xref: /openbmc/linux/drivers/md/md.c (revision c21b37f6)
1 /*
2    md.c : Multiple Devices driver for Linux
3 	  Copyright (C) 1998, 1999, 2000 Ingo Molnar
4 
5      completely rewritten, based on the MD driver code from Marc Zyngier
6 
7    Changes:
8 
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16 
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19 
20      Neil Brown <neilb@cse.unsw.edu.au>.
21 
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24 
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29 
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34 
35 #include <linux/module.h>
36 #include <linux/kernel.h>
37 #include <linux/kthread.h>
38 #include <linux/linkage.h>
39 #include <linux/raid/md.h>
40 #include <linux/raid/bitmap.h>
41 #include <linux/sysctl.h>
42 #include <linux/buffer_head.h> /* for invalidate_bdev */
43 #include <linux/poll.h>
44 #include <linux/mutex.h>
45 #include <linux/ctype.h>
46 #include <linux/freezer.h>
47 
48 #include <linux/init.h>
49 
50 #include <linux/file.h>
51 
52 #ifdef CONFIG_KMOD
53 #include <linux/kmod.h>
54 #endif
55 
56 #include <asm/unaligned.h>
57 
58 #define MAJOR_NR MD_MAJOR
59 #define MD_DRIVER
60 
61 /* 63 partitions with the alternate major number (mdp) */
62 #define MdpMinorShift 6
63 
64 #define DEBUG 0
65 #define dprintk(x...) ((void)(DEBUG && printk(x)))
66 
67 
68 #ifndef MODULE
69 static void autostart_arrays (int part);
70 #endif
71 
72 static LIST_HEAD(pers_list);
73 static DEFINE_SPINLOCK(pers_lock);
74 
75 static void md_print_devices(void);
76 
77 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
78 
79 /*
80  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
81  * is 1000 KB/sec, so the extra system load does not show up that much.
82  * Increase it if you want to have more _guaranteed_ speed. Note that
83  * the RAID driver will use the maximum available bandwidth if the IO
84  * subsystem is idle. There is also an 'absolute maximum' reconstruction
85  * speed limit - in case reconstruction slows down your system despite
86  * idle IO detection.
87  *
88  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
89  * or /sys/block/mdX/md/sync_speed_{min,max}
90  */
91 
92 static int sysctl_speed_limit_min = 1000;
93 static int sysctl_speed_limit_max = 200000;
94 static inline int speed_min(mddev_t *mddev)
95 {
96 	return mddev->sync_speed_min ?
97 		mddev->sync_speed_min : sysctl_speed_limit_min;
98 }
99 
100 static inline int speed_max(mddev_t *mddev)
101 {
102 	return mddev->sync_speed_max ?
103 		mddev->sync_speed_max : sysctl_speed_limit_max;
104 }
105 
106 static struct ctl_table_header *raid_table_header;
107 
108 static ctl_table raid_table[] = {
109 	{
110 		.ctl_name	= DEV_RAID_SPEED_LIMIT_MIN,
111 		.procname	= "speed_limit_min",
112 		.data		= &sysctl_speed_limit_min,
113 		.maxlen		= sizeof(int),
114 		.mode		= S_IRUGO|S_IWUSR,
115 		.proc_handler	= &proc_dointvec,
116 	},
117 	{
118 		.ctl_name	= DEV_RAID_SPEED_LIMIT_MAX,
119 		.procname	= "speed_limit_max",
120 		.data		= &sysctl_speed_limit_max,
121 		.maxlen		= sizeof(int),
122 		.mode		= S_IRUGO|S_IWUSR,
123 		.proc_handler	= &proc_dointvec,
124 	},
125 	{ .ctl_name = 0 }
126 };
127 
128 static ctl_table raid_dir_table[] = {
129 	{
130 		.ctl_name	= DEV_RAID,
131 		.procname	= "raid",
132 		.maxlen		= 0,
133 		.mode		= S_IRUGO|S_IXUGO,
134 		.child		= raid_table,
135 	},
136 	{ .ctl_name = 0 }
137 };
138 
139 static ctl_table raid_root_table[] = {
140 	{
141 		.ctl_name	= CTL_DEV,
142 		.procname	= "dev",
143 		.maxlen		= 0,
144 		.mode		= 0555,
145 		.child		= raid_dir_table,
146 	},
147 	{ .ctl_name = 0 }
148 };
149 
150 static struct block_device_operations md_fops;
151 
152 static int start_readonly;
153 
154 /*
155  * We have a system wide 'event count' that is incremented
156  * on any 'interesting' event, and readers of /proc/mdstat
157  * can use 'poll' or 'select' to find out when the event
158  * count increases.
159  *
160  * Events are:
161  *  start array, stop array, error, add device, remove device,
162  *  start build, activate spare
163  */
164 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
165 static atomic_t md_event_count;
166 void md_new_event(mddev_t *mddev)
167 {
168 	atomic_inc(&md_event_count);
169 	wake_up(&md_event_waiters);
170 	sysfs_notify(&mddev->kobj, NULL, "sync_action");
171 }
172 EXPORT_SYMBOL_GPL(md_new_event);
173 
174 /* Alternate version that can be called from interrupts
175  * when calling sysfs_notify isn't needed.
176  */
177 static void md_new_event_inintr(mddev_t *mddev)
178 {
179 	atomic_inc(&md_event_count);
180 	wake_up(&md_event_waiters);
181 }
182 
183 /*
184  * Enables to iterate over all existing md arrays
185  * all_mddevs_lock protects this list.
186  */
187 static LIST_HEAD(all_mddevs);
188 static DEFINE_SPINLOCK(all_mddevs_lock);
189 
190 
191 /*
192  * iterates through all used mddevs in the system.
193  * We take care to grab the all_mddevs_lock whenever navigating
194  * the list, and to always hold a refcount when unlocked.
195  * Any code which breaks out of this loop while own
196  * a reference to the current mddev and must mddev_put it.
197  */
198 #define ITERATE_MDDEV(mddev,tmp)					\
199 									\
200 	for (({ spin_lock(&all_mddevs_lock); 				\
201 		tmp = all_mddevs.next;					\
202 		mddev = NULL;});					\
203 	     ({ if (tmp != &all_mddevs)					\
204 			mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
205 		spin_unlock(&all_mddevs_lock);				\
206 		if (mddev) mddev_put(mddev);				\
207 		mddev = list_entry(tmp, mddev_t, all_mddevs);		\
208 		tmp != &all_mddevs;});					\
209 	     ({ spin_lock(&all_mddevs_lock);				\
210 		tmp = tmp->next;})					\
211 		)
212 
213 
214 static int md_fail_request (struct request_queue *q, struct bio *bio)
215 {
216 	bio_io_error(bio, bio->bi_size);
217 	return 0;
218 }
219 
220 static inline mddev_t *mddev_get(mddev_t *mddev)
221 {
222 	atomic_inc(&mddev->active);
223 	return mddev;
224 }
225 
226 static void mddev_put(mddev_t *mddev)
227 {
228 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
229 		return;
230 	if (!mddev->raid_disks && list_empty(&mddev->disks)) {
231 		list_del(&mddev->all_mddevs);
232 		spin_unlock(&all_mddevs_lock);
233 		blk_cleanup_queue(mddev->queue);
234 		kobject_unregister(&mddev->kobj);
235 	} else
236 		spin_unlock(&all_mddevs_lock);
237 }
238 
239 static mddev_t * mddev_find(dev_t unit)
240 {
241 	mddev_t *mddev, *new = NULL;
242 
243  retry:
244 	spin_lock(&all_mddevs_lock);
245 	list_for_each_entry(mddev, &all_mddevs, all_mddevs)
246 		if (mddev->unit == unit) {
247 			mddev_get(mddev);
248 			spin_unlock(&all_mddevs_lock);
249 			kfree(new);
250 			return mddev;
251 		}
252 
253 	if (new) {
254 		list_add(&new->all_mddevs, &all_mddevs);
255 		spin_unlock(&all_mddevs_lock);
256 		return new;
257 	}
258 	spin_unlock(&all_mddevs_lock);
259 
260 	new = kzalloc(sizeof(*new), GFP_KERNEL);
261 	if (!new)
262 		return NULL;
263 
264 	new->unit = unit;
265 	if (MAJOR(unit) == MD_MAJOR)
266 		new->md_minor = MINOR(unit);
267 	else
268 		new->md_minor = MINOR(unit) >> MdpMinorShift;
269 
270 	mutex_init(&new->reconfig_mutex);
271 	INIT_LIST_HEAD(&new->disks);
272 	INIT_LIST_HEAD(&new->all_mddevs);
273 	init_timer(&new->safemode_timer);
274 	atomic_set(&new->active, 1);
275 	spin_lock_init(&new->write_lock);
276 	init_waitqueue_head(&new->sb_wait);
277 	new->reshape_position = MaxSector;
278 
279 	new->queue = blk_alloc_queue(GFP_KERNEL);
280 	if (!new->queue) {
281 		kfree(new);
282 		return NULL;
283 	}
284 	set_bit(QUEUE_FLAG_CLUSTER, &new->queue->queue_flags);
285 
286 	blk_queue_make_request(new->queue, md_fail_request);
287 
288 	goto retry;
289 }
290 
291 static inline int mddev_lock(mddev_t * mddev)
292 {
293 	return mutex_lock_interruptible(&mddev->reconfig_mutex);
294 }
295 
296 static inline int mddev_trylock(mddev_t * mddev)
297 {
298 	return mutex_trylock(&mddev->reconfig_mutex);
299 }
300 
301 static inline void mddev_unlock(mddev_t * mddev)
302 {
303 	mutex_unlock(&mddev->reconfig_mutex);
304 
305 	md_wakeup_thread(mddev->thread);
306 }
307 
308 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
309 {
310 	mdk_rdev_t * rdev;
311 	struct list_head *tmp;
312 
313 	ITERATE_RDEV(mddev,rdev,tmp) {
314 		if (rdev->desc_nr == nr)
315 			return rdev;
316 	}
317 	return NULL;
318 }
319 
320 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
321 {
322 	struct list_head *tmp;
323 	mdk_rdev_t *rdev;
324 
325 	ITERATE_RDEV(mddev,rdev,tmp) {
326 		if (rdev->bdev->bd_dev == dev)
327 			return rdev;
328 	}
329 	return NULL;
330 }
331 
332 static struct mdk_personality *find_pers(int level, char *clevel)
333 {
334 	struct mdk_personality *pers;
335 	list_for_each_entry(pers, &pers_list, list) {
336 		if (level != LEVEL_NONE && pers->level == level)
337 			return pers;
338 		if (strcmp(pers->name, clevel)==0)
339 			return pers;
340 	}
341 	return NULL;
342 }
343 
344 static inline sector_t calc_dev_sboffset(struct block_device *bdev)
345 {
346 	sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
347 	return MD_NEW_SIZE_BLOCKS(size);
348 }
349 
350 static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
351 {
352 	sector_t size;
353 
354 	size = rdev->sb_offset;
355 
356 	if (chunk_size)
357 		size &= ~((sector_t)chunk_size/1024 - 1);
358 	return size;
359 }
360 
361 static int alloc_disk_sb(mdk_rdev_t * rdev)
362 {
363 	if (rdev->sb_page)
364 		MD_BUG();
365 
366 	rdev->sb_page = alloc_page(GFP_KERNEL);
367 	if (!rdev->sb_page) {
368 		printk(KERN_ALERT "md: out of memory.\n");
369 		return -EINVAL;
370 	}
371 
372 	return 0;
373 }
374 
375 static void free_disk_sb(mdk_rdev_t * rdev)
376 {
377 	if (rdev->sb_page) {
378 		put_page(rdev->sb_page);
379 		rdev->sb_loaded = 0;
380 		rdev->sb_page = NULL;
381 		rdev->sb_offset = 0;
382 		rdev->size = 0;
383 	}
384 }
385 
386 
387 static int super_written(struct bio *bio, unsigned int bytes_done, int error)
388 {
389 	mdk_rdev_t *rdev = bio->bi_private;
390 	mddev_t *mddev = rdev->mddev;
391 	if (bio->bi_size)
392 		return 1;
393 
394 	if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
395 		printk("md: super_written gets error=%d, uptodate=%d\n",
396 		       error, test_bit(BIO_UPTODATE, &bio->bi_flags));
397 		WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
398 		md_error(mddev, rdev);
399 	}
400 
401 	if (atomic_dec_and_test(&mddev->pending_writes))
402 		wake_up(&mddev->sb_wait);
403 	bio_put(bio);
404 	return 0;
405 }
406 
407 static int super_written_barrier(struct bio *bio, unsigned int bytes_done, int error)
408 {
409 	struct bio *bio2 = bio->bi_private;
410 	mdk_rdev_t *rdev = bio2->bi_private;
411 	mddev_t *mddev = rdev->mddev;
412 	if (bio->bi_size)
413 		return 1;
414 
415 	if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
416 	    error == -EOPNOTSUPP) {
417 		unsigned long flags;
418 		/* barriers don't appear to be supported :-( */
419 		set_bit(BarriersNotsupp, &rdev->flags);
420 		mddev->barriers_work = 0;
421 		spin_lock_irqsave(&mddev->write_lock, flags);
422 		bio2->bi_next = mddev->biolist;
423 		mddev->biolist = bio2;
424 		spin_unlock_irqrestore(&mddev->write_lock, flags);
425 		wake_up(&mddev->sb_wait);
426 		bio_put(bio);
427 		return 0;
428 	}
429 	bio_put(bio2);
430 	bio->bi_private = rdev;
431 	return super_written(bio, bytes_done, error);
432 }
433 
434 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
435 		   sector_t sector, int size, struct page *page)
436 {
437 	/* write first size bytes of page to sector of rdev
438 	 * Increment mddev->pending_writes before returning
439 	 * and decrement it on completion, waking up sb_wait
440 	 * if zero is reached.
441 	 * If an error occurred, call md_error
442 	 *
443 	 * As we might need to resubmit the request if BIO_RW_BARRIER
444 	 * causes ENOTSUPP, we allocate a spare bio...
445 	 */
446 	struct bio *bio = bio_alloc(GFP_NOIO, 1);
447 	int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNC);
448 
449 	bio->bi_bdev = rdev->bdev;
450 	bio->bi_sector = sector;
451 	bio_add_page(bio, page, size, 0);
452 	bio->bi_private = rdev;
453 	bio->bi_end_io = super_written;
454 	bio->bi_rw = rw;
455 
456 	atomic_inc(&mddev->pending_writes);
457 	if (!test_bit(BarriersNotsupp, &rdev->flags)) {
458 		struct bio *rbio;
459 		rw |= (1<<BIO_RW_BARRIER);
460 		rbio = bio_clone(bio, GFP_NOIO);
461 		rbio->bi_private = bio;
462 		rbio->bi_end_io = super_written_barrier;
463 		submit_bio(rw, rbio);
464 	} else
465 		submit_bio(rw, bio);
466 }
467 
468 void md_super_wait(mddev_t *mddev)
469 {
470 	/* wait for all superblock writes that were scheduled to complete.
471 	 * if any had to be retried (due to BARRIER problems), retry them
472 	 */
473 	DEFINE_WAIT(wq);
474 	for(;;) {
475 		prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
476 		if (atomic_read(&mddev->pending_writes)==0)
477 			break;
478 		while (mddev->biolist) {
479 			struct bio *bio;
480 			spin_lock_irq(&mddev->write_lock);
481 			bio = mddev->biolist;
482 			mddev->biolist = bio->bi_next ;
483 			bio->bi_next = NULL;
484 			spin_unlock_irq(&mddev->write_lock);
485 			submit_bio(bio->bi_rw, bio);
486 		}
487 		schedule();
488 	}
489 	finish_wait(&mddev->sb_wait, &wq);
490 }
491 
492 static int bi_complete(struct bio *bio, unsigned int bytes_done, int error)
493 {
494 	if (bio->bi_size)
495 		return 1;
496 
497 	complete((struct completion*)bio->bi_private);
498 	return 0;
499 }
500 
501 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
502 		   struct page *page, int rw)
503 {
504 	struct bio *bio = bio_alloc(GFP_NOIO, 1);
505 	struct completion event;
506 	int ret;
507 
508 	rw |= (1 << BIO_RW_SYNC);
509 
510 	bio->bi_bdev = bdev;
511 	bio->bi_sector = sector;
512 	bio_add_page(bio, page, size, 0);
513 	init_completion(&event);
514 	bio->bi_private = &event;
515 	bio->bi_end_io = bi_complete;
516 	submit_bio(rw, bio);
517 	wait_for_completion(&event);
518 
519 	ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
520 	bio_put(bio);
521 	return ret;
522 }
523 EXPORT_SYMBOL_GPL(sync_page_io);
524 
525 static int read_disk_sb(mdk_rdev_t * rdev, int size)
526 {
527 	char b[BDEVNAME_SIZE];
528 	if (!rdev->sb_page) {
529 		MD_BUG();
530 		return -EINVAL;
531 	}
532 	if (rdev->sb_loaded)
533 		return 0;
534 
535 
536 	if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, size, rdev->sb_page, READ))
537 		goto fail;
538 	rdev->sb_loaded = 1;
539 	return 0;
540 
541 fail:
542 	printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
543 		bdevname(rdev->bdev,b));
544 	return -EINVAL;
545 }
546 
547 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
548 {
549 	if (	(sb1->set_uuid0 == sb2->set_uuid0) &&
550 		(sb1->set_uuid1 == sb2->set_uuid1) &&
551 		(sb1->set_uuid2 == sb2->set_uuid2) &&
552 		(sb1->set_uuid3 == sb2->set_uuid3))
553 
554 		return 1;
555 
556 	return 0;
557 }
558 
559 
560 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
561 {
562 	int ret;
563 	mdp_super_t *tmp1, *tmp2;
564 
565 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
566 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
567 
568 	if (!tmp1 || !tmp2) {
569 		ret = 0;
570 		printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
571 		goto abort;
572 	}
573 
574 	*tmp1 = *sb1;
575 	*tmp2 = *sb2;
576 
577 	/*
578 	 * nr_disks is not constant
579 	 */
580 	tmp1->nr_disks = 0;
581 	tmp2->nr_disks = 0;
582 
583 	if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
584 		ret = 0;
585 	else
586 		ret = 1;
587 
588 abort:
589 	kfree(tmp1);
590 	kfree(tmp2);
591 	return ret;
592 }
593 
594 
595 static u32 md_csum_fold(u32 csum)
596 {
597 	csum = (csum & 0xffff) + (csum >> 16);
598 	return (csum & 0xffff) + (csum >> 16);
599 }
600 
601 static unsigned int calc_sb_csum(mdp_super_t * sb)
602 {
603 	u64 newcsum = 0;
604 	u32 *sb32 = (u32*)sb;
605 	int i;
606 	unsigned int disk_csum, csum;
607 
608 	disk_csum = sb->sb_csum;
609 	sb->sb_csum = 0;
610 
611 	for (i = 0; i < MD_SB_BYTES/4 ; i++)
612 		newcsum += sb32[i];
613 	csum = (newcsum & 0xffffffff) + (newcsum>>32);
614 
615 
616 #ifdef CONFIG_ALPHA
617 	/* This used to use csum_partial, which was wrong for several
618 	 * reasons including that different results are returned on
619 	 * different architectures.  It isn't critical that we get exactly
620 	 * the same return value as before (we always csum_fold before
621 	 * testing, and that removes any differences).  However as we
622 	 * know that csum_partial always returned a 16bit value on
623 	 * alphas, do a fold to maximise conformity to previous behaviour.
624 	 */
625 	sb->sb_csum = md_csum_fold(disk_csum);
626 #else
627 	sb->sb_csum = disk_csum;
628 #endif
629 	return csum;
630 }
631 
632 
633 /*
634  * Handle superblock details.
635  * We want to be able to handle multiple superblock formats
636  * so we have a common interface to them all, and an array of
637  * different handlers.
638  * We rely on user-space to write the initial superblock, and support
639  * reading and updating of superblocks.
640  * Interface methods are:
641  *   int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
642  *      loads and validates a superblock on dev.
643  *      if refdev != NULL, compare superblocks on both devices
644  *    Return:
645  *      0 - dev has a superblock that is compatible with refdev
646  *      1 - dev has a superblock that is compatible and newer than refdev
647  *          so dev should be used as the refdev in future
648  *     -EINVAL superblock incompatible or invalid
649  *     -othererror e.g. -EIO
650  *
651  *   int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
652  *      Verify that dev is acceptable into mddev.
653  *       The first time, mddev->raid_disks will be 0, and data from
654  *       dev should be merged in.  Subsequent calls check that dev
655  *       is new enough.  Return 0 or -EINVAL
656  *
657  *   void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
658  *     Update the superblock for rdev with data in mddev
659  *     This does not write to disc.
660  *
661  */
662 
663 struct super_type  {
664 	char 		*name;
665 	struct module	*owner;
666 	int		(*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
667 	int		(*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
668 	void		(*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
669 };
670 
671 /*
672  * load_super for 0.90.0
673  */
674 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
675 {
676 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
677 	mdp_super_t *sb;
678 	int ret;
679 	sector_t sb_offset;
680 
681 	/*
682 	 * Calculate the position of the superblock,
683 	 * it's at the end of the disk.
684 	 *
685 	 * It also happens to be a multiple of 4Kb.
686 	 */
687 	sb_offset = calc_dev_sboffset(rdev->bdev);
688 	rdev->sb_offset = sb_offset;
689 
690 	ret = read_disk_sb(rdev, MD_SB_BYTES);
691 	if (ret) return ret;
692 
693 	ret = -EINVAL;
694 
695 	bdevname(rdev->bdev, b);
696 	sb = (mdp_super_t*)page_address(rdev->sb_page);
697 
698 	if (sb->md_magic != MD_SB_MAGIC) {
699 		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
700 		       b);
701 		goto abort;
702 	}
703 
704 	if (sb->major_version != 0 ||
705 	    sb->minor_version < 90 ||
706 	    sb->minor_version > 91) {
707 		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
708 			sb->major_version, sb->minor_version,
709 			b);
710 		goto abort;
711 	}
712 
713 	if (sb->raid_disks <= 0)
714 		goto abort;
715 
716 	if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
717 		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
718 			b);
719 		goto abort;
720 	}
721 
722 	rdev->preferred_minor = sb->md_minor;
723 	rdev->data_offset = 0;
724 	rdev->sb_size = MD_SB_BYTES;
725 
726 	if (sb->state & (1<<MD_SB_BITMAP_PRESENT)) {
727 		if (sb->level != 1 && sb->level != 4
728 		    && sb->level != 5 && sb->level != 6
729 		    && sb->level != 10) {
730 			/* FIXME use a better test */
731 			printk(KERN_WARNING
732 			       "md: bitmaps not supported for this level.\n");
733 			goto abort;
734 		}
735 	}
736 
737 	if (sb->level == LEVEL_MULTIPATH)
738 		rdev->desc_nr = -1;
739 	else
740 		rdev->desc_nr = sb->this_disk.number;
741 
742 	if (refdev == 0)
743 		ret = 1;
744 	else {
745 		__u64 ev1, ev2;
746 		mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
747 		if (!uuid_equal(refsb, sb)) {
748 			printk(KERN_WARNING "md: %s has different UUID to %s\n",
749 				b, bdevname(refdev->bdev,b2));
750 			goto abort;
751 		}
752 		if (!sb_equal(refsb, sb)) {
753 			printk(KERN_WARNING "md: %s has same UUID"
754 			       " but different superblock to %s\n",
755 			       b, bdevname(refdev->bdev, b2));
756 			goto abort;
757 		}
758 		ev1 = md_event(sb);
759 		ev2 = md_event(refsb);
760 		if (ev1 > ev2)
761 			ret = 1;
762 		else
763 			ret = 0;
764 	}
765 	rdev->size = calc_dev_size(rdev, sb->chunk_size);
766 
767 	if (rdev->size < sb->size && sb->level > 1)
768 		/* "this cannot possibly happen" ... */
769 		ret = -EINVAL;
770 
771  abort:
772 	return ret;
773 }
774 
775 /*
776  * validate_super for 0.90.0
777  */
778 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
779 {
780 	mdp_disk_t *desc;
781 	mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
782 	__u64 ev1 = md_event(sb);
783 
784 	rdev->raid_disk = -1;
785 	rdev->flags = 0;
786 	if (mddev->raid_disks == 0) {
787 		mddev->major_version = 0;
788 		mddev->minor_version = sb->minor_version;
789 		mddev->patch_version = sb->patch_version;
790 		mddev->persistent = ! sb->not_persistent;
791 		mddev->chunk_size = sb->chunk_size;
792 		mddev->ctime = sb->ctime;
793 		mddev->utime = sb->utime;
794 		mddev->level = sb->level;
795 		mddev->clevel[0] = 0;
796 		mddev->layout = sb->layout;
797 		mddev->raid_disks = sb->raid_disks;
798 		mddev->size = sb->size;
799 		mddev->events = ev1;
800 		mddev->bitmap_offset = 0;
801 		mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
802 
803 		if (mddev->minor_version >= 91) {
804 			mddev->reshape_position = sb->reshape_position;
805 			mddev->delta_disks = sb->delta_disks;
806 			mddev->new_level = sb->new_level;
807 			mddev->new_layout = sb->new_layout;
808 			mddev->new_chunk = sb->new_chunk;
809 		} else {
810 			mddev->reshape_position = MaxSector;
811 			mddev->delta_disks = 0;
812 			mddev->new_level = mddev->level;
813 			mddev->new_layout = mddev->layout;
814 			mddev->new_chunk = mddev->chunk_size;
815 		}
816 
817 		if (sb->state & (1<<MD_SB_CLEAN))
818 			mddev->recovery_cp = MaxSector;
819 		else {
820 			if (sb->events_hi == sb->cp_events_hi &&
821 				sb->events_lo == sb->cp_events_lo) {
822 				mddev->recovery_cp = sb->recovery_cp;
823 			} else
824 				mddev->recovery_cp = 0;
825 		}
826 
827 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
828 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
829 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
830 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
831 
832 		mddev->max_disks = MD_SB_DISKS;
833 
834 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
835 		    mddev->bitmap_file == NULL)
836 			mddev->bitmap_offset = mddev->default_bitmap_offset;
837 
838 	} else if (mddev->pers == NULL) {
839 		/* Insist on good event counter while assembling */
840 		++ev1;
841 		if (ev1 < mddev->events)
842 			return -EINVAL;
843 	} else if (mddev->bitmap) {
844 		/* if adding to array with a bitmap, then we can accept an
845 		 * older device ... but not too old.
