offset) 2010 return 0; 2011 bitmap = rdev->mddev->bitmap; 2012 if (bitmap && !rdev->mddev->bitmap_info.file && 2013 rdev->sb_start + rdev->mddev->bitmap_info.offset + 2014 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset) 2015 return 0; 2016 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset) 2017 return 0; 2018 2019 return 1; 2020 } 2021 2022 static struct super_type super_types[] = { 2023 [0] = { 2024 .name = "0.90.0", 2025 .owner = THIS_MODULE, 2026 .load_super = super_90_load, 2027 .validate_super = super_90_validate, 2028 .sync_super = super_90_sync, 2029 .rdev_size_change = super_90_rdev_size_change, 2030 .allow_new_offset = super_90_allow_new_offset, 2031 }, 2032 [1] = { 2033 .name = "md-1", 2034 .owner = THIS_MODULE, 2035 .load_super = super_1_load, 2036 .validate_super = super_1_validate, 2037 .sync_super = super_1_sync, 2038 .rdev_size_change = super_1_rdev_size_change, 2039 .allow_new_offset = super_1_allow_new_offset, 2040 }, 2041 }; 2042 2043 static void sync_super(struct mddev *mddev, struct md_rdev *rdev) 2044 { 2045 if (mddev->sync_super) { 2046 mddev->sync_super(mddev, rdev); 2047 return; 2048 } 2049 2050 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types)); 2051 2052 super_types[mddev->major_version].sync_super(mddev, rdev); 2053 } 2054 2055 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2) 2056 { 2057 struct md_rdev *rdev, *rdev2; 2058 2059 rcu_read_lock(); 2060 rdev_for_each_rcu(rdev, mddev1) { 2061 if (test_bit(Faulty, &rdev->flags) || 2062 test_bit(Journal, &rdev->flags) || 2063 rdev->raid_disk == -1) 2064 continue; 2065 rdev_for_each_rcu(rdev2, mddev2) { 2066 if (test_bit(Faulty, &rdev2->flags) || 2067 test_bit(Journal, &rdev2->flags) || 2068 rdev2->raid_disk == -1) 2069 continue; 2070 if (rdev->bdev->bd_contains == 2071 rdev2->bdev->bd_contains) { 2072 rcu_read_unlock(); 2073 return 1; 2074 } 2075 } 2076 } 2077 rcu_read_unlock(); 2078 return 0; 2079 } 2080 2081 static LIST_HEAD(pending_raid_disks); 2082 2083 /* 2084 * Try to register data integrity profile for an mddev 2085 * 2086 * This is called when an array is started and after a disk has been kicked 2087 * from the array. It only succeeds if all working and active component devices 2088 * are integrity capable with matching profiles. 2089 */ 2090 int md_integrity_register(struct mddev *mddev) 2091 { 2092 struct md_rdev *rdev, *reference = NULL; 2093 2094 if (list_empty(&mddev->disks)) 2095 return 0; /* nothing to do */ 2096 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk)) 2097 return 0; /* shouldn't register, or already is */ 2098 rdev_for_each(rdev, mddev) { 2099 /* skip spares and non-functional disks */ 2100 if (test_bit(Faulty, &rdev->flags)) 2101 continue; 2102 if (rdev->raid_disk < 0) 2103 continue; 2104 if (!reference) { 2105 /* Use the first rdev as the reference */ 2106 reference = rdev; 2107 continue; 2108 } 2109 /* does this rdev's profile match the reference profile? */ 2110 if (blk_integrity_compare(reference->bdev->bd_disk, 2111 rdev->bdev->bd_disk) < 0) 2112 return -EINVAL; 2113 } 2114 if (!reference || !bdev_get_integrity(reference->bdev)) 2115 return 0; 2116 /* 2117 * All component devices are integrity capable and have matching 2118 * profiles, register the common profile for the md device. 2119 */ 2120 blk_integrity_register(mddev->gendisk, 2121 bdev_get_integrity(reference->bdev)); 2122 2123 pr_debug("md: data integrity enabled on %s\n", mdname(mddev)); 2124 if (bioset_integrity_create(&mddev->bio_set, BIO_POOL_SIZE)) { 2125 pr_err("md: failed to create integrity pool for %s\n", 2126 mdname(mddev)); 2127 return -EINVAL; 2128 } 2129 return 0; 2130 } 2131 EXPORT_SYMBOL(md_integrity_register); 2132 2133 /* 2134 * Attempt to add an rdev, but only if it is consistent with the current 2135 * integrity profile 2136 */ 2137 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev) 2138 { 2139 struct blk_integrity *bi_mddev; 2140 char name[BDEVNAME_SIZE]; 2141 2142 if (!mddev->gendisk) 2143 return 0; 2144 2145 bi_mddev = blk_get_integrity(mddev->gendisk); 2146 2147 if (!bi_mddev) /* nothing to do */ 2148 return 0; 2149 2150 if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) { 2151 pr_err("%s: incompatible integrity profile for %s\n", 2152 mdname(mddev), bdevname(rdev->bdev, name)); 2153 return -ENXIO; 2154 } 2155 2156 return 0; 2157 } 2158 EXPORT_SYMBOL(md_integrity_add_rdev); 2159 2160 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev) 2161 { 2162 char b[BDEVNAME_SIZE]; 2163 struct kobject *ko; 2164 int err; 2165 2166 /* prevent duplicates */ 2167 if (find_rdev(mddev, rdev->bdev->bd_dev)) 2168 return -EEXIST; 2169 2170 if ((bdev_read_only(rdev->bdev) || bdev_read_only(rdev->meta_bdev)) && 2171 mddev->pers) 2172 return -EROFS; 2173 2174 /* make sure rdev->sectors exceeds mddev->dev_sectors */ 2175 if (!test_bit(Journal, &rdev->flags) && 2176 rdev->sectors && 2177 (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) { 2178 if (mddev->pers) { 2179 /* Cannot change size, so fail 2180 * If mddev->level <= 0, then we don't care 2181 * about aligning sizes (e.g. linear) 2182 */ 2183 if (mddev->level > 0) 2184 return -ENOSPC; 2185 } else 2186 mddev->dev_sectors = rdev->sectors; 2187 } 2188 2189 /* Verify rdev->desc_nr is unique. 2190 * If it is -1, assign a free number, else 2191 * check number is not in use 2192 */ 2193 rcu_read_lock(); 2194 if (rdev->desc_nr < 0) { 2195 int choice = 0; 2196 if (mddev->pers) 2197 choice = mddev->raid_disks; 2198 while (md_find_rdev_nr_rcu(mddev, choice)) 2199 choice++; 2200 rdev->desc_nr = choice; 2201 } else { 2202 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) { 2203 rcu_read_unlock(); 2204 return -EBUSY; 2205 } 2206 } 2207 rcu_read_unlock(); 2208 if (!test_bit(Journal, &rdev->flags) && 2209 mddev->max_disks && rdev->desc_nr >= mddev->max_disks) { 2210 pr_warn("md: %s: array is limited to %d devices\n", 2211 mdname(mddev), mddev->max_disks); 2212 return -EBUSY; 2213 } 2214 bdevname(rdev->bdev,b); 2215 strreplace(b, '/', '!'); 2216 2217 rdev->mddev = mddev; 2218 pr_debug("md: bind<%s>\n", b); 2219 2220 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b))) 2221 goto fail; 2222 2223 ko = &part_to_dev(rdev->bdev->bd_part)->kobj; 2224 if (sysfs_create_link(&rdev->kobj, ko, "block")) 2225 /* failure here is OK */; 2226 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state"); 2227 2228 list_add_rcu(&rdev->same_set, &mddev->disks); 2229 bd_link_disk_holder(rdev->bdev, mddev->gendisk); 2230 2231 /* May as well allow recovery to be retried once */ 2232 mddev->recovery_disabled++; 2233 2234 return 0; 2235 2236 fail: 2237 pr_warn("md: failed to register dev-%s for %s\n", 2238 b, mdname(mddev)); 2239 return err; 2240 } 2241 2242 static void md_delayed_delete(struct work_struct *ws) 2243 { 2244 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work); 2245 kobject_del(&rdev->kobj); 2246 kobject_put(&rdev->kobj); 2247 } 2248 2249 static void unbind_rdev_from_array(struct md_rdev *rdev) 2250 { 2251 char b[BDEVNAME_SIZE]; 2252 2253 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk); 2254 list_del_rcu(&rdev->same_set); 2255 pr_debug("md: unbind<%s>\n", bdevname(rdev->bdev,b)); 2256 rdev->mddev = NULL; 2257 sysfs_remove_link(&rdev->kobj, "block"); 2258 sysfs_put(rdev->sysfs_state); 2259 rdev->sysfs_state = NULL; 2260 rdev->badblocks.count = 0; 2261 /* We need to delay this, otherwise we can deadlock when 2262 * writing to 'remove' to "dev/state". We also need 2263 * to delay it due to rcu usage. 2264 */ 2265 synchronize_rcu(); 2266 INIT_WORK(&rdev->del_work, md_delayed_delete); 2267 kobject_get(&rdev->kobj); 2268 queue_work(md_misc_wq, &rdev->del_work); 2269 } 2270 2271 /* 2272 * prevent the device from being mounted, repartitioned or 2273 * otherwise reused by a RAID array (or any other kernel 2274 * subsystem), by bd_claiming the device. 2275 */ 2276 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared) 2277 { 2278 int err = 0; 2279 struct block_device *bdev; 2280 char b[BDEVNAME_SIZE]; 2281 2282 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, 2283 shared ? (struct md_rdev *)lock_rdev : rdev); 2284 if (IS_ERR(bdev)) { 2285 pr_warn("md: could not open %s.\n", __bdevname(dev, b)); 2286 return PTR_ERR(bdev); 2287 } 2288 rdev->bdev = bdev; 2289 return err; 2290 } 2291 2292 static void unlock_rdev(struct md_rdev *rdev) 2293 { 2294 struct block_device *bdev = rdev->bdev; 2295 rdev->bdev = NULL; 2296 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 2297 } 2298 2299 void md_autodetect_dev(dev_t dev); 2300 2301 static void export_rdev(struct md_rdev *rdev) 2302 { 2303 char b[BDEVNAME_SIZE]; 2304 2305 pr_debug("md: export_rdev(%s)\n", bdevname(rdev->bdev,b)); 2306 md_rdev_clear(rdev); 2307 #ifndef MODULE 2308 if (test_bit(AutoDetected, &rdev->flags)) 2309 md_autodetect_dev(rdev->bdev->bd_dev); 2310 #endif 2311 unlock_rdev(rdev); 2312 kobject_put(&rdev->kobj); 2313 } 2314 2315 void md_kick_rdev_from_array(struct md_rdev *rdev) 2316 { 2317 unbind_rdev_from_array(rdev); 2318 export_rdev(rdev); 2319 } 2320 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array); 2321 2322 static void export_array(struct mddev *mddev) 2323 { 2324 struct md_rdev *rdev; 2325 2326 while (!list_empty(&mddev->disks)) { 2327 rdev = list_first_entry(&mddev->disks, struct md_rdev, 2328 same_set); 2329 md_kick_rdev_from_array(rdev); 2330 } 2331 mddev->raid_disks = 0; 2332 mddev->major_version = 0; 2333 } 2334 2335 static bool set_in_sync(struct mddev *mddev) 2336 { 2337 lockdep_assert_held(&mddev->lock); 2338 if (!mddev->in_sync) { 2339 mddev->sync_checkers++; 2340 spin_unlock(&mddev->lock); 2341 percpu_ref_switch_to_atomic_sync(&mddev->writes_pending); 2342 spin_lock(&mddev->lock); 2343 if (!mddev->in_sync && 2344 percpu_ref_is_zero(&mddev->writes_pending)) { 2345 mddev->in_sync = 1; 2346 /* 2347 * Ensure ->in_sync is visible before we clear 2348 * ->sync_checkers. 2349 */ 2350 smp_mb(); 2351 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2352 sysfs_notify_dirent_safe(mddev->sysfs_state); 2353 } 2354 if (--mddev->sync_checkers == 0) 2355 percpu_ref_switch_to_percpu(&mddev->writes_pending); 2356 } 2357 if (mddev->safemode == 1) 2358 mddev->safemode = 0; 2359 return mddev->in_sync; 2360 } 2361 2362 static void sync_sbs(struct mddev *mddev, int nospares) 2363 { 2364 /* Update each superblock (in-memory image), but 2365 * if we are allowed to, skip spares which already 2366 * have the right event counter, or have one earlier 2367 * (which would mean they aren't being marked as dirty 2368 * with the rest of the array) 2369 */ 2370 struct md_rdev *rdev; 2371 rdev_for_each(rdev, mddev) { 2372 if (rdev->sb_events == mddev->events || 2373 (nospares && 2374 rdev->raid_disk < 0 && 2375 rdev->sb_events+1 == mddev->events)) { 2376 /* Don't update this superblock */ 2377 rdev->sb_loaded = 2; 2378 } else { 2379 sync_super(mddev, rdev); 2380 rdev->sb_loaded = 1; 2381 } 2382 } 2383 } 2384 2385 static bool does_sb_need_changing(struct mddev *mddev) 2386 { 2387 struct md_rdev *rdev; 2388 struct mdp_superblock_1 *sb; 2389 int role; 2390 2391 /* Find a good rdev */ 2392 rdev_for_each(rdev, mddev) 2393 if ((rdev->raid_disk >= 0) && !test_bit(Faulty, &rdev->flags)) 2394 break; 2395 2396 /* No good device found. */ 2397 if (!rdev) 2398 return false; 2399 2400 sb = page_address(rdev->sb_page); 2401 /* Check if a device has become faulty or a spare become active */ 2402 rdev_for_each(rdev, mddev) { 2403 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 2404 /* Device activated? */ 2405 if (role == 0xffff && rdev->raid_disk >=0 && 2406 !test_bit(Faulty, &rdev->flags)) 2407 return true; 2408 /* Device turned faulty? */ 2409 if (test_bit(Faulty, &rdev->flags) && (role < 0xfffd)) 2410 return true; 2411 } 2412 2413 /* Check if any mddev parameters have changed */ 2414 if ((mddev->dev_sectors != le64_to_cpu(sb->size)) || 2415 (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) || 2416 (mddev->layout != le32_to_cpu(sb->layout)) || 2417 (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) || 2418 (mddev->chunk_sectors != le32_to_cpu(sb->chunksize))) 2419 return true; 2420 2421 return false; 2422 } 2423 2424 void md_update_sb(struct mddev *mddev, int force_change) 2425 { 2426 struct md_rdev *rdev; 2427 int sync_req; 2428 int nospares = 0; 2429 int any_badblocks_changed = 0; 2430 int ret = -1; 2431 2432 if (mddev->ro) { 2433 if (force_change) 2434 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2435 return; 2436 } 2437 2438 repeat: 2439 if (mddev_is_clustered(mddev)) { 2440 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2441 force_change = 1; 2442 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2443 nospares = 1; 2444 ret = md_cluster_ops->metadata_update_start(mddev); 2445 /* Has someone else has updated the sb */ 2446 if (!does_sb_need_changing(mddev)) { 2447 if (ret == 0) 2448 md_cluster_ops->metadata_update_cancel(mddev); 2449 bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2450 BIT(MD_SB_CHANGE_DEVS) | 2451 BIT(MD_SB_CHANGE_CLEAN)); 2452 return; 2453 } 2454 } 2455 2456 /* 2457 * First make sure individual recovery_offsets are correct 2458 * curr_resync_completed can only be used during recovery. 2459 * During reshape/resync it might use array-addresses rather 2460 * that device addresses. 2461 */ 2462 rdev_for_each(rdev, mddev) { 2463 if (rdev->raid_disk >= 0 && 2464 mddev->delta_disks >= 0 && 2465 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 2466 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery) && 2467 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 2468 !test_bit(Journal, &rdev->flags) && 2469 !test_bit(In_sync, &rdev->flags) && 2470 mddev->curr_resync_completed > rdev->recovery_offset) 2471 rdev->recovery_offset = mddev->curr_resync_completed; 2472 2473 } 2474 if (!mddev->persistent) { 2475 clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2476 clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2477 if (!mddev->external) { 2478 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 2479 rdev_for_each(rdev, mddev) { 2480 if (rdev->badblocks.changed) { 2481 rdev->badblocks.changed = 0; 2482 ack_all_badblocks(&rdev->badblocks); 2483 md_error(mddev, rdev); 2484 } 2485 clear_bit(Blocked, &rdev->flags); 2486 clear_bit(BlockedBadBlocks, &rdev->flags); 2487 wake_up(&rdev->blocked_wait); 2488 } 2489 } 2490 wake_up(&mddev->sb_wait); 2491 return; 2492 } 2493 2494 spin_lock(&mddev->lock); 2495 2496 mddev->utime = ktime_get_real_seconds(); 2497 2498 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2499 force_change = 1; 2500 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2501 /* just a clean<-> dirty transition, possibly leave spares alone, 2502 * though if events isn't the right even/odd, we will have to do 2503 * spares after all 2504 */ 2505 nospares = 1; 2506 if (force_change) 2507 nospares = 0; 2508 if (mddev->degraded) 2509 /* If the array is degraded, then skipping spares is both 2510 * dangerous and fairly pointless. 2511 * Dangerous because a device that was removed from the array 2512 * might have a event_count that still looks up-to-date, 2513 * so it can be re-added without a resync. 2514 * Pointless because if there are any spares to skip, 2515 * then a recovery will happen and soon that array won't 2516 * be degraded any more and the spare can go back to sleep then. 2517 */ 2518 nospares = 0; 2519 2520 sync_req = mddev->in_sync; 2521 2522 /* If this is just a dirty<->clean transition, and the array is clean 2523 * and 'events' is odd, we can roll back to the previous clean state */ 2524 if (nospares 2525 && (mddev->in_sync && mddev->recovery_cp == MaxSector) 2526 && mddev->can_decrease_events 2527 && mddev->events != 1) { 2528 mddev->events--; 2529 mddev->can_decrease_events = 0; 2530 } else { 2531 /* otherwise we have to go forward and ... */ 2532 mddev->events ++; 2533 mddev->can_decrease_events = nospares; 2534 } 2535 2536 /* 2537 * This 64-bit counter should never wrap. 2538 * Either we are in around ~1 trillion A.C., assuming 2539 * 1 reboot per second, or we have a bug... 2540 */ 2541 WARN_ON(mddev->events == 0); 2542 2543 rdev_for_each(rdev, mddev) { 2544 if (rdev->badblocks.changed) 2545 any_badblocks_changed++; 2546 if (test_bit(Faulty, &rdev->flags)) 2547 set_bit(FaultRecorded, &rdev->flags); 2548 } 2549 2550 sync_sbs(mddev, nospares); 2551 spin_unlock(&mddev->lock); 2552 2553 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n", 2554 mdname(mddev), mddev->in_sync); 2555 2556 if (mddev->queue) 2557 blk_add_trace_msg(mddev->queue, "md md_update_sb"); 2558 rewrite: 2559 md_bitmap_update_sb(mddev->bitmap); 2560 rdev_for_each(rdev, mddev) { 2561 char b[BDEVNAME_SIZE]; 2562 2563 if (rdev->sb_loaded != 1) 2564 continue; /* no noise on spare devices */ 2565 2566 if (!test_bit(Faulty, &rdev->flags)) { 2567 md_super_write(mddev,rdev, 2568 rdev->sb_start, rdev->sb_size, 2569 rdev->sb_page); 2570 pr_debug("md: (write) %s's sb offset: %llu\n", 2571 bdevname(rdev->bdev, b), 2572 (unsigned long long)rdev->sb_start); 2573 rdev->sb_events = mddev->events; 2574 if (rdev->badblocks.size) { 2575 md_super_write(mddev, rdev, 2576 rdev->badblocks.sector, 2577 rdev->badblocks.size << 9, 2578 rdev->bb_page); 2579 rdev->badblocks.size = 0; 2580 } 2581 2582 } else 2583 pr_debug("md: %s (skipping faulty)\n", 2584 bdevname(rdev->bdev, b)); 2585 2586 if (mddev->level == LEVEL_MULTIPATH) 2587 /* only need to write one superblock... */ 2588 break; 2589 } 2590 if (md_super_wait(mddev) < 0) 2591 goto rewrite; 2592 /* if there was a failure, MD_SB_CHANGE_DEVS was set, and we re-write super */ 2593 2594 if (mddev_is_clustered(mddev) && ret == 0) 2595 md_cluster_ops->metadata_update_finish(mddev); 2596 2597 if (mddev->in_sync != sync_req || 2598 !bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2599 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_CLEAN))) 2600 /* have to write it out again */ 2601 goto repeat; 2602 wake_up(&mddev->sb_wait); 2603 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 2604 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 2605 2606 rdev_for_each(rdev, mddev) { 2607 if (test_and_clear_bit(FaultRecorded, &rdev->flags)) 2608 clear_bit(Blocked, &rdev->flags); 2609 2610 if (any_badblocks_changed) 2611 ack_all_badblocks(&rdev->badblocks); 2612 clear_bit(BlockedBadBlocks, &rdev->flags); 2613 wake_up(&rdev->blocked_wait); 2614 } 2615 } 2616 EXPORT_SYMBOL(md_update_sb); 2617 2618 static int add_bound_rdev(struct md_rdev *rdev) 2619 { 2620 struct mddev *mddev = rdev->mddev; 2621 int err = 0; 2622 bool add_journal = test_bit(Journal, &rdev->flags); 2623 2624 if (!mddev->pers->hot_remove_disk || add_journal) { 2625 /* If there is hot_add_disk but no hot_remove_disk 2626 * then added disks for geometry changes, 2627 * and should be added immediately. 2628 */ 2629 super_types[mddev->major_version]. 2630 validate_super(mddev, rdev); 2631 if (add_journal) 2632 mddev_suspend(mddev); 2633 err = mddev->pers->hot_add_disk(mddev, rdev); 2634 if (add_journal) 2635 mddev_resume(mddev); 2636 if (err) { 2637 md_kick_rdev_from_array(rdev); 2638 return err; 2639 } 2640 } 2641 sysfs_notify_dirent_safe(rdev->sysfs_state); 2642 2643 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2644 if (mddev->degraded) 2645 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 2646 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2647 md_new_event(mddev); 2648 md_wakeup_thread(mddev->thread); 2649 return 0; 2650 } 2651 2652 /* words written to sysfs files may, or may not, be \n terminated. 2653 * We want to accept with case. For this we use cmd_match. 2654 */ 2655 static int cmd_match(const char *cmd, const char *str) 2656 { 2657 /* See if cmd, written into a sysfs file, matches 2658 * str. They must either be the same, or cmd can 2659 * have a trailing newline 2660 */ 2661 while (*cmd && *str && *cmd == *str) { 2662 cmd++; 2663 str++; 2664 } 2665 if (*cmd == '\n') 2666 cmd++; 2667 if (*str || *cmd) 2668 return 0; 2669 return 1; 2670 } 2671 2672 struct rdev_sysfs_entry { 2673 struct attribute attr; 2674 ssize_t (*show)(struct md_rdev *, char *); 2675 ssize_t (*store)(struct md_rdev *, const char *, size_t); 2676 }; 2677 2678 static ssize_t 2679 state_show(struct md_rdev *rdev, char *page) 2680 { 2681 char *sep = ","; 2682 size_t len = 0; 2683 unsigned long flags = READ_ONCE(rdev->flags); 2684 2685 if (test_bit(Faulty, &flags) || 2686 (!test_bit(ExternalBbl, &flags) && 2687 rdev->badblocks.unacked_exist)) 2688 len += sprintf(page+len, "faulty%s", sep); 2689 if (test_bit(In_sync, &flags)) 2690 len += sprintf(page+len, "in_sync%s", sep); 2691 if (test_bit(Journal, &flags)) 2692 len += sprintf(page+len, "journal%s", sep); 2693 if (test_bit(WriteMostly, &flags)) 2694 len += sprintf(page+len, "write_mostly%s", sep); 2695 if (test_bit(Blocked, &flags) || 2696 (rdev->badblocks.unacked_exist 2697 && !test_bit(Faulty, &flags))) 2698 len += sprintf(page+len, "blocked%s", sep); 2699 if (!test_bit(Faulty, &flags) && 2700 !test_bit(Journal, &flags) && 2701 !test_bit(In_sync, &flags)) 2702 len += sprintf(page+len, "spare%s", sep); 2703 if (test_bit(WriteErrorSeen, &flags)) 2704 len += sprintf(page+len, "write_error%s", sep); 2705 if (test_bit(WantReplacement, &flags)) 2706 len += sprintf(page+len, "want_replacement%s", sep); 2707 if (test_bit(Replacement, &flags)) 2708 len += sprintf(page+len, "replacement%s", sep); 2709 if (test_bit(ExternalBbl, &flags)) 2710 len += sprintf(page+len, "external_bbl%s", sep); 2711 if (test_bit(FailFast, &flags)) 2712 len += sprintf(page+len, "failfast%s", sep); 2713 2714 if (len) 2715 len -= strlen(sep); 2716 2717 return len+sprintf(page+len, "\n"); 2718 } 2719 2720 static ssize_t 2721 state_store(struct md_rdev *rdev, const char *buf, size_t len) 2722 { 2723 /* can write 2724 * faulty - simulates an error 2725 * remove - disconnects the device 2726 * writemostly - sets write_mostly 2727 * -writemostly - clears write_mostly 2728 * blocked - sets the Blocked flags 2729 * -blocked - clears the Blocked and possibly simulates an error 2730 * insync - sets Insync providing device isn't active 2731 * -insync - clear Insync for a device with a slot assigned, 2732 * so that it gets rebuilt based on bitmap 2733 * write_error - sets WriteErrorSeen 2734 * -write_error - clears WriteErrorSeen 2735 * {,-}failfast - set/clear FailFast 2736 */ 2737 int err = -EINVAL; 2738 if (cmd_match(buf, "faulty") && rdev->mddev->pers) { 2739 md_error(rdev->mddev, rdev); 2740 if (test_bit(Faulty, &rdev->flags)) 2741 err = 0; 2742 else 2743 err = -EBUSY; 2744 } else if (cmd_match(buf, "remove")) { 2745 if (rdev->mddev->pers) { 2746 clear_bit(Blocked, &rdev->flags); 2747 remove_and_add_spares(rdev->mddev, rdev); 2748 } 2749 if (rdev->raid_disk >= 0) 2750 err = -EBUSY; 2751 else { 2752 struct mddev *mddev = rdev->mddev; 2753 err = 0; 2754 if (mddev_is_clustered(mddev)) 2755 err = md_cluster_ops->remove_disk(mddev, rdev); 2756 2757 if (err == 0) { 2758 md_kick_rdev_from_array(rdev); 2759 if (mddev->pers) { 2760 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2761 md_wakeup_thread(mddev->thread); 2762 } 2763 md_new_event(mddev); 2764 } 2765 } 2766 } else if (cmd_match(buf, "writemostly")) { 2767 set_bit(WriteMostly, &rdev->flags); 2768 err = 0; 2769 } else if (cmd_match(buf, "-writemostly")) { 2770 clear_bit(WriteMostly, &rdev->flags); 2771 err = 0; 2772 } else if (cmd_match(buf, "blocked")) { 2773 set_bit(Blocked, &rdev->flags); 2774 err = 0; 2775 } else if (cmd_match(buf, "-blocked")) { 2776 if (!test_bit(Faulty, &rdev->flags) && 2777 !test_bit(ExternalBbl, &rdev->flags) && 2778 rdev->badblocks.unacked_exist) { 2779 /* metadata handler doesn't understand badblocks, 2780 * so we need to fail the device 2781 */ 2782 md_error(rdev->mddev, rdev); 2783 } 2784 clear_bit(Blocked, &rdev->flags); 2785 clear_bit(BlockedBadBlocks, &rdev->flags); 2786 wake_up(&rdev->blocked_wait); 2787 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2788 md_wakeup_thread(rdev->mddev->thread); 2789 2790 err = 0; 2791 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) { 2792 set_bit(In_sync, &rdev->flags); 2793 err = 0; 2794 } else if (cmd_match(buf, "failfast")) { 2795 set_bit(FailFast, &rdev->flags); 2796 err = 0; 2797 } else if (cmd_match(buf, "-failfast")) { 2798 clear_bit(FailFast, &rdev->flags); 2799 err = 0; 2800 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 && 2801 !test_bit(Journal, &rdev->flags)) { 2802 if (rdev->mddev->pers == NULL) { 2803 clear_bit(In_sync, &rdev->flags); 2804 rdev->saved_raid_disk = rdev->raid_disk; 2805 rdev->raid_disk = -1; 2806 err = 0; 2807 } 2808 } else if (cmd_match(buf, "write_error")) { 2809 set_bit(WriteErrorSeen, &rdev->flags); 2810 err = 0; 2811 } else if (cmd_match(buf, "-write_error")) { 2812 clear_bit(WriteErrorSeen, &rdev->flags); 2813 err = 0; 2814 } else if (cmd_match(buf, "want_replacement")) { 2815 /* Any non-spare device that is not a replacement can 2816 * become want_replacement at any time, but we then need to 2817 * check if recovery is needed. 2818 */ 2819 if (rdev->raid_disk >= 0 && 2820 !test_bit(Journal, &rdev->flags) && 2821 !test_bit(Replacement, &rdev->flags)) 2822 set_bit(WantReplacement, &rdev->flags); 2823 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2824 md_wakeup_thread(rdev->mddev->thread); 2825 err = 0; 2826 } else if (cmd_match(buf, "-want_replacement")) { 2827 /* Clearing 'want_replacement' is always allowed. 2828 * Once replacements starts it is too late though. 2829 */ 2830 err = 0; 2831 clear_bit(WantReplacement, &rdev->flags); 2832 } else if (cmd_match(buf, "replacement")) { 2833 /* Can only set a device as a replacement when array has not 2834 * yet been started. Once running, replacement is automatic 2835 * from spares, or by assigning 'slot'. 