1 /* 2 md.c : Multiple Devices driver for Linux 3 Copyright (C) 1998, 1999, 2000 Ingo Molnar 4 5 completely rewritten, based on the MD driver code from Marc Zyngier 6 7 Changes: 8 9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar 10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> 11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> 12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su> 13 - kmod support by: Cyrus Durgin 14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> 15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> 16 17 - lots of fixes and improvements to the RAID1/RAID5 and generic 18 RAID code (such as request based resynchronization): 19 20 Neil Brown <neilb@cse.unsw.edu.au>. 21 22 - persistent bitmap code 23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. 24 25 This program is free software; you can redistribute it and/or modify 26 it under the terms of the GNU General Public License as published by 27 the Free Software Foundation; either version 2, or (at your option) 28 any later version. 29 30 You should have received a copy of the GNU General Public License 31 (for example /usr/src/linux/COPYING); if not, write to the Free 32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 33 */ 34 35 #include <linux/kthread.h> 36 #include <linux/blkdev.h> 37 #include <linux/sysctl.h> 38 #include <linux/seq_file.h> 39 #include <linux/fs.h> 40 #include <linux/poll.h> 41 #include <linux/ctype.h> 42 #include <linux/string.h> 43 #include <linux/hdreg.h> 44 #include <linux/proc_fs.h> 45 #include <linux/random.h> 46 #include <linux/module.h> 47 #include <linux/reboot.h> 48 #include <linux/file.h> 49 #include <linux/compat.h> 50 #include <linux/delay.h> 51 #include <linux/raid/md_p.h> 52 #include <linux/raid/md_u.h> 53 #include <linux/slab.h> 54 #include "md.h" 55 #include "bitmap.h" 56 57 #ifndef MODULE 58 static void autostart_arrays(int part); 59 #endif 60 61 /* pers_list is a list of registered personalities protected 62 * by pers_lock. 63 * pers_lock does extra service to protect accesses to 64 * mddev->thread when the mutex cannot be held. 65 */ 66 static LIST_HEAD(pers_list); 67 static DEFINE_SPINLOCK(pers_lock); 68 69 static DECLARE_WAIT_QUEUE_HEAD(resync_wait); 70 static struct workqueue_struct *md_wq; 71 static struct workqueue_struct *md_misc_wq; 72 73 static int remove_and_add_spares(struct mddev *mddev, 74 struct md_rdev *this); 75 static void mddev_detach(struct mddev *mddev); 76 77 /* 78 * Default number of read corrections we'll attempt on an rdev 79 * before ejecting it from the array. We divide the read error 80 * count by 2 for every hour elapsed between read errors. 81 */ 82 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20 83 /* 84 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' 85 * is 1000 KB/sec, so the extra system load does not show up that much. 86 * Increase it if you want to have more _guaranteed_ speed. Note that 87 * the RAID driver will use the maximum available bandwidth if the IO 88 * subsystem is idle. There is also an 'absolute maximum' reconstruction 89 * speed limit - in case reconstruction slows down your system despite 90 * idle IO detection. 91 * 92 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. 93 * or /sys/block/mdX/md/sync_speed_{min,max} 94 */ 95 96 static int sysctl_speed_limit_min = 1000; 97 static int sysctl_speed_limit_max = 200000; 98 static inline int speed_min(struct mddev *mddev) 99 { 100 return mddev->sync_speed_min ? 101 mddev->sync_speed_min : sysctl_speed_limit_min; 102 } 103 104 static inline int speed_max(struct mddev *mddev) 105 { 106 return mddev->sync_speed_max ? 107 mddev->sync_speed_max : sysctl_speed_limit_max; 108 } 109 110 static struct ctl_table_header *raid_table_header; 111 112 static struct ctl_table raid_table[] = { 113 { 114 .procname = "speed_limit_min", 115 .data = &sysctl_speed_limit_min, 116 .maxlen = sizeof(int), 117 .mode = S_IRUGO|S_IWUSR, 118 .proc_handler = proc_dointvec, 119 }, 120 { 121 .procname = "speed_limit_max", 122 .data = &sysctl_speed_limit_max, 123 .maxlen = sizeof(int), 124 .mode = S_IRUGO|S_IWUSR, 125 .proc_handler = proc_dointvec, 126 }, 127 { } 128 }; 129 130 static struct ctl_table raid_dir_table[] = { 131 { 132 .procname = "raid", 133 .maxlen = 0, 134 .mode = S_IRUGO|S_IXUGO, 135 .child = raid_table, 136 }, 137 { } 138 }; 139 140 static struct ctl_table raid_root_table[] = { 141 { 142 .procname = "dev", 143 .maxlen = 0, 144 .mode = 0555, 145 .child = raid_dir_table, 146 }, 147 { } 148 }; 149 150 static const struct block_device_operations md_fops; 151 152 static int start_readonly; 153 154 /* bio_clone_mddev 155 * like bio_clone, but with a local bio set 156 */ 157 158 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs, 159 struct mddev *mddev) 160 { 161 struct bio *b; 162 163 if (!mddev || !mddev->bio_set) 164 return bio_alloc(gfp_mask, nr_iovecs); 165 166 b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set); 167 if (!b) 168 return NULL; 169 return b; 170 } 171 EXPORT_SYMBOL_GPL(bio_alloc_mddev); 172 173 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask, 174 struct mddev *mddev) 175 { 176 if (!mddev || !mddev->bio_set) 177 return bio_clone(bio, gfp_mask); 178 179 return bio_clone_bioset(bio, gfp_mask, mddev->bio_set); 180 } 181 EXPORT_SYMBOL_GPL(bio_clone_mddev); 182 183 /* 184 * We have a system wide 'event count' that is incremented 185 * on any 'interesting' event, and readers of /proc/mdstat 186 * can use 'poll' or 'select' to find out when the event 187 * count increases. 188 * 189 * Events are: 190 * start array, stop array, error, add device, remove device, 191 * start build, activate spare 192 */ 193 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); 194 static atomic_t md_event_count; 195 void md_new_event(struct mddev *mddev) 196 { 197 atomic_inc(&md_event_count); 198 wake_up(&md_event_waiters); 199 } 200 EXPORT_SYMBOL_GPL(md_new_event); 201 202 /* Alternate version that can be called from interrupts 203 * when calling sysfs_notify isn't needed. 204 */ 205 static void md_new_event_inintr(struct mddev *mddev) 206 { 207 atomic_inc(&md_event_count); 208 wake_up(&md_event_waiters); 209 } 210 211 /* 212 * Enables to iterate over all existing md arrays 213 * all_mddevs_lock protects this list. 214 */ 215 static LIST_HEAD(all_mddevs); 216 static DEFINE_SPINLOCK(all_mddevs_lock); 217 218 /* 219 * iterates through all used mddevs in the system. 220 * We take care to grab the all_mddevs_lock whenever navigating 221 * the list, and to always hold a refcount when unlocked. 222 * Any code which breaks out of this loop while own 223 * a reference to the current mddev and must mddev_put it. 224 */ 225 #define for_each_mddev(_mddev,_tmp) \ 226 \ 227 for (({ spin_lock(&all_mddevs_lock); \ 228 _tmp = all_mddevs.next; \ 229 _mddev = NULL;}); \ 230 ({ if (_tmp != &all_mddevs) \ 231 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\ 232 spin_unlock(&all_mddevs_lock); \ 233 if (_mddev) mddev_put(_mddev); \ 234 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \ 235 _tmp != &all_mddevs;}); \ 236 ({ spin_lock(&all_mddevs_lock); \ 237 _tmp = _tmp->next;}) \ 238 ) 239 240 /* Rather than calling directly into the personality make_request function, 241 * IO requests come here first so that we can check if the device is 242 * being suspended pending a reconfiguration. 243 * We hold a refcount over the call to ->make_request. By the time that 244 * call has finished, the bio has been linked into some internal structure 245 * and so is visible to ->quiesce(), so we don't need the refcount any more. 246 */ 247 static void md_make_request(struct request_queue *q, struct bio *bio) 248 { 249 const int rw = bio_data_dir(bio); 250 struct mddev *mddev = q->queuedata; 251 unsigned int sectors; 252 253 if (mddev == NULL || mddev->pers == NULL 254 || !mddev->ready) { 255 bio_io_error(bio); 256 return; 257 } 258 if (mddev->ro == 1 && unlikely(rw == WRITE)) { 259 bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS); 260 return; 261 } 262 smp_rmb(); /* Ensure implications of 'active' are visible */ 263 rcu_read_lock(); 264 if (mddev->suspended) { 265 DEFINE_WAIT(__wait); 266 for (;;) { 267 prepare_to_wait(&mddev->sb_wait, &__wait, 268 TASK_UNINTERRUPTIBLE); 269 if (!mddev->suspended) 270 break; 271 rcu_read_unlock(); 272 schedule(); 273 rcu_read_lock(); 274 } 275 finish_wait(&mddev->sb_wait, &__wait); 276 } 277 atomic_inc(&mddev->active_io); 278 rcu_read_unlock(); 279 280 /* 281 * save the sectors now since our bio can 282 * go away inside make_request 283 */ 284 sectors = bio_sectors(bio); 285 mddev->pers->make_request(mddev, bio); 286 287 generic_start_io_acct(rw, sectors, &mddev->gendisk->part0); 288 289 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended) 290 wake_up(&mddev->sb_wait); 291 } 292 293 /* mddev_suspend makes sure no new requests are submitted 294 * to the device, and that any requests that have been submitted 295 * are completely handled. 296 * Once mddev_detach() is called and completes, the module will be 297 * completely unused. 298 */ 299 void mddev_suspend(struct mddev *mddev) 300 { 301 BUG_ON(mddev->suspended); 302 mddev->suspended = 1; 303 synchronize_rcu(); 304 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0); 305 mddev->pers->quiesce(mddev, 1); 306 307 del_timer_sync(&mddev->safemode_timer); 308 } 309 EXPORT_SYMBOL_GPL(mddev_suspend); 310 311 void mddev_resume(struct mddev *mddev) 312 { 313 mddev->suspended = 0; 314 wake_up(&mddev->sb_wait); 315 mddev->pers->quiesce(mddev, 0); 316 317 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 318 md_wakeup_thread(mddev->thread); 319 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 320 } 321 EXPORT_SYMBOL_GPL(mddev_resume); 322 323 int mddev_congested(struct mddev *mddev, int bits) 324 { 325 struct md_personality *pers = mddev->pers; 326 int ret = 0; 327 328 rcu_read_lock(); 329 if (mddev->suspended) 330 ret = 1; 331 else if (pers && pers->congested) 332 ret = pers->congested(mddev, bits); 333 rcu_read_unlock(); 334 return ret; 335 } 336 EXPORT_SYMBOL_GPL(mddev_congested); 337 static int md_congested(void *data, int bits) 338 { 339 struct mddev *mddev = data; 340 return mddev_congested(mddev, bits); 341 } 342 343 static int md_mergeable_bvec(struct request_queue *q, 344 struct bvec_merge_data *bvm, 345 struct bio_vec *biovec) 346 { 347 struct mddev *mddev = q->queuedata; 348 int ret; 349 rcu_read_lock(); 350 if (mddev->suspended) { 351 /* Must always allow one vec */ 352 if (bvm->bi_size == 0) 353 ret = biovec->bv_len; 354 else 355 ret = 0; 356 } else { 357 struct md_personality *pers = mddev->pers; 358 if (pers && pers->mergeable_bvec) 359 ret = pers->mergeable_bvec(mddev, bvm, biovec); 360 else 361 ret = biovec->bv_len; 362 } 363 rcu_read_unlock(); 364 return ret; 365 } 366 /* 367 * Generic flush handling for md 368 */ 369 370 static void md_end_flush(struct bio *bio, int err) 371 { 372 struct md_rdev *rdev = bio->bi_private; 373 struct mddev *mddev = rdev->mddev; 374 375 rdev_dec_pending(rdev, mddev); 376 377 if (atomic_dec_and_test(&mddev->flush_pending)) { 378 /* The pre-request flush has finished */ 379 queue_work(md_wq, &mddev->flush_work); 380 } 381 bio_put(bio); 382 } 383 384 static void md_submit_flush_data(struct work_struct *ws); 385 386 static void submit_flushes(struct work_struct *ws) 387 { 388 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 389 struct md_rdev *rdev; 390 391 INIT_WORK(&mddev->flush_work, md_submit_flush_data); 392 atomic_set(&mddev->flush_pending, 1); 393 rcu_read_lock(); 394 rdev_for_each_rcu(rdev, mddev) 395 if (rdev->raid_disk >= 0 && 396 !test_bit(Faulty, &rdev->flags)) { 397 /* Take two references, one is dropped 398 * when request finishes, one after 399 * we reclaim rcu_read_lock 400 */ 401 struct bio *bi; 402 atomic_inc(&rdev->nr_pending); 403 atomic_inc(&rdev->nr_pending); 404 rcu_read_unlock(); 405 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev); 406 bi->bi_end_io = md_end_flush; 407 bi->bi_private = rdev; 408 bi->bi_bdev = rdev->bdev; 409 atomic_inc(&mddev->flush_pending); 410 submit_bio(WRITE_FLUSH, bi); 411 rcu_read_lock(); 412 rdev_dec_pending(rdev, mddev); 413 } 414 rcu_read_unlock(); 415 if (atomic_dec_and_test(&mddev->flush_pending)) 416 queue_work(md_wq, &mddev->flush_work); 417 } 418 419 static void md_submit_flush_data(struct work_struct *ws) 420 { 421 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 422 struct bio *bio = mddev->flush_bio; 423 424 if (bio->bi_iter.bi_size == 0) 425 /* an empty barrier - all done */ 426 bio_endio(bio, 0); 427 else { 428 bio->bi_rw &= ~REQ_FLUSH; 429 mddev->pers->make_request(mddev, bio); 430 } 431 432 mddev->flush_bio = NULL; 433 wake_up(&mddev->sb_wait); 434 } 435 436 void md_flush_request(struct mddev *mddev, struct bio *bio) 437 { 438 spin_lock_irq(&mddev->lock); 439 wait_event_lock_irq(mddev->sb_wait, 440 !mddev->flush_bio, 441 mddev->lock); 442 mddev->flush_bio = bio; 443 spin_unlock_irq(&mddev->lock); 444 445 INIT_WORK(&mddev->flush_work, submit_flushes); 446 queue_work(md_wq, &mddev->flush_work); 447 } 448 EXPORT_SYMBOL(md_flush_request); 449 450 void md_unplug(struct blk_plug_cb *cb, bool from_schedule) 451 { 452 struct mddev *mddev = cb->data; 453 md_wakeup_thread(mddev->thread); 454 kfree(cb); 455 } 456 EXPORT_SYMBOL(md_unplug); 457 458 static inline struct mddev *mddev_get(struct mddev *mddev) 459 { 460 atomic_inc(&mddev->active); 461 return mddev; 462 } 463 464 static void mddev_delayed_delete(struct work_struct *ws); 465 466 static void mddev_put(struct mddev *mddev) 467 { 468 struct bio_set *bs = NULL; 469 470 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) 471 return; 472 if (!mddev->raid_disks && list_empty(&mddev->disks) && 473 mddev->ctime == 0 && !mddev->hold_active) { 474 /* Array is not configured at all, and not held active, 475 * so destroy it */ 476 list_del_init(&mddev->all_mddevs); 477 bs = mddev->bio_set; 478 mddev->bio_set = NULL; 479 if (mddev->gendisk) { 480 /* We did a probe so need to clean up. Call 481 * queue_work inside the spinlock so that 482 * flush_workqueue() after mddev_find will 483 * succeed in waiting for the work to be done. 484 */ 485 INIT_WORK(&mddev->del_work, mddev_delayed_delete); 486 queue_work(md_misc_wq, &mddev->del_work); 487 } else 488 kfree(mddev); 489 } 490 spin_unlock(&all_mddevs_lock); 491 if (bs) 492 bioset_free(bs); 493 } 494 495 void mddev_init(struct mddev *mddev) 496 { 497 mutex_init(&mddev->open_mutex); 498 mutex_init(&mddev->reconfig_mutex); 499 mutex_init(&mddev->bitmap_info.mutex); 500 INIT_LIST_HEAD(&mddev->disks); 501 INIT_LIST_HEAD(&mddev->all_mddevs); 502 init_timer(&mddev->safemode_timer); 503 atomic_set(&mddev->active, 1); 504 atomic_set(&mddev->openers, 0); 505 atomic_set(&mddev->active_io, 0); 506 spin_lock_init(&mddev->lock); 507 atomic_set(&mddev->flush_pending, 0); 508 init_waitqueue_head(&mddev->sb_wait); 509 init_waitqueue_head(&mddev->recovery_wait); 510 mddev->reshape_position = MaxSector; 511 mddev->reshape_backwards = 0; 512 mddev->last_sync_action = "none"; 513 mddev->resync_min = 0; 514 mddev->resync_max = MaxSector; 515 mddev->level = LEVEL_NONE; 516 } 517 EXPORT_SYMBOL_GPL(mddev_init); 518 519 static struct mddev *mddev_find(dev_t unit) 520 { 521 struct mddev *mddev, *new = NULL; 522 523 if (unit && MAJOR(unit) != MD_MAJOR) 524 unit &= ~((1<<MdpMinorShift)-1); 525 526 retry: 527 spin_lock(&all_mddevs_lock); 528 529 if (unit) { 530 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 531 if (mddev->unit == unit) { 532 mddev_get(mddev); 533 spin_unlock(&all_mddevs_lock); 534 kfree(new); 535 return mddev; 536 } 537 538 if (new) { 539 list_add(&new->all_mddevs, &all_mddevs); 540 spin_unlock(&all_mddevs_lock); 541 new->hold_active = UNTIL_IOCTL; 542 return new; 543 } 544 } else if (new) { 545 /* find an unused unit number */ 546 static int next_minor = 512; 547 int start = next_minor; 548 int is_free = 0; 549 int dev = 0; 550 while (!is_free) { 551 dev = MKDEV(MD_MAJOR, next_minor); 552 next_minor++; 553 if (next_minor > MINORMASK) 554 next_minor = 0; 555 if (next_minor == start) { 556 /* Oh dear, all in use. */ 557 spin_unlock(&all_mddevs_lock); 558 kfree(new); 559 return NULL; 560 } 561 562 is_free = 1; 563 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 564 if (mddev->unit == dev) { 565 is_free = 0; 566 break; 567 } 568 } 569 new->unit = dev; 570 new->md_minor = MINOR(dev); 571 new->hold_active = UNTIL_STOP; 572 list_add(&new->all_mddevs, &all_mddevs); 573 spin_unlock(&all_mddevs_lock); 574 return new; 575 } 576 spin_unlock(&all_mddevs_lock); 577 578 new = kzalloc(sizeof(*new), GFP_KERNEL); 579 if (!new) 580 return NULL; 581 582 new->unit = unit; 583 if (MAJOR(unit) == MD_MAJOR) 584 new->md_minor = MINOR(unit); 585 else 586 new->md_minor = MINOR(unit) >> MdpMinorShift; 587 588 mddev_init(new); 589 590 goto retry; 591 } 592 593 static struct attribute_group md_redundancy_group; 594 595 void mddev_unlock(struct mddev *mddev) 596 { 597 if (mddev->to_remove) { 598 /* These cannot be removed under reconfig_mutex as 599 * an access to the files will try to take reconfig_mutex 600 * while holding the file unremovable, which leads to 601 * a deadlock. 602 * So hold set sysfs_active while the remove in happeing, 603 * and anything else which might set ->to_remove or my 604 * otherwise change the sysfs namespace will fail with 605 * -EBUSY if sysfs_active is still set. 606 * We set sysfs_active under reconfig_mutex and elsewhere 607 * test it under the same mutex to ensure its correct value 608 * is seen. 609 */ 610 struct attribute_group *to_remove = mddev->to_remove; 611 mddev->to_remove = NULL; 612 mddev->sysfs_active = 1; 613 mutex_unlock(&mddev->reconfig_mutex); 614 615 if (mddev->kobj.sd) { 616 if (to_remove != &md_redundancy_group) 617 sysfs_remove_group(&mddev->kobj, to_remove); 618 if (mddev->pers == NULL || 619 mddev->pers->sync_request == NULL) { 620 sysfs_remove_group(&mddev->kobj, &md_redundancy_group); 621 if (mddev->sysfs_action) 622 sysfs_put(mddev->sysfs_action); 623 mddev->sysfs_action = NULL; 624 } 625 } 626 mddev->sysfs_active = 0; 627 } else 628 mutex_unlock(&mddev->reconfig_mutex); 629 630 /* As we've dropped the mutex we need a spinlock to 631 * make sure the thread doesn't disappear 632 */ 633 spin_lock(&pers_lock); 634 md_wakeup_thread(mddev->thread); 635 spin_unlock(&pers_lock); 636 } 637 EXPORT_SYMBOL_GPL(mddev_unlock); 638 639 static struct md_rdev *find_rdev_nr_rcu(struct mddev *mddev, int nr) 640 { 641 struct md_rdev *rdev; 642 643 rdev_for_each_rcu(rdev, mddev) 644 if (rdev->desc_nr == nr) 645 return rdev; 646 647 return NULL; 648 } 649 650 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev) 651 { 652 struct md_rdev *rdev; 653 654 rdev_for_each(rdev, mddev) 655 if (rdev->bdev->bd_dev == dev) 656 return rdev; 657 658 return NULL; 659 } 660 661 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev) 662 { 663 struct md_rdev *rdev; 664 665 rdev_for_each_rcu(rdev, mddev) 666 if (rdev->bdev->bd_dev == dev) 667 return rdev; 668 669 return NULL; 670 } 671 672 static struct md_personality *find_pers(int level, char *clevel) 673 { 674 struct md_personality *pers; 675 list_for_each_entry(pers, &pers_list, list) { 676 if (level != LEVEL_NONE && pers->level == level) 677 return pers; 678 if (strcmp(pers->name, clevel)==0) 679 return pers; 680 } 681 return NULL; 682 } 683 684 /* return the offset of the super block in 512byte sectors */ 685 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev) 686 { 687 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512; 688 return MD_NEW_SIZE_SECTORS(num_sectors); 689 } 690 691 static int alloc_disk_sb(struct md_rdev *rdev) 692 { 693 rdev->sb_page = alloc_page(GFP_KERNEL); 694 if (!rdev->sb_page) { 695 printk(KERN_ALERT "md: out of memory.\n"); 696 return -ENOMEM; 697 } 698 699 return 0; 700 } 701 702 void md_rdev_clear(struct md_rdev *rdev) 703 { 704 if (rdev->sb_page) { 705 put_page(rdev->sb_page); 706 rdev->sb_loaded = 0; 707 rdev->sb_page = NULL; 708 rdev->sb_start = 0; 709 rdev->sectors = 0; 710 } 711 if (rdev->bb_page) { 712 put_page(rdev->bb_page); 713 rdev->bb_page = NULL; 714 } 715 kfree(rdev->badblocks.page); 716 rdev->badblocks.page = NULL; 717 } 718 EXPORT_SYMBOL_GPL(md_rdev_clear); 719 720 static void super_written(struct bio *bio, int error) 721 { 722 struct md_rdev *rdev = bio->bi_private; 723 struct mddev *mddev = rdev->mddev; 724 725 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) { 726 printk("md: super_written gets error=%d, uptodate=%d\n", 727 error, test_bit(BIO_UPTODATE, &bio->bi_flags)); 728 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags)); 729 md_error(mddev, rdev); 730 } 731 732 if (atomic_dec_and_test(&mddev->pending_writes)) 733 wake_up(&mddev->sb_wait); 734 bio_put(bio); 735 } 736 737 void md_super_write(struct mddev *mddev, struct md_rdev *rdev, 738 sector_t sector, int size, struct page *page) 739 { 740 /* write first size bytes of page to sector of rdev 741 * Increment mddev->pending_writes before returning 742 * and decrement it on completion, waking up sb_wait 743 * if zero is reached. 744 * If an error occurred, call md_error 745 */ 746 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev); 747 748 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev; 749 bio->bi_iter.bi_sector = sector; 750 bio_add_page(bio, page, size, 0); 751 bio->bi_private = rdev; 752 bio->bi_end_io = super_written; 753 754 atomic_inc(&mddev->pending_writes); 755 submit_bio(WRITE_FLUSH_FUA, bio); 756 } 757 758 void md_super_wait(struct mddev *mddev) 759 { 760 /* wait for all superblock writes that were scheduled to complete */ 761 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0); 762 } 763 764 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size, 765 struct page *page, int rw, bool metadata_op) 766 { 767 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev); 768 int ret; 769 770 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ? 771 rdev->meta_bdev : rdev->bdev; 772 if (metadata_op) 773 bio->bi_iter.bi_sector = sector + rdev->sb_start; 774 else if (rdev->mddev->reshape_position != MaxSector && 775 (rdev->mddev->reshape_backwards == 776 (sector >= rdev->mddev->reshape_position))) 777 bio->bi_iter.bi_sector = sector + rdev->new_data_offset; 778 else 779 bio->bi_iter.bi_sector = sector + rdev->data_offset; 780 bio_add_page(bio, page, size, 0); 781 submit_bio_wait(rw, bio); 782 783 ret = test_bit(BIO_UPTODATE, &bio->bi_flags); 784 bio_put(bio); 785 return ret; 786 } 787 EXPORT_SYMBOL_GPL(sync_page_io); 788 789 static int read_disk_sb(struct md_rdev *rdev, int size) 790 { 791 char b[BDEVNAME_SIZE]; 792 793 if (rdev->sb_loaded) 794 return 0; 795 796 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true)) 797 goto fail; 798 rdev->sb_loaded = 1; 799 return 0; 800 801 fail: 802 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n", 803 bdevname(rdev->bdev,b)); 804 return -EINVAL; 805 } 806 807 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) 808 { 809 return sb1->set_uuid0 == sb2->set_uuid0 && 810 sb1->set_uuid1 == sb2->set_uuid1 && 811 sb1->set_uuid2 == sb2->set_uuid2 && 812 sb1->set_uuid3 == sb2->set_uuid3; 813 } 814 815 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) 816 { 817 int ret; 818 mdp_super_t *tmp1, *tmp2; 819 820 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); 821 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); 822 823 if (!tmp1 || !tmp2) { 824 ret = 0; 825 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n"); 826 goto abort; 827 } 828 829 *tmp1 = *sb1; 830 *tmp2 = *sb2; 831 832 /* 833 * nr_disks is not constant 834 */ 835 tmp1->nr_disks = 0; 836 tmp2->nr_disks = 0; 837 838 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0); 839 abort: 840 kfree(tmp1); 841 kfree(tmp2); 842 return ret; 843 } 844 845 static u32 md_csum_fold(u32 csum) 846 { 847 csum = (csum & 0xffff) + (csum >> 16); 848 return (csum & 0xffff) + (csum >> 16); 849 } 850 851 static unsigned int calc_sb_csum(mdp_super_t *sb) 852 { 853 u64 newcsum = 0; 854 u32 *sb32 = (u32*)sb; 855 int i; 856 unsigned int disk_csum, csum; 857 858 disk_csum = sb->sb_csum; 859 sb->sb_csum = 0; 860 861 for (i = 0; i < MD_SB_BYTES/4 ; i++) 862 newcsum += sb32[i]; 863 csum = (newcsum & 0xffffffff) + (newcsum>>32); 864 865 #ifdef CONFIG_ALPHA 866 /* This used to use csum_partial, which was wrong for several 867 * reasons including that different results are returned on 868 * different architectures. It isn't critical that we get exactly 869 * the same return value as before (we always csum_fold before 870 * testing, and that removes any differences). However as we 871 * know that csum_partial always returned a 16bit value on 872 * alphas, do a fold to maximise conformity to previous behaviour. 873 */ 874 sb->sb_csum = md_csum_fold(disk_csum); 875 #else 876 sb->sb_csum = disk_csum; 877 #endif 878 return csum; 879 } 880 881 /* 882 * Handle superblock details. 883 * We want to be able to handle multiple superblock formats 884 * so we have a common interface to them all, and an array of 885 * different handlers. 886 * We rely on user-space to write the initial superblock, and support 887 * reading and updating of superblocks. 888 * Interface methods are: 889 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version) 890 * loads and validates a superblock on dev. 891 * if refdev != NULL, compare superblocks on both devices 892 * Return: 893 * 0 - dev has a superblock that is compatible with refdev 894 * 1 - dev has a superblock that is compatible and newer than refdev 895 * so dev should be used as the refdev in future 896 * -EINVAL superblock incompatible or invalid 897 * -othererror e.g. -EIO 898 * 899 * int validate_super(struct mddev *mddev, struct md_rdev *dev) 900 * Verify that dev is acceptable into mddev. 901 * The first time, mddev->raid_disks will be 0, and data from 902 * dev should be merged in. Subsequent calls check that dev 903 * is new enough. Return 0 or -EINVAL 904 * 905 * void sync_super(struct mddev *mddev, struct md_rdev *dev) 906 * Update the superblock for rdev with data in mddev 907 * This does not write to disc. 908 * 909 */ 910 911 struct super_type { 912 char *name; 913 struct module *owner; 914 int (*load_super)(struct md_rdev *rdev, 915 struct md_rdev *refdev, 916 int minor_version); 917 int (*validate_super)(struct mddev *mddev, 918 struct md_rdev *rdev); 919 void (*sync_super)(struct mddev *mddev, 920 struct md_rdev *rdev); 921 unsigned long long (*rdev_size_change)(struct md_rdev *rdev, 922 sector_t num_sectors); 923 int (*allow_new_offset)(struct md_rdev *rdev, 924 unsigned long long new_offset); 925 }; 926 927 /* 928 * Check that the given mddev has no bitmap. 929 * 930 * This function is called from the run method of all personalities that do not 931 * support bitmaps. It prints an error message and returns non-zero if mddev 932 * has a bitmap. Otherwise, it returns 0. 933 * 934 */ 935 int md_check_no_bitmap(struct mddev *mddev) 936 { 937 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset) 938 return 0; 939 printk(KERN_ERR "%s: bitmaps are not supported for %s\n", 940 mdname(mddev), mddev->pers->name); 941 return 1; 942 } 943 EXPORT_SYMBOL(md_check_no_bitmap); 944 945 /* 946 * load_super for 0.90.0 947 */ 948 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 949 { 950 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 951 mdp_super_t *sb; 952 int ret; 953 954 /* 955 * Calculate the position of the superblock (512byte sectors), 956 * it's at the end of the disk. 957 * 958 * It also happens to be a multiple of 4Kb. 959 */ 960 rdev->sb_start = calc_dev_sboffset(rdev); 961 962 ret = read_disk_sb(rdev, MD_SB_BYTES); 963 if (ret) return ret; 964 965 ret = -EINVAL; 966 967 bdevname(rdev->bdev, b); 968 sb = page_address(rdev->sb_page); 969 970 if (sb->md_magic != MD_SB_MAGIC) { 971 printk(KERN_ERR "md: invalid raid superblock magic on %s\n", 972 b); 973 goto abort; 974 } 975 976 if (sb->major_version != 0 || 977 sb->minor_version < 90 || 978 sb->minor_version > 91) { 979 printk(KERN_WARNING "Bad version number %d.