1 /* 2 md.c : Multiple Devices driver for Linux 3 Copyright (C) 1998, 1999, 2000 Ingo Molnar 4 5 completely rewritten, based on the MD driver code from Marc Zyngier 6 7 Changes: 8 9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar 10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> 11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> 12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su> 13 - kmod support by: Cyrus Durgin 14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> 15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> 16 17 - lots of fixes and improvements to the RAID1/RAID5 and generic 18 RAID code (such as request based resynchronization): 19 20 Neil Brown <neilb@cse.unsw.edu.au>. 21 22 - persistent bitmap code 23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. 24 25 This program is free software; you can redistribute it and/or modify 26 it under the terms of the GNU General Public License as published by 27 the Free Software Foundation; either version 2, or (at your option) 28 any later version. 29 30 You should have received a copy of the GNU General Public License 31 (for example /usr/src/linux/COPYING); if not, write to the Free 32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 33 34 Errors, Warnings, etc. 35 Please use: 36 pr_crit() for error conditions that risk data loss 37 pr_err() for error conditions that are unexpected, like an IO error 38 or internal inconsistency 39 pr_warn() for error conditions that could have been predicated, like 40 adding a device to an array when it has incompatible metadata 41 pr_info() for every interesting, very rare events, like an array starting 42 or stopping, or resync starting or stopping 43 pr_debug() for everything else. 44 45 */ 46 47 #include <linux/sched/signal.h> 48 #include <linux/kthread.h> 49 #include <linux/blkdev.h> 50 #include <linux/badblocks.h> 51 #include <linux/sysctl.h> 52 #include <linux/seq_file.h> 53 #include <linux/fs.h> 54 #include <linux/poll.h> 55 #include <linux/ctype.h> 56 #include <linux/string.h> 57 #include <linux/hdreg.h> 58 #include <linux/proc_fs.h> 59 #include <linux/random.h> 60 #include <linux/module.h> 61 #include <linux/reboot.h> 62 #include <linux/file.h> 63 #include <linux/compat.h> 64 #include <linux/delay.h> 65 #include <linux/raid/md_p.h> 66 #include <linux/raid/md_u.h> 67 #include <linux/slab.h> 68 #include <linux/percpu-refcount.h> 69 70 #include <trace/events/block.h> 71 #include "md.h" 72 #include "md-bitmap.h" 73 #include "md-cluster.h" 74 75 #ifndef MODULE 76 static void autostart_arrays(int part); 77 #endif 78 79 /* pers_list is a list of registered personalities protected 80 * by pers_lock. 81 * pers_lock does extra service to protect accesses to 82 * mddev->thread when the mutex cannot be held. 83 */ 84 static LIST_HEAD(pers_list); 85 static DEFINE_SPINLOCK(pers_lock); 86 87 struct md_cluster_operations *md_cluster_ops; 88 EXPORT_SYMBOL(md_cluster_ops); 89 struct module *md_cluster_mod; 90 EXPORT_SYMBOL(md_cluster_mod); 91 92 static DECLARE_WAIT_QUEUE_HEAD(resync_wait); 93 static struct workqueue_struct *md_wq; 94 static struct workqueue_struct *md_misc_wq; 95 96 static int remove_and_add_spares(struct mddev *mddev, 97 struct md_rdev *this); 98 static void mddev_detach(struct mddev *mddev); 99 100 /* 101 * Default number of read corrections we'll attempt on an rdev 102 * before ejecting it from the array. We divide the read error 103 * count by 2 for every hour elapsed between read errors. 104 */ 105 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20 106 /* 107 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' 108 * is 1000 KB/sec, so the extra system load does not show up that much. 109 * Increase it if you want to have more _guaranteed_ speed. Note that 110 * the RAID driver will use the maximum available bandwidth if the IO 111 * subsystem is idle. There is also an 'absolute maximum' reconstruction 112 * speed limit - in case reconstruction slows down your system despite 113 * idle IO detection. 114 * 115 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. 116 * or /sys/block/mdX/md/sync_speed_{min,max} 117 */ 118 119 static int sysctl_speed_limit_min = 1000; 120 static int sysctl_speed_limit_max = 200000; 121 static inline int speed_min(struct mddev *mddev) 122 { 123 return mddev->sync_speed_min ? 124 mddev->sync_speed_min : sysctl_speed_limit_min; 125 } 126 127 static inline int speed_max(struct mddev *mddev) 128 { 129 return mddev->sync_speed_max ? 130 mddev->sync_speed_max : sysctl_speed_limit_max; 131 } 132 133 static struct ctl_table_header *raid_table_header; 134 135 static struct ctl_table raid_table[] = { 136 { 137 .procname = "speed_limit_min", 138 .data = &sysctl_speed_limit_min, 139 .maxlen = sizeof(int), 140 .mode = S_IRUGO|S_IWUSR, 141 .proc_handler = proc_dointvec, 142 }, 143 { 144 .procname = "speed_limit_max", 145 .data = &sysctl_speed_limit_max, 146 .maxlen = sizeof(int), 147 .mode = S_IRUGO|S_IWUSR, 148 .proc_handler = proc_dointvec, 149 }, 150 { } 151 }; 152 153 static struct ctl_table raid_dir_table[] = { 154 { 155 .procname = "raid", 156 .maxlen = 0, 157 .mode = S_IRUGO|S_IXUGO, 158 .child = raid_table, 159 }, 160 { } 161 }; 162 163 static struct ctl_table raid_root_table[] = { 164 { 165 .procname = "dev", 166 .maxlen = 0, 167 .mode = 0555, 168 .child = raid_dir_table, 169 }, 170 { } 171 }; 172 173 static const struct block_device_operations md_fops; 174 175 static int start_readonly; 176 177 /* 178 * The original mechanism for creating an md device is to create 179 * a device node in /dev and to open it. This causes races with device-close. 180 * The preferred method is to write to the "new_array" module parameter. 181 * This can avoid races. 182 * Setting create_on_open to false disables the original mechanism 183 * so all the races disappear. 184 */ 185 static bool create_on_open = true; 186 187 /* bio_clone_mddev 188 * like bio_clone_bioset, but with a local bio set 189 */ 190 191 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs, 192 struct mddev *mddev) 193 { 194 struct bio *b; 195 196 if (!mddev || !mddev->bio_set) 197 return bio_alloc(gfp_mask, nr_iovecs); 198 199 b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set); 200 if (!b) 201 return NULL; 202 return b; 203 } 204 EXPORT_SYMBOL_GPL(bio_alloc_mddev); 205 206 static struct bio *md_bio_alloc_sync(struct mddev *mddev) 207 { 208 if (!mddev || !mddev->sync_set) 209 return bio_alloc(GFP_NOIO, 1); 210 211 return bio_alloc_bioset(GFP_NOIO, 1, mddev->sync_set); 212 } 213 214 /* 215 * We have a system wide 'event count' that is incremented 216 * on any 'interesting' event, and readers of /proc/mdstat 217 * can use 'poll' or 'select' to find out when the event 218 * count increases. 219 * 220 * Events are: 221 * start array, stop array, error, add device, remove device, 222 * start build, activate spare 223 */ 224 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); 225 static atomic_t md_event_count; 226 void md_new_event(struct mddev *mddev) 227 { 228 atomic_inc(&md_event_count); 229 wake_up(&md_event_waiters); 230 } 231 EXPORT_SYMBOL_GPL(md_new_event); 232 233 /* 234 * Enables to iterate over all existing md arrays 235 * all_mddevs_lock protects this list. 236 */ 237 static LIST_HEAD(all_mddevs); 238 static DEFINE_SPINLOCK(all_mddevs_lock); 239 240 /* 241 * iterates through all used mddevs in the system. 242 * We take care to grab the all_mddevs_lock whenever navigating 243 * the list, and to always hold a refcount when unlocked. 244 * Any code which breaks out of this loop while own 245 * a reference to the current mddev and must mddev_put it. 246 */ 247 #define for_each_mddev(_mddev,_tmp) \ 248 \ 249 for (({ spin_lock(&all_mddevs_lock); \ 250 _tmp = all_mddevs.next; \ 251 _mddev = NULL;}); \ 252 ({ if (_tmp != &all_mddevs) \ 253 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\ 254 spin_unlock(&all_mddevs_lock); \ 255 if (_mddev) mddev_put(_mddev); \ 256 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \ 257 _tmp != &all_mddevs;}); \ 258 ({ spin_lock(&all_mddevs_lock); \ 259 _tmp = _tmp->next;}) \ 260 ) 261 262 /* Rather than calling directly into the personality make_request function, 263 * IO requests come here first so that we can check if the device is 264 * being suspended pending a reconfiguration. 265 * We hold a refcount over the call to ->make_request. By the time that 266 * call has finished, the bio has been linked into some internal structure 267 * and so is visible to ->quiesce(), so we don't need the refcount any more. 268 */ 269 static bool is_suspended(struct mddev *mddev, struct bio *bio) 270 { 271 if (mddev->suspended) 272 return true; 273 if (bio_data_dir(bio) != WRITE) 274 return false; 275 if (mddev->suspend_lo >= mddev->suspend_hi) 276 return false; 277 if (bio->bi_iter.bi_sector >= mddev->suspend_hi) 278 return false; 279 if (bio_end_sector(bio) < mddev->suspend_lo) 280 return false; 281 return true; 282 } 283 284 void md_handle_request(struct mddev *mddev, struct bio *bio) 285 { 286 check_suspended: 287 rcu_read_lock(); 288 if (is_suspended(mddev, bio)) { 289 DEFINE_WAIT(__wait); 290 for (;;) { 291 prepare_to_wait(&mddev->sb_wait, &__wait, 292 TASK_UNINTERRUPTIBLE); 293 if (!is_suspended(mddev, bio)) 294 break; 295 rcu_read_unlock(); 296 schedule(); 297 rcu_read_lock(); 298 } 299 finish_wait(&mddev->sb_wait, &__wait); 300 } 301 atomic_inc(&mddev->active_io); 302 rcu_read_unlock(); 303 304 if (!mddev->pers->make_request(mddev, bio)) { 305 atomic_dec(&mddev->active_io); 306 wake_up(&mddev->sb_wait); 307 goto check_suspended; 308 } 309 310 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended) 311 wake_up(&mddev->sb_wait); 312 } 313 EXPORT_SYMBOL(md_handle_request); 314 315 static blk_qc_t md_make_request(struct request_queue *q, struct bio *bio) 316 { 317 const int rw = bio_data_dir(bio); 318 struct mddev *mddev = q->queuedata; 319 unsigned int sectors; 320 int cpu; 321 322 blk_queue_split(q, &bio); 323 324 if (mddev == NULL || mddev->pers == NULL) { 325 bio_io_error(bio); 326 return BLK_QC_T_NONE; 327 } 328 if (mddev->ro == 1 && unlikely(rw == WRITE)) { 329 if (bio_sectors(bio) != 0) 330 bio->bi_status = BLK_STS_IOERR; 331 bio_endio(bio); 332 return BLK_QC_T_NONE; 333 } 334 335 /* 336 * save the sectors now since our bio can 337 * go away inside make_request 338 */ 339 sectors = bio_sectors(bio); 340 /* bio could be mergeable after passing to underlayer */ 341 bio->bi_opf &= ~REQ_NOMERGE; 342 343 md_handle_request(mddev, bio); 344 345 cpu = part_stat_lock(); 346 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]); 347 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors); 348 part_stat_unlock(); 349 350 return BLK_QC_T_NONE; 351 } 352 353 /* mddev_suspend makes sure no new requests are submitted 354 * to the device, and that any requests that have been submitted 355 * are completely handled. 356 * Once mddev_detach() is called and completes, the module will be 357 * completely unused. 358 */ 359 void mddev_suspend(struct mddev *mddev) 360 { 361 WARN_ON_ONCE(mddev->thread && current == mddev->thread->tsk); 362 lockdep_assert_held(&mddev->reconfig_mutex); 363 if (mddev->suspended++) 364 return; 365 synchronize_rcu(); 366 wake_up(&mddev->sb_wait); 367 set_bit(MD_ALLOW_SB_UPDATE, &mddev->flags); 368 smp_mb__after_atomic(); 369 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0); 370 mddev->pers->quiesce(mddev, 1); 371 clear_bit_unlock(MD_ALLOW_SB_UPDATE, &mddev->flags); 372 wait_event(mddev->sb_wait, !test_bit(MD_UPDATING_SB, &mddev->flags)); 373 374 del_timer_sync(&mddev->safemode_timer); 375 } 376 EXPORT_SYMBOL_GPL(mddev_suspend); 377 378 void mddev_resume(struct mddev *mddev) 379 { 380 lockdep_assert_held(&mddev->reconfig_mutex); 381 if (--mddev->suspended) 382 return; 383 wake_up(&mddev->sb_wait); 384 mddev->pers->quiesce(mddev, 0); 385 386 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 387 md_wakeup_thread(mddev->thread); 388 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 389 } 390 EXPORT_SYMBOL_GPL(mddev_resume); 391 392 int mddev_congested(struct mddev *mddev, int bits) 393 { 394 struct md_personality *pers = mddev->pers; 395 int ret = 0; 396 397 rcu_read_lock(); 398 if (mddev->suspended) 399 ret = 1; 400 else if (pers && pers->congested) 401 ret = pers->congested(mddev, bits); 402 rcu_read_unlock(); 403 return ret; 404 } 405 EXPORT_SYMBOL_GPL(mddev_congested); 406 static int md_congested(void *data, int bits) 407 { 408 struct mddev *mddev = data; 409 return mddev_congested(mddev, bits); 410 } 411 412 /* 413 * Generic flush handling for md 414 */ 415 416 static void md_end_flush(struct bio *bio) 417 { 418 struct md_rdev *rdev = bio->bi_private; 419 struct mddev *mddev = rdev->mddev; 420 421 rdev_dec_pending(rdev, mddev); 422 423 if (atomic_dec_and_test(&mddev->flush_pending)) { 424 /* The pre-request flush has finished */ 425 queue_work(md_wq, &mddev->flush_work); 426 } 427 bio_put(bio); 428 } 429 430 static void md_submit_flush_data(struct work_struct *ws); 431 432 static void submit_flushes(struct work_struct *ws) 433 { 434 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 435 struct md_rdev *rdev; 436 437 INIT_WORK(&mddev->flush_work, md_submit_flush_data); 438 atomic_set(&mddev->flush_pending, 1); 439 rcu_read_lock(); 440 rdev_for_each_rcu(rdev, mddev) 441 if (rdev->raid_disk >= 0 && 442 !test_bit(Faulty, &rdev->flags)) { 443 /* Take two references, one is dropped 444 * when request finishes, one after 445 * we reclaim rcu_read_lock 446 */ 447 struct bio *bi; 448 atomic_inc(&rdev->nr_pending); 449 atomic_inc(&rdev->nr_pending); 450 rcu_read_unlock(); 451 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev); 452 bi->bi_end_io = md_end_flush; 453 bi->bi_private = rdev; 454 bio_set_dev(bi, rdev->bdev); 455 bi->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH; 456 atomic_inc(&mddev->flush_pending); 457 submit_bio(bi); 458 rcu_read_lock(); 459 rdev_dec_pending(rdev, mddev); 460 } 461 rcu_read_unlock(); 462 if (atomic_dec_and_test(&mddev->flush_pending)) 463 queue_work(md_wq, &mddev->flush_work); 464 } 465 466 static void md_submit_flush_data(struct work_struct *ws) 467 { 468 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 469 struct bio *bio = mddev->flush_bio; 470 471 /* 472 * must reset flush_bio before calling into md_handle_request to avoid a 473 * deadlock, because other bios passed md_handle_request suspend check 474 * could wait for this and below md_handle_request could wait for those 475 * bios because of suspend check 476 */ 477 mddev->flush_bio = NULL; 478 wake_up(&mddev->sb_wait); 479 480 if (bio->bi_iter.bi_size == 0) 481 /* an empty barrier - all done */ 482 bio_endio(bio); 483 else { 484 bio->bi_opf &= ~REQ_PREFLUSH; 485 md_handle_request(mddev, bio); 486 } 487 } 488 489 void md_flush_request(struct mddev *mddev, struct bio *bio) 490 { 491 spin_lock_irq(&mddev->lock); 492 wait_event_lock_irq(mddev->sb_wait, 493 !mddev->flush_bio, 494 mddev->lock); 495 mddev->flush_bio = bio; 496 spin_unlock_irq(&mddev->lock); 497 498 INIT_WORK(&mddev->flush_work, submit_flushes); 499 queue_work(md_wq, &mddev->flush_work); 500 } 501 EXPORT_SYMBOL(md_flush_request); 502 503 static inline struct mddev *mddev_get(struct mddev *mddev) 504 { 505 atomic_inc(&mddev->active); 506 return mddev; 507 } 508 509 static void mddev_delayed_delete(struct work_struct *ws); 510 511 static void mddev_put(struct mddev *mddev) 512 { 513 struct bio_set *bs = NULL, *sync_bs = NULL; 514 515 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) 516 return; 517 if (!mddev->raid_disks && list_empty(&mddev->disks) && 518 mddev->ctime == 0 && !mddev->hold_active) { 519 /* Array is not configured at all, and not held active, 520 * so destroy it */ 521 list_del_init(&mddev->all_mddevs); 522 bs = mddev->bio_set; 523 sync_bs = mddev->sync_set; 524 mddev->bio_set = NULL; 525 mddev->sync_set = NULL; 526 if (mddev->gendisk) { 527 /* We did a probe so need to clean up. Call 528 * queue_work inside the spinlock so that 529 * flush_workqueue() after mddev_find will 530 * succeed in waiting for the work to be done. 531 */ 532 INIT_WORK(&mddev->del_work, mddev_delayed_delete); 533 queue_work(md_misc_wq, &mddev->del_work); 534 } else 535 kfree(mddev); 536 } 537 spin_unlock(&all_mddevs_lock); 538 if (bs) 539 bioset_free(bs); 540 if (sync_bs) 541 bioset_free(sync_bs); 542 } 543 544 static void md_safemode_timeout(struct timer_list *t); 545 546 void mddev_init(struct mddev *mddev) 547 { 548 mutex_init(&mddev->open_mutex); 549 mutex_init(&mddev->reconfig_mutex); 550 mutex_init(&mddev->bitmap_info.mutex); 551 INIT_LIST_HEAD(&mddev->disks); 552 INIT_LIST_HEAD(&mddev->all_mddevs); 553 timer_setup(&mddev->safemode_timer, md_safemode_timeout, 0); 554 atomic_set(&mddev->active, 1); 555 atomic_set(&mddev->openers, 0); 556 atomic_set(&mddev->active_io, 0); 557 spin_lock_init(&mddev->lock); 558 atomic_set(&mddev->flush_pending, 0); 559 init_waitqueue_head(&mddev->sb_wait); 560 init_waitqueue_head(&mddev->recovery_wait); 561 mddev->reshape_position = MaxSector; 562 mddev->reshape_backwards = 0; 563 mddev->last_sync_action = "none"; 564 mddev->resync_min = 0; 565 mddev->resync_max = MaxSector; 566 mddev->level = LEVEL_NONE; 567 } 568 EXPORT_SYMBOL_GPL(mddev_init); 569 570 static struct mddev *mddev_find(dev_t unit) 571 { 572 struct mddev *mddev, *new = NULL; 573 574 if (unit && MAJOR(unit) != MD_MAJOR) 575 unit &= ~((1<<MdpMinorShift)-1); 576 577 retry: 578 spin_lock(&all_mddevs_lock); 579 580 if (unit) { 581 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 582 if (mddev->unit == unit) { 583 mddev_get(mddev); 584 spin_unlock(&all_mddevs_lock); 585 kfree(new); 586 return mddev; 587 } 588 589 if (new) { 590 list_add(&new->all_mddevs, &all_mddevs); 591 spin_unlock(&all_mddevs_lock); 592 new->hold_active = UNTIL_IOCTL; 593 return new; 594 } 595 } else if (new) { 596 /* find an unused unit number */ 597 static int next_minor = 512; 598 int start = next_minor; 599 int is_free = 0; 600 int dev = 0; 601 while (!is_free) { 602 dev = MKDEV(MD_MAJOR, next_minor); 603 next_minor++; 604 if (next_minor > MINORMASK) 605 next_minor = 0; 606 if (next_minor == start) { 607 /* Oh dear, all in use. */ 608 spin_unlock(&all_mddevs_lock); 609 kfree(new); 610 return NULL; 611 } 612 613 is_free = 1; 614 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 615 if (mddev->unit == dev) { 616 is_free = 0; 617 break; 618 } 619 } 620 new->unit = dev; 621 new->md_minor = MINOR(dev); 622 new->hold_active = UNTIL_STOP; 623 list_add(&new->all_mddevs, &all_mddevs); 624 spin_unlock(&all_mddevs_lock); 625 return new; 626 } 627 spin_unlock(&all_mddevs_lock); 628 629 new = kzalloc(sizeof(*new), GFP_KERNEL); 630 if (!new) 631 return NULL; 632 633 new->unit = unit; 634 if (MAJOR(unit) == MD_MAJOR) 635 new->md_minor = MINOR(unit); 636 else 637 new->md_minor = MINOR(unit) >> MdpMinorShift; 638 639 mddev_init(new); 640 641 goto retry; 642 } 643 644 static struct attribute_group md_redundancy_group; 645 646 void mddev_unlock(struct mddev *mddev) 647 { 648 if (mddev->to_remove) { 649 /* These cannot be removed under reconfig_mutex as 650 * an access to the files will try to take reconfig_mutex 651 * while holding the file unremovable, which leads to 652 * a deadlock. 653 * So hold set sysfs_active while the remove in happeing, 654 * and anything else which might set ->to_remove or my 655 * otherwise change the sysfs namespace will fail with 656 * -EBUSY if sysfs_active is still set. 657 * We set sysfs_active under reconfig_mutex and elsewhere 658 * test it under the same mutex to ensure its correct value 659 * is seen. 660 */ 661 struct attribute_group *to_remove = mddev->to_remove; 662 mddev->to_remove = NULL; 663 mddev->sysfs_active = 1; 664 mutex_unlock(&mddev->reconfig_mutex); 665 666 if (mddev->kobj.sd) { 667 if (to_remove != &md_redundancy_group) 668 sysfs_remove_group(&mddev->kobj, to_remove); 669 if (mddev->pers == NULL || 670 mddev->pers->sync_request == NULL) { 671 sysfs_remove_group(&mddev->kobj, &md_redundancy_group); 672 if (mddev->sysfs_action) 673 sysfs_put(mddev->sysfs_action); 674 mddev->sysfs_action = NULL; 675 } 676 } 677 mddev->sysfs_active = 0; 678 } else 679 mutex_unlock(&mddev->reconfig_mutex); 680 681 /* As we've dropped the mutex we need a spinlock to 682 * make sure the thread doesn't disappear 683 */ 684 spin_lock(&pers_lock); 685 md_wakeup_thread(mddev->thread); 686 wake_up(&mddev->sb_wait); 687 spin_unlock(&pers_lock); 688 } 689 EXPORT_SYMBOL_GPL(mddev_unlock); 690 691 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr) 692 { 693 struct md_rdev *rdev; 694 695 rdev_for_each_rcu(rdev, mddev) 696 if (rdev->desc_nr == nr) 697 return rdev; 698 699 return NULL; 700 } 701 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu); 702 703 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev) 704 { 705 struct md_rdev *rdev; 706 707 rdev_for_each(rdev, mddev) 708 if (rdev->bdev->bd_dev == dev) 709 return rdev; 710 711 return NULL; 712 } 713 714 struct md_rdev *md_find_rdev_rcu(struct mddev *mddev, dev_t dev) 715 { 716 struct md_rdev *rdev; 717 718 rdev_for_each_rcu(rdev, mddev) 719 if (rdev->bdev->bd_dev == dev) 720 return rdev; 721 722 return NULL; 723 } 724 EXPORT_SYMBOL_GPL(md_find_rdev_rcu); 725 726 static struct md_personality *find_pers(int level, char *clevel) 727 { 728 struct md_personality *pers; 729 list_for_each_entry(pers, &pers_list, list) { 730 if (level != LEVEL_NONE && pers->level == level) 731 return pers; 732 if (strcmp(pers->name, clevel)==0) 733 return pers; 734 } 735 return NULL; 736 } 737 738 /* return the offset of the super block in 512byte sectors */ 739 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev) 740 { 741 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512; 742 return MD_NEW_SIZE_SECTORS(num_sectors); 743 } 744 745 static int alloc_disk_sb(struct md_rdev *rdev) 746 { 747 rdev->sb_page = alloc_page(GFP_KERNEL); 748 if (!rdev->sb_page) 749 return -ENOMEM; 750 return 0; 751 } 752 753 void md_rdev_clear(struct md_rdev *rdev) 754 { 755 if (rdev->sb_page) { 756 put_page(rdev->sb_page); 757 rdev->sb_loaded = 0; 758 rdev->sb_page = NULL; 759 rdev->sb_start = 0; 760 rdev->sectors = 0; 761 } 762 if (rdev->bb_page) { 763 put_page(rdev->bb_page); 764 rdev->bb_page = NULL; 765 } 766 badblocks_exit(&rdev->badblocks); 767 } 768 EXPORT_SYMBOL_GPL(md_rdev_clear); 769 770 static void super_written(struct bio *bio) 771 { 772 struct md_rdev *rdev = bio->bi_private; 773 struct mddev *mddev = rdev->mddev; 774 775 if (bio->bi_status) { 776 pr_err("md: super_written gets error=%d\n", bio->bi_status); 777 md_error(mddev, rdev); 778 if (!test_bit(Faulty, &rdev->flags) 779 && (bio->bi_opf & MD_FAILFAST)) { 780 set_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags); 781 set_bit(LastDev, &rdev->flags); 782 } 783 } else 784 clear_bit(LastDev, &rdev->flags); 785 786 if (atomic_dec_and_test(&mddev->pending_writes)) 787 wake_up(&mddev->sb_wait); 788 rdev_dec_pending(rdev, mddev); 789 bio_put(bio); 790 } 791 792 void md_super_write(struct mddev *mddev, struct md_rdev *rdev, 793 sector_t sector, int size, struct page *page) 794 { 795 /* write first size bytes of page to sector of rdev 796 * Increment mddev->pending_writes before returning 797 * and decrement it on completion, waking up sb_wait 798 * if zero is reached. 799 * If an error occurred, call md_error 800 */ 801 struct bio *bio; 802 int ff = 0; 803 804 if (!page) 805 return; 806 807 if (test_bit(Faulty, &rdev->flags)) 808 return; 809 810 bio = md_bio_alloc_sync(mddev); 811 812 atomic_inc(&rdev->nr_pending); 813 814 bio_set_dev(bio, rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev); 815 bio->bi_iter.bi_sector = sector; 816 bio_add_page(bio, page, size, 0); 817 bio->bi_private = rdev; 818 bio->bi_end_io = super_written; 819 820 if (test_bit(MD_FAILFAST_SUPPORTED, &mddev->flags) && 821 test_bit(FailFast, &rdev->flags) && 822 !test_bit(LastDev, &rdev->flags)) 823 ff = MD_FAILFAST; 824 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH | REQ_FUA | ff; 825 826 atomic_inc(&mddev->pending_writes); 827 submit_bio(bio); 828 } 829 830 int md_super_wait(struct mddev *mddev) 831 { 832 /* wait for all superblock writes that were scheduled to complete */ 833 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0); 834 if (test_and_clear_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags)) 835 return -EAGAIN; 836 return 0; 837 } 838 839 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size, 840 struct page *page, int op, int op_flags, bool metadata_op) 841 { 842 struct bio *bio = md_bio_alloc_sync(rdev->mddev); 843 int ret; 844 845 if (metadata_op && rdev->meta_bdev) 846 bio_set_dev(bio, rdev->meta_bdev); 847 else 848 bio_set_dev(bio, rdev->bdev); 849 bio_set_op_attrs(bio, op, op_flags); 850 if (metadata_op) 851 bio->bi_iter.bi_sector = sector + rdev->sb_start; 852 else if (rdev->mddev->reshape_position != MaxSector && 853 (rdev->mddev->reshape_backwards == 854 (sector >= rdev->mddev->reshape_position))) 855 bio->bi_iter.bi_sector = sector + rdev->new_data_offset; 856 else 857 bio->bi_iter.bi_sector = sector + rdev->data_offset; 858 bio_add_page(bio, page, size, 0); 859 860 submit_bio_wait(bio); 861 862 ret = !bio->bi_status; 863 bio_put(bio); 864 return ret; 865 } 866 EXPORT_SYMBOL_GPL(sync_page_io); 867 868 static int read_disk_sb(struct md_rdev *rdev, int size) 869 { 870 char b[BDEVNAME_SIZE]; 871 872 if (rdev->sb_loaded) 873 return 0; 874 875 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true)) 876 goto fail; 877 rdev->sb_loaded = 1; 878 return 0; 879 880 fail: 881 pr_err("md: disabled device %s, could not read superblock.\n", 882 bdevname(rdev->bdev,b)); 883 return -EINVAL; 884 } 885 886 static int md_uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) 887 { 888 return sb1->set_uuid0 == sb2->set_uuid0 && 889 sb1->set_uuid1 == sb2->set_uuid1 && 890 sb1->set_uuid2 == sb2->set_uuid2 && 891 sb1->set_uuid3 == sb2->set_uuid3; 892 } 893 894 static int md_sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) 895 { 896 int ret; 897 mdp_super_t *tmp1, *tmp2; 898 899 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); 900 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); 901 902 if (!tmp1 || !tmp2) { 903 ret = 0; 904 goto abort; 905 } 906 907 *tmp1 = *sb1; 908 *tmp2 = *sb2; 909 910 /* 911 * nr_disks is not constant 912 */ 913 tmp1->nr_disks = 0; 914 tmp2->nr_disks = 0; 915 916 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0); 917 abort: 918 kfree(tmp1); 919 kfree(tmp2); 920 return ret; 921 } 922 923 static u32 md_csum_fold(u32 csum) 924 { 925 csum = (csum & 0xffff) + (csum >> 16); 926 return (csum & 0xffff) + (csum >> 16); 927 } 928 929 static unsigned int calc_sb_csum(mdp_super_t *sb) 930 { 931 u64 newcsum = 0; 932 u32 *sb32 = (u32*)sb; 933 int i; 934 unsigned int disk_csum, csum; 935 936 disk_csum = sb->sb_csum; 937 sb->sb_csum = 0; 938 939 for (i = 0; i < MD_SB_BYTES/4 ; i++) 940 newcsum += sb32[i]; 941 csum = (newcsum & 0xffffffff) + (newcsum>>32); 942 943 #ifdef CONFIG_ALPHA 944 /* This used to use csum_partial, which was wrong for several 945 * reasons including that different results are returned on 946 * different architectures. It isn't critical that we get exactly 947 * the same return value as before (we always csum_fold before 948 * testing, and that removes any differences). However as we 949 * know that csum_partial always returned a 16bit value on 950 * alphas, do a fold to maximise conformity to previous behaviour. 951 */ 952 sb->sb_csum = md_csum_fold(disk_csum); 953 #else 954 sb->sb_csum = disk_csum; 955 #endif 956 return csum; 957 } 958 959 /* 960 * Handle superblock details. 961 * We want to be able to handle multiple superblock formats 962 * so we have a common interface to them all, and an array of 963 * different handlers. 964 * We rely on user-space to write the initial superblock, and support 965 * reading and updating of superblocks. 966 * Interface methods are: 967 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version) 968 * loads and validates a superblock on dev. 969 * if refdev != NULL, compare superblocks on both devices 970 * Return: 971 * 0 - dev has a superblock that is compatible with refdev 972 * 1 - dev has a superblock that is compatible and newer than refdev 973 * so dev should be used as the refdev in future 974 * -EINVAL superblock incompatible or invalid 975 * -othererror e.g. -EIO 976 * 977 * int validate_super(struct mddev *mddev, struct md_rdev *dev) 978 * Verify that dev is acceptable into mddev. 979 * The first time, mddev->raid_disks will be 0, and data from 980 * dev should be merged in. Subsequent calls check that dev 981 * is new enough. Return 0 or -EINVAL 982 * 983 * void sync_super(struct mddev *mddev, struct md_rdev *dev) 984 * Update the superblock for rdev with data in mddev 985 * This does not write to disc. 986 * 987 */ 988 989 struct super_type { 990 char *name; 991 struct module *owner; 992 int (*load_super)(struct md_rdev *rdev, 993 struct md_rdev *refdev, 994 int minor_version); 995 int (*validate_super)(struct mddev *mddev, 996 struct md_rdev *rdev); 997 void (*sync_super)(struct mddev *mddev, 998 struct md_rdev *rdev); 999 unsigned long long (*rdev_size_change)(struct md_rdev *rdev, 1000 sector_t num_sectors); 1001 int (*allow_new_offset)(struct md_rdev *rdev, 1002 unsigned long long new_offset); 1003 }; 1004 1005 /* 1006 * Check that the given mddev has no bitmap. 1007 * 1008 * This function is called from the run method of all personalities that do not 1009 * support bitmaps. It prints an error message and returns non-zero if mddev 1010 * has a bitmap. Otherwise, it returns 0. 1011 * 1012 */ 1013 int md_check_no_bitmap(struct mddev *mddev) 1014 { 1015 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset) 1016 return 0; 1017 pr_warn("%s: bitmaps are not supported for %s\n", 1018 mdname(mddev), mddev->pers->name); 1019 return 1; 1020 } 1021 EXPORT_SYMBOL(md_check_no_bitmap); 1022 1023 /* 1024 * load_super for 0.90.0 1025 */ 1026 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1027 { 1028 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1029 mdp_super_t *sb; 1030 int ret; 1031 1032 /* 1033 * Calculate the position of the superblock (512byte sectors), 1034 * it's at the end of the disk. 1035 * 1036 * It also happens to be a multiple of 4Kb. 1037 */ 1038 rdev->sb_start = calc_dev_sboffset(rdev); 1039 1040 ret = read_disk_sb(rdev, MD_SB_BYTES); 1041 if (ret) 1042 return ret; 1043 1044 ret = -EINVAL; 1045 1046 bdevname(rdev->bdev, b); 1047 sb = page_address(rdev->sb_page); 1048 1049 if (sb->md_magic != MD_SB_MAGIC) { 1050 pr_warn("md: invalid raid superblock magic on %s\n", b); 1051 goto abort; 1052 } 1053 1054 if (sb->major_version != 0 || 1055 sb->minor_version < 90 || 1056 sb->minor_version > 91) { 1057 pr_warn("Bad version number %d.