2836 */ 2837 if (rdev->mddev->pers) 2838 err = -EBUSY; 2839 else { 2840 set_bit(Replacement, &rdev->flags); 2841 err = 0; 2842 } 2843 } else if (cmd_match(buf, "-replacement")) { 2844 /* Similarly, can only clear Replacement before start */ 2845 if (rdev->mddev->pers) 2846 err = -EBUSY; 2847 else { 2848 clear_bit(Replacement, &rdev->flags); 2849 err = 0; 2850 } 2851 } else if (cmd_match(buf, "re-add")) { 2852 if (!rdev->mddev->pers) 2853 err = -EINVAL; 2854 else if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1) && 2855 rdev->saved_raid_disk >= 0) { 2856 /* clear_bit is performed _after_ all the devices 2857 * have their local Faulty bit cleared. If any writes 2858 * happen in the meantime in the local node, they 2859 * will land in the local bitmap, which will be synced 2860 * by this node eventually 2861 */ 2862 if (!mddev_is_clustered(rdev->mddev) || 2863 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) { 2864 clear_bit(Faulty, &rdev->flags); 2865 err = add_bound_rdev(rdev); 2866 } 2867 } else 2868 err = -EBUSY; 2869 } else if (cmd_match(buf, "external_bbl") && (rdev->mddev->external)) { 2870 set_bit(ExternalBbl, &rdev->flags); 2871 rdev->badblocks.shift = 0; 2872 err = 0; 2873 } else if (cmd_match(buf, "-external_bbl") && (rdev->mddev->external)) { 2874 clear_bit(ExternalBbl, &rdev->flags); 2875 err = 0; 2876 } 2877 if (!err) 2878 sysfs_notify_dirent_safe(rdev->sysfs_state); 2879 return err ? err : len; 2880 } 2881 static struct rdev_sysfs_entry rdev_state = 2882 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store); 2883 2884 static ssize_t 2885 errors_show(struct md_rdev *rdev, char *page) 2886 { 2887 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); 2888 } 2889 2890 static ssize_t 2891 errors_store(struct md_rdev *rdev, const char *buf, size_t len) 2892 { 2893 unsigned int n; 2894 int rv; 2895 2896 rv = kstrtouint(buf, 10, &n); 2897 if (rv < 0) 2898 return rv; 2899 atomic_set(&rdev->corrected_errors, n); 2900 return len; 2901 } 2902 static struct rdev_sysfs_entry rdev_errors = 2903 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); 2904 2905 static ssize_t 2906 slot_show(struct md_rdev *rdev, char *page) 2907 { 2908 if (test_bit(Journal, &rdev->flags)) 2909 return sprintf(page, "journal\n"); 2910 else if (rdev->raid_disk < 0) 2911 return sprintf(page, "none\n"); 2912 else 2913 return sprintf(page, "%d\n", rdev->raid_disk); 2914 } 2915 2916 static ssize_t 2917 slot_store(struct md_rdev *rdev, const char *buf, size_t len) 2918 { 2919 int slot; 2920 int err; 2921 2922 if (test_bit(Journal, &rdev->flags)) 2923 return -EBUSY; 2924 if (strncmp(buf, "none", 4)==0) 2925 slot = -1; 2926 else { 2927 err = kstrtouint(buf, 10, (unsigned int *)&slot); 2928 if (err < 0) 2929 return err; 2930 } 2931 if (rdev->mddev->pers && slot == -1) { 2932 /* Setting 'slot' on an active array requires also 2933 * updating the 'rd%d' link, and communicating 2934 * with the personality with ->hot_*_disk. 2935 * For now we only support removing 2936 * failed/spare devices. This normally happens automatically, 2937 * but not when the metadata is externally managed. 2938 */ 2939 if (rdev->raid_disk == -1) 2940 return -EEXIST; 2941 /* personality does all needed checks */ 2942 if (rdev->mddev->pers->hot_remove_disk == NULL) 2943 return -EINVAL; 2944 clear_bit(Blocked, &rdev->flags); 2945 remove_and_add_spares(rdev->mddev, rdev); 2946 if (rdev->raid_disk >= 0) 2947 return -EBUSY; 2948 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2949 md_wakeup_thread(rdev->mddev->thread); 2950 } else if (rdev->mddev->pers) { 2951 /* Activating a spare .. or possibly reactivating 2952 * if we ever get bitmaps working here. 2953 */ 2954 int err; 2955 2956 if (rdev->raid_disk != -1) 2957 return -EBUSY; 2958 2959 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery)) 2960 return -EBUSY; 2961 2962 if (rdev->mddev->pers->hot_add_disk == NULL) 2963 return -EINVAL; 2964 2965 if (slot >= rdev->mddev->raid_disks && 2966 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 2967 return -ENOSPC; 2968 2969 rdev->raid_disk = slot; 2970 if (test_bit(In_sync, &rdev->flags)) 2971 rdev->saved_raid_disk = slot; 2972 else 2973 rdev->saved_raid_disk = -1; 2974 clear_bit(In_sync, &rdev->flags); 2975 clear_bit(Bitmap_sync, &rdev->flags); 2976 err = rdev->mddev->pers-> 2977 hot_add_disk(rdev->mddev, rdev); 2978 if (err) { 2979 rdev->raid_disk = -1; 2980 return err; 2981 } else 2982 sysfs_notify_dirent_safe(rdev->sysfs_state); 2983 if (sysfs_link_rdev(rdev->mddev, rdev)) 2984 /* failure here is OK */; 2985 /* don't wakeup anyone, leave that to userspace. */ 2986 } else { 2987 if (slot >= rdev->mddev->raid_disks && 2988 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 2989 return -ENOSPC; 2990 rdev->raid_disk = slot; 2991 /* assume it is working */ 2992 clear_bit(Faulty, &rdev->flags); 2993 clear_bit(WriteMostly, &rdev->flags); 2994 set_bit(In_sync, &rdev->flags); 2995 sysfs_notify_dirent_safe(rdev->sysfs_state); 2996 } 2997 return len; 2998 } 2999 3000 static struct rdev_sysfs_entry rdev_slot = 3001 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); 3002 3003 static ssize_t 3004 offset_show(struct md_rdev *rdev, char *page) 3005 { 3006 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); 3007 } 3008 3009 static ssize_t 3010 offset_store(struct md_rdev *rdev, const char *buf, size_t len) 3011 { 3012 unsigned long long offset; 3013 if (kstrtoull(buf, 10, &offset) < 0) 3014 return -EINVAL; 3015 if (rdev->mddev->pers && rdev->raid_disk >= 0) 3016 return -EBUSY; 3017 if (rdev->sectors && rdev->mddev->external) 3018 /* Must set offset before size, so overlap checks 3019 * can be sane */ 3020 return -EBUSY; 3021 rdev->data_offset = offset; 3022 rdev->new_data_offset = offset; 3023 return len; 3024 } 3025 3026 static struct rdev_sysfs_entry rdev_offset = 3027 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); 3028 3029 static ssize_t new_offset_show(struct md_rdev *rdev, char *page) 3030 { 3031 return sprintf(page, "%llu\n", 3032 (unsigned long long)rdev->new_data_offset); 3033 } 3034 3035 static ssize_t new_offset_store(struct md_rdev *rdev, 3036 const char *buf, size_t len) 3037 { 3038 unsigned long long new_offset; 3039 struct mddev *mddev = rdev->mddev; 3040 3041 if (kstrtoull(buf, 10, &new_offset) < 0) 3042 return -EINVAL; 3043 3044 if (mddev->sync_thread || 3045 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery)) 3046 return -EBUSY; 3047 if (new_offset == rdev->data_offset) 3048 /* reset is always permitted */ 3049 ; 3050 else if (new_offset > rdev->data_offset) { 3051 /* must not push array size beyond rdev_sectors */ 3052 if (new_offset - rdev->data_offset 3053 + mddev->dev_sectors > rdev->sectors) 3054 return -E2BIG; 3055 } 3056 /* Metadata worries about other space details. */ 3057 3058 /* decreasing the offset is inconsistent with a backwards 3059 * reshape. 3060 */ 3061 if (new_offset < rdev->data_offset && 3062 mddev->reshape_backwards) 3063 return -EINVAL; 3064 /* Increasing offset is inconsistent with forwards 3065 * reshape. reshape_direction should be set to 3066 * 'backwards' first. 3067 */ 3068 if (new_offset > rdev->data_offset && 3069 !mddev->reshape_backwards) 3070 return -EINVAL; 3071 3072 if (mddev->pers && mddev->persistent && 3073 !super_types[mddev->major_version] 3074 .allow_new_offset(rdev, new_offset)) 3075 return -E2BIG; 3076 rdev->new_data_offset = new_offset; 3077 if (new_offset > rdev->data_offset) 3078 mddev->reshape_backwards = 1; 3079 else if (new_offset < rdev->data_offset) 3080 mddev->reshape_backwards = 0; 3081 3082 return len; 3083 } 3084 static struct rdev_sysfs_entry rdev_new_offset = 3085 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store); 3086 3087 static ssize_t 3088 rdev_size_show(struct md_rdev *rdev, char *page) 3089 { 3090 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2); 3091 } 3092 3093 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2) 3094 { 3095 /* check if two start/length pairs overlap */ 3096 if (s1+l1 <= s2) 3097 return 0; 3098 if (s2+l2 <= s1) 3099 return 0; 3100 return 1; 3101 } 3102 3103 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors) 3104 { 3105 unsigned long long blocks; 3106 sector_t new; 3107 3108 if (kstrtoull(buf, 10, &blocks) < 0) 3109 return -EINVAL; 3110 3111 if (blocks & 1ULL << (8 * sizeof(blocks) - 1)) 3112 return -EINVAL; /* sector conversion overflow */ 3113 3114 new = blocks * 2; 3115 if (new != blocks * 2) 3116 return -EINVAL; /* unsigned long long to sector_t overflow */ 3117 3118 *sectors = new; 3119 return 0; 3120 } 3121 3122 static ssize_t 3123 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3124 { 3125 struct mddev *my_mddev = rdev->mddev; 3126 sector_t oldsectors = rdev->sectors; 3127 sector_t sectors; 3128 3129 if (test_bit(Journal, &rdev->flags)) 3130 return -EBUSY; 3131 if (strict_blocks_to_sectors(buf, §ors) < 0) 3132 return -EINVAL; 3133 if (rdev->data_offset != rdev->new_data_offset) 3134 return -EINVAL; /* too confusing */ 3135 if (my_mddev->pers && rdev->raid_disk >= 0) { 3136 if (my_mddev->persistent) { 3137 sectors = super_types[my_mddev->major_version]. 3138 rdev_size_change(rdev, sectors); 3139 if (!sectors) 3140 return -EBUSY; 3141 } else if (!sectors) 3142 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) - 3143 rdev->data_offset; 3144 if (!my_mddev->pers->resize) 3145 /* Cannot change size for RAID0 or Linear etc */ 3146 return -EINVAL; 3147 } 3148 if (sectors < my_mddev->dev_sectors) 3149 return -EINVAL; /* component must fit device */ 3150 3151 rdev->sectors = sectors; 3152 if (sectors > oldsectors && my_mddev->external) { 3153 /* Need to check that all other rdevs with the same 3154 * ->bdev do not overlap. 'rcu' is sufficient to walk 3155 * the rdev lists safely. 3156 * This check does not provide a hard guarantee, it 3157 * just helps avoid dangerous mistakes. 3158 */ 3159 struct mddev *mddev; 3160 int overlap = 0; 3161 struct list_head *tmp; 3162 3163 rcu_read_lock(); 3164 for_each_mddev(mddev, tmp) { 3165 struct md_rdev *rdev2; 3166 3167 rdev_for_each(rdev2, mddev) 3168 if (rdev->bdev == rdev2->bdev && 3169 rdev != rdev2 && 3170 overlaps(rdev->data_offset, rdev->sectors, 3171 rdev2->data_offset, 3172 rdev2->sectors)) { 3173 overlap = 1; 3174 break; 3175 } 3176 if (overlap) { 3177 mddev_put(mddev); 3178 break; 3179 } 3180 } 3181 rcu_read_unlock(); 3182 if (overlap) { 3183 /* Someone else could have slipped in a size 3184 * change here, but doing so is just silly. 3185 * We put oldsectors back because we *know* it is 3186 * safe, and trust userspace not to race with 3187 * itself 3188 */ 3189 rdev->sectors = oldsectors; 3190 return -EBUSY; 3191 } 3192 } 3193 return len; 3194 } 3195 3196 static struct rdev_sysfs_entry rdev_size = 3197 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); 3198 3199 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page) 3200 { 3201 unsigned long long recovery_start = rdev->recovery_offset; 3202 3203 if (test_bit(In_sync, &rdev->flags) || 3204 recovery_start == MaxSector) 3205 return sprintf(page, "none\n"); 3206 3207 return sprintf(page, "%llu\n", recovery_start); 3208 } 3209 3210 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len) 3211 { 3212 unsigned long long recovery_start; 3213 3214 if (cmd_match(buf, "none")) 3215 recovery_start = MaxSector; 3216 else if (kstrtoull(buf, 10, &recovery_start)) 3217 return -EINVAL; 3218 3219 if (rdev->mddev->pers && 3220 rdev->raid_disk >= 0) 3221 return -EBUSY; 3222 3223 rdev->recovery_offset = recovery_start; 3224 if (recovery_start == MaxSector) 3225 set_bit(In_sync, &rdev->flags); 3226 else 3227 clear_bit(In_sync, &rdev->flags); 3228 return len; 3229 } 3230 3231 static struct rdev_sysfs_entry rdev_recovery_start = 3232 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store); 3233 3234 /* sysfs access to bad-blocks list. 3235 * We present two files. 3236 * 'bad-blocks' lists sector numbers and lengths of ranges that 3237 * are recorded as bad. The list is truncated to fit within 3238 * the one-page limit of sysfs. 3239 * Writing "sector length" to this file adds an acknowledged 3240 * bad block list. 3241 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet 3242 * been acknowledged. Writing to this file adds bad blocks 3243 * without acknowledging them. This is largely for testing. 3244 */ 3245 static ssize_t bb_show(struct md_rdev *rdev, char *page) 3246 { 3247 return badblocks_show(&rdev->badblocks, page, 0); 3248 } 3249 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len) 3250 { 3251 int rv = badblocks_store(&rdev->badblocks, page, len, 0); 3252 /* Maybe that ack was all we needed */ 3253 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags)) 3254 wake_up(&rdev->blocked_wait); 3255 return rv; 3256 } 3257 static struct rdev_sysfs_entry rdev_bad_blocks = 3258 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store); 3259 3260 static ssize_t ubb_show(struct md_rdev *rdev, char *page) 3261 { 3262 return badblocks_show(&rdev->badblocks, page, 1); 3263 } 3264 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len) 3265 { 3266 return badblocks_store(&rdev->badblocks, page, len, 1); 3267 } 3268 static struct rdev_sysfs_entry rdev_unack_bad_blocks = 3269 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store); 3270 3271 static ssize_t 3272 ppl_sector_show(struct md_rdev *rdev, char *page) 3273 { 3274 return sprintf(page, "%llu\n", (unsigned long long)rdev->ppl.sector); 3275 } 3276 3277 static ssize_t 3278 ppl_sector_store(struct md_rdev *rdev, const char *buf, size_t len) 3279 { 3280 unsigned long long sector; 3281 3282 if (kstrtoull(buf, 10, §or) < 0) 3283 return -EINVAL; 3284 if (sector != (sector_t)sector) 3285 return -EINVAL; 3286 3287 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3288 rdev->raid_disk >= 0) 3289 return -EBUSY; 3290 3291 if (rdev->mddev->persistent) { 3292 if (rdev->mddev->major_version == 0) 3293 return -EINVAL; 3294 if ((sector > rdev->sb_start && 3295 sector - rdev->sb_start > S16_MAX) || 3296 (sector < rdev->sb_start && 3297 rdev->sb_start - sector > -S16_MIN)) 3298 return -EINVAL; 3299 rdev->ppl.offset = sector - rdev->sb_start; 3300 } else if (!rdev->mddev->external) { 3301 return -EBUSY; 3302 } 3303 rdev->ppl.sector = sector; 3304 return len; 3305 } 3306 3307 static struct rdev_sysfs_entry rdev_ppl_sector = 3308 __ATTR(ppl_sector, S_IRUGO|S_IWUSR, ppl_sector_show, ppl_sector_store); 3309 3310 static ssize_t 3311 ppl_size_show(struct md_rdev *rdev, char *page) 3312 { 3313 return sprintf(page, "%u\n", rdev->ppl.size); 3314 } 3315 3316 static ssize_t 3317 ppl_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3318 { 3319 unsigned int size; 3320 3321 if (kstrtouint(buf, 10, &size) < 0) 3322 return -EINVAL; 3323 3324 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3325 rdev->raid_disk >= 0) 3326 return -EBUSY; 3327 3328 if (rdev->mddev->persistent) { 3329 if (rdev->mddev->major_version == 0) 3330 return -EINVAL; 3331 if (size > U16_MAX) 3332 return -EINVAL; 3333 } else if (!rdev->mddev->external) { 3334 return -EBUSY; 3335 } 3336 rdev->ppl.size = size; 3337 return len; 3338 } 3339 3340 static struct rdev_sysfs_entry rdev_ppl_size = 3341 __ATTR(ppl_size, S_IRUGO|S_IWUSR, ppl_size_show, ppl_size_store); 3342 3343 static struct attribute *rdev_default_attrs[] = { 3344 &rdev_state.attr, 3345 &rdev_errors.attr, 3346 &rdev_slot.attr, 3347 &rdev_offset.attr, 3348 &rdev_new_offset.attr, 3349 &rdev_size.attr, 3350 &rdev_recovery_start.attr, 3351 &rdev_bad_blocks.attr, 3352 &rdev_unack_bad_blocks.attr, 3353 &rdev_ppl_sector.attr, 3354 &rdev_ppl_size.attr, 3355 NULL, 3356 }; 3357 static ssize_t 3358 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 3359 { 3360 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3361 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3362 3363 if (!entry->show) 3364 return -EIO; 3365 if (!rdev->mddev) 3366 return -EBUSY; 3367 return entry->show(rdev, page); 3368 } 3369 3370 static ssize_t 3371 rdev_attr_store(struct kobject *kobj, struct attribute *attr, 3372 const char *page, size_t length) 3373 { 3374 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3375 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3376 ssize_t rv; 3377 struct mddev *mddev = rdev->mddev; 3378 3379 if (!entry->store) 3380 return -EIO; 3381 if (!capable(CAP_SYS_ADMIN)) 3382 return -EACCES; 3383 rv = mddev ? mddev_lock(mddev) : -ENODEV; 3384 if (!rv) { 3385 if (rdev->mddev == NULL) 3386 rv = -ENODEV; 3387 else 3388 rv = entry->store(rdev, page, length); 3389 mddev_unlock(mddev); 3390 } 3391 return rv; 3392 } 3393 3394 static void rdev_free(struct kobject *ko) 3395 { 3396 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj); 3397 kfree(rdev); 3398 } 3399 static const struct sysfs_ops rdev_sysfs_ops = { 3400 .show = rdev_attr_show, 3401 .store = rdev_attr_store, 3402 }; 3403 static struct kobj_type rdev_ktype = { 3404 .release = rdev_free, 3405 .sysfs_ops = &rdev_sysfs_ops, 3406 .default_attrs = rdev_default_attrs, 3407 }; 3408 3409 int md_rdev_init(struct md_rdev *rdev) 3410 { 3411 rdev->desc_nr = -1; 3412 rdev->saved_raid_disk = -1; 3413 rdev->raid_disk = -1; 3414 rdev->flags = 0; 3415 rdev->data_offset = 0; 3416 rdev->new_data_offset = 0; 3417 rdev->sb_events = 0; 3418 rdev->last_read_error = 0; 3419 rdev->sb_loaded = 0; 3420 rdev->bb_page = NULL; 3421 atomic_set(&rdev->nr_pending, 0); 3422 atomic_set(&rdev->read_errors, 0); 3423 atomic_set(&rdev->corrected_errors, 0); 3424 3425 INIT_LIST_HEAD(&rdev->same_set); 3426 init_waitqueue_head(&rdev->blocked_wait); 3427 3428 /* Add space to store bad block list. 3429 * This reserves the space even on arrays where it cannot 3430 * be used - I wonder if that matters 3431 */ 3432 return badblocks_init(&rdev->badblocks, 0); 3433 } 3434 EXPORT_SYMBOL_GPL(md_rdev_init); 3435 /* 3436 * Import a device. If 'super_format' >= 0, then sanity check the superblock 3437 * 3438 * mark the device faulty if: 3439 * 3440 * - the device is nonexistent (zero size) 3441 * - the device has no valid superblock 3442 * 3443 * a faulty rdev _never_ has rdev->sb set. 3444 */ 3445 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor) 3446 { 3447 char b[BDEVNAME_SIZE]; 3448 int err; 3449 struct md_rdev *rdev; 3450 sector_t size; 3451 3452 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 3453 if (!rdev) 3454 return ERR_PTR(-ENOMEM); 3455 3456 err = md_rdev_init(rdev); 3457 if (err) 3458 goto abort_free; 3459 err = alloc_disk_sb(rdev); 3460 if (err) 3461 goto abort_free; 3462 3463 err = lock_rdev(rdev, newdev, super_format == -2); 3464 if (err) 3465 goto abort_free; 3466 3467 kobject_init(&rdev->kobj, &rdev_ktype); 3468 3469 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS; 3470 if (!size) { 3471 pr_warn("md: %s has zero or unknown size, marking faulty!\n", 3472 bdevname(rdev->bdev,b)); 3473 err = -EINVAL; 3474 goto abort_free; 3475 } 3476 3477 if (super_format >= 0) { 3478 err = super_types[super_format]. 3479 load_super(rdev, NULL, super_minor); 3480 if (err == -EINVAL) { 3481 pr_warn("md: %s does not have a valid v%d.%d superblock, not importing!\n", 3482 bdevname(rdev->bdev,b), 3483 super_format, super_minor); 3484 goto abort_free; 3485 } 3486 if (err < 0) { 3487 pr_warn("md: could not read %s's sb, not importing!\n", 3488 bdevname(rdev->bdev,b)); 3489 goto abort_free; 3490 } 3491 } 3492 3493 return rdev; 3494 3495 abort_free: 3496 if (rdev->bdev) 3497 unlock_rdev(rdev); 3498 md_rdev_clear(rdev); 3499 kfree(rdev); 3500 return ERR_PTR(err); 3501 } 3502 3503 /* 3504 * Check a full RAID array for plausibility 3505 */ 3506 3507 static void analyze_sbs(struct mddev *mddev) 3508 { 3509 int i; 3510 struct md_rdev *rdev, *freshest, *tmp; 3511 char b[BDEVNAME_SIZE]; 3512 3513 freshest = NULL; 3514 rdev_for_each_safe(rdev, tmp, mddev) 3515 switch (super_types[mddev->major_version]. 3516 load_super(rdev, freshest, mddev->minor_version)) { 3517 case 1: 3518 freshest = rdev; 3519 break; 3520 case 0: 3521 break; 3522 default: 3523 pr_warn("md: fatal superblock inconsistency in %s -- removing from array\n", 3524 bdevname(rdev->bdev,b)); 3525 md_kick_rdev_from_array(rdev); 3526 } 3527 3528 super_types[mddev->major_version]. 3529 validate_super(mddev, freshest); 3530 3531 i = 0; 3532 rdev_for_each_safe(rdev, tmp, mddev) { 3533 if (mddev->max_disks && 3534 (rdev->desc_nr >= mddev->max_disks || 3535 i > mddev->max_disks)) { 3536 pr_warn("md: %s: %s: only %d devices permitted\n", 3537 mdname(mddev), bdevname(rdev->bdev, b), 3538 mddev->max_disks); 3539 md_kick_rdev_from_array(rdev); 3540 continue; 3541 } 3542 if (rdev != freshest) { 3543 if (super_types[mddev->major_version]. 3544 validate_super(mddev, rdev)) { 3545 pr_warn("md: kicking non-fresh %s from array!\n", 3546 bdevname(rdev->bdev,b)); 3547 md_kick_rdev_from_array(rdev); 3548 continue; 3549 } 3550 } 3551 if (mddev->level == LEVEL_MULTIPATH) { 3552 rdev->desc_nr = i++; 3553 rdev->raid_disk = rdev->desc_nr; 3554 set_bit(In_sync, &rdev->flags); 3555 } else if (rdev->raid_disk >= 3556 (mddev->raid_disks - min(0, mddev->delta_disks)) && 3557 !test_bit(Journal, &rdev->flags)) { 3558 rdev->raid_disk = -1; 3559 clear_bit(In_sync, &rdev->flags); 3560 } 3561 } 3562 } 3563 3564 /* Read a fixed-point number. 3565 * Numbers in sysfs attributes should be in "standard" units where 3566 * possible, so time should be in seconds. 3567 * However we internally use a a much smaller unit such as 3568 * milliseconds or jiffies. 3569 * This function takes a decimal number with a possible fractional 3570 * component, and produces an integer which is the result of 3571 * multiplying that number by 10^'scale'. 3572 * all without any floating-point arithmetic. 3573 */ 3574 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale) 3575 { 3576 unsigned long result = 0; 3577 long decimals = -1; 3578 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) { 3579 if (*cp == '.') 3580 decimals = 0; 3581 else if (decimals < scale) { 3582 unsigned int value; 3583 value = *cp - '0'; 3584 result = result * 10 + value; 3585 if (decimals >= 0) 3586 decimals++; 3587 } 3588 cp++; 3589 } 3590 if (*cp == '\n') 3591 cp++; 3592 if (*cp) 3593 return -EINVAL; 3594 if (decimals < 0) 3595 decimals = 0; 3596 while (decimals < scale) { 3597 result *= 10; 3598 decimals ++; 3599 } 3600 *res = result; 3601 return 0; 3602 } 3603 3604 static ssize_t 3605 safe_delay_show(struct mddev *mddev, char *page) 3606 { 3607 int msec = (mddev->safemode_delay*1000)/HZ; 3608 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000); 3609 } 3610 static ssize_t 3611 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len) 3612 { 3613 unsigned long msec; 3614 3615 if (mddev_is_clustered(mddev)) { 3616 pr_warn("md: Safemode is disabled for clustered mode\n"); 3617 return -EINVAL; 3618 } 3619 3620 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0) 3621 return -EINVAL; 3622 if (msec == 0) 3623 mddev->safemode_delay = 0; 3624 else { 3625 unsigned long old_delay = mddev->safemode_delay; 3626 unsigned long new_delay = (msec*HZ)/1000; 3627 3628 if (new_delay == 0) 3629 new_delay = 1; 3630 mddev->safemode_delay = new_delay; 3631 if (new_delay < old_delay || old_delay == 0) 3632 mod_timer(&mddev->safemode_timer, jiffies+1); 3633 } 3634 return len; 3635 } 3636 static struct md_sysfs_entry md_safe_delay = 3637 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); 3638 3639 static ssize_t 3640 level_show(struct mddev *mddev, char *page) 3641 { 3642 struct md_personality *p; 3643 int ret; 3644 spin_lock(&mddev->lock); 3645 p = mddev->pers; 3646 if (p) 3647 ret = sprintf(page, "%s\n", p->name); 3648 else if (mddev->clevel[0]) 3649 ret = sprintf(page, "%s\n", mddev->clevel); 3650 else if (mddev->level != LEVEL_NONE) 3651 ret = sprintf(page, "%d\n", mddev->level); 3652 else 3653 ret = 0; 3654 spin_unlock(&mddev->lock); 3655 return ret; 3656 } 3657 3658 static ssize_t 3659 level_store(struct mddev *mddev, const char *buf, size_t len) 3660 { 3661 char clevel[16]; 3662 ssize_t rv; 3663 size_t slen = len; 3664 struct md_personality *pers, *oldpers; 3665 long level; 3666 void *priv, *oldpriv; 3667 struct md_rdev *rdev; 3668 3669 if (slen == 0 || slen >= sizeof(clevel)) 3670 return -EINVAL; 3671 3672 rv = mddev_lock(mddev); 3673 if (rv) 3674 return rv; 3675 3676 if (mddev->pers == NULL) { 3677 strncpy(mddev->clevel, buf, slen); 3678 if (mddev->clevel[slen-1] == '\n') 3679 slen--; 3680 mddev->clevel[slen] = 0; 3681 mddev->level = LEVEL_NONE; 3682 rv = len; 3683 goto out_unlock; 3684 } 3685 rv = -EROFS; 3686 if (mddev->ro) 3687 goto out_unlock; 3688 3689 /* request to change the personality. Need to ensure: 3690 * - array is not engaged in resync/recovery/reshape 3691 * - old personality can be suspended 3692 * - new personality will access other array. 3693 */ 3694 3695 rv = -EBUSY; 3696 if (mddev->sync_thread || 3697 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 3698 mddev->reshape_position != MaxSector || 3699 mddev->sysfs_active) 3700 goto out_unlock; 3701 3702 rv = -EINVAL; 3703 if (!mddev->pers->quiesce) { 3704 pr_warn("md: %s: %s does not support online personality change\n", 3705 mdname(mddev), mddev->pers->name); 3706 goto out_unlock; 3707 } 3708 3709 /* Now find the new personality */ 3710 strncpy(clevel, buf, slen); 3711 if (clevel[slen-1] == '\n') 3712 slen--; 3713 clevel[slen] = 0; 3714 if (kstrtol(clevel, 10, &level)) 3715 level = LEVEL_NONE; 3716 3717 if (request_module("md-%s", clevel) != 0) 3718 request_module("md-level-%s", clevel); 3719 spin_lock(&pers_lock); 3720 pers = find_pers(level, clevel); 3721 if (!pers || !try_module_get(pers->owner)) { 3722 spin_unlock(&pers_lock); 3723 pr_warn("md: personality %s not loaded\n", clevel); 3724 rv = -EINVAL; 3725 goto out_unlock; 3726 } 3727 spin_unlock(&pers_lock); 3728 3729 if (pers == mddev->pers) { 3730 /* Nothing to do! */ 3731 module_put(pers->owner); 3732 rv = len; 3733 goto out_unlock; 3734 } 3735 if (!pers->takeover) { 3736 module_put(pers->owner); 3737 pr_warn("md: %s: %s does not support personality takeover\n", 3738 mdname(mddev), clevel); 3739 rv = -EINVAL; 3740 goto out_unlock; 3741 } 3742 3743 rdev_for_each(rdev, mddev) 3744 rdev->new_raid_disk = rdev->raid_disk; 3745 3746 /* ->takeover must set new_* and/or delta_disks 3747 * if it succeeds, and may set them when it fails. 3748 */ 3749 priv = pers->takeover(mddev); 3750 if (IS_ERR(priv)) { 3751 mddev->new_level = mddev->level; 3752 mddev->new_layout = mddev->layout; 3753 mddev->new_chunk_sectors = mddev->chunk_sectors; 3754 mddev->raid_disks -= mddev->delta_disks; 3755 mddev->delta_disks = 0; 3756 mddev->reshape_backwards = 0; 3757 module_put(pers->owner); 3758 pr_warn("md: %s: %s would not accept array\n", 3759 mdname(mddev), clevel); 3760 rv = PTR_ERR(priv); 3761 goto out_unlock; 3762 } 3763 3764 /* Looks like we have a winner */ 3765 mddev_suspend(mddev); 3766 mddev_detach(mddev); 3767 3768 spin_lock(&mddev->lock); 3769 oldpers = mddev->pers; 3770 oldpriv = mddev->private; 3771 mddev->pers = pers; 3772 mddev->private = priv; 3773 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 3774 mddev->level = mddev->new_level; 3775 mddev->layout = mddev->new_layout; 3776 mddev->chunk_sectors = mddev->new_chunk_sectors; 3777 mddev->delta_disks = 0; 3778 mddev->reshape_backwards = 0; 3779 mddev->degraded = 0; 3780 spin_unlock(&mddev->lock); 3781 3782 if (oldpers->sync_request == NULL && 3783 mddev->external) { 3784 /* We are converting from a no-redundancy array 3785 * to a redundancy array and metadata is managed 3786 * externally so we need to be sure that writes 3787 * won't block due to a need to transition 3788 * clean->dirty 3789 * until external management is started. 