%d on %s\n", 980 sb->major_version, sb->minor_version, 981 b); 982 goto abort; 983 } 984 985 if (sb->raid_disks <= 0) 986 goto abort; 987 988 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) { 989 printk(KERN_WARNING "md: invalid superblock checksum on %s\n", 990 b); 991 goto abort; 992 } 993 994 rdev->preferred_minor = sb->md_minor; 995 rdev->data_offset = 0; 996 rdev->new_data_offset = 0; 997 rdev->sb_size = MD_SB_BYTES; 998 rdev->badblocks.shift = -1; 999 1000 if (sb->level == LEVEL_MULTIPATH) 1001 rdev->desc_nr = -1; 1002 else 1003 rdev->desc_nr = sb->this_disk.number; 1004 1005 if (!refdev) { 1006 ret = 1; 1007 } else { 1008 __u64 ev1, ev2; 1009 mdp_super_t *refsb = page_address(refdev->sb_page); 1010 if (!uuid_equal(refsb, sb)) { 1011 printk(KERN_WARNING "md: %s has different UUID to %s\n", 1012 b, bdevname(refdev->bdev,b2)); 1013 goto abort; 1014 } 1015 if (!sb_equal(refsb, sb)) { 1016 printk(KERN_WARNING "md: %s has same UUID" 1017 " but different superblock to %s\n", 1018 b, bdevname(refdev->bdev, b2)); 1019 goto abort; 1020 } 1021 ev1 = md_event(sb); 1022 ev2 = md_event(refsb); 1023 if (ev1 > ev2) 1024 ret = 1; 1025 else 1026 ret = 0; 1027 } 1028 rdev->sectors = rdev->sb_start; 1029 /* Limit to 4TB as metadata cannot record more than that. 1030 * (not needed for Linear and RAID0 as metadata doesn't 1031 * record this size) 1032 */ 1033 if (rdev->sectors >= (2ULL << 32) && sb->level >= 1) 1034 rdev->sectors = (2ULL << 32) - 2; 1035 1036 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1) 1037 /* "this cannot possibly happen" ... */ 1038 ret = -EINVAL; 1039 1040 abort: 1041 return ret; 1042 } 1043 1044 /* 1045 * validate_super for 0.90.0 1046 */ 1047 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev) 1048 { 1049 mdp_disk_t *desc; 1050 mdp_super_t *sb = page_address(rdev->sb_page); 1051 __u64 ev1 = md_event(sb); 1052 1053 rdev->raid_disk = -1; 1054 clear_bit(Faulty, &rdev->flags); 1055 clear_bit(In_sync, &rdev->flags); 1056 clear_bit(Bitmap_sync, &rdev->flags); 1057 clear_bit(WriteMostly, &rdev->flags); 1058 1059 if (mddev->raid_disks == 0) { 1060 mddev->major_version = 0; 1061 mddev->minor_version = sb->minor_version; 1062 mddev->patch_version = sb->patch_version; 1063 mddev->external = 0; 1064 mddev->chunk_sectors = sb->chunk_size >> 9; 1065 mddev->ctime = sb->ctime; 1066 mddev->utime = sb->utime; 1067 mddev->level = sb->level; 1068 mddev->clevel[0] = 0; 1069 mddev->layout = sb->layout; 1070 mddev->raid_disks = sb->raid_disks; 1071 mddev->dev_sectors = ((sector_t)sb->size) * 2; 1072 mddev->events = ev1; 1073 mddev->bitmap_info.offset = 0; 1074 mddev->bitmap_info.space = 0; 1075 /* bitmap can use 60 K after the 4K superblocks */ 1076 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 1077 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 1078 mddev->reshape_backwards = 0; 1079 1080 if (mddev->minor_version >= 91) { 1081 mddev->reshape_position = sb->reshape_position; 1082 mddev->delta_disks = sb->delta_disks; 1083 mddev->new_level = sb->new_level; 1084 mddev->new_layout = sb->new_layout; 1085 mddev->new_chunk_sectors = sb->new_chunk >> 9; 1086 if (mddev->delta_disks < 0) 1087 mddev->reshape_backwards = 1; 1088 } else { 1089 mddev->reshape_position = MaxSector; 1090 mddev->delta_disks = 0; 1091 mddev->new_level = mddev->level; 1092 mddev->new_layout = mddev->layout; 1093 mddev->new_chunk_sectors = mddev->chunk_sectors; 1094 } 1095 1096 if (sb->state & (1<<MD_SB_CLEAN)) 1097 mddev->recovery_cp = MaxSector; 1098 else { 1099 if (sb->events_hi == sb->cp_events_hi && 1100 sb->events_lo == sb->cp_events_lo) { 1101 mddev->recovery_cp = sb->recovery_cp; 1102 } else 1103 mddev->recovery_cp = 0; 1104 } 1105 1106 memcpy(mddev->uuid+0, &sb->set_uuid0, 4); 1107 memcpy(mddev->uuid+4, &sb->set_uuid1, 4); 1108 memcpy(mddev->uuid+8, &sb->set_uuid2, 4); 1109 memcpy(mddev->uuid+12,&sb->set_uuid3, 4); 1110 1111 mddev->max_disks = MD_SB_DISKS; 1112 1113 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && 1114 mddev->bitmap_info.file == NULL) { 1115 mddev->bitmap_info.offset = 1116 mddev->bitmap_info.default_offset; 1117 mddev->bitmap_info.space = 1118 mddev->bitmap_info.default_space; 1119 } 1120 1121 } else if (mddev->pers == NULL) { 1122 /* Insist on good event counter while assembling, except 1123 * for spares (which don't need an event count) */ 1124 ++ev1; 1125 if (sb->disks[rdev->desc_nr].state & ( 1126 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))) 1127 if (ev1 < mddev->events) 1128 return -EINVAL; 1129 } else if (mddev->bitmap) { 1130 /* if adding to array with a bitmap, then we can accept an 1131 * older device ... but not too old. 1132 */ 1133 if (ev1 < mddev->bitmap->events_cleared) 1134 return 0; 1135 if (ev1 < mddev->events) 1136 set_bit(Bitmap_sync, &rdev->flags); 1137 } else { 1138 if (ev1 < mddev->events) 1139 /* just a hot-add of a new device, leave raid_disk at -1 */ 1140 return 0; 1141 } 1142 1143 if (mddev->level != LEVEL_MULTIPATH) { 1144 desc = sb->disks + rdev->desc_nr; 1145 1146 if (desc->state & (1<<MD_DISK_FAULTY)) 1147 set_bit(Faulty, &rdev->flags); 1148 else if (desc->state & (1<<MD_DISK_SYNC) /* && 1149 desc->raid_disk < mddev->raid_disks */) { 1150 set_bit(In_sync, &rdev->flags); 1151 rdev->raid_disk = desc->raid_disk; 1152 rdev->saved_raid_disk = desc->raid_disk; 1153 } else if (desc->state & (1<<MD_DISK_ACTIVE)) { 1154 /* active but not in sync implies recovery up to 1155 * reshape position. We don't know exactly where 1156 * that is, so set to zero for now */ 1157 if (mddev->minor_version >= 91) { 1158 rdev->recovery_offset = 0; 1159 rdev->raid_disk = desc->raid_disk; 1160 } 1161 } 1162 if (desc->state & (1<<MD_DISK_WRITEMOSTLY)) 1163 set_bit(WriteMostly, &rdev->flags); 1164 } else /* MULTIPATH are always insync */ 1165 set_bit(In_sync, &rdev->flags); 1166 return 0; 1167 } 1168 1169 /* 1170 * sync_super for 0.90.0 1171 */ 1172 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev) 1173 { 1174 mdp_super_t *sb; 1175 struct md_rdev *rdev2; 1176 int next_spare = mddev->raid_disks; 1177 1178 /* make rdev->sb match mddev data.. 1179 * 1180 * 1/ zero out disks 1181 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); 1182 * 3/ any empty disks < next_spare become removed 1183 * 1184 * disks[0] gets initialised to REMOVED because 1185 * we cannot be sure from other fields if it has 1186 * been initialised or not. 1187 */ 1188 int i; 1189 int active=0, working=0,failed=0,spare=0,nr_disks=0; 1190 1191 rdev->sb_size = MD_SB_BYTES; 1192 1193 sb = page_address(rdev->sb_page); 1194 1195 memset(sb, 0, sizeof(*sb)); 1196 1197 sb->md_magic = MD_SB_MAGIC; 1198 sb->major_version = mddev->major_version; 1199 sb->patch_version = mddev->patch_version; 1200 sb->gvalid_words = 0; /* ignored */ 1201 memcpy(&sb->set_uuid0, mddev->uuid+0, 4); 1202 memcpy(&sb->set_uuid1, mddev->uuid+4, 4); 1203 memcpy(&sb->set_uuid2, mddev->uuid+8, 4); 1204 memcpy(&sb->set_uuid3, mddev->uuid+12,4); 1205 1206 sb->ctime = mddev->ctime; 1207 sb->level = mddev->level; 1208 sb->size = mddev->dev_sectors / 2; 1209 sb->raid_disks = mddev->raid_disks; 1210 sb->md_minor = mddev->md_minor; 1211 sb->not_persistent = 0; 1212 sb->utime = mddev->utime; 1213 sb->state = 0; 1214 sb->events_hi = (mddev->events>>32); 1215 sb->events_lo = (u32)mddev->events; 1216 1217 if (mddev->reshape_position == MaxSector) 1218 sb->minor_version = 90; 1219 else { 1220 sb->minor_version = 91; 1221 sb->reshape_position = mddev->reshape_position; 1222 sb->new_level = mddev->new_level; 1223 sb->delta_disks = mddev->delta_disks; 1224 sb->new_layout = mddev->new_layout; 1225 sb->new_chunk = mddev->new_chunk_sectors << 9; 1226 } 1227 mddev->minor_version = sb->minor_version; 1228 if (mddev->in_sync) 1229 { 1230 sb->recovery_cp = mddev->recovery_cp; 1231 sb->cp_events_hi = (mddev->events>>32); 1232 sb->cp_events_lo = (u32)mddev->events; 1233 if (mddev->recovery_cp == MaxSector) 1234 sb->state = (1<< MD_SB_CLEAN); 1235 } else 1236 sb->recovery_cp = 0; 1237 1238 sb->layout = mddev->layout; 1239 sb->chunk_size = mddev->chunk_sectors << 9; 1240 1241 if (mddev->bitmap && mddev->bitmap_info.file == NULL) 1242 sb->state |= (1<<MD_SB_BITMAP_PRESENT); 1243 1244 sb->disks[0].state = (1<<MD_DISK_REMOVED); 1245 rdev_for_each(rdev2, mddev) { 1246 mdp_disk_t *d; 1247 int desc_nr; 1248 int is_active = test_bit(In_sync, &rdev2->flags); 1249 1250 if (rdev2->raid_disk >= 0 && 1251 sb->minor_version >= 91) 1252 /* we have nowhere to store the recovery_offset, 1253 * but if it is not below the reshape_position, 1254 * we can piggy-back on that. 1255 */ 1256 is_active = 1; 1257 if (rdev2->raid_disk < 0 || 1258 test_bit(Faulty, &rdev2->flags)) 1259 is_active = 0; 1260 if (is_active) 1261 desc_nr = rdev2->raid_disk; 1262 else 1263 desc_nr = next_spare++; 1264 rdev2->desc_nr = desc_nr; 1265 d = &sb->disks[rdev2->desc_nr]; 1266 nr_disks++; 1267 d->number = rdev2->desc_nr; 1268 d->major = MAJOR(rdev2->bdev->bd_dev); 1269 d->minor = MINOR(rdev2->bdev->bd_dev); 1270 if (is_active) 1271 d->raid_disk = rdev2->raid_disk; 1272 else 1273 d->raid_disk = rdev2->desc_nr; /* compatibility */ 1274 if (test_bit(Faulty, &rdev2->flags)) 1275 d->state = (1<<MD_DISK_FAULTY); 1276 else if (is_active) { 1277 d->state = (1<<MD_DISK_ACTIVE); 1278 if (test_bit(In_sync, &rdev2->flags)) 1279 d->state |= (1<<MD_DISK_SYNC); 1280 active++; 1281 working++; 1282 } else { 1283 d->state = 0; 1284 spare++; 1285 working++; 1286 } 1287 if (test_bit(WriteMostly, &rdev2->flags)) 1288 d->state |= (1<<MD_DISK_WRITEMOSTLY); 1289 } 1290 /* now set the "removed" and "faulty" bits on any missing devices */ 1291 for (i=0 ; i < mddev->raid_disks ; i++) { 1292 mdp_disk_t *d = &sb->disks[i]; 1293 if (d->state == 0 && d->number == 0) { 1294 d->number = i; 1295 d->raid_disk = i; 1296 d->state = (1<<MD_DISK_REMOVED); 1297 d->state |= (1<<MD_DISK_FAULTY); 1298 failed++; 1299 } 1300 } 1301 sb->nr_disks = nr_disks; 1302 sb->active_disks = active; 1303 sb->working_disks = working; 1304 sb->failed_disks = failed; 1305 sb->spare_disks = spare; 1306 1307 sb->this_disk = sb->disks[rdev->desc_nr]; 1308 sb->sb_csum = calc_sb_csum(sb); 1309 } 1310 1311 /* 1312 * rdev_size_change for 0.90.0 1313 */ 1314 static unsigned long long 1315 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1316 { 1317 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1318 return 0; /* component must fit device */ 1319 if (rdev->mddev->bitmap_info.offset) 1320 return 0; /* can't move bitmap */ 1321 rdev->sb_start = calc_dev_sboffset(rdev); 1322 if (!num_sectors || num_sectors > rdev->sb_start) 1323 num_sectors = rdev->sb_start; 1324 /* Limit to 4TB as metadata cannot record more than that. 1325 * 4TB == 2^32 KB, or 2*2^32 sectors. 1326 */ 1327 if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1) 1328 num_sectors = (2ULL << 32) - 2; 1329 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1330 rdev->sb_page); 1331 md_super_wait(rdev->mddev); 1332 return num_sectors; 1333 } 1334 1335 static int 1336 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset) 1337 { 1338 /* non-zero offset changes not possible with v0.90 */ 1339 return new_offset == 0; 1340 } 1341 1342 /* 1343 * version 1 superblock 1344 */ 1345 1346 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb) 1347 { 1348 __le32 disk_csum; 1349 u32 csum; 1350 unsigned long long newcsum; 1351 int size = 256 + le32_to_cpu(sb->max_dev)*2; 1352 __le32 *isuper = (__le32*)sb; 1353 1354 disk_csum = sb->sb_csum; 1355 sb->sb_csum = 0; 1356 newcsum = 0; 1357 for (; size >= 4; size -= 4) 1358 newcsum += le32_to_cpu(*isuper++); 1359 1360 if (size == 2) 1361 newcsum += le16_to_cpu(*(__le16*) isuper); 1362 1363 csum = (newcsum & 0xffffffff) + (newcsum >> 32); 1364 sb->sb_csum = disk_csum; 1365 return cpu_to_le32(csum); 1366 } 1367 1368 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors, 1369 int acknowledged); 1370 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1371 { 1372 struct mdp_superblock_1 *sb; 1373 int ret; 1374 sector_t sb_start; 1375 sector_t sectors; 1376 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1377 int bmask; 1378 1379 /* 1380 * Calculate the position of the superblock in 512byte sectors. 1381 * It is always aligned to a 4K boundary and 1382 * depeding on minor_version, it can be: 1383 * 0: At least 8K, but less than 12K, from end of device 1384 * 1: At start of device 1385 * 2: 4K from start of device. 1386 */ 1387 switch(minor_version) { 1388 case 0: 1389 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9; 1390 sb_start -= 8*2; 1391 sb_start &= ~(sector_t)(4*2-1); 1392 break; 1393 case 1: 1394 sb_start = 0; 1395 break; 1396 case 2: 1397 sb_start = 8; 1398 break; 1399 default: 1400 return -EINVAL; 1401 } 1402 rdev->sb_start = sb_start; 1403 1404 /* superblock is rarely larger than 1K, but it can be larger, 1405 * and it is safe to read 4k, so we do that 1406 */ 1407 ret = read_disk_sb(rdev, 4096); 1408 if (ret) return ret; 1409 1410 sb = page_address(rdev->sb_page); 1411 1412 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || 1413 sb->major_version != cpu_to_le32(1) || 1414 le32_to_cpu(sb->max_dev) > (4096-256)/2 || 1415 le64_to_cpu(sb->super_offset) != rdev->sb_start || 1416 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) 1417 return -EINVAL; 1418 1419 if (calc_sb_1_csum(sb) != sb->sb_csum) { 1420 printk("md: invalid superblock checksum on %s\n", 1421 bdevname(rdev->bdev,b)); 1422 return -EINVAL; 1423 } 1424 if (le64_to_cpu(sb->data_size) < 10) { 1425 printk("md: data_size too small on %s\n", 1426 bdevname(rdev->bdev,b)); 1427 return -EINVAL; 1428 } 1429 if (sb->pad0 || 1430 sb->pad3[0] || 1431 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1]))) 1432 /* Some padding is non-zero, might be a new feature */ 1433 return -EINVAL; 1434 1435 rdev->preferred_minor = 0xffff; 1436 rdev->data_offset = le64_to_cpu(sb->data_offset); 1437 rdev->new_data_offset = rdev->data_offset; 1438 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) && 1439 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET)) 1440 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset); 1441 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); 1442 1443 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; 1444 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1445 if (rdev->sb_size & bmask) 1446 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1447 1448 if (minor_version 1449 && rdev->data_offset < sb_start + (rdev->sb_size/512)) 1450 return -EINVAL; 1451 if (minor_version 1452 && rdev->new_data_offset < sb_start + (rdev->sb_size/512)) 1453 return -EINVAL; 1454 1455 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH)) 1456 rdev->desc_nr = -1; 1457 else 1458 rdev->desc_nr = le32_to_cpu(sb->dev_number); 1459 1460 if (!rdev->bb_page) { 1461 rdev->bb_page = alloc_page(GFP_KERNEL); 1462 if (!rdev->bb_page) 1463 return -ENOMEM; 1464 } 1465 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) && 1466 rdev->badblocks.count == 0) { 1467 /* need to load the bad block list. 1468 * Currently we limit it to one page. 1469 */ 1470 s32 offset; 1471 sector_t bb_sector; 1472 u64 *bbp; 1473 int i; 1474 int sectors = le16_to_cpu(sb->bblog_size); 1475 if (sectors > (PAGE_SIZE / 512)) 1476 return -EINVAL; 1477 offset = le32_to_cpu(sb->bblog_offset); 1478 if (offset == 0) 1479 return -EINVAL; 1480 bb_sector = (long long)offset; 1481 if (!sync_page_io(rdev, bb_sector, sectors << 9, 1482 rdev->bb_page, READ, true)) 1483 return -EIO; 1484 bbp = (u64 *)page_address(rdev->bb_page); 1485 rdev->badblocks.shift = sb->bblog_shift; 1486 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) { 1487 u64 bb = le64_to_cpu(*bbp); 1488 int count = bb & (0x3ff); 1489 u64 sector = bb >> 10; 1490 sector <<= sb->bblog_shift; 1491 count <<= sb->bblog_shift; 1492 if (bb + 1 == 0) 1493 break; 1494 if (md_set_badblocks(&rdev->badblocks, 1495 sector, count, 1) == 0) 1496 return -EINVAL; 1497 } 1498 } else if (sb->bblog_offset != 0) 1499 rdev->badblocks.shift = 0; 1500 1501 if (!refdev) { 1502 ret = 1; 1503 } else { 1504 __u64 ev1, ev2; 1505 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page); 1506 1507 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || 1508 sb->level != refsb->level || 1509 sb->layout != refsb->layout || 1510 sb->chunksize != refsb->chunksize) { 1511 printk(KERN_WARNING "md: %s has strangely different" 1512 " superblock to %s\n", 1513 bdevname(rdev->bdev,b), 1514 bdevname(refdev->bdev,b2)); 1515 return -EINVAL; 1516 } 1517 ev1 = le64_to_cpu(sb->events); 1518 ev2 = le64_to_cpu(refsb->events); 1519 1520 if (ev1 > ev2) 1521 ret = 1; 1522 else 1523 ret = 0; 1524 } 1525 if (minor_version) { 1526 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9); 1527 sectors -= rdev->data_offset; 1528 } else 1529 sectors = rdev->sb_start; 1530 if (sectors < le64_to_cpu(sb->data_size)) 1531 return -EINVAL; 1532 rdev->sectors = le64_to_cpu(sb->data_size); 1533 return ret; 1534 } 1535 1536 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev) 1537 { 1538 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 1539 __u64 ev1 = le64_to_cpu(sb->events); 1540 1541 rdev->raid_disk = -1; 1542 clear_bit(Faulty, &rdev->flags); 1543 clear_bit(In_sync, &rdev->flags); 1544 clear_bit(Bitmap_sync, &rdev->flags); 1545 clear_bit(WriteMostly, &rdev->flags); 1546 1547 if (mddev->raid_disks == 0) { 1548 mddev->major_version = 1; 1549 mddev->patch_version = 0; 1550 mddev->external = 0; 1551 mddev->chunk_sectors = le32_to_cpu(sb->chunksize); 1552 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1); 1553 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1); 1554 mddev->level = le32_to_cpu(sb->level); 1555 mddev->clevel[0] = 0; 1556 mddev->layout = le32_to_cpu(sb->layout); 1557 mddev->raid_disks = le32_to_cpu(sb->raid_disks); 1558 mddev->dev_sectors = le64_to_cpu(sb->size); 1559 mddev->events = ev1; 1560 mddev->bitmap_info.offset = 0; 1561 mddev->bitmap_info.space = 0; 1562 /* Default location for bitmap is 1K after superblock 1563 * using 3K - total of 4K 1564 */ 1565 mddev->bitmap_info.default_offset = 1024 >> 9; 1566 mddev->bitmap_info.default_space = (4096-1024) >> 9; 1567 mddev->reshape_backwards = 0; 1568 1569 mddev->recovery_cp = le64_to_cpu(sb->resync_offset); 1570 memcpy(mddev->uuid, sb->set_uuid, 16); 1571 1572 mddev->max_disks = (4096-256)/2; 1573 1574 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && 1575 mddev->bitmap_info.file == NULL) { 1576 mddev->bitmap_info.offset = 1577 (__s32)le32_to_cpu(sb->bitmap_offset); 1578 /* Metadata doesn't record how much space is available. 1579 * For 1.0, we assume we can use up to the superblock 1580 * if before, else to 4K beyond superblock. 1581 * For others, assume no change is possible. 1582 */ 1583 if (mddev->minor_version > 0) 1584 mddev->bitmap_info.space = 0; 1585 else if (mddev->bitmap_info.offset > 0) 1586 mddev->bitmap_info.space = 1587 8 - mddev->bitmap_info.offset; 1588 else 1589 mddev->bitmap_info.space = 1590 -mddev->bitmap_info.offset; 1591 } 1592 1593 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 1594 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 1595 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 1596 mddev->new_level = le32_to_cpu(sb->new_level); 1597 mddev->new_layout = le32_to_cpu(sb->new_layout); 1598 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk); 1599 if (mddev->delta_disks < 0 || 1600 (mddev->delta_disks == 0 && 1601 (le32_to_cpu(sb->feature_map) 1602 & MD_FEATURE_RESHAPE_BACKWARDS))) 1603 mddev->reshape_backwards = 1; 1604 } else { 1605 mddev->reshape_position = MaxSector; 1606 mddev->delta_disks = 0; 1607 mddev->new_level = mddev->level; 1608 mddev->new_layout = mddev->layout; 1609 mddev->new_chunk_sectors = mddev->chunk_sectors; 1610 } 1611 1612 } else if (mddev->pers == NULL) { 1613 /* Insist of good event counter while assembling, except for 1614 * spares (which don't need an event count) */ 1615 ++ev1; 1616 if (rdev->desc_nr >= 0 && 1617 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1618 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe) 1619 if (ev1 < mddev->events) 1620 return -EINVAL; 1621 } else if (mddev->bitmap) { 1622 /* If adding to array with a bitmap, then we can accept an 1623 * older device, but not too old. 1624 */ 1625 if (ev1 < mddev->bitmap->events_cleared) 1626 return 0; 1627 if (ev1 < mddev->events) 1628 set_bit(Bitmap_sync, &rdev->flags); 1629 } else { 1630 if (ev1 < mddev->events) 1631 /* just a hot-add of a new device, leave raid_disk at -1 */ 1632 return 0; 1633 } 1634 if (mddev->level != LEVEL_MULTIPATH) { 1635 int role; 1636 if (rdev->desc_nr < 0 || 1637 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) { 1638 role = 0xffff; 1639 rdev->desc_nr = -1; 1640 } else 1641 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 1642 switch(role) { 1643 case 0xffff: /* spare */ 1644 break; 1645 case 0xfffe: /* faulty */ 1646 set_bit(Faulty, &rdev->flags); 1647 break; 1648 default: 1649 rdev->saved_raid_disk = role; 1650 if ((le32_to_cpu(sb->feature_map) & 1651 MD_FEATURE_RECOVERY_OFFSET)) { 1652 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 1653 if (!(le32_to_cpu(sb->feature_map) & 1654 MD_FEATURE_RECOVERY_BITMAP)) 1655 rdev->saved_raid_disk = -1; 1656 } else 1657 set_bit(In_sync, &rdev->flags); 1658 rdev->raid_disk = role; 1659 break; 1660 } 1661 if (sb->devflags & WriteMostly1) 1662 set_bit(WriteMostly, &rdev->flags); 1663 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT) 1664 set_bit(Replacement, &rdev->flags); 1665 } else /* MULTIPATH are always insync */ 1666 set_bit(In_sync, &rdev->flags); 1667 1668 return 0; 1669 } 1670 1671 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev) 1672 { 1673 struct mdp_superblock_1 *sb; 1674 struct md_rdev *rdev2; 1675 int max_dev, i; 1676 /* make rdev->sb match mddev and rdev data. */ 1677 1678 sb = page_address(rdev->sb_page); 1679 1680 sb->feature_map = 0; 1681 sb->pad0 = 0; 1682 sb->recovery_offset = cpu_to_le64(0); 1683 memset(sb->pad3, 0, sizeof(sb->pad3)); 1684 1685 sb->utime = cpu_to_le64((__u64)mddev->utime); 1686 sb->events = cpu_to_le64(mddev->events); 1687 if (mddev->in_sync) 1688 sb->resync_offset = cpu_to_le64(mddev->recovery_cp); 1689 else 1690 sb->resync_offset = cpu_to_le64(0); 1691 1692 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); 1693 1694 sb->raid_disks = cpu_to_le32(mddev->raid_disks); 1695 sb->size = cpu_to_le64(mddev->dev_sectors); 1696 sb->chunksize = cpu_to_le32(mddev->chunk_sectors); 1697 sb->level = cpu_to_le32(mddev->level); 1698 sb->layout = cpu_to_le32(mddev->layout); 1699 1700 if (test_bit(WriteMostly, &rdev->flags)) 1701 sb->devflags |= WriteMostly1; 1702 else 1703 sb->devflags &= ~WriteMostly1; 1704 sb->data_offset = cpu_to_le64(rdev->data_offset); 1705 sb->data_size = cpu_to_le64(rdev->sectors); 1706 1707 if (mddev->bitmap && mddev->bitmap_info.file == NULL) { 1708 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset); 1709 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); 1710 } 1711 1712 if (rdev->raid_disk >= 0 && 1713 !test_bit(In_sync, &rdev->flags)) { 1714 sb->feature_map |= 1715 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); 1716 sb->recovery_offset = 1717 cpu_to_le64(rdev->recovery_offset); 1718 if (rdev->saved_raid_disk >= 0 && mddev->bitmap) 1719 sb->feature_map |= 1720 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP); 1721 } 1722 if (test_bit(Replacement, &rdev->flags)) 1723 sb->feature_map |= 1724 cpu_to_le32(MD_FEATURE_REPLACEMENT); 1725 1726 if (mddev->reshape_position != MaxSector) { 1727 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); 1728 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 1729 sb->new_layout = cpu_to_le32(mddev->new_layout); 1730 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 1731 sb->new_level = cpu_to_le32(mddev->new_level); 1732 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors); 1733 if (mddev->delta_disks == 0 && 1734 mddev->reshape_backwards) 1735 sb->feature_map 1736 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS); 1737 if (rdev->new_data_offset != rdev->data_offset) { 1738 sb->feature_map 1739 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET); 1740 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset 1741 - rdev->data_offset)); 1742 } 1743 } 1744 1745 if (rdev->badblocks.count == 0) 1746 /* Nothing to do for bad blocks*/ ; 1747 else if (sb->bblog_offset == 0) 1748 /* Cannot record bad blocks on this device */ 1749 md_error(mddev, rdev); 1750 else { 1751 struct badblocks *bb = &rdev->badblocks; 1752 u64 *bbp = (u64 *)page_address(rdev->bb_page); 1753 u64 *p = bb->page; 1754 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS); 1755 if (bb->changed) { 1756 unsigned seq; 1757 1758 retry: 1759 seq = read_seqbegin(&bb->lock); 1760 1761 memset(bbp, 0xff, PAGE_SIZE); 1762 1763 for (i = 0 ; i < bb->count ; i++) { 1764 u64 internal_bb = p[i]; 1765 u64 store_bb = ((BB_OFFSET(internal_bb) << 10) 1766 | BB_LEN(internal_bb)); 1767 bbp[i] = cpu_to_le64(store_bb); 1768 } 1769 bb->changed = 0; 1770 if (read_seqretry(&bb->lock, seq)) 1771 goto retry; 1772 1773 bb->sector = (rdev->sb_start + 1774 (int)le32_to_cpu(sb->bblog_offset)); 1775 bb->size = le16_to_cpu(sb->bblog_size); 1776 } 1777 } 1778 1779 max_dev = 0; 1780 rdev_for_each(rdev2, mddev) 1781 if (rdev2->desc_nr+1 > max_dev) 1782 max_dev = rdev2->desc_nr+1; 1783 1784 if (max_dev > le32_to_cpu(sb->max_dev)) { 1785 int bmask; 1786 sb->max_dev = cpu_to_le32(max_dev); 1787 rdev->sb_size = max_dev * 2 + 256; 1788 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1789 if (rdev->sb_size & bmask) 1790 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1791 } else 1792 max_dev = le32_to_cpu(sb->max_dev); 1793 1794 for (i=0; i<max_dev;i++) 1795 sb->dev_roles[i] = cpu_to_le16(0xfffe); 1796 1797 rdev_for_each(rdev2, mddev) { 1798 i = rdev2->desc_nr; 1799 if (test_bit(Faulty, &rdev2->flags)) 1800 sb->dev_roles[i] = cpu_to_le16(0xfffe); 1801 else if (test_bit(In_sync, &rdev2->flags)) 1802 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1803 else if (rdev2->raid_disk >= 0) 1804 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1805 else 1806 sb->dev_roles[i] = cpu_to_le16(0xffff); 1807 } 1808 1809 sb->sb_csum = calc_sb_1_csum(sb); 1810 } 1811 1812 static unsigned long long 1813 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1814 { 1815 struct mdp_superblock_1 *sb; 1816 sector_t max_sectors; 1817 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1818 return 0; /* component must fit device */ 1819 if (rdev->data_offset != rdev->new_data_offset) 1820 return 0; /* too confusing */ 1821 if (rdev->sb_start < rdev->data_offset) { 1822 /* minor versions 1 and 2; superblock before data */ 1823 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9; 1824 max_sectors -= rdev->data_offset; 1825 if (!num_sectors || num_sectors > max_sectors) 1826 num_sectors = max_sectors; 1827 } else if (rdev->mddev->bitmap_info.offset) { 1828 /* minor version 0 with bitmap we can't move */ 1829 return 0; 1830 } else { 1831 /* minor version 0; superblock after data */ 1832 sector_t sb_start; 1833 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2; 1834 sb_start &= ~(sector_t)(4*2 - 1); 1835 max_sectors = rdev->sectors + sb_start - rdev->sb_start; 1836 if (!num_sectors || num_sectors > max_sectors) 1837 num_sectors = max_sectors; 1838 rdev->sb_start = sb_start; 1839 } 1840 sb = page_address(rdev->sb_page); 1841 sb->data_size = cpu_to_le64(num_sectors); 1842 sb->super_offset = rdev->sb_start; 1843 sb->sb_csum = calc_sb_1_csum(sb); 1844 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1845 rdev->sb_page); 1846 md_super_wait(rdev->mddev); 1847 return num_sectors; 1848 1849 } 1850 1851 static int 1852 super_1_allow_new_offset(struct md_rdev *rdev, 1853 unsigned long long new_offset) 1854 { 1855 /* All necessary checks on new >= old have been done */ 1856 struct bitmap *bitmap; 1857 if (new_offset >= rdev->data_offset) 1858 return 1; 1859 1860 /* with 1.0 metadata, there is no metadata to tread on 1861 * so we can always move back */ 1862 if (rdev->mddev->minor_version == 0) 1863 return 1; 1864 1865 /* otherwise we must be sure not to step on 1866 * any metadata, so stay: 1867 * 36K beyond start of superblock 1868 * beyond end of badblocks 1869 * beyond write-intent bitmap 1870 */ 1871 if (rdev->sb_start + (32+4)*2 > new_offset) 1872 return 0; 1873 bitmap = rdev->mddev->bitmap; 1874 if (bitmap && !rdev->mddev->bitmap_info.file && 1875 rdev->sb_start + rdev->mddev->bitmap_info.offset + 1876 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset) 1877 return 0; 1878 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset) 1879 return 0; 1880 1881 return 1; 1882 } 1883 1884 static struct super_type super_types[] = { 1885 [0] = { 1886 .name = "0.90.0", 1887 .owner = THIS_MODULE, 1888 .load_super = super_90_load, 1889 .validate_super = super_90_validate, 1890 .sync_super = super_90_sync, 1891 .rdev_size_change = super_90_rdev_size_change, 1892 .allow_new_offset = super_90_allow_new_offset, 1893 }, 1894 [1] = { 1895 .name = "md-1", 1896 .owner = THIS_MODULE, 1897 .load_super = super_1_load, 1898 .validate_super = super_1_validate, 1899 .sync_super = super_1_sync, 1900 .rdev_size_change = super_1_rdev_size_change, 1901 .allow_new_offset = super_1_allow_new_offset, 1902 }, 1903 }; 1904 1905 static void sync_super(struct mddev *mddev, struct md_rdev *rdev) 1906 { 1907 if (mddev->sync_super) { 1908 mddev->sync_super(mddev, rdev); 1909 return; 1910 } 1911 1912 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types)); 1913 1914 super_types[mddev->major_version].sync_super(mddev, rdev); 1915 } 1916 1917 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2) 1918 { 1919 struct md_rdev *rdev, *rdev2; 1920 1921 rcu_read_lock(); 1922 rdev_for_each_rcu(rdev, mddev1) 1923 rdev_for_each_rcu(rdev2, mddev2) 1924 if (rdev->bdev->bd_contains == 1925 rdev2->bdev->bd_contains) { 1926 rcu_read_unlock(); 1927 return 1; 1928 } 1929 rcu_read_unlock(); 1930 return 0; 1931 } 1932 1933 static LIST_HEAD(pending_raid_disks); 1934 1935 /* 1936 * Try to register data integrity profile for an mddev 1937 * 1938 * This is called when an array is started and after a disk has been kicked 1939 * from the array. It only succeeds if all working and active component devices 1940 * are integrity capable with matching profiles. 1941 */ 1942 int md_integrity_register(struct mddev *mddev) 1943 { 1944 struct md_rdev *rdev, *reference = NULL; 1945 1946 if (list_empty(&mddev->disks)) 1947 return 0; /* nothing to do */ 1948 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk)) 1949 return 0; /* shouldn't register, or already is */ 1950 rdev_for_each(rdev, mddev) { 1951 /* skip spares and non-functional disks */ 1952 if (test_bit(Faulty, &rdev->flags)) 1953 continue; 1954 if (rdev->raid_disk < 0) 1955 continue; 1956 if (!reference) { 1957 /* Use the first rdev as the reference */ 1958 reference = rdev; 1959 continue; 1960 } 1961 /* does this rdev's profile match the reference profile? */ 1962 if (blk_integrity_compare(reference->bdev->bd_disk, 1963 rdev->bdev->bd_disk) < 0) 1964 return -EINVAL; 1965 } 1966 if (!reference || !bdev_get_integrity(reference->bdev)) 1967 return 0; 1968 /* 1969 * All component devices are integrity capable and have matching 1970 * profiles, register the common profile for the md device. 1971 */ 1972 if (blk_integrity_register(mddev->gendisk, 1973 bdev_get_integrity(reference->bdev)) != 0) { 1974 printk(KERN_ERR "md: failed to register integrity for %s\n", 1975 mdname(mddev)); 1976 return -EINVAL; 1977 } 1978 printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev)); 1979 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) { 1980 printk(KERN_ERR "md: failed to create integrity pool for %s\n", 1981 mdname(mddev)); 1982 return -EINVAL; 1983 } 1984 return 0; 1985 } 1986 EXPORT_SYMBOL(md_integrity_register); 1987 1988 /* Disable data integrity if non-capable/non-matching disk is being added */ 1989 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev) 1990 { 1991 struct blk_integrity *bi_rdev; 1992 struct blk_integrity *bi_mddev; 1993 1994 if (!mddev->gendisk) 1995 return; 1996 1997 bi_rdev = bdev_get_integrity(rdev->bdev); 1998 bi_mddev = blk_get_integrity(mddev->gendisk); 1999 2000 if (!bi_mddev) /* nothing to do */ 2001 return; 2002 if (rdev->raid_disk < 0) /* skip spares */ 2003 return; 2004 if (bi_rdev && blk_integrity_compare(mddev->gendisk, 2005 rdev->bdev->bd_disk) >= 0) 2006 return; 2007 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev)); 2008 blk_integrity_unregister(mddev->gendisk); 2009 } 2010 EXPORT_SYMBOL(md_integrity_add_rdev); 2011 2012 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev) 2013 { 2014 char b[BDEVNAME_SIZE]; 2015 struct kobject *ko; 2016 char *s; 2017 int err; 2018 2019 /* prevent duplicates */ 2020 if (find_rdev(mddev, rdev->bdev->bd_dev)) 2021 return -EEXIST; 2022 2023 /* make sure rdev->sectors exceeds mddev->dev_sectors */ 2024 if (rdev->sectors && (mddev->dev_sectors == 0 || 2025 rdev->sectors < mddev->dev_sectors)) { 2026 if (mddev->pers) { 2027 /* Cannot change size, so fail 2028 * If mddev->level <= 0, then we don't care 2029 * about aligning sizes (e.g. linear) 2030 */ 2031 if (mddev->level > 0) 2032 return -ENOSPC; 2033 } else 2034 mddev->dev_sectors = rdev->sectors; 2035 } 2036 2037 /* Verify rdev->desc_nr is unique. 2038 * If it is -1, assign a free number, else 2039 * check number is not in use 2040 */ 2041 rcu_read_lock(); 2042 if (rdev->desc_nr < 0) { 2043 int choice = 0; 2044 if (mddev->pers) 2045 choice = mddev->raid_disks; 2046 while (find_rdev_nr_rcu(mddev, choice)) 2047 choice++; 2048 rdev->desc_nr = choice; 2049 } else { 2050 if (find_rdev_nr_rcu(mddev, rdev->desc_nr)) { 2051 rcu_read_unlock(); 2052 return -EBUSY; 2053 } 2054 } 2055 rcu_read_unlock(); 2056 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) { 2057 printk(KERN_WARNING "md: %s: array is limited to %d devices\n", 2058 mdname(mddev), mddev->max_disks); 2059 return -EBUSY; 2060 } 2061 bdevname(rdev->bdev,b); 2062 while ( (s=strchr(b, '/')) != NULL) 2063 *s = '!'; 2064 2065 rdev->mddev = mddev; 2066 printk(KERN_INFO "md: bind<%s>\n", b); 2067 2068 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b))) 2069 goto fail; 2070 2071 ko = &part_to_dev(rdev->bdev->bd_part)->kobj; 2072 if (sysfs_create_link(&rdev->kobj, ko, "block")) 2073 /* failure here is OK */; 2074 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state"); 2075 2076 list_add_rcu(&rdev->same_set, &mddev->disks); 2077 bd_link_disk_holder(rdev->bdev, mddev->gendisk); 2078 2079 /* May as well allow recovery to be retried once */ 2080 mddev->recovery_disabled++; 2081 2082 return 0; 2083 2084 fail: 2085 printk(KERN_WARNING "md: failed to register dev-%s for %s\n", 2086 b, mdname(mddev)); 2087 return err; 2088 } 2089 2090 static void md_delayed_delete(struct work_struct *ws) 2091 { 2092 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work); 2093 kobject_del(&rdev->kobj); 2094 kobject_put(&rdev->kobj); 2095 } 2096 2097 static void unbind_rdev_from_array(struct md_rdev *rdev) 2098 { 2099 char b[BDEVNAME_SIZE]; 2100 2101 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk); 2102 list_del_rcu(&rdev->same_set); 2103 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b)); 2104 rdev->mddev = NULL; 2105 sysfs_remove_link(&rdev->kobj, "block"); 2106 sysfs_put(rdev->sysfs_state); 2107 rdev->sysfs_state = NULL; 2108 rdev->badblocks.count = 0; 2109 /* We need to delay this, otherwise we can deadlock when 2110 * writing to 'remove' to "dev/state". We also need 2111 * to delay it due to rcu usage. 2112 */ 2113 synchronize_rcu(); 2114 INIT_WORK(&rdev->del_work, md_delayed_delete); 2115 kobject_get(&rdev->kobj); 2116 queue_work(md_misc_wq, &rdev->del_work); 2117 } 2118 2119 /* 2120 * prevent the device from being mounted, repartitioned or 2121 * otherwise reused by a RAID array (or any other kernel 2122 * subsystem), by bd_claiming the device. 