846 		 */
847 		if (ev1 < mddev->bitmap->events_cleared)
848 			return 0;
849 	} else {
850 		if (ev1 < mddev->events)
851 			/* just a hot-add of a new device, leave raid_disk at -1 */
852 			return 0;
853 	}
854 
855 	if (mddev->level != LEVEL_MULTIPATH) {
856 		desc = sb->disks + rdev->desc_nr;
857 
858 		if (desc->state & (1<<MD_DISK_FAULTY))
859 			set_bit(Faulty, &rdev->flags);
860 		else if (desc->state & (1<<MD_DISK_SYNC) /* &&
861 			    desc->raid_disk < mddev->raid_disks */) {
862 			set_bit(In_sync, &rdev->flags);
863 			rdev->raid_disk = desc->raid_disk;
864 		}
865 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
866 			set_bit(WriteMostly, &rdev->flags);
867 	} else /* MULTIPATH are always insync */
868 		set_bit(In_sync, &rdev->flags);
869 	return 0;
870 }
871 
872 /*
873  * sync_super for 0.90.0
874  */
875 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
876 {
877 	mdp_super_t *sb;
878 	struct list_head *tmp;
879 	mdk_rdev_t *rdev2;
880 	int next_spare = mddev->raid_disks;
881 
882 
883 	/* make rdev->sb match mddev data..
884 	 *
885 	 * 1/ zero out disks
886 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
887 	 * 3/ any empty disks < next_spare become removed
888 	 *
889 	 * disks[0] gets initialised to REMOVED because
890 	 * we cannot be sure from other fields if it has
891 	 * been initialised or not.
892 	 */
893 	int i;
894 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
895 
896 	rdev->sb_size = MD_SB_BYTES;
897 
898 	sb = (mdp_super_t*)page_address(rdev->sb_page);
899 
900 	memset(sb, 0, sizeof(*sb));
901 
902 	sb->md_magic = MD_SB_MAGIC;
903 	sb->major_version = mddev->major_version;
904 	sb->patch_version = mddev->patch_version;
905 	sb->gvalid_words  = 0; /* ignored */
906 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
907 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
908 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
909 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
910 
911 	sb->ctime = mddev->ctime;
912 	sb->level = mddev->level;
913 	sb->size  = mddev->size;
914 	sb->raid_disks = mddev->raid_disks;
915 	sb->md_minor = mddev->md_minor;
916 	sb->not_persistent = !mddev->persistent;
917 	sb->utime = mddev->utime;
918 	sb->state = 0;
919 	sb->events_hi = (mddev->events>>32);
920 	sb->events_lo = (u32)mddev->events;
921 
922 	if (mddev->reshape_position == MaxSector)
923 		sb->minor_version = 90;
924 	else {
925 		sb->minor_version = 91;
926 		sb->reshape_position = mddev->reshape_position;
927 		sb->new_level = mddev->new_level;
928 		sb->delta_disks = mddev->delta_disks;
929 		sb->new_layout = mddev->new_layout;
930 		sb->new_chunk = mddev->new_chunk;
931 	}
932 	mddev->minor_version = sb->minor_version;
933 	if (mddev->in_sync)
934 	{
935 		sb->recovery_cp = mddev->recovery_cp;
936 		sb->cp_events_hi = (mddev->events>>32);
937 		sb->cp_events_lo = (u32)mddev->events;
938 		if (mddev->recovery_cp == MaxSector)
939 			sb->state = (1<< MD_SB_CLEAN);
940 	} else
941 		sb->recovery_cp = 0;
942 
943 	sb->layout = mddev->layout;
944 	sb->chunk_size = mddev->chunk_size;
945 
946 	if (mddev->bitmap && mddev->bitmap_file == NULL)
947 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
948 
949 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
950 	ITERATE_RDEV(mddev,rdev2,tmp) {
951 		mdp_disk_t *d;
952 		int desc_nr;
953 		if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
954 		    && !test_bit(Faulty, &rdev2->flags))
955 			desc_nr = rdev2->raid_disk;
956 		else
957 			desc_nr = next_spare++;
958 		rdev2->desc_nr = desc_nr;
959 		d = &sb->disks[rdev2->desc_nr];
960 		nr_disks++;
961 		d->number = rdev2->desc_nr;
962 		d->major = MAJOR(rdev2->bdev->bd_dev);
963 		d->minor = MINOR(rdev2->bdev->bd_dev);
964 		if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
965 		    && !test_bit(Faulty, &rdev2->flags))
966 			d->raid_disk = rdev2->raid_disk;
967 		else
968 			d->raid_disk = rdev2->desc_nr; /* compatibility */
969 		if (test_bit(Faulty, &rdev2->flags))
970 			d->state = (1<<MD_DISK_FAULTY);
971 		else if (test_bit(In_sync, &rdev2->flags)) {
972 			d->state = (1<<MD_DISK_ACTIVE);
973 			d->state |= (1<<MD_DISK_SYNC);
974 			active++;
975 			working++;
976 		} else {
977 			d->state = 0;
978 			spare++;
979 			working++;
980 		}
981 		if (test_bit(WriteMostly, &rdev2->flags))
982 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
983 	}
984 	/* now set the "removed" and "faulty" bits on any missing devices */
985 	for (i=0 ; i < mddev->raid_disks ; i++) {
986 		mdp_disk_t *d = &sb->disks[i];
987 		if (d->state == 0 && d->number == 0) {
988 			d->number = i;
989 			d->raid_disk = i;
990 			d->state = (1<<MD_DISK_REMOVED);
991 			d->state |= (1<<MD_DISK_FAULTY);
992 			failed++;
993 		}
994 	}
995 	sb->nr_disks = nr_disks;
996 	sb->active_disks = active;
997 	sb->working_disks = working;
998 	sb->failed_disks = failed;
999 	sb->spare_disks = spare;
1000 
1001 	sb->this_disk = sb->disks[rdev->desc_nr];
1002 	sb->sb_csum = calc_sb_csum(sb);
1003 }
1004 
1005 /*
1006  * version 1 superblock
1007  */
1008 
1009 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1010 {
1011 	__le32 disk_csum;
1012 	u32 csum;
1013 	unsigned long long newcsum;
1014 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
1015 	__le32 *isuper = (__le32*)sb;
1016 	int i;
1017 
1018 	disk_csum = sb->sb_csum;
1019 	sb->sb_csum = 0;
1020 	newcsum = 0;
1021 	for (i=0; size>=4; size -= 4 )
1022 		newcsum += le32_to_cpu(*isuper++);
1023 
1024 	if (size == 2)
1025 		newcsum += le16_to_cpu(*(__le16*) isuper);
1026 
1027 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1028 	sb->sb_csum = disk_csum;
1029 	return cpu_to_le32(csum);
1030 }
1031 
1032 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
1033 {
1034 	struct mdp_superblock_1 *sb;
1035 	int ret;
1036 	sector_t sb_offset;
1037 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1038 	int bmask;
1039 
1040 	/*
1041 	 * Calculate the position of the superblock.
1042 	 * It is always aligned to a 4K boundary and
1043 	 * depeding on minor_version, it can be:
1044 	 * 0: At least 8K, but less than 12K, from end of device
1045 	 * 1: At start of device
1046 	 * 2: 4K from start of device.
1047 	 */
1048 	switch(minor_version) {
1049 	case 0:
1050 		sb_offset = rdev->bdev->bd_inode->i_size >> 9;
1051 		sb_offset -= 8*2;
1052 		sb_offset &= ~(sector_t)(4*2-1);
1053 		/* convert from sectors to K */
1054 		sb_offset /= 2;
1055 		break;
1056 	case 1:
1057 		sb_offset = 0;
1058 		break;
1059 	case 2:
1060 		sb_offset = 4;
1061 		break;
1062 	default:
1063 		return -EINVAL;
1064 	}
1065 	rdev->sb_offset = sb_offset;
1066 
1067 	/* superblock is rarely larger than 1K, but it can be larger,
1068 	 * and it is safe to read 4k, so we do that
1069 	 */
1070 	ret = read_disk_sb(rdev, 4096);
1071 	if (ret) return ret;
1072 
1073 
1074 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1075 
1076 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1077 	    sb->major_version != cpu_to_le32(1) ||
1078 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1079 	    le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
1080 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1081 		return -EINVAL;
1082 
1083 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
1084 		printk("md: invalid superblock checksum on %s\n",
1085 			bdevname(rdev->bdev,b));
1086 		return -EINVAL;
1087 	}
1088 	if (le64_to_cpu(sb->data_size) < 10) {
1089 		printk("md: data_size too small on %s\n",
1090 		       bdevname(rdev->bdev,b));
1091 		return -EINVAL;
1092 	}
1093 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET)) {
1094 		if (sb->level != cpu_to_le32(1) &&
1095 		    sb->level != cpu_to_le32(4) &&
1096 		    sb->level != cpu_to_le32(5) &&
1097 		    sb->level != cpu_to_le32(6) &&
1098 		    sb->level != cpu_to_le32(10)) {
1099 			printk(KERN_WARNING
1100 			       "md: bitmaps not supported for this level.\n");
1101 			return -EINVAL;
1102 		}
1103 	}
1104 
1105 	rdev->preferred_minor = 0xffff;
1106 	rdev->data_offset = le64_to_cpu(sb->data_offset);
1107 	atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1108 
1109 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1110 	bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
1111 	if (rdev->sb_size & bmask)
1112 		rdev-> sb_size = (rdev->sb_size | bmask)+1;
1113 
1114 	if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1115 		rdev->desc_nr = -1;
1116 	else
1117 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1118 
1119 	if (refdev == 0)
1120 		ret = 1;
1121 	else {
1122 		__u64 ev1, ev2;
1123 		struct mdp_superblock_1 *refsb =
1124 			(struct mdp_superblock_1*)page_address(refdev->sb_page);
1125 
1126 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1127 		    sb->level != refsb->level ||
1128 		    sb->layout != refsb->layout ||
1129 		    sb->chunksize != refsb->chunksize) {
1130 			printk(KERN_WARNING "md: %s has strangely different"
1131 				" superblock to %s\n",
1132 				bdevname(rdev->bdev,b),
1133 				bdevname(refdev->bdev,b2));
1134 			return -EINVAL;
1135 		}
1136 		ev1 = le64_to_cpu(sb->events);
1137 		ev2 = le64_to_cpu(refsb->events);
1138 
1139 		if (ev1 > ev2)
1140 			ret = 1;
1141 		else
1142 			ret = 0;
1143 	}
1144 	if (minor_version)
1145 		rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
1146 	else
1147 		rdev->size = rdev->sb_offset;
1148 	if (rdev->size < le64_to_cpu(sb->data_size)/2)
1149 		return -EINVAL;
1150 	rdev->size = le64_to_cpu(sb->data_size)/2;
1151 	if (le32_to_cpu(sb->chunksize))
1152 		rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
1153 
1154 	if (le64_to_cpu(sb->size) > rdev->size*2)
1155 		return -EINVAL;
1156 	return ret;
1157 }
1158 
1159 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1160 {
1161 	struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1162 	__u64 ev1 = le64_to_cpu(sb->events);
1163 
1164 	rdev->raid_disk = -1;
1165 	rdev->flags = 0;
1166 	if (mddev->raid_disks == 0) {
1167 		mddev->major_version = 1;
1168 		mddev->patch_version = 0;
1169 		mddev->persistent = 1;
1170 		mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
1171 		mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1172 		mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1173 		mddev->level = le32_to_cpu(sb->level);
1174 		mddev->clevel[0] = 0;
1175 		mddev->layout = le32_to_cpu(sb->layout);
1176 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1177 		mddev->size = le64_to_cpu(sb->size)/2;
1178 		mddev->events = ev1;
1179 		mddev->bitmap_offset = 0;
1180 		mddev->default_bitmap_offset = 1024 >> 9;
1181 
1182 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1183 		memcpy(mddev->uuid, sb->set_uuid, 16);
1184 
1185 		mddev->max_disks =  (4096-256)/2;
1186 
1187 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1188 		    mddev->bitmap_file == NULL )
1189 			mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
1190 
1191 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1192 			mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1193 			mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1194 			mddev->new_level = le32_to_cpu(sb->new_level);
1195 			mddev->new_layout = le32_to_cpu(sb->new_layout);
1196 			mddev->new_chunk = le32_to_cpu(sb->new_chunk)<<9;
1197 		} else {
1198 			mddev->reshape_position = MaxSector;
1199 			mddev->delta_disks = 0;
1200 			mddev->new_level = mddev->level;
1201 			mddev->new_layout = mddev->layout;
1202 			mddev->new_chunk = mddev->chunk_size;
1203 		}
1204 
1205 	} else if (mddev->pers == NULL) {
1206 		/* Insist of good event counter while assembling */
1207 		++ev1;
1208 		if (ev1 < mddev->events)
1209 			return -EINVAL;
1210 	} else if (mddev->bitmap) {
1211 		/* If adding to array with a bitmap, then we can accept an
1212 		 * older device, but not too old.
1213 		 */
1214 		if (ev1 < mddev->bitmap->events_cleared)
1215 			return 0;
1216 	} else {
1217 		if (ev1 < mddev->events)
1218 			/* just a hot-add of a new device, leave raid_disk at -1 */
1219 			return 0;
1220 	}
1221 	if (mddev->level != LEVEL_MULTIPATH) {
1222 		int role;
1223 		role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1224 		switch(role) {
1225 		case 0xffff: /* spare */
1226 			break;
1227 		case 0xfffe: /* faulty */
1228 			set_bit(Faulty, &rdev->flags);
1229 			break;
1230 		default:
1231 			if ((le32_to_cpu(sb->feature_map) &
1232 			     MD_FEATURE_RECOVERY_OFFSET))
1233 				rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1234 			else
1235 				set_bit(In_sync, &rdev->flags);
1236 			rdev->raid_disk = role;
1237 			break;
1238 		}
1239 		if (sb->devflags & WriteMostly1)
1240 			set_bit(WriteMostly, &rdev->flags);
1241 	} else /* MULTIPATH are always insync */
1242 		set_bit(In_sync, &rdev->flags);
1243 
1244 	return 0;
1245 }
1246 
1247 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1248 {
1249 	struct mdp_superblock_1 *sb;
1250 	struct list_head *tmp;
1251 	mdk_rdev_t *rdev2;
1252 	int max_dev, i;
1253 	/* make rdev->sb match mddev and rdev data. */
1254 
1255 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1256 
1257 	sb->feature_map = 0;
1258 	sb->pad0 = 0;
1259 	sb->recovery_offset = cpu_to_le64(0);
1260 	memset(sb->pad1, 0, sizeof(sb->pad1));
1261 	memset(sb->pad2, 0, sizeof(sb->pad2));
1262 	memset(sb->pad3, 0, sizeof(sb->pad3));
1263 
1264 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1265 	sb->events = cpu_to_le64(mddev->events);
1266 	if (mddev->in_sync)
1267 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1268 	else
1269 		sb->resync_offset = cpu_to_le64(0);
1270 
1271 	sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1272 
1273 	sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1274 	sb->size = cpu_to_le64(mddev->size<<1);
1275 
1276 	if (mddev->bitmap && mddev->bitmap_file == NULL) {
1277 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
1278 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1279 	}
1280 
1281 	if (rdev->raid_disk >= 0 &&
1282 	    !test_bit(In_sync, &rdev->flags) &&
1283 	    rdev->recovery_offset > 0) {
1284 		sb->feature_map |= cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1285 		sb->recovery_offset = cpu_to_le64(rdev->recovery_offset);
1286 	}
1287 
1288 	if (mddev->reshape_position != MaxSector) {
1289 		sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1290 		sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1291 		sb->new_layout = cpu_to_le32(mddev->new_layout);
1292 		sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1293 		sb->new_level = cpu_to_le32(mddev->new_level);
1294 		sb->new_chunk = cpu_to_le32(mddev->new_chunk>>9);
1295 	}
1296 
1297 	max_dev = 0;
1298 	ITERATE_RDEV(mddev,rdev2,tmp)
1299 		if (rdev2->desc_nr+1 > max_dev)
1300 			max_dev = rdev2->desc_nr+1;
1301 
1302 	if (max_dev > le32_to_cpu(sb->max_dev))
1303 		sb->max_dev = cpu_to_le32(max_dev);
1304 	for (i=0; i<max_dev;i++)
1305 		sb->dev_roles[i] = cpu_to_le16(0xfffe);
1306 
1307 	ITERATE_RDEV(mddev,rdev2,tmp) {
1308 		i = rdev2->desc_nr;
1309 		if (test_bit(Faulty, &rdev2->flags))
1310 			sb->dev_roles[i] = cpu_to_le16(0xfffe);
1311 		else if (test_bit(In_sync, &rdev2->flags))
1312 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1313 		else if (rdev2->raid_disk >= 0 && rdev2->recovery_offset > 0)
1314 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1315 		else
1316 			sb->dev_roles[i] = cpu_to_le16(0xffff);
1317 	}
1318 
1319 	sb->sb_csum = calc_sb_1_csum(sb);
1320 }
1321 
1322 
1323 static struct super_type super_types[] = {
1324 	[0] = {
1325 		.name	= "0.90.0",
1326 		.owner	= THIS_MODULE,
1327 		.load_super	= super_90_load,
1328 		.validate_super	= super_90_validate,
1329 		.sync_super	= super_90_sync,
1330 	},
1331 	[1] = {
1332 		.name	= "md-1",
1333 		.owner	= THIS_MODULE,
1334 		.load_super	= super_1_load,
1335 		.validate_super	= super_1_validate,
1336 		.sync_super	= super_1_sync,
1337 	},
1338 };
1339 
1340 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1341 {
1342 	struct list_head *tmp, *tmp2;
1343 	mdk_rdev_t *rdev, *rdev2;
1344 
1345 	ITERATE_RDEV(mddev1,rdev,tmp)
1346 		ITERATE_RDEV(mddev2, rdev2, tmp2)
1347 			if (rdev->bdev->bd_contains ==
1348 			    rdev2->bdev->bd_contains)
1349 				return 1;
1350 
1351 	return 0;
1352 }
1353 
1354 static LIST_HEAD(pending_raid_disks);
1355 
1356 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1357 {
1358 	char b[BDEVNAME_SIZE];
1359 	struct kobject *ko;
1360 	char *s;
1361 	int err;
1362 
1363 	if (rdev->mddev) {
1364 		MD_BUG();
1365 		return -EINVAL;
1366 	}
1367 	/* make sure rdev->size exceeds mddev->size */
1368 	if (rdev->size && (mddev->size == 0 || rdev->size < mddev->size)) {
1369 		if (mddev->pers) {
1370 			/* Cannot change size, so fail
1371 			 * If mddev->level <= 0, then we don't care
1372 			 * about aligning sizes (e.g. linear)
1373 			 */
1374 			if (mddev->level > 0)
1375 				return -ENOSPC;
1376 		} else
1377 			mddev->size = rdev->size;
1378 	}
1379 
1380 	/* Verify rdev->desc_nr is unique.
1381 	 * If it is -1, assign a free number, else
1382 	 * check number is not in use
1383 	 */
1384 	if (rdev->desc_nr < 0) {
1385 		int choice = 0;
1386 		if (mddev->pers) choice = mddev->raid_disks;
1387 		while (find_rdev_nr(mddev, choice))
1388 			choice++;
1389 		rdev->desc_nr = choice;
1390 	} else {
1391 		if (find_rdev_nr(mddev, rdev->desc_nr))
1392 			return -EBUSY;
1393 	}
1394 	bdevname(rdev->bdev,b);
1395 	if (kobject_set_name(&rdev->kobj, "dev-%s", b) < 0)
1396 		return -ENOMEM;
1397 	while ( (s=strchr(rdev->kobj.k_name, '/')) != NULL)
1398 		*s = '!';
1399 
1400 	rdev->mddev = mddev;
1401 	printk(KERN_INFO "md: bind<%s>\n", b);
1402 
1403 	rdev->kobj.parent = &mddev->kobj;
1404 	if ((err = kobject_add(&rdev->kobj)))
1405 		goto fail;
1406 
1407 	if (rdev->bdev->bd_part)
1408 		ko = &rdev->bdev->bd_part->kobj;
1409 	else
1410 		ko = &rdev->bdev->bd_disk->kobj;
1411 	if ((err = sysfs_create_link(&rdev->kobj, ko, "block"))) {
1412 		kobject_del(&rdev->kobj);
1413 		goto fail;
1414 	}
1415 	list_add(&rdev->same_set, &mddev->disks);
1416 	bd_claim_by_disk(rdev->bdev, rdev, mddev->gendisk);
1417 	return 0;
1418 
1419  fail:
1420 	printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
1421 	       b, mdname(mddev));
1422 	return err;
1423 }
1424 
1425 static void delayed_delete(struct work_struct *ws)
1426 {
1427 	mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work);
1428 	kobject_del(&rdev->kobj);
1429 }
1430 
1431 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1432 {
1433 	char b[BDEVNAME_SIZE];
1434 	if (!rdev->mddev) {
1435 		MD_BUG();
1436 		return;
1437 	}
1438 	bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk);
1439 	list_del_init(&rdev->same_set);
1440 	printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1441 	rdev->mddev = NULL;
1442 	sysfs_remove_link(&rdev->kobj, "block");
1443 
1444 	/* We need to delay this, otherwise we can deadlock when
1445 	 * writing to 'remove' to "dev/state"
1446 	 */
1447 	INIT_WORK(&rdev->del_work, delayed_delete);
1448 	schedule_work(&rdev->del_work);
1449 }
1450 
1451 /*
1452  * prevent the device from being mounted, repartitioned or
1453  * otherwise reused by a RAID array (or any other kernel
1454  * subsystem), by bd_claiming the device.