3790 */ 3791 mddev->in_sync = 0; 3792 mddev->safemode_delay = 0; 3793 mddev->safemode = 0; 3794 } 3795 3796 oldpers->free(mddev, oldpriv); 3797 3798 if (oldpers->sync_request == NULL && 3799 pers->sync_request != NULL) { 3800 /* need to add the md_redundancy_group */ 3801 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 3802 pr_warn("md: cannot register extra attributes for %s\n", 3803 mdname(mddev)); 3804 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action"); 3805 } 3806 if (oldpers->sync_request != NULL && 3807 pers->sync_request == NULL) { 3808 /* need to remove the md_redundancy_group */ 3809 if (mddev->to_remove == NULL) 3810 mddev->to_remove = &md_redundancy_group; 3811 } 3812 3813 module_put(oldpers->owner); 3814 3815 rdev_for_each(rdev, mddev) { 3816 if (rdev->raid_disk < 0) 3817 continue; 3818 if (rdev->new_raid_disk >= mddev->raid_disks) 3819 rdev->new_raid_disk = -1; 3820 if (rdev->new_raid_disk == rdev->raid_disk) 3821 continue; 3822 sysfs_unlink_rdev(mddev, rdev); 3823 } 3824 rdev_for_each(rdev, mddev) { 3825 if (rdev->raid_disk < 0) 3826 continue; 3827 if (rdev->new_raid_disk == rdev->raid_disk) 3828 continue; 3829 rdev->raid_disk = rdev->new_raid_disk; 3830 if (rdev->raid_disk < 0) 3831 clear_bit(In_sync, &rdev->flags); 3832 else { 3833 if (sysfs_link_rdev(mddev, rdev)) 3834 pr_warn("md: cannot register rd%d for %s after level change\n", 3835 rdev->raid_disk, mdname(mddev)); 3836 } 3837 } 3838 3839 if (pers->sync_request == NULL) { 3840 /* this is now an array without redundancy, so 3841 * it must always be in_sync 3842 */ 3843 mddev->in_sync = 1; 3844 del_timer_sync(&mddev->safemode_timer); 3845 } 3846 blk_set_stacking_limits(&mddev->queue->limits); 3847 pers->run(mddev); 3848 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 3849 mddev_resume(mddev); 3850 if (!mddev->thread) 3851 md_update_sb(mddev, 1); 3852 sysfs_notify(&mddev->kobj, NULL, "level"); 3853 md_new_event(mddev); 3854 rv = len; 3855 out_unlock: 3856 mddev_unlock(mddev); 3857 return rv; 3858 } 3859 3860 static struct md_sysfs_entry md_level = 3861 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); 3862 3863 static ssize_t 3864 layout_show(struct mddev *mddev, char *page) 3865 { 3866 /* just a number, not meaningful for all levels */ 3867 if (mddev->reshape_position != MaxSector && 3868 mddev->layout != mddev->new_layout) 3869 return sprintf(page, "%d (%d)\n", 3870 mddev->new_layout, mddev->layout); 3871 return sprintf(page, "%d\n", mddev->layout); 3872 } 3873 3874 static ssize_t 3875 layout_store(struct mddev *mddev, const char *buf, size_t len) 3876 { 3877 unsigned int n; 3878 int err; 3879 3880 err = kstrtouint(buf, 10, &n); 3881 if (err < 0) 3882 return err; 3883 err = mddev_lock(mddev); 3884 if (err) 3885 return err; 3886 3887 if (mddev->pers) { 3888 if (mddev->pers->check_reshape == NULL) 3889 err = -EBUSY; 3890 else if (mddev->ro) 3891 err = -EROFS; 3892 else { 3893 mddev->new_layout = n; 3894 err = mddev->pers->check_reshape(mddev); 3895 if (err) 3896 mddev->new_layout = mddev->layout; 3897 } 3898 } else { 3899 mddev->new_layout = n; 3900 if (mddev->reshape_position == MaxSector) 3901 mddev->layout = n; 3902 } 3903 mddev_unlock(mddev); 3904 return err ?: len; 3905 } 3906 static struct md_sysfs_entry md_layout = 3907 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); 3908 3909 static ssize_t 3910 raid_disks_show(struct mddev *mddev, char *page) 3911 { 3912 if (mddev->raid_disks == 0) 3913 return 0; 3914 if (mddev->reshape_position != MaxSector && 3915 mddev->delta_disks != 0) 3916 return sprintf(page, "%d (%d)\n", mddev->raid_disks, 3917 mddev->raid_disks - mddev->delta_disks); 3918 return sprintf(page, "%d\n", mddev->raid_disks); 3919 } 3920 3921 static int update_raid_disks(struct mddev *mddev, int raid_disks); 3922 3923 static ssize_t 3924 raid_disks_store(struct mddev *mddev, const char *buf, size_t len) 3925 { 3926 unsigned int n; 3927 int err; 3928 3929 err = kstrtouint(buf, 10, &n); 3930 if (err < 0) 3931 return err; 3932 3933 err = mddev_lock(mddev); 3934 if (err) 3935 return err; 3936 if (mddev->pers) 3937 err = update_raid_disks(mddev, n); 3938 else if (mddev->reshape_position != MaxSector) { 3939 struct md_rdev *rdev; 3940 int olddisks = mddev->raid_disks - mddev->delta_disks; 3941 3942 err = -EINVAL; 3943 rdev_for_each(rdev, mddev) { 3944 if (olddisks < n && 3945 rdev->data_offset < rdev->new_data_offset) 3946 goto out_unlock; 3947 if (olddisks > n && 3948 rdev->data_offset > rdev->new_data_offset) 3949 goto out_unlock; 3950 } 3951 err = 0; 3952 mddev->delta_disks = n - olddisks; 3953 mddev->raid_disks = n; 3954 mddev->reshape_backwards = (mddev->delta_disks < 0); 3955 } else 3956 mddev->raid_disks = n; 3957 out_unlock: 3958 mddev_unlock(mddev); 3959 return err ? err : len; 3960 } 3961 static struct md_sysfs_entry md_raid_disks = 3962 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); 3963 3964 static ssize_t 3965 chunk_size_show(struct mddev *mddev, char *page) 3966 { 3967 if (mddev->reshape_position != MaxSector && 3968 mddev->chunk_sectors != mddev->new_chunk_sectors) 3969 return sprintf(page, "%d (%d)\n", 3970 mddev->new_chunk_sectors << 9, 3971 mddev->chunk_sectors << 9); 3972 return sprintf(page, "%d\n", mddev->chunk_sectors << 9); 3973 } 3974 3975 static ssize_t 3976 chunk_size_store(struct mddev *mddev, const char *buf, size_t len) 3977 { 3978 unsigned long n; 3979 int err; 3980 3981 err = kstrtoul(buf, 10, &n); 3982 if (err < 0) 3983 return err; 3984 3985 err = mddev_lock(mddev); 3986 if (err) 3987 return err; 3988 if (mddev->pers) { 3989 if (mddev->pers->check_reshape == NULL) 3990 err = -EBUSY; 3991 else if (mddev->ro) 3992 err = -EROFS; 3993 else { 3994 mddev->new_chunk_sectors = n >> 9; 3995 err = mddev->pers->check_reshape(mddev); 3996 if (err) 3997 mddev->new_chunk_sectors = mddev->chunk_sectors; 3998 } 3999 } else { 4000 mddev->new_chunk_sectors = n >> 9; 4001 if (mddev->reshape_position == MaxSector) 4002 mddev->chunk_sectors = n >> 9; 4003 } 4004 mddev_unlock(mddev); 4005 return err ?: len; 4006 } 4007 static struct md_sysfs_entry md_chunk_size = 4008 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); 4009 4010 static ssize_t 4011 resync_start_show(struct mddev *mddev, char *page) 4012 { 4013 if (mddev->recovery_cp == MaxSector) 4014 return sprintf(page, "none\n"); 4015 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); 4016 } 4017 4018 static ssize_t 4019 resync_start_store(struct mddev *mddev, const char *buf, size_t len) 4020 { 4021 unsigned long long n; 4022 int err; 4023 4024 if (cmd_match(buf, "none")) 4025 n = MaxSector; 4026 else { 4027 err = kstrtoull(buf, 10, &n); 4028 if (err < 0) 4029 return err; 4030 if (n != (sector_t)n) 4031 return -EINVAL; 4032 } 4033 4034 err = mddev_lock(mddev); 4035 if (err) 4036 return err; 4037 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 4038 err = -EBUSY; 4039 4040 if (!err) { 4041 mddev->recovery_cp = n; 4042 if (mddev->pers) 4043 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 4044 } 4045 mddev_unlock(mddev); 4046 return err ?: len; 4047 } 4048 static struct md_sysfs_entry md_resync_start = 4049 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR, 4050 resync_start_show, resync_start_store); 4051 4052 /* 4053 * The array state can be: 4054 * 4055 * clear 4056 * No devices, no size, no level 4057 * Equivalent to STOP_ARRAY ioctl 4058 * inactive 4059 * May have some settings, but array is not active 4060 * all IO results in error 4061 * When written, doesn't tear down array, but just stops it 4062 * suspended (not supported yet) 4063 * All IO requests will block. The array can be reconfigured. 4064 * Writing this, if accepted, will block until array is quiescent 4065 * readonly 4066 * no resync can happen. no superblocks get written. 4067 * write requests fail 4068 * read-auto 4069 * like readonly, but behaves like 'clean' on a write request. 4070 * 4071 * clean - no pending writes, but otherwise active. 4072 * When written to inactive array, starts without resync 4073 * If a write request arrives then 4074 * if metadata is known, mark 'dirty' and switch to 'active'. 4075 * if not known, block and switch to write-pending 4076 * If written to an active array that has pending writes, then fails. 4077 * active 4078 * fully active: IO and resync can be happening. 4079 * When written to inactive array, starts with resync 4080 * 4081 * write-pending 4082 * clean, but writes are blocked waiting for 'active' to be written. 4083 * 4084 * active-idle 4085 * like active, but no writes have been seen for a while (100msec). 4086 * 4087 */ 4088 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, 4089 write_pending, active_idle, bad_word}; 4090 static char *array_states[] = { 4091 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", 4092 "write-pending", "active-idle", NULL }; 4093 4094 static int match_word(const char *word, char **list) 4095 { 4096 int n; 4097 for (n=0; list[n]; n++) 4098 if (cmd_match(word, list[n])) 4099 break; 4100 return n; 4101 } 4102 4103 static ssize_t 4104 array_state_show(struct mddev *mddev, char *page) 4105 { 4106 enum array_state st = inactive; 4107 4108 if (mddev->pers) 4109 switch(mddev->ro) { 4110 case 1: 4111 st = readonly; 4112 break; 4113 case 2: 4114 st = read_auto; 4115 break; 4116 case 0: 4117 spin_lock(&mddev->lock); 4118 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 4119 st = write_pending; 4120 else if (mddev->in_sync) 4121 st = clean; 4122 else if (mddev->safemode) 4123 st = active_idle; 4124 else 4125 st = active; 4126 spin_unlock(&mddev->lock); 4127 } 4128 else { 4129 if (list_empty(&mddev->disks) && 4130 mddev->raid_disks == 0 && 4131 mddev->dev_sectors == 0) 4132 st = clear; 4133 else 4134 st = inactive; 4135 } 4136 return sprintf(page, "%s\n", array_states[st]); 4137 } 4138 4139 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev); 4140 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev); 4141 static int do_md_run(struct mddev *mddev); 4142 static int restart_array(struct mddev *mddev); 4143 4144 static ssize_t 4145 array_state_store(struct mddev *mddev, const char *buf, size_t len) 4146 { 4147 int err = 0; 4148 enum array_state st = match_word(buf, array_states); 4149 4150 if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) { 4151 /* don't take reconfig_mutex when toggling between 4152 * clean and active 4153 */ 4154 spin_lock(&mddev->lock); 4155 if (st == active) { 4156 restart_array(mddev); 4157 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4158 md_wakeup_thread(mddev->thread); 4159 wake_up(&mddev->sb_wait); 4160 } else /* st == clean */ { 4161 restart_array(mddev); 4162 if (!set_in_sync(mddev)) 4163 err = -EBUSY; 4164 } 4165 if (!err) 4166 sysfs_notify_dirent_safe(mddev->sysfs_state); 4167 spin_unlock(&mddev->lock); 4168 return err ?: len; 4169 } 4170 err = mddev_lock(mddev); 4171 if (err) 4172 return err; 4173 err = -EINVAL; 4174 switch(st) { 4175 case bad_word: 4176 break; 4177 case clear: 4178 /* stopping an active array */ 4179 err = do_md_stop(mddev, 0, NULL); 4180 break; 4181 case inactive: 4182 /* stopping an active array */ 4183 if (mddev->pers) 4184 err = do_md_stop(mddev, 2, NULL); 4185 else 4186 err = 0; /* already inactive */ 4187 break; 4188 case suspended: 4189 break; /* not supported yet */ 4190 case readonly: 4191 if (mddev->pers) 4192 err = md_set_readonly(mddev, NULL); 4193 else { 4194 mddev->ro = 1; 4195 set_disk_ro(mddev->gendisk, 1); 4196 err = do_md_run(mddev); 4197 } 4198 break; 4199 case read_auto: 4200 if (mddev->pers) { 4201 if (mddev->ro == 0) 4202 err = md_set_readonly(mddev, NULL); 4203 else if (mddev->ro == 1) 4204 err = restart_array(mddev); 4205 if (err == 0) { 4206 mddev->ro = 2; 4207 set_disk_ro(mddev->gendisk, 0); 4208 } 4209 } else { 4210 mddev->ro = 2; 4211 err = do_md_run(mddev); 4212 } 4213 break; 4214 case clean: 4215 if (mddev->pers) { 4216 err = restart_array(mddev); 4217 if (err) 4218 break; 4219 spin_lock(&mddev->lock); 4220 if (!set_in_sync(mddev)) 4221 err = -EBUSY; 4222 spin_unlock(&mddev->lock); 4223 } else 4224 err = -EINVAL; 4225 break; 4226 case active: 4227 if (mddev->pers) { 4228 err = restart_array(mddev); 4229 if (err) 4230 break; 4231 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4232 wake_up(&mddev->sb_wait); 4233 err = 0; 4234 } else { 4235 mddev->ro = 0; 4236 set_disk_ro(mddev->gendisk, 0); 4237 err = do_md_run(mddev); 4238 } 4239 break; 4240 case write_pending: 4241 case active_idle: 4242 /* these cannot be set */ 4243 break; 4244 } 4245 4246 if (!err) { 4247 if (mddev->hold_active == UNTIL_IOCTL) 4248 mddev->hold_active = 0; 4249 sysfs_notify_dirent_safe(mddev->sysfs_state); 4250 } 4251 mddev_unlock(mddev); 4252 return err ?: len; 4253 } 4254 static struct md_sysfs_entry md_array_state = 4255 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); 4256 4257 static ssize_t 4258 max_corrected_read_errors_show(struct mddev *mddev, char *page) { 4259 return sprintf(page, "%d\n", 4260 atomic_read(&mddev->max_corr_read_errors)); 4261 } 4262 4263 static ssize_t 4264 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len) 4265 { 4266 unsigned int n; 4267 int rv; 4268 4269 rv = kstrtouint(buf, 10, &n); 4270 if (rv < 0) 4271 return rv; 4272 atomic_set(&mddev->max_corr_read_errors, n); 4273 return len; 4274 } 4275 4276 static struct md_sysfs_entry max_corr_read_errors = 4277 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show, 4278 max_corrected_read_errors_store); 4279 4280 static ssize_t 4281 null_show(struct mddev *mddev, char *page) 4282 { 4283 return -EINVAL; 4284 } 4285 4286 static ssize_t 4287 new_dev_store(struct mddev *mddev, const char *buf, size_t len) 4288 { 4289 /* buf must be %d:%d\n? giving major and minor numbers */ 4290 /* The new device is added to the array. 4291 * If the array has a persistent superblock, we read the 4292 * superblock to initialise info and check validity. 4293 * Otherwise, only checking done is that in bind_rdev_to_array, 4294 * which mainly checks size. 4295 */ 4296 char *e; 4297 int major = simple_strtoul(buf, &e, 10); 4298 int minor; 4299 dev_t dev; 4300 struct md_rdev *rdev; 4301 int err; 4302 4303 if (!*buf || *e != ':' || !e[1] || e[1] == '\n') 4304 return -EINVAL; 4305 minor = simple_strtoul(e+1, &e, 10); 4306 if (*e && *e != '\n') 4307 return -EINVAL; 4308 dev = MKDEV(major, minor); 4309 if (major != MAJOR(dev) || 4310 minor != MINOR(dev)) 4311 return -EOVERFLOW; 4312 4313 flush_workqueue(md_misc_wq); 4314 4315 err = mddev_lock(mddev); 4316 if (err) 4317 return err; 4318 if (mddev->persistent) { 4319 rdev = md_import_device(dev, mddev->major_version, 4320 mddev->minor_version); 4321 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { 4322 struct md_rdev *rdev0 4323 = list_entry(mddev->disks.next, 4324 struct md_rdev, same_set); 4325 err = super_types[mddev->major_version] 4326 .load_super(rdev, rdev0, mddev->minor_version); 4327 if (err < 0) 4328 goto out; 4329 } 4330 } else if (mddev->external) 4331 rdev = md_import_device(dev, -2, -1); 4332 else 4333 rdev = md_import_device(dev, -1, -1); 4334 4335 if (IS_ERR(rdev)) { 4336 mddev_unlock(mddev); 4337 return PTR_ERR(rdev); 4338 } 4339 err = bind_rdev_to_array(rdev, mddev); 4340 out: 4341 if (err) 4342 export_rdev(rdev); 4343 mddev_unlock(mddev); 4344 if (!err) 4345 md_new_event(mddev); 4346 return err ? err : len; 4347 } 4348 4349 static struct md_sysfs_entry md_new_device = 4350 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store); 4351 4352 static ssize_t 4353 bitmap_store(struct mddev *mddev, const char *buf, size_t len) 4354 { 4355 char *end; 4356 unsigned long chunk, end_chunk; 4357 int err; 4358 4359 err = mddev_lock(mddev); 4360 if (err) 4361 return err; 4362 if (!mddev->bitmap) 4363 goto out; 4364 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */ 4365 while (*buf) { 4366 chunk = end_chunk = simple_strtoul(buf, &end, 0); 4367 if (buf == end) break; 4368 if (*end == '-') { /* range */ 4369 buf = end + 1; 4370 end_chunk = simple_strtoul(buf, &end, 0); 4371 if (buf == end) break; 4372 } 4373 if (*end && !isspace(*end)) break; 4374 md_bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk); 4375 buf = skip_spaces(end); 4376 } 4377 md_bitmap_unplug(mddev->bitmap); /* flush the bits to disk */ 4378 out: 4379 mddev_unlock(mddev); 4380 return len; 4381 } 4382 4383 static struct md_sysfs_entry md_bitmap = 4384 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); 4385 4386 static ssize_t 4387 size_show(struct mddev *mddev, char *page) 4388 { 4389 return sprintf(page, "%llu\n", 4390 (unsigned long long)mddev->dev_sectors / 2); 4391 } 4392 4393 static int update_size(struct mddev *mddev, sector_t num_sectors); 4394 4395 static ssize_t 4396 size_store(struct mddev *mddev, const char *buf, size_t len) 4397 { 4398 /* If array is inactive, we can reduce the component size, but 4399 * not increase it (except from 0). 4400 * If array is active, we can try an on-line resize 4401 */ 4402 sector_t sectors; 4403 int err = strict_blocks_to_sectors(buf, §ors); 4404 4405 if (err < 0) 4406 return err; 4407 err = mddev_lock(mddev); 4408 if (err) 4409 return err; 4410 if (mddev->pers) { 4411 err = update_size(mddev, sectors); 4412 if (err == 0) 4413 md_update_sb(mddev, 1); 4414 } else { 4415 if (mddev->dev_sectors == 0 || 4416 mddev->dev_sectors > sectors) 4417 mddev->dev_sectors = sectors; 4418 else 4419 err = -ENOSPC; 4420 } 4421 mddev_unlock(mddev); 4422 return err ? err : len; 4423 } 4424 4425 static struct md_sysfs_entry md_size = 4426 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); 4427 4428 /* Metadata version. 4429 * This is one of 4430 * 'none' for arrays with no metadata (good luck...) 4431 * 'external' for arrays with externally managed metadata, 4432 * or N.M for internally known formats 4433 */ 4434 static ssize_t 4435 metadata_show(struct mddev *mddev, char *page) 4436 { 4437 if (mddev->persistent) 4438 return sprintf(page, "%d.%d\n", 4439 mddev->major_version, mddev->minor_version); 4440 else if (mddev->external) 4441 return sprintf(page, "external:%s\n", mddev->metadata_type); 4442 else 4443 return sprintf(page, "none\n"); 4444 } 4445 4446 static ssize_t 4447 metadata_store(struct mddev *mddev, const char *buf, size_t len) 4448 { 4449 int major, minor; 4450 char *e; 4451 int err; 4452 /* Changing the details of 'external' metadata is 4453 * always permitted. Otherwise there must be 4454 * no devices attached to the array. 4455 */ 4456 4457 err = mddev_lock(mddev); 4458 if (err) 4459 return err; 4460 err = -EBUSY; 4461 if (mddev->external && strncmp(buf, "external:", 9) == 0) 4462 ; 4463 else if (!list_empty(&mddev->disks)) 4464 goto out_unlock; 4465 4466 err = 0; 4467 if (cmd_match(buf, "none")) { 4468 mddev->persistent = 0; 4469 mddev->external = 0; 4470 mddev->major_version = 0; 4471 mddev->minor_version = 90; 4472 goto out_unlock; 4473 } 4474 if (strncmp(buf, "external:", 9) == 0) { 4475 size_t namelen = len-9; 4476 if (namelen >= sizeof(mddev->metadata_type)) 4477 namelen = sizeof(mddev->metadata_type)-1; 4478 strncpy(mddev->metadata_type, buf+9, namelen); 4479 mddev->metadata_type[namelen] = 0; 4480 if (namelen && mddev->metadata_type[namelen-1] == '\n') 4481 mddev->metadata_type[--namelen] = 0; 4482 mddev->persistent = 0; 4483 mddev->external = 1; 4484 mddev->major_version = 0; 4485 mddev->minor_version = 90; 4486 goto out_unlock; 4487 } 4488 major = simple_strtoul(buf, &e, 10); 4489 err = -EINVAL; 4490 if (e==buf || *e != '.') 4491 goto out_unlock; 4492 buf = e+1; 4493 minor = simple_strtoul(buf, &e, 10); 4494 if (e==buf || (*e && *e != '\n') ) 4495 goto out_unlock; 4496 err = -ENOENT; 4497 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL) 4498 goto out_unlock; 4499 mddev->major_version = major; 4500 mddev->minor_version = minor; 4501 mddev->persistent = 1; 4502 mddev->external = 0; 4503 err = 0; 4504 out_unlock: 4505 mddev_unlock(mddev); 4506 return err ?: len; 4507 } 4508 4509 static struct md_sysfs_entry md_metadata = 4510 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 4511 4512 static ssize_t 4513 action_show(struct mddev *mddev, char *page) 4514 { 4515 char *type = "idle"; 4516 unsigned long recovery = mddev->recovery; 4517 if (test_bit(MD_RECOVERY_FROZEN, &recovery)) 4518 type = "frozen"; 4519 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) || 4520 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) { 4521 if (test_bit(MD_RECOVERY_RESHAPE, &recovery)) 4522 type = "reshape"; 4523 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) { 4524 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery)) 4525 type = "resync"; 4526 else if (test_bit(MD_RECOVERY_CHECK, &recovery)) 4527 type = "check"; 4528 else 4529 type = "repair"; 4530 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery)) 4531 type = "recover"; 4532 else if (mddev->reshape_position != MaxSector) 4533 type = "reshape"; 4534 } 4535 return sprintf(page, "%s\n", type); 4536 } 4537 4538 static ssize_t 4539 action_store(struct mddev *mddev, const char *page, size_t len) 4540 { 4541 if (!mddev->pers || !mddev->pers->sync_request) 4542 return -EINVAL; 4543 4544 4545 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) { 4546 if (cmd_match(page, "frozen")) 4547 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4548 else 4549 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4550 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 4551 mddev_lock(mddev) == 0) { 4552 flush_workqueue(md_misc_wq); 4553 if (mddev->sync_thread) { 4554 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4555 md_reap_sync_thread(mddev); 4556 } 4557 mddev_unlock(mddev); 4558 } 4559 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4560 return -EBUSY; 4561 else if (cmd_match(page, "resync")) 4562 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4563 else if (cmd_match(page, "recover")) { 4564 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4565 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 4566 } else if (cmd_match(page, "reshape")) { 4567 int err; 4568 if (mddev->pers->start_reshape == NULL) 4569 return -EINVAL; 4570 err = mddev_lock(mddev); 4571 if (!err) { 4572 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4573 err = -EBUSY; 4574 else { 4575 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4576 err = mddev->pers->start_reshape(mddev); 4577 } 4578 mddev_unlock(mddev); 4579 } 4580 if (err) 4581 return err; 4582 sysfs_notify(&mddev->kobj, NULL, "degraded"); 4583 } else { 4584 if (cmd_match(page, "check")) 4585 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4586 else if (!cmd_match(page, "repair")) 4587 return -EINVAL; 4588 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4589 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 4590 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4591 } 4592 if (mddev->ro == 2) { 4593 /* A write to sync_action is enough to justify 4594 * canceling read-auto mode 4595 */ 4596 mddev->ro = 0; 4597 md_wakeup_thread(mddev->sync_thread); 4598 } 4599 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4600 md_wakeup_thread(mddev->thread); 4601 sysfs_notify_dirent_safe(mddev->sysfs_action); 4602 return len; 4603 } 4604 4605 static struct md_sysfs_entry md_scan_mode = 4606 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); 4607 4608 static ssize_t 4609 last_sync_action_show(struct mddev *mddev, char *page) 4610 { 4611 return sprintf(page, "%s\n", mddev->last_sync_action); 4612 } 4613 4614 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action); 4615 4616 static ssize_t 4617 mismatch_cnt_show(struct mddev *mddev, char *page) 4618 { 4619 return sprintf(page, "%llu\n", 4620 (unsigned long long) 4621 atomic64_read(&mddev->resync_mismatches)); 4622 } 4623 4624 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); 4625 4626 static ssize_t 4627 sync_min_show(struct mddev *mddev, char *page) 4628 { 4629 return sprintf(page, "%d (%s)\n", speed_min(mddev), 4630 mddev->sync_speed_min ? "local": "system"); 4631 } 4632 4633 static ssize_t 4634 sync_min_store(struct mddev *mddev, const char *buf, size_t len) 4635 { 4636 unsigned int min; 4637 int rv; 4638 4639 if (strncmp(buf, "system", 6)==0) { 4640 min = 0; 4641 } else { 4642 rv = kstrtouint(buf, 10, &min); 4643 if (rv < 0) 4644 return rv; 4645 if (min == 0) 4646 return -EINVAL; 4647 } 4648 mddev->sync_speed_min = min; 4649 return len; 4650 } 4651 4652 static struct md_sysfs_entry md_sync_min = 4653 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); 4654 4655 static ssize_t 4656 sync_max_show(struct mddev *mddev, char *page) 4657 { 4658 return sprintf(page, "%d (%s)\n", speed_max(mddev), 4659 mddev->sync_speed_max ? "local": "system"); 4660 } 4661 4662 static ssize_t 4663 sync_max_store(struct mddev *mddev, const char *buf, size_t len) 4664 { 4665 unsigned int max; 4666 int rv; 4667 4668 if (strncmp(buf, "system", 6)==0) { 4669 max = 0; 4670 } else { 4671 rv = kstrtouint(buf, 10, &max); 4672 if (rv < 0) 4673 return rv; 4674 if (max == 0) 4675 return -EINVAL; 4676 } 4677 mddev->sync_speed_max = max; 4678 return len; 4679 } 4680 4681 static struct md_sysfs_entry md_sync_max = 4682 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); 4683 4684 static ssize_t 4685 degraded_show(struct mddev *mddev, char *page) 4686 { 4687 return sprintf(page, "%d\n", mddev->degraded); 4688 } 4689 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded); 4690 4691 static ssize_t 4692 sync_force_parallel_show(struct mddev *mddev, char *page) 4693 { 4694 return sprintf(page, "%d\n", mddev->parallel_resync); 4695 } 4696 4697 static ssize_t 4698 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len) 4699 { 4700 long n; 4701 4702 if (kstrtol(buf, 10, &n)) 4703 return -EINVAL; 4704 4705 if (n != 0 && n != 1) 4706 return -EINVAL; 4707 4708 mddev->parallel_resync = n; 4709 4710 if (mddev->sync_thread) 4711 wake_up(&resync_wait); 4712 4713 return len; 4714 } 4715 4716 /* force parallel resync, even with shared block devices */ 4717 static struct md_sysfs_entry md_sync_force_parallel = 4718 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR, 4719 sync_force_parallel_show, sync_force_parallel_store); 4720 4721 static ssize_t 4722 sync_speed_show(struct mddev *mddev, char *page) 4723 { 4724 unsigned long resync, dt, db; 4725 if (mddev->curr_resync == 0) 4726 return sprintf(page, "none\n"); 4727 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active); 4728 dt = (jiffies - mddev->resync_mark) / HZ; 4729 if (!dt) dt++; 4730 db = resync - mddev->resync_mark_cnt; 4731 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */ 4732 } 4733 4734 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); 4735 4736 static ssize_t 4737 sync_completed_show(struct mddev *mddev, char *page) 4738 { 4739 unsigned long long max_sectors, resync; 4740 4741 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4742 return sprintf(page, "none\n"); 4743 4744 if (mddev->curr_resync == 1 || 4745 mddev->curr_resync == 2) 4746 return sprintf(page, "delayed\n"); 4747 4748 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 4749 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 4750 max_sectors = mddev->resync_max_sectors; 4751 else 4752 max_sectors = mddev->dev_sectors; 4753 4754 resync = mddev->curr_resync_completed; 4755 return sprintf(page, "%llu / %llu\n", resync, max_sectors); 4756 } 4757 4758 static struct md_sysfs_entry md_sync_completed = 4759 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL); 4760 4761 static ssize_t 4762 min_sync_show(struct mddev *mddev, char *page) 4763 { 4764 return sprintf(page, "%llu\n", 4765 (unsigned long long)mddev->resync_min); 4766 } 4767 static ssize_t 4768 min_sync_store(struct mddev *mddev, const char *buf, size_t len) 4769 { 4770 unsigned long long min; 4771 int err; 4772 4773 if (kstrtoull(buf, 10, &min)) 4774 return -EINVAL; 4775 4776 spin_lock(&mddev->lock); 4777 err = -EINVAL; 4778 if (min > mddev->resync_max) 4779 goto out_unlock; 4780 4781 err = -EBUSY; 4782 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4783 goto out_unlock; 4784 4785 /* Round down to multiple of 4K for safety */ 4786 mddev->resync_min = round_down(min, 8); 4787 err = 0; 4788 4789 out_unlock: 4790 spin_unlock(&mddev->lock); 4791 return err ?: len; 4792 } 4793 4794 static struct md_sysfs_entry md_min_sync = 4795 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store); 