2123 */ 2124 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared) 2125 { 2126 int err = 0; 2127 struct block_device *bdev; 2128 char b[BDEVNAME_SIZE]; 2129 2130 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, 2131 shared ? (struct md_rdev *)lock_rdev : rdev); 2132 if (IS_ERR(bdev)) { 2133 printk(KERN_ERR "md: could not open %s.\n", 2134 __bdevname(dev, b)); 2135 return PTR_ERR(bdev); 2136 } 2137 rdev->bdev = bdev; 2138 return err; 2139 } 2140 2141 static void unlock_rdev(struct md_rdev *rdev) 2142 { 2143 struct block_device *bdev = rdev->bdev; 2144 rdev->bdev = NULL; 2145 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 2146 } 2147 2148 void md_autodetect_dev(dev_t dev); 2149 2150 static void export_rdev(struct md_rdev *rdev) 2151 { 2152 char b[BDEVNAME_SIZE]; 2153 2154 printk(KERN_INFO "md: export_rdev(%s)\n", 2155 bdevname(rdev->bdev,b)); 2156 md_rdev_clear(rdev); 2157 #ifndef MODULE 2158 if (test_bit(AutoDetected, &rdev->flags)) 2159 md_autodetect_dev(rdev->bdev->bd_dev); 2160 #endif 2161 unlock_rdev(rdev); 2162 kobject_put(&rdev->kobj); 2163 } 2164 2165 static void kick_rdev_from_array(struct md_rdev *rdev) 2166 { 2167 unbind_rdev_from_array(rdev); 2168 export_rdev(rdev); 2169 } 2170 2171 static void export_array(struct mddev *mddev) 2172 { 2173 struct md_rdev *rdev; 2174 2175 while (!list_empty(&mddev->disks)) { 2176 rdev = list_first_entry(&mddev->disks, struct md_rdev, 2177 same_set); 2178 kick_rdev_from_array(rdev); 2179 } 2180 mddev->raid_disks = 0; 2181 mddev->major_version = 0; 2182 } 2183 2184 static void sync_sbs(struct mddev *mddev, int nospares) 2185 { 2186 /* Update each superblock (in-memory image), but 2187 * if we are allowed to, skip spares which already 2188 * have the right event counter, or have one earlier 2189 * (which would mean they aren't being marked as dirty 2190 * with the rest of the array) 2191 */ 2192 struct md_rdev *rdev; 2193 rdev_for_each(rdev, mddev) { 2194 if (rdev->sb_events == mddev->events || 2195 (nospares && 2196 rdev->raid_disk < 0 && 2197 rdev->sb_events+1 == mddev->events)) { 2198 /* Don't update this superblock */ 2199 rdev->sb_loaded = 2; 2200 } else { 2201 sync_super(mddev, rdev); 2202 rdev->sb_loaded = 1; 2203 } 2204 } 2205 } 2206 2207 static void md_update_sb(struct mddev *mddev, int force_change) 2208 { 2209 struct md_rdev *rdev; 2210 int sync_req; 2211 int nospares = 0; 2212 int any_badblocks_changed = 0; 2213 2214 if (mddev->ro) { 2215 if (force_change) 2216 set_bit(MD_CHANGE_DEVS, &mddev->flags); 2217 return; 2218 } 2219 repeat: 2220 /* First make sure individual recovery_offsets are correct */ 2221 rdev_for_each(rdev, mddev) { 2222 if (rdev->raid_disk >= 0 && 2223 mddev->delta_disks >= 0 && 2224 !test_bit(In_sync, &rdev->flags) && 2225 mddev->curr_resync_completed > rdev->recovery_offset) 2226 rdev->recovery_offset = mddev->curr_resync_completed; 2227 2228 } 2229 if (!mddev->persistent) { 2230 clear_bit(MD_CHANGE_CLEAN, &mddev->flags); 2231 clear_bit(MD_CHANGE_DEVS, &mddev->flags); 2232 if (!mddev->external) { 2233 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 2234 rdev_for_each(rdev, mddev) { 2235 if (rdev->badblocks.changed) { 2236 rdev->badblocks.changed = 0; 2237 md_ack_all_badblocks(&rdev->badblocks); 2238 md_error(mddev, rdev); 2239 } 2240 clear_bit(Blocked, &rdev->flags); 2241 clear_bit(BlockedBadBlocks, &rdev->flags); 2242 wake_up(&rdev->blocked_wait); 2243 } 2244 } 2245 wake_up(&mddev->sb_wait); 2246 return; 2247 } 2248 2249 spin_lock(&mddev->lock); 2250 2251 mddev->utime = get_seconds(); 2252 2253 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags)) 2254 force_change = 1; 2255 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags)) 2256 /* just a clean<-> dirty transition, possibly leave spares alone, 2257 * though if events isn't the right even/odd, we will have to do 2258 * spares after all 2259 */ 2260 nospares = 1; 2261 if (force_change) 2262 nospares = 0; 2263 if (mddev->degraded) 2264 /* If the array is degraded, then skipping spares is both 2265 * dangerous and fairly pointless. 2266 * Dangerous because a device that was removed from the array 2267 * might have a event_count that still looks up-to-date, 2268 * so it can be re-added without a resync. 2269 * Pointless because if there are any spares to skip, 2270 * then a recovery will happen and soon that array won't 2271 * be degraded any more and the spare can go back to sleep then. 2272 */ 2273 nospares = 0; 2274 2275 sync_req = mddev->in_sync; 2276 2277 /* If this is just a dirty<->clean transition, and the array is clean 2278 * and 'events' is odd, we can roll back to the previous clean state */ 2279 if (nospares 2280 && (mddev->in_sync && mddev->recovery_cp == MaxSector) 2281 && mddev->can_decrease_events 2282 && mddev->events != 1) { 2283 mddev->events--; 2284 mddev->can_decrease_events = 0; 2285 } else { 2286 /* otherwise we have to go forward and ... */ 2287 mddev->events ++; 2288 mddev->can_decrease_events = nospares; 2289 } 2290 2291 /* 2292 * This 64-bit counter should never wrap. 2293 * Either we are in around ~1 trillion A.C., assuming 2294 * 1 reboot per second, or we have a bug... 2295 */ 2296 WARN_ON(mddev->events == 0); 2297 2298 rdev_for_each(rdev, mddev) { 2299 if (rdev->badblocks.changed) 2300 any_badblocks_changed++; 2301 if (test_bit(Faulty, &rdev->flags)) 2302 set_bit(FaultRecorded, &rdev->flags); 2303 } 2304 2305 sync_sbs(mddev, nospares); 2306 spin_unlock(&mddev->lock); 2307 2308 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n", 2309 mdname(mddev), mddev->in_sync); 2310 2311 bitmap_update_sb(mddev->bitmap); 2312 rdev_for_each(rdev, mddev) { 2313 char b[BDEVNAME_SIZE]; 2314 2315 if (rdev->sb_loaded != 1) 2316 continue; /* no noise on spare devices */ 2317 2318 if (!test_bit(Faulty, &rdev->flags)) { 2319 md_super_write(mddev,rdev, 2320 rdev->sb_start, rdev->sb_size, 2321 rdev->sb_page); 2322 pr_debug("md: (write) %s's sb offset: %llu\n", 2323 bdevname(rdev->bdev, b), 2324 (unsigned long long)rdev->sb_start); 2325 rdev->sb_events = mddev->events; 2326 if (rdev->badblocks.size) { 2327 md_super_write(mddev, rdev, 2328 rdev->badblocks.sector, 2329 rdev->badblocks.size << 9, 2330 rdev->bb_page); 2331 rdev->badblocks.size = 0; 2332 } 2333 2334 } else 2335 pr_debug("md: %s (skipping faulty)\n", 2336 bdevname(rdev->bdev, b)); 2337 2338 if (mddev->level == LEVEL_MULTIPATH) 2339 /* only need to write one superblock... */ 2340 break; 2341 } 2342 md_super_wait(mddev); 2343 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */ 2344 2345 spin_lock(&mddev->lock); 2346 if (mddev->in_sync != sync_req || 2347 test_bit(MD_CHANGE_DEVS, &mddev->flags)) { 2348 /* have to write it out again */ 2349 spin_unlock(&mddev->lock); 2350 goto repeat; 2351 } 2352 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 2353 spin_unlock(&mddev->lock); 2354 wake_up(&mddev->sb_wait); 2355 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 2356 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 2357 2358 rdev_for_each(rdev, mddev) { 2359 if (test_and_clear_bit(FaultRecorded, &rdev->flags)) 2360 clear_bit(Blocked, &rdev->flags); 2361 2362 if (any_badblocks_changed) 2363 md_ack_all_badblocks(&rdev->badblocks); 2364 clear_bit(BlockedBadBlocks, &rdev->flags); 2365 wake_up(&rdev->blocked_wait); 2366 } 2367 } 2368 2369 /* words written to sysfs files may, or may not, be \n terminated. 2370 * We want to accept with case. For this we use cmd_match. 2371 */ 2372 static int cmd_match(const char *cmd, const char *str) 2373 { 2374 /* See if cmd, written into a sysfs file, matches 2375 * str. They must either be the same, or cmd can 2376 * have a trailing newline 2377 */ 2378 while (*cmd && *str && *cmd == *str) { 2379 cmd++; 2380 str++; 2381 } 2382 if (*cmd == '\n') 2383 cmd++; 2384 if (*str || *cmd) 2385 return 0; 2386 return 1; 2387 } 2388 2389 struct rdev_sysfs_entry { 2390 struct attribute attr; 2391 ssize_t (*show)(struct md_rdev *, char *); 2392 ssize_t (*store)(struct md_rdev *, const char *, size_t); 2393 }; 2394 2395 static ssize_t 2396 state_show(struct md_rdev *rdev, char *page) 2397 { 2398 char *sep = ""; 2399 size_t len = 0; 2400 unsigned long flags = ACCESS_ONCE(rdev->flags); 2401 2402 if (test_bit(Faulty, &flags) || 2403 rdev->badblocks.unacked_exist) { 2404 len+= sprintf(page+len, "%sfaulty",sep); 2405 sep = ","; 2406 } 2407 if (test_bit(In_sync, &flags)) { 2408 len += sprintf(page+len, "%sin_sync",sep); 2409 sep = ","; 2410 } 2411 if (test_bit(WriteMostly, &flags)) { 2412 len += sprintf(page+len, "%swrite_mostly",sep); 2413 sep = ","; 2414 } 2415 if (test_bit(Blocked, &flags) || 2416 (rdev->badblocks.unacked_exist 2417 && !test_bit(Faulty, &flags))) { 2418 len += sprintf(page+len, "%sblocked", sep); 2419 sep = ","; 2420 } 2421 if (!test_bit(Faulty, &flags) && 2422 !test_bit(In_sync, &flags)) { 2423 len += sprintf(page+len, "%sspare", sep); 2424 sep = ","; 2425 } 2426 if (test_bit(WriteErrorSeen, &flags)) { 2427 len += sprintf(page+len, "%swrite_error", sep); 2428 sep = ","; 2429 } 2430 if (test_bit(WantReplacement, &flags)) { 2431 len += sprintf(page+len, "%swant_replacement", sep); 2432 sep = ","; 2433 } 2434 if (test_bit(Replacement, &flags)) { 2435 len += sprintf(page+len, "%sreplacement", sep); 2436 sep = ","; 2437 } 2438 2439 return len+sprintf(page+len, "\n"); 2440 } 2441 2442 static ssize_t 2443 state_store(struct md_rdev *rdev, const char *buf, size_t len) 2444 { 2445 /* can write 2446 * faulty - simulates an error 2447 * remove - disconnects the device 2448 * writemostly - sets write_mostly 2449 * -writemostly - clears write_mostly 2450 * blocked - sets the Blocked flags 2451 * -blocked - clears the Blocked and possibly simulates an error 2452 * insync - sets Insync providing device isn't active 2453 * -insync - clear Insync for a device with a slot assigned, 2454 * so that it gets rebuilt based on bitmap 2455 * write_error - sets WriteErrorSeen 2456 * -write_error - clears WriteErrorSeen 2457 */ 2458 int err = -EINVAL; 2459 if (cmd_match(buf, "faulty") && rdev->mddev->pers) { 2460 md_error(rdev->mddev, rdev); 2461 if (test_bit(Faulty, &rdev->flags)) 2462 err = 0; 2463 else 2464 err = -EBUSY; 2465 } else if (cmd_match(buf, "remove")) { 2466 if (rdev->raid_disk >= 0) 2467 err = -EBUSY; 2468 else { 2469 struct mddev *mddev = rdev->mddev; 2470 kick_rdev_from_array(rdev); 2471 if (mddev->pers) 2472 md_update_sb(mddev, 1); 2473 md_new_event(mddev); 2474 err = 0; 2475 } 2476 } else if (cmd_match(buf, "writemostly")) { 2477 set_bit(WriteMostly, &rdev->flags); 2478 err = 0; 2479 } else if (cmd_match(buf, "-writemostly")) { 2480 clear_bit(WriteMostly, &rdev->flags); 2481 err = 0; 2482 } else if (cmd_match(buf, "blocked")) { 2483 set_bit(Blocked, &rdev->flags); 2484 err = 0; 2485 } else if (cmd_match(buf, "-blocked")) { 2486 if (!test_bit(Faulty, &rdev->flags) && 2487 rdev->badblocks.unacked_exist) { 2488 /* metadata handler doesn't understand badblocks, 2489 * so we need to fail the device 2490 */ 2491 md_error(rdev->mddev, rdev); 2492 } 2493 clear_bit(Blocked, &rdev->flags); 2494 clear_bit(BlockedBadBlocks, &rdev->flags); 2495 wake_up(&rdev->blocked_wait); 2496 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2497 md_wakeup_thread(rdev->mddev->thread); 2498 2499 err = 0; 2500 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) { 2501 set_bit(In_sync, &rdev->flags); 2502 err = 0; 2503 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0) { 2504 if (rdev->mddev->pers == NULL) { 2505 clear_bit(In_sync, &rdev->flags); 2506 rdev->saved_raid_disk = rdev->raid_disk; 2507 rdev->raid_disk = -1; 2508 err = 0; 2509 } 2510 } else if (cmd_match(buf, "write_error")) { 2511 set_bit(WriteErrorSeen, &rdev->flags); 2512 err = 0; 2513 } else if (cmd_match(buf, "-write_error")) { 2514 clear_bit(WriteErrorSeen, &rdev->flags); 2515 err = 0; 2516 } else if (cmd_match(buf, "want_replacement")) { 2517 /* Any non-spare device that is not a replacement can 2518 * become want_replacement at any time, but we then need to 2519 * check if recovery is needed. 2520 */ 2521 if (rdev->raid_disk >= 0 && 2522 !test_bit(Replacement, &rdev->flags)) 2523 set_bit(WantReplacement, &rdev->flags); 2524 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2525 md_wakeup_thread(rdev->mddev->thread); 2526 err = 0; 2527 } else if (cmd_match(buf, "-want_replacement")) { 2528 /* Clearing 'want_replacement' is always allowed. 2529 * Once replacements starts it is too late though. 2530 */ 2531 err = 0; 2532 clear_bit(WantReplacement, &rdev->flags); 2533 } else if (cmd_match(buf, "replacement")) { 2534 /* Can only set a device as a replacement when array has not 2535 * yet been started. Once running, replacement is automatic 2536 * from spares, or by assigning 'slot'. 2537 */ 2538 if (rdev->mddev->pers) 2539 err = -EBUSY; 2540 else { 2541 set_bit(Replacement, &rdev->flags); 2542 err = 0; 2543 } 2544 } else if (cmd_match(buf, "-replacement")) { 2545 /* Similarly, can only clear Replacement before start */ 2546 if (rdev->mddev->pers) 2547 err = -EBUSY; 2548 else { 2549 clear_bit(Replacement, &rdev->flags); 2550 err = 0; 2551 } 2552 } 2553 if (!err) 2554 sysfs_notify_dirent_safe(rdev->sysfs_state); 2555 return err ? err : len; 2556 } 2557 static struct rdev_sysfs_entry rdev_state = 2558 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store); 2559 2560 static ssize_t 2561 errors_show(struct md_rdev *rdev, char *page) 2562 { 2563 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); 2564 } 2565 2566 static ssize_t 2567 errors_store(struct md_rdev *rdev, const char *buf, size_t len) 2568 { 2569 char *e; 2570 unsigned long n = simple_strtoul(buf, &e, 10); 2571 if (*buf && (*e == 0 || *e == '\n')) { 2572 atomic_set(&rdev->corrected_errors, n); 2573 return len; 2574 } 2575 return -EINVAL; 2576 } 2577 static struct rdev_sysfs_entry rdev_errors = 2578 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); 2579 2580 static ssize_t 2581 slot_show(struct md_rdev *rdev, char *page) 2582 { 2583 if (rdev->raid_disk < 0) 2584 return sprintf(page, "none\n"); 2585 else 2586 return sprintf(page, "%d\n", rdev->raid_disk); 2587 } 2588 2589 static ssize_t 2590 slot_store(struct md_rdev *rdev, const char *buf, size_t len) 2591 { 2592 char *e; 2593 int err; 2594 int slot = simple_strtoul(buf, &e, 10); 2595 if (strncmp(buf, "none", 4)==0) 2596 slot = -1; 2597 else if (e==buf || (*e && *e!= '\n')) 2598 return -EINVAL; 2599 if (rdev->mddev->pers && slot == -1) { 2600 /* Setting 'slot' on an active array requires also 2601 * updating the 'rd%d' link, and communicating 2602 * with the personality with ->hot_*_disk. 2603 * For now we only support removing 2604 * failed/spare devices. This normally happens automatically, 2605 * but not when the metadata is externally managed. 2606 */ 2607 if (rdev->raid_disk == -1) 2608 return -EEXIST; 2609 /* personality does all needed checks */ 2610 if (rdev->mddev->pers->hot_remove_disk == NULL) 2611 return -EINVAL; 2612 clear_bit(Blocked, &rdev->flags); 2613 remove_and_add_spares(rdev->mddev, rdev); 2614 if (rdev->raid_disk >= 0) 2615 return -EBUSY; 2616 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2617 md_wakeup_thread(rdev->mddev->thread); 2618 } else if (rdev->mddev->pers) { 2619 /* Activating a spare .. or possibly reactivating 2620 * if we ever get bitmaps working here. 2621 */ 2622 2623 if (rdev->raid_disk != -1) 2624 return -EBUSY; 2625 2626 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery)) 2627 return -EBUSY; 2628 2629 if (rdev->mddev->pers->hot_add_disk == NULL) 2630 return -EINVAL; 2631 2632 if (slot >= rdev->mddev->raid_disks && 2633 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 2634 return -ENOSPC; 2635 2636 rdev->raid_disk = slot; 2637 if (test_bit(In_sync, &rdev->flags)) 2638 rdev->saved_raid_disk = slot; 2639 else 2640 rdev->saved_raid_disk = -1; 2641 clear_bit(In_sync, &rdev->flags); 2642 clear_bit(Bitmap_sync, &rdev->flags); 2643 err = rdev->mddev->pers-> 2644 hot_add_disk(rdev->mddev, rdev); 2645 if (err) { 2646 rdev->raid_disk = -1; 2647 return err; 2648 } else 2649 sysfs_notify_dirent_safe(rdev->sysfs_state); 2650 if (sysfs_link_rdev(rdev->mddev, rdev)) 2651 /* failure here is OK */; 2652 /* don't wakeup anyone, leave that to userspace. */ 2653 } else { 2654 if (slot >= rdev->mddev->raid_disks && 2655 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 2656 return -ENOSPC; 2657 rdev->raid_disk = slot; 2658 /* assume it is working */ 2659 clear_bit(Faulty, &rdev->flags); 2660 clear_bit(WriteMostly, &rdev->flags); 2661 set_bit(In_sync, &rdev->flags); 2662 sysfs_notify_dirent_safe(rdev->sysfs_state); 2663 } 2664 return len; 2665 } 2666 2667 static struct rdev_sysfs_entry rdev_slot = 2668 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); 2669 2670 static ssize_t 2671 offset_show(struct md_rdev *rdev, char *page) 2672 { 2673 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); 2674 } 2675 2676 static ssize_t 2677 offset_store(struct md_rdev *rdev, const char *buf, size_t len) 2678 { 2679 unsigned long long offset; 2680 if (kstrtoull(buf, 10, &offset) < 0) 2681 return -EINVAL; 2682 if (rdev->mddev->pers && rdev->raid_disk >= 0) 2683 return -EBUSY; 2684 if (rdev->sectors && rdev->mddev->external) 2685 /* Must set offset before size, so overlap checks 2686 * can be sane */ 2687 return -EBUSY; 2688 rdev->data_offset = offset; 2689 rdev->new_data_offset = offset; 2690 return len; 2691 } 2692 2693 static struct rdev_sysfs_entry rdev_offset = 2694 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); 2695 2696 static ssize_t new_offset_show(struct md_rdev *rdev, char *page) 2697 { 2698 return sprintf(page, "%llu\n", 2699 (unsigned long long)rdev->new_data_offset); 2700 } 2701 2702 static ssize_t new_offset_store(struct md_rdev *rdev, 2703 const char *buf, size_t len) 2704 { 2705 unsigned long long new_offset; 2706 struct mddev *mddev = rdev->mddev; 2707 2708 if (kstrtoull(buf, 10, &new_offset) < 0) 2709 return -EINVAL; 2710 2711 if (mddev->sync_thread || 2712 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery)) 2713 return -EBUSY; 2714 if (new_offset == rdev->data_offset) 2715 /* reset is always permitted */ 2716 ; 2717 else if (new_offset > rdev->data_offset) { 2718 /* must not push array size beyond rdev_sectors */ 2719 if (new_offset - rdev->data_offset 2720 + mddev->dev_sectors > rdev->sectors) 2721 return -E2BIG; 2722 } 2723 /* Metadata worries about other space details. */ 2724 2725 /* decreasing the offset is inconsistent with a backwards 2726 * reshape. 2727 */ 2728 if (new_offset < rdev->data_offset && 2729 mddev->reshape_backwards) 2730 return -EINVAL; 2731 /* Increasing offset is inconsistent with forwards 2732 * reshape. reshape_direction should be set to 2733 * 'backwards' first. 2734 */ 2735 if (new_offset > rdev->data_offset && 2736 !mddev->reshape_backwards) 2737 return -EINVAL; 2738 2739 if (mddev->pers && mddev->persistent && 2740 !super_types[mddev->major_version] 2741 .allow_new_offset(rdev, new_offset)) 2742 return -E2BIG; 2743 rdev->new_data_offset = new_offset; 2744 if (new_offset > rdev->data_offset) 2745 mddev->reshape_backwards = 1; 2746 else if (new_offset < rdev->data_offset) 2747 mddev->reshape_backwards = 0; 2748 2749 return len; 2750 } 2751 static struct rdev_sysfs_entry rdev_new_offset = 2752 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store); 2753 2754 static ssize_t 2755 rdev_size_show(struct md_rdev *rdev, char *page) 2756 { 2757 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2); 2758 } 2759 2760 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2) 2761 { 2762 /* check if two start/length pairs overlap */ 2763 if (s1+l1 <= s2) 2764 return 0; 2765 if (s2+l2 <= s1) 2766 return 0; 2767 return 1; 2768 } 2769 2770 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors) 2771 { 2772 unsigned long long blocks; 2773 sector_t new; 2774 2775 if (kstrtoull(buf, 10, &blocks) < 0) 2776 return -EINVAL; 2777 2778 if (blocks & 1ULL << (8 * sizeof(blocks) - 1)) 2779 return -EINVAL; /* sector conversion overflow */ 2780 2781 new = blocks * 2; 2782 if (new != blocks * 2) 2783 return -EINVAL; /* unsigned long long to sector_t overflow */ 2784 2785 *sectors = new; 2786 return 0; 2787 } 2788 2789 static ssize_t 2790 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len) 2791 { 2792 struct mddev *my_mddev = rdev->mddev; 2793 sector_t oldsectors = rdev->sectors; 2794 sector_t sectors; 2795 2796 if (strict_blocks_to_sectors(buf, §ors) < 0) 2797 return -EINVAL; 2798 if (rdev->data_offset != rdev->new_data_offset) 2799 return -EINVAL; /* too confusing */ 2800 if (my_mddev->pers && rdev->raid_disk >= 0) { 2801 if (my_mddev->persistent) { 2802 sectors = super_types[my_mddev->major_version]. 2803 rdev_size_change(rdev, sectors); 2804 if (!sectors) 2805 return -EBUSY; 2806 } else if (!sectors) 2807 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) - 2808 rdev->data_offset; 2809 if (!my_mddev->pers->resize) 2810 /* Cannot change size for RAID0 or Linear etc */ 2811 return -EINVAL; 2812 } 2813 if (sectors < my_mddev->dev_sectors) 2814 return -EINVAL; /* component must fit device */ 2815 2816 rdev->sectors = sectors; 2817 if (sectors > oldsectors && my_mddev->external) { 2818 /* Need to check that all other rdevs with the same 2819 * ->bdev do not overlap. 'rcu' is sufficient to walk 2820 * the rdev lists safely. 2821 * This check does not provide a hard guarantee, it 2822 * just helps avoid dangerous mistakes. 2823 */ 2824 struct mddev *mddev; 2825 int overlap = 0; 2826 struct list_head *tmp; 2827 2828 rcu_read_lock(); 2829 for_each_mddev(mddev, tmp) { 2830 struct md_rdev *rdev2; 2831 2832 rdev_for_each(rdev2, mddev) 2833 if (rdev->bdev == rdev2->bdev && 2834 rdev != rdev2 && 2835 overlaps(rdev->data_offset, rdev->sectors, 2836 rdev2->data_offset, 2837 rdev2->sectors)) { 2838 overlap = 1; 2839 break; 2840 } 2841 if (overlap) { 2842 mddev_put(mddev); 2843 break; 2844 } 2845 } 2846 rcu_read_unlock(); 2847 if (overlap) { 2848 /* Someone else could have slipped in a size 2849 * change here, but doing so is just silly. 2850 * We put oldsectors back because we *know* it is 2851 * safe, and trust userspace not to race with 2852 * itself 2853 */ 2854 rdev->sectors = oldsectors; 2855 return -EBUSY; 2856 } 2857 } 2858 return len; 2859 } 2860 2861 static struct rdev_sysfs_entry rdev_size = 2862 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); 2863 2864 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page) 2865 { 2866 unsigned long long recovery_start = rdev->recovery_offset; 2867 2868 if (test_bit(In_sync, &rdev->flags) || 2869 recovery_start == MaxSector) 2870 return sprintf(page, "none\n"); 2871 2872 return sprintf(page, "%llu\n", recovery_start); 2873 } 2874 2875 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len) 2876 { 2877 unsigned long long recovery_start; 2878 2879 if (cmd_match(buf, "none")) 2880 recovery_start = MaxSector; 2881 else if (kstrtoull(buf, 10, &recovery_start)) 2882 return -EINVAL; 2883 2884 if (rdev->mddev->pers && 2885 rdev->raid_disk >= 0) 2886 return -EBUSY; 2887 2888 rdev->recovery_offset = recovery_start; 2889 if (recovery_start == MaxSector) 2890 set_bit(In_sync, &rdev->flags); 2891 else 2892 clear_bit(In_sync, &rdev->flags); 2893 return len; 2894 } 2895 2896 static struct rdev_sysfs_entry rdev_recovery_start = 2897 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store); 2898 2899 static ssize_t 2900 badblocks_show(struct badblocks *bb, char *page, int unack); 2901 static ssize_t 2902 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack); 2903 2904 static ssize_t bb_show(struct md_rdev *rdev, char *page) 2905 { 2906 return badblocks_show(&rdev->badblocks, page, 0); 2907 } 2908 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len) 2909 { 2910 int rv = badblocks_store(&rdev->badblocks, page, len, 0); 2911 /* Maybe that ack was all we needed */ 2912 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags)) 2913 wake_up(&rdev->blocked_wait); 2914 return rv; 2915 } 2916 static struct rdev_sysfs_entry rdev_bad_blocks = 2917 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store); 2918 2919 static ssize_t ubb_show(struct md_rdev *rdev, char *page) 2920 { 2921 return badblocks_show(&rdev->badblocks, page, 1); 2922 } 2923 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len) 2924 { 2925 return badblocks_store(&rdev->badblocks, page, len, 1); 2926 } 2927 static struct rdev_sysfs_entry rdev_unack_bad_blocks = 2928 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store); 2929 2930 static struct attribute *rdev_default_attrs[] = { 2931 &rdev_state.attr, 2932 &rdev_errors.attr, 2933 &rdev_slot.attr, 2934 &rdev_offset.attr, 2935 &rdev_new_offset.attr, 2936 &rdev_size.attr, 2937 &rdev_recovery_start.attr, 2938 &rdev_bad_blocks.attr, 2939 &rdev_unack_bad_blocks.attr, 2940 NULL, 2941 }; 2942 static ssize_t 2943 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 2944 { 2945 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 2946 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 2947 2948 if (!entry->show) 2949 return -EIO; 2950 if (!rdev->mddev) 2951 return -EBUSY; 2952 return entry->show(rdev, page); 2953 } 2954 2955 static ssize_t 2956 rdev_attr_store(struct kobject *kobj, struct attribute *attr, 2957 const char *page, size_t length) 2958 { 2959 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 2960 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 2961 ssize_t rv; 2962 struct mddev *mddev = rdev->mddev; 2963 2964 if (!entry->store) 2965 return -EIO; 2966 if (!capable(CAP_SYS_ADMIN)) 2967 return -EACCES; 2968 rv = mddev ? mddev_lock(mddev): -EBUSY; 2969 if (!rv) { 2970 if (rdev->mddev == NULL) 2971 rv = -EBUSY; 2972 else 2973 rv = entry->store(rdev, page, length); 2974 mddev_unlock(mddev); 2975 } 2976 return rv; 2977 } 2978 2979 static void rdev_free(struct kobject *ko) 2980 { 2981 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj); 2982 kfree(rdev); 2983 } 2984 static const struct sysfs_ops rdev_sysfs_ops = { 2985 .show = rdev_attr_show, 2986 .store = rdev_attr_store, 2987 }; 2988 static struct kobj_type rdev_ktype = { 2989 .release = rdev_free, 2990 .sysfs_ops = &rdev_sysfs_ops, 2991 .default_attrs = rdev_default_attrs, 2992 }; 2993 2994 int md_rdev_init(struct md_rdev *rdev) 2995 { 2996 rdev->desc_nr = -1; 2997 rdev->saved_raid_disk = -1; 2998 rdev->raid_disk = -1; 2999 rdev->flags = 0; 3000 rdev->data_offset = 0; 3001 rdev->new_data_offset = 0; 3002 rdev->sb_events = 0; 3003 rdev->last_read_error.tv_sec = 0; 3004 rdev->last_read_error.tv_nsec = 0; 3005 rdev->sb_loaded = 0; 3006 rdev->bb_page = NULL; 3007 atomic_set(&rdev->nr_pending, 0); 3008 atomic_set(&rdev->read_errors, 0); 3009 atomic_set(&rdev->corrected_errors, 0); 3010 3011 INIT_LIST_HEAD(&rdev->same_set); 3012 init_waitqueue_head(&rdev->blocked_wait); 3013 3014 /* Add space to store bad block list. 3015 * This reserves the space even on arrays where it cannot 3016 * be used - I wonder if that matters 3017 */ 3018 rdev->badblocks.count = 0; 3019 rdev->badblocks.shift = -1; /* disabled until explicitly enabled */ 3020 rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL); 3021 seqlock_init(&rdev->badblocks.lock); 3022 if (rdev->badblocks.page == NULL) 3023 return -ENOMEM; 3024 3025 return 0; 3026 } 3027 EXPORT_SYMBOL_GPL(md_rdev_init); 3028 /* 3029 * Import a device. If 'super_format' >= 0, then sanity check the superblock 3030 * 3031 * mark the device faulty if: 3032 * 3033 * - the device is nonexistent (zero size) 3034 * - the device has no valid superblock 3035 * 3036 * a faulty rdev _never_ has rdev->sb set. 3037 */ 3038 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor) 3039 { 3040 char b[BDEVNAME_SIZE]; 3041 int err; 3042 struct md_rdev *rdev; 3043 sector_t size; 3044 3045 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 3046 if (!rdev) { 3047 printk(KERN_ERR "md: could not alloc mem for new device!\n"); 3048 return ERR_PTR(-ENOMEM); 3049 } 3050 3051 err = md_rdev_init(rdev); 3052 if (err) 3053 goto abort_free; 3054 err = alloc_disk_sb(rdev); 3055 if (err) 3056 goto abort_free; 3057 3058 err = lock_rdev(rdev, newdev, super_format == -2); 3059 if (err) 3060 goto abort_free; 3061 3062 kobject_init(&rdev->kobj, &rdev_ktype); 3063 3064 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS; 3065 if (!size) { 3066 printk(KERN_WARNING 3067 "md: %s has zero or unknown size, marking faulty!\n", 3068 bdevname(rdev->bdev,b)); 3069 err = -EINVAL; 3070 goto abort_free; 3071 } 3072 3073 if (super_format >= 0) { 3074 err = super_types[super_format]. 3075 load_super(rdev, NULL, super_minor); 3076 if (err == -EINVAL) { 3077 printk(KERN_WARNING 3078 "md: %s does not have a valid v%d.%d " 3079 "superblock, not importing!\n", 3080 bdevname(rdev->bdev,b), 3081 super_format, super_minor); 3082 goto abort_free; 3083 } 3084 if (err < 0) { 3085 printk(KERN_WARNING 3086 "md: could not read %s's sb, not importing!\n", 3087 bdevname(rdev->bdev,b)); 3088 goto abort_free; 3089 } 3090 } 3091 3092 return rdev; 3093 3094 abort_free: 3095 if (rdev->bdev) 3096 unlock_rdev(rdev); 3097 md_rdev_clear(rdev); 3098 kfree(rdev); 3099 return ERR_PTR(err); 3100 } 3101 3102 /* 3103 * Check a full RAID array for plausibility 3104 */ 3105 3106 static void analyze_sbs(struct mddev *mddev) 3107 { 3108 int i; 3109 struct md_rdev *rdev, *freshest, *tmp; 3110 char b[BDEVNAME_SIZE]; 3111 3112 freshest = NULL; 3113 rdev_for_each_safe(rdev, tmp, mddev) 3114 switch (super_types[mddev->major_version]. 3115 load_super(rdev, freshest, mddev->minor_version)) { 3116 case 1: 3117 freshest = rdev; 3118 break; 3119 case 0: 3120 break; 3121 default: 3122 printk( KERN_ERR \ 3123 "md: fatal superblock inconsistency in %s" 3124 " -- removing from array\n", 3125 bdevname(rdev->bdev,b)); 3126 kick_rdev_from_array(rdev); 3127 } 3128 3129 super_types[mddev->major_version]. 3130 validate_super(mddev, freshest); 3131 3132 i = 0; 3133 rdev_for_each_safe(rdev, tmp, mddev) { 3134 if (mddev->max_disks && 3135 (rdev->desc_nr >= mddev->max_disks || 3136 i > mddev->max_disks)) { 3137 printk(KERN_WARNING 3138 "md: %s: %s: only %d devices permitted\n", 3139 mdname(mddev), bdevname(rdev->bdev, b), 3140 mddev->max_disks); 3141 kick_rdev_from_array(rdev); 3142 continue; 3143 } 3144 if (rdev != freshest) 3145 if (super_types[mddev->major_version]. 3146 validate_super(mddev, rdev)) { 3147 printk(KERN_WARNING "md: kicking non-fresh %s" 3148 " from array!\n", 3149 bdevname(rdev->bdev,b)); 3150 kick_rdev_from_array(rdev); 3151 continue; 3152 } 3153 if (mddev->level == LEVEL_MULTIPATH) { 3154 rdev->desc_nr = i++; 3155 rdev->raid_disk = rdev->desc_nr; 3156 set_bit(In_sync, &rdev->flags); 3157 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) { 3158 rdev->raid_disk = -1; 3159 clear_bit(In_sync, &rdev->flags); 3160 } 3161 } 3162 } 3163 3164 /* Read a fixed-point number. 3165 * Numbers in sysfs attributes should be in "standard" units where 3166 * possible, so time should be in seconds. 3167 * However we internally use a a much smaller unit such as 3168 * milliseconds or jiffies. 3169 * This function takes a decimal number with a possible fractional 3170 * component, and produces an integer which is the result of 3171 * multiplying that number by 10^'scale'. 3172 * all without any floating-point arithmetic. 3173 */ 3174 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale) 3175 { 3176 unsigned long result = 0; 3177 long decimals = -1; 3178 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) { 3179 if (*cp == '.') 