%d on %s\n", 1058 sb->major_version, sb->minor_version, b); 1059 goto abort; 1060 } 1061 1062 if (sb->raid_disks <= 0) 1063 goto abort; 1064 1065 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) { 1066 pr_warn("md: invalid superblock checksum on %s\n", b); 1067 goto abort; 1068 } 1069 1070 rdev->preferred_minor = sb->md_minor; 1071 rdev->data_offset = 0; 1072 rdev->new_data_offset = 0; 1073 rdev->sb_size = MD_SB_BYTES; 1074 rdev->badblocks.shift = -1; 1075 1076 if (sb->level == LEVEL_MULTIPATH) 1077 rdev->desc_nr = -1; 1078 else 1079 rdev->desc_nr = sb->this_disk.number; 1080 1081 if (!refdev) { 1082 ret = 1; 1083 } else { 1084 __u64 ev1, ev2; 1085 mdp_super_t *refsb = page_address(refdev->sb_page); 1086 if (!md_uuid_equal(refsb, sb)) { 1087 pr_warn("md: %s has different UUID to %s\n", 1088 b, bdevname(refdev->bdev,b2)); 1089 goto abort; 1090 } 1091 if (!md_sb_equal(refsb, sb)) { 1092 pr_warn("md: %s has same UUID but different superblock to %s\n", 1093 b, bdevname(refdev->bdev, b2)); 1094 goto abort; 1095 } 1096 ev1 = md_event(sb); 1097 ev2 = md_event(refsb); 1098 if (ev1 > ev2) 1099 ret = 1; 1100 else 1101 ret = 0; 1102 } 1103 rdev->sectors = rdev->sb_start; 1104 /* Limit to 4TB as metadata cannot record more than that. 1105 * (not needed for Linear and RAID0 as metadata doesn't 1106 * record this size) 1107 */ 1108 if (IS_ENABLED(CONFIG_LBDAF) && (u64)rdev->sectors >= (2ULL << 32) && 1109 sb->level >= 1) 1110 rdev->sectors = (sector_t)(2ULL << 32) - 2; 1111 1112 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1) 1113 /* "this cannot possibly happen" ... */ 1114 ret = -EINVAL; 1115 1116 abort: 1117 return ret; 1118 } 1119 1120 /* 1121 * validate_super for 0.90.0 1122 */ 1123 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev) 1124 { 1125 mdp_disk_t *desc; 1126 mdp_super_t *sb = page_address(rdev->sb_page); 1127 __u64 ev1 = md_event(sb); 1128 1129 rdev->raid_disk = -1; 1130 clear_bit(Faulty, &rdev->flags); 1131 clear_bit(In_sync, &rdev->flags); 1132 clear_bit(Bitmap_sync, &rdev->flags); 1133 clear_bit(WriteMostly, &rdev->flags); 1134 1135 if (mddev->raid_disks == 0) { 1136 mddev->major_version = 0; 1137 mddev->minor_version = sb->minor_version; 1138 mddev->patch_version = sb->patch_version; 1139 mddev->external = 0; 1140 mddev->chunk_sectors = sb->chunk_size >> 9; 1141 mddev->ctime = sb->ctime; 1142 mddev->utime = sb->utime; 1143 mddev->level = sb->level; 1144 mddev->clevel[0] = 0; 1145 mddev->layout = sb->layout; 1146 mddev->raid_disks = sb->raid_disks; 1147 mddev->dev_sectors = ((sector_t)sb->size) * 2; 1148 mddev->events = ev1; 1149 mddev->bitmap_info.offset = 0; 1150 mddev->bitmap_info.space = 0; 1151 /* bitmap can use 60 K after the 4K superblocks */ 1152 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 1153 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 1154 mddev->reshape_backwards = 0; 1155 1156 if (mddev->minor_version >= 91) { 1157 mddev->reshape_position = sb->reshape_position; 1158 mddev->delta_disks = sb->delta_disks; 1159 mddev->new_level = sb->new_level; 1160 mddev->new_layout = sb->new_layout; 1161 mddev->new_chunk_sectors = sb->new_chunk >> 9; 1162 if (mddev->delta_disks < 0) 1163 mddev->reshape_backwards = 1; 1164 } else { 1165 mddev->reshape_position = MaxSector; 1166 mddev->delta_disks = 0; 1167 mddev->new_level = mddev->level; 1168 mddev->new_layout = mddev->layout; 1169 mddev->new_chunk_sectors = mddev->chunk_sectors; 1170 } 1171 1172 if (sb->state & (1<<MD_SB_CLEAN)) 1173 mddev->recovery_cp = MaxSector; 1174 else { 1175 if (sb->events_hi == sb->cp_events_hi && 1176 sb->events_lo == sb->cp_events_lo) { 1177 mddev->recovery_cp = sb->recovery_cp; 1178 } else 1179 mddev->recovery_cp = 0; 1180 } 1181 1182 memcpy(mddev->uuid+0, &sb->set_uuid0, 4); 1183 memcpy(mddev->uuid+4, &sb->set_uuid1, 4); 1184 memcpy(mddev->uuid+8, &sb->set_uuid2, 4); 1185 memcpy(mddev->uuid+12,&sb->set_uuid3, 4); 1186 1187 mddev->max_disks = MD_SB_DISKS; 1188 1189 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && 1190 mddev->bitmap_info.file == NULL) { 1191 mddev->bitmap_info.offset = 1192 mddev->bitmap_info.default_offset; 1193 mddev->bitmap_info.space = 1194 mddev->bitmap_info.default_space; 1195 } 1196 1197 } else if (mddev->pers == NULL) { 1198 /* Insist on good event counter while assembling, except 1199 * for spares (which don't need an event count) */ 1200 ++ev1; 1201 if (sb->disks[rdev->desc_nr].state & ( 1202 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))) 1203 if (ev1 < mddev->events) 1204 return -EINVAL; 1205 } else if (mddev->bitmap) { 1206 /* if adding to array with a bitmap, then we can accept an 1207 * older device ... but not too old. 1208 */ 1209 if (ev1 < mddev->bitmap->events_cleared) 1210 return 0; 1211 if (ev1 < mddev->events) 1212 set_bit(Bitmap_sync, &rdev->flags); 1213 } else { 1214 if (ev1 < mddev->events) 1215 /* just a hot-add of a new device, leave raid_disk at -1 */ 1216 return 0; 1217 } 1218 1219 if (mddev->level != LEVEL_MULTIPATH) { 1220 desc = sb->disks + rdev->desc_nr; 1221 1222 if (desc->state & (1<<MD_DISK_FAULTY)) 1223 set_bit(Faulty, &rdev->flags); 1224 else if (desc->state & (1<<MD_DISK_SYNC) /* && 1225 desc->raid_disk < mddev->raid_disks */) { 1226 set_bit(In_sync, &rdev->flags); 1227 rdev->raid_disk = desc->raid_disk; 1228 rdev->saved_raid_disk = desc->raid_disk; 1229 } else if (desc->state & (1<<MD_DISK_ACTIVE)) { 1230 /* active but not in sync implies recovery up to 1231 * reshape position. We don't know exactly where 1232 * that is, so set to zero for now */ 1233 if (mddev->minor_version >= 91) { 1234 rdev->recovery_offset = 0; 1235 rdev->raid_disk = desc->raid_disk; 1236 } 1237 } 1238 if (desc->state & (1<<MD_DISK_WRITEMOSTLY)) 1239 set_bit(WriteMostly, &rdev->flags); 1240 if (desc->state & (1<<MD_DISK_FAILFAST)) 1241 set_bit(FailFast, &rdev->flags); 1242 } else /* MULTIPATH are always insync */ 1243 set_bit(In_sync, &rdev->flags); 1244 return 0; 1245 } 1246 1247 /* 1248 * sync_super for 0.90.0 1249 */ 1250 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev) 1251 { 1252 mdp_super_t *sb; 1253 struct md_rdev *rdev2; 1254 int next_spare = mddev->raid_disks; 1255 1256 /* make rdev->sb match mddev data.. 1257 * 1258 * 1/ zero out disks 1259 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); 1260 * 3/ any empty disks < next_spare become removed 1261 * 1262 * disks[0] gets initialised to REMOVED because 1263 * we cannot be sure from other fields if it has 1264 * been initialised or not. 1265 */ 1266 int i; 1267 int active=0, working=0,failed=0,spare=0,nr_disks=0; 1268 1269 rdev->sb_size = MD_SB_BYTES; 1270 1271 sb = page_address(rdev->sb_page); 1272 1273 memset(sb, 0, sizeof(*sb)); 1274 1275 sb->md_magic = MD_SB_MAGIC; 1276 sb->major_version = mddev->major_version; 1277 sb->patch_version = mddev->patch_version; 1278 sb->gvalid_words = 0; /* ignored */ 1279 memcpy(&sb->set_uuid0, mddev->uuid+0, 4); 1280 memcpy(&sb->set_uuid1, mddev->uuid+4, 4); 1281 memcpy(&sb->set_uuid2, mddev->uuid+8, 4); 1282 memcpy(&sb->set_uuid3, mddev->uuid+12,4); 1283 1284 sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 1285 sb->level = mddev->level; 1286 sb->size = mddev->dev_sectors / 2; 1287 sb->raid_disks = mddev->raid_disks; 1288 sb->md_minor = mddev->md_minor; 1289 sb->not_persistent = 0; 1290 sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 1291 sb->state = 0; 1292 sb->events_hi = (mddev->events>>32); 1293 sb->events_lo = (u32)mddev->events; 1294 1295 if (mddev->reshape_position == MaxSector) 1296 sb->minor_version = 90; 1297 else { 1298 sb->minor_version = 91; 1299 sb->reshape_position = mddev->reshape_position; 1300 sb->new_level = mddev->new_level; 1301 sb->delta_disks = mddev->delta_disks; 1302 sb->new_layout = mddev->new_layout; 1303 sb->new_chunk = mddev->new_chunk_sectors << 9; 1304 } 1305 mddev->minor_version = sb->minor_version; 1306 if (mddev->in_sync) 1307 { 1308 sb->recovery_cp = mddev->recovery_cp; 1309 sb->cp_events_hi = (mddev->events>>32); 1310 sb->cp_events_lo = (u32)mddev->events; 1311 if (mddev->recovery_cp == MaxSector) 1312 sb->state = (1<< MD_SB_CLEAN); 1313 } else 1314 sb->recovery_cp = 0; 1315 1316 sb->layout = mddev->layout; 1317 sb->chunk_size = mddev->chunk_sectors << 9; 1318 1319 if (mddev->bitmap && mddev->bitmap_info.file == NULL) 1320 sb->state |= (1<<MD_SB_BITMAP_PRESENT); 1321 1322 sb->disks[0].state = (1<<MD_DISK_REMOVED); 1323 rdev_for_each(rdev2, mddev) { 1324 mdp_disk_t *d; 1325 int desc_nr; 1326 int is_active = test_bit(In_sync, &rdev2->flags); 1327 1328 if (rdev2->raid_disk >= 0 && 1329 sb->minor_version >= 91) 1330 /* we have nowhere to store the recovery_offset, 1331 * but if it is not below the reshape_position, 1332 * we can piggy-back on that. 1333 */ 1334 is_active = 1; 1335 if (rdev2->raid_disk < 0 || 1336 test_bit(Faulty, &rdev2->flags)) 1337 is_active = 0; 1338 if (is_active) 1339 desc_nr = rdev2->raid_disk; 1340 else 1341 desc_nr = next_spare++; 1342 rdev2->desc_nr = desc_nr; 1343 d = &sb->disks[rdev2->desc_nr]; 1344 nr_disks++; 1345 d->number = rdev2->desc_nr; 1346 d->major = MAJOR(rdev2->bdev->bd_dev); 1347 d->minor = MINOR(rdev2->bdev->bd_dev); 1348 if (is_active) 1349 d->raid_disk = rdev2->raid_disk; 1350 else 1351 d->raid_disk = rdev2->desc_nr; /* compatibility */ 1352 if (test_bit(Faulty, &rdev2->flags)) 1353 d->state = (1<<MD_DISK_FAULTY); 1354 else if (is_active) { 1355 d->state = (1<<MD_DISK_ACTIVE); 1356 if (test_bit(In_sync, &rdev2->flags)) 1357 d->state |= (1<<MD_DISK_SYNC); 1358 active++; 1359 working++; 1360 } else { 1361 d->state = 0; 1362 spare++; 1363 working++; 1364 } 1365 if (test_bit(WriteMostly, &rdev2->flags)) 1366 d->state |= (1<<MD_DISK_WRITEMOSTLY); 1367 if (test_bit(FailFast, &rdev2->flags)) 1368 d->state |= (1<<MD_DISK_FAILFAST); 1369 } 1370 /* now set the "removed" and "faulty" bits on any missing devices */ 1371 for (i=0 ; i < mddev->raid_disks ; i++) { 1372 mdp_disk_t *d = &sb->disks[i]; 1373 if (d->state == 0 && d->number == 0) { 1374 d->number = i; 1375 d->raid_disk = i; 1376 d->state = (1<<MD_DISK_REMOVED); 1377 d->state |= (1<<MD_DISK_FAULTY); 1378 failed++; 1379 } 1380 } 1381 sb->nr_disks = nr_disks; 1382 sb->active_disks = active; 1383 sb->working_disks = working; 1384 sb->failed_disks = failed; 1385 sb->spare_disks = spare; 1386 1387 sb->this_disk = sb->disks[rdev->desc_nr]; 1388 sb->sb_csum = calc_sb_csum(sb); 1389 } 1390 1391 /* 1392 * rdev_size_change for 0.90.0 1393 */ 1394 static unsigned long long 1395 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1396 { 1397 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1398 return 0; /* component must fit device */ 1399 if (rdev->mddev->bitmap_info.offset) 1400 return 0; /* can't move bitmap */ 1401 rdev->sb_start = calc_dev_sboffset(rdev); 1402 if (!num_sectors || num_sectors > rdev->sb_start) 1403 num_sectors = rdev->sb_start; 1404 /* Limit to 4TB as metadata cannot record more than that. 1405 * 4TB == 2^32 KB, or 2*2^32 sectors. 1406 */ 1407 if (IS_ENABLED(CONFIG_LBDAF) && (u64)num_sectors >= (2ULL << 32) && 1408 rdev->mddev->level >= 1) 1409 num_sectors = (sector_t)(2ULL << 32) - 2; 1410 do { 1411 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1412 rdev->sb_page); 1413 } while (md_super_wait(rdev->mddev) < 0); 1414 return num_sectors; 1415 } 1416 1417 static int 1418 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset) 1419 { 1420 /* non-zero offset changes not possible with v0.90 */ 1421 return new_offset == 0; 1422 } 1423 1424 /* 1425 * version 1 superblock 1426 */ 1427 1428 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb) 1429 { 1430 __le32 disk_csum; 1431 u32 csum; 1432 unsigned long long newcsum; 1433 int size = 256 + le32_to_cpu(sb->max_dev)*2; 1434 __le32 *isuper = (__le32*)sb; 1435 1436 disk_csum = sb->sb_csum; 1437 sb->sb_csum = 0; 1438 newcsum = 0; 1439 for (; size >= 4; size -= 4) 1440 newcsum += le32_to_cpu(*isuper++); 1441 1442 if (size == 2) 1443 newcsum += le16_to_cpu(*(__le16*) isuper); 1444 1445 csum = (newcsum & 0xffffffff) + (newcsum >> 32); 1446 sb->sb_csum = disk_csum; 1447 return cpu_to_le32(csum); 1448 } 1449 1450 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1451 { 1452 struct mdp_superblock_1 *sb; 1453 int ret; 1454 sector_t sb_start; 1455 sector_t sectors; 1456 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1457 int bmask; 1458 1459 /* 1460 * Calculate the position of the superblock in 512byte sectors. 1461 * It is always aligned to a 4K boundary and 1462 * depeding on minor_version, it can be: 1463 * 0: At least 8K, but less than 12K, from end of device 1464 * 1: At start of device 1465 * 2: 4K from start of device. 1466 */ 1467 switch(minor_version) { 1468 case 0: 1469 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9; 1470 sb_start -= 8*2; 1471 sb_start &= ~(sector_t)(4*2-1); 1472 break; 1473 case 1: 1474 sb_start = 0; 1475 break; 1476 case 2: 1477 sb_start = 8; 1478 break; 1479 default: 1480 return -EINVAL; 1481 } 1482 rdev->sb_start = sb_start; 1483 1484 /* superblock is rarely larger than 1K, but it can be larger, 1485 * and it is safe to read 4k, so we do that 1486 */ 1487 ret = read_disk_sb(rdev, 4096); 1488 if (ret) return ret; 1489 1490 sb = page_address(rdev->sb_page); 1491 1492 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || 1493 sb->major_version != cpu_to_le32(1) || 1494 le32_to_cpu(sb->max_dev) > (4096-256)/2 || 1495 le64_to_cpu(sb->super_offset) != rdev->sb_start || 1496 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) 1497 return -EINVAL; 1498 1499 if (calc_sb_1_csum(sb) != sb->sb_csum) { 1500 pr_warn("md: invalid superblock checksum on %s\n", 1501 bdevname(rdev->bdev,b)); 1502 return -EINVAL; 1503 } 1504 if (le64_to_cpu(sb->data_size) < 10) { 1505 pr_warn("md: data_size too small on %s\n", 1506 bdevname(rdev->bdev,b)); 1507 return -EINVAL; 1508 } 1509 if (sb->pad0 || 1510 sb->pad3[0] || 1511 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1]))) 1512 /* Some padding is non-zero, might be a new feature */ 1513 return -EINVAL; 1514 1515 rdev->preferred_minor = 0xffff; 1516 rdev->data_offset = le64_to_cpu(sb->data_offset); 1517 rdev->new_data_offset = rdev->data_offset; 1518 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) && 1519 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET)) 1520 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset); 1521 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); 1522 1523 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; 1524 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1525 if (rdev->sb_size & bmask) 1526 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1527 1528 if (minor_version 1529 && rdev->data_offset < sb_start + (rdev->sb_size/512)) 1530 return -EINVAL; 1531 if (minor_version 1532 && rdev->new_data_offset < sb_start + (rdev->sb_size/512)) 1533 return -EINVAL; 1534 1535 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH)) 1536 rdev->desc_nr = -1; 1537 else 1538 rdev->desc_nr = le32_to_cpu(sb->dev_number); 1539 1540 if (!rdev->bb_page) { 1541 rdev->bb_page = alloc_page(GFP_KERNEL); 1542 if (!rdev->bb_page) 1543 return -ENOMEM; 1544 } 1545 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) && 1546 rdev->badblocks.count == 0) { 1547 /* need to load the bad block list. 1548 * Currently we limit it to one page. 1549 */ 1550 s32 offset; 1551 sector_t bb_sector; 1552 u64 *bbp; 1553 int i; 1554 int sectors = le16_to_cpu(sb->bblog_size); 1555 if (sectors > (PAGE_SIZE / 512)) 1556 return -EINVAL; 1557 offset = le32_to_cpu(sb->bblog_offset); 1558 if (offset == 0) 1559 return -EINVAL; 1560 bb_sector = (long long)offset; 1561 if (!sync_page_io(rdev, bb_sector, sectors << 9, 1562 rdev->bb_page, REQ_OP_READ, 0, true)) 1563 return -EIO; 1564 bbp = (u64 *)page_address(rdev->bb_page); 1565 rdev->badblocks.shift = sb->bblog_shift; 1566 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) { 1567 u64 bb = le64_to_cpu(*bbp); 1568 int count = bb & (0x3ff); 1569 u64 sector = bb >> 10; 1570 sector <<= sb->bblog_shift; 1571 count <<= sb->bblog_shift; 1572 if (bb + 1 == 0) 1573 break; 1574 if (badblocks_set(&rdev->badblocks, sector, count, 1)) 1575 return -EINVAL; 1576 } 1577 } else if (sb->bblog_offset != 0) 1578 rdev->badblocks.shift = 0; 1579 1580 if ((le32_to_cpu(sb->feature_map) & 1581 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS))) { 1582 rdev->ppl.offset = (__s16)le16_to_cpu(sb->ppl.offset); 1583 rdev->ppl.size = le16_to_cpu(sb->ppl.size); 1584 rdev->ppl.sector = rdev->sb_start + rdev->ppl.offset; 1585 } 1586 1587 if (!refdev) { 1588 ret = 1; 1589 } else { 1590 __u64 ev1, ev2; 1591 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page); 1592 1593 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || 1594 sb->level != refsb->level || 1595 sb->layout != refsb->layout || 1596 sb->chunksize != refsb->chunksize) { 1597 pr_warn("md: %s has strangely different superblock to %s\n", 1598 bdevname(rdev->bdev,b), 1599 bdevname(refdev->bdev,b2)); 1600 return -EINVAL; 1601 } 1602 ev1 = le64_to_cpu(sb->events); 1603 ev2 = le64_to_cpu(refsb->events); 1604 1605 if (ev1 > ev2) 1606 ret = 1; 1607 else 1608 ret = 0; 1609 } 1610 if (minor_version) { 1611 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9); 1612 sectors -= rdev->data_offset; 1613 } else 1614 sectors = rdev->sb_start; 1615 if (sectors < le64_to_cpu(sb->data_size)) 1616 return -EINVAL; 1617 rdev->sectors = le64_to_cpu(sb->data_size); 1618 return ret; 1619 } 1620 1621 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev) 1622 { 1623 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 1624 __u64 ev1 = le64_to_cpu(sb->events); 1625 1626 rdev->raid_disk = -1; 1627 clear_bit(Faulty, &rdev->flags); 1628 clear_bit(In_sync, &rdev->flags); 1629 clear_bit(Bitmap_sync, &rdev->flags); 1630 clear_bit(WriteMostly, &rdev->flags); 1631 1632 if (mddev->raid_disks == 0) { 1633 mddev->major_version = 1; 1634 mddev->patch_version = 0; 1635 mddev->external = 0; 1636 mddev->chunk_sectors = le32_to_cpu(sb->chunksize); 1637 mddev->ctime = le64_to_cpu(sb->ctime); 1638 mddev->utime = le64_to_cpu(sb->utime); 1639 mddev->level = le32_to_cpu(sb->level); 1640 mddev->clevel[0] = 0; 1641 mddev->layout = le32_to_cpu(sb->layout); 1642 mddev->raid_disks = le32_to_cpu(sb->raid_disks); 1643 mddev->dev_sectors = le64_to_cpu(sb->size); 1644 mddev->events = ev1; 1645 mddev->bitmap_info.offset = 0; 1646 mddev->bitmap_info.space = 0; 1647 /* Default location for bitmap is 1K after superblock 1648 * using 3K - total of 4K 1649 */ 1650 mddev->bitmap_info.default_offset = 1024 >> 9; 1651 mddev->bitmap_info.default_space = (4096-1024) >> 9; 1652 mddev->reshape_backwards = 0; 1653 1654 mddev->recovery_cp = le64_to_cpu(sb->resync_offset); 1655 memcpy(mddev->uuid, sb->set_uuid, 16); 1656 1657 mddev->max_disks = (4096-256)/2; 1658 1659 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && 1660 mddev->bitmap_info.file == NULL) { 1661 mddev->bitmap_info.offset = 1662 (__s32)le32_to_cpu(sb->bitmap_offset); 1663 /* Metadata doesn't record how much space is available. 1664 * For 1.0, we assume we can use up to the superblock 1665 * if before, else to 4K beyond superblock. 1666 * For others, assume no change is possible. 1667 */ 1668 if (mddev->minor_version > 0) 1669 mddev->bitmap_info.space = 0; 1670 else if (mddev->bitmap_info.offset > 0) 1671 mddev->bitmap_info.space = 1672 8 - mddev->bitmap_info.offset; 1673 else 1674 mddev->bitmap_info.space = 1675 -mddev->bitmap_info.offset; 1676 } 1677 1678 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 1679 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 1680 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 1681 mddev->new_level = le32_to_cpu(sb->new_level); 1682 mddev->new_layout = le32_to_cpu(sb->new_layout); 1683 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk); 1684 if (mddev->delta_disks < 0 || 1685 (mddev->delta_disks == 0 && 1686 (le32_to_cpu(sb->feature_map) 1687 & MD_FEATURE_RESHAPE_BACKWARDS))) 1688 mddev->reshape_backwards = 1; 1689 } else { 1690 mddev->reshape_position = MaxSector; 1691 mddev->delta_disks = 0; 1692 mddev->new_level = mddev->level; 1693 mddev->new_layout = mddev->layout; 1694 mddev->new_chunk_sectors = mddev->chunk_sectors; 1695 } 1696 1697 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL) 1698 set_bit(MD_HAS_JOURNAL, &mddev->flags); 1699 1700 if (le32_to_cpu(sb->feature_map) & 1701 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS)) { 1702 if (le32_to_cpu(sb->feature_map) & 1703 (MD_FEATURE_BITMAP_OFFSET | MD_FEATURE_JOURNAL)) 1704 return -EINVAL; 1705 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_PPL) && 1706 (le32_to_cpu(sb->feature_map) & 1707 MD_FEATURE_MULTIPLE_PPLS)) 1708 return -EINVAL; 1709 set_bit(MD_HAS_PPL, &mddev->flags); 1710 } 1711 } else if (mddev->pers == NULL) { 1712 /* Insist of good event counter while assembling, except for 1713 * spares (which don't need an event count) */ 1714 ++ev1; 1715 if (rdev->desc_nr >= 0 && 1716 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1717 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX || 1718 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL)) 1719 if (ev1 < mddev->events) 1720 return -EINVAL; 1721 } else if (mddev->bitmap) { 1722 /* If adding to array with a bitmap, then we can accept an 1723 * older device, but not too old. 1724 */ 1725 if (ev1 < mddev->bitmap->events_cleared) 1726 return 0; 1727 if (ev1 < mddev->events) 1728 set_bit(Bitmap_sync, &rdev->flags); 1729 } else { 1730 if (ev1 < mddev->events) 1731 /* just a hot-add of a new device, leave raid_disk at -1 */ 1732 return 0; 1733 } 1734 if (mddev->level != LEVEL_MULTIPATH) { 1735 int role; 1736 if (rdev->desc_nr < 0 || 1737 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) { 1738 role = MD_DISK_ROLE_SPARE; 1739 rdev->desc_nr = -1; 1740 } else 1741 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 1742 switch(role) { 1743 case MD_DISK_ROLE_SPARE: /* spare */ 1744 break; 1745 case MD_DISK_ROLE_FAULTY: /* faulty */ 1746 set_bit(Faulty, &rdev->flags); 1747 break; 1748 case MD_DISK_ROLE_JOURNAL: /* journal device */ 1749 if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) { 1750 /* journal device without journal feature */ 1751 pr_warn("md: journal device provided without journal feature, ignoring the device\n"); 1752 return -EINVAL; 1753 } 1754 set_bit(Journal, &rdev->flags); 1755 rdev->journal_tail = le64_to_cpu(sb->journal_tail); 1756 rdev->raid_disk = 0; 1757 break; 1758 default: 1759 rdev->saved_raid_disk = role; 1760 if ((le32_to_cpu(sb->feature_map) & 1761 MD_FEATURE_RECOVERY_OFFSET)) { 1762 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 1763 if (!(le32_to_cpu(sb->feature_map) & 1764 MD_FEATURE_RECOVERY_BITMAP)) 1765 rdev->saved_raid_disk = -1; 1766 } else 1767 set_bit(In_sync, &rdev->flags); 1768 rdev->raid_disk = role; 1769 break; 1770 } 1771 if (sb->devflags & WriteMostly1) 1772 set_bit(WriteMostly, &rdev->flags); 1773 if (sb->devflags & FailFast1) 1774 set_bit(FailFast, &rdev->flags); 1775 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT) 1776 set_bit(Replacement, &rdev->flags); 1777 } else /* MULTIPATH are always insync */ 1778 set_bit(In_sync, &rdev->flags); 1779 1780 return 0; 1781 } 1782 1783 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev) 1784 { 1785 struct mdp_superblock_1 *sb; 1786 struct md_rdev *rdev2; 1787 int max_dev, i; 1788 /* make rdev->sb match mddev and rdev data. */ 1789 1790 sb = page_address(rdev->sb_page); 1791 1792 sb->feature_map = 0; 1793 sb->pad0 = 0; 1794 sb->recovery_offset = cpu_to_le64(0); 1795 memset(sb->pad3, 0, sizeof(sb->pad3)); 1796 1797 sb->utime = cpu_to_le64((__u64)mddev->utime); 1798 sb->events = cpu_to_le64(mddev->events); 1799 if (mddev->in_sync) 1800 sb->resync_offset = cpu_to_le64(mddev->recovery_cp); 1801 else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags)) 1802 sb->resync_offset = cpu_to_le64(MaxSector); 1803 else 1804 sb->resync_offset = cpu_to_le64(0); 1805 1806 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); 1807 1808 sb->raid_disks = cpu_to_le32(mddev->raid_disks); 1809 sb->size = cpu_to_le64(mddev->dev_sectors); 1810 sb->chunksize = cpu_to_le32(mddev->chunk_sectors); 1811 sb->level = cpu_to_le32(mddev->level); 1812 sb->layout = cpu_to_le32(mddev->layout); 1813 if (test_bit(FailFast, &rdev->flags)) 1814 sb->devflags |= FailFast1; 1815 else 1816 sb->devflags &= ~FailFast1; 1817 1818 if (test_bit(WriteMostly, &rdev->flags)) 1819 sb->devflags |= WriteMostly1; 1820 else 1821 sb->devflags &= ~WriteMostly1; 1822 sb->data_offset = cpu_to_le64(rdev->data_offset); 1823 sb->data_size = cpu_to_le64(rdev->sectors); 1824 1825 if (mddev->bitmap && mddev->bitmap_info.file == NULL) { 1826 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset); 1827 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); 1828 } 1829 1830 if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) && 1831 !test_bit(In_sync, &rdev->flags)) { 1832 sb->feature_map |= 1833 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); 1834 sb->recovery_offset = 1835 cpu_to_le64(rdev->recovery_offset); 1836 if (rdev->saved_raid_disk >= 0 && mddev->bitmap) 1837 sb->feature_map |= 1838 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP); 1839 } 1840 /* Note: recovery_offset and journal_tail share space */ 1841 if (test_bit(Journal, &rdev->flags)) 1842 sb->journal_tail = cpu_to_le64(rdev->journal_tail); 1843 if (test_bit(Replacement, &rdev->flags)) 1844 sb->feature_map |= 1845 cpu_to_le32(MD_FEATURE_REPLACEMENT); 1846 1847 if (mddev->reshape_position != MaxSector) { 1848 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); 1849 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 1850 sb->new_layout = cpu_to_le32(mddev->new_layout); 1851 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 1852 sb->new_level = cpu_to_le32(mddev->new_level); 1853 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors); 1854 if (mddev->delta_disks == 0 && 1855 mddev->reshape_backwards) 1856 sb->feature_map 1857 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS); 1858 if (rdev->new_data_offset != rdev->data_offset) { 1859 sb->feature_map 1860 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET); 1861 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset 1862 - rdev->data_offset)); 1863 } 1864 } 1865 1866 if (mddev_is_clustered(mddev)) 1867 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED); 1868 1869 if (rdev->badblocks.count == 0) 1870 /* Nothing to do for bad blocks*/ ; 1871 else if (sb->bblog_offset == 0) 1872 /* Cannot record bad blocks on this device */ 1873 md_error(mddev, rdev); 1874 else { 1875 struct badblocks *bb = &rdev->badblocks; 1876 u64 *bbp = (u64 *)page_address(rdev->bb_page); 1877 u64 *p = bb->page; 1878 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS); 1879 if (bb->changed) { 1880 unsigned seq; 1881 1882 retry: 1883 seq = read_seqbegin(&bb->lock); 1884 1885 memset(bbp, 0xff, PAGE_SIZE); 1886 1887 for (i = 0 ; i < bb->count ; i++) { 1888 u64 internal_bb = p[i]; 1889 u64 store_bb = ((BB_OFFSET(internal_bb) << 10) 1890 | BB_LEN(internal_bb)); 1891 bbp[i] = cpu_to_le64(store_bb); 1892 } 1893 bb->changed = 0; 1894 if (read_seqretry(&bb->lock, seq)) 1895 goto retry; 1896 1897 bb->sector = (rdev->sb_start + 1898 (int)le32_to_cpu(sb->bblog_offset)); 1899 bb->size = le16_to_cpu(sb->bblog_size); 1900 } 1901 } 1902 1903 max_dev = 0; 1904 rdev_for_each(rdev2, mddev) 1905 if (rdev2->desc_nr+1 > max_dev) 1906 max_dev = rdev2->desc_nr+1; 1907 1908 if (max_dev > le32_to_cpu(sb->max_dev)) { 1909 int bmask; 1910 sb->max_dev = cpu_to_le32(max_dev); 1911 rdev->sb_size = max_dev * 2 + 256; 1912 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1913 if (rdev->sb_size & bmask) 1914 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1915 } else 1916 max_dev = le32_to_cpu(sb->max_dev); 1917 1918 for (i=0; i<max_dev;i++) 1919 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 1920 1921 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) 1922 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL); 1923 1924 if (test_bit(MD_HAS_PPL, &mddev->flags)) { 1925 if (test_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags)) 1926 sb->feature_map |= 1927 cpu_to_le32(MD_FEATURE_MULTIPLE_PPLS); 1928 else 1929 sb->feature_map |= cpu_to_le32(MD_FEATURE_PPL); 1930 sb->ppl.offset = cpu_to_le16(rdev->ppl.offset); 1931 sb->ppl.size = cpu_to_le16(rdev->ppl.size); 1932 } 1933 1934 rdev_for_each(rdev2, mddev) { 1935 i = rdev2->desc_nr; 1936 if (test_bit(Faulty, &rdev2->flags)) 1937 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY); 1938 else if (test_bit(In_sync, &rdev2->flags)) 1939 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1940 else if (test_bit(Journal, &rdev2->flags)) 1941 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL); 1942 else if (rdev2->raid_disk >= 0) 1943 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1944 else 1945 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 1946 } 1947 1948 sb->sb_csum = calc_sb_1_csum(sb); 1949 } 1950 1951 static unsigned long long 1952 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1953 { 1954 struct mdp_superblock_1 *sb; 1955 sector_t max_sectors; 1956 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1957 return 0; /* component must fit device */ 1958 if (rdev->data_offset != rdev->new_data_offset) 1959 return 0; /* too confusing */ 1960 if (rdev->sb_start < rdev->data_offset) { 1961 /* minor versions 1 and 2; superblock before data */ 1962 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9; 1963 max_sectors -= rdev->data_offset; 1964 if (!num_sectors || num_sectors > max_sectors) 1965 num_sectors = max_sectors; 1966 } else if (rdev->mddev->bitmap_info.offset) { 1967 /* minor version 0 with bitmap we can't move */ 1968 return 0; 1969 } else { 1970 /* minor version 0; superblock after data */ 1971 sector_t sb_start; 1972 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2; 1973 sb_start &= ~(sector_t)(4*2 - 1); 1974 max_sectors = rdev->sectors + sb_start - rdev->sb_start; 1975 if (!num_sectors || num_sectors > max_sectors) 1976 num_sectors = max_sectors; 1977 rdev->sb_start = sb_start; 1978 } 1979 sb = page_address(rdev->sb_page); 1980 sb->data_size = cpu_to_le64(num_sectors); 1981 sb->super_offset = cpu_to_le64(rdev->sb_start); 1982 sb->sb_csum = calc_sb_1_csum(sb); 1983 do { 1984 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1985 rdev->sb_page); 1986 } while (md_super_wait(rdev->mddev) < 0); 1987 return num_sectors; 1988 1989 } 1990 1991 static int 1992 super_1_allow_new_offset(struct md_rdev *rdev, 1993 unsigned long long new_offset) 1994 { 1995 /* All necessary checks on new >= old have been done */ 1996 struct bitmap *bitmap; 1997 if (new_offset >= rdev->data_offset) 1998 return 1; 1999 2000 /* with 1.0 metadata, there is no metadata to tread on 2001 * so we can always move back */ 2002 if (rdev->mddev->minor_version == 0) 2003 return 1; 2004 2005 /* otherwise we must be sure not to step on 2006 * any metadata, so stay: 2007 * 36K beyond start of superblock 2008 * beyond end of badblocks 2009 * beyond write-intent bitmap 2010 */ 2011 if (rdev->sb_start + (32+4)*2 > new_offset) 2012 return 0; 2013 bitmap = rdev->mddev->bitmap; 2014 if (bitmap && !rdev->mddev->bitmap_info.file && 2015 rdev->sb_start + rdev->mddev->bitmap_info.offset + 2016 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset) 2017 return 0; 2018 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset) 2019 return 0; 2020 2021 return 1; 2022 } 2023 2024 static struct super_type super_types[] = { 2025 [0] = { 2026 .name = "0.90.0", 2027 .owner = THIS_MODULE, 2028 .load_super = super_90_load, 2029 .validate_super = super_90_validate, 2030 .sync_super = super_90_sync, 2031 .rdev_size_change = super_90_rdev_size_change, 2032 .allow_new_offset = super_90_allow_new_offset, 2033 }, 2034 [1] = { 2035 .name = "md-1", 2036 .owner = THIS_MODULE, 2037 .load_super = super_1_load, 2038 .validate_super = super_1_validate, 2039 .sync_super = super_1_sync, 2040 .rdev_size_change = super_1_rdev_size_change, 2041 .allow_new_offset = super_1_allow_new_offset, 2042 }, 2043 }; 2044 2045 static void sync_super(struct mddev *mddev, struct md_rdev *rdev) 2046 { 2047 if (mddev->sync_super) { 2048 mddev->sync_super(mddev, rdev); 2049 return; 2050 } 2051 2052 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types)); 2053 2054 super_types[mddev->major_version].sync_super(mddev, rdev); 2055 } 2056 2057 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2) 2058 { 2059 struct md_rdev *rdev, *rdev2; 2060 2061 rcu_read_lock(); 2062 rdev_for_each_rcu(rdev, mddev1) { 2063 if (test_bit(Faulty, &rdev->flags) || 2064 test_bit(Journal, &rdev->flags) || 2065 rdev->raid_disk == -1) 2066 continue; 2067 rdev_for_each_rcu(rdev2, mddev2) { 2068 if (test_bit(Faulty, &rdev2->flags) || 2069 test_bit(Journal, &rdev2->flags) || 2070 rdev2->raid_disk == -1) 2071 continue; 2072 if (rdev->bdev->bd_contains == 2073 rdev2->bdev->bd_contains) { 2074 rcu_read_unlock(); 2075 return 1; 2076 } 2077 } 2078 } 2079 rcu_read_unlock(); 2080 return 0; 2081 } 2082 2083 static LIST_HEAD(pending_raid_disks); 2084 2085 /* 2086 * Try to register data integrity profile for an mddev 2087 * 2088 * This is called when an array is started and after a disk has been kicked 2089 * from the array. It only succeeds if all working and active component devices 2090 * are integrity capable with matching profiles. 2091 */ 2092 int md_integrity_register(struct mddev *mddev) 2093 { 2094 struct md_rdev *rdev, *reference = NULL; 2095 2096 if (list_empty(&mddev->disks)) 2097 return 0; /* nothing to do */ 2098 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk)) 2099 return 0; /* shouldn't register, or already is */ 2100 rdev_for_each(rdev, mddev) { 2101 /* skip spares and non-functional disks */ 2102 if (test_bit(Faulty, &rdev->flags)) 2103 continue; 2104 if (rdev->raid_disk < 0) 2105 continue; 2106 if (!reference) { 2107 /* Use the first rdev as the reference */ 2108 reference = rdev; 2109 continue; 2110 } 2111 /* does this rdev's profile match the reference profile? */ 2112 if (blk_integrity_compare(reference->bdev->bd_disk, 2113 rdev->bdev->bd_disk) < 0) 2114 return -EINVAL; 2115 } 2116 if (!reference || !bdev_get_integrity(reference->bdev)) 2117 return 0; 2118 /* 2119 * All component devices are integrity capable and have matching 2120 * profiles, register the common profile for the md device. 2121 */ 2122 blk_integrity_register(mddev->gendisk, 2123 bdev_get_integrity(reference->bdev)); 2124 2125 pr_debug("md: data integrity enabled on %s\n", mdname(mddev)); 2126 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) { 2127 pr_err("md: failed to create integrity pool for %s\n", 2128 mdname(mddev)); 2129 return -EINVAL; 2130 } 2131 return 0; 2132 } 2133 EXPORT_SYMBOL(md_integrity_register); 2134 2135 /* 2136 * Attempt to add an rdev, but only if it is consistent with the current 2137 * integrity profile 2138 */ 2139 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev) 2140 { 2141 struct blk_integrity *bi_rdev; 2142 struct blk_integrity *bi_mddev; 2143 char name[BDEVNAME_SIZE]; 2144 2145 if (!mddev->gendisk) 2146 return 0; 2147 2148 bi_rdev = bdev_get_integrity(rdev->bdev); 2149 bi_mddev = blk_get_integrity(mddev->gendisk); 2150 2151 if (!bi_mddev) /* nothing to do */ 2152 return 0; 2153 2154 if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) { 2155 pr_err("%s: incompatible integrity profile for %s\n", 2156 mdname(mddev), bdevname(rdev->bdev, name)); 2157 return -ENXIO; 2158 } 2159 2160 return 0; 2161 } 2162 EXPORT_SYMBOL(md_integrity_add_rdev); 2163 2164 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev) 2165 { 2166 char b[BDEVNAME_SIZE]; 2167 struct kobject *ko; 2168 int err; 2169 2170 /* prevent duplicates */ 2171 if (find_rdev(mddev, rdev->bdev->bd_dev)) 2172 return -EEXIST; 2173 2174 if ((bdev_read_only(rdev->bdev) || bdev_read_only(rdev->meta_bdev)) && 2175 mddev->pers) 2176 return -EROFS; 2177 2178 /* make sure rdev->sectors exceeds mddev->dev_sectors */ 2179 if (!test_bit(Journal, &rdev->flags) && 2180 rdev->sectors && 2181 (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) { 2182 if (mddev->pers) { 2183 /* Cannot change size, so fail 2184 * If mddev->level <= 0, then we don't care 2185 * about aligning sizes (e.g. linear) 2186 */ 2187 if (mddev->level > 0) 2188 return -ENOSPC; 2189 } else 2190 mddev->dev_sectors = rdev->sectors; 2191 } 2192 2193 /* Verify rdev->desc_nr is unique. 2194 * If it is -1, assign a free number, else 2195 * check number is not in use 2196 */ 2197 rcu_read_lock(); 2198 if (rdev->desc_nr < 0) { 2199 int choice = 0; 2200 if (mddev->pers) 2201 choice = mddev->raid_disks; 2202 while (md_find_rdev_nr_rcu(mddev, choice)) 2203 choice++; 2204 rdev->desc_nr = choice; 2205 } else { 2206 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) { 2207 rcu_read_unlock(); 2208 return -EBUSY; 2209 } 2210 } 2211 rcu_read_unlock(); 2212 if (!test_bit(Journal, &rdev->flags) && 2213 mddev->max_disks && rdev->desc_nr >= mddev->max_disks) { 2214 pr_warn("md: %s: array is limited to %d devices\n", 2215 mdname(mddev), mddev->max_disks); 2216 return -EBUSY; 2217 } 2218 bdevname(rdev->bdev,b); 2219 strreplace(b, '/', '!'); 2220 2221 rdev->mddev = mddev; 2222 pr_debug("md: bind<%s>\n", b); 2223 2224 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b))) 2225 goto fail; 2226 2227 ko = &part_to_dev(rdev->bdev->bd_part)->kobj; 2228 if (sysfs_create_link(&rdev->kobj, ko, "block")) 2229 /* failure here is OK */; 2230 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state"); 2231 2232 list_add_rcu(&rdev->same_set, &mddev->disks); 2233 bd_link_disk_holder(rdev->bdev, mddev->gendisk); 2234 2235 /* May as well allow recovery to be retried once */ 2236 mddev->recovery_disabled++; 2237 2238 return 0; 2239 2240 fail: 2241 pr_warn("md: failed to register dev-%s for %s\n", 2242 b, mdname(mddev)); 2243 return err; 2244 } 2245 2246 static void md_delayed_delete(struct work_struct *ws) 2247 { 2248 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work); 2249 kobject_del(&rdev->kobj); 2250 kobject_put(&rdev->kobj); 2251 } 2252 2253 static void unbind_rdev_from_array(struct md_rdev *rdev) 2254 { 2255 char b[BDEVNAME_SIZE]; 2256 2257 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk); 2258 list_del_rcu(&rdev->same_set); 2259 pr_debug("md: unbind<%s>\n", bdevname(rdev->bdev,b)); 2260 rdev->mddev = NULL; 2261 sysfs_remove_link(&rdev->kobj, "block"); 2262 sysfs_put(rdev->sysfs_state); 2263 rdev->sysfs_state = NULL; 2264 rdev->badblocks.count = 0; 2265 /* We need to delay this, otherwise we can deadlock when 2266 * writing to 'remove' to "dev/state". We also need 2267 * to delay it due to rcu usage. 