4796 4797 static ssize_t 4798 max_sync_show(struct mddev *mddev, char *page) 4799 { 4800 if (mddev->resync_max == MaxSector) 4801 return sprintf(page, "max\n"); 4802 else 4803 return sprintf(page, "%llu\n", 4804 (unsigned long long)mddev->resync_max); 4805 } 4806 static ssize_t 4807 max_sync_store(struct mddev *mddev, const char *buf, size_t len) 4808 { 4809 int err; 4810 spin_lock(&mddev->lock); 4811 if (strncmp(buf, "max", 3) == 0) 4812 mddev->resync_max = MaxSector; 4813 else { 4814 unsigned long long max; 4815 int chunk; 4816 4817 err = -EINVAL; 4818 if (kstrtoull(buf, 10, &max)) 4819 goto out_unlock; 4820 if (max < mddev->resync_min) 4821 goto out_unlock; 4822 4823 err = -EBUSY; 4824 if (max < mddev->resync_max && 4825 mddev->ro == 0 && 4826 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4827 goto out_unlock; 4828 4829 /* Must be a multiple of chunk_size */ 4830 chunk = mddev->chunk_sectors; 4831 if (chunk) { 4832 sector_t temp = max; 4833 4834 err = -EINVAL; 4835 if (sector_div(temp, chunk)) 4836 goto out_unlock; 4837 } 4838 mddev->resync_max = max; 4839 } 4840 wake_up(&mddev->recovery_wait); 4841 err = 0; 4842 out_unlock: 4843 spin_unlock(&mddev->lock); 4844 return err ?: len; 4845 } 4846 4847 static struct md_sysfs_entry md_max_sync = 4848 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store); 4849 4850 static ssize_t 4851 suspend_lo_show(struct mddev *mddev, char *page) 4852 { 4853 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo); 4854 } 4855 4856 static ssize_t 4857 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len) 4858 { 4859 unsigned long long new; 4860 int err; 4861 4862 err = kstrtoull(buf, 10, &new); 4863 if (err < 0) 4864 return err; 4865 if (new != (sector_t)new) 4866 return -EINVAL; 4867 4868 err = mddev_lock(mddev); 4869 if (err) 4870 return err; 4871 err = -EINVAL; 4872 if (mddev->pers == NULL || 4873 mddev->pers->quiesce == NULL) 4874 goto unlock; 4875 mddev_suspend(mddev); 4876 mddev->suspend_lo = new; 4877 mddev_resume(mddev); 4878 4879 err = 0; 4880 unlock: 4881 mddev_unlock(mddev); 4882 return err ?: len; 4883 } 4884 static struct md_sysfs_entry md_suspend_lo = 4885 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); 4886 4887 static ssize_t 4888 suspend_hi_show(struct mddev *mddev, char *page) 4889 { 4890 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi); 4891 } 4892 4893 static ssize_t 4894 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len) 4895 { 4896 unsigned long long new; 4897 int err; 4898 4899 err = kstrtoull(buf, 10, &new); 4900 if (err < 0) 4901 return err; 4902 if (new != (sector_t)new) 4903 return -EINVAL; 4904 4905 err = mddev_lock(mddev); 4906 if (err) 4907 return err; 4908 err = -EINVAL; 4909 if (mddev->pers == NULL) 4910 goto unlock; 4911 4912 mddev_suspend(mddev); 4913 mddev->suspend_hi = new; 4914 mddev_resume(mddev); 4915 4916 err = 0; 4917 unlock: 4918 mddev_unlock(mddev); 4919 return err ?: len; 4920 } 4921 static struct md_sysfs_entry md_suspend_hi = 4922 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); 4923 4924 static ssize_t 4925 reshape_position_show(struct mddev *mddev, char *page) 4926 { 4927 if (mddev->reshape_position != MaxSector) 4928 return sprintf(page, "%llu\n", 4929 (unsigned long long)mddev->reshape_position); 4930 strcpy(page, "none\n"); 4931 return 5; 4932 } 4933 4934 static ssize_t 4935 reshape_position_store(struct mddev *mddev, const char *buf, size_t len) 4936 { 4937 struct md_rdev *rdev; 4938 unsigned long long new; 4939 int err; 4940 4941 err = kstrtoull(buf, 10, &new); 4942 if (err < 0) 4943 return err; 4944 if (new != (sector_t)new) 4945 return -EINVAL; 4946 err = mddev_lock(mddev); 4947 if (err) 4948 return err; 4949 err = -EBUSY; 4950 if (mddev->pers) 4951 goto unlock; 4952 mddev->reshape_position = new; 4953 mddev->delta_disks = 0; 4954 mddev->reshape_backwards = 0; 4955 mddev->new_level = mddev->level; 4956 mddev->new_layout = mddev->layout; 4957 mddev->new_chunk_sectors = mddev->chunk_sectors; 4958 rdev_for_each(rdev, mddev) 4959 rdev->new_data_offset = rdev->data_offset; 4960 err = 0; 4961 unlock: 4962 mddev_unlock(mddev); 4963 return err ?: len; 4964 } 4965 4966 static struct md_sysfs_entry md_reshape_position = 4967 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show, 4968 reshape_position_store); 4969 4970 static ssize_t 4971 reshape_direction_show(struct mddev *mddev, char *page) 4972 { 4973 return sprintf(page, "%s\n", 4974 mddev->reshape_backwards ? "backwards" : "forwards"); 4975 } 4976 4977 static ssize_t 4978 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len) 4979 { 4980 int backwards = 0; 4981 int err; 4982 4983 if (cmd_match(buf, "forwards")) 4984 backwards = 0; 4985 else if (cmd_match(buf, "backwards")) 4986 backwards = 1; 4987 else 4988 return -EINVAL; 4989 if (mddev->reshape_backwards == backwards) 4990 return len; 4991 4992 err = mddev_lock(mddev); 4993 if (err) 4994 return err; 4995 /* check if we are allowed to change */ 4996 if (mddev->delta_disks) 4997 err = -EBUSY; 4998 else if (mddev->persistent && 4999 mddev->major_version == 0) 5000 err = -EINVAL; 5001 else 5002 mddev->reshape_backwards = backwards; 5003 mddev_unlock(mddev); 5004 return err ?: len; 5005 } 5006 5007 static struct md_sysfs_entry md_reshape_direction = 5008 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show, 5009 reshape_direction_store); 5010 5011 static ssize_t 5012 array_size_show(struct mddev *mddev, char *page) 5013 { 5014 if (mddev->external_size) 5015 return sprintf(page, "%llu\n", 5016 (unsigned long long)mddev->array_sectors/2); 5017 else 5018 return sprintf(page, "default\n"); 5019 } 5020 5021 static ssize_t 5022 array_size_store(struct mddev *mddev, const char *buf, size_t len) 5023 { 5024 sector_t sectors; 5025 int err; 5026 5027 err = mddev_lock(mddev); 5028 if (err) 5029 return err; 5030 5031 /* cluster raid doesn't support change array_sectors */ 5032 if (mddev_is_clustered(mddev)) { 5033 mddev_unlock(mddev); 5034 return -EINVAL; 5035 } 5036 5037 if (strncmp(buf, "default", 7) == 0) { 5038 if (mddev->pers) 5039 sectors = mddev->pers->size(mddev, 0, 0); 5040 else 5041 sectors = mddev->array_sectors; 5042 5043 mddev->external_size = 0; 5044 } else { 5045 if (strict_blocks_to_sectors(buf, §ors) < 0) 5046 err = -EINVAL; 5047 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors) 5048 err = -E2BIG; 5049 else 5050 mddev->external_size = 1; 5051 } 5052 5053 if (!err) { 5054 mddev->array_sectors = sectors; 5055 if (mddev->pers) { 5056 set_capacity(mddev->gendisk, mddev->array_sectors); 5057 revalidate_disk(mddev->gendisk); 5058 } 5059 } 5060 mddev_unlock(mddev); 5061 return err ?: len; 5062 } 5063 5064 static struct md_sysfs_entry md_array_size = 5065 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show, 5066 array_size_store); 5067 5068 static ssize_t 5069 consistency_policy_show(struct mddev *mddev, char *page) 5070 { 5071 int ret; 5072 5073 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { 5074 ret = sprintf(page, "journal\n"); 5075 } else if (test_bit(MD_HAS_PPL, &mddev->flags)) { 5076 ret = sprintf(page, "ppl\n"); 5077 } else if (mddev->bitmap) { 5078 ret = sprintf(page, "bitmap\n"); 5079 } else if (mddev->pers) { 5080 if (mddev->pers->sync_request) 5081 ret = sprintf(page, "resync\n"); 5082 else 5083 ret = sprintf(page, "none\n"); 5084 } else { 5085 ret = sprintf(page, "unknown\n"); 5086 } 5087 5088 return ret; 5089 } 5090 5091 static ssize_t 5092 consistency_policy_store(struct mddev *mddev, const char *buf, size_t len) 5093 { 5094 int err = 0; 5095 5096 if (mddev->pers) { 5097 if (mddev->pers->change_consistency_policy) 5098 err = mddev->pers->change_consistency_policy(mddev, buf); 5099 else 5100 err = -EBUSY; 5101 } else if (mddev->external && strncmp(buf, "ppl", 3) == 0) { 5102 set_bit(MD_HAS_PPL, &mddev->flags); 5103 } else { 5104 err = -EINVAL; 5105 } 5106 5107 return err ? err : len; 5108 } 5109 5110 static struct md_sysfs_entry md_consistency_policy = 5111 __ATTR(consistency_policy, S_IRUGO | S_IWUSR, consistency_policy_show, 5112 consistency_policy_store); 5113 5114 static struct attribute *md_default_attrs[] = { 5115 &md_level.attr, 5116 &md_layout.attr, 5117 &md_raid_disks.attr, 5118 &md_chunk_size.attr, 5119 &md_size.attr, 5120 &md_resync_start.attr, 5121 &md_metadata.attr, 5122 &md_new_device.attr, 5123 &md_safe_delay.attr, 5124 &md_array_state.attr, 5125 &md_reshape_position.attr, 5126 &md_reshape_direction.attr, 5127 &md_array_size.attr, 5128 &max_corr_read_errors.attr, 5129 &md_consistency_policy.attr, 5130 NULL, 5131 }; 5132 5133 static struct attribute *md_redundancy_attrs[] = { 5134 &md_scan_mode.attr, 5135 &md_last_scan_mode.attr, 5136 &md_mismatches.attr, 5137 &md_sync_min.attr, 5138 &md_sync_max.attr, 5139 &md_sync_speed.attr, 5140 &md_sync_force_parallel.attr, 5141 &md_sync_completed.attr, 5142 &md_min_sync.attr, 5143 &md_max_sync.attr, 5144 &md_suspend_lo.attr, 5145 &md_suspend_hi.attr, 5146 &md_bitmap.attr, 5147 &md_degraded.attr, 5148 NULL, 5149 }; 5150 static struct attribute_group md_redundancy_group = { 5151 .name = NULL, 5152 .attrs = md_redundancy_attrs, 5153 }; 5154 5155 static ssize_t 5156 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 5157 { 5158 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5159 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5160 ssize_t rv; 5161 5162 if (!entry->show) 5163 return -EIO; 5164 spin_lock(&all_mddevs_lock); 5165 if (list_empty(&mddev->all_mddevs)) { 5166 spin_unlock(&all_mddevs_lock); 5167 return -EBUSY; 5168 } 5169 mddev_get(mddev); 5170 spin_unlock(&all_mddevs_lock); 5171 5172 rv = entry->show(mddev, page); 5173 mddev_put(mddev); 5174 return rv; 5175 } 5176 5177 static ssize_t 5178 md_attr_store(struct kobject *kobj, struct attribute *attr, 5179 const char *page, size_t length) 5180 { 5181 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5182 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5183 ssize_t rv; 5184 5185 if (!entry->store) 5186 return -EIO; 5187 if (!capable(CAP_SYS_ADMIN)) 5188 return -EACCES; 5189 spin_lock(&all_mddevs_lock); 5190 if (list_empty(&mddev->all_mddevs)) { 5191 spin_unlock(&all_mddevs_lock); 5192 return -EBUSY; 5193 } 5194 mddev_get(mddev); 5195 spin_unlock(&all_mddevs_lock); 5196 rv = entry->store(mddev, page, length); 5197 mddev_put(mddev); 5198 return rv; 5199 } 5200 5201 static void md_free(struct kobject *ko) 5202 { 5203 struct mddev *mddev = container_of(ko, struct mddev, kobj); 5204 5205 if (mddev->sysfs_state) 5206 sysfs_put(mddev->sysfs_state); 5207 5208 if (mddev->gendisk) 5209 del_gendisk(mddev->gendisk); 5210 if (mddev->queue) 5211 blk_cleanup_queue(mddev->queue); 5212 if (mddev->gendisk) 5213 put_disk(mddev->gendisk); 5214 percpu_ref_exit(&mddev->writes_pending); 5215 5216 bioset_exit(&mddev->bio_set); 5217 bioset_exit(&mddev->sync_set); 5218 kfree(mddev); 5219 } 5220 5221 static const struct sysfs_ops md_sysfs_ops = { 5222 .show = md_attr_show, 5223 .store = md_attr_store, 5224 }; 5225 static struct kobj_type md_ktype = { 5226 .release = md_free, 5227 .sysfs_ops = &md_sysfs_ops, 5228 .default_attrs = md_default_attrs, 5229 }; 5230 5231 int mdp_major = 0; 5232 5233 static void mddev_delayed_delete(struct work_struct *ws) 5234 { 5235 struct mddev *mddev = container_of(ws, struct mddev, del_work); 5236 5237 sysfs_remove_group(&mddev->kobj, &md_bitmap_group); 5238 kobject_del(&mddev->kobj); 5239 kobject_put(&mddev->kobj); 5240 } 5241 5242 static void no_op(struct percpu_ref *r) {} 5243 5244 int mddev_init_writes_pending(struct mddev *mddev) 5245 { 5246 if (mddev->writes_pending.percpu_count_ptr) 5247 return 0; 5248 if (percpu_ref_init(&mddev->writes_pending, no_op, 0, GFP_KERNEL) < 0) 5249 return -ENOMEM; 5250 /* We want to start with the refcount at zero */ 5251 percpu_ref_put(&mddev->writes_pending); 5252 return 0; 5253 } 5254 EXPORT_SYMBOL_GPL(mddev_init_writes_pending); 5255 5256 static int md_alloc(dev_t dev, char *name) 5257 { 5258 /* 5259 * If dev is zero, name is the name of a device to allocate with 5260 * an arbitrary minor number. It will be "md_???" 5261 * If dev is non-zero it must be a device number with a MAJOR of 5262 * MD_MAJOR or mdp_major. In this case, if "name" is NULL, then 5263 * the device is being created by opening a node in /dev. 5264 * If "name" is not NULL, the device is being created by 5265 * writing to /sys/module/md_mod/parameters/new_array. 5266 */ 5267 static DEFINE_MUTEX(disks_mutex); 5268 struct mddev *mddev = mddev_find(dev); 5269 struct gendisk *disk; 5270 int partitioned; 5271 int shift; 5272 int unit; 5273 int error; 5274 5275 if (!mddev) 5276 return -ENODEV; 5277 5278 partitioned = (MAJOR(mddev->unit) != MD_MAJOR); 5279 shift = partitioned ? MdpMinorShift : 0; 5280 unit = MINOR(mddev->unit) >> shift; 5281 5282 /* wait for any previous instance of this device to be 5283 * completely removed (mddev_delayed_delete). 5284 */ 5285 flush_workqueue(md_misc_wq); 5286 5287 mutex_lock(&disks_mutex); 5288 error = -EEXIST; 5289 if (mddev->gendisk) 5290 goto abort; 5291 5292 if (name && !dev) { 5293 /* Need to ensure that 'name' is not a duplicate. 5294 */ 5295 struct mddev *mddev2; 5296 spin_lock(&all_mddevs_lock); 5297 5298 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) 5299 if (mddev2->gendisk && 5300 strcmp(mddev2->gendisk->disk_name, name) == 0) { 5301 spin_unlock(&all_mddevs_lock); 5302 goto abort; 5303 } 5304 spin_unlock(&all_mddevs_lock); 5305 } 5306 if (name && dev) 5307 /* 5308 * Creating /dev/mdNNN via "newarray", so adjust hold_active. 5309 */ 5310 mddev->hold_active = UNTIL_STOP; 5311 5312 error = -ENOMEM; 5313 mddev->queue = blk_alloc_queue(GFP_KERNEL); 5314 if (!mddev->queue) 5315 goto abort; 5316 mddev->queue->queuedata = mddev; 5317 5318 blk_queue_make_request(mddev->queue, md_make_request); 5319 blk_set_stacking_limits(&mddev->queue->limits); 5320 5321 disk = alloc_disk(1 << shift); 5322 if (!disk) { 5323 blk_cleanup_queue(mddev->queue); 5324 mddev->queue = NULL; 5325 goto abort; 5326 } 5327 disk->major = MAJOR(mddev->unit); 5328 disk->first_minor = unit << shift; 5329 if (name) 5330 strcpy(disk->disk_name, name); 5331 else if (partitioned) 5332 sprintf(disk->disk_name, "md_d%d", unit); 5333 else 5334 sprintf(disk->disk_name, "md%d", unit); 5335 disk->fops = &md_fops; 5336 disk->private_data = mddev; 5337 disk->queue = mddev->queue; 5338 blk_queue_write_cache(mddev->queue, true, true); 5339 /* Allow extended partitions. This makes the 5340 * 'mdp' device redundant, but we can't really 5341 * remove it now. 5342 */ 5343 disk->flags |= GENHD_FL_EXT_DEVT; 5344 mddev->gendisk = disk; 5345 /* As soon as we call add_disk(), another thread could get 5346 * through to md_open, so make sure it doesn't get too far 5347 */ 5348 mutex_lock(&mddev->open_mutex); 5349 add_disk(disk); 5350 5351 error = kobject_add(&mddev->kobj, &disk_to_dev(disk)->kobj, "%s", "md"); 5352 if (error) { 5353 /* This isn't possible, but as kobject_init_and_add is marked 5354 * __must_check, we must do something with the result 5355 */ 5356 pr_debug("md: cannot register %s/md - name in use\n", 5357 disk->disk_name); 5358 error = 0; 5359 } 5360 if (mddev->kobj.sd && 5361 sysfs_create_group(&mddev->kobj, &md_bitmap_group)) 5362 pr_debug("pointless warning\n"); 5363 mutex_unlock(&mddev->open_mutex); 5364 abort: 5365 mutex_unlock(&disks_mutex); 5366 if (!error && mddev->kobj.sd) { 5367 kobject_uevent(&mddev->kobj, KOBJ_ADD); 5368 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state"); 5369 } 5370 mddev_put(mddev); 5371 return error; 5372 } 5373 5374 static struct kobject *md_probe(dev_t dev, int *part, void *data) 5375 { 5376 if (create_on_open) 5377 md_alloc(dev, NULL); 5378 return NULL; 5379 } 5380 5381 static int add_named_array(const char *val, const struct kernel_param *kp) 5382 { 5383 /* 5384 * val must be "md_*" or "mdNNN". 5385 * For "md_*" we allocate an array with a large free minor number, and 5386 * set the name to val. val must not already be an active name. 5387 * For "mdNNN" we allocate an array with the minor number NNN 5388 * which must not already be in use. 5389 */ 5390 int len = strlen(val); 5391 char buf[DISK_NAME_LEN]; 5392 unsigned long devnum; 5393 5394 while (len && val[len-1] == '\n') 5395 len--; 5396 if (len >= DISK_NAME_LEN) 5397 return -E2BIG; 5398 strlcpy(buf, val, len+1); 5399 if (strncmp(buf, "md_", 3) == 0) 5400 return md_alloc(0, buf); 5401 if (strncmp(buf, "md", 2) == 0 && 5402 isdigit(buf[2]) && 5403 kstrtoul(buf+2, 10, &devnum) == 0 && 5404 devnum <= MINORMASK) 5405 return md_alloc(MKDEV(MD_MAJOR, devnum), NULL); 5406 5407 return -EINVAL; 5408 } 5409 5410 static void md_safemode_timeout(struct timer_list *t) 5411 { 5412 struct mddev *mddev = from_timer(mddev, t, safemode_timer); 5413 5414 mddev->safemode = 1; 5415 if (mddev->external) 5416 sysfs_notify_dirent_safe(mddev->sysfs_state); 5417 5418 md_wakeup_thread(mddev->thread); 5419 } 5420 5421 static int start_dirty_degraded; 5422 5423 int md_run(struct mddev *mddev) 5424 { 5425 int err; 5426 struct md_rdev *rdev; 5427 struct md_personality *pers; 5428 5429 if (list_empty(&mddev->disks)) 5430 /* cannot run an array with no devices.. */ 5431 return -EINVAL; 5432 5433 if (mddev->pers) 5434 return -EBUSY; 5435 /* Cannot run until previous stop completes properly */ 5436 if (mddev->sysfs_active) 5437 return -EBUSY; 5438 5439 /* 5440 * Analyze all RAID superblock(s) 5441 */ 5442 if (!mddev->raid_disks) { 5443 if (!mddev->persistent) 5444 return -EINVAL; 5445 analyze_sbs(mddev); 5446 } 5447 5448 if (mddev->level != LEVEL_NONE) 5449 request_module("md-level-%d", mddev->level); 5450 else if (mddev->clevel[0]) 5451 request_module("md-%s", mddev->clevel); 5452 5453 /* 5454 * Drop all container device buffers, from now on 5455 * the only valid external interface is through the md 5456 * device. 5457 */ 5458 mddev->has_superblocks = false; 5459 rdev_for_each(rdev, mddev) { 5460 if (test_bit(Faulty, &rdev->flags)) 5461 continue; 5462 sync_blockdev(rdev->bdev); 5463 invalidate_bdev(rdev->bdev); 5464 if (mddev->ro != 1 && 5465 (bdev_read_only(rdev->bdev) || 5466 bdev_read_only(rdev->meta_bdev))) { 5467 mddev->ro = 1; 5468 if (mddev->gendisk) 5469 set_disk_ro(mddev->gendisk, 1); 5470 } 5471 5472 if (rdev->sb_page) 5473 mddev->has_superblocks = true; 5474 5475 /* perform some consistency tests on the device. 5476 * We don't want the data to overlap the metadata, 5477 * Internal Bitmap issues have been handled elsewhere. 5478 */ 5479 if (rdev->meta_bdev) { 5480 /* Nothing to check */; 5481 } else if (rdev->data_offset < rdev->sb_start) { 5482 if (mddev->dev_sectors && 5483 rdev->data_offset + mddev->dev_sectors 5484 > rdev->sb_start) { 5485 pr_warn("md: %s: data overlaps metadata\n", 5486 mdname(mddev)); 5487 return -EINVAL; 5488 } 5489 } else { 5490 if (rdev->sb_start + rdev->sb_size/512 5491 > rdev->data_offset) { 5492 pr_warn("md: %s: metadata overlaps data\n", 5493 mdname(mddev)); 5494 return -EINVAL; 5495 } 5496 } 5497 sysfs_notify_dirent_safe(rdev->sysfs_state); 5498 } 5499 5500 if (!bioset_initialized(&mddev->bio_set)) { 5501 err = bioset_init(&mddev->bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5502 if (err) 5503 return err; 5504 } 5505 if (!bioset_initialized(&mddev->sync_set)) { 5506 err = bioset_init(&mddev->sync_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5507 if (err) 5508 return err; 5509 } 5510 5511 spin_lock(&pers_lock); 5512 pers = find_pers(mddev->level, mddev->clevel); 5513 if (!pers || !try_module_get(pers->owner)) { 5514 spin_unlock(&pers_lock); 5515 if (mddev->level != LEVEL_NONE) 5516 pr_warn("md: personality for level %d is not loaded!\n", 5517 mddev->level); 5518 else 5519 pr_warn("md: personality for level %s is not loaded!\n", 5520 mddev->clevel); 5521 err = -EINVAL; 5522 goto abort; 5523 } 5524 spin_unlock(&pers_lock); 5525 if (mddev->level != pers->level) { 5526 mddev->level = pers->level; 5527 mddev->new_level = pers->level; 5528 } 5529 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 5530 5531 if (mddev->reshape_position != MaxSector && 5532 pers->start_reshape == NULL) { 5533 /* This personality cannot handle reshaping... */ 5534 module_put(pers->owner); 5535 err = -EINVAL; 5536 goto abort; 5537 } 5538 5539 if (pers->sync_request) { 5540 /* Warn if this is a potentially silly 5541 * configuration. 5542 */ 5543 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 5544 struct md_rdev *rdev2; 5545 int warned = 0; 5546 5547 rdev_for_each(rdev, mddev) 5548 rdev_for_each(rdev2, mddev) { 5549 if (rdev < rdev2 && 5550 rdev->bdev->bd_contains == 5551 rdev2->bdev->bd_contains) { 5552 pr_warn("%s: WARNING: %s appears to be on the same physical disk as %s.\n", 5553 mdname(mddev), 5554 bdevname(rdev->bdev,b), 5555 bdevname(rdev2->bdev,b2)); 5556 warned = 1; 5557 } 5558 } 5559 5560 if (warned) 5561 pr_warn("True protection against single-disk failure might be compromised.\n"); 5562 } 5563 5564 mddev->recovery = 0; 5565 /* may be over-ridden by personality */ 5566 mddev->resync_max_sectors = mddev->dev_sectors; 5567 5568 mddev->ok_start_degraded = start_dirty_degraded; 5569 5570 if (start_readonly && mddev->ro == 0) 5571 mddev->ro = 2; /* read-only, but switch on first write */ 5572 5573 err = pers->run(mddev); 5574 if (err) 5575 pr_warn("md: pers->run() failed ...\n"); 5576 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) { 5577 WARN_ONCE(!mddev->external_size, 5578 "%s: default size too small, but 'external_size' not in effect?\n", 5579 __func__); 5580 pr_warn("md: invalid array_size %llu > default size %llu\n", 5581 (unsigned long long)mddev->array_sectors / 2, 5582 (unsigned long long)pers->size(mddev, 0, 0) / 2); 5583 err = -EINVAL; 5584 } 5585 if (err == 0 && pers->sync_request && 5586 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) { 5587 struct bitmap *bitmap; 5588 5589 bitmap = md_bitmap_create(mddev, -1); 5590 if (IS_ERR(bitmap)) { 5591 err = PTR_ERR(bitmap); 5592 pr_warn("%s: failed to create bitmap (%d)\n", 5593 mdname(mddev), err); 5594 } else 5595 mddev->bitmap = bitmap; 5596 5597 } 5598 if (err) { 5599 mddev_detach(mddev); 5600 if (mddev->private) 5601 pers->free(mddev, mddev->private); 5602 mddev->private = NULL; 5603 module_put(pers->owner); 5604 md_bitmap_destroy(mddev); 5605 goto abort; 5606 } 5607 if (mddev->queue) { 5608 bool nonrot = true; 5609 5610 rdev_for_each(rdev, mddev) { 5611 if (rdev->raid_disk >= 0 && 5612 !blk_queue_nonrot(bdev_get_queue(rdev->bdev))) { 5613 nonrot = false; 5614 break; 5615 } 5616 } 5617 if (mddev->degraded) 5618 nonrot = false; 5619 if (nonrot) 5620 blk_queue_flag_set(QUEUE_FLAG_NONROT, mddev->queue); 5621 else 5622 blk_queue_flag_clear(QUEUE_FLAG_NONROT, mddev->queue); 5623 mddev->queue->backing_dev_info->congested_data = mddev; 5624 mddev->queue->backing_dev_info->congested_fn = md_congested; 5625 } 5626 if (pers->sync_request) { 5627 if (mddev->kobj.sd && 5628 sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 5629 pr_warn("md: cannot register extra attributes for %s\n", 5630 mdname(mddev)); 5631 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action"); 5632 } else if (mddev->ro == 2) /* auto-readonly not meaningful */ 5633 mddev->ro = 0; 5634 5635 atomic_set(&mddev->max_corr_read_errors, 5636 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS); 5637 mddev->safemode = 0; 5638 if (mddev_is_clustered(mddev)) 5639 mddev->safemode_delay = 0; 5640 else 5641 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */ 5642 mddev->in_sync = 1; 5643 smp_wmb(); 5644 spin_lock(&mddev->lock); 5645 mddev->pers = pers; 5646 spin_unlock(&mddev->lock); 5647 rdev_for_each(rdev, mddev) 5648 if (rdev->raid_disk >= 0) 5649 if (sysfs_link_rdev(mddev, rdev)) 5650 /* failure here is OK */; 5651 5652 if (mddev->degraded && !mddev->ro) 5653 /* This ensures that recovering status is reported immediately 5654 * via sysfs - until a lack of spares is confirmed. 5655 */ 5656 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 5657 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5658 5659 if (mddev->sb_flags) 5660 md_update_sb(mddev, 0); 5661 5662 md_new_event(mddev); 5663 sysfs_notify_dirent_safe(mddev->sysfs_state); 5664 sysfs_notify_dirent_safe(mddev->sysfs_action); 5665 sysfs_notify(&mddev->kobj, NULL, "degraded"); 5666 return 0; 5667 5668 abort: 5669 bioset_exit(&mddev->bio_set); 5670 bioset_exit(&mddev->sync_set); 5671 return err; 5672 } 5673 EXPORT_SYMBOL_GPL(md_run); 5674 5675 static int do_md_run(struct mddev *mddev) 5676 { 5677 int err; 5678 5679 err = md_run(mddev); 5680 if (err) 5681 goto out; 5682 err = md_bitmap_load(mddev); 5683 if (err) { 5684 md_bitmap_destroy(mddev); 5685 goto out; 5686 } 5687 5688 if (mddev_is_clustered(mddev)) 5689 md_allow_write(mddev); 5690 5691 /* run start up tasks that require md_thread */ 5692 md_start(mddev); 5693 5694 md_wakeup_thread(mddev->thread); 5695 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 5696 5697 set_capacity(mddev->gendisk, mddev->array_sectors); 5698 revalidate_disk(mddev->gendisk); 5699 mddev->changed = 1; 5700 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 5701 out: 5702 return err; 5703 } 5704 5705 int md_start(struct mddev *mddev) 5706 { 5707 int ret = 0; 5708 5709 if (mddev->pers->start) { 5710 set_bit(MD_RECOVERY_WAIT, &mddev->recovery); 5711 md_wakeup_thread(mddev->thread); 5712 ret = mddev->pers->start(mddev); 5713 clear_bit(MD_RECOVERY_WAIT, &mddev->recovery); 5714 md_wakeup_thread(mddev->sync_thread); 5715 } 5716 return ret; 5717 } 5718 EXPORT_SYMBOL_GPL(md_start); 5719 5720 static int restart_array(struct mddev *mddev) 5721 { 5722 struct gendisk *disk = mddev->gendisk; 5723 struct md_rdev *rdev; 5724 bool has_journal = false; 5725 bool has_readonly = false; 5726 5727 /* Complain if it has no devices */ 5728 if (list_empty(&mddev->disks)) 5729 return -ENXIO; 5730 if (!mddev->pers) 5731 return -EINVAL; 5732 if (!mddev->ro) 5733 return -EBUSY; 5734 5735 rcu_read_lock(); 5736 rdev_for_each_rcu(rdev, mddev) { 5737 if (test_bit(Journal, &rdev->flags) && 5738 !test_bit(Faulty, &rdev->flags)) 5739 has_journal = true; 5740 if (bdev_read_only(rdev->bdev)) 5741 has_readonly = true; 5742 } 5743 rcu_read_unlock(); 5744 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !has_journal) 5745 /* Don't restart rw with journal missing/faulty */ 5746 return -EINVAL; 5747 if (has_readonly) 5748 return -EROFS; 5749 5750 mddev->safemode = 0; 5751 mddev->ro = 0; 5752 set_disk_ro(disk, 0); 5753 pr_debug("md: %s switched to read-write mode.