1455  */
1456 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
1457 {
1458 	int err = 0;
1459 	struct block_device *bdev;
1460 	char b[BDEVNAME_SIZE];
1461 
1462 	bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1463 	if (IS_ERR(bdev)) {
1464 		printk(KERN_ERR "md: could not open %s.\n",
1465 			__bdevname(dev, b));
1466 		return PTR_ERR(bdev);
1467 	}
1468 	err = bd_claim(bdev, rdev);
1469 	if (err) {
1470 		printk(KERN_ERR "md: could not bd_claim %s.\n",
1471 			bdevname(bdev, b));
1472 		blkdev_put(bdev);
1473 		return err;
1474 	}
1475 	rdev->bdev = bdev;
1476 	return err;
1477 }
1478 
1479 static void unlock_rdev(mdk_rdev_t *rdev)
1480 {
1481 	struct block_device *bdev = rdev->bdev;
1482 	rdev->bdev = NULL;
1483 	if (!bdev)
1484 		MD_BUG();
1485 	bd_release(bdev);
1486 	blkdev_put(bdev);
1487 }
1488 
1489 void md_autodetect_dev(dev_t dev);
1490 
1491 static void export_rdev(mdk_rdev_t * rdev)
1492 {
1493 	char b[BDEVNAME_SIZE];
1494 	printk(KERN_INFO "md: export_rdev(%s)\n",
1495 		bdevname(rdev->bdev,b));
1496 	if (rdev->mddev)
1497 		MD_BUG();
1498 	free_disk_sb(rdev);
1499 	list_del_init(&rdev->same_set);
1500 #ifndef MODULE
1501 	md_autodetect_dev(rdev->bdev->bd_dev);
1502 #endif
1503 	unlock_rdev(rdev);
1504 	kobject_put(&rdev->kobj);
1505 }
1506 
1507 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1508 {
1509 	unbind_rdev_from_array(rdev);
1510 	export_rdev(rdev);
1511 }
1512 
1513 static void export_array(mddev_t *mddev)
1514 {
1515 	struct list_head *tmp;
1516 	mdk_rdev_t *rdev;
1517 
1518 	ITERATE_RDEV(mddev,rdev,tmp) {
1519 		if (!rdev->mddev) {
1520 			MD_BUG();
1521 			continue;
1522 		}
1523 		kick_rdev_from_array(rdev);
1524 	}
1525 	if (!list_empty(&mddev->disks))
1526 		MD_BUG();
1527 	mddev->raid_disks = 0;
1528 	mddev->major_version = 0;
1529 }
1530 
1531 static void print_desc(mdp_disk_t *desc)
1532 {
1533 	printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1534 		desc->major,desc->minor,desc->raid_disk,desc->state);
1535 }
1536 
1537 static void print_sb(mdp_super_t *sb)
1538 {
1539 	int i;
1540 
1541 	printk(KERN_INFO
1542 		"md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1543 		sb->major_version, sb->minor_version, sb->patch_version,
1544 		sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1545 		sb->ctime);
1546 	printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1547 		sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1548 		sb->md_minor, sb->layout, sb->chunk_size);
1549 	printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
1550 		" FD:%d SD:%d CSUM:%08x E:%08lx\n",
1551 		sb->utime, sb->state, sb->active_disks, sb->working_disks,
1552 		sb->failed_disks, sb->spare_disks,
1553 		sb->sb_csum, (unsigned long)sb->events_lo);
1554 
1555 	printk(KERN_INFO);
1556 	for (i = 0; i < MD_SB_DISKS; i++) {
1557 		mdp_disk_t *desc;
1558 
1559 		desc = sb->disks + i;
1560 		if (desc->number || desc->major || desc->minor ||
1561 		    desc->raid_disk || (desc->state && (desc->state != 4))) {
1562 			printk("     D %2d: ", i);
1563 			print_desc(desc);
1564 		}
1565 	}
1566 	printk(KERN_INFO "md:     THIS: ");
1567 	print_desc(&sb->this_disk);
1568 
1569 }
1570 
1571 static void print_rdev(mdk_rdev_t *rdev)
1572 {
1573 	char b[BDEVNAME_SIZE];
1574 	printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
1575 		bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
1576 	        test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
1577 	        rdev->desc_nr);
1578 	if (rdev->sb_loaded) {
1579 		printk(KERN_INFO "md: rdev superblock:\n");
1580 		print_sb((mdp_super_t*)page_address(rdev->sb_page));
1581 	} else
1582 		printk(KERN_INFO "md: no rdev superblock!\n");
1583 }
1584 
1585 static void md_print_devices(void)
1586 {
1587 	struct list_head *tmp, *tmp2;
1588 	mdk_rdev_t *rdev;
1589 	mddev_t *mddev;
1590 	char b[BDEVNAME_SIZE];
1591 
1592 	printk("\n");
1593 	printk("md:	**********************************\n");
1594 	printk("md:	* <COMPLETE RAID STATE PRINTOUT> *\n");
1595 	printk("md:	**********************************\n");
1596 	ITERATE_MDDEV(mddev,tmp) {
1597 
1598 		if (mddev->bitmap)
1599 			bitmap_print_sb(mddev->bitmap);
1600 		else
1601 			printk("%s: ", mdname(mddev));
1602 		ITERATE_RDEV(mddev,rdev,tmp2)
1603 			printk("<%s>", bdevname(rdev->bdev,b));
1604 		printk("\n");
1605 
1606 		ITERATE_RDEV(mddev,rdev,tmp2)
1607 			print_rdev(rdev);
1608 	}
1609 	printk("md:	**********************************\n");
1610 	printk("\n");
1611 }
1612 
1613 
1614 static void sync_sbs(mddev_t * mddev, int nospares)
1615 {
1616 	/* Update each superblock (in-memory image), but
1617 	 * if we are allowed to, skip spares which already
1618 	 * have the right event counter, or have one earlier
1619 	 * (which would mean they aren't being marked as dirty
1620 	 * with the rest of the array)
1621 	 */
1622 	mdk_rdev_t *rdev;
1623 	struct list_head *tmp;
1624 
1625 	ITERATE_RDEV(mddev,rdev,tmp) {
1626 		if (rdev->sb_events == mddev->events ||
1627 		    (nospares &&
1628 		     rdev->raid_disk < 0 &&
1629 		     (rdev->sb_events&1)==0 &&
1630 		     rdev->sb_events+1 == mddev->events)) {
1631 			/* Don't update this superblock */
1632 			rdev->sb_loaded = 2;
1633 		} else {
1634 			super_types[mddev->major_version].
1635 				sync_super(mddev, rdev);
1636 			rdev->sb_loaded = 1;
1637 		}
1638 	}
1639 }
1640 
1641 static void md_update_sb(mddev_t * mddev, int force_change)
1642 {
1643 	struct list_head *tmp;
1644 	mdk_rdev_t *rdev;
1645 	int sync_req;
1646 	int nospares = 0;
1647 
1648 repeat:
1649 	spin_lock_irq(&mddev->write_lock);
1650 
1651 	set_bit(MD_CHANGE_PENDING, &mddev->flags);
1652 	if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
1653 		force_change = 1;
1654 	if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
1655 		/* just a clean<-> dirty transition, possibly leave spares alone,
1656 		 * though if events isn't the right even/odd, we will have to do
1657 		 * spares after all
1658 		 */
1659 		nospares = 1;
1660 	if (force_change)
1661 		nospares = 0;
1662 	if (mddev->degraded)
1663 		/* If the array is degraded, then skipping spares is both
1664 		 * dangerous and fairly pointless.
1665 		 * Dangerous because a device that was removed from the array
1666 		 * might have a event_count that still looks up-to-date,
1667 		 * so it can be re-added without a resync.
1668 		 * Pointless because if there are any spares to skip,
1669 		 * then a recovery will happen and soon that array won't
1670 		 * be degraded any more and the spare can go back to sleep then.
1671 		 */
1672 		nospares = 0;
1673 
1674 	sync_req = mddev->in_sync;
1675 	mddev->utime = get_seconds();
1676 
1677 	/* If this is just a dirty<->clean transition, and the array is clean
1678 	 * and 'events' is odd, we can roll back to the previous clean state */
1679 	if (nospares
1680 	    && (mddev->in_sync && mddev->recovery_cp == MaxSector)
1681 	    && (mddev->events & 1)
1682 	    && mddev->events != 1)
1683 		mddev->events--;
1684 	else {
1685 		/* otherwise we have to go forward and ... */
1686 		mddev->events ++;
1687 		if (!mddev->in_sync || mddev->recovery_cp != MaxSector) { /* not clean */
1688 			/* .. if the array isn't clean, insist on an odd 'events' */
1689 			if ((mddev->events&1)==0) {
1690 				mddev->events++;
1691 				nospares = 0;
1692 			}
1693 		} else {
1694 			/* otherwise insist on an even 'events' (for clean states) */
1695 			if ((mddev->events&1)) {
1696 				mddev->events++;
1697 				nospares = 0;
1698 			}
1699 		}
1700 	}
1701 
1702 	if (!mddev->events) {
1703 		/*
1704 		 * oops, this 64-bit counter should never wrap.
1705 		 * Either we are in around ~1 trillion A.C., assuming
1706 		 * 1 reboot per second, or we have a bug:
1707 		 */
1708 		MD_BUG();
1709 		mddev->events --;
1710 	}
1711 	sync_sbs(mddev, nospares);
1712 
1713 	/*
1714 	 * do not write anything to disk if using
1715 	 * nonpersistent superblocks
1716 	 */
1717 	if (!mddev->persistent) {
1718 		clear_bit(MD_CHANGE_PENDING, &mddev->flags);
1719 		spin_unlock_irq(&mddev->write_lock);
1720 		wake_up(&mddev->sb_wait);
1721 		return;
1722 	}
1723 	spin_unlock_irq(&mddev->write_lock);
1724 
1725 	dprintk(KERN_INFO
1726 		"md: updating %s RAID superblock on device (in sync %d)\n",
1727 		mdname(mddev),mddev->in_sync);
1728 
1729 	bitmap_update_sb(mddev->bitmap);
1730 	ITERATE_RDEV(mddev,rdev,tmp) {
1731 		char b[BDEVNAME_SIZE];
1732 		dprintk(KERN_INFO "md: ");
1733 		if (rdev->sb_loaded != 1)
1734 			continue; /* no noise on spare devices */
1735 		if (test_bit(Faulty, &rdev->flags))
1736 			dprintk("(skipping faulty ");
1737 
1738 		dprintk("%s ", bdevname(rdev->bdev,b));
1739 		if (!test_bit(Faulty, &rdev->flags)) {
1740 			md_super_write(mddev,rdev,
1741 				       rdev->sb_offset<<1, rdev->sb_size,
1742 				       rdev->sb_page);
1743 			dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
1744 				bdevname(rdev->bdev,b),
1745 				(unsigned long long)rdev->sb_offset);
1746 			rdev->sb_events = mddev->events;
1747 
1748 		} else
1749 			dprintk(")\n");
1750 		if (mddev->level == LEVEL_MULTIPATH)
1751 			/* only need to write one superblock... */
1752 			break;
1753 	}
1754 	md_super_wait(mddev);
1755 	/* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
1756 
1757 	spin_lock_irq(&mddev->write_lock);
1758 	if (mddev->in_sync != sync_req ||
1759 	    test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
1760 		/* have to write it out again */
1761 		spin_unlock_irq(&mddev->write_lock);
1762 		goto repeat;
1763 	}
1764 	clear_bit(MD_CHANGE_PENDING, &mddev->flags);
1765 	spin_unlock_irq(&mddev->write_lock);
1766 	wake_up(&mddev->sb_wait);
1767 
1768 }
1769 
1770 /* words written to sysfs files may, or my not, be \n terminated.
1771  * We want to accept with case. For this we use cmd_match.
1772  */
1773 static int cmd_match(const char *cmd, const char *str)
1774 {
1775 	/* See if cmd, written into a sysfs file, matches
1776 	 * str.  They must either be the same, or cmd can
1777 	 * have a trailing newline
1778 	 */
1779 	while (*cmd && *str && *cmd == *str) {
1780 		cmd++;
1781 		str++;
1782 	}
1783 	if (*cmd == '\n')
1784 		cmd++;
1785 	if (*str || *cmd)
1786 		return 0;
1787 	return 1;
1788 }
1789 
1790 struct rdev_sysfs_entry {
1791 	struct attribute attr;
1792 	ssize_t (*show)(mdk_rdev_t *, char *);
1793 	ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
1794 };
1795 
1796 static ssize_t
1797 state_show(mdk_rdev_t *rdev, char *page)
1798 {
1799 	char *sep = "";
1800 	int len=0;
1801 
1802 	if (test_bit(Faulty, &rdev->flags)) {
1803 		len+= sprintf(page+len, "%sfaulty",sep);
1804 		sep = ",";
1805 	}
1806 	if (test_bit(In_sync, &rdev->flags)) {
1807 		len += sprintf(page+len, "%sin_sync",sep);
1808 		sep = ",";
1809 	}
1810 	if (test_bit(WriteMostly, &rdev->flags)) {
1811 		len += sprintf(page+len, "%swrite_mostly",sep);
1812 		sep = ",";
1813 	}
1814 	if (!test_bit(Faulty, &rdev->flags) &&
1815 	    !test_bit(In_sync, &rdev->flags)) {
1816 		len += sprintf(page+len, "%sspare", sep);
1817 		sep = ",";
1818 	}
1819 	return len+sprintf(page+len, "\n");
1820 }
1821 
1822 static ssize_t
1823 state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1824 {
1825 	/* can write
1826 	 *  faulty  - simulates and error
1827 	 *  remove  - disconnects the device
1828 	 *  writemostly - sets write_mostly
1829 	 *  -writemostly - clears write_mostly
1830 	 */
1831 	int err = -EINVAL;
1832 	if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
1833 		md_error(rdev->mddev, rdev);
1834 		err = 0;
1835 	} else if (cmd_match(buf, "remove")) {
1836 		if (rdev->raid_disk >= 0)
1837 			err = -EBUSY;
1838 		else {
1839 			mddev_t *mddev = rdev->mddev;
1840 			kick_rdev_from_array(rdev);
1841 			if (mddev->pers)
1842 				md_update_sb(mddev, 1);
1843 			md_new_event(mddev);
1844 			err = 0;
1845 		}
1846 	} else if (cmd_match(buf, "writemostly")) {
1847 		set_bit(WriteMostly, &rdev->flags);
1848 		err = 0;
1849 	} else if (cmd_match(buf, "-writemostly")) {
1850 		clear_bit(WriteMostly, &rdev->flags);
1851 		err = 0;
1852 	}
1853 	return err ? err : len;
1854 }
1855 static struct rdev_sysfs_entry rdev_state =
1856 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
1857 
1858 static ssize_t
1859 super_show(mdk_rdev_t *rdev, char *page)
1860 {
1861 	if (rdev->sb_loaded && rdev->sb_size) {
1862 		memcpy(page, page_address(rdev->sb_page), rdev->sb_size);
1863 		return rdev->sb_size;
1864 	} else
1865 		return 0;
1866 }
1867 static struct rdev_sysfs_entry rdev_super = __ATTR_RO(super);
1868 
1869 static ssize_t
1870 errors_show(mdk_rdev_t *rdev, char *page)
1871 {
1872 	return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
1873 }
1874 
1875 static ssize_t
1876 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1877 {
1878 	char *e;
1879 	unsigned long n = simple_strtoul(buf, &e, 10);
1880 	if (*buf && (*e == 0 || *e == '\n')) {
1881 		atomic_set(&rdev->corrected_errors, n);
1882 		return len;
1883 	}
1884 	return -EINVAL;
1885 }
1886 static struct rdev_sysfs_entry rdev_errors =
1887 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
1888 
1889 static ssize_t
1890 slot_show(mdk_rdev_t *rdev, char *page)
1891 {
1892 	if (rdev->raid_disk < 0)
1893 		return sprintf(page, "none\n");
1894 	else
1895 		return sprintf(page, "%d\n", rdev->raid_disk);
1896 }
1897 
1898 static ssize_t
1899 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1900 {
1901 	char *e;
1902 	int slot = simple_strtoul(buf, &e, 10);
1903 	if (strncmp(buf, "none", 4)==0)
1904 		slot = -1;
1905 	else if (e==buf || (*e && *e!= '\n'))
1906 		return -EINVAL;
1907 	if (rdev->mddev->pers)
1908 		/* Cannot set slot in active array (yet) */
1909 		return -EBUSY;
1910 	if (slot >= rdev->mddev->raid_disks)
1911 		return -ENOSPC;
1912 	rdev->raid_disk = slot;
1913 	/* assume it is working */
1914 	rdev->flags = 0;
1915 	set_bit(In_sync, &rdev->flags);
1916 	return len;
1917 }
1918 
1919 
1920 static struct rdev_sysfs_entry rdev_slot =
1921 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
1922 
1923 static ssize_t
1924 offset_show(mdk_rdev_t *rdev, char *page)
1925 {
1926 	return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
1927 }
1928 
1929 static ssize_t
1930 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1931 {
1932 	char *e;
1933 	unsigned long long offset = simple_strtoull(buf, &e, 10);
1934 	if (e==buf || (*e && *e != '\n'))
1935 		return -EINVAL;
1936 	if (rdev->mddev->pers)
1937 		return -EBUSY;
1938 	rdev->data_offset = offset;
1939 	return len;
1940 }
1941 
1942 static struct rdev_sysfs_entry rdev_offset =
1943 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
1944 
1945 static ssize_t
1946 rdev_size_show(mdk_rdev_t *rdev, char *page)
1947 {
1948 	return sprintf(page, "%llu\n", (unsigned long long)rdev->size);
1949 }
1950 
1951 static ssize_t
1952 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1953 {
1954 	char *e;
1955 	unsigned long long size = simple_strtoull(buf, &e, 10);
1956 	if (e==buf || (*e && *e != '\n'))
1957 		return -EINVAL;
1958 	if (rdev->mddev->pers)
1959 		return -EBUSY;
1960 	rdev->size = size;
1961 	if (size < rdev->mddev->size || rdev->mddev->size == 0)
1962 		rdev->mddev->size = size;
1963 	return len;
1964 }
1965 
1966 static struct rdev_sysfs_entry rdev_size =
1967 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
1968 
1969 static struct attribute *rdev_default_attrs[] = {
1970 	&rdev_state.attr,
1971 	&rdev_super.attr,
1972 	&rdev_errors.attr,
1973 	&rdev_slot.attr,
1974 	&rdev_offset.attr,
1975 	&rdev_size.attr,
1976 	NULL,
1977 };
1978 static ssize_t
1979 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
1980 {
1981 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1982 	mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1983 
1984 	if (!entry->show)
1985 		return -EIO;
1986 	return entry->show(rdev, page);
1987 }
1988 
1989 static ssize_t
1990 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
1991 	      const char *page, size_t length)
1992 {
1993 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1994 	mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1995 
1996 	if (!entry->store)
1997 		return -EIO;
1998 	if (!capable(CAP_SYS_ADMIN))
1999 		return -EACCES;
2000 	return entry->store(rdev, page, length);
2001 }
2002 
2003 static void rdev_free(struct kobject *ko)
2004 {
2005 	mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
2006 	kfree(rdev);
2007 }
2008 static struct sysfs_ops rdev_sysfs_ops = {
2009 	.show		= rdev_attr_show,
2010 	.store		= rdev_attr_store,
2011 };
2012 static struct kobj_type rdev_ktype = {
2013 	.release	= rdev_free,
2014 	.sysfs_ops	= &rdev_sysfs_ops,
2015 	.default_attrs	= rdev_default_attrs,
2016 };
2017 
2018 /*
2019  * Import a device. If 'super_format' >= 0, then sanity check the superblock
2020  *
2021  * mark the device faulty if:
2022  *
2023  *   - the device is nonexistent (zero size)
2024  *   - the device has no valid superblock
2025  *
2026  * a faulty rdev _never_ has rdev->sb set.
2027  */
2028 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
2029 {
2030 	char b[BDEVNAME_SIZE];
2031 	int err;
2032 	mdk_rdev_t *rdev;
2033 	sector_t size;
2034 
2035 	rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
2036 	if (!rdev) {
2037 		printk(KERN_ERR "md: could not alloc mem for new device!\n");
2038 		return ERR_PTR(-ENOMEM);
2039 	}
2040 
2041 	if ((err = alloc_disk_sb(rdev)))
2042 		goto abort_free;
2043 
2044 	err = lock_rdev(rdev, newdev);
2045 	if (err)
2046 		goto abort_free;
2047 
2048 	rdev->kobj.parent = NULL;
2049 	rdev->kobj.ktype = &rdev_ktype;
2050 	kobject_init(&rdev->kobj);
2051 
2052 	rdev->desc_nr = -1;
2053 	rdev->saved_raid_disk = -1;
2054 	rdev->raid_disk = -1;
2055 	rdev->flags = 0;
2056 	rdev->data_offset = 0;
2057 	rdev->sb_events = 0;
2058 	atomic_set(&rdev->nr_pending, 0);
2059 	atomic_set(&rdev->read_errors, 0);
2060 	atomic_set(&rdev->corrected_errors, 0);
2061 
2062 	size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2063 	if (!size) {
2064 		printk(KERN_WARNING
2065 			"md: %s has zero or unknown size, marking faulty!\n",
2066 			bdevname(rdev->bdev,b));
2067 		err = -EINVAL;
2068 		goto abort_free;
2069 	}
2070 
2071 	if (super_format >= 0) {
2072 		err = super_types[super_format].
2073 			load_super(rdev, NULL, super_minor);
2074 		if (err == -EINVAL) {
2075 			printk(KERN_WARNING
2076 				"md: %s does not have a valid v%d.%d "
2077 			       "superblock, not importing!\n",
2078 				bdevname(rdev->bdev,b),
2079 			       super_format, super_minor);
2080 			goto abort_free;
2081 		}
2082 		if (err < 0) {
2083 			printk(KERN_WARNING
2084 				"md: could not read %s's sb, not importing!\n",
2085 				bdevname(rdev->bdev,b));
2086 			goto abort_free;
2087 		}
2088 	}
2089 	INIT_LIST_HEAD(&rdev->same_set);
2090 
2091 	return rdev;
2092 
2093 abort_free:
2094 	if (rdev->sb_page) {
2095 		if (rdev->bdev)
2096 			unlock_rdev(rdev);
2097 		free_disk_sb(rdev);
2098 	}
2099 	kfree(rdev);
2100 	return ERR_PTR(err);
2101 }
2102 
2103 /*
2104  * Check a full RAID array for plausibility
2105  */
2106 
2107 
2108 static void analyze_sbs(mddev_t * mddev)
2109 {
2110 	int i;
2111 	struct list_head *tmp;
2112 	mdk_rdev_t *rdev, *freshest;
2113 	char b[BDEVNAME_SIZE];
2114 
2115 	freshest = NULL;
2116 	ITERATE_RDEV(mddev,rdev,tmp)
2117 		switch (super_types[mddev->major_version].
2118 			load_super(rdev, freshest, mddev->minor_version)) {
2119 		case 1:
2120 			freshest = rdev;
2121 			break;
2122 		case 0:
2123 			break;
2124 		default:
2125 			printk( KERN_ERR \
2126 				"md: fatal superblock inconsistency in %s"
2127 				" -- removing from array\n",
2128 				bdevname(rdev->bdev,b));
2129 			kick_rdev_from_array(rdev);
2130 		}
2131 
2132 
2133 	super_types[mddev->major_version].
2134 		validate_super(mddev, freshest);
2135 
2136 	i = 0;
2137 	ITERATE_RDEV(mddev,rdev,tmp) {
2138 		if (rdev != freshest)
2139 			if (super_types[mddev->major_version].
