1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 md.c : Multiple Devices driver for Linux 4 Copyright (C) 1998, 1999, 2000 Ingo Molnar 5 6 completely rewritten, based on the MD driver code from Marc Zyngier 7 8 Changes: 9 10 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar 11 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> 12 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> 13 - kerneld support by Boris Tobotras <boris@xtalk.msk.su> 14 - kmod support by: Cyrus Durgin 15 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> 16 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> 17 18 - lots of fixes and improvements to the RAID1/RAID5 and generic 19 RAID code (such as request based resynchronization): 20 21 Neil Brown <neilb@cse.unsw.edu.au>. 22 23 - persistent bitmap code 24 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. 25 26 27 Errors, Warnings, etc. 28 Please use: 29 pr_crit() for error conditions that risk data loss 30 pr_err() for error conditions that are unexpected, like an IO error 31 or internal inconsistency 32 pr_warn() for error conditions that could have been predicated, like 33 adding a device to an array when it has incompatible metadata 34 pr_info() for every interesting, very rare events, like an array starting 35 or stopping, or resync starting or stopping 36 pr_debug() for everything else. 37 38 */ 39 40 #include <linux/sched/mm.h> 41 #include <linux/sched/signal.h> 42 #include <linux/kthread.h> 43 #include <linux/blkdev.h> 44 #include <linux/blk-integrity.h> 45 #include <linux/badblocks.h> 46 #include <linux/sysctl.h> 47 #include <linux/seq_file.h> 48 #include <linux/fs.h> 49 #include <linux/poll.h> 50 #include <linux/ctype.h> 51 #include <linux/string.h> 52 #include <linux/hdreg.h> 53 #include <linux/proc_fs.h> 54 #include <linux/random.h> 55 #include <linux/major.h> 56 #include <linux/module.h> 57 #include <linux/reboot.h> 58 #include <linux/file.h> 59 #include <linux/compat.h> 60 #include <linux/delay.h> 61 #include <linux/raid/md_p.h> 62 #include <linux/raid/md_u.h> 63 #include <linux/raid/detect.h> 64 #include <linux/slab.h> 65 #include <linux/percpu-refcount.h> 66 #include <linux/part_stat.h> 67 68 #include <trace/events/block.h> 69 #include "md.h" 70 #include "md-bitmap.h" 71 #include "md-cluster.h" 72 73 /* pers_list is a list of registered personalities protected 74 * by pers_lock. 75 * pers_lock does extra service to protect accesses to 76 * mddev->thread when the mutex cannot be held. 77 */ 78 static LIST_HEAD(pers_list); 79 static DEFINE_SPINLOCK(pers_lock); 80 81 static struct kobj_type md_ktype; 82 83 struct md_cluster_operations *md_cluster_ops; 84 EXPORT_SYMBOL(md_cluster_ops); 85 static struct module *md_cluster_mod; 86 87 static DECLARE_WAIT_QUEUE_HEAD(resync_wait); 88 static struct workqueue_struct *md_wq; 89 static struct workqueue_struct *md_misc_wq; 90 static struct workqueue_struct *md_rdev_misc_wq; 91 92 static int remove_and_add_spares(struct mddev *mddev, 93 struct md_rdev *this); 94 static void mddev_detach(struct mddev *mddev); 95 96 enum md_ro_state { 97 MD_RDWR, 98 MD_RDONLY, 99 MD_AUTO_READ, 100 MD_MAX_STATE 101 }; 102 103 static bool md_is_rdwr(struct mddev *mddev) 104 { 105 return (mddev->ro == MD_RDWR); 106 } 107 108 /* 109 * Default number of read corrections we'll attempt on an rdev 110 * before ejecting it from the array. We divide the read error 111 * count by 2 for every hour elapsed between read errors. 112 */ 113 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20 114 /* Default safemode delay: 200 msec */ 115 #define DEFAULT_SAFEMODE_DELAY ((200 * HZ)/1000 +1) 116 /* 117 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' 118 * is 1000 KB/sec, so the extra system load does not show up that much. 119 * Increase it if you want to have more _guaranteed_ speed. Note that 120 * the RAID driver will use the maximum available bandwidth if the IO 121 * subsystem is idle. There is also an 'absolute maximum' reconstruction 122 * speed limit - in case reconstruction slows down your system despite 123 * idle IO detection. 124 * 125 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. 126 * or /sys/block/mdX/md/sync_speed_{min,max} 127 */ 128 129 static int sysctl_speed_limit_min = 1000; 130 static int sysctl_speed_limit_max = 200000; 131 static inline int speed_min(struct mddev *mddev) 132 { 133 return mddev->sync_speed_min ? 134 mddev->sync_speed_min : sysctl_speed_limit_min; 135 } 136 137 static inline int speed_max(struct mddev *mddev) 138 { 139 return mddev->sync_speed_max ? 140 mddev->sync_speed_max : sysctl_speed_limit_max; 141 } 142 143 static void rdev_uninit_serial(struct md_rdev *rdev) 144 { 145 if (!test_and_clear_bit(CollisionCheck, &rdev->flags)) 146 return; 147 148 kvfree(rdev->serial); 149 rdev->serial = NULL; 150 } 151 152 static void rdevs_uninit_serial(struct mddev *mddev) 153 { 154 struct md_rdev *rdev; 155 156 rdev_for_each(rdev, mddev) 157 rdev_uninit_serial(rdev); 158 } 159 160 static int rdev_init_serial(struct md_rdev *rdev) 161 { 162 /* serial_nums equals with BARRIER_BUCKETS_NR */ 163 int i, serial_nums = 1 << ((PAGE_SHIFT - ilog2(sizeof(atomic_t)))); 164 struct serial_in_rdev *serial = NULL; 165 166 if (test_bit(CollisionCheck, &rdev->flags)) 167 return 0; 168 169 serial = kvmalloc(sizeof(struct serial_in_rdev) * serial_nums, 170 GFP_KERNEL); 171 if (!serial) 172 return -ENOMEM; 173 174 for (i = 0; i < serial_nums; i++) { 175 struct serial_in_rdev *serial_tmp = &serial[i]; 176 177 spin_lock_init(&serial_tmp->serial_lock); 178 serial_tmp->serial_rb = RB_ROOT_CACHED; 179 init_waitqueue_head(&serial_tmp->serial_io_wait); 180 } 181 182 rdev->serial = serial; 183 set_bit(CollisionCheck, &rdev->flags); 184 185 return 0; 186 } 187 188 static int rdevs_init_serial(struct mddev *mddev) 189 { 190 struct md_rdev *rdev; 191 int ret = 0; 192 193 rdev_for_each(rdev, mddev) { 194 ret = rdev_init_serial(rdev); 195 if (ret) 196 break; 197 } 198 199 /* Free all resources if pool is not existed */ 200 if (ret && !mddev->serial_info_pool) 201 rdevs_uninit_serial(mddev); 202 203 return ret; 204 } 205 206 /* 207 * rdev needs to enable serial stuffs if it meets the conditions: 208 * 1. it is multi-queue device flaged with writemostly. 209 * 2. the write-behind mode is enabled. 210 */ 211 static int rdev_need_serial(struct md_rdev *rdev) 212 { 213 return (rdev && rdev->mddev->bitmap_info.max_write_behind > 0 && 214 rdev->bdev->bd_disk->queue->nr_hw_queues != 1 && 215 test_bit(WriteMostly, &rdev->flags)); 216 } 217 218 /* 219 * Init resource for rdev(s), then create serial_info_pool if: 220 * 1. rdev is the first device which return true from rdev_enable_serial. 221 * 2. rdev is NULL, means we want to enable serialization for all rdevs. 222 */ 223 void mddev_create_serial_pool(struct mddev *mddev, struct md_rdev *rdev, 224 bool is_suspend) 225 { 226 int ret = 0; 227 228 if (rdev && !rdev_need_serial(rdev) && 229 !test_bit(CollisionCheck, &rdev->flags)) 230 return; 231 232 if (!is_suspend) 233 mddev_suspend(mddev); 234 235 if (!rdev) 236 ret = rdevs_init_serial(mddev); 237 else 238 ret = rdev_init_serial(rdev); 239 if (ret) 240 goto abort; 241 242 if (mddev->serial_info_pool == NULL) { 243 /* 244 * already in memalloc noio context by 245 * mddev_suspend() 246 */ 247 mddev->serial_info_pool = 248 mempool_create_kmalloc_pool(NR_SERIAL_INFOS, 249 sizeof(struct serial_info)); 250 if (!mddev->serial_info_pool) { 251 rdevs_uninit_serial(mddev); 252 pr_err("can't alloc memory pool for serialization\n"); 253 } 254 } 255 256 abort: 257 if (!is_suspend) 258 mddev_resume(mddev); 259 } 260 261 /* 262 * Free resource from rdev(s), and destroy serial_info_pool under conditions: 263 * 1. rdev is the last device flaged with CollisionCheck. 264 * 2. when bitmap is destroyed while policy is not enabled. 265 * 3. for disable policy, the pool is destroyed only when no rdev needs it. 266 */ 267 void mddev_destroy_serial_pool(struct mddev *mddev, struct md_rdev *rdev, 268 bool is_suspend) 269 { 270 if (rdev && !test_bit(CollisionCheck, &rdev->flags)) 271 return; 272 273 if (mddev->serial_info_pool) { 274 struct md_rdev *temp; 275 int num = 0; /* used to track if other rdevs need the pool */ 276 277 if (!is_suspend) 278 mddev_suspend(mddev); 279 rdev_for_each(temp, mddev) { 280 if (!rdev) { 281 if (!mddev->serialize_policy || 282 !rdev_need_serial(temp)) 283 rdev_uninit_serial(temp); 284 else 285 num++; 286 } else if (temp != rdev && 287 test_bit(CollisionCheck, &temp->flags)) 288 num++; 289 } 290 291 if (rdev) 292 rdev_uninit_serial(rdev); 293 294 if (num) 295 pr_info("The mempool could be used by other devices\n"); 296 else { 297 mempool_destroy(mddev->serial_info_pool); 298 mddev->serial_info_pool = NULL; 299 } 300 if (!is_suspend) 301 mddev_resume(mddev); 302 } 303 } 304 305 static struct ctl_table_header *raid_table_header; 306 307 static struct ctl_table raid_table[] = { 308 { 309 .procname = "speed_limit_min", 310 .data = &sysctl_speed_limit_min, 311 .maxlen = sizeof(int), 312 .mode = S_IRUGO|S_IWUSR, 313 .proc_handler = proc_dointvec, 314 }, 315 { 316 .procname = "speed_limit_max", 317 .data = &sysctl_speed_limit_max, 318 .maxlen = sizeof(int), 319 .mode = S_IRUGO|S_IWUSR, 320 .proc_handler = proc_dointvec, 321 }, 322 { } 323 }; 324 325 static struct ctl_table raid_dir_table[] = { 326 { 327 .procname = "raid", 328 .maxlen = 0, 329 .mode = S_IRUGO|S_IXUGO, 330 .child = raid_table, 331 }, 332 { } 333 }; 334 335 static struct ctl_table raid_root_table[] = { 336 { 337 .procname = "dev", 338 .maxlen = 0, 339 .mode = 0555, 340 .child = raid_dir_table, 341 }, 342 { } 343 }; 344 345 static int start_readonly; 346 347 /* 348 * The original mechanism for creating an md device is to create 349 * a device node in /dev and to open it. This causes races with device-close. 350 * The preferred method is to write to the "new_array" module parameter. 351 * This can avoid races. 352 * Setting create_on_open to false disables the original mechanism 353 * so all the races disappear. 354 */ 355 static bool create_on_open = true; 356 357 /* 358 * We have a system wide 'event count' that is incremented 359 * on any 'interesting' event, and readers of /proc/mdstat 360 * can use 'poll' or 'select' to find out when the event 361 * count increases. 362 * 363 * Events are: 364 * start array, stop array, error, add device, remove device, 365 * start build, activate spare 366 */ 367 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); 368 static atomic_t md_event_count; 369 void md_new_event(void) 370 { 371 atomic_inc(&md_event_count); 372 wake_up(&md_event_waiters); 373 } 374 EXPORT_SYMBOL_GPL(md_new_event); 375 376 /* 377 * Enables to iterate over all existing md arrays 378 * all_mddevs_lock protects this list. 379 */ 380 static LIST_HEAD(all_mddevs); 381 static DEFINE_SPINLOCK(all_mddevs_lock); 382 383 /* Rather than calling directly into the personality make_request function, 384 * IO requests come here first so that we can check if the device is 385 * being suspended pending a reconfiguration. 386 * We hold a refcount over the call to ->make_request. By the time that 387 * call has finished, the bio has been linked into some internal structure 388 * and so is visible to ->quiesce(), so we don't need the refcount any more. 389 */ 390 static bool is_suspended(struct mddev *mddev, struct bio *bio) 391 { 392 if (mddev->suspended) 393 return true; 394 if (bio_data_dir(bio) != WRITE) 395 return false; 396 if (mddev->suspend_lo >= mddev->suspend_hi) 397 return false; 398 if (bio->bi_iter.bi_sector >= mddev->suspend_hi) 399 return false; 400 if (bio_end_sector(bio) < mddev->suspend_lo) 401 return false; 402 return true; 403 } 404 405 void md_handle_request(struct mddev *mddev, struct bio *bio) 406 { 407 check_suspended: 408 rcu_read_lock(); 409 if (is_suspended(mddev, bio)) { 410 DEFINE_WAIT(__wait); 411 /* Bail out if REQ_NOWAIT is set for the bio */ 412 if (bio->bi_opf & REQ_NOWAIT) { 413 rcu_read_unlock(); 414 bio_wouldblock_error(bio); 415 return; 416 } 417 for (;;) { 418 prepare_to_wait(&mddev->sb_wait, &__wait, 419 TASK_UNINTERRUPTIBLE); 420 if (!is_suspended(mddev, bio)) 421 break; 422 rcu_read_unlock(); 423 schedule(); 424 rcu_read_lock(); 425 } 426 finish_wait(&mddev->sb_wait, &__wait); 427 } 428 atomic_inc(&mddev->active_io); 429 rcu_read_unlock(); 430 431 if (!mddev->pers->make_request(mddev, bio)) { 432 atomic_dec(&mddev->active_io); 433 wake_up(&mddev->sb_wait); 434 goto check_suspended; 435 } 436 437 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended) 438 wake_up(&mddev->sb_wait); 439 } 440 EXPORT_SYMBOL(md_handle_request); 441 442 static void md_submit_bio(struct bio *bio) 443 { 444 const int rw = bio_data_dir(bio); 445 struct mddev *mddev = bio->bi_bdev->bd_disk->private_data; 446 447 if (mddev == NULL || mddev->pers == NULL) { 448 bio_io_error(bio); 449 return; 450 } 451 452 if (unlikely(test_bit(MD_BROKEN, &mddev->flags)) && (rw == WRITE)) { 453 bio_io_error(bio); 454 return; 455 } 456 457 bio = bio_split_to_limits(bio); 458 459 if (mddev->ro == MD_RDONLY && unlikely(rw == WRITE)) { 460 if (bio_sectors(bio) != 0) 461 bio->bi_status = BLK_STS_IOERR; 462 bio_endio(bio); 463 return; 464 } 465 466 /* bio could be mergeable after passing to underlayer */ 467 bio->bi_opf &= ~REQ_NOMERGE; 468 469 md_handle_request(mddev, bio); 470 } 471 472 /* mddev_suspend makes sure no new requests are submitted 473 * to the device, and that any requests that have been submitted 474 * are completely handled. 475 * Once mddev_detach() is called and completes, the module will be 476 * completely unused. 477 */ 478 void mddev_suspend(struct mddev *mddev) 479 { 480 WARN_ON_ONCE(mddev->thread && current == mddev->thread->tsk); 481 lockdep_assert_held(&mddev->reconfig_mutex); 482 if (mddev->suspended++) 483 return; 484 synchronize_rcu(); 485 wake_up(&mddev->sb_wait); 486 set_bit(MD_ALLOW_SB_UPDATE, &mddev->flags); 487 smp_mb__after_atomic(); 488 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0); 489 mddev->pers->quiesce(mddev, 1); 490 clear_bit_unlock(MD_ALLOW_SB_UPDATE, &mddev->flags); 491 wait_event(mddev->sb_wait, !test_bit(MD_UPDATING_SB, &mddev->flags)); 492 493 del_timer_sync(&mddev->safemode_timer); 494 /* restrict memory reclaim I/O during raid array is suspend */ 495 mddev->noio_flag = memalloc_noio_save(); 496 } 497 EXPORT_SYMBOL_GPL(mddev_suspend); 498 499 void mddev_resume(struct mddev *mddev) 500 { 501 /* entred the memalloc scope from mddev_suspend() */ 502 memalloc_noio_restore(mddev->noio_flag); 503 lockdep_assert_held(&mddev->reconfig_mutex); 504 if (--mddev->suspended) 505 return; 506 wake_up(&mddev->sb_wait); 507 mddev->pers->quiesce(mddev, 0); 508 509 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 510 md_wakeup_thread(mddev->thread); 511 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 512 } 513 EXPORT_SYMBOL_GPL(mddev_resume); 514 515 /* 516 * Generic flush handling for md 517 */ 518 519 static void md_end_flush(struct bio *bio) 520 { 521 struct md_rdev *rdev = bio->bi_private; 522 struct mddev *mddev = rdev->mddev; 523 524 bio_put(bio); 525 526 rdev_dec_pending(rdev, mddev); 527 528 if (atomic_dec_and_test(&mddev->flush_pending)) { 529 /* The pre-request flush has finished */ 530 queue_work(md_wq, &mddev->flush_work); 531 } 532 } 533 534 static void md_submit_flush_data(struct work_struct *ws); 535 536 static void submit_flushes(struct work_struct *ws) 537 { 538 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 539 struct md_rdev *rdev; 540 541 mddev->start_flush = ktime_get_boottime(); 542 INIT_WORK(&mddev->flush_work, md_submit_flush_data); 543 atomic_set(&mddev->flush_pending, 1); 544 rcu_read_lock(); 545 rdev_for_each_rcu(rdev, mddev) 546 if (rdev->raid_disk >= 0 && 547 !test_bit(Faulty, &rdev->flags)) { 548 /* Take two references, one is dropped 549 * when request finishes, one after 550 * we reclaim rcu_read_lock 551 */ 552 struct bio *bi; 553 atomic_inc(&rdev->nr_pending); 554 atomic_inc(&rdev->nr_pending); 555 rcu_read_unlock(); 556 bi = bio_alloc_bioset(rdev->bdev, 0, 557 REQ_OP_WRITE | REQ_PREFLUSH, 558 GFP_NOIO, &mddev->bio_set); 559 bi->bi_end_io = md_end_flush; 560 bi->bi_private = rdev; 561 atomic_inc(&mddev->flush_pending); 562 submit_bio(bi); 563 rcu_read_lock(); 564 rdev_dec_pending(rdev, mddev); 565 } 566 rcu_read_unlock(); 567 if (atomic_dec_and_test(&mddev->flush_pending)) 568 queue_work(md_wq, &mddev->flush_work); 569 } 570 571 static void md_submit_flush_data(struct work_struct *ws) 572 { 573 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 574 struct bio *bio = mddev->flush_bio; 575 576 /* 577 * must reset flush_bio before calling into md_handle_request to avoid a 578 * deadlock, because other bios passed md_handle_request suspend check 579 * could wait for this and below md_handle_request could wait for those 580 * bios because of suspend check 581 */ 582 spin_lock_irq(&mddev->lock); 583 mddev->prev_flush_start = mddev->start_flush; 584 mddev->flush_bio = NULL; 585 spin_unlock_irq(&mddev->lock); 586 wake_up(&mddev->sb_wait); 587 588 if (bio->bi_iter.bi_size == 0) { 589 /* an empty barrier - all done */ 590 bio_endio(bio); 591 } else { 592 bio->bi_opf &= ~REQ_PREFLUSH; 593 md_handle_request(mddev, bio); 594 } 595 } 596 597 /* 598 * Manages consolidation of flushes and submitting any flushes needed for 599 * a bio with REQ_PREFLUSH. Returns true if the bio is finished or is 600 * being finished in another context. Returns false if the flushing is 601 * complete but still needs the I/O portion of the bio to be processed. 602 */ 603 bool md_flush_request(struct mddev *mddev, struct bio *bio) 604 { 605 ktime_t req_start = ktime_get_boottime(); 606 spin_lock_irq(&mddev->lock); 607 /* flush requests wait until ongoing flush completes, 608 * hence coalescing all the pending requests. 609 */ 610 wait_event_lock_irq(mddev->sb_wait, 611 !mddev->flush_bio || 612 ktime_before(req_start, mddev->prev_flush_start), 613 mddev->lock); 614 /* new request after previous flush is completed */ 615 if (ktime_after(req_start, mddev->prev_flush_start)) { 616 WARN_ON(mddev->flush_bio); 617 mddev->flush_bio = bio; 618 bio = NULL; 619 } 620 spin_unlock_irq(&mddev->lock); 621 622 if (!bio) { 623 INIT_WORK(&mddev->flush_work, submit_flushes); 624 queue_work(md_wq, &mddev->flush_work); 625 } else { 626 /* flush was performed for some other bio while we waited. */ 627 if (bio->bi_iter.bi_size == 0) 628 /* an empty barrier - all done */ 629 bio_endio(bio); 630 else { 631 bio->bi_opf &= ~REQ_PREFLUSH; 632 return false; 633 } 634 } 635 return true; 636 } 637 EXPORT_SYMBOL(md_flush_request); 638 639 static inline struct mddev *mddev_get(struct mddev *mddev) 640 { 641 lockdep_assert_held(&all_mddevs_lock); 642 643 if (test_bit(MD_DELETED, &mddev->flags)) 644 return NULL; 645 atomic_inc(&mddev->active); 646 return mddev; 647 } 648 649 static void mddev_delayed_delete(struct work_struct *ws); 650 651 void mddev_put(struct mddev *mddev) 652 { 653 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) 654 return; 655 if (!mddev->raid_disks && list_empty(&mddev->disks) && 656 mddev->ctime == 0 && !mddev->hold_active) { 657 /* Array is not configured at all, and not held active, 658 * so destroy it */ 659 set_bit(MD_DELETED, &mddev->flags); 660 661 /* 662 * Call queue_work inside the spinlock so that 663 * flush_workqueue() after mddev_find will succeed in waiting 664 * for the work to be done. 665 */ 666 INIT_WORK(&mddev->del_work, mddev_delayed_delete); 667 queue_work(md_misc_wq, &mddev->del_work); 668 } 669 spin_unlock(&all_mddevs_lock); 670 } 671 672 static void md_safemode_timeout(struct timer_list *t); 673 674 void mddev_init(struct mddev *mddev) 675 { 676 mutex_init(&mddev->open_mutex); 677 mutex_init(&mddev->reconfig_mutex); 678 mutex_init(&mddev->bitmap_info.mutex); 679 INIT_LIST_HEAD(&mddev->disks); 680 INIT_LIST_HEAD(&mddev->all_mddevs); 681 timer_setup(&mddev->safemode_timer, md_safemode_timeout, 0); 682 atomic_set(&mddev->active, 1); 683 atomic_set(&mddev->openers, 0); 684 atomic_set(&mddev->active_io, 0); 685 spin_lock_init(&mddev->lock); 686 atomic_set(&mddev->flush_pending, 0); 687 init_waitqueue_head(&mddev->sb_wait); 688 init_waitqueue_head(&mddev->recovery_wait); 689 mddev->reshape_position = MaxSector; 690 mddev->reshape_backwards = 0; 691 mddev->last_sync_action = "none"; 692 mddev->resync_min = 0; 693 mddev->resync_max = MaxSector; 694 mddev->level = LEVEL_NONE; 695 } 696 EXPORT_SYMBOL_GPL(mddev_init); 697 698 static struct mddev *mddev_find_locked(dev_t unit) 699 { 700 struct mddev *mddev; 701 702 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 703 if (mddev->unit == unit) 704 return mddev; 705 706 return NULL; 707 } 708 709 /* find an unused unit number */ 710 static dev_t mddev_alloc_unit(void) 711 { 712 static int next_minor = 512; 713 int start = next_minor; 714 bool is_free = 0; 715 dev_t dev = 0; 716 717 while (!is_free) { 718 dev = MKDEV(MD_MAJOR, next_minor); 719 next_minor++; 720 if (next_minor > MINORMASK) 721 next_minor = 0; 722 if (next_minor == start) 723 return 0; /* Oh dear, all in use. */ 724 is_free = !mddev_find_locked(dev); 725 } 726 727 return dev; 728 } 729 730 static struct mddev *mddev_alloc(dev_t unit) 731 { 732 struct mddev *new; 733 int error; 734 735 if (unit && MAJOR(unit) != MD_MAJOR) 736 unit &= ~((1 << MdpMinorShift) - 1); 737 738 new = kzalloc(sizeof(*new), GFP_KERNEL); 739 if (!new) 740 return ERR_PTR(-ENOMEM); 741 mddev_init(new); 742 743 spin_lock(&all_mddevs_lock); 744 if (unit) { 745 error = -EEXIST; 746 if (mddev_find_locked(unit)) 747 goto out_free_new; 748 new->unit = unit; 749 if (MAJOR(unit) == MD_MAJOR) 750 new->md_minor = MINOR(unit); 751 else 752 new->md_minor = MINOR(unit) >> MdpMinorShift; 753 new->hold_active = UNTIL_IOCTL; 754 } else { 755 error = -ENODEV; 756 new->unit = mddev_alloc_unit(); 757 if (!new->unit) 758 goto out_free_new; 759 new->md_minor = MINOR(new->unit); 760 new->hold_active = UNTIL_STOP; 761 } 762 763 list_add(&new->all_mddevs, &all_mddevs); 764 spin_unlock(&all_mddevs_lock); 765 return new; 766 out_free_new: 767 spin_unlock(&all_mddevs_lock); 768 kfree(new); 769 return ERR_PTR(error); 770 } 771 772 static void mddev_free(struct mddev *mddev) 773 { 774 spin_lock(&all_mddevs_lock); 775 list_del(&mddev->all_mddevs); 776 spin_unlock(&all_mddevs_lock); 777 778 kfree(mddev); 779 } 780 781 static const struct attribute_group md_redundancy_group; 782 783 void mddev_unlock(struct mddev *mddev) 784 { 785 if (mddev->to_remove) { 786 /* These cannot be removed under reconfig_mutex as 787 * an access to the files will try to take reconfig_mutex 788 * while holding the file unremovable, which leads to 789 * a deadlock. 790 * So hold set sysfs_active while the remove in happeing, 791 * and anything else which might set ->to_remove or my 792 * otherwise change the sysfs namespace will fail with 793 * -EBUSY if sysfs_active is still set. 794 * We set sysfs_active under reconfig_mutex and elsewhere 795 * test it under the same mutex to ensure its correct value 796 * is seen. 797 */ 798 const struct attribute_group *to_remove = mddev->to_remove; 799 mddev->to_remove = NULL; 800 mddev->sysfs_active = 1; 801 mutex_unlock(&mddev->reconfig_mutex); 802 803 if (mddev->kobj.sd) { 804 if (to_remove != &md_redundancy_group) 805 sysfs_remove_group(&mddev->kobj, to_remove); 806 if (mddev->pers == NULL || 807 mddev->pers->sync_request == NULL) { 808 sysfs_remove_group(&mddev->kobj, &md_redundancy_group); 809 if (mddev->sysfs_action) 810 sysfs_put(mddev->sysfs_action); 811 if (mddev->sysfs_completed) 812 sysfs_put(mddev->sysfs_completed); 813 if (mddev->sysfs_degraded) 814 sysfs_put(mddev->sysfs_degraded); 815 mddev->sysfs_action = NULL; 816 mddev->sysfs_completed = NULL; 817 mddev->sysfs_degraded = NULL; 818 } 819 } 820 mddev->sysfs_active = 0; 821 } else 822 mutex_unlock(&mddev->reconfig_mutex); 823 824 /* As we've dropped the mutex we need a spinlock to 825 * make sure the thread doesn't disappear 826 */ 827 spin_lock(&pers_lock); 828 md_wakeup_thread(mddev->thread); 829 wake_up(&mddev->sb_wait); 830 spin_unlock(&pers_lock); 831 } 832 EXPORT_SYMBOL_GPL(mddev_unlock); 833 834 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr) 835 { 836 struct md_rdev *rdev; 837 838 rdev_for_each_rcu(rdev, mddev) 839 if (rdev->desc_nr == nr) 840 return rdev; 841 842 return NULL; 843 } 844 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu); 845 846 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev) 847 { 848 struct md_rdev *rdev; 849 850 rdev_for_each(rdev, mddev) 851 if (rdev->bdev->bd_dev == dev) 852 return rdev; 853 854 return NULL; 855 } 856 857 struct md_rdev *md_find_rdev_rcu(struct mddev *mddev, dev_t dev) 858 { 859 struct md_rdev *rdev; 860 861 rdev_for_each_rcu(rdev, mddev) 862 if (rdev->bdev->bd_dev == dev) 863 return rdev; 864 865 return NULL; 866 } 867 EXPORT_SYMBOL_GPL(md_find_rdev_rcu); 868 869 static struct md_personality *find_pers(int level, char *clevel) 870 { 871 struct md_personality *pers; 872 list_for_each_entry(pers, &pers_list, list) { 873 if (level != LEVEL_NONE && pers->level == level) 874 return pers; 875 if (strcmp(pers->name, clevel)==0) 876 return pers; 877 } 878 return NULL; 879 } 880 881 /* return the offset of the super block in 512byte sectors */ 882 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev) 883 { 884 return MD_NEW_SIZE_SECTORS(bdev_nr_sectors(rdev->bdev)); 885 } 886 887 static int alloc_disk_sb(struct md_rdev *rdev) 888 { 889 rdev->sb_page = alloc_page(GFP_KERNEL); 890 if (!rdev->sb_page) 891 return -ENOMEM; 892 return 0; 893 } 894 895 void md_rdev_clear(struct md_rdev *rdev) 896 { 897 if (rdev->sb_page) { 898 put_page(rdev->sb_page); 899 rdev->sb_loaded = 0; 900 rdev->sb_page = NULL; 901 rdev->sb_start = 0; 902 rdev->sectors = 0; 903 } 904 if (rdev->bb_page) { 905 put_page(rdev->bb_page); 906 rdev->bb_page = NULL; 907 } 908 badblocks_exit(&rdev->badblocks); 909 } 910 EXPORT_SYMBOL_GPL(md_rdev_clear); 911 912 static void super_written(struct bio *bio) 913 { 914 struct md_rdev *rdev = bio->bi_private; 915 struct mddev *mddev = rdev->mddev; 916 917 if (bio->bi_status) { 918 pr_err("md: %s gets error=%d\n", __func__, 919 blk_status_to_errno(bio->bi_status)); 920 md_error(mddev, rdev); 921 if (!test_bit(Faulty, &rdev->flags) 922 && (bio->bi_opf & MD_FAILFAST)) { 923 set_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags); 924 set_bit(LastDev, &rdev->flags); 925 } 926 } else 927 clear_bit(LastDev, &rdev->flags); 928 929 bio_put(bio); 930 931 rdev_dec_pending(rdev, mddev); 932 933 if (atomic_dec_and_test(&mddev->pending_writes)) 934 wake_up(&mddev->sb_wait); 935 } 936 937 void md_super_write(struct mddev *mddev, struct md_rdev *rdev, 938 sector_t sector, int size, struct page *page) 939 { 940 /* write first size bytes of page to sector of rdev 941 * Increment mddev->pending_writes before returning 942 * and decrement it on completion, waking up sb_wait 943 * if zero is reached. 944 * If an error occurred, call md_error 945 */ 946 struct bio *bio; 947 948 if (!page) 949 return; 950 951 if (test_bit(Faulty, &rdev->flags)) 952 return; 953 954 bio = bio_alloc_bioset(rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev, 955 1, 956 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH | REQ_FUA, 957 GFP_NOIO, &mddev->sync_set); 958 959 atomic_inc(&rdev->nr_pending); 960 961 bio->bi_iter.bi_sector = sector; 962 bio_add_page(bio, page, size, 0); 963 bio->bi_private = rdev; 964 bio->bi_end_io = super_written; 965 966 if (test_bit(MD_FAILFAST_SUPPORTED, &mddev->flags) && 967 test_bit(FailFast, &rdev->flags) && 968 !test_bit(LastDev, &rdev->flags)) 969 bio->bi_opf |= MD_FAILFAST; 970 971 atomic_inc(&mddev->pending_writes); 972 submit_bio(bio); 973 } 974 975 int md_super_wait(struct mddev *mddev) 976 { 977 /* wait for all superblock writes that were scheduled to complete */ 978 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0); 979 if (test_and_clear_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags)) 980 return -EAGAIN; 981 return 0; 982 } 983 984 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size, 985 struct page *page, blk_opf_t opf, bool metadata_op) 986 { 987 struct bio bio; 988 struct bio_vec bvec; 989 990 if (metadata_op && rdev->meta_bdev) 991 bio_init(&bio, rdev->meta_bdev, &bvec, 1, opf); 992 else 993 bio_init(&bio, rdev->bdev, &bvec, 1, opf); 994 995 if (metadata_op) 996 bio.bi_iter.bi_sector = sector + rdev->sb_start; 997 else if (rdev->mddev->reshape_position != MaxSector && 998 (rdev->mddev->reshape_backwards == 999 (sector >= rdev->mddev->reshape_position))) 1000 bio.bi_iter.bi_sector = sector + rdev->new_data_offset; 1001 else 1002 bio.bi_iter.bi_sector = sector + rdev->data_offset; 1003 bio_add_page(&bio, page, size, 0); 1004 1005 submit_bio_wait(&bio); 1006 1007 return !bio.bi_status; 1008 } 1009 EXPORT_SYMBOL_GPL(sync_page_io); 1010 1011 static int read_disk_sb(struct md_rdev *rdev, int size) 1012 { 1013 if (rdev->sb_loaded) 1014 return 0; 1015 1016 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, true)) 1017 goto fail; 1018 rdev->sb_loaded = 1; 1019 return 0; 1020 1021 fail: 1022 pr_err("md: disabled device %pg, could not read superblock.\n", 1023 rdev->bdev); 1024 return -EINVAL; 1025 } 1026 1027 static int md_uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) 1028 { 1029 return sb1->set_uuid0 == sb2->set_uuid0 && 1030 sb1->set_uuid1 == sb2->set_uuid1 && 1031 sb1->set_uuid2 == sb2->set_uuid2 && 1032 sb1->set_uuid3 == sb2->set_uuid3; 1033 } 1034 1035 static int md_sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) 1036 { 1037 int ret; 1038 mdp_super_t *tmp1, *tmp2; 1039 1040 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); 1041 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); 1042 1043 if (!tmp1 || !tmp2) { 1044 ret = 0; 1045 goto abort; 1046 } 1047 1048 *tmp1 = *sb1; 1049 *tmp2 = *sb2; 1050 1051 /* 1052 * nr_disks is not constant 1053 */ 1054 tmp1->nr_disks = 0; 1055 tmp2->nr_disks = 0; 1056 1057 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0); 1058 abort: 1059 kfree(tmp1); 1060 kfree(tmp2); 1061 return ret; 1062 } 1063 1064 static u32 md_csum_fold(u32 csum) 1065 { 1066 csum = (csum & 0xffff) + (csum >> 16); 1067 return (csum & 0xffff) + (csum >> 16); 1068 } 1069 1070 static unsigned int calc_sb_csum(mdp_super_t *sb) 1071 { 1072 u64 newcsum = 0; 1073 u32 *sb32 = (u32*)sb; 1074 int i; 1075 unsigned int disk_csum, csum; 1076 1077 disk_csum = sb->sb_csum; 1078 sb->sb_csum = 0; 1079 1080 for (i = 0; i < MD_SB_BYTES/4 ; i++) 1081 newcsum += sb32[i]; 1082 csum = (newcsum & 0xffffffff) + (newcsum>>32); 1083 1084 #ifdef CONFIG_ALPHA 1085 /* This used to use csum_partial, which was wrong for several 1086 * reasons including that different results are returned on 1087 * different architectures. It isn't critical that we get exactly 1088 * the same return value as before (we always csum_fold before 1089 * testing, and that removes any differences). However as we 1090 * know that csum_partial always returned a 16bit value on 1091 * alphas, do a fold to maximise conformity to previous behaviour. 1092 */ 1093 sb->sb_csum = md_csum_fold(disk_csum); 1094 #else 1095 sb->sb_csum = disk_csum; 1096 #endif 1097 return csum; 1098 } 1099 1100 /* 1101 * Handle superblock details. 1102 * We want to be able to handle multiple superblock formats 1103 * so we have a common interface to them all, and an array of 1104 * different handlers. 1105 * We rely on user-space to write the initial superblock, and support 1106 * reading and updating of superblocks. 1107 * Interface methods are: 1108 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version) 1109 * loads and validates a superblock on dev. 1110 * if refdev != NULL, compare superblocks on both devices 1111 * Return: 1112 * 0 - dev has a superblock that is compatible with refdev 1113 * 1 - dev has a superblock that is compatible and newer than refdev 1114 * so dev should be used as the refdev in future 1115 * -EINVAL superblock incompatible or invalid 1116 * -othererror e.g. -EIO 1117 * 1118 * int validate_super(struct mddev *mddev, struct md_rdev *dev) 1119 * Verify that dev is acceptable into mddev. 1120 * The first time, mddev->raid_disks will be 0, and data from 1121 * dev should be merged in. Subsequent calls check that dev 1122 * is new enough. Return 0 or -EINVAL 1123 * 1124 * void sync_super(struct mddev *mddev, struct md_rdev *dev) 1125 * Update the superblock for rdev with data in mddev 1126 * This does not write to disc. 1127 * 1128 */ 1129 1130 struct super_type { 1131 char *name; 1132 struct module *owner; 1133 int (*load_super)(struct md_rdev *rdev, 1134 struct md_rdev *refdev, 1135 int minor_version); 1136 int (*validate_super)(struct mddev *mddev, 1137 struct md_rdev *rdev); 1138 void (*sync_super)(struct mddev *mddev, 1139 struct md_rdev *rdev); 1140 unsigned long long (*rdev_size_change)(struct md_rdev *rdev, 1141 sector_t num_sectors); 1142 int (*allow_new_offset)(struct md_rdev *rdev, 1143 unsigned long long new_offset); 1144 }; 1145 1146 /* 1147 * Check that the given mddev has no bitmap. 1148 * 1149 * This function is called from the run method of all personalities that do not 1150 * support bitmaps. It prints an error message and returns non-zero if mddev 1151 * has a bitmap. Otherwise, it returns 0. 1152 * 1153 */ 1154 int md_check_no_bitmap(struct mddev *mddev) 1155 { 1156 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset) 1157 return 0; 1158 pr_warn("%s: bitmaps are not supported for %s\n", 1159 mdname(mddev), mddev->pers->name); 1160 return 1; 1161 } 1162 EXPORT_SYMBOL(md_check_no_bitmap); 1163 1164 /* 1165 * load_super for 0.90.0 1166 */ 1167 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1168 { 1169 mdp_super_t *sb; 1170 int ret; 1171 bool spare_disk = true; 1172 1173 /* 1174 * Calculate the position of the superblock (512byte sectors), 1175 * it's at the end of the disk. 1176 * 1177 * It also happens to be a multiple of 4Kb. 1178 */ 1179 rdev->sb_start = calc_dev_sboffset(rdev); 1180 1181 ret = read_disk_sb(rdev, MD_SB_BYTES); 1182 if (ret) 1183 return ret; 1184 1185 ret = -EINVAL; 1186 1187 sb = page_address(rdev->sb_page); 1188 1189 if (sb->md_magic != MD_SB_MAGIC) { 1190 pr_warn("md: invalid raid superblock magic on %pg\n", 1191 rdev->bdev); 1192 goto abort; 1193 } 1194 1195 if (sb->major_version != 0 || 1196 sb->minor_version < 90 || 1197 sb->minor_version > 91) { 1198 pr_warn("Bad version number %d.