2268 */ 2269 synchronize_rcu(); 2270 INIT_WORK(&rdev->del_work, md_delayed_delete); 2271 kobject_get(&rdev->kobj); 2272 queue_work(md_misc_wq, &rdev->del_work); 2273 } 2274 2275 /* 2276 * prevent the device from being mounted, repartitioned or 2277 * otherwise reused by a RAID array (or any other kernel 2278 * subsystem), by bd_claiming the device. 2279 */ 2280 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared) 2281 { 2282 int err = 0; 2283 struct block_device *bdev; 2284 char b[BDEVNAME_SIZE]; 2285 2286 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, 2287 shared ? (struct md_rdev *)lock_rdev : rdev); 2288 if (IS_ERR(bdev)) { 2289 pr_warn("md: could not open %s.\n", __bdevname(dev, b)); 2290 return PTR_ERR(bdev); 2291 } 2292 rdev->bdev = bdev; 2293 return err; 2294 } 2295 2296 static void unlock_rdev(struct md_rdev *rdev) 2297 { 2298 struct block_device *bdev = rdev->bdev; 2299 rdev->bdev = NULL; 2300 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 2301 } 2302 2303 void md_autodetect_dev(dev_t dev); 2304 2305 static void export_rdev(struct md_rdev *rdev) 2306 { 2307 char b[BDEVNAME_SIZE]; 2308 2309 pr_debug("md: export_rdev(%s)\n", bdevname(rdev->bdev,b)); 2310 md_rdev_clear(rdev); 2311 #ifndef MODULE 2312 if (test_bit(AutoDetected, &rdev->flags)) 2313 md_autodetect_dev(rdev->bdev->bd_dev); 2314 #endif 2315 unlock_rdev(rdev); 2316 kobject_put(&rdev->kobj); 2317 } 2318 2319 void md_kick_rdev_from_array(struct md_rdev *rdev) 2320 { 2321 unbind_rdev_from_array(rdev); 2322 export_rdev(rdev); 2323 } 2324 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array); 2325 2326 static void export_array(struct mddev *mddev) 2327 { 2328 struct md_rdev *rdev; 2329 2330 while (!list_empty(&mddev->disks)) { 2331 rdev = list_first_entry(&mddev->disks, struct md_rdev, 2332 same_set); 2333 md_kick_rdev_from_array(rdev); 2334 } 2335 mddev->raid_disks = 0; 2336 mddev->major_version = 0; 2337 } 2338 2339 static bool set_in_sync(struct mddev *mddev) 2340 { 2341 lockdep_assert_held(&mddev->lock); 2342 if (!mddev->in_sync) { 2343 mddev->sync_checkers++; 2344 spin_unlock(&mddev->lock); 2345 percpu_ref_switch_to_atomic_sync(&mddev->writes_pending); 2346 spin_lock(&mddev->lock); 2347 if (!mddev->in_sync && 2348 percpu_ref_is_zero(&mddev->writes_pending)) { 2349 mddev->in_sync = 1; 2350 /* 2351 * Ensure ->in_sync is visible before we clear 2352 * ->sync_checkers. 2353 */ 2354 smp_mb(); 2355 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2356 sysfs_notify_dirent_safe(mddev->sysfs_state); 2357 } 2358 if (--mddev->sync_checkers == 0) 2359 percpu_ref_switch_to_percpu(&mddev->writes_pending); 2360 } 2361 if (mddev->safemode == 1) 2362 mddev->safemode = 0; 2363 return mddev->in_sync; 2364 } 2365 2366 static void sync_sbs(struct mddev *mddev, int nospares) 2367 { 2368 /* Update each superblock (in-memory image), but 2369 * if we are allowed to, skip spares which already 2370 * have the right event counter, or have one earlier 2371 * (which would mean they aren't being marked as dirty 2372 * with the rest of the array) 2373 */ 2374 struct md_rdev *rdev; 2375 rdev_for_each(rdev, mddev) { 2376 if (rdev->sb_events == mddev->events || 2377 (nospares && 2378 rdev->raid_disk < 0 && 2379 rdev->sb_events+1 == mddev->events)) { 2380 /* Don't update this superblock */ 2381 rdev->sb_loaded = 2; 2382 } else { 2383 sync_super(mddev, rdev); 2384 rdev->sb_loaded = 1; 2385 } 2386 } 2387 } 2388 2389 static bool does_sb_need_changing(struct mddev *mddev) 2390 { 2391 struct md_rdev *rdev; 2392 struct mdp_superblock_1 *sb; 2393 int role; 2394 2395 /* Find a good rdev */ 2396 rdev_for_each(rdev, mddev) 2397 if ((rdev->raid_disk >= 0) && !test_bit(Faulty, &rdev->flags)) 2398 break; 2399 2400 /* No good device found. */ 2401 if (!rdev) 2402 return false; 2403 2404 sb = page_address(rdev->sb_page); 2405 /* Check if a device has become faulty or a spare become active */ 2406 rdev_for_each(rdev, mddev) { 2407 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 2408 /* Device activated? */ 2409 if (role == 0xffff && rdev->raid_disk >=0 && 2410 !test_bit(Faulty, &rdev->flags)) 2411 return true; 2412 /* Device turned faulty? */ 2413 if (test_bit(Faulty, &rdev->flags) && (role < 0xfffd)) 2414 return true; 2415 } 2416 2417 /* Check if any mddev parameters have changed */ 2418 if ((mddev->dev_sectors != le64_to_cpu(sb->size)) || 2419 (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) || 2420 (mddev->layout != le32_to_cpu(sb->layout)) || 2421 (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) || 2422 (mddev->chunk_sectors != le32_to_cpu(sb->chunksize))) 2423 return true; 2424 2425 return false; 2426 } 2427 2428 void md_update_sb(struct mddev *mddev, int force_change) 2429 { 2430 struct md_rdev *rdev; 2431 int sync_req; 2432 int nospares = 0; 2433 int any_badblocks_changed = 0; 2434 int ret = -1; 2435 2436 if (mddev->ro) { 2437 if (force_change) 2438 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2439 return; 2440 } 2441 2442 repeat: 2443 if (mddev_is_clustered(mddev)) { 2444 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2445 force_change = 1; 2446 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2447 nospares = 1; 2448 ret = md_cluster_ops->metadata_update_start(mddev); 2449 /* Has someone else has updated the sb */ 2450 if (!does_sb_need_changing(mddev)) { 2451 if (ret == 0) 2452 md_cluster_ops->metadata_update_cancel(mddev); 2453 bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2454 BIT(MD_SB_CHANGE_DEVS) | 2455 BIT(MD_SB_CHANGE_CLEAN)); 2456 return; 2457 } 2458 } 2459 2460 /* 2461 * First make sure individual recovery_offsets are correct 2462 * curr_resync_completed can only be used during recovery. 2463 * During reshape/resync it might use array-addresses rather 2464 * that device addresses. 2465 */ 2466 rdev_for_each(rdev, mddev) { 2467 if (rdev->raid_disk >= 0 && 2468 mddev->delta_disks >= 0 && 2469 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 2470 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery) && 2471 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 2472 !test_bit(Journal, &rdev->flags) && 2473 !test_bit(In_sync, &rdev->flags) && 2474 mddev->curr_resync_completed > rdev->recovery_offset) 2475 rdev->recovery_offset = mddev->curr_resync_completed; 2476 2477 } 2478 if (!mddev->persistent) { 2479 clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2480 clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2481 if (!mddev->external) { 2482 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 2483 rdev_for_each(rdev, mddev) { 2484 if (rdev->badblocks.changed) { 2485 rdev->badblocks.changed = 0; 2486 ack_all_badblocks(&rdev->badblocks); 2487 md_error(mddev, rdev); 2488 } 2489 clear_bit(Blocked, &rdev->flags); 2490 clear_bit(BlockedBadBlocks, &rdev->flags); 2491 wake_up(&rdev->blocked_wait); 2492 } 2493 } 2494 wake_up(&mddev->sb_wait); 2495 return; 2496 } 2497 2498 spin_lock(&mddev->lock); 2499 2500 mddev->utime = ktime_get_real_seconds(); 2501 2502 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2503 force_change = 1; 2504 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2505 /* just a clean<-> dirty transition, possibly leave spares alone, 2506 * though if events isn't the right even/odd, we will have to do 2507 * spares after all 2508 */ 2509 nospares = 1; 2510 if (force_change) 2511 nospares = 0; 2512 if (mddev->degraded) 2513 /* If the array is degraded, then skipping spares is both 2514 * dangerous and fairly pointless. 2515 * Dangerous because a device that was removed from the array 2516 * might have a event_count that still looks up-to-date, 2517 * so it can be re-added without a resync. 2518 * Pointless because if there are any spares to skip, 2519 * then a recovery will happen and soon that array won't 2520 * be degraded any more and the spare can go back to sleep then. 2521 */ 2522 nospares = 0; 2523 2524 sync_req = mddev->in_sync; 2525 2526 /* If this is just a dirty<->clean transition, and the array is clean 2527 * and 'events' is odd, we can roll back to the previous clean state */ 2528 if (nospares 2529 && (mddev->in_sync && mddev->recovery_cp == MaxSector) 2530 && mddev->can_decrease_events 2531 && mddev->events != 1) { 2532 mddev->events--; 2533 mddev->can_decrease_events = 0; 2534 } else { 2535 /* otherwise we have to go forward and ... */ 2536 mddev->events ++; 2537 mddev->can_decrease_events = nospares; 2538 } 2539 2540 /* 2541 * This 64-bit counter should never wrap. 2542 * Either we are in around ~1 trillion A.C., assuming 2543 * 1 reboot per second, or we have a bug... 2544 */ 2545 WARN_ON(mddev->events == 0); 2546 2547 rdev_for_each(rdev, mddev) { 2548 if (rdev->badblocks.changed) 2549 any_badblocks_changed++; 2550 if (test_bit(Faulty, &rdev->flags)) 2551 set_bit(FaultRecorded, &rdev->flags); 2552 } 2553 2554 sync_sbs(mddev, nospares); 2555 spin_unlock(&mddev->lock); 2556 2557 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n", 2558 mdname(mddev), mddev->in_sync); 2559 2560 if (mddev->queue) 2561 blk_add_trace_msg(mddev->queue, "md md_update_sb"); 2562 rewrite: 2563 bitmap_update_sb(mddev->bitmap); 2564 rdev_for_each(rdev, mddev) { 2565 char b[BDEVNAME_SIZE]; 2566 2567 if (rdev->sb_loaded != 1) 2568 continue; /* no noise on spare devices */ 2569 2570 if (!test_bit(Faulty, &rdev->flags)) { 2571 md_super_write(mddev,rdev, 2572 rdev->sb_start, rdev->sb_size, 2573 rdev->sb_page); 2574 pr_debug("md: (write) %s's sb offset: %llu\n", 2575 bdevname(rdev->bdev, b), 2576 (unsigned long long)rdev->sb_start); 2577 rdev->sb_events = mddev->events; 2578 if (rdev->badblocks.size) { 2579 md_super_write(mddev, rdev, 2580 rdev->badblocks.sector, 2581 rdev->badblocks.size << 9, 2582 rdev->bb_page); 2583 rdev->badblocks.size = 0; 2584 } 2585 2586 } else 2587 pr_debug("md: %s (skipping faulty)\n", 2588 bdevname(rdev->bdev, b)); 2589 2590 if (mddev->level == LEVEL_MULTIPATH) 2591 /* only need to write one superblock... */ 2592 break; 2593 } 2594 if (md_super_wait(mddev) < 0) 2595 goto rewrite; 2596 /* if there was a failure, MD_SB_CHANGE_DEVS was set, and we re-write super */ 2597 2598 if (mddev_is_clustered(mddev) && ret == 0) 2599 md_cluster_ops->metadata_update_finish(mddev); 2600 2601 if (mddev->in_sync != sync_req || 2602 !bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2603 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_CLEAN))) 2604 /* have to write it out again */ 2605 goto repeat; 2606 wake_up(&mddev->sb_wait); 2607 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 2608 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 2609 2610 rdev_for_each(rdev, mddev) { 2611 if (test_and_clear_bit(FaultRecorded, &rdev->flags)) 2612 clear_bit(Blocked, &rdev->flags); 2613 2614 if (any_badblocks_changed) 2615 ack_all_badblocks(&rdev->badblocks); 2616 clear_bit(BlockedBadBlocks, &rdev->flags); 2617 wake_up(&rdev->blocked_wait); 2618 } 2619 } 2620 EXPORT_SYMBOL(md_update_sb); 2621 2622 static int add_bound_rdev(struct md_rdev *rdev) 2623 { 2624 struct mddev *mddev = rdev->mddev; 2625 int err = 0; 2626 bool add_journal = test_bit(Journal, &rdev->flags); 2627 2628 if (!mddev->pers->hot_remove_disk || add_journal) { 2629 /* If there is hot_add_disk but no hot_remove_disk 2630 * then added disks for geometry changes, 2631 * and should be added immediately. 2632 */ 2633 super_types[mddev->major_version]. 2634 validate_super(mddev, rdev); 2635 if (add_journal) 2636 mddev_suspend(mddev); 2637 err = mddev->pers->hot_add_disk(mddev, rdev); 2638 if (add_journal) 2639 mddev_resume(mddev); 2640 if (err) { 2641 md_kick_rdev_from_array(rdev); 2642 return err; 2643 } 2644 } 2645 sysfs_notify_dirent_safe(rdev->sysfs_state); 2646 2647 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2648 if (mddev->degraded) 2649 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 2650 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2651 md_new_event(mddev); 2652 md_wakeup_thread(mddev->thread); 2653 return 0; 2654 } 2655 2656 /* words written to sysfs files may, or may not, be \n terminated. 2657 * We want to accept with case. For this we use cmd_match. 2658 */ 2659 static int cmd_match(const char *cmd, const char *str) 2660 { 2661 /* See if cmd, written into a sysfs file, matches 2662 * str. They must either be the same, or cmd can 2663 * have a trailing newline 2664 */ 2665 while (*cmd && *str && *cmd == *str) { 2666 cmd++; 2667 str++; 2668 } 2669 if (*cmd == '\n') 2670 cmd++; 2671 if (*str || *cmd) 2672 return 0; 2673 return 1; 2674 } 2675 2676 struct rdev_sysfs_entry { 2677 struct attribute attr; 2678 ssize_t (*show)(struct md_rdev *, char *); 2679 ssize_t (*store)(struct md_rdev *, const char *, size_t); 2680 }; 2681 2682 static ssize_t 2683 state_show(struct md_rdev *rdev, char *page) 2684 { 2685 char *sep = ","; 2686 size_t len = 0; 2687 unsigned long flags = READ_ONCE(rdev->flags); 2688 2689 if (test_bit(Faulty, &flags) || 2690 (!test_bit(ExternalBbl, &flags) && 2691 rdev->badblocks.unacked_exist)) 2692 len += sprintf(page+len, "faulty%s", sep); 2693 if (test_bit(In_sync, &flags)) 2694 len += sprintf(page+len, "in_sync%s", sep); 2695 if (test_bit(Journal, &flags)) 2696 len += sprintf(page+len, "journal%s", sep); 2697 if (test_bit(WriteMostly, &flags)) 2698 len += sprintf(page+len, "write_mostly%s", sep); 2699 if (test_bit(Blocked, &flags) || 2700 (rdev->badblocks.unacked_exist 2701 && !test_bit(Faulty, &flags))) 2702 len += sprintf(page+len, "blocked%s", sep); 2703 if (!test_bit(Faulty, &flags) && 2704 !test_bit(Journal, &flags) && 2705 !test_bit(In_sync, &flags)) 2706 len += sprintf(page+len, "spare%s", sep); 2707 if (test_bit(WriteErrorSeen, &flags)) 2708 len += sprintf(page+len, "write_error%s", sep); 2709 if (test_bit(WantReplacement, &flags)) 2710 len += sprintf(page+len, "want_replacement%s", sep); 2711 if (test_bit(Replacement, &flags)) 2712 len += sprintf(page+len, "replacement%s", sep); 2713 if (test_bit(ExternalBbl, &flags)) 2714 len += sprintf(page+len, "external_bbl%s", sep); 2715 if (test_bit(FailFast, &flags)) 2716 len += sprintf(page+len, "failfast%s", sep); 2717 2718 if (len) 2719 len -= strlen(sep); 2720 2721 return len+sprintf(page+len, "\n"); 2722 } 2723 2724 static ssize_t 2725 state_store(struct md_rdev *rdev, const char *buf, size_t len) 2726 { 2727 /* can write 2728 * faulty - simulates an error 2729 * remove - disconnects the device 2730 * writemostly - sets write_mostly 2731 * -writemostly - clears write_mostly 2732 * blocked - sets the Blocked flags 2733 * -blocked - clears the Blocked and possibly simulates an error 2734 * insync - sets Insync providing device isn't active 2735 * -insync - clear Insync for a device with a slot assigned, 2736 * so that it gets rebuilt based on bitmap 2737 * write_error - sets WriteErrorSeen 2738 * -write_error - clears WriteErrorSeen 2739 * {,-}failfast - set/clear FailFast 2740 */ 2741 int err = -EINVAL; 2742 if (cmd_match(buf, "faulty") && rdev->mddev->pers) { 2743 md_error(rdev->mddev, rdev); 2744 if (test_bit(Faulty, &rdev->flags)) 2745 err = 0; 2746 else 2747 err = -EBUSY; 2748 } else if (cmd_match(buf, "remove")) { 2749 if (rdev->mddev->pers) { 2750 clear_bit(Blocked, &rdev->flags); 2751 remove_and_add_spares(rdev->mddev, rdev); 2752 } 2753 if (rdev->raid_disk >= 0) 2754 err = -EBUSY; 2755 else { 2756 struct mddev *mddev = rdev->mddev; 2757 err = 0; 2758 if (mddev_is_clustered(mddev)) 2759 err = md_cluster_ops->remove_disk(mddev, rdev); 2760 2761 if (err == 0) { 2762 md_kick_rdev_from_array(rdev); 2763 if (mddev->pers) { 2764 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2765 md_wakeup_thread(mddev->thread); 2766 } 2767 md_new_event(mddev); 2768 } 2769 } 2770 } else if (cmd_match(buf, "writemostly")) { 2771 set_bit(WriteMostly, &rdev->flags); 2772 err = 0; 2773 } else if (cmd_match(buf, "-writemostly")) { 2774 clear_bit(WriteMostly, &rdev->flags); 2775 err = 0; 2776 } else if (cmd_match(buf, "blocked")) { 2777 set_bit(Blocked, &rdev->flags); 2778 err = 0; 2779 } else if (cmd_match(buf, "-blocked")) { 2780 if (!test_bit(Faulty, &rdev->flags) && 2781 !test_bit(ExternalBbl, &rdev->flags) && 2782 rdev->badblocks.unacked_exist) { 2783 /* metadata handler doesn't understand badblocks, 2784 * so we need to fail the device 2785 */ 2786 md_error(rdev->mddev, rdev); 2787 } 2788 clear_bit(Blocked, &rdev->flags); 2789 clear_bit(BlockedBadBlocks, &rdev->flags); 2790 wake_up(&rdev->blocked_wait); 2791 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2792 md_wakeup_thread(rdev->mddev->thread); 2793 2794 err = 0; 2795 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) { 2796 set_bit(In_sync, &rdev->flags); 2797 err = 0; 2798 } else if (cmd_match(buf, "failfast")) { 2799 set_bit(FailFast, &rdev->flags); 2800 err = 0; 2801 } else if (cmd_match(buf, "-failfast")) { 2802 clear_bit(FailFast, &rdev->flags); 2803 err = 0; 2804 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 && 2805 !test_bit(Journal, &rdev->flags)) { 2806 if (rdev->mddev->pers == NULL) { 2807 clear_bit(In_sync, &rdev->flags); 2808 rdev->saved_raid_disk = rdev->raid_disk; 2809 rdev->raid_disk = -1; 2810 err = 0; 2811 } 2812 } else if (cmd_match(buf, "write_error")) { 2813 set_bit(WriteErrorSeen, &rdev->flags); 2814 err = 0; 2815 } else if (cmd_match(buf, "-write_error")) { 2816 clear_bit(WriteErrorSeen, &rdev->flags); 2817 err = 0; 2818 } else if (cmd_match(buf, "want_replacement")) { 2819 /* Any non-spare device that is not a replacement can 2820 * become want_replacement at any time, but we then need to 2821 * check if recovery is needed. 2822 */ 2823 if (rdev->raid_disk >= 0 && 2824 !test_bit(Journal, &rdev->flags) && 2825 !test_bit(Replacement, &rdev->flags)) 2826 set_bit(WantReplacement, &rdev->flags); 2827 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2828 md_wakeup_thread(rdev->mddev->thread); 2829 err = 0; 2830 } else if (cmd_match(buf, "-want_replacement")) { 2831 /* Clearing 'want_replacement' is always allowed. 2832 * Once replacements starts it is too late though. 2833 */ 2834 err = 0; 2835 clear_bit(WantReplacement, &rdev->flags); 2836 } else if (cmd_match(buf, "replacement")) { 2837 /* Can only set a device as a replacement when array has not 2838 * yet been started. Once running, replacement is automatic 2839 * from spares, or by assigning 'slot'. 2840 */ 2841 if (rdev->mddev->pers) 2842 err = -EBUSY; 2843 else { 2844 set_bit(Replacement, &rdev->flags); 2845 err = 0; 2846 } 2847 } else if (cmd_match(buf, "-replacement")) { 2848 /* Similarly, can only clear Replacement before start */ 2849 if (rdev->mddev->pers) 2850 err = -EBUSY; 2851 else { 2852 clear_bit(Replacement, &rdev->flags); 2853 err = 0; 2854 } 2855 } else if (cmd_match(buf, "re-add")) { 2856 if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1)) { 2857 /* clear_bit is performed _after_ all the devices 2858 * have their local Faulty bit cleared. If any writes 2859 * happen in the meantime in the local node, they 2860 * will land in the local bitmap, which will be synced 2861 * by this node eventually 2862 */ 2863 if (!mddev_is_clustered(rdev->mddev) || 2864 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) { 2865 clear_bit(Faulty, &rdev->flags); 2866 err = add_bound_rdev(rdev); 2867 } 2868 } else 2869 err = -EBUSY; 2870 } else if (cmd_match(buf, "external_bbl") && (rdev->mddev->external)) { 2871 set_bit(ExternalBbl, &rdev->flags); 2872 rdev->badblocks.shift = 0; 2873 err = 0; 2874 } else if (cmd_match(buf, "-external_bbl") && (rdev->mddev->external)) { 2875 clear_bit(ExternalBbl, &rdev->flags); 2876 err = 0; 2877 } 2878 if (!err) 2879 sysfs_notify_dirent_safe(rdev->sysfs_state); 2880 return err ? err : len; 2881 } 2882 static struct rdev_sysfs_entry rdev_state = 2883 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store); 2884 2885 static ssize_t 2886 errors_show(struct md_rdev *rdev, char *page) 2887 { 2888 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); 2889 } 2890 2891 static ssize_t 2892 errors_store(struct md_rdev *rdev, const char *buf, size_t len) 2893 { 2894 unsigned int n; 2895 int rv; 2896 2897 rv = kstrtouint(buf, 10, &n); 2898 if (rv < 0) 2899 return rv; 2900 atomic_set(&rdev->corrected_errors, n); 2901 return len; 2902 } 2903 static struct rdev_sysfs_entry rdev_errors = 2904 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); 2905 2906 static ssize_t 2907 slot_show(struct md_rdev *rdev, char *page) 2908 { 2909 if (test_bit(Journal, &rdev->flags)) 2910 return sprintf(page, "journal\n"); 2911 else if (rdev->raid_disk < 0) 2912 return sprintf(page, "none\n"); 2913 else 2914 return sprintf(page, "%d\n", rdev->raid_disk); 2915 } 2916 2917 static ssize_t 2918 slot_store(struct md_rdev *rdev, const char *buf, size_t len) 2919 { 2920 int slot; 2921 int err; 2922 2923 if (test_bit(Journal, &rdev->flags)) 2924 return -EBUSY; 2925 if (strncmp(buf, "none", 4)==0) 2926 slot = -1; 2927 else { 2928 err = kstrtouint(buf, 10, (unsigned int *)&slot); 2929 if (err < 0) 2930 return err; 2931 } 2932 if (rdev->mddev->pers && slot == -1) { 2933 /* Setting 'slot' on an active array requires also 2934 * updating the 'rd%d' link, and communicating 2935 * with the personality with ->hot_*_disk. 2936 * For now we only support removing 2937 * failed/spare devices. This normally happens automatically, 2938 * but not when the metadata is externally managed. 2939 */ 2940 if (rdev->raid_disk == -1) 2941 return -EEXIST; 2942 /* personality does all needed checks */ 2943 if (rdev->mddev->pers->hot_remove_disk == NULL) 2944 return -EINVAL; 2945 clear_bit(Blocked, &rdev->flags); 2946 remove_and_add_spares(rdev->mddev, rdev); 2947 if (rdev->raid_disk >= 0) 2948 return -EBUSY; 2949 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2950 md_wakeup_thread(rdev->mddev->thread); 2951 } else if (rdev->mddev->pers) { 2952 /* Activating a spare .. or possibly reactivating 2953 * if we ever get bitmaps working here. 2954 */ 2955 int err; 2956 2957 if (rdev->raid_disk != -1) 2958 return -EBUSY; 2959 2960 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery)) 2961 return -EBUSY; 2962 2963 if (rdev->mddev->pers->hot_add_disk == NULL) 2964 return -EINVAL; 2965 2966 if (slot >= rdev->mddev->raid_disks && 2967 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 2968 return -ENOSPC; 2969 2970 rdev->raid_disk = slot; 2971 if (test_bit(In_sync, &rdev->flags)) 2972 rdev->saved_raid_disk = slot; 2973 else 2974 rdev->saved_raid_disk = -1; 2975 clear_bit(In_sync, &rdev->flags); 2976 clear_bit(Bitmap_sync, &rdev->flags); 2977 err = rdev->mddev->pers-> 2978 hot_add_disk(rdev->mddev, rdev); 2979 if (err) { 2980 rdev->raid_disk = -1; 2981 return err; 2982 } else 2983 sysfs_notify_dirent_safe(rdev->sysfs_state); 2984 if (sysfs_link_rdev(rdev->mddev, rdev)) 2985 /* failure here is OK */; 2986 /* don't wakeup anyone, leave that to userspace. */ 2987 } else { 2988 if (slot >= rdev->mddev->raid_disks && 2989 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 2990 return -ENOSPC; 2991 rdev->raid_disk = slot; 2992 /* assume it is working */ 2993 clear_bit(Faulty, &rdev->flags); 2994 clear_bit(WriteMostly, &rdev->flags); 2995 set_bit(In_sync, &rdev->flags); 2996 sysfs_notify_dirent_safe(rdev->sysfs_state); 2997 } 2998 return len; 2999 } 3000 3001 static struct rdev_sysfs_entry rdev_slot = 3002 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); 3003 3004 static ssize_t 3005 offset_show(struct md_rdev *rdev, char *page) 3006 { 3007 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); 3008 } 3009 3010 static ssize_t 3011 offset_store(struct md_rdev *rdev, const char *buf, size_t len) 3012 { 3013 unsigned long long offset; 3014 if (kstrtoull(buf, 10, &offset) < 0) 3015 return -EINVAL; 3016 if (rdev->mddev->pers && rdev->raid_disk >= 0) 3017 return -EBUSY; 3018 if (rdev->sectors && rdev->mddev->external) 3019 /* Must set offset before size, so overlap checks 3020 * can be sane */ 3021 return -EBUSY; 3022 rdev->data_offset = offset; 3023 rdev->new_data_offset = offset; 3024 return len; 3025 } 3026 3027 static struct rdev_sysfs_entry rdev_offset = 3028 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); 3029 3030 static ssize_t new_offset_show(struct md_rdev *rdev, char *page) 3031 { 3032 return sprintf(page, "%llu\n", 3033 (unsigned long long)rdev->new_data_offset); 3034 } 3035 3036 static ssize_t new_offset_store(struct md_rdev *rdev, 3037 const char *buf, size_t len) 3038 { 3039 unsigned long long new_offset; 3040 struct mddev *mddev = rdev->mddev; 3041 3042 if (kstrtoull(buf, 10, &new_offset) < 0) 3043 return -EINVAL; 3044 3045 if (mddev->sync_thread || 3046 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery)) 3047 return -EBUSY; 3048 if (new_offset == rdev->data_offset) 3049 /* reset is always permitted */ 3050 ; 3051 else if (new_offset > rdev->data_offset) { 3052 /* must not push array size beyond rdev_sectors */ 3053 if (new_offset - rdev->data_offset 3054 + mddev->dev_sectors > rdev->sectors) 3055 return -E2BIG; 3056 } 3057 /* Metadata worries about other space details. */ 3058 3059 /* decreasing the offset is inconsistent with a backwards 3060 * reshape. 3061 */ 3062 if (new_offset < rdev->data_offset && 3063 mddev->reshape_backwards) 3064 return -EINVAL; 3065 /* Increasing offset is inconsistent with forwards 3066 * reshape. reshape_direction should be set to 3067 * 'backwards' first. 3068 */ 3069 if (new_offset > rdev->data_offset && 3070 !mddev->reshape_backwards) 3071 return -EINVAL; 3072 3073 if (mddev->pers && mddev->persistent && 3074 !super_types[mddev->major_version] 3075 .allow_new_offset(rdev, new_offset)) 3076 return -E2BIG; 3077 rdev->new_data_offset = new_offset; 3078 if (new_offset > rdev->data_offset) 3079 mddev->reshape_backwards = 1; 3080 else if (new_offset < rdev->data_offset) 3081 mddev->reshape_backwards = 0; 3082 3083 return len; 3084 } 3085 static struct rdev_sysfs_entry rdev_new_offset = 3086 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store); 3087 3088 static ssize_t 3089 rdev_size_show(struct md_rdev *rdev, char *page) 3090 { 3091 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2); 3092 } 3093 3094 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2) 3095 { 3096 /* check if two start/length pairs overlap */ 3097 if (s1+l1 <= s2) 3098 return 0; 3099 if (s2+l2 <= s1) 3100 return 0; 3101 return 1; 3102 } 3103 3104 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors) 3105 { 3106 unsigned long long blocks; 3107 sector_t new; 3108 3109 if (kstrtoull(buf, 10, &blocks) < 0) 3110 return -EINVAL; 3111 3112 if (blocks & 1ULL << (8 * sizeof(blocks) - 1)) 3113 return -EINVAL; /* sector conversion overflow */ 3114 3115 new = blocks * 2; 3116 if (new != blocks * 2) 3117 return -EINVAL; /* unsigned long long to sector_t overflow */ 3118 3119 *sectors = new; 3120 return 0; 3121 } 3122 3123 static ssize_t 3124 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3125 { 3126 struct mddev *my_mddev = rdev->mddev; 3127 sector_t oldsectors = rdev->sectors; 3128 sector_t sectors; 3129 3130 if (test_bit(Journal, &rdev->flags)) 3131 return -EBUSY; 3132 if (strict_blocks_to_sectors(buf, §ors) < 0) 3133 return -EINVAL; 3134 if (rdev->data_offset != rdev->new_data_offset) 3135 return -EINVAL; /* too confusing */ 3136 if (my_mddev->pers && rdev->raid_disk >= 0) { 3137 if (my_mddev->persistent) { 3138 sectors = super_types[my_mddev->major_version]. 3139 rdev_size_change(rdev, sectors); 3140 if (!sectors) 3141 return -EBUSY; 3142 } else if (!sectors) 3143 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) - 3144 rdev->data_offset; 3145 if (!my_mddev->pers->resize) 3146 /* Cannot change size for RAID0 or Linear etc */ 3147 return -EINVAL; 3148 } 3149 if (sectors < my_mddev->dev_sectors) 3150 return -EINVAL; /* component must fit device */ 3151 3152 rdev->sectors = sectors; 3153 if (sectors > oldsectors && my_mddev->external) { 3154 /* Need to check that all other rdevs with the same 3155 * ->bdev do not overlap. 'rcu' is sufficient to walk 3156 * the rdev lists safely. 3157 * This check does not provide a hard guarantee, it 3158 * just helps avoid dangerous mistakes. 3159 */ 3160 struct mddev *mddev; 3161 int overlap = 0; 3162 struct list_head *tmp; 3163 3164 rcu_read_lock(); 3165 for_each_mddev(mddev, tmp) { 3166 struct md_rdev *rdev2; 3167 3168 rdev_for_each(rdev2, mddev) 3169 if (rdev->bdev == rdev2->bdev && 3170 rdev != rdev2 && 3171 overlaps(rdev->data_offset, rdev->sectors, 3172 rdev2->data_offset, 3173 rdev2->sectors)) { 3174 overlap = 1; 3175 break; 3176 } 3177 if (overlap) { 3178 mddev_put(mddev); 3179 break; 3180 } 3181 } 3182 rcu_read_unlock(); 3183 if (overlap) { 3184 /* Someone else could have slipped in a size 3185 * change here, but doing so is just silly. 3186 * We put oldsectors back because we *know* it is 3187 * safe, and trust userspace not to race with 3188 * itself 3189 */ 3190 rdev->sectors = oldsectors; 3191 return -EBUSY; 3192 } 3193 } 3194 return len; 3195 } 3196 3197 static struct rdev_sysfs_entry rdev_size = 3198 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); 3199 3200 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page) 3201 { 3202 unsigned long long recovery_start = rdev->recovery_offset; 3203 3204 if (test_bit(In_sync, &rdev->flags) || 3205 recovery_start == MaxSector) 3206 return sprintf(page, "none\n"); 3207 3208 return sprintf(page, "%llu\n", recovery_start); 3209 } 3210 3211 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len) 3212 { 3213 unsigned long long recovery_start; 3214 3215 if (cmd_match(buf, "none")) 3216 recovery_start = MaxSector; 3217 else if (kstrtoull(buf, 10, &recovery_start)) 3218 return -EINVAL; 3219 3220 if (rdev->mddev->pers && 3221 rdev->raid_disk >= 0) 3222 return -EBUSY; 3223 3224 rdev->recovery_offset = recovery_start; 3225 if (recovery_start == MaxSector) 3226 set_bit(In_sync, &rdev->flags); 3227 else 3228 clear_bit(In_sync, &rdev->flags); 3229 return len; 3230 } 3231 3232 static struct rdev_sysfs_entry rdev_recovery_start = 3233 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store); 3234 3235 /* sysfs access to bad-blocks list. 3236 * We present two files. 3237 * 'bad-blocks' lists sector numbers and lengths of ranges that 3238 * are recorded as bad. The list is truncated to fit within 3239 * the one-page limit of sysfs. 3240 * Writing "sector length" to this file adds an acknowledged 3241 * bad block list. 3242 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet 3243 * been acknowledged. Writing to this file adds bad blocks 3244 * without acknowledging them. This is largely for testing. 3245 */ 3246 static ssize_t bb_show(struct md_rdev *rdev, char *page) 3247 { 3248 return badblocks_show(&rdev->badblocks, page, 0); 3249 } 3250 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len) 3251 { 3252 int rv = badblocks_store(&rdev->badblocks, page, len, 0); 3253 /* Maybe that ack was all we needed */ 3254 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags)) 3255 wake_up(&rdev->blocked_wait); 3256 return rv; 3257 } 3258 static struct rdev_sysfs_entry rdev_bad_blocks = 3259 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store); 3260 3261 static ssize_t ubb_show(struct md_rdev *rdev, char *page) 3262 { 3263 return badblocks_show(&rdev->badblocks, page, 1); 3264 } 3265 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len) 3266 { 3267 return badblocks_store(&rdev->badblocks, page, len, 1); 3268 } 3269 static struct rdev_sysfs_entry rdev_unack_bad_blocks = 3270 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store); 3271 3272 static ssize_t 3273 ppl_sector_show(struct md_rdev *rdev, char *page) 3274 { 3275 return sprintf(page, "%llu\n", (unsigned long long)rdev->ppl.sector); 3276 } 3277 3278 static ssize_t 3279 ppl_sector_store(struct md_rdev *rdev, const char *buf, size_t len) 3280 { 3281 unsigned long long sector; 3282 3283 if (kstrtoull(buf, 10, §or) < 0) 3284 return -EINVAL; 3285 if (sector != (sector_t)sector) 3286 return -EINVAL; 3287 3288 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3289 rdev->raid_disk >= 0) 3290 return -EBUSY; 3291 3292 if (rdev->mddev->persistent) { 3293 if (rdev->mddev->major_version == 0) 3294 return -EINVAL; 3295 if ((sector > rdev->sb_start && 3296 sector - rdev->sb_start > S16_MAX) || 3297 (sector < rdev->sb_start && 3298 rdev->sb_start - sector > -S16_MIN)) 3299 return -EINVAL; 3300 rdev->ppl.offset = sector - rdev->sb_start; 3301 } else if (!rdev->mddev->external) { 3302 return -EBUSY; 3303 } 3304 rdev->ppl.sector = sector; 3305 return len; 3306 } 3307 3308 static struct rdev_sysfs_entry rdev_ppl_sector = 3309 __ATTR(ppl_sector, S_IRUGO|S_IWUSR, ppl_sector_show, ppl_sector_store); 3310 3311 static ssize_t 3312 ppl_size_show(struct md_rdev *rdev, char *page) 3313 { 3314 return sprintf(page, "%u\n", rdev->ppl.size); 3315 } 3316 3317 static ssize_t 3318 ppl_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3319 { 3320 unsigned int size; 3321 3322 if (kstrtouint(buf, 10, &size) < 0) 3323 return -EINVAL; 3324 3325 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3326 rdev->raid_disk >= 0) 3327 return -EBUSY; 3328 3329 if (rdev->mddev->persistent) { 3330 if (rdev->mddev->major_version == 0) 3331 return -EINVAL; 3332 if (size > U16_MAX) 3333 return -EINVAL; 3334 } else if (!rdev->mddev->external) { 3335 return -EBUSY; 3336 } 3337 rdev->ppl.size = size; 3338 return len; 3339 } 3340 3341 static struct rdev_sysfs_entry rdev_ppl_size = 3342 __ATTR(ppl_size, S_IRUGO|S_IWUSR, ppl_size_show, ppl_size_store); 3343 3344 static struct attribute *rdev_default_attrs[] = { 3345 &rdev_state.attr, 3346 &rdev_errors.attr, 3347 &rdev_slot.attr, 3348 &rdev_offset.attr, 3349 &rdev_new_offset.attr, 3350 &rdev_size.attr, 3351 &rdev_recovery_start.attr, 3352 &rdev_bad_blocks.attr, 3353 &rdev_unack_bad_blocks.attr, 3354 &rdev_ppl_sector.attr, 3355 &rdev_ppl_size.attr, 3356 NULL, 3357 }; 3358 static ssize_t 3359 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 3360 { 3361 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3362 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3363 3364 if (!entry->show) 3365 return -EIO; 3366 if (!rdev->mddev) 3367 return -EBUSY; 3368 return entry->show(rdev, page); 3369 } 3370 3371 static ssize_t 3372 rdev_attr_store(struct kobject *kobj, struct attribute *attr, 3373 const char *page, size_t length) 3374 { 3375 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3376 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3377 ssize_t rv; 3378 struct mddev *mddev = rdev->mddev; 3379 3380 if (!entry->store) 3381 return -EIO; 3382 if (!capable(CAP_SYS_ADMIN)) 3383 return -EACCES; 3384 rv = mddev ? mddev_lock(mddev): -EBUSY; 3385 if (!rv) { 3386 if (rdev->mddev == NULL) 3387 rv = -EBUSY; 3388 else 3389 rv = entry->store(rdev, page, length); 3390 mddev_unlock(mddev); 3391 } 3392 return rv; 3393 } 3394 3395 static void rdev_free(struct kobject *ko) 3396 { 3397 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj); 3398 kfree(rdev); 3399 } 3400 static const struct sysfs_ops rdev_sysfs_ops = { 3401 .show = rdev_attr_show, 3402 .store = rdev_attr_store, 3403 }; 3404 static struct kobj_type rdev_ktype = { 3405 .release = rdev_free, 3406 .sysfs_ops = &rdev_sysfs_ops, 3407 .default_attrs = rdev_default_attrs, 3408 }; 3409 3410 int md_rdev_init(struct md_rdev *rdev) 3411 { 3412 rdev->desc_nr = -1; 3413 rdev->saved_raid_disk = -1; 3414 rdev->raid_disk = -1; 3415 rdev->flags = 0; 3416 rdev->data_offset = 0; 3417 rdev->new_data_offset = 0; 3418 rdev->sb_events = 0; 3419 rdev->last_read_error = 0; 3420 rdev->sb_loaded = 0; 3421 rdev->bb_page = NULL; 3422 atomic_set(&rdev->nr_pending, 0); 3423 atomic_set(&rdev->read_errors, 0); 3424 atomic_set(&rdev->corrected_errors, 0); 3425 3426 INIT_LIST_HEAD(&rdev->same_set); 3427 init_waitqueue_head(&rdev->blocked_wait); 3428 3429 /* Add space to store bad block list. 3430 * This reserves the space even on arrays where it cannot 3431 * be used - I wonder if that matters 3432 */ 3433 return badblocks_init(&rdev->badblocks, 0); 3434 } 3435 EXPORT_SYMBOL_GPL(md_rdev_init); 3436 /* 3437 * Import a device. If 'super_format' >= 0, then sanity check the superblock 3438 * 3439 * mark the device faulty if: 3440 * 3441 * - the device is nonexistent (zero size) 3442 * - the device has no valid superblock 3443 * 3444 * a faulty rdev _never_ has rdev->sb set. 3445 */ 3446 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor) 3447 { 3448 char b[BDEVNAME_SIZE]; 3449 int err; 3450 struct md_rdev *rdev; 3451 sector_t size; 3452 3453 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 3454 if (!rdev) 3455 return ERR_PTR(-ENOMEM); 3456 3457 err = md_rdev_init(rdev); 3458 if (err) 3459 goto abort_free; 3460 err = alloc_disk_sb(rdev); 3461 if (err) 3462 goto abort_free; 3463 3464 err = lock_rdev(rdev, newdev, super_format == -2); 3465 if (err) 3466 goto abort_free; 3467 3468 kobject_init(&rdev->kobj, &rdev_ktype); 3469 3470 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS; 3471 if (!size) { 3472 pr_warn("md: %s has zero or unknown size, marking faulty!