\n", mdname(mddev)); 5754 /* Kick recovery or resync if necessary */ 5755 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5756 md_wakeup_thread(mddev->thread); 5757 md_wakeup_thread(mddev->sync_thread); 5758 sysfs_notify_dirent_safe(mddev->sysfs_state); 5759 return 0; 5760 } 5761 5762 static void md_clean(struct mddev *mddev) 5763 { 5764 mddev->array_sectors = 0; 5765 mddev->external_size = 0; 5766 mddev->dev_sectors = 0; 5767 mddev->raid_disks = 0; 5768 mddev->recovery_cp = 0; 5769 mddev->resync_min = 0; 5770 mddev->resync_max = MaxSector; 5771 mddev->reshape_position = MaxSector; 5772 mddev->external = 0; 5773 mddev->persistent = 0; 5774 mddev->level = LEVEL_NONE; 5775 mddev->clevel[0] = 0; 5776 mddev->flags = 0; 5777 mddev->sb_flags = 0; 5778 mddev->ro = 0; 5779 mddev->metadata_type[0] = 0; 5780 mddev->chunk_sectors = 0; 5781 mddev->ctime = mddev->utime = 0; 5782 mddev->layout = 0; 5783 mddev->max_disks = 0; 5784 mddev->events = 0; 5785 mddev->can_decrease_events = 0; 5786 mddev->delta_disks = 0; 5787 mddev->reshape_backwards = 0; 5788 mddev->new_level = LEVEL_NONE; 5789 mddev->new_layout = 0; 5790 mddev->new_chunk_sectors = 0; 5791 mddev->curr_resync = 0; 5792 atomic64_set(&mddev->resync_mismatches, 0); 5793 mddev->suspend_lo = mddev->suspend_hi = 0; 5794 mddev->sync_speed_min = mddev->sync_speed_max = 0; 5795 mddev->recovery = 0; 5796 mddev->in_sync = 0; 5797 mddev->changed = 0; 5798 mddev->degraded = 0; 5799 mddev->safemode = 0; 5800 mddev->private = NULL; 5801 mddev->cluster_info = NULL; 5802 mddev->bitmap_info.offset = 0; 5803 mddev->bitmap_info.default_offset = 0; 5804 mddev->bitmap_info.default_space = 0; 5805 mddev->bitmap_info.chunksize = 0; 5806 mddev->bitmap_info.daemon_sleep = 0; 5807 mddev->bitmap_info.max_write_behind = 0; 5808 mddev->bitmap_info.nodes = 0; 5809 } 5810 5811 static void __md_stop_writes(struct mddev *mddev) 5812 { 5813 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5814 flush_workqueue(md_misc_wq); 5815 if (mddev->sync_thread) { 5816 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5817 md_reap_sync_thread(mddev); 5818 } 5819 5820 del_timer_sync(&mddev->safemode_timer); 5821 5822 if (mddev->pers && mddev->pers->quiesce) { 5823 mddev->pers->quiesce(mddev, 1); 5824 mddev->pers->quiesce(mddev, 0); 5825 } 5826 md_bitmap_flush(mddev); 5827 5828 if (mddev->ro == 0 && 5829 ((!mddev->in_sync && !mddev_is_clustered(mddev)) || 5830 mddev->sb_flags)) { 5831 /* mark array as shutdown cleanly */ 5832 if (!mddev_is_clustered(mddev)) 5833 mddev->in_sync = 1; 5834 md_update_sb(mddev, 1); 5835 } 5836 } 5837 5838 void md_stop_writes(struct mddev *mddev) 5839 { 5840 mddev_lock_nointr(mddev); 5841 __md_stop_writes(mddev); 5842 mddev_unlock(mddev); 5843 } 5844 EXPORT_SYMBOL_GPL(md_stop_writes); 5845 5846 static void mddev_detach(struct mddev *mddev) 5847 { 5848 md_bitmap_wait_behind_writes(mddev); 5849 if (mddev->pers && mddev->pers->quiesce) { 5850 mddev->pers->quiesce(mddev, 1); 5851 mddev->pers->quiesce(mddev, 0); 5852 } 5853 md_unregister_thread(&mddev->thread); 5854 if (mddev->queue) 5855 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 5856 } 5857 5858 static void __md_stop(struct mddev *mddev) 5859 { 5860 struct md_personality *pers = mddev->pers; 5861 md_bitmap_destroy(mddev); 5862 mddev_detach(mddev); 5863 /* Ensure ->event_work is done */ 5864 flush_workqueue(md_misc_wq); 5865 spin_lock(&mddev->lock); 5866 mddev->pers = NULL; 5867 spin_unlock(&mddev->lock); 5868 pers->free(mddev, mddev->private); 5869 mddev->private = NULL; 5870 if (pers->sync_request && mddev->to_remove == NULL) 5871 mddev->to_remove = &md_redundancy_group; 5872 module_put(pers->owner); 5873 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5874 } 5875 5876 void md_stop(struct mddev *mddev) 5877 { 5878 /* stop the array and free an attached data structures. 5879 * This is called from dm-raid 5880 */ 5881 __md_stop(mddev); 5882 bioset_exit(&mddev->bio_set); 5883 bioset_exit(&mddev->sync_set); 5884 } 5885 5886 EXPORT_SYMBOL_GPL(md_stop); 5887 5888 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev) 5889 { 5890 int err = 0; 5891 int did_freeze = 0; 5892 5893 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 5894 did_freeze = 1; 5895 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5896 md_wakeup_thread(mddev->thread); 5897 } 5898 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5899 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5900 if (mddev->sync_thread) 5901 /* Thread might be blocked waiting for metadata update 5902 * which will now never happen */ 5903 wake_up_process(mddev->sync_thread->tsk); 5904 5905 if (mddev->external && test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 5906 return -EBUSY; 5907 mddev_unlock(mddev); 5908 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING, 5909 &mddev->recovery)); 5910 wait_event(mddev->sb_wait, 5911 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 5912 mddev_lock_nointr(mddev); 5913 5914 mutex_lock(&mddev->open_mutex); 5915 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 5916 mddev->sync_thread || 5917 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 5918 pr_warn("md: %s still in use.\n",mdname(mddev)); 5919 if (did_freeze) { 5920 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5921 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5922 md_wakeup_thread(mddev->thread); 5923 } 5924 err = -EBUSY; 5925 goto out; 5926 } 5927 if (mddev->pers) { 5928 __md_stop_writes(mddev); 5929 5930 err = -ENXIO; 5931 if (mddev->ro==1) 5932 goto out; 5933 mddev->ro = 1; 5934 set_disk_ro(mddev->gendisk, 1); 5935 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5936 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5937 md_wakeup_thread(mddev->thread); 5938 sysfs_notify_dirent_safe(mddev->sysfs_state); 5939 err = 0; 5940 } 5941 out: 5942 mutex_unlock(&mddev->open_mutex); 5943 return err; 5944 } 5945 5946 /* mode: 5947 * 0 - completely stop and dis-assemble array 5948 * 2 - stop but do not disassemble array 5949 */ 5950 static int do_md_stop(struct mddev *mddev, int mode, 5951 struct block_device *bdev) 5952 { 5953 struct gendisk *disk = mddev->gendisk; 5954 struct md_rdev *rdev; 5955 int did_freeze = 0; 5956 5957 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 5958 did_freeze = 1; 5959 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5960 md_wakeup_thread(mddev->thread); 5961 } 5962 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5963 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5964 if (mddev->sync_thread) 5965 /* Thread might be blocked waiting for metadata update 5966 * which will now never happen */ 5967 wake_up_process(mddev->sync_thread->tsk); 5968 5969 mddev_unlock(mddev); 5970 wait_event(resync_wait, (mddev->sync_thread == NULL && 5971 !test_bit(MD_RECOVERY_RUNNING, 5972 &mddev->recovery))); 5973 mddev_lock_nointr(mddev); 5974 5975 mutex_lock(&mddev->open_mutex); 5976 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 5977 mddev->sysfs_active || 5978 mddev->sync_thread || 5979 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 5980 pr_warn("md: %s still in use.\n",mdname(mddev)); 5981 mutex_unlock(&mddev->open_mutex); 5982 if (did_freeze) { 5983 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5984 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5985 md_wakeup_thread(mddev->thread); 5986 } 5987 return -EBUSY; 5988 } 5989 if (mddev->pers) { 5990 if (mddev->ro) 5991 set_disk_ro(disk, 0); 5992 5993 __md_stop_writes(mddev); 5994 __md_stop(mddev); 5995 mddev->queue->backing_dev_info->congested_fn = NULL; 5996 5997 /* tell userspace to handle 'inactive' */ 5998 sysfs_notify_dirent_safe(mddev->sysfs_state); 5999 6000 rdev_for_each(rdev, mddev) 6001 if (rdev->raid_disk >= 0) 6002 sysfs_unlink_rdev(mddev, rdev); 6003 6004 set_capacity(disk, 0); 6005 mutex_unlock(&mddev->open_mutex); 6006 mddev->changed = 1; 6007 revalidate_disk(disk); 6008 6009 if (mddev->ro) 6010 mddev->ro = 0; 6011 } else 6012 mutex_unlock(&mddev->open_mutex); 6013 /* 6014 * Free resources if final stop 6015 */ 6016 if (mode == 0) { 6017 pr_info("md: %s stopped.\n", mdname(mddev)); 6018 6019 if (mddev->bitmap_info.file) { 6020 struct file *f = mddev->bitmap_info.file; 6021 spin_lock(&mddev->lock); 6022 mddev->bitmap_info.file = NULL; 6023 spin_unlock(&mddev->lock); 6024 fput(f); 6025 } 6026 mddev->bitmap_info.offset = 0; 6027 6028 export_array(mddev); 6029 6030 md_clean(mddev); 6031 if (mddev->hold_active == UNTIL_STOP) 6032 mddev->hold_active = 0; 6033 } 6034 md_new_event(mddev); 6035 sysfs_notify_dirent_safe(mddev->sysfs_state); 6036 return 0; 6037 } 6038 6039 #ifndef MODULE 6040 static void autorun_array(struct mddev *mddev) 6041 { 6042 struct md_rdev *rdev; 6043 int err; 6044 6045 if (list_empty(&mddev->disks)) 6046 return; 6047 6048 pr_info("md: running: "); 6049 6050 rdev_for_each(rdev, mddev) { 6051 char b[BDEVNAME_SIZE]; 6052 pr_cont("<%s>", bdevname(rdev->bdev,b)); 6053 } 6054 pr_cont("\n"); 6055 6056 err = do_md_run(mddev); 6057 if (err) { 6058 pr_warn("md: do_md_run() returned %d\n", err); 6059 do_md_stop(mddev, 0, NULL); 6060 } 6061 } 6062 6063 /* 6064 * lets try to run arrays based on all disks that have arrived 6065 * until now. (those are in pending_raid_disks) 6066 * 6067 * the method: pick the first pending disk, collect all disks with 6068 * the same UUID, remove all from the pending list and put them into 6069 * the 'same_array' list. Then order this list based on superblock 6070 * update time (freshest comes first), kick out 'old' disks and 6071 * compare superblocks. If everything's fine then run it. 6072 * 6073 * If "unit" is allocated, then bump its reference count 6074 */ 6075 static void autorun_devices(int part) 6076 { 6077 struct md_rdev *rdev0, *rdev, *tmp; 6078 struct mddev *mddev; 6079 char b[BDEVNAME_SIZE]; 6080 6081 pr_info("md: autorun ...\n"); 6082 while (!list_empty(&pending_raid_disks)) { 6083 int unit; 6084 dev_t dev; 6085 LIST_HEAD(candidates); 6086 rdev0 = list_entry(pending_raid_disks.next, 6087 struct md_rdev, same_set); 6088 6089 pr_debug("md: considering %s ...\n", bdevname(rdev0->bdev,b)); 6090 INIT_LIST_HEAD(&candidates); 6091 rdev_for_each_list(rdev, tmp, &pending_raid_disks) 6092 if (super_90_load(rdev, rdev0, 0) >= 0) { 6093 pr_debug("md: adding %s ...\n", 6094 bdevname(rdev->bdev,b)); 6095 list_move(&rdev->same_set, &candidates); 6096 } 6097 /* 6098 * now we have a set of devices, with all of them having 6099 * mostly sane superblocks. It's time to allocate the 6100 * mddev. 6101 */ 6102 if (part) { 6103 dev = MKDEV(mdp_major, 6104 rdev0->preferred_minor << MdpMinorShift); 6105 unit = MINOR(dev) >> MdpMinorShift; 6106 } else { 6107 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); 6108 unit = MINOR(dev); 6109 } 6110 if (rdev0->preferred_minor != unit) { 6111 pr_warn("md: unit number in %s is bad: %d\n", 6112 bdevname(rdev0->bdev, b), rdev0->preferred_minor); 6113 break; 6114 } 6115 6116 md_probe(dev, NULL, NULL); 6117 mddev = mddev_find(dev); 6118 if (!mddev || !mddev->gendisk) { 6119 if (mddev) 6120 mddev_put(mddev); 6121 break; 6122 } 6123 if (mddev_lock(mddev)) 6124 pr_warn("md: %s locked, cannot run\n", mdname(mddev)); 6125 else if (mddev->raid_disks || mddev->major_version 6126 || !list_empty(&mddev->disks)) { 6127 pr_warn("md: %s already running, cannot run %s\n", 6128 mdname(mddev), bdevname(rdev0->bdev,b)); 6129 mddev_unlock(mddev); 6130 } else { 6131 pr_debug("md: created %s\n", mdname(mddev)); 6132 mddev->persistent = 1; 6133 rdev_for_each_list(rdev, tmp, &candidates) { 6134 list_del_init(&rdev->same_set); 6135 if (bind_rdev_to_array(rdev, mddev)) 6136 export_rdev(rdev); 6137 } 6138 autorun_array(mddev); 6139 mddev_unlock(mddev); 6140 } 6141 /* on success, candidates will be empty, on error 6142 * it won't... 6143 */ 6144 rdev_for_each_list(rdev, tmp, &candidates) { 6145 list_del_init(&rdev->same_set); 6146 export_rdev(rdev); 6147 } 6148 mddev_put(mddev); 6149 } 6150 pr_info("md: ... autorun DONE.\n"); 6151 } 6152 #endif /* !MODULE */ 6153 6154 static int get_version(void __user *arg) 6155 { 6156 mdu_version_t ver; 6157 6158 ver.major = MD_MAJOR_VERSION; 6159 ver.minor = MD_MINOR_VERSION; 6160 ver.patchlevel = MD_PATCHLEVEL_VERSION; 6161 6162 if (copy_to_user(arg, &ver, sizeof(ver))) 6163 return -EFAULT; 6164 6165 return 0; 6166 } 6167 6168 static int get_array_info(struct mddev *mddev, void __user *arg) 6169 { 6170 mdu_array_info_t info; 6171 int nr,working,insync,failed,spare; 6172 struct md_rdev *rdev; 6173 6174 nr = working = insync = failed = spare = 0; 6175 rcu_read_lock(); 6176 rdev_for_each_rcu(rdev, mddev) { 6177 nr++; 6178 if (test_bit(Faulty, &rdev->flags)) 6179 failed++; 6180 else { 6181 working++; 6182 if (test_bit(In_sync, &rdev->flags)) 6183 insync++; 6184 else if (test_bit(Journal, &rdev->flags)) 6185 /* TODO: add journal count to md_u.h */ 6186 ; 6187 else 6188 spare++; 6189 } 6190 } 6191 rcu_read_unlock(); 6192 6193 info.major_version = mddev->major_version; 6194 info.minor_version = mddev->minor_version; 6195 info.patch_version = MD_PATCHLEVEL_VERSION; 6196 info.ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 6197 info.level = mddev->level; 6198 info.size = mddev->dev_sectors / 2; 6199 if (info.size != mddev->dev_sectors / 2) /* overflow */ 6200 info.size = -1; 6201 info.nr_disks = nr; 6202 info.raid_disks = mddev->raid_disks; 6203 info.md_minor = mddev->md_minor; 6204 info.not_persistent= !mddev->persistent; 6205 6206 info.utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 6207 info.state = 0; 6208 if (mddev->in_sync) 6209 info.state = (1<<MD_SB_CLEAN); 6210 if (mddev->bitmap && mddev->bitmap_info.offset) 6211 info.state |= (1<<MD_SB_BITMAP_PRESENT); 6212 if (mddev_is_clustered(mddev)) 6213 info.state |= (1<<MD_SB_CLUSTERED); 6214 info.active_disks = insync; 6215 info.working_disks = working; 6216 info.failed_disks = failed; 6217 info.spare_disks = spare; 6218 6219 info.layout = mddev->layout; 6220 info.chunk_size = mddev->chunk_sectors << 9; 6221 6222 if (copy_to_user(arg, &info, sizeof(info))) 6223 return -EFAULT; 6224 6225 return 0; 6226 } 6227 6228 static int get_bitmap_file(struct mddev *mddev, void __user * arg) 6229 { 6230 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ 6231 char *ptr; 6232 int err; 6233 6234 file = kzalloc(sizeof(*file), GFP_NOIO); 6235 if (!file) 6236 return -ENOMEM; 6237 6238 err = 0; 6239 spin_lock(&mddev->lock); 6240 /* bitmap enabled */ 6241 if (mddev->bitmap_info.file) { 6242 ptr = file_path(mddev->bitmap_info.file, file->pathname, 6243 sizeof(file->pathname)); 6244 if (IS_ERR(ptr)) 6245 err = PTR_ERR(ptr); 6246 else 6247 memmove(file->pathname, ptr, 6248 sizeof(file->pathname)-(ptr-file->pathname)); 6249 } 6250 spin_unlock(&mddev->lock); 6251 6252 if (err == 0 && 6253 copy_to_user(arg, file, sizeof(*file))) 6254 err = -EFAULT; 6255 6256 kfree(file); 6257 return err; 6258 } 6259 6260 static int get_disk_info(struct mddev *mddev, void __user * arg) 6261 { 6262 mdu_disk_info_t info; 6263 struct md_rdev *rdev; 6264 6265 if (copy_from_user(&info, arg, sizeof(info))) 6266 return -EFAULT; 6267 6268 rcu_read_lock(); 6269 rdev = md_find_rdev_nr_rcu(mddev, info.number); 6270 if (rdev) { 6271 info.major = MAJOR(rdev->bdev->bd_dev); 6272 info.minor = MINOR(rdev->bdev->bd_dev); 6273 info.raid_disk = rdev->raid_disk; 6274 info.state = 0; 6275 if (test_bit(Faulty, &rdev->flags)) 6276 info.state |= (1<<MD_DISK_FAULTY); 6277 else if (test_bit(In_sync, &rdev->flags)) { 6278 info.state |= (1<<MD_DISK_ACTIVE); 6279 info.state |= (1<<MD_DISK_SYNC); 6280 } 6281 if (test_bit(Journal, &rdev->flags)) 6282 info.state |= (1<<MD_DISK_JOURNAL); 6283 if (test_bit(WriteMostly, &rdev->flags)) 6284 info.state |= (1<<MD_DISK_WRITEMOSTLY); 6285 if (test_bit(FailFast, &rdev->flags)) 6286 info.state |= (1<<MD_DISK_FAILFAST); 6287 } else { 6288 info.major = info.minor = 0; 6289 info.raid_disk = -1; 6290 info.state = (1<<MD_DISK_REMOVED); 6291 } 6292 rcu_read_unlock(); 6293 6294 if (copy_to_user(arg, &info, sizeof(info))) 6295 return -EFAULT; 6296 6297 return 0; 6298 } 6299 6300 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info) 6301 { 6302 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 6303 struct md_rdev *rdev; 6304 dev_t dev = MKDEV(info->major,info->minor); 6305 6306 if (mddev_is_clustered(mddev) && 6307 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) { 6308 pr_warn("%s: Cannot add to clustered mddev.\n", 6309 mdname(mddev)); 6310 return -EINVAL; 6311 } 6312 6313 if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) 6314 return -EOVERFLOW; 6315 6316 if (!mddev->raid_disks) { 6317 int err; 6318 /* expecting a device which has a superblock */ 6319 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); 6320 if (IS_ERR(rdev)) { 6321 pr_warn("md: md_import_device returned %ld\n", 6322 PTR_ERR(rdev)); 6323 return PTR_ERR(rdev); 6324 } 6325 if (!list_empty(&mddev->disks)) { 6326 struct md_rdev *rdev0 6327 = list_entry(mddev->disks.next, 6328 struct md_rdev, same_set); 6329 err = super_types[mddev->major_version] 6330 .load_super(rdev, rdev0, mddev->minor_version); 6331 if (err < 0) { 6332 pr_warn("md: %s has different UUID to %s\n", 6333 bdevname(rdev->bdev,b), 6334 bdevname(rdev0->bdev,b2)); 6335 export_rdev(rdev); 6336 return -EINVAL; 6337 } 6338 } 6339 err = bind_rdev_to_array(rdev, mddev); 6340 if (err) 6341 export_rdev(rdev); 6342 return err; 6343 } 6344 6345 /* 6346 * add_new_disk can be used once the array is assembled 6347 * to add "hot spares". They must already have a superblock 6348 * written 6349 */ 6350 if (mddev->pers) { 6351 int err; 6352 if (!mddev->pers->hot_add_disk) { 6353 pr_warn("%s: personality does not support diskops!\n", 6354 mdname(mddev)); 6355 return -EINVAL; 6356 } 6357 if (mddev->persistent) 6358 rdev = md_import_device(dev, mddev->major_version, 6359 mddev->minor_version); 6360 else 6361 rdev = md_import_device(dev, -1, -1); 6362 if (IS_ERR(rdev)) { 6363 pr_warn("md: md_import_device returned %ld\n", 6364 PTR_ERR(rdev)); 6365 return PTR_ERR(rdev); 6366 } 6367 /* set saved_raid_disk if appropriate */ 6368 if (!mddev->persistent) { 6369 if (info->state & (1<<MD_DISK_SYNC) && 6370 info->raid_disk < mddev->raid_disks) { 6371 rdev->raid_disk = info->raid_disk; 6372 set_bit(In_sync, &rdev->flags); 6373 clear_bit(Bitmap_sync, &rdev->flags); 6374 } else 6375 rdev->raid_disk = -1; 6376 rdev->saved_raid_disk = rdev->raid_disk; 6377 } else 6378 super_types[mddev->major_version]. 6379 validate_super(mddev, rdev); 6380 if ((info->state & (1<<MD_DISK_SYNC)) && 6381 rdev->raid_disk != info->raid_disk) { 6382 /* This was a hot-add request, but events doesn't 6383 * match, so reject it. 6384 */ 6385 export_rdev(rdev); 6386 return -EINVAL; 6387 } 6388 6389 clear_bit(In_sync, &rdev->flags); /* just to be sure */ 6390 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6391 set_bit(WriteMostly, &rdev->flags); 6392 else 6393 clear_bit(WriteMostly, &rdev->flags); 6394 if (info->state & (1<<MD_DISK_FAILFAST)) 6395 set_bit(FailFast, &rdev->flags); 6396 else 6397 clear_bit(FailFast, &rdev->flags); 6398 6399 if (info->state & (1<<MD_DISK_JOURNAL)) { 6400 struct md_rdev *rdev2; 6401 bool has_journal = false; 6402 6403 /* make sure no existing journal disk */ 6404 rdev_for_each(rdev2, mddev) { 6405 if (test_bit(Journal, &rdev2->flags)) { 6406 has_journal = true; 6407 break; 6408 } 6409 } 6410 if (has_journal || mddev->bitmap) { 6411 export_rdev(rdev); 6412 return -EBUSY; 6413 } 6414 set_bit(Journal, &rdev->flags); 6415 } 6416 /* 6417 * check whether the device shows up in other nodes 6418 */ 6419 if (mddev_is_clustered(mddev)) { 6420 if (info->state & (1 << MD_DISK_CANDIDATE)) 6421 set_bit(Candidate, &rdev->flags); 6422 else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) { 6423 /* --add initiated by this node */ 6424 err = md_cluster_ops->add_new_disk(mddev, rdev); 6425 if (err) { 6426 export_rdev(rdev); 6427 return err; 6428 } 6429 } 6430 } 6431 6432 rdev->raid_disk = -1; 6433 err = bind_rdev_to_array(rdev, mddev); 6434 6435 if (err) 6436 export_rdev(rdev); 6437 6438 if (mddev_is_clustered(mddev)) { 6439 if (info->state & (1 << MD_DISK_CANDIDATE)) { 6440 if (!err) { 6441 err = md_cluster_ops->new_disk_ack(mddev, 6442 err == 0); 6443 if (err) 6444 md_kick_rdev_from_array(rdev); 6445 } 6446 } else { 6447 if (err) 6448 md_cluster_ops->add_new_disk_cancel(mddev); 6449 else 6450 err = add_bound_rdev(rdev); 6451 } 6452 6453 } else if (!err) 6454 err = add_bound_rdev(rdev); 6455 6456 return err; 6457 } 6458 6459 /* otherwise, add_new_disk is only allowed 6460 * for major_version==0 superblocks 6461 */ 6462 if (mddev->major_version != 0) { 6463 pr_warn("%s: ADD_NEW_DISK not supported\n", mdname(mddev)); 6464 return -EINVAL; 6465 } 6466 6467 if (!(info->state & (1<<MD_DISK_FAULTY))) { 6468 int err; 6469 rdev = md_import_device(dev, -1, 0); 6470 if (IS_ERR(rdev)) { 6471 pr_warn("md: error, md_import_device() returned %ld\n", 6472 PTR_ERR(rdev)); 6473 return PTR_ERR(rdev); 6474 } 6475 rdev->desc_nr = info->number; 6476 if (info->raid_disk < mddev->raid_disks) 6477 rdev->raid_disk = info->raid_disk; 6478 else 6479 rdev->raid_disk = -1; 6480 6481 if (rdev->raid_disk < mddev->raid_disks) 6482 if (info->state & (1<<MD_DISK_SYNC)) 6483 set_bit(In_sync, &rdev->flags); 6484 6485 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6486 set_bit(WriteMostly, &rdev->flags); 6487 if (info->state & (1<<MD_DISK_FAILFAST)) 6488 set_bit(FailFast, &rdev->flags); 6489 6490 if (!mddev->persistent) { 6491 pr_debug("md: nonpersistent superblock ...\n"); 6492 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 6493 } else 6494 rdev->sb_start = calc_dev_sboffset(rdev); 6495 rdev->sectors = rdev->sb_start; 6496 6497 err = bind_rdev_to_array(rdev, mddev); 6498 if (err) { 6499 export_rdev(rdev); 6500 return err; 6501 } 6502 } 6503 6504 return 0; 6505 } 6506 6507 static int hot_remove_disk(struct mddev *mddev, dev_t dev) 6508 { 6509 char b[BDEVNAME_SIZE]; 6510 struct md_rdev *rdev; 6511 6512 if (!mddev->pers) 6513 return -ENODEV; 6514 6515 rdev = find_rdev(mddev, dev); 6516 if (!rdev) 6517 return -ENXIO; 6518 6519 if (rdev->raid_disk < 0) 6520 goto kick_rdev; 6521 6522 clear_bit(Blocked, &rdev->flags); 6523 remove_and_add_spares(mddev, rdev); 6524 6525 if (rdev->raid_disk >= 0) 6526 goto busy; 6527 6528 kick_rdev: 6529 if (mddev_is_clustered(mddev)) 6530 md_cluster_ops->remove_disk(mddev, rdev); 6531 6532 md_kick_rdev_from_array(rdev); 6533 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6534 if (mddev->thread) 6535 md_wakeup_thread(mddev->thread); 6536 else 6537 md_update_sb(mddev, 1); 6538 md_new_event(mddev); 6539 6540 return 0; 6541 busy: 6542 pr_debug("md: cannot remove active disk %s from %s ...\n", 6543 bdevname(rdev->bdev,b), mdname(mddev)); 6544 return -EBUSY; 6545 } 6546 6547 static int hot_add_disk(struct mddev *mddev, dev_t dev) 6548 { 6549 char b[BDEVNAME_SIZE]; 6550 int err; 6551 struct md_rdev *rdev; 6552 6553 if (!mddev->pers) 6554 return -ENODEV; 6555 6556 if (mddev->major_version != 0) { 6557 pr_warn("%s: HOT_ADD may only be used with version-0 superblocks.\n", 6558 mdname(mddev)); 6559 return -EINVAL; 6560 } 6561 if (!mddev->pers->hot_add_disk) { 6562 pr_warn("%s: personality does not support diskops!\n", 6563 mdname(mddev)); 6564 return -EINVAL; 6565 } 6566 6567 rdev = md_import_device(dev, -1, 0); 6568 if (IS_ERR(rdev)) { 6569 pr_warn("md: error, md_import_device() returned %ld\n", 6570 PTR_ERR(rdev)); 6571 return -EINVAL; 6572 } 6573 6574 if (mddev->persistent) 6575 rdev->sb_start = calc_dev_sboffset(rdev); 6576 else 6577 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 6578 6579 rdev->sectors = rdev->sb_start; 6580 6581 if (test_bit(Faulty, &rdev->flags)) { 6582 pr_warn("md: can not hot-add faulty %s disk to %s!\n", 6583 bdevname(rdev->bdev,b), mdname(mddev)); 6584 err = -EINVAL; 6585 goto abort_export; 6586 } 6587 6588 clear_bit(In_sync, &rdev->flags); 6589 rdev->desc_nr = -1; 6590 rdev->saved_raid_disk = -1; 6591 err = bind_rdev_to_array(rdev, mddev); 6592 if (err) 6593 goto abort_export; 6594 6595 /* 6596 * The rest should better be atomic, we can have disk failures 6597 * noticed in interrupt contexts ... 6598 */ 6599 6600 rdev->raid_disk = -1; 6601 6602 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6603 if (!mddev->thread) 6604 md_update_sb(mddev, 1); 6605 /* 6606 * Kick recovery, maybe this spare has to be added to the 6607 * array immediately. 6608 */ 6609 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6610 md_wakeup_thread(mddev->thread); 6611 md_new_event(mddev); 6612 return 0; 6613 6614 abort_export: 6615 export_rdev(rdev); 6616 return err; 6617 } 6618 6619 static int set_bitmap_file(struct mddev *mddev, int fd) 6620 { 6621 int err = 0; 6622 6623 if (mddev->pers) { 6624 if (!mddev->pers->quiesce || !mddev->thread) 6625 return -EBUSY; 6626 if (mddev->recovery || mddev->sync_thread) 6627 return -EBUSY; 6628 /* we should be able to change the bitmap.. */ 6629 } 6630 6631 if (fd >= 0) { 6632 struct inode *inode; 6633 struct file *f; 6634 6635 if (mddev->bitmap || mddev->bitmap_info.file) 6636 return -EEXIST; /* cannot add when bitmap is present */ 6637 f = fget(fd); 6638 6639 if (f == NULL) { 6640 pr_warn("%s: error: failed to get bitmap file\n", 6641 mdname(mddev)); 6642 return -EBADF; 6643 } 6644 6645 inode = f->f_mapping->host; 6646 if (!S_ISREG(inode->i_mode)) { 6647 pr_warn("%s: error: bitmap file must be a regular file\n", 6648 mdname(mddev)); 6649 err = -EBADF; 6650 } else if (!(f->f_mode & FMODE_WRITE)) { 6651 pr_warn("%s: error: bitmap file must open for write\n", 6652 mdname(mddev)); 6653 err = -EBADF; 6654 } else if (atomic_read(&inode->i_writecount) != 1) { 6655 pr_warn("%s: error: bitmap file is already in use\n", 6656 mdname(mddev)); 6657 err = -EBUSY; 6658 } 6659 if (err) { 6660 fput(f); 6661 return err; 6662 } 6663 mddev->bitmap_info.file = f; 6664 mddev->bitmap_info.offset = 0; /* file overrides offset */ 6665 } else if (mddev->bitmap == NULL) 6666 return -ENOENT; /* cannot remove what isn't there */ 6667 err = 0; 6668 if (mddev->pers) { 6669 if (fd >= 0) { 6670 struct bitmap *bitmap; 6671 6672 bitmap = md_bitmap_create(mddev, -1); 6673 mddev_suspend(mddev); 6674 if (!IS_ERR(bitmap)) { 6675 mddev->bitmap = bitmap; 6676 err = md_bitmap_load(mddev); 6677 } else 6678 err = PTR_ERR(bitmap); 6679 if (err) { 6680 md_bitmap_destroy(mddev); 6681 fd = -1; 6682 } 6683 mddev_resume(mddev); 6684 } else if (fd < 0) { 6685 mddev_suspend(mddev); 6686 md_bitmap_destroy(mddev); 6687 mddev_resume(mddev); 6688 } 6689 } 6690 if (fd < 0) { 6691 struct file *f = mddev->bitmap_info.file; 6692 if (f) { 6693 spin_lock(&mddev->lock); 6694 mddev->bitmap_info.file = NULL; 6695 spin_unlock(&mddev->lock); 6696 fput(f); 6697 } 6698 } 6699 6700 return err; 6701 } 6702 6703 /* 6704 * set_array_info is used two different ways 6705 * The original usage is when creating a new array. 6706 * In this usage, raid_disks is > 0 and it together with 6707 * level, size, not_persistent,layout,chunksize determine the 6708 * shape of the array. 6709 * This will always create an array with a type-0.90.0 superblock. 6710 * The newer usage is when assembling an array. 6711 * In this case raid_disks will be 0, and the major_version field is 6712 * use to determine which style super-blocks are to be found on the devices. 6713 * The minor and patch _version numbers are also kept incase the 6714 * super_block handler wishes to interpret them. 6715 */ 6716 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info) 6717 { 6718 6719 if (info->raid_disks == 0) { 6720 /* just setting version number for superblock loading */ 6721 if (info->major_version < 0 || 6722 info->major_version >= ARRAY_SIZE(super_types) || 6723 super_types[info->major_version].name == NULL) { 6724 /* maybe try to auto-load a module? */ 6725 pr_warn("md: superblock version %d not known\n", 6726 info->major_version); 6727 return -EINVAL; 6728 } 6729 mddev->major_version = info->major_version; 6730 mddev->minor_version = info->minor_version; 6731 mddev->patch_version = info->patch_version; 6732 mddev->persistent = !info->not_persistent; 6733 /* ensure mddev_put doesn't delete this now that there 6734 * is some minimal configuration. 