%d on %pg\n", 1199 sb->major_version, sb->minor_version, rdev->bdev); 1200 goto abort; 1201 } 1202 1203 if (sb->raid_disks <= 0) 1204 goto abort; 1205 1206 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) { 1207 pr_warn("md: invalid superblock checksum on %pg\n", rdev->bdev); 1208 goto abort; 1209 } 1210 1211 rdev->preferred_minor = sb->md_minor; 1212 rdev->data_offset = 0; 1213 rdev->new_data_offset = 0; 1214 rdev->sb_size = MD_SB_BYTES; 1215 rdev->badblocks.shift = -1; 1216 1217 if (sb->level == LEVEL_MULTIPATH) 1218 rdev->desc_nr = -1; 1219 else 1220 rdev->desc_nr = sb->this_disk.number; 1221 1222 /* not spare disk, or LEVEL_MULTIPATH */ 1223 if (sb->level == LEVEL_MULTIPATH || 1224 (rdev->desc_nr >= 0 && 1225 rdev->desc_nr < MD_SB_DISKS && 1226 sb->disks[rdev->desc_nr].state & 1227 ((1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))) 1228 spare_disk = false; 1229 1230 if (!refdev) { 1231 if (!spare_disk) 1232 ret = 1; 1233 else 1234 ret = 0; 1235 } else { 1236 __u64 ev1, ev2; 1237 mdp_super_t *refsb = page_address(refdev->sb_page); 1238 if (!md_uuid_equal(refsb, sb)) { 1239 pr_warn("md: %pg has different UUID to %pg\n", 1240 rdev->bdev, refdev->bdev); 1241 goto abort; 1242 } 1243 if (!md_sb_equal(refsb, sb)) { 1244 pr_warn("md: %pg has same UUID but different superblock to %pg\n", 1245 rdev->bdev, refdev->bdev); 1246 goto abort; 1247 } 1248 ev1 = md_event(sb); 1249 ev2 = md_event(refsb); 1250 1251 if (!spare_disk && ev1 > ev2) 1252 ret = 1; 1253 else 1254 ret = 0; 1255 } 1256 rdev->sectors = rdev->sb_start; 1257 /* Limit to 4TB as metadata cannot record more than that. 1258 * (not needed for Linear and RAID0 as metadata doesn't 1259 * record this size) 1260 */ 1261 if ((u64)rdev->sectors >= (2ULL << 32) && sb->level >= 1) 1262 rdev->sectors = (sector_t)(2ULL << 32) - 2; 1263 1264 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1) 1265 /* "this cannot possibly happen" ... */ 1266 ret = -EINVAL; 1267 1268 abort: 1269 return ret; 1270 } 1271 1272 /* 1273 * validate_super for 0.90.0 1274 */ 1275 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev) 1276 { 1277 mdp_disk_t *desc; 1278 mdp_super_t *sb = page_address(rdev->sb_page); 1279 __u64 ev1 = md_event(sb); 1280 1281 rdev->raid_disk = -1; 1282 clear_bit(Faulty, &rdev->flags); 1283 clear_bit(In_sync, &rdev->flags); 1284 clear_bit(Bitmap_sync, &rdev->flags); 1285 clear_bit(WriteMostly, &rdev->flags); 1286 1287 if (mddev->raid_disks == 0) { 1288 mddev->major_version = 0; 1289 mddev->minor_version = sb->minor_version; 1290 mddev->patch_version = sb->patch_version; 1291 mddev->external = 0; 1292 mddev->chunk_sectors = sb->chunk_size >> 9; 1293 mddev->ctime = sb->ctime; 1294 mddev->utime = sb->utime; 1295 mddev->level = sb->level; 1296 mddev->clevel[0] = 0; 1297 mddev->layout = sb->layout; 1298 mddev->raid_disks = sb->raid_disks; 1299 mddev->dev_sectors = ((sector_t)sb->size) * 2; 1300 mddev->events = ev1; 1301 mddev->bitmap_info.offset = 0; 1302 mddev->bitmap_info.space = 0; 1303 /* bitmap can use 60 K after the 4K superblocks */ 1304 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 1305 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 1306 mddev->reshape_backwards = 0; 1307 1308 if (mddev->minor_version >= 91) { 1309 mddev->reshape_position = sb->reshape_position; 1310 mddev->delta_disks = sb->delta_disks; 1311 mddev->new_level = sb->new_level; 1312 mddev->new_layout = sb->new_layout; 1313 mddev->new_chunk_sectors = sb->new_chunk >> 9; 1314 if (mddev->delta_disks < 0) 1315 mddev->reshape_backwards = 1; 1316 } else { 1317 mddev->reshape_position = MaxSector; 1318 mddev->delta_disks = 0; 1319 mddev->new_level = mddev->level; 1320 mddev->new_layout = mddev->layout; 1321 mddev->new_chunk_sectors = mddev->chunk_sectors; 1322 } 1323 if (mddev->level == 0) 1324 mddev->layout = -1; 1325 1326 if (sb->state & (1<<MD_SB_CLEAN)) 1327 mddev->recovery_cp = MaxSector; 1328 else { 1329 if (sb->events_hi == sb->cp_events_hi && 1330 sb->events_lo == sb->cp_events_lo) { 1331 mddev->recovery_cp = sb->recovery_cp; 1332 } else 1333 mddev->recovery_cp = 0; 1334 } 1335 1336 memcpy(mddev->uuid+0, &sb->set_uuid0, 4); 1337 memcpy(mddev->uuid+4, &sb->set_uuid1, 4); 1338 memcpy(mddev->uuid+8, &sb->set_uuid2, 4); 1339 memcpy(mddev->uuid+12,&sb->set_uuid3, 4); 1340 1341 mddev->max_disks = MD_SB_DISKS; 1342 1343 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && 1344 mddev->bitmap_info.file == NULL) { 1345 mddev->bitmap_info.offset = 1346 mddev->bitmap_info.default_offset; 1347 mddev->bitmap_info.space = 1348 mddev->bitmap_info.default_space; 1349 } 1350 1351 } else if (mddev->pers == NULL) { 1352 /* Insist on good event counter while assembling, except 1353 * for spares (which don't need an event count) */ 1354 ++ev1; 1355 if (sb->disks[rdev->desc_nr].state & ( 1356 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))) 1357 if (ev1 < mddev->events) 1358 return -EINVAL; 1359 } else if (mddev->bitmap) { 1360 /* if adding to array with a bitmap, then we can accept an 1361 * older device ... but not too old. 1362 */ 1363 if (ev1 < mddev->bitmap->events_cleared) 1364 return 0; 1365 if (ev1 < mddev->events) 1366 set_bit(Bitmap_sync, &rdev->flags); 1367 } else { 1368 if (ev1 < mddev->events) 1369 /* just a hot-add of a new device, leave raid_disk at -1 */ 1370 return 0; 1371 } 1372 1373 if (mddev->level != LEVEL_MULTIPATH) { 1374 desc = sb->disks + rdev->desc_nr; 1375 1376 if (desc->state & (1<<MD_DISK_FAULTY)) 1377 set_bit(Faulty, &rdev->flags); 1378 else if (desc->state & (1<<MD_DISK_SYNC) /* && 1379 desc->raid_disk < mddev->raid_disks */) { 1380 set_bit(In_sync, &rdev->flags); 1381 rdev->raid_disk = desc->raid_disk; 1382 rdev->saved_raid_disk = desc->raid_disk; 1383 } else if (desc->state & (1<<MD_DISK_ACTIVE)) { 1384 /* active but not in sync implies recovery up to 1385 * reshape position. We don't know exactly where 1386 * that is, so set to zero for now */ 1387 if (mddev->minor_version >= 91) { 1388 rdev->recovery_offset = 0; 1389 rdev->raid_disk = desc->raid_disk; 1390 } 1391 } 1392 if (desc->state & (1<<MD_DISK_WRITEMOSTLY)) 1393 set_bit(WriteMostly, &rdev->flags); 1394 if (desc->state & (1<<MD_DISK_FAILFAST)) 1395 set_bit(FailFast, &rdev->flags); 1396 } else /* MULTIPATH are always insync */ 1397 set_bit(In_sync, &rdev->flags); 1398 return 0; 1399 } 1400 1401 /* 1402 * sync_super for 0.90.0 1403 */ 1404 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev) 1405 { 1406 mdp_super_t *sb; 1407 struct md_rdev *rdev2; 1408 int next_spare = mddev->raid_disks; 1409 1410 /* make rdev->sb match mddev data.. 1411 * 1412 * 1/ zero out disks 1413 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); 1414 * 3/ any empty disks < next_spare become removed 1415 * 1416 * disks[0] gets initialised to REMOVED because 1417 * we cannot be sure from other fields if it has 1418 * been initialised or not. 1419 */ 1420 int i; 1421 int active=0, working=0,failed=0,spare=0,nr_disks=0; 1422 1423 rdev->sb_size = MD_SB_BYTES; 1424 1425 sb = page_address(rdev->sb_page); 1426 1427 memset(sb, 0, sizeof(*sb)); 1428 1429 sb->md_magic = MD_SB_MAGIC; 1430 sb->major_version = mddev->major_version; 1431 sb->patch_version = mddev->patch_version; 1432 sb->gvalid_words = 0; /* ignored */ 1433 memcpy(&sb->set_uuid0, mddev->uuid+0, 4); 1434 memcpy(&sb->set_uuid1, mddev->uuid+4, 4); 1435 memcpy(&sb->set_uuid2, mddev->uuid+8, 4); 1436 memcpy(&sb->set_uuid3, mddev->uuid+12,4); 1437 1438 sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 1439 sb->level = mddev->level; 1440 sb->size = mddev->dev_sectors / 2; 1441 sb->raid_disks = mddev->raid_disks; 1442 sb->md_minor = mddev->md_minor; 1443 sb->not_persistent = 0; 1444 sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 1445 sb->state = 0; 1446 sb->events_hi = (mddev->events>>32); 1447 sb->events_lo = (u32)mddev->events; 1448 1449 if (mddev->reshape_position == MaxSector) 1450 sb->minor_version = 90; 1451 else { 1452 sb->minor_version = 91; 1453 sb->reshape_position = mddev->reshape_position; 1454 sb->new_level = mddev->new_level; 1455 sb->delta_disks = mddev->delta_disks; 1456 sb->new_layout = mddev->new_layout; 1457 sb->new_chunk = mddev->new_chunk_sectors << 9; 1458 } 1459 mddev->minor_version = sb->minor_version; 1460 if (mddev->in_sync) 1461 { 1462 sb->recovery_cp = mddev->recovery_cp; 1463 sb->cp_events_hi = (mddev->events>>32); 1464 sb->cp_events_lo = (u32)mddev->events; 1465 if (mddev->recovery_cp == MaxSector) 1466 sb->state = (1<< MD_SB_CLEAN); 1467 } else 1468 sb->recovery_cp = 0; 1469 1470 sb->layout = mddev->layout; 1471 sb->chunk_size = mddev->chunk_sectors << 9; 1472 1473 if (mddev->bitmap && mddev->bitmap_info.file == NULL) 1474 sb->state |= (1<<MD_SB_BITMAP_PRESENT); 1475 1476 sb->disks[0].state = (1<<MD_DISK_REMOVED); 1477 rdev_for_each(rdev2, mddev) { 1478 mdp_disk_t *d; 1479 int desc_nr; 1480 int is_active = test_bit(In_sync, &rdev2->flags); 1481 1482 if (rdev2->raid_disk >= 0 && 1483 sb->minor_version >= 91) 1484 /* we have nowhere to store the recovery_offset, 1485 * but if it is not below the reshape_position, 1486 * we can piggy-back on that. 1487 */ 1488 is_active = 1; 1489 if (rdev2->raid_disk < 0 || 1490 test_bit(Faulty, &rdev2->flags)) 1491 is_active = 0; 1492 if (is_active) 1493 desc_nr = rdev2->raid_disk; 1494 else 1495 desc_nr = next_spare++; 1496 rdev2->desc_nr = desc_nr; 1497 d = &sb->disks[rdev2->desc_nr]; 1498 nr_disks++; 1499 d->number = rdev2->desc_nr; 1500 d->major = MAJOR(rdev2->bdev->bd_dev); 1501 d->minor = MINOR(rdev2->bdev->bd_dev); 1502 if (is_active) 1503 d->raid_disk = rdev2->raid_disk; 1504 else 1505 d->raid_disk = rdev2->desc_nr; /* compatibility */ 1506 if (test_bit(Faulty, &rdev2->flags)) 1507 d->state = (1<<MD_DISK_FAULTY); 1508 else if (is_active) { 1509 d->state = (1<<MD_DISK_ACTIVE); 1510 if (test_bit(In_sync, &rdev2->flags)) 1511 d->state |= (1<<MD_DISK_SYNC); 1512 active++; 1513 working++; 1514 } else { 1515 d->state = 0; 1516 spare++; 1517 working++; 1518 } 1519 if (test_bit(WriteMostly, &rdev2->flags)) 1520 d->state |= (1<<MD_DISK_WRITEMOSTLY); 1521 if (test_bit(FailFast, &rdev2->flags)) 1522 d->state |= (1<<MD_DISK_FAILFAST); 1523 } 1524 /* now set the "removed" and "faulty" bits on any missing devices */ 1525 for (i=0 ; i < mddev->raid_disks ; i++) { 1526 mdp_disk_t *d = &sb->disks[i]; 1527 if (d->state == 0 && d->number == 0) { 1528 d->number = i; 1529 d->raid_disk = i; 1530 d->state = (1<<MD_DISK_REMOVED); 1531 d->state |= (1<<MD_DISK_FAULTY); 1532 failed++; 1533 } 1534 } 1535 sb->nr_disks = nr_disks; 1536 sb->active_disks = active; 1537 sb->working_disks = working; 1538 sb->failed_disks = failed; 1539 sb->spare_disks = spare; 1540 1541 sb->this_disk = sb->disks[rdev->desc_nr]; 1542 sb->sb_csum = calc_sb_csum(sb); 1543 } 1544 1545 /* 1546 * rdev_size_change for 0.90.0 1547 */ 1548 static unsigned long long 1549 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1550 { 1551 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1552 return 0; /* component must fit device */ 1553 if (rdev->mddev->bitmap_info.offset) 1554 return 0; /* can't move bitmap */ 1555 rdev->sb_start = calc_dev_sboffset(rdev); 1556 if (!num_sectors || num_sectors > rdev->sb_start) 1557 num_sectors = rdev->sb_start; 1558 /* Limit to 4TB as metadata cannot record more than that. 1559 * 4TB == 2^32 KB, or 2*2^32 sectors. 1560 */ 1561 if ((u64)num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1) 1562 num_sectors = (sector_t)(2ULL << 32) - 2; 1563 do { 1564 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1565 rdev->sb_page); 1566 } while (md_super_wait(rdev->mddev) < 0); 1567 return num_sectors; 1568 } 1569 1570 static int 1571 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset) 1572 { 1573 /* non-zero offset changes not possible with v0.90 */ 1574 return new_offset == 0; 1575 } 1576 1577 /* 1578 * version 1 superblock 1579 */ 1580 1581 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb) 1582 { 1583 __le32 disk_csum; 1584 u32 csum; 1585 unsigned long long newcsum; 1586 int size = 256 + le32_to_cpu(sb->max_dev)*2; 1587 __le32 *isuper = (__le32*)sb; 1588 1589 disk_csum = sb->sb_csum; 1590 sb->sb_csum = 0; 1591 newcsum = 0; 1592 for (; size >= 4; size -= 4) 1593 newcsum += le32_to_cpu(*isuper++); 1594 1595 if (size == 2) 1596 newcsum += le16_to_cpu(*(__le16*) isuper); 1597 1598 csum = (newcsum & 0xffffffff) + (newcsum >> 32); 1599 sb->sb_csum = disk_csum; 1600 return cpu_to_le32(csum); 1601 } 1602 1603 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1604 { 1605 struct mdp_superblock_1 *sb; 1606 int ret; 1607 sector_t sb_start; 1608 sector_t sectors; 1609 int bmask; 1610 bool spare_disk = true; 1611 1612 /* 1613 * Calculate the position of the superblock in 512byte sectors. 1614 * It is always aligned to a 4K boundary and 1615 * depeding on minor_version, it can be: 1616 * 0: At least 8K, but less than 12K, from end of device 1617 * 1: At start of device 1618 * 2: 4K from start of device. 1619 */ 1620 switch(minor_version) { 1621 case 0: 1622 sb_start = bdev_nr_sectors(rdev->bdev) - 8 * 2; 1623 sb_start &= ~(sector_t)(4*2-1); 1624 break; 1625 case 1: 1626 sb_start = 0; 1627 break; 1628 case 2: 1629 sb_start = 8; 1630 break; 1631 default: 1632 return -EINVAL; 1633 } 1634 rdev->sb_start = sb_start; 1635 1636 /* superblock is rarely larger than 1K, but it can be larger, 1637 * and it is safe to read 4k, so we do that 1638 */ 1639 ret = read_disk_sb(rdev, 4096); 1640 if (ret) return ret; 1641 1642 sb = page_address(rdev->sb_page); 1643 1644 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || 1645 sb->major_version != cpu_to_le32(1) || 1646 le32_to_cpu(sb->max_dev) > (4096-256)/2 || 1647 le64_to_cpu(sb->super_offset) != rdev->sb_start || 1648 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) 1649 return -EINVAL; 1650 1651 if (calc_sb_1_csum(sb) != sb->sb_csum) { 1652 pr_warn("md: invalid superblock checksum on %pg\n", 1653 rdev->bdev); 1654 return -EINVAL; 1655 } 1656 if (le64_to_cpu(sb->data_size) < 10) { 1657 pr_warn("md: data_size too small on %pg\n", 1658 rdev->bdev); 1659 return -EINVAL; 1660 } 1661 if (sb->pad0 || 1662 sb->pad3[0] || 1663 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1]))) 1664 /* Some padding is non-zero, might be a new feature */ 1665 return -EINVAL; 1666 1667 rdev->preferred_minor = 0xffff; 1668 rdev->data_offset = le64_to_cpu(sb->data_offset); 1669 rdev->new_data_offset = rdev->data_offset; 1670 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) && 1671 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET)) 1672 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset); 1673 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); 1674 1675 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; 1676 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1677 if (rdev->sb_size & bmask) 1678 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1679 1680 if (minor_version 1681 && rdev->data_offset < sb_start + (rdev->sb_size/512)) 1682 return -EINVAL; 1683 if (minor_version 1684 && rdev->new_data_offset < sb_start + (rdev->sb_size/512)) 1685 return -EINVAL; 1686 1687 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH)) 1688 rdev->desc_nr = -1; 1689 else 1690 rdev->desc_nr = le32_to_cpu(sb->dev_number); 1691 1692 if (!rdev->bb_page) { 1693 rdev->bb_page = alloc_page(GFP_KERNEL); 1694 if (!rdev->bb_page) 1695 return -ENOMEM; 1696 } 1697 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) && 1698 rdev->badblocks.count == 0) { 1699 /* need to load the bad block list. 1700 * Currently we limit it to one page. 1701 */ 1702 s32 offset; 1703 sector_t bb_sector; 1704 __le64 *bbp; 1705 int i; 1706 int sectors = le16_to_cpu(sb->bblog_size); 1707 if (sectors > (PAGE_SIZE / 512)) 1708 return -EINVAL; 1709 offset = le32_to_cpu(sb->bblog_offset); 1710 if (offset == 0) 1711 return -EINVAL; 1712 bb_sector = (long long)offset; 1713 if (!sync_page_io(rdev, bb_sector, sectors << 9, 1714 rdev->bb_page, REQ_OP_READ, true)) 1715 return -EIO; 1716 bbp = (__le64 *)page_address(rdev->bb_page); 1717 rdev->badblocks.shift = sb->bblog_shift; 1718 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) { 1719 u64 bb = le64_to_cpu(*bbp); 1720 int count = bb & (0x3ff); 1721 u64 sector = bb >> 10; 1722 sector <<= sb->bblog_shift; 1723 count <<= sb->bblog_shift; 1724 if (bb + 1 == 0) 1725 break; 1726 if (badblocks_set(&rdev->badblocks, sector, count, 1)) 1727 return -EINVAL; 1728 } 1729 } else if (sb->bblog_offset != 0) 1730 rdev->badblocks.shift = 0; 1731 1732 if ((le32_to_cpu(sb->feature_map) & 1733 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS))) { 1734 rdev->ppl.offset = (__s16)le16_to_cpu(sb->ppl.offset); 1735 rdev->ppl.size = le16_to_cpu(sb->ppl.size); 1736 rdev->ppl.sector = rdev->sb_start + rdev->ppl.offset; 1737 } 1738 1739 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT) && 1740 sb->level != 0) 1741 return -EINVAL; 1742 1743 /* not spare disk, or LEVEL_MULTIPATH */ 1744 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH) || 1745 (rdev->desc_nr >= 0 && 1746 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1747 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX || 1748 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))) 1749 spare_disk = false; 1750 1751 if (!refdev) { 1752 if (!spare_disk) 1753 ret = 1; 1754 else 1755 ret = 0; 1756 } else { 1757 __u64 ev1, ev2; 1758 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page); 1759 1760 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || 1761 sb->level != refsb->level || 1762 sb->layout != refsb->layout || 1763 sb->chunksize != refsb->chunksize) { 1764 pr_warn("md: %pg has strangely different superblock to %pg\n", 1765 rdev->bdev, 1766 refdev->bdev); 1767 return -EINVAL; 1768 } 1769 ev1 = le64_to_cpu(sb->events); 1770 ev2 = le64_to_cpu(refsb->events); 1771 1772 if (!spare_disk && ev1 > ev2) 1773 ret = 1; 1774 else 1775 ret = 0; 1776 } 1777 if (minor_version) 1778 sectors = bdev_nr_sectors(rdev->bdev) - rdev->data_offset; 1779 else 1780 sectors = rdev->sb_start; 1781 if (sectors < le64_to_cpu(sb->data_size)) 1782 return -EINVAL; 1783 rdev->sectors = le64_to_cpu(sb->data_size); 1784 return ret; 1785 } 1786 1787 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev) 1788 { 1789 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 1790 __u64 ev1 = le64_to_cpu(sb->events); 1791 1792 rdev->raid_disk = -1; 1793 clear_bit(Faulty, &rdev->flags); 1794 clear_bit(In_sync, &rdev->flags); 1795 clear_bit(Bitmap_sync, &rdev->flags); 1796 clear_bit(WriteMostly, &rdev->flags); 1797 1798 if (mddev->raid_disks == 0) { 1799 mddev->major_version = 1; 1800 mddev->patch_version = 0; 1801 mddev->external = 0; 1802 mddev->chunk_sectors = le32_to_cpu(sb->chunksize); 1803 mddev->ctime = le64_to_cpu(sb->ctime); 1804 mddev->utime = le64_to_cpu(sb->utime); 1805 mddev->level = le32_to_cpu(sb->level); 1806 mddev->clevel[0] = 0; 1807 mddev->layout = le32_to_cpu(sb->layout); 1808 mddev->raid_disks = le32_to_cpu(sb->raid_disks); 1809 mddev->dev_sectors = le64_to_cpu(sb->size); 1810 mddev->events = ev1; 1811 mddev->bitmap_info.offset = 0; 1812 mddev->bitmap_info.space = 0; 1813 /* Default location for bitmap is 1K after superblock 1814 * using 3K - total of 4K 1815 */ 1816 mddev->bitmap_info.default_offset = 1024 >> 9; 1817 mddev->bitmap_info.default_space = (4096-1024) >> 9; 1818 mddev->reshape_backwards = 0; 1819 1820 mddev->recovery_cp = le64_to_cpu(sb->resync_offset); 1821 memcpy(mddev->uuid, sb->set_uuid, 16); 1822 1823 mddev->max_disks = (4096-256)/2; 1824 1825 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && 1826 mddev->bitmap_info.file == NULL) { 1827 mddev->bitmap_info.offset = 1828 (__s32)le32_to_cpu(sb->bitmap_offset); 1829 /* Metadata doesn't record how much space is available. 1830 * For 1.0, we assume we can use up to the superblock 1831 * if before, else to 4K beyond superblock. 1832 * For others, assume no change is possible. 1833 */ 1834 if (mddev->minor_version > 0) 1835 mddev->bitmap_info.space = 0; 1836 else if (mddev->bitmap_info.offset > 0) 1837 mddev->bitmap_info.space = 1838 8 - mddev->bitmap_info.offset; 1839 else 1840 mddev->bitmap_info.space = 1841 -mddev->bitmap_info.offset; 1842 } 1843 1844 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 1845 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 1846 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 1847 mddev->new_level = le32_to_cpu(sb->new_level); 1848 mddev->new_layout = le32_to_cpu(sb->new_layout); 1849 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk); 1850 if (mddev->delta_disks < 0 || 1851 (mddev->delta_disks == 0 && 1852 (le32_to_cpu(sb->feature_map) 1853 & MD_FEATURE_RESHAPE_BACKWARDS))) 1854 mddev->reshape_backwards = 1; 1855 } else { 1856 mddev->reshape_position = MaxSector; 1857 mddev->delta_disks = 0; 1858 mddev->new_level = mddev->level; 1859 mddev->new_layout = mddev->layout; 1860 mddev->new_chunk_sectors = mddev->chunk_sectors; 1861 } 1862 1863 if (mddev->level == 0 && 1864 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT)) 1865 mddev->layout = -1; 1866 1867 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL) 1868 set_bit(MD_HAS_JOURNAL, &mddev->flags); 1869 1870 if (le32_to_cpu(sb->feature_map) & 1871 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS)) { 1872 if (le32_to_cpu(sb->feature_map) & 1873 (MD_FEATURE_BITMAP_OFFSET | MD_FEATURE_JOURNAL)) 1874 return -EINVAL; 1875 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_PPL) && 1876 (le32_to_cpu(sb->feature_map) & 1877 MD_FEATURE_MULTIPLE_PPLS)) 1878 return -EINVAL; 1879 set_bit(MD_HAS_PPL, &mddev->flags); 1880 } 1881 } else if (mddev->pers == NULL) { 1882 /* Insist of good event counter while assembling, except for 1883 * spares (which don't need an event count) */ 1884 ++ev1; 1885 if (rdev->desc_nr >= 0 && 1886 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1887 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX || 1888 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL)) 1889 if (ev1 < mddev->events) 1890 return -EINVAL; 1891 } else if (mddev->bitmap) { 1892 /* If adding to array with a bitmap, then we can accept an 1893 * older device, but not too old. 1894 */ 1895 if (ev1 < mddev->bitmap->events_cleared) 1896 return 0; 1897 if (ev1 < mddev->events) 1898 set_bit(Bitmap_sync, &rdev->flags); 1899 } else { 1900 if (ev1 < mddev->events) 1901 /* just a hot-add of a new device, leave raid_disk at -1 */ 1902 return 0; 1903 } 1904 if (mddev->level != LEVEL_MULTIPATH) { 1905 int role; 1906 if (rdev->desc_nr < 0 || 1907 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) { 1908 role = MD_DISK_ROLE_SPARE; 1909 rdev->desc_nr = -1; 1910 } else 1911 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 1912 switch(role) { 1913 case MD_DISK_ROLE_SPARE: /* spare */ 1914 break; 1915 case MD_DISK_ROLE_FAULTY: /* faulty */ 1916 set_bit(Faulty, &rdev->flags); 1917 break; 1918 case MD_DISK_ROLE_JOURNAL: /* journal device */ 1919 if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) { 1920 /* journal device without journal feature */ 1921 pr_warn("md: journal device provided without journal feature, ignoring the device\n"); 1922 return -EINVAL; 1923 } 1924 set_bit(Journal, &rdev->flags); 1925 rdev->journal_tail = le64_to_cpu(sb->journal_tail); 1926 rdev->raid_disk = 0; 1927 break; 1928 default: 1929 rdev->saved_raid_disk = role; 1930 if ((le32_to_cpu(sb->feature_map) & 1931 MD_FEATURE_RECOVERY_OFFSET)) { 1932 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 1933 if (!(le32_to_cpu(sb->feature_map) & 1934 MD_FEATURE_RECOVERY_BITMAP)) 1935 rdev->saved_raid_disk = -1; 1936 } else { 1937 /* 1938 * If the array is FROZEN, then the device can't 1939 * be in_sync with rest of array. 1940 */ 1941 if (!test_bit(MD_RECOVERY_FROZEN, 1942 &mddev->recovery)) 1943 set_bit(In_sync, &rdev->flags); 1944 } 1945 rdev->raid_disk = role; 1946 break; 1947 } 1948 if (sb->devflags & WriteMostly1) 1949 set_bit(WriteMostly, &rdev->flags); 1950 if (sb->devflags & FailFast1) 1951 set_bit(FailFast, &rdev->flags); 1952 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT) 1953 set_bit(Replacement, &rdev->flags); 1954 } else /* MULTIPATH are always insync */ 1955 set_bit(In_sync, &rdev->flags); 1956 1957 return 0; 1958 } 1959 1960 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev) 1961 { 1962 struct mdp_superblock_1 *sb; 1963 struct md_rdev *rdev2; 1964 int max_dev, i; 1965 /* make rdev->sb match mddev and rdev data. */ 1966 1967 sb = page_address(rdev->sb_page); 1968 1969 sb->feature_map = 0; 1970 sb->pad0 = 0; 1971 sb->recovery_offset = cpu_to_le64(0); 1972 memset(sb->pad3, 0, sizeof(sb->pad3)); 1973 1974 sb->utime = cpu_to_le64((__u64)mddev->utime); 1975 sb->events = cpu_to_le64(mddev->events); 1976 if (mddev->in_sync) 1977 sb->resync_offset = cpu_to_le64(mddev->recovery_cp); 1978 else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags)) 1979 sb->resync_offset = cpu_to_le64(MaxSector); 1980 else 1981 sb->resync_offset = cpu_to_le64(0); 1982 1983 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); 1984 1985 sb->raid_disks = cpu_to_le32(mddev->raid_disks); 1986 sb->size = cpu_to_le64(mddev->dev_sectors); 1987 sb->chunksize = cpu_to_le32(mddev->chunk_sectors); 1988 sb->level = cpu_to_le32(mddev->level); 1989 sb->layout = cpu_to_le32(mddev->layout); 1990 if (test_bit(FailFast, &rdev->flags)) 1991 sb->devflags |= FailFast1; 1992 else 1993 sb->devflags &= ~FailFast1; 1994 1995 if (test_bit(WriteMostly, &rdev->flags)) 1996 sb->devflags |= WriteMostly1; 1997 else 1998 sb->devflags &= ~WriteMostly1; 1999 sb->data_offset = cpu_to_le64(rdev->data_offset); 2000 sb->data_size = cpu_to_le64(rdev->sectors); 2001 2002 if (mddev->bitmap && mddev->bitmap_info.file == NULL) { 2003 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset); 2004 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); 2005 } 2006 2007 if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) && 2008 !test_bit(In_sync, &rdev->flags)) { 2009 sb->feature_map |= 2010 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); 2011 sb->recovery_offset = 2012 cpu_to_le64(rdev->recovery_offset); 2013 if (rdev->saved_raid_disk >= 0 && mddev->bitmap) 2014 sb->feature_map |= 2015 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP); 2016 } 2017 /* Note: recovery_offset and journal_tail share space */ 2018 if (test_bit(Journal, &rdev->flags)) 2019 sb->journal_tail = cpu_to_le64(rdev->journal_tail); 2020 if (test_bit(Replacement, &rdev->flags)) 2021 sb->feature_map |= 2022 cpu_to_le32(MD_FEATURE_REPLACEMENT); 2023 2024 if (mddev->reshape_position != MaxSector) { 2025 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); 2026 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 2027 sb->new_layout = cpu_to_le32(mddev->new_layout); 2028 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 2029 sb->new_level = cpu_to_le32(mddev->new_level); 2030 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors); 2031 if (mddev->delta_disks == 0 && 2032 mddev->reshape_backwards) 2033 sb->feature_map 2034 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS); 2035 if (rdev->new_data_offset != rdev->data_offset) { 2036 sb->feature_map 2037 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET); 2038 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset 2039 - rdev->data_offset)); 2040 } 2041 } 2042 2043 if (mddev_is_clustered(mddev)) 2044 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED); 2045 2046 if (rdev->badblocks.count == 0) 2047 /* Nothing to do for bad blocks*/ ; 2048 else if (sb->bblog_offset == 0) 2049 /* Cannot record bad blocks on this device */ 2050 md_error(mddev, rdev); 2051 else { 2052 struct badblocks *bb = &rdev->badblocks; 2053 __le64 *bbp = (__le64 *)page_address(rdev->bb_page); 2054 u64 *p = bb->page; 2055 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS); 2056 if (bb->changed) { 2057 unsigned seq; 2058 2059 retry: 2060 seq = read_seqbegin(&bb->lock); 2061 2062 memset(bbp, 0xff, PAGE_SIZE); 2063 2064 for (i = 0 ; i < bb->count ; i++) { 2065 u64 internal_bb = p[i]; 2066 u64 store_bb = ((BB_OFFSET(internal_bb) << 10) 2067 | BB_LEN(internal_bb)); 2068 bbp[i] = cpu_to_le64(store_bb); 2069 } 2070 bb->changed = 0; 2071 if (read_seqretry(&bb->lock, seq)) 2072 goto retry; 2073 2074 bb->sector = (rdev->sb_start + 2075 (int)le32_to_cpu(sb->bblog_offset)); 2076 bb->size = le16_to_cpu(sb->bblog_size); 2077 } 2078 } 2079 2080 max_dev = 0; 2081 rdev_for_each(rdev2, mddev) 2082 if (rdev2->desc_nr+1 > max_dev) 2083 max_dev = rdev2->desc_nr+1; 2084 2085 if (max_dev > le32_to_cpu(sb->max_dev)) { 2086 int bmask; 2087 sb->max_dev = cpu_to_le32(max_dev); 2088 rdev->sb_size = max_dev * 2 + 256; 2089 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 2090 if (rdev->sb_size & bmask) 2091 rdev->sb_size = (rdev->sb_size | bmask) + 1; 2092 } else 2093 max_dev = le32_to_cpu(sb->max_dev); 2094 2095 for (i=0; i<max_dev;i++) 2096 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 2097 2098 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) 2099 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL); 2100 2101 if (test_bit(MD_HAS_PPL, &mddev->flags)) { 2102 if (test_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags)) 2103 sb->feature_map |= 2104 cpu_to_le32(MD_FEATURE_MULTIPLE_PPLS); 2105 else 2106 sb->feature_map |= cpu_to_le32(MD_FEATURE_PPL); 2107 sb->ppl.offset = cpu_to_le16(rdev->ppl.offset); 2108 sb->ppl.size = cpu_to_le16(rdev->ppl.size); 2109 } 2110 2111 rdev_for_each(rdev2, mddev) { 2112 i = rdev2->desc_nr; 2113 if (test_bit(Faulty, &rdev2->flags)) 2114 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY); 2115 else if (test_bit(In_sync, &rdev2->flags)) 2116 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 2117 else if (test_bit(Journal, &rdev2->flags)) 2118 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL); 2119 else if (rdev2->raid_disk >= 0) 2120 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 2121 else 2122 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 2123 } 2124 2125 sb->sb_csum = calc_sb_1_csum(sb); 2126 } 2127 2128 static sector_t super_1_choose_bm_space(sector_t dev_size) 2129 { 2130 sector_t bm_space; 2131 2132 /* if the device is bigger than 8Gig, save 64k for bitmap 2133 * usage, if bigger than 200Gig, save 128k 2134 */ 2135 if (dev_size < 64*2) 2136 bm_space = 0; 2137 else if (dev_size - 64*2 >= 200*1024*1024*2) 2138 bm_space = 128*2; 2139 else if (dev_size - 4*2 > 8*1024*1024*2) 2140 bm_space = 64*2; 2141 else 2142 bm_space = 4*2; 2143 return bm_space; 2144 } 2145 2146 static unsigned long long 2147 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 2148 { 2149 struct mdp_superblock_1 *sb; 2150 sector_t max_sectors; 2151 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 2152 return 0; /* component must fit device */ 2153 if (rdev->data_offset != rdev->new_data_offset) 2154 return 0; /* too confusing */ 2155 if (rdev->sb_start < rdev->data_offset) { 2156 /* minor versions 1 and 2; superblock before data */ 2157 max_sectors = bdev_nr_sectors(rdev->bdev) - rdev->data_offset; 2158 if (!num_sectors || num_sectors > max_sectors) 2159 num_sectors = max_sectors; 2160 } else if (rdev->mddev->bitmap_info.offset) { 2161 /* minor version 0 with bitmap we can't move */ 2162 return 0; 2163 } else { 2164 /* minor version 0; superblock after data */ 2165 sector_t sb_start, bm_space; 2166 sector_t dev_size = bdev_nr_sectors(rdev->bdev); 2167 2168 /* 8K is for superblock */ 2169 sb_start = dev_size - 8*2; 2170 sb_start &= ~(sector_t)(4*2 - 1); 2171 2172 bm_space = super_1_choose_bm_space(dev_size); 2173 2174 /* Space that can be used to store date needs to decrease 2175 * superblock bitmap space and bad block space(4K) 2176 */ 2177 max_sectors = sb_start - bm_space - 4*2; 2178 2179 if (!num_sectors || num_sectors > max_sectors) 2180 num_sectors = max_sectors; 2181 rdev->sb_start = sb_start; 2182 } 2183 sb = page_address(rdev->sb_page); 2184 sb->data_size = cpu_to_le64(num_sectors); 2185 sb->super_offset = cpu_to_le64(rdev->sb_start); 2186 sb->sb_csum = calc_sb_1_csum(sb); 2187 do { 2188 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 2189 rdev->sb_page); 2190 } while (md_super_wait(rdev->mddev) < 0); 2191 return num_sectors; 2192 2193 } 2194 2195 static int 2196 super_1_allow_new_offset(struct md_rdev *rdev, 2197 unsigned long long new_offset) 2198 { 2199 /* All necessary checks on new >= old have been done */ 2200 struct bitmap *bitmap; 2201 if (new_offset >= rdev->data_offset) 2202 return 1; 2203 2204 /* with 1.0 metadata, there is no metadata to tread on 2205 * so we can always move back */ 2206 if (rdev->mddev->minor_version == 0) 2207 return 1; 2208 2209 /* otherwise we must be sure not to step on 2210 * any metadata, so stay: 2211 * 36K beyond start of superblock 2212 * beyond end of badblocks 2213 * beyond write-intent bitmap 2214 */ 2215 if (rdev->sb_start + (32+4)*2 > new_offset) 2216 return 0; 2217 bitmap = rdev->mddev->bitmap; 2218 if (bitmap && !rdev->mddev->bitmap_info.file && 2219 rdev->sb_start + rdev->mddev->bitmap_info.offset + 2220 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset) 2221 return 0; 2222 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset) 2223 return 0; 2224 2225 return 1; 2226 } 2227 2228 static struct super_type super_types[] = { 2229 [0] = { 2230 .name = "0.90.0", 2231 .owner = THIS_MODULE, 2232 .load_super = super_90_load, 2233 .validate_super = super_90_validate, 2234 .sync_super = super_90_sync, 2235 .rdev_size_change = super_90_rdev_size_change, 2236 .allow_new_offset = super_90_allow_new_offset, 2237 }, 2238 [1] = { 2239 .name = "md-1", 2240 .owner = THIS_MODULE, 2241 .load_super = super_1_load, 2242 .validate_super = super_1_validate, 2243 .sync_super = super_1_sync, 2244 .rdev_size_change = super_1_rdev_size_change, 2245 .allow_new_offset = super_1_allow_new_offset, 2246 }, 2247 }; 2248 2249 static void sync_super(struct mddev *mddev, struct md_rdev *rdev) 2250 { 2251 if (mddev->sync_super) { 2252 mddev->sync_super(mddev, rdev); 2253 return; 2254 } 2255 2256 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types)); 2257 2258 super_types[mddev->major_version].sync_super(mddev, rdev); 2259 } 2260 2261 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2) 2262 { 2263 struct md_rdev *rdev, *rdev2; 2264 2265 rcu_read_lock(); 2266 rdev_for_each_rcu(rdev, mddev1) { 2267 if (test_bit(Faulty, &rdev->flags) || 2268 test_bit(Journal, &rdev->flags) || 2269 rdev->raid_disk == -1) 2270 continue; 2271 rdev_for_each_rcu(rdev2, mddev2) { 2272 if (test_bit(Faulty, &rdev2->flags) || 2273 test_bit(Journal, &rdev2->flags) || 2274 rdev2->raid_disk == -1) 2275 continue; 2276 if (rdev->bdev->bd_disk == rdev2->bdev->bd_disk) { 2277 rcu_read_unlock(); 2278 return 1; 2279 } 2280 } 2281 } 2282 rcu_read_unlock(); 2283 return 0; 2284 } 2285 2286 static LIST_HEAD(pending_raid_disks); 2287 2288 /* 2289 * Try to register data integrity profile for an mddev 2290 * 2291 * This is called when an array is started and after a disk has been kicked 2292 * from the array. It only succeeds if all working and active component devices 2293 * are integrity capable with matching profiles. 2294 */ 2295 int md_integrity_register(struct mddev *mddev) 2296 { 2297 struct md_rdev *rdev, *reference = NULL; 2298 2299 if (list_empty(&mddev->disks)) 2300 return 0; /* nothing to do */ 2301 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk)) 2302 return 0; /* shouldn't register, or already is */ 2303 rdev_for_each(rdev, mddev) { 2304 /* skip spares and non-functional disks */ 2305 if (test_bit(Faulty, &rdev->flags)) 2306 continue; 2307 if (rdev->raid_disk < 0) 2308 continue; 2309 if (!reference) { 2310 /* Use the first rdev as the reference */ 2311 reference = rdev; 2312 continue; 2313 } 2314 /* does this rdev's profile match the reference profile? */ 2315 if (blk_integrity_compare(reference->bdev->bd_disk, 2316 rdev->bdev->bd_disk) < 0) 2317 return -EINVAL; 2318 } 2319 if (!reference || !bdev_get_integrity(reference->bdev)) 2320 return 0; 2321 /* 2322 * All component devices are integrity capable and have matching 2323 * profiles, register the common profile for the md device. 2324 */ 2325 blk_integrity_register(mddev->gendisk, 2326 bdev_get_integrity(reference->bdev)); 2327 2328 pr_debug("md: data integrity enabled on %s\n", mdname(mddev)); 2329 if (bioset_integrity_create(&mddev->bio_set, BIO_POOL_SIZE) || 2330 (mddev->level != 1 && mddev->level != 10 && 2331 bioset_integrity_create(&mddev->io_acct_set, BIO_POOL_SIZE))) { 2332 /* 2333 * No need to handle the failure of bioset_integrity_create, 2334 * because the function is called by md_run() -> pers->run(), 2335 * md_run calls bioset_exit -> bioset_integrity_free in case 2336 * of failure case. 2337 */ 2338 pr_err("md: failed to create integrity pool for %s\n", 2339 mdname(mddev)); 2340 return -EINVAL; 2341 } 2342 return 0; 2343 } 2344 EXPORT_SYMBOL(md_integrity_register); 2345 2346 /* 2347 * Attempt to add an rdev, but only if it is consistent with the current 2348 * integrity profile 2349 */ 2350 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev) 2351 { 2352 struct blk_integrity *bi_mddev; 2353 2354 if (!mddev->gendisk) 2355 return 0; 2356 2357 bi_mddev = blk_get_integrity(mddev->gendisk); 2358 2359 if (!bi_mddev) /* nothing to do */ 2360 return 0; 2361 2362 if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) { 2363 pr_err("%s: incompatible integrity profile for %pg\n", 2364 mdname(mddev), rdev->bdev); 2365 return -ENXIO; 2366 } 2367 2368 return 0; 2369 } 2370 EXPORT_SYMBOL(md_integrity_add_rdev); 2371 2372 static bool rdev_read_only(struct md_rdev *rdev) 2373 { 2374 return bdev_read_only(rdev->bdev) || 2375 (rdev->meta_bdev && bdev_read_only(rdev->meta_bdev)); 2376 } 2377 2378 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev) 2379 { 2380 char b[BDEVNAME_SIZE]; 2381 int err; 2382 2383 /* prevent duplicates */ 2384 if (find_rdev(mddev, rdev->bdev->bd_dev)) 2385 return -EEXIST; 2386 2387 if (rdev_read_only(rdev) && mddev->pers) 2388 return -EROFS; 2389 2390 /* make sure rdev->sectors exceeds mddev->dev_sectors */ 2391 if (!test_bit(Journal, &rdev->flags) && 2392 rdev->sectors && 2393 (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) { 2394 if (mddev->pers) { 2395 /* Cannot change size, so fail 2396 * If mddev->level <= 0, then we don't care 2397 * about aligning sizes (e.g. linear) 2398 */ 2399 if (mddev->level > 0) 2400 return -ENOSPC; 2401 } else 2402 mddev->dev_sectors = rdev->sectors; 2403 } 2404 2405 /* Verify rdev->desc_nr is unique. 