\n", 3473 bdevname(rdev->bdev,b)); 3474 err = -EINVAL; 3475 goto abort_free; 3476 } 3477 3478 if (super_format >= 0) { 3479 err = super_types[super_format]. 3480 load_super(rdev, NULL, super_minor); 3481 if (err == -EINVAL) { 3482 pr_warn("md: %s does not have a valid v%d.%d superblock, not importing!\n", 3483 bdevname(rdev->bdev,b), 3484 super_format, super_minor); 3485 goto abort_free; 3486 } 3487 if (err < 0) { 3488 pr_warn("md: could not read %s's sb, not importing!\n", 3489 bdevname(rdev->bdev,b)); 3490 goto abort_free; 3491 } 3492 } 3493 3494 return rdev; 3495 3496 abort_free: 3497 if (rdev->bdev) 3498 unlock_rdev(rdev); 3499 md_rdev_clear(rdev); 3500 kfree(rdev); 3501 return ERR_PTR(err); 3502 } 3503 3504 /* 3505 * Check a full RAID array for plausibility 3506 */ 3507 3508 static void analyze_sbs(struct mddev *mddev) 3509 { 3510 int i; 3511 struct md_rdev *rdev, *freshest, *tmp; 3512 char b[BDEVNAME_SIZE]; 3513 3514 freshest = NULL; 3515 rdev_for_each_safe(rdev, tmp, mddev) 3516 switch (super_types[mddev->major_version]. 3517 load_super(rdev, freshest, mddev->minor_version)) { 3518 case 1: 3519 freshest = rdev; 3520 break; 3521 case 0: 3522 break; 3523 default: 3524 pr_warn("md: fatal superblock inconsistency in %s -- removing from array\n", 3525 bdevname(rdev->bdev,b)); 3526 md_kick_rdev_from_array(rdev); 3527 } 3528 3529 super_types[mddev->major_version]. 3530 validate_super(mddev, freshest); 3531 3532 i = 0; 3533 rdev_for_each_safe(rdev, tmp, mddev) { 3534 if (mddev->max_disks && 3535 (rdev->desc_nr >= mddev->max_disks || 3536 i > mddev->max_disks)) { 3537 pr_warn("md: %s: %s: only %d devices permitted\n", 3538 mdname(mddev), bdevname(rdev->bdev, b), 3539 mddev->max_disks); 3540 md_kick_rdev_from_array(rdev); 3541 continue; 3542 } 3543 if (rdev != freshest) { 3544 if (super_types[mddev->major_version]. 3545 validate_super(mddev, rdev)) { 3546 pr_warn("md: kicking non-fresh %s from array!\n", 3547 bdevname(rdev->bdev,b)); 3548 md_kick_rdev_from_array(rdev); 3549 continue; 3550 } 3551 } 3552 if (mddev->level == LEVEL_MULTIPATH) { 3553 rdev->desc_nr = i++; 3554 rdev->raid_disk = rdev->desc_nr; 3555 set_bit(In_sync, &rdev->flags); 3556 } else if (rdev->raid_disk >= 3557 (mddev->raid_disks - min(0, mddev->delta_disks)) && 3558 !test_bit(Journal, &rdev->flags)) { 3559 rdev->raid_disk = -1; 3560 clear_bit(In_sync, &rdev->flags); 3561 } 3562 } 3563 } 3564 3565 /* Read a fixed-point number. 3566 * Numbers in sysfs attributes should be in "standard" units where 3567 * possible, so time should be in seconds. 3568 * However we internally use a a much smaller unit such as 3569 * milliseconds or jiffies. 3570 * This function takes a decimal number with a possible fractional 3571 * component, and produces an integer which is the result of 3572 * multiplying that number by 10^'scale'. 3573 * all without any floating-point arithmetic. 3574 */ 3575 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale) 3576 { 3577 unsigned long result = 0; 3578 long decimals = -1; 3579 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) { 3580 if (*cp == '.') 3581 decimals = 0; 3582 else if (decimals < scale) { 3583 unsigned int value; 3584 value = *cp - '0'; 3585 result = result * 10 + value; 3586 if (decimals >= 0) 3587 decimals++; 3588 } 3589 cp++; 3590 } 3591 if (*cp == '\n') 3592 cp++; 3593 if (*cp) 3594 return -EINVAL; 3595 if (decimals < 0) 3596 decimals = 0; 3597 while (decimals < scale) { 3598 result *= 10; 3599 decimals ++; 3600 } 3601 *res = result; 3602 return 0; 3603 } 3604 3605 static ssize_t 3606 safe_delay_show(struct mddev *mddev, char *page) 3607 { 3608 int msec = (mddev->safemode_delay*1000)/HZ; 3609 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000); 3610 } 3611 static ssize_t 3612 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len) 3613 { 3614 unsigned long msec; 3615 3616 if (mddev_is_clustered(mddev)) { 3617 pr_warn("md: Safemode is disabled for clustered mode\n"); 3618 return -EINVAL; 3619 } 3620 3621 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0) 3622 return -EINVAL; 3623 if (msec == 0) 3624 mddev->safemode_delay = 0; 3625 else { 3626 unsigned long old_delay = mddev->safemode_delay; 3627 unsigned long new_delay = (msec*HZ)/1000; 3628 3629 if (new_delay == 0) 3630 new_delay = 1; 3631 mddev->safemode_delay = new_delay; 3632 if (new_delay < old_delay || old_delay == 0) 3633 mod_timer(&mddev->safemode_timer, jiffies+1); 3634 } 3635 return len; 3636 } 3637 static struct md_sysfs_entry md_safe_delay = 3638 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); 3639 3640 static ssize_t 3641 level_show(struct mddev *mddev, char *page) 3642 { 3643 struct md_personality *p; 3644 int ret; 3645 spin_lock(&mddev->lock); 3646 p = mddev->pers; 3647 if (p) 3648 ret = sprintf(page, "%s\n", p->name); 3649 else if (mddev->clevel[0]) 3650 ret = sprintf(page, "%s\n", mddev->clevel); 3651 else if (mddev->level != LEVEL_NONE) 3652 ret = sprintf(page, "%d\n", mddev->level); 3653 else 3654 ret = 0; 3655 spin_unlock(&mddev->lock); 3656 return ret; 3657 } 3658 3659 static ssize_t 3660 level_store(struct mddev *mddev, const char *buf, size_t len) 3661 { 3662 char clevel[16]; 3663 ssize_t rv; 3664 size_t slen = len; 3665 struct md_personality *pers, *oldpers; 3666 long level; 3667 void *priv, *oldpriv; 3668 struct md_rdev *rdev; 3669 3670 if (slen == 0 || slen >= sizeof(clevel)) 3671 return -EINVAL; 3672 3673 rv = mddev_lock(mddev); 3674 if (rv) 3675 return rv; 3676 3677 if (mddev->pers == NULL) { 3678 strncpy(mddev->clevel, buf, slen); 3679 if (mddev->clevel[slen-1] == '\n') 3680 slen--; 3681 mddev->clevel[slen] = 0; 3682 mddev->level = LEVEL_NONE; 3683 rv = len; 3684 goto out_unlock; 3685 } 3686 rv = -EROFS; 3687 if (mddev->ro) 3688 goto out_unlock; 3689 3690 /* request to change the personality. Need to ensure: 3691 * - array is not engaged in resync/recovery/reshape 3692 * - old personality can be suspended 3693 * - new personality will access other array. 3694 */ 3695 3696 rv = -EBUSY; 3697 if (mddev->sync_thread || 3698 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 3699 mddev->reshape_position != MaxSector || 3700 mddev->sysfs_active) 3701 goto out_unlock; 3702 3703 rv = -EINVAL; 3704 if (!mddev->pers->quiesce) { 3705 pr_warn("md: %s: %s does not support online personality change\n", 3706 mdname(mddev), mddev->pers->name); 3707 goto out_unlock; 3708 } 3709 3710 /* Now find the new personality */ 3711 strncpy(clevel, buf, slen); 3712 if (clevel[slen-1] == '\n') 3713 slen--; 3714 clevel[slen] = 0; 3715 if (kstrtol(clevel, 10, &level)) 3716 level = LEVEL_NONE; 3717 3718 if (request_module("md-%s", clevel) != 0) 3719 request_module("md-level-%s", clevel); 3720 spin_lock(&pers_lock); 3721 pers = find_pers(level, clevel); 3722 if (!pers || !try_module_get(pers->owner)) { 3723 spin_unlock(&pers_lock); 3724 pr_warn("md: personality %s not loaded\n", clevel); 3725 rv = -EINVAL; 3726 goto out_unlock; 3727 } 3728 spin_unlock(&pers_lock); 3729 3730 if (pers == mddev->pers) { 3731 /* Nothing to do! */ 3732 module_put(pers->owner); 3733 rv = len; 3734 goto out_unlock; 3735 } 3736 if (!pers->takeover) { 3737 module_put(pers->owner); 3738 pr_warn("md: %s: %s does not support personality takeover\n", 3739 mdname(mddev), clevel); 3740 rv = -EINVAL; 3741 goto out_unlock; 3742 } 3743 3744 rdev_for_each(rdev, mddev) 3745 rdev->new_raid_disk = rdev->raid_disk; 3746 3747 /* ->takeover must set new_* and/or delta_disks 3748 * if it succeeds, and may set them when it fails. 3749 */ 3750 priv = pers->takeover(mddev); 3751 if (IS_ERR(priv)) { 3752 mddev->new_level = mddev->level; 3753 mddev->new_layout = mddev->layout; 3754 mddev->new_chunk_sectors = mddev->chunk_sectors; 3755 mddev->raid_disks -= mddev->delta_disks; 3756 mddev->delta_disks = 0; 3757 mddev->reshape_backwards = 0; 3758 module_put(pers->owner); 3759 pr_warn("md: %s: %s would not accept array\n", 3760 mdname(mddev), clevel); 3761 rv = PTR_ERR(priv); 3762 goto out_unlock; 3763 } 3764 3765 /* Looks like we have a winner */ 3766 mddev_suspend(mddev); 3767 mddev_detach(mddev); 3768 3769 spin_lock(&mddev->lock); 3770 oldpers = mddev->pers; 3771 oldpriv = mddev->private; 3772 mddev->pers = pers; 3773 mddev->private = priv; 3774 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 3775 mddev->level = mddev->new_level; 3776 mddev->layout = mddev->new_layout; 3777 mddev->chunk_sectors = mddev->new_chunk_sectors; 3778 mddev->delta_disks = 0; 3779 mddev->reshape_backwards = 0; 3780 mddev->degraded = 0; 3781 spin_unlock(&mddev->lock); 3782 3783 if (oldpers->sync_request == NULL && 3784 mddev->external) { 3785 /* We are converting from a no-redundancy array 3786 * to a redundancy array and metadata is managed 3787 * externally so we need to be sure that writes 3788 * won't block due to a need to transition 3789 * clean->dirty 3790 * until external management is started. 3791 */ 3792 mddev->in_sync = 0; 3793 mddev->safemode_delay = 0; 3794 mddev->safemode = 0; 3795 } 3796 3797 oldpers->free(mddev, oldpriv); 3798 3799 if (oldpers->sync_request == NULL && 3800 pers->sync_request != NULL) { 3801 /* need to add the md_redundancy_group */ 3802 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 3803 pr_warn("md: cannot register extra attributes for %s\n", 3804 mdname(mddev)); 3805 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action"); 3806 } 3807 if (oldpers->sync_request != NULL && 3808 pers->sync_request == NULL) { 3809 /* need to remove the md_redundancy_group */ 3810 if (mddev->to_remove == NULL) 3811 mddev->to_remove = &md_redundancy_group; 3812 } 3813 3814 module_put(oldpers->owner); 3815 3816 rdev_for_each(rdev, mddev) { 3817 if (rdev->raid_disk < 0) 3818 continue; 3819 if (rdev->new_raid_disk >= mddev->raid_disks) 3820 rdev->new_raid_disk = -1; 3821 if (rdev->new_raid_disk == rdev->raid_disk) 3822 continue; 3823 sysfs_unlink_rdev(mddev, rdev); 3824 } 3825 rdev_for_each(rdev, mddev) { 3826 if (rdev->raid_disk < 0) 3827 continue; 3828 if (rdev->new_raid_disk == rdev->raid_disk) 3829 continue; 3830 rdev->raid_disk = rdev->new_raid_disk; 3831 if (rdev->raid_disk < 0) 3832 clear_bit(In_sync, &rdev->flags); 3833 else { 3834 if (sysfs_link_rdev(mddev, rdev)) 3835 pr_warn("md: cannot register rd%d for %s after level change\n", 3836 rdev->raid_disk, mdname(mddev)); 3837 } 3838 } 3839 3840 if (pers->sync_request == NULL) { 3841 /* this is now an array without redundancy, so 3842 * it must always be in_sync 3843 */ 3844 mddev->in_sync = 1; 3845 del_timer_sync(&mddev->safemode_timer); 3846 } 3847 blk_set_stacking_limits(&mddev->queue->limits); 3848 pers->run(mddev); 3849 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 3850 mddev_resume(mddev); 3851 if (!mddev->thread) 3852 md_update_sb(mddev, 1); 3853 sysfs_notify(&mddev->kobj, NULL, "level"); 3854 md_new_event(mddev); 3855 rv = len; 3856 out_unlock: 3857 mddev_unlock(mddev); 3858 return rv; 3859 } 3860 3861 static struct md_sysfs_entry md_level = 3862 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); 3863 3864 static ssize_t 3865 layout_show(struct mddev *mddev, char *page) 3866 { 3867 /* just a number, not meaningful for all levels */ 3868 if (mddev->reshape_position != MaxSector && 3869 mddev->layout != mddev->new_layout) 3870 return sprintf(page, "%d (%d)\n", 3871 mddev->new_layout, mddev->layout); 3872 return sprintf(page, "%d\n", mddev->layout); 3873 } 3874 3875 static ssize_t 3876 layout_store(struct mddev *mddev, const char *buf, size_t len) 3877 { 3878 unsigned int n; 3879 int err; 3880 3881 err = kstrtouint(buf, 10, &n); 3882 if (err < 0) 3883 return err; 3884 err = mddev_lock(mddev); 3885 if (err) 3886 return err; 3887 3888 if (mddev->pers) { 3889 if (mddev->pers->check_reshape == NULL) 3890 err = -EBUSY; 3891 else if (mddev->ro) 3892 err = -EROFS; 3893 else { 3894 mddev->new_layout = n; 3895 err = mddev->pers->check_reshape(mddev); 3896 if (err) 3897 mddev->new_layout = mddev->layout; 3898 } 3899 } else { 3900 mddev->new_layout = n; 3901 if (mddev->reshape_position == MaxSector) 3902 mddev->layout = n; 3903 } 3904 mddev_unlock(mddev); 3905 return err ?: len; 3906 } 3907 static struct md_sysfs_entry md_layout = 3908 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); 3909 3910 static ssize_t 3911 raid_disks_show(struct mddev *mddev, char *page) 3912 { 3913 if (mddev->raid_disks == 0) 3914 return 0; 3915 if (mddev->reshape_position != MaxSector && 3916 mddev->delta_disks != 0) 3917 return sprintf(page, "%d (%d)\n", mddev->raid_disks, 3918 mddev->raid_disks - mddev->delta_disks); 3919 return sprintf(page, "%d\n", mddev->raid_disks); 3920 } 3921 3922 static int update_raid_disks(struct mddev *mddev, int raid_disks); 3923 3924 static ssize_t 3925 raid_disks_store(struct mddev *mddev, const char *buf, size_t len) 3926 { 3927 unsigned int n; 3928 int err; 3929 3930 err = kstrtouint(buf, 10, &n); 3931 if (err < 0) 3932 return err; 3933 3934 err = mddev_lock(mddev); 3935 if (err) 3936 return err; 3937 if (mddev->pers) 3938 err = update_raid_disks(mddev, n); 3939 else if (mddev->reshape_position != MaxSector) { 3940 struct md_rdev *rdev; 3941 int olddisks = mddev->raid_disks - mddev->delta_disks; 3942 3943 err = -EINVAL; 3944 rdev_for_each(rdev, mddev) { 3945 if (olddisks < n && 3946 rdev->data_offset < rdev->new_data_offset) 3947 goto out_unlock; 3948 if (olddisks > n && 3949 rdev->data_offset > rdev->new_data_offset) 3950 goto out_unlock; 3951 } 3952 err = 0; 3953 mddev->delta_disks = n - olddisks; 3954 mddev->raid_disks = n; 3955 mddev->reshape_backwards = (mddev->delta_disks < 0); 3956 } else 3957 mddev->raid_disks = n; 3958 out_unlock: 3959 mddev_unlock(mddev); 3960 return err ? err : len; 3961 } 3962 static struct md_sysfs_entry md_raid_disks = 3963 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); 3964 3965 static ssize_t 3966 chunk_size_show(struct mddev *mddev, char *page) 3967 { 3968 if (mddev->reshape_position != MaxSector && 3969 mddev->chunk_sectors != mddev->new_chunk_sectors) 3970 return sprintf(page, "%d (%d)\n", 3971 mddev->new_chunk_sectors << 9, 3972 mddev->chunk_sectors << 9); 3973 return sprintf(page, "%d\n", mddev->chunk_sectors << 9); 3974 } 3975 3976 static ssize_t 3977 chunk_size_store(struct mddev *mddev, const char *buf, size_t len) 3978 { 3979 unsigned long n; 3980 int err; 3981 3982 err = kstrtoul(buf, 10, &n); 3983 if (err < 0) 3984 return err; 3985 3986 err = mddev_lock(mddev); 3987 if (err) 3988 return err; 3989 if (mddev->pers) { 3990 if (mddev->pers->check_reshape == NULL) 3991 err = -EBUSY; 3992 else if (mddev->ro) 3993 err = -EROFS; 3994 else { 3995 mddev->new_chunk_sectors = n >> 9; 3996 err = mddev->pers->check_reshape(mddev); 3997 if (err) 3998 mddev->new_chunk_sectors = mddev->chunk_sectors; 3999 } 4000 } else { 4001 mddev->new_chunk_sectors = n >> 9; 4002 if (mddev->reshape_position == MaxSector) 4003 mddev->chunk_sectors = n >> 9; 4004 } 4005 mddev_unlock(mddev); 4006 return err ?: len; 4007 } 4008 static struct md_sysfs_entry md_chunk_size = 4009 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); 4010 4011 static ssize_t 4012 resync_start_show(struct mddev *mddev, char *page) 4013 { 4014 if (mddev->recovery_cp == MaxSector) 4015 return sprintf(page, "none\n"); 4016 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); 4017 } 4018 4019 static ssize_t 4020 resync_start_store(struct mddev *mddev, const char *buf, size_t len) 4021 { 4022 unsigned long long n; 4023 int err; 4024 4025 if (cmd_match(buf, "none")) 4026 n = MaxSector; 4027 else { 4028 err = kstrtoull(buf, 10, &n); 4029 if (err < 0) 4030 return err; 4031 if (n != (sector_t)n) 4032 return -EINVAL; 4033 } 4034 4035 err = mddev_lock(mddev); 4036 if (err) 4037 return err; 4038 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 4039 err = -EBUSY; 4040 4041 if (!err) { 4042 mddev->recovery_cp = n; 4043 if (mddev->pers) 4044 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 4045 } 4046 mddev_unlock(mddev); 4047 return err ?: len; 4048 } 4049 static struct md_sysfs_entry md_resync_start = 4050 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR, 4051 resync_start_show, resync_start_store); 4052 4053 /* 4054 * The array state can be: 4055 * 4056 * clear 4057 * No devices, no size, no level 4058 * Equivalent to STOP_ARRAY ioctl 4059 * inactive 4060 * May have some settings, but array is not active 4061 * all IO results in error 4062 * When written, doesn't tear down array, but just stops it 4063 * suspended (not supported yet) 4064 * All IO requests will block. The array can be reconfigured. 4065 * Writing this, if accepted, will block until array is quiescent 4066 * readonly 4067 * no resync can happen. no superblocks get written. 4068 * write requests fail 4069 * read-auto 4070 * like readonly, but behaves like 'clean' on a write request. 4071 * 4072 * clean - no pending writes, but otherwise active. 4073 * When written to inactive array, starts without resync 4074 * If a write request arrives then 4075 * if metadata is known, mark 'dirty' and switch to 'active'. 4076 * if not known, block and switch to write-pending 4077 * If written to an active array that has pending writes, then fails. 4078 * active 4079 * fully active: IO and resync can be happening. 4080 * When written to inactive array, starts with resync 4081 * 4082 * write-pending 4083 * clean, but writes are blocked waiting for 'active' to be written. 4084 * 4085 * active-idle 4086 * like active, but no writes have been seen for a while (100msec). 4087 * 4088 */ 4089 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, 4090 write_pending, active_idle, bad_word}; 4091 static char *array_states[] = { 4092 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", 4093 "write-pending", "active-idle", NULL }; 4094 4095 static int match_word(const char *word, char **list) 4096 { 4097 int n; 4098 for (n=0; list[n]; n++) 4099 if (cmd_match(word, list[n])) 4100 break; 4101 return n; 4102 } 4103 4104 static ssize_t 4105 array_state_show(struct mddev *mddev, char *page) 4106 { 4107 enum array_state st = inactive; 4108 4109 if (mddev->pers) 4110 switch(mddev->ro) { 4111 case 1: 4112 st = readonly; 4113 break; 4114 case 2: 4115 st = read_auto; 4116 break; 4117 case 0: 4118 spin_lock(&mddev->lock); 4119 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 4120 st = write_pending; 4121 else if (mddev->in_sync) 4122 st = clean; 4123 else if (mddev->safemode) 4124 st = active_idle; 4125 else 4126 st = active; 4127 spin_unlock(&mddev->lock); 4128 } 4129 else { 4130 if (list_empty(&mddev->disks) && 4131 mddev->raid_disks == 0 && 4132 mddev->dev_sectors == 0) 4133 st = clear; 4134 else 4135 st = inactive; 4136 } 4137 return sprintf(page, "%s\n", array_states[st]); 4138 } 4139 4140 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev); 4141 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev); 4142 static int do_md_run(struct mddev *mddev); 4143 static int restart_array(struct mddev *mddev); 4144 4145 static ssize_t 4146 array_state_store(struct mddev *mddev, const char *buf, size_t len) 4147 { 4148 int err = 0; 4149 enum array_state st = match_word(buf, array_states); 4150 4151 if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) { 4152 /* don't take reconfig_mutex when toggling between 4153 * clean and active 4154 */ 4155 spin_lock(&mddev->lock); 4156 if (st == active) { 4157 restart_array(mddev); 4158 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4159 md_wakeup_thread(mddev->thread); 4160 wake_up(&mddev->sb_wait); 4161 } else /* st == clean */ { 4162 restart_array(mddev); 4163 if (!set_in_sync(mddev)) 4164 err = -EBUSY; 4165 } 4166 if (!err) 4167 sysfs_notify_dirent_safe(mddev->sysfs_state); 4168 spin_unlock(&mddev->lock); 4169 return err ?: len; 4170 } 4171 err = mddev_lock(mddev); 4172 if (err) 4173 return err; 4174 err = -EINVAL; 4175 switch(st) { 4176 case bad_word: 4177 break; 4178 case clear: 4179 /* stopping an active array */ 4180 err = do_md_stop(mddev, 0, NULL); 4181 break; 4182 case inactive: 4183 /* stopping an active array */ 4184 if (mddev->pers) 4185 err = do_md_stop(mddev, 2, NULL); 4186 else 4187 err = 0; /* already inactive */ 4188 break; 4189 case suspended: 4190 break; /* not supported yet */ 4191 case readonly: 4192 if (mddev->pers) 4193 err = md_set_readonly(mddev, NULL); 4194 else { 4195 mddev->ro = 1; 4196 set_disk_ro(mddev->gendisk, 1); 4197 err = do_md_run(mddev); 4198 } 4199 break; 4200 case read_auto: 4201 if (mddev->pers) { 4202 if (mddev->ro == 0) 4203 err = md_set_readonly(mddev, NULL); 4204 else if (mddev->ro == 1) 4205 err = restart_array(mddev); 4206 if (err == 0) { 4207 mddev->ro = 2; 4208 set_disk_ro(mddev->gendisk, 0); 4209 } 4210 } else { 4211 mddev->ro = 2; 4212 err = do_md_run(mddev); 4213 } 4214 break; 4215 case clean: 4216 if (mddev->pers) { 4217 err = restart_array(mddev); 4218 if (err) 4219 break; 4220 spin_lock(&mddev->lock); 4221 if (!set_in_sync(mddev)) 4222 err = -EBUSY; 4223 spin_unlock(&mddev->lock); 4224 } else 4225 err = -EINVAL; 4226 break; 4227 case active: 4228 if (mddev->pers) { 4229 err = restart_array(mddev); 4230 if (err) 4231 break; 4232 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4233 wake_up(&mddev->sb_wait); 4234 err = 0; 4235 } else { 4236 mddev->ro = 0; 4237 set_disk_ro(mddev->gendisk, 0); 4238 err = do_md_run(mddev); 4239 } 4240 break; 4241 case write_pending: 4242 case active_idle: 4243 /* these cannot be set */ 4244 break; 4245 } 4246 4247 if (!err) { 4248 if (mddev->hold_active == UNTIL_IOCTL) 4249 mddev->hold_active = 0; 4250 sysfs_notify_dirent_safe(mddev->sysfs_state); 4251 } 4252 mddev_unlock(mddev); 4253 return err ?: len; 4254 } 4255 static struct md_sysfs_entry md_array_state = 4256 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); 4257 4258 static ssize_t 4259 max_corrected_read_errors_show(struct mddev *mddev, char *page) { 4260 return sprintf(page, "%d\n", 4261 atomic_read(&mddev->max_corr_read_errors)); 4262 } 4263 4264 static ssize_t 4265 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len) 4266 { 4267 unsigned int n; 4268 int rv; 4269 4270 rv = kstrtouint(buf, 10, &n); 4271 if (rv < 0) 4272 return rv; 4273 atomic_set(&mddev->max_corr_read_errors, n); 4274 return len; 4275 } 4276 4277 static struct md_sysfs_entry max_corr_read_errors = 4278 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show, 4279 max_corrected_read_errors_store); 4280 4281 static ssize_t 4282 null_show(struct mddev *mddev, char *page) 4283 { 4284 return -EINVAL; 4285 } 4286 4287 static ssize_t 4288 new_dev_store(struct mddev *mddev, const char *buf, size_t len) 4289 { 4290 /* buf must be %d:%d\n? giving major and minor numbers */ 4291 /* The new device is added to the array. 4292 * If the array has a persistent superblock, we read the 4293 * superblock to initialise info and check validity. 4294 * Otherwise, only checking done is that in bind_rdev_to_array, 4295 * which mainly checks size. 4296 */ 4297 char *e; 4298 int major = simple_strtoul(buf, &e, 10); 4299 int minor; 4300 dev_t dev; 4301 struct md_rdev *rdev; 4302 int err; 4303 4304 if (!*buf || *e != ':' || !e[1] || e[1] == '\n') 4305 return -EINVAL; 4306 minor = simple_strtoul(e+1, &e, 10); 4307 if (*e && *e != '\n') 4308 return -EINVAL; 4309 dev = MKDEV(major, minor); 4310 if (major != MAJOR(dev) || 4311 minor != MINOR(dev)) 4312 return -EOVERFLOW; 4313 4314 flush_workqueue(md_misc_wq); 4315 4316 err = mddev_lock(mddev); 4317 if (err) 4318 return err; 4319 if (mddev->persistent) { 4320 rdev = md_import_device(dev, mddev->major_version, 4321 mddev->minor_version); 4322 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { 4323 struct md_rdev *rdev0 4324 = list_entry(mddev->disks.next, 4325 struct md_rdev, same_set); 4326 err = super_types[mddev->major_version] 4327 .load_super(rdev, rdev0, mddev->minor_version); 4328 if (err < 0) 4329 goto out; 4330 } 4331 } else if (mddev->external) 4332 rdev = md_import_device(dev, -2, -1); 4333 else 4334 rdev = md_import_device(dev, -1, -1); 4335 4336 if (IS_ERR(rdev)) { 4337 mddev_unlock(mddev); 4338 return PTR_ERR(rdev); 4339 } 4340 err = bind_rdev_to_array(rdev, mddev); 4341 out: 4342 if (err) 4343 export_rdev(rdev); 4344 mddev_unlock(mddev); 4345 if (!err) 4346 md_new_event(mddev); 4347 return err ? err : len; 4348 } 4349 4350 static struct md_sysfs_entry md_new_device = 4351 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store); 4352 4353 static ssize_t 4354 bitmap_store(struct mddev *mddev, const char *buf, size_t len) 4355 { 4356 char *end; 4357 unsigned long chunk, end_chunk; 4358 int err; 4359 4360 err = mddev_lock(mddev); 4361 if (err) 4362 return err; 4363 if (!mddev->bitmap) 4364 goto out; 4365 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */ 4366 while (*buf) { 4367 chunk = end_chunk = simple_strtoul(buf, &end, 0); 4368 if (buf == end) break; 4369 if (*end == '-') { /* range */ 4370 buf = end + 1; 4371 end_chunk = simple_strtoul(buf, &end, 0); 4372 if (buf == end) break; 4373 } 4374 if (*end && !isspace(*end)) break; 4375 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk); 4376 buf = skip_spaces(end); 4377 } 4378 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */ 4379 out: 4380 mddev_unlock(mddev); 4381 return len; 4382 } 4383 4384 static struct md_sysfs_entry md_bitmap = 4385 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); 4386 4387 static ssize_t 4388 size_show(struct mddev *mddev, char *page) 4389 { 4390 return sprintf(page, "%llu\n", 4391 (unsigned long long)mddev->dev_sectors / 2); 4392 } 4393 4394 static int update_size(struct mddev *mddev, sector_t num_sectors); 4395 4396 static ssize_t 4397 size_store(struct mddev *mddev, const char *buf, size_t len) 4398 { 4399 /* If array is inactive, we can reduce the component size, but 4400 * not increase it (except from 0). 4401 * If array is active, we can try an on-line resize 4402 */ 4403 sector_t sectors; 4404 int err = strict_blocks_to_sectors(buf, §ors); 4405 4406 if (err < 0) 4407 return err; 4408 err = mddev_lock(mddev); 4409 if (err) 4410 return err; 4411 if (mddev->pers) { 4412 err = update_size(mddev, sectors); 4413 if (err == 0) 4414 md_update_sb(mddev, 1); 4415 } else { 4416 if (mddev->dev_sectors == 0 || 4417 mddev->dev_sectors > sectors) 4418 mddev->dev_sectors = sectors; 4419 else 4420 err = -ENOSPC; 4421 } 4422 mddev_unlock(mddev); 4423 return err ? err : len; 4424 } 4425 4426 static struct md_sysfs_entry md_size = 4427 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); 4428 4429 /* Metadata version. 4430 * This is one of 4431 * 'none' for arrays with no metadata (good luck...) 4432 * 'external' for arrays with externally managed metadata, 4433 * or N.M for internally known formats 4434 */ 4435 static ssize_t 4436 metadata_show(struct mddev *mddev, char *page) 4437 { 4438 if (mddev->persistent) 4439 return sprintf(page, "%d.%d\n", 4440 mddev->major_version, mddev->minor_version); 4441 else if (mddev->external) 4442 return sprintf(page, "external:%s\n", mddev->metadata_type); 4443 else 4444 return sprintf(page, "none\n"); 4445 } 4446 4447 static ssize_t 4448 metadata_store(struct mddev *mddev, const char *buf, size_t len) 4449 { 4450 int major, minor; 4451 char *e; 4452 int err; 4453 /* Changing the details of 'external' metadata is 4454 * always permitted. Otherwise there must be 4455 * no devices attached to the array. 4456 */ 4457 4458 err = mddev_lock(mddev); 4459 if (err) 4460 return err; 4461 err = -EBUSY; 4462 if (mddev->external && strncmp(buf, "external:", 9) == 0) 4463 ; 4464 else if (!list_empty(&mddev->disks)) 4465 goto out_unlock; 4466 4467 err = 0; 4468 if (cmd_match(buf, "none")) { 4469 mddev->persistent = 0; 4470 mddev->external = 0; 4471 mddev->major_version = 0; 4472 mddev->minor_version = 90; 4473 goto out_unlock; 4474 } 4475 if (strncmp(buf, "external:", 9) == 0) { 4476 size_t namelen = len-9; 4477 if (namelen >= sizeof(mddev->metadata_type)) 4478 namelen = sizeof(mddev->metadata_type)-1; 4479 strncpy(mddev->metadata_type, buf+9, namelen); 4480 mddev->metadata_type[namelen] = 0; 4481 if (namelen && mddev->metadata_type[namelen-1] == '\n') 4482 mddev->metadata_type[--namelen] = 0; 4483 mddev->persistent = 0; 4484 mddev->external = 1; 4485 mddev->major_version = 0; 4486 mddev->minor_version = 90; 4487 goto out_unlock; 4488 } 4489 major = simple_strtoul(buf, &e, 10); 4490 err = -EINVAL; 4491 if (e==buf || *e != '.') 