3180 decimals = 0; 3181 else if (decimals < scale) { 3182 unsigned int value; 3183 value = *cp - '0'; 3184 result = result * 10 + value; 3185 if (decimals >= 0) 3186 decimals++; 3187 } 3188 cp++; 3189 } 3190 if (*cp == '\n') 3191 cp++; 3192 if (*cp) 3193 return -EINVAL; 3194 if (decimals < 0) 3195 decimals = 0; 3196 while (decimals < scale) { 3197 result *= 10; 3198 decimals ++; 3199 } 3200 *res = result; 3201 return 0; 3202 } 3203 3204 static void md_safemode_timeout(unsigned long data); 3205 3206 static ssize_t 3207 safe_delay_show(struct mddev *mddev, char *page) 3208 { 3209 int msec = (mddev->safemode_delay*1000)/HZ; 3210 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000); 3211 } 3212 static ssize_t 3213 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len) 3214 { 3215 unsigned long msec; 3216 3217 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0) 3218 return -EINVAL; 3219 if (msec == 0) 3220 mddev->safemode_delay = 0; 3221 else { 3222 unsigned long old_delay = mddev->safemode_delay; 3223 unsigned long new_delay = (msec*HZ)/1000; 3224 3225 if (new_delay == 0) 3226 new_delay = 1; 3227 mddev->safemode_delay = new_delay; 3228 if (new_delay < old_delay || old_delay == 0) 3229 mod_timer(&mddev->safemode_timer, jiffies+1); 3230 } 3231 return len; 3232 } 3233 static struct md_sysfs_entry md_safe_delay = 3234 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); 3235 3236 static ssize_t 3237 level_show(struct mddev *mddev, char *page) 3238 { 3239 struct md_personality *p; 3240 int ret; 3241 spin_lock(&mddev->lock); 3242 p = mddev->pers; 3243 if (p) 3244 ret = sprintf(page, "%s\n", p->name); 3245 else if (mddev->clevel[0]) 3246 ret = sprintf(page, "%s\n", mddev->clevel); 3247 else if (mddev->level != LEVEL_NONE) 3248 ret = sprintf(page, "%d\n", mddev->level); 3249 else 3250 ret = 0; 3251 spin_unlock(&mddev->lock); 3252 return ret; 3253 } 3254 3255 static ssize_t 3256 level_store(struct mddev *mddev, const char *buf, size_t len) 3257 { 3258 char clevel[16]; 3259 ssize_t rv; 3260 size_t slen = len; 3261 struct md_personality *pers, *oldpers; 3262 long level; 3263 void *priv, *oldpriv; 3264 struct md_rdev *rdev; 3265 3266 if (slen == 0 || slen >= sizeof(clevel)) 3267 return -EINVAL; 3268 3269 rv = mddev_lock(mddev); 3270 if (rv) 3271 return rv; 3272 3273 if (mddev->pers == NULL) { 3274 strncpy(mddev->clevel, buf, slen); 3275 if (mddev->clevel[slen-1] == '\n') 3276 slen--; 3277 mddev->clevel[slen] = 0; 3278 mddev->level = LEVEL_NONE; 3279 rv = len; 3280 goto out_unlock; 3281 } 3282 rv = -EROFS; 3283 if (mddev->ro) 3284 goto out_unlock; 3285 3286 /* request to change the personality. Need to ensure: 3287 * - array is not engaged in resync/recovery/reshape 3288 * - old personality can be suspended 3289 * - new personality will access other array. 3290 */ 3291 3292 rv = -EBUSY; 3293 if (mddev->sync_thread || 3294 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 3295 mddev->reshape_position != MaxSector || 3296 mddev->sysfs_active) 3297 goto out_unlock; 3298 3299 rv = -EINVAL; 3300 if (!mddev->pers->quiesce) { 3301 printk(KERN_WARNING "md: %s: %s does not support online personality change\n", 3302 mdname(mddev), mddev->pers->name); 3303 goto out_unlock; 3304 } 3305 3306 /* Now find the new personality */ 3307 strncpy(clevel, buf, slen); 3308 if (clevel[slen-1] == '\n') 3309 slen--; 3310 clevel[slen] = 0; 3311 if (kstrtol(clevel, 10, &level)) 3312 level = LEVEL_NONE; 3313 3314 if (request_module("md-%s", clevel) != 0) 3315 request_module("md-level-%s", clevel); 3316 spin_lock(&pers_lock); 3317 pers = find_pers(level, clevel); 3318 if (!pers || !try_module_get(pers->owner)) { 3319 spin_unlock(&pers_lock); 3320 printk(KERN_WARNING "md: personality %s not loaded\n", clevel); 3321 rv = -EINVAL; 3322 goto out_unlock; 3323 } 3324 spin_unlock(&pers_lock); 3325 3326 if (pers == mddev->pers) { 3327 /* Nothing to do! */ 3328 module_put(pers->owner); 3329 rv = len; 3330 goto out_unlock; 3331 } 3332 if (!pers->takeover) { 3333 module_put(pers->owner); 3334 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n", 3335 mdname(mddev), clevel); 3336 rv = -EINVAL; 3337 goto out_unlock; 3338 } 3339 3340 rdev_for_each(rdev, mddev) 3341 rdev->new_raid_disk = rdev->raid_disk; 3342 3343 /* ->takeover must set new_* and/or delta_disks 3344 * if it succeeds, and may set them when it fails. 3345 */ 3346 priv = pers->takeover(mddev); 3347 if (IS_ERR(priv)) { 3348 mddev->new_level = mddev->level; 3349 mddev->new_layout = mddev->layout; 3350 mddev->new_chunk_sectors = mddev->chunk_sectors; 3351 mddev->raid_disks -= mddev->delta_disks; 3352 mddev->delta_disks = 0; 3353 mddev->reshape_backwards = 0; 3354 module_put(pers->owner); 3355 printk(KERN_WARNING "md: %s: %s would not accept array\n", 3356 mdname(mddev), clevel); 3357 rv = PTR_ERR(priv); 3358 goto out_unlock; 3359 } 3360 3361 /* Looks like we have a winner */ 3362 mddev_suspend(mddev); 3363 mddev_detach(mddev); 3364 3365 spin_lock(&mddev->lock); 3366 oldpers = mddev->pers; 3367 oldpriv = mddev->private; 3368 mddev->pers = pers; 3369 mddev->private = priv; 3370 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 3371 mddev->level = mddev->new_level; 3372 mddev->layout = mddev->new_layout; 3373 mddev->chunk_sectors = mddev->new_chunk_sectors; 3374 mddev->delta_disks = 0; 3375 mddev->reshape_backwards = 0; 3376 mddev->degraded = 0; 3377 spin_unlock(&mddev->lock); 3378 3379 if (oldpers->sync_request == NULL && 3380 mddev->external) { 3381 /* We are converting from a no-redundancy array 3382 * to a redundancy array and metadata is managed 3383 * externally so we need to be sure that writes 3384 * won't block due to a need to transition 3385 * clean->dirty 3386 * until external management is started. 3387 */ 3388 mddev->in_sync = 0; 3389 mddev->safemode_delay = 0; 3390 mddev->safemode = 0; 3391 } 3392 3393 oldpers->free(mddev, oldpriv); 3394 3395 if (oldpers->sync_request == NULL && 3396 pers->sync_request != NULL) { 3397 /* need to add the md_redundancy_group */ 3398 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 3399 printk(KERN_WARNING 3400 "md: cannot register extra attributes for %s\n", 3401 mdname(mddev)); 3402 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action"); 3403 } 3404 if (oldpers->sync_request != NULL && 3405 pers->sync_request == NULL) { 3406 /* need to remove the md_redundancy_group */ 3407 if (mddev->to_remove == NULL) 3408 mddev->to_remove = &md_redundancy_group; 3409 } 3410 3411 rdev_for_each(rdev, mddev) { 3412 if (rdev->raid_disk < 0) 3413 continue; 3414 if (rdev->new_raid_disk >= mddev->raid_disks) 3415 rdev->new_raid_disk = -1; 3416 if (rdev->new_raid_disk == rdev->raid_disk) 3417 continue; 3418 sysfs_unlink_rdev(mddev, rdev); 3419 } 3420 rdev_for_each(rdev, mddev) { 3421 if (rdev->raid_disk < 0) 3422 continue; 3423 if (rdev->new_raid_disk == rdev->raid_disk) 3424 continue; 3425 rdev->raid_disk = rdev->new_raid_disk; 3426 if (rdev->raid_disk < 0) 3427 clear_bit(In_sync, &rdev->flags); 3428 else { 3429 if (sysfs_link_rdev(mddev, rdev)) 3430 printk(KERN_WARNING "md: cannot register rd%d" 3431 " for %s after level change\n", 3432 rdev->raid_disk, mdname(mddev)); 3433 } 3434 } 3435 3436 if (pers->sync_request == NULL) { 3437 /* this is now an array without redundancy, so 3438 * it must always be in_sync 3439 */ 3440 mddev->in_sync = 1; 3441 del_timer_sync(&mddev->safemode_timer); 3442 } 3443 blk_set_stacking_limits(&mddev->queue->limits); 3444 pers->run(mddev); 3445 set_bit(MD_CHANGE_DEVS, &mddev->flags); 3446 mddev_resume(mddev); 3447 if (!mddev->thread) 3448 md_update_sb(mddev, 1); 3449 sysfs_notify(&mddev->kobj, NULL, "level"); 3450 md_new_event(mddev); 3451 rv = len; 3452 out_unlock: 3453 mddev_unlock(mddev); 3454 return rv; 3455 } 3456 3457 static struct md_sysfs_entry md_level = 3458 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); 3459 3460 static ssize_t 3461 layout_show(struct mddev *mddev, char *page) 3462 { 3463 /* just a number, not meaningful for all levels */ 3464 if (mddev->reshape_position != MaxSector && 3465 mddev->layout != mddev->new_layout) 3466 return sprintf(page, "%d (%d)\n", 3467 mddev->new_layout, mddev->layout); 3468 return sprintf(page, "%d\n", mddev->layout); 3469 } 3470 3471 static ssize_t 3472 layout_store(struct mddev *mddev, const char *buf, size_t len) 3473 { 3474 char *e; 3475 unsigned long n = simple_strtoul(buf, &e, 10); 3476 int err; 3477 3478 if (!*buf || (*e && *e != '\n')) 3479 return -EINVAL; 3480 err = mddev_lock(mddev); 3481 if (err) 3482 return err; 3483 3484 if (mddev->pers) { 3485 if (mddev->pers->check_reshape == NULL) 3486 err = -EBUSY; 3487 else if (mddev->ro) 3488 err = -EROFS; 3489 else { 3490 mddev->new_layout = n; 3491 err = mddev->pers->check_reshape(mddev); 3492 if (err) 3493 mddev->new_layout = mddev->layout; 3494 } 3495 } else { 3496 mddev->new_layout = n; 3497 if (mddev->reshape_position == MaxSector) 3498 mddev->layout = n; 3499 } 3500 mddev_unlock(mddev); 3501 return err ?: len; 3502 } 3503 static struct md_sysfs_entry md_layout = 3504 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); 3505 3506 static ssize_t 3507 raid_disks_show(struct mddev *mddev, char *page) 3508 { 3509 if (mddev->raid_disks == 0) 3510 return 0; 3511 if (mddev->reshape_position != MaxSector && 3512 mddev->delta_disks != 0) 3513 return sprintf(page, "%d (%d)\n", mddev->raid_disks, 3514 mddev->raid_disks - mddev->delta_disks); 3515 return sprintf(page, "%d\n", mddev->raid_disks); 3516 } 3517 3518 static int update_raid_disks(struct mddev *mddev, int raid_disks); 3519 3520 static ssize_t 3521 raid_disks_store(struct mddev *mddev, const char *buf, size_t len) 3522 { 3523 char *e; 3524 int err; 3525 unsigned long n = simple_strtoul(buf, &e, 10); 3526 3527 if (!*buf || (*e && *e != '\n')) 3528 return -EINVAL; 3529 3530 err = mddev_lock(mddev); 3531 if (err) 3532 return err; 3533 if (mddev->pers) 3534 err = update_raid_disks(mddev, n); 3535 else if (mddev->reshape_position != MaxSector) { 3536 struct md_rdev *rdev; 3537 int olddisks = mddev->raid_disks - mddev->delta_disks; 3538 3539 err = -EINVAL; 3540 rdev_for_each(rdev, mddev) { 3541 if (olddisks < n && 3542 rdev->data_offset < rdev->new_data_offset) 3543 goto out_unlock; 3544 if (olddisks > n && 3545 rdev->data_offset > rdev->new_data_offset) 3546 goto out_unlock; 3547 } 3548 err = 0; 3549 mddev->delta_disks = n - olddisks; 3550 mddev->raid_disks = n; 3551 mddev->reshape_backwards = (mddev->delta_disks < 0); 3552 } else 3553 mddev->raid_disks = n; 3554 out_unlock: 3555 mddev_unlock(mddev); 3556 return err ? err : len; 3557 } 3558 static struct md_sysfs_entry md_raid_disks = 3559 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); 3560 3561 static ssize_t 3562 chunk_size_show(struct mddev *mddev, char *page) 3563 { 3564 if (mddev->reshape_position != MaxSector && 3565 mddev->chunk_sectors != mddev->new_chunk_sectors) 3566 return sprintf(page, "%d (%d)\n", 3567 mddev->new_chunk_sectors << 9, 3568 mddev->chunk_sectors << 9); 3569 return sprintf(page, "%d\n", mddev->chunk_sectors << 9); 3570 } 3571 3572 static ssize_t 3573 chunk_size_store(struct mddev *mddev, const char *buf, size_t len) 3574 { 3575 int err; 3576 char *e; 3577 unsigned long n = simple_strtoul(buf, &e, 10); 3578 3579 if (!*buf || (*e && *e != '\n')) 3580 return -EINVAL; 3581 3582 err = mddev_lock(mddev); 3583 if (err) 3584 return err; 3585 if (mddev->pers) { 3586 if (mddev->pers->check_reshape == NULL) 3587 err = -EBUSY; 3588 else if (mddev->ro) 3589 err = -EROFS; 3590 else { 3591 mddev->new_chunk_sectors = n >> 9; 3592 err = mddev->pers->check_reshape(mddev); 3593 if (err) 3594 mddev->new_chunk_sectors = mddev->chunk_sectors; 3595 } 3596 } else { 3597 mddev->new_chunk_sectors = n >> 9; 3598 if (mddev->reshape_position == MaxSector) 3599 mddev->chunk_sectors = n >> 9; 3600 } 3601 mddev_unlock(mddev); 3602 return err ?: len; 3603 } 3604 static struct md_sysfs_entry md_chunk_size = 3605 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); 3606 3607 static ssize_t 3608 resync_start_show(struct mddev *mddev, char *page) 3609 { 3610 if (mddev->recovery_cp == MaxSector) 3611 return sprintf(page, "none\n"); 3612 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); 3613 } 3614 3615 static ssize_t 3616 resync_start_store(struct mddev *mddev, const char *buf, size_t len) 3617 { 3618 int err; 3619 char *e; 3620 unsigned long long n = simple_strtoull(buf, &e, 10); 3621 3622 err = mddev_lock(mddev); 3623 if (err) 3624 return err; 3625 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 3626 err = -EBUSY; 3627 else if (cmd_match(buf, "none")) 3628 n = MaxSector; 3629 else if (!*buf || (*e && *e != '\n')) 3630 err = -EINVAL; 3631 3632 if (!err) { 3633 mddev->recovery_cp = n; 3634 if (mddev->pers) 3635 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 3636 } 3637 mddev_unlock(mddev); 3638 return err ?: len; 3639 } 3640 static struct md_sysfs_entry md_resync_start = 3641 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR, 3642 resync_start_show, resync_start_store); 3643 3644 /* 3645 * The array state can be: 3646 * 3647 * clear 3648 * No devices, no size, no level 3649 * Equivalent to STOP_ARRAY ioctl 3650 * inactive 3651 * May have some settings, but array is not active 3652 * all IO results in error 3653 * When written, doesn't tear down array, but just stops it 3654 * suspended (not supported yet) 3655 * All IO requests will block. The array can be reconfigured. 3656 * Writing this, if accepted, will block until array is quiescent 3657 * readonly 3658 * no resync can happen. no superblocks get written. 3659 * write requests fail 3660 * read-auto 3661 * like readonly, but behaves like 'clean' on a write request. 3662 * 3663 * clean - no pending writes, but otherwise active. 3664 * When written to inactive array, starts without resync 3665 * If a write request arrives then 3666 * if metadata is known, mark 'dirty' and switch to 'active'. 3667 * if not known, block and switch to write-pending 3668 * If written to an active array that has pending writes, then fails. 3669 * active 3670 * fully active: IO and resync can be happening. 3671 * When written to inactive array, starts with resync 3672 * 3673 * write-pending 3674 * clean, but writes are blocked waiting for 'active' to be written. 3675 * 3676 * active-idle 3677 * like active, but no writes have been seen for a while (100msec). 3678 * 3679 */ 3680 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, 3681 write_pending, active_idle, bad_word}; 3682 static char *array_states[] = { 3683 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", 3684 "write-pending", "active-idle", NULL }; 3685 3686 static int match_word(const char *word, char **list) 3687 { 3688 int n; 3689 for (n=0; list[n]; n++) 3690 if (cmd_match(word, list[n])) 3691 break; 3692 return n; 3693 } 3694 3695 static ssize_t 3696 array_state_show(struct mddev *mddev, char *page) 3697 { 3698 enum array_state st = inactive; 3699 3700 if (mddev->pers) 3701 switch(mddev->ro) { 3702 case 1: 3703 st = readonly; 3704 break; 3705 case 2: 3706 st = read_auto; 3707 break; 3708 case 0: 3709 if (mddev->in_sync) 3710 st = clean; 3711 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags)) 3712 st = write_pending; 3713 else if (mddev->safemode) 3714 st = active_idle; 3715 else 3716 st = active; 3717 } 3718 else { 3719 if (list_empty(&mddev->disks) && 3720 mddev->raid_disks == 0 && 3721 mddev->dev_sectors == 0) 3722 st = clear; 3723 else 3724 st = inactive; 3725 } 3726 return sprintf(page, "%s\n", array_states[st]); 3727 } 3728 3729 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev); 3730 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev); 3731 static int do_md_run(struct mddev *mddev); 3732 static int restart_array(struct mddev *mddev); 3733 3734 static ssize_t 3735 array_state_store(struct mddev *mddev, const char *buf, size_t len) 3736 { 3737 int err; 3738 enum array_state st = match_word(buf, array_states); 3739 3740 if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) { 3741 /* don't take reconfig_mutex when toggling between 3742 * clean and active 3743 */ 3744 spin_lock(&mddev->lock); 3745 if (st == active) { 3746 restart_array(mddev); 3747 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 3748 wake_up(&mddev->sb_wait); 3749 err = 0; 3750 } else /* st == clean */ { 3751 restart_array(mddev); 3752 if (atomic_read(&mddev->writes_pending) == 0) { 3753 if (mddev->in_sync == 0) { 3754 mddev->in_sync = 1; 3755 if (mddev->safemode == 1) 3756 mddev->safemode = 0; 3757 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 3758 } 3759 err = 0; 3760 } else 3761 err = -EBUSY; 3762 } 3763 spin_unlock(&mddev->lock); 3764 return err; 3765 } 3766 err = mddev_lock(mddev); 3767 if (err) 3768 return err; 3769 err = -EINVAL; 3770 switch(st) { 3771 case bad_word: 3772 break; 3773 case clear: 3774 /* stopping an active array */ 3775 err = do_md_stop(mddev, 0, NULL); 3776 break; 3777 case inactive: 3778 /* stopping an active array */ 3779 if (mddev->pers) 3780 err = do_md_stop(mddev, 2, NULL); 3781 else 3782 err = 0; /* already inactive */ 3783 break; 3784 case suspended: 3785 break; /* not supported yet */ 3786 case readonly: 3787 if (mddev->pers) 3788 err = md_set_readonly(mddev, NULL); 3789 else { 3790 mddev->ro = 1; 3791 set_disk_ro(mddev->gendisk, 1); 3792 err = do_md_run(mddev); 3793 } 3794 break; 3795 case read_auto: 3796 if (mddev->pers) { 3797 if (mddev->ro == 0) 3798 err = md_set_readonly(mddev, NULL); 3799 else if (mddev->ro == 1) 3800 err = restart_array(mddev); 3801 if (err == 0) { 3802 mddev->ro = 2; 3803 set_disk_ro(mddev->gendisk, 0); 3804 } 3805 } else { 3806 mddev->ro = 2; 3807 err = do_md_run(mddev); 3808 } 3809 break; 3810 case clean: 3811 if (mddev->pers) { 3812 restart_array(mddev); 3813 spin_lock(&mddev->lock); 3814 if (atomic_read(&mddev->writes_pending) == 0) { 3815 if (mddev->in_sync == 0) { 3816 mddev->in_sync = 1; 3817 if (mddev->safemode == 1) 3818 mddev->safemode = 0; 3819 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 3820 } 3821 err = 0; 3822 } else 3823 err = -EBUSY; 3824 spin_unlock(&mddev->lock); 3825 } else 3826 err = -EINVAL; 3827 break; 3828 case active: 3829 if (mddev->pers) { 3830 restart_array(mddev); 3831 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 3832 wake_up(&mddev->sb_wait); 3833 err = 0; 3834 } else { 3835 mddev->ro = 0; 3836 set_disk_ro(mddev->gendisk, 0); 3837 err = do_md_run(mddev); 3838 } 3839 break; 3840 case write_pending: 3841 case active_idle: 3842 /* these cannot be set */ 3843 break; 3844 } 3845 3846 if (!err) { 3847 if (mddev->hold_active == UNTIL_IOCTL) 3848 mddev->hold_active = 0; 3849 sysfs_notify_dirent_safe(mddev->sysfs_state); 3850 } 3851 mddev_unlock(mddev); 3852 return err ?: len; 3853 } 3854 static struct md_sysfs_entry md_array_state = 3855 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); 3856 3857 static ssize_t 3858 max_corrected_read_errors_show(struct mddev *mddev, char *page) { 3859 return sprintf(page, "%d\n", 3860 atomic_read(&mddev->max_corr_read_errors)); 3861 } 3862 3863 static ssize_t 3864 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len) 3865 { 3866 char *e; 3867 unsigned long n = simple_strtoul(buf, &e, 10); 3868 3869 if (*buf && (*e == 0 || *e == '\n')) { 3870 atomic_set(&mddev->max_corr_read_errors, n); 3871 return len; 3872 } 3873 return -EINVAL; 3874 } 3875 3876 static struct md_sysfs_entry max_corr_read_errors = 3877 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show, 3878 max_corrected_read_errors_store); 3879 3880 static ssize_t 3881 null_show(struct mddev *mddev, char *page) 3882 { 3883 return -EINVAL; 3884 } 3885 3886 static ssize_t 3887 new_dev_store(struct mddev *mddev, const char *buf, size_t len) 3888 { 3889 /* buf must be %d:%d\n? giving major and minor numbers */ 3890 /* The new device is added to the array. 3891 * If the array has a persistent superblock, we read the 3892 * superblock to initialise info and check validity. 3893 * Otherwise, only checking done is that in bind_rdev_to_array, 3894 * which mainly checks size. 3895 */ 3896 char *e; 3897 int major = simple_strtoul(buf, &e, 10); 3898 int minor; 3899 dev_t dev; 3900 struct md_rdev *rdev; 3901 int err; 3902 3903 if (!*buf || *e != ':' || !e[1] || e[1] == '\n') 3904 return -EINVAL; 3905 minor = simple_strtoul(e+1, &e, 10); 3906 if (*e && *e != '\n') 3907 return -EINVAL; 3908 dev = MKDEV(major, minor); 3909 if (major != MAJOR(dev) || 3910 minor != MINOR(dev)) 3911 return -EOVERFLOW; 3912 3913 flush_workqueue(md_misc_wq); 3914 3915 err = mddev_lock(mddev); 3916 if (err) 3917 return err; 3918 if (mddev->persistent) { 3919 rdev = md_import_device(dev, mddev->major_version, 3920 mddev->minor_version); 3921 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { 3922 struct md_rdev *rdev0 3923 = list_entry(mddev->disks.next, 3924 struct md_rdev, same_set); 3925 err = super_types[mddev->major_version] 3926 .load_super(rdev, rdev0, mddev->minor_version); 3927 if (err < 0) 3928 goto out; 3929 } 3930 } else if (mddev->external) 3931 rdev = md_import_device(dev, -2, -1); 3932 else 3933 rdev = md_import_device(dev, -1, -1); 3934 3935 if (IS_ERR(rdev)) 3936 return PTR_ERR(rdev); 3937 err = bind_rdev_to_array(rdev, mddev); 3938 out: 3939 if (err) 3940 export_rdev(rdev); 3941 mddev_unlock(mddev); 3942 return err ? err : len; 3943 } 3944 3945 static struct md_sysfs_entry md_new_device = 3946 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store); 3947 3948 static ssize_t 3949 bitmap_store(struct mddev *mddev, const char *buf, size_t len) 3950 { 3951 char *end; 3952 unsigned long chunk, end_chunk; 3953 int err; 3954 3955 err = mddev_lock(mddev); 3956 if (err) 3957 return err; 3958 if (!mddev->bitmap) 3959 goto out; 3960 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */ 3961 while (*buf) { 3962 chunk = end_chunk = simple_strtoul(buf, &end, 0); 3963 if (buf == end) break; 3964 if (*end == '-') { /* range */ 3965 buf = end + 1; 3966 end_chunk = simple_strtoul(buf, &end, 0); 3967 if (buf == end) break; 3968 } 3969 if (*end && !isspace(*end)) break; 3970 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk); 3971 buf = skip_spaces(end); 3972 } 3973 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */ 3974 out: 3975 mddev_unlock(mddev); 3976 return len; 3977 } 3978 3979 static struct md_sysfs_entry md_bitmap = 3980 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); 3981 3982 static ssize_t 3983 size_show(struct mddev *mddev, char *page) 3984 { 3985 return sprintf(page, "%llu\n", 3986 (unsigned long long)mddev->dev_sectors / 2); 3987 } 3988 3989 static int update_size(struct mddev *mddev, sector_t num_sectors); 3990 3991 static ssize_t 3992 size_store(struct mddev *mddev, const char *buf, size_t len) 3993 { 3994 /* If array is inactive, we can reduce the component size, but 3995 * not increase it (except from 0). 3996 * If array is active, we can try an on-line resize 3997 */ 3998 sector_t sectors; 3999 int err = strict_blocks_to_sectors(buf, §ors); 4000 4001 if (err < 0) 4002 return err; 4003 err = mddev_lock(mddev); 4004 if (err) 4005 return err; 4006 if (mddev->pers) { 4007 err = update_size(mddev, sectors); 4008 md_update_sb(mddev, 1); 4009 } else { 4010 if (mddev->dev_sectors == 0 || 4011 mddev->dev_sectors > sectors) 4012 mddev->dev_sectors = sectors; 4013 else 4014 err = -ENOSPC; 4015 } 4016 mddev_unlock(mddev); 4017 return err ? err : len; 4018 } 4019 4020 static struct md_sysfs_entry md_size = 4021 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); 4022 4023 /* Metadata version. 4024 * This is one of 4025 * 'none' for arrays with no metadata (good luck...) 4026 * 'external' for arrays with externally managed metadata, 4027 * or N.M for internally known formats 4028 */ 4029 static ssize_t 4030 metadata_show(struct mddev *mddev, char *page) 4031 { 4032 if (mddev->persistent) 4033 return sprintf(page, "%d.%d\n", 4034 mddev->major_version, mddev->minor_version); 4035 else if (mddev->external) 4036 return sprintf(page, "external:%s\n", mddev->metadata_type); 4037 else 4038 return sprintf(page, "none\n"); 4039 } 4040 4041 static ssize_t 4042 metadata_store(struct mddev *mddev, const char *buf, size_t len) 4043 { 4044 int major, minor; 4045 char *e; 4046 int err; 4047 /* Changing the details of 'external' metadata is 4048 * always permitted. Otherwise there must be 4049 * no devices attached to the array. 4050 */ 4051 4052 err = mddev_lock(mddev); 4053 if (err) 4054 return err; 4055 err = -EBUSY; 4056 if (mddev->external && strncmp(buf, "external:", 9) == 0) 4057 ; 4058 else if (!list_empty(&mddev->disks)) 4059 goto out_unlock; 4060 4061 err = 0; 4062 if (cmd_match(buf, "none")) { 4063 mddev->persistent = 0; 4064 mddev->external = 0; 4065 mddev->major_version = 0; 4066 mddev->minor_version = 90; 4067 goto out_unlock; 4068 } 4069 if (strncmp(buf, "external:", 9) == 0) { 4070 size_t namelen = len-9; 4071 if (namelen >= sizeof(mddev->metadata_type)) 4072 namelen = sizeof(mddev->metadata_type)-1; 4073 strncpy(mddev->metadata_type, buf+9, namelen); 4074 mddev->metadata_type[namelen] = 0; 4075 if (namelen && mddev->metadata_type[namelen-1] == '\n') 4076 mddev->metadata_type[--namelen] = 0; 4077 mddev->persistent = 0; 4078 mddev->external = 1; 4079 mddev->major_version = 0; 4080 mddev->minor_version = 90; 4081 goto out_unlock; 4082 } 4083 major = simple_strtoul(buf, &e, 10); 4084 err = -EINVAL; 4085 if (e==buf || *e != '.') 4086 goto out_unlock; 4087 buf = e+1; 4088 minor = simple_strtoul(buf, &e, 10); 4089 if (e==buf || (*e && *e != '\n') ) 4090 goto out_unlock; 4091 err = -ENOENT; 4092 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL) 4093 goto out_unlock; 4094 mddev->major_version = major; 4095 mddev->minor_version = minor; 4096 mddev->persistent = 1; 4097 mddev->external = 0; 4098 err = 0; 4099 out_unlock: 4100 mddev_unlock(mddev); 4101 return err ?: len; 4102 } 4103 4104 static struct md_sysfs_entry md_metadata = 4105 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 4106 4107 static ssize_t 4108 action_show(struct mddev *mddev, char *page) 4109 { 4110 char *type = "idle"; 4111 unsigned long recovery = mddev->recovery; 4112 if (test_bit(MD_RECOVERY_FROZEN, &recovery)) 4113 type = "frozen"; 4114 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) || 4115 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) { 4116 if (test_bit(MD_RECOVERY_RESHAPE, &recovery)) 4117 type = "reshape"; 4118 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) { 4119 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery)) 4120 type = "resync"; 4121 else if (test_bit(MD_RECOVERY_CHECK, &recovery)) 4122 type = "check"; 4123 else 4124 type = "repair"; 4125 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery)) 4126 type = "recover"; 4127 } 4128 return sprintf(page, "%s\n", type); 4129 } 4130 4131 static ssize_t 4132 action_store(struct mddev *mddev, const char *page, size_t len) 4133 { 4134 if (!mddev->pers || !mddev->pers->sync_request) 4135 return -EINVAL; 4136 4137 if (cmd_match(page, "frozen")) 4138 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4139 else 4140 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4141 4142 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) { 4143 flush_workqueue(md_misc_wq); 4144 if (mddev->sync_thread) { 4145 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4146 if (mddev_lock(mddev) == 0) { 4147 md_reap_sync_thread(mddev); 4148 mddev_unlock(mddev); 4149 } 4150 } 4151 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 4152 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 4153 return -EBUSY; 4154 else if (cmd_match(page, "resync")) 4155 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4156 else if (cmd_match(page, "recover")) { 4157 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 4158 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4159 } else if (cmd_match(page, "reshape")) { 4160 int err; 4161 if (mddev->pers->start_reshape == NULL) 4162 return -EINVAL; 4163 err = mddev_lock(mddev); 4164 if (!err) { 4165 err = mddev->pers->start_reshape(mddev); 4166 mddev_unlock(mddev); 4167 } 4168 if (err) 4169 return err; 4170 sysfs_notify(&mddev->kobj, NULL, "degraded"); 4171 } else { 4172 if (cmd_match(page, "check")) 4173 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4174 else if (!cmd_match(page, "repair")) 4175 return -EINVAL; 4176 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 4177 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4178 } 4179 if (mddev->ro == 2) { 4180 /* A write to sync_action is enough to justify 4181 * canceling read-auto mode 4182 */ 4183 mddev->ro = 0; 4184 md_wakeup_thread(mddev->sync_thread); 4185 } 4186 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4187 md_wakeup_thread(mddev->thread); 4188 sysfs_notify_dirent_safe(mddev->sysfs_action); 4189 return len; 4190 } 4191 4192 static struct md_sysfs_entry md_scan_mode = 4193 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); 4194 4195 static ssize_t 4196 last_sync_action_show(struct mddev *mddev, char *page) 4197 { 4198 return sprintf(page, "%s\n", mddev->last_sync_action); 4199 } 4200 4201 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action); 4202 4203 static ssize_t 4204 mismatch_cnt_show(struct mddev *mddev, char *page) 4205 { 4206 return sprintf(page, "%llu\n", 4207 (unsigned long long) 4208 atomic64_read(&mddev->resync_mismatches)); 4209 } 4210 4211 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); 4212 4213 static ssize_t 4214 sync_min_show(struct mddev *mddev, char *page) 4215 { 4216 return sprintf(page, "%d (%s)\n", speed_min(mddev), 4217 mddev->sync_speed_min ? "local": "system"); 4218 } 4219 4220 static ssize_t 4221 sync_min_store(struct mddev *mddev, const char *buf, size_t len) 4222 { 4223 int min; 4224 char *e; 4225 if (strncmp(buf, "system", 6)==0) { 4226 mddev->sync_speed_min = 0; 4227 return len; 4228 } 4229 min = simple_strtoul(buf, &e, 10); 4230 if (buf == e || (*e && *e != '\n') || min <= 0) 4231 return -EINVAL; 4232 mddev->sync_speed_min = min; 4233 return len; 4234 } 4235 4236 static struct md_sysfs_entry md_sync_min = 4237 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); 4238 4239 static ssize_t 4240 sync_max_show(struct mddev *mddev, char *page) 4241 { 4242 return sprintf(page, "%d (%s)\n", speed_max(mddev), 4243 mddev->sync_speed_max ? "local": "system"); 4244 } 4245 4246 static ssize_t 4247 sync_max_store(struct mddev *mddev, const char *buf, size_t len) 4248 { 4249 int max; 4250 char *e; 4251 if (strncmp(buf, "system", 6)==0) { 4252 mddev->sync_speed_max = 0; 4253 return len; 4254 } 4255 max = simple_strtoul(buf, &e, 10); 4256 if (buf == e || (*e && *e != '\n') || max <= 0) 4257 return -EINVAL; 4258 mddev->sync_speed_max = max; 4259 return len; 4260 } 4261 4262 static struct md_sysfs_entry md_sync_max = 4263 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); 4264 4265 static ssize_t 4266 degraded_show(struct mddev *mddev, char *page) 4267 { 4268 return sprintf(page, "%d\n", mddev->degraded); 4269 } 4270 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded); 4271 4272 static ssize_t 4273 sync_force_parallel_show(struct mddev *mddev, char *page) 4274 { 4275 return sprintf(page, "%d\n", mddev->parallel_resync); 4276 } 4277 4278 static ssize_t 4279 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len) 4280 { 4281 long n; 4282 4283 if (kstrtol(buf, 10, &n)) 4284 return -EINVAL; 4285 4286 if (n != 0 && n != 1) 4287 return -EINVAL; 4288 4289 mddev->parallel_resync = n; 4290 4291 if (mddev->sync_thread) 4292 wake_up(&resync_wait); 4293 4294 return len; 4295 } 4296 4297 /* force parallel resync, even with shared block devices */ 4298 static struct md_sysfs_entry md_sync_force_parallel = 4299 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR, 4300 sync_force_parallel_show, sync_force_parallel_store); 4301 4302 static ssize_t 4303 sync_speed_show(struct mddev *mddev, char *page) 4304 { 4305 unsigned long resync, dt, db; 4306 if (mddev->curr_resync == 0) 4307 return sprintf(page, "none\n"); 4308 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active); 4309 dt = (jiffies - mddev->resync_mark) / HZ; 4310 if (!dt) dt++; 4311 db = resync - mddev->resync_mark_cnt; 4312 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */ 4313 } 4314 4315 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); 4316 4317 static ssize_t 4318 sync_completed_show(struct mddev *mddev, char *page) 4319 { 4320 unsigned long long max_sectors, resync; 4321 4322 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4323 return sprintf(page, "none\n"); 4324 4325 if (mddev->curr_resync == 1 || 4326 mddev->curr_resync == 2) 4327 return sprintf(page, "delayed\n"); 4328 4329 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 4330 