2406 * If it is -1, assign a free number, else 2407 * check number is not in use 2408 */ 2409 rcu_read_lock(); 2410 if (rdev->desc_nr < 0) { 2411 int choice = 0; 2412 if (mddev->pers) 2413 choice = mddev->raid_disks; 2414 while (md_find_rdev_nr_rcu(mddev, choice)) 2415 choice++; 2416 rdev->desc_nr = choice; 2417 } else { 2418 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) { 2419 rcu_read_unlock(); 2420 return -EBUSY; 2421 } 2422 } 2423 rcu_read_unlock(); 2424 if (!test_bit(Journal, &rdev->flags) && 2425 mddev->max_disks && rdev->desc_nr >= mddev->max_disks) { 2426 pr_warn("md: %s: array is limited to %d devices\n", 2427 mdname(mddev), mddev->max_disks); 2428 return -EBUSY; 2429 } 2430 snprintf(b, sizeof(b), "%pg", rdev->bdev); 2431 strreplace(b, '/', '!'); 2432 2433 rdev->mddev = mddev; 2434 pr_debug("md: bind<%s>\n", b); 2435 2436 if (mddev->raid_disks) 2437 mddev_create_serial_pool(mddev, rdev, false); 2438 2439 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b))) 2440 goto fail; 2441 2442 /* failure here is OK */ 2443 err = sysfs_create_link(&rdev->kobj, bdev_kobj(rdev->bdev), "block"); 2444 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state"); 2445 rdev->sysfs_unack_badblocks = 2446 sysfs_get_dirent_safe(rdev->kobj.sd, "unacknowledged_bad_blocks"); 2447 rdev->sysfs_badblocks = 2448 sysfs_get_dirent_safe(rdev->kobj.sd, "bad_blocks"); 2449 2450 list_add_rcu(&rdev->same_set, &mddev->disks); 2451 bd_link_disk_holder(rdev->bdev, mddev->gendisk); 2452 2453 /* May as well allow recovery to be retried once */ 2454 mddev->recovery_disabled++; 2455 2456 return 0; 2457 2458 fail: 2459 pr_warn("md: failed to register dev-%s for %s\n", 2460 b, mdname(mddev)); 2461 return err; 2462 } 2463 2464 static void rdev_delayed_delete(struct work_struct *ws) 2465 { 2466 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work); 2467 kobject_del(&rdev->kobj); 2468 kobject_put(&rdev->kobj); 2469 } 2470 2471 void md_autodetect_dev(dev_t dev); 2472 2473 static void export_rdev(struct md_rdev *rdev) 2474 { 2475 pr_debug("md: export_rdev(%pg)\n", rdev->bdev); 2476 md_rdev_clear(rdev); 2477 #ifndef MODULE 2478 if (test_bit(AutoDetected, &rdev->flags)) 2479 md_autodetect_dev(rdev->bdev->bd_dev); 2480 #endif 2481 blkdev_put(rdev->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2482 rdev->bdev = NULL; 2483 kobject_put(&rdev->kobj); 2484 } 2485 2486 static void md_kick_rdev_from_array(struct md_rdev *rdev) 2487 { 2488 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk); 2489 list_del_rcu(&rdev->same_set); 2490 pr_debug("md: unbind<%pg>\n", rdev->bdev); 2491 mddev_destroy_serial_pool(rdev->mddev, rdev, false); 2492 rdev->mddev = NULL; 2493 sysfs_remove_link(&rdev->kobj, "block"); 2494 sysfs_put(rdev->sysfs_state); 2495 sysfs_put(rdev->sysfs_unack_badblocks); 2496 sysfs_put(rdev->sysfs_badblocks); 2497 rdev->sysfs_state = NULL; 2498 rdev->sysfs_unack_badblocks = NULL; 2499 rdev->sysfs_badblocks = NULL; 2500 rdev->badblocks.count = 0; 2501 /* We need to delay this, otherwise we can deadlock when 2502 * writing to 'remove' to "dev/state". We also need 2503 * to delay it due to rcu usage. 2504 */ 2505 synchronize_rcu(); 2506 INIT_WORK(&rdev->del_work, rdev_delayed_delete); 2507 kobject_get(&rdev->kobj); 2508 queue_work(md_rdev_misc_wq, &rdev->del_work); 2509 export_rdev(rdev); 2510 } 2511 2512 static void export_array(struct mddev *mddev) 2513 { 2514 struct md_rdev *rdev; 2515 2516 while (!list_empty(&mddev->disks)) { 2517 rdev = list_first_entry(&mddev->disks, struct md_rdev, 2518 same_set); 2519 md_kick_rdev_from_array(rdev); 2520 } 2521 mddev->raid_disks = 0; 2522 mddev->major_version = 0; 2523 } 2524 2525 static bool set_in_sync(struct mddev *mddev) 2526 { 2527 lockdep_assert_held(&mddev->lock); 2528 if (!mddev->in_sync) { 2529 mddev->sync_checkers++; 2530 spin_unlock(&mddev->lock); 2531 percpu_ref_switch_to_atomic_sync(&mddev->writes_pending); 2532 spin_lock(&mddev->lock); 2533 if (!mddev->in_sync && 2534 percpu_ref_is_zero(&mddev->writes_pending)) { 2535 mddev->in_sync = 1; 2536 /* 2537 * Ensure ->in_sync is visible before we clear 2538 * ->sync_checkers. 2539 */ 2540 smp_mb(); 2541 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2542 sysfs_notify_dirent_safe(mddev->sysfs_state); 2543 } 2544 if (--mddev->sync_checkers == 0) 2545 percpu_ref_switch_to_percpu(&mddev->writes_pending); 2546 } 2547 if (mddev->safemode == 1) 2548 mddev->safemode = 0; 2549 return mddev->in_sync; 2550 } 2551 2552 static void sync_sbs(struct mddev *mddev, int nospares) 2553 { 2554 /* Update each superblock (in-memory image), but 2555 * if we are allowed to, skip spares which already 2556 * have the right event counter, or have one earlier 2557 * (which would mean they aren't being marked as dirty 2558 * with the rest of the array) 2559 */ 2560 struct md_rdev *rdev; 2561 rdev_for_each(rdev, mddev) { 2562 if (rdev->sb_events == mddev->events || 2563 (nospares && 2564 rdev->raid_disk < 0 && 2565 rdev->sb_events+1 == mddev->events)) { 2566 /* Don't update this superblock */ 2567 rdev->sb_loaded = 2; 2568 } else { 2569 sync_super(mddev, rdev); 2570 rdev->sb_loaded = 1; 2571 } 2572 } 2573 } 2574 2575 static bool does_sb_need_changing(struct mddev *mddev) 2576 { 2577 struct md_rdev *rdev = NULL, *iter; 2578 struct mdp_superblock_1 *sb; 2579 int role; 2580 2581 /* Find a good rdev */ 2582 rdev_for_each(iter, mddev) 2583 if ((iter->raid_disk >= 0) && !test_bit(Faulty, &iter->flags)) { 2584 rdev = iter; 2585 break; 2586 } 2587 2588 /* No good device found. */ 2589 if (!rdev) 2590 return false; 2591 2592 sb = page_address(rdev->sb_page); 2593 /* Check if a device has become faulty or a spare become active */ 2594 rdev_for_each(rdev, mddev) { 2595 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 2596 /* Device activated? */ 2597 if (role == MD_DISK_ROLE_SPARE && rdev->raid_disk >= 0 && 2598 !test_bit(Faulty, &rdev->flags)) 2599 return true; 2600 /* Device turned faulty? */ 2601 if (test_bit(Faulty, &rdev->flags) && (role < MD_DISK_ROLE_MAX)) 2602 return true; 2603 } 2604 2605 /* Check if any mddev parameters have changed */ 2606 if ((mddev->dev_sectors != le64_to_cpu(sb->size)) || 2607 (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) || 2608 (mddev->layout != le32_to_cpu(sb->layout)) || 2609 (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) || 2610 (mddev->chunk_sectors != le32_to_cpu(sb->chunksize))) 2611 return true; 2612 2613 return false; 2614 } 2615 2616 void md_update_sb(struct mddev *mddev, int force_change) 2617 { 2618 struct md_rdev *rdev; 2619 int sync_req; 2620 int nospares = 0; 2621 int any_badblocks_changed = 0; 2622 int ret = -1; 2623 2624 if (!md_is_rdwr(mddev)) { 2625 if (force_change) 2626 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2627 return; 2628 } 2629 2630 repeat: 2631 if (mddev_is_clustered(mddev)) { 2632 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2633 force_change = 1; 2634 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2635 nospares = 1; 2636 ret = md_cluster_ops->metadata_update_start(mddev); 2637 /* Has someone else has updated the sb */ 2638 if (!does_sb_need_changing(mddev)) { 2639 if (ret == 0) 2640 md_cluster_ops->metadata_update_cancel(mddev); 2641 bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2642 BIT(MD_SB_CHANGE_DEVS) | 2643 BIT(MD_SB_CHANGE_CLEAN)); 2644 return; 2645 } 2646 } 2647 2648 /* 2649 * First make sure individual recovery_offsets are correct 2650 * curr_resync_completed can only be used during recovery. 2651 * During reshape/resync it might use array-addresses rather 2652 * that device addresses. 2653 */ 2654 rdev_for_each(rdev, mddev) { 2655 if (rdev->raid_disk >= 0 && 2656 mddev->delta_disks >= 0 && 2657 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 2658 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery) && 2659 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 2660 !test_bit(Journal, &rdev->flags) && 2661 !test_bit(In_sync, &rdev->flags) && 2662 mddev->curr_resync_completed > rdev->recovery_offset) 2663 rdev->recovery_offset = mddev->curr_resync_completed; 2664 2665 } 2666 if (!mddev->persistent) { 2667 clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2668 clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2669 if (!mddev->external) { 2670 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 2671 rdev_for_each(rdev, mddev) { 2672 if (rdev->badblocks.changed) { 2673 rdev->badblocks.changed = 0; 2674 ack_all_badblocks(&rdev->badblocks); 2675 md_error(mddev, rdev); 2676 } 2677 clear_bit(Blocked, &rdev->flags); 2678 clear_bit(BlockedBadBlocks, &rdev->flags); 2679 wake_up(&rdev->blocked_wait); 2680 } 2681 } 2682 wake_up(&mddev->sb_wait); 2683 return; 2684 } 2685 2686 spin_lock(&mddev->lock); 2687 2688 mddev->utime = ktime_get_real_seconds(); 2689 2690 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2691 force_change = 1; 2692 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2693 /* just a clean<-> dirty transition, possibly leave spares alone, 2694 * though if events isn't the right even/odd, we will have to do 2695 * spares after all 2696 */ 2697 nospares = 1; 2698 if (force_change) 2699 nospares = 0; 2700 if (mddev->degraded) 2701 /* If the array is degraded, then skipping spares is both 2702 * dangerous and fairly pointless. 2703 * Dangerous because a device that was removed from the array 2704 * might have a event_count that still looks up-to-date, 2705 * so it can be re-added without a resync. 2706 * Pointless because if there are any spares to skip, 2707 * then a recovery will happen and soon that array won't 2708 * be degraded any more and the spare can go back to sleep then. 2709 */ 2710 nospares = 0; 2711 2712 sync_req = mddev->in_sync; 2713 2714 /* If this is just a dirty<->clean transition, and the array is clean 2715 * and 'events' is odd, we can roll back to the previous clean state */ 2716 if (nospares 2717 && (mddev->in_sync && mddev->recovery_cp == MaxSector) 2718 && mddev->can_decrease_events 2719 && mddev->events != 1) { 2720 mddev->events--; 2721 mddev->can_decrease_events = 0; 2722 } else { 2723 /* otherwise we have to go forward and ... */ 2724 mddev->events ++; 2725 mddev->can_decrease_events = nospares; 2726 } 2727 2728 /* 2729 * This 64-bit counter should never wrap. 2730 * Either we are in around ~1 trillion A.C., assuming 2731 * 1 reboot per second, or we have a bug... 2732 */ 2733 WARN_ON(mddev->events == 0); 2734 2735 rdev_for_each(rdev, mddev) { 2736 if (rdev->badblocks.changed) 2737 any_badblocks_changed++; 2738 if (test_bit(Faulty, &rdev->flags)) 2739 set_bit(FaultRecorded, &rdev->flags); 2740 } 2741 2742 sync_sbs(mddev, nospares); 2743 spin_unlock(&mddev->lock); 2744 2745 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n", 2746 mdname(mddev), mddev->in_sync); 2747 2748 if (mddev->queue) 2749 blk_add_trace_msg(mddev->queue, "md md_update_sb"); 2750 rewrite: 2751 md_bitmap_update_sb(mddev->bitmap); 2752 rdev_for_each(rdev, mddev) { 2753 if (rdev->sb_loaded != 1) 2754 continue; /* no noise on spare devices */ 2755 2756 if (!test_bit(Faulty, &rdev->flags)) { 2757 md_super_write(mddev,rdev, 2758 rdev->sb_start, rdev->sb_size, 2759 rdev->sb_page); 2760 pr_debug("md: (write) %pg's sb offset: %llu\n", 2761 rdev->bdev, 2762 (unsigned long long)rdev->sb_start); 2763 rdev->sb_events = mddev->events; 2764 if (rdev->badblocks.size) { 2765 md_super_write(mddev, rdev, 2766 rdev->badblocks.sector, 2767 rdev->badblocks.size << 9, 2768 rdev->bb_page); 2769 rdev->badblocks.size = 0; 2770 } 2771 2772 } else 2773 pr_debug("md: %pg (skipping faulty)\n", 2774 rdev->bdev); 2775 2776 if (mddev->level == LEVEL_MULTIPATH) 2777 /* only need to write one superblock... */ 2778 break; 2779 } 2780 if (md_super_wait(mddev) < 0) 2781 goto rewrite; 2782 /* if there was a failure, MD_SB_CHANGE_DEVS was set, and we re-write super */ 2783 2784 if (mddev_is_clustered(mddev) && ret == 0) 2785 md_cluster_ops->metadata_update_finish(mddev); 2786 2787 if (mddev->in_sync != sync_req || 2788 !bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2789 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_CLEAN))) 2790 /* have to write it out again */ 2791 goto repeat; 2792 wake_up(&mddev->sb_wait); 2793 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 2794 sysfs_notify_dirent_safe(mddev->sysfs_completed); 2795 2796 rdev_for_each(rdev, mddev) { 2797 if (test_and_clear_bit(FaultRecorded, &rdev->flags)) 2798 clear_bit(Blocked, &rdev->flags); 2799 2800 if (any_badblocks_changed) 2801 ack_all_badblocks(&rdev->badblocks); 2802 clear_bit(BlockedBadBlocks, &rdev->flags); 2803 wake_up(&rdev->blocked_wait); 2804 } 2805 } 2806 EXPORT_SYMBOL(md_update_sb); 2807 2808 static int add_bound_rdev(struct md_rdev *rdev) 2809 { 2810 struct mddev *mddev = rdev->mddev; 2811 int err = 0; 2812 bool add_journal = test_bit(Journal, &rdev->flags); 2813 2814 if (!mddev->pers->hot_remove_disk || add_journal) { 2815 /* If there is hot_add_disk but no hot_remove_disk 2816 * then added disks for geometry changes, 2817 * and should be added immediately. 2818 */ 2819 super_types[mddev->major_version]. 2820 validate_super(mddev, rdev); 2821 if (add_journal) 2822 mddev_suspend(mddev); 2823 err = mddev->pers->hot_add_disk(mddev, rdev); 2824 if (add_journal) 2825 mddev_resume(mddev); 2826 if (err) { 2827 md_kick_rdev_from_array(rdev); 2828 return err; 2829 } 2830 } 2831 sysfs_notify_dirent_safe(rdev->sysfs_state); 2832 2833 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2834 if (mddev->degraded) 2835 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 2836 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2837 md_new_event(); 2838 md_wakeup_thread(mddev->thread); 2839 return 0; 2840 } 2841 2842 /* words written to sysfs files may, or may not, be \n terminated. 2843 * We want to accept with case. For this we use cmd_match. 2844 */ 2845 static int cmd_match(const char *cmd, const char *str) 2846 { 2847 /* See if cmd, written into a sysfs file, matches 2848 * str. They must either be the same, or cmd can 2849 * have a trailing newline 2850 */ 2851 while (*cmd && *str && *cmd == *str) { 2852 cmd++; 2853 str++; 2854 } 2855 if (*cmd == '\n') 2856 cmd++; 2857 if (*str || *cmd) 2858 return 0; 2859 return 1; 2860 } 2861 2862 struct rdev_sysfs_entry { 2863 struct attribute attr; 2864 ssize_t (*show)(struct md_rdev *, char *); 2865 ssize_t (*store)(struct md_rdev *, const char *, size_t); 2866 }; 2867 2868 static ssize_t 2869 state_show(struct md_rdev *rdev, char *page) 2870 { 2871 char *sep = ","; 2872 size_t len = 0; 2873 unsigned long flags = READ_ONCE(rdev->flags); 2874 2875 if (test_bit(Faulty, &flags) || 2876 (!test_bit(ExternalBbl, &flags) && 2877 rdev->badblocks.unacked_exist)) 2878 len += sprintf(page+len, "faulty%s", sep); 2879 if (test_bit(In_sync, &flags)) 2880 len += sprintf(page+len, "in_sync%s", sep); 2881 if (test_bit(Journal, &flags)) 2882 len += sprintf(page+len, "journal%s", sep); 2883 if (test_bit(WriteMostly, &flags)) 2884 len += sprintf(page+len, "write_mostly%s", sep); 2885 if (test_bit(Blocked, &flags) || 2886 (rdev->badblocks.unacked_exist 2887 && !test_bit(Faulty, &flags))) 2888 len += sprintf(page+len, "blocked%s", sep); 2889 if (!test_bit(Faulty, &flags) && 2890 !test_bit(Journal, &flags) && 2891 !test_bit(In_sync, &flags)) 2892 len += sprintf(page+len, "spare%s", sep); 2893 if (test_bit(WriteErrorSeen, &flags)) 2894 len += sprintf(page+len, "write_error%s", sep); 2895 if (test_bit(WantReplacement, &flags)) 2896 len += sprintf(page+len, "want_replacement%s", sep); 2897 if (test_bit(Replacement, &flags)) 2898 len += sprintf(page+len, "replacement%s", sep); 2899 if (test_bit(ExternalBbl, &flags)) 2900 len += sprintf(page+len, "external_bbl%s", sep); 2901 if (test_bit(FailFast, &flags)) 2902 len += sprintf(page+len, "failfast%s", sep); 2903 2904 if (len) 2905 len -= strlen(sep); 2906 2907 return len+sprintf(page+len, "\n"); 2908 } 2909 2910 static ssize_t 2911 state_store(struct md_rdev *rdev, const char *buf, size_t len) 2912 { 2913 /* can write 2914 * faulty - simulates an error 2915 * remove - disconnects the device 2916 * writemostly - sets write_mostly 2917 * -writemostly - clears write_mostly 2918 * blocked - sets the Blocked flags 2919 * -blocked - clears the Blocked and possibly simulates an error 2920 * insync - sets Insync providing device isn't active 2921 * -insync - clear Insync for a device with a slot assigned, 2922 * so that it gets rebuilt based on bitmap 2923 * write_error - sets WriteErrorSeen 2924 * -write_error - clears WriteErrorSeen 2925 * {,-}failfast - set/clear FailFast 2926 */ 2927 2928 struct mddev *mddev = rdev->mddev; 2929 int err = -EINVAL; 2930 bool need_update_sb = false; 2931 2932 if (cmd_match(buf, "faulty") && rdev->mddev->pers) { 2933 md_error(rdev->mddev, rdev); 2934 2935 if (test_bit(MD_BROKEN, &rdev->mddev->flags)) 2936 err = -EBUSY; 2937 else 2938 err = 0; 2939 } else if (cmd_match(buf, "remove")) { 2940 if (rdev->mddev->pers) { 2941 clear_bit(Blocked, &rdev->flags); 2942 remove_and_add_spares(rdev->mddev, rdev); 2943 } 2944 if (rdev->raid_disk >= 0) 2945 err = -EBUSY; 2946 else { 2947 err = 0; 2948 if (mddev_is_clustered(mddev)) 2949 err = md_cluster_ops->remove_disk(mddev, rdev); 2950 2951 if (err == 0) { 2952 md_kick_rdev_from_array(rdev); 2953 if (mddev->pers) { 2954 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2955 md_wakeup_thread(mddev->thread); 2956 } 2957 md_new_event(); 2958 } 2959 } 2960 } else if (cmd_match(buf, "writemostly")) { 2961 set_bit(WriteMostly, &rdev->flags); 2962 mddev_create_serial_pool(rdev->mddev, rdev, false); 2963 need_update_sb = true; 2964 err = 0; 2965 } else if (cmd_match(buf, "-writemostly")) { 2966 mddev_destroy_serial_pool(rdev->mddev, rdev, false); 2967 clear_bit(WriteMostly, &rdev->flags); 2968 need_update_sb = true; 2969 err = 0; 2970 } else if (cmd_match(buf, "blocked")) { 2971 set_bit(Blocked, &rdev->flags); 2972 err = 0; 2973 } else if (cmd_match(buf, "-blocked")) { 2974 if (!test_bit(Faulty, &rdev->flags) && 2975 !test_bit(ExternalBbl, &rdev->flags) && 2976 rdev->badblocks.unacked_exist) { 2977 /* metadata handler doesn't understand badblocks, 2978 * so we need to fail the device 2979 */ 2980 md_error(rdev->mddev, rdev); 2981 } 2982 clear_bit(Blocked, &rdev->flags); 2983 clear_bit(BlockedBadBlocks, &rdev->flags); 2984 wake_up(&rdev->blocked_wait); 2985 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2986 md_wakeup_thread(rdev->mddev->thread); 2987 2988 err = 0; 2989 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) { 2990 set_bit(In_sync, &rdev->flags); 2991 err = 0; 2992 } else if (cmd_match(buf, "failfast")) { 2993 set_bit(FailFast, &rdev->flags); 2994 need_update_sb = true; 2995 err = 0; 2996 } else if (cmd_match(buf, "-failfast")) { 2997 clear_bit(FailFast, &rdev->flags); 2998 need_update_sb = true; 2999 err = 0; 3000 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 && 3001 !test_bit(Journal, &rdev->flags)) { 3002 if (rdev->mddev->pers == NULL) { 3003 clear_bit(In_sync, &rdev->flags); 3004 rdev->saved_raid_disk = rdev->raid_disk; 3005 rdev->raid_disk = -1; 3006 err = 0; 3007 } 3008 } else if (cmd_match(buf, "write_error")) { 3009 set_bit(WriteErrorSeen, &rdev->flags); 3010 err = 0; 3011 } else if (cmd_match(buf, "-write_error")) { 3012 clear_bit(WriteErrorSeen, &rdev->flags); 3013 err = 0; 3014 } else if (cmd_match(buf, "want_replacement")) { 3015 /* Any non-spare device that is not a replacement can 3016 * become want_replacement at any time, but we then need to 3017 * check if recovery is needed. 3018 */ 3019 if (rdev->raid_disk >= 0 && 3020 !test_bit(Journal, &rdev->flags) && 3021 !test_bit(Replacement, &rdev->flags)) 3022 set_bit(WantReplacement, &rdev->flags); 3023 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3024 md_wakeup_thread(rdev->mddev->thread); 3025 err = 0; 3026 } else if (cmd_match(buf, "-want_replacement")) { 3027 /* Clearing 'want_replacement' is always allowed. 3028 * Once replacements starts it is too late though. 3029 */ 3030 err = 0; 3031 clear_bit(WantReplacement, &rdev->flags); 3032 } else if (cmd_match(buf, "replacement")) { 3033 /* Can only set a device as a replacement when array has not 3034 * yet been started. Once running, replacement is automatic 3035 * from spares, or by assigning 'slot'. 3036 */ 3037 if (rdev->mddev->pers) 3038 err = -EBUSY; 3039 else { 3040 set_bit(Replacement, &rdev->flags); 3041 err = 0; 3042 } 3043 } else if (cmd_match(buf, "-replacement")) { 3044 /* Similarly, can only clear Replacement before start */ 3045 if (rdev->mddev->pers) 3046 err = -EBUSY; 3047 else { 3048 clear_bit(Replacement, &rdev->flags); 3049 err = 0; 3050 } 3051 } else if (cmd_match(buf, "re-add")) { 3052 if (!rdev->mddev->pers) 3053 err = -EINVAL; 3054 else if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1) && 3055 rdev->saved_raid_disk >= 0) { 3056 /* clear_bit is performed _after_ all the devices 3057 * have their local Faulty bit cleared. If any writes 3058 * happen in the meantime in the local node, they 3059 * will land in the local bitmap, which will be synced 3060 * by this node eventually 3061 */ 3062 if (!mddev_is_clustered(rdev->mddev) || 3063 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) { 3064 clear_bit(Faulty, &rdev->flags); 3065 err = add_bound_rdev(rdev); 3066 } 3067 } else 3068 err = -EBUSY; 3069 } else if (cmd_match(buf, "external_bbl") && (rdev->mddev->external)) { 3070 set_bit(ExternalBbl, &rdev->flags); 3071 rdev->badblocks.shift = 0; 3072 err = 0; 3073 } else if (cmd_match(buf, "-external_bbl") && (rdev->mddev->external)) { 3074 clear_bit(ExternalBbl, &rdev->flags); 3075 err = 0; 3076 } 3077 if (need_update_sb) 3078 md_update_sb(mddev, 1); 3079 if (!err) 3080 sysfs_notify_dirent_safe(rdev->sysfs_state); 3081 return err ? err : len; 3082 } 3083 static struct rdev_sysfs_entry rdev_state = 3084 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store); 3085 3086 static ssize_t 3087 errors_show(struct md_rdev *rdev, char *page) 3088 { 3089 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); 3090 } 3091 3092 static ssize_t 3093 errors_store(struct md_rdev *rdev, const char *buf, size_t len) 3094 { 3095 unsigned int n; 3096 int rv; 3097 3098 rv = kstrtouint(buf, 10, &n); 3099 if (rv < 0) 3100 return rv; 3101 atomic_set(&rdev->corrected_errors, n); 3102 return len; 3103 } 3104 static struct rdev_sysfs_entry rdev_errors = 3105 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); 3106 3107 static ssize_t 3108 slot_show(struct md_rdev *rdev, char *page) 3109 { 3110 if (test_bit(Journal, &rdev->flags)) 3111 return sprintf(page, "journal\n"); 3112 else if (rdev->raid_disk < 0) 3113 return sprintf(page, "none\n"); 3114 else 3115 return sprintf(page, "%d\n", rdev->raid_disk); 3116 } 3117 3118 static ssize_t 3119 slot_store(struct md_rdev *rdev, const char *buf, size_t len) 3120 { 3121 int slot; 3122 int err; 3123 3124 if (test_bit(Journal, &rdev->flags)) 3125 return -EBUSY; 3126 if (strncmp(buf, "none", 4)==0) 3127 slot = -1; 3128 else { 3129 err = kstrtouint(buf, 10, (unsigned int *)&slot); 3130 if (err < 0) 3131 return err; 3132 } 3133 if (rdev->mddev->pers && slot == -1) { 3134 /* Setting 'slot' on an active array requires also 3135 * updating the 'rd%d' link, and communicating 3136 * with the personality with ->hot_*_disk. 3137 * For now we only support removing 3138 * failed/spare devices. This normally happens automatically, 3139 * but not when the metadata is externally managed. 3140 */ 3141 if (rdev->raid_disk == -1) 3142 return -EEXIST; 3143 /* personality does all needed checks */ 3144 if (rdev->mddev->pers->hot_remove_disk == NULL) 3145 return -EINVAL; 3146 clear_bit(Blocked, &rdev->flags); 3147 remove_and_add_spares(rdev->mddev, rdev); 3148 if (rdev->raid_disk >= 0) 3149 return -EBUSY; 3150 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3151 md_wakeup_thread(rdev->mddev->thread); 3152 } else if (rdev->mddev->pers) { 3153 /* Activating a spare .. or possibly reactivating 3154 * if we ever get bitmaps working here. 3155 */ 3156 int err; 3157 3158 if (rdev->raid_disk != -1) 3159 return -EBUSY; 3160 3161 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery)) 3162 return -EBUSY; 3163 3164 if (rdev->mddev->pers->hot_add_disk == NULL) 3165 return -EINVAL; 3166 3167 if (slot >= rdev->mddev->raid_disks && 3168 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 3169 return -ENOSPC; 3170 3171 rdev->raid_disk = slot; 3172 if (test_bit(In_sync, &rdev->flags)) 3173 rdev->saved_raid_disk = slot; 3174 else 3175 rdev->saved_raid_disk = -1; 3176 clear_bit(In_sync, &rdev->flags); 3177 clear_bit(Bitmap_sync, &rdev->flags); 3178 err = rdev->mddev->pers->hot_add_disk(rdev->mddev, rdev); 3179 if (err) { 3180 rdev->raid_disk = -1; 3181 return err; 3182 } else 3183 sysfs_notify_dirent_safe(rdev->sysfs_state); 3184 /* failure here is OK */; 3185 sysfs_link_rdev(rdev->mddev, rdev); 3186 /* don't wakeup anyone, leave that to userspace. */ 3187 } else { 3188 if (slot >= rdev->mddev->raid_disks && 3189 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 3190 return -ENOSPC; 3191 rdev->raid_disk = slot; 3192 /* assume it is working */ 3193 clear_bit(Faulty, &rdev->flags); 3194 clear_bit(WriteMostly, &rdev->flags); 3195 set_bit(In_sync, &rdev->flags); 3196 sysfs_notify_dirent_safe(rdev->sysfs_state); 3197 } 3198 return len; 3199 } 3200 3201 static struct rdev_sysfs_entry rdev_slot = 3202 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); 3203 3204 static ssize_t 3205 offset_show(struct md_rdev *rdev, char *page) 3206 { 3207 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); 3208 } 3209 3210 static ssize_t 3211 offset_store(struct md_rdev *rdev, const char *buf, size_t len) 3212 { 3213 unsigned long long offset; 3214 if (kstrtoull(buf, 10, &offset) < 0) 3215 return -EINVAL; 3216 if (rdev->mddev->pers && rdev->raid_disk >= 0) 3217 return -EBUSY; 3218 if (rdev->sectors && rdev->mddev->external) 3219 /* Must set offset before size, so overlap checks 3220 * can be sane */ 3221 return -EBUSY; 3222 rdev->data_offset = offset; 3223 rdev->new_data_offset = offset; 3224 return len; 3225 } 3226 3227 static struct rdev_sysfs_entry rdev_offset = 3228 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); 3229 3230 static ssize_t new_offset_show(struct md_rdev *rdev, char *page) 3231 { 3232 return sprintf(page, "%llu\n", 3233 (unsigned long long)rdev->new_data_offset); 3234 } 3235 3236 static ssize_t new_offset_store(struct md_rdev *rdev, 3237 const char *buf, size_t len) 3238 { 3239 unsigned long long new_offset; 3240 struct mddev *mddev = rdev->mddev; 3241 3242 if (kstrtoull(buf, 10, &new_offset) < 0) 3243 return -EINVAL; 3244 3245 if (mddev->sync_thread || 3246 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery)) 3247 return -EBUSY; 3248 if (new_offset == rdev->data_offset) 3249 /* reset is always permitted */ 3250 ; 3251 else if (new_offset > rdev->data_offset) { 3252 /* must not push array size beyond rdev_sectors */ 3253 if (new_offset - rdev->data_offset 3254 + mddev->dev_sectors > rdev->sectors) 3255 return -E2BIG; 3256 } 3257 /* Metadata worries about other space details. */ 3258 3259 /* decreasing the offset is inconsistent with a backwards 3260 * reshape. 3261 */ 3262 if (new_offset < rdev->data_offset && 3263 mddev->reshape_backwards) 3264 return -EINVAL; 3265 /* Increasing offset is inconsistent with forwards 3266 * reshape. reshape_direction should be set to 3267 * 'backwards' first. 3268 */ 3269 if (new_offset > rdev->data_offset && 3270 !mddev->reshape_backwards) 3271 return -EINVAL; 3272 3273 if (mddev->pers && mddev->persistent && 3274 !super_types[mddev->major_version] 3275 .allow_new_offset(rdev, new_offset)) 3276 return -E2BIG; 3277 rdev->new_data_offset = new_offset; 3278 if (new_offset > rdev->data_offset) 3279 mddev->reshape_backwards = 1; 3280 else if (new_offset < rdev->data_offset) 3281 mddev->reshape_backwards = 0; 3282 3283 return len; 3284 } 3285 static struct rdev_sysfs_entry rdev_new_offset = 3286 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store); 3287 3288 static ssize_t 3289 rdev_size_show(struct md_rdev *rdev, char *page) 3290 { 3291 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2); 3292 } 3293 3294 static int md_rdevs_overlap(struct md_rdev *a, struct md_rdev *b) 3295 { 3296 /* check if two start/length pairs overlap */ 3297 if (a->data_offset + a->sectors <= b->data_offset) 3298 return false; 3299 if (b->data_offset + b->sectors <= a->data_offset) 3300 return false; 3301 return true; 3302 } 3303 3304 static bool md_rdev_overlaps(struct md_rdev *rdev) 3305 { 3306 struct mddev *mddev; 3307 struct md_rdev *rdev2; 3308 3309 spin_lock(&all_mddevs_lock); 3310 list_for_each_entry(mddev, &all_mddevs, all_mddevs) { 3311 if (test_bit(MD_DELETED, &mddev->flags)) 3312 continue; 3313 rdev_for_each(rdev2, mddev) { 3314 if (rdev != rdev2 && rdev->bdev == rdev2->bdev && 3315 md_rdevs_overlap(rdev, rdev2)) { 3316 spin_unlock(&all_mddevs_lock); 3317 return true; 3318 } 3319 } 3320 } 3321 spin_unlock(&all_mddevs_lock); 3322 return false; 3323 } 3324 3325 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors) 3326 { 3327 unsigned long long blocks; 3328 sector_t new; 3329 3330 if (kstrtoull(buf, 10, &blocks) < 0) 3331 return -EINVAL; 3332 3333 if (blocks & 1ULL << (8 * sizeof(blocks) - 1)) 3334 return -EINVAL; /* sector conversion overflow */ 3335 3336 new = blocks * 2; 3337 if (new != blocks * 2) 3338 return -EINVAL; /* unsigned long long to sector_t overflow */ 3339 3340 *sectors = new; 3341 return 0; 3342 } 3343 3344 static ssize_t 3345 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3346 { 3347 struct mddev *my_mddev = rdev->mddev; 3348 sector_t oldsectors = rdev->sectors; 3349 sector_t sectors; 3350 3351 if (test_bit(Journal, &rdev->flags)) 3352 return -EBUSY; 3353 if (strict_blocks_to_sectors(buf, §ors) < 0) 3354 return -EINVAL; 3355 if (rdev->data_offset != rdev->new_data_offset) 3356 return -EINVAL; /* too confusing */ 3357 if (my_mddev->pers && rdev->raid_disk >= 0) { 3358 if (my_mddev->persistent) { 3359 sectors = super_types[my_mddev->major_version]. 3360 rdev_size_change(rdev, sectors); 3361 if (!sectors) 3362 return -EBUSY; 3363 } else if (!sectors) 3364 sectors = bdev_nr_sectors(rdev->bdev) - 3365 rdev->data_offset; 3366 if (!my_mddev->pers->resize) 3367 /* Cannot change size for RAID0 or Linear etc */ 3368 return -EINVAL; 3369 } 3370 if (sectors < my_mddev->dev_sectors) 3371 return -EINVAL; /* component must fit device */ 3372 3373 rdev->sectors = sectors; 3374 3375 /* 3376 * Check that all other rdevs with the same bdev do not overlap. This 3377 * check does not provide a hard guarantee, it just helps avoid 3378 * dangerous mistakes. 3379 */ 3380 if (sectors > oldsectors && my_mddev->external && 3381 md_rdev_overlaps(rdev)) { 3382 /* 3383 * Someone else could have slipped in a size change here, but 3384 * doing so is just silly. We put oldsectors back because we 3385 * know it is safe, and trust userspace not to race with itself. 3386 */ 3387 rdev->sectors = oldsectors; 3388 return -EBUSY; 3389 } 3390 return len; 3391 } 3392 3393 static struct rdev_sysfs_entry rdev_size = 3394 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); 3395 3396 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page) 3397 { 3398 unsigned long long recovery_start = rdev->recovery_offset; 3399 3400 if (test_bit(In_sync, &rdev->flags) || 3401 recovery_start == MaxSector) 3402 return sprintf(page, "none\n"); 3403 3404 return sprintf(page, "%llu\n", recovery_start); 3405 } 3406 3407 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len) 3408 { 3409 unsigned long long recovery_start; 3410 3411 if (cmd_match(buf, "none")) 3412 recovery_start = MaxSector; 3413 else if (kstrtoull(buf, 10, &recovery_start)) 3414 return -EINVAL; 3415 3416 if (rdev->mddev->pers && 3417 rdev->raid_disk >= 0) 3418 return -EBUSY; 3419 3420 rdev->recovery_offset = recovery_start; 3421 if (recovery_start == MaxSector) 3422 set_bit(In_sync, &rdev->flags); 3423 else 3424 clear_bit(In_sync, &rdev->flags); 3425 return len; 3426 } 3427 3428 static struct rdev_sysfs_entry rdev_recovery_start = 3429 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store); 3430 3431 /* sysfs access to bad-blocks list. 3432 * We present two files. 3433 * 'bad-blocks' lists sector numbers and lengths of ranges that 3434 * are recorded as bad. The list is truncated to fit within 3435 * the one-page limit of sysfs. 3436 * Writing "sector length" to this file adds an acknowledged 3437 * bad block list. 3438 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet 3439 * been acknowledged. Writing to this file adds bad blocks 3440 * without acknowledging them. This is largely for testing. 3441 */ 3442 static ssize_t bb_show(struct md_rdev *rdev, char *page) 3443 { 3444 return badblocks_show(&rdev->badblocks, page, 0); 3445 } 3446 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len) 3447 { 3448 int rv = badblocks_store(&rdev->badblocks, page, len, 0); 3449 /* Maybe that ack was all we needed */ 3450 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags)) 3451 wake_up(&rdev->blocked_wait); 3452 return rv; 3453 } 3454 static struct rdev_sysfs_entry rdev_bad_blocks = 3455 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store); 3456 3457 static ssize_t ubb_show(struct md_rdev *rdev, char *page) 3458 { 3459 return badblocks_show(&rdev->badblocks, page, 1); 3460 } 3461 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len) 3462 { 3463 return badblocks_store(&rdev->badblocks, page, len, 1); 3464 } 3465 static struct rdev_sysfs_entry rdev_unack_bad_blocks = 3466 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store); 3467 3468 static ssize_t 3469 ppl_sector_show(struct md_rdev *rdev, char *page) 3470 { 3471 return sprintf(page, "%llu\n", (unsigned long long)rdev->ppl.sector); 3472 } 3473 3474 static ssize_t 3475 ppl_sector_store(struct md_rdev *rdev, const char *buf, size_t len) 3476 { 3477 unsigned long long sector; 3478 3479 if (kstrtoull(buf, 10, §or) < 0) 3480 return -EINVAL; 3481 if (sector != (sector_t)sector) 3482 return -EINVAL; 3483 3484 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3485 rdev->raid_disk >= 0) 3486 return -EBUSY; 3487 3488 if (rdev->mddev->persistent) { 3489 if (rdev->mddev->major_version == 0) 3490 return -EINVAL; 3491 if ((sector > rdev->sb_start && 3492 sector - rdev->sb_start > S16_MAX) || 3493 (sector < rdev->sb_start && 3494 rdev->sb_start - sector > -S16_MIN)) 3495 return -EINVAL; 3496 rdev->ppl.offset = sector - rdev->sb_start; 3497 } else if (!rdev->mddev->external) { 3498 return -EBUSY; 3499 } 3500 rdev->ppl.sector = sector; 3501 return len; 3502 } 3503 3504 static struct rdev_sysfs_entry rdev_ppl_sector = 3505 __ATTR(ppl_sector, S_IRUGO|S_IWUSR, ppl_sector_show, ppl_sector_store); 3506 3507 static ssize_t 3508 ppl_size_show(struct md_rdev *rdev, char *page) 3509 { 3510 return sprintf(page, "%u\n", rdev->ppl.size); 3511 } 3512 3513 static ssize_t 3514 ppl_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3515 { 3516 unsigned int size; 3517 3518 if (kstrtouint(buf, 10, &size) < 0) 3519 return -EINVAL; 3520 3521 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3522 rdev->raid_disk >= 0) 3523 return -EBUSY; 3524 3525 if (rdev->mddev->persistent) { 3526 if (rdev->mddev->major_version == 0) 3527 return -EINVAL; 3528 if (size > U16_MAX) 3529 return -EINVAL; 3530 } else if (!rdev->mddev->external) { 3531 return -EBUSY; 3532 } 3533 rdev->ppl.size = size; 3534 return len; 3535 } 3536 3537 static struct rdev_sysfs_entry rdev_ppl_size = 3538 __ATTR(ppl_size, S_IRUGO|S_IWUSR, ppl_size_show, ppl_size_store); 3539 3540 static struct attribute *rdev_default_attrs[] = { 3541 &rdev_state.attr, 3542 &rdev_errors.attr, 3543 &rdev_slot.attr, 3544 &rdev_offset.attr, 3545 &rdev_new_offset.attr, 3546 &rdev_size.attr, 3547 &rdev_recovery_start.attr, 3548 &rdev_bad_blocks.attr, 3549 &rdev_unack_bad_blocks.attr, 3550 &rdev_ppl_sector.attr, 3551 &rdev_ppl_size.attr, 3552 NULL, 3553 }; 3554 ATTRIBUTE_GROUPS(rdev_default); 3555 static ssize_t 3556 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 3557 { 3558 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3559 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3560 3561 if (!entry->show) 3562 return -EIO; 3563 if (!rdev->mddev) 3564 return -ENODEV; 3565 return entry->show(rdev, page); 3566 } 3567 3568 static ssize_t 3569 rdev_attr_store(struct kobject *kobj, struct attribute *attr, 3570 const char *page, size_t length) 3571 { 3572 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3573 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3574 ssize_t rv; 3575 struct mddev *mddev = rdev->mddev; 3576 3577 if (!entry->store) 3578 return -EIO; 3579 if (!capable(CAP_SYS_ADMIN)) 3580 return -EACCES; 3581 rv = mddev ? mddev_lock(mddev) : -ENODEV; 3582 if (!rv) { 3583 if (rdev->mddev == NULL) 3584 rv = -ENODEV; 3585 else 3586 rv = entry->store(rdev, page, length); 3587 mddev_unlock(mddev); 3588 } 3589 return rv; 3590 } 3591 3592 static void rdev_free(struct kobject *ko) 3593 { 3594 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj); 3595 kfree(rdev); 3596 } 3597 static const struct sysfs_ops rdev_sysfs_ops = { 3598 .show = rdev_attr_show, 3599 .store = rdev_attr_store, 3600 }; 3601 static struct kobj_type rdev_ktype = { 3602 .release = rdev_free, 3603 .sysfs_ops = &rdev_sysfs_ops, 3604 .default_groups = rdev_default_groups, 3605 }; 3606 3607 int md_rdev_init(struct md_rdev *rdev) 3608 { 3609 rdev->desc_nr = -1; 3610 rdev->saved_raid_disk = -1; 3611 rdev->raid_disk = -1; 3612 rdev->flags = 0; 3613 rdev->data_offset = 0; 3614 rdev->new_data_offset = 0; 3615 rdev->sb_events = 0; 3616 rdev->last_read_error = 0; 3617 rdev->sb_loaded = 0; 3618 rdev->bb_page = NULL; 3619 atomic_set(&rdev->nr_pending, 0); 3620 atomic_set(&rdev->read_errors, 0); 3621 atomic_set(&rdev->corrected_errors, 0); 3622 3623 INIT_LIST_HEAD(&rdev->same_set); 3624 init_waitqueue_head(&rdev->blocked_wait); 3625 3626 /* Add space to store bad block list. 3627 * This reserves the space even on arrays where it cannot 3628 * be used - I wonder if that matters 3629 */ 3630 return badblocks_init(&rdev->badblocks, 0); 3631 } 3632 EXPORT_SYMBOL_GPL(md_rdev_init); 3633 /* 3634 * Import a device. If 'super_format' >= 0, then sanity check the superblock 3635 * 3636 * mark the device faulty if: 3637 * 3638 * - the device is nonexistent (zero size) 3639 * - the device has no valid superblock 3640 * 3641 * a faulty rdev _never_ has rdev->sb set. 3642 */ 3643 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor) 3644 { 3645 static struct md_rdev *claim_rdev; /* just for claiming the bdev */ 3646 struct md_rdev *rdev; 3647 sector_t size; 3648 int err; 3649 3650 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 3651 if (!rdev) 3652 return ERR_PTR(-ENOMEM); 3653 3654 err = md_rdev_init(rdev); 3655 if (err) 3656 goto out_free_rdev; 3657 err = alloc_disk_sb(rdev); 3658 if (err) 3659 goto out_clear_rdev; 3660 3661 rdev->bdev = blkdev_get_by_dev(newdev, 3662 FMODE_READ | FMODE_WRITE | FMODE_EXCL, 3663 super_format == -2 ? claim_rdev : rdev); 3664 if (IS_ERR(rdev->bdev)) { 3665 pr_warn("md: could not open device unknown-block(%u,%u).