6735 */ 6736 mddev->ctime = ktime_get_real_seconds(); 6737 return 0; 6738 } 6739 mddev->major_version = MD_MAJOR_VERSION; 6740 mddev->minor_version = MD_MINOR_VERSION; 6741 mddev->patch_version = MD_PATCHLEVEL_VERSION; 6742 mddev->ctime = ktime_get_real_seconds(); 6743 6744 mddev->level = info->level; 6745 mddev->clevel[0] = 0; 6746 mddev->dev_sectors = 2 * (sector_t)info->size; 6747 mddev->raid_disks = info->raid_disks; 6748 /* don't set md_minor, it is determined by which /dev/md* was 6749 * openned 6750 */ 6751 if (info->state & (1<<MD_SB_CLEAN)) 6752 mddev->recovery_cp = MaxSector; 6753 else 6754 mddev->recovery_cp = 0; 6755 mddev->persistent = ! info->not_persistent; 6756 mddev->external = 0; 6757 6758 mddev->layout = info->layout; 6759 mddev->chunk_sectors = info->chunk_size >> 9; 6760 6761 if (mddev->persistent) { 6762 mddev->max_disks = MD_SB_DISKS; 6763 mddev->flags = 0; 6764 mddev->sb_flags = 0; 6765 } 6766 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6767 6768 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 6769 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 6770 mddev->bitmap_info.offset = 0; 6771 6772 mddev->reshape_position = MaxSector; 6773 6774 /* 6775 * Generate a 128 bit UUID 6776 */ 6777 get_random_bytes(mddev->uuid, 16); 6778 6779 mddev->new_level = mddev->level; 6780 mddev->new_chunk_sectors = mddev->chunk_sectors; 6781 mddev->new_layout = mddev->layout; 6782 mddev->delta_disks = 0; 6783 mddev->reshape_backwards = 0; 6784 6785 return 0; 6786 } 6787 6788 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors) 6789 { 6790 lockdep_assert_held(&mddev->reconfig_mutex); 6791 6792 if (mddev->external_size) 6793 return; 6794 6795 mddev->array_sectors = array_sectors; 6796 } 6797 EXPORT_SYMBOL(md_set_array_sectors); 6798 6799 static int update_size(struct mddev *mddev, sector_t num_sectors) 6800 { 6801 struct md_rdev *rdev; 6802 int rv; 6803 int fit = (num_sectors == 0); 6804 sector_t old_dev_sectors = mddev->dev_sectors; 6805 6806 if (mddev->pers->resize == NULL) 6807 return -EINVAL; 6808 /* The "num_sectors" is the number of sectors of each device that 6809 * is used. This can only make sense for arrays with redundancy. 6810 * linear and raid0 always use whatever space is available. We can only 6811 * consider changing this number if no resync or reconstruction is 6812 * happening, and if the new size is acceptable. It must fit before the 6813 * sb_start or, if that is <data_offset, it must fit before the size 6814 * of each device. If num_sectors is zero, we find the largest size 6815 * that fits. 6816 */ 6817 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 6818 mddev->sync_thread) 6819 return -EBUSY; 6820 if (mddev->ro) 6821 return -EROFS; 6822 6823 rdev_for_each(rdev, mddev) { 6824 sector_t avail = rdev->sectors; 6825 6826 if (fit && (num_sectors == 0 || num_sectors > avail)) 6827 num_sectors = avail; 6828 if (avail < num_sectors) 6829 return -ENOSPC; 6830 } 6831 rv = mddev->pers->resize(mddev, num_sectors); 6832 if (!rv) { 6833 if (mddev_is_clustered(mddev)) 6834 md_cluster_ops->update_size(mddev, old_dev_sectors); 6835 else if (mddev->queue) { 6836 set_capacity(mddev->gendisk, mddev->array_sectors); 6837 revalidate_disk(mddev->gendisk); 6838 } 6839 } 6840 return rv; 6841 } 6842 6843 static int update_raid_disks(struct mddev *mddev, int raid_disks) 6844 { 6845 int rv; 6846 struct md_rdev *rdev; 6847 /* change the number of raid disks */ 6848 if (mddev->pers->check_reshape == NULL) 6849 return -EINVAL; 6850 if (mddev->ro) 6851 return -EROFS; 6852 if (raid_disks <= 0 || 6853 (mddev->max_disks && raid_disks >= mddev->max_disks)) 6854 return -EINVAL; 6855 if (mddev->sync_thread || 6856 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 6857 mddev->reshape_position != MaxSector) 6858 return -EBUSY; 6859 6860 rdev_for_each(rdev, mddev) { 6861 if (mddev->raid_disks < raid_disks && 6862 rdev->data_offset < rdev->new_data_offset) 6863 return -EINVAL; 6864 if (mddev->raid_disks > raid_disks && 6865 rdev->data_offset > rdev->new_data_offset) 6866 return -EINVAL; 6867 } 6868 6869 mddev->delta_disks = raid_disks - mddev->raid_disks; 6870 if (mddev->delta_disks < 0) 6871 mddev->reshape_backwards = 1; 6872 else if (mddev->delta_disks > 0) 6873 mddev->reshape_backwards = 0; 6874 6875 rv = mddev->pers->check_reshape(mddev); 6876 if (rv < 0) { 6877 mddev->delta_disks = 0; 6878 mddev->reshape_backwards = 0; 6879 } 6880 return rv; 6881 } 6882 6883 /* 6884 * update_array_info is used to change the configuration of an 6885 * on-line array. 6886 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size 6887 * fields in the info are checked against the array. 6888 * Any differences that cannot be handled will cause an error. 6889 * Normally, only one change can be managed at a time. 6890 */ 6891 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info) 6892 { 6893 int rv = 0; 6894 int cnt = 0; 6895 int state = 0; 6896 6897 /* calculate expected state,ignoring low bits */ 6898 if (mddev->bitmap && mddev->bitmap_info.offset) 6899 state |= (1 << MD_SB_BITMAP_PRESENT); 6900 6901 if (mddev->major_version != info->major_version || 6902 mddev->minor_version != info->minor_version || 6903 /* mddev->patch_version != info->patch_version || */ 6904 mddev->ctime != info->ctime || 6905 mddev->level != info->level || 6906 /* mddev->layout != info->layout || */ 6907 mddev->persistent != !info->not_persistent || 6908 mddev->chunk_sectors != info->chunk_size >> 9 || 6909 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ 6910 ((state^info->state) & 0xfffffe00) 6911 ) 6912 return -EINVAL; 6913 /* Check there is only one change */ 6914 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 6915 cnt++; 6916 if (mddev->raid_disks != info->raid_disks) 6917 cnt++; 6918 if (mddev->layout != info->layout) 6919 cnt++; 6920 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) 6921 cnt++; 6922 if (cnt == 0) 6923 return 0; 6924 if (cnt > 1) 6925 return -EINVAL; 6926 6927 if (mddev->layout != info->layout) { 6928 /* Change layout 6929 * we don't need to do anything at the md level, the 6930 * personality will take care of it all. 6931 */ 6932 if (mddev->pers->check_reshape == NULL) 6933 return -EINVAL; 6934 else { 6935 mddev->new_layout = info->layout; 6936 rv = mddev->pers->check_reshape(mddev); 6937 if (rv) 6938 mddev->new_layout = mddev->layout; 6939 return rv; 6940 } 6941 } 6942 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 6943 rv = update_size(mddev, (sector_t)info->size * 2); 6944 6945 if (mddev->raid_disks != info->raid_disks) 6946 rv = update_raid_disks(mddev, info->raid_disks); 6947 6948 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { 6949 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) { 6950 rv = -EINVAL; 6951 goto err; 6952 } 6953 if (mddev->recovery || mddev->sync_thread) { 6954 rv = -EBUSY; 6955 goto err; 6956 } 6957 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { 6958 struct bitmap *bitmap; 6959 /* add the bitmap */ 6960 if (mddev->bitmap) { 6961 rv = -EEXIST; 6962 goto err; 6963 } 6964 if (mddev->bitmap_info.default_offset == 0) { 6965 rv = -EINVAL; 6966 goto err; 6967 } 6968 mddev->bitmap_info.offset = 6969 mddev->bitmap_info.default_offset; 6970 mddev->bitmap_info.space = 6971 mddev->bitmap_info.default_space; 6972 bitmap = md_bitmap_create(mddev, -1); 6973 mddev_suspend(mddev); 6974 if (!IS_ERR(bitmap)) { 6975 mddev->bitmap = bitmap; 6976 rv = md_bitmap_load(mddev); 6977 } else 6978 rv = PTR_ERR(bitmap); 6979 if (rv) 6980 md_bitmap_destroy(mddev); 6981 mddev_resume(mddev); 6982 } else { 6983 /* remove the bitmap */ 6984 if (!mddev->bitmap) { 6985 rv = -ENOENT; 6986 goto err; 6987 } 6988 if (mddev->bitmap->storage.file) { 6989 rv = -EINVAL; 6990 goto err; 6991 } 6992 if (mddev->bitmap_info.nodes) { 6993 /* hold PW on all the bitmap lock */ 6994 if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) { 6995 pr_warn("md: can't change bitmap to none since the array is in use by more than one node\n"); 6996 rv = -EPERM; 6997 md_cluster_ops->unlock_all_bitmaps(mddev); 6998 goto err; 6999 } 7000 7001 mddev->bitmap_info.nodes = 0; 7002 md_cluster_ops->leave(mddev); 7003 } 7004 mddev_suspend(mddev); 7005 md_bitmap_destroy(mddev); 7006 mddev_resume(mddev); 7007 mddev->bitmap_info.offset = 0; 7008 } 7009 } 7010 md_update_sb(mddev, 1); 7011 return rv; 7012 err: 7013 return rv; 7014 } 7015 7016 static int set_disk_faulty(struct mddev *mddev, dev_t dev) 7017 { 7018 struct md_rdev *rdev; 7019 int err = 0; 7020 7021 if (mddev->pers == NULL) 7022 return -ENODEV; 7023 7024 rcu_read_lock(); 7025 rdev = md_find_rdev_rcu(mddev, dev); 7026 if (!rdev) 7027 err = -ENODEV; 7028 else { 7029 md_error(mddev, rdev); 7030 if (!test_bit(Faulty, &rdev->flags)) 7031 err = -EBUSY; 7032 } 7033 rcu_read_unlock(); 7034 return err; 7035 } 7036 7037 /* 7038 * We have a problem here : there is no easy way to give a CHS 7039 * virtual geometry. We currently pretend that we have a 2 heads 7040 * 4 sectors (with a BIG number of cylinders...). This drives 7041 * dosfs just mad... ;-) 7042 */ 7043 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) 7044 { 7045 struct mddev *mddev = bdev->bd_disk->private_data; 7046 7047 geo->heads = 2; 7048 geo->sectors = 4; 7049 geo->cylinders = mddev->array_sectors / 8; 7050 return 0; 7051 } 7052 7053 static inline bool md_ioctl_valid(unsigned int cmd) 7054 { 7055 switch (cmd) { 7056 case ADD_NEW_DISK: 7057 case BLKROSET: 7058 case GET_ARRAY_INFO: 7059 case GET_BITMAP_FILE: 7060 case GET_DISK_INFO: 7061 case HOT_ADD_DISK: 7062 case HOT_REMOVE_DISK: 7063 case RAID_AUTORUN: 7064 case RAID_VERSION: 7065 case RESTART_ARRAY_RW: 7066 case RUN_ARRAY: 7067 case SET_ARRAY_INFO: 7068 case SET_BITMAP_FILE: 7069 case SET_DISK_FAULTY: 7070 case STOP_ARRAY: 7071 case STOP_ARRAY_RO: 7072 case CLUSTERED_DISK_NACK: 7073 return true; 7074 default: 7075 return false; 7076 } 7077 } 7078 7079 static int md_ioctl(struct block_device *bdev, fmode_t mode, 7080 unsigned int cmd, unsigned long arg) 7081 { 7082 int err = 0; 7083 void __user *argp = (void __user *)arg; 7084 struct mddev *mddev = NULL; 7085 int ro; 7086 bool did_set_md_closing = false; 7087 7088 if (!md_ioctl_valid(cmd)) 7089 return -ENOTTY; 7090 7091 switch (cmd) { 7092 case RAID_VERSION: 7093 case GET_ARRAY_INFO: 7094 case GET_DISK_INFO: 7095 break; 7096 default: 7097 if (!capable(CAP_SYS_ADMIN)) 7098 return -EACCES; 7099 } 7100 7101 /* 7102 * Commands dealing with the RAID driver but not any 7103 * particular array: 7104 */ 7105 switch (cmd) { 7106 case RAID_VERSION: 7107 err = get_version(argp); 7108 goto out; 7109 7110 #ifndef MODULE 7111 case RAID_AUTORUN: 7112 err = 0; 7113 autostart_arrays(arg); 7114 goto out; 7115 #endif 7116 default:; 7117 } 7118 7119 /* 7120 * Commands creating/starting a new array: 7121 */ 7122 7123 mddev = bdev->bd_disk->private_data; 7124 7125 if (!mddev) { 7126 BUG(); 7127 goto out; 7128 } 7129 7130 /* Some actions do not requires the mutex */ 7131 switch (cmd) { 7132 case GET_ARRAY_INFO: 7133 if (!mddev->raid_disks && !mddev->external) 7134 err = -ENODEV; 7135 else 7136 err = get_array_info(mddev, argp); 7137 goto out; 7138 7139 case GET_DISK_INFO: 7140 if (!mddev->raid_disks && !mddev->external) 7141 err = -ENODEV; 7142 else 7143 err = get_disk_info(mddev, argp); 7144 goto out; 7145 7146 case SET_DISK_FAULTY: 7147 err = set_disk_faulty(mddev, new_decode_dev(arg)); 7148 goto out; 7149 7150 case GET_BITMAP_FILE: 7151 err = get_bitmap_file(mddev, argp); 7152 goto out; 7153 7154 } 7155 7156 if (cmd == ADD_NEW_DISK) 7157 /* need to ensure md_delayed_delete() has completed */ 7158 flush_workqueue(md_misc_wq); 7159 7160 if (cmd == HOT_REMOVE_DISK) 7161 /* need to ensure recovery thread has run */ 7162 wait_event_interruptible_timeout(mddev->sb_wait, 7163 !test_bit(MD_RECOVERY_NEEDED, 7164 &mddev->recovery), 7165 msecs_to_jiffies(5000)); 7166 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) { 7167 /* Need to flush page cache, and ensure no-one else opens 7168 * and writes 7169 */ 7170 mutex_lock(&mddev->open_mutex); 7171 if (mddev->pers && atomic_read(&mddev->openers) > 1) { 7172 mutex_unlock(&mddev->open_mutex); 7173 err = -EBUSY; 7174 goto out; 7175 } 7176 WARN_ON_ONCE(test_bit(MD_CLOSING, &mddev->flags)); 7177 set_bit(MD_CLOSING, &mddev->flags); 7178 did_set_md_closing = true; 7179 mutex_unlock(&mddev->open_mutex); 7180 sync_blockdev(bdev); 7181 } 7182 err = mddev_lock(mddev); 7183 if (err) { 7184 pr_debug("md: ioctl lock interrupted, reason %d, cmd %d\n", 7185 err, cmd); 7186 goto out; 7187 } 7188 7189 if (cmd == SET_ARRAY_INFO) { 7190 mdu_array_info_t info; 7191 if (!arg) 7192 memset(&info, 0, sizeof(info)); 7193 else if (copy_from_user(&info, argp, sizeof(info))) { 7194 err = -EFAULT; 7195 goto unlock; 7196 } 7197 if (mddev->pers) { 7198 err = update_array_info(mddev, &info); 7199 if (err) { 7200 pr_warn("md: couldn't update array info. %d\n", err); 7201 goto unlock; 7202 } 7203 goto unlock; 7204 } 7205 if (!list_empty(&mddev->disks)) { 7206 pr_warn("md: array %s already has disks!\n", mdname(mddev)); 7207 err = -EBUSY; 7208 goto unlock; 7209 } 7210 if (mddev->raid_disks) { 7211 pr_warn("md: array %s already initialised!\n", mdname(mddev)); 7212 err = -EBUSY; 7213 goto unlock; 7214 } 7215 err = set_array_info(mddev, &info); 7216 if (err) { 7217 pr_warn("md: couldn't set array info. %d\n", err); 7218 goto unlock; 7219 } 7220 goto unlock; 7221 } 7222 7223 /* 7224 * Commands querying/configuring an existing array: 7225 */ 7226 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, 7227 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ 7228 if ((!mddev->raid_disks && !mddev->external) 7229 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY 7230 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE 7231 && cmd != GET_BITMAP_FILE) { 7232 err = -ENODEV; 7233 goto unlock; 7234 } 7235 7236 /* 7237 * Commands even a read-only array can execute: 7238 */ 7239 switch (cmd) { 7240 case RESTART_ARRAY_RW: 7241 err = restart_array(mddev); 7242 goto unlock; 7243 7244 case STOP_ARRAY: 7245 err = do_md_stop(mddev, 0, bdev); 7246 goto unlock; 7247 7248 case STOP_ARRAY_RO: 7249 err = md_set_readonly(mddev, bdev); 7250 goto unlock; 7251 7252 case HOT_REMOVE_DISK: 7253 err = hot_remove_disk(mddev, new_decode_dev(arg)); 7254 goto unlock; 7255 7256 case ADD_NEW_DISK: 7257 /* We can support ADD_NEW_DISK on read-only arrays 7258 * only if we are re-adding a preexisting device. 7259 * So require mddev->pers and MD_DISK_SYNC. 7260 */ 7261 if (mddev->pers) { 7262 mdu_disk_info_t info; 7263 if (copy_from_user(&info, argp, sizeof(info))) 7264 err = -EFAULT; 7265 else if (!(info.state & (1<<MD_DISK_SYNC))) 7266 /* Need to clear read-only for this */ 7267 break; 7268 else 7269 err = add_new_disk(mddev, &info); 7270 goto unlock; 7271 } 7272 break; 7273 7274 case BLKROSET: 7275 if (get_user(ro, (int __user *)(arg))) { 7276 err = -EFAULT; 7277 goto unlock; 7278 } 7279 err = -EINVAL; 7280 7281 /* if the bdev is going readonly the value of mddev->ro 7282 * does not matter, no writes are coming 7283 */ 7284 if (ro) 7285 goto unlock; 7286 7287 /* are we are already prepared for writes? */ 7288 if (mddev->ro != 1) 7289 goto unlock; 7290 7291 /* transitioning to readauto need only happen for 7292 * arrays that call md_write_start 7293 */ 7294 if (mddev->pers) { 7295 err = restart_array(mddev); 7296 if (err == 0) { 7297 mddev->ro = 2; 7298 set_disk_ro(mddev->gendisk, 0); 7299 } 7300 } 7301 goto unlock; 7302 } 7303 7304 /* 7305 * The remaining ioctls are changing the state of the 7306 * superblock, so we do not allow them on read-only arrays. 7307 */ 7308 if (mddev->ro && mddev->pers) { 7309 if (mddev->ro == 2) { 7310 mddev->ro = 0; 7311 sysfs_notify_dirent_safe(mddev->sysfs_state); 7312 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7313 /* mddev_unlock will wake thread */ 7314 /* If a device failed while we were read-only, we 7315 * need to make sure the metadata is updated now. 7316 */ 7317 if (test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) { 7318 mddev_unlock(mddev); 7319 wait_event(mddev->sb_wait, 7320 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) && 7321 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 7322 mddev_lock_nointr(mddev); 7323 } 7324 } else { 7325 err = -EROFS; 7326 goto unlock; 7327 } 7328 } 7329 7330 switch (cmd) { 7331 case ADD_NEW_DISK: 7332 { 7333 mdu_disk_info_t info; 7334 if (copy_from_user(&info, argp, sizeof(info))) 7335 err = -EFAULT; 7336 else 7337 err = add_new_disk(mddev, &info); 7338 goto unlock; 7339 } 7340 7341 case CLUSTERED_DISK_NACK: 7342 if (mddev_is_clustered(mddev)) 7343 md_cluster_ops->new_disk_ack(mddev, false); 7344 else 7345 err = -EINVAL; 7346 goto unlock; 7347 7348 case HOT_ADD_DISK: 7349 err = hot_add_disk(mddev, new_decode_dev(arg)); 7350 goto unlock; 7351 7352 case RUN_ARRAY: 7353 err = do_md_run(mddev); 7354 goto unlock; 7355 7356 case SET_BITMAP_FILE: 7357 err = set_bitmap_file(mddev, (int)arg); 7358 goto unlock; 7359 7360 default: 7361 err = -EINVAL; 7362 goto unlock; 7363 } 7364 7365 unlock: 7366 if (mddev->hold_active == UNTIL_IOCTL && 7367 err != -EINVAL) 7368 mddev->hold_active = 0; 7369 mddev_unlock(mddev); 7370 out: 7371 if(did_set_md_closing) 7372 clear_bit(MD_CLOSING, &mddev->flags); 7373 return err; 7374 } 7375 #ifdef CONFIG_COMPAT 7376 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode, 7377 unsigned int cmd, unsigned long arg) 7378 { 7379 switch (cmd) { 7380 case HOT_REMOVE_DISK: 7381 case HOT_ADD_DISK: 7382 case SET_DISK_FAULTY: 7383 case SET_BITMAP_FILE: 7384 /* These take in integer arg, do not convert */ 7385 break; 7386 default: 7387 arg = (unsigned long)compat_ptr(arg); 7388 break; 7389 } 7390 7391 return md_ioctl(bdev, mode, cmd, arg); 7392 } 7393 #endif /* CONFIG_COMPAT */ 7394 7395 static int md_open(struct block_device *bdev, fmode_t mode) 7396 { 7397 /* 7398 * Succeed if we can lock the mddev, which confirms that 7399 * it isn't being stopped right now. 7400 */ 7401 struct mddev *mddev = mddev_find(bdev->bd_dev); 7402 int err; 7403 7404 if (!mddev) 7405 return -ENODEV; 7406 7407 if (mddev->gendisk != bdev->bd_disk) { 7408 /* we are racing with mddev_put which is discarding this 7409 * bd_disk. 7410 */ 7411 mddev_put(mddev); 7412 /* Wait until bdev->bd_disk is definitely gone */ 7413 flush_workqueue(md_misc_wq); 7414 /* Then retry the open from the top */ 7415 return -ERESTARTSYS; 7416 } 7417 BUG_ON(mddev != bdev->bd_disk->private_data); 7418 7419 if ((err = mutex_lock_interruptible(&mddev->open_mutex))) 7420 goto out; 7421 7422 if (test_bit(MD_CLOSING, &mddev->flags)) { 7423 mutex_unlock(&mddev->open_mutex); 7424 err = -ENODEV; 7425 goto out; 7426 } 7427 7428 err = 0; 7429 atomic_inc(&mddev->openers); 7430 mutex_unlock(&mddev->open_mutex); 7431 7432 check_disk_change(bdev); 7433 out: 7434 if (err) 7435 mddev_put(mddev); 7436 return err; 7437 } 7438 7439 static void md_release(struct gendisk *disk, fmode_t mode) 7440 { 7441 struct mddev *mddev = disk->private_data; 7442 7443 BUG_ON(!mddev); 7444 atomic_dec(&mddev->openers); 7445 mddev_put(mddev); 7446 } 7447 7448 static int md_media_changed(struct gendisk *disk) 7449 { 7450 struct mddev *mddev = disk->private_data; 7451 7452 return mddev->changed; 7453 } 7454 7455 static int md_revalidate(struct gendisk *disk) 7456 { 7457 struct mddev *mddev = disk->private_data; 7458 7459 mddev->changed = 0; 7460 return 0; 7461 } 7462 static const struct block_device_operations md_fops = 7463 { 7464 .owner = THIS_MODULE, 7465 .open = md_open, 7466 .release = md_release, 7467 .ioctl = md_ioctl, 7468 #ifdef CONFIG_COMPAT 7469 .compat_ioctl = md_compat_ioctl, 7470 #endif 7471 .getgeo = md_getgeo, 7472 .media_changed = md_media_changed, 7473 .revalidate_disk= md_revalidate, 7474 }; 7475 7476 static int md_thread(void *arg) 7477 { 7478 struct md_thread *thread = arg; 7479 7480 /* 7481 * md_thread is a 'system-thread', it's priority should be very 7482 * high. We avoid resource deadlocks individually in each 7483 * raid personality. (RAID5 does preallocation) We also use RR and 7484 * the very same RT priority as kswapd, thus we will never get 7485 * into a priority inversion deadlock. 7486 * 7487 * we definitely have to have equal or higher priority than 7488 * bdflush, otherwise bdflush will deadlock if there are too 7489 * many dirty RAID5 blocks. 7490 */ 7491 7492 allow_signal(SIGKILL); 7493 while (!kthread_should_stop()) { 7494 7495 /* We need to wait INTERRUPTIBLE so that 7496 * we don't add to the load-average. 7497 * That means we need to be sure no signals are 7498 * pending 7499 */ 7500 if (signal_pending(current)) 7501 flush_signals(current); 7502 7503 wait_event_interruptible_timeout 7504 (thread->wqueue, 7505 test_bit(THREAD_WAKEUP, &thread->flags) 7506 || kthread_should_stop() || kthread_should_park(), 7507 thread->timeout); 7508 7509 clear_bit(THREAD_WAKEUP, &thread->flags); 7510 if (kthread_should_park()) 7511 kthread_parkme(); 7512 if (!kthread_should_stop()) 7513 thread->run(thread); 7514 } 7515 7516 return 0; 7517 } 7518 7519 void md_wakeup_thread(struct md_thread *thread) 7520 { 7521 if (thread) { 7522 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm); 7523 set_bit(THREAD_WAKEUP, &thread->flags); 7524 wake_up(&thread->wqueue); 7525 } 7526 } 7527 EXPORT_SYMBOL(md_wakeup_thread); 7528 7529 struct md_thread *md_register_thread(void (*run) (struct md_thread *), 7530 struct mddev *mddev, const char *name) 7531 { 7532 struct md_thread *thread; 7533 7534 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL); 7535 if (!thread) 7536 return NULL; 7537 7538 init_waitqueue_head(&thread->wqueue); 7539 7540 thread->run = run; 7541 thread->mddev = mddev; 7542 thread->timeout = MAX_SCHEDULE_TIMEOUT; 7543 thread->tsk = kthread_run(md_thread, thread, 7544 "%s_%s", 7545 mdname(thread->mddev), 7546 name); 7547 if (IS_ERR(thread->tsk)) { 7548 kfree(thread); 7549 return NULL; 7550 } 7551 return thread; 7552 } 7553 EXPORT_SYMBOL(md_register_thread); 7554 7555 void md_unregister_thread(struct md_thread **threadp) 7556 { 7557 struct md_thread *thread = *threadp; 7558 if (!thread) 7559 return; 7560 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk)); 7561 /* Locking ensures that mddev_unlock does not wake_up a 7562 * non-existent thread 7563 */ 7564 spin_lock(&pers_lock); 7565 *threadp = NULL; 7566 spin_unlock(&pers_lock); 7567 7568 kthread_stop(thread->tsk); 7569 kfree(thread); 7570 } 7571 EXPORT_SYMBOL(md_unregister_thread); 7572 7573 void md_error(struct mddev *mddev, struct md_rdev *rdev) 7574 { 7575 if (!rdev || test_bit(Faulty, &rdev->flags)) 7576 return; 7577 7578 if (!mddev->pers || !mddev->pers->error_handler) 7579 return; 7580 mddev->pers->error_handler(mddev,rdev); 7581 if (mddev->degraded) 7582 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7583 sysfs_notify_dirent_safe(rdev->sysfs_state); 7584 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7585 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7586 md_wakeup_thread(mddev->thread); 7587 if (mddev->event_work.func) 7588 queue_work(md_misc_wq, &mddev->event_work); 7589 md_new_event(mddev); 7590 } 7591 EXPORT_SYMBOL(md_error); 7592 7593 /* seq_file implementation /proc/mdstat */ 7594 7595 static void status_unused(struct seq_file *seq) 7596 { 7597 int i = 0; 7598 struct md_rdev *rdev; 7599 7600 seq_printf(seq, "unused devices: "); 7601 7602 list_for_each_entry(rdev, &pending_raid_disks, same_set) { 7603 char b[BDEVNAME_SIZE]; 7604 i++; 7605 seq_printf(seq, "%s ", 7606 bdevname(rdev->bdev,b)); 7607 } 7608 if (!i) 7609 seq_printf(seq, "<none>"); 7610 7611 seq_printf(seq, "\n"); 7612 } 7613 7614 static int status_resync(struct seq_file *seq, struct mddev *mddev) 7615 { 7616 sector_t max_sectors, resync, res; 7617 unsigned long dt, db; 7618 sector_t rt; 7619 int scale; 7620 unsigned int per_milli; 7621 7622 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 7623 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 7624 max_sectors = mddev->resync_max_sectors; 7625 else 7626 max_sectors = mddev->dev_sectors; 7627 7628 resync = mddev->curr_resync; 7629 if (resync <= 3) { 7630 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 7631 /* Still cleaning up */ 7632 resync = max_sectors; 7633 } else if (resync > max_sectors) 7634 resync = max_sectors; 7635 else 7636 resync -= atomic_read(&mddev->recovery_active); 7637 7638 if (resync == 0) { 7639 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery)) { 7640 struct md_rdev *rdev; 7641 7642 rdev_for_each(rdev, mddev) 7643 if (rdev->raid_disk >= 0 && 7644 !test_bit(Faulty, &rdev->flags) && 7645 rdev->recovery_offset != MaxSector && 7646 rdev->recovery_offset) { 7647 seq_printf(seq, "\trecover=REMOTE"); 7648 return 1; 7649 } 7650 if (mddev->reshape_position != MaxSector) 7651 seq_printf(seq, "\treshape=REMOTE"); 7652 else 7653 seq_printf(seq, "\tresync=REMOTE"); 7654 return 1; 7655 } 7656 if (mddev->recovery_cp < MaxSector) { 7657 seq_printf(seq, "\tresync=PENDING"); 7658 return 1; 7659 } 7660 return 0; 7661 } 7662 if (resync < 3) { 7663 seq_printf(seq, "\tresync=DELAYED"); 7664 return 1; 7665 } 7666 7667 WARN_ON(max_sectors == 0); 7668 /* Pick 'scale' such that (resync>>scale)*1000 will fit 7669 * in a sector_t, and (max_sectors>>scale) will fit in a 7670 * u32, as those are the requirements for sector_div. 7671 * Thus 'scale' must be at least 10 7672 */ 7673 scale = 10; 7674 if (sizeof(sector_t) > sizeof(unsigned long)) { 7675 while ( max_sectors/2 > (1ULL<<(scale+32))) 7676 scale++; 7677 } 7678 res = (resync>>scale)*1000; 7679 sector_div(res, (u32)((max_sectors>>scale)+1)); 7680 7681 per_milli = res; 7682 { 7683 int i, x = per_milli/50, y = 20-x; 7684 seq_printf(seq, "["); 7685 for (i = 0; i < x; i++) 7686 seq_printf(seq, "="); 7687 seq_printf(seq, ">"); 7688 for (i = 0; i < y; i++) 7689 seq_printf(seq, "."); 7690 seq_printf(seq, "] "); 7691 } 7692 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", 7693 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? 7694 "reshape" : 7695 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? 7696 "check" : 7697 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? 7698 "resync" : "recovery"))), 7699 per_milli/10, per_milli % 10, 7700 (unsigned long long) resync/2, 7701 (unsigned long long) max_sectors/2); 7702 7703 /* 7704 * dt: time from mark until now 7705 * db: blocks written from mark until now 7706 * rt: remaining time 7707 * 7708 * rt is a sector_t, so could be 32bit or 64bit. 7709 * So we divide before multiply in case it is 32bit and close 7710 * to the limit. 7711 * We scale the divisor (db) by 32 to avoid losing precision 7712 * near the end of resync when the number of remaining sectors 7713 * is close to 'db'. 7714 * We then divide rt by 32 after multiplying by db to compensate. 7715 * The '+1' avoids division by zero if db is very small. 