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 4331 max_sectors = mddev->resync_max_sectors; 4332 else 4333 max_sectors = mddev->dev_sectors; 4334 4335 resync = mddev->curr_resync_completed; 4336 return sprintf(page, "%llu / %llu\n", resync, max_sectors); 4337 } 4338 4339 static struct md_sysfs_entry md_sync_completed = 4340 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL); 4341 4342 static ssize_t 4343 min_sync_show(struct mddev *mddev, char *page) 4344 { 4345 return sprintf(page, "%llu\n", 4346 (unsigned long long)mddev->resync_min); 4347 } 4348 static ssize_t 4349 min_sync_store(struct mddev *mddev, const char *buf, size_t len) 4350 { 4351 unsigned long long min; 4352 int err; 4353 int chunk; 4354 4355 if (kstrtoull(buf, 10, &min)) 4356 return -EINVAL; 4357 4358 spin_lock(&mddev->lock); 4359 err = -EINVAL; 4360 if (min > mddev->resync_max) 4361 goto out_unlock; 4362 4363 err = -EBUSY; 4364 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4365 goto out_unlock; 4366 4367 /* Must be a multiple of chunk_size */ 4368 chunk = mddev->chunk_sectors; 4369 if (chunk) { 4370 sector_t temp = min; 4371 4372 err = -EINVAL; 4373 if (sector_div(temp, chunk)) 4374 goto out_unlock; 4375 } 4376 mddev->resync_min = min; 4377 err = 0; 4378 4379 out_unlock: 4380 spin_unlock(&mddev->lock); 4381 return err ?: len; 4382 } 4383 4384 static struct md_sysfs_entry md_min_sync = 4385 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store); 4386 4387 static ssize_t 4388 max_sync_show(struct mddev *mddev, char *page) 4389 { 4390 if (mddev->resync_max == MaxSector) 4391 return sprintf(page, "max\n"); 4392 else 4393 return sprintf(page, "%llu\n", 4394 (unsigned long long)mddev->resync_max); 4395 } 4396 static ssize_t 4397 max_sync_store(struct mddev *mddev, const char *buf, size_t len) 4398 { 4399 int err; 4400 spin_lock(&mddev->lock); 4401 if (strncmp(buf, "max", 3) == 0) 4402 mddev->resync_max = MaxSector; 4403 else { 4404 unsigned long long max; 4405 int chunk; 4406 4407 err = -EINVAL; 4408 if (kstrtoull(buf, 10, &max)) 4409 goto out_unlock; 4410 if (max < mddev->resync_min) 4411 goto out_unlock; 4412 4413 err = -EBUSY; 4414 if (max < mddev->resync_max && 4415 mddev->ro == 0 && 4416 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4417 goto out_unlock; 4418 4419 /* Must be a multiple of chunk_size */ 4420 chunk = mddev->chunk_sectors; 4421 if (chunk) { 4422 sector_t temp = max; 4423 4424 err = -EINVAL; 4425 if (sector_div(temp, chunk)) 4426 goto out_unlock; 4427 } 4428 mddev->resync_max = max; 4429 } 4430 wake_up(&mddev->recovery_wait); 4431 err = 0; 4432 out_unlock: 4433 spin_unlock(&mddev->lock); 4434 return err ?: len; 4435 } 4436 4437 static struct md_sysfs_entry md_max_sync = 4438 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store); 4439 4440 static ssize_t 4441 suspend_lo_show(struct mddev *mddev, char *page) 4442 { 4443 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo); 4444 } 4445 4446 static ssize_t 4447 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len) 4448 { 4449 char *e; 4450 unsigned long long new = simple_strtoull(buf, &e, 10); 4451 unsigned long long old; 4452 int err; 4453 4454 if (buf == e || (*e && *e != '\n')) 4455 return -EINVAL; 4456 4457 err = mddev_lock(mddev); 4458 if (err) 4459 return err; 4460 err = -EINVAL; 4461 if (mddev->pers == NULL || 4462 mddev->pers->quiesce == NULL) 4463 goto unlock; 4464 old = mddev->suspend_lo; 4465 mddev->suspend_lo = new; 4466 if (new >= old) 4467 /* Shrinking suspended region */ 4468 mddev->pers->quiesce(mddev, 2); 4469 else { 4470 /* Expanding suspended region - need to wait */ 4471 mddev->pers->quiesce(mddev, 1); 4472 mddev->pers->quiesce(mddev, 0); 4473 } 4474 err = 0; 4475 unlock: 4476 mddev_unlock(mddev); 4477 return err ?: len; 4478 } 4479 static struct md_sysfs_entry md_suspend_lo = 4480 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); 4481 4482 static ssize_t 4483 suspend_hi_show(struct mddev *mddev, char *page) 4484 { 4485 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi); 4486 } 4487 4488 static ssize_t 4489 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len) 4490 { 4491 char *e; 4492 unsigned long long new = simple_strtoull(buf, &e, 10); 4493 unsigned long long old; 4494 int err; 4495 4496 if (buf == e || (*e && *e != '\n')) 4497 return -EINVAL; 4498 4499 err = mddev_lock(mddev); 4500 if (err) 4501 return err; 4502 err = -EINVAL; 4503 if (mddev->pers == NULL || 4504 mddev->pers->quiesce == NULL) 4505 goto unlock; 4506 old = mddev->suspend_hi; 4507 mddev->suspend_hi = new; 4508 if (new <= old) 4509 /* Shrinking suspended region */ 4510 mddev->pers->quiesce(mddev, 2); 4511 else { 4512 /* Expanding suspended region - need to wait */ 4513 mddev->pers->quiesce(mddev, 1); 4514 mddev->pers->quiesce(mddev, 0); 4515 } 4516 err = 0; 4517 unlock: 4518 mddev_unlock(mddev); 4519 return err ?: len; 4520 } 4521 static struct md_sysfs_entry md_suspend_hi = 4522 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); 4523 4524 static ssize_t 4525 reshape_position_show(struct mddev *mddev, char *page) 4526 { 4527 if (mddev->reshape_position != MaxSector) 4528 return sprintf(page, "%llu\n", 4529 (unsigned long long)mddev->reshape_position); 4530 strcpy(page, "none\n"); 4531 return 5; 4532 } 4533 4534 static ssize_t 4535 reshape_position_store(struct mddev *mddev, const char *buf, size_t len) 4536 { 4537 struct md_rdev *rdev; 4538 char *e; 4539 int err; 4540 unsigned long long new = simple_strtoull(buf, &e, 10); 4541 4542 if (buf == e || (*e && *e != '\n')) 4543 return -EINVAL; 4544 err = mddev_lock(mddev); 4545 if (err) 4546 return err; 4547 err = -EBUSY; 4548 if (mddev->pers) 4549 goto unlock; 4550 mddev->reshape_position = new; 4551 mddev->delta_disks = 0; 4552 mddev->reshape_backwards = 0; 4553 mddev->new_level = mddev->level; 4554 mddev->new_layout = mddev->layout; 4555 mddev->new_chunk_sectors = mddev->chunk_sectors; 4556 rdev_for_each(rdev, mddev) 4557 rdev->new_data_offset = rdev->data_offset; 4558 err = 0; 4559 unlock: 4560 mddev_unlock(mddev); 4561 return err ?: len; 4562 } 4563 4564 static struct md_sysfs_entry md_reshape_position = 4565 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show, 4566 reshape_position_store); 4567 4568 static ssize_t 4569 reshape_direction_show(struct mddev *mddev, char *page) 4570 { 4571 return sprintf(page, "%s\n", 4572 mddev->reshape_backwards ? "backwards" : "forwards"); 4573 } 4574 4575 static ssize_t 4576 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len) 4577 { 4578 int backwards = 0; 4579 int err; 4580 4581 if (cmd_match(buf, "forwards")) 4582 backwards = 0; 4583 else if (cmd_match(buf, "backwards")) 4584 backwards = 1; 4585 else 4586 return -EINVAL; 4587 if (mddev->reshape_backwards == backwards) 4588 return len; 4589 4590 err = mddev_lock(mddev); 4591 if (err) 4592 return err; 4593 /* check if we are allowed to change */ 4594 if (mddev->delta_disks) 4595 err = -EBUSY; 4596 else if (mddev->persistent && 4597 mddev->major_version == 0) 4598 err = -EINVAL; 4599 else 4600 mddev->reshape_backwards = backwards; 4601 mddev_unlock(mddev); 4602 return err ?: len; 4603 } 4604 4605 static struct md_sysfs_entry md_reshape_direction = 4606 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show, 4607 reshape_direction_store); 4608 4609 static ssize_t 4610 array_size_show(struct mddev *mddev, char *page) 4611 { 4612 if (mddev->external_size) 4613 return sprintf(page, "%llu\n", 4614 (unsigned long long)mddev->array_sectors/2); 4615 else 4616 return sprintf(page, "default\n"); 4617 } 4618 4619 static ssize_t 4620 array_size_store(struct mddev *mddev, const char *buf, size_t len) 4621 { 4622 sector_t sectors; 4623 int err; 4624 4625 err = mddev_lock(mddev); 4626 if (err) 4627 return err; 4628 4629 if (strncmp(buf, "default", 7) == 0) { 4630 if (mddev->pers) 4631 sectors = mddev->pers->size(mddev, 0, 0); 4632 else 4633 sectors = mddev->array_sectors; 4634 4635 mddev->external_size = 0; 4636 } else { 4637 if (strict_blocks_to_sectors(buf, §ors) < 0) 4638 err = -EINVAL; 4639 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors) 4640 err = -E2BIG; 4641 else 4642 mddev->external_size = 1; 4643 } 4644 4645 if (!err) { 4646 mddev->array_sectors = sectors; 4647 if (mddev->pers) { 4648 set_capacity(mddev->gendisk, mddev->array_sectors); 4649 revalidate_disk(mddev->gendisk); 4650 } 4651 } 4652 mddev_unlock(mddev); 4653 return err ?: len; 4654 } 4655 4656 static struct md_sysfs_entry md_array_size = 4657 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show, 4658 array_size_store); 4659 4660 static struct attribute *md_default_attrs[] = { 4661 &md_level.attr, 4662 &md_layout.attr, 4663 &md_raid_disks.attr, 4664 &md_chunk_size.attr, 4665 &md_size.attr, 4666 &md_resync_start.attr, 4667 &md_metadata.attr, 4668 &md_new_device.attr, 4669 &md_safe_delay.attr, 4670 &md_array_state.attr, 4671 &md_reshape_position.attr, 4672 &md_reshape_direction.attr, 4673 &md_array_size.attr, 4674 &max_corr_read_errors.attr, 4675 NULL, 4676 }; 4677 4678 static struct attribute *md_redundancy_attrs[] = { 4679 &md_scan_mode.attr, 4680 &md_last_scan_mode.attr, 4681 &md_mismatches.attr, 4682 &md_sync_min.attr, 4683 &md_sync_max.attr, 4684 &md_sync_speed.attr, 4685 &md_sync_force_parallel.attr, 4686 &md_sync_completed.attr, 4687 &md_min_sync.attr, 4688 &md_max_sync.attr, 4689 &md_suspend_lo.attr, 4690 &md_suspend_hi.attr, 4691 &md_bitmap.attr, 4692 &md_degraded.attr, 4693 NULL, 4694 }; 4695 static struct attribute_group md_redundancy_group = { 4696 .name = NULL, 4697 .attrs = md_redundancy_attrs, 4698 }; 4699 4700 static ssize_t 4701 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 4702 { 4703 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 4704 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 4705 ssize_t rv; 4706 4707 if (!entry->show) 4708 return -EIO; 4709 spin_lock(&all_mddevs_lock); 4710 if (list_empty(&mddev->all_mddevs)) { 4711 spin_unlock(&all_mddevs_lock); 4712 return -EBUSY; 4713 } 4714 mddev_get(mddev); 4715 spin_unlock(&all_mddevs_lock); 4716 4717 rv = entry->show(mddev, page); 4718 mddev_put(mddev); 4719 return rv; 4720 } 4721 4722 static ssize_t 4723 md_attr_store(struct kobject *kobj, struct attribute *attr, 4724 const char *page, size_t length) 4725 { 4726 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 4727 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 4728 ssize_t rv; 4729 4730 if (!entry->store) 4731 return -EIO; 4732 if (!capable(CAP_SYS_ADMIN)) 4733 return -EACCES; 4734 spin_lock(&all_mddevs_lock); 4735 if (list_empty(&mddev->all_mddevs)) { 4736 spin_unlock(&all_mddevs_lock); 4737 return -EBUSY; 4738 } 4739 mddev_get(mddev); 4740 spin_unlock(&all_mddevs_lock); 4741 rv = entry->store(mddev, page, length); 4742 mddev_put(mddev); 4743 return rv; 4744 } 4745 4746 static void md_free(struct kobject *ko) 4747 { 4748 struct mddev *mddev = container_of(ko, struct mddev, kobj); 4749 4750 if (mddev->sysfs_state) 4751 sysfs_put(mddev->sysfs_state); 4752 4753 if (mddev->gendisk) { 4754 del_gendisk(mddev->gendisk); 4755 put_disk(mddev->gendisk); 4756 } 4757 if (mddev->queue) 4758 blk_cleanup_queue(mddev->queue); 4759 4760 kfree(mddev); 4761 } 4762 4763 static const struct sysfs_ops md_sysfs_ops = { 4764 .show = md_attr_show, 4765 .store = md_attr_store, 4766 }; 4767 static struct kobj_type md_ktype = { 4768 .release = md_free, 4769 .sysfs_ops = &md_sysfs_ops, 4770 .default_attrs = md_default_attrs, 4771 }; 4772 4773 int mdp_major = 0; 4774 4775 static void mddev_delayed_delete(struct work_struct *ws) 4776 { 4777 struct mddev *mddev = container_of(ws, struct mddev, del_work); 4778 4779 sysfs_remove_group(&mddev->kobj, &md_bitmap_group); 4780 kobject_del(&mddev->kobj); 4781 kobject_put(&mddev->kobj); 4782 } 4783 4784 static int md_alloc(dev_t dev, char *name) 4785 { 4786 static DEFINE_MUTEX(disks_mutex); 4787 struct mddev *mddev = mddev_find(dev); 4788 struct gendisk *disk; 4789 int partitioned; 4790 int shift; 4791 int unit; 4792 int error; 4793 4794 if (!mddev) 4795 return -ENODEV; 4796 4797 partitioned = (MAJOR(mddev->unit) != MD_MAJOR); 4798 shift = partitioned ? MdpMinorShift : 0; 4799 unit = MINOR(mddev->unit) >> shift; 4800 4801 /* wait for any previous instance of this device to be 4802 * completely removed (mddev_delayed_delete). 4803 */ 4804 flush_workqueue(md_misc_wq); 4805 4806 mutex_lock(&disks_mutex); 4807 error = -EEXIST; 4808 if (mddev->gendisk) 4809 goto abort; 4810 4811 if (name) { 4812 /* Need to ensure that 'name' is not a duplicate. 4813 */ 4814 struct mddev *mddev2; 4815 spin_lock(&all_mddevs_lock); 4816 4817 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) 4818 if (mddev2->gendisk && 4819 strcmp(mddev2->gendisk->disk_name, name) == 0) { 4820 spin_unlock(&all_mddevs_lock); 4821 goto abort; 4822 } 4823 spin_unlock(&all_mddevs_lock); 4824 } 4825 4826 error = -ENOMEM; 4827 mddev->queue = blk_alloc_queue(GFP_KERNEL); 4828 if (!mddev->queue) 4829 goto abort; 4830 mddev->queue->queuedata = mddev; 4831 4832 blk_queue_make_request(mddev->queue, md_make_request); 4833 blk_set_stacking_limits(&mddev->queue->limits); 4834 4835 disk = alloc_disk(1 << shift); 4836 if (!disk) { 4837 blk_cleanup_queue(mddev->queue); 4838 mddev->queue = NULL; 4839 goto abort; 4840 } 4841 disk->major = MAJOR(mddev->unit); 4842 disk->first_minor = unit << shift; 4843 if (name) 4844 strcpy(disk->disk_name, name); 4845 else if (partitioned) 4846 sprintf(disk->disk_name, "md_d%d", unit); 4847 else 4848 sprintf(disk->disk_name, "md%d", unit); 4849 disk->fops = &md_fops; 4850 disk->private_data = mddev; 4851 disk->queue = mddev->queue; 4852 blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA); 4853 /* Allow extended partitions. This makes the 4854 * 'mdp' device redundant, but we can't really 4855 * remove it now. 4856 */ 4857 disk->flags |= GENHD_FL_EXT_DEVT; 4858 mddev->gendisk = disk; 4859 /* As soon as we call add_disk(), another thread could get 4860 * through to md_open, so make sure it doesn't get too far 4861 */ 4862 mutex_lock(&mddev->open_mutex); 4863 add_disk(disk); 4864 4865 error = kobject_init_and_add(&mddev->kobj, &md_ktype, 4866 &disk_to_dev(disk)->kobj, "%s", "md"); 4867 if (error) { 4868 /* This isn't possible, but as kobject_init_and_add is marked 4869 * __must_check, we must do something with the result 4870 */ 4871 printk(KERN_WARNING "md: cannot register %s/md - name in use\n", 4872 disk->disk_name); 4873 error = 0; 4874 } 4875 if (mddev->kobj.sd && 4876 sysfs_create_group(&mddev->kobj, &md_bitmap_group)) 4877 printk(KERN_DEBUG "pointless warning\n"); 4878 mutex_unlock(&mddev->open_mutex); 4879 abort: 4880 mutex_unlock(&disks_mutex); 4881 if (!error && mddev->kobj.sd) { 4882 kobject_uevent(&mddev->kobj, KOBJ_ADD); 4883 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state"); 4884 } 4885 mddev_put(mddev); 4886 return error; 4887 } 4888 4889 static struct kobject *md_probe(dev_t dev, int *part, void *data) 4890 { 4891 md_alloc(dev, NULL); 4892 return NULL; 4893 } 4894 4895 static int add_named_array(const char *val, struct kernel_param *kp) 4896 { 4897 /* val must be "md_*" where * is not all digits. 4898 * We allocate an array with a large free minor number, and 4899 * set the name to val. val must not already be an active name. 4900 */ 4901 int len = strlen(val); 4902 char buf[DISK_NAME_LEN]; 4903 4904 while (len && val[len-1] == '\n') 4905 len--; 4906 if (len >= DISK_NAME_LEN) 4907 return -E2BIG; 4908 strlcpy(buf, val, len+1); 4909 if (strncmp(buf, "md_", 3) != 0) 4910 return -EINVAL; 4911 return md_alloc(0, buf); 4912 } 4913 4914 static void md_safemode_timeout(unsigned long data) 4915 { 4916 struct mddev *mddev = (struct mddev *) data; 4917 4918 if (!atomic_read(&mddev->writes_pending)) { 4919 mddev->safemode = 1; 4920 if (mddev->external) 4921 sysfs_notify_dirent_safe(mddev->sysfs_state); 4922 } 4923 md_wakeup_thread(mddev->thread); 4924 } 4925 4926 static int start_dirty_degraded; 4927 4928 int md_run(struct mddev *mddev) 4929 { 4930 int err; 4931 struct md_rdev *rdev; 4932 struct md_personality *pers; 4933 4934 if (list_empty(&mddev->disks)) 4935 /* cannot run an array with no devices.. */ 4936 return -EINVAL; 4937 4938 if (mddev->pers) 4939 return -EBUSY; 4940 /* Cannot run until previous stop completes properly */ 4941 if (mddev->sysfs_active) 4942 return -EBUSY; 4943 4944 /* 4945 * Analyze all RAID superblock(s) 4946 */ 4947 if (!mddev->raid_disks) { 4948 if (!mddev->persistent) 4949 return -EINVAL; 4950 analyze_sbs(mddev); 4951 } 4952 4953 if (mddev->level != LEVEL_NONE) 4954 request_module("md-level-%d", mddev->level); 4955 else if (mddev->clevel[0]) 4956 request_module("md-%s", mddev->clevel); 4957 4958 /* 4959 * Drop all container device buffers, from now on 4960 * the only valid external interface is through the md 4961 * device. 4962 */ 4963 rdev_for_each(rdev, mddev) { 4964 if (test_bit(Faulty, &rdev->flags)) 4965 continue; 4966 sync_blockdev(rdev->bdev); 4967 invalidate_bdev(rdev->bdev); 4968 4969 /* perform some consistency tests on the device. 4970 * We don't want the data to overlap the metadata, 4971 * Internal Bitmap issues have been handled elsewhere. 4972 */ 4973 if (rdev->meta_bdev) { 4974 /* Nothing to check */; 4975 } else if (rdev->data_offset < rdev->sb_start) { 4976 if (mddev->dev_sectors && 4977 rdev->data_offset + mddev->dev_sectors 4978 > rdev->sb_start) { 4979 printk("md: %s: data overlaps metadata\n", 4980 mdname(mddev)); 4981 return -EINVAL; 4982 } 4983 } else { 4984 if (rdev->sb_start + rdev->sb_size/512 4985 > rdev->data_offset) { 4986 printk("md: %s: metadata overlaps data\n", 4987 mdname(mddev)); 4988 return -EINVAL; 4989 } 4990 } 4991 sysfs_notify_dirent_safe(rdev->sysfs_state); 4992 } 4993 4994 if (mddev->bio_set == NULL) 4995 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0); 4996 4997 spin_lock(&pers_lock); 4998 pers = find_pers(mddev->level, mddev->clevel); 4999 if (!pers || !try_module_get(pers->owner)) { 5000 spin_unlock(&pers_lock); 5001 if (mddev->level != LEVEL_NONE) 5002 printk(KERN_WARNING "md: personality for level %d is not loaded!\n", 5003 mddev->level); 5004 else 5005 printk(KERN_WARNING "md: personality for level %s is not loaded!\n", 5006 mddev->clevel); 5007 return -EINVAL; 5008 } 5009 spin_unlock(&pers_lock); 5010 if (mddev->level != pers->level) { 5011 mddev->level = pers->level; 5012 mddev->new_level = pers->level; 5013 } 5014 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 5015 5016 if (mddev->reshape_position != MaxSector && 5017 pers->start_reshape == NULL) { 5018 /* This personality cannot handle reshaping... */ 5019 module_put(pers->owner); 5020 return -EINVAL; 5021 } 5022 5023 if (pers->sync_request) { 5024 /* Warn if this is a potentially silly 5025 * configuration. 5026 */ 5027 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 5028 struct md_rdev *rdev2; 5029 int warned = 0; 5030 5031 rdev_for_each(rdev, mddev) 5032 rdev_for_each(rdev2, mddev) { 5033 if (rdev < rdev2 && 5034 rdev->bdev->bd_contains == 5035 rdev2->bdev->bd_contains) { 5036 printk(KERN_WARNING 5037 "%s: WARNING: %s appears to be" 5038 " on the same physical disk as" 5039 " %s.\n", 5040 mdname(mddev), 5041 bdevname(rdev->bdev,b), 5042 bdevname(rdev2->bdev,b2)); 5043 warned = 1; 5044 } 5045 } 5046 5047 if (warned) 5048 printk(KERN_WARNING 5049 "True protection against single-disk" 5050 " failure might be compromised.\n"); 5051 } 5052 5053 mddev->recovery = 0; 5054 /* may be over-ridden by personality */ 5055 mddev->resync_max_sectors = mddev->dev_sectors; 5056 5057 mddev->ok_start_degraded = start_dirty_degraded; 5058 5059 if (start_readonly && mddev->ro == 0) 5060 mddev->ro = 2; /* read-only, but switch on first write */ 5061 5062 err = pers->run(mddev); 5063 if (err) 5064 printk(KERN_ERR "md: pers->run() failed ...\n"); 5065 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) { 5066 WARN_ONCE(!mddev->external_size, "%s: default size too small," 5067 " but 'external_size' not in effect?\n", __func__); 5068 printk(KERN_ERR 5069 "md: invalid array_size %llu > default size %llu\n", 5070 (unsigned long long)mddev->array_sectors / 2, 5071 (unsigned long long)pers->size(mddev, 0, 0) / 2); 5072 err = -EINVAL; 5073 } 5074 if (err == 0 && pers->sync_request && 5075 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) { 5076 err = bitmap_create(mddev); 5077 if (err) 5078 printk(KERN_ERR "%s: failed to create bitmap (%d)\n", 5079 mdname(mddev), err); 5080 } 5081 if (err) { 5082 mddev_detach(mddev); 5083 if (mddev->private) 5084 pers->free(mddev, mddev->private); 5085 module_put(pers->owner); 5086 bitmap_destroy(mddev); 5087 return err; 5088 } 5089 if (mddev->queue) { 5090 mddev->queue->backing_dev_info.congested_data = mddev; 5091 mddev->queue->backing_dev_info.congested_fn = md_congested; 5092 blk_queue_merge_bvec(mddev->queue, md_mergeable_bvec); 5093 } 5094 if (pers->sync_request) { 5095 if (mddev->kobj.sd && 5096 sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 5097 printk(KERN_WARNING 5098 "md: cannot register extra attributes for %s\n", 5099 mdname(mddev)); 5100 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action"); 5101 } else if (mddev->ro == 2) /* auto-readonly not meaningful */ 5102 mddev->ro = 0; 5103 5104 atomic_set(&mddev->writes_pending,0); 5105 atomic_set(&mddev->max_corr_read_errors, 5106 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS); 5107 mddev->safemode = 0; 5108 mddev->safemode_timer.function = md_safemode_timeout; 5109 mddev->safemode_timer.data = (unsigned long) mddev; 5110 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */ 5111 mddev->in_sync = 1; 5112 smp_wmb(); 5113 spin_lock(&mddev->lock); 5114 mddev->pers = pers; 5115 mddev->ready = 1; 5116 spin_unlock(&mddev->lock); 5117 rdev_for_each(rdev, mddev) 5118 if (rdev->raid_disk >= 0) 5119 if (sysfs_link_rdev(mddev, rdev)) 5120 /* failure here is OK */; 5121 5122 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5123 5124 if (mddev->flags & MD_UPDATE_SB_FLAGS) 5125 md_update_sb(mddev, 0); 5126 5127 md_new_event(mddev); 5128 sysfs_notify_dirent_safe(mddev->sysfs_state); 5129 sysfs_notify_dirent_safe(mddev->sysfs_action); 5130 sysfs_notify(&mddev->kobj, NULL, "degraded"); 5131 return 0; 5132 } 5133 EXPORT_SYMBOL_GPL(md_run); 5134 5135 static int do_md_run(struct mddev *mddev) 5136 { 5137 int err; 5138 5139 err = md_run(mddev); 5140 if (err) 5141 goto out; 5142 err = bitmap_load(mddev); 5143 if (err) { 5144 bitmap_destroy(mddev); 5145 goto out; 5146 } 5147 5148 md_wakeup_thread(mddev->thread); 5149 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 5150 5151 set_capacity(mddev->gendisk, mddev->array_sectors); 5152 revalidate_disk(mddev->gendisk); 5153 mddev->changed = 1; 5154 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 5155 out: 5156 return err; 5157 } 5158 5159 static int restart_array(struct mddev *mddev) 5160 { 5161 struct gendisk *disk = mddev->gendisk; 5162 5163 /* Complain if it has no devices */ 5164 if (list_empty(&mddev->disks)) 5165 return -ENXIO; 5166 if (!mddev->pers) 5167 return -EINVAL; 5168 if (!mddev->ro) 5169 return -EBUSY; 5170 mddev->safemode = 0; 5171 mddev->ro = 0; 5172 set_disk_ro(disk, 0); 5173 printk(KERN_INFO "md: %s switched to read-write mode.\n", 5174 mdname(mddev)); 5175 /* Kick recovery or resync if necessary */ 5176 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5177 md_wakeup_thread(mddev->thread); 5178 md_wakeup_thread(mddev->sync_thread); 5179 sysfs_notify_dirent_safe(mddev->sysfs_state); 5180 return 0; 5181 } 5182 5183 static void md_clean(struct mddev *mddev) 5184 { 5185 mddev->array_sectors = 0; 5186 mddev->external_size = 0; 5187 mddev->dev_sectors = 0; 5188 mddev->raid_disks = 0; 5189 mddev->recovery_cp = 0; 5190 mddev->resync_min = 0; 5191 mddev->resync_max = MaxSector; 5192 mddev->reshape_position = MaxSector; 5193 mddev->external = 0; 5194 mddev->persistent = 0; 5195 mddev->level = LEVEL_NONE; 5196 mddev->clevel[0] = 0; 5197 mddev->flags = 0; 5198 mddev->ro = 0; 5199 mddev->metadata_type[0] = 0; 5200 mddev->chunk_sectors = 0; 5201 mddev->ctime = mddev->utime = 0; 5202 mddev->layout = 0; 5203 mddev->max_disks = 0; 5204 mddev->events = 0; 5205 mddev->can_decrease_events = 0; 5206 mddev->delta_disks = 0; 5207 mddev->reshape_backwards = 0; 5208 mddev->new_level = LEVEL_NONE; 5209 mddev->new_layout = 0; 5210 mddev->new_chunk_sectors = 0; 5211 mddev->curr_resync = 0; 5212 atomic64_set(&mddev->resync_mismatches, 0); 5213 mddev->suspend_lo = mddev->suspend_hi = 0; 5214 mddev->sync_speed_min = mddev->sync_speed_max = 0; 5215 mddev->recovery = 0; 5216 mddev->in_sync = 0; 5217 mddev->changed = 0; 5218 mddev->degraded = 0; 5219 mddev->safemode = 0; 5220 mddev->merge_check_needed = 0; 5221 mddev->bitmap_info.offset = 0; 5222 mddev->bitmap_info.default_offset = 0; 5223 mddev->bitmap_info.default_space = 0; 5224 mddev->bitmap_info.chunksize = 0; 5225 mddev->bitmap_info.daemon_sleep = 0; 5226 mddev->bitmap_info.max_write_behind = 0; 5227 } 5228 5229 static void __md_stop_writes(struct mddev *mddev) 5230 { 5231 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5232 flush_workqueue(md_misc_wq); 5233 if (mddev->sync_thread) { 5234 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5235 md_reap_sync_thread(mddev); 5236 } 5237 5238 del_timer_sync(&mddev->safemode_timer); 5239 5240 bitmap_flush(mddev); 5241 md_super_wait(mddev); 5242 5243 if (mddev->ro == 0 && 5244 (!mddev->in_sync || (mddev->flags & MD_UPDATE_SB_FLAGS))) { 5245 /* mark array as shutdown cleanly */ 5246 mddev->in_sync = 1; 5247 md_update_sb(mddev, 1); 5248 } 5249 } 5250 5251 void md_stop_writes(struct mddev *mddev) 5252 { 5253 mddev_lock_nointr(mddev); 5254 __md_stop_writes(mddev); 5255 mddev_unlock(mddev); 5256 } 5257 EXPORT_SYMBOL_GPL(md_stop_writes); 5258 5259 static void mddev_detach(struct mddev *mddev) 5260 { 5261 struct bitmap *bitmap = mddev->bitmap; 5262 /* wait for behind writes to complete */ 5263 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) { 5264 printk(KERN_INFO "md:%s: behind writes in progress - waiting to stop.\n", 5265 mdname(mddev)); 5266 /* need to kick something here to make sure I/O goes? */ 5267 wait_event(bitmap->behind_wait, 5268 atomic_read(&bitmap->behind_writes) == 0); 5269 } 5270 if (mddev->pers && mddev->pers->quiesce) { 5271 mddev->pers->quiesce(mddev, 1); 5272 mddev->pers->quiesce(mddev, 0); 5273 } 5274 md_unregister_thread(&mddev->thread); 5275 if (mddev->queue) 5276 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 5277 } 5278 5279 static void __md_stop(struct mddev *mddev) 5280 { 5281 struct md_personality *pers = mddev->pers; 5282 mddev_detach(mddev); 5283 spin_lock(&mddev->lock); 5284 mddev->ready = 0; 5285 mddev->pers = NULL; 5286 spin_unlock(&mddev->lock); 5287 pers->free(mddev, mddev->private); 5288 if (pers->sync_request && mddev->to_remove == NULL) 5289 mddev->to_remove = &md_redundancy_group; 5290 module_put(pers->owner); 5291 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5292 } 5293 5294 void md_stop(struct mddev *mddev) 5295 { 5296 /* stop the array and free an attached data structures. 5297 * This is called from dm-raid 5298 */ 5299 __md_stop(mddev); 5300 bitmap_destroy(mddev); 5301 if (mddev->bio_set) 5302 bioset_free(mddev->bio_set); 5303 } 5304 5305 EXPORT_SYMBOL_GPL(md_stop); 5306 5307 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev) 5308 { 5309 int err = 0; 5310 int did_freeze = 0; 5311 5312 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 5313 did_freeze = 1; 5314 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5315 md_wakeup_thread(mddev->thread); 5316 } 5317 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5318 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5319 if (mddev->sync_thread) 5320 /* Thread might be blocked waiting for metadata update 5321 * which will now never happen */ 5322 wake_up_process(mddev->sync_thread->tsk); 5323 5324 mddev_unlock(mddev); 5325 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING, 5326 &mddev->recovery)); 5327 mddev_lock_nointr(mddev); 5328 5329 mutex_lock(&mddev->open_mutex); 5330 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 5331 mddev->sync_thread || 5332 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 5333 (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) { 5334 printk("md: %s still in use.\n",mdname(mddev)); 5335 if (did_freeze) { 5336 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5337 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5338 md_wakeup_thread(mddev->thread); 5339 } 5340 err = -EBUSY; 5341 goto out; 5342 } 5343 if (mddev->pers) { 5344 __md_stop_writes(mddev); 5345 5346 err = -ENXIO; 5347 if (mddev->ro==1) 5348 goto out; 5349 mddev->ro = 1; 5350 set_disk_ro(mddev->gendisk, 1); 5351 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5352 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5353 md_wakeup_thread(mddev->thread); 5354 sysfs_notify_dirent_safe(mddev->sysfs_state); 5355 err = 0; 5356 } 5357 out: 5358 mutex_unlock(&mddev->open_mutex); 5359 return err; 5360 } 5361 5362 /* mode: 5363 * 0 - completely stop and dis-assemble array 5364 * 2 - stop but do not disassemble array 5365 */ 5366 static int do_md_stop(struct mddev *mddev, int mode, 5367 struct block_device *bdev) 5368 { 5369 struct gendisk *disk = mddev->gendisk; 5370 struct md_rdev *rdev; 5371 int did_freeze = 0; 5372 5373 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 5374 did_freeze = 1; 5375 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5376 md_wakeup_thread(mddev->thread); 5377 } 5378 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5379 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5380 if (mddev->sync_thread) 5381 /* Thread might be blocked waiting for metadata update 5382 * which will now never happen */ 5383 wake_up_process(mddev->sync_thread->tsk); 5384 5385 mddev_unlock(mddev); 5386 wait_event(resync_wait, (mddev->sync_thread == NULL && 5387 !test_bit(MD_RECOVERY_RUNNING, 5388 &mddev->recovery))); 5389 mddev_lock_nointr(mddev); 5390 5391 mutex_lock(&mddev->open_mutex); 5392 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 5393 mddev->sysfs_active || 5394 mddev->sync_thread || 5395 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 5396 (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) { 5397 printk("md: %s still in use.\n",mdname(mddev)); 5398 mutex_unlock(&mddev->open_mutex); 5399 if (did_freeze) { 5400 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5401 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5402 md_wakeup_thread(mddev->thread); 5403 } 5404 return -EBUSY; 5405 } 5406 if (mddev->pers) { 5407 if (mddev->ro) 5408 set_disk_ro(disk, 0); 5409 5410 __md_stop_writes(mddev); 5411 __md_stop(mddev); 5412 mddev->queue->merge_bvec_fn = NULL; 5413 mddev->queue->backing_dev_info.congested_fn = NULL; 5414 5415 /* tell userspace to handle 'inactive' */ 5416 sysfs_notify_dirent_safe(mddev->sysfs_state); 5417 5418 rdev_for_each(rdev, mddev) 5419 if (rdev->raid_disk >= 0) 5420 sysfs_unlink_rdev(mddev, rdev); 5421 5422 set_capacity(disk, 0); 5423 mutex_unlock(&mddev->open_mutex); 5424 mddev->changed = 1; 5425 revalidate_disk(disk); 5426 5427 if (mddev->ro) 5428 mddev->ro = 0; 5429 } else 5430 mutex_unlock(&mddev->open_mutex); 5431 /* 5432 * Free resources if final stop 5433 */ 5434 if (mode == 0) { 5435 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev)); 5436 5437 bitmap_destroy(mddev); 5438 if (mddev->bitmap_info.file) { 5439 struct file *f = mddev->bitmap_info.file; 5440 spin_lock(&mddev->lock); 5441 mddev->bitmap_info.file = NULL; 5442 spin_unlock(&mddev->lock); 5443 fput(f); 5444 } 5445 mddev->bitmap_info.offset = 0; 5446 5447 export_array(mddev); 5448 5449 md_clean(mddev); 5450 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 5451 if (mddev->hold_active == UNTIL_STOP) 5452 mddev->hold_active = 0; 5453 } 5454 blk_integrity_unregister(disk); 5455 md_new_event(mddev); 5456 sysfs_notify_dirent_safe(mddev->sysfs_state); 5457 return 0; 5458 } 5459 5460 #ifndef MODULE 5461 static void autorun_array(struct mddev *mddev) 5462 { 5463 struct md_rdev *rdev; 5464 int err; 5465 5466 if (list_empty(&mddev->disks)) 5467 return; 5468 5469 printk(KERN_INFO "md: running: "); 5470 5471 rdev_for_each(rdev, mddev) { 5472 char b[BDEVNAME_SIZE]; 5473 printk("<%s>", bdevname(rdev->bdev,b)); 5474 } 5475 printk("\n"); 5476 5477 err = do_md_run(mddev); 5478 if (err) { 5479 printk(KERN_WARNING "md: do_md_run() returned %d\n", err); 5480 do_md_stop(mddev, 0, NULL); 5481 } 5482 } 5483 5484 /* 5485 * lets try to run arrays based on all disks that have arrived 5486 * until now. (those are in pending_raid_disks) 5487 * 5488 * the method: pick the first pending disk, collect all disks with 5489 * the same UUID, remove all from the pending list and put them into 5490 * the 'same_array' list. Then order this list based on superblock 5491 * update time (freshest comes first), kick out 'old' disks and 5492 * compare superblocks. If everything's fine then run it. 5493 * 5494 * If "unit" is allocated, then bump its reference count 5495 */ 5496 static void autorun_devices(int part) 5497 { 5498 struct md_rdev *rdev0, *rdev, *tmp; 5499 struct mddev *mddev; 5500 char b[BDEVNAME_SIZE]; 5501 5502 printk(KERN_INFO "md: autorun ...