\n", 3666 MAJOR(newdev), MINOR(newdev)); 3667 err = PTR_ERR(rdev->bdev); 3668 goto out_clear_rdev; 3669 } 3670 3671 kobject_init(&rdev->kobj, &rdev_ktype); 3672 3673 size = bdev_nr_bytes(rdev->bdev) >> BLOCK_SIZE_BITS; 3674 if (!size) { 3675 pr_warn("md: %pg has zero or unknown size, marking faulty!\n", 3676 rdev->bdev); 3677 err = -EINVAL; 3678 goto out_blkdev_put; 3679 } 3680 3681 if (super_format >= 0) { 3682 err = super_types[super_format]. 3683 load_super(rdev, NULL, super_minor); 3684 if (err == -EINVAL) { 3685 pr_warn("md: %pg does not have a valid v%d.%d superblock, not importing!\n", 3686 rdev->bdev, 3687 super_format, super_minor); 3688 goto out_blkdev_put; 3689 } 3690 if (err < 0) { 3691 pr_warn("md: could not read %pg's sb, not importing!\n", 3692 rdev->bdev); 3693 goto out_blkdev_put; 3694 } 3695 } 3696 3697 return rdev; 3698 3699 out_blkdev_put: 3700 blkdev_put(rdev->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 3701 out_clear_rdev: 3702 md_rdev_clear(rdev); 3703 out_free_rdev: 3704 kfree(rdev); 3705 return ERR_PTR(err); 3706 } 3707 3708 /* 3709 * Check a full RAID array for plausibility 3710 */ 3711 3712 static int analyze_sbs(struct mddev *mddev) 3713 { 3714 int i; 3715 struct md_rdev *rdev, *freshest, *tmp; 3716 3717 freshest = NULL; 3718 rdev_for_each_safe(rdev, tmp, mddev) 3719 switch (super_types[mddev->major_version]. 3720 load_super(rdev, freshest, mddev->minor_version)) { 3721 case 1: 3722 freshest = rdev; 3723 break; 3724 case 0: 3725 break; 3726 default: 3727 pr_warn("md: fatal superblock inconsistency in %pg -- removing from array\n", 3728 rdev->bdev); 3729 md_kick_rdev_from_array(rdev); 3730 } 3731 3732 /* Cannot find a valid fresh disk */ 3733 if (!freshest) { 3734 pr_warn("md: cannot find a valid disk\n"); 3735 return -EINVAL; 3736 } 3737 3738 super_types[mddev->major_version]. 3739 validate_super(mddev, freshest); 3740 3741 i = 0; 3742 rdev_for_each_safe(rdev, tmp, mddev) { 3743 if (mddev->max_disks && 3744 (rdev->desc_nr >= mddev->max_disks || 3745 i > mddev->max_disks)) { 3746 pr_warn("md: %s: %pg: only %d devices permitted\n", 3747 mdname(mddev), rdev->bdev, 3748 mddev->max_disks); 3749 md_kick_rdev_from_array(rdev); 3750 continue; 3751 } 3752 if (rdev != freshest) { 3753 if (super_types[mddev->major_version]. 3754 validate_super(mddev, rdev)) { 3755 pr_warn("md: kicking non-fresh %pg from array!\n", 3756 rdev->bdev); 3757 md_kick_rdev_from_array(rdev); 3758 continue; 3759 } 3760 } 3761 if (mddev->level == LEVEL_MULTIPATH) { 3762 rdev->desc_nr = i++; 3763 rdev->raid_disk = rdev->desc_nr; 3764 set_bit(In_sync, &rdev->flags); 3765 } else if (rdev->raid_disk >= 3766 (mddev->raid_disks - min(0, mddev->delta_disks)) && 3767 !test_bit(Journal, &rdev->flags)) { 3768 rdev->raid_disk = -1; 3769 clear_bit(In_sync, &rdev->flags); 3770 } 3771 } 3772 3773 return 0; 3774 } 3775 3776 /* Read a fixed-point number. 3777 * Numbers in sysfs attributes should be in "standard" units where 3778 * possible, so time should be in seconds. 3779 * However we internally use a a much smaller unit such as 3780 * milliseconds or jiffies. 3781 * This function takes a decimal number with a possible fractional 3782 * component, and produces an integer which is the result of 3783 * multiplying that number by 10^'scale'. 3784 * all without any floating-point arithmetic. 3785 */ 3786 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale) 3787 { 3788 unsigned long result = 0; 3789 long decimals = -1; 3790 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) { 3791 if (*cp == '.') 3792 decimals = 0; 3793 else if (decimals < scale) { 3794 unsigned int value; 3795 value = *cp - '0'; 3796 result = result * 10 + value; 3797 if (decimals >= 0) 3798 decimals++; 3799 } 3800 cp++; 3801 } 3802 if (*cp == '\n') 3803 cp++; 3804 if (*cp) 3805 return -EINVAL; 3806 if (decimals < 0) 3807 decimals = 0; 3808 *res = result * int_pow(10, scale - decimals); 3809 return 0; 3810 } 3811 3812 static ssize_t 3813 safe_delay_show(struct mddev *mddev, char *page) 3814 { 3815 int msec = (mddev->safemode_delay*1000)/HZ; 3816 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000); 3817 } 3818 static ssize_t 3819 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len) 3820 { 3821 unsigned long msec; 3822 3823 if (mddev_is_clustered(mddev)) { 3824 pr_warn("md: Safemode is disabled for clustered mode\n"); 3825 return -EINVAL; 3826 } 3827 3828 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0) 3829 return -EINVAL; 3830 if (msec == 0) 3831 mddev->safemode_delay = 0; 3832 else { 3833 unsigned long old_delay = mddev->safemode_delay; 3834 unsigned long new_delay = (msec*HZ)/1000; 3835 3836 if (new_delay == 0) 3837 new_delay = 1; 3838 mddev->safemode_delay = new_delay; 3839 if (new_delay < old_delay || old_delay == 0) 3840 mod_timer(&mddev->safemode_timer, jiffies+1); 3841 } 3842 return len; 3843 } 3844 static struct md_sysfs_entry md_safe_delay = 3845 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); 3846 3847 static ssize_t 3848 level_show(struct mddev *mddev, char *page) 3849 { 3850 struct md_personality *p; 3851 int ret; 3852 spin_lock(&mddev->lock); 3853 p = mddev->pers; 3854 if (p) 3855 ret = sprintf(page, "%s\n", p->name); 3856 else if (mddev->clevel[0]) 3857 ret = sprintf(page, "%s\n", mddev->clevel); 3858 else if (mddev->level != LEVEL_NONE) 3859 ret = sprintf(page, "%d\n", mddev->level); 3860 else 3861 ret = 0; 3862 spin_unlock(&mddev->lock); 3863 return ret; 3864 } 3865 3866 static ssize_t 3867 level_store(struct mddev *mddev, const char *buf, size_t len) 3868 { 3869 char clevel[16]; 3870 ssize_t rv; 3871 size_t slen = len; 3872 struct md_personality *pers, *oldpers; 3873 long level; 3874 void *priv, *oldpriv; 3875 struct md_rdev *rdev; 3876 3877 if (slen == 0 || slen >= sizeof(clevel)) 3878 return -EINVAL; 3879 3880 rv = mddev_lock(mddev); 3881 if (rv) 3882 return rv; 3883 3884 if (mddev->pers == NULL) { 3885 strncpy(mddev->clevel, buf, slen); 3886 if (mddev->clevel[slen-1] == '\n') 3887 slen--; 3888 mddev->clevel[slen] = 0; 3889 mddev->level = LEVEL_NONE; 3890 rv = len; 3891 goto out_unlock; 3892 } 3893 rv = -EROFS; 3894 if (!md_is_rdwr(mddev)) 3895 goto out_unlock; 3896 3897 /* request to change the personality. Need to ensure: 3898 * - array is not engaged in resync/recovery/reshape 3899 * - old personality can be suspended 3900 * - new personality will access other array. 3901 */ 3902 3903 rv = -EBUSY; 3904 if (mddev->sync_thread || 3905 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 3906 mddev->reshape_position != MaxSector || 3907 mddev->sysfs_active) 3908 goto out_unlock; 3909 3910 rv = -EINVAL; 3911 if (!mddev->pers->quiesce) { 3912 pr_warn("md: %s: %s does not support online personality change\n", 3913 mdname(mddev), mddev->pers->name); 3914 goto out_unlock; 3915 } 3916 3917 /* Now find the new personality */ 3918 strncpy(clevel, buf, slen); 3919 if (clevel[slen-1] == '\n') 3920 slen--; 3921 clevel[slen] = 0; 3922 if (kstrtol(clevel, 10, &level)) 3923 level = LEVEL_NONE; 3924 3925 if (request_module("md-%s", clevel) != 0) 3926 request_module("md-level-%s", clevel); 3927 spin_lock(&pers_lock); 3928 pers = find_pers(level, clevel); 3929 if (!pers || !try_module_get(pers->owner)) { 3930 spin_unlock(&pers_lock); 3931 pr_warn("md: personality %s not loaded\n", clevel); 3932 rv = -EINVAL; 3933 goto out_unlock; 3934 } 3935 spin_unlock(&pers_lock); 3936 3937 if (pers == mddev->pers) { 3938 /* Nothing to do! */ 3939 module_put(pers->owner); 3940 rv = len; 3941 goto out_unlock; 3942 } 3943 if (!pers->takeover) { 3944 module_put(pers->owner); 3945 pr_warn("md: %s: %s does not support personality takeover\n", 3946 mdname(mddev), clevel); 3947 rv = -EINVAL; 3948 goto out_unlock; 3949 } 3950 3951 rdev_for_each(rdev, mddev) 3952 rdev->new_raid_disk = rdev->raid_disk; 3953 3954 /* ->takeover must set new_* and/or delta_disks 3955 * if it succeeds, and may set them when it fails. 3956 */ 3957 priv = pers->takeover(mddev); 3958 if (IS_ERR(priv)) { 3959 mddev->new_level = mddev->level; 3960 mddev->new_layout = mddev->layout; 3961 mddev->new_chunk_sectors = mddev->chunk_sectors; 3962 mddev->raid_disks -= mddev->delta_disks; 3963 mddev->delta_disks = 0; 3964 mddev->reshape_backwards = 0; 3965 module_put(pers->owner); 3966 pr_warn("md: %s: %s would not accept array\n", 3967 mdname(mddev), clevel); 3968 rv = PTR_ERR(priv); 3969 goto out_unlock; 3970 } 3971 3972 /* Looks like we have a winner */ 3973 mddev_suspend(mddev); 3974 mddev_detach(mddev); 3975 3976 spin_lock(&mddev->lock); 3977 oldpers = mddev->pers; 3978 oldpriv = mddev->private; 3979 mddev->pers = pers; 3980 mddev->private = priv; 3981 strscpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 3982 mddev->level = mddev->new_level; 3983 mddev->layout = mddev->new_layout; 3984 mddev->chunk_sectors = mddev->new_chunk_sectors; 3985 mddev->delta_disks = 0; 3986 mddev->reshape_backwards = 0; 3987 mddev->degraded = 0; 3988 spin_unlock(&mddev->lock); 3989 3990 if (oldpers->sync_request == NULL && 3991 mddev->external) { 3992 /* We are converting from a no-redundancy array 3993 * to a redundancy array and metadata is managed 3994 * externally so we need to be sure that writes 3995 * won't block due to a need to transition 3996 * clean->dirty 3997 * until external management is started. 3998 */ 3999 mddev->in_sync = 0; 4000 mddev->safemode_delay = 0; 4001 mddev->safemode = 0; 4002 } 4003 4004 oldpers->free(mddev, oldpriv); 4005 4006 if (oldpers->sync_request == NULL && 4007 pers->sync_request != NULL) { 4008 /* need to add the md_redundancy_group */ 4009 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 4010 pr_warn("md: cannot register extra attributes for %s\n", 4011 mdname(mddev)); 4012 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action"); 4013 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed"); 4014 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded"); 4015 } 4016 if (oldpers->sync_request != NULL && 4017 pers->sync_request == NULL) { 4018 /* need to remove the md_redundancy_group */ 4019 if (mddev->to_remove == NULL) 4020 mddev->to_remove = &md_redundancy_group; 4021 } 4022 4023 module_put(oldpers->owner); 4024 4025 rdev_for_each(rdev, mddev) { 4026 if (rdev->raid_disk < 0) 4027 continue; 4028 if (rdev->new_raid_disk >= mddev->raid_disks) 4029 rdev->new_raid_disk = -1; 4030 if (rdev->new_raid_disk == rdev->raid_disk) 4031 continue; 4032 sysfs_unlink_rdev(mddev, rdev); 4033 } 4034 rdev_for_each(rdev, mddev) { 4035 if (rdev->raid_disk < 0) 4036 continue; 4037 if (rdev->new_raid_disk == rdev->raid_disk) 4038 continue; 4039 rdev->raid_disk = rdev->new_raid_disk; 4040 if (rdev->raid_disk < 0) 4041 clear_bit(In_sync, &rdev->flags); 4042 else { 4043 if (sysfs_link_rdev(mddev, rdev)) 4044 pr_warn("md: cannot register rd%d for %s after level change\n", 4045 rdev->raid_disk, mdname(mddev)); 4046 } 4047 } 4048 4049 if (pers->sync_request == NULL) { 4050 /* this is now an array without redundancy, so 4051 * it must always be in_sync 4052 */ 4053 mddev->in_sync = 1; 4054 del_timer_sync(&mddev->safemode_timer); 4055 } 4056 blk_set_stacking_limits(&mddev->queue->limits); 4057 pers->run(mddev); 4058 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4059 mddev_resume(mddev); 4060 if (!mddev->thread) 4061 md_update_sb(mddev, 1); 4062 sysfs_notify_dirent_safe(mddev->sysfs_level); 4063 md_new_event(); 4064 rv = len; 4065 out_unlock: 4066 mddev_unlock(mddev); 4067 return rv; 4068 } 4069 4070 static struct md_sysfs_entry md_level = 4071 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); 4072 4073 static ssize_t 4074 layout_show(struct mddev *mddev, char *page) 4075 { 4076 /* just a number, not meaningful for all levels */ 4077 if (mddev->reshape_position != MaxSector && 4078 mddev->layout != mddev->new_layout) 4079 return sprintf(page, "%d (%d)\n", 4080 mddev->new_layout, mddev->layout); 4081 return sprintf(page, "%d\n", mddev->layout); 4082 } 4083 4084 static ssize_t 4085 layout_store(struct mddev *mddev, const char *buf, size_t len) 4086 { 4087 unsigned int n; 4088 int err; 4089 4090 err = kstrtouint(buf, 10, &n); 4091 if (err < 0) 4092 return err; 4093 err = mddev_lock(mddev); 4094 if (err) 4095 return err; 4096 4097 if (mddev->pers) { 4098 if (mddev->pers->check_reshape == NULL) 4099 err = -EBUSY; 4100 else if (!md_is_rdwr(mddev)) 4101 err = -EROFS; 4102 else { 4103 mddev->new_layout = n; 4104 err = mddev->pers->check_reshape(mddev); 4105 if (err) 4106 mddev->new_layout = mddev->layout; 4107 } 4108 } else { 4109 mddev->new_layout = n; 4110 if (mddev->reshape_position == MaxSector) 4111 mddev->layout = n; 4112 } 4113 mddev_unlock(mddev); 4114 return err ?: len; 4115 } 4116 static struct md_sysfs_entry md_layout = 4117 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); 4118 4119 static ssize_t 4120 raid_disks_show(struct mddev *mddev, char *page) 4121 { 4122 if (mddev->raid_disks == 0) 4123 return 0; 4124 if (mddev->reshape_position != MaxSector && 4125 mddev->delta_disks != 0) 4126 return sprintf(page, "%d (%d)\n", mddev->raid_disks, 4127 mddev->raid_disks - mddev->delta_disks); 4128 return sprintf(page, "%d\n", mddev->raid_disks); 4129 } 4130 4131 static int update_raid_disks(struct mddev *mddev, int raid_disks); 4132 4133 static ssize_t 4134 raid_disks_store(struct mddev *mddev, const char *buf, size_t len) 4135 { 4136 unsigned int n; 4137 int err; 4138 4139 err = kstrtouint(buf, 10, &n); 4140 if (err < 0) 4141 return err; 4142 4143 err = mddev_lock(mddev); 4144 if (err) 4145 return err; 4146 if (mddev->pers) 4147 err = update_raid_disks(mddev, n); 4148 else if (mddev->reshape_position != MaxSector) { 4149 struct md_rdev *rdev; 4150 int olddisks = mddev->raid_disks - mddev->delta_disks; 4151 4152 err = -EINVAL; 4153 rdev_for_each(rdev, mddev) { 4154 if (olddisks < n && 4155 rdev->data_offset < rdev->new_data_offset) 4156 goto out_unlock; 4157 if (olddisks > n && 4158 rdev->data_offset > rdev->new_data_offset) 4159 goto out_unlock; 4160 } 4161 err = 0; 4162 mddev->delta_disks = n - olddisks; 4163 mddev->raid_disks = n; 4164 mddev->reshape_backwards = (mddev->delta_disks < 0); 4165 } else 4166 mddev->raid_disks = n; 4167 out_unlock: 4168 mddev_unlock(mddev); 4169 return err ? err : len; 4170 } 4171 static struct md_sysfs_entry md_raid_disks = 4172 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); 4173 4174 static ssize_t 4175 uuid_show(struct mddev *mddev, char *page) 4176 { 4177 return sprintf(page, "%pU\n", mddev->uuid); 4178 } 4179 static struct md_sysfs_entry md_uuid = 4180 __ATTR(uuid, S_IRUGO, uuid_show, NULL); 4181 4182 static ssize_t 4183 chunk_size_show(struct mddev *mddev, char *page) 4184 { 4185 if (mddev->reshape_position != MaxSector && 4186 mddev->chunk_sectors != mddev->new_chunk_sectors) 4187 return sprintf(page, "%d (%d)\n", 4188 mddev->new_chunk_sectors << 9, 4189 mddev->chunk_sectors << 9); 4190 return sprintf(page, "%d\n", mddev->chunk_sectors << 9); 4191 } 4192 4193 static ssize_t 4194 chunk_size_store(struct mddev *mddev, const char *buf, size_t len) 4195 { 4196 unsigned long n; 4197 int err; 4198 4199 err = kstrtoul(buf, 10, &n); 4200 if (err < 0) 4201 return err; 4202 4203 err = mddev_lock(mddev); 4204 if (err) 4205 return err; 4206 if (mddev->pers) { 4207 if (mddev->pers->check_reshape == NULL) 4208 err = -EBUSY; 4209 else if (!md_is_rdwr(mddev)) 4210 err = -EROFS; 4211 else { 4212 mddev->new_chunk_sectors = n >> 9; 4213 err = mddev->pers->check_reshape(mddev); 4214 if (err) 4215 mddev->new_chunk_sectors = mddev->chunk_sectors; 4216 } 4217 } else { 4218 mddev->new_chunk_sectors = n >> 9; 4219 if (mddev->reshape_position == MaxSector) 4220 mddev->chunk_sectors = n >> 9; 4221 } 4222 mddev_unlock(mddev); 4223 return err ?: len; 4224 } 4225 static struct md_sysfs_entry md_chunk_size = 4226 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); 4227 4228 static ssize_t 4229 resync_start_show(struct mddev *mddev, char *page) 4230 { 4231 if (mddev->recovery_cp == MaxSector) 4232 return sprintf(page, "none\n"); 4233 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); 4234 } 4235 4236 static ssize_t 4237 resync_start_store(struct mddev *mddev, const char *buf, size_t len) 4238 { 4239 unsigned long long n; 4240 int err; 4241 4242 if (cmd_match(buf, "none")) 4243 n = MaxSector; 4244 else { 4245 err = kstrtoull(buf, 10, &n); 4246 if (err < 0) 4247 return err; 4248 if (n != (sector_t)n) 4249 return -EINVAL; 4250 } 4251 4252 err = mddev_lock(mddev); 4253 if (err) 4254 return err; 4255 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 4256 err = -EBUSY; 4257 4258 if (!err) { 4259 mddev->recovery_cp = n; 4260 if (mddev->pers) 4261 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 4262 } 4263 mddev_unlock(mddev); 4264 return err ?: len; 4265 } 4266 static struct md_sysfs_entry md_resync_start = 4267 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR, 4268 resync_start_show, resync_start_store); 4269 4270 /* 4271 * The array state can be: 4272 * 4273 * clear 4274 * No devices, no size, no level 4275 * Equivalent to STOP_ARRAY ioctl 4276 * inactive 4277 * May have some settings, but array is not active 4278 * all IO results in error 4279 * When written, doesn't tear down array, but just stops it 4280 * suspended (not supported yet) 4281 * All IO requests will block. The array can be reconfigured. 4282 * Writing this, if accepted, will block until array is quiescent 4283 * readonly 4284 * no resync can happen. no superblocks get written. 4285 * write requests fail 4286 * read-auto 4287 * like readonly, but behaves like 'clean' on a write request. 4288 * 4289 * clean - no pending writes, but otherwise active. 4290 * When written to inactive array, starts without resync 4291 * If a write request arrives then 4292 * if metadata is known, mark 'dirty' and switch to 'active'. 4293 * if not known, block and switch to write-pending 4294 * If written to an active array that has pending writes, then fails. 4295 * active 4296 * fully active: IO and resync can be happening. 4297 * When written to inactive array, starts with resync 4298 * 4299 * write-pending 4300 * clean, but writes are blocked waiting for 'active' to be written. 4301 * 4302 * active-idle 4303 * like active, but no writes have been seen for a while (100msec). 4304 * 4305 * broken 4306 * Array is failed. It's useful because mounted-arrays aren't stopped 4307 * when array is failed, so this state will at least alert the user that 4308 * something is wrong. 4309 */ 4310 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, 4311 write_pending, active_idle, broken, bad_word}; 4312 static char *array_states[] = { 4313 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", 4314 "write-pending", "active-idle", "broken", NULL }; 4315 4316 static int match_word(const char *word, char **list) 4317 { 4318 int n; 4319 for (n=0; list[n]; n++) 4320 if (cmd_match(word, list[n])) 4321 break; 4322 return n; 4323 } 4324 4325 static ssize_t 4326 array_state_show(struct mddev *mddev, char *page) 4327 { 4328 enum array_state st = inactive; 4329 4330 if (mddev->pers && !test_bit(MD_NOT_READY, &mddev->flags)) { 4331 switch(mddev->ro) { 4332 case MD_RDONLY: 4333 st = readonly; 4334 break; 4335 case MD_AUTO_READ: 4336 st = read_auto; 4337 break; 4338 case MD_RDWR: 4339 spin_lock(&mddev->lock); 4340 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 4341 st = write_pending; 4342 else if (mddev->in_sync) 4343 st = clean; 4344 else if (mddev->safemode) 4345 st = active_idle; 4346 else 4347 st = active; 4348 spin_unlock(&mddev->lock); 4349 } 4350 4351 if (test_bit(MD_BROKEN, &mddev->flags) && st == clean) 4352 st = broken; 4353 } else { 4354 if (list_empty(&mddev->disks) && 4355 mddev->raid_disks == 0 && 4356 mddev->dev_sectors == 0) 4357 st = clear; 4358 else 4359 st = inactive; 4360 } 4361 return sprintf(page, "%s\n", array_states[st]); 4362 } 4363 4364 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev); 4365 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev); 4366 static int restart_array(struct mddev *mddev); 4367 4368 static ssize_t 4369 array_state_store(struct mddev *mddev, const char *buf, size_t len) 4370 { 4371 int err = 0; 4372 enum array_state st = match_word(buf, array_states); 4373 4374 if (mddev->pers && (st == active || st == clean) && 4375 mddev->ro != MD_RDONLY) { 4376 /* don't take reconfig_mutex when toggling between 4377 * clean and active 4378 */ 4379 spin_lock(&mddev->lock); 4380 if (st == active) { 4381 restart_array(mddev); 4382 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4383 md_wakeup_thread(mddev->thread); 4384 wake_up(&mddev->sb_wait); 4385 } else /* st == clean */ { 4386 restart_array(mddev); 4387 if (!set_in_sync(mddev)) 4388 err = -EBUSY; 4389 } 4390 if (!err) 4391 sysfs_notify_dirent_safe(mddev->sysfs_state); 4392 spin_unlock(&mddev->lock); 4393 return err ?: len; 4394 } 4395 err = mddev_lock(mddev); 4396 if (err) 4397 return err; 4398 err = -EINVAL; 4399 switch(st) { 4400 case bad_word: 4401 break; 4402 case clear: 4403 /* stopping an active array */ 4404 err = do_md_stop(mddev, 0, NULL); 4405 break; 4406 case inactive: 4407 /* stopping an active array */ 4408 if (mddev->pers) 4409 err = do_md_stop(mddev, 2, NULL); 4410 else 4411 err = 0; /* already inactive */ 4412 break; 4413 case suspended: 4414 break; /* not supported yet */ 4415 case readonly: 4416 if (mddev->pers) 4417 err = md_set_readonly(mddev, NULL); 4418 else { 4419 mddev->ro = MD_RDONLY; 4420 set_disk_ro(mddev->gendisk, 1); 4421 err = do_md_run(mddev); 4422 } 4423 break; 4424 case read_auto: 4425 if (mddev->pers) { 4426 if (md_is_rdwr(mddev)) 4427 err = md_set_readonly(mddev, NULL); 4428 else if (mddev->ro == MD_RDONLY) 4429 err = restart_array(mddev); 4430 if (err == 0) { 4431 mddev->ro = MD_AUTO_READ; 4432 set_disk_ro(mddev->gendisk, 0); 4433 } 4434 } else { 4435 mddev->ro = MD_AUTO_READ; 4436 err = do_md_run(mddev); 4437 } 4438 break; 4439 case clean: 4440 if (mddev->pers) { 4441 err = restart_array(mddev); 4442 if (err) 4443 break; 4444 spin_lock(&mddev->lock); 4445 if (!set_in_sync(mddev)) 4446 err = -EBUSY; 4447 spin_unlock(&mddev->lock); 4448 } else 4449 err = -EINVAL; 4450 break; 4451 case active: 4452 if (mddev->pers) { 4453 err = restart_array(mddev); 4454 if (err) 4455 break; 4456 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4457 wake_up(&mddev->sb_wait); 4458 err = 0; 4459 } else { 4460 mddev->ro = MD_RDWR; 4461 set_disk_ro(mddev->gendisk, 0); 4462 err = do_md_run(mddev); 4463 } 4464 break; 4465 case write_pending: 4466 case active_idle: 4467 case broken: 4468 /* these cannot be set */ 4469 break; 4470 } 4471 4472 if (!err) { 4473 if (mddev->hold_active == UNTIL_IOCTL) 4474 mddev->hold_active = 0; 4475 sysfs_notify_dirent_safe(mddev->sysfs_state); 4476 } 4477 mddev_unlock(mddev); 4478 return err ?: len; 4479 } 4480 static struct md_sysfs_entry md_array_state = 4481 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); 4482 4483 static ssize_t 4484 max_corrected_read_errors_show(struct mddev *mddev, char *page) { 4485 return sprintf(page, "%d\n", 4486 atomic_read(&mddev->max_corr_read_errors)); 4487 } 4488 4489 static ssize_t 4490 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len) 4491 { 4492 unsigned int n; 4493 int rv; 4494 4495 rv = kstrtouint(buf, 10, &n); 4496 if (rv < 0) 4497 return rv; 4498 atomic_set(&mddev->max_corr_read_errors, n); 4499 return len; 4500 } 4501 4502 static struct md_sysfs_entry max_corr_read_errors = 4503 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show, 4504 max_corrected_read_errors_store); 4505 4506 static ssize_t 4507 null_show(struct mddev *mddev, char *page) 4508 { 4509 return -EINVAL; 4510 } 4511 4512 /* need to ensure rdev_delayed_delete() has completed */ 4513 static void flush_rdev_wq(struct mddev *mddev) 4514 { 4515 struct md_rdev *rdev; 4516 4517 rcu_read_lock(); 4518 rdev_for_each_rcu(rdev, mddev) 4519 if (work_pending(&rdev->del_work)) { 4520 flush_workqueue(md_rdev_misc_wq); 4521 break; 4522 } 4523 rcu_read_unlock(); 4524 } 4525 4526 static ssize_t 4527 new_dev_store(struct mddev *mddev, const char *buf, size_t len) 4528 { 4529 /* buf must be %d:%d\n? giving major and minor numbers */ 4530 /* The new device is added to the array. 4531 * If the array has a persistent superblock, we read the 4532 * superblock to initialise info and check validity. 4533 * Otherwise, only checking done is that in bind_rdev_to_array, 4534 * which mainly checks size. 4535 */ 4536 char *e; 4537 int major = simple_strtoul(buf, &e, 10); 4538 int minor; 4539 dev_t dev; 4540 struct md_rdev *rdev; 4541 int err; 4542 4543 if (!*buf || *e != ':' || !e[1] || e[1] == '\n') 4544 return -EINVAL; 4545 minor = simple_strtoul(e+1, &e, 10); 4546 if (*e && *e != '\n') 4547 return -EINVAL; 4548 dev = MKDEV(major, minor); 4549 if (major != MAJOR(dev) || 4550 minor != MINOR(dev)) 4551 return -EOVERFLOW; 4552 4553 flush_rdev_wq(mddev); 4554 err = mddev_lock(mddev); 4555 if (err) 4556 return err; 4557 if (mddev->persistent) { 4558 rdev = md_import_device(dev, mddev->major_version, 4559 mddev->minor_version); 4560 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { 4561 struct md_rdev *rdev0 4562 = list_entry(mddev->disks.next, 4563 struct md_rdev, same_set); 4564 err = super_types[mddev->major_version] 4565 .load_super(rdev, rdev0, mddev->minor_version); 4566 if (err < 0) 4567 goto out; 4568 } 4569 } else if (mddev->external) 4570 rdev = md_import_device(dev, -2, -1); 4571 else 4572 rdev = md_import_device(dev, -1, -1); 4573 4574 if (IS_ERR(rdev)) { 4575 mddev_unlock(mddev); 4576 return PTR_ERR(rdev); 4577 } 4578 err = bind_rdev_to_array(rdev, mddev); 4579 out: 4580 if (err) 4581 export_rdev(rdev); 4582 mddev_unlock(mddev); 4583 if (!err) 4584 md_new_event(); 4585 return err ? err : len; 4586 } 4587 4588 static struct md_sysfs_entry md_new_device = 4589 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store); 4590 4591 static ssize_t 4592 bitmap_store(struct mddev *mddev, const char *buf, size_t len) 4593 { 4594 char *end; 4595 unsigned long chunk, end_chunk; 4596 int err; 4597 4598 err = mddev_lock(mddev); 4599 if (err) 4600 return err; 4601 if (!mddev->bitmap) 4602 goto out; 4603 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */ 4604 while (*buf) { 4605 chunk = end_chunk = simple_strtoul(buf, &end, 0); 4606 if (buf == end) break; 4607 if (*end == '-') { /* range */ 4608 buf = end + 1; 4609 end_chunk = simple_strtoul(buf, &end, 0); 4610 if (buf == end) break; 4611 } 4612 if (*end && !isspace(*end)) break; 4613 md_bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk); 4614 buf = skip_spaces(end); 4615 } 4616 md_bitmap_unplug(mddev->bitmap); /* flush the bits to disk */ 4617 out: 4618 mddev_unlock(mddev); 4619 return len; 4620 } 4621 4622 static struct md_sysfs_entry md_bitmap = 4623 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); 4624 4625 static ssize_t 4626 size_show(struct mddev *mddev, char *page) 4627 { 4628 return sprintf(page, "%llu\n", 4629 (unsigned long long)mddev->dev_sectors / 2); 4630 } 4631 4632 static int update_size(struct mddev *mddev, sector_t num_sectors); 4633 4634 static ssize_t 4635 size_store(struct mddev *mddev, const char *buf, size_t len) 4636 { 4637 /* If array is inactive, we can reduce the component size, but 4638 * not increase it (except from 0). 4639 * If array is active, we can try an on-line resize 4640 */ 4641 sector_t sectors; 4642 int err = strict_blocks_to_sectors(buf, §ors); 4643 4644 if (err < 0) 4645 return err; 4646 err = mddev_lock(mddev); 4647 if (err) 4648 return err; 4649 if (mddev->pers) { 4650 err = update_size(mddev, sectors); 4651 if (err == 0) 4652 md_update_sb(mddev, 1); 4653 } else { 4654 if (mddev->dev_sectors == 0 || 4655 mddev->dev_sectors > sectors) 4656 mddev->dev_sectors = sectors; 4657 else 4658 err = -ENOSPC; 4659 } 4660 mddev_unlock(mddev); 4661 return err ? err : len; 4662 } 4663 4664 static struct md_sysfs_entry md_size = 4665 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); 4666 4667 /* Metadata version. 4668 * This is one of 4669 * 'none' for arrays with no metadata (good luck...) 4670 * 'external' for arrays with externally managed metadata, 4671 * or N.M for internally known formats 4672 */ 4673 static ssize_t 4674 metadata_show(struct mddev *mddev, char *page) 4675 { 4676 if (mddev->persistent) 4677 return sprintf(page, "%d.%d\n", 4678 mddev->major_version, mddev->minor_version); 4679 else if (mddev->external) 4680 return sprintf(page, "external:%s\n", mddev->metadata_type); 4681 else 4682 return sprintf(page, "none\n"); 4683 } 4684 4685 static ssize_t 4686 metadata_store(struct mddev *mddev, const char *buf, size_t len) 4687 { 4688 int major, minor; 4689 char *e; 4690 int err; 4691 /* Changing the details of 'external' metadata is 4692 * always permitted. Otherwise there must be 4693 * no devices attached to the array. 4694 */ 4695 4696 err = mddev_lock(mddev); 4697 if (err) 4698 return err; 4699 err = -EBUSY; 4700 if (mddev->external && strncmp(buf, "external:", 9) == 0) 4701 ; 4702 else if (!list_empty(&mddev->disks)) 4703 goto out_unlock; 4704 4705 err = 0; 4706 if (cmd_match(buf, "none")) { 4707 mddev->persistent = 0; 4708 mddev->external = 0; 4709 mddev->major_version = 0; 4710 mddev->minor_version = 90; 4711 goto out_unlock; 4712 } 4713 if (strncmp(buf, "external:", 9) == 0) { 4714 size_t namelen = len-9; 4715 if (namelen >= sizeof(mddev->metadata_type)) 4716 namelen = sizeof(mddev->metadata_type)-1; 4717 strncpy(mddev->metadata_type, buf+9, namelen); 4718 mddev->metadata_type[namelen] = 0; 4719 if (namelen && mddev->metadata_type[namelen-1] == '\n') 4720 mddev->metadata_type[--namelen] = 0; 4721 mddev->persistent = 0; 4722 mddev->external = 1; 4723 mddev->major_version = 0; 4724 mddev->minor_version = 90; 4725 goto out_unlock; 4726 } 4727 major = simple_strtoul(buf, &e, 10); 4728 err = -EINVAL; 4729 if (e==buf || *e != '.') 4730 goto out_unlock; 4731 buf = e+1; 4732 minor = simple_strtoul(buf, &e, 10); 4733 if (e==buf || (*e && *e != '\n') ) 4734 goto out_unlock; 4735 err = -ENOENT; 4736 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL) 4737 goto out_unlock; 4738 mddev->major_version = major; 4739 mddev->minor_version = minor; 4740 mddev->persistent = 1; 4741 mddev->external = 0; 4742 err = 0; 4743 out_unlock: 4744 mddev_unlock(mddev); 4745 return err ?: len; 4746 } 4747 4748 static struct md_sysfs_entry md_metadata = 4749 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 4750 4751 static ssize_t 4752 action_show(struct mddev *mddev, char *page) 4753 { 4754 char *type = "idle"; 4755 unsigned long recovery = mddev->recovery; 4756 if (test_bit(MD_RECOVERY_FROZEN, &recovery)) 4757 type = "frozen"; 4758 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) || 4759 (md_is_rdwr(mddev) && test_bit(MD_RECOVERY_NEEDED, &recovery))) { 4760 if (test_bit(MD_RECOVERY_RESHAPE, &recovery)) 4761 type = "reshape"; 4762 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) { 4763 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery)) 4764 type = "resync"; 4765 else if (test_bit(MD_RECOVERY_CHECK, &recovery)) 4766 type = "check"; 4767 else 4768 type = "repair"; 4769 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery)) 4770 type = "recover"; 4771 else if (mddev->reshape_position != MaxSector) 4772 type = "reshape"; 4773 } 4774 return sprintf(page, "%s\n", type); 4775 } 4776 4777 static ssize_t 4778 action_store(struct mddev *mddev, const char *page, size_t len) 4779 { 4780 if (!mddev->pers || !mddev->pers->sync_request) 4781 return -EINVAL; 4782 4783 4784 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) { 4785 if (cmd_match(page, "frozen")) 4786 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4787 else 4788 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4789 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 4790 mddev_lock(mddev) == 0) { 4791 if (work_pending(&mddev->del_work)) 4792 flush_workqueue(md_misc_wq); 4793 if (mddev->sync_thread) { 4794 sector_t save_rp = mddev->reshape_position; 4795 4796 mddev_unlock(mddev); 4797 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4798 md_unregister_thread(&mddev->sync_thread); 4799 mddev_lock_nointr(mddev); 4800 /* 4801 * set RECOVERY_INTR again and restore reshape 4802 * position in case others changed them after 4803 * got lock, eg, reshape_position_store and 4804 * md_check_recovery. 