4492 goto out_unlock; 4493 buf = e+1; 4494 minor = simple_strtoul(buf, &e, 10); 4495 if (e==buf || (*e && *e != '\n') ) 4496 goto out_unlock; 4497 err = -ENOENT; 4498 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL) 4499 goto out_unlock; 4500 mddev->major_version = major; 4501 mddev->minor_version = minor; 4502 mddev->persistent = 1; 4503 mddev->external = 0; 4504 err = 0; 4505 out_unlock: 4506 mddev_unlock(mddev); 4507 return err ?: len; 4508 } 4509 4510 static struct md_sysfs_entry md_metadata = 4511 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 4512 4513 static ssize_t 4514 action_show(struct mddev *mddev, char *page) 4515 { 4516 char *type = "idle"; 4517 unsigned long recovery = mddev->recovery; 4518 if (test_bit(MD_RECOVERY_FROZEN, &recovery)) 4519 type = "frozen"; 4520 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) || 4521 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) { 4522 if (test_bit(MD_RECOVERY_RESHAPE, &recovery)) 4523 type = "reshape"; 4524 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) { 4525 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery)) 4526 type = "resync"; 4527 else if (test_bit(MD_RECOVERY_CHECK, &recovery)) 4528 type = "check"; 4529 else 4530 type = "repair"; 4531 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery)) 4532 type = "recover"; 4533 else if (mddev->reshape_position != MaxSector) 4534 type = "reshape"; 4535 } 4536 return sprintf(page, "%s\n", type); 4537 } 4538 4539 static ssize_t 4540 action_store(struct mddev *mddev, const char *page, size_t len) 4541 { 4542 if (!mddev->pers || !mddev->pers->sync_request) 4543 return -EINVAL; 4544 4545 4546 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) { 4547 if (cmd_match(page, "frozen")) 4548 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4549 else 4550 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4551 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 4552 mddev_lock(mddev) == 0) { 4553 flush_workqueue(md_misc_wq); 4554 if (mddev->sync_thread) { 4555 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4556 md_reap_sync_thread(mddev); 4557 } 4558 mddev_unlock(mddev); 4559 } 4560 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4561 return -EBUSY; 4562 else if (cmd_match(page, "resync")) 4563 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4564 else if (cmd_match(page, "recover")) { 4565 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4566 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 4567 } else if (cmd_match(page, "reshape")) { 4568 int err; 4569 if (mddev->pers->start_reshape == NULL) 4570 return -EINVAL; 4571 err = mddev_lock(mddev); 4572 if (!err) { 4573 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4574 err = -EBUSY; 4575 else { 4576 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4577 err = mddev->pers->start_reshape(mddev); 4578 } 4579 mddev_unlock(mddev); 4580 } 4581 if (err) 4582 return err; 4583 sysfs_notify(&mddev->kobj, NULL, "degraded"); 4584 } else { 4585 if (cmd_match(page, "check")) 4586 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4587 else if (!cmd_match(page, "repair")) 4588 return -EINVAL; 4589 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4590 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 4591 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4592 } 4593 if (mddev->ro == 2) { 4594 /* A write to sync_action is enough to justify 4595 * canceling read-auto mode 4596 */ 4597 mddev->ro = 0; 4598 md_wakeup_thread(mddev->sync_thread); 4599 } 4600 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4601 md_wakeup_thread(mddev->thread); 4602 sysfs_notify_dirent_safe(mddev->sysfs_action); 4603 return len; 4604 } 4605 4606 static struct md_sysfs_entry md_scan_mode = 4607 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); 4608 4609 static ssize_t 4610 last_sync_action_show(struct mddev *mddev, char *page) 4611 { 4612 return sprintf(page, "%s\n", mddev->last_sync_action); 4613 } 4614 4615 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action); 4616 4617 static ssize_t 4618 mismatch_cnt_show(struct mddev *mddev, char *page) 4619 { 4620 return sprintf(page, "%llu\n", 4621 (unsigned long long) 4622 atomic64_read(&mddev->resync_mismatches)); 4623 } 4624 4625 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); 4626 4627 static ssize_t 4628 sync_min_show(struct mddev *mddev, char *page) 4629 { 4630 return sprintf(page, "%d (%s)\n", speed_min(mddev), 4631 mddev->sync_speed_min ? "local": "system"); 4632 } 4633 4634 static ssize_t 4635 sync_min_store(struct mddev *mddev, const char *buf, size_t len) 4636 { 4637 unsigned int min; 4638 int rv; 4639 4640 if (strncmp(buf, "system", 6)==0) { 4641 min = 0; 4642 } else { 4643 rv = kstrtouint(buf, 10, &min); 4644 if (rv < 0) 4645 return rv; 4646 if (min == 0) 4647 return -EINVAL; 4648 } 4649 mddev->sync_speed_min = min; 4650 return len; 4651 } 4652 4653 static struct md_sysfs_entry md_sync_min = 4654 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); 4655 4656 static ssize_t 4657 sync_max_show(struct mddev *mddev, char *page) 4658 { 4659 return sprintf(page, "%d (%s)\n", speed_max(mddev), 4660 mddev->sync_speed_max ? "local": "system"); 4661 } 4662 4663 static ssize_t 4664 sync_max_store(struct mddev *mddev, const char *buf, size_t len) 4665 { 4666 unsigned int max; 4667 int rv; 4668 4669 if (strncmp(buf, "system", 6)==0) { 4670 max = 0; 4671 } else { 4672 rv = kstrtouint(buf, 10, &max); 4673 if (rv < 0) 4674 return rv; 4675 if (max == 0) 4676 return -EINVAL; 4677 } 4678 mddev->sync_speed_max = max; 4679 return len; 4680 } 4681 4682 static struct md_sysfs_entry md_sync_max = 4683 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); 4684 4685 static ssize_t 4686 degraded_show(struct mddev *mddev, char *page) 4687 { 4688 return sprintf(page, "%d\n", mddev->degraded); 4689 } 4690 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded); 4691 4692 static ssize_t 4693 sync_force_parallel_show(struct mddev *mddev, char *page) 4694 { 4695 return sprintf(page, "%d\n", mddev->parallel_resync); 4696 } 4697 4698 static ssize_t 4699 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len) 4700 { 4701 long n; 4702 4703 if (kstrtol(buf, 10, &n)) 4704 return -EINVAL; 4705 4706 if (n != 0 && n != 1) 4707 return -EINVAL; 4708 4709 mddev->parallel_resync = n; 4710 4711 if (mddev->sync_thread) 4712 wake_up(&resync_wait); 4713 4714 return len; 4715 } 4716 4717 /* force parallel resync, even with shared block devices */ 4718 static struct md_sysfs_entry md_sync_force_parallel = 4719 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR, 4720 sync_force_parallel_show, sync_force_parallel_store); 4721 4722 static ssize_t 4723 sync_speed_show(struct mddev *mddev, char *page) 4724 { 4725 unsigned long resync, dt, db; 4726 if (mddev->curr_resync == 0) 4727 return sprintf(page, "none\n"); 4728 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active); 4729 dt = (jiffies - mddev->resync_mark) / HZ; 4730 if (!dt) dt++; 4731 db = resync - mddev->resync_mark_cnt; 4732 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */ 4733 } 4734 4735 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); 4736 4737 static ssize_t 4738 sync_completed_show(struct mddev *mddev, char *page) 4739 { 4740 unsigned long long max_sectors, resync; 4741 4742 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4743 return sprintf(page, "none\n"); 4744 4745 if (mddev->curr_resync == 1 || 4746 mddev->curr_resync == 2) 4747 return sprintf(page, "delayed\n"); 4748 4749 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 4750 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 4751 max_sectors = mddev->resync_max_sectors; 4752 else 4753 max_sectors = mddev->dev_sectors; 4754 4755 resync = mddev->curr_resync_completed; 4756 return sprintf(page, "%llu / %llu\n", resync, max_sectors); 4757 } 4758 4759 static struct md_sysfs_entry md_sync_completed = 4760 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL); 4761 4762 static ssize_t 4763 min_sync_show(struct mddev *mddev, char *page) 4764 { 4765 return sprintf(page, "%llu\n", 4766 (unsigned long long)mddev->resync_min); 4767 } 4768 static ssize_t 4769 min_sync_store(struct mddev *mddev, const char *buf, size_t len) 4770 { 4771 unsigned long long min; 4772 int err; 4773 4774 if (kstrtoull(buf, 10, &min)) 4775 return -EINVAL; 4776 4777 spin_lock(&mddev->lock); 4778 err = -EINVAL; 4779 if (min > mddev->resync_max) 4780 goto out_unlock; 4781 4782 err = -EBUSY; 4783 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4784 goto out_unlock; 4785 4786 /* Round down to multiple of 4K for safety */ 4787 mddev->resync_min = round_down(min, 8); 4788 err = 0; 4789 4790 out_unlock: 4791 spin_unlock(&mddev->lock); 4792 return err ?: len; 4793 } 4794 4795 static struct md_sysfs_entry md_min_sync = 4796 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store); 4797 4798 static ssize_t 4799 max_sync_show(struct mddev *mddev, char *page) 4800 { 4801 if (mddev->resync_max == MaxSector) 4802 return sprintf(page, "max\n"); 4803 else 4804 return sprintf(page, "%llu\n", 4805 (unsigned long long)mddev->resync_max); 4806 } 4807 static ssize_t 4808 max_sync_store(struct mddev *mddev, const char *buf, size_t len) 4809 { 4810 int err; 4811 spin_lock(&mddev->lock); 4812 if (strncmp(buf, "max", 3) == 0) 4813 mddev->resync_max = MaxSector; 4814 else { 4815 unsigned long long max; 4816 int chunk; 4817 4818 err = -EINVAL; 4819 if (kstrtoull(buf, 10, &max)) 4820 goto out_unlock; 4821 if (max < mddev->resync_min) 4822 goto out_unlock; 4823 4824 err = -EBUSY; 4825 if (max < mddev->resync_max && 4826 mddev->ro == 0 && 4827 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4828 goto out_unlock; 4829 4830 /* Must be a multiple of chunk_size */ 4831 chunk = mddev->chunk_sectors; 4832 if (chunk) { 4833 sector_t temp = max; 4834 4835 err = -EINVAL; 4836 if (sector_div(temp, chunk)) 4837 goto out_unlock; 4838 } 4839 mddev->resync_max = max; 4840 } 4841 wake_up(&mddev->recovery_wait); 4842 err = 0; 4843 out_unlock: 4844 spin_unlock(&mddev->lock); 4845 return err ?: len; 4846 } 4847 4848 static struct md_sysfs_entry md_max_sync = 4849 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store); 4850 4851 static ssize_t 4852 suspend_lo_show(struct mddev *mddev, char *page) 4853 { 4854 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo); 4855 } 4856 4857 static ssize_t 4858 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len) 4859 { 4860 unsigned long long new; 4861 int err; 4862 4863 err = kstrtoull(buf, 10, &new); 4864 if (err < 0) 4865 return err; 4866 if (new != (sector_t)new) 4867 return -EINVAL; 4868 4869 err = mddev_lock(mddev); 4870 if (err) 4871 return err; 4872 err = -EINVAL; 4873 if (mddev->pers == NULL || 4874 mddev->pers->quiesce == NULL) 4875 goto unlock; 4876 mddev_suspend(mddev); 4877 mddev->suspend_lo = new; 4878 mddev_resume(mddev); 4879 4880 err = 0; 4881 unlock: 4882 mddev_unlock(mddev); 4883 return err ?: len; 4884 } 4885 static struct md_sysfs_entry md_suspend_lo = 4886 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); 4887 4888 static ssize_t 4889 suspend_hi_show(struct mddev *mddev, char *page) 4890 { 4891 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi); 4892 } 4893 4894 static ssize_t 4895 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len) 4896 { 4897 unsigned long long new; 4898 int err; 4899 4900 err = kstrtoull(buf, 10, &new); 4901 if (err < 0) 4902 return err; 4903 if (new != (sector_t)new) 4904 return -EINVAL; 4905 4906 err = mddev_lock(mddev); 4907 if (err) 4908 return err; 4909 err = -EINVAL; 4910 if (mddev->pers == NULL) 4911 goto unlock; 4912 4913 mddev_suspend(mddev); 4914 mddev->suspend_hi = new; 4915 mddev_resume(mddev); 4916 4917 err = 0; 4918 unlock: 4919 mddev_unlock(mddev); 4920 return err ?: len; 4921 } 4922 static struct md_sysfs_entry md_suspend_hi = 4923 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); 4924 4925 static ssize_t 4926 reshape_position_show(struct mddev *mddev, char *page) 4927 { 4928 if (mddev->reshape_position != MaxSector) 4929 return sprintf(page, "%llu\n", 4930 (unsigned long long)mddev->reshape_position); 4931 strcpy(page, "none\n"); 4932 return 5; 4933 } 4934 4935 static ssize_t 4936 reshape_position_store(struct mddev *mddev, const char *buf, size_t len) 4937 { 4938 struct md_rdev *rdev; 4939 unsigned long long new; 4940 int err; 4941 4942 err = kstrtoull(buf, 10, &new); 4943 if (err < 0) 4944 return err; 4945 if (new != (sector_t)new) 4946 return -EINVAL; 4947 err = mddev_lock(mddev); 4948 if (err) 4949 return err; 4950 err = -EBUSY; 4951 if (mddev->pers) 4952 goto unlock; 4953 mddev->reshape_position = new; 4954 mddev->delta_disks = 0; 4955 mddev->reshape_backwards = 0; 4956 mddev->new_level = mddev->level; 4957 mddev->new_layout = mddev->layout; 4958 mddev->new_chunk_sectors = mddev->chunk_sectors; 4959 rdev_for_each(rdev, mddev) 4960 rdev->new_data_offset = rdev->data_offset; 4961 err = 0; 4962 unlock: 4963 mddev_unlock(mddev); 4964 return err ?: len; 4965 } 4966 4967 static struct md_sysfs_entry md_reshape_position = 4968 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show, 4969 reshape_position_store); 4970 4971 static ssize_t 4972 reshape_direction_show(struct mddev *mddev, char *page) 4973 { 4974 return sprintf(page, "%s\n", 4975 mddev->reshape_backwards ? "backwards" : "forwards"); 4976 } 4977 4978 static ssize_t 4979 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len) 4980 { 4981 int backwards = 0; 4982 int err; 4983 4984 if (cmd_match(buf, "forwards")) 4985 backwards = 0; 4986 else if (cmd_match(buf, "backwards")) 4987 backwards = 1; 4988 else 4989 return -EINVAL; 4990 if (mddev->reshape_backwards == backwards) 4991 return len; 4992 4993 err = mddev_lock(mddev); 4994 if (err) 4995 return err; 4996 /* check if we are allowed to change */ 4997 if (mddev->delta_disks) 4998 err = -EBUSY; 4999 else if (mddev->persistent && 5000 mddev->major_version == 0) 5001 err = -EINVAL; 5002 else 5003 mddev->reshape_backwards = backwards; 5004 mddev_unlock(mddev); 5005 return err ?: len; 5006 } 5007 5008 static struct md_sysfs_entry md_reshape_direction = 5009 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show, 5010 reshape_direction_store); 5011 5012 static ssize_t 5013 array_size_show(struct mddev *mddev, char *page) 5014 { 5015 if (mddev->external_size) 5016 return sprintf(page, "%llu\n", 5017 (unsigned long long)mddev->array_sectors/2); 5018 else 5019 return sprintf(page, "default\n"); 5020 } 5021 5022 static ssize_t 5023 array_size_store(struct mddev *mddev, const char *buf, size_t len) 5024 { 5025 sector_t sectors; 5026 int err; 5027 5028 err = mddev_lock(mddev); 5029 if (err) 5030 return err; 5031 5032 /* cluster raid doesn't support change array_sectors */ 5033 if (mddev_is_clustered(mddev)) { 5034 mddev_unlock(mddev); 5035 return -EINVAL; 5036 } 5037 5038 if (strncmp(buf, "default", 7) == 0) { 5039 if (mddev->pers) 5040 sectors = mddev->pers->size(mddev, 0, 0); 5041 else 5042 sectors = mddev->array_sectors; 5043 5044 mddev->external_size = 0; 5045 } else { 5046 if (strict_blocks_to_sectors(buf, §ors) < 0) 5047 err = -EINVAL; 5048 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors) 5049 err = -E2BIG; 5050 else 5051 mddev->external_size = 1; 5052 } 5053 5054 if (!err) { 5055 mddev->array_sectors = sectors; 5056 if (mddev->pers) { 5057 set_capacity(mddev->gendisk, mddev->array_sectors); 5058 revalidate_disk(mddev->gendisk); 5059 } 5060 } 5061 mddev_unlock(mddev); 5062 return err ?: len; 5063 } 5064 5065 static struct md_sysfs_entry md_array_size = 5066 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show, 5067 array_size_store); 5068 5069 static ssize_t 5070 consistency_policy_show(struct mddev *mddev, char *page) 5071 { 5072 int ret; 5073 5074 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { 5075 ret = sprintf(page, "journal\n"); 5076 } else if (test_bit(MD_HAS_PPL, &mddev->flags)) { 5077 ret = sprintf(page, "ppl\n"); 5078 } else if (mddev->bitmap) { 5079 ret = sprintf(page, "bitmap\n"); 5080 } else if (mddev->pers) { 5081 if (mddev->pers->sync_request) 5082 ret = sprintf(page, "resync\n"); 5083 else 5084 ret = sprintf(page, "none\n"); 5085 } else { 5086 ret = sprintf(page, "unknown\n"); 5087 } 5088 5089 return ret; 5090 } 5091 5092 static ssize_t 5093 consistency_policy_store(struct mddev *mddev, const char *buf, size_t len) 5094 { 5095 int err = 0; 5096 5097 if (mddev->pers) { 5098 if (mddev->pers->change_consistency_policy) 5099 err = mddev->pers->change_consistency_policy(mddev, buf); 5100 else 5101 err = -EBUSY; 5102 } else if (mddev->external && strncmp(buf, "ppl", 3) == 0) { 5103 set_bit(MD_HAS_PPL, &mddev->flags); 5104 } else { 5105 err = -EINVAL; 5106 } 5107 5108 return err ? err : len; 5109 } 5110 5111 static struct md_sysfs_entry md_consistency_policy = 5112 __ATTR(consistency_policy, S_IRUGO | S_IWUSR, consistency_policy_show, 5113 consistency_policy_store); 5114 5115 static struct attribute *md_default_attrs[] = { 5116 &md_level.attr, 5117 &md_layout.attr, 5118 &md_raid_disks.attr, 5119 &md_chunk_size.attr, 5120 &md_size.attr, 5121 &md_resync_start.attr, 5122 &md_metadata.attr, 5123 &md_new_device.attr, 5124 &md_safe_delay.attr, 5125 &md_array_state.attr, 5126 &md_reshape_position.attr, 5127 &md_reshape_direction.attr, 5128 &md_array_size.attr, 5129 &max_corr_read_errors.attr, 5130 &md_consistency_policy.attr, 5131 NULL, 5132 }; 5133 5134 static struct attribute *md_redundancy_attrs[] = { 5135 &md_scan_mode.attr, 5136 &md_last_scan_mode.attr, 5137 &md_mismatches.attr, 5138 &md_sync_min.attr, 5139 &md_sync_max.attr, 5140 &md_sync_speed.attr, 5141 &md_sync_force_parallel.attr, 5142 &md_sync_completed.attr, 5143 &md_min_sync.attr, 5144 &md_max_sync.attr, 5145 &md_suspend_lo.attr, 5146 &md_suspend_hi.attr, 5147 &md_bitmap.attr, 5148 &md_degraded.attr, 5149 NULL, 5150 }; 5151 static struct attribute_group md_redundancy_group = { 5152 .name = NULL, 5153 .attrs = md_redundancy_attrs, 5154 }; 5155 5156 static ssize_t 5157 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 5158 { 5159 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5160 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5161 ssize_t rv; 5162 5163 if (!entry->show) 5164 return -EIO; 5165 spin_lock(&all_mddevs_lock); 5166 if (list_empty(&mddev->all_mddevs)) { 5167 spin_unlock(&all_mddevs_lock); 5168 return -EBUSY; 5169 } 5170 mddev_get(mddev); 5171 spin_unlock(&all_mddevs_lock); 5172 5173 rv = entry->show(mddev, page); 5174 mddev_put(mddev); 5175 return rv; 5176 } 5177 5178 static ssize_t 5179 md_attr_store(struct kobject *kobj, struct attribute *attr, 5180 const char *page, size_t length) 5181 { 5182 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5183 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5184 ssize_t rv; 5185 5186 if (!entry->store) 5187 return -EIO; 5188 if (!capable(CAP_SYS_ADMIN)) 5189 return -EACCES; 5190 spin_lock(&all_mddevs_lock); 5191 if (list_empty(&mddev->all_mddevs)) { 5192 spin_unlock(&all_mddevs_lock); 5193 return -EBUSY; 5194 } 5195 mddev_get(mddev); 5196 spin_unlock(&all_mddevs_lock); 5197 rv = entry->store(mddev, page, length); 5198 mddev_put(mddev); 5199 return rv; 5200 } 5201 5202 static void md_free(struct kobject *ko) 5203 { 5204 struct mddev *mddev = container_of(ko, struct mddev, kobj); 5205 5206 if (mddev->sysfs_state) 5207 sysfs_put(mddev->sysfs_state); 5208 5209 if (mddev->queue) 5210 blk_cleanup_queue(mddev->queue); 5211 if (mddev->gendisk) { 5212 del_gendisk(mddev->gendisk); 5213 put_disk(mddev->gendisk); 5214 } 5215 percpu_ref_exit(&mddev->writes_pending); 5216 5217 kfree(mddev); 5218 } 5219 5220 static const struct sysfs_ops md_sysfs_ops = { 5221 .show = md_attr_show, 5222 .store = md_attr_store, 5223 }; 5224 static struct kobj_type md_ktype = { 5225 .release = md_free, 5226 .sysfs_ops = &md_sysfs_ops, 5227 .default_attrs = md_default_attrs, 5228 }; 5229 5230 int mdp_major = 0; 5231 5232 static void mddev_delayed_delete(struct work_struct *ws) 5233 { 5234 struct mddev *mddev = container_of(ws, struct mddev, del_work); 5235 5236 sysfs_remove_group(&mddev->kobj, &md_bitmap_group); 5237 kobject_del(&mddev->kobj); 5238 kobject_put(&mddev->kobj); 5239 } 5240 5241 static void no_op(struct percpu_ref *r) {} 5242 5243 int mddev_init_writes_pending(struct mddev *mddev) 5244 { 5245 if (mddev->writes_pending.percpu_count_ptr) 5246 return 0; 5247 if (percpu_ref_init(&mddev->writes_pending, no_op, 0, GFP_KERNEL) < 0) 5248 return -ENOMEM; 5249 /* We want to start with the refcount at zero */ 5250 percpu_ref_put(&mddev->writes_pending); 5251 return 0; 5252 } 5253 EXPORT_SYMBOL_GPL(mddev_init_writes_pending); 5254 5255 static int md_alloc(dev_t dev, char *name) 5256 { 5257 /* 5258 * If dev is zero, name is the name of a device to allocate with 5259 * an arbitrary minor number. It will be "md_???" 5260 * If dev is non-zero it must be a device number with a MAJOR of 5261 * MD_MAJOR or mdp_major. In this case, if "name" is NULL, then 5262 * the device is being created by opening a node in /dev. 5263 * If "name" is not NULL, the device is being created by 5264 * writing to /sys/module/md_mod/parameters/new_array. 5265 */ 5266 static DEFINE_MUTEX(disks_mutex); 5267 struct mddev *mddev = mddev_find(dev); 5268 struct gendisk *disk; 5269 int partitioned; 5270 int shift; 5271 int unit; 5272 int error; 5273 5274 if (!mddev) 5275 return -ENODEV; 5276 5277 partitioned = (MAJOR(mddev->unit) != MD_MAJOR); 5278 shift = partitioned ? MdpMinorShift : 0; 5279 unit = MINOR(mddev->unit) >> shift; 5280 5281 /* wait for any previous instance of this device to be 5282 * completely removed (mddev_delayed_delete). 5283 */ 5284 flush_workqueue(md_misc_wq); 5285 5286 mutex_lock(&disks_mutex); 5287 error = -EEXIST; 5288 if (mddev->gendisk) 5289 goto abort; 5290 5291 if (name && !dev) { 5292 /* Need to ensure that 'name' is not a duplicate. 5293 */ 5294 struct mddev *mddev2; 5295 spin_lock(&all_mddevs_lock); 5296 5297 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) 5298 if (mddev2->gendisk && 5299 strcmp(mddev2->gendisk->disk_name, name) == 0) { 5300 spin_unlock(&all_mddevs_lock); 5301 goto abort; 5302 } 5303 spin_unlock(&all_mddevs_lock); 5304 } 5305 if (name && dev) 5306 /* 5307 * Creating /dev/mdNNN via "newarray", so adjust hold_active. 5308 */ 5309 mddev->hold_active = UNTIL_STOP; 5310 5311 error = -ENOMEM; 5312 mddev->queue = blk_alloc_queue(GFP_KERNEL); 5313 if (!mddev->queue) 5314 goto abort; 5315 mddev->queue->queuedata = mddev; 5316 5317 blk_queue_make_request(mddev->queue, md_make_request); 5318 blk_set_stacking_limits(&mddev->queue->limits); 5319 5320 disk = alloc_disk(1 << shift); 5321 if (!disk) { 5322 blk_cleanup_queue(mddev->queue); 5323 mddev->queue = NULL; 5324 goto abort; 5325 } 5326 disk->major = MAJOR(mddev->unit); 5327 disk->first_minor = unit << shift; 5328 if (name) 5329 strcpy(disk->disk_name, name); 5330 else if (partitioned) 5331 sprintf(disk->disk_name, "md_d%d", unit); 5332 else 5333 sprintf(disk->disk_name, "md%d", unit); 5334 disk->fops = &md_fops; 5335 disk->private_data = mddev; 5336 disk->queue = mddev->queue; 5337 blk_queue_write_cache(mddev->queue, true, true); 5338 /* Allow extended partitions. This makes the 5339 * 'mdp' device redundant, but we can't really 5340 * remove it now. 5341 */ 5342 disk->flags |= GENHD_FL_EXT_DEVT; 5343 mddev->gendisk = disk; 5344 /* As soon as we call add_disk(), another thread could get 5345 * through to md_open, so make sure it doesn't get too far 5346 */ 5347 mutex_lock(&mddev->open_mutex); 5348 add_disk(disk); 5349 5350 error = kobject_init_and_add(&mddev->kobj, &md_ktype, 5351 &disk_to_dev(disk)->kobj, "%s", "md"); 5352 if (error) { 5353 /* This isn't possible, but as kobject_init_and_add is marked 5354 * __must_check, we must do something with the result 5355 */ 5356 pr_debug("md: cannot register %s/md - name in use\n", 5357 disk->disk_name); 5358 error = 0; 5359 } 5360 if (mddev->kobj.sd && 5361 sysfs_create_group(&mddev->kobj, &md_bitmap_group)) 5362 pr_debug("pointless warning\n"); 5363 mutex_unlock(&mddev->open_mutex); 5364 abort: 5365 mutex_unlock(&disks_mutex); 5366 if (!error && mddev->kobj.sd) { 5367 kobject_uevent(&mddev->kobj, KOBJ_ADD); 5368 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state"); 5369 } 5370 mddev_put(mddev); 5371 return error; 5372 } 5373 5374 static struct kobject *md_probe(dev_t dev, int *part, void *data) 5375 { 5376 if (create_on_open) 5377 md_alloc(dev, NULL); 5378 return NULL; 5379 } 5380 5381 static int add_named_array(const char *val, const struct kernel_param *kp) 5382 { 5383 /* 5384 * val must be "md_*" or "mdNNN". 5385 * For "md_*" we allocate an array with a large free minor number, and 5386 * set the name to val. val must not already be an active name. 5387 * For "mdNNN" we allocate an array with the minor number NNN 5388 * which must not already be in use. 5389 */ 5390 int len = strlen(val); 5391 char buf[DISK_NAME_LEN]; 5392 unsigned long devnum; 5393 5394 while (len && val[len-1] == '\n') 5395 len--; 5396 if (len >= DISK_NAME_LEN) 5397 return -E2BIG; 5398 strlcpy(buf, val, len+1); 5399 if (strncmp(buf, "md_", 3) == 0) 5400 return md_alloc(0, buf); 5401 if (strncmp(buf, "md", 2) == 0 && 5402 isdigit(buf[2]) && 5403 kstrtoul(buf+2, 10, &devnum) == 0 && 5404 devnum <= MINORMASK) 5405 return md_alloc(MKDEV(MD_MAJOR, devnum), NULL); 5406 5407 return -EINVAL; 5408 } 5409 5410 static void md_safemode_timeout(struct timer_list *t) 5411 { 5412 struct mddev *mddev = from_timer(mddev, t, safemode_timer); 5413 5414 mddev->safemode = 1; 5415 if (mddev->external) 5416 sysfs_notify_dirent_safe(mddev->sysfs_state); 5417 5418 md_wakeup_thread(mddev->thread); 5419 } 5420 5421 static int start_dirty_degraded; 5422 5423 int md_run(struct mddev *mddev) 5424 { 5425 int err; 5426 struct md_rdev *rdev; 5427 struct md_personality *pers; 5428 5429 if (list_empty(&mddev->disks)) 5430 /* cannot run an array with no devices.. */ 5431 return -EINVAL; 5432 5433 if (mddev->pers) 5434 return -EBUSY; 5435 /* Cannot run until previous stop completes properly */ 5436 if (mddev->sysfs_active) 5437 return -EBUSY; 5438 5439 /* 5440 * Analyze all RAID superblock(s) 5441 */ 5442 if (!mddev->raid_disks) { 5443 if (!mddev->persistent) 5444 return -EINVAL; 5445 analyze_sbs(mddev); 5446 } 5447 5448 if (mddev->level != LEVEL_NONE) 5449 request_module("md-level-%d", mddev->level); 5450 else if (mddev->clevel[0]) 5451 request_module("md-%s", mddev->clevel); 5452 5453 /* 5454 * Drop all container device buffers, from now on 5455 * the only valid external interface is through the md 5456 * device. 5457 */ 5458 mddev->has_superblocks = false; 5459 rdev_for_each(rdev, mddev) { 5460 if (test_bit(Faulty, &rdev->flags)) 5461 continue; 5462 sync_blockdev(rdev->bdev); 5463 invalidate_bdev(rdev->bdev); 5464 if (mddev->ro != 1 && 5465 (bdev_read_only(rdev->bdev) || 5466 bdev_read_only(rdev->meta_bdev))) { 5467 mddev->ro = 1; 5468 if (mddev->gendisk) 5469 set_disk_ro(mddev->gendisk, 1); 5470 } 5471 5472 if (rdev->sb_page) 5473 mddev->has_superblocks = true; 5474 5475 /* perform some consistency tests on the device. 5476 * We don't want the data to overlap the metadata, 5477 * Internal Bitmap issues have been handled elsewhere. 5478 */ 5479 if (rdev->meta_bdev) { 5480 /* Nothing to check */; 5481 } else if (rdev->data_offset < rdev->sb_start) { 5482 if (mddev->dev_sectors && 5483 rdev->data_offset + mddev->dev_sectors 5484 > rdev->sb_start) { 5485 pr_warn("md: %s: data overlaps metadata\n", 5486 mdname(mddev)); 5487 return -EINVAL; 5488 } 5489 } else { 5490 if (rdev->sb_start + rdev->sb_size/512 5491 > rdev->data_offset) { 5492 pr_warn("md: %s: metadata overlaps data\n", 5493 mdname(mddev)); 5494 return -EINVAL; 5495 } 5496 } 5497 sysfs_notify_dirent_safe(rdev->sysfs_state); 5498 } 5499 5500 if (mddev->bio_set == NULL) { 5501 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5502 if (!mddev->bio_set) 5503 return -ENOMEM; 5504 } 5505 if (mddev->sync_set == NULL) { 5506 mddev->sync_set = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5507 if (!mddev->sync_set) { 5508 err = -ENOMEM; 5509 goto abort; 5510 } 5511 } 5512 5513 spin_lock(&pers_lock); 5514 pers = find_pers(mddev->level, mddev->clevel); 5515 if (!pers || !try_module_get(pers->owner)) { 5516 spin_unlock(&pers_lock); 5517 if (mddev->level != LEVEL_NONE) 5518 pr_warn("md: personality for level %d is not loaded!\n", 5519 mddev->level); 5520 else 5521 pr_warn("md: personality for level %s is not loaded!\n", 5522 mddev->clevel); 5523 err = -EINVAL; 5524 goto abort; 5525 } 5526 spin_unlock(&pers_lock); 5527 if (mddev->level != pers->level) { 5528 mddev->level = pers->level; 5529 mddev->new_level = pers->level; 5530 } 5531 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 5532 5533 if (mddev->reshape_position != MaxSector && 5534 pers->start_reshape == NULL) { 5535 /* This personality cannot handle reshaping... */ 5536 module_put(pers->owner); 5537 err = -EINVAL; 5538 goto abort; 5539 } 5540 5541 if (pers->sync_request) { 5542 /* Warn if this is a potentially silly 5543 * configuration. 5544 */ 5545 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 5546 struct md_rdev *rdev2; 5547 int warned = 0; 5548 5549 rdev_for_each(rdev, mddev) 5550 rdev_for_each(rdev2, mddev) { 5551 if (rdev < rdev2 && 5552 rdev->bdev->bd_contains == 5553 rdev2->bdev->bd_contains) { 5554 pr_warn("%s: WARNING: %s appears to be on the same physical disk as %s.\n", 5555 mdname(mddev), 5556 bdevname(rdev->bdev,b), 5557 bdevname(rdev2->bdev,b2)); 5558 warned = 1; 5559 } 5560 } 5561 5562 if (warned) 5563 pr_warn("True protection against single-disk failure might be compromised.\n"); 5564 } 5565 5566 mddev->recovery = 0; 5567 /* may be over-ridden by personality */ 5568 mddev->resync_max_sectors = mddev->dev_sectors; 5569 5570 mddev->ok_start_degraded = start_dirty_degraded; 5571 5572 if (start_readonly && mddev->ro == 0) 5573 mddev->ro = 2; /* read-only, but switch on first write */ 5574 5575 err = pers->run(mddev); 5576 if (err) 5577 pr_warn("md: pers->run() failed ...\n"); 5578 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) { 5579 WARN_ONCE(!mddev->external_size, 5580 "%s: default size too small, but 'external_size' not in effect?\n", 5581 __func__); 5582 pr_warn("md: invalid array_size %llu > default size %llu\n", 5583 (unsigned long long)mddev->array_sectors / 2, 5584 (unsigned long long)pers->size(mddev, 0, 0) / 2); 5585 err = -EINVAL; 5586 } 5587 if (err == 0 && pers->sync_request && 5588 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) { 5589 struct bitmap *bitmap; 5590 5591 bitmap = bitmap_create(mddev, -1); 5592 if (IS_ERR(bitmap)) { 5593 err = PTR_ERR(bitmap); 5594 pr_warn("%s: failed to create bitmap (%d)\n", 5595 mdname(mddev), err); 5596 } else 5597 mddev->bitmap = bitmap; 5598 5599 } 5600 if (err) { 5601 mddev_detach(mddev); 5602 if (mddev->private) 5603 pers->free(mddev, mddev->private); 5604 mddev->private = NULL; 5605 module_put(pers->owner); 5606 bitmap_destroy(mddev); 5607 goto abort; 5608 } 5609 if (mddev->queue) { 5610 bool nonrot = true; 5611 5612 rdev_for_each(rdev, mddev) { 5613 if (rdev->raid_disk >= 0 && 5614 !blk_queue_nonrot(bdev_get_queue(rdev->bdev))) { 5615 nonrot = false; 5616 break; 5617 } 5618 } 5619 if (mddev->degraded) 5620 nonrot = false; 5621 if (nonrot) 5622 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, mddev->queue); 5623 else 5624 queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, mddev->queue); 5625 mddev->queue->backing_dev_info->congested_data = mddev; 5626 mddev->queue->backing_dev_info->congested_fn = md_congested; 5627 } 5628 if (pers->sync_request) { 5629 if (mddev->kobj.sd && 5630 sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 5631 pr_warn("md: cannot register extra attributes for %s\n", 5632 mdname(mddev)); 5633 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action"); 5634 } else if (mddev->ro == 2) /* auto-readonly not meaningful */ 5635 mddev->ro = 0; 5636 5637 atomic_set(&mddev->max_corr_read_errors, 5638 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS); 5639 mddev->safemode = 0; 5640 if (mddev_is_clustered(mddev)) 5641 mddev->safemode_delay = 0; 5642 else 5643 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */ 5644 mddev->in_sync = 1; 5645 smp_wmb(); 5646 spin_lock(&mddev->lock); 5647 mddev->pers = pers; 5648 spin_unlock(&mddev->lock); 5649 rdev_for_each(rdev, mddev) 5650 if (rdev->raid_disk >= 0) 5651 if (sysfs_link_rdev(mddev, rdev)) 5652 /* failure here is OK */; 5653 5654 if (mddev->degraded && !mddev->ro) 5655 /* This ensures that recovering status is reported immediately 5656 * via sysfs - until a lack of spares is confirmed. 5657 */ 5658 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 5659 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5660 5661 if (mddev->sb_flags) 5662 md_update_sb(mddev, 0); 5663 5664 md_new_event(mddev); 5665 sysfs_notify_dirent_safe(mddev->sysfs_state); 5666 sysfs_notify_dirent_safe(mddev->sysfs_action); 5667 sysfs_notify(&mddev->kobj, NULL, "degraded"); 5668 return 0; 5669 5670 abort: 5671 if (mddev->bio_set) { 5672 bioset_free(mddev->bio_set); 5673 mddev->bio_set = NULL; 5674 } 5675 if (mddev->sync_set) { 5676 bioset_free(mddev->sync_set); 5677 mddev->sync_set = NULL; 5678 } 5679 5680 return err; 5681 } 5682 EXPORT_SYMBOL_GPL(md_run); 5683 5684 static int do_md_run(struct mddev *mddev) 5685 { 5686 int err; 5687 5688 err = md_run(mddev); 5689 if (err) 5690 goto out; 5691 err = bitmap_load(mddev); 5692 if (err) { 5693 bitmap_destroy(mddev); 5694 goto out; 5695 } 5696 5697 if (mddev_is_clustered(mddev)) 5698 md_allow_write(mddev); 5699 5700 /* run start up tasks that require md_thread */ 5701 md_start(mddev); 5702 5703 md_wakeup_thread(mddev->thread); 5704 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 5705 5706 set_capacity(mddev->gendisk, mddev->array_sectors); 5707 revalidate_disk(mddev->gendisk); 5708 mddev->changed = 1; 5709 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 5710 out: 5711 return err; 5712 } 5713 5714 int md_start(struct mddev *mddev) 5715 { 5716 int ret = 0; 5717 5718 if (mddev->pers->start) { 5719 set_bit(MD_RECOVERY_WAIT, &mddev->recovery); 5720 md_wakeup_thread(mddev->thread); 5721 ret = mddev->pers->start(mddev); 5722 clear_bit(MD_RECOVERY_WAIT, &mddev->recovery); 5723 md_wakeup_thread(mddev->sync_thread); 5724 } 5725 return ret; 5726 } 5727 EXPORT_SYMBOL_GPL(md_start); 5728 5729 static int restart_array(struct mddev *mddev) 5730 { 5731 struct gendisk *disk = mddev->gendisk; 5732 struct md_rdev *rdev; 5733 bool has_journal = false; 5734 bool has_readonly = false; 5735 5736 /* Complain if it has no devices */ 5737 if (list_empty(&mddev->disks)) 5738 return -ENXIO; 5739 if (!mddev->pers) 5740 return -EINVAL; 5741 if (!mddev->ro) 5742 return -EBUSY; 5743 5744 rcu_read_lock(); 5745 rdev_for_each_rcu(rdev, mddev) { 5746 if (test_bit(Journal, &rdev->flags) && 5747 !test_bit(Faulty, &rdev->flags)) 5748 has_journal = true; 5749 if (bdev_read_only(rdev->bdev)) 5750 has_readonly = true; 5751 } 5752 rcu_read_unlock(); 5753 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !has_journal) 5754 /* Don't restart rw with journal missing/faulty */ 5755 return -EINVAL; 5756 if (has_readonly) 5757 return -EROFS; 5758 5759 mddev->safemode = 0; 5760 mddev->ro = 0; 5761 set_disk_ro(disk, 0); 5762 pr_debug("md: %s switched to read-write mode.\n", mdname(mddev)); 5763 /* Kick recovery or resync if necessary */ 5764 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5765 md_wakeup_thread(mddev->thread); 5766 md_wakeup_thread(mddev->sync_thread); 5767 sysfs_notify_dirent_safe(mddev->sysfs_state); 5768 return 0; 5769 } 5770 5771 static void md_clean(struct mddev *mddev) 5772 { 5773 mddev->array_sectors = 0; 5774 mddev->external_size = 0; 5775 mddev->dev_sectors = 0; 5776 mddev->raid_disks = 0; 5777 mddev->recovery_cp = 0; 5778 mddev->resync_min = 0; 5779 mddev->resync_max = MaxSector; 5780 mddev->reshape_position = MaxSector; 5781 mddev->external = 0; 5782 mddev->persistent = 0; 5783 mddev->level = LEVEL_NONE; 5784 mddev->clevel[0] = 0; 5785 mddev->flags = 0; 5786 mddev->sb_flags = 0; 5787 mddev->ro = 0; 5788 mddev->metadata_type[0] = 0; 5789 mddev->chunk_sectors = 0; 5790 mddev->ctime = mddev->utime = 0; 5791 mddev->layout = 0; 5792 mddev->max_disks = 0; 5793 mddev->events = 0; 5794 mddev->can_decrease_events = 0; 5795 mddev->delta_disks = 0; 5796 mddev->reshape_backwards = 0; 5797 mddev->new_level = LEVEL_NONE; 5798 mddev->new_layout = 0; 5799 mddev->new_chunk_sectors = 0; 5800 mddev->curr_resync = 0; 5801 atomic64_set(&mddev->resync_mismatches, 0); 5802 mddev->suspend_lo = mddev->suspend_hi = 0; 5803 mddev->sync_speed_min = mddev->sync_speed_max = 0; 5804 mddev->recovery = 0; 5805 mddev->in_sync = 0; 5806 mddev->changed = 0; 5807 mddev->degraded = 0; 5808 mddev->safemode = 0; 5809 mddev->private = NULL; 5810 mddev->cluster_info = NULL; 5811 mddev->bitmap_info.offset = 0; 5812 mddev->bitmap_info.default_offset = 0; 5813 mddev->bitmap_info.default_space = 0; 5814 mddev->bitmap_info.chunksize = 0; 5815 mddev->bitmap_info.daemon_sleep = 0; 5816 mddev->bitmap_info.max_write_behind = 0; 5817 mddev->bitmap_info.nodes = 0; 5818 } 5819 5820 static void __md_stop_writes(struct mddev *mddev) 5821 { 5822 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5823 flush_workqueue(md_misc_wq); 5824 if (mddev->sync_thread) { 5825 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5826 md_reap_sync_thread(mddev); 5827 } 5828 5829 del_timer_sync(&mddev->safemode_timer); 5830 5831 if (mddev->pers && mddev->pers->quiesce) { 5832 mddev->pers->quiesce(mddev, 1); 5833 mddev->pers->quiesce(mddev, 0); 5834 } 5835 bitmap_flush(mddev); 5836 5837 if (mddev->ro == 0 && 5838 ((!mddev->in_sync && !mddev_is_clustered(mddev)) || 5839 mddev->sb_flags)) { 5840 /* mark array as shutdown cleanly */ 5841 if (!mddev_is_clustered(mddev)) 5842 mddev->in_sync = 1; 5843 md_update_sb(mddev, 1); 5844 } 5845 } 5846 5847 void md_stop_writes(struct mddev *mddev) 5848 { 5849 mddev_lock_nointr(mddev); 5850 __md_stop_writes(mddev); 5851 mddev_unlock(mddev); 5852 } 5853 EXPORT_SYMBOL_GPL(md_stop_writes); 5854 5855 static void mddev_detach(struct mddev *mddev) 5856 { 5857 bitmap_wait_behind_writes(mddev); 5858 if (mddev->pers && mddev->pers->quiesce) { 5859 mddev->pers->quiesce(mddev, 1); 5860 mddev->pers->quiesce(mddev, 0); 5861 } 5862 md_unregister_thread(&mddev->thread); 5863 if (mddev->queue) 5864 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 5865 } 5866 5867 static void __md_stop(struct mddev *mddev) 5868 { 5869 struct md_personality *pers = mddev->pers; 5870 bitmap_destroy(mddev); 5871 mddev_detach(mddev); 5872 /* Ensure ->event_work is done */ 5873 flush_workqueue(md_misc_wq); 5874 spin_lock(&mddev->lock); 5875 mddev->pers = NULL; 5876 spin_unlock(&mddev->lock); 5877 pers->free(mddev, mddev->private); 5878 mddev->private = NULL; 5879 if (pers->sync_request && mddev->to_remove == NULL) 5880 mddev->to_remove = &md_redundancy_group; 5881 module_put(pers->owner); 5882 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5883 } 5884 5885 void md_stop(struct mddev *mddev) 5886 { 5887 /* stop the array and free an attached data structures. 