\n"); 5503 while (!list_empty(&pending_raid_disks)) { 5504 int unit; 5505 dev_t dev; 5506 LIST_HEAD(candidates); 5507 rdev0 = list_entry(pending_raid_disks.next, 5508 struct md_rdev, same_set); 5509 5510 printk(KERN_INFO "md: considering %s ...\n", 5511 bdevname(rdev0->bdev,b)); 5512 INIT_LIST_HEAD(&candidates); 5513 rdev_for_each_list(rdev, tmp, &pending_raid_disks) 5514 if (super_90_load(rdev, rdev0, 0) >= 0) { 5515 printk(KERN_INFO "md: adding %s ...\n", 5516 bdevname(rdev->bdev,b)); 5517 list_move(&rdev->same_set, &candidates); 5518 } 5519 /* 5520 * now we have a set of devices, with all of them having 5521 * mostly sane superblocks. It's time to allocate the 5522 * mddev. 5523 */ 5524 if (part) { 5525 dev = MKDEV(mdp_major, 5526 rdev0->preferred_minor << MdpMinorShift); 5527 unit = MINOR(dev) >> MdpMinorShift; 5528 } else { 5529 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); 5530 unit = MINOR(dev); 5531 } 5532 if (rdev0->preferred_minor != unit) { 5533 printk(KERN_INFO "md: unit number in %s is bad: %d\n", 5534 bdevname(rdev0->bdev, b), rdev0->preferred_minor); 5535 break; 5536 } 5537 5538 md_probe(dev, NULL, NULL); 5539 mddev = mddev_find(dev); 5540 if (!mddev || !mddev->gendisk) { 5541 if (mddev) 5542 mddev_put(mddev); 5543 printk(KERN_ERR 5544 "md: cannot allocate memory for md drive.\n"); 5545 break; 5546 } 5547 if (mddev_lock(mddev)) 5548 printk(KERN_WARNING "md: %s locked, cannot run\n", 5549 mdname(mddev)); 5550 else if (mddev->raid_disks || mddev->major_version 5551 || !list_empty(&mddev->disks)) { 5552 printk(KERN_WARNING 5553 "md: %s already running, cannot run %s\n", 5554 mdname(mddev), bdevname(rdev0->bdev,b)); 5555 mddev_unlock(mddev); 5556 } else { 5557 printk(KERN_INFO "md: created %s\n", mdname(mddev)); 5558 mddev->persistent = 1; 5559 rdev_for_each_list(rdev, tmp, &candidates) { 5560 list_del_init(&rdev->same_set); 5561 if (bind_rdev_to_array(rdev, mddev)) 5562 export_rdev(rdev); 5563 } 5564 autorun_array(mddev); 5565 mddev_unlock(mddev); 5566 } 5567 /* on success, candidates will be empty, on error 5568 * it won't... 5569 */ 5570 rdev_for_each_list(rdev, tmp, &candidates) { 5571 list_del_init(&rdev->same_set); 5572 export_rdev(rdev); 5573 } 5574 mddev_put(mddev); 5575 } 5576 printk(KERN_INFO "md: ... autorun DONE.\n"); 5577 } 5578 #endif /* !MODULE */ 5579 5580 static int get_version(void __user *arg) 5581 { 5582 mdu_version_t ver; 5583 5584 ver.major = MD_MAJOR_VERSION; 5585 ver.minor = MD_MINOR_VERSION; 5586 ver.patchlevel = MD_PATCHLEVEL_VERSION; 5587 5588 if (copy_to_user(arg, &ver, sizeof(ver))) 5589 return -EFAULT; 5590 5591 return 0; 5592 } 5593 5594 static int get_array_info(struct mddev *mddev, void __user *arg) 5595 { 5596 mdu_array_info_t info; 5597 int nr,working,insync,failed,spare; 5598 struct md_rdev *rdev; 5599 5600 nr = working = insync = failed = spare = 0; 5601 rcu_read_lock(); 5602 rdev_for_each_rcu(rdev, mddev) { 5603 nr++; 5604 if (test_bit(Faulty, &rdev->flags)) 5605 failed++; 5606 else { 5607 working++; 5608 if (test_bit(In_sync, &rdev->flags)) 5609 insync++; 5610 else 5611 spare++; 5612 } 5613 } 5614 rcu_read_unlock(); 5615 5616 info.major_version = mddev->major_version; 5617 info.minor_version = mddev->minor_version; 5618 info.patch_version = MD_PATCHLEVEL_VERSION; 5619 info.ctime = mddev->ctime; 5620 info.level = mddev->level; 5621 info.size = mddev->dev_sectors / 2; 5622 if (info.size != mddev->dev_sectors / 2) /* overflow */ 5623 info.size = -1; 5624 info.nr_disks = nr; 5625 info.raid_disks = mddev->raid_disks; 5626 info.md_minor = mddev->md_minor; 5627 info.not_persistent= !mddev->persistent; 5628 5629 info.utime = mddev->utime; 5630 info.state = 0; 5631 if (mddev->in_sync) 5632 info.state = (1<<MD_SB_CLEAN); 5633 if (mddev->bitmap && mddev->bitmap_info.offset) 5634 info.state |= (1<<MD_SB_BITMAP_PRESENT); 5635 info.active_disks = insync; 5636 info.working_disks = working; 5637 info.failed_disks = failed; 5638 info.spare_disks = spare; 5639 5640 info.layout = mddev->layout; 5641 info.chunk_size = mddev->chunk_sectors << 9; 5642 5643 if (copy_to_user(arg, &info, sizeof(info))) 5644 return -EFAULT; 5645 5646 return 0; 5647 } 5648 5649 static int get_bitmap_file(struct mddev *mddev, void __user * arg) 5650 { 5651 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ 5652 char *ptr; 5653 int err; 5654 5655 file = kmalloc(sizeof(*file), GFP_NOIO); 5656 if (!file) 5657 return -ENOMEM; 5658 5659 err = 0; 5660 spin_lock(&mddev->lock); 5661 /* bitmap disabled, zero the first byte and copy out */ 5662 if (!mddev->bitmap_info.file) 5663 file->pathname[0] = '\0'; 5664 else if ((ptr = d_path(&mddev->bitmap_info.file->f_path, 5665 file->pathname, sizeof(file->pathname))), 5666 IS_ERR(ptr)) 5667 err = PTR_ERR(ptr); 5668 else 5669 memmove(file->pathname, ptr, 5670 sizeof(file->pathname)-(ptr-file->pathname)); 5671 spin_unlock(&mddev->lock); 5672 5673 if (err == 0 && 5674 copy_to_user(arg, file, sizeof(*file))) 5675 err = -EFAULT; 5676 5677 kfree(file); 5678 return err; 5679 } 5680 5681 static int get_disk_info(struct mddev *mddev, void __user * arg) 5682 { 5683 mdu_disk_info_t info; 5684 struct md_rdev *rdev; 5685 5686 if (copy_from_user(&info, arg, sizeof(info))) 5687 return -EFAULT; 5688 5689 rcu_read_lock(); 5690 rdev = find_rdev_nr_rcu(mddev, info.number); 5691 if (rdev) { 5692 info.major = MAJOR(rdev->bdev->bd_dev); 5693 info.minor = MINOR(rdev->bdev->bd_dev); 5694 info.raid_disk = rdev->raid_disk; 5695 info.state = 0; 5696 if (test_bit(Faulty, &rdev->flags)) 5697 info.state |= (1<<MD_DISK_FAULTY); 5698 else if (test_bit(In_sync, &rdev->flags)) { 5699 info.state |= (1<<MD_DISK_ACTIVE); 5700 info.state |= (1<<MD_DISK_SYNC); 5701 } 5702 if (test_bit(WriteMostly, &rdev->flags)) 5703 info.state |= (1<<MD_DISK_WRITEMOSTLY); 5704 } else { 5705 info.major = info.minor = 0; 5706 info.raid_disk = -1; 5707 info.state = (1<<MD_DISK_REMOVED); 5708 } 5709 rcu_read_unlock(); 5710 5711 if (copy_to_user(arg, &info, sizeof(info))) 5712 return -EFAULT; 5713 5714 return 0; 5715 } 5716 5717 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info) 5718 { 5719 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 5720 struct md_rdev *rdev; 5721 dev_t dev = MKDEV(info->major,info->minor); 5722 5723 if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) 5724 return -EOVERFLOW; 5725 5726 if (!mddev->raid_disks) { 5727 int err; 5728 /* expecting a device which has a superblock */ 5729 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); 5730 if (IS_ERR(rdev)) { 5731 printk(KERN_WARNING 5732 "md: md_import_device returned %ld\n", 5733 PTR_ERR(rdev)); 5734 return PTR_ERR(rdev); 5735 } 5736 if (!list_empty(&mddev->disks)) { 5737 struct md_rdev *rdev0 5738 = list_entry(mddev->disks.next, 5739 struct md_rdev, same_set); 5740 err = super_types[mddev->major_version] 5741 .load_super(rdev, rdev0, mddev->minor_version); 5742 if (err < 0) { 5743 printk(KERN_WARNING 5744 "md: %s has different UUID to %s\n", 5745 bdevname(rdev->bdev,b), 5746 bdevname(rdev0->bdev,b2)); 5747 export_rdev(rdev); 5748 return -EINVAL; 5749 } 5750 } 5751 err = bind_rdev_to_array(rdev, mddev); 5752 if (err) 5753 export_rdev(rdev); 5754 return err; 5755 } 5756 5757 /* 5758 * add_new_disk can be used once the array is assembled 5759 * to add "hot spares". They must already have a superblock 5760 * written 5761 */ 5762 if (mddev->pers) { 5763 int err; 5764 if (!mddev->pers->hot_add_disk) { 5765 printk(KERN_WARNING 5766 "%s: personality does not support diskops!\n", 5767 mdname(mddev)); 5768 return -EINVAL; 5769 } 5770 if (mddev->persistent) 5771 rdev = md_import_device(dev, mddev->major_version, 5772 mddev->minor_version); 5773 else 5774 rdev = md_import_device(dev, -1, -1); 5775 if (IS_ERR(rdev)) { 5776 printk(KERN_WARNING 5777 "md: md_import_device returned %ld\n", 5778 PTR_ERR(rdev)); 5779 return PTR_ERR(rdev); 5780 } 5781 /* set saved_raid_disk if appropriate */ 5782 if (!mddev->persistent) { 5783 if (info->state & (1<<MD_DISK_SYNC) && 5784 info->raid_disk < mddev->raid_disks) { 5785 rdev->raid_disk = info->raid_disk; 5786 set_bit(In_sync, &rdev->flags); 5787 clear_bit(Bitmap_sync, &rdev->flags); 5788 } else 5789 rdev->raid_disk = -1; 5790 rdev->saved_raid_disk = rdev->raid_disk; 5791 } else 5792 super_types[mddev->major_version]. 5793 validate_super(mddev, rdev); 5794 if ((info->state & (1<<MD_DISK_SYNC)) && 5795 rdev->raid_disk != info->raid_disk) { 5796 /* This was a hot-add request, but events doesn't 5797 * match, so reject it. 5798 */ 5799 export_rdev(rdev); 5800 return -EINVAL; 5801 } 5802 5803 clear_bit(In_sync, &rdev->flags); /* just to be sure */ 5804 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 5805 set_bit(WriteMostly, &rdev->flags); 5806 else 5807 clear_bit(WriteMostly, &rdev->flags); 5808 5809 rdev->raid_disk = -1; 5810 err = bind_rdev_to_array(rdev, mddev); 5811 if (!err && !mddev->pers->hot_remove_disk) { 5812 /* If there is hot_add_disk but no hot_remove_disk 5813 * then added disks for geometry changes, 5814 * and should be added immediately. 5815 */ 5816 super_types[mddev->major_version]. 5817 validate_super(mddev, rdev); 5818 err = mddev->pers->hot_add_disk(mddev, rdev); 5819 if (err) 5820 unbind_rdev_from_array(rdev); 5821 } 5822 if (err) 5823 export_rdev(rdev); 5824 else 5825 sysfs_notify_dirent_safe(rdev->sysfs_state); 5826 5827 set_bit(MD_CHANGE_DEVS, &mddev->flags); 5828 if (mddev->degraded) 5829 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 5830 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5831 if (!err) 5832 md_new_event(mddev); 5833 md_wakeup_thread(mddev->thread); 5834 return err; 5835 } 5836 5837 /* otherwise, add_new_disk is only allowed 5838 * for major_version==0 superblocks 5839 */ 5840 if (mddev->major_version != 0) { 5841 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n", 5842 mdname(mddev)); 5843 return -EINVAL; 5844 } 5845 5846 if (!(info->state & (1<<MD_DISK_FAULTY))) { 5847 int err; 5848 rdev = md_import_device(dev, -1, 0); 5849 if (IS_ERR(rdev)) { 5850 printk(KERN_WARNING 5851 "md: error, md_import_device() returned %ld\n", 5852 PTR_ERR(rdev)); 5853 return PTR_ERR(rdev); 5854 } 5855 rdev->desc_nr = info->number; 5856 if (info->raid_disk < mddev->raid_disks) 5857 rdev->raid_disk = info->raid_disk; 5858 else 5859 rdev->raid_disk = -1; 5860 5861 if (rdev->raid_disk < mddev->raid_disks) 5862 if (info->state & (1<<MD_DISK_SYNC)) 5863 set_bit(In_sync, &rdev->flags); 5864 5865 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 5866 set_bit(WriteMostly, &rdev->flags); 5867 5868 if (!mddev->persistent) { 5869 printk(KERN_INFO "md: nonpersistent superblock ...\n"); 5870 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 5871 } else 5872 rdev->sb_start = calc_dev_sboffset(rdev); 5873 rdev->sectors = rdev->sb_start; 5874 5875 err = bind_rdev_to_array(rdev, mddev); 5876 if (err) { 5877 export_rdev(rdev); 5878 return err; 5879 } 5880 } 5881 5882 return 0; 5883 } 5884 5885 static int hot_remove_disk(struct mddev *mddev, dev_t dev) 5886 { 5887 char b[BDEVNAME_SIZE]; 5888 struct md_rdev *rdev; 5889 5890 rdev = find_rdev(mddev, dev); 5891 if (!rdev) 5892 return -ENXIO; 5893 5894 clear_bit(Blocked, &rdev->flags); 5895 remove_and_add_spares(mddev, rdev); 5896 5897 if (rdev->raid_disk >= 0) 5898 goto busy; 5899 5900 kick_rdev_from_array(rdev); 5901 md_update_sb(mddev, 1); 5902 md_new_event(mddev); 5903 5904 return 0; 5905 busy: 5906 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n", 5907 bdevname(rdev->bdev,b), mdname(mddev)); 5908 return -EBUSY; 5909 } 5910 5911 static int hot_add_disk(struct mddev *mddev, dev_t dev) 5912 { 5913 char b[BDEVNAME_SIZE]; 5914 int err; 5915 struct md_rdev *rdev; 5916 5917 if (!mddev->pers) 5918 return -ENODEV; 5919 5920 if (mddev->major_version != 0) { 5921 printk(KERN_WARNING "%s: HOT_ADD may only be used with" 5922 " version-0 superblocks.\n", 5923 mdname(mddev)); 5924 return -EINVAL; 5925 } 5926 if (!mddev->pers->hot_add_disk) { 5927 printk(KERN_WARNING 5928 "%s: personality does not support diskops!\n", 5929 mdname(mddev)); 5930 return -EINVAL; 5931 } 5932 5933 rdev = md_import_device(dev, -1, 0); 5934 if (IS_ERR(rdev)) { 5935 printk(KERN_WARNING 5936 "md: error, md_import_device() returned %ld\n", 5937 PTR_ERR(rdev)); 5938 return -EINVAL; 5939 } 5940 5941 if (mddev->persistent) 5942 rdev->sb_start = calc_dev_sboffset(rdev); 5943 else 5944 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 5945 5946 rdev->sectors = rdev->sb_start; 5947 5948 if (test_bit(Faulty, &rdev->flags)) { 5949 printk(KERN_WARNING 5950 "md: can not hot-add faulty %s disk to %s!\n", 5951 bdevname(rdev->bdev,b), mdname(mddev)); 5952 err = -EINVAL; 5953 goto abort_export; 5954 } 5955 clear_bit(In_sync, &rdev->flags); 5956 rdev->desc_nr = -1; 5957 rdev->saved_raid_disk = -1; 5958 err = bind_rdev_to_array(rdev, mddev); 5959 if (err) 5960 goto abort_export; 5961 5962 /* 5963 * The rest should better be atomic, we can have disk failures 5964 * noticed in interrupt contexts ... 5965 */ 5966 5967 rdev->raid_disk = -1; 5968 5969 md_update_sb(mddev, 1); 5970 5971 /* 5972 * Kick recovery, maybe this spare has to be added to the 5973 * array immediately. 5974 */ 5975 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5976 md_wakeup_thread(mddev->thread); 5977 md_new_event(mddev); 5978 return 0; 5979 5980 abort_export: 5981 export_rdev(rdev); 5982 return err; 5983 } 5984 5985 static int set_bitmap_file(struct mddev *mddev, int fd) 5986 { 5987 int err = 0; 5988 5989 if (mddev->pers) { 5990 if (!mddev->pers->quiesce || !mddev->thread) 5991 return -EBUSY; 5992 if (mddev->recovery || mddev->sync_thread) 5993 return -EBUSY; 5994 /* we should be able to change the bitmap.. */ 5995 } 5996 5997 if (fd >= 0) { 5998 struct inode *inode; 5999 struct file *f; 6000 6001 if (mddev->bitmap || mddev->bitmap_info.file) 6002 return -EEXIST; /* cannot add when bitmap is present */ 6003 f = fget(fd); 6004 6005 if (f == NULL) { 6006 printk(KERN_ERR "%s: error: failed to get bitmap file\n", 6007 mdname(mddev)); 6008 return -EBADF; 6009 } 6010 6011 inode = f->f_mapping->host; 6012 if (!S_ISREG(inode->i_mode)) { 6013 printk(KERN_ERR "%s: error: bitmap file must be a regular file\n", 6014 mdname(mddev)); 6015 err = -EBADF; 6016 } else if (!(f->f_mode & FMODE_WRITE)) { 6017 printk(KERN_ERR "%s: error: bitmap file must open for write\n", 6018 mdname(mddev)); 6019 err = -EBADF; 6020 } else if (atomic_read(&inode->i_writecount) != 1) { 6021 printk(KERN_ERR "%s: error: bitmap file is already in use\n", 6022 mdname(mddev)); 6023 err = -EBUSY; 6024 } 6025 if (err) { 6026 fput(f); 6027 return err; 6028 } 6029 mddev->bitmap_info.file = f; 6030 mddev->bitmap_info.offset = 0; /* file overrides offset */ 6031 } else if (mddev->bitmap == NULL) 6032 return -ENOENT; /* cannot remove what isn't there */ 6033 err = 0; 6034 if (mddev->pers) { 6035 mddev->pers->quiesce(mddev, 1); 6036 if (fd >= 0) { 6037 err = bitmap_create(mddev); 6038 if (!err) 6039 err = bitmap_load(mddev); 6040 } 6041 if (fd < 0 || err) { 6042 bitmap_destroy(mddev); 6043 fd = -1; /* make sure to put the file */ 6044 } 6045 mddev->pers->quiesce(mddev, 0); 6046 } 6047 if (fd < 0) { 6048 struct file *f = mddev->bitmap_info.file; 6049 if (f) { 6050 spin_lock(&mddev->lock); 6051 mddev->bitmap_info.file = NULL; 6052 spin_unlock(&mddev->lock); 6053 fput(f); 6054 } 6055 } 6056 6057 return err; 6058 } 6059 6060 /* 6061 * set_array_info is used two different ways 6062 * The original usage is when creating a new array. 6063 * In this usage, raid_disks is > 0 and it together with 6064 * level, size, not_persistent,layout,chunksize determine the 6065 * shape of the array. 6066 * This will always create an array with a type-0.90.0 superblock. 6067 * The newer usage is when assembling an array. 6068 * In this case raid_disks will be 0, and the major_version field is 6069 * use to determine which style super-blocks are to be found on the devices. 6070 * The minor and patch _version numbers are also kept incase the 6071 * super_block handler wishes to interpret them. 6072 */ 6073 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info) 6074 { 6075 6076 if (info->raid_disks == 0) { 6077 /* just setting version number for superblock loading */ 6078 if (info->major_version < 0 || 6079 info->major_version >= ARRAY_SIZE(super_types) || 6080 super_types[info->major_version].name == NULL) { 6081 /* maybe try to auto-load a module? */ 6082 printk(KERN_INFO 6083 "md: superblock version %d not known\n", 6084 info->major_version); 6085 return -EINVAL; 6086 } 6087 mddev->major_version = info->major_version; 6088 mddev->minor_version = info->minor_version; 6089 mddev->patch_version = info->patch_version; 6090 mddev->persistent = !info->not_persistent; 6091 /* ensure mddev_put doesn't delete this now that there 6092 * is some minimal configuration. 6093 */ 6094 mddev->ctime = get_seconds(); 6095 return 0; 6096 } 6097 mddev->major_version = MD_MAJOR_VERSION; 6098 mddev->minor_version = MD_MINOR_VERSION; 6099 mddev->patch_version = MD_PATCHLEVEL_VERSION; 6100 mddev->ctime = get_seconds(); 6101 6102 mddev->level = info->level; 6103 mddev->clevel[0] = 0; 6104 mddev->dev_sectors = 2 * (sector_t)info->size; 6105 mddev->raid_disks = info->raid_disks; 6106 /* don't set md_minor, it is determined by which /dev/md* was 6107 * openned 6108 */ 6109 if (info->state & (1<<MD_SB_CLEAN)) 6110 mddev->recovery_cp = MaxSector; 6111 else 6112 mddev->recovery_cp = 0; 6113 mddev->persistent = ! info->not_persistent; 6114 mddev->external = 0; 6115 6116 mddev->layout = info->layout; 6117 mddev->chunk_sectors = info->chunk_size >> 9; 6118 6119 mddev->max_disks = MD_SB_DISKS; 6120 6121 if (mddev->persistent) 6122 mddev->flags = 0; 6123 set_bit(MD_CHANGE_DEVS, &mddev->flags); 6124 6125 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 6126 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 6127 mddev->bitmap_info.offset = 0; 6128 6129 mddev->reshape_position = MaxSector; 6130 6131 /* 6132 * Generate a 128 bit UUID 6133 */ 6134 get_random_bytes(mddev->uuid, 16); 6135 6136 mddev->new_level = mddev->level; 6137 mddev->new_chunk_sectors = mddev->chunk_sectors; 6138 mddev->new_layout = mddev->layout; 6139 mddev->delta_disks = 0; 6140 mddev->reshape_backwards = 0; 6141 6142 return 0; 6143 } 6144 6145 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors) 6146 { 6147 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__); 6148 6149 if (mddev->external_size) 6150 return; 6151 6152 mddev->array_sectors = array_sectors; 6153 } 6154 EXPORT_SYMBOL(md_set_array_sectors); 6155 6156 static int update_size(struct mddev *mddev, sector_t num_sectors) 6157 { 6158 struct md_rdev *rdev; 6159 int rv; 6160 int fit = (num_sectors == 0); 6161 6162 if (mddev->pers->resize == NULL) 6163 return -EINVAL; 6164 /* The "num_sectors" is the number of sectors of each device that 6165 * is used. This can only make sense for arrays with redundancy. 6166 * linear and raid0 always use whatever space is available. We can only 6167 * consider changing this number if no resync or reconstruction is 6168 * happening, and if the new size is acceptable. It must fit before the 6169 * sb_start or, if that is <data_offset, it must fit before the size 6170 * of each device. If num_sectors is zero, we find the largest size 6171 * that fits. 6172 */ 6173 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 6174 mddev->sync_thread) 6175 return -EBUSY; 6176 if (mddev->ro) 6177 return -EROFS; 6178 6179 rdev_for_each(rdev, mddev) { 6180 sector_t avail = rdev->sectors; 6181 6182 if (fit && (num_sectors == 0 || num_sectors > avail)) 6183 num_sectors = avail; 6184 if (avail < num_sectors) 6185 return -ENOSPC; 6186 } 6187 rv = mddev->pers->resize(mddev, num_sectors); 6188 if (!rv) 6189 revalidate_disk(mddev->gendisk); 6190 return rv; 6191 } 6192 6193 static int update_raid_disks(struct mddev *mddev, int raid_disks) 6194 { 6195 int rv; 6196 struct md_rdev *rdev; 6197 /* change the number of raid disks */ 6198 if (mddev->pers->check_reshape == NULL) 6199 return -EINVAL; 6200 if (mddev->ro) 6201 return -EROFS; 6202 if (raid_disks <= 0 || 6203 (mddev->max_disks && raid_disks >= mddev->max_disks)) 6204 return -EINVAL; 6205 if (mddev->sync_thread || 6206 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 6207 mddev->reshape_position != MaxSector) 6208 return -EBUSY; 6209 6210 rdev_for_each(rdev, mddev) { 6211 if (mddev->raid_disks < raid_disks && 6212 rdev->data_offset < rdev->new_data_offset) 6213 return -EINVAL; 6214 if (mddev->raid_disks > raid_disks && 6215 rdev->data_offset > rdev->new_data_offset) 6216 return -EINVAL; 6217 } 6218 6219 mddev->delta_disks = raid_disks - mddev->raid_disks; 6220 if (mddev->delta_disks < 0) 6221 mddev->reshape_backwards = 1; 6222 else if (mddev->delta_disks > 0) 6223 mddev->reshape_backwards = 0; 6224 6225 rv = mddev->pers->check_reshape(mddev); 6226 if (rv < 0) { 6227 mddev->delta_disks = 0; 6228 mddev->reshape_backwards = 0; 6229 } 6230 return rv; 6231 } 6232 6233 /* 6234 * update_array_info is used to change the configuration of an 6235 * on-line array. 6236 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size 6237 * fields in the info are checked against the array. 6238 * Any differences that cannot be handled will cause an error. 6239 * Normally, only one change can be managed at a time. 6240 */ 6241 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info) 6242 { 6243 int rv = 0; 6244 int cnt = 0; 6245 int state = 0; 6246 6247 /* calculate expected state,ignoring low bits */ 6248 if (mddev->bitmap && mddev->bitmap_info.offset) 6249 state |= (1 << MD_SB_BITMAP_PRESENT); 6250 6251 if (mddev->major_version != info->major_version || 6252 mddev->minor_version != info->minor_version || 6253 /* mddev->patch_version != info->patch_version || */ 6254 mddev->ctime != info->ctime || 6255 mddev->level != info->level || 6256 /* mddev->layout != info->layout || */ 6257 !mddev->persistent != info->not_persistent|| 6258 mddev->chunk_sectors != info->chunk_size >> 9 || 6259 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ 6260 ((state^info->state) & 0xfffffe00) 6261 ) 6262 return -EINVAL; 6263 /* Check there is only one change */ 6264 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 6265 cnt++; 6266 if (mddev->raid_disks != info->raid_disks) 6267 cnt++; 6268 if (mddev->layout != info->layout) 6269 cnt++; 6270 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) 6271 cnt++; 6272 if (cnt == 0) 6273 return 0; 6274 if (cnt > 1) 6275 return -EINVAL; 6276 6277 if (mddev->layout != info->layout) { 6278 /* Change layout 6279 * we don't need to do anything at the md level, the 6280 * personality will take care of it all. 6281 */ 6282 if (mddev->pers->check_reshape == NULL) 6283 return -EINVAL; 6284 else { 6285 mddev->new_layout = info->layout; 6286 rv = mddev->pers->check_reshape(mddev); 6287 if (rv) 6288 mddev->new_layout = mddev->layout; 6289 return rv; 6290 } 6291 } 6292 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 6293 rv = update_size(mddev, (sector_t)info->size * 2); 6294 6295 if (mddev->raid_disks != info->raid_disks) 6296 rv = update_raid_disks(mddev, info->raid_disks); 6297 6298 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { 6299 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) 6300 return -EINVAL; 6301 if (mddev->recovery || mddev->sync_thread) 6302 return -EBUSY; 6303 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { 6304 /* add the bitmap */ 6305 if (mddev->bitmap) 6306 return -EEXIST; 6307 if (mddev->bitmap_info.default_offset == 0) 6308 return -EINVAL; 6309 mddev->bitmap_info.offset = 6310 mddev->bitmap_info.default_offset; 6311 mddev->bitmap_info.space = 6312 mddev->bitmap_info.default_space; 6313 mddev->pers->quiesce(mddev, 1); 6314 rv = bitmap_create(mddev); 6315 if (!rv) 6316 rv = bitmap_load(mddev); 6317 if (rv) 6318 bitmap_destroy(mddev); 6319 mddev->pers->quiesce(mddev, 0); 6320 } else { 6321 /* remove the bitmap */ 6322 if (!mddev->bitmap) 6323 return -ENOENT; 6324 if (mddev->bitmap->storage.file) 6325 return -EINVAL; 6326 mddev->pers->quiesce(mddev, 1); 6327 bitmap_destroy(mddev); 6328 mddev->pers->quiesce(mddev, 0); 6329 mddev->bitmap_info.offset = 0; 6330 } 6331 } 6332 md_update_sb(mddev, 1); 6333 return rv; 6334 } 6335 6336 static int set_disk_faulty(struct mddev *mddev, dev_t dev) 6337 { 6338 struct md_rdev *rdev; 6339 int err = 0; 6340 6341 if (mddev->pers == NULL) 6342 return -ENODEV; 6343 6344 rcu_read_lock(); 6345 rdev = find_rdev_rcu(mddev, dev); 6346 if (!rdev) 6347 err = -ENODEV; 6348 else { 6349 md_error(mddev, rdev); 6350 if (!test_bit(Faulty, &rdev->flags)) 6351 err = -EBUSY; 6352 } 6353 rcu_read_unlock(); 6354 return err; 6355 } 6356 6357 /* 6358 * We have a problem here : there is no easy way to give a CHS 6359 * virtual geometry. We currently pretend that we have a 2 heads 6360 * 4 sectors (with a BIG number of cylinders...). This drives 6361 * dosfs just mad... ;-) 6362 */ 6363 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) 6364 { 6365 struct mddev *mddev = bdev->bd_disk->private_data; 6366 6367 geo->heads = 2; 6368 geo->sectors = 4; 6369 geo->cylinders = mddev->array_sectors / 8; 6370 return 0; 6371 } 6372 6373 static inline bool md_ioctl_valid(unsigned int cmd) 6374 { 6375 switch (cmd) { 6376 case ADD_NEW_DISK: 6377 case BLKROSET: 6378 case GET_ARRAY_INFO: 6379 case GET_BITMAP_FILE: 6380 case GET_DISK_INFO: 6381 case HOT_ADD_DISK: 6382 case HOT_REMOVE_DISK: 6383 case RAID_AUTORUN: 6384 case RAID_VERSION: 6385 case RESTART_ARRAY_RW: 6386 case RUN_ARRAY: 6387 case SET_ARRAY_INFO: 6388 case SET_BITMAP_FILE: 6389 case SET_DISK_FAULTY: 6390 case STOP_ARRAY: 6391 case STOP_ARRAY_RO: 6392 return true; 6393 default: 6394 return false; 6395 } 6396 } 6397 6398 static int md_ioctl(struct block_device *bdev, fmode_t mode, 6399 unsigned int cmd, unsigned long arg) 6400 { 6401 int err = 0; 6402 void __user *argp = (void __user *)arg; 6403 struct mddev *mddev = NULL; 6404 int ro; 6405 6406 if (!md_ioctl_valid(cmd)) 6407 return -ENOTTY; 6408 6409 switch (cmd) { 6410 case RAID_VERSION: 6411 case GET_ARRAY_INFO: 6412 case GET_DISK_INFO: 6413 break; 6414 default: 6415 if (!capable(CAP_SYS_ADMIN)) 6416 return -EACCES; 6417 } 6418 6419 /* 6420 * Commands dealing with the RAID driver but not any 6421 * particular array: 6422 */ 6423 switch (cmd) { 6424 case RAID_VERSION: 6425 err = get_version(argp); 6426 goto out; 6427 6428 #ifndef MODULE 6429 case RAID_AUTORUN: 6430 err = 0; 6431 autostart_arrays(arg); 6432 goto out; 6433 #endif 6434 default:; 6435 } 6436 6437 /* 6438 * Commands creating/starting a new array: 6439 */ 6440 6441 mddev = bdev->bd_disk->private_data; 6442 6443 if (!mddev) { 6444 BUG(); 6445 goto out; 6446 } 6447 6448 /* Some actions do not requires the mutex */ 6449 switch (cmd) { 6450 case GET_ARRAY_INFO: 6451 if (!mddev->raid_disks && !mddev->external) 6452 err = -ENODEV; 6453 else 6454 err = get_array_info(mddev, argp); 6455 goto out; 6456 6457 case GET_DISK_INFO: 6458 if (!mddev->raid_disks && !mddev->external) 6459 err = -ENODEV; 6460 else 6461 err = get_disk_info(mddev, argp); 6462 goto out; 6463 6464 case SET_DISK_FAULTY: 6465 err = set_disk_faulty(mddev, new_decode_dev(arg)); 6466 goto out; 6467 6468 case GET_BITMAP_FILE: 6469 err = get_bitmap_file(mddev, argp); 6470 goto out; 6471 6472 } 6473 6474 if (cmd == ADD_NEW_DISK) 6475 /* need to ensure md_delayed_delete() has completed */ 6476 flush_workqueue(md_misc_wq); 6477 6478 if (cmd == HOT_REMOVE_DISK) 6479 /* need to ensure recovery thread has run */ 6480 wait_event_interruptible_timeout(mddev->sb_wait, 6481 !test_bit(MD_RECOVERY_NEEDED, 6482 &mddev->flags), 6483 msecs_to_jiffies(5000)); 6484 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) { 6485 /* Need to flush page cache, and ensure no-one else opens 6486 * and writes 6487 */ 6488 mutex_lock(&mddev->open_mutex); 6489 if (mddev->pers && atomic_read(&mddev->openers) > 1) { 6490 mutex_unlock(&mddev->open_mutex); 6491 err = -EBUSY; 6492 goto out; 6493 } 6494 set_bit(MD_STILL_CLOSED, &mddev->flags); 6495 mutex_unlock(&mddev->open_mutex); 6496 sync_blockdev(bdev); 6497 } 6498 err = mddev_lock(mddev); 6499 if (err) { 6500 printk(KERN_INFO 6501 "md: ioctl lock interrupted, reason %d, cmd %d\n", 6502 err, cmd); 6503 goto out; 6504 } 6505 6506 if (cmd == SET_ARRAY_INFO) { 6507 mdu_array_info_t info; 6508 if (!arg) 6509 memset(&info, 0, sizeof(info)); 6510 else if (copy_from_user(&info, argp, sizeof(info))) { 6511 err = -EFAULT; 6512 goto unlock; 6513 } 6514 if (mddev->pers) { 6515 err = update_array_info(mddev, &info); 6516 if (err) { 6517 printk(KERN_WARNING "md: couldn't update" 6518 " array info. %d\n", err); 6519 goto unlock; 6520 } 6521 goto unlock; 6522 } 6523 if (!list_empty(&mddev->disks)) { 6524 printk(KERN_WARNING 6525 "md: array %s already has disks!\n", 6526 mdname(mddev)); 6527 err = -EBUSY; 6528 goto unlock; 6529 } 6530 if (mddev->raid_disks) { 6531 printk(KERN_WARNING 6532 "md: array %s already initialised!\n", 6533 mdname(mddev)); 6534 err = -EBUSY; 6535 goto unlock; 6536 } 6537 err = set_array_info(mddev, &info); 6538 if (err) { 6539 printk(KERN_WARNING "md: couldn't set" 6540 " array info. %d\n", err); 6541 goto unlock; 6542 } 6543 goto unlock; 6544 } 6545 6546 /* 6547 * Commands querying/configuring an existing array: 6548 */ 6549 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, 6550 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ 6551 if ((!mddev->raid_disks && !mddev->external) 6552 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY 6553 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE 6554 && cmd != GET_BITMAP_FILE) { 6555 err = -ENODEV; 6556 goto unlock; 6557 } 6558 6559 /* 6560 * Commands even a read-only array can execute: 6561 */ 6562 switch (cmd) { 6563 case RESTART_ARRAY_RW: 6564 err = restart_array(mddev); 6565 goto unlock; 6566 6567 case STOP_ARRAY: 6568 err = do_md_stop(mddev, 0, bdev); 6569 goto unlock; 6570 6571 case STOP_ARRAY_RO: 6572 err = md_set_readonly(mddev, bdev); 6573 goto unlock; 6574 6575 case HOT_REMOVE_DISK: 6576 err = hot_remove_disk(mddev, new_decode_dev(arg)); 6577 goto unlock; 6578 6579 case ADD_NEW_DISK: 6580 /* We can support ADD_NEW_DISK on read-only arrays 6581 * on if we are re-adding a preexisting device. 6582 * So require mddev->pers and MD_DISK_SYNC. 6583 */ 6584 if (mddev->pers) { 6585 mdu_disk_info_t info; 6586 if (copy_from_user(&info, argp, sizeof(info))) 6587 err = -EFAULT; 6588 else if (!(info.state & (1<<MD_DISK_SYNC))) 6589 /* Need to clear read-only for this */ 6590 break; 6591 else 6592 err = add_new_disk(mddev, &info); 6593 goto unlock; 6594 } 6595 break; 6596 6597 case BLKROSET: 6598 if (get_user(ro, (int __user *)(arg))) { 6599 err = -EFAULT; 6600 goto unlock; 6601 } 6602 err = -EINVAL; 6603 6604 /* if the bdev is going readonly the value of mddev->ro 6605 * does not matter, no writes are coming 6606 */ 6607 if (ro) 6608 goto unlock; 6609 6610 /* are we are already prepared for writes? */ 6611 if (mddev->ro != 1) 6612 goto unlock; 6613 6614 /* transitioning to readauto need only happen for 6615 * arrays that call md_write_start 6616 */ 6617 if (mddev->pers) { 6618 err = restart_array(mddev); 6619 if (err == 0) { 6620 mddev->ro = 2; 6621 set_disk_ro(mddev->gendisk, 0); 6622 } 6623 } 6624 goto unlock; 6625 } 6626 6627 /* 6628 * The remaining ioctls are changing the state of the 6629 * superblock, so we do not allow them on read-only arrays. 