4805 */ 4806 mddev->reshape_position = save_rp; 4807 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4808 md_reap_sync_thread(mddev); 4809 } 4810 mddev_unlock(mddev); 4811 } 4812 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4813 return -EBUSY; 4814 else if (cmd_match(page, "resync")) 4815 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4816 else if (cmd_match(page, "recover")) { 4817 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4818 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 4819 } else if (cmd_match(page, "reshape")) { 4820 int err; 4821 if (mddev->pers->start_reshape == NULL) 4822 return -EINVAL; 4823 err = mddev_lock(mddev); 4824 if (!err) { 4825 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4826 err = -EBUSY; 4827 else { 4828 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4829 err = mddev->pers->start_reshape(mddev); 4830 } 4831 mddev_unlock(mddev); 4832 } 4833 if (err) 4834 return err; 4835 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 4836 } else { 4837 if (cmd_match(page, "check")) 4838 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4839 else if (!cmd_match(page, "repair")) 4840 return -EINVAL; 4841 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4842 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 4843 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4844 } 4845 if (mddev->ro == MD_AUTO_READ) { 4846 /* A write to sync_action is enough to justify 4847 * canceling read-auto mode 4848 */ 4849 mddev->ro = MD_RDWR; 4850 md_wakeup_thread(mddev->sync_thread); 4851 } 4852 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4853 md_wakeup_thread(mddev->thread); 4854 sysfs_notify_dirent_safe(mddev->sysfs_action); 4855 return len; 4856 } 4857 4858 static struct md_sysfs_entry md_scan_mode = 4859 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); 4860 4861 static ssize_t 4862 last_sync_action_show(struct mddev *mddev, char *page) 4863 { 4864 return sprintf(page, "%s\n", mddev->last_sync_action); 4865 } 4866 4867 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action); 4868 4869 static ssize_t 4870 mismatch_cnt_show(struct mddev *mddev, char *page) 4871 { 4872 return sprintf(page, "%llu\n", 4873 (unsigned long long) 4874 atomic64_read(&mddev->resync_mismatches)); 4875 } 4876 4877 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); 4878 4879 static ssize_t 4880 sync_min_show(struct mddev *mddev, char *page) 4881 { 4882 return sprintf(page, "%d (%s)\n", speed_min(mddev), 4883 mddev->sync_speed_min ? "local": "system"); 4884 } 4885 4886 static ssize_t 4887 sync_min_store(struct mddev *mddev, const char *buf, size_t len) 4888 { 4889 unsigned int min; 4890 int rv; 4891 4892 if (strncmp(buf, "system", 6)==0) { 4893 min = 0; 4894 } else { 4895 rv = kstrtouint(buf, 10, &min); 4896 if (rv < 0) 4897 return rv; 4898 if (min == 0) 4899 return -EINVAL; 4900 } 4901 mddev->sync_speed_min = min; 4902 return len; 4903 } 4904 4905 static struct md_sysfs_entry md_sync_min = 4906 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); 4907 4908 static ssize_t 4909 sync_max_show(struct mddev *mddev, char *page) 4910 { 4911 return sprintf(page, "%d (%s)\n", speed_max(mddev), 4912 mddev->sync_speed_max ? "local": "system"); 4913 } 4914 4915 static ssize_t 4916 sync_max_store(struct mddev *mddev, const char *buf, size_t len) 4917 { 4918 unsigned int max; 4919 int rv; 4920 4921 if (strncmp(buf, "system", 6)==0) { 4922 max = 0; 4923 } else { 4924 rv = kstrtouint(buf, 10, &max); 4925 if (rv < 0) 4926 return rv; 4927 if (max == 0) 4928 return -EINVAL; 4929 } 4930 mddev->sync_speed_max = max; 4931 return len; 4932 } 4933 4934 static struct md_sysfs_entry md_sync_max = 4935 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); 4936 4937 static ssize_t 4938 degraded_show(struct mddev *mddev, char *page) 4939 { 4940 return sprintf(page, "%d\n", mddev->degraded); 4941 } 4942 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded); 4943 4944 static ssize_t 4945 sync_force_parallel_show(struct mddev *mddev, char *page) 4946 { 4947 return sprintf(page, "%d\n", mddev->parallel_resync); 4948 } 4949 4950 static ssize_t 4951 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len) 4952 { 4953 long n; 4954 4955 if (kstrtol(buf, 10, &n)) 4956 return -EINVAL; 4957 4958 if (n != 0 && n != 1) 4959 return -EINVAL; 4960 4961 mddev->parallel_resync = n; 4962 4963 if (mddev->sync_thread) 4964 wake_up(&resync_wait); 4965 4966 return len; 4967 } 4968 4969 /* force parallel resync, even with shared block devices */ 4970 static struct md_sysfs_entry md_sync_force_parallel = 4971 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR, 4972 sync_force_parallel_show, sync_force_parallel_store); 4973 4974 static ssize_t 4975 sync_speed_show(struct mddev *mddev, char *page) 4976 { 4977 unsigned long resync, dt, db; 4978 if (mddev->curr_resync == MD_RESYNC_NONE) 4979 return sprintf(page, "none\n"); 4980 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active); 4981 dt = (jiffies - mddev->resync_mark) / HZ; 4982 if (!dt) dt++; 4983 db = resync - mddev->resync_mark_cnt; 4984 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */ 4985 } 4986 4987 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); 4988 4989 static ssize_t 4990 sync_completed_show(struct mddev *mddev, char *page) 4991 { 4992 unsigned long long max_sectors, resync; 4993 4994 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4995 return sprintf(page, "none\n"); 4996 4997 if (mddev->curr_resync == MD_RESYNC_YIELDED || 4998 mddev->curr_resync == MD_RESYNC_DELAYED) 4999 return sprintf(page, "delayed\n"); 5000 5001 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 5002 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 5003 max_sectors = mddev->resync_max_sectors; 5004 else 5005 max_sectors = mddev->dev_sectors; 5006 5007 resync = mddev->curr_resync_completed; 5008 return sprintf(page, "%llu / %llu\n", resync, max_sectors); 5009 } 5010 5011 static struct md_sysfs_entry md_sync_completed = 5012 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL); 5013 5014 static ssize_t 5015 min_sync_show(struct mddev *mddev, char *page) 5016 { 5017 return sprintf(page, "%llu\n", 5018 (unsigned long long)mddev->resync_min); 5019 } 5020 static ssize_t 5021 min_sync_store(struct mddev *mddev, const char *buf, size_t len) 5022 { 5023 unsigned long long min; 5024 int err; 5025 5026 if (kstrtoull(buf, 10, &min)) 5027 return -EINVAL; 5028 5029 spin_lock(&mddev->lock); 5030 err = -EINVAL; 5031 if (min > mddev->resync_max) 5032 goto out_unlock; 5033 5034 err = -EBUSY; 5035 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5036 goto out_unlock; 5037 5038 /* Round down to multiple of 4K for safety */ 5039 mddev->resync_min = round_down(min, 8); 5040 err = 0; 5041 5042 out_unlock: 5043 spin_unlock(&mddev->lock); 5044 return err ?: len; 5045 } 5046 5047 static struct md_sysfs_entry md_min_sync = 5048 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store); 5049 5050 static ssize_t 5051 max_sync_show(struct mddev *mddev, char *page) 5052 { 5053 if (mddev->resync_max == MaxSector) 5054 return sprintf(page, "max\n"); 5055 else 5056 return sprintf(page, "%llu\n", 5057 (unsigned long long)mddev->resync_max); 5058 } 5059 static ssize_t 5060 max_sync_store(struct mddev *mddev, const char *buf, size_t len) 5061 { 5062 int err; 5063 spin_lock(&mddev->lock); 5064 if (strncmp(buf, "max", 3) == 0) 5065 mddev->resync_max = MaxSector; 5066 else { 5067 unsigned long long max; 5068 int chunk; 5069 5070 err = -EINVAL; 5071 if (kstrtoull(buf, 10, &max)) 5072 goto out_unlock; 5073 if (max < mddev->resync_min) 5074 goto out_unlock; 5075 5076 err = -EBUSY; 5077 if (max < mddev->resync_max && md_is_rdwr(mddev) && 5078 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5079 goto out_unlock; 5080 5081 /* Must be a multiple of chunk_size */ 5082 chunk = mddev->chunk_sectors; 5083 if (chunk) { 5084 sector_t temp = max; 5085 5086 err = -EINVAL; 5087 if (sector_div(temp, chunk)) 5088 goto out_unlock; 5089 } 5090 mddev->resync_max = max; 5091 } 5092 wake_up(&mddev->recovery_wait); 5093 err = 0; 5094 out_unlock: 5095 spin_unlock(&mddev->lock); 5096 return err ?: len; 5097 } 5098 5099 static struct md_sysfs_entry md_max_sync = 5100 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store); 5101 5102 static ssize_t 5103 suspend_lo_show(struct mddev *mddev, char *page) 5104 { 5105 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo); 5106 } 5107 5108 static ssize_t 5109 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len) 5110 { 5111 unsigned long long new; 5112 int err; 5113 5114 err = kstrtoull(buf, 10, &new); 5115 if (err < 0) 5116 return err; 5117 if (new != (sector_t)new) 5118 return -EINVAL; 5119 5120 err = mddev_lock(mddev); 5121 if (err) 5122 return err; 5123 err = -EINVAL; 5124 if (mddev->pers == NULL || 5125 mddev->pers->quiesce == NULL) 5126 goto unlock; 5127 mddev_suspend(mddev); 5128 mddev->suspend_lo = new; 5129 mddev_resume(mddev); 5130 5131 err = 0; 5132 unlock: 5133 mddev_unlock(mddev); 5134 return err ?: len; 5135 } 5136 static struct md_sysfs_entry md_suspend_lo = 5137 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); 5138 5139 static ssize_t 5140 suspend_hi_show(struct mddev *mddev, char *page) 5141 { 5142 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi); 5143 } 5144 5145 static ssize_t 5146 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len) 5147 { 5148 unsigned long long new; 5149 int err; 5150 5151 err = kstrtoull(buf, 10, &new); 5152 if (err < 0) 5153 return err; 5154 if (new != (sector_t)new) 5155 return -EINVAL; 5156 5157 err = mddev_lock(mddev); 5158 if (err) 5159 return err; 5160 err = -EINVAL; 5161 if (mddev->pers == NULL) 5162 goto unlock; 5163 5164 mddev_suspend(mddev); 5165 mddev->suspend_hi = new; 5166 mddev_resume(mddev); 5167 5168 err = 0; 5169 unlock: 5170 mddev_unlock(mddev); 5171 return err ?: len; 5172 } 5173 static struct md_sysfs_entry md_suspend_hi = 5174 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); 5175 5176 static ssize_t 5177 reshape_position_show(struct mddev *mddev, char *page) 5178 { 5179 if (mddev->reshape_position != MaxSector) 5180 return sprintf(page, "%llu\n", 5181 (unsigned long long)mddev->reshape_position); 5182 strcpy(page, "none\n"); 5183 return 5; 5184 } 5185 5186 static ssize_t 5187 reshape_position_store(struct mddev *mddev, const char *buf, size_t len) 5188 { 5189 struct md_rdev *rdev; 5190 unsigned long long new; 5191 int err; 5192 5193 err = kstrtoull(buf, 10, &new); 5194 if (err < 0) 5195 return err; 5196 if (new != (sector_t)new) 5197 return -EINVAL; 5198 err = mddev_lock(mddev); 5199 if (err) 5200 return err; 5201 err = -EBUSY; 5202 if (mddev->pers) 5203 goto unlock; 5204 mddev->reshape_position = new; 5205 mddev->delta_disks = 0; 5206 mddev->reshape_backwards = 0; 5207 mddev->new_level = mddev->level; 5208 mddev->new_layout = mddev->layout; 5209 mddev->new_chunk_sectors = mddev->chunk_sectors; 5210 rdev_for_each(rdev, mddev) 5211 rdev->new_data_offset = rdev->data_offset; 5212 err = 0; 5213 unlock: 5214 mddev_unlock(mddev); 5215 return err ?: len; 5216 } 5217 5218 static struct md_sysfs_entry md_reshape_position = 5219 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show, 5220 reshape_position_store); 5221 5222 static ssize_t 5223 reshape_direction_show(struct mddev *mddev, char *page) 5224 { 5225 return sprintf(page, "%s\n", 5226 mddev->reshape_backwards ? "backwards" : "forwards"); 5227 } 5228 5229 static ssize_t 5230 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len) 5231 { 5232 int backwards = 0; 5233 int err; 5234 5235 if (cmd_match(buf, "forwards")) 5236 backwards = 0; 5237 else if (cmd_match(buf, "backwards")) 5238 backwards = 1; 5239 else 5240 return -EINVAL; 5241 if (mddev->reshape_backwards == backwards) 5242 return len; 5243 5244 err = mddev_lock(mddev); 5245 if (err) 5246 return err; 5247 /* check if we are allowed to change */ 5248 if (mddev->delta_disks) 5249 err = -EBUSY; 5250 else if (mddev->persistent && 5251 mddev->major_version == 0) 5252 err = -EINVAL; 5253 else 5254 mddev->reshape_backwards = backwards; 5255 mddev_unlock(mddev); 5256 return err ?: len; 5257 } 5258 5259 static struct md_sysfs_entry md_reshape_direction = 5260 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show, 5261 reshape_direction_store); 5262 5263 static ssize_t 5264 array_size_show(struct mddev *mddev, char *page) 5265 { 5266 if (mddev->external_size) 5267 return sprintf(page, "%llu\n", 5268 (unsigned long long)mddev->array_sectors/2); 5269 else 5270 return sprintf(page, "default\n"); 5271 } 5272 5273 static ssize_t 5274 array_size_store(struct mddev *mddev, const char *buf, size_t len) 5275 { 5276 sector_t sectors; 5277 int err; 5278 5279 err = mddev_lock(mddev); 5280 if (err) 5281 return err; 5282 5283 /* cluster raid doesn't support change array_sectors */ 5284 if (mddev_is_clustered(mddev)) { 5285 mddev_unlock(mddev); 5286 return -EINVAL; 5287 } 5288 5289 if (strncmp(buf, "default", 7) == 0) { 5290 if (mddev->pers) 5291 sectors = mddev->pers->size(mddev, 0, 0); 5292 else 5293 sectors = mddev->array_sectors; 5294 5295 mddev->external_size = 0; 5296 } else { 5297 if (strict_blocks_to_sectors(buf, §ors) < 0) 5298 err = -EINVAL; 5299 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors) 5300 err = -E2BIG; 5301 else 5302 mddev->external_size = 1; 5303 } 5304 5305 if (!err) { 5306 mddev->array_sectors = sectors; 5307 if (mddev->pers) 5308 set_capacity_and_notify(mddev->gendisk, 5309 mddev->array_sectors); 5310 } 5311 mddev_unlock(mddev); 5312 return err ?: len; 5313 } 5314 5315 static struct md_sysfs_entry md_array_size = 5316 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show, 5317 array_size_store); 5318 5319 static ssize_t 5320 consistency_policy_show(struct mddev *mddev, char *page) 5321 { 5322 int ret; 5323 5324 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { 5325 ret = sprintf(page, "journal\n"); 5326 } else if (test_bit(MD_HAS_PPL, &mddev->flags)) { 5327 ret = sprintf(page, "ppl\n"); 5328 } else if (mddev->bitmap) { 5329 ret = sprintf(page, "bitmap\n"); 5330 } else if (mddev->pers) { 5331 if (mddev->pers->sync_request) 5332 ret = sprintf(page, "resync\n"); 5333 else 5334 ret = sprintf(page, "none\n"); 5335 } else { 5336 ret = sprintf(page, "unknown\n"); 5337 } 5338 5339 return ret; 5340 } 5341 5342 static ssize_t 5343 consistency_policy_store(struct mddev *mddev, const char *buf, size_t len) 5344 { 5345 int err = 0; 5346 5347 if (mddev->pers) { 5348 if (mddev->pers->change_consistency_policy) 5349 err = mddev->pers->change_consistency_policy(mddev, buf); 5350 else 5351 err = -EBUSY; 5352 } else if (mddev->external && strncmp(buf, "ppl", 3) == 0) { 5353 set_bit(MD_HAS_PPL, &mddev->flags); 5354 } else { 5355 err = -EINVAL; 5356 } 5357 5358 return err ? err : len; 5359 } 5360 5361 static struct md_sysfs_entry md_consistency_policy = 5362 __ATTR(consistency_policy, S_IRUGO | S_IWUSR, consistency_policy_show, 5363 consistency_policy_store); 5364 5365 static ssize_t fail_last_dev_show(struct mddev *mddev, char *page) 5366 { 5367 return sprintf(page, "%d\n", mddev->fail_last_dev); 5368 } 5369 5370 /* 5371 * Setting fail_last_dev to true to allow last device to be forcibly removed 5372 * from RAID1/RAID10. 5373 */ 5374 static ssize_t 5375 fail_last_dev_store(struct mddev *mddev, const char *buf, size_t len) 5376 { 5377 int ret; 5378 bool value; 5379 5380 ret = kstrtobool(buf, &value); 5381 if (ret) 5382 return ret; 5383 5384 if (value != mddev->fail_last_dev) 5385 mddev->fail_last_dev = value; 5386 5387 return len; 5388 } 5389 static struct md_sysfs_entry md_fail_last_dev = 5390 __ATTR(fail_last_dev, S_IRUGO | S_IWUSR, fail_last_dev_show, 5391 fail_last_dev_store); 5392 5393 static ssize_t serialize_policy_show(struct mddev *mddev, char *page) 5394 { 5395 if (mddev->pers == NULL || (mddev->pers->level != 1)) 5396 return sprintf(page, "n/a\n"); 5397 else 5398 return sprintf(page, "%d\n", mddev->serialize_policy); 5399 } 5400 5401 /* 5402 * Setting serialize_policy to true to enforce write IO is not reordered 5403 * for raid1. 5404 */ 5405 static ssize_t 5406 serialize_policy_store(struct mddev *mddev, const char *buf, size_t len) 5407 { 5408 int err; 5409 bool value; 5410 5411 err = kstrtobool(buf, &value); 5412 if (err) 5413 return err; 5414 5415 if (value == mddev->serialize_policy) 5416 return len; 5417 5418 err = mddev_lock(mddev); 5419 if (err) 5420 return err; 5421 if (mddev->pers == NULL || (mddev->pers->level != 1)) { 5422 pr_err("md: serialize_policy is only effective for raid1\n"); 5423 err = -EINVAL; 5424 goto unlock; 5425 } 5426 5427 mddev_suspend(mddev); 5428 if (value) 5429 mddev_create_serial_pool(mddev, NULL, true); 5430 else 5431 mddev_destroy_serial_pool(mddev, NULL, true); 5432 mddev->serialize_policy = value; 5433 mddev_resume(mddev); 5434 unlock: 5435 mddev_unlock(mddev); 5436 return err ?: len; 5437 } 5438 5439 static struct md_sysfs_entry md_serialize_policy = 5440 __ATTR(serialize_policy, S_IRUGO | S_IWUSR, serialize_policy_show, 5441 serialize_policy_store); 5442 5443 5444 static struct attribute *md_default_attrs[] = { 5445 &md_level.attr, 5446 &md_layout.attr, 5447 &md_raid_disks.attr, 5448 &md_uuid.attr, 5449 &md_chunk_size.attr, 5450 &md_size.attr, 5451 &md_resync_start.attr, 5452 &md_metadata.attr, 5453 &md_new_device.attr, 5454 &md_safe_delay.attr, 5455 &md_array_state.attr, 5456 &md_reshape_position.attr, 5457 &md_reshape_direction.attr, 5458 &md_array_size.attr, 5459 &max_corr_read_errors.attr, 5460 &md_consistency_policy.attr, 5461 &md_fail_last_dev.attr, 5462 &md_serialize_policy.attr, 5463 NULL, 5464 }; 5465 5466 static const struct attribute_group md_default_group = { 5467 .attrs = md_default_attrs, 5468 }; 5469 5470 static struct attribute *md_redundancy_attrs[] = { 5471 &md_scan_mode.attr, 5472 &md_last_scan_mode.attr, 5473 &md_mismatches.attr, 5474 &md_sync_min.attr, 5475 &md_sync_max.attr, 5476 &md_sync_speed.attr, 5477 &md_sync_force_parallel.attr, 5478 &md_sync_completed.attr, 5479 &md_min_sync.attr, 5480 &md_max_sync.attr, 5481 &md_suspend_lo.attr, 5482 &md_suspend_hi.attr, 5483 &md_bitmap.attr, 5484 &md_degraded.attr, 5485 NULL, 5486 }; 5487 static const struct attribute_group md_redundancy_group = { 5488 .name = NULL, 5489 .attrs = md_redundancy_attrs, 5490 }; 5491 5492 static const struct attribute_group *md_attr_groups[] = { 5493 &md_default_group, 5494 &md_bitmap_group, 5495 NULL, 5496 }; 5497 5498 static ssize_t 5499 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 5500 { 5501 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5502 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5503 ssize_t rv; 5504 5505 if (!entry->show) 5506 return -EIO; 5507 spin_lock(&all_mddevs_lock); 5508 if (!mddev_get(mddev)) { 5509 spin_unlock(&all_mddevs_lock); 5510 return -EBUSY; 5511 } 5512 spin_unlock(&all_mddevs_lock); 5513 5514 rv = entry->show(mddev, page); 5515 mddev_put(mddev); 5516 return rv; 5517 } 5518 5519 static ssize_t 5520 md_attr_store(struct kobject *kobj, struct attribute *attr, 5521 const char *page, size_t length) 5522 { 5523 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5524 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5525 ssize_t rv; 5526 5527 if (!entry->store) 5528 return -EIO; 5529 if (!capable(CAP_SYS_ADMIN)) 5530 return -EACCES; 5531 spin_lock(&all_mddevs_lock); 5532 if (!mddev_get(mddev)) { 5533 spin_unlock(&all_mddevs_lock); 5534 return -EBUSY; 5535 } 5536 spin_unlock(&all_mddevs_lock); 5537 rv = entry->store(mddev, page, length); 5538 mddev_put(mddev); 5539 return rv; 5540 } 5541 5542 static void md_kobj_release(struct kobject *ko) 5543 { 5544 struct mddev *mddev = container_of(ko, struct mddev, kobj); 5545 5546 if (mddev->sysfs_state) 5547 sysfs_put(mddev->sysfs_state); 5548 if (mddev->sysfs_level) 5549 sysfs_put(mddev->sysfs_level); 5550 5551 del_gendisk(mddev->gendisk); 5552 put_disk(mddev->gendisk); 5553 } 5554 5555 static const struct sysfs_ops md_sysfs_ops = { 5556 .show = md_attr_show, 5557 .store = md_attr_store, 5558 }; 5559 static struct kobj_type md_ktype = { 5560 .release = md_kobj_release, 5561 .sysfs_ops = &md_sysfs_ops, 5562 .default_groups = md_attr_groups, 5563 }; 5564 5565 int mdp_major = 0; 5566 5567 static void mddev_delayed_delete(struct work_struct *ws) 5568 { 5569 struct mddev *mddev = container_of(ws, struct mddev, del_work); 5570 5571 kobject_put(&mddev->kobj); 5572 } 5573 5574 static void no_op(struct percpu_ref *r) {} 5575 5576 int mddev_init_writes_pending(struct mddev *mddev) 5577 { 5578 if (mddev->writes_pending.percpu_count_ptr) 5579 return 0; 5580 if (percpu_ref_init(&mddev->writes_pending, no_op, 5581 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL) < 0) 5582 return -ENOMEM; 5583 /* We want to start with the refcount at zero */ 5584 percpu_ref_put(&mddev->writes_pending); 5585 return 0; 5586 } 5587 EXPORT_SYMBOL_GPL(mddev_init_writes_pending); 5588 5589 struct mddev *md_alloc(dev_t dev, char *name) 5590 { 5591 /* 5592 * If dev is zero, name is the name of a device to allocate with 5593 * an arbitrary minor number. It will be "md_???" 5594 * If dev is non-zero it must be a device number with a MAJOR of 5595 * MD_MAJOR or mdp_major. In this case, if "name" is NULL, then 5596 * the device is being created by opening a node in /dev. 5597 * If "name" is not NULL, the device is being created by 5598 * writing to /sys/module/md_mod/parameters/new_array. 5599 */ 5600 static DEFINE_MUTEX(disks_mutex); 5601 struct mddev *mddev; 5602 struct gendisk *disk; 5603 int partitioned; 5604 int shift; 5605 int unit; 5606 int error ; 5607 5608 /* 5609 * Wait for any previous instance of this device to be completely 5610 * removed (mddev_delayed_delete). 5611 */ 5612 flush_workqueue(md_misc_wq); 5613 flush_workqueue(md_rdev_misc_wq); 5614 5615 mutex_lock(&disks_mutex); 5616 mddev = mddev_alloc(dev); 5617 if (IS_ERR(mddev)) { 5618 error = PTR_ERR(mddev); 5619 goto out_unlock; 5620 } 5621 5622 partitioned = (MAJOR(mddev->unit) != MD_MAJOR); 5623 shift = partitioned ? MdpMinorShift : 0; 5624 unit = MINOR(mddev->unit) >> shift; 5625 5626 if (name && !dev) { 5627 /* Need to ensure that 'name' is not a duplicate. 5628 */ 5629 struct mddev *mddev2; 5630 spin_lock(&all_mddevs_lock); 5631 5632 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) 5633 if (mddev2->gendisk && 5634 strcmp(mddev2->gendisk->disk_name, name) == 0) { 5635 spin_unlock(&all_mddevs_lock); 5636 error = -EEXIST; 5637 goto out_free_mddev; 5638 } 5639 spin_unlock(&all_mddevs_lock); 5640 } 5641 if (name && dev) 5642 /* 5643 * Creating /dev/mdNNN via "newarray", so adjust hold_active. 5644 */ 5645 mddev->hold_active = UNTIL_STOP; 5646 5647 error = -ENOMEM; 5648 disk = blk_alloc_disk(NUMA_NO_NODE); 5649 if (!disk) 5650 goto out_free_mddev; 5651 5652 disk->major = MAJOR(mddev->unit); 5653 disk->first_minor = unit << shift; 5654 disk->minors = 1 << shift; 5655 if (name) 5656 strcpy(disk->disk_name, name); 5657 else if (partitioned) 5658 sprintf(disk->disk_name, "md_d%d", unit); 5659 else 5660 sprintf(disk->disk_name, "md%d", unit); 5661 disk->fops = &md_fops; 5662 disk->private_data = mddev; 5663 5664 mddev->queue = disk->queue; 5665 blk_set_stacking_limits(&mddev->queue->limits); 5666 blk_queue_write_cache(mddev->queue, true, true); 5667 disk->events |= DISK_EVENT_MEDIA_CHANGE; 5668 mddev->gendisk = disk; 5669 error = add_disk(disk); 5670 if (error) 5671 goto out_put_disk; 5672 5673 kobject_init(&mddev->kobj, &md_ktype); 5674 error = kobject_add(&mddev->kobj, &disk_to_dev(disk)->kobj, "%s", "md"); 5675 if (error) { 5676 /* 5677 * The disk is already live at this point. Clear the hold flag 5678 * and let mddev_put take care of the deletion, as it isn't any 5679 * different from a normal close on last release now. 5680 */ 5681 mddev->hold_active = 0; 5682 mutex_unlock(&disks_mutex); 5683 mddev_put(mddev); 5684 return ERR_PTR(error); 5685 } 5686 5687 kobject_uevent(&mddev->kobj, KOBJ_ADD); 5688 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state"); 5689 mddev->sysfs_level = sysfs_get_dirent_safe(mddev->kobj.sd, "level"); 5690 mutex_unlock(&disks_mutex); 5691 return mddev; 5692 5693 out_put_disk: 5694 put_disk(disk); 5695 out_free_mddev: 5696 mddev_free(mddev); 5697 out_unlock: 5698 mutex_unlock(&disks_mutex); 5699 return ERR_PTR(error); 5700 } 5701 5702 static int md_alloc_and_put(dev_t dev, char *name) 5703 { 5704 struct mddev *mddev = md_alloc(dev, name); 5705 5706 if (IS_ERR(mddev)) 5707 return PTR_ERR(mddev); 5708 mddev_put(mddev); 5709 return 0; 5710 } 5711 5712 static void md_probe(dev_t dev) 5713 { 5714 if (MAJOR(dev) == MD_MAJOR && MINOR(dev) >= 512) 5715 return; 5716 if (create_on_open) 5717 md_alloc_and_put(dev, NULL); 5718 } 5719 5720 static int add_named_array(const char *val, const struct kernel_param *kp) 5721 { 5722 /* 5723 * val must be "md_*" or "mdNNN". 5724 * For "md_*" we allocate an array with a large free minor number, and 5725 * set the name to val. val must not already be an active name. 5726 * For "mdNNN" we allocate an array with the minor number NNN 5727 * which must not already be in use. 5728 */ 5729 int len = strlen(val); 5730 char buf[DISK_NAME_LEN]; 5731 unsigned long devnum; 5732 5733 while (len && val[len-1] == '\n') 5734 len--; 5735 if (len >= DISK_NAME_LEN) 5736 return -E2BIG; 5737 strscpy(buf, val, len+1); 5738 if (strncmp(buf, "md_", 3) == 0) 5739 return md_alloc_and_put(0, buf); 5740 if (strncmp(buf, "md", 2) == 0 && 5741 isdigit(buf[2]) && 5742 kstrtoul(buf+2, 10, &devnum) == 0 && 5743 devnum <= MINORMASK) 5744 return md_alloc_and_put(MKDEV(MD_MAJOR, devnum), NULL); 5745 5746 return -EINVAL; 5747 } 5748 5749 static void md_safemode_timeout(struct timer_list *t) 5750 { 5751 struct mddev *mddev = from_timer(mddev, t, safemode_timer); 5752 5753 mddev->safemode = 1; 5754 if (mddev->external) 5755 sysfs_notify_dirent_safe(mddev->sysfs_state); 5756 5757 md_wakeup_thread(mddev->thread); 5758 } 5759 5760 static int start_dirty_degraded; 5761 5762 int md_run(struct mddev *mddev) 5763 { 5764 int err; 5765 struct md_rdev *rdev; 5766 struct md_personality *pers; 5767 bool nowait = true; 5768 5769 if (list_empty(&mddev->disks)) 5770 /* cannot run an array with no devices.. */ 5771 return -EINVAL; 5772 5773 if (mddev->pers) 5774 return -EBUSY; 5775 /* Cannot run until previous stop completes properly */ 5776 if (mddev->sysfs_active) 5777 return -EBUSY; 5778 5779 /* 5780 * Analyze all RAID superblock(s) 5781 */ 5782 if (!mddev->raid_disks) { 5783 if (!mddev->persistent) 5784 return -EINVAL; 5785 err = analyze_sbs(mddev); 5786 if (err) 5787 return -EINVAL; 5788 } 5789 5790 if (mddev->level != LEVEL_NONE) 5791 request_module("md-level-%d", mddev->level); 5792 else if (mddev->clevel[0]) 5793 request_module("md-%s", mddev->clevel); 5794 5795 /* 5796 * Drop all container device buffers, from now on 5797 * the only valid external interface is through the md 5798 * device. 5799 */ 5800 mddev->has_superblocks = false; 5801 rdev_for_each(rdev, mddev) { 5802 if (test_bit(Faulty, &rdev->flags)) 5803 continue; 5804 sync_blockdev(rdev->bdev); 5805 invalidate_bdev(rdev->bdev); 5806 if (mddev->ro != MD_RDONLY && rdev_read_only(rdev)) { 5807 mddev->ro = MD_RDONLY; 5808 if (mddev->gendisk) 5809 set_disk_ro(mddev->gendisk, 1); 5810 } 5811 5812 if (rdev->sb_page) 5813 mddev->has_superblocks = true; 5814 5815 /* perform some consistency tests on the device. 5816 * We don't want the data to overlap the metadata, 5817 * Internal Bitmap issues have been handled elsewhere. 5818 */ 5819 if (rdev->meta_bdev) { 5820 /* Nothing to check */; 5821 } else if (rdev->data_offset < rdev->sb_start) { 5822 if (mddev->dev_sectors && 5823 rdev->data_offset + mddev->dev_sectors 5824 > rdev->sb_start) { 5825 pr_warn("md: %s: data overlaps metadata\n", 5826 mdname(mddev)); 5827 return -EINVAL; 5828 } 5829 } else { 5830 if (rdev->sb_start + rdev->sb_size/512 5831 > rdev->data_offset) { 5832 pr_warn("md: %s: metadata overlaps data\n", 5833 mdname(mddev)); 5834 return -EINVAL; 5835 } 5836 } 5837 sysfs_notify_dirent_safe(rdev->sysfs_state); 5838 nowait = nowait && bdev_nowait(rdev->bdev); 5839 } 5840 5841 if (!bioset_initialized(&mddev->bio_set)) { 5842 err = bioset_init(&mddev->bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5843 if (err) 5844 return err; 5845 } 5846 if (!bioset_initialized(&mddev->sync_set)) { 5847 err = bioset_init(&mddev->sync_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5848 if (err) 5849 goto exit_bio_set; 5850 } 5851 5852 spin_lock(&pers_lock); 5853 pers = find_pers(mddev->level, mddev->clevel); 5854 if (!pers || !try_module_get(pers->owner)) { 5855 spin_unlock(&pers_lock); 5856 if (mddev->level != LEVEL_NONE) 5857 pr_warn("md: personality for level %d is not loaded!\n", 5858 mddev->level); 5859 else 5860 pr_warn("md: personality for level %s is not loaded!\n", 5861 mddev->clevel); 5862 err = -EINVAL; 5863 goto abort; 5864 } 5865 spin_unlock(&pers_lock); 5866 if (mddev->level != pers->level) { 5867 mddev->level = pers->level; 5868 mddev->new_level = pers->level; 5869 } 5870 strscpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 5871 5872 if (mddev->reshape_position != MaxSector && 5873 pers->start_reshape == NULL) { 5874 /* This personality cannot handle reshaping... */ 5875 module_put(pers->owner); 5876 err = -EINVAL; 5877 goto abort; 5878 } 5879 5880 if (pers->sync_request) { 5881 /* Warn if this is a potentially silly 5882 * configuration. 5883 */ 5884 struct md_rdev *rdev2; 5885 int warned = 0; 5886 5887 rdev_for_each(rdev, mddev) 5888 rdev_for_each(rdev2, mddev) { 5889 if (rdev < rdev2 && 5890 rdev->bdev->bd_disk == 5891 rdev2->bdev->bd_disk) { 5892 pr_warn("%s: WARNING: %pg appears to be on the same physical disk as %pg.\n", 5893 mdname(mddev), 5894 rdev->bdev, 5895 rdev2->bdev); 5896 warned = 1; 5897 } 5898 } 5899 5900 if (warned) 5901 pr_warn("True protection against single-disk failure might be compromised.\n"); 5902 } 5903 5904 mddev->recovery = 0; 5905 /* may be over-ridden by personality */ 5906 mddev->resync_max_sectors = mddev->dev_sectors; 5907 5908 mddev->ok_start_degraded = start_dirty_degraded; 5909 5910 if (start_readonly && md_is_rdwr(mddev)) 5911 mddev->ro = MD_AUTO_READ; /* read-only, but switch on first write */ 5912 5913 err = pers->run(mddev); 5914 if (err) 5915 pr_warn("md: pers->run() failed ...\n"); 5916 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) { 5917 WARN_ONCE(!mddev->external_size, 5918 "%s: default size too small, but 'external_size' not in effect?\n", 5919 __func__); 5920 pr_warn("md: invalid array_size %llu > default size %llu\n", 5921 (unsigned long long)mddev->array_sectors / 2, 5922 (unsigned long long)pers->size(mddev, 0, 0) / 2); 5923 err = -EINVAL; 5924 } 5925 if (err == 0 && pers->sync_request && 5926 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) { 5927 struct bitmap *bitmap; 5928 5929 bitmap = md_bitmap_create(mddev, -1); 5930 if (IS_ERR(bitmap)) { 5931 err = PTR_ERR(bitmap); 5932 pr_warn("%s: failed to create bitmap (%d)\n", 5933 mdname(mddev), err); 5934 } else 5935 mddev->bitmap = bitmap; 5936 5937 } 5938 if (err) 5939 goto bitmap_abort; 5940 5941 if (mddev->bitmap_info.max_write_behind > 0) { 5942 bool create_pool = false; 5943 5944 rdev_for_each(rdev, mddev) { 5945 if (test_bit(WriteMostly, &rdev->flags) && 5946 rdev_init_serial(rdev)) 5947 create_pool = true; 5948 } 5949 if (create_pool && mddev->serial_info_pool == NULL) { 5950 mddev->serial_info_pool = 5951 mempool_create_kmalloc_pool(NR_SERIAL_INFOS, 5952 sizeof(struct serial_info)); 5953 if (!mddev->serial_info_pool) { 5954 err = -ENOMEM; 5955 goto bitmap_abort; 5956 } 5957 } 5958 } 5959 5960 if (mddev->queue) { 5961 bool nonrot = true; 5962 5963 rdev_for_each(rdev, mddev) { 5964 if (rdev->raid_disk >= 0 && !bdev_nonrot(rdev->bdev)) { 5965 nonrot = false; 5966 break; 5967 } 5968 } 5969 if (mddev->degraded) 5970 nonrot = false; 5971 if (nonrot) 5972 blk_queue_flag_set(QUEUE_FLAG_NONROT, mddev->queue); 5973 else 5974 blk_queue_flag_clear(QUEUE_FLAG_NONROT, mddev->queue); 5975 blk_queue_flag_set(QUEUE_FLAG_IO_STAT, mddev->queue); 5976 5977 /* Set the NOWAIT flags if all underlying devices support it */ 5978 if (nowait) 5979 blk_queue_flag_set(QUEUE_FLAG_NOWAIT, mddev->queue); 5980 } 5981 if (pers->sync_request) { 5982 if (mddev->kobj.sd && 5983 sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 5984 pr_warn("md: cannot register extra attributes for %s\n", 5985 mdname(mddev)); 5986 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action"); 5987 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed"); 5988 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded"); 5989 } else if (mddev->ro == MD_AUTO_READ) 5990 mddev->ro = MD_RDWR; 5991 5992 atomic_set(&mddev->max_corr_read_errors, 5993 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS); 5994 mddev->safemode = 0; 5995 if (mddev_is_clustered(mddev)) 5996 mddev->safemode_delay = 0; 5997 else 5998 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY; 5999 mddev->in_sync = 1; 6000 smp_wmb(); 6001 spin_lock(&mddev->lock); 6002 mddev->pers = pers; 6003 spin_unlock(&mddev->lock); 6004 rdev_for_each(rdev, mddev) 6005 if (rdev->raid_disk >= 0) 6006 sysfs_link_rdev(mddev, rdev); /* failure here is OK */ 6007 6008 if (mddev->degraded && md_is_rdwr(mddev)) 6009 /* This ensures that recovering status is reported immediately 6010 * via sysfs - until a lack of spares is confirmed. 6011 */ 6012 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 6013 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6014 6015 if (mddev->sb_flags) 6016 md_update_sb(mddev, 0); 6017 6018 md_new_event(); 6019 return 0; 6020 6021 bitmap_abort: 6022 mddev_detach(mddev); 6023 if (mddev->private) 6024 pers->free(mddev, mddev->private); 6025 mddev->private = NULL; 6026 module_put(pers->owner); 6027 md_bitmap_destroy(mddev); 6028 abort: 6029 bioset_exit(&mddev->sync_set); 6030 exit_bio_set: 6031 bioset_exit(&mddev->bio_set); 6032 return err; 6033 } 6034 EXPORT_SYMBOL_GPL(md_run); 6035 6036 int do_md_run(struct mddev *mddev) 6037 { 6038 int err; 6039 6040 set_bit(MD_NOT_READY, &mddev->flags); 6041 err = md_run(mddev); 6042 if (err) 6043 goto out; 6044 err = md_bitmap_load(mddev); 6045 if (err) { 6046 md_bitmap_destroy(mddev); 6047 goto out; 6048 } 6049 6050 if (mddev_is_clustered(mddev)) 6051 md_allow_write(mddev); 6052 6053 /* run start up tasks that require md_thread */ 6054 md_start(mddev); 6055 6056 md_wakeup_thread(mddev->thread); 6057 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 6058 6059 set_capacity_and_notify(mddev->gendisk, mddev->array_sectors); 6060 clear_bit(MD_NOT_READY, &mddev->flags); 6061 mddev->changed = 1; 6062 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 6063 sysfs_notify_dirent_safe(mddev->sysfs_state); 6064 sysfs_notify_dirent_safe(mddev->sysfs_action); 6065 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 6066 out: 6067 clear_bit(MD_NOT_READY, &mddev->flags); 6068 return err; 6069 } 6070 6071 int md_start(struct mddev *mddev) 6072 { 6073 int ret = 0; 6074 6075 if (mddev->pers->start) { 6076 set_bit(MD_RECOVERY_WAIT, &mddev->recovery); 6077 md_wakeup_thread(mddev->thread); 6078 ret = mddev->pers->start(mddev); 6079 clear_bit(MD_RECOVERY_WAIT, &mddev->recovery); 6080 md_wakeup_thread(mddev->sync_thread); 6081 } 6082 return ret; 6083 } 6084 EXPORT_SYMBOL_GPL(md_start); 6085 6086 static int restart_array(struct mddev *mddev) 6087 { 6088 struct gendisk *disk = mddev->gendisk; 6089 struct md_rdev *rdev; 6090 bool has_journal = false; 6091 bool has_readonly = false; 6092 6093 /* Complain if it has no devices */ 6094 if (list_empty(&mddev->disks)) 6095 return -ENXIO; 6096 if (!mddev->pers) 6097 return -EINVAL; 6098 if (md_is_rdwr(mddev)) 6099 return -EBUSY; 6100 6101 rcu_read_lock(); 6102 rdev_for_each_rcu(rdev, mddev) { 6103 if (test_bit(Journal, &rdev->flags) && 6104 !test_bit(Faulty, &rdev->flags)) 6105 has_journal = true; 6106 if (rdev_read_only(rdev)) 6107 has_readonly = true; 6108 } 6109 rcu_read_unlock(); 6110 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !has_journal) 6111 /* Don't restart rw with journal missing/faulty */ 6112 return -EINVAL; 6113 if (has_readonly) 6114 return -EROFS; 6115 6116 mddev->safemode = 0; 6117 mddev->ro = MD_RDWR; 6118 set_disk_ro(disk, 0); 6119 pr_debug("md: %s switched to read-write mode.\n", mdname(mddev)); 6120 /* Kick recovery or resync if necessary */ 6121 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6122 md_wakeup_thread(mddev->thread); 6123 md_wakeup_thread(mddev->sync_thread); 6124 sysfs_notify_dirent_safe(mddev->sysfs_state); 6125 return 0; 6126 } 6127 6128 static void md_clean(struct mddev *mddev) 6129 { 6130 mddev->array_sectors = 0; 6131 mddev->external_size = 0; 6132 mddev->dev_sectors = 0; 6133 mddev->raid_disks = 0; 6134 mddev->recovery_cp = 0; 6135 mddev->resync_min = 0; 6136 mddev->resync_max = MaxSector; 6137 mddev->reshape_position = MaxSector; 6138 mddev->external = 0; 6139 mddev->persistent = 0; 6140 mddev->level = LEVEL_NONE; 6141 mddev->clevel[0] = 0; 6142 mddev->flags = 0; 6143 mddev->sb_flags = 0; 6144 mddev->ro = MD_RDWR; 6145 mddev->metadata_type[0] = 0; 6146 mddev->chunk_sectors = 0; 6147 mddev->ctime = mddev->utime = 0; 6148 mddev->layout = 0; 6149 mddev->max_disks = 0; 6150 mddev->events = 0; 6151 mddev->can_decrease_events = 0; 6152 mddev->delta_disks = 0; 6153 mddev->reshape_backwards = 0; 6154 mddev->new_level = LEVEL_NONE; 6155 mddev->new_layout = 0; 6156 mddev->new_chunk_sectors = 0; 6157 mddev->curr_resync = 0; 6158 atomic64_set(&mddev->resync_mismatches, 0); 6159 mddev->suspend_lo = mddev->suspend_hi = 0; 6160 mddev->sync_speed_min = mddev->sync_speed_max = 0; 6161 mddev->recovery = 0; 6162 mddev->in_sync = 0; 6163 mddev->changed = 0; 6164 mddev->degraded = 0; 6165 mddev->safemode = 0; 6166 mddev->private = NULL; 6167 mddev->cluster_info = NULL; 6168 mddev->bitmap_info.offset = 0; 6169 mddev->bitmap_info.default_offset = 0; 6170 mddev->bitmap_info.default_space = 0; 6171 mddev->bitmap_info.chunksize = 0; 6172 mddev->bitmap_info.daemon_sleep = 0; 6173 mddev->bitmap_info.max_write_behind = 0; 6174 mddev->bitmap_info.nodes = 0; 6175 } 6176 6177 static void __md_stop_writes(struct mddev *mddev) 6178 { 6179 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6180 if (work_pending(&mddev->del_work)) 6181 flush_workqueue(md_misc_wq); 6182 if (mddev->sync_thread) { 6183 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6184 md_unregister_thread(&mddev->sync_thread); 6185 md_reap_sync_thread(mddev); 6186 } 6187 6188 del_timer_sync(&mddev->safemode_timer); 6189 6190 if (mddev->pers && mddev->pers->quiesce) { 6191 mddev->pers->quiesce(mddev, 1); 6192 mddev->pers->quiesce(mddev, 0); 6193 } 6194 md_bitmap_flush(mddev); 6195 6196 if (md_is_rdwr(mddev) && 6197 ((!mddev->in_sync && !mddev_is_clustered(mddev)) || 6198 mddev->sb_flags)) { 6199 /* mark array as shutdown cleanly */ 6200 if (!mddev_is_clustered(mddev)) 6201 mddev->in_sync = 1; 6202 md_update_sb(mddev, 1); 6203 } 6204 /* disable policy to guarantee rdevs free resources for serialization */ 6205 mddev->serialize_policy = 0; 6206 mddev_destroy_serial_pool(mddev, NULL, true); 6207 } 6208 6209 void md_stop_writes(struct mddev *mddev) 6210 { 6211 mddev_lock_nointr(mddev); 6212 __md_stop_writes(mddev); 6213 mddev_unlock(mddev); 6214 } 6215 EXPORT_SYMBOL_GPL(md_stop_writes); 6216 6217 static void mddev_detach(struct mddev *mddev) 6218 { 6219 md_bitmap_wait_behind_writes(mddev); 6220 if (mddev->pers && mddev->pers->quiesce && !mddev->suspended) { 6221 mddev->pers->quiesce(mddev, 1); 6222 mddev->pers->quiesce(mddev, 0); 6223 } 6224 md_unregister_thread(&mddev->thread); 6225 if (mddev->queue) 6226 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 6227 } 6228 6229 static void __md_stop(struct mddev *mddev) 6230 { 6231 struct md_personality *pers = mddev->pers; 6232 md_bitmap_destroy(mddev); 6233 mddev_detach(mddev); 6234 /* Ensure ->event_work is done */ 6235 if (mddev->event_work.func) 6236 flush_workqueue(md_misc_wq); 6237 spin_lock(&mddev->lock); 6238 mddev->pers = NULL; 6239 spin_unlock(&mddev->lock); 6240 if (mddev->private) 6241 pers->free(mddev, mddev->private); 6242 mddev->private = NULL; 6243 if (pers->sync_request && mddev->to_remove == NULL) 6244 mddev->to_remove = &md_redundancy_group; 6245 module_put(pers->owner); 6246 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6247 } 6248 6249 void md_stop(struct mddev *mddev) 6250 { 6251 /* stop the array and free an attached data structures. 