5888 * This is called from dm-raid 5889 */ 5890 __md_stop(mddev); 5891 if (mddev->bio_set) { 5892 bioset_free(mddev->bio_set); 5893 mddev->bio_set = NULL; 5894 } 5895 if (mddev->sync_set) { 5896 bioset_free(mddev->sync_set); 5897 mddev->sync_set = NULL; 5898 } 5899 } 5900 5901 EXPORT_SYMBOL_GPL(md_stop); 5902 5903 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev) 5904 { 5905 int err = 0; 5906 int did_freeze = 0; 5907 5908 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 5909 did_freeze = 1; 5910 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5911 md_wakeup_thread(mddev->thread); 5912 } 5913 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5914 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5915 if (mddev->sync_thread) 5916 /* Thread might be blocked waiting for metadata update 5917 * which will now never happen */ 5918 wake_up_process(mddev->sync_thread->tsk); 5919 5920 if (mddev->external && test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 5921 return -EBUSY; 5922 mddev_unlock(mddev); 5923 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING, 5924 &mddev->recovery)); 5925 wait_event(mddev->sb_wait, 5926 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 5927 mddev_lock_nointr(mddev); 5928 5929 mutex_lock(&mddev->open_mutex); 5930 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 5931 mddev->sync_thread || 5932 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 5933 pr_warn("md: %s still in use.\n",mdname(mddev)); 5934 if (did_freeze) { 5935 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5936 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5937 md_wakeup_thread(mddev->thread); 5938 } 5939 err = -EBUSY; 5940 goto out; 5941 } 5942 if (mddev->pers) { 5943 __md_stop_writes(mddev); 5944 5945 err = -ENXIO; 5946 if (mddev->ro==1) 5947 goto out; 5948 mddev->ro = 1; 5949 set_disk_ro(mddev->gendisk, 1); 5950 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5951 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5952 md_wakeup_thread(mddev->thread); 5953 sysfs_notify_dirent_safe(mddev->sysfs_state); 5954 err = 0; 5955 } 5956 out: 5957 mutex_unlock(&mddev->open_mutex); 5958 return err; 5959 } 5960 5961 /* mode: 5962 * 0 - completely stop and dis-assemble array 5963 * 2 - stop but do not disassemble array 5964 */ 5965 static int do_md_stop(struct mddev *mddev, int mode, 5966 struct block_device *bdev) 5967 { 5968 struct gendisk *disk = mddev->gendisk; 5969 struct md_rdev *rdev; 5970 int did_freeze = 0; 5971 5972 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 5973 did_freeze = 1; 5974 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5975 md_wakeup_thread(mddev->thread); 5976 } 5977 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5978 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5979 if (mddev->sync_thread) 5980 /* Thread might be blocked waiting for metadata update 5981 * which will now never happen */ 5982 wake_up_process(mddev->sync_thread->tsk); 5983 5984 mddev_unlock(mddev); 5985 wait_event(resync_wait, (mddev->sync_thread == NULL && 5986 !test_bit(MD_RECOVERY_RUNNING, 5987 &mddev->recovery))); 5988 mddev_lock_nointr(mddev); 5989 5990 mutex_lock(&mddev->open_mutex); 5991 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 5992 mddev->sysfs_active || 5993 mddev->sync_thread || 5994 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 5995 pr_warn("md: %s still in use.\n",mdname(mddev)); 5996 mutex_unlock(&mddev->open_mutex); 5997 if (did_freeze) { 5998 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5999 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6000 md_wakeup_thread(mddev->thread); 6001 } 6002 return -EBUSY; 6003 } 6004 if (mddev->pers) { 6005 if (mddev->ro) 6006 set_disk_ro(disk, 0); 6007 6008 __md_stop_writes(mddev); 6009 __md_stop(mddev); 6010 mddev->queue->backing_dev_info->congested_fn = NULL; 6011 6012 /* tell userspace to handle 'inactive' */ 6013 sysfs_notify_dirent_safe(mddev->sysfs_state); 6014 6015 rdev_for_each(rdev, mddev) 6016 if (rdev->raid_disk >= 0) 6017 sysfs_unlink_rdev(mddev, rdev); 6018 6019 set_capacity(disk, 0); 6020 mutex_unlock(&mddev->open_mutex); 6021 mddev->changed = 1; 6022 revalidate_disk(disk); 6023 6024 if (mddev->ro) 6025 mddev->ro = 0; 6026 } else 6027 mutex_unlock(&mddev->open_mutex); 6028 /* 6029 * Free resources if final stop 6030 */ 6031 if (mode == 0) { 6032 pr_info("md: %s stopped.\n", mdname(mddev)); 6033 6034 if (mddev->bitmap_info.file) { 6035 struct file *f = mddev->bitmap_info.file; 6036 spin_lock(&mddev->lock); 6037 mddev->bitmap_info.file = NULL; 6038 spin_unlock(&mddev->lock); 6039 fput(f); 6040 } 6041 mddev->bitmap_info.offset = 0; 6042 6043 export_array(mddev); 6044 6045 md_clean(mddev); 6046 if (mddev->hold_active == UNTIL_STOP) 6047 mddev->hold_active = 0; 6048 } 6049 md_new_event(mddev); 6050 sysfs_notify_dirent_safe(mddev->sysfs_state); 6051 return 0; 6052 } 6053 6054 #ifndef MODULE 6055 static void autorun_array(struct mddev *mddev) 6056 { 6057 struct md_rdev *rdev; 6058 int err; 6059 6060 if (list_empty(&mddev->disks)) 6061 return; 6062 6063 pr_info("md: running: "); 6064 6065 rdev_for_each(rdev, mddev) { 6066 char b[BDEVNAME_SIZE]; 6067 pr_cont("<%s>", bdevname(rdev->bdev,b)); 6068 } 6069 pr_cont("\n"); 6070 6071 err = do_md_run(mddev); 6072 if (err) { 6073 pr_warn("md: do_md_run() returned %d\n", err); 6074 do_md_stop(mddev, 0, NULL); 6075 } 6076 } 6077 6078 /* 6079 * lets try to run arrays based on all disks that have arrived 6080 * until now. (those are in pending_raid_disks) 6081 * 6082 * the method: pick the first pending disk, collect all disks with 6083 * the same UUID, remove all from the pending list and put them into 6084 * the 'same_array' list. Then order this list based on superblock 6085 * update time (freshest comes first), kick out 'old' disks and 6086 * compare superblocks. If everything's fine then run it. 6087 * 6088 * If "unit" is allocated, then bump its reference count 6089 */ 6090 static void autorun_devices(int part) 6091 { 6092 struct md_rdev *rdev0, *rdev, *tmp; 6093 struct mddev *mddev; 6094 char b[BDEVNAME_SIZE]; 6095 6096 pr_info("md: autorun ...\n"); 6097 while (!list_empty(&pending_raid_disks)) { 6098 int unit; 6099 dev_t dev; 6100 LIST_HEAD(candidates); 6101 rdev0 = list_entry(pending_raid_disks.next, 6102 struct md_rdev, same_set); 6103 6104 pr_debug("md: considering %s ...\n", bdevname(rdev0->bdev,b)); 6105 INIT_LIST_HEAD(&candidates); 6106 rdev_for_each_list(rdev, tmp, &pending_raid_disks) 6107 if (super_90_load(rdev, rdev0, 0) >= 0) { 6108 pr_debug("md: adding %s ...\n", 6109 bdevname(rdev->bdev,b)); 6110 list_move(&rdev->same_set, &candidates); 6111 } 6112 /* 6113 * now we have a set of devices, with all of them having 6114 * mostly sane superblocks. It's time to allocate the 6115 * mddev. 6116 */ 6117 if (part) { 6118 dev = MKDEV(mdp_major, 6119 rdev0->preferred_minor << MdpMinorShift); 6120 unit = MINOR(dev) >> MdpMinorShift; 6121 } else { 6122 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); 6123 unit = MINOR(dev); 6124 } 6125 if (rdev0->preferred_minor != unit) { 6126 pr_warn("md: unit number in %s is bad: %d\n", 6127 bdevname(rdev0->bdev, b), rdev0->preferred_minor); 6128 break; 6129 } 6130 6131 md_probe(dev, NULL, NULL); 6132 mddev = mddev_find(dev); 6133 if (!mddev || !mddev->gendisk) { 6134 if (mddev) 6135 mddev_put(mddev); 6136 break; 6137 } 6138 if (mddev_lock(mddev)) 6139 pr_warn("md: %s locked, cannot run\n", mdname(mddev)); 6140 else if (mddev->raid_disks || mddev->major_version 6141 || !list_empty(&mddev->disks)) { 6142 pr_warn("md: %s already running, cannot run %s\n", 6143 mdname(mddev), bdevname(rdev0->bdev,b)); 6144 mddev_unlock(mddev); 6145 } else { 6146 pr_debug("md: created %s\n", mdname(mddev)); 6147 mddev->persistent = 1; 6148 rdev_for_each_list(rdev, tmp, &candidates) { 6149 list_del_init(&rdev->same_set); 6150 if (bind_rdev_to_array(rdev, mddev)) 6151 export_rdev(rdev); 6152 } 6153 autorun_array(mddev); 6154 mddev_unlock(mddev); 6155 } 6156 /* on success, candidates will be empty, on error 6157 * it won't... 6158 */ 6159 rdev_for_each_list(rdev, tmp, &candidates) { 6160 list_del_init(&rdev->same_set); 6161 export_rdev(rdev); 6162 } 6163 mddev_put(mddev); 6164 } 6165 pr_info("md: ... autorun DONE.\n"); 6166 } 6167 #endif /* !MODULE */ 6168 6169 static int get_version(void __user *arg) 6170 { 6171 mdu_version_t ver; 6172 6173 ver.major = MD_MAJOR_VERSION; 6174 ver.minor = MD_MINOR_VERSION; 6175 ver.patchlevel = MD_PATCHLEVEL_VERSION; 6176 6177 if (copy_to_user(arg, &ver, sizeof(ver))) 6178 return -EFAULT; 6179 6180 return 0; 6181 } 6182 6183 static int get_array_info(struct mddev *mddev, void __user *arg) 6184 { 6185 mdu_array_info_t info; 6186 int nr,working,insync,failed,spare; 6187 struct md_rdev *rdev; 6188 6189 nr = working = insync = failed = spare = 0; 6190 rcu_read_lock(); 6191 rdev_for_each_rcu(rdev, mddev) { 6192 nr++; 6193 if (test_bit(Faulty, &rdev->flags)) 6194 failed++; 6195 else { 6196 working++; 6197 if (test_bit(In_sync, &rdev->flags)) 6198 insync++; 6199 else if (test_bit(Journal, &rdev->flags)) 6200 /* TODO: add journal count to md_u.h */ 6201 ; 6202 else 6203 spare++; 6204 } 6205 } 6206 rcu_read_unlock(); 6207 6208 info.major_version = mddev->major_version; 6209 info.minor_version = mddev->minor_version; 6210 info.patch_version = MD_PATCHLEVEL_VERSION; 6211 info.ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 6212 info.level = mddev->level; 6213 info.size = mddev->dev_sectors / 2; 6214 if (info.size != mddev->dev_sectors / 2) /* overflow */ 6215 info.size = -1; 6216 info.nr_disks = nr; 6217 info.raid_disks = mddev->raid_disks; 6218 info.md_minor = mddev->md_minor; 6219 info.not_persistent= !mddev->persistent; 6220 6221 info.utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 6222 info.state = 0; 6223 if (mddev->in_sync) 6224 info.state = (1<<MD_SB_CLEAN); 6225 if (mddev->bitmap && mddev->bitmap_info.offset) 6226 info.state |= (1<<MD_SB_BITMAP_PRESENT); 6227 if (mddev_is_clustered(mddev)) 6228 info.state |= (1<<MD_SB_CLUSTERED); 6229 info.active_disks = insync; 6230 info.working_disks = working; 6231 info.failed_disks = failed; 6232 info.spare_disks = spare; 6233 6234 info.layout = mddev->layout; 6235 info.chunk_size = mddev->chunk_sectors << 9; 6236 6237 if (copy_to_user(arg, &info, sizeof(info))) 6238 return -EFAULT; 6239 6240 return 0; 6241 } 6242 6243 static int get_bitmap_file(struct mddev *mddev, void __user * arg) 6244 { 6245 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ 6246 char *ptr; 6247 int err; 6248 6249 file = kzalloc(sizeof(*file), GFP_NOIO); 6250 if (!file) 6251 return -ENOMEM; 6252 6253 err = 0; 6254 spin_lock(&mddev->lock); 6255 /* bitmap enabled */ 6256 if (mddev->bitmap_info.file) { 6257 ptr = file_path(mddev->bitmap_info.file, file->pathname, 6258 sizeof(file->pathname)); 6259 if (IS_ERR(ptr)) 6260 err = PTR_ERR(ptr); 6261 else 6262 memmove(file->pathname, ptr, 6263 sizeof(file->pathname)-(ptr-file->pathname)); 6264 } 6265 spin_unlock(&mddev->lock); 6266 6267 if (err == 0 && 6268 copy_to_user(arg, file, sizeof(*file))) 6269 err = -EFAULT; 6270 6271 kfree(file); 6272 return err; 6273 } 6274 6275 static int get_disk_info(struct mddev *mddev, void __user * arg) 6276 { 6277 mdu_disk_info_t info; 6278 struct md_rdev *rdev; 6279 6280 if (copy_from_user(&info, arg, sizeof(info))) 6281 return -EFAULT; 6282 6283 rcu_read_lock(); 6284 rdev = md_find_rdev_nr_rcu(mddev, info.number); 6285 if (rdev) { 6286 info.major = MAJOR(rdev->bdev->bd_dev); 6287 info.minor = MINOR(rdev->bdev->bd_dev); 6288 info.raid_disk = rdev->raid_disk; 6289 info.state = 0; 6290 if (test_bit(Faulty, &rdev->flags)) 6291 info.state |= (1<<MD_DISK_FAULTY); 6292 else if (test_bit(In_sync, &rdev->flags)) { 6293 info.state |= (1<<MD_DISK_ACTIVE); 6294 info.state |= (1<<MD_DISK_SYNC); 6295 } 6296 if (test_bit(Journal, &rdev->flags)) 6297 info.state |= (1<<MD_DISK_JOURNAL); 6298 if (test_bit(WriteMostly, &rdev->flags)) 6299 info.state |= (1<<MD_DISK_WRITEMOSTLY); 6300 if (test_bit(FailFast, &rdev->flags)) 6301 info.state |= (1<<MD_DISK_FAILFAST); 6302 } else { 6303 info.major = info.minor = 0; 6304 info.raid_disk = -1; 6305 info.state = (1<<MD_DISK_REMOVED); 6306 } 6307 rcu_read_unlock(); 6308 6309 if (copy_to_user(arg, &info, sizeof(info))) 6310 return -EFAULT; 6311 6312 return 0; 6313 } 6314 6315 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info) 6316 { 6317 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 6318 struct md_rdev *rdev; 6319 dev_t dev = MKDEV(info->major,info->minor); 6320 6321 if (mddev_is_clustered(mddev) && 6322 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) { 6323 pr_warn("%s: Cannot add to clustered mddev.\n", 6324 mdname(mddev)); 6325 return -EINVAL; 6326 } 6327 6328 if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) 6329 return -EOVERFLOW; 6330 6331 if (!mddev->raid_disks) { 6332 int err; 6333 /* expecting a device which has a superblock */ 6334 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); 6335 if (IS_ERR(rdev)) { 6336 pr_warn("md: md_import_device returned %ld\n", 6337 PTR_ERR(rdev)); 6338 return PTR_ERR(rdev); 6339 } 6340 if (!list_empty(&mddev->disks)) { 6341 struct md_rdev *rdev0 6342 = list_entry(mddev->disks.next, 6343 struct md_rdev, same_set); 6344 err = super_types[mddev->major_version] 6345 .load_super(rdev, rdev0, mddev->minor_version); 6346 if (err < 0) { 6347 pr_warn("md: %s has different UUID to %s\n", 6348 bdevname(rdev->bdev,b), 6349 bdevname(rdev0->bdev,b2)); 6350 export_rdev(rdev); 6351 return -EINVAL; 6352 } 6353 } 6354 err = bind_rdev_to_array(rdev, mddev); 6355 if (err) 6356 export_rdev(rdev); 6357 return err; 6358 } 6359 6360 /* 6361 * add_new_disk can be used once the array is assembled 6362 * to add "hot spares". They must already have a superblock 6363 * written 6364 */ 6365 if (mddev->pers) { 6366 int err; 6367 if (!mddev->pers->hot_add_disk) { 6368 pr_warn("%s: personality does not support diskops!\n", 6369 mdname(mddev)); 6370 return -EINVAL; 6371 } 6372 if (mddev->persistent) 6373 rdev = md_import_device(dev, mddev->major_version, 6374 mddev->minor_version); 6375 else 6376 rdev = md_import_device(dev, -1, -1); 6377 if (IS_ERR(rdev)) { 6378 pr_warn("md: md_import_device returned %ld\n", 6379 PTR_ERR(rdev)); 6380 return PTR_ERR(rdev); 6381 } 6382 /* set saved_raid_disk if appropriate */ 6383 if (!mddev->persistent) { 6384 if (info->state & (1<<MD_DISK_SYNC) && 6385 info->raid_disk < mddev->raid_disks) { 6386 rdev->raid_disk = info->raid_disk; 6387 set_bit(In_sync, &rdev->flags); 6388 clear_bit(Bitmap_sync, &rdev->flags); 6389 } else 6390 rdev->raid_disk = -1; 6391 rdev->saved_raid_disk = rdev->raid_disk; 6392 } else 6393 super_types[mddev->major_version]. 6394 validate_super(mddev, rdev); 6395 if ((info->state & (1<<MD_DISK_SYNC)) && 6396 rdev->raid_disk != info->raid_disk) { 6397 /* This was a hot-add request, but events doesn't 6398 * match, so reject it. 6399 */ 6400 export_rdev(rdev); 6401 return -EINVAL; 6402 } 6403 6404 clear_bit(In_sync, &rdev->flags); /* just to be sure */ 6405 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6406 set_bit(WriteMostly, &rdev->flags); 6407 else 6408 clear_bit(WriteMostly, &rdev->flags); 6409 if (info->state & (1<<MD_DISK_FAILFAST)) 6410 set_bit(FailFast, &rdev->flags); 6411 else 6412 clear_bit(FailFast, &rdev->flags); 6413 6414 if (info->state & (1<<MD_DISK_JOURNAL)) { 6415 struct md_rdev *rdev2; 6416 bool has_journal = false; 6417 6418 /* make sure no existing journal disk */ 6419 rdev_for_each(rdev2, mddev) { 6420 if (test_bit(Journal, &rdev2->flags)) { 6421 has_journal = true; 6422 break; 6423 } 6424 } 6425 if (has_journal || mddev->bitmap) { 6426 export_rdev(rdev); 6427 return -EBUSY; 6428 } 6429 set_bit(Journal, &rdev->flags); 6430 } 6431 /* 6432 * check whether the device shows up in other nodes 6433 */ 6434 if (mddev_is_clustered(mddev)) { 6435 if (info->state & (1 << MD_DISK_CANDIDATE)) 6436 set_bit(Candidate, &rdev->flags); 6437 else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) { 6438 /* --add initiated by this node */ 6439 err = md_cluster_ops->add_new_disk(mddev, rdev); 6440 if (err) { 6441 export_rdev(rdev); 6442 return err; 6443 } 6444 } 6445 } 6446 6447 rdev->raid_disk = -1; 6448 err = bind_rdev_to_array(rdev, mddev); 6449 6450 if (err) 6451 export_rdev(rdev); 6452 6453 if (mddev_is_clustered(mddev)) { 6454 if (info->state & (1 << MD_DISK_CANDIDATE)) { 6455 if (!err) { 6456 err = md_cluster_ops->new_disk_ack(mddev, 6457 err == 0); 6458 if (err) 6459 md_kick_rdev_from_array(rdev); 6460 } 6461 } else { 6462 if (err) 6463 md_cluster_ops->add_new_disk_cancel(mddev); 6464 else 6465 err = add_bound_rdev(rdev); 6466 } 6467 6468 } else if (!err) 6469 err = add_bound_rdev(rdev); 6470 6471 return err; 6472 } 6473 6474 /* otherwise, add_new_disk is only allowed 6475 * for major_version==0 superblocks 6476 */ 6477 if (mddev->major_version != 0) { 6478 pr_warn("%s: ADD_NEW_DISK not supported\n", mdname(mddev)); 6479 return -EINVAL; 6480 } 6481 6482 if (!(info->state & (1<<MD_DISK_FAULTY))) { 6483 int err; 6484 rdev = md_import_device(dev, -1, 0); 6485 if (IS_ERR(rdev)) { 6486 pr_warn("md: error, md_import_device() returned %ld\n", 6487 PTR_ERR(rdev)); 6488 return PTR_ERR(rdev); 6489 } 6490 rdev->desc_nr = info->number; 6491 if (info->raid_disk < mddev->raid_disks) 6492 rdev->raid_disk = info->raid_disk; 6493 else 6494 rdev->raid_disk = -1; 6495 6496 if (rdev->raid_disk < mddev->raid_disks) 6497 if (info->state & (1<<MD_DISK_SYNC)) 6498 set_bit(In_sync, &rdev->flags); 6499 6500 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6501 set_bit(WriteMostly, &rdev->flags); 6502 if (info->state & (1<<MD_DISK_FAILFAST)) 6503 set_bit(FailFast, &rdev->flags); 6504 6505 if (!mddev->persistent) { 6506 pr_debug("md: nonpersistent superblock ...\n"); 6507 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 6508 } else 6509 rdev->sb_start = calc_dev_sboffset(rdev); 6510 rdev->sectors = rdev->sb_start; 6511 6512 err = bind_rdev_to_array(rdev, mddev); 6513 if (err) { 6514 export_rdev(rdev); 6515 return err; 6516 } 6517 } 6518 6519 return 0; 6520 } 6521 6522 static int hot_remove_disk(struct mddev *mddev, dev_t dev) 6523 { 6524 char b[BDEVNAME_SIZE]; 6525 struct md_rdev *rdev; 6526 6527 rdev = find_rdev(mddev, dev); 6528 if (!rdev) 6529 return -ENXIO; 6530 6531 if (rdev->raid_disk < 0) 6532 goto kick_rdev; 6533 6534 clear_bit(Blocked, &rdev->flags); 6535 remove_and_add_spares(mddev, rdev); 6536 6537 if (rdev->raid_disk >= 0) 6538 goto busy; 6539 6540 kick_rdev: 6541 if (mddev_is_clustered(mddev)) 6542 md_cluster_ops->remove_disk(mddev, rdev); 6543 6544 md_kick_rdev_from_array(rdev); 6545 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6546 if (mddev->thread) 6547 md_wakeup_thread(mddev->thread); 6548 else 6549 md_update_sb(mddev, 1); 6550 md_new_event(mddev); 6551 6552 return 0; 6553 busy: 6554 pr_debug("md: cannot remove active disk %s from %s ...\n", 6555 bdevname(rdev->bdev,b), mdname(mddev)); 6556 return -EBUSY; 6557 } 6558 6559 static int hot_add_disk(struct mddev *mddev, dev_t dev) 6560 { 6561 char b[BDEVNAME_SIZE]; 6562 int err; 6563 struct md_rdev *rdev; 6564 6565 if (!mddev->pers) 6566 return -ENODEV; 6567 6568 if (mddev->major_version != 0) { 6569 pr_warn("%s: HOT_ADD may only be used with version-0 superblocks.\n", 6570 mdname(mddev)); 6571 return -EINVAL; 6572 } 6573 if (!mddev->pers->hot_add_disk) { 6574 pr_warn("%s: personality does not support diskops!\n", 6575 mdname(mddev)); 6576 return -EINVAL; 6577 } 6578 6579 rdev = md_import_device(dev, -1, 0); 6580 if (IS_ERR(rdev)) { 6581 pr_warn("md: error, md_import_device() returned %ld\n", 6582 PTR_ERR(rdev)); 6583 return -EINVAL; 6584 } 6585 6586 if (mddev->persistent) 6587 rdev->sb_start = calc_dev_sboffset(rdev); 6588 else 6589 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 6590 6591 rdev->sectors = rdev->sb_start; 6592 6593 if (test_bit(Faulty, &rdev->flags)) { 6594 pr_warn("md: can not hot-add faulty %s disk to %s!\n", 6595 bdevname(rdev->bdev,b), mdname(mddev)); 6596 err = -EINVAL; 6597 goto abort_export; 6598 } 6599 6600 clear_bit(In_sync, &rdev->flags); 6601 rdev->desc_nr = -1; 6602 rdev->saved_raid_disk = -1; 6603 err = bind_rdev_to_array(rdev, mddev); 6604 if (err) 6605 goto abort_export; 6606 6607 /* 6608 * The rest should better be atomic, we can have disk failures 6609 * noticed in interrupt contexts ... 6610 */ 6611 6612 rdev->raid_disk = -1; 6613 6614 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6615 if (!mddev->thread) 6616 md_update_sb(mddev, 1); 6617 /* 6618 * Kick recovery, maybe this spare has to be added to the 6619 * array immediately. 6620 */ 6621 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6622 md_wakeup_thread(mddev->thread); 6623 md_new_event(mddev); 6624 return 0; 6625 6626 abort_export: 6627 export_rdev(rdev); 6628 return err; 6629 } 6630 6631 static int set_bitmap_file(struct mddev *mddev, int fd) 6632 { 6633 int err = 0; 6634 6635 if (mddev->pers) { 6636 if (!mddev->pers->quiesce || !mddev->thread) 6637 return -EBUSY; 6638 if (mddev->recovery || mddev->sync_thread) 6639 return -EBUSY; 6640 /* we should be able to change the bitmap.. */ 6641 } 6642 6643 if (fd >= 0) { 6644 struct inode *inode; 6645 struct file *f; 6646 6647 if (mddev->bitmap || mddev->bitmap_info.file) 6648 return -EEXIST; /* cannot add when bitmap is present */ 6649 f = fget(fd); 6650 6651 if (f == NULL) { 6652 pr_warn("%s: error: failed to get bitmap file\n", 6653 mdname(mddev)); 6654 return -EBADF; 6655 } 6656 6657 inode = f->f_mapping->host; 6658 if (!S_ISREG(inode->i_mode)) { 6659 pr_warn("%s: error: bitmap file must be a regular file\n", 6660 mdname(mddev)); 6661 err = -EBADF; 6662 } else if (!(f->f_mode & FMODE_WRITE)) { 6663 pr_warn("%s: error: bitmap file must open for write\n", 6664 mdname(mddev)); 6665 err = -EBADF; 6666 } else if (atomic_read(&inode->i_writecount) != 1) { 6667 pr_warn("%s: error: bitmap file is already in use\n", 6668 mdname(mddev)); 6669 err = -EBUSY; 6670 } 6671 if (err) { 6672 fput(f); 6673 return err; 6674 } 6675 mddev->bitmap_info.file = f; 6676 mddev->bitmap_info.offset = 0; /* file overrides offset */ 6677 } else if (mddev->bitmap == NULL) 6678 return -ENOENT; /* cannot remove what isn't there */ 6679 err = 0; 6680 if (mddev->pers) { 6681 if (fd >= 0) { 6682 struct bitmap *bitmap; 6683 6684 bitmap = bitmap_create(mddev, -1); 6685 mddev_suspend(mddev); 6686 if (!IS_ERR(bitmap)) { 6687 mddev->bitmap = bitmap; 6688 err = bitmap_load(mddev); 6689 } else 6690 err = PTR_ERR(bitmap); 6691 if (err) { 6692 bitmap_destroy(mddev); 6693 fd = -1; 6694 } 6695 mddev_resume(mddev); 6696 } else if (fd < 0) { 6697 mddev_suspend(mddev); 6698 bitmap_destroy(mddev); 6699 mddev_resume(mddev); 6700 } 6701 } 6702 if (fd < 0) { 6703 struct file *f = mddev->bitmap_info.file; 6704 if (f) { 6705 spin_lock(&mddev->lock); 6706 mddev->bitmap_info.file = NULL; 6707 spin_unlock(&mddev->lock); 6708 fput(f); 6709 } 6710 } 6711 6712 return err; 6713 } 6714 6715 /* 6716 * set_array_info is used two different ways 6717 * The original usage is when creating a new array. 6718 * In this usage, raid_disks is > 0 and it together with 6719 * level, size, not_persistent,layout,chunksize determine the 6720 * shape of the array. 6721 * This will always create an array with a type-0.90.0 superblock. 6722 * The newer usage is when assembling an array. 6723 * In this case raid_disks will be 0, and the major_version field is 6724 * use to determine which style super-blocks are to be found on the devices. 6725 * The minor and patch _version numbers are also kept incase the 6726 * super_block handler wishes to interpret them. 6727 */ 6728 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info) 6729 { 6730 6731 if (info->raid_disks == 0) { 6732 /* just setting version number for superblock loading */ 6733 if (info->major_version < 0 || 6734 info->major_version >= ARRAY_SIZE(super_types) || 6735 super_types[info->major_version].name == NULL) { 6736 /* maybe try to auto-load a module? */ 6737 pr_warn("md: superblock version %d not known\n", 6738 info->major_version); 6739 return -EINVAL; 6740 } 6741 mddev->major_version = info->major_version; 6742 mddev->minor_version = info->minor_version; 6743 mddev->patch_version = info->patch_version; 6744 mddev->persistent = !info->not_persistent; 6745 /* ensure mddev_put doesn't delete this now that there 6746 * is some minimal configuration. 6747 */ 6748 mddev->ctime = ktime_get_real_seconds(); 6749 return 0; 6750 } 6751 mddev->major_version = MD_MAJOR_VERSION; 6752 mddev->minor_version = MD_MINOR_VERSION; 6753 mddev->patch_version = MD_PATCHLEVEL_VERSION; 6754 mddev->ctime = ktime_get_real_seconds(); 6755 6756 mddev->level = info->level; 6757 mddev->clevel[0] = 0; 6758 mddev->dev_sectors = 2 * (sector_t)info->size; 6759 mddev->raid_disks = info->raid_disks; 6760 /* don't set md_minor, it is determined by which /dev/md* was 6761 * openned 6762 */ 6763 if (info->state & (1<<MD_SB_CLEAN)) 6764 mddev->recovery_cp = MaxSector; 6765 else 6766 mddev->recovery_cp = 0; 6767 mddev->persistent = ! info->not_persistent; 6768 mddev->external = 0; 6769 6770 mddev->layout = info->layout; 6771 mddev->chunk_sectors = info->chunk_size >> 9; 6772 6773 if (mddev->persistent) { 6774 mddev->max_disks = MD_SB_DISKS; 6775 mddev->flags = 0; 6776 mddev->sb_flags = 0; 6777 } 6778 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6779 6780 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 6781 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 6782 mddev->bitmap_info.offset = 0; 6783 6784 mddev->reshape_position = MaxSector; 6785 6786 /* 6787 * Generate a 128 bit UUID 6788 */ 6789 get_random_bytes(mddev->uuid, 16); 6790 6791 mddev->new_level = mddev->level; 6792 mddev->new_chunk_sectors = mddev->chunk_sectors; 6793 mddev->new_layout = mddev->layout; 6794 mddev->delta_disks = 0; 6795 mddev->reshape_backwards = 0; 6796 6797 return 0; 6798 } 6799 6800 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors) 6801 { 6802 lockdep_assert_held(&mddev->reconfig_mutex); 6803 6804 if (mddev->external_size) 6805 return; 6806 6807 mddev->array_sectors = array_sectors; 6808 } 6809 EXPORT_SYMBOL(md_set_array_sectors); 6810 6811 static int update_size(struct mddev *mddev, sector_t num_sectors) 6812 { 6813 struct md_rdev *rdev; 6814 int rv; 6815 int fit = (num_sectors == 0); 6816 sector_t old_dev_sectors = mddev->dev_sectors; 6817 6818 if (mddev->pers->resize == NULL) 6819 return -EINVAL; 6820 /* The "num_sectors" is the number of sectors of each device that 6821 * is used. This can only make sense for arrays with redundancy. 6822 * linear and raid0 always use whatever space is available. We can only 6823 * consider changing this number if no resync or reconstruction is 6824 * happening, and if the new size is acceptable. It must fit before the 6825 * sb_start or, if that is <data_offset, it must fit before the size 6826 * of each device. If num_sectors is zero, we find the largest size 6827 * that fits. 6828 */ 6829 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 6830 mddev->sync_thread) 6831 return -EBUSY; 6832 if (mddev->ro) 6833 return -EROFS; 6834 6835 rdev_for_each(rdev, mddev) { 6836 sector_t avail = rdev->sectors; 6837 6838 if (fit && (num_sectors == 0 || num_sectors > avail)) 6839 num_sectors = avail; 6840 if (avail < num_sectors) 6841 return -ENOSPC; 6842 } 6843 rv = mddev->pers->resize(mddev, num_sectors); 6844 if (!rv) { 6845 if (mddev_is_clustered(mddev)) 6846 md_cluster_ops->update_size(mddev, old_dev_sectors); 6847 else if (mddev->queue) { 6848 set_capacity(mddev->gendisk, mddev->array_sectors); 6849 revalidate_disk(mddev->gendisk); 6850 } 6851 } 6852 return rv; 6853 } 6854 6855 static int update_raid_disks(struct mddev *mddev, int raid_disks) 6856 { 6857 int rv; 6858 struct md_rdev *rdev; 6859 /* change the number of raid disks */ 6860 if (mddev->pers->check_reshape == NULL) 6861 return -EINVAL; 6862 if (mddev->ro) 6863 return -EROFS; 6864 if (raid_disks <= 0 || 6865 (mddev->max_disks && raid_disks >= mddev->max_disks)) 6866 return -EINVAL; 6867 if (mddev->sync_thread || 6868 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 6869 mddev->reshape_position != MaxSector) 6870 return -EBUSY; 6871 6872 rdev_for_each(rdev, mddev) { 6873 if (mddev->raid_disks < raid_disks && 6874 rdev->data_offset < rdev->new_data_offset) 6875 return -EINVAL; 6876 if (mddev->raid_disks > raid_disks && 6877 rdev->data_offset > rdev->new_data_offset) 6878 return -EINVAL; 6879 } 6880 6881 mddev->delta_disks = raid_disks - mddev->raid_disks; 6882 if (mddev->delta_disks < 0) 6883 mddev->reshape_backwards = 1; 6884 else if (mddev->delta_disks > 0) 6885 mddev->reshape_backwards = 0; 6886 6887 rv = mddev->pers->check_reshape(mddev); 6888 if (rv < 0) { 6889 mddev->delta_disks = 0; 6890 mddev->reshape_backwards = 0; 6891 } 6892 return rv; 6893 } 6894 6895 /* 6896 * update_array_info is used to change the configuration of an 6897 * on-line array. 6898 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size 6899 * fields in the info are checked against the array. 6900 * Any differences that cannot be handled will cause an error. 6901 * Normally, only one change can be managed at a time. 6902 */ 6903 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info) 6904 { 6905 int rv = 0; 6906 int cnt = 0; 6907 int state = 0; 6908 6909 /* calculate expected state,ignoring low bits */ 6910 if (mddev->bitmap && mddev->bitmap_info.offset) 6911 state |= (1 << MD_SB_BITMAP_PRESENT); 6912 6913 if (mddev->major_version != info->major_version || 6914 mddev->minor_version != info->minor_version || 6915 /* mddev->patch_version != info->patch_version || */ 6916 mddev->ctime != info->ctime || 6917 mddev->level != info->level || 6918 /* mddev->layout != info->layout || */ 6919 mddev->persistent != !info->not_persistent || 6920 mddev->chunk_sectors != info->chunk_size >> 9 || 6921 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ 6922 ((state^info->state) & 0xfffffe00) 6923 ) 6924 return -EINVAL; 6925 /* Check there is only one change */ 6926 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 6927 cnt++; 6928 if (mddev->raid_disks != info->raid_disks) 6929 cnt++; 6930 if (mddev->layout != info->layout) 6931 cnt++; 6932 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) 6933 cnt++; 6934 if (cnt == 0) 6935 return 0; 6936 if (cnt > 1) 6937 return -EINVAL; 6938 6939 if (mddev->layout != info->layout) { 6940 /* Change layout 6941 * we don't need to do anything at the md level, the 6942 * personality will take care of it all. 6943 */ 6944 if (mddev->pers->check_reshape == NULL) 6945 return -EINVAL; 6946 else { 6947 mddev->new_layout = info->layout; 6948 rv = mddev->pers->check_reshape(mddev); 6949 if (rv) 6950 mddev->new_layout = mddev->layout; 6951 return rv; 6952 } 6953 } 6954 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 6955 rv = update_size(mddev, (sector_t)info->size * 2); 6956 6957 if (mddev->raid_disks != info->raid_disks) 6958 rv = update_raid_disks(mddev, info->raid_disks); 6959 6960 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { 6961 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) { 6962 rv = -EINVAL; 6963 goto err; 6964 } 6965 if (mddev->recovery || mddev->sync_thread) { 6966 rv = -EBUSY; 6967 goto err; 6968 } 6969 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { 6970 struct bitmap *bitmap; 6971 /* add the bitmap */ 6972 if (mddev->bitmap) { 6973 rv = -EEXIST; 6974 goto err; 6975 } 6976 if (mddev->bitmap_info.default_offset == 0) { 6977 rv = -EINVAL; 6978 goto err; 6979 } 6980 mddev->bitmap_info.offset = 6981 mddev->bitmap_info.default_offset; 6982 mddev->bitmap_info.space = 6983 mddev->bitmap_info.default_space; 6984 bitmap = bitmap_create(mddev, -1); 6985 mddev_suspend(mddev); 6986 if (!IS_ERR(bitmap)) { 6987 mddev->bitmap = bitmap; 6988 rv = bitmap_load(mddev); 6989 } else 6990 rv = PTR_ERR(bitmap); 6991 if (rv) 6992 bitmap_destroy(mddev); 6993 mddev_resume(mddev); 6994 } else { 6995 /* remove the bitmap */ 6996 if (!mddev->bitmap) { 6997 rv = -ENOENT; 6998 goto err; 6999 } 7000 if (mddev->bitmap->storage.file) { 7001 rv = -EINVAL; 7002 goto err; 7003 } 7004 if (mddev->bitmap_info.nodes) { 7005 /* hold PW on all the bitmap lock */ 7006 if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) { 7007 pr_warn("md: can't change bitmap to none since the array is in use by more than one node\n"); 7008 rv = -EPERM; 7009 md_cluster_ops->unlock_all_bitmaps(mddev); 7010 goto err; 7011 } 7012 7013 mddev->bitmap_info.nodes = 0; 7014 md_cluster_ops->leave(mddev); 7015 } 7016 mddev_suspend(mddev); 7017 bitmap_destroy(mddev); 7018 mddev_resume(mddev); 7019 mddev->bitmap_info.offset = 0; 7020 } 7021 } 7022 md_update_sb(mddev, 1); 7023 return rv; 7024 err: 7025 return rv; 7026 } 7027 7028 static int set_disk_faulty(struct mddev *mddev, dev_t dev) 7029 { 7030 struct md_rdev *rdev; 7031 int err = 0; 7032 7033 if (mddev->pers == NULL) 7034 return -ENODEV; 7035 7036 rcu_read_lock(); 7037 rdev = md_find_rdev_rcu(mddev, dev); 7038 if (!rdev) 7039 err = -ENODEV; 7040 else { 7041 md_error(mddev, rdev); 7042 if (!test_bit(Faulty, &rdev->flags)) 7043 err = -EBUSY; 7044 } 7045 rcu_read_unlock(); 7046 return err; 7047 } 7048 7049 /* 7050 * We have a problem here : there is no easy way to give a CHS 7051 * virtual geometry. We currently pretend that we have a 2 heads 7052 * 4 sectors (with a BIG number of cylinders...). This drives 7053 * dosfs just mad... ;-) 7054 */ 7055 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) 7056 { 7057 struct mddev *mddev = bdev->bd_disk->private_data; 7058 7059 geo->heads = 2; 7060 geo->sectors = 4; 7061 geo->cylinders = mddev->array_sectors / 8; 7062 return 0; 7063 } 7064 7065 static inline bool md_ioctl_valid(unsigned int cmd) 7066 { 7067 switch (cmd) { 7068 case ADD_NEW_DISK: 7069 case BLKROSET: 7070 case GET_ARRAY_INFO: 7071 case GET_BITMAP_FILE: 7072 case GET_DISK_INFO: 7073 case HOT_ADD_DISK: 7074 case HOT_REMOVE_DISK: 7075 case RAID_AUTORUN: 7076 case RAID_VERSION: 7077 case RESTART_ARRAY_RW: 7078 case RUN_ARRAY: 7079 case SET_ARRAY_INFO: 7080 case SET_BITMAP_FILE: 7081 case SET_DISK_FAULTY: 7082 case STOP_ARRAY: 7083 case STOP_ARRAY_RO: 7084 case CLUSTERED_DISK_NACK: 7085 return true; 7086 default: 7087 return false; 7088 } 7089 } 7090 7091 static int md_ioctl(struct block_device *bdev, fmode_t mode, 7092 unsigned int cmd, unsigned long arg) 7093 { 7094 int err = 0; 7095 void __user *argp = (void __user *)arg; 7096 struct mddev *mddev = NULL; 7097 int ro; 7098 bool did_set_md_closing = false; 7099 7100 if (!md_ioctl_valid(cmd)) 7101 return -ENOTTY; 7102 7103 switch (cmd) { 7104 case RAID_VERSION: 7105 case GET_ARRAY_INFO: 7106 case GET_DISK_INFO: 7107 break; 7108 default: 7109 if (!capable(CAP_SYS_ADMIN)) 7110 return -EACCES; 7111 } 7112 7113 /* 7114 * Commands dealing with the RAID driver but not any 7115 * particular array: 7116 */ 7117 switch (cmd) { 7118 case RAID_VERSION: 7119 err = get_version(argp); 7120 goto out; 7121 7122 #ifndef MODULE 7123 case RAID_AUTORUN: 7124 err = 0; 7125 autostart_arrays(arg); 7126 goto out; 7127 #endif 7128 default:; 7129 } 7130 7131 /* 7132 * Commands creating/starting a new array: 7133 */ 7134 7135 mddev = bdev->bd_disk->private_data; 7136 7137 if (!mddev) { 7138 BUG(); 7139 goto out; 7140 } 7141 7142 /* Some actions do not requires the mutex */ 7143 switch (cmd) { 7144 case GET_ARRAY_INFO: 7145 if (!mddev->raid_disks && !mddev->external) 7146 err = -ENODEV; 7147 else 7148 err = get_array_info(mddev, argp); 7149 goto out; 7150 7151 case GET_DISK_INFO: 7152 if (!mddev->raid_disks && !mddev->external) 7153 err = -ENODEV; 7154 else 7155 err = get_disk_info(mddev, argp); 7156 goto out; 7157 7158 case SET_DISK_FAULTY: 7159 err = set_disk_faulty(mddev, new_decode_dev(arg)); 7160 goto out; 7161 7162 case GET_BITMAP_FILE: 7163 err = get_bitmap_file(mddev, argp); 7164 goto out; 7165 7166 } 7167 7168 if (cmd == ADD_NEW_DISK) 7169 /* need to ensure md_delayed_delete() has completed */ 7170 flush_workqueue(md_misc_wq); 7171 7172 if (cmd == HOT_REMOVE_DISK) 7173 /* need to ensure recovery thread has run */ 7174 wait_event_interruptible_timeout(mddev->sb_wait, 7175 !test_bit(MD_RECOVERY_NEEDED, 7176 &mddev->recovery), 7177 msecs_to_jiffies(5000)); 7178 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) { 7179 /* Need to flush page cache, and ensure no-one else opens 7180 * and writes 7181 */ 7182 mutex_lock(&mddev->open_mutex); 7183 if (mddev->pers && atomic_read(&mddev->openers) > 1) { 7184 mutex_unlock(&mddev->open_mutex); 7185 err = -EBUSY; 7186 goto out; 7187 } 7188 WARN_ON_ONCE(test_bit(MD_CLOSING, &mddev->flags)); 7189 set_bit(MD_CLOSING, &mddev->flags); 7190 did_set_md_closing = true; 7191 mutex_unlock(&mddev->open_mutex); 7192 sync_blockdev(bdev); 7193 } 7194 err = mddev_lock(mddev); 7195 if (err) { 7196 pr_debug("md: ioctl lock interrupted, reason %d, cmd %d\n", 7197 err, cmd); 7198 goto out; 7199 } 7200 7201 if (cmd == SET_ARRAY_INFO) { 7202 mdu_array_info_t info; 7203 if (!arg) 7204 memset(&info, 0, sizeof(info)); 7205 else if (copy_from_user(&info, argp, sizeof(info))) { 7206 err = -EFAULT; 7207 goto unlock; 7208 } 7209 if (mddev->pers) { 7210 err = update_array_info(mddev, &info); 7211 if (err) { 7212 pr_warn("md: couldn't update array info. %d\n", err); 7213 goto unlock; 7214 } 7215 goto unlock; 7216 } 7217 if (!list_empty(&mddev->disks)) { 7218 pr_warn("md: array %s already has disks!