7716 */ 7717 dt = ((jiffies - mddev->resync_mark) / HZ); 7718 if (!dt) dt++; 7719 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active)) 7720 - mddev->resync_mark_cnt; 7721 7722 rt = max_sectors - resync; /* number of remaining sectors */ 7723 sector_div(rt, db/32+1); 7724 rt *= dt; 7725 rt >>= 5; 7726 7727 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60, 7728 ((unsigned long)rt % 60)/6); 7729 7730 seq_printf(seq, " speed=%ldK/sec", db/2/dt); 7731 return 1; 7732 } 7733 7734 static void *md_seq_start(struct seq_file *seq, loff_t *pos) 7735 { 7736 struct list_head *tmp; 7737 loff_t l = *pos; 7738 struct mddev *mddev; 7739 7740 if (l >= 0x10000) 7741 return NULL; 7742 if (!l--) 7743 /* header */ 7744 return (void*)1; 7745 7746 spin_lock(&all_mddevs_lock); 7747 list_for_each(tmp,&all_mddevs) 7748 if (!l--) { 7749 mddev = list_entry(tmp, struct mddev, all_mddevs); 7750 mddev_get(mddev); 7751 spin_unlock(&all_mddevs_lock); 7752 return mddev; 7753 } 7754 spin_unlock(&all_mddevs_lock); 7755 if (!l--) 7756 return (void*)2;/* tail */ 7757 return NULL; 7758 } 7759 7760 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) 7761 { 7762 struct list_head *tmp; 7763 struct mddev *next_mddev, *mddev = v; 7764 7765 ++*pos; 7766 if (v == (void*)2) 7767 return NULL; 7768 7769 spin_lock(&all_mddevs_lock); 7770 if (v == (void*)1) 7771 tmp = all_mddevs.next; 7772 else 7773 tmp = mddev->all_mddevs.next; 7774 if (tmp != &all_mddevs) 7775 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs)); 7776 else { 7777 next_mddev = (void*)2; 7778 *pos = 0x10000; 7779 } 7780 spin_unlock(&all_mddevs_lock); 7781 7782 if (v != (void*)1) 7783 mddev_put(mddev); 7784 return next_mddev; 7785 7786 } 7787 7788 static void md_seq_stop(struct seq_file *seq, void *v) 7789 { 7790 struct mddev *mddev = v; 7791 7792 if (mddev && v != (void*)1 && v != (void*)2) 7793 mddev_put(mddev); 7794 } 7795 7796 static int md_seq_show(struct seq_file *seq, void *v) 7797 { 7798 struct mddev *mddev = v; 7799 sector_t sectors; 7800 struct md_rdev *rdev; 7801 7802 if (v == (void*)1) { 7803 struct md_personality *pers; 7804 seq_printf(seq, "Personalities : "); 7805 spin_lock(&pers_lock); 7806 list_for_each_entry(pers, &pers_list, list) 7807 seq_printf(seq, "[%s] ", pers->name); 7808 7809 spin_unlock(&pers_lock); 7810 seq_printf(seq, "\n"); 7811 seq->poll_event = atomic_read(&md_event_count); 7812 return 0; 7813 } 7814 if (v == (void*)2) { 7815 status_unused(seq); 7816 return 0; 7817 } 7818 7819 spin_lock(&mddev->lock); 7820 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { 7821 seq_printf(seq, "%s : %sactive", mdname(mddev), 7822 mddev->pers ? "" : "in"); 7823 if (mddev->pers) { 7824 if (mddev->ro==1) 7825 seq_printf(seq, " (read-only)"); 7826 if (mddev->ro==2) 7827 seq_printf(seq, " (auto-read-only)"); 7828 seq_printf(seq, " %s", mddev->pers->name); 7829 } 7830 7831 sectors = 0; 7832 rcu_read_lock(); 7833 rdev_for_each_rcu(rdev, mddev) { 7834 char b[BDEVNAME_SIZE]; 7835 seq_printf(seq, " %s[%d]", 7836 bdevname(rdev->bdev,b), rdev->desc_nr); 7837 if (test_bit(WriteMostly, &rdev->flags)) 7838 seq_printf(seq, "(W)"); 7839 if (test_bit(Journal, &rdev->flags)) 7840 seq_printf(seq, "(J)"); 7841 if (test_bit(Faulty, &rdev->flags)) { 7842 seq_printf(seq, "(F)"); 7843 continue; 7844 } 7845 if (rdev->raid_disk < 0) 7846 seq_printf(seq, "(S)"); /* spare */ 7847 if (test_bit(Replacement, &rdev->flags)) 7848 seq_printf(seq, "(R)"); 7849 sectors += rdev->sectors; 7850 } 7851 rcu_read_unlock(); 7852 7853 if (!list_empty(&mddev->disks)) { 7854 if (mddev->pers) 7855 seq_printf(seq, "\n %llu blocks", 7856 (unsigned long long) 7857 mddev->array_sectors / 2); 7858 else 7859 seq_printf(seq, "\n %llu blocks", 7860 (unsigned long long)sectors / 2); 7861 } 7862 if (mddev->persistent) { 7863 if (mddev->major_version != 0 || 7864 mddev->minor_version != 90) { 7865 seq_printf(seq," super %d.%d", 7866 mddev->major_version, 7867 mddev->minor_version); 7868 } 7869 } else if (mddev->external) 7870 seq_printf(seq, " super external:%s", 7871 mddev->metadata_type); 7872 else 7873 seq_printf(seq, " super non-persistent"); 7874 7875 if (mddev->pers) { 7876 mddev->pers->status(seq, mddev); 7877 seq_printf(seq, "\n "); 7878 if (mddev->pers->sync_request) { 7879 if (status_resync(seq, mddev)) 7880 seq_printf(seq, "\n "); 7881 } 7882 } else 7883 seq_printf(seq, "\n "); 7884 7885 md_bitmap_status(seq, mddev->bitmap); 7886 7887 seq_printf(seq, "\n"); 7888 } 7889 spin_unlock(&mddev->lock); 7890 7891 return 0; 7892 } 7893 7894 static const struct seq_operations md_seq_ops = { 7895 .start = md_seq_start, 7896 .next = md_seq_next, 7897 .stop = md_seq_stop, 7898 .show = md_seq_show, 7899 }; 7900 7901 static int md_seq_open(struct inode *inode, struct file *file) 7902 { 7903 struct seq_file *seq; 7904 int error; 7905 7906 error = seq_open(file, &md_seq_ops); 7907 if (error) 7908 return error; 7909 7910 seq = file->private_data; 7911 seq->poll_event = atomic_read(&md_event_count); 7912 return error; 7913 } 7914 7915 static int md_unloading; 7916 static __poll_t mdstat_poll(struct file *filp, poll_table *wait) 7917 { 7918 struct seq_file *seq = filp->private_data; 7919 __poll_t mask; 7920 7921 if (md_unloading) 7922 return EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI; 7923 poll_wait(filp, &md_event_waiters, wait); 7924 7925 /* always allow read */ 7926 mask = EPOLLIN | EPOLLRDNORM; 7927 7928 if (seq->poll_event != atomic_read(&md_event_count)) 7929 mask |= EPOLLERR | EPOLLPRI; 7930 return mask; 7931 } 7932 7933 static const struct file_operations md_seq_fops = { 7934 .owner = THIS_MODULE, 7935 .open = md_seq_open, 7936 .read = seq_read, 7937 .llseek = seq_lseek, 7938 .release = seq_release, 7939 .poll = mdstat_poll, 7940 }; 7941 7942 int register_md_personality(struct md_personality *p) 7943 { 7944 pr_debug("md: %s personality registered for level %d\n", 7945 p->name, p->level); 7946 spin_lock(&pers_lock); 7947 list_add_tail(&p->list, &pers_list); 7948 spin_unlock(&pers_lock); 7949 return 0; 7950 } 7951 EXPORT_SYMBOL(register_md_personality); 7952 7953 int unregister_md_personality(struct md_personality *p) 7954 { 7955 pr_debug("md: %s personality unregistered\n", p->name); 7956 spin_lock(&pers_lock); 7957 list_del_init(&p->list); 7958 spin_unlock(&pers_lock); 7959 return 0; 7960 } 7961 EXPORT_SYMBOL(unregister_md_personality); 7962 7963 int register_md_cluster_operations(struct md_cluster_operations *ops, 7964 struct module *module) 7965 { 7966 int ret = 0; 7967 spin_lock(&pers_lock); 7968 if (md_cluster_ops != NULL) 7969 ret = -EALREADY; 7970 else { 7971 md_cluster_ops = ops; 7972 md_cluster_mod = module; 7973 } 7974 spin_unlock(&pers_lock); 7975 return ret; 7976 } 7977 EXPORT_SYMBOL(register_md_cluster_operations); 7978 7979 int unregister_md_cluster_operations(void) 7980 { 7981 spin_lock(&pers_lock); 7982 md_cluster_ops = NULL; 7983 spin_unlock(&pers_lock); 7984 return 0; 7985 } 7986 EXPORT_SYMBOL(unregister_md_cluster_operations); 7987 7988 int md_setup_cluster(struct mddev *mddev, int nodes) 7989 { 7990 if (!md_cluster_ops) 7991 request_module("md-cluster"); 7992 spin_lock(&pers_lock); 7993 /* ensure module won't be unloaded */ 7994 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) { 7995 pr_warn("can't find md-cluster module or get it's reference.\n"); 7996 spin_unlock(&pers_lock); 7997 return -ENOENT; 7998 } 7999 spin_unlock(&pers_lock); 8000 8001 return md_cluster_ops->join(mddev, nodes); 8002 } 8003 8004 void md_cluster_stop(struct mddev *mddev) 8005 { 8006 if (!md_cluster_ops) 8007 return; 8008 md_cluster_ops->leave(mddev); 8009 module_put(md_cluster_mod); 8010 } 8011 8012 static int is_mddev_idle(struct mddev *mddev, int init) 8013 { 8014 struct md_rdev *rdev; 8015 int idle; 8016 int curr_events; 8017 8018 idle = 1; 8019 rcu_read_lock(); 8020 rdev_for_each_rcu(rdev, mddev) { 8021 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk; 8022 curr_events = (int)part_stat_read_accum(&disk->part0, sectors) - 8023 atomic_read(&disk->sync_io); 8024 /* sync IO will cause sync_io to increase before the disk_stats 8025 * as sync_io is counted when a request starts, and 8026 * disk_stats is counted when it completes. 8027 * So resync activity will cause curr_events to be smaller than 8028 * when there was no such activity. 8029 * non-sync IO will cause disk_stat to increase without 8030 * increasing sync_io so curr_events will (eventually) 8031 * be larger than it was before. Once it becomes 8032 * substantially larger, the test below will cause 8033 * the array to appear non-idle, and resync will slow 8034 * down. 8035 * If there is a lot of outstanding resync activity when 8036 * we set last_event to curr_events, then all that activity 8037 * completing might cause the array to appear non-idle 8038 * and resync will be slowed down even though there might 8039 * not have been non-resync activity. This will only 8040 * happen once though. 'last_events' will soon reflect 8041 * the state where there is little or no outstanding 8042 * resync requests, and further resync activity will 8043 * always make curr_events less than last_events. 8044 * 8045 */ 8046 if (init || curr_events - rdev->last_events > 64) { 8047 rdev->last_events = curr_events; 8048 idle = 0; 8049 } 8050 } 8051 rcu_read_unlock(); 8052 return idle; 8053 } 8054 8055 void md_done_sync(struct mddev *mddev, int blocks, int ok) 8056 { 8057 /* another "blocks" (512byte) blocks have been synced */ 8058 atomic_sub(blocks, &mddev->recovery_active); 8059 wake_up(&mddev->recovery_wait); 8060 if (!ok) { 8061 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8062 set_bit(MD_RECOVERY_ERROR, &mddev->recovery); 8063 md_wakeup_thread(mddev->thread); 8064 // stop recovery, signal do_sync .... 8065 } 8066 } 8067 EXPORT_SYMBOL(md_done_sync); 8068 8069 /* md_write_start(mddev, bi) 8070 * If we need to update some array metadata (e.g. 'active' flag 8071 * in superblock) before writing, schedule a superblock update 8072 * and wait for it to complete. 8073 * A return value of 'false' means that the write wasn't recorded 8074 * and cannot proceed as the array is being suspend. 8075 */ 8076 bool md_write_start(struct mddev *mddev, struct bio *bi) 8077 { 8078 int did_change = 0; 8079 8080 if (bio_data_dir(bi) != WRITE) 8081 return true; 8082 8083 BUG_ON(mddev->ro == 1); 8084 if (mddev->ro == 2) { 8085 /* need to switch to read/write */ 8086 mddev->ro = 0; 8087 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8088 md_wakeup_thread(mddev->thread); 8089 md_wakeup_thread(mddev->sync_thread); 8090 did_change = 1; 8091 } 8092 rcu_read_lock(); 8093 percpu_ref_get(&mddev->writes_pending); 8094 smp_mb(); /* Match smp_mb in set_in_sync() */ 8095 if (mddev->safemode == 1) 8096 mddev->safemode = 0; 8097 /* sync_checkers is always 0 when writes_pending is in per-cpu mode */ 8098 if (mddev->in_sync || mddev->sync_checkers) { 8099 spin_lock(&mddev->lock); 8100 if (mddev->in_sync) { 8101 mddev->in_sync = 0; 8102 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8103 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8104 md_wakeup_thread(mddev->thread); 8105 did_change = 1; 8106 } 8107 spin_unlock(&mddev->lock); 8108 } 8109 rcu_read_unlock(); 8110 if (did_change) 8111 sysfs_notify_dirent_safe(mddev->sysfs_state); 8112 if (!mddev->has_superblocks) 8113 return true; 8114 wait_event(mddev->sb_wait, 8115 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) || 8116 mddev->suspended); 8117 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 8118 percpu_ref_put(&mddev->writes_pending); 8119 return false; 8120 } 8121 return true; 8122 } 8123 EXPORT_SYMBOL(md_write_start); 8124 8125 /* md_write_inc can only be called when md_write_start() has 8126 * already been called at least once of the current request. 8127 * It increments the counter and is useful when a single request 8128 * is split into several parts. Each part causes an increment and 8129 * so needs a matching md_write_end(). 8130 * Unlike md_write_start(), it is safe to call md_write_inc() inside 8131 * a spinlocked region. 8132 */ 8133 void md_write_inc(struct mddev *mddev, struct bio *bi) 8134 { 8135 if (bio_data_dir(bi) != WRITE) 8136 return; 8137 WARN_ON_ONCE(mddev->in_sync || mddev->ro); 8138 percpu_ref_get(&mddev->writes_pending); 8139 } 8140 EXPORT_SYMBOL(md_write_inc); 8141 8142 void md_write_end(struct mddev *mddev) 8143 { 8144 percpu_ref_put(&mddev->writes_pending); 8145 8146 if (mddev->safemode == 2) 8147 md_wakeup_thread(mddev->thread); 8148 else if (mddev->safemode_delay) 8149 /* The roundup() ensures this only performs locking once 8150 * every ->safemode_delay jiffies 8151 */ 8152 mod_timer(&mddev->safemode_timer, 8153 roundup(jiffies, mddev->safemode_delay) + 8154 mddev->safemode_delay); 8155 } 8156 8157 EXPORT_SYMBOL(md_write_end); 8158 8159 /* md_allow_write(mddev) 8160 * Calling this ensures that the array is marked 'active' so that writes 8161 * may proceed without blocking. It is important to call this before 8162 * attempting a GFP_KERNEL allocation while holding the mddev lock. 8163 * Must be called with mddev_lock held. 8164 */ 8165 void md_allow_write(struct mddev *mddev) 8166 { 8167 if (!mddev->pers) 8168 return; 8169 if (mddev->ro) 8170 return; 8171 if (!mddev->pers->sync_request) 8172 return; 8173 8174 spin_lock(&mddev->lock); 8175 if (mddev->in_sync) { 8176 mddev->in_sync = 0; 8177 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8178 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8179 if (mddev->safemode_delay && 8180 mddev->safemode == 0) 8181 mddev->safemode = 1; 8182 spin_unlock(&mddev->lock); 8183 md_update_sb(mddev, 0); 8184 sysfs_notify_dirent_safe(mddev->sysfs_state); 8185 /* wait for the dirty state to be recorded in the metadata */ 8186 wait_event(mddev->sb_wait, 8187 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 8188 } else 8189 spin_unlock(&mddev->lock); 8190 } 8191 EXPORT_SYMBOL_GPL(md_allow_write); 8192 8193 #define SYNC_MARKS 10 8194 #define SYNC_MARK_STEP (3*HZ) 8195 #define UPDATE_FREQUENCY (5*60*HZ) 8196 void md_do_sync(struct md_thread *thread) 8197 { 8198 struct mddev *mddev = thread->mddev; 8199 struct mddev *mddev2; 8200 unsigned int currspeed = 0, 8201 window; 8202 sector_t max_sectors,j, io_sectors, recovery_done; 8203 unsigned long mark[SYNC_MARKS]; 8204 unsigned long update_time; 8205 sector_t mark_cnt[SYNC_MARKS]; 8206 int last_mark,m; 8207 struct list_head *tmp; 8208 sector_t last_check; 8209 int skipped = 0; 8210 struct md_rdev *rdev; 8211 char *desc, *action = NULL; 8212 struct blk_plug plug; 8213 int ret; 8214 8215 /* just incase thread restarts... */ 8216 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 8217 test_bit(MD_RECOVERY_WAIT, &mddev->recovery)) 8218 return; 8219 if (mddev->ro) {/* never try to sync a read-only array */ 8220 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8221 return; 8222 } 8223 8224 if (mddev_is_clustered(mddev)) { 8225 ret = md_cluster_ops->resync_start(mddev); 8226 if (ret) 8227 goto skip; 8228 8229 set_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags); 8230 if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 8231 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) || 8232 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) 8233 && ((unsigned long long)mddev->curr_resync_completed 8234 < (unsigned long long)mddev->resync_max_sectors)) 8235 goto skip; 8236 } 8237 8238 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8239 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 8240 desc = "data-check"; 8241 action = "check"; 8242 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 8243 desc = "requested-resync"; 8244 action = "repair"; 8245 } else 8246 desc = "resync"; 8247 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 8248 desc = "reshape"; 8249 else 8250 desc = "recovery"; 8251 8252 mddev->last_sync_action = action ?: desc; 8253 8254 /* we overload curr_resync somewhat here. 8255 * 0 == not engaged in resync at all 8256 * 2 == checking that there is no conflict with another sync 8257 * 1 == like 2, but have yielded to allow conflicting resync to 8258 * commense 8259 * other == active in resync - this many blocks 8260 * 8261 * Before starting a resync we must have set curr_resync to 8262 * 2, and then checked that every "conflicting" array has curr_resync 8263 * less than ours. When we find one that is the same or higher 8264 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync 8265 * to 1 if we choose to yield (based arbitrarily on address of mddev structure). 8266 * This will mean we have to start checking from the beginning again. 8267 * 8268 */ 8269 8270 do { 8271 int mddev2_minor = -1; 8272 mddev->curr_resync = 2; 8273 8274 try_again: 8275 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8276 goto skip; 8277 for_each_mddev(mddev2, tmp) { 8278 if (mddev2 == mddev) 8279 continue; 8280 if (!mddev->parallel_resync 8281 && mddev2->curr_resync 8282 && match_mddev_units(mddev, mddev2)) { 8283 DEFINE_WAIT(wq); 8284 if (mddev < mddev2 && mddev->curr_resync == 2) { 8285 /* arbitrarily yield */ 8286 mddev->curr_resync = 1; 8287 wake_up(&resync_wait); 8288 } 8289 if (mddev > mddev2 && mddev->curr_resync == 1) 8290 /* no need to wait here, we can wait the next 8291 * time 'round when curr_resync == 2 8292 */ 8293 continue; 8294 /* We need to wait 'interruptible' so as not to 8295 * contribute to the load average, and not to 8296 * be caught by 'softlockup' 8297 */ 8298 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE); 8299 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8300 mddev2->curr_resync >= mddev->curr_resync) { 8301 if (mddev2_minor != mddev2->md_minor) { 8302 mddev2_minor = mddev2->md_minor; 8303 pr_info("md: delaying %s of %s until %s has finished (they share one or more physical units)\n", 8304 desc, mdname(mddev), 8305 mdname(mddev2)); 8306 } 8307 mddev_put(mddev2); 8308 if (signal_pending(current)) 8309 flush_signals(current); 8310 schedule(); 8311 finish_wait(&resync_wait, &wq); 8312 goto try_again; 8313 } 8314 finish_wait(&resync_wait, &wq); 8315 } 8316 } 8317 } while (mddev->curr_resync < 2); 8318 8319 j = 0; 8320 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8321 /* resync follows the size requested by the personality, 8322 * which defaults to physical size, but can be virtual size 8323 */ 8324 max_sectors = mddev->resync_max_sectors; 8325 atomic64_set(&mddev->resync_mismatches, 0); 8326 /* we don't use the checkpoint if there's a bitmap */ 8327 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 8328 j = mddev->resync_min; 8329 else if (!mddev->bitmap) 8330 j = mddev->recovery_cp; 8331 8332 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 8333 max_sectors = mddev->resync_max_sectors; 8334 /* 8335 * If the original node aborts reshaping then we continue the 8336 * reshaping, so set j again to avoid restart reshape from the 8337 * first beginning 8338 */ 8339 if (mddev_is_clustered(mddev) && 8340 mddev->reshape_position != MaxSector) 8341 j = mddev->reshape_position; 8342 } else { 8343 /* recovery follows the physical size of devices */ 8344 max_sectors = mddev->dev_sectors; 8345 j = MaxSector; 8346 rcu_read_lock(); 8347 rdev_for_each_rcu(rdev, mddev) 8348 if (rdev->raid_disk >= 0 && 8349 !test_bit(Journal, &rdev->flags) && 8350 !test_bit(Faulty, &rdev->flags) && 8351 !test_bit(In_sync, &rdev->flags) && 8352 rdev->recovery_offset < j) 8353 j = rdev->recovery_offset; 8354 rcu_read_unlock(); 8355 8356 /* If there is a bitmap, we need to make sure all 8357 * writes that started before we added a spare 8358 * complete before we start doing a recovery. 8359 * Otherwise the write might complete and (via 8360 * bitmap_endwrite) set a bit in the bitmap after the 8361 * recovery has checked that bit and skipped that 8362 * region. 8363 */ 8364 if (mddev->bitmap) { 8365 mddev->pers->quiesce(mddev, 1); 8366 mddev->pers->quiesce(mddev, 0); 8367 } 8368 } 8369 8370 pr_info("md: %s of RAID array %s\n", desc, mdname(mddev)); 8371 pr_debug("md: minimum _guaranteed_ speed: %d KB/sec/disk.\n", speed_min(mddev)); 8372 pr_debug("md: using maximum available idle IO bandwidth (but not more than %d KB/sec) for %s.\n", 8373 speed_max(mddev), desc); 8374 8375 is_mddev_idle(mddev, 1); /* this initializes IO event counters */ 8376 8377 io_sectors = 0; 8378 for (m = 0; m < SYNC_MARKS; m++) { 8379 mark[m] = jiffies; 8380 mark_cnt[m] = io_sectors; 8381 } 8382 last_mark = 0; 8383 mddev->resync_mark = mark[last_mark]; 8384 mddev->resync_mark_cnt = mark_cnt[last_mark]; 8385 8386 /* 8387 * Tune reconstruction: 8388 */ 8389 window = 32*(PAGE_SIZE/512); 8390 pr_debug("md: using %dk window, over a total of %lluk.\n", 8391 window/2, (unsigned long long)max_sectors/2); 8392 8393 atomic_set(&mddev->recovery_active, 0); 8394 last_check = 0; 8395 8396 if (j>2) { 8397 pr_debug("md: resuming %s of %s from checkpoint.\n", 8398 desc, mdname(mddev)); 8399 mddev->curr_resync = j; 8400 } else 8401 mddev->curr_resync = 3; /* no longer delayed */ 8402 mddev->curr_resync_completed = j; 8403 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 8404 md_new_event(mddev); 8405 update_time = jiffies; 8406 8407 blk_start_plug(&plug); 8408 while (j < max_sectors) { 8409 sector_t sectors; 8410 8411 skipped = 0; 8412 8413 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8414 ((mddev->curr_resync > mddev->curr_resync_completed && 8415 (mddev->curr_resync - mddev->curr_resync_completed) 8416 > (max_sectors >> 4)) || 8417 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) || 8418 (j - mddev->curr_resync_completed)*2 8419 >= mddev->resync_max - mddev->curr_resync_completed || 8420 mddev->curr_resync_completed > mddev->resync_max 8421 )) { 8422 /* time to update curr_resync_completed */ 8423 wait_event(mddev->recovery_wait, 8424 atomic_read(&mddev->recovery_active) == 0); 8425 mddev->curr_resync_completed = j; 8426 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 8427 j > mddev->recovery_cp) 8428 mddev->recovery_cp = j; 8429 update_time = jiffies; 8430 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8431 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 8432 } 8433 8434 while (j >= mddev->resync_max && 8435 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8436 /* As this condition is controlled by user-space, 8437 * we can block indefinitely, so use '_interruptible' 8438 * to avoid triggering warnings. 8439 */ 8440 flush_signals(current); /* just in case */ 8441 wait_event_interruptible(mddev->recovery_wait, 8442 mddev->resync_max > j 8443 || test_bit(MD_RECOVERY_INTR, 8444 &mddev->recovery)); 8445 } 8446 8447 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8448 break; 8449 8450 sectors = mddev->pers->sync_request(mddev, j, &skipped); 8451 if (sectors == 0) { 8452 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8453 break; 8454 } 8455 8456 if (!skipped) { /* actual IO requested */ 8457 io_sectors += sectors; 8458 atomic_add(sectors, &mddev->recovery_active); 8459 } 8460 8461 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8462 break; 8463 8464 j += sectors; 8465 if (j > max_sectors) 8466 /* when skipping, extra large numbers can be returned. */ 8467 j = max_sectors; 8468 if (j > 2) 8469 mddev->curr_resync = j; 8470 mddev->curr_mark_cnt = io_sectors; 8471 if (last_check == 0) 8472 /* this is the earliest that rebuild will be 8473 * visible in /proc/mdstat 8474 */ 8475 md_new_event(mddev); 8476 8477 if (last_check + window > io_sectors || j == max_sectors) 8478 continue; 8479 8480 last_check = io_sectors; 8481 repeat: 8482 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { 8483 /* step marks */ 8484 int next = (last_mark+1) % SYNC_MARKS; 8485 8486 mddev->resync_mark = mark[next]; 8487 mddev->resync_mark_cnt = mark_cnt[next]; 8488 mark[next] = jiffies; 8489 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); 8490 last_mark = next; 8491 } 8492 8493 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8494 break; 8495 8496 /* 8497 * this loop exits only if either when we are slower than 8498 * the 'hard' speed limit, or the system was IO-idle for 8499 * a jiffy. 8500 * the system might be non-idle CPU-wise, but we only care 8501 * about not overloading the IO subsystem. (things like an 8502 * e2fsck being done on the RAID array should execute fast) 8503 */ 8504 cond_resched(); 8505 8506 recovery_done = io_sectors - atomic_read(&mddev->recovery_active); 8507 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2 8508 /((jiffies-mddev->resync_mark)/HZ +1) +1; 8509 8510 if (currspeed > speed_min(mddev)) { 8511 if (currspeed > speed_max(mddev)) { 8512 msleep(500); 8513 goto repeat; 8514 } 8515 if (!is_mddev_idle(mddev, 0)) { 8516 /* 8517 * Give other IO more of a chance. 8518 * The faster the devices, the less we wait. 8519 */ 8520 wait_event(mddev->recovery_wait, 8521 !atomic_read(&mddev->recovery_active)); 8522 } 8523 } 8524 } 8525 pr_info("md: %s: %s %s.\n",mdname(mddev), desc, 8526 test_bit(MD_RECOVERY_INTR, &mddev->recovery) 8527 ? "interrupted" : "done"); 8528 /* 8529 * this also signals 'finished resyncing' to md_stop 8530 */ 8531 blk_finish_plug(&plug); 8532 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); 8533 8534 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8535 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8536 mddev->curr_resync > 3) { 8537 mddev->curr_resync_completed = mddev->curr_resync; 8538 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 8539 } 8540 mddev->pers->sync_request(mddev, max_sectors, &skipped); 8541 8542 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && 8543 mddev->curr_resync > 3) { 8544 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8545 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8546 if (mddev->curr_resync >= mddev->recovery_cp) { 8547 pr_debug("md: checkpointing %s of %s.