2140 			    validate_super(mddev, rdev)) {
2141 				printk(KERN_WARNING "md: kicking non-fresh %s"
2142 					" from array!\n",
2143 					bdevname(rdev->bdev,b));
2144 				kick_rdev_from_array(rdev);
2145 				continue;
2146 			}
2147 		if (mddev->level == LEVEL_MULTIPATH) {
2148 			rdev->desc_nr = i++;
2149 			rdev->raid_disk = rdev->desc_nr;
2150 			set_bit(In_sync, &rdev->flags);
2151 		} else if (rdev->raid_disk >= mddev->raid_disks) {
2152 			rdev->raid_disk = -1;
2153 			clear_bit(In_sync, &rdev->flags);
2154 		}
2155 	}
2156 
2157 
2158 
2159 	if (mddev->recovery_cp != MaxSector &&
2160 	    mddev->level >= 1)
2161 		printk(KERN_ERR "md: %s: raid array is not clean"
2162 		       " -- starting background reconstruction\n",
2163 		       mdname(mddev));
2164 
2165 }
2166 
2167 static ssize_t
2168 safe_delay_show(mddev_t *mddev, char *page)
2169 {
2170 	int msec = (mddev->safemode_delay*1000)/HZ;
2171 	return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
2172 }
2173 static ssize_t
2174 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
2175 {
2176 	int scale=1;
2177 	int dot=0;
2178 	int i;
2179 	unsigned long msec;
2180 	char buf[30];
2181 	char *e;
2182 	/* remove a period, and count digits after it */
2183 	if (len >= sizeof(buf))
2184 		return -EINVAL;
2185 	strlcpy(buf, cbuf, len);
2186 	buf[len] = 0;
2187 	for (i=0; i<len; i++) {
2188 		if (dot) {
2189 			if (isdigit(buf[i])) {
2190 				buf[i-1] = buf[i];
2191 				scale *= 10;
2192 			}
2193 			buf[i] = 0;
2194 		} else if (buf[i] == '.') {
2195 			dot=1;
2196 			buf[i] = 0;
2197 		}
2198 	}
2199 	msec = simple_strtoul(buf, &e, 10);
2200 	if (e == buf || (*e && *e != '\n'))
2201 		return -EINVAL;
2202 	msec = (msec * 1000) / scale;
2203 	if (msec == 0)
2204 		mddev->safemode_delay = 0;
2205 	else {
2206 		mddev->safemode_delay = (msec*HZ)/1000;
2207 		if (mddev->safemode_delay == 0)
2208 			mddev->safemode_delay = 1;
2209 	}
2210 	return len;
2211 }
2212 static struct md_sysfs_entry md_safe_delay =
2213 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
2214 
2215 static ssize_t
2216 level_show(mddev_t *mddev, char *page)
2217 {
2218 	struct mdk_personality *p = mddev->pers;
2219 	if (p)
2220 		return sprintf(page, "%s\n", p->name);
2221 	else if (mddev->clevel[0])
2222 		return sprintf(page, "%s\n", mddev->clevel);
2223 	else if (mddev->level != LEVEL_NONE)
2224 		return sprintf(page, "%d\n", mddev->level);
2225 	else
2226 		return 0;
2227 }
2228 
2229 static ssize_t
2230 level_store(mddev_t *mddev, const char *buf, size_t len)
2231 {
2232 	int rv = len;
2233 	if (mddev->pers)
2234 		return -EBUSY;
2235 	if (len == 0)
2236 		return 0;
2237 	if (len >= sizeof(mddev->clevel))
2238 		return -ENOSPC;
2239 	strncpy(mddev->clevel, buf, len);
2240 	if (mddev->clevel[len-1] == '\n')
2241 		len--;
2242 	mddev->clevel[len] = 0;
2243 	mddev->level = LEVEL_NONE;
2244 	return rv;
2245 }
2246 
2247 static struct md_sysfs_entry md_level =
2248 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
2249 
2250 
2251 static ssize_t
2252 layout_show(mddev_t *mddev, char *page)
2253 {
2254 	/* just a number, not meaningful for all levels */
2255 	if (mddev->reshape_position != MaxSector &&
2256 	    mddev->layout != mddev->new_layout)
2257 		return sprintf(page, "%d (%d)\n",
2258 			       mddev->new_layout, mddev->layout);
2259 	return sprintf(page, "%d\n", mddev->layout);
2260 }
2261 
2262 static ssize_t
2263 layout_store(mddev_t *mddev, const char *buf, size_t len)
2264 {
2265 	char *e;
2266 	unsigned long n = simple_strtoul(buf, &e, 10);
2267 
2268 	if (!*buf || (*e && *e != '\n'))
2269 		return -EINVAL;
2270 
2271 	if (mddev->pers)
2272 		return -EBUSY;
2273 	if (mddev->reshape_position != MaxSector)
2274 		mddev->new_layout = n;
2275 	else
2276 		mddev->layout = n;
2277 	return len;
2278 }
2279 static struct md_sysfs_entry md_layout =
2280 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
2281 
2282 
2283 static ssize_t
2284 raid_disks_show(mddev_t *mddev, char *page)
2285 {
2286 	if (mddev->raid_disks == 0)
2287 		return 0;
2288 	if (mddev->reshape_position != MaxSector &&
2289 	    mddev->delta_disks != 0)
2290 		return sprintf(page, "%d (%d)\n", mddev->raid_disks,
2291 			       mddev->raid_disks - mddev->delta_disks);
2292 	return sprintf(page, "%d\n", mddev->raid_disks);
2293 }
2294 
2295 static int update_raid_disks(mddev_t *mddev, int raid_disks);
2296 
2297 static ssize_t
2298 raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
2299 {
2300 	char *e;
2301 	int rv = 0;
2302 	unsigned long n = simple_strtoul(buf, &e, 10);
2303 
2304 	if (!*buf || (*e && *e != '\n'))
2305 		return -EINVAL;
2306 
2307 	if (mddev->pers)
2308 		rv = update_raid_disks(mddev, n);
2309 	else if (mddev->reshape_position != MaxSector) {
2310 		int olddisks = mddev->raid_disks - mddev->delta_disks;
2311 		mddev->delta_disks = n - olddisks;
2312 		mddev->raid_disks = n;
2313 	} else
2314 		mddev->raid_disks = n;
2315 	return rv ? rv : len;
2316 }
2317 static struct md_sysfs_entry md_raid_disks =
2318 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
2319 
2320 static ssize_t
2321 chunk_size_show(mddev_t *mddev, char *page)
2322 {
2323 	if (mddev->reshape_position != MaxSector &&
2324 	    mddev->chunk_size != mddev->new_chunk)
2325 		return sprintf(page, "%d (%d)\n", mddev->new_chunk,
2326 			       mddev->chunk_size);
2327 	return sprintf(page, "%d\n", mddev->chunk_size);
2328 }
2329 
2330 static ssize_t
2331 chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
2332 {
2333 	/* can only set chunk_size if array is not yet active */
2334 	char *e;
2335 	unsigned long n = simple_strtoul(buf, &e, 10);
2336 
2337 	if (!*buf || (*e && *e != '\n'))
2338 		return -EINVAL;
2339 
2340 	if (mddev->pers)
2341 		return -EBUSY;
2342 	else if (mddev->reshape_position != MaxSector)
2343 		mddev->new_chunk = n;
2344 	else
2345 		mddev->chunk_size = n;
2346 	return len;
2347 }
2348 static struct md_sysfs_entry md_chunk_size =
2349 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
2350 
2351 static ssize_t
2352 resync_start_show(mddev_t *mddev, char *page)
2353 {
2354 	return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
2355 }
2356 
2357 static ssize_t
2358 resync_start_store(mddev_t *mddev, const char *buf, size_t len)
2359 {
2360 	/* can only set chunk_size if array is not yet active */
2361 	char *e;
2362 	unsigned long long n = simple_strtoull(buf, &e, 10);
2363 
2364 	if (mddev->pers)
2365 		return -EBUSY;
2366 	if (!*buf || (*e && *e != '\n'))
2367 		return -EINVAL;
2368 
2369 	mddev->recovery_cp = n;
2370 	return len;
2371 }
2372 static struct md_sysfs_entry md_resync_start =
2373 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
2374 
2375 /*
2376  * The array state can be:
2377  *
2378  * clear
2379  *     No devices, no size, no level
2380  *     Equivalent to STOP_ARRAY ioctl
2381  * inactive
2382  *     May have some settings, but array is not active
2383  *        all IO results in error
2384  *     When written, doesn't tear down array, but just stops it
2385  * suspended (not supported yet)
2386  *     All IO requests will block. The array can be reconfigured.
2387  *     Writing this, if accepted, will block until array is quiessent
2388  * readonly
2389  *     no resync can happen.  no superblocks get written.
2390  *     write requests fail
2391  * read-auto
2392  *     like readonly, but behaves like 'clean' on a write request.
2393  *
2394  * clean - no pending writes, but otherwise active.
2395  *     When written to inactive array, starts without resync
2396  *     If a write request arrives then
2397  *       if metadata is known, mark 'dirty' and switch to 'active'.
2398  *       if not known, block and switch to write-pending
2399  *     If written to an active array that has pending writes, then fails.
2400  * active
2401  *     fully active: IO and resync can be happening.
2402  *     When written to inactive array, starts with resync
2403  *
2404  * write-pending
2405  *     clean, but writes are blocked waiting for 'active' to be written.
2406  *
2407  * active-idle
2408  *     like active, but no writes have been seen for a while (100msec).
2409  *
2410  */
2411 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
2412 		   write_pending, active_idle, bad_word};
2413 static char *array_states[] = {
2414 	"clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
2415 	"write-pending", "active-idle", NULL };
2416 
2417 static int match_word(const char *word, char **list)
2418 {
2419 	int n;
2420 	for (n=0; list[n]; n++)
2421 		if (cmd_match(word, list[n]))
2422 			break;
2423 	return n;
2424 }
2425 
2426 static ssize_t
2427 array_state_show(mddev_t *mddev, char *page)
2428 {
2429 	enum array_state st = inactive;
2430 
2431 	if (mddev->pers)
2432 		switch(mddev->ro) {
2433 		case 1:
2434 			st = readonly;
2435 			break;
2436 		case 2:
2437 			st = read_auto;
2438 			break;
2439 		case 0:
2440 			if (mddev->in_sync)
2441 				st = clean;
2442 			else if (mddev->safemode)
2443 				st = active_idle;
2444 			else
2445 				st = active;
2446 		}
2447 	else {
2448 		if (list_empty(&mddev->disks) &&
2449 		    mddev->raid_disks == 0 &&
2450 		    mddev->size == 0)
2451 			st = clear;
2452 		else
2453 			st = inactive;
2454 	}
2455 	return sprintf(page, "%s\n", array_states[st]);
2456 }
2457 
2458 static int do_md_stop(mddev_t * mddev, int ro);
2459 static int do_md_run(mddev_t * mddev);
2460 static int restart_array(mddev_t *mddev);
2461 
2462 static ssize_t
2463 array_state_store(mddev_t *mddev, const char *buf, size_t len)
2464 {
2465 	int err = -EINVAL;
2466 	enum array_state st = match_word(buf, array_states);
2467 	switch(st) {
2468 	case bad_word:
2469 		break;
2470 	case clear:
2471 		/* stopping an active array */
2472 		if (mddev->pers) {
2473 			if (atomic_read(&mddev->active) > 1)
2474 				return -EBUSY;
2475 			err = do_md_stop(mddev, 0);
2476 		}
2477 		break;
2478 	case inactive:
2479 		/* stopping an active array */
2480 		if (mddev->pers) {
2481 			if (atomic_read(&mddev->active) > 1)
2482 				return -EBUSY;
2483 			err = do_md_stop(mddev, 2);
2484 		}
2485 		break;
2486 	case suspended:
2487 		break; /* not supported yet */
2488 	case readonly:
2489 		if (mddev->pers)
2490 			err = do_md_stop(mddev, 1);
2491 		else {
2492 			mddev->ro = 1;
2493 			err = do_md_run(mddev);
2494 		}
2495 		break;
2496 	case read_auto:
2497 		/* stopping an active array */
2498 		if (mddev->pers) {
2499 			err = do_md_stop(mddev, 1);
2500 			if (err == 0)
2501 				mddev->ro = 2; /* FIXME mark devices writable */
2502 		} else {
2503 			mddev->ro = 2;
2504 			err = do_md_run(mddev);
2505 		}
2506 		break;
2507 	case clean:
2508 		if (mddev->pers) {
2509 			restart_array(mddev);
2510 			spin_lock_irq(&mddev->write_lock);
2511 			if (atomic_read(&mddev->writes_pending) == 0) {
2512 				mddev->in_sync = 1;
2513 				set_bit(MD_CHANGE_CLEAN, &mddev->flags);
2514 			}
2515 			spin_unlock_irq(&mddev->write_lock);
2516 		} else {
2517 			mddev->ro = 0;
2518 			mddev->recovery_cp = MaxSector;
2519 			err = do_md_run(mddev);
2520 		}
2521 		break;
2522 	case active:
2523 		if (mddev->pers) {
2524 			restart_array(mddev);
2525 			clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2526 			wake_up(&mddev->sb_wait);
2527 			err = 0;
2528 		} else {
2529 			mddev->ro = 0;
2530 			err = do_md_run(mddev);
2531 		}
2532 		break;
2533 	case write_pending:
2534 	case active_idle:
2535 		/* these cannot be set */
2536 		break;
2537 	}
2538 	if (err)
2539 		return err;
2540 	else
2541 		return len;
2542 }
2543 static struct md_sysfs_entry md_array_state =
2544 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
2545 
2546 static ssize_t
2547 null_show(mddev_t *mddev, char *page)
2548 {
2549 	return -EINVAL;
2550 }
2551 
2552 static ssize_t
2553 new_dev_store(mddev_t *mddev, const char *buf, size_t len)
2554 {
2555 	/* buf must be %d:%d\n? giving major and minor numbers */
2556 	/* The new device is added to the array.
2557 	 * If the array has a persistent superblock, we read the
2558 	 * superblock to initialise info and check validity.
2559 	 * Otherwise, only checking done is that in bind_rdev_to_array,
2560 	 * which mainly checks size.
2561 	 */
2562 	char *e;
2563 	int major = simple_strtoul(buf, &e, 10);
2564 	int minor;
2565 	dev_t dev;
2566 	mdk_rdev_t *rdev;
2567 	int err;
2568 
2569 	if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
2570 		return -EINVAL;
2571 	minor = simple_strtoul(e+1, &e, 10);
2572 	if (*e && *e != '\n')
2573 		return -EINVAL;
2574 	dev = MKDEV(major, minor);
2575 	if (major != MAJOR(dev) ||
2576 	    minor != MINOR(dev))
2577 		return -EOVERFLOW;
2578 
2579 
2580 	if (mddev->persistent) {
2581 		rdev = md_import_device(dev, mddev->major_version,
2582 					mddev->minor_version);
2583 		if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
2584 			mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
2585 						       mdk_rdev_t, same_set);
2586 			err = super_types[mddev->major_version]
2587 				.load_super(rdev, rdev0, mddev->minor_version);
2588 			if (err < 0)
2589 				goto out;
2590 		}
2591 	} else
2592 		rdev = md_import_device(dev, -1, -1);
2593 
2594 	if (IS_ERR(rdev))
2595 		return PTR_ERR(rdev);
2596 	err = bind_rdev_to_array(rdev, mddev);
2597  out:
2598 	if (err)
2599 		export_rdev(rdev);
2600 	return err ? err : len;
2601 }
2602 
2603 static struct md_sysfs_entry md_new_device =
2604 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
2605 
2606 static ssize_t
2607 bitmap_store(mddev_t *mddev, const char *buf, size_t len)
2608 {
2609 	char *end;
2610 	unsigned long chunk, end_chunk;
2611 
2612 	if (!mddev->bitmap)
2613 		goto out;
2614 	/* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
2615 	while (*buf) {
2616 		chunk = end_chunk = simple_strtoul(buf, &end, 0);
2617 		if (buf == end) break;
2618 		if (*end == '-') { /* range */
2619 			buf = end + 1;
2620 			end_chunk = simple_strtoul(buf, &end, 0);
2621 			if (buf == end) break;
2622 		}
2623 		if (*end && !isspace(*end)) break;
2624 		bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
2625 		buf = end;
2626 		while (isspace(*buf)) buf++;
2627 	}
2628 	bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
2629 out:
2630 	return len;
2631 }
2632 
2633 static struct md_sysfs_entry md_bitmap =
2634 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
2635 
2636 static ssize_t
2637 size_show(mddev_t *mddev, char *page)
2638 {
2639 	return sprintf(page, "%llu\n", (unsigned long long)mddev->size);
2640 }
2641 
2642 static int update_size(mddev_t *mddev, unsigned long size);
2643 
2644 static ssize_t
2645 size_store(mddev_t *mddev, const char *buf, size_t len)
2646 {
2647 	/* If array is inactive, we can reduce the component size, but
2648 	 * not increase it (except from 0).
2649 	 * If array is active, we can try an on-line resize
2650 	 */
2651 	char *e;
2652 	int err = 0;
2653 	unsigned long long size = simple_strtoull(buf, &e, 10);
2654 	if (!*buf || *buf == '\n' ||
2655 	    (*e && *e != '\n'))
2656 		return -EINVAL;
2657 
2658 	if (mddev->pers) {
2659 		err = update_size(mddev, size);
2660 		md_update_sb(mddev, 1);
2661 	} else {
2662 		if (mddev->size == 0 ||
2663 		    mddev->size > size)
2664 			mddev->size = size;
2665 		else
2666 			err = -ENOSPC;
2667 	}
2668 	return err ? err : len;
2669 }
2670 
2671 static struct md_sysfs_entry md_size =
2672 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
2673 
2674 
2675 /* Metdata version.
2676  * This is either 'none' for arrays with externally managed metadata,
2677  * or N.M for internally known formats
2678  */
2679 static ssize_t
2680 metadata_show(mddev_t *mddev, char *page)
2681 {
2682 	if (mddev->persistent)
2683 		return sprintf(page, "%d.%d\n",
2684 			       mddev->major_version, mddev->minor_version);
2685 	else
2686 		return sprintf(page, "none\n");
2687 }
2688 
2689 static ssize_t
2690 metadata_store(mddev_t *mddev, const char *buf, size_t len)
2691 {
2692 	int major, minor;
2693 	char *e;
2694 	if (!list_empty(&mddev->disks))
2695 		return -EBUSY;
2696 
2697 	if (cmd_match(buf, "none")) {
2698 		mddev->persistent = 0;
2699 		mddev->major_version = 0;
2700 		mddev->minor_version = 90;
2701 		return len;
2702 	}
2703 	major = simple_strtoul(buf, &e, 10);
2704 	if (e==buf || *e != '.')
2705 		return -EINVAL;
2706 	buf = e+1;
2707 	minor = simple_strtoul(buf, &e, 10);
2708 	if (e==buf || (*e && *e != '\n') )
2709 		return -EINVAL;
2710 	if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
2711 		return -ENOENT;
2712 	mddev->major_version = major;
2713 	mddev->minor_version = minor;
2714 	mddev->persistent = 1;
2715 	return len;
2716 }
2717 
2718 static struct md_sysfs_entry md_metadata =
2719 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
2720 
2721 static ssize_t
2722 action_show(mddev_t *mddev, char *page)
2723 {
2724 	char *type = "idle";
2725 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2726 	    test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) {
2727 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2728 			type = "reshape";
2729 		else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2730 			if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2731 				type = "resync";
2732 			else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2733 				type = "check";
2734 			else
2735 				type = "repair";
2736 		} else
2737 			type = "recover";
2738 	}
2739 	return sprintf(page, "%s\n", type);
2740 }
2741 
2742 static ssize_t
2743 action_store(mddev_t *mddev, const char *page, size_t len)
2744 {
2745 	if (!mddev->pers || !mddev->pers->sync_request)
2746 		return -EINVAL;
2747 
2748 	if (cmd_match(page, "idle")) {
2749 		if (mddev->sync_thread) {
2750 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2751 			md_unregister_thread(mddev->sync_thread);
2752 			mddev->sync_thread = NULL;
2753 			mddev->recovery = 0;
2754 		}
2755 	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2756 		   test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
2757 		return -EBUSY;
2758 	else if (cmd_match(page, "resync") || cmd_match(page, "recover"))
2759 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2760 	else if (cmd_match(page, "reshape")) {
2761 		int err;
2762 		if (mddev->pers->start_reshape == NULL)
2763 			return -EINVAL;
2764 		err = mddev->pers->start_reshape(mddev);
2765 		if (err)
2766 			return err;
2767 	} else {
2768 		if (cmd_match(page, "check"))
2769 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
2770 		else if (!cmd_match(page, "repair"))
2771 			return -EINVAL;
2772 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
2773 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
2774 	}
2775 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2776 	md_wakeup_thread(mddev->thread);
2777 	return len;
2778 }
2779 
2780 static ssize_t
2781 mismatch_cnt_show(mddev_t *mddev, char *page)
2782 {
2783 	return sprintf(page, "%llu\n",
2784 		       (unsigned long long) mddev->resync_mismatches);
2785 }
2786 
2787 static struct md_sysfs_entry md_scan_mode =
2788 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
2789 
2790 
2791 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
2792 
2793 static ssize_t
2794 sync_min_show(mddev_t *mddev, char *page)
2795 {
2796 	return sprintf(page, "%d (%s)\n", speed_min(mddev),
2797 		       mddev->sync_speed_min ? "local": "system");
2798 }
2799 
2800 static ssize_t
2801 sync_min_store(mddev_t *mddev, const char *buf, size_t len)
2802 {
2803 	int min;
2804 	char *e;
2805 	if (strncmp(buf, "system", 6)==0) {
2806 		mddev->sync_speed_min = 0;
2807 		return len;
2808 	}
2809 	min = simple_strtoul(buf, &e, 10);
2810 	if (buf == e || (*e && *e != '\n') || min <= 0)
2811 		return -EINVAL;
2812 	mddev->sync_speed_min = min;
2813 	return len;
2814 }
2815 
2816 static struct md_sysfs_entry md_sync_min =
2817 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
2818 
2819 static ssize_t
2820 sync_max_show(mddev_t *mddev, char *page)
2821 {
2822 	return sprintf(page, "%d (%s)\n", speed_max(mddev),
2823 		       mddev->sync_speed_max ? "local": "system");
2824 }
2825 
2826 static ssize_t
2827 sync_max_store(mddev_t *mddev, const char *buf, size_t len)
2828 {
2829 	int max;
2830 	char *e;
2831 	if (strncmp(buf, "system", 6)==0) {
2832 		mddev->sync_speed_max = 0;
2833 		return len;
2834 	}
2835 	max = simple_strtoul(buf, &e, 10);
2836 	if (buf == e || (*e && *e != '\n') || max <= 0)
2837 		return -EINVAL;
2838 	mddev->sync_speed_max = max;
2839 	return len;
2840 }
2841 
2842 static struct md_sysfs_entry md_sync_max =
2843 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
2844 
2845 
2846 static ssize_t
2847 sync_speed_show(mddev_t *mddev, char *page)
2848 {
2849 	unsigned long resync, dt, db;
2850 	resync = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active));
2851 	dt = ((jiffies - mddev->resync_mark) / HZ);
2852 	if (!dt) dt++;
2853 	db = resync - (mddev->resync_mark_cnt);
2854 	return sprintf(page, "%ld\n", db/dt/2); /* K/sec */
2855 }
2856 
2857 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
2858 
2859 static ssize_t
2860 sync_completed_show(mddev_t *mddev, char *page)
2861 {
2862 	unsigned long max_blocks, resync;
2863 
2864 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2865 		max_blocks = mddev->resync_max_sectors;
2866 	else
2867 		max_blocks = mddev->size << 1;
2868 
2869 	resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active));
2870 	return sprintf(page, "%lu / %lu\n", resync, max_blocks);
2871 }
2872 
2873 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
2874 
2875 static ssize_t
2876 suspend_lo_show(mddev_t *mddev, char *page)
2877 {
2878 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
2879 }
2880 
2881 static ssize_t
2882 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
2883 {
2884 	char *e;
2885 	unsigned long long new = simple_strtoull(buf, &e, 10);
2886 
2887 	if (mddev->pers->quiesce == NULL)
2888 		return -EINVAL;
2889 	if (buf == e || (*e && *e != '\n'))
2890 		return -EINVAL;
2891 	if (new >= mddev->suspend_hi ||
2892 	    (new > mddev->suspend_lo && new < mddev->suspend_hi)) {
2893 		mddev->suspend_lo = new;
2894 		mddev->pers->quiesce(mddev, 2);
2895 		return len;
2896 	} else
2897 		return -EINVAL;
2898 }
2899 static struct md_sysfs_entry md_suspend_lo =
2900 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
2901 
2902 
2903 static ssize_t
2904 suspend_hi_show(mddev_t *mddev, char *page)
2905 {
2906 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
2907 }
2908 
2909 static ssize_t
2910 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
2911 {
2912 	char *e;
2913 	unsigned long long new = simple_strtoull(buf, &e, 10);
2914 
2915 	if (mddev->pers->quiesce == NULL)
2916 		return -EINVAL;
2917 	if (buf == e || (*e && *e != '\n'))
2918 		return -EINVAL;
2919 	if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) ||
2920 	    (new > mddev->suspend_lo && new > mddev->suspend_hi)) {
2921 		mddev->suspend_hi = new;
2922 		mddev->pers->quiesce(mddev, 1);
2923 		mddev->pers->quiesce(mddev, 0);
2924 		return len;
2925 	} else
2926 		return -EINVAL;
2927 }
2928 static struct md_sysfs_entry md_suspend_hi =
2929 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
2930 
2931 static ssize_t
2932 reshape_position_show(mddev_t *mddev, char *page)
2933 {
2934 	if (mddev->reshape_position != MaxSector)
2935 		return sprintf(page, "%llu\n",
2936 			       (unsigned long long)mddev->reshape_position);
2937 	strcpy(page, "none\n");
2938 	return 5;
2939 }
2940 
2941 static ssize_t
2942 reshape_position_store(mddev_t *mddev, const char *buf, size_t len)
2943 {
2944 	char *e;
2945 	unsigned long long new = simple_strtoull(buf, &e, 10);
2946 	if (mddev->pers)
2947 		return -EBUSY;
2948 	if (buf == e || (*e && *e != '\n'))
2949 		return -EINVAL;
2950 	mddev->reshape_position = new;
2951 	mddev->delta_disks = 0;
2952 	mddev->new_level = mddev->level;
2953 	mddev->new_layout = mddev->layout;
2954 	mddev->new_chunk = mddev->chunk_size;
2955 	return len;
2956 }
2957 
2958 static struct md_sysfs_entry md_reshape_position =
2959 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
2960        reshape_position_store);
2961 
2962 
2963 static struct attribute *md_default_attrs[] = {
2964 	&md_level.attr,
2965 	&md_layout.attr,
2966 	&md_raid_disks.attr,
2967 	&md_chunk_size.attr,
2968 	&md_size.attr,
2969 	&md_resync_start.attr,
2970 	&md_metadata.attr,
2971 	&md_new_device.attr,
2972 	&md_safe_delay.attr,
2973 	&md_array_state.attr,
2974 	&md_reshape_position.attr,
2975 	NULL,
2976 };
2977 
2978 static struct attribute *md_redundancy_attrs[] = {
2979 	&md_scan_mode.attr,
2980 	&md_mismatches.attr,
2981 	&md_sync_min.attr,
2982 	&md_sync_max.attr,
2983 	&md_sync_speed.attr,
2984 	&md_sync_completed.attr,
2985 	&md_suspend_lo.attr,
2986 	&md_suspend_hi.attr,
2987 	&md_bitmap.attr,
2988 	NULL,
2989 };
2990 static struct attribute_group md_redundancy_group = {
2991 	.name = NULL,
2992 	.attrs = md_redundancy_attrs,
2993 };
2994 
2995 
2996 static ssize_t
2997 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2998 {
2999 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
3000 	mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
3001 	ssize_t rv;
3002 
3003 	if (!entry->show)
3004 		return -EIO;
3005 	rv = mddev_lock(mddev);
3006 	if (!rv) {
3007 		rv = entry->show(mddev, page);
3008 		mddev_unlock(mddev);
3009 	}
3010 	return rv;
3011 }
3012 
3013 static ssize_t
3014 md_attr_store(struct kobject *kobj, struct attribute *attr,
3015 	      const char *page, size_t length)
3016 {
3017 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
3018 	mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
3019 	ssize_t rv;
3020 
3021 	if (!entry->store)
3022 		return -EIO;
3023 	if (!capable(CAP_SYS_ADMIN))
3024 		return -EACCES;
3025 	rv = mddev_lock(mddev);
3026 	if (!rv) {
3027 		rv = entry->store(mddev, page, length);
3028 		mddev_unlock(mddev);
3029 	}
3030 	return rv;
3031 }
3032 
3033 static void md_free(struct kobject *ko)
3034 {
3035 	mddev_t *mddev = container_of(ko, mddev_t, kobj);
3036 	kfree(mddev);
3037 }
3038 
3039 static struct sysfs_ops md_sysfs_ops = {
3040 	.show	= md_attr_show,
3041 	.store	= md_attr_store,
3042 };
3043 static struct kobj_type md_ktype = {
3044 	.release	= md_free,
3045 	.sysfs_ops	= &md_sysfs_ops,
3046 	.default_attrs	= md_default_attrs,
3047 };
3048 
3049 int mdp_major = 0;
3050 
3051 static struct kobject *md_probe(dev_t dev, int *part, void *data)
3052 {
3053 	static DEFINE_MUTEX(disks_mutex);
3054 	mddev_t *mddev = mddev_find(dev);
3055 	struct gendisk *disk;
3056 	int partitioned = (MAJOR(dev) != MD_MAJOR);
3057 	int shift = partitioned ? MdpMinorShift : 0;
3058 	int unit = MINOR(dev) >> shift;
3059 
3060 	if (!mddev)
3061 		return NULL;
3062 
3063 	mutex_lock(&disks_mutex);
3064 	if (mddev->gendisk) {
3065 		mutex_unlock(&disks_mutex);
3066 		mddev_put(mddev);
3067 		return NULL;
3068 	}
3069 	disk = alloc_disk(1 << shift);
3070 	if (!disk) {
3071 		mutex_unlock(&disks_mutex);
3072 		mddev_put(mddev);
3073 		return NULL;
3074 	}
3075 	disk->major = MAJOR(dev);
3076 	disk->first_minor = unit << shift;
3077 	if (partitioned)
3078 		sprintf(disk->disk_name, "md_d%d", unit);
3079 	else
3080 		sprintf(disk->disk_name, "md%d", unit);
3081 	disk->fops = &md_fops;
3082 	disk->private_data = mddev;
3083 	disk->queue = mddev->queue;
3084 	add_disk(disk);
3085 	mddev->gendisk = disk;
3086 	mutex_unlock(&disks_mutex);
3087 	mddev->kobj.parent = &disk->kobj;
3088 	mddev->kobj.k_name = NULL;
3089 	snprintf(mddev->kobj.name, KOBJ_NAME_LEN, "%s", "md");
3090 	mddev->kobj.ktype = &md_ktype;
3091 	if (kobject_register(&mddev->kobj))
3092 		printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
3093 		       disk->disk_name);
3094 	return NULL;
3095 }
3096 
3097 static void md_safemode_timeout(unsigned long data)
3098 {
3099 	mddev_t *mddev = (mddev_t *) data;
3100 
3101 	mddev->safemode = 1;
3102 	md_wakeup_thread(mddev->thread);
3103 }
3104 
3105 static int start_dirty_degraded;
3106 
3107 static int do_md_run(mddev_t * mddev)
3108 {
3109 	int err;
3110 	int chunk_size;
3111 	struct list_head *tmp;
3112 	mdk_rdev_t *rdev;
3113 	struct gendisk *disk;
3114 	struct mdk_personality *pers;
3115 	char b[BDEVNAME_SIZE];
3116 
3117 	if (list_empty(&mddev->disks))
3118 		/* cannot run an array with no devices.. */
3119 		return -EINVAL;
3120 
3121 	if (mddev->pers)
3122 		return -EBUSY;
3123 
3124 	/*
3125 	 * Analyze all RAID superblock(s)
3126 	 */
3127 	if (!mddev->raid_disks)
3128 		analyze_sbs(mddev);
3129 
3130 	chunk_size = mddev->chunk_size;
3131 
3132 	if (chunk_size) {
3133 		if (chunk_size > MAX_CHUNK_SIZE) {
3134 			printk(KERN_ERR "too big chunk_size: %d > %d\n",
3135 				chunk_size, MAX_CHUNK_SIZE);
3136 			return -EINVAL;
3137 		}
3138 		/*
3139 		 * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
3140 		 */
3141 		if ( (1 << ffz(~chunk_size)) != chunk_size) {
3142 			printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
3143 			return -EINVAL;
3144 		}
3145 		if (chunk_size < PAGE_SIZE) {
3146 			printk(KERN_ERR "too small chunk_size: %d < %ld\n",
3147 				chunk_size, PAGE_SIZE);
3148 			return -EINVAL;
3149 		}
3150 
3151 		/* devices must have minimum size of one chunk */
3152 		ITERATE_RDEV(mddev,rdev,tmp) {
3153 			if (test_bit(Faulty, &rdev->flags))
3154 				continue;
3155 			if (rdev->size < chunk_size / 1024) {
3156 				printk(KERN_WARNING
3157 					"md: Dev %s smaller than chunk_size:"
3158 					" %lluk < %dk\n",
3159 					bdevname(rdev->bdev,b),
3160 					(unsigned long long)rdev->size,
3161 					chunk_size / 1024);
3162 				return -EINVAL;
3163 			}
3164 		}
3165 	}
3166 
3167 #ifdef CONFIG_KMOD
3168 	if (mddev->level != LEVEL_NONE)
3169 		request_module("md-level-%d", mddev->level);
3170 	else if (mddev->clevel[0])
3171 		request_module("md-%s", mddev->clevel);
3172 #endif
3173 
3174 	/*
3175 	 * Drop all container device buffers, from now on
3176 	 * the only valid external interface is through the md
3177 	 * device.