\n", mdname(mddev)); 7219 err = -EBUSY; 7220 goto unlock; 7221 } 7222 if (mddev->raid_disks) { 7223 pr_warn("md: array %s already initialised!\n", mdname(mddev)); 7224 err = -EBUSY; 7225 goto unlock; 7226 } 7227 err = set_array_info(mddev, &info); 7228 if (err) { 7229 pr_warn("md: couldn't set array info. %d\n", err); 7230 goto unlock; 7231 } 7232 goto unlock; 7233 } 7234 7235 /* 7236 * Commands querying/configuring an existing array: 7237 */ 7238 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, 7239 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ 7240 if ((!mddev->raid_disks && !mddev->external) 7241 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY 7242 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE 7243 && cmd != GET_BITMAP_FILE) { 7244 err = -ENODEV; 7245 goto unlock; 7246 } 7247 7248 /* 7249 * Commands even a read-only array can execute: 7250 */ 7251 switch (cmd) { 7252 case RESTART_ARRAY_RW: 7253 err = restart_array(mddev); 7254 goto unlock; 7255 7256 case STOP_ARRAY: 7257 err = do_md_stop(mddev, 0, bdev); 7258 goto unlock; 7259 7260 case STOP_ARRAY_RO: 7261 err = md_set_readonly(mddev, bdev); 7262 goto unlock; 7263 7264 case HOT_REMOVE_DISK: 7265 err = hot_remove_disk(mddev, new_decode_dev(arg)); 7266 goto unlock; 7267 7268 case ADD_NEW_DISK: 7269 /* We can support ADD_NEW_DISK on read-only arrays 7270 * only if we are re-adding a preexisting device. 7271 * So require mddev->pers and MD_DISK_SYNC. 7272 */ 7273 if (mddev->pers) { 7274 mdu_disk_info_t info; 7275 if (copy_from_user(&info, argp, sizeof(info))) 7276 err = -EFAULT; 7277 else if (!(info.state & (1<<MD_DISK_SYNC))) 7278 /* Need to clear read-only for this */ 7279 break; 7280 else 7281 err = add_new_disk(mddev, &info); 7282 goto unlock; 7283 } 7284 break; 7285 7286 case BLKROSET: 7287 if (get_user(ro, (int __user *)(arg))) { 7288 err = -EFAULT; 7289 goto unlock; 7290 } 7291 err = -EINVAL; 7292 7293 /* if the bdev is going readonly the value of mddev->ro 7294 * does not matter, no writes are coming 7295 */ 7296 if (ro) 7297 goto unlock; 7298 7299 /* are we are already prepared for writes? */ 7300 if (mddev->ro != 1) 7301 goto unlock; 7302 7303 /* transitioning to readauto need only happen for 7304 * arrays that call md_write_start 7305 */ 7306 if (mddev->pers) { 7307 err = restart_array(mddev); 7308 if (err == 0) { 7309 mddev->ro = 2; 7310 set_disk_ro(mddev->gendisk, 0); 7311 } 7312 } 7313 goto unlock; 7314 } 7315 7316 /* 7317 * The remaining ioctls are changing the state of the 7318 * superblock, so we do not allow them on read-only arrays. 7319 */ 7320 if (mddev->ro && mddev->pers) { 7321 if (mddev->ro == 2) { 7322 mddev->ro = 0; 7323 sysfs_notify_dirent_safe(mddev->sysfs_state); 7324 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7325 /* mddev_unlock will wake thread */ 7326 /* If a device failed while we were read-only, we 7327 * need to make sure the metadata is updated now. 7328 */ 7329 if (test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) { 7330 mddev_unlock(mddev); 7331 wait_event(mddev->sb_wait, 7332 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) && 7333 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 7334 mddev_lock_nointr(mddev); 7335 } 7336 } else { 7337 err = -EROFS; 7338 goto unlock; 7339 } 7340 } 7341 7342 switch (cmd) { 7343 case ADD_NEW_DISK: 7344 { 7345 mdu_disk_info_t info; 7346 if (copy_from_user(&info, argp, sizeof(info))) 7347 err = -EFAULT; 7348 else 7349 err = add_new_disk(mddev, &info); 7350 goto unlock; 7351 } 7352 7353 case CLUSTERED_DISK_NACK: 7354 if (mddev_is_clustered(mddev)) 7355 md_cluster_ops->new_disk_ack(mddev, false); 7356 else 7357 err = -EINVAL; 7358 goto unlock; 7359 7360 case HOT_ADD_DISK: 7361 err = hot_add_disk(mddev, new_decode_dev(arg)); 7362 goto unlock; 7363 7364 case RUN_ARRAY: 7365 err = do_md_run(mddev); 7366 goto unlock; 7367 7368 case SET_BITMAP_FILE: 7369 err = set_bitmap_file(mddev, (int)arg); 7370 goto unlock; 7371 7372 default: 7373 err = -EINVAL; 7374 goto unlock; 7375 } 7376 7377 unlock: 7378 if (mddev->hold_active == UNTIL_IOCTL && 7379 err != -EINVAL) 7380 mddev->hold_active = 0; 7381 mddev_unlock(mddev); 7382 out: 7383 if(did_set_md_closing) 7384 clear_bit(MD_CLOSING, &mddev->flags); 7385 return err; 7386 } 7387 #ifdef CONFIG_COMPAT 7388 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode, 7389 unsigned int cmd, unsigned long arg) 7390 { 7391 switch (cmd) { 7392 case HOT_REMOVE_DISK: 7393 case HOT_ADD_DISK: 7394 case SET_DISK_FAULTY: 7395 case SET_BITMAP_FILE: 7396 /* These take in integer arg, do not convert */ 7397 break; 7398 default: 7399 arg = (unsigned long)compat_ptr(arg); 7400 break; 7401 } 7402 7403 return md_ioctl(bdev, mode, cmd, arg); 7404 } 7405 #endif /* CONFIG_COMPAT */ 7406 7407 static int md_open(struct block_device *bdev, fmode_t mode) 7408 { 7409 /* 7410 * Succeed if we can lock the mddev, which confirms that 7411 * it isn't being stopped right now. 7412 */ 7413 struct mddev *mddev = mddev_find(bdev->bd_dev); 7414 int err; 7415 7416 if (!mddev) 7417 return -ENODEV; 7418 7419 if (mddev->gendisk != bdev->bd_disk) { 7420 /* we are racing with mddev_put which is discarding this 7421 * bd_disk. 7422 */ 7423 mddev_put(mddev); 7424 /* Wait until bdev->bd_disk is definitely gone */ 7425 flush_workqueue(md_misc_wq); 7426 /* Then retry the open from the top */ 7427 return -ERESTARTSYS; 7428 } 7429 BUG_ON(mddev != bdev->bd_disk->private_data); 7430 7431 if ((err = mutex_lock_interruptible(&mddev->open_mutex))) 7432 goto out; 7433 7434 if (test_bit(MD_CLOSING, &mddev->flags)) { 7435 mutex_unlock(&mddev->open_mutex); 7436 err = -ENODEV; 7437 goto out; 7438 } 7439 7440 err = 0; 7441 atomic_inc(&mddev->openers); 7442 mutex_unlock(&mddev->open_mutex); 7443 7444 check_disk_change(bdev); 7445 out: 7446 if (err) 7447 mddev_put(mddev); 7448 return err; 7449 } 7450 7451 static void md_release(struct gendisk *disk, fmode_t mode) 7452 { 7453 struct mddev *mddev = disk->private_data; 7454 7455 BUG_ON(!mddev); 7456 atomic_dec(&mddev->openers); 7457 mddev_put(mddev); 7458 } 7459 7460 static int md_media_changed(struct gendisk *disk) 7461 { 7462 struct mddev *mddev = disk->private_data; 7463 7464 return mddev->changed; 7465 } 7466 7467 static int md_revalidate(struct gendisk *disk) 7468 { 7469 struct mddev *mddev = disk->private_data; 7470 7471 mddev->changed = 0; 7472 return 0; 7473 } 7474 static const struct block_device_operations md_fops = 7475 { 7476 .owner = THIS_MODULE, 7477 .open = md_open, 7478 .release = md_release, 7479 .ioctl = md_ioctl, 7480 #ifdef CONFIG_COMPAT 7481 .compat_ioctl = md_compat_ioctl, 7482 #endif 7483 .getgeo = md_getgeo, 7484 .media_changed = md_media_changed, 7485 .revalidate_disk= md_revalidate, 7486 }; 7487 7488 static int md_thread(void *arg) 7489 { 7490 struct md_thread *thread = arg; 7491 7492 /* 7493 * md_thread is a 'system-thread', it's priority should be very 7494 * high. We avoid resource deadlocks individually in each 7495 * raid personality. (RAID5 does preallocation) We also use RR and 7496 * the very same RT priority as kswapd, thus we will never get 7497 * into a priority inversion deadlock. 7498 * 7499 * we definitely have to have equal or higher priority than 7500 * bdflush, otherwise bdflush will deadlock if there are too 7501 * many dirty RAID5 blocks. 7502 */ 7503 7504 allow_signal(SIGKILL); 7505 while (!kthread_should_stop()) { 7506 7507 /* We need to wait INTERRUPTIBLE so that 7508 * we don't add to the load-average. 7509 * That means we need to be sure no signals are 7510 * pending 7511 */ 7512 if (signal_pending(current)) 7513 flush_signals(current); 7514 7515 wait_event_interruptible_timeout 7516 (thread->wqueue, 7517 test_bit(THREAD_WAKEUP, &thread->flags) 7518 || kthread_should_stop() || kthread_should_park(), 7519 thread->timeout); 7520 7521 clear_bit(THREAD_WAKEUP, &thread->flags); 7522 if (kthread_should_park()) 7523 kthread_parkme(); 7524 if (!kthread_should_stop()) 7525 thread->run(thread); 7526 } 7527 7528 return 0; 7529 } 7530 7531 void md_wakeup_thread(struct md_thread *thread) 7532 { 7533 if (thread) { 7534 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm); 7535 set_bit(THREAD_WAKEUP, &thread->flags); 7536 wake_up(&thread->wqueue); 7537 } 7538 } 7539 EXPORT_SYMBOL(md_wakeup_thread); 7540 7541 struct md_thread *md_register_thread(void (*run) (struct md_thread *), 7542 struct mddev *mddev, const char *name) 7543 { 7544 struct md_thread *thread; 7545 7546 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL); 7547 if (!thread) 7548 return NULL; 7549 7550 init_waitqueue_head(&thread->wqueue); 7551 7552 thread->run = run; 7553 thread->mddev = mddev; 7554 thread->timeout = MAX_SCHEDULE_TIMEOUT; 7555 thread->tsk = kthread_run(md_thread, thread, 7556 "%s_%s", 7557 mdname(thread->mddev), 7558 name); 7559 if (IS_ERR(thread->tsk)) { 7560 kfree(thread); 7561 return NULL; 7562 } 7563 return thread; 7564 } 7565 EXPORT_SYMBOL(md_register_thread); 7566 7567 void md_unregister_thread(struct md_thread **threadp) 7568 { 7569 struct md_thread *thread = *threadp; 7570 if (!thread) 7571 return; 7572 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk)); 7573 /* Locking ensures that mddev_unlock does not wake_up a 7574 * non-existent thread 7575 */ 7576 spin_lock(&pers_lock); 7577 *threadp = NULL; 7578 spin_unlock(&pers_lock); 7579 7580 kthread_stop(thread->tsk); 7581 kfree(thread); 7582 } 7583 EXPORT_SYMBOL(md_unregister_thread); 7584 7585 void md_error(struct mddev *mddev, struct md_rdev *rdev) 7586 { 7587 if (!rdev || test_bit(Faulty, &rdev->flags)) 7588 return; 7589 7590 if (!mddev->pers || !mddev->pers->error_handler) 7591 return; 7592 mddev->pers->error_handler(mddev,rdev); 7593 if (mddev->degraded) 7594 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7595 sysfs_notify_dirent_safe(rdev->sysfs_state); 7596 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7597 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7598 md_wakeup_thread(mddev->thread); 7599 if (mddev->event_work.func) 7600 queue_work(md_misc_wq, &mddev->event_work); 7601 md_new_event(mddev); 7602 } 7603 EXPORT_SYMBOL(md_error); 7604 7605 /* seq_file implementation /proc/mdstat */ 7606 7607 static void status_unused(struct seq_file *seq) 7608 { 7609 int i = 0; 7610 struct md_rdev *rdev; 7611 7612 seq_printf(seq, "unused devices: "); 7613 7614 list_for_each_entry(rdev, &pending_raid_disks, same_set) { 7615 char b[BDEVNAME_SIZE]; 7616 i++; 7617 seq_printf(seq, "%s ", 7618 bdevname(rdev->bdev,b)); 7619 } 7620 if (!i) 7621 seq_printf(seq, "<none>"); 7622 7623 seq_printf(seq, "\n"); 7624 } 7625 7626 static int status_resync(struct seq_file *seq, struct mddev *mddev) 7627 { 7628 sector_t max_sectors, resync, res; 7629 unsigned long dt, db; 7630 sector_t rt; 7631 int scale; 7632 unsigned int per_milli; 7633 7634 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 7635 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 7636 max_sectors = mddev->resync_max_sectors; 7637 else 7638 max_sectors = mddev->dev_sectors; 7639 7640 resync = mddev->curr_resync; 7641 if (resync <= 3) { 7642 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 7643 /* Still cleaning up */ 7644 resync = max_sectors; 7645 } else if (resync > max_sectors) 7646 resync = max_sectors; 7647 else 7648 resync -= atomic_read(&mddev->recovery_active); 7649 7650 if (resync == 0) { 7651 if (mddev->recovery_cp < MaxSector) { 7652 seq_printf(seq, "\tresync=PENDING"); 7653 return 1; 7654 } 7655 return 0; 7656 } 7657 if (resync < 3) { 7658 seq_printf(seq, "\tresync=DELAYED"); 7659 return 1; 7660 } 7661 7662 WARN_ON(max_sectors == 0); 7663 /* Pick 'scale' such that (resync>>scale)*1000 will fit 7664 * in a sector_t, and (max_sectors>>scale) will fit in a 7665 * u32, as those are the requirements for sector_div. 7666 * Thus 'scale' must be at least 10 7667 */ 7668 scale = 10; 7669 if (sizeof(sector_t) > sizeof(unsigned long)) { 7670 while ( max_sectors/2 > (1ULL<<(scale+32))) 7671 scale++; 7672 } 7673 res = (resync>>scale)*1000; 7674 sector_div(res, (u32)((max_sectors>>scale)+1)); 7675 7676 per_milli = res; 7677 { 7678 int i, x = per_milli/50, y = 20-x; 7679 seq_printf(seq, "["); 7680 for (i = 0; i < x; i++) 7681 seq_printf(seq, "="); 7682 seq_printf(seq, ">"); 7683 for (i = 0; i < y; i++) 7684 seq_printf(seq, "."); 7685 seq_printf(seq, "] "); 7686 } 7687 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", 7688 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? 7689 "reshape" : 7690 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? 7691 "check" : 7692 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? 7693 "resync" : "recovery"))), 7694 per_milli/10, per_milli % 10, 7695 (unsigned long long) resync/2, 7696 (unsigned long long) max_sectors/2); 7697 7698 /* 7699 * dt: time from mark until now 7700 * db: blocks written from mark until now 7701 * rt: remaining time 7702 * 7703 * rt is a sector_t, so could be 32bit or 64bit. 7704 * So we divide before multiply in case it is 32bit and close 7705 * to the limit. 7706 * We scale the divisor (db) by 32 to avoid losing precision 7707 * near the end of resync when the number of remaining sectors 7708 * is close to 'db'. 7709 * We then divide rt by 32 after multiplying by db to compensate. 7710 * The '+1' avoids division by zero if db is very small. 7711 */ 7712 dt = ((jiffies - mddev->resync_mark) / HZ); 7713 if (!dt) dt++; 7714 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active)) 7715 - mddev->resync_mark_cnt; 7716 7717 rt = max_sectors - resync; /* number of remaining sectors */ 7718 sector_div(rt, db/32+1); 7719 rt *= dt; 7720 rt >>= 5; 7721 7722 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60, 7723 ((unsigned long)rt % 60)/6); 7724 7725 seq_printf(seq, " speed=%ldK/sec", db/2/dt); 7726 return 1; 7727 } 7728 7729 static void *md_seq_start(struct seq_file *seq, loff_t *pos) 7730 { 7731 struct list_head *tmp; 7732 loff_t l = *pos; 7733 struct mddev *mddev; 7734 7735 if (l >= 0x10000) 7736 return NULL; 7737 if (!l--) 7738 /* header */ 7739 return (void*)1; 7740 7741 spin_lock(&all_mddevs_lock); 7742 list_for_each(tmp,&all_mddevs) 7743 if (!l--) { 7744 mddev = list_entry(tmp, struct mddev, all_mddevs); 7745 mddev_get(mddev); 7746 spin_unlock(&all_mddevs_lock); 7747 return mddev; 7748 } 7749 spin_unlock(&all_mddevs_lock); 7750 if (!l--) 7751 return (void*)2;/* tail */ 7752 return NULL; 7753 } 7754 7755 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) 7756 { 7757 struct list_head *tmp; 7758 struct mddev *next_mddev, *mddev = v; 7759 7760 ++*pos; 7761 if (v == (void*)2) 7762 return NULL; 7763 7764 spin_lock(&all_mddevs_lock); 7765 if (v == (void*)1) 7766 tmp = all_mddevs.next; 7767 else 7768 tmp = mddev->all_mddevs.next; 7769 if (tmp != &all_mddevs) 7770 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs)); 7771 else { 7772 next_mddev = (void*)2; 7773 *pos = 0x10000; 7774 } 7775 spin_unlock(&all_mddevs_lock); 7776 7777 if (v != (void*)1) 7778 mddev_put(mddev); 7779 return next_mddev; 7780 7781 } 7782 7783 static void md_seq_stop(struct seq_file *seq, void *v) 7784 { 7785 struct mddev *mddev = v; 7786 7787 if (mddev && v != (void*)1 && v != (void*)2) 7788 mddev_put(mddev); 7789 } 7790 7791 static int md_seq_show(struct seq_file *seq, void *v) 7792 { 7793 struct mddev *mddev = v; 7794 sector_t sectors; 7795 struct md_rdev *rdev; 7796 7797 if (v == (void*)1) { 7798 struct md_personality *pers; 7799 seq_printf(seq, "Personalities : "); 7800 spin_lock(&pers_lock); 7801 list_for_each_entry(pers, &pers_list, list) 7802 seq_printf(seq, "[%s] ", pers->name); 7803 7804 spin_unlock(&pers_lock); 7805 seq_printf(seq, "\n"); 7806 seq->poll_event = atomic_read(&md_event_count); 7807 return 0; 7808 } 7809 if (v == (void*)2) { 7810 status_unused(seq); 7811 return 0; 7812 } 7813 7814 spin_lock(&mddev->lock); 7815 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { 7816 seq_printf(seq, "%s : %sactive", mdname(mddev), 7817 mddev->pers ? "" : "in"); 7818 if (mddev->pers) { 7819 if (mddev->ro==1) 7820 seq_printf(seq, " (read-only)"); 7821 if (mddev->ro==2) 7822 seq_printf(seq, " (auto-read-only)"); 7823 seq_printf(seq, " %s", mddev->pers->name); 7824 } 7825 7826 sectors = 0; 7827 rcu_read_lock(); 7828 rdev_for_each_rcu(rdev, mddev) { 7829 char b[BDEVNAME_SIZE]; 7830 seq_printf(seq, " %s[%d]", 7831 bdevname(rdev->bdev,b), rdev->desc_nr); 7832 if (test_bit(WriteMostly, &rdev->flags)) 7833 seq_printf(seq, "(W)"); 7834 if (test_bit(Journal, &rdev->flags)) 7835 seq_printf(seq, "(J)"); 7836 if (test_bit(Faulty, &rdev->flags)) { 7837 seq_printf(seq, "(F)"); 7838 continue; 7839 } 7840 if (rdev->raid_disk < 0) 7841 seq_printf(seq, "(S)"); /* spare */ 7842 if (test_bit(Replacement, &rdev->flags)) 7843 seq_printf(seq, "(R)"); 7844 sectors += rdev->sectors; 7845 } 7846 rcu_read_unlock(); 7847 7848 if (!list_empty(&mddev->disks)) { 7849 if (mddev->pers) 7850 seq_printf(seq, "\n %llu blocks", 7851 (unsigned long long) 7852 mddev->array_sectors / 2); 7853 else 7854 seq_printf(seq, "\n %llu blocks", 7855 (unsigned long long)sectors / 2); 7856 } 7857 if (mddev->persistent) { 7858 if (mddev->major_version != 0 || 7859 mddev->minor_version != 90) { 7860 seq_printf(seq," super %d.%d", 7861 mddev->major_version, 7862 mddev->minor_version); 7863 } 7864 } else if (mddev->external) 7865 seq_printf(seq, " super external:%s", 7866 mddev->metadata_type); 7867 else 7868 seq_printf(seq, " super non-persistent"); 7869 7870 if (mddev->pers) { 7871 mddev->pers->status(seq, mddev); 7872 seq_printf(seq, "\n "); 7873 if (mddev->pers->sync_request) { 7874 if (status_resync(seq, mddev)) 7875 seq_printf(seq, "\n "); 7876 } 7877 } else 7878 seq_printf(seq, "\n "); 7879 7880 bitmap_status(seq, mddev->bitmap); 7881 7882 seq_printf(seq, "\n"); 7883 } 7884 spin_unlock(&mddev->lock); 7885 7886 return 0; 7887 } 7888 7889 static const struct seq_operations md_seq_ops = { 7890 .start = md_seq_start, 7891 .next = md_seq_next, 7892 .stop = md_seq_stop, 7893 .show = md_seq_show, 7894 }; 7895 7896 static int md_seq_open(struct inode *inode, struct file *file) 7897 { 7898 struct seq_file *seq; 7899 int error; 7900 7901 error = seq_open(file, &md_seq_ops); 7902 if (error) 7903 return error; 7904 7905 seq = file->private_data; 7906 seq->poll_event = atomic_read(&md_event_count); 7907 return error; 7908 } 7909 7910 static int md_unloading; 7911 static __poll_t mdstat_poll(struct file *filp, poll_table *wait) 7912 { 7913 struct seq_file *seq = filp->private_data; 7914 __poll_t mask; 7915 7916 if (md_unloading) 7917 return EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI; 7918 poll_wait(filp, &md_event_waiters, wait); 7919 7920 /* always allow read */ 7921 mask = EPOLLIN | EPOLLRDNORM; 7922 7923 if (seq->poll_event != atomic_read(&md_event_count)) 7924 mask |= EPOLLERR | EPOLLPRI; 7925 return mask; 7926 } 7927 7928 static const struct file_operations md_seq_fops = { 7929 .owner = THIS_MODULE, 7930 .open = md_seq_open, 7931 .read = seq_read, 7932 .llseek = seq_lseek, 7933 .release = seq_release, 7934 .poll = mdstat_poll, 7935 }; 7936 7937 int register_md_personality(struct md_personality *p) 7938 { 7939 pr_debug("md: %s personality registered for level %d\n", 7940 p->name, p->level); 7941 spin_lock(&pers_lock); 7942 list_add_tail(&p->list, &pers_list); 7943 spin_unlock(&pers_lock); 7944 return 0; 7945 } 7946 EXPORT_SYMBOL(register_md_personality); 7947 7948 int unregister_md_personality(struct md_personality *p) 7949 { 7950 pr_debug("md: %s personality unregistered\n", p->name); 7951 spin_lock(&pers_lock); 7952 list_del_init(&p->list); 7953 spin_unlock(&pers_lock); 7954 return 0; 7955 } 7956 EXPORT_SYMBOL(unregister_md_personality); 7957 7958 int register_md_cluster_operations(struct md_cluster_operations *ops, 7959 struct module *module) 7960 { 7961 int ret = 0; 7962 spin_lock(&pers_lock); 7963 if (md_cluster_ops != NULL) 7964 ret = -EALREADY; 7965 else { 7966 md_cluster_ops = ops; 7967 md_cluster_mod = module; 7968 } 7969 spin_unlock(&pers_lock); 7970 return ret; 7971 } 7972 EXPORT_SYMBOL(register_md_cluster_operations); 7973 7974 int unregister_md_cluster_operations(void) 7975 { 7976 spin_lock(&pers_lock); 7977 md_cluster_ops = NULL; 7978 spin_unlock(&pers_lock); 7979 return 0; 7980 } 7981 EXPORT_SYMBOL(unregister_md_cluster_operations); 7982 7983 int md_setup_cluster(struct mddev *mddev, int nodes) 7984 { 7985 if (!md_cluster_ops) 7986 request_module("md-cluster"); 7987 spin_lock(&pers_lock); 7988 /* ensure module won't be unloaded */ 7989 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) { 7990 pr_warn("can't find md-cluster module or get it's reference.\n"); 7991 spin_unlock(&pers_lock); 7992 return -ENOENT; 7993 } 7994 spin_unlock(&pers_lock); 7995 7996 return md_cluster_ops->join(mddev, nodes); 7997 } 7998 7999 void md_cluster_stop(struct mddev *mddev) 8000 { 8001 if (!md_cluster_ops) 8002 return; 8003 md_cluster_ops->leave(mddev); 8004 module_put(md_cluster_mod); 8005 } 8006 8007 static int is_mddev_idle(struct mddev *mddev, int init) 8008 { 8009 struct md_rdev *rdev; 8010 int idle; 8011 int curr_events; 8012 8013 idle = 1; 8014 rcu_read_lock(); 8015 rdev_for_each_rcu(rdev, mddev) { 8016 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk; 8017 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) + 8018 (int)part_stat_read(&disk->part0, sectors[1]) - 8019 atomic_read(&disk->sync_io); 8020 /* sync IO will cause sync_io to increase before the disk_stats 8021 * as sync_io is counted when a request starts, and 8022 * disk_stats is counted when it completes. 8023 * So resync activity will cause curr_events to be smaller than 8024 * when there was no such activity. 8025 * non-sync IO will cause disk_stat to increase without 8026 * increasing sync_io so curr_events will (eventually) 8027 * be larger than it was before. Once it becomes 8028 * substantially larger, the test below will cause 8029 * the array to appear non-idle, and resync will slow 8030 * down. 8031 * If there is a lot of outstanding resync activity when 8032 * we set last_event to curr_events, then all that activity 8033 * completing might cause the array to appear non-idle 8034 * and resync will be slowed down even though there might 8035 * not have been non-resync activity. This will only 8036 * happen once though. 'last_events' will soon reflect 8037 * the state where there is little or no outstanding 8038 * resync requests, and further resync activity will 8039 * always make curr_events less than last_events. 8040 * 8041 */ 8042 if (init || curr_events - rdev->last_events > 64) { 8043 rdev->last_events = curr_events; 8044 idle = 0; 8045 } 8046 } 8047 rcu_read_unlock(); 8048 return idle; 8049 } 8050 8051 void md_done_sync(struct mddev *mddev, int blocks, int ok) 8052 { 8053 /* another "blocks" (512byte) blocks have been synced */ 8054 atomic_sub(blocks, &mddev->recovery_active); 8055 wake_up(&mddev->recovery_wait); 8056 if (!ok) { 8057 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8058 set_bit(MD_RECOVERY_ERROR, &mddev->recovery); 8059 md_wakeup_thread(mddev->thread); 8060 // stop recovery, signal do_sync .... 8061 } 8062 } 8063 EXPORT_SYMBOL(md_done_sync); 8064 8065 /* md_write_start(mddev, bi) 8066 * If we need to update some array metadata (e.g. 'active' flag 8067 * in superblock) before writing, schedule a superblock update 8068 * and wait for it to complete. 8069 * A return value of 'false' means that the write wasn't recorded 8070 * and cannot proceed as the array is being suspend. 8071 */ 8072 bool md_write_start(struct mddev *mddev, struct bio *bi) 8073 { 8074 int did_change = 0; 8075 8076 if (bio_data_dir(bi) != WRITE) 8077 return true; 8078 8079 BUG_ON(mddev->ro == 1); 8080 if (mddev->ro == 2) { 8081 /* need to switch to read/write */ 8082 mddev->ro = 0; 8083 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8084 md_wakeup_thread(mddev->thread); 8085 md_wakeup_thread(mddev->sync_thread); 8086 did_change = 1; 8087 } 8088 rcu_read_lock(); 8089 percpu_ref_get(&mddev->writes_pending); 8090 smp_mb(); /* Match smp_mb in set_in_sync() */ 8091 if (mddev->safemode == 1) 8092 mddev->safemode = 0; 8093 /* sync_checkers is always 0 when writes_pending is in per-cpu mode */ 8094 if (mddev->in_sync || mddev->sync_checkers) { 8095 spin_lock(&mddev->lock); 8096 if (mddev->in_sync) { 8097 mddev->in_sync = 0; 8098 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8099 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8100 md_wakeup_thread(mddev->thread); 8101 did_change = 1; 8102 } 8103 spin_unlock(&mddev->lock); 8104 } 8105 rcu_read_unlock(); 8106 if (did_change) 8107 sysfs_notify_dirent_safe(mddev->sysfs_state); 8108 if (!mddev->has_superblocks) 8109 return true; 8110 wait_event(mddev->sb_wait, 8111 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) || 8112 mddev->suspended); 8113 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 8114 percpu_ref_put(&mddev->writes_pending); 8115 return false; 8116 } 8117 return true; 8118 } 8119 EXPORT_SYMBOL(md_write_start); 8120 8121 /* md_write_inc can only be called when md_write_start() has 8122 * already been called at least once of the current request. 8123 * It increments the counter and is useful when a single request 8124 * is split into several parts. Each part causes an increment and 8125 * so needs a matching md_write_end(). 8126 * Unlike md_write_start(), it is safe to call md_write_inc() inside 8127 * a spinlocked region. 8128 */ 8129 void md_write_inc(struct mddev *mddev, struct bio *bi) 8130 { 8131 if (bio_data_dir(bi) != WRITE) 8132 return; 8133 WARN_ON_ONCE(mddev->in_sync || mddev->ro); 8134 percpu_ref_get(&mddev->writes_pending); 8135 } 8136 EXPORT_SYMBOL(md_write_inc); 8137 8138 void md_write_end(struct mddev *mddev) 8139 { 8140 percpu_ref_put(&mddev->writes_pending); 8141 8142 if (mddev->safemode == 2) 8143 md_wakeup_thread(mddev->thread); 8144 else if (mddev->safemode_delay) 8145 /* The roundup() ensures this only performs locking once 8146 * every ->safemode_delay jiffies 8147 */ 8148 mod_timer(&mddev->safemode_timer, 8149 roundup(jiffies, mddev->safemode_delay) + 8150 mddev->safemode_delay); 8151 } 8152 8153 EXPORT_SYMBOL(md_write_end); 8154 8155 /* md_allow_write(mddev) 8156 * Calling this ensures that the array is marked 'active' so that writes 8157 * may proceed without blocking. It is important to call this before 8158 * attempting a GFP_KERNEL allocation while holding the mddev lock. 8159 * Must be called with mddev_lock held. 8160 */ 8161 void md_allow_write(struct mddev *mddev) 8162 { 8163 if (!mddev->pers) 8164 return; 8165 if (mddev->ro) 8166 return; 8167 if (!mddev->pers->sync_request) 8168 return; 8169 8170 spin_lock(&mddev->lock); 8171 if (mddev->in_sync) { 8172 mddev->in_sync = 0; 8173 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8174 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8175 if (mddev->safemode_delay && 8176 mddev->safemode == 0) 8177 mddev->safemode = 1; 8178 spin_unlock(&mddev->lock); 8179 md_update_sb(mddev, 0); 8180 sysfs_notify_dirent_safe(mddev->sysfs_state); 8181 /* wait for the dirty state to be recorded in the metadata */ 8182 wait_event(mddev->sb_wait, 8183 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 8184 } else 8185 spin_unlock(&mddev->lock); 8186 } 8187 EXPORT_SYMBOL_GPL(md_allow_write); 8188 8189 #define SYNC_MARKS 10 8190 #define SYNC_MARK_STEP (3*HZ) 8191 #define UPDATE_FREQUENCY (5*60*HZ) 8192 void md_do_sync(struct md_thread *thread) 8193 { 8194 struct mddev *mddev = thread->mddev; 8195 struct mddev *mddev2; 8196 unsigned int currspeed = 0, 8197 window; 8198 sector_t max_sectors,j, io_sectors, recovery_done; 8199 unsigned long mark[SYNC_MARKS]; 8200 unsigned long update_time; 8201 sector_t mark_cnt[SYNC_MARKS]; 8202 int last_mark,m; 8203 struct list_head *tmp; 8204 sector_t last_check; 8205 int skipped = 0; 8206 struct md_rdev *rdev; 8207 char *desc, *action = NULL; 8208 struct blk_plug plug; 8209 int ret; 8210 8211 /* just incase thread restarts... */ 8212 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 8213 test_bit(MD_RECOVERY_WAIT, &mddev->recovery)) 8214 return; 8215 if (mddev->ro) {/* never try to sync a read-only array */ 8216 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8217 return; 8218 } 8219 8220 if (mddev_is_clustered(mddev)) { 8221 ret = md_cluster_ops->resync_start(mddev); 8222 if (ret) 8223 goto skip; 8224 8225 set_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags); 8226 if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 8227 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) || 8228 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) 8229 && ((unsigned long long)mddev->curr_resync_completed 8230 < (unsigned long long)mddev->resync_max_sectors)) 8231 goto skip; 8232 } 8233 8234 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8235 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 8236 desc = "data-check"; 8237 action = "check"; 8238 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 8239 desc = "requested-resync"; 8240 action = "repair"; 8241 } else 8242 desc = "resync"; 8243 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 8244 desc = "reshape"; 8245 else 8246 desc = "recovery"; 8247 8248 mddev->last_sync_action = action ?: desc; 8249 8250 /* we overload curr_resync somewhat here. 8251 * 0 == not engaged in resync at all 8252 * 2 == checking that there is no conflict with another sync 8253 * 1 == like 2, but have yielded to allow conflicting resync to 8254 * commense 8255 * other == active in resync - this many blocks 8256 * 8257 * Before starting a resync we must have set curr_resync to 8258 * 2, and then checked that every "conflicting" array has curr_resync 8259 * less than ours. When we find one that is the same or higher 8260 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync 8261 * to 1 if we choose to yield (based arbitrarily on address of mddev structure). 8262 * This will mean we have to start checking from the beginning again. 8263 * 8264 */ 8265 8266 do { 8267 int mddev2_minor = -1; 8268 mddev->curr_resync = 2; 8269 8270 try_again: 8271 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8272 goto skip; 8273 for_each_mddev(mddev2, tmp) { 8274 if (mddev2 == mddev) 8275 continue; 8276 if (!mddev->parallel_resync 8277 && mddev2->curr_resync 8278 && match_mddev_units(mddev, mddev2)) { 8279 DEFINE_WAIT(wq); 8280 if (mddev < mddev2 && mddev->curr_resync == 2) { 8281 /* arbitrarily yield */ 8282 mddev->curr_resync = 1; 8283 wake_up(&resync_wait); 8284 } 8285 if (mddev > mddev2 && mddev->curr_resync == 1) 8286 /* no need to wait here, we can wait the next 8287 * time 'round when curr_resync == 2 8288 */ 8289 continue; 8290 /* We need to wait 'interruptible' so as not to 8291 * contribute to the load average, and not to 8292 * be caught by 'softlockup' 8293 */ 8294 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE); 8295 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8296 mddev2->curr_resync >= mddev->curr_resync) { 8297 if (mddev2_minor != mddev2->md_minor) { 8298 mddev2_minor = mddev2->md_minor; 8299 pr_info("md: delaying %s of %s until %s has finished (they share one or more physical units)\n", 8300 desc, mdname(mddev), 8301 mdname(mddev2)); 8302 } 8303 mddev_put(mddev2); 8304 if (signal_pending(current)) 8305 flush_signals(current); 8306 schedule(); 8307 finish_wait(&resync_wait, &wq); 8308 goto try_again; 8309 } 8310 finish_wait(&resync_wait, &wq); 8311 } 8312 } 8313 } while (mddev->curr_resync < 2); 8314 8315 j = 0; 8316 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8317 /* resync follows the size requested by the personality, 8318 * which defaults to physical size, but can be virtual size 8319 */ 8320 max_sectors = mddev->resync_max_sectors; 8321 atomic64_set(&mddev->resync_mismatches, 0); 8322 /* we don't use the checkpoint if there's a bitmap */ 8323 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 8324 j = mddev->resync_min; 8325 else if (!mddev->bitmap) 8326 j = mddev->recovery_cp; 8327 8328 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 8329 max_sectors = mddev->resync_max_sectors; 8330 else { 8331 /* recovery follows the physical size of devices */ 8332 max_sectors = mddev->dev_sectors; 8333 j = MaxSector; 8334 rcu_read_lock(); 8335 rdev_for_each_rcu(rdev, mddev) 8336 if (rdev->raid_disk >= 0 && 8337 !test_bit(Journal, &rdev->flags) && 8338 !test_bit(Faulty, &rdev->flags) && 8339 !test_bit(In_sync, &rdev->flags) && 8340 rdev->recovery_offset < j) 8341 j = rdev->recovery_offset; 8342 rcu_read_unlock(); 8343 8344 /* If there is a bitmap, we need to make sure all 8345 * writes that started before we added a spare 8346 * complete before we start doing a recovery. 