6630 */ 6631 if (mddev->ro && mddev->pers) { 6632 if (mddev->ro == 2) { 6633 mddev->ro = 0; 6634 sysfs_notify_dirent_safe(mddev->sysfs_state); 6635 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6636 /* mddev_unlock will wake thread */ 6637 /* If a device failed while we were read-only, we 6638 * need to make sure the metadata is updated now. 6639 */ 6640 if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) { 6641 mddev_unlock(mddev); 6642 wait_event(mddev->sb_wait, 6643 !test_bit(MD_CHANGE_DEVS, &mddev->flags) && 6644 !test_bit(MD_CHANGE_PENDING, &mddev->flags)); 6645 mddev_lock_nointr(mddev); 6646 } 6647 } else { 6648 err = -EROFS; 6649 goto unlock; 6650 } 6651 } 6652 6653 switch (cmd) { 6654 case ADD_NEW_DISK: 6655 { 6656 mdu_disk_info_t info; 6657 if (copy_from_user(&info, argp, sizeof(info))) 6658 err = -EFAULT; 6659 else 6660 err = add_new_disk(mddev, &info); 6661 goto unlock; 6662 } 6663 6664 case HOT_ADD_DISK: 6665 err = hot_add_disk(mddev, new_decode_dev(arg)); 6666 goto unlock; 6667 6668 case RUN_ARRAY: 6669 err = do_md_run(mddev); 6670 goto unlock; 6671 6672 case SET_BITMAP_FILE: 6673 err = set_bitmap_file(mddev, (int)arg); 6674 goto unlock; 6675 6676 default: 6677 err = -EINVAL; 6678 goto unlock; 6679 } 6680 6681 unlock: 6682 if (mddev->hold_active == UNTIL_IOCTL && 6683 err != -EINVAL) 6684 mddev->hold_active = 0; 6685 mddev_unlock(mddev); 6686 out: 6687 return err; 6688 } 6689 #ifdef CONFIG_COMPAT 6690 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode, 6691 unsigned int cmd, unsigned long arg) 6692 { 6693 switch (cmd) { 6694 case HOT_REMOVE_DISK: 6695 case HOT_ADD_DISK: 6696 case SET_DISK_FAULTY: 6697 case SET_BITMAP_FILE: 6698 /* These take in integer arg, do not convert */ 6699 break; 6700 default: 6701 arg = (unsigned long)compat_ptr(arg); 6702 break; 6703 } 6704 6705 return md_ioctl(bdev, mode, cmd, arg); 6706 } 6707 #endif /* CONFIG_COMPAT */ 6708 6709 static int md_open(struct block_device *bdev, fmode_t mode) 6710 { 6711 /* 6712 * Succeed if we can lock the mddev, which confirms that 6713 * it isn't being stopped right now. 6714 */ 6715 struct mddev *mddev = mddev_find(bdev->bd_dev); 6716 int err; 6717 6718 if (!mddev) 6719 return -ENODEV; 6720 6721 if (mddev->gendisk != bdev->bd_disk) { 6722 /* we are racing with mddev_put which is discarding this 6723 * bd_disk. 6724 */ 6725 mddev_put(mddev); 6726 /* Wait until bdev->bd_disk is definitely gone */ 6727 flush_workqueue(md_misc_wq); 6728 /* Then retry the open from the top */ 6729 return -ERESTARTSYS; 6730 } 6731 BUG_ON(mddev != bdev->bd_disk->private_data); 6732 6733 if ((err = mutex_lock_interruptible(&mddev->open_mutex))) 6734 goto out; 6735 6736 err = 0; 6737 atomic_inc(&mddev->openers); 6738 clear_bit(MD_STILL_CLOSED, &mddev->flags); 6739 mutex_unlock(&mddev->open_mutex); 6740 6741 check_disk_change(bdev); 6742 out: 6743 return err; 6744 } 6745 6746 static void md_release(struct gendisk *disk, fmode_t mode) 6747 { 6748 struct mddev *mddev = disk->private_data; 6749 6750 BUG_ON(!mddev); 6751 atomic_dec(&mddev->openers); 6752 mddev_put(mddev); 6753 } 6754 6755 static int md_media_changed(struct gendisk *disk) 6756 { 6757 struct mddev *mddev = disk->private_data; 6758 6759 return mddev->changed; 6760 } 6761 6762 static int md_revalidate(struct gendisk *disk) 6763 { 6764 struct mddev *mddev = disk->private_data; 6765 6766 mddev->changed = 0; 6767 return 0; 6768 } 6769 static const struct block_device_operations md_fops = 6770 { 6771 .owner = THIS_MODULE, 6772 .open = md_open, 6773 .release = md_release, 6774 .ioctl = md_ioctl, 6775 #ifdef CONFIG_COMPAT 6776 .compat_ioctl = md_compat_ioctl, 6777 #endif 6778 .getgeo = md_getgeo, 6779 .media_changed = md_media_changed, 6780 .revalidate_disk= md_revalidate, 6781 }; 6782 6783 static int md_thread(void *arg) 6784 { 6785 struct md_thread *thread = arg; 6786 6787 /* 6788 * md_thread is a 'system-thread', it's priority should be very 6789 * high. We avoid resource deadlocks individually in each 6790 * raid personality. (RAID5 does preallocation) We also use RR and 6791 * the very same RT priority as kswapd, thus we will never get 6792 * into a priority inversion deadlock. 6793 * 6794 * we definitely have to have equal or higher priority than 6795 * bdflush, otherwise bdflush will deadlock if there are too 6796 * many dirty RAID5 blocks. 6797 */ 6798 6799 allow_signal(SIGKILL); 6800 while (!kthread_should_stop()) { 6801 6802 /* We need to wait INTERRUPTIBLE so that 6803 * we don't add to the load-average. 6804 * That means we need to be sure no signals are 6805 * pending 6806 */ 6807 if (signal_pending(current)) 6808 flush_signals(current); 6809 6810 wait_event_interruptible_timeout 6811 (thread->wqueue, 6812 test_bit(THREAD_WAKEUP, &thread->flags) 6813 || kthread_should_stop(), 6814 thread->timeout); 6815 6816 clear_bit(THREAD_WAKEUP, &thread->flags); 6817 if (!kthread_should_stop()) 6818 thread->run(thread); 6819 } 6820 6821 return 0; 6822 } 6823 6824 void md_wakeup_thread(struct md_thread *thread) 6825 { 6826 if (thread) { 6827 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm); 6828 set_bit(THREAD_WAKEUP, &thread->flags); 6829 wake_up(&thread->wqueue); 6830 } 6831 } 6832 EXPORT_SYMBOL(md_wakeup_thread); 6833 6834 struct md_thread *md_register_thread(void (*run) (struct md_thread *), 6835 struct mddev *mddev, const char *name) 6836 { 6837 struct md_thread *thread; 6838 6839 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL); 6840 if (!thread) 6841 return NULL; 6842 6843 init_waitqueue_head(&thread->wqueue); 6844 6845 thread->run = run; 6846 thread->mddev = mddev; 6847 thread->timeout = MAX_SCHEDULE_TIMEOUT; 6848 thread->tsk = kthread_run(md_thread, thread, 6849 "%s_%s", 6850 mdname(thread->mddev), 6851 name); 6852 if (IS_ERR(thread->tsk)) { 6853 kfree(thread); 6854 return NULL; 6855 } 6856 return thread; 6857 } 6858 EXPORT_SYMBOL(md_register_thread); 6859 6860 void md_unregister_thread(struct md_thread **threadp) 6861 { 6862 struct md_thread *thread = *threadp; 6863 if (!thread) 6864 return; 6865 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk)); 6866 /* Locking ensures that mddev_unlock does not wake_up a 6867 * non-existent thread 6868 */ 6869 spin_lock(&pers_lock); 6870 *threadp = NULL; 6871 spin_unlock(&pers_lock); 6872 6873 kthread_stop(thread->tsk); 6874 kfree(thread); 6875 } 6876 EXPORT_SYMBOL(md_unregister_thread); 6877 6878 void md_error(struct mddev *mddev, struct md_rdev *rdev) 6879 { 6880 if (!rdev || test_bit(Faulty, &rdev->flags)) 6881 return; 6882 6883 if (!mddev->pers || !mddev->pers->error_handler) 6884 return; 6885 mddev->pers->error_handler(mddev,rdev); 6886 if (mddev->degraded) 6887 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 6888 sysfs_notify_dirent_safe(rdev->sysfs_state); 6889 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6890 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6891 md_wakeup_thread(mddev->thread); 6892 if (mddev->event_work.func) 6893 queue_work(md_misc_wq, &mddev->event_work); 6894 md_new_event_inintr(mddev); 6895 } 6896 EXPORT_SYMBOL(md_error); 6897 6898 /* seq_file implementation /proc/mdstat */ 6899 6900 static void status_unused(struct seq_file *seq) 6901 { 6902 int i = 0; 6903 struct md_rdev *rdev; 6904 6905 seq_printf(seq, "unused devices: "); 6906 6907 list_for_each_entry(rdev, &pending_raid_disks, same_set) { 6908 char b[BDEVNAME_SIZE]; 6909 i++; 6910 seq_printf(seq, "%s ", 6911 bdevname(rdev->bdev,b)); 6912 } 6913 if (!i) 6914 seq_printf(seq, "<none>"); 6915 6916 seq_printf(seq, "\n"); 6917 } 6918 6919 static void status_resync(struct seq_file *seq, struct mddev *mddev) 6920 { 6921 sector_t max_sectors, resync, res; 6922 unsigned long dt, db; 6923 sector_t rt; 6924 int scale; 6925 unsigned int per_milli; 6926 6927 if (mddev->curr_resync <= 3) 6928 resync = 0; 6929 else 6930 resync = mddev->curr_resync 6931 - atomic_read(&mddev->recovery_active); 6932 6933 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 6934 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 6935 max_sectors = mddev->resync_max_sectors; 6936 else 6937 max_sectors = mddev->dev_sectors; 6938 6939 WARN_ON(max_sectors == 0); 6940 /* Pick 'scale' such that (resync>>scale)*1000 will fit 6941 * in a sector_t, and (max_sectors>>scale) will fit in a 6942 * u32, as those are the requirements for sector_div. 6943 * Thus 'scale' must be at least 10 6944 */ 6945 scale = 10; 6946 if (sizeof(sector_t) > sizeof(unsigned long)) { 6947 while ( max_sectors/2 > (1ULL<<(scale+32))) 6948 scale++; 6949 } 6950 res = (resync>>scale)*1000; 6951 sector_div(res, (u32)((max_sectors>>scale)+1)); 6952 6953 per_milli = res; 6954 { 6955 int i, x = per_milli/50, y = 20-x; 6956 seq_printf(seq, "["); 6957 for (i = 0; i < x; i++) 6958 seq_printf(seq, "="); 6959 seq_printf(seq, ">"); 6960 for (i = 0; i < y; i++) 6961 seq_printf(seq, "."); 6962 seq_printf(seq, "] "); 6963 } 6964 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", 6965 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? 6966 "reshape" : 6967 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? 6968 "check" : 6969 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? 6970 "resync" : "recovery"))), 6971 per_milli/10, per_milli % 10, 6972 (unsigned long long) resync/2, 6973 (unsigned long long) max_sectors/2); 6974 6975 /* 6976 * dt: time from mark until now 6977 * db: blocks written from mark until now 6978 * rt: remaining time 6979 * 6980 * rt is a sector_t, so could be 32bit or 64bit. 6981 * So we divide before multiply in case it is 32bit and close 6982 * to the limit. 6983 * We scale the divisor (db) by 32 to avoid losing precision 6984 * near the end of resync when the number of remaining sectors 6985 * is close to 'db'. 6986 * We then divide rt by 32 after multiplying by db to compensate. 6987 * The '+1' avoids division by zero if db is very small. 6988 */ 6989 dt = ((jiffies - mddev->resync_mark) / HZ); 6990 if (!dt) dt++; 6991 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active)) 6992 - mddev->resync_mark_cnt; 6993 6994 rt = max_sectors - resync; /* number of remaining sectors */ 6995 sector_div(rt, db/32+1); 6996 rt *= dt; 6997 rt >>= 5; 6998 6999 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60, 7000 ((unsigned long)rt % 60)/6); 7001 7002 seq_printf(seq, " speed=%ldK/sec", db/2/dt); 7003 } 7004 7005 static void *md_seq_start(struct seq_file *seq, loff_t *pos) 7006 { 7007 struct list_head *tmp; 7008 loff_t l = *pos; 7009 struct mddev *mddev; 7010 7011 if (l >= 0x10000) 7012 return NULL; 7013 if (!l--) 7014 /* header */ 7015 return (void*)1; 7016 7017 spin_lock(&all_mddevs_lock); 7018 list_for_each(tmp,&all_mddevs) 7019 if (!l--) { 7020 mddev = list_entry(tmp, struct mddev, all_mddevs); 7021 mddev_get(mddev); 7022 spin_unlock(&all_mddevs_lock); 7023 return mddev; 7024 } 7025 spin_unlock(&all_mddevs_lock); 7026 if (!l--) 7027 return (void*)2;/* tail */ 7028 return NULL; 7029 } 7030 7031 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) 7032 { 7033 struct list_head *tmp; 7034 struct mddev *next_mddev, *mddev = v; 7035 7036 ++*pos; 7037 if (v == (void*)2) 7038 return NULL; 7039 7040 spin_lock(&all_mddevs_lock); 7041 if (v == (void*)1) 7042 tmp = all_mddevs.next; 7043 else 7044 tmp = mddev->all_mddevs.next; 7045 if (tmp != &all_mddevs) 7046 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs)); 7047 else { 7048 next_mddev = (void*)2; 7049 *pos = 0x10000; 7050 } 7051 spin_unlock(&all_mddevs_lock); 7052 7053 if (v != (void*)1) 7054 mddev_put(mddev); 7055 return next_mddev; 7056 7057 } 7058 7059 static void md_seq_stop(struct seq_file *seq, void *v) 7060 { 7061 struct mddev *mddev = v; 7062 7063 if (mddev && v != (void*)1 && v != (void*)2) 7064 mddev_put(mddev); 7065 } 7066 7067 static int md_seq_show(struct seq_file *seq, void *v) 7068 { 7069 struct mddev *mddev = v; 7070 sector_t sectors; 7071 struct md_rdev *rdev; 7072 7073 if (v == (void*)1) { 7074 struct md_personality *pers; 7075 seq_printf(seq, "Personalities : "); 7076 spin_lock(&pers_lock); 7077 list_for_each_entry(pers, &pers_list, list) 7078 seq_printf(seq, "[%s] ", pers->name); 7079 7080 spin_unlock(&pers_lock); 7081 seq_printf(seq, "\n"); 7082 seq->poll_event = atomic_read(&md_event_count); 7083 return 0; 7084 } 7085 if (v == (void*)2) { 7086 status_unused(seq); 7087 return 0; 7088 } 7089 7090 spin_lock(&mddev->lock); 7091 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { 7092 seq_printf(seq, "%s : %sactive", mdname(mddev), 7093 mddev->pers ? "" : "in"); 7094 if (mddev->pers) { 7095 if (mddev->ro==1) 7096 seq_printf(seq, " (read-only)"); 7097 if (mddev->ro==2) 7098 seq_printf(seq, " (auto-read-only)"); 7099 seq_printf(seq, " %s", mddev->pers->name); 7100 } 7101 7102 sectors = 0; 7103 rcu_read_lock(); 7104 rdev_for_each_rcu(rdev, mddev) { 7105 char b[BDEVNAME_SIZE]; 7106 seq_printf(seq, " %s[%d]", 7107 bdevname(rdev->bdev,b), rdev->desc_nr); 7108 if (test_bit(WriteMostly, &rdev->flags)) 7109 seq_printf(seq, "(W)"); 7110 if (test_bit(Faulty, &rdev->flags)) { 7111 seq_printf(seq, "(F)"); 7112 continue; 7113 } 7114 if (rdev->raid_disk < 0) 7115 seq_printf(seq, "(S)"); /* spare */ 7116 if (test_bit(Replacement, &rdev->flags)) 7117 seq_printf(seq, "(R)"); 7118 sectors += rdev->sectors; 7119 } 7120 rcu_read_unlock(); 7121 7122 if (!list_empty(&mddev->disks)) { 7123 if (mddev->pers) 7124 seq_printf(seq, "\n %llu blocks", 7125 (unsigned long long) 7126 mddev->array_sectors / 2); 7127 else 7128 seq_printf(seq, "\n %llu blocks", 7129 (unsigned long long)sectors / 2); 7130 } 7131 if (mddev->persistent) { 7132 if (mddev->major_version != 0 || 7133 mddev->minor_version != 90) { 7134 seq_printf(seq," super %d.%d", 7135 mddev->major_version, 7136 mddev->minor_version); 7137 } 7138 } else if (mddev->external) 7139 seq_printf(seq, " super external:%s", 7140 mddev->metadata_type); 7141 else 7142 seq_printf(seq, " super non-persistent"); 7143 7144 if (mddev->pers) { 7145 mddev->pers->status(seq, mddev); 7146 seq_printf(seq, "\n "); 7147 if (mddev->pers->sync_request) { 7148 if (mddev->curr_resync > 2) { 7149 status_resync(seq, mddev); 7150 seq_printf(seq, "\n "); 7151 } else if (mddev->curr_resync >= 1) 7152 seq_printf(seq, "\tresync=DELAYED\n "); 7153 else if (mddev->recovery_cp < MaxSector) 7154 seq_printf(seq, "\tresync=PENDING\n "); 7155 } 7156 } else 7157 seq_printf(seq, "\n "); 7158 7159 bitmap_status(seq, mddev->bitmap); 7160 7161 seq_printf(seq, "\n"); 7162 } 7163 spin_unlock(&mddev->lock); 7164 7165 return 0; 7166 } 7167 7168 static const struct seq_operations md_seq_ops = { 7169 .start = md_seq_start, 7170 .next = md_seq_next, 7171 .stop = md_seq_stop, 7172 .show = md_seq_show, 7173 }; 7174 7175 static int md_seq_open(struct inode *inode, struct file *file) 7176 { 7177 struct seq_file *seq; 7178 int error; 7179 7180 error = seq_open(file, &md_seq_ops); 7181 if (error) 7182 return error; 7183 7184 seq = file->private_data; 7185 seq->poll_event = atomic_read(&md_event_count); 7186 return error; 7187 } 7188 7189 static int md_unloading; 7190 static unsigned int mdstat_poll(struct file *filp, poll_table *wait) 7191 { 7192 struct seq_file *seq = filp->private_data; 7193 int mask; 7194 7195 if (md_unloading) 7196 return POLLIN|POLLRDNORM|POLLERR|POLLPRI; 7197 poll_wait(filp, &md_event_waiters, wait); 7198 7199 /* always allow read */ 7200 mask = POLLIN | POLLRDNORM; 7201 7202 if (seq->poll_event != atomic_read(&md_event_count)) 7203 mask |= POLLERR | POLLPRI; 7204 return mask; 7205 } 7206 7207 static const struct file_operations md_seq_fops = { 7208 .owner = THIS_MODULE, 7209 .open = md_seq_open, 7210 .read = seq_read, 7211 .llseek = seq_lseek, 7212 .release = seq_release_private, 7213 .poll = mdstat_poll, 7214 }; 7215 7216 int register_md_personality(struct md_personality *p) 7217 { 7218 printk(KERN_INFO "md: %s personality registered for level %d\n", 7219 p->name, p->level); 7220 spin_lock(&pers_lock); 7221 list_add_tail(&p->list, &pers_list); 7222 spin_unlock(&pers_lock); 7223 return 0; 7224 } 7225 EXPORT_SYMBOL(register_md_personality); 7226 7227 int unregister_md_personality(struct md_personality *p) 7228 { 7229 printk(KERN_INFO "md: %s personality unregistered\n", p->name); 7230 spin_lock(&pers_lock); 7231 list_del_init(&p->list); 7232 spin_unlock(&pers_lock); 7233 return 0; 7234 } 7235 EXPORT_SYMBOL(unregister_md_personality); 7236 7237 static int is_mddev_idle(struct mddev *mddev, int init) 7238 { 7239 struct md_rdev *rdev; 7240 int idle; 7241 int curr_events; 7242 7243 idle = 1; 7244 rcu_read_lock(); 7245 rdev_for_each_rcu(rdev, mddev) { 7246 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk; 7247 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) + 7248 (int)part_stat_read(&disk->part0, sectors[1]) - 7249 atomic_read(&disk->sync_io); 7250 /* sync IO will cause sync_io to increase before the disk_stats 7251 * as sync_io is counted when a request starts, and 7252 * disk_stats is counted when it completes. 7253 * So resync activity will cause curr_events to be smaller than 7254 * when there was no such activity. 7255 * non-sync IO will cause disk_stat to increase without 7256 * increasing sync_io so curr_events will (eventually) 7257 * be larger than it was before. Once it becomes 7258 * substantially larger, the test below will cause 7259 * the array to appear non-idle, and resync will slow 7260 * down. 7261 * If there is a lot of outstanding resync activity when 7262 * we set last_event to curr_events, then all that activity 7263 * completing might cause the array to appear non-idle 7264 * and resync will be slowed down even though there might 7265 * not have been non-resync activity. This will only 7266 * happen once though. 'last_events' will soon reflect 7267 * the state where there is little or no outstanding 7268 * resync requests, and further resync activity will 7269 * always make curr_events less than last_events. 7270 * 7271 */ 7272 if (init || curr_events - rdev->last_events > 64) { 7273 rdev->last_events = curr_events; 7274 idle = 0; 7275 } 7276 } 7277 rcu_read_unlock(); 7278 return idle; 7279 } 7280 7281 void md_done_sync(struct mddev *mddev, int blocks, int ok) 7282 { 7283 /* another "blocks" (512byte) blocks have been synced */ 7284 atomic_sub(blocks, &mddev->recovery_active); 7285 wake_up(&mddev->recovery_wait); 7286 if (!ok) { 7287 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7288 set_bit(MD_RECOVERY_ERROR, &mddev->recovery); 7289 md_wakeup_thread(mddev->thread); 7290 // stop recovery, signal do_sync .... 7291 } 7292 } 7293 EXPORT_SYMBOL(md_done_sync); 7294 7295 /* md_write_start(mddev, bi) 7296 * If we need to update some array metadata (e.g. 'active' flag 7297 * in superblock) before writing, schedule a superblock update 7298 * and wait for it to complete. 7299 */ 7300 void md_write_start(struct mddev *mddev, struct bio *bi) 7301 { 7302 int did_change = 0; 7303 if (bio_data_dir(bi) != WRITE) 7304 return; 7305 7306 BUG_ON(mddev->ro == 1); 7307 if (mddev->ro == 2) { 7308 /* need to switch to read/write */ 7309 mddev->ro = 0; 7310 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7311 md_wakeup_thread(mddev->thread); 7312 md_wakeup_thread(mddev->sync_thread); 7313 did_change = 1; 7314 } 7315 atomic_inc(&mddev->writes_pending); 7316 if (mddev->safemode == 1) 7317 mddev->safemode = 0; 7318 if (mddev->in_sync) { 7319 spin_lock(&mddev->lock); 7320 if (mddev->in_sync) { 7321 mddev->in_sync = 0; 7322 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 7323 set_bit(MD_CHANGE_PENDING, &mddev->flags); 7324 md_wakeup_thread(mddev->thread); 7325 did_change = 1; 7326 } 7327 spin_unlock(&mddev->lock); 7328 } 7329 if (did_change) 7330 sysfs_notify_dirent_safe(mddev->sysfs_state); 7331 wait_event(mddev->sb_wait, 7332 !test_bit(MD_CHANGE_PENDING, &mddev->flags)); 7333 } 7334 EXPORT_SYMBOL(md_write_start); 7335 7336 void md_write_end(struct mddev *mddev) 7337 { 7338 if (atomic_dec_and_test(&mddev->writes_pending)) { 7339 if (mddev->safemode == 2) 7340 md_wakeup_thread(mddev->thread); 7341 else if (mddev->safemode_delay) 7342 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay); 7343 } 7344 } 7345 EXPORT_SYMBOL(md_write_end); 7346 7347 /* md_allow_write(mddev) 7348 * Calling this ensures that the array is marked 'active' so that writes 7349 * may proceed without blocking. It is important to call this before 7350 * attempting a GFP_KERNEL allocation while holding the mddev lock. 7351 * Must be called with mddev_lock held. 7352 * 7353 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock 7354 * is dropped, so return -EAGAIN after notifying userspace. 7355 */ 7356 int md_allow_write(struct mddev *mddev) 7357 { 7358 if (!mddev->pers) 7359 return 0; 7360 if (mddev->ro) 7361 return 0; 7362 if (!mddev->pers->sync_request) 7363 return 0; 7364 7365 spin_lock(&mddev->lock); 7366 if (mddev->in_sync) { 7367 mddev->in_sync = 0; 7368 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 7369 set_bit(MD_CHANGE_PENDING, &mddev->flags); 7370 if (mddev->safemode_delay && 7371 mddev->safemode == 0) 7372 mddev->safemode = 1; 7373 spin_unlock(&mddev->lock); 7374 md_update_sb(mddev, 0); 7375 sysfs_notify_dirent_safe(mddev->sysfs_state); 7376 } else 7377 spin_unlock(&mddev->lock); 7378 7379 if (test_bit(MD_CHANGE_PENDING, &mddev->flags)) 7380 return -EAGAIN; 7381 else 7382 return 0; 7383 } 7384 EXPORT_SYMBOL_GPL(md_allow_write); 7385 7386 #define SYNC_MARKS 10 7387 #define SYNC_MARK_STEP (3*HZ) 7388 #define UPDATE_FREQUENCY (5*60*HZ) 7389 void md_do_sync(struct md_thread *thread) 7390 { 7391 struct mddev *mddev = thread->mddev; 7392 struct mddev *mddev2; 7393 unsigned int currspeed = 0, 7394 window; 7395 sector_t max_sectors,j, io_sectors, recovery_done; 7396 unsigned long mark[SYNC_MARKS]; 7397 unsigned long update_time; 7398 sector_t mark_cnt[SYNC_MARKS]; 7399 int last_mark,m; 7400 struct list_head *tmp; 7401 sector_t last_check; 7402 int skipped = 0; 7403 struct md_rdev *rdev; 7404 char *desc, *action = NULL; 7405 struct blk_plug plug; 7406 7407 /* just incase thread restarts... */ 7408 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 7409 return; 7410 if (mddev->ro) {/* never try to sync a read-only array */ 7411 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7412 return; 7413 } 7414 7415 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 7416 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 7417 desc = "data-check"; 7418 action = "check"; 7419 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 7420 desc = "requested-resync"; 7421 action = "repair"; 7422 } else 7423 desc = "resync"; 7424 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 7425 desc = "reshape"; 7426 else 7427 desc = "recovery"; 7428 7429 mddev->last_sync_action = action ?: desc; 7430 7431 /* we overload curr_resync somewhat here. 7432 * 0 == not engaged in resync at all 7433 * 2 == checking that there is no conflict with another sync 7434 * 1 == like 2, but have yielded to allow conflicting resync to 7435 * commense 7436 * other == active in resync - this many blocks 7437 * 7438 * Before starting a resync we must have set curr_resync to 7439 * 2, and then checked that every "conflicting" array has curr_resync 7440 * less than ours. When we find one that is the same or higher 7441 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync 7442 * to 1 if we choose to yield (based arbitrarily on address of mddev structure). 7443 * This will mean we have to start checking from the beginning again. 7444 * 7445 */ 7446 7447 do { 7448 mddev->curr_resync = 2; 7449 7450 try_again: 7451 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 7452 goto skip; 7453 for_each_mddev(mddev2, tmp) { 7454 if (mddev2 == mddev) 7455 continue; 7456 if (!mddev->parallel_resync 7457 && mddev2->curr_resync 7458 && match_mddev_units(mddev, mddev2)) { 7459 DEFINE_WAIT(wq); 7460 if (mddev < mddev2 && mddev->curr_resync == 2) { 7461 /* arbitrarily yield */ 7462 mddev->curr_resync = 1; 7463 wake_up(&resync_wait); 7464 } 7465 if (mddev > mddev2 && mddev->curr_resync == 1) 7466 /* no need to wait here, we can wait the next 7467 * time 'round when curr_resync == 2 7468 */ 7469 continue; 7470 /* We need to wait 'interruptible' so as not to 7471 * contribute to the load average, and not to 7472 * be caught by 'softlockup' 7473 */ 7474 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE); 7475 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 7476 mddev2->curr_resync >= mddev->curr_resync) { 7477 printk(KERN_INFO "md: delaying %s of %s" 7478 " until %s has finished (they" 7479 " share one or more physical units)\n", 7480 desc, mdname(mddev), mdname(mddev2)); 7481 mddev_put(mddev2); 7482 if (signal_pending(current)) 7483 flush_signals(current); 7484 schedule(); 7485 finish_wait(&resync_wait, &wq); 7486 goto try_again; 7487 } 7488 finish_wait(&resync_wait, &wq); 7489 } 7490 } 7491 } while (mddev->curr_resync < 2); 7492 7493 j = 0; 7494 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 7495 /* resync follows the size requested by the personality, 7496 * which defaults to physical size, but can be virtual size 7497 */ 7498 max_sectors = mddev->resync_max_sectors; 7499 atomic64_set(&mddev->resync_mismatches, 0); 7500 /* we don't use the checkpoint if there's a bitmap */ 7501 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 7502 j = mddev->resync_min; 7503 else if (!mddev->bitmap) 7504 j = mddev->recovery_cp; 7505 7506 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 7507 max_sectors = mddev->resync_max_sectors; 7508 else { 7509 /* recovery follows the physical size of devices */ 7510 max_sectors = mddev->dev_sectors; 7511 j = MaxSector; 7512 rcu_read_lock(); 7513 rdev_for_each_rcu(rdev, mddev) 7514 if (rdev->raid_disk >= 0 && 7515 !test_bit(Faulty, &rdev->flags) && 7516 !test_bit(In_sync, &rdev->flags) && 7517 rdev->recovery_offset < j) 7518 j = rdev->recovery_offset; 7519 rcu_read_unlock(); 7520 7521 /* If there is a bitmap, we need to make sure all 7522 * writes that started before we added a spare 7523 * complete before we start doing a recovery. 7524 * Otherwise the write might complete and (via 7525 * bitmap_endwrite) set a bit in the bitmap after the 7526 * recovery has checked that bit and skipped that 7527 * region. 7528 */ 7529 if (mddev->bitmap) { 7530 mddev->pers->quiesce(mddev, 1); 7531 mddev->pers->quiesce(mddev, 0); 7532 } 7533 } 7534 7535 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev)); 7536 printk(KERN_INFO "md: minimum _guaranteed_ speed:" 7537 " %d KB/sec/disk.\n", speed_min(mddev)); 7538 printk(KERN_INFO "md: using maximum available idle IO bandwidth " 7539 "(but not more than %d KB/sec) for %s.\n", 7540 speed_max(mddev), desc); 7541 7542 is_mddev_idle(mddev, 1); /* this initializes IO event counters */ 7543 7544 io_sectors = 0; 7545 for (m = 0; m < SYNC_MARKS; m++) { 7546 mark[m] = jiffies; 7547 mark_cnt[m] = io_sectors; 7548 } 7549 last_mark = 0; 7550 mddev->resync_mark = mark[last_mark]; 7551 mddev->resync_mark_cnt = mark_cnt[last_mark]; 7552 7553 /* 7554 * Tune reconstruction: 7555 */ 7556 window = 32*(PAGE_SIZE/512); 7557 printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n", 7558 window/2, (unsigned long long)max_sectors/2); 7559 7560 atomic_set(&mddev->recovery_active, 0); 7561 last_check = 0; 7562 7563 if (j>2) { 7564 printk(KERN_INFO 7565 "md: resuming %s of %s from checkpoint.\n", 7566 desc, mdname(mddev)); 7567 mddev->curr_resync = j; 7568 } else 7569 mddev->curr_resync = 3; /* no longer delayed */ 7570 mddev->curr_resync_completed = j; 7571 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 7572 md_new_event(mddev); 7573 update_time = jiffies; 7574 7575 blk_start_plug(&plug); 7576 while (j < max_sectors) { 7577 sector_t sectors; 7578 7579 skipped = 0; 7580 7581 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 7582 ((mddev->curr_resync > mddev->curr_resync_completed && 7583 (mddev->curr_resync - mddev->curr_resync_completed) 7584 > (max_sectors >> 4)) || 7585 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) || 7586 (j - mddev->curr_resync_completed)*2 7587 >= mddev->resync_max - mddev->curr_resync_completed 7588 )) { 7589 /* time to update curr_resync_completed */ 7590 wait_event(mddev->recovery_wait, 7591 atomic_read(&mddev->recovery_active) == 0); 7592 mddev->curr_resync_completed = j; 7593 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 7594 j > mddev->recovery_cp) 7595 mddev->recovery_cp = j; 7596 update_time = jiffies; 7597 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 7598 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 7599 } 7600 7601 while (j >= mddev->resync_max && 7602 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 7603 /* As this condition is controlled by user-space, 7604 * we can block indefinitely, so use '_interruptible' 7605 * to avoid triggering warnings. 7606 */ 7607 flush_signals(current); /* just in case */ 7608 wait_event_interruptible(mddev->recovery_wait, 7609 mddev->resync_max > j 7610 || test_bit(MD_RECOVERY_INTR, 7611 &mddev->recovery)); 7612 } 7613 7614 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 7615 break; 7616 7617 sectors = mddev->pers->sync_request(mddev, j, &skipped, 7618 currspeed < speed_min(mddev)); 7619 if (sectors == 0) { 7620 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7621 break; 7622 } 7623 7624 if (!skipped) { /* actual IO requested */ 7625 io_sectors += sectors; 7626 atomic_add(sectors, &mddev->recovery_active); 7627 } 7628 7629 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 7630 break; 7631 7632 j += sectors; 7633 if (j > 2) 7634 mddev->curr_resync = j; 7635 mddev->curr_mark_cnt = io_sectors; 7636 if (last_check == 0) 7637 /* this is the earliest that rebuild will be 7638 * visible in /proc/mdstat 7639 */ 7640 md_new_event(mddev); 7641 7642 if (last_check + window > io_sectors || j == max_sectors) 7643 continue; 7644 7645 last_check = io_sectors; 7646 repeat: 7647 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { 7648 /* step marks */ 7649 int next = (last_mark+1) % SYNC_MARKS; 7650 7651 mddev->resync_mark = mark[next]; 7652 mddev->resync_mark_cnt = mark_cnt[next]; 7653 mark[next] = jiffies; 7654 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); 7655 last_mark = next; 7656 } 7657 7658 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 7659 break; 7660 7661 /* 7662 * this loop exits only if either when we are slower than 7663 * the 'hard' speed limit, or the system was IO-idle for 7664 * a jiffy. 7665 * the system might be non-idle CPU-wise, but we only care 7666 * about not overloading the IO subsystem. (things like an 7667 * e2fsck being done on the RAID array should execute fast) 7668 */ 7669 cond_resched(); 7670 7671 recovery_done = io_sectors - atomic_read(&mddev->recovery_active); 7672 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2 7673 /((jiffies-mddev->resync_mark)/HZ +1) +1; 7674 7675 if (currspeed > speed_min(mddev)) { 7676 if ((currspeed > speed_max(mddev)) || 7677 !is_mddev_idle(mddev, 0)) { 7678 msleep(500); 7679 goto repeat; 7680 } 7681 } 7682 } 7683 printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc, 7684 test_bit(MD_RECOVERY_INTR, &mddev->recovery) 7685 ? "interrupted" : "done"); 7686 /* 7687 * this also signals 'finished resyncing' to md_stop 7688 */ 7689 blk_finish_plug(&plug); 7690 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); 7691 7692 /* tell personality that we are finished */ 7693 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1); 7694 7695 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && 7696 mddev->curr_resync > 2) { 7697 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 7698 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 7699 if (mddev->curr_resync >= mddev->recovery_cp) { 7700 printk(KERN_INFO 7701 "md: checkpointing %s of %s.