6252 * This is called from dm-raid 6253 */ 6254 __md_stop_writes(mddev); 6255 __md_stop(mddev); 6256 bioset_exit(&mddev->bio_set); 6257 bioset_exit(&mddev->sync_set); 6258 } 6259 6260 EXPORT_SYMBOL_GPL(md_stop); 6261 6262 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev) 6263 { 6264 int err = 0; 6265 int did_freeze = 0; 6266 6267 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 6268 did_freeze = 1; 6269 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6270 md_wakeup_thread(mddev->thread); 6271 } 6272 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 6273 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6274 if (mddev->sync_thread) 6275 /* Thread might be blocked waiting for metadata update 6276 * which will now never happen */ 6277 wake_up_process(mddev->sync_thread->tsk); 6278 6279 if (mddev->external && test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 6280 return -EBUSY; 6281 mddev_unlock(mddev); 6282 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING, 6283 &mddev->recovery)); 6284 wait_event(mddev->sb_wait, 6285 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 6286 mddev_lock_nointr(mddev); 6287 6288 mutex_lock(&mddev->open_mutex); 6289 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 6290 mddev->sync_thread || 6291 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 6292 pr_warn("md: %s still in use.\n",mdname(mddev)); 6293 if (did_freeze) { 6294 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6295 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6296 md_wakeup_thread(mddev->thread); 6297 } 6298 err = -EBUSY; 6299 goto out; 6300 } 6301 if (mddev->pers) { 6302 __md_stop_writes(mddev); 6303 6304 err = -ENXIO; 6305 if (mddev->ro == MD_RDONLY) 6306 goto out; 6307 mddev->ro = MD_RDONLY; 6308 set_disk_ro(mddev->gendisk, 1); 6309 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6310 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6311 md_wakeup_thread(mddev->thread); 6312 sysfs_notify_dirent_safe(mddev->sysfs_state); 6313 err = 0; 6314 } 6315 out: 6316 mutex_unlock(&mddev->open_mutex); 6317 return err; 6318 } 6319 6320 /* mode: 6321 * 0 - completely stop and dis-assemble array 6322 * 2 - stop but do not disassemble array 6323 */ 6324 static int do_md_stop(struct mddev *mddev, int mode, 6325 struct block_device *bdev) 6326 { 6327 struct gendisk *disk = mddev->gendisk; 6328 struct md_rdev *rdev; 6329 int did_freeze = 0; 6330 6331 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 6332 did_freeze = 1; 6333 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6334 md_wakeup_thread(mddev->thread); 6335 } 6336 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 6337 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6338 if (mddev->sync_thread) 6339 /* Thread might be blocked waiting for metadata update 6340 * which will now never happen */ 6341 wake_up_process(mddev->sync_thread->tsk); 6342 6343 mddev_unlock(mddev); 6344 wait_event(resync_wait, (mddev->sync_thread == NULL && 6345 !test_bit(MD_RECOVERY_RUNNING, 6346 &mddev->recovery))); 6347 mddev_lock_nointr(mddev); 6348 6349 mutex_lock(&mddev->open_mutex); 6350 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 6351 mddev->sysfs_active || 6352 mddev->sync_thread || 6353 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 6354 pr_warn("md: %s still in use.\n",mdname(mddev)); 6355 mutex_unlock(&mddev->open_mutex); 6356 if (did_freeze) { 6357 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6358 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6359 md_wakeup_thread(mddev->thread); 6360 } 6361 return -EBUSY; 6362 } 6363 if (mddev->pers) { 6364 if (!md_is_rdwr(mddev)) 6365 set_disk_ro(disk, 0); 6366 6367 __md_stop_writes(mddev); 6368 __md_stop(mddev); 6369 6370 /* tell userspace to handle 'inactive' */ 6371 sysfs_notify_dirent_safe(mddev->sysfs_state); 6372 6373 rdev_for_each(rdev, mddev) 6374 if (rdev->raid_disk >= 0) 6375 sysfs_unlink_rdev(mddev, rdev); 6376 6377 set_capacity_and_notify(disk, 0); 6378 mutex_unlock(&mddev->open_mutex); 6379 mddev->changed = 1; 6380 6381 if (!md_is_rdwr(mddev)) 6382 mddev->ro = MD_RDWR; 6383 } else 6384 mutex_unlock(&mddev->open_mutex); 6385 /* 6386 * Free resources if final stop 6387 */ 6388 if (mode == 0) { 6389 pr_info("md: %s stopped.\n", mdname(mddev)); 6390 6391 if (mddev->bitmap_info.file) { 6392 struct file *f = mddev->bitmap_info.file; 6393 spin_lock(&mddev->lock); 6394 mddev->bitmap_info.file = NULL; 6395 spin_unlock(&mddev->lock); 6396 fput(f); 6397 } 6398 mddev->bitmap_info.offset = 0; 6399 6400 export_array(mddev); 6401 6402 md_clean(mddev); 6403 if (mddev->hold_active == UNTIL_STOP) 6404 mddev->hold_active = 0; 6405 } 6406 md_new_event(); 6407 sysfs_notify_dirent_safe(mddev->sysfs_state); 6408 return 0; 6409 } 6410 6411 #ifndef MODULE 6412 static void autorun_array(struct mddev *mddev) 6413 { 6414 struct md_rdev *rdev; 6415 int err; 6416 6417 if (list_empty(&mddev->disks)) 6418 return; 6419 6420 pr_info("md: running: "); 6421 6422 rdev_for_each(rdev, mddev) { 6423 pr_cont("<%pg>", rdev->bdev); 6424 } 6425 pr_cont("\n"); 6426 6427 err = do_md_run(mddev); 6428 if (err) { 6429 pr_warn("md: do_md_run() returned %d\n", err); 6430 do_md_stop(mddev, 0, NULL); 6431 } 6432 } 6433 6434 /* 6435 * lets try to run arrays based on all disks that have arrived 6436 * until now. (those are in pending_raid_disks) 6437 * 6438 * the method: pick the first pending disk, collect all disks with 6439 * the same UUID, remove all from the pending list and put them into 6440 * the 'same_array' list. Then order this list based on superblock 6441 * update time (freshest comes first), kick out 'old' disks and 6442 * compare superblocks. If everything's fine then run it. 6443 * 6444 * If "unit" is allocated, then bump its reference count 6445 */ 6446 static void autorun_devices(int part) 6447 { 6448 struct md_rdev *rdev0, *rdev, *tmp; 6449 struct mddev *mddev; 6450 6451 pr_info("md: autorun ...\n"); 6452 while (!list_empty(&pending_raid_disks)) { 6453 int unit; 6454 dev_t dev; 6455 LIST_HEAD(candidates); 6456 rdev0 = list_entry(pending_raid_disks.next, 6457 struct md_rdev, same_set); 6458 6459 pr_debug("md: considering %pg ...\n", rdev0->bdev); 6460 INIT_LIST_HEAD(&candidates); 6461 rdev_for_each_list(rdev, tmp, &pending_raid_disks) 6462 if (super_90_load(rdev, rdev0, 0) >= 0) { 6463 pr_debug("md: adding %pg ...\n", 6464 rdev->bdev); 6465 list_move(&rdev->same_set, &candidates); 6466 } 6467 /* 6468 * now we have a set of devices, with all of them having 6469 * mostly sane superblocks. It's time to allocate the 6470 * mddev. 6471 */ 6472 if (part) { 6473 dev = MKDEV(mdp_major, 6474 rdev0->preferred_minor << MdpMinorShift); 6475 unit = MINOR(dev) >> MdpMinorShift; 6476 } else { 6477 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); 6478 unit = MINOR(dev); 6479 } 6480 if (rdev0->preferred_minor != unit) { 6481 pr_warn("md: unit number in %pg is bad: %d\n", 6482 rdev0->bdev, rdev0->preferred_minor); 6483 break; 6484 } 6485 6486 mddev = md_alloc(dev, NULL); 6487 if (IS_ERR(mddev)) 6488 break; 6489 6490 if (mddev_lock(mddev)) 6491 pr_warn("md: %s locked, cannot run\n", mdname(mddev)); 6492 else if (mddev->raid_disks || mddev->major_version 6493 || !list_empty(&mddev->disks)) { 6494 pr_warn("md: %s already running, cannot run %pg\n", 6495 mdname(mddev), rdev0->bdev); 6496 mddev_unlock(mddev); 6497 } else { 6498 pr_debug("md: created %s\n", mdname(mddev)); 6499 mddev->persistent = 1; 6500 rdev_for_each_list(rdev, tmp, &candidates) { 6501 list_del_init(&rdev->same_set); 6502 if (bind_rdev_to_array(rdev, mddev)) 6503 export_rdev(rdev); 6504 } 6505 autorun_array(mddev); 6506 mddev_unlock(mddev); 6507 } 6508 /* on success, candidates will be empty, on error 6509 * it won't... 6510 */ 6511 rdev_for_each_list(rdev, tmp, &candidates) { 6512 list_del_init(&rdev->same_set); 6513 export_rdev(rdev); 6514 } 6515 mddev_put(mddev); 6516 } 6517 pr_info("md: ... autorun DONE.\n"); 6518 } 6519 #endif /* !MODULE */ 6520 6521 static int get_version(void __user *arg) 6522 { 6523 mdu_version_t ver; 6524 6525 ver.major = MD_MAJOR_VERSION; 6526 ver.minor = MD_MINOR_VERSION; 6527 ver.patchlevel = MD_PATCHLEVEL_VERSION; 6528 6529 if (copy_to_user(arg, &ver, sizeof(ver))) 6530 return -EFAULT; 6531 6532 return 0; 6533 } 6534 6535 static int get_array_info(struct mddev *mddev, void __user *arg) 6536 { 6537 mdu_array_info_t info; 6538 int nr,working,insync,failed,spare; 6539 struct md_rdev *rdev; 6540 6541 nr = working = insync = failed = spare = 0; 6542 rcu_read_lock(); 6543 rdev_for_each_rcu(rdev, mddev) { 6544 nr++; 6545 if (test_bit(Faulty, &rdev->flags)) 6546 failed++; 6547 else { 6548 working++; 6549 if (test_bit(In_sync, &rdev->flags)) 6550 insync++; 6551 else if (test_bit(Journal, &rdev->flags)) 6552 /* TODO: add journal count to md_u.h */ 6553 ; 6554 else 6555 spare++; 6556 } 6557 } 6558 rcu_read_unlock(); 6559 6560 info.major_version = mddev->major_version; 6561 info.minor_version = mddev->minor_version; 6562 info.patch_version = MD_PATCHLEVEL_VERSION; 6563 info.ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 6564 info.level = mddev->level; 6565 info.size = mddev->dev_sectors / 2; 6566 if (info.size != mddev->dev_sectors / 2) /* overflow */ 6567 info.size = -1; 6568 info.nr_disks = nr; 6569 info.raid_disks = mddev->raid_disks; 6570 info.md_minor = mddev->md_minor; 6571 info.not_persistent= !mddev->persistent; 6572 6573 info.utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 6574 info.state = 0; 6575 if (mddev->in_sync) 6576 info.state = (1<<MD_SB_CLEAN); 6577 if (mddev->bitmap && mddev->bitmap_info.offset) 6578 info.state |= (1<<MD_SB_BITMAP_PRESENT); 6579 if (mddev_is_clustered(mddev)) 6580 info.state |= (1<<MD_SB_CLUSTERED); 6581 info.active_disks = insync; 6582 info.working_disks = working; 6583 info.failed_disks = failed; 6584 info.spare_disks = spare; 6585 6586 info.layout = mddev->layout; 6587 info.chunk_size = mddev->chunk_sectors << 9; 6588 6589 if (copy_to_user(arg, &info, sizeof(info))) 6590 return -EFAULT; 6591 6592 return 0; 6593 } 6594 6595 static int get_bitmap_file(struct mddev *mddev, void __user * arg) 6596 { 6597 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ 6598 char *ptr; 6599 int err; 6600 6601 file = kzalloc(sizeof(*file), GFP_NOIO); 6602 if (!file) 6603 return -ENOMEM; 6604 6605 err = 0; 6606 spin_lock(&mddev->lock); 6607 /* bitmap enabled */ 6608 if (mddev->bitmap_info.file) { 6609 ptr = file_path(mddev->bitmap_info.file, file->pathname, 6610 sizeof(file->pathname)); 6611 if (IS_ERR(ptr)) 6612 err = PTR_ERR(ptr); 6613 else 6614 memmove(file->pathname, ptr, 6615 sizeof(file->pathname)-(ptr-file->pathname)); 6616 } 6617 spin_unlock(&mddev->lock); 6618 6619 if (err == 0 && 6620 copy_to_user(arg, file, sizeof(*file))) 6621 err = -EFAULT; 6622 6623 kfree(file); 6624 return err; 6625 } 6626 6627 static int get_disk_info(struct mddev *mddev, void __user * arg) 6628 { 6629 mdu_disk_info_t info; 6630 struct md_rdev *rdev; 6631 6632 if (copy_from_user(&info, arg, sizeof(info))) 6633 return -EFAULT; 6634 6635 rcu_read_lock(); 6636 rdev = md_find_rdev_nr_rcu(mddev, info.number); 6637 if (rdev) { 6638 info.major = MAJOR(rdev->bdev->bd_dev); 6639 info.minor = MINOR(rdev->bdev->bd_dev); 6640 info.raid_disk = rdev->raid_disk; 6641 info.state = 0; 6642 if (test_bit(Faulty, &rdev->flags)) 6643 info.state |= (1<<MD_DISK_FAULTY); 6644 else if (test_bit(In_sync, &rdev->flags)) { 6645 info.state |= (1<<MD_DISK_ACTIVE); 6646 info.state |= (1<<MD_DISK_SYNC); 6647 } 6648 if (test_bit(Journal, &rdev->flags)) 6649 info.state |= (1<<MD_DISK_JOURNAL); 6650 if (test_bit(WriteMostly, &rdev->flags)) 6651 info.state |= (1<<MD_DISK_WRITEMOSTLY); 6652 if (test_bit(FailFast, &rdev->flags)) 6653 info.state |= (1<<MD_DISK_FAILFAST); 6654 } else { 6655 info.major = info.minor = 0; 6656 info.raid_disk = -1; 6657 info.state = (1<<MD_DISK_REMOVED); 6658 } 6659 rcu_read_unlock(); 6660 6661 if (copy_to_user(arg, &info, sizeof(info))) 6662 return -EFAULT; 6663 6664 return 0; 6665 } 6666 6667 int md_add_new_disk(struct mddev *mddev, struct mdu_disk_info_s *info) 6668 { 6669 struct md_rdev *rdev; 6670 dev_t dev = MKDEV(info->major,info->minor); 6671 6672 if (mddev_is_clustered(mddev) && 6673 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) { 6674 pr_warn("%s: Cannot add to clustered mddev.\n", 6675 mdname(mddev)); 6676 return -EINVAL; 6677 } 6678 6679 if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) 6680 return -EOVERFLOW; 6681 6682 if (!mddev->raid_disks) { 6683 int err; 6684 /* expecting a device which has a superblock */ 6685 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); 6686 if (IS_ERR(rdev)) { 6687 pr_warn("md: md_import_device returned %ld\n", 6688 PTR_ERR(rdev)); 6689 return PTR_ERR(rdev); 6690 } 6691 if (!list_empty(&mddev->disks)) { 6692 struct md_rdev *rdev0 6693 = list_entry(mddev->disks.next, 6694 struct md_rdev, same_set); 6695 err = super_types[mddev->major_version] 6696 .load_super(rdev, rdev0, mddev->minor_version); 6697 if (err < 0) { 6698 pr_warn("md: %pg has different UUID to %pg\n", 6699 rdev->bdev, 6700 rdev0->bdev); 6701 export_rdev(rdev); 6702 return -EINVAL; 6703 } 6704 } 6705 err = bind_rdev_to_array(rdev, mddev); 6706 if (err) 6707 export_rdev(rdev); 6708 return err; 6709 } 6710 6711 /* 6712 * md_add_new_disk can be used once the array is assembled 6713 * to add "hot spares". They must already have a superblock 6714 * written 6715 */ 6716 if (mddev->pers) { 6717 int err; 6718 if (!mddev->pers->hot_add_disk) { 6719 pr_warn("%s: personality does not support diskops!\n", 6720 mdname(mddev)); 6721 return -EINVAL; 6722 } 6723 if (mddev->persistent) 6724 rdev = md_import_device(dev, mddev->major_version, 6725 mddev->minor_version); 6726 else 6727 rdev = md_import_device(dev, -1, -1); 6728 if (IS_ERR(rdev)) { 6729 pr_warn("md: md_import_device returned %ld\n", 6730 PTR_ERR(rdev)); 6731 return PTR_ERR(rdev); 6732 } 6733 /* set saved_raid_disk if appropriate */ 6734 if (!mddev->persistent) { 6735 if (info->state & (1<<MD_DISK_SYNC) && 6736 info->raid_disk < mddev->raid_disks) { 6737 rdev->raid_disk = info->raid_disk; 6738 set_bit(In_sync, &rdev->flags); 6739 clear_bit(Bitmap_sync, &rdev->flags); 6740 } else 6741 rdev->raid_disk = -1; 6742 rdev->saved_raid_disk = rdev->raid_disk; 6743 } else 6744 super_types[mddev->major_version]. 6745 validate_super(mddev, rdev); 6746 if ((info->state & (1<<MD_DISK_SYNC)) && 6747 rdev->raid_disk != info->raid_disk) { 6748 /* This was a hot-add request, but events doesn't 6749 * match, so reject it. 6750 */ 6751 export_rdev(rdev); 6752 return -EINVAL; 6753 } 6754 6755 clear_bit(In_sync, &rdev->flags); /* just to be sure */ 6756 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6757 set_bit(WriteMostly, &rdev->flags); 6758 else 6759 clear_bit(WriteMostly, &rdev->flags); 6760 if (info->state & (1<<MD_DISK_FAILFAST)) 6761 set_bit(FailFast, &rdev->flags); 6762 else 6763 clear_bit(FailFast, &rdev->flags); 6764 6765 if (info->state & (1<<MD_DISK_JOURNAL)) { 6766 struct md_rdev *rdev2; 6767 bool has_journal = false; 6768 6769 /* make sure no existing journal disk */ 6770 rdev_for_each(rdev2, mddev) { 6771 if (test_bit(Journal, &rdev2->flags)) { 6772 has_journal = true; 6773 break; 6774 } 6775 } 6776 if (has_journal || mddev->bitmap) { 6777 export_rdev(rdev); 6778 return -EBUSY; 6779 } 6780 set_bit(Journal, &rdev->flags); 6781 } 6782 /* 6783 * check whether the device shows up in other nodes 6784 */ 6785 if (mddev_is_clustered(mddev)) { 6786 if (info->state & (1 << MD_DISK_CANDIDATE)) 6787 set_bit(Candidate, &rdev->flags); 6788 else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) { 6789 /* --add initiated by this node */ 6790 err = md_cluster_ops->add_new_disk(mddev, rdev); 6791 if (err) { 6792 export_rdev(rdev); 6793 return err; 6794 } 6795 } 6796 } 6797 6798 rdev->raid_disk = -1; 6799 err = bind_rdev_to_array(rdev, mddev); 6800 6801 if (err) 6802 export_rdev(rdev); 6803 6804 if (mddev_is_clustered(mddev)) { 6805 if (info->state & (1 << MD_DISK_CANDIDATE)) { 6806 if (!err) { 6807 err = md_cluster_ops->new_disk_ack(mddev, 6808 err == 0); 6809 if (err) 6810 md_kick_rdev_from_array(rdev); 6811 } 6812 } else { 6813 if (err) 6814 md_cluster_ops->add_new_disk_cancel(mddev); 6815 else 6816 err = add_bound_rdev(rdev); 6817 } 6818 6819 } else if (!err) 6820 err = add_bound_rdev(rdev); 6821 6822 return err; 6823 } 6824 6825 /* otherwise, md_add_new_disk is only allowed 6826 * for major_version==0 superblocks 6827 */ 6828 if (mddev->major_version != 0) { 6829 pr_warn("%s: ADD_NEW_DISK not supported\n", mdname(mddev)); 6830 return -EINVAL; 6831 } 6832 6833 if (!(info->state & (1<<MD_DISK_FAULTY))) { 6834 int err; 6835 rdev = md_import_device(dev, -1, 0); 6836 if (IS_ERR(rdev)) { 6837 pr_warn("md: error, md_import_device() returned %ld\n", 6838 PTR_ERR(rdev)); 6839 return PTR_ERR(rdev); 6840 } 6841 rdev->desc_nr = info->number; 6842 if (info->raid_disk < mddev->raid_disks) 6843 rdev->raid_disk = info->raid_disk; 6844 else 6845 rdev->raid_disk = -1; 6846 6847 if (rdev->raid_disk < mddev->raid_disks) 6848 if (info->state & (1<<MD_DISK_SYNC)) 6849 set_bit(In_sync, &rdev->flags); 6850 6851 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6852 set_bit(WriteMostly, &rdev->flags); 6853 if (info->state & (1<<MD_DISK_FAILFAST)) 6854 set_bit(FailFast, &rdev->flags); 6855 6856 if (!mddev->persistent) { 6857 pr_debug("md: nonpersistent superblock ...\n"); 6858 rdev->sb_start = bdev_nr_sectors(rdev->bdev); 6859 } else 6860 rdev->sb_start = calc_dev_sboffset(rdev); 6861 rdev->sectors = rdev->sb_start; 6862 6863 err = bind_rdev_to_array(rdev, mddev); 6864 if (err) { 6865 export_rdev(rdev); 6866 return err; 6867 } 6868 } 6869 6870 return 0; 6871 } 6872 6873 static int hot_remove_disk(struct mddev *mddev, dev_t dev) 6874 { 6875 struct md_rdev *rdev; 6876 6877 if (!mddev->pers) 6878 return -ENODEV; 6879 6880 rdev = find_rdev(mddev, dev); 6881 if (!rdev) 6882 return -ENXIO; 6883 6884 if (rdev->raid_disk < 0) 6885 goto kick_rdev; 6886 6887 clear_bit(Blocked, &rdev->flags); 6888 remove_and_add_spares(mddev, rdev); 6889 6890 if (rdev->raid_disk >= 0) 6891 goto busy; 6892 6893 kick_rdev: 6894 if (mddev_is_clustered(mddev)) { 6895 if (md_cluster_ops->remove_disk(mddev, rdev)) 6896 goto busy; 6897 } 6898 6899 md_kick_rdev_from_array(rdev); 6900 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6901 if (mddev->thread) 6902 md_wakeup_thread(mddev->thread); 6903 else 6904 md_update_sb(mddev, 1); 6905 md_new_event(); 6906 6907 return 0; 6908 busy: 6909 pr_debug("md: cannot remove active disk %pg from %s ...\n", 6910 rdev->bdev, mdname(mddev)); 6911 return -EBUSY; 6912 } 6913 6914 static int hot_add_disk(struct mddev *mddev, dev_t dev) 6915 { 6916 int err; 6917 struct md_rdev *rdev; 6918 6919 if (!mddev->pers) 6920 return -ENODEV; 6921 6922 if (mddev->major_version != 0) { 6923 pr_warn("%s: HOT_ADD may only be used with version-0 superblocks.\n", 6924 mdname(mddev)); 6925 return -EINVAL; 6926 } 6927 if (!mddev->pers->hot_add_disk) { 6928 pr_warn("%s: personality does not support diskops!\n", 6929 mdname(mddev)); 6930 return -EINVAL; 6931 } 6932 6933 rdev = md_import_device(dev, -1, 0); 6934 if (IS_ERR(rdev)) { 6935 pr_warn("md: error, md_import_device() returned %ld\n", 6936 PTR_ERR(rdev)); 6937 return -EINVAL; 6938 } 6939 6940 if (mddev->persistent) 6941 rdev->sb_start = calc_dev_sboffset(rdev); 6942 else 6943 rdev->sb_start = bdev_nr_sectors(rdev->bdev); 6944 6945 rdev->sectors = rdev->sb_start; 6946 6947 if (test_bit(Faulty, &rdev->flags)) { 6948 pr_warn("md: can not hot-add faulty %pg disk to %s!\n", 6949 rdev->bdev, mdname(mddev)); 6950 err = -EINVAL; 6951 goto abort_export; 6952 } 6953 6954 clear_bit(In_sync, &rdev->flags); 6955 rdev->desc_nr = -1; 6956 rdev->saved_raid_disk = -1; 6957 err = bind_rdev_to_array(rdev, mddev); 6958 if (err) 6959 goto abort_export; 6960 6961 /* 6962 * The rest should better be atomic, we can have disk failures 6963 * noticed in interrupt contexts ... 6964 */ 6965 6966 rdev->raid_disk = -1; 6967 6968 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6969 if (!mddev->thread) 6970 md_update_sb(mddev, 1); 6971 /* 6972 * If the new disk does not support REQ_NOWAIT, 6973 * disable on the whole MD. 6974 */ 6975 if (!bdev_nowait(rdev->bdev)) { 6976 pr_info("%s: Disabling nowait because %pg does not support nowait\n", 6977 mdname(mddev), rdev->bdev); 6978 blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, mddev->queue); 6979 } 6980 /* 6981 * Kick recovery, maybe this spare has to be added to the 6982 * array immediately. 6983 */ 6984 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6985 md_wakeup_thread(mddev->thread); 6986 md_new_event(); 6987 return 0; 6988 6989 abort_export: 6990 export_rdev(rdev); 6991 return err; 6992 } 6993 6994 static int set_bitmap_file(struct mddev *mddev, int fd) 6995 { 6996 int err = 0; 6997 6998 if (mddev->pers) { 6999 if (!mddev->pers->quiesce || !mddev->thread) 7000 return -EBUSY; 7001 if (mddev->recovery || mddev->sync_thread) 7002 return -EBUSY; 7003 /* we should be able to change the bitmap.. */ 7004 } 7005 7006 if (fd >= 0) { 7007 struct inode *inode; 7008 struct file *f; 7009 7010 if (mddev->bitmap || mddev->bitmap_info.file) 7011 return -EEXIST; /* cannot add when bitmap is present */ 7012 f = fget(fd); 7013 7014 if (f == NULL) { 7015 pr_warn("%s: error: failed to get bitmap file\n", 7016 mdname(mddev)); 7017 return -EBADF; 7018 } 7019 7020 inode = f->f_mapping->host; 7021 if (!S_ISREG(inode->i_mode)) { 7022 pr_warn("%s: error: bitmap file must be a regular file\n", 7023 mdname(mddev)); 7024 err = -EBADF; 7025 } else if (!(f->f_mode & FMODE_WRITE)) { 7026 pr_warn("%s: error: bitmap file must open for write\n", 7027 mdname(mddev)); 7028 err = -EBADF; 7029 } else if (atomic_read(&inode->i_writecount) != 1) { 7030 pr_warn("%s: error: bitmap file is already in use\n", 7031 mdname(mddev)); 7032 err = -EBUSY; 7033 } 7034 if (err) { 7035 fput(f); 7036 return err; 7037 } 7038 mddev->bitmap_info.file = f; 7039 mddev->bitmap_info.offset = 0; /* file overrides offset */ 7040 } else if (mddev->bitmap == NULL) 7041 return -ENOENT; /* cannot remove what isn't there */ 7042 err = 0; 7043 if (mddev->pers) { 7044 if (fd >= 0) { 7045 struct bitmap *bitmap; 7046 7047 bitmap = md_bitmap_create(mddev, -1); 7048 mddev_suspend(mddev); 7049 if (!IS_ERR(bitmap)) { 7050 mddev->bitmap = bitmap; 7051 err = md_bitmap_load(mddev); 7052 } else 7053 err = PTR_ERR(bitmap); 7054 if (err) { 7055 md_bitmap_destroy(mddev); 7056 fd = -1; 7057 } 7058 mddev_resume(mddev); 7059 } else if (fd < 0) { 7060 mddev_suspend(mddev); 7061 md_bitmap_destroy(mddev); 7062 mddev_resume(mddev); 7063 } 7064 } 7065 if (fd < 0) { 7066 struct file *f = mddev->bitmap_info.file; 7067 if (f) { 7068 spin_lock(&mddev->lock); 7069 mddev->bitmap_info.file = NULL; 7070 spin_unlock(&mddev->lock); 7071 fput(f); 7072 } 7073 } 7074 7075 return err; 7076 } 7077 7078 /* 7079 * md_set_array_info is used two different ways 7080 * The original usage is when creating a new array. 7081 * In this usage, raid_disks is > 0 and it together with 7082 * level, size, not_persistent,layout,chunksize determine the 7083 * shape of the array. 7084 * This will always create an array with a type-0.90.0 superblock. 7085 * The newer usage is when assembling an array. 7086 * In this case raid_disks will be 0, and the major_version field is 7087 * use to determine which style super-blocks are to be found on the devices. 7088 * The minor and patch _version numbers are also kept incase the 7089 * super_block handler wishes to interpret them. 7090 */ 7091 int md_set_array_info(struct mddev *mddev, struct mdu_array_info_s *info) 7092 { 7093 if (info->raid_disks == 0) { 7094 /* just setting version number for superblock loading */ 7095 if (info->major_version < 0 || 7096 info->major_version >= ARRAY_SIZE(super_types) || 7097 super_types[info->major_version].name == NULL) { 7098 /* maybe try to auto-load a module? */ 7099 pr_warn("md: superblock version %d not known\n", 7100 info->major_version); 7101 return -EINVAL; 7102 } 7103 mddev->major_version = info->major_version; 7104 mddev->minor_version = info->minor_version; 7105 mddev->patch_version = info->patch_version; 7106 mddev->persistent = !info->not_persistent; 7107 /* ensure mddev_put doesn't delete this now that there 7108 * is some minimal configuration. 7109 */ 7110 mddev->ctime = ktime_get_real_seconds(); 7111 return 0; 7112 } 7113 mddev->major_version = MD_MAJOR_VERSION; 7114 mddev->minor_version = MD_MINOR_VERSION; 7115 mddev->patch_version = MD_PATCHLEVEL_VERSION; 7116 mddev->ctime = ktime_get_real_seconds(); 7117 7118 mddev->level = info->level; 7119 mddev->clevel[0] = 0; 7120 mddev->dev_sectors = 2 * (sector_t)info->size; 7121 mddev->raid_disks = info->raid_disks; 7122 /* don't set md_minor, it is determined by which /dev/md* was 7123 * openned 7124 */ 7125 if (info->state & (1<<MD_SB_CLEAN)) 7126 mddev->recovery_cp = MaxSector; 7127 else 7128 mddev->recovery_cp = 0; 7129 mddev->persistent = ! info->not_persistent; 7130 mddev->external = 0; 7131 7132 mddev->layout = info->layout; 7133 if (mddev->level == 0) 7134 /* Cannot trust RAID0 layout info here */ 7135 mddev->layout = -1; 7136 mddev->chunk_sectors = info->chunk_size >> 9; 7137 7138 if (mddev->persistent) { 7139 mddev->max_disks = MD_SB_DISKS; 7140 mddev->flags = 0; 7141 mddev->sb_flags = 0; 7142 } 7143 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 7144 7145 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 7146 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 7147 mddev->bitmap_info.offset = 0; 7148 7149 mddev->reshape_position = MaxSector; 7150 7151 /* 7152 * Generate a 128 bit UUID 7153 */ 7154 get_random_bytes(mddev->uuid, 16); 7155 7156 mddev->new_level = mddev->level; 7157 mddev->new_chunk_sectors = mddev->chunk_sectors; 7158 mddev->new_layout = mddev->layout; 7159 mddev->delta_disks = 0; 7160 mddev->reshape_backwards = 0; 7161 7162 return 0; 7163 } 7164 7165 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors) 7166 { 7167 lockdep_assert_held(&mddev->reconfig_mutex); 7168 7169 if (mddev->external_size) 7170 return; 7171 7172 mddev->array_sectors = array_sectors; 7173 } 7174 EXPORT_SYMBOL(md_set_array_sectors); 7175 7176 static int update_size(struct mddev *mddev, sector_t num_sectors) 7177 { 7178 struct md_rdev *rdev; 7179 int rv; 7180 int fit = (num_sectors == 0); 7181 sector_t old_dev_sectors = mddev->dev_sectors; 7182 7183 if (mddev->pers->resize == NULL) 7184 return -EINVAL; 7185 /* The "num_sectors" is the number of sectors of each device that 7186 * is used. This can only make sense for arrays with redundancy. 7187 * linear and raid0 always use whatever space is available. We can only 7188 * consider changing this number if no resync or reconstruction is 7189 * happening, and if the new size is acceptable. It must fit before the 7190 * sb_start or, if that is <data_offset, it must fit before the size 7191 * of each device. If num_sectors is zero, we find the largest size 7192 * that fits. 7193 */ 7194 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 7195 mddev->sync_thread) 7196 return -EBUSY; 7197 if (!md_is_rdwr(mddev)) 7198 return -EROFS; 7199 7200 rdev_for_each(rdev, mddev) { 7201 sector_t avail = rdev->sectors; 7202 7203 if (fit && (num_sectors == 0 || num_sectors > avail)) 7204 num_sectors = avail; 7205 if (avail < num_sectors) 7206 return -ENOSPC; 7207 } 7208 rv = mddev->pers->resize(mddev, num_sectors); 7209 if (!rv) { 7210 if (mddev_is_clustered(mddev)) 7211 md_cluster_ops->update_size(mddev, old_dev_sectors); 7212 else if (mddev->queue) { 7213 set_capacity_and_notify(mddev->gendisk, 7214 mddev->array_sectors); 7215 } 7216 } 7217 return rv; 7218 } 7219 7220 static int update_raid_disks(struct mddev *mddev, int raid_disks) 7221 { 7222 int rv; 7223 struct md_rdev *rdev; 7224 /* change the number of raid disks */ 7225 if (mddev->pers->check_reshape == NULL) 7226 return -EINVAL; 7227 if (!md_is_rdwr(mddev)) 7228 return -EROFS; 7229 if (raid_disks <= 0 || 7230 (mddev->max_disks && raid_disks >= mddev->max_disks)) 7231 return -EINVAL; 7232 if (mddev->sync_thread || 7233 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 7234 test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) || 7235 mddev->reshape_position != MaxSector) 7236 return -EBUSY; 7237 7238 rdev_for_each(rdev, mddev) { 7239 if (mddev->raid_disks < raid_disks && 7240 rdev->data_offset < rdev->new_data_offset) 7241 return -EINVAL; 7242 if (mddev->raid_disks > raid_disks && 7243 rdev->data_offset > rdev->new_data_offset) 7244 return -EINVAL; 7245 } 7246 7247 mddev->delta_disks = raid_disks - mddev->raid_disks; 7248 if (mddev->delta_disks < 0) 7249 mddev->reshape_backwards = 1; 7250 else if (mddev->delta_disks > 0) 7251 mddev->reshape_backwards = 0; 7252 7253 rv = mddev->pers->check_reshape(mddev); 7254 if (rv < 0) { 7255 mddev->delta_disks = 0; 7256 mddev->reshape_backwards = 0; 7257 } 7258 return rv; 7259 } 7260 7261 /* 7262 * update_array_info is used to change the configuration of an 7263 * on-line array. 7264 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size 7265 * fields in the info are checked against the array. 7266 * Any differences that cannot be handled will cause an error. 7267 * Normally, only one change can be managed at a time. 7268 */ 7269 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info) 7270 { 7271 int rv = 0; 7272 int cnt = 0; 7273 int state = 0; 7274 7275 /* calculate expected state,ignoring low bits */ 7276 if (mddev->bitmap && mddev->bitmap_info.offset) 7277 state |= (1 << MD_SB_BITMAP_PRESENT); 7278 7279 if (mddev->major_version != info->major_version || 7280 mddev->minor_version != info->minor_version || 7281 /* mddev->patch_version != info->patch_version || */ 7282 mddev->ctime != info->ctime || 7283 mddev->level != info->level || 7284 /* mddev->layout != info->layout || */ 7285 mddev->persistent != !info->not_persistent || 7286 mddev->chunk_sectors != info->chunk_size >> 9 || 7287 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ 7288 ((state^info->state) & 0xfffffe00) 7289 ) 7290 return -EINVAL; 7291 /* Check there is only one change */ 7292 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 7293 cnt++; 7294 if (mddev->raid_disks != info->raid_disks) 7295 cnt++; 7296 if (mddev->layout != info->layout) 7297 cnt++; 7298 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) 7299 cnt++; 7300 if (cnt == 0) 7301 return 0; 7302 if (cnt > 1) 7303 return -EINVAL; 7304 7305 if (mddev->layout != info->layout) { 7306 /* Change layout 7307 * we don't need to do anything at the md level, the 7308 * personality will take care of it all. 7309 */ 7310 if (mddev->pers->check_reshape == NULL) 7311 return -EINVAL; 7312 else { 7313 mddev->new_layout = info->layout; 7314 rv = mddev->pers->check_reshape(mddev); 7315 if (rv) 7316 mddev->new_layout = mddev->layout; 7317 return rv; 7318 } 7319 } 7320 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 7321 rv = update_size(mddev, (sector_t)info->size * 2); 7322 7323 if (mddev->raid_disks != info->raid_disks) 7324 rv = update_raid_disks(mddev, info->raid_disks); 7325 7326 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { 7327 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) { 7328 rv = -EINVAL; 7329 goto err; 7330 } 7331 if (mddev->recovery || mddev->sync_thread) { 7332 rv = -EBUSY; 7333 goto err; 7334 } 7335 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { 7336 struct bitmap *bitmap; 7337 /* add the bitmap */ 7338 if (mddev->bitmap) { 7339 rv = -EEXIST; 7340 goto err; 7341 } 7342 if (mddev->bitmap_info.default_offset == 0) { 7343 rv = -EINVAL; 7344 goto err; 7345 } 7346 mddev->bitmap_info.offset = 7347 mddev->bitmap_info.default_offset; 7348 mddev->bitmap_info.space = 7349 mddev->bitmap_info.default_space; 7350 bitmap = md_bitmap_create(mddev, -1); 7351 mddev_suspend(mddev); 7352 if (!IS_ERR(bitmap)) { 7353 mddev->bitmap = bitmap; 7354 rv = md_bitmap_load(mddev); 7355 } else 7356 rv = PTR_ERR(bitmap); 7357 if (rv) 7358 md_bitmap_destroy(mddev); 7359 mddev_resume(mddev); 7360 } else { 7361 /* remove the bitmap */ 7362 if (!mddev->bitmap) { 7363 rv = -ENOENT; 7364 goto err; 7365 } 7366 if (mddev->bitmap->storage.file) { 7367 rv = -EINVAL; 7368 goto err; 7369 } 7370 if (mddev->bitmap_info.nodes) { 7371 /* hold PW on all the bitmap lock */ 7372 if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) { 7373 pr_warn("md: can't change bitmap to none since the array is in use by more than one node\n"); 7374 rv = -EPERM; 7375 md_cluster_ops->unlock_all_bitmaps(mddev); 7376 goto err; 7377 } 7378 7379 mddev->bitmap_info.nodes = 0; 7380 md_cluster_ops->leave(mddev); 7381 module_put(md_cluster_mod); 7382 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY; 7383 } 7384 mddev_suspend(mddev); 7385 md_bitmap_destroy(mddev); 7386 mddev_resume(mddev); 7387 mddev->bitmap_info.offset = 0; 7388 } 7389 } 7390 md_update_sb(mddev, 1); 7391 return rv; 7392 err: 7393 return rv; 7394 } 7395 7396 static int set_disk_faulty(struct mddev *mddev, dev_t dev) 7397 { 7398 struct md_rdev *rdev; 7399 int err = 0; 7400 7401 if (mddev->pers == NULL) 7402 return -ENODEV; 7403 7404 rcu_read_lock(); 7405 rdev = md_find_rdev_rcu(mddev, dev); 7406 if (!rdev) 7407 err = -ENODEV; 7408 else { 7409 md_error(mddev, rdev); 7410 if (test_bit(MD_BROKEN, &mddev->flags)) 7411 err = -EBUSY; 7412 } 7413 rcu_read_unlock(); 7414 return err; 7415 } 7416 7417 /* 7418 * We have a problem here : there is no easy way to give a CHS 7419 * virtual geometry. We currently pretend that we have a 2 heads 7420 * 4 sectors (with a BIG number of cylinders...). This drives 7421 * dosfs just mad... ;-) 7422 */ 7423 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) 7424 { 7425 struct mddev *mddev = bdev->bd_disk->private_data; 7426 7427 geo->heads = 2; 7428 geo->sectors = 4; 7429 geo->cylinders = mddev->array_sectors / 8; 7430 return 0; 7431 } 7432 7433 static inline bool md_ioctl_valid(unsigned int cmd) 7434 { 7435 switch (cmd) { 7436 case ADD_NEW_DISK: 7437 case GET_ARRAY_INFO: 7438 case GET_BITMAP_FILE: 7439 case GET_DISK_INFO: 7440 case HOT_ADD_DISK: 7441 case HOT_REMOVE_DISK: 7442 case RAID_VERSION: 7443 case RESTART_ARRAY_RW: 7444 case RUN_ARRAY: 7445 case SET_ARRAY_INFO: 7446 case SET_BITMAP_FILE: 7447 case SET_DISK_FAULTY: 7448 case STOP_ARRAY: 7449 case STOP_ARRAY_RO: 7450 case CLUSTERED_DISK_NACK: 7451 return true; 7452 default: 7453 return false; 7454 } 7455 } 7456 7457 static int __md_set_array_info(struct mddev *mddev, void __user *argp) 7458 { 7459 mdu_array_info_t info; 7460 int err; 7461 7462 if (!argp) 7463 memset(&info, 0, sizeof(info)); 7464 else if (copy_from_user(&info, argp, sizeof(info))) 7465 return -EFAULT; 7466 7467 if (mddev->pers) { 7468 err = update_array_info(mddev, &info); 7469 if (err) 7470 pr_warn("md: couldn't update array info. %d\n", err); 7471 return err; 7472 } 7473 7474 if (!list_empty(&mddev->disks)) { 7475 pr_warn("md: array %s already has disks!\n", mdname(mddev)); 7476 return -EBUSY; 7477 } 7478 7479 if (mddev->raid_disks) { 7480 pr_warn("md: array %s already initialised!