3178 	 */
3179 	ITERATE_RDEV(mddev,rdev,tmp) {
3180 		if (test_bit(Faulty, &rdev->flags))
3181 			continue;
3182 		sync_blockdev(rdev->bdev);
3183 		invalidate_bdev(rdev->bdev);
3184 
3185 		/* perform some consistency tests on the device.
3186 		 * We don't want the data to overlap the metadata,
3187 		 * Internal Bitmap issues has handled elsewhere.
3188 		 */
3189 		if (rdev->data_offset < rdev->sb_offset) {
3190 			if (mddev->size &&
3191 			    rdev->data_offset + mddev->size*2
3192 			    > rdev->sb_offset*2) {
3193 				printk("md: %s: data overlaps metadata\n",
3194 				       mdname(mddev));
3195 				return -EINVAL;
3196 			}
3197 		} else {
3198 			if (rdev->sb_offset*2 + rdev->sb_size/512
3199 			    > rdev->data_offset) {
3200 				printk("md: %s: metadata overlaps data\n",
3201 				       mdname(mddev));
3202 				return -EINVAL;
3203 			}
3204 		}
3205 	}
3206 
3207 	md_probe(mddev->unit, NULL, NULL);
3208 	disk = mddev->gendisk;
3209 	if (!disk)
3210 		return -ENOMEM;
3211 
3212 	spin_lock(&pers_lock);
3213 	pers = find_pers(mddev->level, mddev->clevel);
3214 	if (!pers || !try_module_get(pers->owner)) {
3215 		spin_unlock(&pers_lock);
3216 		if (mddev->level != LEVEL_NONE)
3217 			printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
3218 			       mddev->level);
3219 		else
3220 			printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
3221 			       mddev->clevel);
3222 		return -EINVAL;
3223 	}
3224 	mddev->pers = pers;
3225 	spin_unlock(&pers_lock);
3226 	mddev->level = pers->level;
3227 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3228 
3229 	if (mddev->reshape_position != MaxSector &&
3230 	    pers->start_reshape == NULL) {
3231 		/* This personality cannot handle reshaping... */
3232 		mddev->pers = NULL;
3233 		module_put(pers->owner);
3234 		return -EINVAL;
3235 	}
3236 
3237 	if (pers->sync_request) {
3238 		/* Warn if this is a potentially silly
3239 		 * configuration.
3240 		 */
3241 		char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
3242 		mdk_rdev_t *rdev2;
3243 		struct list_head *tmp2;
3244 		int warned = 0;
3245 		ITERATE_RDEV(mddev, rdev, tmp) {
3246 			ITERATE_RDEV(mddev, rdev2, tmp2) {
3247 				if (rdev < rdev2 &&
3248 				    rdev->bdev->bd_contains ==
3249 				    rdev2->bdev->bd_contains) {
3250 					printk(KERN_WARNING
3251 					       "%s: WARNING: %s appears to be"
3252 					       " on the same physical disk as"
3253 					       " %s.\n",
3254 					       mdname(mddev),
3255 					       bdevname(rdev->bdev,b),
3256 					       bdevname(rdev2->bdev,b2));
3257 					warned = 1;
3258 				}
3259 			}
3260 		}
3261 		if (warned)
3262 			printk(KERN_WARNING
3263 			       "True protection against single-disk"
3264 			       " failure might be compromised.\n");
3265 	}
3266 
3267 	mddev->recovery = 0;
3268 	mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
3269 	mddev->barriers_work = 1;
3270 	mddev->ok_start_degraded = start_dirty_degraded;
3271 
3272 	if (start_readonly)
3273 		mddev->ro = 2; /* read-only, but switch on first write */
3274 
3275 	err = mddev->pers->run(mddev);
3276 	if (!err && mddev->pers->sync_request) {
3277 		err = bitmap_create(mddev);
3278 		if (err) {
3279 			printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
3280 			       mdname(mddev), err);
3281 			mddev->pers->stop(mddev);
3282 		}
3283 	}
3284 	if (err) {
3285 		printk(KERN_ERR "md: pers->run() failed ...\n");
3286 		module_put(mddev->pers->owner);
3287 		mddev->pers = NULL;
3288 		bitmap_destroy(mddev);
3289 		return err;
3290 	}
3291 	if (mddev->pers->sync_request) {
3292 		if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3293 			printk(KERN_WARNING
3294 			       "md: cannot register extra attributes for %s\n",
3295 			       mdname(mddev));
3296 	} else if (mddev->ro == 2) /* auto-readonly not meaningful */
3297 		mddev->ro = 0;
3298 
3299  	atomic_set(&mddev->writes_pending,0);
3300 	mddev->safemode = 0;
3301 	mddev->safemode_timer.function = md_safemode_timeout;
3302 	mddev->safemode_timer.data = (unsigned long) mddev;
3303 	mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
3304 	mddev->in_sync = 1;
3305 
3306 	ITERATE_RDEV(mddev,rdev,tmp)
3307 		if (rdev->raid_disk >= 0) {
3308 			char nm[20];
3309 			sprintf(nm, "rd%d", rdev->raid_disk);
3310 			if (sysfs_create_link(&mddev->kobj, &rdev->kobj, nm))
3311 				printk("md: cannot register %s for %s\n",
3312 				       nm, mdname(mddev));
3313 		}
3314 
3315 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3316 
3317 	if (mddev->flags)
3318 		md_update_sb(mddev, 0);
3319 
3320 	set_capacity(disk, mddev->array_size<<1);
3321 
3322 	/* If we call blk_queue_make_request here, it will
3323 	 * re-initialise max_sectors etc which may have been
3324 	 * refined inside -> run.  So just set the bits we need to set.
3325 	 * Most initialisation happended when we called
3326 	 * blk_queue_make_request(..., md_fail_request)
3327 	 * earlier.
3328 	 */
3329 	mddev->queue->queuedata = mddev;
3330 	mddev->queue->make_request_fn = mddev->pers->make_request;
3331 
3332 	/* If there is a partially-recovered drive we need to
3333 	 * start recovery here.  If we leave it to md_check_recovery,
3334 	 * it will remove the drives and not do the right thing
3335 	 */
3336 	if (mddev->degraded && !mddev->sync_thread) {
3337 		struct list_head *rtmp;
3338 		int spares = 0;
3339 		ITERATE_RDEV(mddev,rdev,rtmp)
3340 			if (rdev->raid_disk >= 0 &&
3341 			    !test_bit(In_sync, &rdev->flags) &&
3342 			    !test_bit(Faulty, &rdev->flags))
3343 				/* complete an interrupted recovery */
3344 				spares++;
3345 		if (spares && mddev->pers->sync_request) {
3346 			mddev->recovery = 0;
3347 			set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3348 			mddev->sync_thread = md_register_thread(md_do_sync,
3349 								mddev,
3350 								"%s_resync");
3351 			if (!mddev->sync_thread) {
3352 				printk(KERN_ERR "%s: could not start resync"
3353 				       " thread...\n",
3354 				       mdname(mddev));
3355 				/* leave the spares where they are, it shouldn't hurt */
3356 				mddev->recovery = 0;
3357 			}
3358 		}
3359 	}
3360 	md_wakeup_thread(mddev->thread);
3361 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
3362 
3363 	mddev->changed = 1;
3364 	md_new_event(mddev);
3365 	kobject_uevent(&mddev->gendisk->kobj, KOBJ_CHANGE);
3366 	return 0;
3367 }
3368 
3369 static int restart_array(mddev_t *mddev)
3370 {
3371 	struct gendisk *disk = mddev->gendisk;
3372 	int err;
3373 
3374 	/*
3375 	 * Complain if it has no devices
3376 	 */
3377 	err = -ENXIO;
3378 	if (list_empty(&mddev->disks))
3379 		goto out;
3380 
3381 	if (mddev->pers) {
3382 		err = -EBUSY;
3383 		if (!mddev->ro)
3384 			goto out;
3385 
3386 		mddev->safemode = 0;
3387 		mddev->ro = 0;
3388 		set_disk_ro(disk, 0);
3389 
3390 		printk(KERN_INFO "md: %s switched to read-write mode.\n",
3391 			mdname(mddev));
3392 		/*
3393 		 * Kick recovery or resync if necessary
3394 		 */
3395 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3396 		md_wakeup_thread(mddev->thread);
3397 		md_wakeup_thread(mddev->sync_thread);
3398 		err = 0;
3399 	} else
3400 		err = -EINVAL;
3401 
3402 out:
3403 	return err;
3404 }
3405 
3406 /* similar to deny_write_access, but accounts for our holding a reference
3407  * to the file ourselves */
3408 static int deny_bitmap_write_access(struct file * file)
3409 {
3410 	struct inode *inode = file->f_mapping->host;
3411 
3412 	spin_lock(&inode->i_lock);
3413 	if (atomic_read(&inode->i_writecount) > 1) {
3414 		spin_unlock(&inode->i_lock);
3415 		return -ETXTBSY;
3416 	}
3417 	atomic_set(&inode->i_writecount, -1);
3418 	spin_unlock(&inode->i_lock);
3419 
3420 	return 0;
3421 }
3422 
3423 static void restore_bitmap_write_access(struct file *file)
3424 {
3425 	struct inode *inode = file->f_mapping->host;
3426 
3427 	spin_lock(&inode->i_lock);
3428 	atomic_set(&inode->i_writecount, 1);
3429 	spin_unlock(&inode->i_lock);
3430 }
3431 
3432 /* mode:
3433  *   0 - completely stop and dis-assemble array
3434  *   1 - switch to readonly
3435  *   2 - stop but do not disassemble array
3436  */
3437 static int do_md_stop(mddev_t * mddev, int mode)
3438 {
3439 	int err = 0;
3440 	struct gendisk *disk = mddev->gendisk;
3441 
3442 	if (mddev->pers) {
3443 		if (atomic_read(&mddev->active)>2) {
3444 			printk("md: %s still in use.\n",mdname(mddev));
3445 			return -EBUSY;
3446 		}
3447 
3448 		if (mddev->sync_thread) {
3449 			set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3450 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3451 			md_unregister_thread(mddev->sync_thread);
3452 			mddev->sync_thread = NULL;
3453 		}
3454 
3455 		del_timer_sync(&mddev->safemode_timer);
3456 
3457 		invalidate_partition(disk, 0);
3458 
3459 		switch(mode) {
3460 		case 1: /* readonly */
3461 			err  = -ENXIO;
3462 			if (mddev->ro==1)
3463 				goto out;
3464 			mddev->ro = 1;
3465 			break;
3466 		case 0: /* disassemble */
3467 		case 2: /* stop */
3468 			bitmap_flush(mddev);
3469 			md_super_wait(mddev);
3470 			if (mddev->ro)
3471 				set_disk_ro(disk, 0);
3472 			blk_queue_make_request(mddev->queue, md_fail_request);
3473 			mddev->pers->stop(mddev);
3474 			mddev->queue->merge_bvec_fn = NULL;
3475 			mddev->queue->unplug_fn = NULL;
3476 			mddev->queue->issue_flush_fn = NULL;
3477 			mddev->queue->backing_dev_info.congested_fn = NULL;
3478 			if (mddev->pers->sync_request)
3479 				sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
3480 
3481 			module_put(mddev->pers->owner);
3482 			mddev->pers = NULL;
3483 
3484 			set_capacity(disk, 0);
3485 			mddev->changed = 1;
3486 
3487 			if (mddev->ro)
3488 				mddev->ro = 0;
3489 		}
3490 		if (!mddev->in_sync || mddev->flags) {
3491 			/* mark array as shutdown cleanly */
3492 			mddev->in_sync = 1;
3493 			md_update_sb(mddev, 1);
3494 		}
3495 		if (mode == 1)
3496 			set_disk_ro(disk, 1);
3497 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3498 	}
3499 
3500 	/*
3501 	 * Free resources if final stop
3502 	 */
3503 	if (mode == 0) {
3504 		mdk_rdev_t *rdev;
3505 		struct list_head *tmp;
3506 
3507 		printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
3508 
3509 		bitmap_destroy(mddev);
3510 		if (mddev->bitmap_file) {
3511 			restore_bitmap_write_access(mddev->bitmap_file);
3512 			fput(mddev->bitmap_file);
3513 			mddev->bitmap_file = NULL;
3514 		}
3515 		mddev->bitmap_offset = 0;
3516 
3517 		ITERATE_RDEV(mddev,rdev,tmp)
3518 			if (rdev->raid_disk >= 0) {
3519 				char nm[20];
3520 				sprintf(nm, "rd%d", rdev->raid_disk);
3521 				sysfs_remove_link(&mddev->kobj, nm);
3522 			}
3523 
3524 		/* make sure all delayed_delete calls have finished */
3525 		flush_scheduled_work();
3526 
3527 		export_array(mddev);
3528 
3529 		mddev->array_size = 0;
3530 		mddev->size = 0;
3531 		mddev->raid_disks = 0;
3532 		mddev->recovery_cp = 0;
3533 		mddev->reshape_position = MaxSector;
3534 
3535 	} else if (mddev->pers)
3536 		printk(KERN_INFO "md: %s switched to read-only mode.\n",
3537 			mdname(mddev));
3538 	err = 0;
3539 	md_new_event(mddev);
3540 out:
3541 	return err;
3542 }
3543 
3544 #ifndef MODULE
3545 static void autorun_array(mddev_t *mddev)
3546 {
3547 	mdk_rdev_t *rdev;
3548 	struct list_head *tmp;
3549 	int err;
3550 
3551 	if (list_empty(&mddev->disks))
3552 		return;
3553 
3554 	printk(KERN_INFO "md: running: ");
3555 
3556 	ITERATE_RDEV(mddev,rdev,tmp) {
3557 		char b[BDEVNAME_SIZE];
3558 		printk("<%s>", bdevname(rdev->bdev,b));
3559 	}
3560 	printk("\n");
3561 
3562 	err = do_md_run (mddev);
3563 	if (err) {
3564 		printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
3565 		do_md_stop (mddev, 0);
3566 	}
3567 }
3568 
3569 /*
3570  * lets try to run arrays based on all disks that have arrived
3571  * until now. (those are in pending_raid_disks)
3572  *
3573  * the method: pick the first pending disk, collect all disks with
3574  * the same UUID, remove all from the pending list and put them into
3575  * the 'same_array' list. Then order this list based on superblock
3576  * update time (freshest comes first), kick out 'old' disks and
3577  * compare superblocks. If everything's fine then run it.
3578  *
3579  * If "unit" is allocated, then bump its reference count
3580  */
3581 static void autorun_devices(int part)
3582 {
3583 	struct list_head *tmp;
3584 	mdk_rdev_t *rdev0, *rdev;
3585 	mddev_t *mddev;
3586 	char b[BDEVNAME_SIZE];
3587 
3588 	printk(KERN_INFO "md: autorun ...\n");
3589 	while (!list_empty(&pending_raid_disks)) {
3590 		int unit;
3591 		dev_t dev;
3592 		LIST_HEAD(candidates);
3593 		rdev0 = list_entry(pending_raid_disks.next,
3594 					 mdk_rdev_t, same_set);
3595 
3596 		printk(KERN_INFO "md: considering %s ...\n",
3597 			bdevname(rdev0->bdev,b));
3598 		INIT_LIST_HEAD(&candidates);
3599 		ITERATE_RDEV_PENDING(rdev,tmp)
3600 			if (super_90_load(rdev, rdev0, 0) >= 0) {
3601 				printk(KERN_INFO "md:  adding %s ...\n",
3602 					bdevname(rdev->bdev,b));
3603 				list_move(&rdev->same_set, &candidates);
3604 			}
3605 		/*
3606 		 * now we have a set of devices, with all of them having
3607 		 * mostly sane superblocks. It's time to allocate the
3608 		 * mddev.
3609 		 */
3610 		if (part) {
3611 			dev = MKDEV(mdp_major,
3612 				    rdev0->preferred_minor << MdpMinorShift);
3613 			unit = MINOR(dev) >> MdpMinorShift;
3614 		} else {
3615 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
3616 			unit = MINOR(dev);
3617 		}
3618 		if (rdev0->preferred_minor != unit) {
3619 			printk(KERN_INFO "md: unit number in %s is bad: %d\n",
3620 			       bdevname(rdev0->bdev, b), rdev0->preferred_minor);
3621 			break;
3622 		}
3623 
3624 		md_probe(dev, NULL, NULL);
3625 		mddev = mddev_find(dev);
3626 		if (!mddev) {
3627 			printk(KERN_ERR
3628 				"md: cannot allocate memory for md drive.\n");
3629 			break;
3630 		}
3631 		if (mddev_lock(mddev))
3632 			printk(KERN_WARNING "md: %s locked, cannot run\n",
3633 			       mdname(mddev));
3634 		else if (mddev->raid_disks || mddev->major_version
3635 			 || !list_empty(&mddev->disks)) {
3636 			printk(KERN_WARNING
3637 				"md: %s already running, cannot run %s\n",
3638 				mdname(mddev), bdevname(rdev0->bdev,b));
3639 			mddev_unlock(mddev);
3640 		} else {
3641 			printk(KERN_INFO "md: created %s\n", mdname(mddev));
3642 			ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
3643 				list_del_init(&rdev->same_set);
3644 				if (bind_rdev_to_array(rdev, mddev))
3645 					export_rdev(rdev);
3646 			}
3647 			autorun_array(mddev);
3648 			mddev_unlock(mddev);
3649 		}
3650 		/* on success, candidates will be empty, on error
3651 		 * it won't...