\n", 7702 desc, mdname(mddev)); 7703 if (test_bit(MD_RECOVERY_ERROR, 7704 &mddev->recovery)) 7705 mddev->recovery_cp = 7706 mddev->curr_resync_completed; 7707 else 7708 mddev->recovery_cp = 7709 mddev->curr_resync; 7710 } 7711 } else 7712 mddev->recovery_cp = MaxSector; 7713 } else { 7714 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 7715 mddev->curr_resync = MaxSector; 7716 rcu_read_lock(); 7717 rdev_for_each_rcu(rdev, mddev) 7718 if (rdev->raid_disk >= 0 && 7719 mddev->delta_disks >= 0 && 7720 !test_bit(Faulty, &rdev->flags) && 7721 !test_bit(In_sync, &rdev->flags) && 7722 rdev->recovery_offset < mddev->curr_resync) 7723 rdev->recovery_offset = mddev->curr_resync; 7724 rcu_read_unlock(); 7725 } 7726 } 7727 skip: 7728 set_bit(MD_CHANGE_DEVS, &mddev->flags); 7729 7730 spin_lock(&mddev->lock); 7731 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 7732 /* We completed so min/max setting can be forgotten if used. */ 7733 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 7734 mddev->resync_min = 0; 7735 mddev->resync_max = MaxSector; 7736 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 7737 mddev->resync_min = mddev->curr_resync_completed; 7738 mddev->curr_resync = 0; 7739 spin_unlock(&mddev->lock); 7740 7741 wake_up(&resync_wait); 7742 set_bit(MD_RECOVERY_DONE, &mddev->recovery); 7743 md_wakeup_thread(mddev->thread); 7744 return; 7745 } 7746 EXPORT_SYMBOL_GPL(md_do_sync); 7747 7748 static int remove_and_add_spares(struct mddev *mddev, 7749 struct md_rdev *this) 7750 { 7751 struct md_rdev *rdev; 7752 int spares = 0; 7753 int removed = 0; 7754 7755 rdev_for_each(rdev, mddev) 7756 if ((this == NULL || rdev == this) && 7757 rdev->raid_disk >= 0 && 7758 !test_bit(Blocked, &rdev->flags) && 7759 (test_bit(Faulty, &rdev->flags) || 7760 ! test_bit(In_sync, &rdev->flags)) && 7761 atomic_read(&rdev->nr_pending)==0) { 7762 if (mddev->pers->hot_remove_disk( 7763 mddev, rdev) == 0) { 7764 sysfs_unlink_rdev(mddev, rdev); 7765 rdev->raid_disk = -1; 7766 removed++; 7767 } 7768 } 7769 if (removed && mddev->kobj.sd) 7770 sysfs_notify(&mddev->kobj, NULL, "degraded"); 7771 7772 if (this) 7773 goto no_add; 7774 7775 rdev_for_each(rdev, mddev) { 7776 if (rdev->raid_disk >= 0 && 7777 !test_bit(In_sync, &rdev->flags) && 7778 !test_bit(Faulty, &rdev->flags)) 7779 spares++; 7780 if (rdev->raid_disk >= 0) 7781 continue; 7782 if (test_bit(Faulty, &rdev->flags)) 7783 continue; 7784 if (mddev->ro && 7785 ! (rdev->saved_raid_disk >= 0 && 7786 !test_bit(Bitmap_sync, &rdev->flags))) 7787 continue; 7788 7789 if (rdev->saved_raid_disk < 0) 7790 rdev->recovery_offset = 0; 7791 if (mddev->pers-> 7792 hot_add_disk(mddev, rdev) == 0) { 7793 if (sysfs_link_rdev(mddev, rdev)) 7794 /* failure here is OK */; 7795 spares++; 7796 md_new_event(mddev); 7797 set_bit(MD_CHANGE_DEVS, &mddev->flags); 7798 } 7799 } 7800 no_add: 7801 if (removed) 7802 set_bit(MD_CHANGE_DEVS, &mddev->flags); 7803 return spares; 7804 } 7805 7806 static void md_start_sync(struct work_struct *ws) 7807 { 7808 struct mddev *mddev = container_of(ws, struct mddev, del_work); 7809 7810 mddev->sync_thread = md_register_thread(md_do_sync, 7811 mddev, 7812 "resync"); 7813 if (!mddev->sync_thread) { 7814 printk(KERN_ERR "%s: could not start resync" 7815 " thread...\n", 7816 mdname(mddev)); 7817 /* leave the spares where they are, it shouldn't hurt */ 7818 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7819 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7820 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 7821 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7822 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7823 wake_up(&resync_wait); 7824 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 7825 &mddev->recovery)) 7826 if (mddev->sysfs_action) 7827 sysfs_notify_dirent_safe(mddev->sysfs_action); 7828 } else 7829 md_wakeup_thread(mddev->sync_thread); 7830 sysfs_notify_dirent_safe(mddev->sysfs_action); 7831 md_new_event(mddev); 7832 } 7833 7834 /* 7835 * This routine is regularly called by all per-raid-array threads to 7836 * deal with generic issues like resync and super-block update. 7837 * Raid personalities that don't have a thread (linear/raid0) do not 7838 * need this as they never do any recovery or update the superblock. 7839 * 7840 * It does not do any resync itself, but rather "forks" off other threads 7841 * to do that as needed. 7842 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in 7843 * "->recovery" and create a thread at ->sync_thread. 7844 * When the thread finishes it sets MD_RECOVERY_DONE 7845 * and wakeups up this thread which will reap the thread and finish up. 7846 * This thread also removes any faulty devices (with nr_pending == 0). 7847 * 7848 * The overall approach is: 7849 * 1/ if the superblock needs updating, update it. 7850 * 2/ If a recovery thread is running, don't do anything else. 7851 * 3/ If recovery has finished, clean up, possibly marking spares active. 7852 * 4/ If there are any faulty devices, remove them. 7853 * 5/ If array is degraded, try to add spares devices 7854 * 6/ If array has spares or is not in-sync, start a resync thread. 7855 */ 7856 void md_check_recovery(struct mddev *mddev) 7857 { 7858 if (mddev->suspended) 7859 return; 7860 7861 if (mddev->bitmap) 7862 bitmap_daemon_work(mddev); 7863 7864 if (signal_pending(current)) { 7865 if (mddev->pers->sync_request && !mddev->external) { 7866 printk(KERN_INFO "md: %s in immediate safe mode\n", 7867 mdname(mddev)); 7868 mddev->safemode = 2; 7869 } 7870 flush_signals(current); 7871 } 7872 7873 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 7874 return; 7875 if ( ! ( 7876 (mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) || 7877 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 7878 test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 7879 (mddev->external == 0 && mddev->safemode == 1) || 7880 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending) 7881 && !mddev->in_sync && mddev->recovery_cp == MaxSector) 7882 )) 7883 return; 7884 7885 if (mddev_trylock(mddev)) { 7886 int spares = 0; 7887 7888 if (mddev->ro) { 7889 /* On a read-only array we can: 7890 * - remove failed devices 7891 * - add already-in_sync devices if the array itself 7892 * is in-sync. 7893 * As we only add devices that are already in-sync, 7894 * we can activate the spares immediately. 7895 */ 7896 remove_and_add_spares(mddev, NULL); 7897 /* There is no thread, but we need to call 7898 * ->spare_active and clear saved_raid_disk 7899 */ 7900 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7901 md_reap_sync_thread(mddev); 7902 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7903 goto unlock; 7904 } 7905 7906 if (!mddev->external) { 7907 int did_change = 0; 7908 spin_lock(&mddev->lock); 7909 if (mddev->safemode && 7910 !atomic_read(&mddev->writes_pending) && 7911 !mddev->in_sync && 7912 mddev->recovery_cp == MaxSector) { 7913 mddev->in_sync = 1; 7914 did_change = 1; 7915 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 7916 } 7917 if (mddev->safemode == 1) 7918 mddev->safemode = 0; 7919 spin_unlock(&mddev->lock); 7920 if (did_change) 7921 sysfs_notify_dirent_safe(mddev->sysfs_state); 7922 } 7923 7924 if (mddev->flags & MD_UPDATE_SB_FLAGS) 7925 md_update_sb(mddev, 0); 7926 7927 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 7928 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { 7929 /* resync/recovery still happening */ 7930 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7931 goto unlock; 7932 } 7933 if (mddev->sync_thread) { 7934 md_reap_sync_thread(mddev); 7935 goto unlock; 7936 } 7937 /* Set RUNNING before clearing NEEDED to avoid 7938 * any transients in the value of "sync_action". 7939 */ 7940 mddev->curr_resync_completed = 0; 7941 spin_lock(&mddev->lock); 7942 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7943 spin_unlock(&mddev->lock); 7944 /* Clear some bits that don't mean anything, but 7945 * might be left set 7946 */ 7947 clear_bit(MD_RECOVERY_INTR, &mddev->recovery); 7948 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 7949 7950 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 7951 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 7952 goto not_running; 7953 /* no recovery is running. 7954 * remove any failed drives, then 7955 * add spares if possible. 7956 * Spares are also removed and re-added, to allow 7957 * the personality to fail the re-add. 7958 */ 7959 7960 if (mddev->reshape_position != MaxSector) { 7961 if (mddev->pers->check_reshape == NULL || 7962 mddev->pers->check_reshape(mddev) != 0) 7963 /* Cannot proceed */ 7964 goto not_running; 7965 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7966 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7967 } else if ((spares = remove_and_add_spares(mddev, NULL))) { 7968 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7969 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7970 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 7971 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7972 } else if (mddev->recovery_cp < MaxSector) { 7973 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7974 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7975 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 7976 /* nothing to be done ... */ 7977 goto not_running; 7978 7979 if (mddev->pers->sync_request) { 7980 if (spares) { 7981 /* We are adding a device or devices to an array 7982 * which has the bitmap stored on all devices. 7983 * So make sure all bitmap pages get written 7984 */ 7985 bitmap_write_all(mddev->bitmap); 7986 } 7987 INIT_WORK(&mddev->del_work, md_start_sync); 7988 queue_work(md_misc_wq, &mddev->del_work); 7989 goto unlock; 7990 } 7991 not_running: 7992 if (!mddev->sync_thread) { 7993 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7994 wake_up(&resync_wait); 7995 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 7996 &mddev->recovery)) 7997 if (mddev->sysfs_action) 7998 sysfs_notify_dirent_safe(mddev->sysfs_action); 7999 } 8000 unlock: 8001 wake_up(&mddev->sb_wait); 8002 mddev_unlock(mddev); 8003 } 8004 } 8005 EXPORT_SYMBOL(md_check_recovery); 8006 8007 void md_reap_sync_thread(struct mddev *mddev) 8008 { 8009 struct md_rdev *rdev; 8010 8011 /* resync has finished, collect result */ 8012 md_unregister_thread(&mddev->sync_thread); 8013 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8014 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 8015 /* success...*/ 8016 /* activate any spares */ 8017 if (mddev->pers->spare_active(mddev)) { 8018 sysfs_notify(&mddev->kobj, NULL, 8019 "degraded"); 8020 set_bit(MD_CHANGE_DEVS, &mddev->flags); 8021 } 8022 } 8023 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8024 mddev->pers->finish_reshape) 8025 mddev->pers->finish_reshape(mddev); 8026 8027 /* If array is no-longer degraded, then any saved_raid_disk 8028 * information must be scrapped. 8029 */ 8030 if (!mddev->degraded) 8031 rdev_for_each(rdev, mddev) 8032 rdev->saved_raid_disk = -1; 8033 8034 md_update_sb(mddev, 1); 8035 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 8036 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8037 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 8038 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 8039 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 8040 wake_up(&resync_wait); 8041 /* flag recovery needed just to double check */ 8042 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8043 sysfs_notify_dirent_safe(mddev->sysfs_action); 8044 md_new_event(mddev); 8045 if (mddev->event_work.func) 8046 queue_work(md_misc_wq, &mddev->event_work); 8047 } 8048 EXPORT_SYMBOL(md_reap_sync_thread); 8049 8050 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev) 8051 { 8052 sysfs_notify_dirent_safe(rdev->sysfs_state); 8053 wait_event_timeout(rdev->blocked_wait, 8054 !test_bit(Blocked, &rdev->flags) && 8055 !test_bit(BlockedBadBlocks, &rdev->flags), 8056 msecs_to_jiffies(5000)); 8057 rdev_dec_pending(rdev, mddev); 8058 } 8059 EXPORT_SYMBOL(md_wait_for_blocked_rdev); 8060 8061 void md_finish_reshape(struct mddev *mddev) 8062 { 8063 /* called be personality module when reshape completes. */ 8064 struct md_rdev *rdev; 8065 8066 rdev_for_each(rdev, mddev) { 8067 if (rdev->data_offset > rdev->new_data_offset) 8068 rdev->sectors += rdev->data_offset - rdev->new_data_offset; 8069 else 8070 rdev->sectors -= rdev->new_data_offset - rdev->data_offset; 8071 rdev->data_offset = rdev->new_data_offset; 8072 } 8073 } 8074 EXPORT_SYMBOL(md_finish_reshape); 8075 8076 /* Bad block management. 8077 * We can record which blocks on each device are 'bad' and so just 8078 * fail those blocks, or that stripe, rather than the whole device. 8079 * Entries in the bad-block table are 64bits wide. This comprises: 8080 * Length of bad-range, in sectors: 0-511 for lengths 1-512 8081 * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes) 8082 * A 'shift' can be set so that larger blocks are tracked and 8083 * consequently larger devices can be covered. 8084 * 'Acknowledged' flag - 1 bit. - the most significant bit. 8085 * 8086 * Locking of the bad-block table uses a seqlock so md_is_badblock 8087 * might need to retry if it is very unlucky. 8088 * We will sometimes want to check for bad blocks in a bi_end_io function, 8089 * so we use the write_seqlock_irq variant. 8090 * 8091 * When looking for a bad block we specify a range and want to 8092 * know if any block in the range is bad. So we binary-search 8093 * to the last range that starts at-or-before the given endpoint, 8094 * (or "before the sector after the target range") 8095 * then see if it ends after the given start. 8096 * We return 8097 * 0 if there are no known bad blocks in the range 8098 * 1 if there are known bad block which are all acknowledged 8099 * -1 if there are bad blocks which have not yet been acknowledged in metadata. 8100 * plus the start/length of the first bad section we overlap. 8101 */ 8102 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors, 8103 sector_t *first_bad, int *bad_sectors) 8104 { 8105 int hi; 8106 int lo; 8107 u64 *p = bb->page; 8108 int rv; 8109 sector_t target = s + sectors; 8110 unsigned seq; 8111 8112 if (bb->shift > 0) { 8113 /* round the start down, and the end up */ 8114 s >>= bb->shift; 8115 target += (1<<bb->shift) - 1; 8116 target >>= bb->shift; 8117 sectors = target - s; 8118 } 8119 /* 'target' is now the first block after the bad range */ 8120 8121 retry: 8122 seq = read_seqbegin(&bb->lock); 8123 lo = 0; 8124 rv = 0; 8125 hi = bb->count; 8126 8127 /* Binary search between lo and hi for 'target' 8128 * i.e. for the last range that starts before 'target' 8129 */ 8130 /* INVARIANT: ranges before 'lo' and at-or-after 'hi' 8131 * are known not to be the last range before target. 8132 * VARIANT: hi-lo is the number of possible 8133 * ranges, and decreases until it reaches 1 8134 */ 8135 while (hi - lo > 1) { 8136 int mid = (lo + hi) / 2; 8137 sector_t a = BB_OFFSET(p[mid]); 8138 if (a < target) 8139 /* This could still be the one, earlier ranges 8140 * could not. */ 8141 lo = mid; 8142 else 8143 /* This and later ranges are definitely out. */ 8144 hi = mid; 8145 } 8146 /* 'lo' might be the last that started before target, but 'hi' isn't */ 8147 if (hi > lo) { 8148 /* need to check all range that end after 's' to see if 8149 * any are unacknowledged. 8150 */ 8151 while (lo >= 0 && 8152 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) { 8153 if (BB_OFFSET(p[lo]) < target) { 8154 /* starts before the end, and finishes after 8155 * the start, so they must overlap 8156 */ 8157 if (rv != -1 && BB_ACK(p[lo])) 8158 rv = 1; 8159 else 8160 rv = -1; 8161 *first_bad = BB_OFFSET(p[lo]); 8162 *bad_sectors = BB_LEN(p[lo]); 8163 } 8164 lo--; 8165 } 8166 } 8167 8168 if (read_seqretry(&bb->lock, seq)) 8169 goto retry; 8170 8171 return rv; 8172 } 8173 EXPORT_SYMBOL_GPL(md_is_badblock); 8174 8175 /* 8176 * Add a range of bad blocks to the table. 8177 * This might extend the table, or might contract it 8178 * if two adjacent ranges can be merged. 8179 * We binary-search to find the 'insertion' point, then 8180 * decide how best to handle it. 8181 */ 8182 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors, 8183 int acknowledged) 8184 { 8185 u64 *p; 8186 int lo, hi; 8187 int rv = 1; 8188 unsigned long flags; 8189 8190 if (bb->shift < 0) 8191 /* badblocks are disabled */ 8192 return 0; 8193 8194 if (bb->shift) { 8195 /* round the start down, and the end up */ 8196 sector_t next = s + sectors; 8197 s >>= bb->shift; 8198 next += (1<<bb->shift) - 1; 8199 next >>= bb->shift; 8200 sectors = next - s; 8201 } 8202 8203 write_seqlock_irqsave(&bb->lock, flags); 8204 8205 p = bb->page; 8206 lo = 0; 8207 hi = bb->count; 8208 /* Find the last range that starts at-or-before 's' */ 8209 while (hi - lo > 1) { 8210 int mid = (lo + hi) / 2; 8211 sector_t a = BB_OFFSET(p[mid]); 8212 if (a <= s) 8213 lo = mid; 8214 else 8215 hi = mid; 8216 } 8217 if (hi > lo && BB_OFFSET(p[lo]) > s) 8218 hi = lo; 8219 8220 if (hi > lo) { 8221 /* we found a range that might merge with the start 8222 * of our new range 8223 */ 8224 sector_t a = BB_OFFSET(p[lo]); 8225 sector_t e = a + BB_LEN(p[lo]); 8226 int ack = BB_ACK(p[lo]); 8227 if (e >= s) { 8228 /* Yes, we can merge with a previous range */ 8229 if (s == a && s + sectors >= e) 8230 /* new range covers old */ 8231 ack = acknowledged; 8232 else 8233 ack = ack && acknowledged; 8234 8235 if (e < s + sectors) 8236 e = s + sectors; 8237 if (e - a <= BB_MAX_LEN) { 8238 p[lo] = BB_MAKE(a, e-a, ack); 8239 s = e; 8240 } else { 8241 /* does not all fit in one range, 8242 * make p[lo] maximal 8243 */ 8244 if (BB_LEN(p[lo]) != BB_MAX_LEN) 8245 p[lo] = BB_MAKE(a, BB_MAX_LEN, ack); 8246 s = a + BB_MAX_LEN; 8247 } 8248 sectors = e - s; 8249 } 8250 } 8251 if (sectors && hi < bb->count) { 8252 /* 'hi' points to the first range that starts after 's'. 8253 * Maybe we can merge with the start of that range */ 8254 sector_t a = BB_OFFSET(p[hi]); 8255 sector_t e = a + BB_LEN(p[hi]); 8256 int ack = BB_ACK(p[hi]); 8257 if (a <= s + sectors) { 8258 /* merging is possible */ 8259 if (e <= s + sectors) { 8260 /* full overlap */ 8261 e = s + sectors; 8262 ack = acknowledged; 8263 } else 8264 ack = ack && acknowledged; 8265 8266 a = s; 8267 if (e - a <= BB_MAX_LEN) { 8268 p[hi] = BB_MAKE(a, e-a, ack); 8269 s = e; 8270 } else { 8271 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack); 8272 s = a + BB_MAX_LEN; 8273 } 8274 sectors = e - s; 8275 lo = hi; 8276 hi++; 8277 } 8278 } 8279 if (sectors == 0 && hi < bb->count) { 8280 /* we might be able to combine lo and hi */ 8281 /* Note: 's' is at the end of 'lo' */ 8282 sector_t a = BB_OFFSET(p[hi]); 8283 int lolen = BB_LEN(p[lo]); 8284 int hilen = BB_LEN(p[hi]); 8285 int newlen = lolen + hilen - (s - a); 8286 if (s >= a && newlen < BB_MAX_LEN) { 8287 /* yes, we can combine them */ 8288 int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]); 8289 p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack); 8290 memmove(p + hi, p + hi + 1, 8291 (bb->count - hi - 1) * 8); 8292 bb->count--; 8293 } 8294 } 8295 while (sectors) { 8296 /* didn't merge (it all). 8297 * Need to add a range just before 'hi' */ 8298 if (bb->count >= MD_MAX_BADBLOCKS) { 8299 /* No room for more */ 8300 rv = 0; 8301 break; 8302 } else { 8303 int this_sectors = sectors; 8304 memmove(p + hi + 1, p + hi, 8305 (bb->count - hi) * 8); 8306 bb->count++; 8307 8308 if (this_sectors > BB_MAX_LEN) 8309 this_sectors = BB_MAX_LEN; 8310 p[hi] = BB_MAKE(s, this_sectors, acknowledged); 8311 sectors -= this_sectors; 8312 s += this_sectors; 8313 } 8314 } 8315 8316 bb->changed = 1; 8317 if (!acknowledged) 8318 bb->unacked_exist = 1; 8319 write_sequnlock_irqrestore(&bb->lock, flags); 8320 8321 return rv; 8322 } 8323 8324 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 8325 int is_new) 8326 { 8327 int rv; 8328 if (is_new) 8329 s += rdev->new_data_offset; 8330 else 8331 s += rdev->data_offset; 8332 rv = md_set_badblocks(&rdev->badblocks, 8333 s, sectors, 0); 8334 if (rv) { 8335 /* Make sure they get written out promptly */ 8336 sysfs_notify_dirent_safe(rdev->sysfs_state); 8337 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags); 8338 md_wakeup_thread(rdev->mddev->thread); 8339 } 8340 return rv; 8341 } 8342 EXPORT_SYMBOL_GPL(rdev_set_badblocks); 8343 8344 /* 8345 * Remove a range of bad blocks from the table. 8346 * This may involve extending the table if we spilt a region, 8347 * but it must not fail. So if the table becomes full, we just 8348 * drop the remove request. 8349 */ 8350 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors) 8351 { 8352 u64 *p; 8353 int lo, hi; 8354 sector_t target = s + sectors; 8355 int rv = 0; 8356 8357 if (bb->shift > 0) { 8358 /* When clearing we round the start up and the end down. 8359 * This should not matter as the shift should align with 8360 * the block size and no rounding should ever be needed. 8361 * However it is better the think a block is bad when it 8362 * isn't than to think a block is not bad when it is. 8363 */ 8364 s += (1<<bb->shift) - 1; 8365 s >>= bb->shift; 8366 target >>= bb->shift; 8367 sectors = target - s; 8368 } 8369 8370 write_seqlock_irq(&bb->lock); 8371 8372 p = bb->page; 8373 lo = 0; 8374 hi = bb->count; 8375 /* Find the last range that starts before 'target' */ 8376 while (hi - lo > 1) { 8377 int mid = (lo + hi) / 2; 8378 sector_t a = BB_OFFSET(p[mid]); 8379 if (a < target) 8380 lo = mid; 8381 else 8382 hi = mid; 8383 } 8384 if (hi > lo) { 8385 /* p[lo] is the last range that could overlap the 8386 * current range. Earlier ranges could also overlap, 8387 * but only this one can overlap the end of the range. 8388 */ 8389 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) { 8390 /* Partial overlap, leave the tail of this range */ 8391 int ack = BB_ACK(p[lo]); 8392 sector_t a = BB_OFFSET(p[lo]); 8393 sector_t end = a + BB_LEN(p[lo]); 8394 8395 if (a < s) { 8396 /* we need to split this range */ 8397 if (bb->count >= MD_MAX_BADBLOCKS) { 8398 rv = -ENOSPC; 8399 goto out; 8400 } 8401 memmove(p+lo+1, p+lo, (bb->count - lo) * 8); 8402 bb->count++; 8403 p[lo] = BB_MAKE(a, s-a, ack); 8404 lo++; 8405 } 8406 p[lo] = BB_MAKE(target, end - target, ack); 8407 /* there is no longer an overlap */ 8408 hi = lo; 8409 lo--; 8410 } 8411 while (lo >= 0 && 8412 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) { 8413 /* This range does overlap */ 8414 if (BB_OFFSET(p[lo]) < s) { 8415 /* Keep the early parts of this range. */ 8416 int ack = BB_ACK(p[lo]); 8417 sector_t start = BB_OFFSET(p[lo]); 8418 p[lo] = BB_MAKE(start, s - start, ack); 8419 /* now low doesn't overlap, so.. */ 8420 break; 8421 } 8422 lo--; 8423 } 8424 /* 'lo' is strictly before, 'hi' is strictly after, 8425 * anything between needs to be discarded 8426 */ 8427 if (hi - lo > 1) { 8428 memmove(p+lo+1, p+hi, (bb->count - hi) * 8); 8429 bb->count -= (hi - lo - 1); 8430 } 8431 } 8432 8433 bb->changed = 1; 8434 out: 8435 write_sequnlock_irq(&bb->lock); 8436 return rv; 8437 } 8438 8439 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 8440 int is_new) 8441 { 8442 if (is_new) 8443 s += rdev->new_data_offset; 8444 else 8445 s += rdev->data_offset; 8446 return md_clear_badblocks(&rdev->badblocks, 8447 s, sectors); 8448 } 8449 EXPORT_SYMBOL_GPL(rdev_clear_badblocks); 8450 8451 /* 8452 * Acknowledge all bad blocks in a list. 8453 * This only succeeds if ->changed is clear. It is used by 8454 * in-kernel metadata updates 8455 */ 8456 void md_ack_all_badblocks(struct badblocks *bb) 8457 { 8458 if (bb->page == NULL || bb->changed) 8459 /* no point even trying */ 8460 return; 8461 write_seqlock_irq(&bb->lock); 8462 8463 if (bb->changed == 0 && bb->unacked_exist) { 8464 u64 *p = bb->page; 8465 int i; 8466 for (i = 0; i < bb->count ; i++) { 8467 if (!BB_ACK(p[i])) { 8468 sector_t start = BB_OFFSET(p[i]); 8469 int len = BB_LEN(p[i]); 8470 p[i] = BB_MAKE(start, len, 1); 8471 } 8472 } 8473 bb->unacked_exist = 0; 8474 } 8475 write_sequnlock_irq(&bb->lock); 8476 } 8477 EXPORT_SYMBOL_GPL(md_ack_all_badblocks); 8478 8479 /* sysfs access to bad-blocks list. 8480 * We present two files. 8481 * 'bad-blocks' lists sector numbers and lengths of ranges that 8482 * are recorded as bad. The list is truncated to fit within 8483 * the one-page limit of sysfs. 8484 * Writing "sector length" to this file adds an acknowledged 8485 * bad block list. 8486 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet 8487 * been acknowledged. Writing to this file adds bad blocks 8488 * without acknowledging them. This is largely for testing. 8489 */ 8490 8491 static ssize_t 8492 badblocks_show(struct badblocks *bb, char *page, int unack) 8493 { 8494 size_t len; 8495 int i; 8496 u64 *p = bb->page; 8497 unsigned seq; 8498 8499 if (bb->shift < 0) 8500 return 0; 8501 8502 retry: 8503 seq = read_seqbegin(&bb->lock); 8504 8505 len = 0; 8506 i = 0; 8507 8508 while (len < PAGE_SIZE && i < bb->count) { 8509 sector_t s = BB_OFFSET(p[i]); 8510 unsigned int length = BB_LEN(p[i]); 8511 int ack = BB_ACK(p[i]); 8512 i++; 8513 8514 if (unack && ack) 8515 continue; 8516 8517 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n", 8518 (unsigned long long)s << bb->shift, 8519 length << bb->shift); 8520 } 8521 if (unack && len == 0) 8522 bb->unacked_exist = 0; 8523 8524 if (read_seqretry(&bb->lock, seq)) 8525 goto retry; 8526 8527 return len; 8528 } 8529 8530 #define DO_DEBUG 1 8531 8532 static ssize_t 8533 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack) 8534 { 8535 unsigned long long sector; 8536 int length; 8537 char newline; 8538 #ifdef DO_DEBUG 8539 /* Allow clearing via sysfs *only* for testing/debugging. 8540 * Normally only a successful write may clear a badblock 8541 */ 8542 int clear = 0; 8543 if (page[0] == '-') { 8544 clear = 1; 8545 page++; 8546 } 8547 #endif /* DO_DEBUG */ 8548 8549 switch (sscanf(page, "%llu %d%c", §or, &length, &newline)) { 8550 case 3: 8551 if (newline != '\n') 8552 return -EINVAL; 8553 case 2: 8554 if (length <= 0) 8555 return -EINVAL; 8556 break; 8557 default: 8558 return -EINVAL; 8559 } 8560 8561 #ifdef DO_DEBUG 8562 if (clear) { 8563 md_clear_badblocks(bb, sector, length); 8564 return len; 8565 } 8566 #endif /* DO_DEBUG */ 8567 if (md_set_badblocks(bb, sector, length, !unack)) 8568 return len; 8569 else 8570 return -ENOSPC; 8571 } 8572 8573 static int md_notify_reboot(struct notifier_block *this, 8574 unsigned long code, void *x) 8575 { 8576 struct list_head *tmp; 8577 struct mddev *mddev; 8578 int need_delay = 0; 8579 8580 for_each_mddev(mddev, tmp) { 8581 if (mddev_trylock(mddev)) { 8582 if (mddev->pers) 8583 __md_stop_writes(mddev); 8584 if (mddev->persistent) 8585 mddev->safemode = 2; 8586 mddev_unlock(mddev); 8587 } 8588 need_delay = 1; 8589 } 8590 /* 8591 * certain more exotic SCSI devices are known to be 8592 * volatile wrt too early system reboots. While the 8593 * right place to handle this issue is the given 8594 * driver, we do want to have a safe RAID driver ... 8595 */ 8596 if (need_delay) 8597 mdelay(1000*1); 8598 8599 return NOTIFY_DONE; 8600 } 8601 8602 static struct notifier_block md_notifier = { 8603 .notifier_call = md_notify_reboot, 8604 .next = NULL, 8605 .priority = INT_MAX, /* before any real devices */ 8606 }; 8607 8608 static void md_geninit(void) 8609 { 8610 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); 8611 8612 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops); 8613 } 8614 8615 static int __init md_init(void) 8616 { 8617 int ret = -ENOMEM; 8618 8619 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0); 8620 if (!md_wq) 8621 goto err_wq; 8622 8623 md_misc_wq = alloc_workqueue("md_misc", 0, 0); 8624 if (!md_misc_wq) 8625 goto err_misc_wq; 8626 8627 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0) 8628 goto err_md; 8629 8630 if ((ret = register_blkdev(0, "mdp")) < 0) 8631 goto err_mdp; 8632 mdp_major = ret; 8633 8634 blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE, 8635 md_probe, NULL, NULL); 8636 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE, 8637 md_probe, NULL, NULL); 8638 8639 register_reboot_notifier(&md_notifier); 8640 raid_table_header = register_sysctl_table(raid_root_table); 8641 8642 md_geninit(); 8643 return 0; 8644 8645 err_mdp: 8646 unregister_blkdev(MD_MAJOR, "md"); 8647 err_md: 8648 destroy_workqueue(md_misc_wq); 8649 err_misc_wq: 8650 destroy_workqueue(md_wq); 8651 err_wq: 8652 return ret; 8653 } 8654 8655 #ifndef MODULE 8656 8657 /* 8658 * Searches all registered partitions for autorun RAID arrays 8659 * at boot time. 8660 */ 8661 8662 static LIST_HEAD(all_detected_devices); 8663 struct detected_devices_node { 8664 struct list_head list; 8665 dev_t dev; 8666 }; 8667 8668 void md_autodetect_dev(dev_t dev) 8669 { 8670 struct detected_devices_node *node_detected_dev; 8671 8672 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL); 8673 if (node_detected_dev) { 8674 node_detected_dev->dev = dev; 8675 list_add_tail(&node_detected_dev->list, &all_detected_devices); 8676 } else { 8677 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed" 8678 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev)); 8679 } 8680 } 8681 8682 static void autostart_arrays(int part) 8683 { 8684 struct md_rdev *rdev; 8685 struct detected_devices_node *node_detected_dev; 8686 dev_t dev; 8687 int i_scanned, i_passed; 8688 8689 i_scanned = 0; 8690 i_passed = 0; 8691 8692 printk(KERN_INFO "md: Autodetecting RAID arrays.\n"); 8693 8694 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) { 8695 i_scanned++; 8696 node_detected_dev = list_entry(all_detected_devices.next, 8697 struct detected_devices_node, list); 8698 list_del(&node_detected_dev->list); 8699 dev = node_detected_dev->dev; 8700 kfree(node_detected_dev); 8701 rdev = md_import_device(dev,0, 90); 8702 if (IS_ERR(rdev)) 8703 continue; 8704 8705 if (test_bit(Faulty, &rdev->flags)) 8706 continue; 8707 8708 set_bit(AutoDetected, &rdev->flags); 8709 list_add(&rdev->same_set, &pending_raid_disks); 8710 i_passed++; 8711 } 8712 8713 printk(KERN_INFO "md: Scanned %d and added %d devices.\n", 8714 i_scanned, i_passed); 8715 8716 autorun_devices(part); 8717 } 8718 8719 #endif /* !MODULE */ 8720 8721 static __exit void md_exit(void) 8722 { 8723 struct mddev *mddev; 8724 struct list_head *tmp; 8725 int delay = 1; 8726 8727 blk_unregister_region(MKDEV(MD_MAJOR,0), 512); 8728 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS); 8729 8730 unregister_blkdev(MD_MAJOR,"md"); 8731 unregister_blkdev(mdp_major, "mdp"); 8732 unregister_reboot_notifier(&md_notifier); 8733 unregister_sysctl_table(raid_table_header); 8734 8735 /* We cannot unload the modules while some process is 8736 * waiting for us in select() or poll() - wake them up 8737 */ 8738 md_unloading = 1; 8739 while (waitqueue_active(&md_event_waiters)) { 8740 /* not safe to leave yet */ 8741 wake_up(&md_event_waiters); 8742 msleep(delay); 8743 delay += delay; 8744 } 8745 remove_proc_entry("mdstat", NULL); 8746 8747 for_each_mddev(mddev, tmp) { 8748 export_array(mddev); 8749 mddev->hold_active = 0; 8750 } 8751 destroy_workqueue(md_misc_wq); 8752 destroy_workqueue(md_wq); 8753 } 8754 8755 subsys_initcall(md_init); 8756 module_exit(md_exit) 8757 8758 static int get_ro(char *buffer, struct kernel_param *kp) 8759 { 8760 return sprintf(buffer, "%d", start_readonly); 8761 } 8762 static int set_ro(const char *val, struct kernel_param *kp) 8763 { 8764 char *e; 8765 int num = simple_strtoul(val, &e, 10); 8766 if (*val && (*e == '\0' || *e == '\n')) { 8767 start_readonly = num; 8768 return 0; 8769 } 8770 return -EINVAL; 8771 } 8772 8773 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); 8774 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); 8775 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR); 8776 8777 MODULE_LICENSE("GPL"); 8778 MODULE_DESCRIPTION("MD RAID framework"); 8779 MODULE_ALIAS("md"); 8780 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR); 8781