\n", 8548 desc, mdname(mddev)); 8549 if (test_bit(MD_RECOVERY_ERROR, 8550 &mddev->recovery)) 8551 mddev->recovery_cp = 8552 mddev->curr_resync_completed; 8553 else 8554 mddev->recovery_cp = 8555 mddev->curr_resync; 8556 } 8557 } else 8558 mddev->recovery_cp = MaxSector; 8559 } else { 8560 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8561 mddev->curr_resync = MaxSector; 8562 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8563 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) { 8564 rcu_read_lock(); 8565 rdev_for_each_rcu(rdev, mddev) 8566 if (rdev->raid_disk >= 0 && 8567 mddev->delta_disks >= 0 && 8568 !test_bit(Journal, &rdev->flags) && 8569 !test_bit(Faulty, &rdev->flags) && 8570 !test_bit(In_sync, &rdev->flags) && 8571 rdev->recovery_offset < mddev->curr_resync) 8572 rdev->recovery_offset = mddev->curr_resync; 8573 rcu_read_unlock(); 8574 } 8575 } 8576 } 8577 skip: 8578 /* set CHANGE_PENDING here since maybe another update is needed, 8579 * so other nodes are informed. It should be harmless for normal 8580 * raid */ 8581 set_mask_bits(&mddev->sb_flags, 0, 8582 BIT(MD_SB_CHANGE_PENDING) | BIT(MD_SB_CHANGE_DEVS)); 8583 8584 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8585 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8586 mddev->delta_disks > 0 && 8587 mddev->pers->finish_reshape && 8588 mddev->pers->size && 8589 mddev->queue) { 8590 mddev_lock_nointr(mddev); 8591 md_set_array_sectors(mddev, mddev->pers->size(mddev, 0, 0)); 8592 mddev_unlock(mddev); 8593 if (!mddev_is_clustered(mddev)) { 8594 set_capacity(mddev->gendisk, mddev->array_sectors); 8595 revalidate_disk(mddev->gendisk); 8596 } 8597 } 8598 8599 spin_lock(&mddev->lock); 8600 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8601 /* We completed so min/max setting can be forgotten if used. */ 8602 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 8603 mddev->resync_min = 0; 8604 mddev->resync_max = MaxSector; 8605 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 8606 mddev->resync_min = mddev->curr_resync_completed; 8607 set_bit(MD_RECOVERY_DONE, &mddev->recovery); 8608 mddev->curr_resync = 0; 8609 spin_unlock(&mddev->lock); 8610 8611 wake_up(&resync_wait); 8612 md_wakeup_thread(mddev->thread); 8613 return; 8614 } 8615 EXPORT_SYMBOL_GPL(md_do_sync); 8616 8617 static int remove_and_add_spares(struct mddev *mddev, 8618 struct md_rdev *this) 8619 { 8620 struct md_rdev *rdev; 8621 int spares = 0; 8622 int removed = 0; 8623 bool remove_some = false; 8624 8625 if (this && test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 8626 /* Mustn't remove devices when resync thread is running */ 8627 return 0; 8628 8629 rdev_for_each(rdev, mddev) { 8630 if ((this == NULL || rdev == this) && 8631 rdev->raid_disk >= 0 && 8632 !test_bit(Blocked, &rdev->flags) && 8633 test_bit(Faulty, &rdev->flags) && 8634 atomic_read(&rdev->nr_pending)==0) { 8635 /* Faulty non-Blocked devices with nr_pending == 0 8636 * never get nr_pending incremented, 8637 * never get Faulty cleared, and never get Blocked set. 8638 * So we can synchronize_rcu now rather than once per device 8639 */ 8640 remove_some = true; 8641 set_bit(RemoveSynchronized, &rdev->flags); 8642 } 8643 } 8644 8645 if (remove_some) 8646 synchronize_rcu(); 8647 rdev_for_each(rdev, mddev) { 8648 if ((this == NULL || rdev == this) && 8649 rdev->raid_disk >= 0 && 8650 !test_bit(Blocked, &rdev->flags) && 8651 ((test_bit(RemoveSynchronized, &rdev->flags) || 8652 (!test_bit(In_sync, &rdev->flags) && 8653 !test_bit(Journal, &rdev->flags))) && 8654 atomic_read(&rdev->nr_pending)==0)) { 8655 if (mddev->pers->hot_remove_disk( 8656 mddev, rdev) == 0) { 8657 sysfs_unlink_rdev(mddev, rdev); 8658 rdev->saved_raid_disk = rdev->raid_disk; 8659 rdev->raid_disk = -1; 8660 removed++; 8661 } 8662 } 8663 if (remove_some && test_bit(RemoveSynchronized, &rdev->flags)) 8664 clear_bit(RemoveSynchronized, &rdev->flags); 8665 } 8666 8667 if (removed && mddev->kobj.sd) 8668 sysfs_notify(&mddev->kobj, NULL, "degraded"); 8669 8670 if (this && removed) 8671 goto no_add; 8672 8673 rdev_for_each(rdev, mddev) { 8674 if (this && this != rdev) 8675 continue; 8676 if (test_bit(Candidate, &rdev->flags)) 8677 continue; 8678 if (rdev->raid_disk >= 0 && 8679 !test_bit(In_sync, &rdev->flags) && 8680 !test_bit(Journal, &rdev->flags) && 8681 !test_bit(Faulty, &rdev->flags)) 8682 spares++; 8683 if (rdev->raid_disk >= 0) 8684 continue; 8685 if (test_bit(Faulty, &rdev->flags)) 8686 continue; 8687 if (!test_bit(Journal, &rdev->flags)) { 8688 if (mddev->ro && 8689 ! (rdev->saved_raid_disk >= 0 && 8690 !test_bit(Bitmap_sync, &rdev->flags))) 8691 continue; 8692 8693 rdev->recovery_offset = 0; 8694 } 8695 if (mddev->pers-> 8696 hot_add_disk(mddev, rdev) == 0) { 8697 if (sysfs_link_rdev(mddev, rdev)) 8698 /* failure here is OK */; 8699 if (!test_bit(Journal, &rdev->flags)) 8700 spares++; 8701 md_new_event(mddev); 8702 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 8703 } 8704 } 8705 no_add: 8706 if (removed) 8707 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 8708 return spares; 8709 } 8710 8711 static void md_start_sync(struct work_struct *ws) 8712 { 8713 struct mddev *mddev = container_of(ws, struct mddev, del_work); 8714 8715 mddev->sync_thread = md_register_thread(md_do_sync, 8716 mddev, 8717 "resync"); 8718 if (!mddev->sync_thread) { 8719 pr_warn("%s: could not start resync thread...\n", 8720 mdname(mddev)); 8721 /* leave the spares where they are, it shouldn't hurt */ 8722 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8723 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 8724 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 8725 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 8726 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 8727 wake_up(&resync_wait); 8728 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 8729 &mddev->recovery)) 8730 if (mddev->sysfs_action) 8731 sysfs_notify_dirent_safe(mddev->sysfs_action); 8732 } else 8733 md_wakeup_thread(mddev->sync_thread); 8734 sysfs_notify_dirent_safe(mddev->sysfs_action); 8735 md_new_event(mddev); 8736 } 8737 8738 /* 8739 * This routine is regularly called by all per-raid-array threads to 8740 * deal with generic issues like resync and super-block update. 8741 * Raid personalities that don't have a thread (linear/raid0) do not 8742 * need this as they never do any recovery or update the superblock. 8743 * 8744 * It does not do any resync itself, but rather "forks" off other threads 8745 * to do that as needed. 8746 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in 8747 * "->recovery" and create a thread at ->sync_thread. 8748 * When the thread finishes it sets MD_RECOVERY_DONE 8749 * and wakeups up this thread which will reap the thread and finish up. 8750 * This thread also removes any faulty devices (with nr_pending == 0). 8751 * 8752 * The overall approach is: 8753 * 1/ if the superblock needs updating, update it. 8754 * 2/ If a recovery thread is running, don't do anything else. 8755 * 3/ If recovery has finished, clean up, possibly marking spares active. 8756 * 4/ If there are any faulty devices, remove them. 8757 * 5/ If array is degraded, try to add spares devices 8758 * 6/ If array has spares or is not in-sync, start a resync thread. 8759 */ 8760 void md_check_recovery(struct mddev *mddev) 8761 { 8762 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags) && mddev->sb_flags) { 8763 /* Write superblock - thread that called mddev_suspend() 8764 * holds reconfig_mutex for us. 8765 */ 8766 set_bit(MD_UPDATING_SB, &mddev->flags); 8767 smp_mb__after_atomic(); 8768 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags)) 8769 md_update_sb(mddev, 0); 8770 clear_bit_unlock(MD_UPDATING_SB, &mddev->flags); 8771 wake_up(&mddev->sb_wait); 8772 } 8773 8774 if (mddev->suspended) 8775 return; 8776 8777 if (mddev->bitmap) 8778 md_bitmap_daemon_work(mddev); 8779 8780 if (signal_pending(current)) { 8781 if (mddev->pers->sync_request && !mddev->external) { 8782 pr_debug("md: %s in immediate safe mode\n", 8783 mdname(mddev)); 8784 mddev->safemode = 2; 8785 } 8786 flush_signals(current); 8787 } 8788 8789 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 8790 return; 8791 if ( ! ( 8792 (mddev->sb_flags & ~ (1<<MD_SB_CHANGE_PENDING)) || 8793 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 8794 test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 8795 (mddev->external == 0 && mddev->safemode == 1) || 8796 (mddev->safemode == 2 8797 && !mddev->in_sync && mddev->recovery_cp == MaxSector) 8798 )) 8799 return; 8800 8801 if (mddev_trylock(mddev)) { 8802 int spares = 0; 8803 8804 if (!mddev->external && mddev->safemode == 1) 8805 mddev->safemode = 0; 8806 8807 if (mddev->ro) { 8808 struct md_rdev *rdev; 8809 if (!mddev->external && mddev->in_sync) 8810 /* 'Blocked' flag not needed as failed devices 8811 * will be recorded if array switched to read/write. 8812 * Leaving it set will prevent the device 8813 * from being removed. 8814 */ 8815 rdev_for_each(rdev, mddev) 8816 clear_bit(Blocked, &rdev->flags); 8817 /* On a read-only array we can: 8818 * - remove failed devices 8819 * - add already-in_sync devices if the array itself 8820 * is in-sync. 8821 * As we only add devices that are already in-sync, 8822 * we can activate the spares immediately. 8823 */ 8824 remove_and_add_spares(mddev, NULL); 8825 /* There is no thread, but we need to call 8826 * ->spare_active and clear saved_raid_disk 8827 */ 8828 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8829 md_reap_sync_thread(mddev); 8830 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 8831 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8832 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8833 goto unlock; 8834 } 8835 8836 if (mddev_is_clustered(mddev)) { 8837 struct md_rdev *rdev; 8838 /* kick the device if another node issued a 8839 * remove disk. 8840 */ 8841 rdev_for_each(rdev, mddev) { 8842 if (test_and_clear_bit(ClusterRemove, &rdev->flags) && 8843 rdev->raid_disk < 0) 8844 md_kick_rdev_from_array(rdev); 8845 } 8846 } 8847 8848 if (!mddev->external && !mddev->in_sync) { 8849 spin_lock(&mddev->lock); 8850 set_in_sync(mddev); 8851 spin_unlock(&mddev->lock); 8852 } 8853 8854 if (mddev->sb_flags) 8855 md_update_sb(mddev, 0); 8856 8857 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 8858 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { 8859 /* resync/recovery still happening */ 8860 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8861 goto unlock; 8862 } 8863 if (mddev->sync_thread) { 8864 md_reap_sync_thread(mddev); 8865 goto unlock; 8866 } 8867 /* Set RUNNING before clearing NEEDED to avoid 8868 * any transients in the value of "sync_action". 8869 */ 8870 mddev->curr_resync_completed = 0; 8871 spin_lock(&mddev->lock); 8872 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 8873 spin_unlock(&mddev->lock); 8874 /* Clear some bits that don't mean anything, but 8875 * might be left set 8876 */ 8877 clear_bit(MD_RECOVERY_INTR, &mddev->recovery); 8878 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 8879 8880 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 8881 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 8882 goto not_running; 8883 /* no recovery is running. 8884 * remove any failed drives, then 8885 * add spares if possible. 8886 * Spares are also removed and re-added, to allow 8887 * the personality to fail the re-add. 8888 */ 8889 8890 if (mddev->reshape_position != MaxSector) { 8891 if (mddev->pers->check_reshape == NULL || 8892 mddev->pers->check_reshape(mddev) != 0) 8893 /* Cannot proceed */ 8894 goto not_running; 8895 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 8896 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 8897 } else if ((spares = remove_and_add_spares(mddev, NULL))) { 8898 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8899 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 8900 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 8901 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 8902 } else if (mddev->recovery_cp < MaxSector) { 8903 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8904 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 8905 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 8906 /* nothing to be done ... */ 8907 goto not_running; 8908 8909 if (mddev->pers->sync_request) { 8910 if (spares) { 8911 /* We are adding a device or devices to an array 8912 * which has the bitmap stored on all devices. 8913 * So make sure all bitmap pages get written 8914 */ 8915 md_bitmap_write_all(mddev->bitmap); 8916 } 8917 INIT_WORK(&mddev->del_work, md_start_sync); 8918 queue_work(md_misc_wq, &mddev->del_work); 8919 goto unlock; 8920 } 8921 not_running: 8922 if (!mddev->sync_thread) { 8923 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 8924 wake_up(&resync_wait); 8925 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 8926 &mddev->recovery)) 8927 if (mddev->sysfs_action) 8928 sysfs_notify_dirent_safe(mddev->sysfs_action); 8929 } 8930 unlock: 8931 wake_up(&mddev->sb_wait); 8932 mddev_unlock(mddev); 8933 } 8934 } 8935 EXPORT_SYMBOL(md_check_recovery); 8936 8937 void md_reap_sync_thread(struct mddev *mddev) 8938 { 8939 struct md_rdev *rdev; 8940 sector_t old_dev_sectors = mddev->dev_sectors; 8941 bool is_reshaped = false; 8942 8943 /* resync has finished, collect result */ 8944 md_unregister_thread(&mddev->sync_thread); 8945 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8946 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 8947 /* success...*/ 8948 /* activate any spares */ 8949 if (mddev->pers->spare_active(mddev)) { 8950 sysfs_notify(&mddev->kobj, NULL, 8951 "degraded"); 8952 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 8953 } 8954 } 8955 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8956 mddev->pers->finish_reshape) { 8957 mddev->pers->finish_reshape(mddev); 8958 if (mddev_is_clustered(mddev)) 8959 is_reshaped = true; 8960 } 8961 8962 /* If array is no-longer degraded, then any saved_raid_disk 8963 * information must be scrapped. 8964 */ 8965 if (!mddev->degraded) 8966 rdev_for_each(rdev, mddev) 8967 rdev->saved_raid_disk = -1; 8968 8969 md_update_sb(mddev, 1); 8970 /* MD_SB_CHANGE_PENDING should be cleared by md_update_sb, so we can 8971 * call resync_finish here if MD_CLUSTER_RESYNC_LOCKED is set by 8972 * clustered raid */ 8973 if (test_and_clear_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags)) 8974 md_cluster_ops->resync_finish(mddev); 8975 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 8976 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 8977 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8978 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 8979 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 8980 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 8981 /* 8982 * We call md_cluster_ops->update_size here because sync_size could 8983 * be changed by md_update_sb, and MD_RECOVERY_RESHAPE is cleared, 8984 * so it is time to update size across cluster. 8985 */ 8986 if (mddev_is_clustered(mddev) && is_reshaped 8987 && !test_bit(MD_CLOSING, &mddev->flags)) 8988 md_cluster_ops->update_size(mddev, old_dev_sectors); 8989 wake_up(&resync_wait); 8990 /* flag recovery needed just to double check */ 8991 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8992 sysfs_notify_dirent_safe(mddev->sysfs_action); 8993 md_new_event(mddev); 8994 if (mddev->event_work.func) 8995 queue_work(md_misc_wq, &mddev->event_work); 8996 } 8997 EXPORT_SYMBOL(md_reap_sync_thread); 8998 8999 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev) 9000 { 9001 sysfs_notify_dirent_safe(rdev->sysfs_state); 9002 wait_event_timeout(rdev->blocked_wait, 9003 !test_bit(Blocked, &rdev->flags) && 9004 !test_bit(BlockedBadBlocks, &rdev->flags), 9005 msecs_to_jiffies(5000)); 9006 rdev_dec_pending(rdev, mddev); 9007 } 9008 EXPORT_SYMBOL(md_wait_for_blocked_rdev); 9009 9010 void md_finish_reshape(struct mddev *mddev) 9011 { 9012 /* called be personality module when reshape completes. */ 9013 struct md_rdev *rdev; 9014 9015 rdev_for_each(rdev, mddev) { 9016 if (rdev->data_offset > rdev->new_data_offset) 9017 rdev->sectors += rdev->data_offset - rdev->new_data_offset; 9018 else 9019 rdev->sectors -= rdev->new_data_offset - rdev->data_offset; 9020 rdev->data_offset = rdev->new_data_offset; 9021 } 9022 } 9023 EXPORT_SYMBOL(md_finish_reshape); 9024 9025 /* Bad block management */ 9026 9027 /* Returns 1 on success, 0 on failure */ 9028 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 9029 int is_new) 9030 { 9031 struct mddev *mddev = rdev->mddev; 9032 int rv; 9033 if (is_new) 9034 s += rdev->new_data_offset; 9035 else 9036 s += rdev->data_offset; 9037 rv = badblocks_set(&rdev->badblocks, s, sectors, 0); 9038 if (rv == 0) { 9039 /* Make sure they get written out promptly */ 9040 if (test_bit(ExternalBbl, &rdev->flags)) 9041 sysfs_notify(&rdev->kobj, NULL, 9042 "unacknowledged_bad_blocks"); 9043 sysfs_notify_dirent_safe(rdev->sysfs_state); 9044 set_mask_bits(&mddev->sb_flags, 0, 9045 BIT(MD_SB_CHANGE_CLEAN) | BIT(MD_SB_CHANGE_PENDING)); 9046 md_wakeup_thread(rdev->mddev->thread); 9047 return 1; 9048 } else 9049 return 0; 9050 } 9051 EXPORT_SYMBOL_GPL(rdev_set_badblocks); 9052 9053 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 9054 int is_new) 9055 { 9056 int rv; 9057 if (is_new) 9058 s += rdev->new_data_offset; 9059 else 9060 s += rdev->data_offset; 9061 rv = badblocks_clear(&rdev->badblocks, s, sectors); 9062 if ((rv == 0) && test_bit(ExternalBbl, &rdev->flags)) 9063 sysfs_notify(&rdev->kobj, NULL, "bad_blocks"); 9064 return rv; 9065 } 9066 EXPORT_SYMBOL_GPL(rdev_clear_badblocks); 9067 9068 static int md_notify_reboot(struct notifier_block *this, 9069 unsigned long code, void *x) 9070 { 9071 struct list_head *tmp; 9072 struct mddev *mddev; 9073 int need_delay = 0; 9074 9075 for_each_mddev(mddev, tmp) { 9076 if (mddev_trylock(mddev)) { 9077 if (mddev->pers) 9078 __md_stop_writes(mddev); 9079 if (mddev->persistent) 9080 mddev->safemode = 2; 9081 mddev_unlock(mddev); 9082 } 9083 need_delay = 1; 9084 } 9085 /* 9086 * certain more exotic SCSI devices are known to be 9087 * volatile wrt too early system reboots. While the 9088 * right place to handle this issue is the given 9089 * driver, we do want to have a safe RAID driver ... 9090 */ 9091 if (need_delay) 9092 mdelay(1000*1); 9093 9094 return NOTIFY_DONE; 9095 } 9096 9097 static struct notifier_block md_notifier = { 9098 .notifier_call = md_notify_reboot, 9099 .next = NULL, 9100 .priority = INT_MAX, /* before any real devices */ 9101 }; 9102 9103 static void md_geninit(void) 9104 { 9105 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); 9106 9107 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops); 9108 } 9109 9110 static int __init md_init(void) 9111 { 9112 int ret = -ENOMEM; 9113 9114 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0); 9115 if (!md_wq) 9116 goto err_wq; 9117 9118 md_misc_wq = alloc_workqueue("md_misc", 0, 0); 9119 if (!md_misc_wq) 9120 goto err_misc_wq; 9121 9122 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0) 9123 goto err_md; 9124 9125 if ((ret = register_blkdev(0, "mdp")) < 0) 9126 goto err_mdp; 9127 mdp_major = ret; 9128 9129 blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE, 9130 md_probe, NULL, NULL); 9131 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE, 9132 md_probe, NULL, NULL); 9133 9134 register_reboot_notifier(&md_notifier); 9135 raid_table_header = register_sysctl_table(raid_root_table); 9136 9137 md_geninit(); 9138 return 0; 9139 9140 err_mdp: 9141 unregister_blkdev(MD_MAJOR, "md"); 9142 err_md: 9143 destroy_workqueue(md_misc_wq); 9144 err_misc_wq: 9145 destroy_workqueue(md_wq); 9146 err_wq: 9147 return ret; 9148 } 9149 9150 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev) 9151 { 9152 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 9153 struct md_rdev *rdev2; 9154 int role, ret; 9155 char b[BDEVNAME_SIZE]; 9156 9157 /* 9158 * If size is changed in another node then we need to 9159 * do resize as well. 9160 */ 9161 if (mddev->dev_sectors != le64_to_cpu(sb->size)) { 9162 ret = mddev->pers->resize(mddev, le64_to_cpu(sb->size)); 9163 if (ret) 9164 pr_info("md-cluster: resize failed\n"); 9165 else 9166 md_bitmap_update_sb(mddev->bitmap); 9167 } 9168 9169 /* Check for change of roles in the active devices */ 9170 rdev_for_each(rdev2, mddev) { 9171 if (test_bit(Faulty, &rdev2->flags)) 9172 continue; 9173 9174 /* Check if the roles changed */ 9175 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]); 9176 9177 if (test_bit(Candidate, &rdev2->flags)) { 9178 if (role == 0xfffe) { 9179 pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b)); 9180 md_kick_rdev_from_array(rdev2); 9181 continue; 9182 } 9183 else 9184 clear_bit(Candidate, &rdev2->flags); 9185 } 9186 9187 if (role != rdev2->raid_disk) { 9188 /* 9189 * got activated except reshape is happening. 9190 */ 9191 if (rdev2->raid_disk == -1 && role != 0xffff && 9192 !(le32_to_cpu(sb->feature_map) & 9193 MD_FEATURE_RESHAPE_ACTIVE)) { 9194 rdev2->saved_raid_disk = role; 9195 ret = remove_and_add_spares(mddev, rdev2); 9196 pr_info("Activated spare: %s\n", 9197 bdevname(rdev2->bdev,b)); 9198 /* wakeup mddev->thread here, so array could 9199 * perform resync with the new activated disk */ 9200 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9201 md_wakeup_thread(mddev->thread); 9202 9203 } 9204 /* device faulty 9205 * We just want to do the minimum to mark the disk 9206 * as faulty. The recovery is performed by the 9207 * one who initiated the error. 9208 */ 9209 if ((role == 0xfffe) || (role == 0xfffd)) { 9210 md_error(mddev, rdev2); 9211 clear_bit(Blocked, &rdev2->flags); 9212 } 9213 } 9214 } 9215 9216 if (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) 9217 update_raid_disks(mddev, le32_to_cpu(sb->raid_disks)); 9218 9219 /* 9220 * Since mddev->delta_disks has already updated in update_raid_disks, 9221 * so it is time to check reshape. 9222 */ 9223 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) && 9224 (le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 9225 /* 9226 * reshape is happening in the remote node, we need to 9227 * update reshape_position and call start_reshape. 9228 */ 9229 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 9230 if (mddev->pers->update_reshape_pos) 9231 mddev->pers->update_reshape_pos(mddev); 9232 if (mddev->pers->start_reshape) 9233 mddev->pers->start_reshape(mddev); 9234 } else if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) && 9235 mddev->reshape_position != MaxSector && 9236 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 9237 /* reshape is just done in another node. */ 9238 mddev->reshape_position = MaxSector; 9239 if (mddev->pers->update_reshape_pos) 9240 mddev->pers->update_reshape_pos(mddev); 9241 } 9242 9243 /* Finally set the event to be up to date */ 9244 mddev->events = le64_to_cpu(sb->events); 9245 } 9246 9247 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev) 9248 { 9249 int err; 9250 struct page *swapout = rdev->sb_page; 9251 struct mdp_superblock_1 *sb; 9252 9253 /* Store the sb page of the rdev in the swapout temporary 9254 * variable in case we err in the future 9255 */ 9256 rdev->sb_page = NULL; 9257 err = alloc_disk_sb(rdev); 9258 if (err == 0) { 9259 ClearPageUptodate(rdev->sb_page); 9260 rdev->sb_loaded = 0; 9261 err = super_types[mddev->major_version]. 9262 load_super(rdev, NULL, mddev->minor_version); 9263 } 9264 if (err < 0) { 9265 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n", 9266 __func__, __LINE__, rdev->desc_nr, err); 9267 if (rdev->sb_page) 9268 put_page(rdev->sb_page); 9269 rdev->sb_page = swapout; 9270 rdev->sb_loaded = 1; 9271 return err; 9272 } 9273 9274 sb = page_address(rdev->sb_page); 9275 /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET 9276 * is not set 9277 */ 9278 9279 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET)) 9280 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 9281 9282 /* The other node finished recovery, call spare_active to set 9283 * device In_sync and mddev->degraded 9284 */ 9285 if (rdev->recovery_offset == MaxSector && 9286 !test_bit(In_sync, &rdev->flags) && 9287 mddev->pers->spare_active(mddev)) 9288 sysfs_notify(&mddev->kobj, NULL, "degraded"); 9289 9290 put_page(swapout); 9291 return 0; 9292 } 9293 9294 void md_reload_sb(struct mddev *mddev, int nr) 9295 { 9296 struct md_rdev *rdev; 9297 int err; 9298 9299 /* Find the rdev */ 9300 rdev_for_each_rcu(rdev, mddev) { 9301 if (rdev->desc_nr == nr) 9302 break; 9303 } 9304 9305 if (!rdev || rdev->desc_nr != nr) { 9306 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr); 9307 return; 9308 } 9309 9310 err = read_rdev(mddev, rdev); 9311 if (err < 0) 9312 return; 9313 9314 check_sb_changes(mddev, rdev); 9315 9316 /* Read all rdev's to update recovery_offset */ 9317 rdev_for_each_rcu(rdev, mddev) { 9318 if (!test_bit(Faulty, &rdev->flags)) 9319 read_rdev(mddev, rdev); 9320 } 9321 } 9322 EXPORT_SYMBOL(md_reload_sb); 9323 9324 #ifndef MODULE 9325 9326 /* 9327 * Searches all registered partitions for autorun RAID arrays 9328 * at boot time. 9329 */ 9330 9331 static DEFINE_MUTEX(detected_devices_mutex); 9332 static LIST_HEAD(all_detected_devices); 9333 struct detected_devices_node { 9334 struct list_head list; 9335 dev_t dev; 9336 }; 9337 9338 void md_autodetect_dev(dev_t dev) 9339 { 9340 struct detected_devices_node *node_detected_dev; 9341 9342 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL); 9343 if (node_detected_dev) { 9344 node_detected_dev->dev = dev; 9345 mutex_lock(&detected_devices_mutex); 9346 list_add_tail(&node_detected_dev->list, &all_detected_devices); 9347 mutex_unlock(&detected_devices_mutex); 9348 } 9349 } 9350 9351 static void autostart_arrays(int part) 9352 { 9353 struct md_rdev *rdev; 9354 struct detected_devices_node *node_detected_dev; 9355 dev_t dev; 9356 int i_scanned, i_passed; 9357 9358 i_scanned = 0; 9359 i_passed = 0; 9360 9361 pr_info("md: Autodetecting RAID arrays.\n"); 9362 9363 mutex_lock(&detected_devices_mutex); 9364 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) { 9365 i_scanned++; 9366 node_detected_dev = list_entry(all_detected_devices.next, 9367 struct detected_devices_node, list); 9368 list_del(&node_detected_dev->list); 9369 dev = node_detected_dev->dev; 9370 kfree(node_detected_dev); 9371 mutex_unlock(&detected_devices_mutex); 9372 rdev = md_import_device(dev,0, 90); 9373 mutex_lock(&detected_devices_mutex); 9374 if (IS_ERR(rdev)) 9375 continue; 9376 9377 if (test_bit(Faulty, &rdev->flags)) 9378 continue; 9379 9380 set_bit(AutoDetected, &rdev->flags); 9381 list_add(&rdev->same_set, &pending_raid_disks); 9382 i_passed++; 9383 } 9384 mutex_unlock(&detected_devices_mutex); 9385 9386 pr_debug("md: Scanned %d and added %d devices.\n", i_scanned, i_passed); 9387 9388 autorun_devices(part); 9389 } 9390 9391 #endif /* !MODULE */ 9392 9393 static __exit void md_exit(void) 9394 { 9395 struct mddev *mddev; 9396 struct list_head *tmp; 9397 int delay = 1; 9398 9399 blk_unregister_region(MKDEV(MD_MAJOR,0), 512); 9400 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS); 9401 9402 unregister_blkdev(MD_MAJOR,"md"); 9403 unregister_blkdev(mdp_major, "mdp"); 9404 unregister_reboot_notifier(&md_notifier); 9405 unregister_sysctl_table(raid_table_header); 9406 9407 /* We cannot unload the modules while some process is 9408 * waiting for us in select() or poll() - wake them up 9409 */ 9410 md_unloading = 1; 9411 while (waitqueue_active(&md_event_waiters)) { 9412 /* not safe to leave yet */ 9413 wake_up(&md_event_waiters); 9414 msleep(delay); 9415 delay += delay; 9416 } 9417 remove_proc_entry("mdstat", NULL); 9418 9419 for_each_mddev(mddev, tmp) { 9420 export_array(mddev); 9421 mddev->ctime = 0; 9422 mddev->hold_active = 0; 9423 /* 9424 * for_each_mddev() will call mddev_put() at the end of each 9425 * iteration. As the mddev is now fully clear, this will 9426 * schedule the mddev for destruction by a workqueue, and the 9427 * destroy_workqueue() below will wait for that to complete. 9428 */ 9429 } 9430 destroy_workqueue(md_misc_wq); 9431 destroy_workqueue(md_wq); 9432 } 9433 9434 subsys_initcall(md_init); 9435 module_exit(md_exit) 9436 9437 static int get_ro(char *buffer, const struct kernel_param *kp) 9438 { 9439 return sprintf(buffer, "%d", start_readonly); 9440 } 9441 static int set_ro(const char *val, const struct kernel_param *kp) 9442 { 9443 return kstrtouint(val, 10, (unsigned int *)&start_readonly); 9444 } 9445 9446 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); 9447 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); 9448 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR); 9449 module_param(create_on_open, bool, S_IRUSR|S_IWUSR); 9450 9451 MODULE_LICENSE("GPL"); 9452 MODULE_DESCRIPTION("MD RAID framework"); 9453 MODULE_ALIAS("md"); 9454 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR); 9455