3652 		 */
3653 		ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
3654 			export_rdev(rdev);
3655 		mddev_put(mddev);
3656 	}
3657 	printk(KERN_INFO "md: ... autorun DONE.\n");
3658 }
3659 #endif /* !MODULE */
3660 
3661 static int get_version(void __user * arg)
3662 {
3663 	mdu_version_t ver;
3664 
3665 	ver.major = MD_MAJOR_VERSION;
3666 	ver.minor = MD_MINOR_VERSION;
3667 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
3668 
3669 	if (copy_to_user(arg, &ver, sizeof(ver)))
3670 		return -EFAULT;
3671 
3672 	return 0;
3673 }
3674 
3675 static int get_array_info(mddev_t * mddev, void __user * arg)
3676 {
3677 	mdu_array_info_t info;
3678 	int nr,working,active,failed,spare;
3679 	mdk_rdev_t *rdev;
3680 	struct list_head *tmp;
3681 
3682 	nr=working=active=failed=spare=0;
3683 	ITERATE_RDEV(mddev,rdev,tmp) {
3684 		nr++;
3685 		if (test_bit(Faulty, &rdev->flags))
3686 			failed++;
3687 		else {
3688 			working++;
3689 			if (test_bit(In_sync, &rdev->flags))
3690 				active++;
3691 			else
3692 				spare++;
3693 		}
3694 	}
3695 
3696 	info.major_version = mddev->major_version;
3697 	info.minor_version = mddev->minor_version;
3698 	info.patch_version = MD_PATCHLEVEL_VERSION;
3699 	info.ctime         = mddev->ctime;
3700 	info.level         = mddev->level;
3701 	info.size          = mddev->size;
3702 	if (info.size != mddev->size) /* overflow */
3703 		info.size = -1;
3704 	info.nr_disks      = nr;
3705 	info.raid_disks    = mddev->raid_disks;
3706 	info.md_minor      = mddev->md_minor;
3707 	info.not_persistent= !mddev->persistent;
3708 
3709 	info.utime         = mddev->utime;
3710 	info.state         = 0;
3711 	if (mddev->in_sync)
3712 		info.state = (1<<MD_SB_CLEAN);
3713 	if (mddev->bitmap && mddev->bitmap_offset)
3714 		info.state = (1<<MD_SB_BITMAP_PRESENT);
3715 	info.active_disks  = active;
3716 	info.working_disks = working;
3717 	info.failed_disks  = failed;
3718 	info.spare_disks   = spare;
3719 
3720 	info.layout        = mddev->layout;
3721 	info.chunk_size    = mddev->chunk_size;
3722 
3723 	if (copy_to_user(arg, &info, sizeof(info)))
3724 		return -EFAULT;
3725 
3726 	return 0;
3727 }
3728 
3729 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
3730 {
3731 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
3732 	char *ptr, *buf = NULL;
3733 	int err = -ENOMEM;
3734 
3735 	md_allow_write(mddev);
3736 
3737 	file = kmalloc(sizeof(*file), GFP_KERNEL);
3738 	if (!file)
3739 		goto out;
3740 
3741 	/* bitmap disabled, zero the first byte and copy out */
3742 	if (!mddev->bitmap || !mddev->bitmap->file) {
3743 		file->pathname[0] = '\0';
3744 		goto copy_out;
3745 	}
3746 
3747 	buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
3748 	if (!buf)
3749 		goto out;
3750 
3751 	ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
3752 	if (!ptr)
3753 		goto out;
3754 
3755 	strcpy(file->pathname, ptr);
3756 
3757 copy_out:
3758 	err = 0;
3759 	if (copy_to_user(arg, file, sizeof(*file)))
3760 		err = -EFAULT;
3761 out:
3762 	kfree(buf);
3763 	kfree(file);
3764 	return err;
3765 }
3766 
3767 static int get_disk_info(mddev_t * mddev, void __user * arg)
3768 {
3769 	mdu_disk_info_t info;
3770 	unsigned int nr;
3771 	mdk_rdev_t *rdev;
3772 
3773 	if (copy_from_user(&info, arg, sizeof(info)))
3774 		return -EFAULT;
3775 
3776 	nr = info.number;
3777 
3778 	rdev = find_rdev_nr(mddev, nr);
3779 	if (rdev) {
3780 		info.major = MAJOR(rdev->bdev->bd_dev);
3781 		info.minor = MINOR(rdev->bdev->bd_dev);
3782 		info.raid_disk = rdev->raid_disk;
3783 		info.state = 0;
3784 		if (test_bit(Faulty, &rdev->flags))
3785 			info.state |= (1<<MD_DISK_FAULTY);
3786 		else if (test_bit(In_sync, &rdev->flags)) {
3787 			info.state |= (1<<MD_DISK_ACTIVE);
3788 			info.state |= (1<<MD_DISK_SYNC);
3789 		}
3790 		if (test_bit(WriteMostly, &rdev->flags))
3791 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
3792 	} else {
3793 		info.major = info.minor = 0;
3794 		info.raid_disk = -1;
3795 		info.state = (1<<MD_DISK_REMOVED);
3796 	}
3797 
3798 	if (copy_to_user(arg, &info, sizeof(info)))
3799 		return -EFAULT;
3800 
3801 	return 0;
3802 }
3803 
3804 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
3805 {
3806 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
3807 	mdk_rdev_t *rdev;
3808 	dev_t dev = MKDEV(info->major,info->minor);
3809 
3810 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
3811 		return -EOVERFLOW;
3812 
3813 	if (!mddev->raid_disks) {
3814 		int err;
3815 		/* expecting a device which has a superblock */
3816 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
3817 		if (IS_ERR(rdev)) {
3818 			printk(KERN_WARNING
3819 				"md: md_import_device returned %ld\n",
3820 				PTR_ERR(rdev));
3821 			return PTR_ERR(rdev);
3822 		}
3823 		if (!list_empty(&mddev->disks)) {
3824 			mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
3825 							mdk_rdev_t, same_set);
3826 			int err = super_types[mddev->major_version]
3827 				.load_super(rdev, rdev0, mddev->minor_version);
3828 			if (err < 0) {
3829 				printk(KERN_WARNING
3830 					"md: %s has different UUID to %s\n",
3831 					bdevname(rdev->bdev,b),
3832 					bdevname(rdev0->bdev,b2));
3833 				export_rdev(rdev);
3834 				return -EINVAL;
3835 			}
3836 		}
3837 		err = bind_rdev_to_array(rdev, mddev);
3838 		if (err)
3839 			export_rdev(rdev);
3840 		return err;
3841 	}
3842 
3843 	/*
3844 	 * add_new_disk can be used once the array is assembled
3845 	 * to add "hot spares".  They must already have a superblock
3846 	 * written
3847 	 */
3848 	if (mddev->pers) {
3849 		int err;
3850 		if (!mddev->pers->hot_add_disk) {
3851 			printk(KERN_WARNING
3852 				"%s: personality does not support diskops!\n",
3853 			       mdname(mddev));
3854 			return -EINVAL;
3855 		}
3856 		if (mddev->persistent)
3857 			rdev = md_import_device(dev, mddev->major_version,
3858 						mddev->minor_version);
3859 		else
3860 			rdev = md_import_device(dev, -1, -1);
3861 		if (IS_ERR(rdev)) {
3862 			printk(KERN_WARNING
3863 				"md: md_import_device returned %ld\n",
3864 				PTR_ERR(rdev));
3865 			return PTR_ERR(rdev);
3866 		}
3867 		/* set save_raid_disk if appropriate */
3868 		if (!mddev->persistent) {
3869 			if (info->state & (1<<MD_DISK_SYNC)  &&
3870 			    info->raid_disk < mddev->raid_disks)
3871 				rdev->raid_disk = info->raid_disk;
3872 			else
3873 				rdev->raid_disk = -1;
3874 		} else
3875 			super_types[mddev->major_version].
3876 				validate_super(mddev, rdev);
3877 		rdev->saved_raid_disk = rdev->raid_disk;
3878 
3879 		clear_bit(In_sync, &rdev->flags); /* just to be sure */
3880 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
3881 			set_bit(WriteMostly, &rdev->flags);
3882 
3883 		rdev->raid_disk = -1;
3884 		err = bind_rdev_to_array(rdev, mddev);
3885 		if (!err && !mddev->pers->hot_remove_disk) {
3886 			/* If there is hot_add_disk but no hot_remove_disk
3887 			 * then added disks for geometry changes,
3888 			 * and should be added immediately.
3889 			 */
3890 			super_types[mddev->major_version].
3891 				validate_super(mddev, rdev);
3892 			err = mddev->pers->hot_add_disk(mddev, rdev);
3893 			if (err)
3894 				unbind_rdev_from_array(rdev);
3895 		}
3896 		if (err)
3897 			export_rdev(rdev);
3898 
3899 		md_update_sb(mddev, 1);
3900 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3901 		md_wakeup_thread(mddev->thread);
3902 		return err;
3903 	}
3904 
3905 	/* otherwise, add_new_disk is only allowed
3906 	 * for major_version==0 superblocks
3907 	 */
3908 	if (mddev->major_version != 0) {
3909 		printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
3910 		       mdname(mddev));
3911 		return -EINVAL;
3912 	}
3913 
3914 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
3915 		int err;
3916 		rdev = md_import_device (dev, -1, 0);
3917 		if (IS_ERR(rdev)) {
3918 			printk(KERN_WARNING
3919 				"md: error, md_import_device() returned %ld\n",
3920 				PTR_ERR(rdev));
3921 			return PTR_ERR(rdev);
3922 		}
3923 		rdev->desc_nr = info->number;
3924 		if (info->raid_disk < mddev->raid_disks)
3925 			rdev->raid_disk = info->raid_disk;
3926 		else
3927 			rdev->raid_disk = -1;
3928 
3929 		rdev->flags = 0;
3930 
3931 		if (rdev->raid_disk < mddev->raid_disks)
3932 			if (info->state & (1<<MD_DISK_SYNC))
3933 				set_bit(In_sync, &rdev->flags);
3934 
3935 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
3936 			set_bit(WriteMostly, &rdev->flags);
3937 
3938 		if (!mddev->persistent) {
3939 			printk(KERN_INFO "md: nonpersistent superblock ...\n");
3940 			rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
3941 		} else
3942 			rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
3943 		rdev->size = calc_dev_size(rdev, mddev->chunk_size);
3944 
3945 		err = bind_rdev_to_array(rdev, mddev);
3946 		if (err) {
3947 			export_rdev(rdev);
3948 			return err;
3949 		}
3950 	}
3951 
3952 	return 0;
3953 }
3954 
3955 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
3956 {
3957 	char b[BDEVNAME_SIZE];
3958 	mdk_rdev_t *rdev;
3959 
3960 	if (!mddev->pers)
3961 		return -ENODEV;
3962 
3963 	rdev = find_rdev(mddev, dev);
3964 	if (!rdev)
3965 		return -ENXIO;
3966 
3967 	if (rdev->raid_disk >= 0)
3968 		goto busy;
3969 
3970 	kick_rdev_from_array(rdev);
3971 	md_update_sb(mddev, 1);
3972 	md_new_event(mddev);
3973 
3974 	return 0;
3975 busy:
3976 	printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
3977 		bdevname(rdev->bdev,b), mdname(mddev));
3978 	return -EBUSY;
3979 }
3980 
3981 static int hot_add_disk(mddev_t * mddev, dev_t dev)
3982 {
3983 	char b[BDEVNAME_SIZE];
3984 	int err;
3985 	unsigned int size;
3986 	mdk_rdev_t *rdev;
3987 
3988 	if (!mddev->pers)
3989 		return -ENODEV;
3990 
3991 	if (mddev->major_version != 0) {
3992 		printk(KERN_WARNING "%s: HOT_ADD may only be used with"
3993 			" version-0 superblocks.\n",
3994 			mdname(mddev));
3995 		return -EINVAL;
3996 	}
3997 	if (!mddev->pers->hot_add_disk) {
3998 		printk(KERN_WARNING
3999 			"%s: personality does not support diskops!\n",
4000 			mdname(mddev));
4001 		return -EINVAL;
4002 	}
4003 
4004 	rdev = md_import_device (dev, -1, 0);
4005 	if (IS_ERR(rdev)) {
4006 		printk(KERN_WARNING
4007 			"md: error, md_import_device() returned %ld\n",
4008 			PTR_ERR(rdev));
4009 		return -EINVAL;
4010 	}
4011 
4012 	if (mddev->persistent)
4013 		rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
4014 	else
4015 		rdev->sb_offset =
4016 			rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
4017 
4018 	size = calc_dev_size(rdev, mddev->chunk_size);
4019 	rdev->size = size;
4020 
4021 	if (test_bit(Faulty, &rdev->flags)) {
4022 		printk(KERN_WARNING
4023 			"md: can not hot-add faulty %s disk to %s!\n",
4024 			bdevname(rdev->bdev,b), mdname(mddev));
4025 		err = -EINVAL;
4026 		goto abort_export;
4027 	}
4028 	clear_bit(In_sync, &rdev->flags);
4029 	rdev->desc_nr = -1;
4030 	rdev->saved_raid_disk = -1;
4031 	err = bind_rdev_to_array(rdev, mddev);
4032 	if (err)
4033 		goto abort_export;
4034 
4035 	/*
4036 	 * The rest should better be atomic, we can have disk failures
4037 	 * noticed in interrupt contexts ...
4038 	 */
4039 
4040 	if (rdev->desc_nr == mddev->max_disks) {
4041 		printk(KERN_WARNING "%s: can not hot-add to full array!\n",
4042 			mdname(mddev));
4043 		err = -EBUSY;
4044 		goto abort_unbind_export;
4045 	}
4046 
4047 	rdev->raid_disk = -1;
4048 
4049 	md_update_sb(mddev, 1);
4050 
4051 	/*
4052 	 * Kick recovery, maybe this spare has to be added to the
4053 	 * array immediately.
4054 	 */
4055 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4056 	md_wakeup_thread(mddev->thread);
4057 	md_new_event(mddev);
4058 	return 0;
4059 
4060 abort_unbind_export:
4061 	unbind_rdev_from_array(rdev);
4062 
4063 abort_export:
4064 	export_rdev(rdev);
4065 	return err;
4066 }
4067 
4068 static int set_bitmap_file(mddev_t *mddev, int fd)
4069 {
4070 	int err;
4071 
4072 	if (mddev->pers) {
4073 		if (!mddev->pers->quiesce)
4074 			return -EBUSY;
4075 		if (mddev->recovery || mddev->sync_thread)
4076 			return -EBUSY;
4077 		/* we should be able to change the bitmap.. */
4078 	}
4079 
4080 
4081 	if (fd >= 0) {
4082 		if (mddev->bitmap)
4083 			return -EEXIST; /* cannot add when bitmap is present */
4084 		mddev->bitmap_file = fget(fd);
4085 
4086 		if (mddev->bitmap_file == NULL) {
4087 			printk(KERN_ERR "%s: error: failed to get bitmap file\n",
4088 			       mdname(mddev));
4089 			return -EBADF;
4090 		}
4091 
4092 		err = deny_bitmap_write_access(mddev->bitmap_file);
4093 		if (err) {
4094 			printk(KERN_ERR "%s: error: bitmap file is already in use\n",
4095 			       mdname(mddev));
4096 			fput(mddev->bitmap_file);
4097 			mddev->bitmap_file = NULL;
4098 			return err;
4099 		}
4100 		mddev->bitmap_offset = 0; /* file overrides offset */
4101 	} else if (mddev->bitmap == NULL)
4102 		return -ENOENT; /* cannot remove what isn't there */
4103 	err = 0;
4104 	if (mddev->pers) {
4105 		mddev->pers->quiesce(mddev, 1);
4106 		if (fd >= 0)
4107 			err = bitmap_create(mddev);
4108 		if (fd < 0 || err) {
4109 			bitmap_destroy(mddev);
4110 			fd = -1; /* make sure to put the file */
4111 		}
4112 		mddev->pers->quiesce(mddev, 0);
4113 	}
4114 	if (fd < 0) {
4115 		if (mddev->bitmap_file) {
4116 			restore_bitmap_write_access(mddev->bitmap_file);
4117 			fput(mddev->bitmap_file);
4118 		}
4119 		mddev->bitmap_file = NULL;
4120 	}
4121 
4122 	return err;
4123 }
4124 
4125 /*
4126  * set_array_info is used two different ways
4127  * The original usage is when creating a new array.
4128  * In this usage, raid_disks is > 0 and it together with
4129  *  level, size, not_persistent,layout,chunksize determine the
4130  *  shape of the array.
4131  *  This will always create an array with a type-0.90.0 superblock.
4132  * The newer usage is when assembling an array.
4133  *  In this case raid_disks will be 0, and the major_version field is
4134  *  use to determine which style super-blocks are to be found on the devices.
4135  *  The minor and patch _version numbers are also kept incase the
4136  *  super_block handler wishes to interpret them.
4137  */
4138 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
4139 {
4140 
4141 	if (info->raid_disks == 0) {
4142 		/* just setting version number for superblock loading */
4143 		if (info->major_version < 0 ||
4144 		    info->major_version >= ARRAY_SIZE(super_types) ||
4145 		    super_types[info->major_version].name == NULL) {
4146 			/* maybe try to auto-load a module? */
4147 			printk(KERN_INFO
4148 				"md: superblock version %d not known\n",
4149 				info->major_version);
4150 			return -EINVAL;
4151 		}
4152 		mddev->major_version = info->major_version;
4153 		mddev->minor_version = info->minor_version;
4154 		mddev->patch_version = info->patch_version;
4155 		mddev->persistent = !info->not_persistent;
4156 		return 0;
4157 	}
4158 	mddev->major_version = MD_MAJOR_VERSION;
4159 	mddev->minor_version = MD_MINOR_VERSION;
4160 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
4161 	mddev->ctime         = get_seconds();
4162 
4163 	mddev->level         = info->level;
4164 	mddev->clevel[0]     = 0;
4165 	mddev->size          = info->size;
4166 	mddev->raid_disks    = info->raid_disks;
4167 	/* don't set md_minor, it is determined by which /dev/md* was
4168 	 * openned
4169 	 */
4170 	if (info->state & (1<<MD_SB_CLEAN))
4171 		mddev->recovery_cp = MaxSector;
4172 	else
4173 		mddev->recovery_cp = 0;
4174 	mddev->persistent    = ! info->not_persistent;
4175 
4176 	mddev->layout        = info->layout;
4177 	mddev->chunk_size    = info->chunk_size;
4178 
4179 	mddev->max_disks     = MD_SB_DISKS;
4180 
4181 	mddev->flags         = 0;
4182 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
4183 
4184 	mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
4185 	mddev->bitmap_offset = 0;
4186 
4187 	mddev->reshape_position = MaxSector;
4188 
4189 	/*
4190 	 * Generate a 128 bit UUID
4191 	 */
4192 	get_random_bytes(mddev->uuid, 16);
4193 
4194 	mddev->new_level = mddev->level;
4195 	mddev->new_chunk = mddev->chunk_size;
4196 	mddev->new_layout = mddev->layout;
4197 	mddev->delta_disks = 0;
4198 
4199 	return 0;
4200 }
4201 
4202 static int update_size(mddev_t *mddev, unsigned long size)
4203 {
4204 	mdk_rdev_t * rdev;
4205 	int rv;
4206 	struct list_head *tmp;
4207 	int fit = (size == 0);
4208 
4209 	if (mddev->pers->resize == NULL)
4210 		return -EINVAL;
4211 	/* The "size" is the amount of each device that is used.
4212 	 * This can only make sense for arrays with redundancy.
4213 	 * linear and raid0 always use whatever space is available
4214 	 * We can only consider changing the size if no resync
4215 	 * or reconstruction is happening, and if the new size
4216 	 * is acceptable. It must fit before the sb_offset or,
4217 	 * if that is <data_offset, it must fit before the
4218 	 * size of each device.
4219 	 * If size is zero, we find the largest size that fits.
4220 	 */
4221 	if (mddev->sync_thread)
4222 		return -EBUSY;
4223 	ITERATE_RDEV(mddev,rdev,tmp) {
4224 		sector_t avail;
4225 		avail = rdev->size * 2;
4226 
4227 		if (fit && (size == 0 || size > avail/2))
4228 			size = avail/2;
4229 		if (avail < ((sector_t)size << 1))
4230 			return -ENOSPC;
4231 	}
4232 	rv = mddev->pers->resize(mddev, (sector_t)size *2);
4233 	if (!rv) {
4234 		struct block_device *bdev;
4235 
4236 		bdev = bdget_disk(mddev->gendisk, 0);
4237 		if (bdev) {
4238 			mutex_lock(&bdev->bd_inode->i_mutex);
4239 			i_size_write(bdev->bd_inode, (loff_t)mddev->array_size << 10);
4240 			mutex_unlock(&bdev->bd_inode->i_mutex);
4241 			bdput(bdev);
4242 		}
4243 	}
4244 	return rv;
4245 }
4246 
4247 static int update_raid_disks(mddev_t *mddev, int raid_disks)
4248 {
4249 	int rv;
4250 	/* change the number of raid disks */
4251 	if (mddev->pers->check_reshape == NULL)
4252 		return -EINVAL;
4253 	if (raid_disks <= 0 ||
4254 	    raid_disks >= mddev->max_disks)
4255 		return -EINVAL;
4256 	if (mddev->sync_thread || mddev->reshape_position != MaxSector)
4257 		return -EBUSY;
4258 	mddev->delta_disks = raid_disks - mddev->raid_disks;
4259 
4260 	rv = mddev->pers->check_reshape(mddev);
4261 	return rv;
4262 }
4263 
4264 
4265 /*
4266  * update_array_info is used to change the configuration of an
4267  * on-line array.
4268  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
4269  * fields in the info are checked against the array.
4270  * Any differences that cannot be handled will cause an error.
4271  * Normally, only one change can be managed at a time.
4272  */
4273 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
4274 {
4275 	int rv = 0;
4276 	int cnt = 0;
4277 	int state = 0;
4278 
4279 	/* calculate expected state,ignoring low bits */
4280 	if (mddev->bitmap && mddev->bitmap_offset)
4281 		state |= (1 << MD_SB_BITMAP_PRESENT);
4282 
4283 	if (mddev->major_version != info->major_version ||
4284 	    mddev->minor_version != info->minor_version ||
4285 /*	    mddev->patch_version != info->patch_version || */
4286 	    mddev->ctime         != info->ctime         ||
4287 	    mddev->level         != info->level         ||
4288 /*	    mddev->layout        != info->layout        || */
4289 	    !mddev->persistent	 != info->not_persistent||
4290 	    mddev->chunk_size    != info->chunk_size    ||
4291 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
4292 	    ((state^info->state) & 0xfffffe00)
4293 		)
4294 		return -EINVAL;
4295 	/* Check there is only one change */
4296 	if (info->size >= 0 && mddev->size != info->size) cnt++;
4297 	if (mddev->raid_disks != info->raid_disks) cnt++;
4298 	if (mddev->layout != info->layout) cnt++;
4299 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++;
4300 	if (cnt == 0) return 0;
4301 	if (cnt > 1) return -EINVAL;
4302 
4303 	if (mddev->layout != info->layout) {
4304 		/* Change layout
4305 		 * we don't need to do anything at the md level, the
4306 		 * personality will take care of it all.
4307 		 */
4308 		if (mddev->pers->reconfig == NULL)
4309 			return -EINVAL;
4310 		else
4311 			return mddev->pers->reconfig(mddev, info->layout, -1);
4312 	}
4313 	if (info->size >= 0 && mddev->size != info->size)
4314 		rv = update_size(mddev, info->size);
4315 
4316 	if (mddev->raid_disks    != info->raid_disks)
4317 		rv = update_raid_disks(mddev, info->raid_disks);
4318 
4319 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
4320 		if (mddev->pers->quiesce == NULL)
4321 			return -EINVAL;
4322 		if (mddev->recovery || mddev->sync_thread)
4323 			return -EBUSY;
4324 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
4325 			/* add the bitmap */
4326 			if (mddev->bitmap)
4327 				return -EEXIST;
4328 			if (mddev->default_bitmap_offset == 0)
4329 				return -EINVAL;
4330 			mddev->bitmap_offset = mddev->default_bitmap_offset;
4331 			mddev->pers->quiesce(mddev, 1);
4332 			rv = bitmap_create(mddev);
4333 			if (rv)
4334 				bitmap_destroy(mddev);
4335 			mddev->pers->quiesce(mddev, 0);
4336 		} else {
4337 			/* remove the bitmap */
4338 			if (!mddev->bitmap)
4339 				return -ENOENT;
4340 			if (mddev->bitmap->file)
4341 				return -EINVAL;
4342 			mddev->pers->quiesce(mddev, 1);
4343 			bitmap_destroy(mddev);
4344 			mddev->pers->quiesce(mddev, 0);
4345 			mddev->bitmap_offset = 0;
4346 		}
4347 	}
4348 	md_update_sb(mddev, 1);
4349 	return rv;
4350 }
4351 
4352 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
4353 {
4354 	mdk_rdev_t *rdev;
4355 
4356 	if (mddev->pers == NULL)
4357 		return -ENODEV;
4358 
4359 	rdev = find_rdev(mddev, dev);
4360 	if (!rdev)
4361 		return -ENODEV;
4362 
4363 	md_error(mddev, rdev);
4364 	return 0;
4365 }
4366 
4367 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
4368 {
4369 	mddev_t *mddev = bdev->bd_disk->private_data;
4370 
4371 	geo->heads = 2;
4372 	geo->sectors = 4;
4373 	geo->cylinders = get_capacity(mddev->gendisk) / 8;
4374 	return 0;
4375 }
4376 
4377 static int md_ioctl(struct inode *inode, struct file *file,
4378 			unsigned int cmd, unsigned long arg)
4379 {
4380 	int err = 0;
4381 	void __user *argp = (void __user *)arg;
4382 	mddev_t *mddev = NULL;
4383 
4384 	if (!capable(CAP_SYS_ADMIN))
4385 		return -EACCES;
4386 
4387 	/*
4388 	 * Commands dealing with the RAID driver but not any
4389 	 * particular array:
4390 	 */
4391 	switch (cmd)
4392 	{
4393 		case RAID_VERSION:
4394 			err = get_version(argp);
4395 			goto done;
4396 
4397 		case PRINT_RAID_DEBUG:
4398 			err = 0;
4399 			md_print_devices();
4400 			goto done;
4401 
4402 #ifndef MODULE
4403 		case RAID_AUTORUN:
4404 			err = 0;
4405 			autostart_arrays(arg);
4406 			goto done;
4407 #endif
4408 		default:;
4409 	}
4410 
4411 	/*
4412 	 * Commands creating/starting a new array:
4413 	 */
4414 
4415 	mddev = inode->i_bdev->bd_disk->private_data;
4416 
4417 	if (!mddev) {
4418 		BUG();
4419 		goto abort;
4420 	}
4421 
4422 	err = mddev_lock(mddev);
4423 	if (err) {
4424 		printk(KERN_INFO
4425 			"md: ioctl lock interrupted, reason %d, cmd %d\n",
4426 			err, cmd);
4427 		goto abort;
4428 	}
4429 
4430 	switch (cmd)
4431 	{
4432 		case SET_ARRAY_INFO:
4433 			{
4434 				mdu_array_info_t info;
4435 				if (!arg)
4436 					memset(&info, 0, sizeof(info));
4437 				else if (copy_from_user(&info, argp, sizeof(info))) {
4438 					err = -EFAULT;
4439 					goto abort_unlock;
4440 				}
4441 				if (mddev->pers) {
4442 					err = update_array_info(mddev, &info);
4443 					if (err) {
4444 						printk(KERN_WARNING "md: couldn't update"
4445 						       " array info. %d\n", err);
4446 						goto abort_unlock;
4447 					}
4448 					goto done_unlock;
4449 				}
4450 				if (!list_empty(&mddev->disks)) {
4451 					printk(KERN_WARNING
4452 					       "md: array %s already has disks!\n",
4453 					       mdname(mddev));
4454 					err = -EBUSY;
4455 					goto abort_unlock;
4456 				}
4457 				if (mddev->raid_disks) {
4458 					printk(KERN_WARNING
4459 					       "md: array %s already initialised!\n",
4460 					       mdname(mddev));
4461 					err = -EBUSY;
4462 					goto abort_unlock;
4463 				}
4464 				err = set_array_info(mddev, &info);
4465 				if (err) {
4466 					printk(KERN_WARNING "md: couldn't set"
4467 					       " array info. %d\n", err);
4468 					goto abort_unlock;
4469 				}
4470 			}
4471 			goto done_unlock;
4472 
4473 		default:;
4474 	}
4475 
4476 	/*
4477 	 * Commands querying/configuring an existing array:
4478 	 */
4479 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
4480 	 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
4481 	if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
4482 			&& cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
4483 	    		&& cmd != GET_BITMAP_FILE) {
4484 		err = -ENODEV;
4485 		goto abort_unlock;
4486 	}
4487 
4488 	/*
4489 	 * Commands even a read-only array can execute:
4490 	 */
4491 	switch (cmd)
4492 	{
4493 		case GET_ARRAY_INFO:
4494 			err = get_array_info(mddev, argp);
4495 			goto done_unlock;
4496 
4497 		case GET_BITMAP_FILE:
4498 			err = get_bitmap_file(mddev, argp);
4499 			goto done_unlock;
4500 
4501 		case GET_DISK_INFO:
4502 			err = get_disk_info(mddev, argp);
4503 			goto done_unlock;
4504 
4505 		case RESTART_ARRAY_RW:
4506 			err = restart_array(mddev);
4507 			goto done_unlock;
4508 
4509 		case STOP_ARRAY:
4510 			err = do_md_stop (mddev, 0);
4511 			goto done_unlock;
4512 
4513 		case STOP_ARRAY_RO:
4514 			err = do_md_stop (mddev, 1);
4515 			goto done_unlock;
4516 
4517 	/*
4518 	 * We have a problem here : there is no easy way to give a CHS
4519 	 * virtual geometry. We currently pretend that we have a 2 heads
4520 	 * 4 sectors (with a BIG number of cylinders...). This drives
4521 	 * dosfs just mad... ;-)
4522 	 */
4523 	}
4524 
4525 	/*
4526 	 * The remaining ioctls are changing the state of the
4527 	 * superblock, so we do not allow them on read-only arrays.