\n", mdname(mddev)); 7481 return -EBUSY; 7482 } 7483 7484 err = md_set_array_info(mddev, &info); 7485 if (err) 7486 pr_warn("md: couldn't set array info. %d\n", err); 7487 7488 return err; 7489 } 7490 7491 static int md_ioctl(struct block_device *bdev, fmode_t mode, 7492 unsigned int cmd, unsigned long arg) 7493 { 7494 int err = 0; 7495 void __user *argp = (void __user *)arg; 7496 struct mddev *mddev = NULL; 7497 bool did_set_md_closing = false; 7498 7499 if (!md_ioctl_valid(cmd)) 7500 return -ENOTTY; 7501 7502 switch (cmd) { 7503 case RAID_VERSION: 7504 case GET_ARRAY_INFO: 7505 case GET_DISK_INFO: 7506 break; 7507 default: 7508 if (!capable(CAP_SYS_ADMIN)) 7509 return -EACCES; 7510 } 7511 7512 /* 7513 * Commands dealing with the RAID driver but not any 7514 * particular array: 7515 */ 7516 switch (cmd) { 7517 case RAID_VERSION: 7518 err = get_version(argp); 7519 goto out; 7520 default:; 7521 } 7522 7523 /* 7524 * Commands creating/starting a new array: 7525 */ 7526 7527 mddev = bdev->bd_disk->private_data; 7528 7529 if (!mddev) { 7530 BUG(); 7531 goto out; 7532 } 7533 7534 /* Some actions do not requires the mutex */ 7535 switch (cmd) { 7536 case GET_ARRAY_INFO: 7537 if (!mddev->raid_disks && !mddev->external) 7538 err = -ENODEV; 7539 else 7540 err = get_array_info(mddev, argp); 7541 goto out; 7542 7543 case GET_DISK_INFO: 7544 if (!mddev->raid_disks && !mddev->external) 7545 err = -ENODEV; 7546 else 7547 err = get_disk_info(mddev, argp); 7548 goto out; 7549 7550 case SET_DISK_FAULTY: 7551 err = set_disk_faulty(mddev, new_decode_dev(arg)); 7552 goto out; 7553 7554 case GET_BITMAP_FILE: 7555 err = get_bitmap_file(mddev, argp); 7556 goto out; 7557 7558 } 7559 7560 if (cmd == ADD_NEW_DISK || cmd == HOT_ADD_DISK) 7561 flush_rdev_wq(mddev); 7562 7563 if (cmd == HOT_REMOVE_DISK) 7564 /* need to ensure recovery thread has run */ 7565 wait_event_interruptible_timeout(mddev->sb_wait, 7566 !test_bit(MD_RECOVERY_NEEDED, 7567 &mddev->recovery), 7568 msecs_to_jiffies(5000)); 7569 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) { 7570 /* Need to flush page cache, and ensure no-one else opens 7571 * and writes 7572 */ 7573 mutex_lock(&mddev->open_mutex); 7574 if (mddev->pers && atomic_read(&mddev->openers) > 1) { 7575 mutex_unlock(&mddev->open_mutex); 7576 err = -EBUSY; 7577 goto out; 7578 } 7579 if (test_and_set_bit(MD_CLOSING, &mddev->flags)) { 7580 mutex_unlock(&mddev->open_mutex); 7581 err = -EBUSY; 7582 goto out; 7583 } 7584 did_set_md_closing = true; 7585 mutex_unlock(&mddev->open_mutex); 7586 sync_blockdev(bdev); 7587 } 7588 err = mddev_lock(mddev); 7589 if (err) { 7590 pr_debug("md: ioctl lock interrupted, reason %d, cmd %d\n", 7591 err, cmd); 7592 goto out; 7593 } 7594 7595 if (cmd == SET_ARRAY_INFO) { 7596 err = __md_set_array_info(mddev, argp); 7597 goto unlock; 7598 } 7599 7600 /* 7601 * Commands querying/configuring an existing array: 7602 */ 7603 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, 7604 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ 7605 if ((!mddev->raid_disks && !mddev->external) 7606 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY 7607 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE 7608 && cmd != GET_BITMAP_FILE) { 7609 err = -ENODEV; 7610 goto unlock; 7611 } 7612 7613 /* 7614 * Commands even a read-only array can execute: 7615 */ 7616 switch (cmd) { 7617 case RESTART_ARRAY_RW: 7618 err = restart_array(mddev); 7619 goto unlock; 7620 7621 case STOP_ARRAY: 7622 err = do_md_stop(mddev, 0, bdev); 7623 goto unlock; 7624 7625 case STOP_ARRAY_RO: 7626 err = md_set_readonly(mddev, bdev); 7627 goto unlock; 7628 7629 case HOT_REMOVE_DISK: 7630 err = hot_remove_disk(mddev, new_decode_dev(arg)); 7631 goto unlock; 7632 7633 case ADD_NEW_DISK: 7634 /* We can support ADD_NEW_DISK on read-only arrays 7635 * only if we are re-adding a preexisting device. 7636 * So require mddev->pers and MD_DISK_SYNC. 7637 */ 7638 if (mddev->pers) { 7639 mdu_disk_info_t info; 7640 if (copy_from_user(&info, argp, sizeof(info))) 7641 err = -EFAULT; 7642 else if (!(info.state & (1<<MD_DISK_SYNC))) 7643 /* Need to clear read-only for this */ 7644 break; 7645 else 7646 err = md_add_new_disk(mddev, &info); 7647 goto unlock; 7648 } 7649 break; 7650 } 7651 7652 /* 7653 * The remaining ioctls are changing the state of the 7654 * superblock, so we do not allow them on read-only arrays. 7655 */ 7656 if (!md_is_rdwr(mddev) && mddev->pers) { 7657 if (mddev->ro != MD_AUTO_READ) { 7658 err = -EROFS; 7659 goto unlock; 7660 } 7661 mddev->ro = MD_RDWR; 7662 sysfs_notify_dirent_safe(mddev->sysfs_state); 7663 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7664 /* mddev_unlock will wake thread */ 7665 /* If a device failed while we were read-only, we 7666 * need to make sure the metadata is updated now. 7667 */ 7668 if (test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) { 7669 mddev_unlock(mddev); 7670 wait_event(mddev->sb_wait, 7671 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) && 7672 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 7673 mddev_lock_nointr(mddev); 7674 } 7675 } 7676 7677 switch (cmd) { 7678 case ADD_NEW_DISK: 7679 { 7680 mdu_disk_info_t info; 7681 if (copy_from_user(&info, argp, sizeof(info))) 7682 err = -EFAULT; 7683 else 7684 err = md_add_new_disk(mddev, &info); 7685 goto unlock; 7686 } 7687 7688 case CLUSTERED_DISK_NACK: 7689 if (mddev_is_clustered(mddev)) 7690 md_cluster_ops->new_disk_ack(mddev, false); 7691 else 7692 err = -EINVAL; 7693 goto unlock; 7694 7695 case HOT_ADD_DISK: 7696 err = hot_add_disk(mddev, new_decode_dev(arg)); 7697 goto unlock; 7698 7699 case RUN_ARRAY: 7700 err = do_md_run(mddev); 7701 goto unlock; 7702 7703 case SET_BITMAP_FILE: 7704 err = set_bitmap_file(mddev, (int)arg); 7705 goto unlock; 7706 7707 default: 7708 err = -EINVAL; 7709 goto unlock; 7710 } 7711 7712 unlock: 7713 if (mddev->hold_active == UNTIL_IOCTL && 7714 err != -EINVAL) 7715 mddev->hold_active = 0; 7716 mddev_unlock(mddev); 7717 out: 7718 if(did_set_md_closing) 7719 clear_bit(MD_CLOSING, &mddev->flags); 7720 return err; 7721 } 7722 #ifdef CONFIG_COMPAT 7723 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode, 7724 unsigned int cmd, unsigned long arg) 7725 { 7726 switch (cmd) { 7727 case HOT_REMOVE_DISK: 7728 case HOT_ADD_DISK: 7729 case SET_DISK_FAULTY: 7730 case SET_BITMAP_FILE: 7731 /* These take in integer arg, do not convert */ 7732 break; 7733 default: 7734 arg = (unsigned long)compat_ptr(arg); 7735 break; 7736 } 7737 7738 return md_ioctl(bdev, mode, cmd, arg); 7739 } 7740 #endif /* CONFIG_COMPAT */ 7741 7742 static int md_set_read_only(struct block_device *bdev, bool ro) 7743 { 7744 struct mddev *mddev = bdev->bd_disk->private_data; 7745 int err; 7746 7747 err = mddev_lock(mddev); 7748 if (err) 7749 return err; 7750 7751 if (!mddev->raid_disks && !mddev->external) { 7752 err = -ENODEV; 7753 goto out_unlock; 7754 } 7755 7756 /* 7757 * Transitioning to read-auto need only happen for arrays that call 7758 * md_write_start and which are not ready for writes yet. 7759 */ 7760 if (!ro && mddev->ro == MD_RDONLY && mddev->pers) { 7761 err = restart_array(mddev); 7762 if (err) 7763 goto out_unlock; 7764 mddev->ro = MD_AUTO_READ; 7765 } 7766 7767 out_unlock: 7768 mddev_unlock(mddev); 7769 return err; 7770 } 7771 7772 static int md_open(struct block_device *bdev, fmode_t mode) 7773 { 7774 struct mddev *mddev; 7775 int err; 7776 7777 spin_lock(&all_mddevs_lock); 7778 mddev = mddev_get(bdev->bd_disk->private_data); 7779 spin_unlock(&all_mddevs_lock); 7780 if (!mddev) 7781 return -ENODEV; 7782 7783 err = mutex_lock_interruptible(&mddev->open_mutex); 7784 if (err) 7785 goto out; 7786 7787 err = -ENODEV; 7788 if (test_bit(MD_CLOSING, &mddev->flags)) 7789 goto out_unlock; 7790 7791 atomic_inc(&mddev->openers); 7792 mutex_unlock(&mddev->open_mutex); 7793 7794 bdev_check_media_change(bdev); 7795 return 0; 7796 7797 out_unlock: 7798 mutex_unlock(&mddev->open_mutex); 7799 out: 7800 mddev_put(mddev); 7801 return err; 7802 } 7803 7804 static void md_release(struct gendisk *disk, fmode_t mode) 7805 { 7806 struct mddev *mddev = disk->private_data; 7807 7808 BUG_ON(!mddev); 7809 atomic_dec(&mddev->openers); 7810 mddev_put(mddev); 7811 } 7812 7813 static unsigned int md_check_events(struct gendisk *disk, unsigned int clearing) 7814 { 7815 struct mddev *mddev = disk->private_data; 7816 unsigned int ret = 0; 7817 7818 if (mddev->changed) 7819 ret = DISK_EVENT_MEDIA_CHANGE; 7820 mddev->changed = 0; 7821 return ret; 7822 } 7823 7824 static void md_free_disk(struct gendisk *disk) 7825 { 7826 struct mddev *mddev = disk->private_data; 7827 7828 percpu_ref_exit(&mddev->writes_pending); 7829 bioset_exit(&mddev->bio_set); 7830 bioset_exit(&mddev->sync_set); 7831 7832 mddev_free(mddev); 7833 } 7834 7835 const struct block_device_operations md_fops = 7836 { 7837 .owner = THIS_MODULE, 7838 .submit_bio = md_submit_bio, 7839 .open = md_open, 7840 .release = md_release, 7841 .ioctl = md_ioctl, 7842 #ifdef CONFIG_COMPAT 7843 .compat_ioctl = md_compat_ioctl, 7844 #endif 7845 .getgeo = md_getgeo, 7846 .check_events = md_check_events, 7847 .set_read_only = md_set_read_only, 7848 .free_disk = md_free_disk, 7849 }; 7850 7851 static int md_thread(void *arg) 7852 { 7853 struct md_thread *thread = arg; 7854 7855 /* 7856 * md_thread is a 'system-thread', it's priority should be very 7857 * high. We avoid resource deadlocks individually in each 7858 * raid personality. (RAID5 does preallocation) We also use RR and 7859 * the very same RT priority as kswapd, thus we will never get 7860 * into a priority inversion deadlock. 7861 * 7862 * we definitely have to have equal or higher priority than 7863 * bdflush, otherwise bdflush will deadlock if there are too 7864 * many dirty RAID5 blocks. 7865 */ 7866 7867 allow_signal(SIGKILL); 7868 while (!kthread_should_stop()) { 7869 7870 /* We need to wait INTERRUPTIBLE so that 7871 * we don't add to the load-average. 7872 * That means we need to be sure no signals are 7873 * pending 7874 */ 7875 if (signal_pending(current)) 7876 flush_signals(current); 7877 7878 wait_event_interruptible_timeout 7879 (thread->wqueue, 7880 test_bit(THREAD_WAKEUP, &thread->flags) 7881 || kthread_should_stop() || kthread_should_park(), 7882 thread->timeout); 7883 7884 clear_bit(THREAD_WAKEUP, &thread->flags); 7885 if (kthread_should_park()) 7886 kthread_parkme(); 7887 if (!kthread_should_stop()) 7888 thread->run(thread); 7889 } 7890 7891 return 0; 7892 } 7893 7894 void md_wakeup_thread(struct md_thread *thread) 7895 { 7896 if (thread) { 7897 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm); 7898 set_bit(THREAD_WAKEUP, &thread->flags); 7899 wake_up(&thread->wqueue); 7900 } 7901 } 7902 EXPORT_SYMBOL(md_wakeup_thread); 7903 7904 struct md_thread *md_register_thread(void (*run) (struct md_thread *), 7905 struct mddev *mddev, const char *name) 7906 { 7907 struct md_thread *thread; 7908 7909 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL); 7910 if (!thread) 7911 return NULL; 7912 7913 init_waitqueue_head(&thread->wqueue); 7914 7915 thread->run = run; 7916 thread->mddev = mddev; 7917 thread->timeout = MAX_SCHEDULE_TIMEOUT; 7918 thread->tsk = kthread_run(md_thread, thread, 7919 "%s_%s", 7920 mdname(thread->mddev), 7921 name); 7922 if (IS_ERR(thread->tsk)) { 7923 kfree(thread); 7924 return NULL; 7925 } 7926 return thread; 7927 } 7928 EXPORT_SYMBOL(md_register_thread); 7929 7930 void md_unregister_thread(struct md_thread **threadp) 7931 { 7932 struct md_thread *thread; 7933 7934 /* 7935 * Locking ensures that mddev_unlock does not wake_up a 7936 * non-existent thread 7937 */ 7938 spin_lock(&pers_lock); 7939 thread = *threadp; 7940 if (!thread) { 7941 spin_unlock(&pers_lock); 7942 return; 7943 } 7944 *threadp = NULL; 7945 spin_unlock(&pers_lock); 7946 7947 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk)); 7948 kthread_stop(thread->tsk); 7949 kfree(thread); 7950 } 7951 EXPORT_SYMBOL(md_unregister_thread); 7952 7953 void md_error(struct mddev *mddev, struct md_rdev *rdev) 7954 { 7955 if (!rdev || test_bit(Faulty, &rdev->flags)) 7956 return; 7957 7958 if (!mddev->pers || !mddev->pers->error_handler) 7959 return; 7960 mddev->pers->error_handler(mddev, rdev); 7961 7962 if (mddev->degraded && !test_bit(MD_BROKEN, &mddev->flags)) 7963 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7964 sysfs_notify_dirent_safe(rdev->sysfs_state); 7965 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7966 if (!test_bit(MD_BROKEN, &mddev->flags)) { 7967 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7968 md_wakeup_thread(mddev->thread); 7969 } 7970 if (mddev->event_work.func) 7971 queue_work(md_misc_wq, &mddev->event_work); 7972 md_new_event(); 7973 } 7974 EXPORT_SYMBOL(md_error); 7975 7976 /* seq_file implementation /proc/mdstat */ 7977 7978 static void status_unused(struct seq_file *seq) 7979 { 7980 int i = 0; 7981 struct md_rdev *rdev; 7982 7983 seq_printf(seq, "unused devices: "); 7984 7985 list_for_each_entry(rdev, &pending_raid_disks, same_set) { 7986 i++; 7987 seq_printf(seq, "%pg ", rdev->bdev); 7988 } 7989 if (!i) 7990 seq_printf(seq, "<none>"); 7991 7992 seq_printf(seq, "\n"); 7993 } 7994 7995 static int status_resync(struct seq_file *seq, struct mddev *mddev) 7996 { 7997 sector_t max_sectors, resync, res; 7998 unsigned long dt, db = 0; 7999 sector_t rt, curr_mark_cnt, resync_mark_cnt; 8000 int scale, recovery_active; 8001 unsigned int per_milli; 8002 8003 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 8004 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 8005 max_sectors = mddev->resync_max_sectors; 8006 else 8007 max_sectors = mddev->dev_sectors; 8008 8009 resync = mddev->curr_resync; 8010 if (resync < MD_RESYNC_ACTIVE) { 8011 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 8012 /* Still cleaning up */ 8013 resync = max_sectors; 8014 } else if (resync > max_sectors) { 8015 resync = max_sectors; 8016 } else { 8017 resync -= atomic_read(&mddev->recovery_active); 8018 if (resync < MD_RESYNC_ACTIVE) { 8019 /* 8020 * Resync has started, but the subtraction has 8021 * yielded one of the special values. Force it 8022 * to active to ensure the status reports an 8023 * active resync. 8024 */ 8025 resync = MD_RESYNC_ACTIVE; 8026 } 8027 } 8028 8029 if (resync == MD_RESYNC_NONE) { 8030 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery)) { 8031 struct md_rdev *rdev; 8032 8033 rdev_for_each(rdev, mddev) 8034 if (rdev->raid_disk >= 0 && 8035 !test_bit(Faulty, &rdev->flags) && 8036 rdev->recovery_offset != MaxSector && 8037 rdev->recovery_offset) { 8038 seq_printf(seq, "\trecover=REMOTE"); 8039 return 1; 8040 } 8041 if (mddev->reshape_position != MaxSector) 8042 seq_printf(seq, "\treshape=REMOTE"); 8043 else 8044 seq_printf(seq, "\tresync=REMOTE"); 8045 return 1; 8046 } 8047 if (mddev->recovery_cp < MaxSector) { 8048 seq_printf(seq, "\tresync=PENDING"); 8049 return 1; 8050 } 8051 return 0; 8052 } 8053 if (resync < MD_RESYNC_ACTIVE) { 8054 seq_printf(seq, "\tresync=DELAYED"); 8055 return 1; 8056 } 8057 8058 WARN_ON(max_sectors == 0); 8059 /* Pick 'scale' such that (resync>>scale)*1000 will fit 8060 * in a sector_t, and (max_sectors>>scale) will fit in a 8061 * u32, as those are the requirements for sector_div. 8062 * Thus 'scale' must be at least 10 8063 */ 8064 scale = 10; 8065 if (sizeof(sector_t) > sizeof(unsigned long)) { 8066 while ( max_sectors/2 > (1ULL<<(scale+32))) 8067 scale++; 8068 } 8069 res = (resync>>scale)*1000; 8070 sector_div(res, (u32)((max_sectors>>scale)+1)); 8071 8072 per_milli = res; 8073 { 8074 int i, x = per_milli/50, y = 20-x; 8075 seq_printf(seq, "["); 8076 for (i = 0; i < x; i++) 8077 seq_printf(seq, "="); 8078 seq_printf(seq, ">"); 8079 for (i = 0; i < y; i++) 8080 seq_printf(seq, "."); 8081 seq_printf(seq, "] "); 8082 } 8083 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", 8084 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? 8085 "reshape" : 8086 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? 8087 "check" : 8088 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? 8089 "resync" : "recovery"))), 8090 per_milli/10, per_milli % 10, 8091 (unsigned long long) resync/2, 8092 (unsigned long long) max_sectors/2); 8093 8094 /* 8095 * dt: time from mark until now 8096 * db: blocks written from mark until now 8097 * rt: remaining time 8098 * 8099 * rt is a sector_t, which is always 64bit now. We are keeping 8100 * the original algorithm, but it is not really necessary. 8101 * 8102 * Original algorithm: 8103 * So we divide before multiply in case it is 32bit and close 8104 * to the limit. 8105 * We scale the divisor (db) by 32 to avoid losing precision 8106 * near the end of resync when the number of remaining sectors 8107 * is close to 'db'. 8108 * We then divide rt by 32 after multiplying by db to compensate. 8109 * The '+1' avoids division by zero if db is very small. 8110 */ 8111 dt = ((jiffies - mddev->resync_mark) / HZ); 8112 if (!dt) dt++; 8113 8114 curr_mark_cnt = mddev->curr_mark_cnt; 8115 recovery_active = atomic_read(&mddev->recovery_active); 8116 resync_mark_cnt = mddev->resync_mark_cnt; 8117 8118 if (curr_mark_cnt >= (recovery_active + resync_mark_cnt)) 8119 db = curr_mark_cnt - (recovery_active + resync_mark_cnt); 8120 8121 rt = max_sectors - resync; /* number of remaining sectors */ 8122 rt = div64_u64(rt, db/32+1); 8123 rt *= dt; 8124 rt >>= 5; 8125 8126 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60, 8127 ((unsigned long)rt % 60)/6); 8128 8129 seq_printf(seq, " speed=%ldK/sec", db/2/dt); 8130 return 1; 8131 } 8132 8133 static void *md_seq_start(struct seq_file *seq, loff_t *pos) 8134 { 8135 struct list_head *tmp; 8136 loff_t l = *pos; 8137 struct mddev *mddev; 8138 8139 if (l == 0x10000) { 8140 ++*pos; 8141 return (void *)2; 8142 } 8143 if (l > 0x10000) 8144 return NULL; 8145 if (!l--) 8146 /* header */ 8147 return (void*)1; 8148 8149 spin_lock(&all_mddevs_lock); 8150 list_for_each(tmp,&all_mddevs) 8151 if (!l--) { 8152 mddev = list_entry(tmp, struct mddev, all_mddevs); 8153 if (!mddev_get(mddev)) 8154 continue; 8155 spin_unlock(&all_mddevs_lock); 8156 return mddev; 8157 } 8158 spin_unlock(&all_mddevs_lock); 8159 if (!l--) 8160 return (void*)2;/* tail */ 8161 return NULL; 8162 } 8163 8164 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) 8165 { 8166 struct list_head *tmp; 8167 struct mddev *next_mddev, *mddev = v; 8168 struct mddev *to_put = NULL; 8169 8170 ++*pos; 8171 if (v == (void*)2) 8172 return NULL; 8173 8174 spin_lock(&all_mddevs_lock); 8175 if (v == (void*)1) { 8176 tmp = all_mddevs.next; 8177 } else { 8178 to_put = mddev; 8179 tmp = mddev->all_mddevs.next; 8180 } 8181 8182 for (;;) { 8183 if (tmp == &all_mddevs) { 8184 next_mddev = (void*)2; 8185 *pos = 0x10000; 8186 break; 8187 } 8188 next_mddev = list_entry(tmp, struct mddev, all_mddevs); 8189 if (mddev_get(next_mddev)) 8190 break; 8191 mddev = next_mddev; 8192 tmp = mddev->all_mddevs.next; 8193 } 8194 spin_unlock(&all_mddevs_lock); 8195 8196 if (to_put) 8197 mddev_put(mddev); 8198 return next_mddev; 8199 8200 } 8201 8202 static void md_seq_stop(struct seq_file *seq, void *v) 8203 { 8204 struct mddev *mddev = v; 8205 8206 if (mddev && v != (void*)1 && v != (void*)2) 8207 mddev_put(mddev); 8208 } 8209 8210 static int md_seq_show(struct seq_file *seq, void *v) 8211 { 8212 struct mddev *mddev = v; 8213 sector_t sectors; 8214 struct md_rdev *rdev; 8215 8216 if (v == (void*)1) { 8217 struct md_personality *pers; 8218 seq_printf(seq, "Personalities : "); 8219 spin_lock(&pers_lock); 8220 list_for_each_entry(pers, &pers_list, list) 8221 seq_printf(seq, "[%s] ", pers->name); 8222 8223 spin_unlock(&pers_lock); 8224 seq_printf(seq, "\n"); 8225 seq->poll_event = atomic_read(&md_event_count); 8226 return 0; 8227 } 8228 if (v == (void*)2) { 8229 status_unused(seq); 8230 return 0; 8231 } 8232 8233 spin_lock(&mddev->lock); 8234 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { 8235 seq_printf(seq, "%s : %sactive", mdname(mddev), 8236 mddev->pers ? "" : "in"); 8237 if (mddev->pers) { 8238 if (mddev->ro == MD_RDONLY) 8239 seq_printf(seq, " (read-only)"); 8240 if (mddev->ro == MD_AUTO_READ) 8241 seq_printf(seq, " (auto-read-only)"); 8242 seq_printf(seq, " %s", mddev->pers->name); 8243 } 8244 8245 sectors = 0; 8246 rcu_read_lock(); 8247 rdev_for_each_rcu(rdev, mddev) { 8248 seq_printf(seq, " %pg[%d]", rdev->bdev, rdev->desc_nr); 8249 8250 if (test_bit(WriteMostly, &rdev->flags)) 8251 seq_printf(seq, "(W)"); 8252 if (test_bit(Journal, &rdev->flags)) 8253 seq_printf(seq, "(J)"); 8254 if (test_bit(Faulty, &rdev->flags)) { 8255 seq_printf(seq, "(F)"); 8256 continue; 8257 } 8258 if (rdev->raid_disk < 0) 8259 seq_printf(seq, "(S)"); /* spare */ 8260 if (test_bit(Replacement, &rdev->flags)) 8261 seq_printf(seq, "(R)"); 8262 sectors += rdev->sectors; 8263 } 8264 rcu_read_unlock(); 8265 8266 if (!list_empty(&mddev->disks)) { 8267 if (mddev->pers) 8268 seq_printf(seq, "\n %llu blocks", 8269 (unsigned long long) 8270 mddev->array_sectors / 2); 8271 else 8272 seq_printf(seq, "\n %llu blocks", 8273 (unsigned long long)sectors / 2); 8274 } 8275 if (mddev->persistent) { 8276 if (mddev->major_version != 0 || 8277 mddev->minor_version != 90) { 8278 seq_printf(seq," super %d.%d", 8279 mddev->major_version, 8280 mddev->minor_version); 8281 } 8282 } else if (mddev->external) 8283 seq_printf(seq, " super external:%s", 8284 mddev->metadata_type); 8285 else 8286 seq_printf(seq, " super non-persistent"); 8287 8288 if (mddev->pers) { 8289 mddev->pers->status(seq, mddev); 8290 seq_printf(seq, "\n "); 8291 if (mddev->pers->sync_request) { 8292 if (status_resync(seq, mddev)) 8293 seq_printf(seq, "\n "); 8294 } 8295 } else 8296 seq_printf(seq, "\n "); 8297 8298 md_bitmap_status(seq, mddev->bitmap); 8299 8300 seq_printf(seq, "\n"); 8301 } 8302 spin_unlock(&mddev->lock); 8303 8304 return 0; 8305 } 8306 8307 static const struct seq_operations md_seq_ops = { 8308 .start = md_seq_start, 8309 .next = md_seq_next, 8310 .stop = md_seq_stop, 8311 .show = md_seq_show, 8312 }; 8313 8314 static int md_seq_open(struct inode *inode, struct file *file) 8315 { 8316 struct seq_file *seq; 8317 int error; 8318 8319 error = seq_open(file, &md_seq_ops); 8320 if (error) 8321 return error; 8322 8323 seq = file->private_data; 8324 seq->poll_event = atomic_read(&md_event_count); 8325 return error; 8326 } 8327 8328 static int md_unloading; 8329 static __poll_t mdstat_poll(struct file *filp, poll_table *wait) 8330 { 8331 struct seq_file *seq = filp->private_data; 8332 __poll_t mask; 8333 8334 if (md_unloading) 8335 return EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI; 8336 poll_wait(filp, &md_event_waiters, wait); 8337 8338 /* always allow read */ 8339 mask = EPOLLIN | EPOLLRDNORM; 8340 8341 if (seq->poll_event != atomic_read(&md_event_count)) 8342 mask |= EPOLLERR | EPOLLPRI; 8343 return mask; 8344 } 8345 8346 static const struct proc_ops mdstat_proc_ops = { 8347 .proc_open = md_seq_open, 8348 .proc_read = seq_read, 8349 .proc_lseek = seq_lseek, 8350 .proc_release = seq_release, 8351 .proc_poll = mdstat_poll, 8352 }; 8353 8354 int register_md_personality(struct md_personality *p) 8355 { 8356 pr_debug("md: %s personality registered for level %d\n", 8357 p->name, p->level); 8358 spin_lock(&pers_lock); 8359 list_add_tail(&p->list, &pers_list); 8360 spin_unlock(&pers_lock); 8361 return 0; 8362 } 8363 EXPORT_SYMBOL(register_md_personality); 8364 8365 int unregister_md_personality(struct md_personality *p) 8366 { 8367 pr_debug("md: %s personality unregistered\n", p->name); 8368 spin_lock(&pers_lock); 8369 list_del_init(&p->list); 8370 spin_unlock(&pers_lock); 8371 return 0; 8372 } 8373 EXPORT_SYMBOL(unregister_md_personality); 8374 8375 int register_md_cluster_operations(struct md_cluster_operations *ops, 8376 struct module *module) 8377 { 8378 int ret = 0; 8379 spin_lock(&pers_lock); 8380 if (md_cluster_ops != NULL) 8381 ret = -EALREADY; 8382 else { 8383 md_cluster_ops = ops; 8384 md_cluster_mod = module; 8385 } 8386 spin_unlock(&pers_lock); 8387 return ret; 8388 } 8389 EXPORT_SYMBOL(register_md_cluster_operations); 8390 8391 int unregister_md_cluster_operations(void) 8392 { 8393 spin_lock(&pers_lock); 8394 md_cluster_ops = NULL; 8395 spin_unlock(&pers_lock); 8396 return 0; 8397 } 8398 EXPORT_SYMBOL(unregister_md_cluster_operations); 8399 8400 int md_setup_cluster(struct mddev *mddev, int nodes) 8401 { 8402 int ret; 8403 if (!md_cluster_ops) 8404 request_module("md-cluster"); 8405 spin_lock(&pers_lock); 8406 /* ensure module won't be unloaded */ 8407 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) { 8408 pr_warn("can't find md-cluster module or get its reference.\n"); 8409 spin_unlock(&pers_lock); 8410 return -ENOENT; 8411 } 8412 spin_unlock(&pers_lock); 8413 8414 ret = md_cluster_ops->join(mddev, nodes); 8415 if (!ret) 8416 mddev->safemode_delay = 0; 8417 return ret; 8418 } 8419 8420 void md_cluster_stop(struct mddev *mddev) 8421 { 8422 if (!md_cluster_ops) 8423 return; 8424 md_cluster_ops->leave(mddev); 8425 module_put(md_cluster_mod); 8426 } 8427 8428 static int is_mddev_idle(struct mddev *mddev, int init) 8429 { 8430 struct md_rdev *rdev; 8431 int idle; 8432 int curr_events; 8433 8434 idle = 1; 8435 rcu_read_lock(); 8436 rdev_for_each_rcu(rdev, mddev) { 8437 struct gendisk *disk = rdev->bdev->bd_disk; 8438 curr_events = (int)part_stat_read_accum(disk->part0, sectors) - 8439 atomic_read(&disk->sync_io); 8440 /* sync IO will cause sync_io to increase before the disk_stats 8441 * as sync_io is counted when a request starts, and 8442 * disk_stats is counted when it completes. 8443 * So resync activity will cause curr_events to be smaller than 8444 * when there was no such activity. 8445 * non-sync IO will cause disk_stat to increase without 8446 * increasing sync_io so curr_events will (eventually) 8447 * be larger than it was before. Once it becomes 8448 * substantially larger, the test below will cause 8449 * the array to appear non-idle, and resync will slow 8450 * down. 8451 * If there is a lot of outstanding resync activity when 8452 * we set last_event to curr_events, then all that activity 8453 * completing might cause the array to appear non-idle 8454 * and resync will be slowed down even though there might 8455 * not have been non-resync activity. This will only 8456 * happen once though. 'last_events' will soon reflect 8457 * the state where there is little or no outstanding 8458 * resync requests, and further resync activity will 8459 * always make curr_events less than last_events. 8460 * 8461 */ 8462 if (init || curr_events - rdev->last_events > 64) { 8463 rdev->last_events = curr_events; 8464 idle = 0; 8465 } 8466 } 8467 rcu_read_unlock(); 8468 return idle; 8469 } 8470 8471 void md_done_sync(struct mddev *mddev, int blocks, int ok) 8472 { 8473 /* another "blocks" (512byte) blocks have been synced */ 8474 atomic_sub(blocks, &mddev->recovery_active); 8475 wake_up(&mddev->recovery_wait); 8476 if (!ok) { 8477 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8478 set_bit(MD_RECOVERY_ERROR, &mddev->recovery); 8479 md_wakeup_thread(mddev->thread); 8480 // stop recovery, signal do_sync .... 8481 } 8482 } 8483 EXPORT_SYMBOL(md_done_sync); 8484 8485 /* md_write_start(mddev, bi) 8486 * If we need to update some array metadata (e.g. 'active' flag 8487 * in superblock) before writing, schedule a superblock update 8488 * and wait for it to complete. 8489 * A return value of 'false' means that the write wasn't recorded 8490 * and cannot proceed as the array is being suspend. 8491 */ 8492 bool md_write_start(struct mddev *mddev, struct bio *bi) 8493 { 8494 int did_change = 0; 8495 8496 if (bio_data_dir(bi) != WRITE) 8497 return true; 8498 8499 BUG_ON(mddev->ro == MD_RDONLY); 8500 if (mddev->ro == MD_AUTO_READ) { 8501 /* need to switch to read/write */ 8502 mddev->ro = MD_RDWR; 8503 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8504 md_wakeup_thread(mddev->thread); 8505 md_wakeup_thread(mddev->sync_thread); 8506 did_change = 1; 8507 } 8508 rcu_read_lock(); 8509 percpu_ref_get(&mddev->writes_pending); 8510 smp_mb(); /* Match smp_mb in set_in_sync() */ 8511 if (mddev->safemode == 1) 8512 mddev->safemode = 0; 8513 /* sync_checkers is always 0 when writes_pending is in per-cpu mode */ 8514 if (mddev->in_sync || mddev->sync_checkers) { 8515 spin_lock(&mddev->lock); 8516 if (mddev->in_sync) { 8517 mddev->in_sync = 0; 8518 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8519 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8520 md_wakeup_thread(mddev->thread); 8521 did_change = 1; 8522 } 8523 spin_unlock(&mddev->lock); 8524 } 8525 rcu_read_unlock(); 8526 if (did_change) 8527 sysfs_notify_dirent_safe(mddev->sysfs_state); 8528 if (!mddev->has_superblocks) 8529 return true; 8530 wait_event(mddev->sb_wait, 8531 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) || 8532 mddev->suspended); 8533 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 8534 percpu_ref_put(&mddev->writes_pending); 8535 return false; 8536 } 8537 return true; 8538 } 8539 EXPORT_SYMBOL(md_write_start); 8540 8541 /* md_write_inc can only be called when md_write_start() has 8542 * already been called at least once of the current request. 8543 * It increments the counter and is useful when a single request 8544 * is split into several parts. Each part causes an increment and 8545 * so needs a matching md_write_end(). 8546 * Unlike md_write_start(), it is safe to call md_write_inc() inside 8547 * a spinlocked region. 8548 */ 8549 void md_write_inc(struct mddev *mddev, struct bio *bi) 8550 { 8551 if (bio_data_dir(bi) != WRITE) 8552 return; 8553 WARN_ON_ONCE(mddev->in_sync || !md_is_rdwr(mddev)); 8554 percpu_ref_get(&mddev->writes_pending); 8555 } 8556 EXPORT_SYMBOL(md_write_inc); 8557 8558 void md_write_end(struct mddev *mddev) 8559 { 8560 percpu_ref_put(&mddev->writes_pending); 8561 8562 if (mddev->safemode == 2) 8563 md_wakeup_thread(mddev->thread); 8564 else if (mddev->safemode_delay) 8565 /* The roundup() ensures this only performs locking once 8566 * every ->safemode_delay jiffies 8567 */ 8568 mod_timer(&mddev->safemode_timer, 8569 roundup(jiffies, mddev->safemode_delay) + 8570 mddev->safemode_delay); 8571 } 8572 8573 EXPORT_SYMBOL(md_write_end); 8574 8575 /* This is used by raid0 and raid10 */ 8576 void md_submit_discard_bio(struct mddev *mddev, struct md_rdev *rdev, 8577 struct bio *bio, sector_t start, sector_t size) 8578 { 8579 struct bio *discard_bio = NULL; 8580 8581 if (__blkdev_issue_discard(rdev->bdev, start, size, GFP_NOIO, 8582 &discard_bio) || !discard_bio) 8583 return; 8584 8585 bio_chain(discard_bio, bio); 8586 bio_clone_blkg_association(discard_bio, bio); 8587 if (mddev->gendisk) 8588 trace_block_bio_remap(discard_bio, 8589 disk_devt(mddev->gendisk), 8590 bio->bi_iter.bi_sector); 8591 submit_bio_noacct(discard_bio); 8592 } 8593 EXPORT_SYMBOL_GPL(md_submit_discard_bio); 8594 8595 int acct_bioset_init(struct mddev *mddev) 8596 { 8597 int err = 0; 8598 8599 if (!bioset_initialized(&mddev->io_acct_set)) 8600 err = bioset_init(&mddev->io_acct_set, BIO_POOL_SIZE, 8601 offsetof(struct md_io_acct, bio_clone), 0); 8602 return err; 8603 } 8604 EXPORT_SYMBOL_GPL(acct_bioset_init); 8605 8606 void acct_bioset_exit(struct mddev *mddev) 8607 { 8608 bioset_exit(&mddev->io_acct_set); 8609 } 8610 EXPORT_SYMBOL_GPL(acct_bioset_exit); 8611 8612 static void md_end_io_acct(struct bio *bio) 8613 { 8614 struct md_io_acct *md_io_acct = bio->bi_private; 8615 struct bio *orig_bio = md_io_acct->orig_bio; 8616 8617 orig_bio->bi_status = bio->bi_status; 8618 8619 bio_end_io_acct(orig_bio, md_io_acct->start_time); 8620 bio_put(bio); 8621 bio_endio(orig_bio); 8622 } 8623 8624 /* 8625 * Used by personalities that don't already clone the bio and thus can't 8626 * easily add the timestamp to their extended bio structure. 8627 */ 8628 void md_account_bio(struct mddev *mddev, struct bio **bio) 8629 { 8630 struct block_device *bdev = (*bio)->bi_bdev; 8631 struct md_io_acct *md_io_acct; 8632 struct bio *clone; 8633 8634 if (!blk_queue_io_stat(bdev->bd_disk->queue)) 8635 return; 8636 8637 clone = bio_alloc_clone(bdev, *bio, GFP_NOIO, &mddev->io_acct_set); 8638 md_io_acct = container_of(clone, struct md_io_acct, bio_clone); 8639 md_io_acct->orig_bio = *bio; 8640 md_io_acct->start_time = bio_start_io_acct(*bio); 8641 8642 clone->bi_end_io = md_end_io_acct; 8643 clone->bi_private = md_io_acct; 8644 *bio = clone; 8645 } 8646 EXPORT_SYMBOL_GPL(md_account_bio); 8647 8648 /* md_allow_write(mddev) 8649 * Calling this ensures that the array is marked 'active' so that writes 8650 * may proceed without blocking. It is important to call this before 8651 * attempting a GFP_KERNEL allocation while holding the mddev lock. 8652 * Must be called with mddev_lock held. 8653 */ 8654 void md_allow_write(struct mddev *mddev) 8655 { 8656 if (!mddev->pers) 8657 return; 8658 if (!md_is_rdwr(mddev)) 8659 return; 8660 if (!mddev->pers->sync_request) 8661 return; 8662 8663 spin_lock(&mddev->lock); 8664 if (mddev->in_sync) { 8665 mddev->in_sync = 0; 8666 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8667 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8668 if (mddev->safemode_delay && 8669 mddev->safemode == 0) 8670 mddev->safemode = 1; 8671 spin_unlock(&mddev->lock); 8672 md_update_sb(mddev, 0); 8673 sysfs_notify_dirent_safe(mddev->sysfs_state); 8674 /* wait for the dirty state to be recorded in the metadata */ 8675 wait_event(mddev->sb_wait, 8676 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 8677 } else 8678 spin_unlock(&mddev->lock); 8679 } 8680 EXPORT_SYMBOL_GPL(md_allow_write); 8681 8682 #define SYNC_MARKS 10 8683 #define SYNC_MARK_STEP (3*HZ) 8684 #define UPDATE_FREQUENCY (5*60*HZ) 8685 void md_do_sync(struct md_thread *thread) 8686 { 8687 struct mddev *mddev = thread->mddev; 8688 struct mddev *mddev2; 8689 unsigned int currspeed = 0, window; 8690 sector_t max_sectors,j, io_sectors, recovery_done; 8691 unsigned long mark[SYNC_MARKS]; 8692 unsigned long update_time; 8693 sector_t mark_cnt[SYNC_MARKS]; 8694 int last_mark,m; 8695 sector_t last_check; 8696 int skipped = 0; 8697 struct md_rdev *rdev; 8698 char *desc, *action = NULL; 8699 struct blk_plug plug; 8700 int ret; 8701 8702 /* just incase thread restarts... */ 8703 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 8704 test_bit(MD_RECOVERY_WAIT, &mddev->recovery)) 8705 return; 8706 if (!md_is_rdwr(mddev)) {/* never try to sync a read-only array */ 8707 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8708 return; 8709 } 8710 8711 if (mddev_is_clustered(mddev)) { 8712 ret = md_cluster_ops->resync_start(mddev); 8713 if (ret) 8714 goto skip; 8715 8716 set_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags); 8717 if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 8718 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) || 8719 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) 8720 && ((unsigned long long)mddev->curr_resync_completed 8721 < (unsigned long long)mddev->resync_max_sectors)) 8722 goto skip; 8723 } 8724 8725 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8726 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 8727 desc = "data-check"; 8728 action = "check"; 8729 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 8730 desc = "requested-resync"; 8731 action = "repair"; 8732 } else 8733 desc = "resync"; 8734 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 8735 desc = "reshape"; 8736 else 8737 desc = "recovery"; 8738 8739 mddev->last_sync_action = action ?: desc; 8740 8741 /* 8742 * Before starting a resync we must have set curr_resync to 8743 * 2, and then checked that every "conflicting" array has curr_resync 8744 * less than ours. When we find one that is the same or higher 8745 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync 8746 * to 1 if we choose to yield (based arbitrarily on address of mddev structure). 8747 * This will mean we have to start checking from the beginning again. 8748 * 8749 */ 8750 8751 do { 8752 int mddev2_minor = -1; 8753 mddev->curr_resync = MD_RESYNC_DELAYED; 8754 8755 try_again: 8756 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8757 goto skip; 8758 spin_lock(&all_mddevs_lock); 8759 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) { 8760 if (test_bit(MD_DELETED, &mddev2->flags)) 8761 continue; 8762 if (mddev2 == mddev) 8763 continue; 8764 if (!mddev->parallel_resync 8765 && mddev2->curr_resync 8766 && match_mddev_units(mddev, mddev2)) { 8767 DEFINE_WAIT(wq); 8768 if (mddev < mddev2 && 8769 mddev->curr_resync == MD_RESYNC_DELAYED) { 8770 /* arbitrarily yield */ 8771 mddev->curr_resync = MD_RESYNC_YIELDED; 8772 wake_up(&resync_wait); 8773 } 8774 if (mddev > mddev2 && 8775 mddev->curr_resync == MD_RESYNC_YIELDED) 8776 /* no need to wait here, we can wait the next 8777 * time 'round when curr_resync == 2 8778 */ 8779 continue; 8780 /* We need to wait 'interruptible' so as not to 8781 * contribute to the load average, and not to 8782 * be caught by 'softlockup' 8783 */ 8784 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE); 8785 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8786 mddev2->curr_resync >= mddev->curr_resync) { 8787 if (mddev2_minor != mddev2->md_minor) { 8788 mddev2_minor = mddev2->md_minor; 8789 pr_info("md: delaying %s of %s until %s has finished (they share one or more physical units)\n", 8790 desc, mdname(mddev), 8791 mdname(mddev2)); 8792 } 8793 spin_unlock(&all_mddevs_lock); 8794 8795 if (signal_pending(current)) 8796 flush_signals(current); 8797 schedule(); 8798 finish_wait(&resync_wait, &wq); 8799 goto try_again; 8800 } 8801 finish_wait(&resync_wait, &wq); 8802 } 8803 } 8804 spin_unlock(&all_mddevs_lock); 8805 } while (mddev->curr_resync < MD_RESYNC_DELAYED); 8806 8807 j = 0; 8808 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8809 /* resync follows the size requested by the personality, 8810 * which defaults to physical size, but can be virtual size 8811 */ 8812 max_sectors = mddev->resync_max_sectors; 8813 atomic64_set(&mddev->resync_mismatches, 0); 8814 /* we don't use the checkpoint if there's a bitmap */ 8815 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 8816 j = mddev->resync_min; 8817 else if (!mddev->bitmap) 8818 j = mddev->recovery_cp; 8819 8820 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 8821 max_sectors = mddev->resync_max_sectors; 8822 /* 8823 * If the original node aborts reshaping then we continue the 8824 * reshaping, so set j again to avoid restart reshape from the 8825 * first beginning 8826 */ 8827 if (mddev_is_clustered(mddev) && 8828 mddev->reshape_position != MaxSector) 8829 j = mddev->reshape_position; 8830 } else { 8831 /* recovery follows the physical size of devices */ 8832 max_sectors = mddev->dev_sectors; 8833 j = MaxSector; 8834 rcu_read_lock(); 8835 rdev_for_each_rcu(rdev, mddev) 8836 if (rdev->raid_disk >= 0 && 8837 !test_bit(Journal, &rdev->flags) && 8838 !test_bit(Faulty, &rdev->flags) && 8839 !test_bit(In_sync, &rdev->flags) && 8840 rdev->recovery_offset < j) 8841 j = rdev->recovery_offset; 8842 rcu_read_unlock(); 8843 8844 /* If there is a bitmap, we need to make sure all 8845 * writes that started before we added a spare 8846 * complete before we start doing a recovery. 