8347 * Otherwise the write might complete and (via 8348 * bitmap_endwrite) set a bit in the bitmap after the 8349 * recovery has checked that bit and skipped that 8350 * region. 8351 */ 8352 if (mddev->bitmap) { 8353 mddev->pers->quiesce(mddev, 1); 8354 mddev->pers->quiesce(mddev, 0); 8355 } 8356 } 8357 8358 pr_info("md: %s of RAID array %s\n", desc, mdname(mddev)); 8359 pr_debug("md: minimum _guaranteed_ speed: %d KB/sec/disk.\n", speed_min(mddev)); 8360 pr_debug("md: using maximum available idle IO bandwidth (but not more than %d KB/sec) for %s.\n", 8361 speed_max(mddev), desc); 8362 8363 is_mddev_idle(mddev, 1); /* this initializes IO event counters */ 8364 8365 io_sectors = 0; 8366 for (m = 0; m < SYNC_MARKS; m++) { 8367 mark[m] = jiffies; 8368 mark_cnt[m] = io_sectors; 8369 } 8370 last_mark = 0; 8371 mddev->resync_mark = mark[last_mark]; 8372 mddev->resync_mark_cnt = mark_cnt[last_mark]; 8373 8374 /* 8375 * Tune reconstruction: 8376 */ 8377 window = 32*(PAGE_SIZE/512); 8378 pr_debug("md: using %dk window, over a total of %lluk.\n", 8379 window/2, (unsigned long long)max_sectors/2); 8380 8381 atomic_set(&mddev->recovery_active, 0); 8382 last_check = 0; 8383 8384 if (j>2) { 8385 pr_debug("md: resuming %s of %s from checkpoint.\n", 8386 desc, mdname(mddev)); 8387 mddev->curr_resync = j; 8388 } else 8389 mddev->curr_resync = 3; /* no longer delayed */ 8390 mddev->curr_resync_completed = j; 8391 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 8392 md_new_event(mddev); 8393 update_time = jiffies; 8394 8395 blk_start_plug(&plug); 8396 while (j < max_sectors) { 8397 sector_t sectors; 8398 8399 skipped = 0; 8400 8401 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8402 ((mddev->curr_resync > mddev->curr_resync_completed && 8403 (mddev->curr_resync - mddev->curr_resync_completed) 8404 > (max_sectors >> 4)) || 8405 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) || 8406 (j - mddev->curr_resync_completed)*2 8407 >= mddev->resync_max - mddev->curr_resync_completed || 8408 mddev->curr_resync_completed > mddev->resync_max 8409 )) { 8410 /* time to update curr_resync_completed */ 8411 wait_event(mddev->recovery_wait, 8412 atomic_read(&mddev->recovery_active) == 0); 8413 mddev->curr_resync_completed = j; 8414 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 8415 j > mddev->recovery_cp) 8416 mddev->recovery_cp = j; 8417 update_time = jiffies; 8418 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8419 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 8420 } 8421 8422 while (j >= mddev->resync_max && 8423 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8424 /* As this condition is controlled by user-space, 8425 * we can block indefinitely, so use '_interruptible' 8426 * to avoid triggering warnings. 8427 */ 8428 flush_signals(current); /* just in case */ 8429 wait_event_interruptible(mddev->recovery_wait, 8430 mddev->resync_max > j 8431 || test_bit(MD_RECOVERY_INTR, 8432 &mddev->recovery)); 8433 } 8434 8435 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8436 break; 8437 8438 sectors = mddev->pers->sync_request(mddev, j, &skipped); 8439 if (sectors == 0) { 8440 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8441 break; 8442 } 8443 8444 if (!skipped) { /* actual IO requested */ 8445 io_sectors += sectors; 8446 atomic_add(sectors, &mddev->recovery_active); 8447 } 8448 8449 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8450 break; 8451 8452 j += sectors; 8453 if (j > max_sectors) 8454 /* when skipping, extra large numbers can be returned. */ 8455 j = max_sectors; 8456 if (j > 2) 8457 mddev->curr_resync = j; 8458 mddev->curr_mark_cnt = io_sectors; 8459 if (last_check == 0) 8460 /* this is the earliest that rebuild will be 8461 * visible in /proc/mdstat 8462 */ 8463 md_new_event(mddev); 8464 8465 if (last_check + window > io_sectors || j == max_sectors) 8466 continue; 8467 8468 last_check = io_sectors; 8469 repeat: 8470 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { 8471 /* step marks */ 8472 int next = (last_mark+1) % SYNC_MARKS; 8473 8474 mddev->resync_mark = mark[next]; 8475 mddev->resync_mark_cnt = mark_cnt[next]; 8476 mark[next] = jiffies; 8477 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); 8478 last_mark = next; 8479 } 8480 8481 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8482 break; 8483 8484 /* 8485 * this loop exits only if either when we are slower than 8486 * the 'hard' speed limit, or the system was IO-idle for 8487 * a jiffy. 8488 * the system might be non-idle CPU-wise, but we only care 8489 * about not overloading the IO subsystem. (things like an 8490 * e2fsck being done on the RAID array should execute fast) 8491 */ 8492 cond_resched(); 8493 8494 recovery_done = io_sectors - atomic_read(&mddev->recovery_active); 8495 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2 8496 /((jiffies-mddev->resync_mark)/HZ +1) +1; 8497 8498 if (currspeed > speed_min(mddev)) { 8499 if (currspeed > speed_max(mddev)) { 8500 msleep(500); 8501 goto repeat; 8502 } 8503 if (!is_mddev_idle(mddev, 0)) { 8504 /* 8505 * Give other IO more of a chance. 8506 * The faster the devices, the less we wait. 8507 */ 8508 wait_event(mddev->recovery_wait, 8509 !atomic_read(&mddev->recovery_active)); 8510 } 8511 } 8512 } 8513 pr_info("md: %s: %s %s.\n",mdname(mddev), desc, 8514 test_bit(MD_RECOVERY_INTR, &mddev->recovery) 8515 ? "interrupted" : "done"); 8516 /* 8517 * this also signals 'finished resyncing' to md_stop 8518 */ 8519 blk_finish_plug(&plug); 8520 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); 8521 8522 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8523 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8524 mddev->curr_resync > 3) { 8525 mddev->curr_resync_completed = mddev->curr_resync; 8526 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 8527 } 8528 mddev->pers->sync_request(mddev, max_sectors, &skipped); 8529 8530 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && 8531 mddev->curr_resync > 3) { 8532 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8533 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8534 if (mddev->curr_resync >= mddev->recovery_cp) { 8535 pr_debug("md: checkpointing %s of %s.\n", 8536 desc, mdname(mddev)); 8537 if (test_bit(MD_RECOVERY_ERROR, 8538 &mddev->recovery)) 8539 mddev->recovery_cp = 8540 mddev->curr_resync_completed; 8541 else 8542 mddev->recovery_cp = 8543 mddev->curr_resync; 8544 } 8545 } else 8546 mddev->recovery_cp = MaxSector; 8547 } else { 8548 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8549 mddev->curr_resync = MaxSector; 8550 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8551 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) { 8552 rcu_read_lock(); 8553 rdev_for_each_rcu(rdev, mddev) 8554 if (rdev->raid_disk >= 0 && 8555 mddev->delta_disks >= 0 && 8556 !test_bit(Journal, &rdev->flags) && 8557 !test_bit(Faulty, &rdev->flags) && 8558 !test_bit(In_sync, &rdev->flags) && 8559 rdev->recovery_offset < mddev->curr_resync) 8560 rdev->recovery_offset = mddev->curr_resync; 8561 rcu_read_unlock(); 8562 } 8563 } 8564 } 8565 skip: 8566 /* set CHANGE_PENDING here since maybe another update is needed, 8567 * so other nodes are informed. It should be harmless for normal 8568 * raid */ 8569 set_mask_bits(&mddev->sb_flags, 0, 8570 BIT(MD_SB_CHANGE_PENDING) | BIT(MD_SB_CHANGE_DEVS)); 8571 8572 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8573 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8574 mddev->delta_disks > 0 && 8575 mddev->pers->finish_reshape && 8576 mddev->pers->size && 8577 mddev->queue) { 8578 mddev_lock_nointr(mddev); 8579 md_set_array_sectors(mddev, mddev->pers->size(mddev, 0, 0)); 8580 mddev_unlock(mddev); 8581 set_capacity(mddev->gendisk, mddev->array_sectors); 8582 revalidate_disk(mddev->gendisk); 8583 } 8584 8585 spin_lock(&mddev->lock); 8586 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8587 /* We completed so min/max setting can be forgotten if used. */ 8588 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 8589 mddev->resync_min = 0; 8590 mddev->resync_max = MaxSector; 8591 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 8592 mddev->resync_min = mddev->curr_resync_completed; 8593 set_bit(MD_RECOVERY_DONE, &mddev->recovery); 8594 mddev->curr_resync = 0; 8595 spin_unlock(&mddev->lock); 8596 8597 wake_up(&resync_wait); 8598 md_wakeup_thread(mddev->thread); 8599 return; 8600 } 8601 EXPORT_SYMBOL_GPL(md_do_sync); 8602 8603 static int remove_and_add_spares(struct mddev *mddev, 8604 struct md_rdev *this) 8605 { 8606 struct md_rdev *rdev; 8607 int spares = 0; 8608 int removed = 0; 8609 bool remove_some = false; 8610 8611 if (this && test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 8612 /* Mustn't remove devices when resync thread is running */ 8613 return 0; 8614 8615 rdev_for_each(rdev, mddev) { 8616 if ((this == NULL || rdev == this) && 8617 rdev->raid_disk >= 0 && 8618 !test_bit(Blocked, &rdev->flags) && 8619 test_bit(Faulty, &rdev->flags) && 8620 atomic_read(&rdev->nr_pending)==0) { 8621 /* Faulty non-Blocked devices with nr_pending == 0 8622 * never get nr_pending incremented, 8623 * never get Faulty cleared, and never get Blocked set. 8624 * So we can synchronize_rcu now rather than once per device 8625 */ 8626 remove_some = true; 8627 set_bit(RemoveSynchronized, &rdev->flags); 8628 } 8629 } 8630 8631 if (remove_some) 8632 synchronize_rcu(); 8633 rdev_for_each(rdev, mddev) { 8634 if ((this == NULL || rdev == this) && 8635 rdev->raid_disk >= 0 && 8636 !test_bit(Blocked, &rdev->flags) && 8637 ((test_bit(RemoveSynchronized, &rdev->flags) || 8638 (!test_bit(In_sync, &rdev->flags) && 8639 !test_bit(Journal, &rdev->flags))) && 8640 atomic_read(&rdev->nr_pending)==0)) { 8641 if (mddev->pers->hot_remove_disk( 8642 mddev, rdev) == 0) { 8643 sysfs_unlink_rdev(mddev, rdev); 8644 rdev->raid_disk = -1; 8645 removed++; 8646 } 8647 } 8648 if (remove_some && test_bit(RemoveSynchronized, &rdev->flags)) 8649 clear_bit(RemoveSynchronized, &rdev->flags); 8650 } 8651 8652 if (removed && mddev->kobj.sd) 8653 sysfs_notify(&mddev->kobj, NULL, "degraded"); 8654 8655 if (this && removed) 8656 goto no_add; 8657 8658 rdev_for_each(rdev, mddev) { 8659 if (this && this != rdev) 8660 continue; 8661 if (test_bit(Candidate, &rdev->flags)) 8662 continue; 8663 if (rdev->raid_disk >= 0 && 8664 !test_bit(In_sync, &rdev->flags) && 8665 !test_bit(Journal, &rdev->flags) && 8666 !test_bit(Faulty, &rdev->flags)) 8667 spares++; 8668 if (rdev->raid_disk >= 0) 8669 continue; 8670 if (test_bit(Faulty, &rdev->flags)) 8671 continue; 8672 if (!test_bit(Journal, &rdev->flags)) { 8673 if (mddev->ro && 8674 ! (rdev->saved_raid_disk >= 0 && 8675 !test_bit(Bitmap_sync, &rdev->flags))) 8676 continue; 8677 8678 rdev->recovery_offset = 0; 8679 } 8680 if (mddev->pers-> 8681 hot_add_disk(mddev, rdev) == 0) { 8682 if (sysfs_link_rdev(mddev, rdev)) 8683 /* failure here is OK */; 8684 if (!test_bit(Journal, &rdev->flags)) 8685 spares++; 8686 md_new_event(mddev); 8687 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 8688 } 8689 } 8690 no_add: 8691 if (removed) 8692 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 8693 return spares; 8694 } 8695 8696 static void md_start_sync(struct work_struct *ws) 8697 { 8698 struct mddev *mddev = container_of(ws, struct mddev, del_work); 8699 8700 mddev->sync_thread = md_register_thread(md_do_sync, 8701 mddev, 8702 "resync"); 8703 if (!mddev->sync_thread) { 8704 pr_warn("%s: could not start resync thread...\n", 8705 mdname(mddev)); 8706 /* leave the spares where they are, it shouldn't hurt */ 8707 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8708 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 8709 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 8710 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 8711 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 8712 wake_up(&resync_wait); 8713 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 8714 &mddev->recovery)) 8715 if (mddev->sysfs_action) 8716 sysfs_notify_dirent_safe(mddev->sysfs_action); 8717 } else 8718 md_wakeup_thread(mddev->sync_thread); 8719 sysfs_notify_dirent_safe(mddev->sysfs_action); 8720 md_new_event(mddev); 8721 } 8722 8723 /* 8724 * This routine is regularly called by all per-raid-array threads to 8725 * deal with generic issues like resync and super-block update. 8726 * Raid personalities that don't have a thread (linear/raid0) do not 8727 * need this as they never do any recovery or update the superblock. 8728 * 8729 * It does not do any resync itself, but rather "forks" off other threads 8730 * to do that as needed. 8731 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in 8732 * "->recovery" and create a thread at ->sync_thread. 8733 * When the thread finishes it sets MD_RECOVERY_DONE 8734 * and wakeups up this thread which will reap the thread and finish up. 8735 * This thread also removes any faulty devices (with nr_pending == 0). 8736 * 8737 * The overall approach is: 8738 * 1/ if the superblock needs updating, update it. 8739 * 2/ If a recovery thread is running, don't do anything else. 8740 * 3/ If recovery has finished, clean up, possibly marking spares active. 8741 * 4/ If there are any faulty devices, remove them. 8742 * 5/ If array is degraded, try to add spares devices 8743 * 6/ If array has spares or is not in-sync, start a resync thread. 8744 */ 8745 void md_check_recovery(struct mddev *mddev) 8746 { 8747 if (mddev->suspended) 8748 return; 8749 8750 if (mddev->bitmap) 8751 bitmap_daemon_work(mddev); 8752 8753 if (signal_pending(current)) { 8754 if (mddev->pers->sync_request && !mddev->external) { 8755 pr_debug("md: %s in immediate safe mode\n", 8756 mdname(mddev)); 8757 mddev->safemode = 2; 8758 } 8759 flush_signals(current); 8760 } 8761 8762 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 8763 return; 8764 if ( ! ( 8765 (mddev->sb_flags & ~ (1<<MD_SB_CHANGE_PENDING)) || 8766 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 8767 test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 8768 (mddev->external == 0 && mddev->safemode == 1) || 8769 (mddev->safemode == 2 8770 && !mddev->in_sync && mddev->recovery_cp == MaxSector) 8771 )) 8772 return; 8773 8774 if (mddev_trylock(mddev)) { 8775 int spares = 0; 8776 8777 if (!mddev->external && mddev->safemode == 1) 8778 mddev->safemode = 0; 8779 8780 if (mddev->ro) { 8781 struct md_rdev *rdev; 8782 if (!mddev->external && mddev->in_sync) 8783 /* 'Blocked' flag not needed as failed devices 8784 * will be recorded if array switched to read/write. 8785 * Leaving it set will prevent the device 8786 * from being removed. 8787 */ 8788 rdev_for_each(rdev, mddev) 8789 clear_bit(Blocked, &rdev->flags); 8790 /* On a read-only array we can: 8791 * - remove failed devices 8792 * - add already-in_sync devices if the array itself 8793 * is in-sync. 8794 * As we only add devices that are already in-sync, 8795 * we can activate the spares immediately. 8796 */ 8797 remove_and_add_spares(mddev, NULL); 8798 /* There is no thread, but we need to call 8799 * ->spare_active and clear saved_raid_disk 8800 */ 8801 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8802 md_reap_sync_thread(mddev); 8803 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 8804 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8805 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8806 goto unlock; 8807 } 8808 8809 if (mddev_is_clustered(mddev)) { 8810 struct md_rdev *rdev; 8811 /* kick the device if another node issued a 8812 * remove disk. 8813 */ 8814 rdev_for_each(rdev, mddev) { 8815 if (test_and_clear_bit(ClusterRemove, &rdev->flags) && 8816 rdev->raid_disk < 0) 8817 md_kick_rdev_from_array(rdev); 8818 } 8819 } 8820 8821 if (!mddev->external && !mddev->in_sync) { 8822 spin_lock(&mddev->lock); 8823 set_in_sync(mddev); 8824 spin_unlock(&mddev->lock); 8825 } 8826 8827 if (mddev->sb_flags) 8828 md_update_sb(mddev, 0); 8829 8830 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 8831 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { 8832 /* resync/recovery still happening */ 8833 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8834 goto unlock; 8835 } 8836 if (mddev->sync_thread) { 8837 md_reap_sync_thread(mddev); 8838 goto unlock; 8839 } 8840 /* Set RUNNING before clearing NEEDED to avoid 8841 * any transients in the value of "sync_action". 8842 */ 8843 mddev->curr_resync_completed = 0; 8844 spin_lock(&mddev->lock); 8845 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 8846 spin_unlock(&mddev->lock); 8847 /* Clear some bits that don't mean anything, but 8848 * might be left set 8849 */ 8850 clear_bit(MD_RECOVERY_INTR, &mddev->recovery); 8851 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 8852 8853 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 8854 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 8855 goto not_running; 8856 /* no recovery is running. 8857 * remove any failed drives, then 8858 * add spares if possible. 8859 * Spares are also removed and re-added, to allow 8860 * the personality to fail the re-add. 8861 */ 8862 8863 if (mddev->reshape_position != MaxSector) { 8864 if (mddev->pers->check_reshape == NULL || 8865 mddev->pers->check_reshape(mddev) != 0) 8866 /* Cannot proceed */ 8867 goto not_running; 8868 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 8869 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 8870 } else if ((spares = remove_and_add_spares(mddev, NULL))) { 8871 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8872 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 8873 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 8874 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 8875 } else if (mddev->recovery_cp < MaxSector) { 8876 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8877 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 8878 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 8879 /* nothing to be done ... */ 8880 goto not_running; 8881 8882 if (mddev->pers->sync_request) { 8883 if (spares) { 8884 /* We are adding a device or devices to an array 8885 * which has the bitmap stored on all devices. 8886 * So make sure all bitmap pages get written 8887 */ 8888 bitmap_write_all(mddev->bitmap); 8889 } 8890 INIT_WORK(&mddev->del_work, md_start_sync); 8891 queue_work(md_misc_wq, &mddev->del_work); 8892 goto unlock; 8893 } 8894 not_running: 8895 if (!mddev->sync_thread) { 8896 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 8897 wake_up(&resync_wait); 8898 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 8899 &mddev->recovery)) 8900 if (mddev->sysfs_action) 8901 sysfs_notify_dirent_safe(mddev->sysfs_action); 8902 } 8903 unlock: 8904 wake_up(&mddev->sb_wait); 8905 mddev_unlock(mddev); 8906 } else if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags) && mddev->sb_flags) { 8907 /* Write superblock - thread that called mddev_suspend() 8908 * holds reconfig_mutex for us. 8909 */ 8910 set_bit(MD_UPDATING_SB, &mddev->flags); 8911 smp_mb__after_atomic(); 8912 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags)) 8913 md_update_sb(mddev, 0); 8914 clear_bit_unlock(MD_UPDATING_SB, &mddev->flags); 8915 wake_up(&mddev->sb_wait); 8916 } 8917 } 8918 EXPORT_SYMBOL(md_check_recovery); 8919 8920 void md_reap_sync_thread(struct mddev *mddev) 8921 { 8922 struct md_rdev *rdev; 8923 8924 /* resync has finished, collect result */ 8925 md_unregister_thread(&mddev->sync_thread); 8926 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8927 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 8928 /* success...*/ 8929 /* activate any spares */ 8930 if (mddev->pers->spare_active(mddev)) { 8931 sysfs_notify(&mddev->kobj, NULL, 8932 "degraded"); 8933 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 8934 } 8935 } 8936 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8937 mddev->pers->finish_reshape) 8938 mddev->pers->finish_reshape(mddev); 8939 8940 /* If array is no-longer degraded, then any saved_raid_disk 8941 * information must be scrapped. 8942 */ 8943 if (!mddev->degraded) 8944 rdev_for_each(rdev, mddev) 8945 rdev->saved_raid_disk = -1; 8946 8947 md_update_sb(mddev, 1); 8948 /* MD_SB_CHANGE_PENDING should be cleared by md_update_sb, so we can 8949 * call resync_finish here if MD_CLUSTER_RESYNC_LOCKED is set by 8950 * clustered raid */ 8951 if (test_and_clear_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags)) 8952 md_cluster_ops->resync_finish(mddev); 8953 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 8954 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 8955 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8956 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 8957 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 8958 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 8959 wake_up(&resync_wait); 8960 /* flag recovery needed just to double check */ 8961 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8962 sysfs_notify_dirent_safe(mddev->sysfs_action); 8963 md_new_event(mddev); 8964 if (mddev->event_work.func) 8965 queue_work(md_misc_wq, &mddev->event_work); 8966 } 8967 EXPORT_SYMBOL(md_reap_sync_thread); 8968 8969 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev) 8970 { 8971 sysfs_notify_dirent_safe(rdev->sysfs_state); 8972 wait_event_timeout(rdev->blocked_wait, 8973 !test_bit(Blocked, &rdev->flags) && 8974 !test_bit(BlockedBadBlocks, &rdev->flags), 8975 msecs_to_jiffies(5000)); 8976 rdev_dec_pending(rdev, mddev); 8977 } 8978 EXPORT_SYMBOL(md_wait_for_blocked_rdev); 8979 8980 void md_finish_reshape(struct mddev *mddev) 8981 { 8982 /* called be personality module when reshape completes. */ 8983 struct md_rdev *rdev; 8984 8985 rdev_for_each(rdev, mddev) { 8986 if (rdev->data_offset > rdev->new_data_offset) 8987 rdev->sectors += rdev->data_offset - rdev->new_data_offset; 8988 else 8989 rdev->sectors -= rdev->new_data_offset - rdev->data_offset; 8990 rdev->data_offset = rdev->new_data_offset; 8991 } 8992 } 8993 EXPORT_SYMBOL(md_finish_reshape); 8994 8995 /* Bad block management */ 8996 8997 /* Returns 1 on success, 0 on failure */ 8998 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 8999 int is_new) 9000 { 9001 struct mddev *mddev = rdev->mddev; 9002 int rv; 9003 if (is_new) 9004 s += rdev->new_data_offset; 9005 else 9006 s += rdev->data_offset; 9007 rv = badblocks_set(&rdev->badblocks, s, sectors, 0); 9008 if (rv == 0) { 9009 /* Make sure they get written out promptly */ 9010 if (test_bit(ExternalBbl, &rdev->flags)) 9011 sysfs_notify(&rdev->kobj, NULL, 9012 "unacknowledged_bad_blocks"); 9013 sysfs_notify_dirent_safe(rdev->sysfs_state); 9014 set_mask_bits(&mddev->sb_flags, 0, 9015 BIT(MD_SB_CHANGE_CLEAN) | BIT(MD_SB_CHANGE_PENDING)); 9016 md_wakeup_thread(rdev->mddev->thread); 9017 return 1; 9018 } else 9019 return 0; 9020 } 9021 EXPORT_SYMBOL_GPL(rdev_set_badblocks); 9022 9023 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 9024 int is_new) 9025 { 9026 int rv; 9027 if (is_new) 9028 s += rdev->new_data_offset; 9029 else 9030 s += rdev->data_offset; 9031 rv = badblocks_clear(&rdev->badblocks, s, sectors); 9032 if ((rv == 0) && test_bit(ExternalBbl, &rdev->flags)) 9033 sysfs_notify(&rdev->kobj, NULL, "bad_blocks"); 9034 return rv; 9035 } 9036 EXPORT_SYMBOL_GPL(rdev_clear_badblocks); 9037 9038 static int md_notify_reboot(struct notifier_block *this, 9039 unsigned long code, void *x) 9040 { 9041 struct list_head *tmp; 9042 struct mddev *mddev; 9043 int need_delay = 0; 9044 9045 for_each_mddev(mddev, tmp) { 9046 if (mddev_trylock(mddev)) { 9047 if (mddev->pers) 9048 __md_stop_writes(mddev); 9049 if (mddev->persistent) 9050 mddev->safemode = 2; 9051 mddev_unlock(mddev); 9052 } 9053 need_delay = 1; 9054 } 9055 /* 9056 * certain more exotic SCSI devices are known to be 9057 * volatile wrt too early system reboots. While the 9058 * right place to handle this issue is the given 9059 * driver, we do want to have a safe RAID driver ... 9060 */ 9061 if (need_delay) 9062 mdelay(1000*1); 9063 9064 return NOTIFY_DONE; 9065 } 9066 9067 static struct notifier_block md_notifier = { 9068 .notifier_call = md_notify_reboot, 9069 .next = NULL, 9070 .priority = INT_MAX, /* before any real devices */ 9071 }; 9072 9073 static void md_geninit(void) 9074 { 9075 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); 9076 9077 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops); 9078 } 9079 9080 static int __init md_init(void) 9081 { 9082 int ret = -ENOMEM; 9083 9084 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0); 9085 if (!md_wq) 9086 goto err_wq; 9087 9088 md_misc_wq = alloc_workqueue("md_misc", 0, 0); 9089 if (!md_misc_wq) 9090 goto err_misc_wq; 9091 9092 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0) 9093 goto err_md; 9094 9095 if ((ret = register_blkdev(0, "mdp")) < 0) 9096 goto err_mdp; 9097 mdp_major = ret; 9098 9099 blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE, 9100 md_probe, NULL, NULL); 9101 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE, 9102 md_probe, NULL, NULL); 9103 9104 register_reboot_notifier(&md_notifier); 9105 raid_table_header = register_sysctl_table(raid_root_table); 9106 9107 md_geninit(); 9108 return 0; 9109 9110 err_mdp: 9111 unregister_blkdev(MD_MAJOR, "md"); 9112 err_md: 9113 destroy_workqueue(md_misc_wq); 9114 err_misc_wq: 9115 destroy_workqueue(md_wq); 9116 err_wq: 9117 return ret; 9118 } 9119 9120 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev) 9121 { 9122 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 9123 struct md_rdev *rdev2; 9124 int role, ret; 9125 char b[BDEVNAME_SIZE]; 9126 9127 /* 9128 * If size is changed in another node then we need to 9129 * do resize as well. 9130 */ 9131 if (mddev->dev_sectors != le64_to_cpu(sb->size)) { 9132 ret = mddev->pers->resize(mddev, le64_to_cpu(sb->size)); 9133 if (ret) 9134 pr_info("md-cluster: resize failed\n"); 9135 else 9136 bitmap_update_sb(mddev->bitmap); 9137 } 9138 9139 /* Check for change of roles in the active devices */ 9140 rdev_for_each(rdev2, mddev) { 9141 if (test_bit(Faulty, &rdev2->flags)) 9142 continue; 9143 9144 /* Check if the roles changed */ 9145 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]); 9146 9147 if (test_bit(Candidate, &rdev2->flags)) { 9148 if (role == 0xfffe) { 9149 pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b)); 9150 md_kick_rdev_from_array(rdev2); 9151 continue; 9152 } 9153 else 9154 clear_bit(Candidate, &rdev2->flags); 9155 } 9156 9157 if (role != rdev2->raid_disk) { 9158 /* got activated */ 9159 if (rdev2->raid_disk == -1 && role != 0xffff) { 9160 rdev2->saved_raid_disk = role; 9161 ret = remove_and_add_spares(mddev, rdev2); 9162 pr_info("Activated spare: %s\n", 9163 bdevname(rdev2->bdev,b)); 9164 /* wakeup mddev->thread here, so array could 9165 * perform resync with the new activated disk */ 9166 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9167 md_wakeup_thread(mddev->thread); 9168 9169 } 9170 /* device faulty 9171 * We just want to do the minimum to mark the disk 9172 * as faulty. The recovery is performed by the 9173 * one who initiated the error. 9174 */ 9175 if ((role == 0xfffe) || (role == 0xfffd)) { 9176 md_error(mddev, rdev2); 9177 clear_bit(Blocked, &rdev2->flags); 9178 } 9179 } 9180 } 9181 9182 if (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) 9183 update_raid_disks(mddev, le32_to_cpu(sb->raid_disks)); 9184 9185 /* Finally set the event to be up to date */ 9186 mddev->events = le64_to_cpu(sb->events); 9187 } 9188 9189 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev) 9190 { 9191 int err; 9192 struct page *swapout = rdev->sb_page; 9193 struct mdp_superblock_1 *sb; 9194 9195 /* Store the sb page of the rdev in the swapout temporary 9196 * variable in case we err in the future 9197 */ 9198 rdev->sb_page = NULL; 9199 err = alloc_disk_sb(rdev); 9200 if (err == 0) { 9201 ClearPageUptodate(rdev->sb_page); 9202 rdev->sb_loaded = 0; 9203 err = super_types[mddev->major_version]. 9204 load_super(rdev, NULL, mddev->minor_version); 9205 } 9206 if (err < 0) { 9207 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n", 9208 __func__, __LINE__, rdev->desc_nr, err); 9209 if (rdev->sb_page) 9210 put_page(rdev->sb_page); 9211 rdev->sb_page = swapout; 9212 rdev->sb_loaded = 1; 9213 return err; 9214 } 9215 9216 sb = page_address(rdev->sb_page); 9217 /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET 9218 * is not set 9219 */ 9220 9221 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET)) 9222 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 9223 9224 /* The other node finished recovery, call spare_active to set 9225 * device In_sync and mddev->degraded 9226 */ 9227 if (rdev->recovery_offset == MaxSector && 9228 !test_bit(In_sync, &rdev->flags) && 9229 mddev->pers->spare_active(mddev)) 9230 sysfs_notify(&mddev->kobj, NULL, "degraded"); 9231 9232 put_page(swapout); 9233 return 0; 9234 } 9235 9236 void md_reload_sb(struct mddev *mddev, int nr) 9237 { 9238 struct md_rdev *rdev; 9239 int err; 9240 9241 /* Find the rdev */ 9242 rdev_for_each_rcu(rdev, mddev) { 9243 if (rdev->desc_nr == nr) 9244 break; 9245 } 9246 9247 if (!rdev || rdev->desc_nr != nr) { 9248 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr); 9249 return; 9250 } 9251 9252 err = read_rdev(mddev, rdev); 9253 if (err < 0) 9254 return; 9255 9256 check_sb_changes(mddev, rdev); 9257 9258 /* Read all rdev's to update recovery_offset */ 9259 rdev_for_each_rcu(rdev, mddev) 9260 read_rdev(mddev, rdev); 9261 } 9262 EXPORT_SYMBOL(md_reload_sb); 9263 9264 #ifndef MODULE 9265 9266 /* 9267 * Searches all registered partitions for autorun RAID arrays 9268 * at boot time. 9269 */ 9270 9271 static DEFINE_MUTEX(detected_devices_mutex); 9272 static LIST_HEAD(all_detected_devices); 9273 struct detected_devices_node { 9274 struct list_head list; 9275 dev_t dev; 9276 }; 9277 9278 void md_autodetect_dev(dev_t dev) 9279 { 9280 struct detected_devices_node *node_detected_dev; 9281 9282 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL); 9283 if (node_detected_dev) { 9284 node_detected_dev->dev = dev; 9285 mutex_lock(&detected_devices_mutex); 9286 list_add_tail(&node_detected_dev->list, &all_detected_devices); 9287 mutex_unlock(&detected_devices_mutex); 9288 } 9289 } 9290 9291 static void autostart_arrays(int part) 9292 { 9293 struct md_rdev *rdev; 9294 struct detected_devices_node *node_detected_dev; 9295 dev_t dev; 9296 int i_scanned, i_passed; 9297 9298 i_scanned = 0; 9299 i_passed = 0; 9300 9301 pr_info("md: Autodetecting RAID arrays.\n"); 9302 9303 mutex_lock(&detected_devices_mutex); 9304 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) { 9305 i_scanned++; 9306 node_detected_dev = list_entry(all_detected_devices.next, 9307 struct detected_devices_node, list); 9308 list_del(&node_detected_dev->list); 9309 dev = node_detected_dev->dev; 9310 kfree(node_detected_dev); 9311 mutex_unlock(&detected_devices_mutex); 9312 rdev = md_import_device(dev,0, 90); 9313 mutex_lock(&detected_devices_mutex); 9314 if (IS_ERR(rdev)) 9315 continue; 9316 9317 if (test_bit(Faulty, &rdev->flags)) 9318 continue; 9319 9320 set_bit(AutoDetected, &rdev->flags); 9321 list_add(&rdev->same_set, &pending_raid_disks); 9322 i_passed++; 9323 } 9324 mutex_unlock(&detected_devices_mutex); 9325 9326 pr_debug("md: Scanned %d and added %d devices.\n", i_scanned, i_passed); 9327 9328 autorun_devices(part); 9329 } 9330 9331 #endif /* !MODULE */ 9332 9333 static __exit void md_exit(void) 9334 { 9335 struct mddev *mddev; 9336 struct list_head *tmp; 9337 int delay = 1; 9338 9339 blk_unregister_region(MKDEV(MD_MAJOR,0), 512); 9340 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS); 9341 9342 unregister_blkdev(MD_MAJOR,"md"); 9343 unregister_blkdev(mdp_major, "mdp"); 9344 unregister_reboot_notifier(&md_notifier); 9345 unregister_sysctl_table(raid_table_header); 9346 9347 /* We cannot unload the modules while some process is 9348 * waiting for us in select() or poll() - wake them up 9349 */ 9350 md_unloading = 1; 9351 while (waitqueue_active(&md_event_waiters)) { 9352 /* not safe to leave yet */ 9353 wake_up(&md_event_waiters); 9354 msleep(delay); 9355 delay += delay; 9356 } 9357 remove_proc_entry("mdstat", NULL); 9358 9359 for_each_mddev(mddev, tmp) { 9360 export_array(mddev); 9361 mddev->ctime = 0; 9362 mddev->hold_active = 0; 9363 /* 9364 * for_each_mddev() will call mddev_put() at the end of each 9365 * iteration. As the mddev is now fully clear, this will 9366 * schedule the mddev for destruction by a workqueue, and the 9367 * destroy_workqueue() below will wait for that to complete. 9368 */ 9369 } 9370 destroy_workqueue(md_misc_wq); 9371 destroy_workqueue(md_wq); 9372 } 9373 9374 subsys_initcall(md_init); 9375 module_exit(md_exit) 9376 9377 static int get_ro(char *buffer, const struct kernel_param *kp) 9378 { 9379 return sprintf(buffer, "%d", start_readonly); 9380 } 9381 static int set_ro(const char *val, const struct kernel_param *kp) 9382 { 9383 return kstrtouint(val, 10, (unsigned int *)&start_readonly); 9384 } 9385 9386 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); 9387 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); 9388 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR); 9389 module_param(create_on_open, bool, S_IRUSR|S_IWUSR); 9390 9391 MODULE_LICENSE("GPL"); 9392 MODULE_DESCRIPTION("MD RAID framework"); 9393 MODULE_ALIAS("md"); 9394 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR); 9395