4528 	 * However non-MD ioctls (e.g. get-size) will still come through
4529 	 * here and hit the 'default' below, so only disallow
4530 	 * 'md' ioctls, and switch to rw mode if started auto-readonly.
4531 	 */
4532 	if (_IOC_TYPE(cmd) == MD_MAJOR &&
4533 	    mddev->ro && mddev->pers) {
4534 		if (mddev->ro == 2) {
4535 			mddev->ro = 0;
4536 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4537 		md_wakeup_thread(mddev->thread);
4538 
4539 		} else {
4540 			err = -EROFS;
4541 			goto abort_unlock;
4542 		}
4543 	}
4544 
4545 	switch (cmd)
4546 	{
4547 		case ADD_NEW_DISK:
4548 		{
4549 			mdu_disk_info_t info;
4550 			if (copy_from_user(&info, argp, sizeof(info)))
4551 				err = -EFAULT;
4552 			else
4553 				err = add_new_disk(mddev, &info);
4554 			goto done_unlock;
4555 		}
4556 
4557 		case HOT_REMOVE_DISK:
4558 			err = hot_remove_disk(mddev, new_decode_dev(arg));
4559 			goto done_unlock;
4560 
4561 		case HOT_ADD_DISK:
4562 			err = hot_add_disk(mddev, new_decode_dev(arg));
4563 			goto done_unlock;
4564 
4565 		case SET_DISK_FAULTY:
4566 			err = set_disk_faulty(mddev, new_decode_dev(arg));
4567 			goto done_unlock;
4568 
4569 		case RUN_ARRAY:
4570 			err = do_md_run (mddev);
4571 			goto done_unlock;
4572 
4573 		case SET_BITMAP_FILE:
4574 			err = set_bitmap_file(mddev, (int)arg);
4575 			goto done_unlock;
4576 
4577 		default:
4578 			err = -EINVAL;
4579 			goto abort_unlock;
4580 	}
4581 
4582 done_unlock:
4583 abort_unlock:
4584 	mddev_unlock(mddev);
4585 
4586 	return err;
4587 done:
4588 	if (err)
4589 		MD_BUG();
4590 abort:
4591 	return err;
4592 }
4593 
4594 static int md_open(struct inode *inode, struct file *file)
4595 {
4596 	/*
4597 	 * Succeed if we can lock the mddev, which confirms that
4598 	 * it isn't being stopped right now.
4599 	 */
4600 	mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
4601 	int err;
4602 
4603 	if ((err = mutex_lock_interruptible_nested(&mddev->reconfig_mutex, 1)))
4604 		goto out;
4605 
4606 	err = 0;
4607 	mddev_get(mddev);
4608 	mddev_unlock(mddev);
4609 
4610 	check_disk_change(inode->i_bdev);
4611  out:
4612 	return err;
4613 }
4614 
4615 static int md_release(struct inode *inode, struct file * file)
4616 {
4617  	mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
4618 
4619 	BUG_ON(!mddev);
4620 	mddev_put(mddev);
4621 
4622 	return 0;
4623 }
4624 
4625 static int md_media_changed(struct gendisk *disk)
4626 {
4627 	mddev_t *mddev = disk->private_data;
4628 
4629 	return mddev->changed;
4630 }
4631 
4632 static int md_revalidate(struct gendisk *disk)
4633 {
4634 	mddev_t *mddev = disk->private_data;
4635 
4636 	mddev->changed = 0;
4637 	return 0;
4638 }
4639 static struct block_device_operations md_fops =
4640 {
4641 	.owner		= THIS_MODULE,
4642 	.open		= md_open,
4643 	.release	= md_release,
4644 	.ioctl		= md_ioctl,
4645 	.getgeo		= md_getgeo,
4646 	.media_changed	= md_media_changed,
4647 	.revalidate_disk= md_revalidate,
4648 };
4649 
4650 static int md_thread(void * arg)
4651 {
4652 	mdk_thread_t *thread = arg;
4653 
4654 	/*
4655 	 * md_thread is a 'system-thread', it's priority should be very
4656 	 * high. We avoid resource deadlocks individually in each
4657 	 * raid personality. (RAID5 does preallocation) We also use RR and
4658 	 * the very same RT priority as kswapd, thus we will never get
4659 	 * into a priority inversion deadlock.
4660 	 *
4661 	 * we definitely have to have equal or higher priority than
4662 	 * bdflush, otherwise bdflush will deadlock if there are too
4663 	 * many dirty RAID5 blocks.
4664 	 */
4665 
4666 	allow_signal(SIGKILL);
4667 	while (!kthread_should_stop()) {
4668 
4669 		/* We need to wait INTERRUPTIBLE so that
4670 		 * we don't add to the load-average.
4671 		 * That means we need to be sure no signals are
4672 		 * pending
4673 		 */
4674 		if (signal_pending(current))
4675 			flush_signals(current);
4676 
4677 		wait_event_interruptible_timeout
4678 			(thread->wqueue,
4679 			 test_bit(THREAD_WAKEUP, &thread->flags)
4680 			 || kthread_should_stop(),
4681 			 thread->timeout);
4682 
4683 		clear_bit(THREAD_WAKEUP, &thread->flags);
4684 
4685 		thread->run(thread->mddev);
4686 	}
4687 
4688 	return 0;
4689 }
4690 
4691 void md_wakeup_thread(mdk_thread_t *thread)
4692 {
4693 	if (thread) {
4694 		dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
4695 		set_bit(THREAD_WAKEUP, &thread->flags);
4696 		wake_up(&thread->wqueue);
4697 	}
4698 }
4699 
4700 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
4701 				 const char *name)
4702 {
4703 	mdk_thread_t *thread;
4704 
4705 	thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
4706 	if (!thread)
4707 		return NULL;
4708 
4709 	init_waitqueue_head(&thread->wqueue);
4710 
4711 	thread->run = run;
4712 	thread->mddev = mddev;
4713 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
4714 	thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
4715 	if (IS_ERR(thread->tsk)) {
4716 		kfree(thread);
4717 		return NULL;
4718 	}
4719 	return thread;
4720 }
4721 
4722 void md_unregister_thread(mdk_thread_t *thread)
4723 {
4724 	dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
4725 
4726 	kthread_stop(thread->tsk);
4727 	kfree(thread);
4728 }
4729 
4730 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
4731 {
4732 	if (!mddev) {
4733 		MD_BUG();
4734 		return;
4735 	}
4736 
4737 	if (!rdev || test_bit(Faulty, &rdev->flags))
4738 		return;
4739 /*
4740 	dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
4741 		mdname(mddev),
4742 		MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
4743 		__builtin_return_address(0),__builtin_return_address(1),
4744 		__builtin_return_address(2),__builtin_return_address(3));
4745 */
4746 	if (!mddev->pers)
4747 		return;
4748 	if (!mddev->pers->error_handler)
4749 		return;
4750 	mddev->pers->error_handler(mddev,rdev);
4751 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4752 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4753 	md_wakeup_thread(mddev->thread);
4754 	md_new_event_inintr(mddev);
4755 }
4756 
4757 /* seq_file implementation /proc/mdstat */
4758 
4759 static void status_unused(struct seq_file *seq)
4760 {
4761 	int i = 0;
4762 	mdk_rdev_t *rdev;
4763 	struct list_head *tmp;
4764 
4765 	seq_printf(seq, "unused devices: ");
4766 
4767 	ITERATE_RDEV_PENDING(rdev,tmp) {
4768 		char b[BDEVNAME_SIZE];
4769 		i++;
4770 		seq_printf(seq, "%s ",
4771 			      bdevname(rdev->bdev,b));
4772 	}
4773 	if (!i)
4774 		seq_printf(seq, "<none>");
4775 
4776 	seq_printf(seq, "\n");
4777 }
4778 
4779 
4780 static void status_resync(struct seq_file *seq, mddev_t * mddev)
4781 {
4782 	sector_t max_blocks, resync, res;
4783 	unsigned long dt, db, rt;
4784 	int scale;
4785 	unsigned int per_milli;
4786 
4787 	resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
4788 
4789 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4790 		max_blocks = mddev->resync_max_sectors >> 1;
4791 	else
4792 		max_blocks = mddev->size;
4793 
4794 	/*
4795 	 * Should not happen.
4796 	 */
4797 	if (!max_blocks) {
4798 		MD_BUG();
4799 		return;
4800 	}
4801 	/* Pick 'scale' such that (resync>>scale)*1000 will fit
4802 	 * in a sector_t, and (max_blocks>>scale) will fit in a
4803 	 * u32, as those are the requirements for sector_div.
4804 	 * Thus 'scale' must be at least 10
4805 	 */
4806 	scale = 10;
4807 	if (sizeof(sector_t) > sizeof(unsigned long)) {
4808 		while ( max_blocks/2 > (1ULL<<(scale+32)))
4809 			scale++;
4810 	}
4811 	res = (resync>>scale)*1000;
4812 	sector_div(res, (u32)((max_blocks>>scale)+1));
4813 
4814 	per_milli = res;
4815 	{
4816 		int i, x = per_milli/50, y = 20-x;
4817 		seq_printf(seq, "[");
4818 		for (i = 0; i < x; i++)
4819 			seq_printf(seq, "=");
4820 		seq_printf(seq, ">");
4821 		for (i = 0; i < y; i++)
4822 			seq_printf(seq, ".");
4823 		seq_printf(seq, "] ");
4824 	}
4825 	seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
4826 		   (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
4827 		    "reshape" :
4828 		    (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
4829 		     "check" :
4830 		     (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
4831 		      "resync" : "recovery"))),
4832 		   per_milli/10, per_milli % 10,
4833 		   (unsigned long long) resync,
4834 		   (unsigned long long) max_blocks);
4835 
4836 	/*
4837 	 * We do not want to overflow, so the order of operands and
4838 	 * the * 100 / 100 trick are important. We do a +1 to be
4839 	 * safe against division by zero. We only estimate anyway.
4840 	 *
4841 	 * dt: time from mark until now
4842 	 * db: blocks written from mark until now
4843 	 * rt: remaining time
4844 	 */
4845 	dt = ((jiffies - mddev->resync_mark) / HZ);
4846 	if (!dt) dt++;
4847 	db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
4848 		- mddev->resync_mark_cnt;
4849 	rt = (dt * ((unsigned long)(max_blocks-resync) / (db/2/100+1)))/100;
4850 
4851 	seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
4852 
4853 	seq_printf(seq, " speed=%ldK/sec", db/2/dt);
4854 }
4855 
4856 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
4857 {
4858 	struct list_head *tmp;
4859 	loff_t l = *pos;
4860 	mddev_t *mddev;
4861 
4862 	if (l >= 0x10000)
4863 		return NULL;
4864 	if (!l--)
4865 		/* header */
4866 		return (void*)1;
4867 
4868 	spin_lock(&all_mddevs_lock);
4869 	list_for_each(tmp,&all_mddevs)
4870 		if (!l--) {
4871 			mddev = list_entry(tmp, mddev_t, all_mddevs);
4872 			mddev_get(mddev);
4873 			spin_unlock(&all_mddevs_lock);
4874 			return mddev;
4875 		}
4876 	spin_unlock(&all_mddevs_lock);
4877 	if (!l--)
4878 		return (void*)2;/* tail */
4879 	return NULL;
4880 }
4881 
4882 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4883 {
4884 	struct list_head *tmp;
4885 	mddev_t *next_mddev, *mddev = v;
4886 
4887 	++*pos;
4888 	if (v == (void*)2)
4889 		return NULL;
4890 
4891 	spin_lock(&all_mddevs_lock);
4892 	if (v == (void*)1)
4893 		tmp = all_mddevs.next;
4894 	else
4895 		tmp = mddev->all_mddevs.next;
4896 	if (tmp != &all_mddevs)
4897 		next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
4898 	else {
4899 		next_mddev = (void*)2;
4900 		*pos = 0x10000;
4901 	}
4902 	spin_unlock(&all_mddevs_lock);
4903 
4904 	if (v != (void*)1)
4905 		mddev_put(mddev);
4906 	return next_mddev;
4907 
4908 }
4909 
4910 static void md_seq_stop(struct seq_file *seq, void *v)
4911 {
4912 	mddev_t *mddev = v;
4913 
4914 	if (mddev && v != (void*)1 && v != (void*)2)
4915 		mddev_put(mddev);
4916 }
4917 
4918 struct mdstat_info {
4919 	int event;
4920 };
4921 
4922 static int md_seq_show(struct seq_file *seq, void *v)
4923 {
4924 	mddev_t *mddev = v;
4925 	sector_t size;
4926 	struct list_head *tmp2;
4927 	mdk_rdev_t *rdev;
4928 	struct mdstat_info *mi = seq->private;
4929 	struct bitmap *bitmap;
4930 
4931 	if (v == (void*)1) {
4932 		struct mdk_personality *pers;
4933 		seq_printf(seq, "Personalities : ");
4934 		spin_lock(&pers_lock);
4935 		list_for_each_entry(pers, &pers_list, list)
4936 			seq_printf(seq, "[%s] ", pers->name);
4937 
4938 		spin_unlock(&pers_lock);
4939 		seq_printf(seq, "\n");
4940 		mi->event = atomic_read(&md_event_count);
4941 		return 0;
4942 	}
4943 	if (v == (void*)2) {
4944 		status_unused(seq);
4945 		return 0;
4946 	}
4947 
4948 	if (mddev_lock(mddev) < 0)
4949 		return -EINTR;
4950 
4951 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
4952 		seq_printf(seq, "%s : %sactive", mdname(mddev),
4953 						mddev->pers ? "" : "in");
4954 		if (mddev->pers) {
4955 			if (mddev->ro==1)
4956 				seq_printf(seq, " (read-only)");
4957 			if (mddev->ro==2)
4958 				seq_printf(seq, "(auto-read-only)");
4959 			seq_printf(seq, " %s", mddev->pers->name);
4960 		}
4961 
4962 		size = 0;
4963 		ITERATE_RDEV(mddev,rdev,tmp2) {
4964 			char b[BDEVNAME_SIZE];
4965 			seq_printf(seq, " %s[%d]",
4966 				bdevname(rdev->bdev,b), rdev->desc_nr);
4967 			if (test_bit(WriteMostly, &rdev->flags))
4968 				seq_printf(seq, "(W)");
4969 			if (test_bit(Faulty, &rdev->flags)) {
4970 				seq_printf(seq, "(F)");
4971 				continue;
4972 			} else if (rdev->raid_disk < 0)
4973 				seq_printf(seq, "(S)"); /* spare */
4974 			size += rdev->size;
4975 		}
4976 
4977 		if (!list_empty(&mddev->disks)) {
4978 			if (mddev->pers)
4979 				seq_printf(seq, "\n      %llu blocks",
4980 					(unsigned long long)mddev->array_size);
4981 			else
4982 				seq_printf(seq, "\n      %llu blocks",
4983 					(unsigned long long)size);
4984 		}
4985 		if (mddev->persistent) {
4986 			if (mddev->major_version != 0 ||
4987 			    mddev->minor_version != 90) {
4988 				seq_printf(seq," super %d.%d",
4989 					   mddev->major_version,
4990 					   mddev->minor_version);
4991 			}
4992 		} else
4993 			seq_printf(seq, " super non-persistent");
4994 
4995 		if (mddev->pers) {
4996 			mddev->pers->status (seq, mddev);
4997 	 		seq_printf(seq, "\n      ");
4998 			if (mddev->pers->sync_request) {
4999 				if (mddev->curr_resync > 2) {
5000 					status_resync (seq, mddev);
5001 					seq_printf(seq, "\n      ");
5002 				} else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
5003 					seq_printf(seq, "\tresync=DELAYED\n      ");
5004 				else if (mddev->recovery_cp < MaxSector)
5005 					seq_printf(seq, "\tresync=PENDING\n      ");
5006 			}
5007 		} else
5008 			seq_printf(seq, "\n       ");
5009 
5010 		if ((bitmap = mddev->bitmap)) {
5011 			unsigned long chunk_kb;
5012 			unsigned long flags;
5013 			spin_lock_irqsave(&bitmap->lock, flags);
5014 			chunk_kb = bitmap->chunksize >> 10;
5015 			seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
5016 				"%lu%s chunk",
5017 				bitmap->pages - bitmap->missing_pages,
5018 				bitmap->pages,
5019 				(bitmap->pages - bitmap->missing_pages)
5020 					<< (PAGE_SHIFT - 10),
5021 				chunk_kb ? chunk_kb : bitmap->chunksize,
5022 				chunk_kb ? "KB" : "B");
5023 			if (bitmap->file) {
5024 				seq_printf(seq, ", file: ");
5025 				seq_path(seq, bitmap->file->f_path.mnt,
5026 					 bitmap->file->f_path.dentry," \t\n");
5027 			}
5028 
5029 			seq_printf(seq, "\n");
5030 			spin_unlock_irqrestore(&bitmap->lock, flags);
5031 		}
5032 
5033 		seq_printf(seq, "\n");
5034 	}
5035 	mddev_unlock(mddev);
5036 
5037 	return 0;
5038 }
5039 
5040 static struct seq_operations md_seq_ops = {
5041 	.start  = md_seq_start,
5042 	.next   = md_seq_next,
5043 	.stop   = md_seq_stop,
5044 	.show   = md_seq_show,
5045 };
5046 
5047 static int md_seq_open(struct inode *inode, struct file *file)
5048 {
5049 	int error;
5050 	struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
5051 	if (mi == NULL)
5052 		return -ENOMEM;
5053 
5054 	error = seq_open(file, &md_seq_ops);
5055 	if (error)
5056 		kfree(mi);
5057 	else {
5058 		struct seq_file *p = file->private_data;
5059 		p->private = mi;
5060 		mi->event = atomic_read(&md_event_count);
5061 	}
5062 	return error;
5063 }
5064 
5065 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
5066 {
5067 	struct seq_file *m = filp->private_data;
5068 	struct mdstat_info *mi = m->private;
5069 	int mask;
5070 
5071 	poll_wait(filp, &md_event_waiters, wait);
5072 
5073 	/* always allow read */
5074 	mask = POLLIN | POLLRDNORM;
5075 
5076 	if (mi->event != atomic_read(&md_event_count))
5077 		mask |= POLLERR | POLLPRI;
5078 	return mask;
5079 }
5080 
5081 static const struct file_operations md_seq_fops = {
5082 	.owner		= THIS_MODULE,
5083 	.open           = md_seq_open,
5084 	.read           = seq_read,
5085 	.llseek         = seq_lseek,
5086 	.release	= seq_release_private,
5087 	.poll		= mdstat_poll,
5088 };
5089 
5090 int register_md_personality(struct mdk_personality *p)
5091 {
5092 	spin_lock(&pers_lock);
5093 	list_add_tail(&p->list, &pers_list);
5094 	printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
5095 	spin_unlock(&pers_lock);
5096 	return 0;
5097 }
5098 
5099 int unregister_md_personality(struct mdk_personality *p)
5100 {
5101 	printk(KERN_INFO "md: %s personality unregistered\n", p->name);
5102 	spin_lock(&pers_lock);
5103 	list_del_init(&p->list);
5104 	spin_unlock(&pers_lock);
5105 	return 0;
5106 }
5107 
5108 static int is_mddev_idle(mddev_t *mddev)
5109 {
5110 	mdk_rdev_t * rdev;
5111 	struct list_head *tmp;
5112 	int idle;
5113 	long curr_events;
5114 
5115 	idle = 1;
5116 	ITERATE_RDEV(mddev,rdev,tmp) {
5117 		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
5118 		curr_events = disk_stat_read(disk, sectors[0]) +
5119 				disk_stat_read(disk, sectors[1]) -
5120 				atomic_read(&disk->sync_io);
5121 		/* sync IO will cause sync_io to increase before the disk_stats
5122 		 * as sync_io is counted when a request starts, and
5123 		 * disk_stats is counted when it completes.
5124 		 * So resync activity will cause curr_events to be smaller than
5125 		 * when there was no such activity.
5126 		 * non-sync IO will cause disk_stat to increase without
5127 		 * increasing sync_io so curr_events will (eventually)
5128 		 * be larger than it was before.  Once it becomes
5129 		 * substantially larger, the test below will cause
5130 		 * the array to appear non-idle, and resync will slow
5131 		 * down.
5132 		 * If there is a lot of outstanding resync activity when
5133 		 * we set last_event to curr_events, then all that activity
5134 		 * completing might cause the array to appear non-idle
5135 		 * and resync will be slowed down even though there might
5136 		 * not have been non-resync activity.  This will only
5137 		 * happen once though.  'last_events' will soon reflect
5138 		 * the state where there is little or no outstanding
5139 		 * resync requests, and further resync activity will
5140 		 * always make curr_events less than last_events.
5141 		 *
5142 		 */
5143 		if (curr_events - rdev->last_events > 4096) {
5144 			rdev->last_events = curr_events;
5145 			idle = 0;
5146 		}
5147 	}
5148 	return idle;
5149 }
5150 
5151 void md_done_sync(mddev_t *mddev, int blocks, int ok)
5152 {
5153 	/* another "blocks" (512byte) blocks have been synced */
5154 	atomic_sub(blocks, &mddev->recovery_active);
5155 	wake_up(&mddev->recovery_wait);
5156 	if (!ok) {
5157 		set_bit(MD_RECOVERY_ERR, &mddev->recovery);
5158 		md_wakeup_thread(mddev->thread);
5159 		// stop recovery, signal do_sync ....
5160 	}
5161 }
5162 
5163 
5164 /* md_write_start(mddev, bi)
5165  * If we need to update some array metadata (e.g. 'active' flag
5166  * in superblock) before writing, schedule a superblock update
5167  * and wait for it to complete.