8847 * Otherwise the write might complete and (via 8848 * bitmap_endwrite) set a bit in the bitmap after the 8849 * recovery has checked that bit and skipped that 8850 * region. 8851 */ 8852 if (mddev->bitmap) { 8853 mddev->pers->quiesce(mddev, 1); 8854 mddev->pers->quiesce(mddev, 0); 8855 } 8856 } 8857 8858 pr_info("md: %s of RAID array %s\n", desc, mdname(mddev)); 8859 pr_debug("md: minimum _guaranteed_ speed: %d KB/sec/disk.\n", speed_min(mddev)); 8860 pr_debug("md: using maximum available idle IO bandwidth (but not more than %d KB/sec) for %s.\n", 8861 speed_max(mddev), desc); 8862 8863 is_mddev_idle(mddev, 1); /* this initializes IO event counters */ 8864 8865 io_sectors = 0; 8866 for (m = 0; m < SYNC_MARKS; m++) { 8867 mark[m] = jiffies; 8868 mark_cnt[m] = io_sectors; 8869 } 8870 last_mark = 0; 8871 mddev->resync_mark = mark[last_mark]; 8872 mddev->resync_mark_cnt = mark_cnt[last_mark]; 8873 8874 /* 8875 * Tune reconstruction: 8876 */ 8877 window = 32 * (PAGE_SIZE / 512); 8878 pr_debug("md: using %dk window, over a total of %lluk.\n", 8879 window/2, (unsigned long long)max_sectors/2); 8880 8881 atomic_set(&mddev->recovery_active, 0); 8882 last_check = 0; 8883 8884 if (j>2) { 8885 pr_debug("md: resuming %s of %s from checkpoint.\n", 8886 desc, mdname(mddev)); 8887 mddev->curr_resync = j; 8888 } else 8889 mddev->curr_resync = MD_RESYNC_ACTIVE; /* no longer delayed */ 8890 mddev->curr_resync_completed = j; 8891 sysfs_notify_dirent_safe(mddev->sysfs_completed); 8892 md_new_event(); 8893 update_time = jiffies; 8894 8895 blk_start_plug(&plug); 8896 while (j < max_sectors) { 8897 sector_t sectors; 8898 8899 skipped = 0; 8900 8901 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8902 ((mddev->curr_resync > mddev->curr_resync_completed && 8903 (mddev->curr_resync - mddev->curr_resync_completed) 8904 > (max_sectors >> 4)) || 8905 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) || 8906 (j - mddev->curr_resync_completed)*2 8907 >= mddev->resync_max - mddev->curr_resync_completed || 8908 mddev->curr_resync_completed > mddev->resync_max 8909 )) { 8910 /* time to update curr_resync_completed */ 8911 wait_event(mddev->recovery_wait, 8912 atomic_read(&mddev->recovery_active) == 0); 8913 mddev->curr_resync_completed = j; 8914 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 8915 j > mddev->recovery_cp) 8916 mddev->recovery_cp = j; 8917 update_time = jiffies; 8918 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8919 sysfs_notify_dirent_safe(mddev->sysfs_completed); 8920 } 8921 8922 while (j >= mddev->resync_max && 8923 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8924 /* As this condition is controlled by user-space, 8925 * we can block indefinitely, so use '_interruptible' 8926 * to avoid triggering warnings. 8927 */ 8928 flush_signals(current); /* just in case */ 8929 wait_event_interruptible(mddev->recovery_wait, 8930 mddev->resync_max > j 8931 || test_bit(MD_RECOVERY_INTR, 8932 &mddev->recovery)); 8933 } 8934 8935 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8936 break; 8937 8938 sectors = mddev->pers->sync_request(mddev, j, &skipped); 8939 if (sectors == 0) { 8940 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8941 break; 8942 } 8943 8944 if (!skipped) { /* actual IO requested */ 8945 io_sectors += sectors; 8946 atomic_add(sectors, &mddev->recovery_active); 8947 } 8948 8949 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8950 break; 8951 8952 j += sectors; 8953 if (j > max_sectors) 8954 /* when skipping, extra large numbers can be returned. */ 8955 j = max_sectors; 8956 if (j > 2) 8957 mddev->curr_resync = j; 8958 mddev->curr_mark_cnt = io_sectors; 8959 if (last_check == 0) 8960 /* this is the earliest that rebuild will be 8961 * visible in /proc/mdstat 8962 */ 8963 md_new_event(); 8964 8965 if (last_check + window > io_sectors || j == max_sectors) 8966 continue; 8967 8968 last_check = io_sectors; 8969 repeat: 8970 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { 8971 /* step marks */ 8972 int next = (last_mark+1) % SYNC_MARKS; 8973 8974 mddev->resync_mark = mark[next]; 8975 mddev->resync_mark_cnt = mark_cnt[next]; 8976 mark[next] = jiffies; 8977 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); 8978 last_mark = next; 8979 } 8980 8981 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8982 break; 8983 8984 /* 8985 * this loop exits only if either when we are slower than 8986 * the 'hard' speed limit, or the system was IO-idle for 8987 * a jiffy. 8988 * the system might be non-idle CPU-wise, but we only care 8989 * about not overloading the IO subsystem. (things like an 8990 * e2fsck being done on the RAID array should execute fast) 8991 */ 8992 cond_resched(); 8993 8994 recovery_done = io_sectors - atomic_read(&mddev->recovery_active); 8995 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2 8996 /((jiffies-mddev->resync_mark)/HZ +1) +1; 8997 8998 if (currspeed > speed_min(mddev)) { 8999 if (currspeed > speed_max(mddev)) { 9000 msleep(500); 9001 goto repeat; 9002 } 9003 if (!is_mddev_idle(mddev, 0)) { 9004 /* 9005 * Give other IO more of a chance. 9006 * The faster the devices, the less we wait. 9007 */ 9008 wait_event(mddev->recovery_wait, 9009 !atomic_read(&mddev->recovery_active)); 9010 } 9011 } 9012 } 9013 pr_info("md: %s: %s %s.\n",mdname(mddev), desc, 9014 test_bit(MD_RECOVERY_INTR, &mddev->recovery) 9015 ? "interrupted" : "done"); 9016 /* 9017 * this also signals 'finished resyncing' to md_stop 9018 */ 9019 blk_finish_plug(&plug); 9020 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); 9021 9022 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9023 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 9024 mddev->curr_resync >= MD_RESYNC_ACTIVE) { 9025 mddev->curr_resync_completed = mddev->curr_resync; 9026 sysfs_notify_dirent_safe(mddev->sysfs_completed); 9027 } 9028 mddev->pers->sync_request(mddev, max_sectors, &skipped); 9029 9030 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && 9031 mddev->curr_resync >= MD_RESYNC_ACTIVE) { 9032 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 9033 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 9034 if (mddev->curr_resync >= mddev->recovery_cp) { 9035 pr_debug("md: checkpointing %s of %s.\n", 9036 desc, mdname(mddev)); 9037 if (test_bit(MD_RECOVERY_ERROR, 9038 &mddev->recovery)) 9039 mddev->recovery_cp = 9040 mddev->curr_resync_completed; 9041 else 9042 mddev->recovery_cp = 9043 mddev->curr_resync; 9044 } 9045 } else 9046 mddev->recovery_cp = MaxSector; 9047 } else { 9048 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 9049 mddev->curr_resync = MaxSector; 9050 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9051 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) { 9052 rcu_read_lock(); 9053 rdev_for_each_rcu(rdev, mddev) 9054 if (rdev->raid_disk >= 0 && 9055 mddev->delta_disks >= 0 && 9056 !test_bit(Journal, &rdev->flags) && 9057 !test_bit(Faulty, &rdev->flags) && 9058 !test_bit(In_sync, &rdev->flags) && 9059 rdev->recovery_offset < mddev->curr_resync) 9060 rdev->recovery_offset = mddev->curr_resync; 9061 rcu_read_unlock(); 9062 } 9063 } 9064 } 9065 skip: 9066 /* set CHANGE_PENDING here since maybe another update is needed, 9067 * so other nodes are informed. It should be harmless for normal 9068 * raid */ 9069 set_mask_bits(&mddev->sb_flags, 0, 9070 BIT(MD_SB_CHANGE_PENDING) | BIT(MD_SB_CHANGE_DEVS)); 9071 9072 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9073 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 9074 mddev->delta_disks > 0 && 9075 mddev->pers->finish_reshape && 9076 mddev->pers->size && 9077 mddev->queue) { 9078 mddev_lock_nointr(mddev); 9079 md_set_array_sectors(mddev, mddev->pers->size(mddev, 0, 0)); 9080 mddev_unlock(mddev); 9081 if (!mddev_is_clustered(mddev)) 9082 set_capacity_and_notify(mddev->gendisk, 9083 mddev->array_sectors); 9084 } 9085 9086 spin_lock(&mddev->lock); 9087 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 9088 /* We completed so min/max setting can be forgotten if used. */ 9089 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 9090 mddev->resync_min = 0; 9091 mddev->resync_max = MaxSector; 9092 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 9093 mddev->resync_min = mddev->curr_resync_completed; 9094 set_bit(MD_RECOVERY_DONE, &mddev->recovery); 9095 mddev->curr_resync = MD_RESYNC_NONE; 9096 spin_unlock(&mddev->lock); 9097 9098 wake_up(&resync_wait); 9099 md_wakeup_thread(mddev->thread); 9100 return; 9101 } 9102 EXPORT_SYMBOL_GPL(md_do_sync); 9103 9104 static int remove_and_add_spares(struct mddev *mddev, 9105 struct md_rdev *this) 9106 { 9107 struct md_rdev *rdev; 9108 int spares = 0; 9109 int removed = 0; 9110 bool remove_some = false; 9111 9112 if (this && test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 9113 /* Mustn't remove devices when resync thread is running */ 9114 return 0; 9115 9116 rdev_for_each(rdev, mddev) { 9117 if ((this == NULL || rdev == this) && 9118 rdev->raid_disk >= 0 && 9119 !test_bit(Blocked, &rdev->flags) && 9120 test_bit(Faulty, &rdev->flags) && 9121 atomic_read(&rdev->nr_pending)==0) { 9122 /* Faulty non-Blocked devices with nr_pending == 0 9123 * never get nr_pending incremented, 9124 * never get Faulty cleared, and never get Blocked set. 9125 * So we can synchronize_rcu now rather than once per device 9126 */ 9127 remove_some = true; 9128 set_bit(RemoveSynchronized, &rdev->flags); 9129 } 9130 } 9131 9132 if (remove_some) 9133 synchronize_rcu(); 9134 rdev_for_each(rdev, mddev) { 9135 if ((this == NULL || rdev == this) && 9136 rdev->raid_disk >= 0 && 9137 !test_bit(Blocked, &rdev->flags) && 9138 ((test_bit(RemoveSynchronized, &rdev->flags) || 9139 (!test_bit(In_sync, &rdev->flags) && 9140 !test_bit(Journal, &rdev->flags))) && 9141 atomic_read(&rdev->nr_pending)==0)) { 9142 if (mddev->pers->hot_remove_disk( 9143 mddev, rdev) == 0) { 9144 sysfs_unlink_rdev(mddev, rdev); 9145 rdev->saved_raid_disk = rdev->raid_disk; 9146 rdev->raid_disk = -1; 9147 removed++; 9148 } 9149 } 9150 if (remove_some && test_bit(RemoveSynchronized, &rdev->flags)) 9151 clear_bit(RemoveSynchronized, &rdev->flags); 9152 } 9153 9154 if (removed && mddev->kobj.sd) 9155 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9156 9157 if (this && removed) 9158 goto no_add; 9159 9160 rdev_for_each(rdev, mddev) { 9161 if (this && this != rdev) 9162 continue; 9163 if (test_bit(Candidate, &rdev->flags)) 9164 continue; 9165 if (rdev->raid_disk >= 0 && 9166 !test_bit(In_sync, &rdev->flags) && 9167 !test_bit(Journal, &rdev->flags) && 9168 !test_bit(Faulty, &rdev->flags)) 9169 spares++; 9170 if (rdev->raid_disk >= 0) 9171 continue; 9172 if (test_bit(Faulty, &rdev->flags)) 9173 continue; 9174 if (!test_bit(Journal, &rdev->flags)) { 9175 if (!md_is_rdwr(mddev) && 9176 !(rdev->saved_raid_disk >= 0 && 9177 !test_bit(Bitmap_sync, &rdev->flags))) 9178 continue; 9179 9180 rdev->recovery_offset = 0; 9181 } 9182 if (mddev->pers->hot_add_disk(mddev, rdev) == 0) { 9183 /* failure here is OK */ 9184 sysfs_link_rdev(mddev, rdev); 9185 if (!test_bit(Journal, &rdev->flags)) 9186 spares++; 9187 md_new_event(); 9188 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9189 } 9190 } 9191 no_add: 9192 if (removed) 9193 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9194 return spares; 9195 } 9196 9197 static void md_start_sync(struct work_struct *ws) 9198 { 9199 struct mddev *mddev = container_of(ws, struct mddev, del_work); 9200 9201 mddev->sync_thread = md_register_thread(md_do_sync, 9202 mddev, 9203 "resync"); 9204 if (!mddev->sync_thread) { 9205 pr_warn("%s: could not start resync thread...\n", 9206 mdname(mddev)); 9207 /* leave the spares where they are, it shouldn't hurt */ 9208 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9209 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9210 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9211 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9212 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9213 wake_up(&resync_wait); 9214 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 9215 &mddev->recovery)) 9216 if (mddev->sysfs_action) 9217 sysfs_notify_dirent_safe(mddev->sysfs_action); 9218 } else 9219 md_wakeup_thread(mddev->sync_thread); 9220 sysfs_notify_dirent_safe(mddev->sysfs_action); 9221 md_new_event(); 9222 } 9223 9224 /* 9225 * This routine is regularly called by all per-raid-array threads to 9226 * deal with generic issues like resync and super-block update. 9227 * Raid personalities that don't have a thread (linear/raid0) do not 9228 * need this as they never do any recovery or update the superblock. 9229 * 9230 * It does not do any resync itself, but rather "forks" off other threads 9231 * to do that as needed. 9232 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in 9233 * "->recovery" and create a thread at ->sync_thread. 9234 * When the thread finishes it sets MD_RECOVERY_DONE 9235 * and wakeups up this thread which will reap the thread and finish up. 9236 * This thread also removes any faulty devices (with nr_pending == 0). 9237 * 9238 * The overall approach is: 9239 * 1/ if the superblock needs updating, update it. 9240 * 2/ If a recovery thread is running, don't do anything else. 9241 * 3/ If recovery has finished, clean up, possibly marking spares active. 9242 * 4/ If there are any faulty devices, remove them. 9243 * 5/ If array is degraded, try to add spares devices 9244 * 6/ If array has spares or is not in-sync, start a resync thread. 9245 */ 9246 void md_check_recovery(struct mddev *mddev) 9247 { 9248 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags) && mddev->sb_flags) { 9249 /* Write superblock - thread that called mddev_suspend() 9250 * holds reconfig_mutex for us. 9251 */ 9252 set_bit(MD_UPDATING_SB, &mddev->flags); 9253 smp_mb__after_atomic(); 9254 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags)) 9255 md_update_sb(mddev, 0); 9256 clear_bit_unlock(MD_UPDATING_SB, &mddev->flags); 9257 wake_up(&mddev->sb_wait); 9258 } 9259 9260 if (mddev->suspended) 9261 return; 9262 9263 if (mddev->bitmap) 9264 md_bitmap_daemon_work(mddev); 9265 9266 if (signal_pending(current)) { 9267 if (mddev->pers->sync_request && !mddev->external) { 9268 pr_debug("md: %s in immediate safe mode\n", 9269 mdname(mddev)); 9270 mddev->safemode = 2; 9271 } 9272 flush_signals(current); 9273 } 9274 9275 if (!md_is_rdwr(mddev) && 9276 !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 9277 return; 9278 if ( ! ( 9279 (mddev->sb_flags & ~ (1<<MD_SB_CHANGE_PENDING)) || 9280 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 9281 test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 9282 (mddev->external == 0 && mddev->safemode == 1) || 9283 (mddev->safemode == 2 9284 && !mddev->in_sync && mddev->recovery_cp == MaxSector) 9285 )) 9286 return; 9287 9288 if (mddev_trylock(mddev)) { 9289 int spares = 0; 9290 bool try_set_sync = mddev->safemode != 0; 9291 9292 if (!mddev->external && mddev->safemode == 1) 9293 mddev->safemode = 0; 9294 9295 if (!md_is_rdwr(mddev)) { 9296 struct md_rdev *rdev; 9297 if (!mddev->external && mddev->in_sync) 9298 /* 'Blocked' flag not needed as failed devices 9299 * will be recorded if array switched to read/write. 9300 * Leaving it set will prevent the device 9301 * from being removed. 9302 */ 9303 rdev_for_each(rdev, mddev) 9304 clear_bit(Blocked, &rdev->flags); 9305 /* On a read-only array we can: 9306 * - remove failed devices 9307 * - add already-in_sync devices if the array itself 9308 * is in-sync. 9309 * As we only add devices that are already in-sync, 9310 * we can activate the spares immediately. 9311 */ 9312 remove_and_add_spares(mddev, NULL); 9313 /* There is no thread, but we need to call 9314 * ->spare_active and clear saved_raid_disk 9315 */ 9316 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 9317 md_unregister_thread(&mddev->sync_thread); 9318 md_reap_sync_thread(mddev); 9319 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9320 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9321 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 9322 goto unlock; 9323 } 9324 9325 if (mddev_is_clustered(mddev)) { 9326 struct md_rdev *rdev, *tmp; 9327 /* kick the device if another node issued a 9328 * remove disk. 9329 */ 9330 rdev_for_each_safe(rdev, tmp, mddev) { 9331 if (test_and_clear_bit(ClusterRemove, &rdev->flags) && 9332 rdev->raid_disk < 0) 9333 md_kick_rdev_from_array(rdev); 9334 } 9335 } 9336 9337 if (try_set_sync && !mddev->external && !mddev->in_sync) { 9338 spin_lock(&mddev->lock); 9339 set_in_sync(mddev); 9340 spin_unlock(&mddev->lock); 9341 } 9342 9343 if (mddev->sb_flags) 9344 md_update_sb(mddev, 0); 9345 9346 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 9347 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { 9348 /* resync/recovery still happening */ 9349 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9350 goto unlock; 9351 } 9352 if (mddev->sync_thread) { 9353 md_unregister_thread(&mddev->sync_thread); 9354 md_reap_sync_thread(mddev); 9355 goto unlock; 9356 } 9357 /* Set RUNNING before clearing NEEDED to avoid 9358 * any transients in the value of "sync_action". 9359 */ 9360 mddev->curr_resync_completed = 0; 9361 spin_lock(&mddev->lock); 9362 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9363 spin_unlock(&mddev->lock); 9364 /* Clear some bits that don't mean anything, but 9365 * might be left set 9366 */ 9367 clear_bit(MD_RECOVERY_INTR, &mddev->recovery); 9368 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 9369 9370 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 9371 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 9372 goto not_running; 9373 /* no recovery is running. 9374 * remove any failed drives, then 9375 * add spares if possible. 9376 * Spares are also removed and re-added, to allow 9377 * the personality to fail the re-add. 9378 */ 9379 9380 if (mddev->reshape_position != MaxSector) { 9381 if (mddev->pers->check_reshape == NULL || 9382 mddev->pers->check_reshape(mddev) != 0) 9383 /* Cannot proceed */ 9384 goto not_running; 9385 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9386 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9387 } else if ((spares = remove_and_add_spares(mddev, NULL))) { 9388 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9389 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9390 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9391 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9392 } else if (mddev->recovery_cp < MaxSector) { 9393 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9394 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9395 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 9396 /* nothing to be done ... */ 9397 goto not_running; 9398 9399 if (mddev->pers->sync_request) { 9400 if (spares) { 9401 /* We are adding a device or devices to an array 9402 * which has the bitmap stored on all devices. 9403 * So make sure all bitmap pages get written 9404 */ 9405 md_bitmap_write_all(mddev->bitmap); 9406 } 9407 INIT_WORK(&mddev->del_work, md_start_sync); 9408 queue_work(md_misc_wq, &mddev->del_work); 9409 goto unlock; 9410 } 9411 not_running: 9412 if (!mddev->sync_thread) { 9413 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9414 wake_up(&resync_wait); 9415 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 9416 &mddev->recovery)) 9417 if (mddev->sysfs_action) 9418 sysfs_notify_dirent_safe(mddev->sysfs_action); 9419 } 9420 unlock: 9421 wake_up(&mddev->sb_wait); 9422 mddev_unlock(mddev); 9423 } 9424 } 9425 EXPORT_SYMBOL(md_check_recovery); 9426 9427 void md_reap_sync_thread(struct mddev *mddev) 9428 { 9429 struct md_rdev *rdev; 9430 sector_t old_dev_sectors = mddev->dev_sectors; 9431 bool is_reshaped = false; 9432 9433 /* sync_thread should be unregistered, collect result */ 9434 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 9435 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 9436 mddev->degraded != mddev->raid_disks) { 9437 /* success...*/ 9438 /* activate any spares */ 9439 if (mddev->pers->spare_active(mddev)) { 9440 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9441 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9442 } 9443 } 9444 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9445 mddev->pers->finish_reshape) { 9446 mddev->pers->finish_reshape(mddev); 9447 if (mddev_is_clustered(mddev)) 9448 is_reshaped = true; 9449 } 9450 9451 /* If array is no-longer degraded, then any saved_raid_disk 9452 * information must be scrapped. 9453 */ 9454 if (!mddev->degraded) 9455 rdev_for_each(rdev, mddev) 9456 rdev->saved_raid_disk = -1; 9457 9458 md_update_sb(mddev, 1); 9459 /* MD_SB_CHANGE_PENDING should be cleared by md_update_sb, so we can 9460 * call resync_finish here if MD_CLUSTER_RESYNC_LOCKED is set by 9461 * clustered raid */ 9462 if (test_and_clear_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags)) 9463 md_cluster_ops->resync_finish(mddev); 9464 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9465 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 9466 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9467 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9468 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9469 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9470 /* 9471 * We call md_cluster_ops->update_size here because sync_size could 9472 * be changed by md_update_sb, and MD_RECOVERY_RESHAPE is cleared, 9473 * so it is time to update size across cluster. 9474 */ 9475 if (mddev_is_clustered(mddev) && is_reshaped 9476 && !test_bit(MD_CLOSING, &mddev->flags)) 9477 md_cluster_ops->update_size(mddev, old_dev_sectors); 9478 wake_up(&resync_wait); 9479 /* flag recovery needed just to double check */ 9480 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9481 sysfs_notify_dirent_safe(mddev->sysfs_completed); 9482 sysfs_notify_dirent_safe(mddev->sysfs_action); 9483 md_new_event(); 9484 if (mddev->event_work.func) 9485 queue_work(md_misc_wq, &mddev->event_work); 9486 } 9487 EXPORT_SYMBOL(md_reap_sync_thread); 9488 9489 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev) 9490 { 9491 sysfs_notify_dirent_safe(rdev->sysfs_state); 9492 wait_event_timeout(rdev->blocked_wait, 9493 !test_bit(Blocked, &rdev->flags) && 9494 !test_bit(BlockedBadBlocks, &rdev->flags), 9495 msecs_to_jiffies(5000)); 9496 rdev_dec_pending(rdev, mddev); 9497 } 9498 EXPORT_SYMBOL(md_wait_for_blocked_rdev); 9499 9500 void md_finish_reshape(struct mddev *mddev) 9501 { 9502 /* called be personality module when reshape completes. */ 9503 struct md_rdev *rdev; 9504 9505 rdev_for_each(rdev, mddev) { 9506 if (rdev->data_offset > rdev->new_data_offset) 9507 rdev->sectors += rdev->data_offset - rdev->new_data_offset; 9508 else 9509 rdev->sectors -= rdev->new_data_offset - rdev->data_offset; 9510 rdev->data_offset = rdev->new_data_offset; 9511 } 9512 } 9513 EXPORT_SYMBOL(md_finish_reshape); 9514 9515 /* Bad block management */ 9516 9517 /* Returns 1 on success, 0 on failure */ 9518 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 9519 int is_new) 9520 { 9521 struct mddev *mddev = rdev->mddev; 9522 int rv; 9523 if (is_new) 9524 s += rdev->new_data_offset; 9525 else 9526 s += rdev->data_offset; 9527 rv = badblocks_set(&rdev->badblocks, s, sectors, 0); 9528 if (rv == 0) { 9529 /* Make sure they get written out promptly */ 9530 if (test_bit(ExternalBbl, &rdev->flags)) 9531 sysfs_notify_dirent_safe(rdev->sysfs_unack_badblocks); 9532 sysfs_notify_dirent_safe(rdev->sysfs_state); 9533 set_mask_bits(&mddev->sb_flags, 0, 9534 BIT(MD_SB_CHANGE_CLEAN) | BIT(MD_SB_CHANGE_PENDING)); 9535 md_wakeup_thread(rdev->mddev->thread); 9536 return 1; 9537 } else 9538 return 0; 9539 } 9540 EXPORT_SYMBOL_GPL(rdev_set_badblocks); 9541 9542 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 9543 int is_new) 9544 { 9545 int rv; 9546 if (is_new) 9547 s += rdev->new_data_offset; 9548 else 9549 s += rdev->data_offset; 9550 rv = badblocks_clear(&rdev->badblocks, s, sectors); 9551 if ((rv == 0) && test_bit(ExternalBbl, &rdev->flags)) 9552 sysfs_notify_dirent_safe(rdev->sysfs_badblocks); 9553 return rv; 9554 } 9555 EXPORT_SYMBOL_GPL(rdev_clear_badblocks); 9556 9557 static int md_notify_reboot(struct notifier_block *this, 9558 unsigned long code, void *x) 9559 { 9560 struct mddev *mddev, *n; 9561 int need_delay = 0; 9562 9563 spin_lock(&all_mddevs_lock); 9564 list_for_each_entry_safe(mddev, n, &all_mddevs, all_mddevs) { 9565 if (!mddev_get(mddev)) 9566 continue; 9567 spin_unlock(&all_mddevs_lock); 9568 if (mddev_trylock(mddev)) { 9569 if (mddev->pers) 9570 __md_stop_writes(mddev); 9571 if (mddev->persistent) 9572 mddev->safemode = 2; 9573 mddev_unlock(mddev); 9574 } 9575 need_delay = 1; 9576 mddev_put(mddev); 9577 spin_lock(&all_mddevs_lock); 9578 } 9579 spin_unlock(&all_mddevs_lock); 9580 9581 /* 9582 * certain more exotic SCSI devices are known to be 9583 * volatile wrt too early system reboots. While the 9584 * right place to handle this issue is the given 9585 * driver, we do want to have a safe RAID driver ... 9586 */ 9587 if (need_delay) 9588 msleep(1000); 9589 9590 return NOTIFY_DONE; 9591 } 9592 9593 static struct notifier_block md_notifier = { 9594 .notifier_call = md_notify_reboot, 9595 .next = NULL, 9596 .priority = INT_MAX, /* before any real devices */ 9597 }; 9598 9599 static void md_geninit(void) 9600 { 9601 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); 9602 9603 proc_create("mdstat", S_IRUGO, NULL, &mdstat_proc_ops); 9604 } 9605 9606 static int __init md_init(void) 9607 { 9608 int ret = -ENOMEM; 9609 9610 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0); 9611 if (!md_wq) 9612 goto err_wq; 9613 9614 md_misc_wq = alloc_workqueue("md_misc", 0, 0); 9615 if (!md_misc_wq) 9616 goto err_misc_wq; 9617 9618 md_rdev_misc_wq = alloc_workqueue("md_rdev_misc", 0, 0); 9619 if (!md_rdev_misc_wq) 9620 goto err_rdev_misc_wq; 9621 9622 ret = __register_blkdev(MD_MAJOR, "md", md_probe); 9623 if (ret < 0) 9624 goto err_md; 9625 9626 ret = __register_blkdev(0, "mdp", md_probe); 9627 if (ret < 0) 9628 goto err_mdp; 9629 mdp_major = ret; 9630 9631 register_reboot_notifier(&md_notifier); 9632 raid_table_header = register_sysctl_table(raid_root_table); 9633 9634 md_geninit(); 9635 return 0; 9636 9637 err_mdp: 9638 unregister_blkdev(MD_MAJOR, "md"); 9639 err_md: 9640 destroy_workqueue(md_rdev_misc_wq); 9641 err_rdev_misc_wq: 9642 destroy_workqueue(md_misc_wq); 9643 err_misc_wq: 9644 destroy_workqueue(md_wq); 9645 err_wq: 9646 return ret; 9647 } 9648 9649 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev) 9650 { 9651 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 9652 struct md_rdev *rdev2, *tmp; 9653 int role, ret; 9654 9655 /* 9656 * If size is changed in another node then we need to 9657 * do resize as well. 9658 */ 9659 if (mddev->dev_sectors != le64_to_cpu(sb->size)) { 9660 ret = mddev->pers->resize(mddev, le64_to_cpu(sb->size)); 9661 if (ret) 9662 pr_info("md-cluster: resize failed\n"); 9663 else 9664 md_bitmap_update_sb(mddev->bitmap); 9665 } 9666 9667 /* Check for change of roles in the active devices */ 9668 rdev_for_each_safe(rdev2, tmp, mddev) { 9669 if (test_bit(Faulty, &rdev2->flags)) 9670 continue; 9671 9672 /* Check if the roles changed */ 9673 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]); 9674 9675 if (test_bit(Candidate, &rdev2->flags)) { 9676 if (role == MD_DISK_ROLE_FAULTY) { 9677 pr_info("md: Removing Candidate device %pg because add failed\n", 9678 rdev2->bdev); 9679 md_kick_rdev_from_array(rdev2); 9680 continue; 9681 } 9682 else 9683 clear_bit(Candidate, &rdev2->flags); 9684 } 9685 9686 if (role != rdev2->raid_disk) { 9687 /* 9688 * got activated except reshape is happening. 9689 */ 9690 if (rdev2->raid_disk == -1 && role != MD_DISK_ROLE_SPARE && 9691 !(le32_to_cpu(sb->feature_map) & 9692 MD_FEATURE_RESHAPE_ACTIVE)) { 9693 rdev2->saved_raid_disk = role; 9694 ret = remove_and_add_spares(mddev, rdev2); 9695 pr_info("Activated spare: %pg\n", 9696 rdev2->bdev); 9697 /* wakeup mddev->thread here, so array could 9698 * perform resync with the new activated disk */ 9699 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9700 md_wakeup_thread(mddev->thread); 9701 } 9702 /* device faulty 9703 * We just want to do the minimum to mark the disk 9704 * as faulty. The recovery is performed by the 9705 * one who initiated the error. 9706 */ 9707 if (role == MD_DISK_ROLE_FAULTY || 9708 role == MD_DISK_ROLE_JOURNAL) { 9709 md_error(mddev, rdev2); 9710 clear_bit(Blocked, &rdev2->flags); 9711 } 9712 } 9713 } 9714 9715 if (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) { 9716 ret = update_raid_disks(mddev, le32_to_cpu(sb->raid_disks)); 9717 if (ret) 9718 pr_warn("md: updating array disks failed. %d\n", ret); 9719 } 9720 9721 /* 9722 * Since mddev->delta_disks has already updated in update_raid_disks, 9723 * so it is time to check reshape. 9724 */ 9725 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) && 9726 (le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 9727 /* 9728 * reshape is happening in the remote node, we need to 9729 * update reshape_position and call start_reshape. 9730 */ 9731 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 9732 if (mddev->pers->update_reshape_pos) 9733 mddev->pers->update_reshape_pos(mddev); 9734 if (mddev->pers->start_reshape) 9735 mddev->pers->start_reshape(mddev); 9736 } else if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) && 9737 mddev->reshape_position != MaxSector && 9738 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 9739 /* reshape is just done in another node. */ 9740 mddev->reshape_position = MaxSector; 9741 if (mddev->pers->update_reshape_pos) 9742 mddev->pers->update_reshape_pos(mddev); 9743 } 9744 9745 /* Finally set the event to be up to date */ 9746 mddev->events = le64_to_cpu(sb->events); 9747 } 9748 9749 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev) 9750 { 9751 int err; 9752 struct page *swapout = rdev->sb_page; 9753 struct mdp_superblock_1 *sb; 9754 9755 /* Store the sb page of the rdev in the swapout temporary 9756 * variable in case we err in the future 9757 */ 9758 rdev->sb_page = NULL; 9759 err = alloc_disk_sb(rdev); 9760 if (err == 0) { 9761 ClearPageUptodate(rdev->sb_page); 9762 rdev->sb_loaded = 0; 9763 err = super_types[mddev->major_version]. 9764 load_super(rdev, NULL, mddev->minor_version); 9765 } 9766 if (err < 0) { 9767 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n", 9768 __func__, __LINE__, rdev->desc_nr, err); 9769 if (rdev->sb_page) 9770 put_page(rdev->sb_page); 9771 rdev->sb_page = swapout; 9772 rdev->sb_loaded = 1; 9773 return err; 9774 } 9775 9776 sb = page_address(rdev->sb_page); 9777 /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET 9778 * is not set 9779 */ 9780 9781 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET)) 9782 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 9783 9784 /* The other node finished recovery, call spare_active to set 9785 * device In_sync and mddev->degraded 9786 */ 9787 if (rdev->recovery_offset == MaxSector && 9788 !test_bit(In_sync, &rdev->flags) && 9789 mddev->pers->spare_active(mddev)) 9790 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9791 9792 put_page(swapout); 9793 return 0; 9794 } 9795 9796 void md_reload_sb(struct mddev *mddev, int nr) 9797 { 9798 struct md_rdev *rdev = NULL, *iter; 9799 int err; 9800 9801 /* Find the rdev */ 9802 rdev_for_each_rcu(iter, mddev) { 9803 if (iter->desc_nr == nr) { 9804 rdev = iter; 9805 break; 9806 } 9807 } 9808 9809 if (!rdev) { 9810 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr); 9811 return; 9812 } 9813 9814 err = read_rdev(mddev, rdev); 9815 if (err < 0) 9816 return; 9817 9818 check_sb_changes(mddev, rdev); 9819 9820 /* Read all rdev's to update recovery_offset */ 9821 rdev_for_each_rcu(rdev, mddev) { 9822 if (!test_bit(Faulty, &rdev->flags)) 9823 read_rdev(mddev, rdev); 9824 } 9825 } 9826 EXPORT_SYMBOL(md_reload_sb); 9827 9828 #ifndef MODULE 9829 9830 /* 9831 * Searches all registered partitions for autorun RAID arrays 9832 * at boot time. 9833 */ 9834 9835 static DEFINE_MUTEX(detected_devices_mutex); 9836 static LIST_HEAD(all_detected_devices); 9837 struct detected_devices_node { 9838 struct list_head list; 9839 dev_t dev; 9840 }; 9841 9842 void md_autodetect_dev(dev_t dev) 9843 { 9844 struct detected_devices_node *node_detected_dev; 9845 9846 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL); 9847 if (node_detected_dev) { 9848 node_detected_dev->dev = dev; 9849 mutex_lock(&detected_devices_mutex); 9850 list_add_tail(&node_detected_dev->list, &all_detected_devices); 9851 mutex_unlock(&detected_devices_mutex); 9852 } 9853 } 9854 9855 void md_autostart_arrays(int part) 9856 { 9857 struct md_rdev *rdev; 9858 struct detected_devices_node *node_detected_dev; 9859 dev_t dev; 9860 int i_scanned, i_passed; 9861 9862 i_scanned = 0; 9863 i_passed = 0; 9864 9865 pr_info("md: Autodetecting RAID arrays.\n"); 9866 9867 mutex_lock(&detected_devices_mutex); 9868 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) { 9869 i_scanned++; 9870 node_detected_dev = list_entry(all_detected_devices.next, 9871 struct detected_devices_node, list); 9872 list_del(&node_detected_dev->list); 9873 dev = node_detected_dev->dev; 9874 kfree(node_detected_dev); 9875 mutex_unlock(&detected_devices_mutex); 9876 rdev = md_import_device(dev,0, 90); 9877 mutex_lock(&detected_devices_mutex); 9878 if (IS_ERR(rdev)) 9879 continue; 9880 9881 if (test_bit(Faulty, &rdev->flags)) 9882 continue; 9883 9884 set_bit(AutoDetected, &rdev->flags); 9885 list_add(&rdev->same_set, &pending_raid_disks); 9886 i_passed++; 9887 } 9888 mutex_unlock(&detected_devices_mutex); 9889 9890 pr_debug("md: Scanned %d and added %d devices.\n", i_scanned, i_passed); 9891 9892 autorun_devices(part); 9893 } 9894 9895 #endif /* !MODULE */ 9896 9897 static __exit void md_exit(void) 9898 { 9899 struct mddev *mddev, *n; 9900 int delay = 1; 9901 9902 unregister_blkdev(MD_MAJOR,"md"); 9903 unregister_blkdev(mdp_major, "mdp"); 9904 unregister_reboot_notifier(&md_notifier); 9905 unregister_sysctl_table(raid_table_header); 9906 9907 /* We cannot unload the modules while some process is 9908 * waiting for us in select() or poll() - wake them up 9909 */ 9910 md_unloading = 1; 9911 while (waitqueue_active(&md_event_waiters)) { 9912 /* not safe to leave yet */ 9913 wake_up(&md_event_waiters); 9914 msleep(delay); 9915 delay += delay; 9916 } 9917 remove_proc_entry("mdstat", NULL); 9918 9919 spin_lock(&all_mddevs_lock); 9920 list_for_each_entry_safe(mddev, n, &all_mddevs, all_mddevs) { 9921 if (!mddev_get(mddev)) 9922 continue; 9923 spin_unlock(&all_mddevs_lock); 9924 export_array(mddev); 9925 mddev->ctime = 0; 9926 mddev->hold_active = 0; 9927 /* 9928 * As the mddev is now fully clear, mddev_put will schedule 9929 * the mddev for destruction by a workqueue, and the 9930 * destroy_workqueue() below will wait for that to complete. 9931 */ 9932 mddev_put(mddev); 9933 spin_lock(&all_mddevs_lock); 9934 } 9935 spin_unlock(&all_mddevs_lock); 9936 9937 destroy_workqueue(md_rdev_misc_wq); 9938 destroy_workqueue(md_misc_wq); 9939 destroy_workqueue(md_wq); 9940 } 9941 9942 subsys_initcall(md_init); 9943 module_exit(md_exit) 9944 9945 static int get_ro(char *buffer, const struct kernel_param *kp) 9946 { 9947 return sprintf(buffer, "%d\n", start_readonly); 9948 } 9949 static int set_ro(const char *val, const struct kernel_param *kp) 9950 { 9951 return kstrtouint(val, 10, (unsigned int *)&start_readonly); 9952 } 9953 9954 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); 9955 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); 9956 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR); 9957 module_param(create_on_open, bool, S_IRUSR|S_IWUSR); 9958 9959 MODULE_LICENSE("GPL"); 9960 MODULE_DESCRIPTION("MD RAID framework"); 9961 MODULE_ALIAS("md"); 9962 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR); 9963