5168  */
5169 void md_write_start(mddev_t *mddev, struct bio *bi)
5170 {
5171 	if (bio_data_dir(bi) != WRITE)
5172 		return;
5173 
5174 	BUG_ON(mddev->ro == 1);
5175 	if (mddev->ro == 2) {
5176 		/* need to switch to read/write */
5177 		mddev->ro = 0;
5178 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5179 		md_wakeup_thread(mddev->thread);
5180 	}
5181 	atomic_inc(&mddev->writes_pending);
5182 	if (mddev->in_sync) {
5183 		spin_lock_irq(&mddev->write_lock);
5184 		if (mddev->in_sync) {
5185 			mddev->in_sync = 0;
5186 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
5187 			md_wakeup_thread(mddev->thread);
5188 		}
5189 		spin_unlock_irq(&mddev->write_lock);
5190 	}
5191 	wait_event(mddev->sb_wait, mddev->flags==0);
5192 }
5193 
5194 void md_write_end(mddev_t *mddev)
5195 {
5196 	if (atomic_dec_and_test(&mddev->writes_pending)) {
5197 		if (mddev->safemode == 2)
5198 			md_wakeup_thread(mddev->thread);
5199 		else if (mddev->safemode_delay)
5200 			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
5201 	}
5202 }
5203 
5204 /* md_allow_write(mddev)
5205  * Calling this ensures that the array is marked 'active' so that writes
5206  * may proceed without blocking.  It is important to call this before
5207  * attempting a GFP_KERNEL allocation while holding the mddev lock.
5208  * Must be called with mddev_lock held.
5209  */
5210 void md_allow_write(mddev_t *mddev)
5211 {
5212 	if (!mddev->pers)
5213 		return;
5214 	if (mddev->ro)
5215 		return;
5216 
5217 	spin_lock_irq(&mddev->write_lock);
5218 	if (mddev->in_sync) {
5219 		mddev->in_sync = 0;
5220 		set_bit(MD_CHANGE_CLEAN, &mddev->flags);
5221 		if (mddev->safemode_delay &&
5222 		    mddev->safemode == 0)
5223 			mddev->safemode = 1;
5224 		spin_unlock_irq(&mddev->write_lock);
5225 		md_update_sb(mddev, 0);
5226 	} else
5227 		spin_unlock_irq(&mddev->write_lock);
5228 }
5229 EXPORT_SYMBOL_GPL(md_allow_write);
5230 
5231 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
5232 
5233 #define SYNC_MARKS	10
5234 #define	SYNC_MARK_STEP	(3*HZ)
5235 void md_do_sync(mddev_t *mddev)
5236 {
5237 	mddev_t *mddev2;
5238 	unsigned int currspeed = 0,
5239 		 window;
5240 	sector_t max_sectors,j, io_sectors;
5241 	unsigned long mark[SYNC_MARKS];
5242 	sector_t mark_cnt[SYNC_MARKS];
5243 	int last_mark,m;
5244 	struct list_head *tmp;
5245 	sector_t last_check;
5246 	int skipped = 0;
5247 	struct list_head *rtmp;
5248 	mdk_rdev_t *rdev;
5249 	char *desc;
5250 
5251 	/* just incase thread restarts... */
5252 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
5253 		return;
5254 	if (mddev->ro) /* never try to sync a read-only array */
5255 		return;
5256 
5257 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5258 		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
5259 			desc = "data-check";
5260 		else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
5261 			desc = "requested-resync";
5262 		else
5263 			desc = "resync";
5264 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5265 		desc = "reshape";
5266 	else
5267 		desc = "recovery";
5268 
5269 	/* we overload curr_resync somewhat here.
5270 	 * 0 == not engaged in resync at all
5271 	 * 2 == checking that there is no conflict with another sync
5272 	 * 1 == like 2, but have yielded to allow conflicting resync to
5273 	 *		commense
5274 	 * other == active in resync - this many blocks
5275 	 *
5276 	 * Before starting a resync we must have set curr_resync to
5277 	 * 2, and then checked that every "conflicting" array has curr_resync
5278 	 * less than ours.  When we find one that is the same or higher
5279 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
5280 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
5281 	 * This will mean we have to start checking from the beginning again.
5282 	 *
5283 	 */
5284 
5285 	do {
5286 		mddev->curr_resync = 2;
5287 
5288 	try_again:
5289 		if (kthread_should_stop()) {
5290 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5291 			goto skip;
5292 		}
5293 		ITERATE_MDDEV(mddev2,tmp) {
5294 			if (mddev2 == mddev)
5295 				continue;
5296 			if (mddev2->curr_resync &&
5297 			    match_mddev_units(mddev,mddev2)) {
5298 				DEFINE_WAIT(wq);
5299 				if (mddev < mddev2 && mddev->curr_resync == 2) {
5300 					/* arbitrarily yield */
5301 					mddev->curr_resync = 1;
5302 					wake_up(&resync_wait);
5303 				}
5304 				if (mddev > mddev2 && mddev->curr_resync == 1)
5305 					/* no need to wait here, we can wait the next
5306 					 * time 'round when curr_resync == 2
5307 					 */
5308 					continue;
5309 				prepare_to_wait(&resync_wait, &wq, TASK_UNINTERRUPTIBLE);
5310 				if (!kthread_should_stop() &&
5311 				    mddev2->curr_resync >= mddev->curr_resync) {
5312 					printk(KERN_INFO "md: delaying %s of %s"
5313 					       " until %s has finished (they"
5314 					       " share one or more physical units)\n",
5315 					       desc, mdname(mddev), mdname(mddev2));
5316 					mddev_put(mddev2);
5317 					schedule();
5318 					finish_wait(&resync_wait, &wq);
5319 					goto try_again;
5320 				}
5321 				finish_wait(&resync_wait, &wq);
5322 			}
5323 		}
5324 	} while (mddev->curr_resync < 2);
5325 
5326 	j = 0;
5327 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5328 		/* resync follows the size requested by the personality,
5329 		 * which defaults to physical size, but can be virtual size
5330 		 */
5331 		max_sectors = mddev->resync_max_sectors;
5332 		mddev->resync_mismatches = 0;
5333 		/* we don't use the checkpoint if there's a bitmap */
5334 		if (!mddev->bitmap &&
5335 		    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
5336 			j = mddev->recovery_cp;
5337 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5338 		max_sectors = mddev->size << 1;
5339 	else {
5340 		/* recovery follows the physical size of devices */
5341 		max_sectors = mddev->size << 1;
5342 		j = MaxSector;
5343 		ITERATE_RDEV(mddev,rdev,rtmp)
5344 			if (rdev->raid_disk >= 0 &&
5345 			    !test_bit(Faulty, &rdev->flags) &&
5346 			    !test_bit(In_sync, &rdev->flags) &&
5347 			    rdev->recovery_offset < j)
5348 				j = rdev->recovery_offset;
5349 	}
5350 
5351 	printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
5352 	printk(KERN_INFO "md: minimum _guaranteed_  speed:"
5353 		" %d KB/sec/disk.\n", speed_min(mddev));
5354 	printk(KERN_INFO "md: using maximum available idle IO bandwidth "
5355 	       "(but not more than %d KB/sec) for %s.\n",
5356 	       speed_max(mddev), desc);
5357 
5358 	is_mddev_idle(mddev); /* this also initializes IO event counters */
5359 
5360 	io_sectors = 0;
5361 	for (m = 0; m < SYNC_MARKS; m++) {
5362 		mark[m] = jiffies;
5363 		mark_cnt[m] = io_sectors;
5364 	}
5365 	last_mark = 0;
5366 	mddev->resync_mark = mark[last_mark];
5367 	mddev->resync_mark_cnt = mark_cnt[last_mark];
5368 
5369 	/*
5370 	 * Tune reconstruction:
5371 	 */
5372 	window = 32*(PAGE_SIZE/512);
5373 	printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
5374 		window/2,(unsigned long long) max_sectors/2);
5375 
5376 	atomic_set(&mddev->recovery_active, 0);
5377 	init_waitqueue_head(&mddev->recovery_wait);
5378 	last_check = 0;
5379 
5380 	if (j>2) {
5381 		printk(KERN_INFO
5382 		       "md: resuming %s of %s from checkpoint.\n",
5383 		       desc, mdname(mddev));
5384 		mddev->curr_resync = j;
5385 	}
5386 
5387 	while (j < max_sectors) {
5388 		sector_t sectors;
5389 
5390 		skipped = 0;
5391 		sectors = mddev->pers->sync_request(mddev, j, &skipped,
5392 					    currspeed < speed_min(mddev));
5393 		if (sectors == 0) {
5394 			set_bit(MD_RECOVERY_ERR, &mddev->recovery);
5395 			goto out;
5396 		}
5397 
5398 		if (!skipped) { /* actual IO requested */
5399 			io_sectors += sectors;
5400 			atomic_add(sectors, &mddev->recovery_active);
5401 		}
5402 
5403 		j += sectors;
5404 		if (j>1) mddev->curr_resync = j;
5405 		mddev->curr_mark_cnt = io_sectors;
5406 		if (last_check == 0)
5407 			/* this is the earliers that rebuilt will be
5408 			 * visible in /proc/mdstat
5409 			 */
5410 			md_new_event(mddev);
5411 
5412 		if (last_check + window > io_sectors || j == max_sectors)
5413 			continue;
5414 
5415 		last_check = io_sectors;
5416 
5417 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
5418 		    test_bit(MD_RECOVERY_ERR, &mddev->recovery))
5419 			break;
5420 
5421 	repeat:
5422 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
5423 			/* step marks */
5424 			int next = (last_mark+1) % SYNC_MARKS;
5425 
5426 			mddev->resync_mark = mark[next];
5427 			mddev->resync_mark_cnt = mark_cnt[next];
5428 			mark[next] = jiffies;
5429 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
5430 			last_mark = next;
5431 		}
5432 
5433 
5434 		if (kthread_should_stop()) {
5435 			/*
5436 			 * got a signal, exit.
5437 			 */
5438 			printk(KERN_INFO
5439 				"md: md_do_sync() got signal ... exiting\n");
5440 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5441 			goto out;
5442 		}
5443 
5444 		/*
5445 		 * this loop exits only if either when we are slower than
5446 		 * the 'hard' speed limit, or the system was IO-idle for
5447 		 * a jiffy.
5448 		 * the system might be non-idle CPU-wise, but we only care
5449 		 * about not overloading the IO subsystem. (things like an
5450 		 * e2fsck being done on the RAID array should execute fast)
5451 		 */
5452 		mddev->queue->unplug_fn(mddev->queue);
5453 		cond_resched();
5454 
5455 		currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
5456 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
5457 
5458 		if (currspeed > speed_min(mddev)) {
5459 			if ((currspeed > speed_max(mddev)) ||
5460 					!is_mddev_idle(mddev)) {
5461 				msleep(500);
5462 				goto repeat;
5463 			}
5464 		}
5465 	}
5466 	printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
5467 	/*
5468 	 * this also signals 'finished resyncing' to md_stop
5469 	 */
5470  out:
5471 	mddev->queue->unplug_fn(mddev->queue);
5472 
5473 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
5474 
5475 	/* tell personality that we are finished */
5476 	mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
5477 
5478 	if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
5479 	    !test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
5480 	    mddev->curr_resync > 2) {
5481 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5482 			if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5483 				if (mddev->curr_resync >= mddev->recovery_cp) {
5484 					printk(KERN_INFO
5485 					       "md: checkpointing %s of %s.\n",
5486 					       desc, mdname(mddev));
5487 					mddev->recovery_cp = mddev->curr_resync;
5488 				}
5489 			} else
5490 				mddev->recovery_cp = MaxSector;
5491 		} else {
5492 			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5493 				mddev->curr_resync = MaxSector;
5494 			ITERATE_RDEV(mddev,rdev,rtmp)
5495 				if (rdev->raid_disk >= 0 &&
5496 				    !test_bit(Faulty, &rdev->flags) &&
5497 				    !test_bit(In_sync, &rdev->flags) &&
5498 				    rdev->recovery_offset < mddev->curr_resync)
5499 					rdev->recovery_offset = mddev->curr_resync;
5500 		}
5501 	}
5502 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
5503 
5504  skip:
5505 	mddev->curr_resync = 0;
5506 	wake_up(&resync_wait);
5507 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
5508 	md_wakeup_thread(mddev->thread);
5509 }
5510 EXPORT_SYMBOL_GPL(md_do_sync);
5511 
5512 
5513 static int remove_and_add_spares(mddev_t *mddev)
5514 {
5515 	mdk_rdev_t *rdev;
5516 	struct list_head *rtmp;
5517 	int spares = 0;
5518 
5519 	ITERATE_RDEV(mddev,rdev,rtmp)
5520 		if (rdev->raid_disk >= 0 &&
5521 		    (test_bit(Faulty, &rdev->flags) ||
5522 		     ! test_bit(In_sync, &rdev->flags)) &&
5523 		    atomic_read(&rdev->nr_pending)==0) {
5524 			if (mddev->pers->hot_remove_disk(
5525 				    mddev, rdev->raid_disk)==0) {
5526 				char nm[20];
5527 				sprintf(nm,"rd%d", rdev->raid_disk);
5528 				sysfs_remove_link(&mddev->kobj, nm);
5529 				rdev->raid_disk = -1;
5530 			}
5531 		}
5532 
5533 	if (mddev->degraded) {
5534 		ITERATE_RDEV(mddev,rdev,rtmp)
5535 			if (rdev->raid_disk < 0
5536 			    && !test_bit(Faulty, &rdev->flags)) {
5537 				rdev->recovery_offset = 0;
5538 				if (mddev->pers->hot_add_disk(mddev,rdev)) {
5539 					char nm[20];
5540 					sprintf(nm, "rd%d", rdev->raid_disk);
5541 					if (sysfs_create_link(&mddev->kobj,
5542 							      &rdev->kobj, nm))
5543 						printk(KERN_WARNING
5544 						       "md: cannot register "
5545 						       "%s for %s\n",
5546 						       nm, mdname(mddev));
5547 					spares++;
5548 					md_new_event(mddev);
5549 				} else
5550 					break;
5551 			}
5552 	}
5553 	return spares;
5554 }
5555 /*
5556  * This routine is regularly called by all per-raid-array threads to
5557  * deal with generic issues like resync and super-block update.
5558  * Raid personalities that don't have a thread (linear/raid0) do not
5559  * need this as they never do any recovery or update the superblock.
5560  *
5561  * It does not do any resync itself, but rather "forks" off other threads
5562  * to do that as needed.
5563  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
5564  * "->recovery" and create a thread at ->sync_thread.
5565  * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
5566  * and wakeups up this thread which will reap the thread and finish up.
5567  * This thread also removes any faulty devices (with nr_pending == 0).
5568  *
5569  * The overall approach is:
5570  *  1/ if the superblock needs updating, update it.
5571  *  2/ If a recovery thread is running, don't do anything else.
5572  *  3/ If recovery has finished, clean up, possibly marking spares active.
5573  *  4/ If there are any faulty devices, remove them.
5574  *  5/ If array is degraded, try to add spares devices
5575  *  6/ If array has spares or is not in-sync, start a resync thread.
5576  */
5577 void md_check_recovery(mddev_t *mddev)
5578 {
5579 	mdk_rdev_t *rdev;
5580 	struct list_head *rtmp;
5581 
5582 
5583 	if (mddev->bitmap)
5584 		bitmap_daemon_work(mddev->bitmap);
5585 
5586 	if (mddev->ro)
5587 		return;
5588 
5589 	if (signal_pending(current)) {
5590 		if (mddev->pers->sync_request) {
5591 			printk(KERN_INFO "md: %s in immediate safe mode\n",
5592 			       mdname(mddev));
5593 			mddev->safemode = 2;
5594 		}
5595 		flush_signals(current);
5596 	}
5597 
5598 	if ( ! (
5599 		mddev->flags ||
5600 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
5601 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
5602 		(mddev->safemode == 1) ||
5603 		(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
5604 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
5605 		))
5606 		return;
5607 
5608 	if (mddev_trylock(mddev)) {
5609 		int spares = 0;
5610 
5611 		spin_lock_irq(&mddev->write_lock);
5612 		if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
5613 		    !mddev->in_sync && mddev->recovery_cp == MaxSector) {
5614 			mddev->in_sync = 1;
5615 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
5616 		}
5617 		if (mddev->safemode == 1)
5618 			mddev->safemode = 0;
5619 		spin_unlock_irq(&mddev->write_lock);
5620 
5621 		if (mddev->flags)
5622 			md_update_sb(mddev, 0);
5623 
5624 
5625 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
5626 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
5627 			/* resync/recovery still happening */
5628 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5629 			goto unlock;
5630 		}
5631 		if (mddev->sync_thread) {
5632 			/* resync has finished, collect result */
5633 			md_unregister_thread(mddev->sync_thread);
5634 			mddev->sync_thread = NULL;
5635 			if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
5636 			    !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5637 				/* success...*/
5638 				/* activate any spares */
5639 				mddev->pers->spare_active(mddev);
5640 			}
5641 			md_update_sb(mddev, 1);
5642 
5643 			/* if array is no-longer degraded, then any saved_raid_disk
5644 			 * information must be scrapped
5645 			 */
5646 			if (!mddev->degraded)
5647 				ITERATE_RDEV(mddev,rdev,rtmp)
5648 					rdev->saved_raid_disk = -1;
5649 
5650 			mddev->recovery = 0;
5651 			/* flag recovery needed just to double check */
5652 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5653 			md_new_event(mddev);
5654 			goto unlock;
5655 		}
5656 		/* Clear some bits that don't mean anything, but
5657 		 * might be left set
5658 		 */
5659 		clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5660 		clear_bit(MD_RECOVERY_ERR, &mddev->recovery);
5661 		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
5662 		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
5663 
5664 		if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
5665 			goto unlock;
5666 		/* no recovery is running.
5667 		 * remove any failed drives, then
5668 		 * add spares if possible.
5669 		 * Spare are also removed and re-added, to allow
5670 		 * the personality to fail the re-add.
5671 		 */
5672 
5673 		if (mddev->reshape_position != MaxSector) {
5674 			if (mddev->pers->check_reshape(mddev) != 0)
5675 				/* Cannot proceed */
5676 				goto unlock;
5677 			set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5678 		} else if ((spares = remove_and_add_spares(mddev))) {
5679 			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5680 			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5681 		} else if (mddev->recovery_cp < MaxSector) {
5682 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5683 		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
5684 			/* nothing to be done ... */
5685 			goto unlock;
5686 
5687 		if (mddev->pers->sync_request) {
5688 			set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5689 			if (spares && mddev->bitmap && ! mddev->bitmap->file) {
5690 				/* We are adding a device or devices to an array
5691 				 * which has the bitmap stored on all devices.
5692 				 * So make sure all bitmap pages get written
5693 				 */
5694 				bitmap_write_all(mddev->bitmap);
5695 			}
5696 			mddev->sync_thread = md_register_thread(md_do_sync,
5697 								mddev,
5698 								"%s_resync");
5699 			if (!mddev->sync_thread) {
5700 				printk(KERN_ERR "%s: could not start resync"
5701 					" thread...\n",
5702 					mdname(mddev));
5703 				/* leave the spares where they are, it shouldn't hurt */
5704 				mddev->recovery = 0;
5705 			} else
5706 				md_wakeup_thread(mddev->sync_thread);
5707 			md_new_event(mddev);
5708 		}
5709 	unlock:
5710 		mddev_unlock(mddev);
5711 	}
5712 }
5713 
5714 static int md_notify_reboot(struct notifier_block *this,
5715 			    unsigned long code, void *x)
5716 {
5717 	struct list_head *tmp;
5718 	mddev_t *mddev;
5719 
5720 	if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
5721 
5722 		printk(KERN_INFO "md: stopping all md devices.\n");
5723 
5724 		ITERATE_MDDEV(mddev,tmp)
5725 			if (mddev_trylock(mddev)) {
5726 				do_md_stop (mddev, 1);
5727 				mddev_unlock(mddev);
5728 			}
5729 		/*
5730 		 * certain more exotic SCSI devices are known to be
5731 		 * volatile wrt too early system reboots. While the
5732 		 * right place to handle this issue is the given
5733 		 * driver, we do want to have a safe RAID driver ...
5734 		 */
5735 		mdelay(1000*1);
5736 	}
5737 	return NOTIFY_DONE;
5738 }
5739 
5740 static struct notifier_block md_notifier = {
5741 	.notifier_call	= md_notify_reboot,
5742 	.next		= NULL,
5743 	.priority	= INT_MAX, /* before any real devices */
5744 };
5745 
5746 static void md_geninit(void)
5747 {
5748 	struct proc_dir_entry *p;
5749 
5750 	dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
5751 
5752 	p = create_proc_entry("mdstat", S_IRUGO, NULL);
5753 	if (p)
5754 		p->proc_fops = &md_seq_fops;
5755 }
5756 
5757 static int __init md_init(void)
5758 {
5759 	if (register_blkdev(MAJOR_NR, "md"))
5760 		return -1;
5761 	if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
5762 		unregister_blkdev(MAJOR_NR, "md");
5763 		return -1;
5764 	}
5765 	blk_register_region(MKDEV(MAJOR_NR, 0), 1UL<<MINORBITS, THIS_MODULE,
5766 			    md_probe, NULL, NULL);
5767 	blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
5768 			    md_probe, NULL, NULL);
5769 
5770 	register_reboot_notifier(&md_notifier);
5771 	raid_table_header = register_sysctl_table(raid_root_table);
5772 
5773 	md_geninit();
5774 	return (0);
5775 }
5776 
5777 
5778 #ifndef MODULE
5779 
5780 /*
5781  * Searches all registered partitions for autorun RAID arrays
5782  * at boot time.
5783  */
5784 static dev_t detected_devices[128];
5785 static int dev_cnt;
5786 
5787 void md_autodetect_dev(dev_t dev)
5788 {
5789 	if (dev_cnt >= 0 && dev_cnt < 127)
5790 		detected_devices[dev_cnt++] = dev;
5791 }
5792 
5793 
5794 static void autostart_arrays(int part)
5795 {
5796 	mdk_rdev_t *rdev;
5797 	int i;
5798 
5799 	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
5800 
5801 	for (i = 0; i < dev_cnt; i++) {
5802 		dev_t dev = detected_devices[i];
5803 
5804 		rdev = md_import_device(dev,0, 90);
5805 		if (IS_ERR(rdev))
5806 			continue;
5807 
5808 		if (test_bit(Faulty, &rdev->flags)) {
5809 			MD_BUG();
5810 			continue;
5811 		}
5812 		list_add(&rdev->same_set, &pending_raid_disks);
5813 	}
5814 	dev_cnt = 0;
5815 
5816 	autorun_devices(part);
5817 }
5818 
5819 #endif /* !MODULE */
5820 
5821 static __exit void md_exit(void)
5822 {
5823 	mddev_t *mddev;
5824 	struct list_head *tmp;
5825 
5826 	blk_unregister_region(MKDEV(MAJOR_NR,0), 1U << MINORBITS);
5827 	blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
5828 
5829 	unregister_blkdev(MAJOR_NR,"md");
5830 	unregister_blkdev(mdp_major, "mdp");
5831 	unregister_reboot_notifier(&md_notifier);
5832 	unregister_sysctl_table(raid_table_header);
5833 	remove_proc_entry("mdstat", NULL);
5834 	ITERATE_MDDEV(mddev,tmp) {
5835 		struct gendisk *disk = mddev->gendisk;
5836 		if (!disk)
5837 			continue;
5838 		export_array(mddev);
5839 		del_gendisk(disk);
5840 		put_disk(disk);
5841 		mddev->gendisk = NULL;
5842 		mddev_put(mddev);
5843 	}
5844 }
5845 
5846 subsys_initcall(md_init);
5847 module_exit(md_exit)
5848 
5849 static int get_ro(char *buffer, struct kernel_param *kp)
5850 {
5851 	return sprintf(buffer, "%d", start_readonly);
5852 }
5853 static int set_ro(const char *val, struct kernel_param *kp)
5854 {
5855 	char *e;
5856 	int num = simple_strtoul(val, &e, 10);
5857 	if (*val && (*e == '\0' || *e == '\n')) {
5858 		start_readonly = num;
5859 		return 0;
5860 	}
5861 	return -EINVAL;
5862 }
5863 
5864 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
5865 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
5866 
5867 
5868 EXPORT_SYMBOL(register_md_personality);
5869 EXPORT_SYMBOL(unregister_md_personality);
5870 EXPORT_SYMBOL(md_error);
5871 EXPORT_SYMBOL(md_done_sync);
5872 EXPORT_SYMBOL(md_write_start);
5873 EXPORT_SYMBOL(md_write_end);
5874 EXPORT_SYMBOL(md_register_thread);
5875 EXPORT_SYMBOL(md_unregister_thread);
5876 EXPORT_SYMBOL(md_wakeup_thread);
5877 EXPORT_SYMBOL(md_check_recovery);
5878 MODULE_LICENSE("GPL");
5879 MODULE_ALIAS("md");
5880 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
5881